Fax: 518.783.8397

FINAL SEMI-ANNUAL OPERATION MONITORING & MAINTENANCE REPORT REMEDIAL WORK ELEMENTS I, II AND IV REPORTING PERIOD JUNE 20, 2006 THROUGH DECEMBER 29, 2006

Malta Rocket Fuel Area Site Malta, New York

February 9, 2007

Submitted to:

General Electric Company Corporate Environmental Programs 319 Great Oaks Boulevard Albany, New York 12203

Submitted by:

Shaw Environmental, Inc. 13 British American Boulevard Latham, New York 12110 **CERTIFICATION**: This document has been reviewed and is prepared in accordance with the contract documents.

Brian Neumann, PG, CPG

Project Manager/Secondary Operator

Juli Mullin

Marc Flanagan

Project Geologist/Primary Operator

Mare C. H.

TABLE OF CONTENTS _____

1.0	INTRODUCTION	1
2.0	O&M OF REMEDIAL WORK ELEMENT I (DRINKING WATER)	2
2.1	REMOTE TELEMETRY/PROGRAMMABLE LOGIC CONTROLLER	2
2.2	VISUAL SYSTEM INSPECTION	
2.3	OPERATING MEASUREMENTS	
_	.3.1 Water Flow Measurements	
_	.3.2 Blower Air Pressure	
2.4		
	4.1 Sample Collection	
2	4.2 VOC Analytical Results	5
3.0	O&M OF REMEDIAL WORK ELEMENT II (GROUNDWATER)	7
3.1	SAMPLE COLLECTION	7
3.2	CHROMIUM ANALYTICAL RESULTS	
3.3	VOC Analytical Results	8
3.4	COMPARISON OF OBSERVED VOC CONCENTRATIONS TO SIMULATION RESULTS	9
3.5	Groundwater Gauging	9
4.0	INSTITUTIONAL CONTROLS	10
4.1	SAMPLING AND SURVEY RESULTS	10
4.2	INTERVIEWS WITH PROPERTY OWNERS	
5.0	SUMMARY	12
5.1	Drinking Water	12
5.2	EWMS	
5.3	Institutional Controls	

LIST OF TABLES

- 1 Maintenance Checklist
- 2 Equipment Log
- 3 Process Operating Report
- 4 Summary of Drinking Water Sampling Program, Preservatives, Holding Times and Containers
- 5 October 2006 Water Quality Analytical Results
- 6 Summary of Water Quality Analytical Results, Wells DGC-3S, DGC-4S, 13S
- 7 Summary of Water Quality Analytical Results, Wells M-27S, M-27D, M-33S and M-33I
- 8 Summary of Water Quality Analytical Results, Surface Water
- 9 Summary of Water Quality Analytical Results, Wells 4D, 11D, M-24D, M-25D, M-29D and 13D

LIST OF FIGURES _____

- 1 Site Location Map
- 2 Well M-27D Carbon Tetrachloride Concentrations
- 3 Simulated Versus Observed (October 2006) Carbon Tetrachloride Concentrations at Well M-27D
- 4 Simulated Versus Observed (October 2006) Trichloroethene Concentrations at Well M-33S
- 5 Simulated Versus Observed (October 2006) Trichloroethene Concentrations at Well M-33I
- 6A Shallow Groundwater Elevation Contour Map
- 6B Deep Groundwater Elevation Contour Map

LIST OF APPENDICES_____

- A. Laboratory Data, Influent/Effluent Water Samples, August 15, 2006 and October 16, 2006
- B. Laboratory Data, Groundwater Samples and Surface Water Samples October 16 and 17, 2006
- C. Data Validation Reports
- D. Air Stripper Flow Data
- E. Telephone Interview Logs

1.0 INTRODUCTION

This operations and maintenance (O&M) report documents on going O&M activities conducted at the Malta Rocket Fuel Area (MRFA) site, in the Town of Malta, New York. This report has been prepared in accordance with the following documents:

- Operation and Maintenance Manual, Remedial Work Element I, Drinking Water, dated March 31, 1998 and prepared by ERM Northeast, Inc.
- Operation and Maintenance Manual, Remedial Work Element I, Drinking Water, dated January 15, 2002, and prepared by IT Corporation, Inc., currently Shaw Environmental, Inc. (Shaw).
- Operations and Maintenance Manual, Remedial Work Element II, Groundwater, dated January 22, 1998 and prepared by ERM Northeast, Inc., and Addendum No. 1, January 31, 2005.
- Operation and Maintenance Manual, Remedial Work Element IV, Institutional Controls, dated September 9, 1999, revised September 27, 1999, prepared by IT Corporation, Inc., currently Shaw.

This report covers all site activities performed at the site, as required in each of the previously referenced documents, for the period from June 20, 2006 through December 29, 2006.

2.0 O&M OF REMEDIAL WORK ELEMENT I (Drinking Water)

According to the provisions of the <u>Operation and Maintenance Manual, Remedial Work Element I, Drinking Water, IT Corporation, Inc., January 15, 2002</u>, six regularly scheduled monthly site visits were performed to inspect the groundwater treatment system (system) operation, record system operating conditions, and to determine system treatment effectiveness. The site visits took place on July 18, August 15, September 20, October 16, November 15, and December 29, 2006.

The groundwater treatment system is comprised of a packed tower air stripper. System influent and effluent samples were collected during the August 15, 2006 and October 16, 2006 site visits to document adherence to treatment system discharge objectives. Analytical results from these sample events, including validated analytical results and chain of custody forms, are provided in **Appendix A**. The validation summary is included in **Appendix C**.

During the reporting period, recovery wells RW-1D and RW-2D operated at instantaneous flow rates of approximately 4.0 and 6.8 gallons per minute (gpm), respectively, yielding a total instantaneous flow of approximately 10.8 gpm. Recovery well pump RW-1D experienced short-term operational problems during the reporting period. During those periods, RW-2D continued to operate and the total instantaneous system flow was approximately 7 gpm.

Review of the analytical results for influent and effluent treatment system samples collected in August 2006 and October 2006 confirm that during the reporting period, the system effluent water quality was well below the chemical specific effluent requirements presented in the O&M manual. Air stripper blower pressure readings as well as the effluent water quality data demonstrate that the air stripper packing material is not in need of cleaning or replacement. Additional discussions regarding air stripper flow, air stripper blower pressure readings and water quality sampling are presented in the following sections.

2.1 Remote Telemetry/Programmable Logic Controller

To ensure that the system operates continuously, system operating parameters are visually monitored during each of the monthly site visits and on a continual basis via a Remote Telemetry Unit (RTU). During the reporting period, the RTU notified key project personnel of alarm conditions via facsimile and voice messaging. The alarm conditions that were received by the

RTU that were not activated on-site during system O&M activities were identified as AC Power Failures or Blower Low Pressure/Blower Low Amperage. The AC power failure alarm conditions were apparently caused by short duration power failures which are typical at the MRFA site. The power failures result in brief interruptions in the delivery of electrical power to the system and are not known to cause significant disruption to the performance of the treatment system. With the exception of the Blower Low Pressure/Blower Low Amperage alarm, no operator intervention at the Site was required to clear the alarm conditions identified during the reporting period. The alarm conditions identified by the RTU during the reporting period confirmed the proper operation of the system and the RTU's effectiveness in notifying project personnel of alarm conditions.

2.2 Visual System Inspection

Visual inspections were made of all accessible system components during monthly site visits in accordance with attached **Table 1**, **Maintenance Checklist**. Inspections were performed to check for signs of component wear, process piping leaks and each of the general maintenance requirements. **Table 2**, **Equipment Log, Air Stripper Maintenance** includes a summary of observations made during visual inspections.

Maintenance activities included regular inspection of the air stripper blower intake for obstructions, inspection of all process valves and piping to prevent leakage of untreated groundwater, and inspection of the air stripper sight tube for sediment buildup. In addition, the operation of the transfer sump pump and associated high level float was checked. The settling tank interior was also visually inspected for signs of sediment buildup or corrosion and the reservoir level was checked during each monthly visit.

The system was found to be in good working order during the reporting period, with the exception of intermittent operational problems with recovery well RW-1D. Corrective measures have been implemented to address the operational issues, including the replacement of the 20 amp fuses located in the RW-1D electrical panel inside Building 15 with 30 amp fuses. Total flow rates were within acceptable ranges during the reporting period.

2.3 Operating Measurements

2.3.1 Water Flow Measurements

Water flow measurements for wells RW-1D and RW-2D collected during monthly site visits are

presented in **Table 3**, **Process Operating Report**. The totalizer readings collected at the site demonstrate average recovery well water flow rates for the period of June 20, 2006 to December 29, 2006 are as follows:

Well RW-1D: 0.3532 gpm Well RW-2D: 0.8086 gpm System Avg: 1.1618 gpm

Average daily water flow data as recorded by the on-site data logger are provided in **Appendix D**. Information obtained from the data logger indicates an average daily water flow rate of 1.171 gpm for the reporting period. The average water flow rate calculated from field observations (1.1618) is very similar to the average daily water flow rate calculated from the data logger (1.171), confirming the data logger's accuracy and usefulness in verifying field observations.

The average daily water flow rates observed during the reporting period were similar to those observed during the last reporting period. The decrease in personnel present on a daily basis at Luther Forest Technology Campus Economic Development Corporation (LFTCEDC) and the New York State Energy Research and Development Authority (NYSERDA) were responsible for the decrease in water use within the distribution system. NYSERDA was connected to Saratoga Water Services in November 2005 and no longer utilizes water from the test station. LFTCEDC uses minimal water currently, because the facility is mostly inactive.

2.3.2 Blower Air Pressure

Measurements of the air stripper blower back pressure were recorded on a weekly basis via RTU monitoring and during monthly O&M site visits. Readings collected during monthly O&M site visits from the pressure gauge installed to monitor the air stripper back pressure are provided in **Table 3**. Pressure readings ranged from 2.60 to 3.00 inches of water column during the current period. The pressure readings were within the acceptable range of readings that are specified in the *Operation and Maintenance Manual, Remedial Work Element I, Drinking Water, IT Corporation, Inc., January 15*, 2002. Pressure readings will continue to be monitored in the future to ensure proper system performance.

2.4 Water Quality Data

2.4.1 Sample Collection

Samples of the drinking water system influent and effluent were collected on August 15 and October 16, 2006 and analyzed by Columbia Analytical Laboratories, Inc., Rochester, New York. Influent and effluent samples were analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method Contract Laboratory Program (CLP) OLC-02, modified to include hexachlorobutadiene, 1,2,3-trichlorobenzene and trichlorofluoromethane as summarized in **Table 4**.

The validated analytical results and chain of custody forms for the August 15 and October 16, 2006 samples are provided in **Appendix A**. All validation was performed by Data Validation Services, Incorporated of North Creek, New York. Validation reports are included in **Appendix C**.

2.4.2 VOC Analytical Results

The air stripper influent carbon tetrachloride concentrations were similar to those observed during previous reporting periods. Carbon tetrachloride was detected at concentrations of 24 μ g/l and 38 μ g/l in the air stripper influent samples collected during the August 2006 and October 2006 sampling events, respectively. Carbon tetrachloride was below the detection limit in the air stripper effluent sample collected on August 2006. Carbon tetrachloride was not dectected above the reported limit, but at an estimated concentration of 0.32 μ g/l in the air stripper effluent sample collected on October 2006. The drinking water system influent and effluent sample results for carbon tetrachloride are summarized below:

Analyte	Date Sampled	Influent (µg/l)	Effluent (µg/l)	Performance Standard (µg/l)
Carbon	August 15, 2006	24	< 1.0	5
Tetrachloride	October 16, 2006	38	0.32 J	5

The air stripper influent TCE concentrations were similar to those observed during previous reporting periods. TCE was detected at concentrations of 25 μ g/l and 27 μ g/l in the air stripper influent samples collected during the August 2006 and October 2006 sampling events,

respectively. TCE was below the detection limit in the air stripper effluent sample collected on August 2006. TCE was not detected above the reported limit, but reported at an estimated concentration of $0.23 \,\mu g/l$ in the air stripper effluent sample collected on October 2006. The drinking water system influent and effluent sample results for TCE are summarized below:

Analyte	Date Sampled	Influent (µg/l)	Effluent (µg/l)	Performance Standard (µg/l)
TCE	August 15, 2006	25	< 1.0	5
	October 16, 2006	27	0.23 J	5

The air stripper influent chloroform concentrations are similar to the chloroform influent concentrations observed during the previous reporting period. Chloroform was detected at concentrations of $3.0~\mu g/l$ and $4~\mu g/l$ in the air stripper influent samples collected during the August 2006 and October 2006 sampling events, respectively. Chloroform was below detection limits in the air stripper effluent samples collected on August 2006 and October 2006. The drinking water system influent and effluent sample results for chloroform are summarized below.

Analyte	Date Sampled	Influent (µg/l)	Effluent (µg/l)	Criteria (µg/l)		
Chloroform	August 15, 2006	3	< 1.0	70		
	October 16, 2006	4	< 1.0	70		

Based upon analytical data collected during this reporting period, the drinking water system's removal efficiency was greater than 98% for all volatile organic analytes.

3.1 Sample Collection

Recent modifications to the EWMS monitoring program have been specified in <u>Addendum No. 1</u>, Operations and Maintenance Manual, Remedial Work Element II- Groundwater, Malta Rocket Fuel Area Site, General Electric Company, January 31, 2005 (Addendum No. 1). In accordance with the Operations and Maintenance Manual for Remedial Work Element II - Ground Water, ERM Northeast, Inc., January 22, 1998, (O&M-GW) and Addendum No. 1, unfiltered groundwater samples were collected on October 16 and 17, 2006 from the Early Warning Monitoring System (EWMS). In accordance with the Five-Year Review Report, Malta Rocket Fuel Area Superfund site, United States Environmental Protection Agency (EPA), September 24, 2004 (Five Year Review Report) including a table titled "Proposed Modifications to Groundwater and Surface Water Sampling Regimes at the Malta Rocket Fuel Area Site" and a letter from GE to the USEPA dated October 26, 2004, EWMS samples were collected from monitoring wells DGC-3S, DGC-4S, 4D, 11D, 13D, 14D, M-24D, M-25D, M-27D, M-29D, M-33S, and M-33I. Surface water locations SW-A, SW-B, SW-D, SW-E, SW-F and SW-G were also sampled (Figure 1). Blind duplicate samples were collected from well 13D (DUP B) for chromium and hexavalent chromium and from well M-29D (DUP A) for volatile organic compounds. Trip blanks and matrix spikes were also analyzed.

Samples from all designated monitoring well sampling locations and surface water sampling locations were analyzed for volatile organic compounds (VOCs) by USEPA Method OLC-02.1 by Columbia Analytical Services, Inc. in Rochester, New York except for samples from well 13D. Samples from well 13D were analyzed for unfiltered total matrix chromium following CLP procedures and unfiltered hexavalent chromium by SW-846 Method 7196 (*Test Methods for Evaluating Solid Waste*, 3rd Edition, November 1986). Samples from monitoring well M-27D and surface water location SW-B were analyzed for VOCs, unfiltered total matrix chromium following CLP procedures and unfiltered hexavalent chromium.

Results of the October 2006 semi-annual EWMS sampling event are summarized in **Table 5**. The laboratory reports are presented in **Appendix B**. The data validation report is included in **Appendix C**. A summary of analytical results from 1987 through this reporting period for samples collected at locations currently included in the EWMS sampling program is provided in **Tables 6**, **7**, **8** and **9**.

In accordance with the O&M-GW, time vs. concentration plots for carbon tetrachloride at monitoring well M-27D are included as **Figure 2. Figures 3, 4** and **5** include comparisons of simulated versus observed concentrations of carbon tetrachloride at monitoring well M-27D, TCE at monitoring well M-33S and TCE at monitoring well M-33I, respectively.

3.2 Chromium Analytical Results

Results of the unfiltered total chromium analyses collected at wells 13D, M-27D and surface water location SW-B show estimated concentrations of 17.1 μ g/l, 1.7 μ g/l (estimated) and 0.7 μ g/l (estimated), respectively. The results were below the New York State Ground Water Standard (NYSGWS) of 50 μ g/l.

One sample location or 13D had a hexavalent chromium detection of 14.2 μ g/l. The NYSGWS for hexavalent chromium is 50 μ g/l.

3.3 VOC Analytical Results

Carbon tetrachloride was detected in monitoring wells M-24D, M-25D, M-27D, M-29D and 11D at concentrations of 11 μ g/l, 71 μ g/l, 12 μ g/l, 33 μ g/l and 12 μ g/l, respectively. All other monitoring well sample locations were non-detect for carbon tetrachloride during the reporting period. Where detected carbon tetrachloride concentrations were comparable with historical sampling results.

Chloroform was detected in wells M-24D, M-25D, M-27D, M-29D and 11D at concentrations of 0.44 μ g/l (estimated concentration), 7 μ g/l, 0.76 (estimated concentration), 4 μ g/l and 3 μ g/l, respectively. The remaining sampled monitoring wells did not have any detectable concentrations for chloroform during this reporting period.

TCE was detected in monitoring wells M-25D, M-27D, M-29D and 11D at concentrations of 22 μ g/l, 21 μ g/l, 12 μ g/l and 2 μ g/l respectively. Trichlorofluoromethane was detected in monitoring well M-27D at a concentration of 1 μ g/l. Detected concentrations for TCE and trichlorofluoromethane were comparable with historical sampling results. TCE and trichlorofluoromethane were not detected at the remainder of the monitoring well locations during this reporting period.

No VOCs were detected in surface water samples SW-A, SW-F and SW-G during the October 2006 sampling event. Carbon tetrachloride was detected in surface water samples SW-B, SW-D

and SW-E at estimated concentrations of 0.36 μ g/l, 0.30 μ g/l and 0.74 μ g/l, respectively. TCE was detected in sample SW-B at an estimated concentration of 0.25 μ g/l. The estimated results from SW-B were qualified by the laboratory and confirmed by the third party data validator as being estimated because the observed concentrations were less than the method reporting limit. Chloroform was not detected in samples collected from the surface water sample locations.

3.4 Comparison of Observed VOC Concentrations to Simulation Results

Carbon tetrachloride and TCE concentrations detected during this monitoring period were compared to the results from the contaminant fate and transport modeling reported in Appendix A of the O&M-GW. The comparison was performed for carbon tetrachloride in monitoring well M-27D (**Figure 3**). As shown in **Figure 3**, the simulated carbon tetrachloride results are much higher than the observed concentrations. A comparison was also performed for TCE in monitoring well M-33S (**Figure 4**) and M-33I (**Figure 5**). As predicted by the simulations, there were no observed concentrations of TCE in monitoring wells M-33S and M-33I.

3.5 Groundwater Gauging

A total of 42 on-site and perimeter monitoring wells were gauged to determine groundwater gradient across the site. During this exercise monitoring wells MW-2 and MW-4 were found open to the elements, unlocked, and the locks laying on the ground next to the wells. The on-site facility manager and the owners consultant were contacted regarding the open wells. Neither the on-site facility manager or the site owner were aware of the open wells and the reason they may have been left open. Shaw field personnel gauged these wells despite this observation and upon completion of these gauging of these wells, returned the gripper cap and well cover on these wells. To help prevent this issue from re-occurring, new well locks were installed on the monitoring wells within the monitoring network. Damaged and unlocked protective casings were also repaired and secured with new locks.

Recorded groundwater elevations were used to determine the groundwater gradient across the site and is visual represented in **Figures 6A** and **6B**.

O&M activities for remedial Work Element IV, Institutional Controls, are conducted on an annual basis in accordance with the <u>Operation and Maintenance Manual, Remedial Work Element IV, Institutional Controls, IT Corporation, Inc, September 9, 1999, revised September 27, 1999.</u>

Shaw conducted semi-annual visual inspections of the environmental restriction zone during groundwater sampling activities and conducted annual environmental easement restriction interviews with property owner representatives during the October 2006 semi-annual reporting period.

4.1 Sampling and Survey Results

On October 16 and 17, 2006, as part of the semi-annual EWMS sampling program, personnel completed an inspection of site conditions in the environmental restriction zone (ERZ) to determine if any changes or property development occurred, specifically the installation of new groundwater wells. The inspection was conducted on the following areas of the site:

- Proximate to the surface water sampling locations and monitoring well locations, as well as along the access roads and wooded paths leading to these locations.
- Proximate to Building 15 at the MRFA site.

Tree removal activities (logging) in the vicinity of the access roads and wooded paths leading to each of the monitoring wells and surface water locations was observed as well as tree removal and grading activities for new access roads to LFTCEDC property. Other than tree removal activities Shaw personnel did not observe any additional changes to the property conditions within the ERZ.

4.2 Interviews with Property Owners

Shaw personnel conducted telephone interviews with the following representatives:

• Hal Brodie representing New York State Energy Research and Development Authority (NYSERDA) was interviewed on January 23, 2007.

- The Town of Malta was interviewed on February 7, 2007.
- Jon Kelley representing Saratoga Economic Development Corporation (owner of LFTCEDC) was interviewed on January 18, 2007.

Interview logs documenting the conversations with each of the property representatives are included in **Appendix E**. All three representatives stated that they were not aware of any new groundwater usage, or other actions, within the environmental restriction zone, that would impact any condition of the Environmental Restriction Easements and the Declaration of Restrictive Covenants. Although outside the scope and objective of property owner interviews, Jon Kelley noted that two unknown tanks containing rocket fuel were found at the site. The location of the tanks or other related documentation was not provided.

5.1 Drinking Water

With the exception of short-term operational issues associated with recovery wells RW-1D that were resolved early in the reporting period, the drinking water treatment system is operating effectively. The treatment equipment will continue to be monitored as necessary to ensure continued operation of all components and to maintain a reliable source of water for the Test Station and as currently referred to, the Luther Forest Technology Campus. All of the effluent samples collected for performance monitoring and analyzed during the current period revealed concentrations below "treatment system performance standards".

5.2 EWMS

Based on the review of the analytical results from water samples collected during this reporting period, groundwater from the MRFA Site is not impacting the Luther Forest well field or the water supply wells located to the north of the Site. The analytical results from this reporting period are summarized as follows:

- Total chromium was detected at monitoring wells 13D, M-27D and surface water location SW-B. With the exception of the estimated results from well M-27D and surface water SW-B, each of the total chromium detections were below the NYSGWS of 50 µg/l.
- Hexavalent chromium was only detected at monitoring well location 13D and it was below the NYSGWS of $50 \mu g/l$.
- Carbon tetrachloride was detected in monitoring wells M-24D, M-25D, M-27D, M-29D and 11D at concentrations of 11 μg/l, 71 μg/l, 12 μg/l, 33 μg/l and 12 μg/l, respectively. Carbon tetrachloride was also detected in surface water sample locations SW-B, SW-D and SW-E at estimated concentrations of 0.36 μg/l, 0.3 μg/l, and 0.74 μg/l respectively. All other water sample locations were non-detect for carbon tetrachloride during the reporting period. The carbon tetrachloride detections at wells M-24D, M-25D, M-27D, M-29D and M-11D were above the NYSGWS of 5 μg/l. With the exception of monitoring well M-25D, carbon tetrachloride concentrations observed from this monitoring event were similar or lower than concentrations historically observed.
- Chloroform was not detected at any of the wells or surface water locations with the exception of detections at wells M-25D, M-29D and M-11D at concentrations of 7 µg/l, 4 µg/l and 3 µg/l, respectively and an estimated concentration of 0.44 µg/l and 0.76 µg/l at monitoring wells M-24D and M-27D, respectively. The detection in well M-27D was

- edited by the data validator to nondetection at the method limit due to the presence of chloroform in the associated trip and/or cooler blanks.
- TCE was not detected at any of the wells or surface water locations, with the exception of wells 11D, M-25D, M-27D, M-29D at concentrations of 2 μg/l, 22 μg/l, 21 μg/l, and 12 μg/l, respectively, and surface water location SW-B at estimated concentrations of 0.25 μg/l. TCE concentrations observed from this monitoring event were similar or lower than concentrations historically observed. Trichlorofluoromethane was detected at monitoring well M-27D at a concentration of 1 μg/l. The NYSGWS for both TCE and trichlorofluoromethane is 5 μg/l.
- As shown in **Figures 3, 4** and **5**, carbon tetrachloride and TCE concentrations detected during this monitoring period are lower than the simulated concentration presented by the model.

5.3 Institutional Controls

Representatives of LFTCEDC, NYSERDA, and the Town of Malta did not note any activities or conditions in the area of the site that would impact the Environmental Restriction Zone as controlled under the Environmental Restriction Easement and Declaration of Restrictive Covenants.

TABLES

TABLE 1 MAINTENANCE CHECKLIST OPERATION AND MAINTENANCE PLAN TEST STATION WATER SUPPLY AND TREATMENT SYSTEM MALTA ROCKET FUEL AREA SITE

Equipment Name	Item	Action	Frequency	Comments
Well Pump 1D	Pump bowls	Check for signs of iron fouling & impeller wear	Annually	More frequently as problems occur
Well Pump 2D	Pump bowls	Check for signs of iron fouling & impeller wear	Annually	More frequently as problems occur
Control Valves	Miscellaneous	Inspect for leaks	Monthly	Exercise valves annually
Air Stripper Sight Tube		Inspect for siltation and biofouling	Monthly	Adjust frequency depending on operating experience
Air Stripper Spray Nozzle		Inspect for fouling	Annually	No required routine maintenance
Air Stripper Blower	Intake	Inspect and clean	Monthly	Adjust frequency depending on operating experience
Air Stripper Blower	Motor & bearings	Check and lubricate	Annually	More frequently as problems occur
Air Stripper Unit	Packing	Clean or replace	Every 5 years	Adjust frequency depending on operating experience

TABLE 1

MAINTENANCE CHECKLIST OPERATION AND MAINTENANCE PLAN TEST STATION WATER SUPPLY AND TREATMENT SYSTEM MALTA ROCKET FUEL AREA SITE

Equipment Name	Item	Action	Frequency	Comments
Mist Eliminator	Mesh screen	Clean or replace	Annually	Adjust frequency depending on operating experience
Settling Tank		Inspect for siltation	Monthly	Adjust frequency depending on operating experience
Settling Tank High Level Float Switch		Check operation	Monthly	Replace float switch every 5 years
100K Gallon Reservoir		Inspect for siltation, debris, etc.	Annually	Adjust frequency depending on operating experience
Level Sensor	Probe	Manually check start-up/shutdown. Check probe float for free range of motion. Remove and inspect for buildup of minerals if resistance is detected.	Monthly	Adjust frequency depending on operating experience
Misc. Guys, Hardware etc.		Inspect	Annually	Adjust frequency depending on operating experience
System Interlocks	Settling Tank High Level	Check for proper operation. System should alarm after pre-set delay period.	Monthly	Adjust frequency depending on operating experience
	Blower Low Pressure			
	Blower Low Amps			
	Building Low Temperature			

TABLE 2 EQUIPMENT LOG, AIR STRIPPER MAINTENANCE MALTA ROCKET FUEL AREA SITE

Date	Operator	Operational Status of System	Work Performed
6/20/06	Marc Flanagan	OK	Monthly O&M visit. System interlock testing performed – all OK.
7/17/06	Marc Flanagan	Arrival - Not OK Departure - OK	Pump in RW-1 not running. Replace one blown fuse and pump is operational again. System interlock testing performed – all OK.
8/15/06	Marc Flanagan	Arrival - Not OK Departure - OK	Pump in RW-1 not running. Replace two blown fuses and pump is operational again. System interlock testing performed – all OK.
9/20/06	Brian Neumann	ОК	Monthly O&M visit. System interlock testing performed – all OK
10/16/06	Marc Flanagan & Mike Puglisi	ОК	Monthly O&M visit and system sampling. Semi-annual groundwater sampling and gauging. System interlock testing performed – all OK.
11/15/06	Marc Flanagan	ОК	Monthly O&M visit. System interlock testing performed – all OK.
12/29/06	Marc Flanagan	OK	Monthly O&M visit. System interlock testing performed – all OK.

TABLE 3
PROCESS OPERATING REPORT
WATER TREATMENT SYSTEM
MALTA ROCKET FUEL AREA SITE

1	2	3					4				5	
DATE	TIME		WATER FI	LOW -LINE 1	D			WATI	ER FLOWLI	NE 2D		PROBLEMS OR COMMENTS
		1D LINE FLOW METER RDG(GPM)	1D LINE TOTALIZER RDG(GAL)	ELAPSED TIME (DAYS)	TOTAL FLOW THIS PERIOD (GAL)	AVG FLOW THIS PERIOD (GPM)	2D LINE FLOW METER RDG(GPM)	2D LINE TOTALIZER RDG(GAL)	ELAPSED TIME (DAYS)	TOTAL FLOW THIS PERIOD (GAL)	AVG FLOW THIS PERIOD (GPM)	
7/17/2006	9:00	3.0	4,504,200	27	1,100	0.03	6.0	<i>5,7</i> 06,400	27	47,700	1.23	
8/15/2006	8:10	4.0	4,511,000	29	6,800	0.16	<i>7</i> .0	5,753,300	29	46,900	1.12	
9/20/2006	9:30	4.2	4,535,000	36	24,000	0.46	6.6	5,792,100	36	38,800	0.75	
10/16/2006	8:40	5.0	4,552,700	26-	17,700	0.47	7.0	5,819,000	26	26,900	0.72	
11/15/2006	9:30	4.0	4,571,60 0	30	18,900	0.44	7.0	5,847,800	30	28,800	0.67	
12/29/2006	9:15	4.0	4,597,100	74	44,400	0.42	7.0	5,888,400	74	69,400	0.65	
Summary				222	112,900	0.3532			222	258,500	0.8086	

NR = Not Recorded NA = Not Applicable

TABLE 3
PROCESS OPERATING REPORT
WATER TREATMENT SYSTEM
MALTA ROCKET FUEL AREA SITE

1	2	3			4	5
DATE	TIME	STANDPIPE LEVEL (FT)	LEVEL PROBE OK?	SAMPLES TAKEN?	AIR BLOWER PRESSURE OK?	PROBLEMS OR COMMENTS
7/17/2006	9:00	12.75	Yes	No	Yes-2.6	Monthly visit.
8/15/2006	8:10	12-13	Yes	Yes	Yes-2.7	Monthly visit with performance sampling.
9/20/2006	9:30	12-13	Yes	No	Yes-2.75	Monthly visit.
10/16/2006	8:40	12 - 13	Yes	Yes	Yes-2.80	Monthly visit;biological growth on standpipe is blocking water level.
11/15/2006	9:30	12 - 13	Yes	No	Yes-2.80	Monthly visit.
12/29/2006	9:15	12-13	Yes	No	Yes-3.00	Monthly visit.

TABLE 4
SUMMARY OF DRINKING WATER SAMPLING PROGRAM, PRESERVATIVES, HOLDING TIMES AND CONTAINERS
MALTA ROCKET FUEL AREA SITE

Sample	Sampling Frequency	Sample Matrix	Analytical Parameters	Analytical Method Reference ¹	Sample Preservation	Holding Times ²	Containers
Influent	1 per quarter	Water	CLP OLC VOCs	USEPA CLP OLCO2	Hcl, Cool, <4°C	14 days	3 - 40 ml glass vials with teflon septa and plastic screw caps
Effluent	1 per quarter	Water	CLP OLC VOCs	USEPA CLP OLCO2	Hcl, Cool, <4°C	14 days	3 - 40 ml glass vials with teflon septa and plastic screw caps

Notes:

- 1. USEPA CLP OLCO2 analysis modified to include hexachlorobutadiene, 1,2,3 trichlorobenzene and trichlorofluoromethane to match the EWMS ground water analyses.
- 2. Holding times begin at the time of sample collection.

TABLE 5 OCTOBER 2006 WATER QUALITY ANALYTICAL RESULTS SEMI-ANNUAL SAMPLING

Remedial

	Action		DUP B										
Compound	Objective	DGC-3S	DGC-4S	4D	HD	13D	(13D)	14 D	M-24D	M-25D	M-27D		
Acetone	50	5UJ	5UJ	5UJ	5UJ	NA	NA	5UJ	5UJ	25UJ	5UJ		
Carbon Disulfide	None*	ΙU	ΙÜ	ΙÜ	1 U	NA	NA	I U	ΙU	5 U	1 U		
Carbon Tetrachloride	5	ΙU	IU	ΙU	12.0	NA	NA	ΙŪ	11.0	71.0 D	12		
Chloroform	7	ΙU	ΙU	ΙÜ	3.0	NA	NA	ΙÜ	0.44 J	7.0 D	0.76J		
2-Butanone	5	5UJ	5UJ	5UJ	5UJ	NA	NA	5UJ	5UJ	25UJ	5UJ		
Trichloroethene	5	l U	ΙÜ	ιU	2.0	NA	NA	1 U	ΙU	22.0 D	21		
Trichlorofluoromethane	5*	1 U	ΙU	ΙÜ	ΙU	NA	NA	ΙU	IU	5 U	1.0		
1,1,1-Trichloroethane	5	1 U	ΙU	ΙU	ΙU	1 U	ΙŪ	1 U	IU	l U	ΙÜ		
1,1-Diclethene	NP	ΙU	ΙU	ΙÜ	ΙU	1 U	ΙÜ	ΙU	ΙU	1 U	Į Ų		
Chromium	50*	NA	NA	NA	NA	17.1	15.9	NA	NA	NA	1.7 BJ		
Hexavalent Chromium	50*	NA	NA	NA	NA	14.2	10 U	NA	NA	NA	10 U		

Field Parameters

рН	 6.17	7.66	NM	7.66	7.85		7.81	7.9	NM	7.77
Temperature (celsius)	 10.56	10.11	NM	9.34	9.55		8.57	8.82	NM	9.16
Conductivity (umhos/cm)	 0.163	0.512	NM	0.679	0.503	top top	0.516	0.47	NM	0.536
Dissolved Oxygen	 6.21	6.76	NM	9.31	0.00		13.39	11.50	NM	8.40
Turbidity (NTUs)	 84.8	240	NM	23.2	150		29.30	8.20	NM	13.50
Depth To Water (feet)	 13.90	6.05	37.16	28.9	34.54	****	40.96	30.45	28.5	36.80
Ground Water Elevation (feet)	 191.90	199.75	290.39	290.78	294.73		300.41	290.12	285.96	267.47

Notes:

- 1. All analytical concentrations are in µg/l (micrograms per liter (ppb)).
- 2. Only compounds detected at one or more sampling points are listed.
- 3. NA not analyzed for.
- 4. U analyte was not detected, and value shown is the detection limit.
- 5. J estimated value due to data validation requirements or concentration less than CRQL (organics only).
- 6. B The reported value is less than the CRDL but greater than the IDL (inorganics only).
- * Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified for comparison purposes only.
- 7. D Indentifies all compounds analyzed at a secondary dilution factor.
- 8. NM Not measured due to equipment malfunction.
- 9. NP Not promulgated.

TABLE 5
OCTOBER 2006 WATER QUALITY ANALYTICAL RESULTS
SEMI-ANNUAL SAMPLING

	Remedial												
	Action		DUPC			Trip	Trip						
Compound	Objective	M-29D	(29D)	M-33S	M-33I	Blank I	Blank 2	SW-A	SW-B	SW-D	SW-E	SW-F	SW-G
Acetone	50	10UJ	5 UJ	5UJ	5UJ	5 UJ	5 UJ	5UJ	5UJ	2.0 J	5UJ	5UJ	5UJ
Carbon Disulfide	None∗	2 U	ΙU	ΙU	ΙU	ΙU	ΙÜ	ΙU	IU	ΙU	1 U	1 U	10
Carbon Tetrachloride	5	33.0 D	31	1 U	ΙÜ	1 U	ΙÜ	1 U	0.36J	0.30 J	0.74 J	ΙÜ	1 U
Chloroform	7	4.0 D	4	ιU	ΙU	ΙU	ΙÜ	ΙU	1 U	ΙU	ΙU	l U	1 U
2-Butanone	5	10UJ	5 UJ	5UJ	5UJ	5 U3	5 UJ	5UJ	5UJ	5UJ	5UJ	5UJ	5UJ
Trichloroethene	5	12.0 D	14	ΙŬ	ΙU	1 U	ΙU	1 U	0.25 J	ΙU	10	1 U	IU
Trichlorofluoromethane	50*	2 U	ΙU	ΙU	1 U	ιυ	. IU	ΙU	ΙU	ΙU	1 U	1 U	1.0
1.1.1-Trichloroethane	5	4.0 D	4.0	1 U	1 U	ΙÜ	ΙŲ	1 U	I U	l U	ΙU	ΙU	ΙŪ
1.1-Diclethene	NP	2 U	0.21 J	ΙU	ΙU	ΙÜ	ΙÜ	ΙU	ΙU	ΙŪ	1 U	I U	ΙU
Chromium	50≈	NA	NA	NA	NA	NA	NA	NA	0.70 UJ	NA	NA	NA	NA
Hexavalent Chromium	50∜	NA	NA	NA	NA	NA	NA	NA	10 U	NA	NA	NA	NA

Field Parameters

рН	 7.82	 8.46	8.46			8.12	8.26	NM	NM	NM	8.36
Temperature (celsius)	 9.47	 8.82	8.51			9.60	10.26	NM	NM	NM	8.12
Conductivity (umhos/cm)	 0.748	 0.256	0.451			0.405	0.479	NM	NM	NM	0.337
Dissolved Oxygen	 10.17	 8.73	10.47			11.66	[1.9]	NM	NM	NM	11.67
Turbidity (NTUs)	 29.2	 10.2	NM	***	***	80	104	NM	NM	NM	10.30
Depth To Water (feet)	 43.50	 12.91	28.88			NA	NA	NA	NA	NA	NA
Ground Water Elevation (feet)	 291.16	 291.36	274.81			NA	NA	NA	NA	NA	NA

Notes

- 1. All analytical concentrations are in µg/l (micrograms per liter (ppb)).
- 2. Only compounds detected at one or more sampling points are listed.
- 3. NA not analyzed for.
- 4. U analyte was not detected, and value shown is the detection limit.
- 5. J estimated value due to data validation requirements or concentration less than CRQL (organics only).
- 6. B The reported value is less than the CRDL but greater than the IDL (inorganics only).
- * Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6. Chapter X, Parts 700-706, 1998), identified for comparison purposes only.
- 7. D Indentifies all compounds analyzed at a secondary dilution factor.
- 8. NM Not measured due to equipment malfunction.
- 9. NP Not promulgated.

	Remedial											
Wells / Compounds	Action	6/29-			1/19-	4/18-	7/20-	10/11-	1/19-			
DGC-3S	Objective	7/1/1987	7/31/87	11/5/87	1/20/1988	4/19/1988	7/21/1988	10/12/88	1/20/89	4/10/89	7/12/89	8/15/1989
Вениене	0.7*	ND	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disultide	None*	ND	NA	ND	ND	ND	ND	ND	NA NA	ND	ND	ND
Aluminum	100*	0.48	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Lead	25*	NA	NA	NA	NA.	<0.005 mg/L	NA	NA	NA	NA	NA	NA
Chromium	50*	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Hexavalem Chromium	30×	по дата	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
Chromaum 138	50*		<u> </u>							L,,,,,		
						1		:	1	NA	NA	NA
Benzene	0.7*	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA			
Carbon Disultide	None*	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA.
Carbon Tetrachloride		NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA
Chloroform	7	NA .	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA
Frichloroethene	5	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .
Friehlorothoromethane	5*	NA	NA.	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
Chromium	50*	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
dexavalent Chromum	50×	NA	NA.	N/A	NA	NA	NA	NA NA	NA	NA	NA	NA

Notes:

Units are fig/1 (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND = Not detected.

NS = Not sampled,

B = The reported value is less than the CRQL/CRDL but greater than the IDL.

dp = Duplicate sample.

E = Estimated concentration; due to interference.

D = Concentration determined from a sample dilution.

J = Estimated concentration.

V = Estimated concentration; due to variance to quality control limits.

-- = Not sampled: well installed in December, 1990.

 Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified

for comparison purposes only,

** = 1 (litered Sample.

TABLE 6 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS DGC-3S, DGC-4S, 13S, 13D

JUNE 1987 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

	Remedial											
Wells / Compounds	Action					4/8-	6/12-	9/23-	12/26-	2/10-	6/1-	9/28-
DGC-38	Objective	13/30/3989	5/30/90	8/28/90	12/6/90	4/10/1991	6/13/1991	9/24/1991	12/27/91	2/11/92	6/2/1992	9/29/1992
Benzene	0.71	ND	NO	ND	ND	ND	ND	0,2 J	ND	ND/NDdp	ND	ND
Carbon Disultide	None*	ND	ND	ND	N.A	8 V / 7 Vdp	4	ND	ND	ND/NDdp	ND	ND
Munimum	1007	NA	NA	NA	NA	NA.	NA	NA	NA.	ÑA	NA	NA
.cad	25*	NA	NA	NA	NA	NA NA	NA	NA	NA.	NA	NA	NA
Ilvomium	50^	NA	NA	NA	NA	NA	NA	6.1	62.2E/70.3Edp	16.2/ND*, 14.6/ND*dp	25.2/ND*	ND
Hexavalent Chromium	50*	no data	NA	NΛ	NA	NA.	NA	NA	NA	ND/4*/ND dp	NA	NA
Chromium	50*				*-	NA	NA.	15.9	11,9 E	ND/ND*	ND/ND*	ND/ND dp
DGC-4S Carbon Disultide	None			••		ND/0.5Vdp	ND	ND	ND	ND	ND	ND/ND dp
			·		L							
138												
	0.7*	NA	NA	NA	NA.	2	9.7/0.6 Jdp	1	GR	NI)	ND	ND
Benzene	9.7° None	NA	NA NA	NA NA	NA	601)	0,6	I ND	ND	ND ND	ND ND	ND
Benzene Jarbon Disuffide Jarbon Tetrachloride				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************		0,6	1 ND 8	+			
Senzene Jarbon Disuffide Jarbon Tettachloride		NA NA NA	NA	NA	NA 4.4 ND	8 8 ND	0.6		ND	ND	ND	ND
Senzene Jarbon Disuffide Jarbon Tetrachloride Jaloroform		NA NA	NA 18/16 dp	NA 6.4	NA 4.4	8 60 1)	0,6 24 J/24 Jdp	8	ND 12	ND 9	ND 61	ND 9
Senzene Farbon Disuffide Parbon Tetrachloride Paloroform Frichtoroethene		NA NA NA NA NA	NA INT6 dp ND ND ND	NA 6.4 ND	NA 4,4 ND ND ND	60 D 8 ND	0.6 24 J/24 Jdp 0.8/0.9 Jdp	8 ND	ND 12 0.4 J	ND 9 0.3 J	ND 61 ND	ND 9 ND
Benzene Jarbon Disuffide	None* 5 7 5	NA NA NA NA	NA IN/16 dp ND ND	NA 6.4 ND ND	NA 4.4 ND ND	60 () 8 ND ND	0.6 24 J/24 Jdp 0.8/0.9 Jdp ND	8 ND 0,4 I	ND 12 0.41	ND 9 0,3 J 0.6	ND 61 ND ND	ND 9 ND 0.6

Notes:

Units are jug/I (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND \approx Not detected.

NS = Not sampled.

B = The reported value is less than the CRQL/CRDL but greater than the IDL.

dp = Duplicate sample,

Estimated concentration; due to interference.

D = Concentration determined from a sample dilution.

J = Estimated concentration.

 $V \pm 1$ is timeted concentration; due to variance to quality control limits,

-- = Not sampled: well installed in December, 1990,

 Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified

for comparison purposes only.

** \approx Filtered Sample.

	Remedial											
Wells / Compounds	Action	(1/18-	3/17-	5/25-	8/24-	11/8-	2/22-	5/18-	8/24-	11/15-		
DGC-38	Objective	11/19/1992	3/18/1993	5/26/1993	8/25/1993	11/9/1993	2/23/1994	5/19/1994	8/25/1994	11/16/1994	5/23/1995	10/17/1995
Benzene	0.7*	ND	ND	ND	ND	ND	ND	ND V	ND	ND	ND	ND
Carbon Disultide	None*	ND	ND	ND	0.8	ND	ND	ND V	ND	ND	ND	ND
Aluminom	E00×	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	25*	NA	NA	NA	NA.	NA NA	N.A	NA	NA	NA	NA	NA
Chromium	50*	33.6/ND*	18.5	4.3 B	4.78	19.4	23.9	4.5 B	9.9 B	11.1	NA	NA
Hexavalent Chromium	50*	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA.	NA
			·	}	÷		+			·		
Carbon Disulfide Chromium	None* 50*	4 V 8.6 B	ND 48.1/ND*	0.3 J ND	0.2J 3.3B	ND ND	ND 31.2/ND*	ND V/ND V dp ND/ND dp	ND 5.6 B	ND ND	ND NA	ND NA
138												
Benzene	0.7*	0.4 JV	ND	ND	ND	ND	ND/ND dp	ND	ND	ND	NA.	NA
Carbon Disulfide	None*	ND	NĐ	ND	ND	ND	ND/ND dp	ND	ND	ND	NA.	NA
Carbon Tetrachloride	5	16 V	15	10	17	18	20/9 dp	9	9	9	NA	NA
Chloroform	7	0.6 V	0.6	0.4 J	0.6	0.7	ND/ND dp	0.4 J	0.3 1	ND	NA NA	NA
Trichloroethene	5	I V	2	0.6	ND	2	2/1 dp	0.8	i	0.9	NA	NA
Trichlorotheoromethane	52	0.9 V	2	0.5	ND	2	2/1 dp	0.9	I	ND	N.A	NA
Chromium	50^	585/576**	746/614**	198/609**	787/716**	572/610**	580/357** 567/357** dp	406/434**	133 V/157 V**	44.2 V/95.8 V**	140 J	52.7 J
Hexavalent Chromium	50*	493	663	460	8(8)	560	530/540 dp	340	101	36	150	48

Notes:

Units are $\mu g/l$ (pph) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND = Not detected.

NS = Not sampled.

B = The reported value is less than the CRQL/CRDL but greater than the IDL.

dp = Duplicate sample.

E = Estimated concentration; due to interference.

 $D \equiv Concentration determined from a sample dilution.$

J = Estimated concentration.

V = Estimated concentration; due to variance to quality control limits.

-- = Not sampled: well installed in December, 1990.

* Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified

for comparison purposes only.

** = Filtered Sample.

	Remedial											
Wells / Compounds	Action											
DGC-3S	Objective	5/14/1996	10/23/1996	6/2/1997	10/14/1997	5/28/1998	10/29/1998	5/11/(999	10/26/1999	5/22/2000	19/24/2000	5/15/2001
Benzene	0.7*	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND
Carbon Disultide	None+	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Algemagn	100*	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA NA	NA
Lead	25*	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	ÑΑ
Chronuum	50^	NA	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA
Hexavalent Chromium	50*	NA	NA NA	NA.	NA	NΑ	NA	N.A	NA	NA	NA	NA
Chromium 138	50*	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA
~~~~												
Benzene	0.7*	NA	NA NA	10	10	NA NA	NA	NA .	NA	NA	NA NA	NA
Carbon Disulfide	None*	NA NA	NA NA	1U	ιψ	NA	NA	NA	NA NA	NA	NA NA	NA NA
Carbon Tetrachloride	5	NA NA	NA NA	IU	8	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Chloroform	7	NA NA	NA NA	10	10	NA	NA	NA	NA	NA	NA NA	NA
Trichloroethene	5	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA
Prichlorofluoromethane	5.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Chronium	50*	44.8	46.4	90,7/90,9**	71.4	71.2	98.6 J	72.4	169	249	29.9	136
Hexavalent Chromium	504	47	47	97	67	51	54,0 I	71,0	178	262	41	12,3

### Notes:

Units are µg/l (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND = Not detected.

NS = Not sampled.

B = The reported value is less than the CRQL/CRDL but greater than the IDL.

 $dp = Duplicate\ sample.$ 

E = Estimated concentration; due to interference.

D = Concentration determined from a sample dilution,

3 = Estimated concentration,

V = Estimated concentration; due to variance to quality control limits,

-- # Not sampled: well installed in December, 1990.

Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Paris 700-706, 1998), identified for comparison purposes only.

** = Filtered Sample.

	Remedial											
Wells / Compounds	Action											
DGC-3S	Objective	10/23/2001	5/29/2002	10/29/2002	4/9/2003	10/9/2003	5/25/2004	1 (/2004	5/24/2005	10/2005	5/23/2006	10/2006
Вениене	0.74	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Larbon Disulfide	None*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Munioum	100*	NΛ	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA
.cad	25*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thromium	50*	NA	NA	NA	NA	NA	NA	NA	NA NA	ÑΑ	NA	NA
Hexavalent Chromium	50*	NA	NA	NA	NA NA	NA	NΛ	NA	NA NA	NA	NA	NA
									L			
Carbon Disultide Chromium	None*	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	NA NA	ND NA	ND NA
138												
Велиеле	0.7*	NA	NA	NA	NA	NA	NA NA	NA	NS	NS	NS	NS
Carbon Disultide	None*	NA	NA	NA	NA	NA	NA	NΛ	NS	NS	NS	
							1373			2117		NS
Carbon Tetrachloride	5	NA	NA	NA NA	NA	NA	NA NA	NA NA	NS		NS	NS NS
Sarbon Tetrachloride Shloroform	7	NA NA	NA NA				······			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			£=====================================	NA NA NA	NA	NA	NA NA NA	NA NA NA	NS NS NS	NS	NS	NS
Chleroform	7	NA	NA	NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NS NS	NS NS	NS NS	NS NS
Inforotorm Inchloroethene	7 5	NA NA	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NS NS NS	NS NS NS	NS NS NS	NS NS NS

#### Notari

Units are 11g/I (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND = Not detected

NS = Not sampled.

B=The reported value is less than the CRQL/CRDL but greater than the  $\mathrm{IDL}$ .

dp = Duplicate sample.

E = Estimated concentration; due to interference.

D = Concentration determined from a sample dilution.

J = Estimated concentration.

V = Estimated concentration: due to variance to quality control limits.

-- = Not sampled: well installed in December, 1990.

 Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified

for comparison purposes only.

** # Filtered Sample.

# TABLE 7 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS M-27S, M-27D, M-33S, M-33I JUNE 1992 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

#### Remedial

Act	'n	ì	13

M-27S	Objective	6/5/1992	11/11/1992	3/14/1994	5/23/1995	10/17/1995	5/14/1996	10/23/1996	6/2/1997	10/14/1997	5/28/1998	10/29/1998	5/11/1999
Carbon Disulfide	None*	ND	ND	not sampled	ND	ND	ND	ND	ND	NI)	ND	ND	0.85 J
Chloromethane	5	40	ND	not sampled	ND	ND	ND	ND	ND	NO	NO	ND	ND
Chromium	50*	8.4 B/ND**	57.4/ND**	not sampled	NĐ	ND	ND	ND	ND	NO	NĐ	3.2 BJ	0.98B
Hexavalent Chronium	50%	NA	NA	not sampled	ND	ND	ND	ND	ND	ND	ND	ND	ND
M-27D													
Carbon Tetrachloride	5	75/62 dp	23	not sampled	33/42 dp	56	31	28	26	22	27	26 / 27 dp	20.3 / 20.1 dp
Chloroform	7	ND	3	not sampled	4/4 dp	5	3	3	3	2	3	272 dp	1.8 / 1.8 dp
Chloromethane	5	4 J/28 dp	ND	not sampled	ND/ND dp	ND	ND	ND	ND	ND	ND	ND / ND	ND / ND dp
Trichloroethene	5											ND/ND dp	4.1/4.1 dp
Trichlorofluoromethane	5*	no data	no data	not sampled	no data	no data	no data	no data	no dara	no data	no data	0.3 J / 0.3 J dp	0.923 / 0.99J dp
Chromaum	50*	2.0 B/ND** 2.0 B/ND** dp	19,8/ND**	not sampled	ND/ND dp	ND	ND	ND	ND	1.2B	ND	4.6 BJ / 4.8 BJ dp	1.4 B / 1.3 B dp
Hexavalent Chromium	5()*	NA	NA	not sampled	ND/ND dp	ND	ND	ND	ND	ND	ND	ND / ND dp	ND / ND dp
M-338													
VOCs	-	not sampled	not sampled	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
M-33I													
VOCs	-	not sampled	not sampled	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND

### Notes:

Units are ug/l (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed.

ND = Not detected.

J = Estimated concentration,

dp = Duplicate sample.

B = The reported value is less than the CRQL/CRDL but greater than the  $\mathrm{IOL}_{\ast}$ 

Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified for comparison purposes only.

^{** =} Filtered Sample.

### TABLE 7 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS **MONITORING WELLS M-27S, M-27D, M-33S, M-33I JUNE 1992 - OCTOBER 2006** SEMI-ANNUAL SAMPLING

### Remedial Action

M-278	Objective	10/26/1999	5/22/2000	10/24/2000	5/15/2001	10/23/2001	5/29/2002	10/29/2002	4/15/2003	10/9/2003	5/25/2004	11/2004	5/24/2005	10/2005	5/23/2006	10/2006
Carbon Disulfide	None*	ND / ND dp	ND	NO	ND / ND dp	ND / ND dp	ND / ND dp	ND J / ND J dp	ND	ND/0.11Jdp	ND	NΛ	NA	NΑ	NΛ	NΑ
Chloromethane	5	ND/ND dρ	ND	ND	ND / ND dp	ND / ND dp	ND / ND dp	ND J / ND J dp	ND	ND / ND dp	ND	NA	NA	NA	NA	NA
Chromium	50*	0.85B/0.90b dp		1.28	ND / ND dp	ND / ND dp	ND / ND dp	1.2 B	8.5 B	1.0 B / 1.8 B dp	83.1	2.6 B / 2.2 B dp	NA	NΑ	NA	NΑ
Hexavalent Chromium	50*	ND / ND dp	NĐ	ND	ND / ND dp	ND UJ	ND U7 ND dp	ND ND	ND	NA	NA	NA	NA			
M-27Đ																
Carbon Tetrachloride	5	22.3	26.7D/28.9D dp	19.2/19.8 dp	13.8	16.2	14.5	24.2 DJ	5.174,5 dp	16.6	3 / 2.7 dp	22.1	21	13	22	12
Chloroform	7	1,8	ND / ND dp	1.7J /1.3 dp	1,1	1, [	0,941	2,4	ND / ND dp	1,0	0.53 JB / 0.55 JB dp	ND	ND	ND	2	0.76J
Chloromethane	5	ND	ND / ND dp	ND / ND dp	ND	ND	ND	ND	ND ND dp	ND	ND ND dp	ND	ND	ND	ND	ND
Trichloroethene	5	10.7	12.8 / 12.1 dp	26.4 /26.5D dp	[9,4	27 D	22.7	14	2.4 / 2.2 dp	21.8 D	3.2 / 2.9 dp	22,7	18	24	16	21
Trichlorofluoromethane	5*	1,4	1.9 / 1.8 dp	2.9 / 2.9 dp	2.0	2.2	1.5	0,96 J	0.21J / 0.18J dp	2.3	0,27 J / 0.29 J dp	2.3	1.3	1.0	IJ	1.0
Chromium	50*	0.81B	2B/1.8B dp	1.28/1.2B dp	ND	1,5 B	2 B	1,5 B	5.9B / 6.1B dp	1.2 B	22.6 / 21.3 dp	2.6 B	1.7 B	1.6 B	2.7	1,7 183
Hexavalent Chromium	50*	ND	ND/ND dp	ND/ND dp	ND	ND	ND	ND	ND / ND dp	ND	ND / ND dp	ND	ND	ND	ND	ND
M-33S																
VOCs		ND ND	ND	ND	8.0 J	ND	ND	ND	NI)	ND	ND	ND	ND	ND	ND	ND
M-331																
VOCs	-	ND	ND	ND	4.13	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND

### Notes:

Units are ug/f (ppb) unless otherwise stated.

Only detected compounds are listed.

NA = Not analyzed,

ND = Not detected.

J = Estimated concentration,

dp = Duplicate sample.

B = The reported value is less than the CRQL/CRDL but greater than the IDL.

D = Indentifies compound analyzed at a secondary dilution factor.

* Based on NYSDEC Final Combined Regulatory Impact and Environmental Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified for comparison purposes only,

** = Filtered Sample.

### TABLE 8 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS 4d, 11d, m-24d, m-25d, m-29d, 13d JUNE 1992 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

Surface Water Points /																			
Compounds	Geanup	6/29-			1/19-	4/1%-	7/20-	10/11-	1/19-										4/%-
SW-A	Standard	7/1/1987	7/31/87	11/5/87	1/20/1988	4/19/1988	7/21/1988	10/12/88	1/20/89	4/10/89	7/12/89	8/15/1989	12/30/1989	12/27/1989	2/22/1990	5/30/90	8/28/98	12/6/90	4/10/1991
Carbon Disulfide	None	ND ND	NA.	ND	ND	ND	ND	ND	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA	0.5 V
Alummum	160^	0.12 mg/L	NA	NA	NA	] NA	NA	NA	NA NA	NA NA	N.A	NA	NA NA	no data	nes data	no data	no data	no data	no data
Lend	251	NA NA	NA NA	NA NA	NA.	0.02 mg/l.	NA NA	NA.	NA	NA.	NA.	NA	NA	no data	ne data	ಕಾರ ತುಡು	no data	no data	по дила
Chromum	\$I)*	NA	NA	NA NA	NΛ	NA	NA	NA	NA.	NA NA	NA.	N/A	NA	NA	NA	NA	N/A	NA NA	NA.
SW-B																			
Carlson Disultide	None	ND	NA.	ND	ND	ND	i NO	ND	NA.	8.1	NA.	NA.	NA.	NA.	NA.	NA.	NA.	I NA	ND
Carbon Tetrachloride	5	ND	N/A	ND	ND	ND	ND	SD	1,1/1,1dp	ND	ND	ND	0.9	NA NA	0.88	ND	ND	i	0.43
Chloroform	7	ND	NA.	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	NI)	ND	ND	ND
Enchloresthese	5	ND	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.
Trichlorotkoromerhane	٤٠.	no data	no data	no data	no data	no data	en data	no data	Eu Jahr	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data
Alumnum	100	0.21 mg/L	NΑ	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA NA	NA.	ner duta	no data	no data	no data	no data	no data
Lead	251	NA.	NA .	NA.	NA.	<0.01 mg/L	NA.	NA NA	NA	NA.	NA	NA.	NA NA	no data	pe data	no data	nor data	no data	no data
Chromium	50*	NA	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA
	•	•						·		·								***************************************	***************************************
SW-b	·				·	<del>,</del>	· · · · · · · · · · · · · · · · · · ·		<del>,</del>	<del>,</del>		<del>,</del>	p. a. v. a.			,	, .	,	<del>.                                    </del>
Acetone	5-	no data	po dota	po data	no data	no data	no data	no data	no data	nodaa	no data	nodata	no data	no data	no data	no data	no data	no data	no data
Bromechloromethane	ş-	ND	ND	ND	80	80	80	ND	ND	ND	ND	NI)	1.7, ND dp	no data	no data	no data	no diasi	no data	กง ประจ
Cartson Disulfide	None*	NĐ	NA	CIN	ND	80	SĐ	ND	NA NA	NA	NA	NA	NA NA	NA	ND	NĐ	ND	ND	ND
Carbon Tetrachlonde	.5	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND	ND	NA	NA	NA	N/A	NA.	NA.
1,2-Dichloroethane	0.6*	no data	no data	no data	tus data	no data	no didu	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	po data
Methylene Chlonde	ζ,	ND	ND	0.5	ND	ND	NO	80	NO	ND	ND	NI)	NI)	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
1.2.3-Trichlotobenzene	5.	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no dida	no data	no data
Alummum	100*	0.50 mg/l,	NA	NA.	NA	NA NA	NA.	NA	NA NA	NA NA	NA.	NA NA	NA NA	no data	no data	no data	no data	ಶಾಂ ತನರಾ	no data
Lead	25-	NA	NA.	NA	N/A	<0.005 mg/l.	NA NA	NA NA	NA .	NA.	NA NA	NA NA	NA.	no data	no data	no data	no Jain	no data	no dida
Chromun	503	NA .	NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA	NA.	NA NA	NA NA	NA.	ND
SW-E (See O&M Manual Add	danding No. 11																		
Carbon Tetrachloride		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS	88	NS	NS	NS	NS
Trichloroethene		88	NS	NS.	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NX
	·····				1	1	L	J			1			1	J		<u> </u>	J	
SW-F (See O&M Manual Add	dendmn No. 1)	LITERA BOTELLARIANANA ARABARANA	,	,		· · · · · · · · · · · · · · · · · · ·		,			,		¥444.444.4444.4444.4444.444	-	.,	,	.,		
Curbon Tetrachloride	<u> </u>	88	88	NS	NS	NS	NS	NS	88	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Trichloroetheae	.5	NS S	NN	NS NS	NS	NS	NS	NS	NN	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
SW-G (See O&M Manual Ad	idendum No. 1)																		
SW-G (See O&M Manual Ad Carbon Tetrachloride	idendum No. 1)	NS	NS	NS	N8	NS	NS	NS	NS	N8	NS	NS	NS.	NS	NS	NS	NS NS	NS NS	NS

Units are µgd (ppb) unless otherwise stated.

Only detected compounds are listed,

 $E \approx Estimoted concentration . due to interference.$ La Estimated concentration.

NA = Not analyzed.

V # Estimated concentration; due to variance to quality control limits,

R = Rejected during data validation.

ND = Not detected. NS a Not Sampled.

* Based on NYSDEC Final Combined Regulatory Impact and Environmental

dp » Dupheste sample,

Impact Statement (19te 6, Chapter X, Parts 700-706, 1998), identified

B is The reported vidue is less than the CRQL/CRDL but

for comparison purposes only.

greater than the IDL.

** = Filtered Sample.

1) & Concentration determined from a sample dilution.

### TABLE 8 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS 4d, 11d, m-24d, m-25d, m-29d, 13d JUNE 1992 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

Compounds	Cleanup	6/12-	9/23-	12/26-	2/10-	6/1-	9/28-	11/18-	3/17-	5/25-	8/24-	11/8-	2/22-	5/18-	8/24-	19/15-				
SW-A	Standard	6/13/1991	9/24/1991	12/27/91	2/11/92	6/2/1992	9/29/1992	11/19/1992	3/18/1993	5/26/1993	8/25/1993	11/9/1993	2/23/1994	5/19/1994	8/25/1994	11/16/1994	5/23/1995	10/17/1995	5/14/1996	10/23/199
Carbon Disulfide	None*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
Aluminuis	100-	stor distin	no data	ttır data	no Jata	no data	no data	zu Jura	no data	no dosa	no data	no data	no data	no data	no data	no data	eo data	no data	ვი ქანა	na data
Leid	25*	no dista	no data	mo data	no data	ne data	no data	no data	no data	no data	per data	no data	no data	no data	no data	no data	no data	no data	so dan	no data
Chronium	50+	NA	6.6	ND	ND	N1)	ND NE	ND	6.1 B	ND	3.28	ND	ND	80	ND	ND	NA	NA	NA	NA
·								· · · · · · · · · · · · · · · · · · ·				***************************************			***************************************					
SW-B																				
Carbon Disultide	None*	0.23	ND	ND	ND	ND.	ND	NI)	ND	NĐ	ND	ND	ND/ND dp	ND .	ND	ND	NĐ	ND/ND dp	NĐ	SD
Carbon Tetrackloride	5	0.6 J	0,41	0.8	0.8	0.7	0.3 J	9.6 Y	ND	NĐ	0.3 J	0.7	0.4 J/D,4 J dp	0,4 }	0.2 JV	ND	ND	0.73-0.63 dp	NĐ	0,61
Chlorotorus	7	0.23	ND	ND	ND	0.2 J	ND	NI)	NĐ	NO	ND	0.3.1	ND/ND dp	ND	ND	ND	ND	ND/ND dp	ND	ND
Trichlopsethene	5	0.33	ND	0.27	ND	12.3 J	ND	ND	NĐ	ND	ND	0.2 J	ND/ND dp	ND	NĐ	ND	ND	ND/ND dp	ND	ND
Trichlorofluoremethane	51	no data	no data	no data	av data	no data	NĐ	ND	2	ND	80	ND	ND/ND dp	ND	ND V	ND	ND	ND/ND dp	NĐ	ND:
Aluninum	100*	mo data	no data	no data	no data	no data	eu dia	ne data	tto data	no dista	no data	no data	no data	tto Jata	no data	no data	no data	no data	no data	no data
Lead	25*	no data	no data	no data	no data	no data	no data	no data	no data	no data	no data	no dona	no data	no data	no data	no data	no data	ne data	no data	ຄອ ປະເທລ
Chromium	\$U>	NA	ND	ND	N5)	ND	NĐ	ND	ND	ND	ND	ND ND	ND/ND dp	ND	ND	NO	ND	ND/ND dp	ND	ND
SW-D Acetone	5-	no data	no data	no data	no data	ni• data	no data	no data	po data	no data	no data	ne data	no data	no data	no data	no data	no data	no data	no data	no data
Acetone	5-	no data	no data	no data	no data	nis data	no data	no data	no data	no data	no data	no dista	no data	no data	no data	no data	no data	-	ಕ್ಷಂತ್ರಚಿಸಿ	no data
Bromochiotometlune		tto data	ла бала	no data	no data	no data	ND	ND	ND	ND	ND	ND	ND:	ND	ND ND	ND	NĐ	ND.	ND	ND
Carbon Disultide	Noact	ND	ND	ND	ND .	ND.	ND ND	NI)	NĐ	NU	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND
Carbon Tetraeliforide	5	NA .	ND	ND	ND	NI)	по фла	no data	no data	no dota	no data	no data	no data	no data	no dota	no data	no data	no data	ND	NI)
\$1,2-Dichloroethane	9.6*	ne data	no data	no data	no data	ne data	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	1.0	80	ND ND	ND
·	5,	NA	ND	6.3 BE	ND	ND	no data	no dula	no data	no data	no data	ster data	no data	no data	no data	no data	no data	ner data	ND	ND
Methylene Chloride	AT PROPERTY OF THE PROPERTY OF		no data	rio data	par data	(let dala	so data	no data	i sodata	no data	no data	no dista	no data	no data	no data	no data	no data	ne data	no data	no data
<del>}</del>	Ş.	no data	no cara							·						ne data	no data	no data	no data	100 ರತನಚ
Methylene Chloride	(00*	no data	no data	au duta	no data	ne data	no data	no dida	no data	no data	no dala	no dida	no data	no data	no data	1		· <del></del>		
Methylene Chloride 1.2.3-Friehlordsenzene Alumantun Lend	100*	no data no data	no data no data	no data	no data	no data	eo data	no diaa	no data	no data no data	no data	no data	no Jata	no data	no data	no data	no data	no data	no data	no J.d.s
Methylene Chloride 1.2,3-Frichlordsenzene Alumatum	(00*	no data	no data							no data				~~~~	-	1		· <del></del>		no data NA
Methylene Chloride 1.2.3-Prichlordsenzene Admontun Lend	100*	no data no data	no data no data	no data	no data	no data	eo data	no diaa	no data	no data no data	no data	no data	no Jata	no data	no data	no data	no data	no data	no data	
Methylene Chloride 1.2.3-Prichlordsenzene Admontun Lend	100* 25* 80*	no data no data	no data no data	no data	no data	no data	eo data	no diaa	no data	no data no data	no data	no data	no Jata	no data ND	no data	no data ND	no data NA	no data NA	no data NA	NA
Methylene Chloride 1.2.3-Prichlordsenions Administra Lead Chromium	100* 25* 80*	no data no data	no data no data	no data	no data	no data	no data ND	no diaa	no data ND	no data no data	no data	no data	no Jata	no data	no data	no data	no data	no data	no data NA NS	NA NS
Methylene Chloride 1.2.3-Prichlordsen.cne Adamontin Lead Chromium SW-E (See O&M Manual A	100° 25° 80° ddendum No. 1)	mo data mo data 2	no data no data ND	no data ND	no data ND	no data ND	no data ND	no d.ou NJ)	no data ND	no data no data NO	no data ND	no data ND	no data ND	no data ND	no data ND	no data ND	no data NA	no data NA	no data NA	NA NA
Methylene Chloride 1.2.3-Prichlorobeniene Advisoritin Lend Chromium SW-E (See O&M Manual A Carton Extrablique	100° 25° 80° ddendum No. 1)	no data no data 2	no data no data ND	no data ND NS	no data ND NS	no data ND NS	no data ND NS	no d.ou NJ)	no data ND	no dota no dota ND	no data ND NS	no data ND NS	no data ND	no data ND	no data ND NS	no data ND NS	no data NA NA	no data NA NS	no data NA NS	NA NS
Methylene Chloride 1,2,3 Pethhordsencene Admontine Lead Chromium SW-E-(See O.S.M. Manual A. Carton Terresburide Trichlorischene	100° 25° 80° ddendam No. 1) 5 5	no data no data 2	no data no data ND	no data ND NS	no data ND NS	no data ND NS	no data ND NS	no d.ou NJ)	no data ND	no dota no dota ND	no data ND NS	no data ND NS	no data ND	no data ND	no data ND NS	no data ND NS	no data NA NA	no data NA NS	no data NA NS	NA NS
Methylene Chloride 1.2.3-Prichlordseniene Adronatin Lend Chromium SW-E (See O&M Manual A Carbon Tetrachloride	100° 25° 80° ddendam No. 1) 5 5	no data no data 2	no data no data ND	no data ND NS	no data ND NS	no data ND NS	no data ND NS	no d.ou NJ)	no data ND	no dota no dota ND	no data ND NS	no data ND NS	no data ND	no data ND	no data ND NS	no data ND NS	no data NA NA	no data NA NS	no data NA NS	NA NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

SS

NS

NS

SS

NS

NS

NS

88

Notes

SW-G (See O&M Manual Addendum No. 1)

Carbon Tetrachloride

Trichloroethene

Units are pigh (ppb) unless otherwise stated. E = Estimated concentration : due to interference.

Only detected compounds are listed. I a listimated concentration.

NS

 $V \approx \text{Not againty} \text{concentration: due to variance to quality control limits}.$ 

NS

NS

NS

NS

88

NS

ND = Not detected.  $R \approx Rejected during data wild atton.$ 

NS

NS

NS a Not Sampled.

• Bosed on NYSDBC Final Combaned Regulatory Impact and Environmental
dp = Duplicate sample.

Impact Statement (Title 6, Chapter X, Parts 700-706, 1998), identified

B = The reported value is less than the CRQL/CRDL but for comparison purposes only,

D × Concentration determined from a sample dilution. See RI report for additional data.

### TABLE 8 SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS 4d, 11d, m-24d, m-25d, m-29d, 13d JUNE 1992 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

Compounds	Cleanup																			
SW-A	Standard	6/2/1997	(0/(4/1997	5/28/1998	10/29/1998	5/11/1999	10/26/1999	5/22/2000	10/24/3000	5/15/2001	19/23/2001	5/29/2002	10/29/2002	4/9/2003	10/9/2003	5/25/2004	11/2004	5/24/2005	10/2005	10/2006
Carbon Disulfide	None*	SD	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	NOJ	ND ND	ND	ND	ND	NA.	ND ND	ND
Aluminum	100	no data	no data	no data	NA	NA	NA	NA	NA.	NA	NA	NA.	NA NA	NA	NA	NA NA	NA.	NA NA	NA NA	NA NA
Lead	25>	no data	no data	no data	NA	84	NA	NA.	NA.	NA.	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA
Chromum	50*	NA NA	NA NA	NA NA	NA	NA	NA NA	N/A	NA	N.A	NA NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA NA
SW-B																				
Carlson Disultide	None*	SD	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	ND	ND
Carbon Tetrachloride	5	ND	ND	0.31	Nb	N17	ND	80	0.54 J	ND	ND:	ND	0.184	0.343	0.27 J	0,38 J	0.43 J	NA	0.53	0.361
Chloroform	7	ND	ND	11.0	NĐ	ND	NU	ND	ND	ND	ND	ND	ND	ND	80	0.20 J	ND	NA NA	ND	NO
Trichloroethene	5	NĐ	NI)	0.2J	ND	ND	ND	ND	GN	ND	ND	ND	NO	0.20 J	0.19 J	0.2x J	0.27 J	NA NA	0.33	0.25 J
Trichlorolluoromethane	5*	NĐ	ND	da	NĐ.	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	NA NA	ND	ND
Aluminum	100 -	no Jata	no data	no data	N.A	NA	NA	SA	N.A	SA	NA	NA	NA NA	NA	SA	NA .	NA	N/A	NA	NA
Lead	25>	no data	กง ปลาล	no data	NA	NA	NA	SA	NA	N.A	NA.	NA	NA NA	NA	8A	N,A	NA NA	NA NA	NA	NA NA
Chronium	59*	NA.	NI	SD	3.1 BJ	0.44  3	ND	0.93	0.75 B	ND	ND	5.5 B	0.93 B	1.0 B	0.75 B	2.1 B	0.94 B	NA	0.5 B	0.70 (9
·				.+								·								
SW-b	*********		·	·						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·····						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·		·
Acetone	5,	po data	no data	45.1	ĸ	ND.	ND	ND	ND	ND	ND .	ND ND	3.11	ND	ND	ND	NĐ	NA NA	ND.	, ND
Bromochloromethane	5*	ND	ND ND	ND	ND:	ND	ND	ND	ND	ND	ND	NI)	NĐ	ND CIK	ND	ND	ND	NA NA	ND	ND
Carbon Disulfide	Noae*	ND	ND	ND	ND	ND	ND	SD	ND	ND	ND	ND ND	ND	ND.	ND	ND	ND	NA NA	ND	ND
Carlson Terrachionde	5	no data	no data	ND	0.23	ND	ND	SD	ND	80	ND	NI)	ND ND	ND	ND	ND	ND	NA	ND	0.30 J
1.2-Dichloroethane	0.6*	NĐ	ND	ND	ND	SD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	ND	NI)
Methylene Chlonde	5-	no data	no data	ND	ND:	SD	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	NA NA	NĐ	ND
1.2.3-Trichlorobenzene	5.	າທ ວັດເລ	no data	0.13	ND	ND	ND	ND	ND	ND	ND	ND:	81)	ND	ND	ND ND	ND	NA NA	NĐ	ND
Nummum	1002	no data	no data	no data	NA	SA	NA NA	NA.	NA.	NA	NA	NA	N/A	NΛ	NA NA	NA	NA NA	NA	NA	NA NA
Lend	25*	no data	no data	no data	NA	NA	N.A	NA.	NA	NA	NA.	NA	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Съпини	50*	NA	NA NA	NA	NA	NA	NA	N.A	N.A	NA	NA NA	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
SW-E (See O&M Manual Ac	inenduli (vo. 1)	T	1 10	T			NS	20	NS	NN	NS.	NN	NS	NS	NS NS	NS	1.0	NA NA	0.61	0.74 J
Carbon Tetrachlonde		NS NS	NN Nn	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	ND	NA NA	ND	ND
Trubloroethene	1 - 2	NS	NS	NS .		NS .	NS NS		1 1/10	155	. 03	190	1 (63		15.5	1 1707	197			
SW-F (See O&M Manual Ac	Idendum No. 1)										***************************************					· · · · · · · · · · · · · · · · · · ·				Marines From the Control of the
Carbon Tetrachloride	5	SS	NS	NS	NS	NS	NS	NS	NS.	88	NS .	NS	NS.	NS	NS	NS	ND	NA	ND	ND
Trichleroethene		NS	Ns	NS	88	NS	NS	NS	NS .	NS	NN	NN	NS	NS	NS	NN	ND	NA	NI)	NO NO
SW-G (See O&M Manual A	ddendum No. 1	,																		
Carbon Terrachloride	. 5	NS	, NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	NS	N8	ND	NA	ND	GN
Trachloroethene	1	NS	NS	NS	NS.	NS	NS	28	NS	NS	NS	NS	NS NS	NS	NS	NS	ND	NA.	ND	ND ND
Hemorecinene			4	T		(10)	1		1		L		;		L	4,,				

#### Notes

Units are pgA typhi unless otherwise stated. If w Estimated concentiation: due to interference

Only detected compounds are listed. I in Estimated concontration.

 $NA \approx Not \ analyzed. \hspace{1cm} V \cong Estimated \ concentration, \ due to \ variance to \ quality \ control \ limits$ 

NO a Net detected. R is Rejected during data validation.

NS # Not Nampled.

* Based on NYSDEC Final Combined Regulatory Impact and Environmental
dp = Displacate comple.

Jungart Storement (Title 6, Chapter X, Parts 700-706, 1998), identified

B = The reported value is less than the CRQL/CRDL/but for congruinous pages couly ground than the BH. 

D = Concentration determined from a sample dilution. 

See RI report for additional data.

#### TABLE 9

#### SUMMARY OF WATER QUALITY ANALYTICAL RESULTS MONITORING WELLS 4D, 11D, M-24D, M-25D, M-29D, 13D JUNE 1992 - OCTOBER 2006 SEMI-ANNUAL SAMPLING

Wells / Compounds	Remedial Action							
4D	Objective	6/1-6/2/1992	11/18-11/19/1992	11/2004	5/24/2005	19/24/2005	5/23/2006	10/2006
Acetone	50	ND	ND R	ND	ND	ND	ND	NI)
Carbon Tetrachloride	5	ND	ND	ND	ND	ND	ND	ND
Chloroferm	7	ND	ND	ND	ND	ND	ND	ND
Prichloroethene	5	NÐ	ND	ND	ND ND	ND	ND	ND
1110								
Acetone	50	ND	ND R	ND	ND	ND .	ND	ND
Jarbon Tetrachloride		ND	6	4,6	13	14	15	12
Chlorotorm	7	NI)	3	ND	4.0	3.0	4.0	3.0
Trichloroethene	5	91	7	ND	0.8 J	0.9J	l I	2.0
M-24D								
Acetone	50	ND	ND R	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	10	0.7	0.59 J	10	10	11	11
Chloroform	7	ND	ND	ND	0,61	0.5J	0.5 J	0,44 J
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND
M-25D								·
Acetone	50	ND	NDR	ND	ND	ND	49 D#	25 JD
Carbon Tetraebloride	5	48	27R	86.8 D	811)	91	76 D*	71 D
Diloroform	7	ND	3R	8.7	8,0	9.0	8 D*	71)
Prichloroethene	5	3J	8R	16.1	35 D	37	28 D*	22 D
M-29D								
Acutone	50	ND	ND R	ND	ND	ND	16 D°	ND
Carbon Tetrachloride	5	79	84	10.8	38 D	37	.39 D*	33 D
Chloroform	7	ND	14	ND	4.0	5.0	5 D*	4 D
Frichloroethene	5	[9	24	6,0	14	13	14 Ds	12 D
13D								
Chromaun	50%	98.4	38.9 J	4.5 B	78.3	60,8 J	11	17.1
Hexavalent Chromium	50%	NA	NA NA	10 U	10 U	10 U	10 U	14,2

#### Notes:

Units are  $\mu g f$  (ppb) unless otherwise stated,  $D^a = Concentration determined from a sample dilution.$ 

Only detected compounds are listed, J = Estimated concentration,

See Remedial Investigation report for additional  $d\epsilon\,V$  = fistimated concentration; due to variance to quality

NA = Not analyzed. control fimits.

ND = Not detected. --= Not sampled; well installed in December, 1990.

dp = Duplicate sample. for comparison purposes only.

E = Estinated concentration; due to interference. ** = Filtered Sample.

R = Analysis rejected

### **FIGURES**

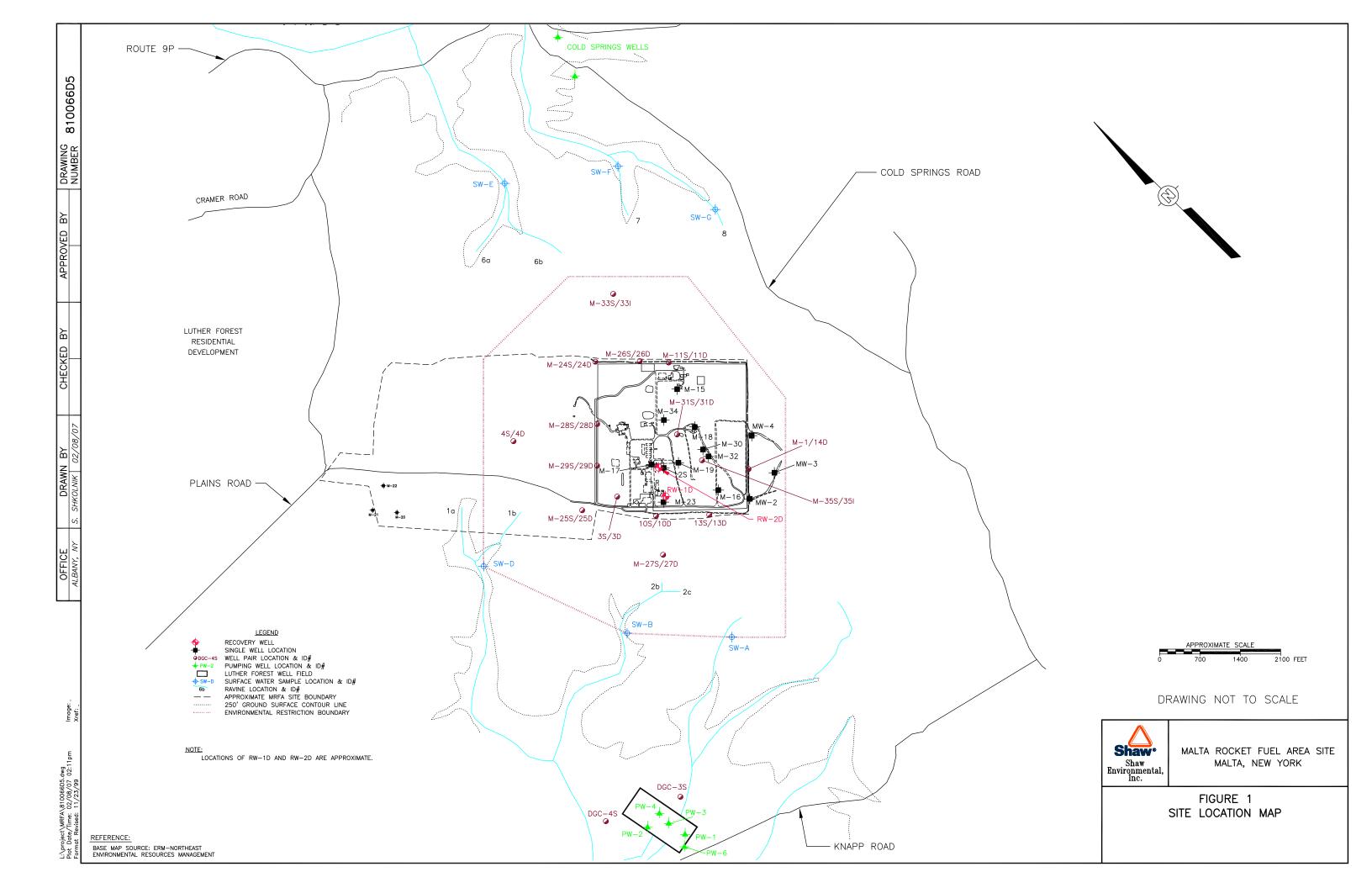



FIGURE 2
WELL M-27D CARBON TETRACHLORIDE CONCENTRATIONS

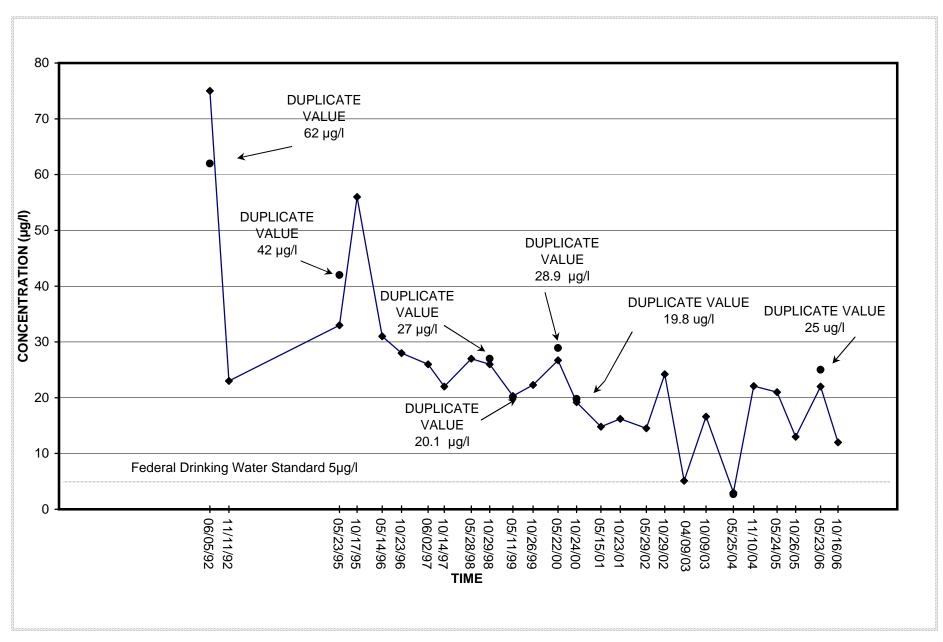
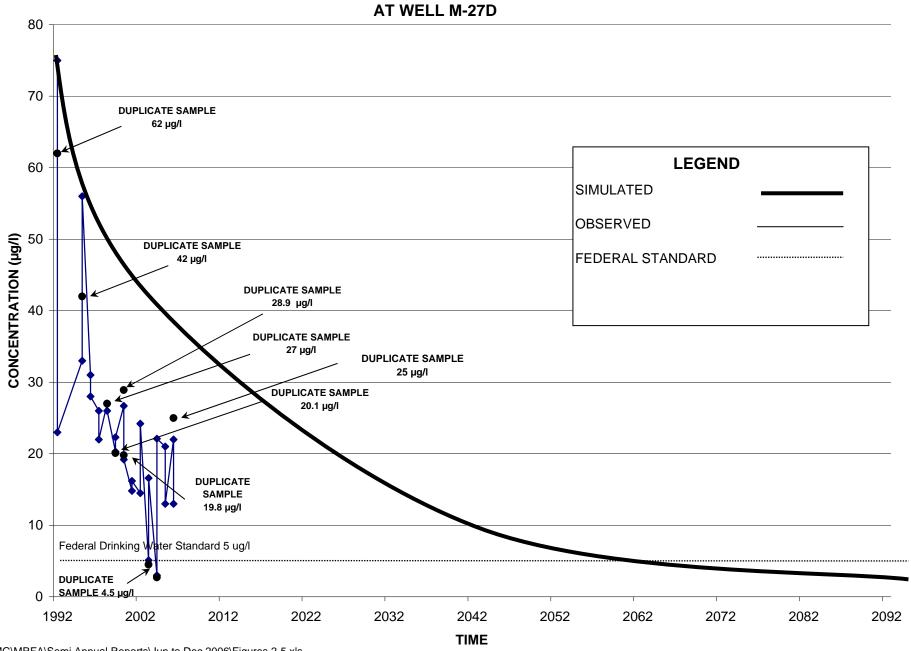
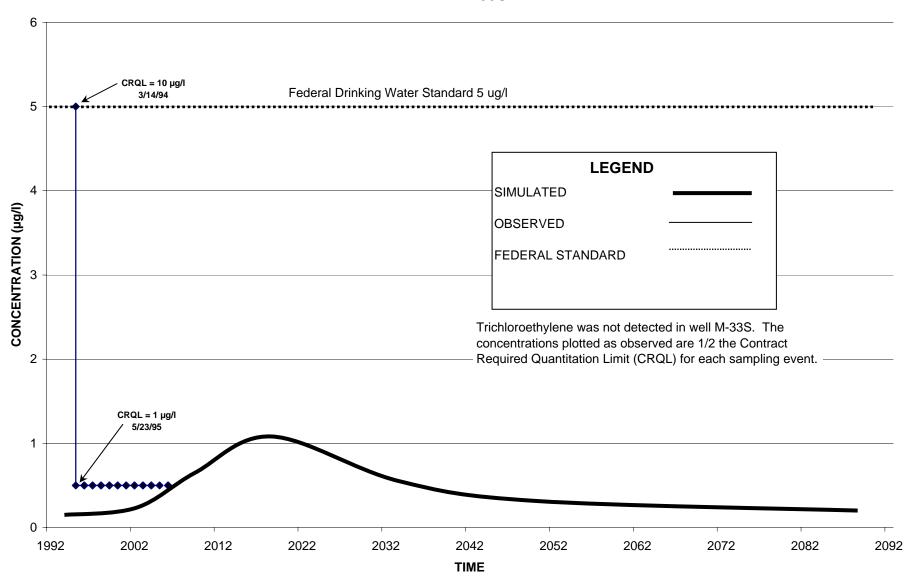
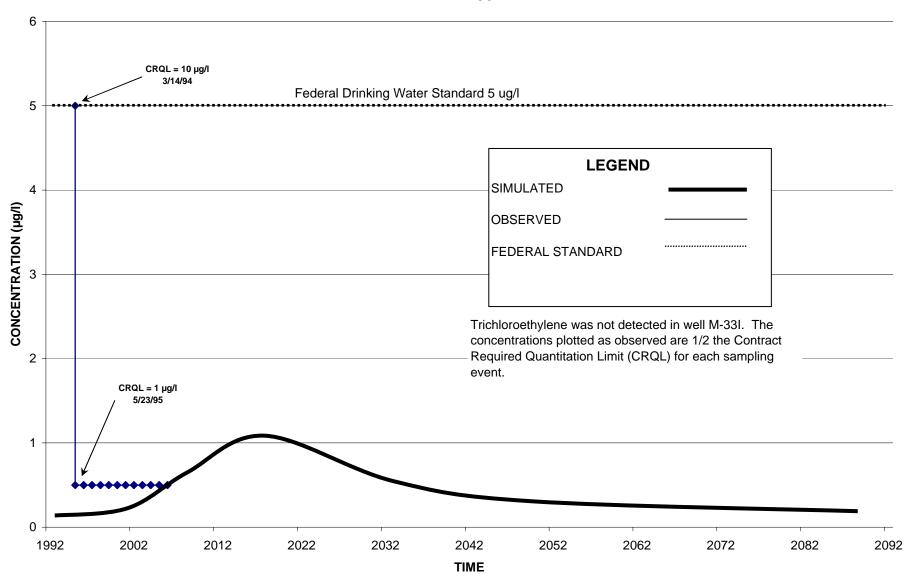
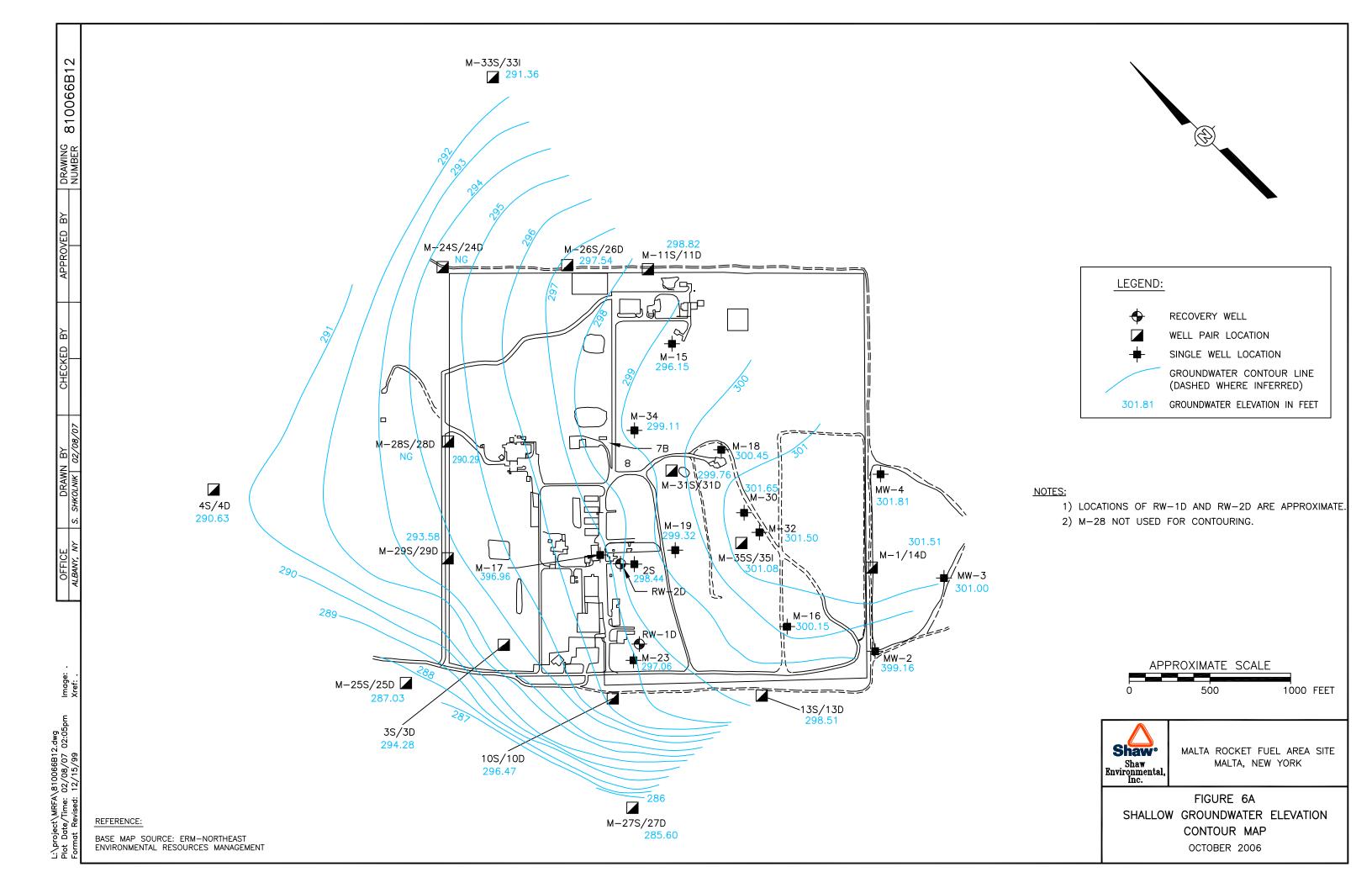
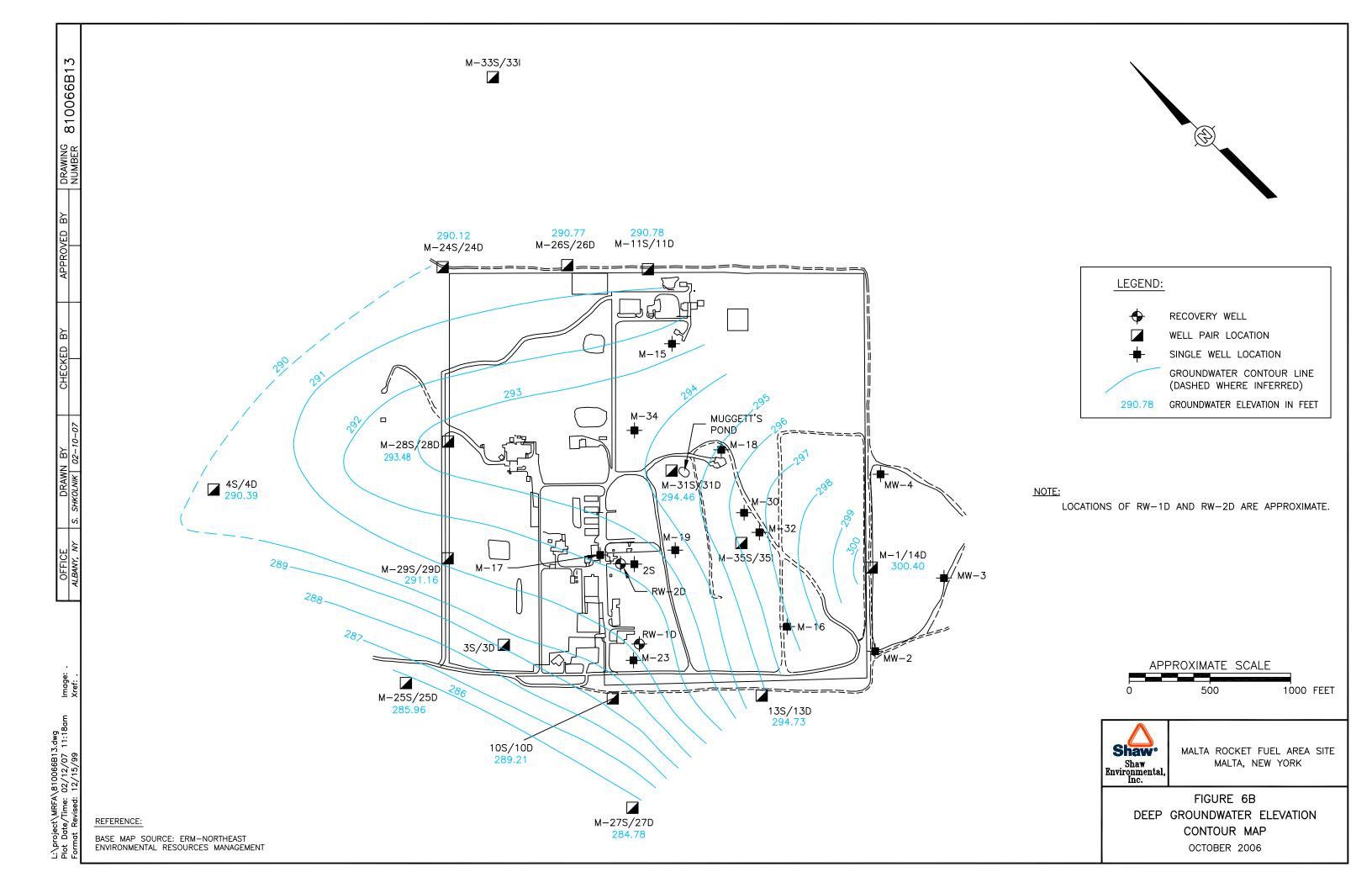



FIGURE 3 SIMULATED VERSUS OBSERVED (OCTOBER 2006) **CARBON TETRACHLORIDE CONCENTRATIONS** 



FIGURE 4
SIMULATED VERSUS OBSERVED (OCTOBER 2006)
TRICHLOROETHENE CONCENTRATIONS
AT WELL M-33S



# FIGURE 5 SIMULATED VERSUS OBSERVED (OCTOBER 2006) TRICHLOROETHENE CONCENTRATIONS AT WELL M-33I







#### APPENDIX A

## LABORATORY DATA, INFLUENT/EFFLUENT WATER SAMPLES

AUGUST 15, 2006 AND OCTOBER 16, 2006



September 14, 2006

Mr. Brian Neumann Shaw Environmental 13 British American Blvd. Latham, NY 12110

Re: GE MRFA Project #810066

Submission # R2633204

Dear Mr. Neumann:

Enclosed is the analytical data report for the above referenced facility. A total of four samples were received by our laboratory on August 16, 2006.

Any problems encountered with this project are addressed in a case narrative section which is presented later in this report.

This report consists of two (2) packages: the sample data package and the sample data summary package. The data package and summary package have been mailed to Judy Harry and the summary package only has been mailed to your attention and to Steve Meier. All data presented in this package has been reviewed prior to report submission. If you should have any questions or concerns, please contact me at (585) 288-5380.

Thank you for your continued use of our services.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Janice M. Jaeger Project Chemist

enc.

cc: Ms. Judy Harry
Data Validation Services
Cobble Creek Road
North Creek, NY 12853

cc: Mr. Steve Meier GE Corporate Environmental Programs 319 Great Oaks Blvd. Albany, NY 12203



1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

#### THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Shaw Environmental

Project Reference: GE MRFA PROJECT #810066

Lab Submission # : R2633204

Project Manager : Janice Jaeger

Reported : 09/14/06

Report Contains a total of 35 pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

#### **CASE NARRATIVE**

COMPANY: Shaw Environmental GE MRFA Project #810066 SUBMISSION #: R2633204

Shaw samples were sampled on 08/15/06 and received at CAS on 08/16/06 in good condition.

#### **VOLATILE ORGANICS**

Four water samples and one cooler blank were analyzed for a site specific list of Volatiles by method OLC2.1.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All Tuning criteria for BFB were met.

All surrogate standard recoveries were within QC limits.

Site specific QC was performed on MRFA Influent as requested. All MS/MSD recoveries were within limits. All Reference spike recoveries were within limits. All RPD's were within limits except Carbon Tetrachloride and has been flagged with an "*".

Various compounds for MRFA InfluentMS and MRFA InfluentMSD have been flagged with an "E" as being outside the calibration range of the instrument.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

#### CAS ASPICLY BATCHING FURM / LUGIN SHEET

	MRFA DUP	BATCH C	OMPLETE:yes		DATE REVIS	FD·		
SUBMISSION	R2633204	DISKETT	E REQUESTED: Y_X N		DATE DUE:			
CLIENT:	Shaw Environmental	DATE: 08	1/16/06		PROTOCOL			
CLIENT REP:	Janice Jaeger		Y SEAL: PRESENT/ABSENT:		SHIPPING N	-		
PROJECT:	GE MRFA PROJECT #810066	CHAIN O	F CUSTODY: PRESENT/ABSENT	г•	SHIFF HVG 14	0.,		
CAS JOB#	CLIENT/EPA ID	MATRIX		DATE	DATE	-11	0/	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NEGOEOTED FANAMETERS	SAMPLED		pH	%	REMARKS
930080	MRFA DUP	WATER	OLC2.1-VOA	A CONTRACTOR OF THE PROPERTY O	Part and the Control of the Control	(801108)	SOLIDS	AMPLE CONDITION
9300081QC	MRFA INFLUENT	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
930082	MRFA EFFLUENT	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
930083	TRIP BLANK	WATER	OLC2.1-VOA	-8/15/2006	8/16/2006			
930084	COOLER BLANK	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
	To the first of th	WAICK	ULG2.1-VOA	8/15/2006	8/16/2006			
		<b> </b>			<u> </u>			
					<u> </u>			
		<u> </u>						
		ļ						
							1	
							t	
						<u> </u>		
				1				
		<u> </u>			ļ			
						<del> </del>	<del> </del>	
<del></del>	<u> </u>	1			I	<u> </u>	<u> </u>	<u> </u>

SDG #: MRFA DUP SUBMISSION R2633204

BATCH COMPLETE: __yes___ DISKETTE REQUESTED: Y_X__ N___

DATE REVISED: DATE DUE: 9/13/06

BATCHIN1

8/16/2006







#### ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B. This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- * This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

#### CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania Registration 68-786 Rhode Island ID # 158 West Virginia ID # 292



#### CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

	_			l	
<b>~</b> =					_
GE		OF-	1	CAS Contact	•

Project Name  GE MRFA	Project Number	0066	-					AN	ALYSIS	SREC	DUEST	ED (Ir	nclude	Meth	od N	umber	and C	ontain	er Pre	servati	ve)		199
Project Manager	Report CC Steve No	,	. 11		PRES	SERVAT	IVE			4													
Company/Address	Oreve Me	ier, du	dy Mc	urry				}		1 57	$\longrightarrow$		$\longrightarrow$					ļ	<u> </u>				
Shaw Envire	enmental, Inc			U			/			T.				/	/	' /	/ /	/	' /	' /	- /	Preservation  O. NONE	
	American B	vd			CONTAINERS			/ -	/ .	<b>3</b>			_/ .						<i>f</i>			1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	4
Latham, NY					ONTA	,	/ J/	/ a     d	O	9 0											1	<ol><li>Zn. Ac</li></ol>	etate
Phone # (5/8) 783~ 1996	IFAX#					/		50	(602			41. 118 b	307 138 148 148 158 168 168 168 168 168 168 168 168 168 16	/	/			/	/	/ /	/	<ol><li>MeOH</li><li>NaHS</li></ol>	
Sampler's Signature	(518) 7 Sampler's Printed Nam				NUMBER OF		30/3		607		60/ j				/	/ /	/ /	' /	' /	′		8. Other	
1/1/2	Mare	Flanag	an		NOM	18	0 8 6 0 8 6	78		0/0	0 V 12 V3	(8)	[8]				/						
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE	LING TIME	MATRIX	1	1950 1960 1960 1960 1960 1960 1960 1960 196	GCMS SVO4.	(3) g	PESSION			MET									F	REMARKS/ NTE DESCRI	
MRFA Dup A		8/15/00	**	G-W	3		7	$\mathbf{x}'$	7	7				f		<del>-</del>	+	$\overline{}$	$\leftarrow$			OZO	IPTION
MRFA Influent		(	855	1	1			1							<del>                                     </del>	+	-	+-			SU	<u> </u>	
MARFA Influent MS			857		1										†		-	_	-	1	330	1800	
MREA Influent MSD		)	900												<del> </del>	1	<u> </u>	-		//	<u> </u>	<u> </u>	···
MRFA Efficient			905																+	/ G	3 (1)		
Trip Blank		*	••	4-	1			4										-				<u> </u>	
																-		-	-	\ \ \	<u> </u>	<u> 70∕7</u>	
															<u> </u>				-				
																	-		-				
																		1					
SPECIAL INSTRUCTIONS/COMMENTS Metals									DUND F								REMEN	гs	1	IN/	OICE I	NFORMATI	ON
									(SURCH			•			ults Onl	y DC Sumi							
							X				•	uay	-4	_ II. Res (LCS,	DUP, M	OC Sumi IS/MSD	maries as require	ed)	PO	#			
							REQUES			E			_	_ III. Re Summ		QC and	Calibratio	n .	BIL	L TO:	rF'	CEP	·
						l				-						ation Da	port with	Da Dal					
							REQUES	STED R	EPORT	DATE							Custom		i i			NY	
SAMPLE RECEIPT: CONDITION/COO	LEDIEND												-					·				<u>850</u>	14
RELINQUISHED BY	RECEIVED BY	1		STODY SEA		N			RECEIV	/ED BY	<u>,                                     </u>					QUISHE			-   · ·	K 510		EIVED BY	
	Signature Street		alure				Signature	}				******	Signat	ture	****				Sigr	ature	· .		
Mucc. Flangago	rinted Name		ted Name				Printed N	ame	***************************************				Printe	d Name					Prin	ted Name			
Firm Shared J	Firm Cha	Firm					Firm						Firm						Firm	1			
Date/Time 8/15/06 1200	Date/Time Ellic/OG 950	Date	/Time				Date/Time	е					Date/T	îme				******	Date	e/Time			
Distribution: White - Return to Originator; Yellow	- Lab Copy: Pink - Retained by Cl	ent											•			****						SC	OC-1102-08

#### Cooler Receipt And Preservation Check Form

Project/Client	Shedo			Submiss	sion Nun	nber <u></u>	26-3	33204	
Cooler received on	shulee by	<u>9</u>	_COU	RIER:	CAS	UPS	FEDEX	VELOCIT	Y CLIENT
<ol> <li>Were custo</li> <li>Did all bot</li> <li>Did any Vo</li> <li>Were Ice o</li> <li>Where did</li> </ol>	ody seals on outside ody papers properly tles arrive in good of OA vials have signing r Ice packs present the bottles originate of cooler(s) upor	filled condition ficant :: ? e?	out (in on (unl air bub	oroken)'	d, etc.)? ?	<del></del> -	YES YES YES YES CAS/RO	NO	N/A NT 
Is the temp	erature within 0°-	6° C?:		Yes	Yes		Yes	Yes	Yes
If No, Exp	lain Below			No	No		No	No	No
Date/Time	Temperatures Take	en:		عا الع	100	1010			
Thermome	ter ID: 161 or	ÍR G	UN	Readin	g From:	Temp	Blank	or Samp	ole Bottle
If out of Tempera	nture, Client Appr view:	oval to	Run 010(	Sample	es				
<ol> <li>Were all be</li> <li>Did all bot</li> </ol>	n: Date:	ie (i.e. i agree w	analys	is, prese	rvation,	: <u>(</u> )?	YES YES	NO NO	•
4. Air Sampl	ect containers used es: Cassettes / Tu pancies:	for the bes Int	tests i act	ndicated Caniste	d? ers Press	surized	YES Tedlar	NO ® Bags Infla	ated N/A
4. Air Sampl	ect containers used es: Cassettes / Tu	for the bes Int	tests i act	ndicated Caniste	d? ers Press		YES Tedlar		
4. Air Sampl	ect containers used es: Cassettes / Tu	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sampl Explain any discre	ect containers used es: Cassettes / Tu epancies:	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sampl Explain any discre	ect containers used es: Cassettes / Tu epancies: Reagent	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sampl Explain any discre	ect containers used es: Cassettes / Tu epancies:  Reagent NaOH	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sampl Explain any discre	Reagent NaOH HNO3 H ₂ SO ₄	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sampl Explain any discre	Reagent NaOH HNO3 H ₂ SO ₄	for the	tests i	ndicated Caniste	d? ers Press			® Bags Infla	
4. Air Sample Explain any discress ph 12 2 2 Residual Chlorine (+/-5-9**  YES = All samples Ol	Reagent NaOH HNO3 H ₂ SO ₄ P/PCBs (608 only)  NO = Sa	for the bes Int  YES  mples we	NO NO	Sample	d? ers Press	Re		® Bags Infla	
pH  12  2  Residual Chlorine (+/- 5-9**  YES = All samples OI  **If pH adjustment is r	Reagent NaOH HNO3 H ₂ SO ₄ P/PCBs (608 only)	YES  mples we for H2SO	NO NO	Sample	d? ers Press	Re	agent	® Bags Infla	

H:\SMODOCS\Cooler Receipt v 2.doc

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRFA DUP

Lab Name:	CAS/RC	CH			Contract:	IT LATHAM		TA DUP
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:S	DG No.:	MRFA DUP
Matrix: (soil/w	vater)	WATE	R		Lat	Sample ID:	930080	1.0
Sample wt/vo	oi:	25.0	(g/ml)	ML	Lat	File ID:	T9008.D	
Level: (low/m	ned)	LOW			Dat	e Received:	8/16/06	
% Moisture: r	ot dec.				Dat	e Analyzed:	8/23/06	
GC Column:	CA-624	1_ ID:	<u>0.18</u> (m	ım)	Dilu	ition Factor:	1.0	
Soil Extract V	olume: _		(uL)	•	Soil	Aliquot Volu	me:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	· ·	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		<u>'</u>	U
74-83-9	Bromomethane		1	Ü
75-00-3	Chloroethane		1	Ü
75-69-4	Trichlorofluoromethane		1	U
75-35-4	1,1-Dichloroethene		1	U
67-64-1	Acetone	-	5	UT
75-15-0	· Carbon Disulfide		1	U
75-09-2	Methylene Chloride		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-34-3	1,1-Dichloroethane		1	U
156-59-2	cis-1,2-Dichloroethene		1	U
78-93-3	2-Butanone		5	U1
74-97-5	Bromochloromethane		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbon Tetrachloride		1	U
71-43-2	Benzene		1	U
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dichloropropane		1	Ü
75-27-4	Bromodichloromethane		1	U
10061-01-5	cis-1,3-Dichloropropene		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
108-88-3	Toluene		1	U
10061-02-6	trans-1,3-Dichloropropene		1	Ü
79-00-5	1,1,2-Trichloroethane		1	U
127-18-4	Tetrachloroethene		1	Ü
591-78-6	2-Hexanone		5	U
124-48 <b>-</b> 1	Dibromochloromethane		1	U
106-93-4	1,2-Dibromoethane		1	U
108-90-7	Chlorobenzene		1	Ü
100-41-4	Ethylbenzene		1	U
1330-20-7	(m+p) Xylene		1	U
1330-20-7	o-Xylene		1	U
100-42-5	Styrene		1	U
79-34-5	1,1,2,2-Tetrachloroethane	<del>                                     </del>	1	U
75-25-2	Bromoform	<del>                                     </del>	1	U
541-73-1	1,3-Dichlorobenzene	-	1	U
		<u> </u>		

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRFA DUP

Lab Name:	CAS/RO	OCH			Contract:	IT LATHAM	
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:S	DG No.: MRFA DUP
Matrix: (soil/v	water)	WATE	R		Lat	Sample ID:	930080 1.0
Sample wt/vo	ol: ,	25.0	(g/ml)	ML	Lat	File ID:	T9008.D
Level: (low/n	ned)	LOW			Dat	e Received:	8/16/06
% Moisture: r	not dec.				Dat	e Analyzed:	8/23/06
GC Column:	CA-62	4_ ID:	<u>0.18</u> (mi	m)	Dilu	ition Factor:	1.0
Soil Extract V	olume:	~ <del></del>	(uL)		Soil	Aliquot Volu	me: (uL

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
106-46-7	1,4-Dichloroben	zene		1	U
95-50-1	1,2-Dichloroben:	zene		1	Ū
96-12-8	1,2-Dibromo-3-c	hloropropane		1	Ü
120-82-1	1,2,4-Trichlorobe	enzene		1	U
87-68-3	Hexachiorobutad	diene		1	Ü
87-61-6	1,2,3-Trichlorobe			1	Ü

#### 1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

• EPA SAMPLE NO.

Lab Name:	CAS/RC	OCH			Contract:	IT LAT	ГНАМ	MF	RFA DU	JP
Lab Code:	10145	C	ase No.:	R6-3320	4 SAS No	o.:	SD	G No.:	MRFA	DUP
Matrix: (soil/w	vater)	WATER			La	b Samp	le ID: 9	30080	1.0	
Sample wt/vo	ol:	25.0	_ (g/ml)	ML	La	b File ID	): 1	79008.E	)	
Level: (low/m	ned)	LOW			Da	te Rece	ived: 8	3/16/06		-
% Moisture: n	not dec.				Da	te Analy	/zed: 8	3/23/06		-
GC Column:	CA-62	4_ ID: <u>0</u>	).18 (m	ım)	Dil	ution Fa	ctor: 1	.0		_
Soil Extract V	olume:		(uL)		So	il Aliquo	t Volum	e:		_ (uL
				СО	NCENTRAT	ION UN	NTS:			
Number TICs	found:	0		(ug.	/L or ug/Kg)	UC	S/L			
CAS NO.		СОМРО	UND NAN	ΛE		RT	EST	. CONC	<b>)</b> .	Q

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

MRFA INFLUENT

Lab Name: CAS/ROCH		Contract: IT LATHAM	MIN A INI LOCKY
Lab Code: 10145	Case No.: R6-33204	SAS No.: SI	DG No.: MRFA DUP
Matrix: (soil/water) WAT	ER	Lab Sample ID:	930081 1.0
Sample wt/vol: 25.0	(g/ml) ML	Lab File ID:	T9009.D
Level: (low/med) LOW	<u>,                                      </u>	Date Received:	8/16/06
% Moisture: not dec.		Date Analyzed:	8/23/06
GC Column: CA-624 ID	): <u>0.18</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volur	me: (uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	Ū
74-83-9	Bromomethane	1	Ü
75-00-3	Chloroethane	1	Ü
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Dichloroethene	1	U
67-64-1	Acetone	5	UJ
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Dichloroethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone	5	UJ
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	3	
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon Tetrachloride	24	
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	25	
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	(m+p) Xylene	1	U
1330-20-7	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	Ū
75-25 <b>-2</b>	Bromoform	1	U
541-73-1	1,3-Dichlorobenzene	1	Ū

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

MRFA INFLUENT

Lab Name:	CAS/RC	DCH			Contract:	IT LATHAM	_	
Lab Code:	10145		Case No.:	R6-33204	SAS No	o.: S	DG No.:	MRFA DUP
Matrix: (soil/w	vater)	WATE	R		Lai	b Sample ID:	930081	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lal	b File ID:	T9009.D	)
Level: (low/m	ned)	LOW			Da	te Received:	8/16/06	
% Moisture: r	not dec.				Da	te Analyzed:	8/23/06	
GC Column:	CA-62	4_ ID:	<u>0.18</u> (m	nm)	Dile	ution Factor:	1.0	
Soil Extract V	olume:		(uL)		Soi	il Aliquot Volu	me:	(uL)
				001				

CAS NO.	COMPOUND	(ug/L or ug/kg)	UG/L	Q	
106-46-7	1,4-Dichloroben	zene	1	U	
95-50-1	1,2-Dichloroben	zene	1	U	
96-12-8	1,2-Dibromo-3-c	1,2-Dibromo-3-chloropropane			
120-82-1	1,2,4-Trichlorob	enzen <b>e</b>	1	U	
87-68-3	Hexachlorobuta	diene	1	U	
87-61 <b>-6</b>	1.2.3-Trichlorob	enzen <b>e</b>	1	T II	

1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

PEPA SAMPLE NO.

Lab Name:	CAS/RC	ОСН			Contract:	IT LAT	HAM	MRFA	INFLU	JENT
Lab Code:	10145	с	ase No.:	R6-33204	SAS No	).:	SI	DG No.:	MRFA	DU <b>P</b>
Matrix: (soil/w	vater)	WATER			Lat	o Sample	e ID:	930081	1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	_ Lat	b File ID:	:	T9009.D	)	
Level: (low/m	ned)	LOW			Dat	te Recei	ved:	8/16/06	-	
% Moisture: n	not dec.				Dat	te Analy:	zed:	8/23/06		_
GC Column:	CA-62	<u>4</u> ID: <u>0</u>	.18 (m	nm)	Dilu	ution Fac	ctor:	1.0		_
Soil Extract V	olume:		(uL)		Soi	l Aliquot	Volun	ne:		_ (uL)
				CON	NCENTRAT	ION UN	ITS:			
Number TICs	found:	0		(ug/l	L or ug/Kg)	UG	<u>/L</u>			
CAS NO.		СОМРО	UND NAI	ΛE		RT	ES	T. CONC		Q

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

MRFA EFFLUENT

Lab Name:	CAS/R	OCH			Contract:	IT LATHAM	<u> </u>	
Lab Code:	10145		Case No.:	R6-33204	SAS No	o.: S	SDG No.:	MRFA DUP
Matrix: (soil/v	water)	WATE	R		Lal	b Sample ID:	930082	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lal	File ID:	T9006.D	)
Level: (low/n	ned)	LOW			Da	te Received:	8/16/06	<del></del>
% Moisture: ı	not dec.				Da	te Analyzed:	8/23/06	
GC Column:	CA-62	24 ID:	<u>0.18</u> (m	nm)	Dile	ution Factor:	1.0	
Soil Extract V	/olume:		(uL)	,	Soi	l Aliquot Volu	ıme:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Dichloroethene	1	U
67-64-1	Acetone	5	UJ
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Dichloroethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone	. 5	UJ
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon Tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Dichloropropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene Ethylbenzene	1	U
1330-20-7	(m+p) Xylene	1	Ū
1330-20-7	o-Xylene	1	Ū
100-42-5	Styrene	1	Ü
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Dichlorobenzene	1	U

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MRFA EFFLUENT

Lab Name:	CAS/RO	OCH_			Contract:	IT LATHAM	_	
Lab Code:	10145		Case No.:	R6-33204	SAS No	.: S	DG No.:	MRFA DUP
Matrix: (soil/w	vater)	WATE	R		Lat	Sample ID:	930082	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID:	T9006.E	)
Level: (low/m	ned)	LOW			Dat	te Received:	8/16/06	· .
% Moisture: r	not dec.				Dat	te Analyzed:	8/23/06	
GC Column:	CA-62	4_ ID:	<u>0.18</u> (m	ım)	Dilu	ıtion Factor:	1.0	·
Soil Extract V	olume:	·	(uL)		Soil	l Aliquot Volu	me:	(uL

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
106-46-7	1,4-Dichloroben	zene		1	U
95-50-1	1,2-Dichloroben	zene		1	Ū
96-12-8	1,2-Dibromo-3-c	chloropropane		1	Ü
120-82-1	1,2,4-Trichlorob			1	Ü
87-68-3	Hexachlorobuta			1	Ü
87-61-6	1,2,3-Trichlorob			1	Ü

1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

' EPA SAMPLE NO.

Lab Name:	CAS/RC	СН			Contract:	IT LAT	HAM	MRFA	EFFLU	JENT
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:	S	DG No.:	MRFA	DUP
Matrix: (soil/w	vater)	WATE	R		Lat	Sampl	e ID:	930082	1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID	):	T9006.D		<del></del>
Level: (low/m	ned)	LOW			Dat	te Rece	ived:	8/16/06		-
% Moisture: n	not dec.				Dat	e Analy	zed:	8/23/06		-
GC Column:	CA-624	1 ID:	<u>0.18</u> (m	ım)	Dilu	ition Fa	ctor:	1.0		-
Soil Extract V	olume:		(uL)		Soil	l Aliquot	t Volur	ne:		_ _ (u <b>L)</b>
				CON	ICENTRAT	ION UN	IITS:			
Number TICs	found:	0		(ug/L	or ug/Kg)	UG	6/L	<del></del> .		
CAS NO.		COMP	OUND NAI	1E		RT	ES.	T. CONC	•	Q

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

TRIP BLANK

Lab Name:	CAS/RC	OCH		Contract:	IT LATHAM	
Lab Code:	10145		Case No.: R6-33204	SAS No.:	SI	DG No.: MRFA DUP
Matrix: (soil/w	vater)	WATE	R	Lab	Sample ID:	930083 1.0
Sample wt/vo	d:	25.0	(g/ml) ML	Lab	File ID:	T9007.D
Level: (low/m	ned)	LOW	·	Date	Received:	8/16/06
% Moisture: n	ot dec.			Date	Analyzed:	8/23/06
GC Column:	CA-62	4_ ID:	<u>0.18</u> (mm)	Diluti	ion Factor:	1.0
Soil Extract V	olume:		(uL)	Soil A	Aliquot Volun	ne: (uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	· · · · · · · · · · · · · · · · · · ·	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride	<del>-  </del>	1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	Ū
75-69-4	Trichlorofluoromethane		1	U
75-35-4	1,1-Dichloroethene		1	Ū
67-64-1	Acetone		2	JJ
75-15-0	Carbon Disulfide		1	U
75-09-2	Methylene Chloride		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-34-3	1,1-Dichloroethane		1	Ū
156-59-2	cis-1,2-Dichloroethene		1	Ū
78-93-3	2-Butanone		5	U. T
74-97-5	Bromochloromethane		1	U
67-66-3	Chloroform		1	Ū
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbon Tetrachloride		1	U
71-43-2	Benzene		1	U
79-01-6	Trichloroethene		1	Ü
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	Ū
10061-01-5	cis-1,3-Dichloropropene		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
108-88-3	Toluene		1	U
10061-02-6	trans-1,3-Dichloropropene		1	Ū
79-00-5	1,1,2-Trichloroethane		1	U
127-18-4	Tetrachloroethene		1	U
591-78-6	2-Hexanone		5	Ū
124-48-1	Dibromochloromethane		1	U
106-93-4	1,2-Dibromoethane		1	U
108-90-7	Chlorobenzene		1	Ū
100-41-4	Ethylbenzene		1	U
1330-20-7	(m+p) Xylene		1	U
1330-20-7	o-Xylene		1	U
100-42-5	Styrene	<del></del>	1	U
79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	1	U
75-25-2	Bromoform		1	U
541-73-1	1,3-Dichlorobenzene		1	U

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

TRIP BLANK

U

U

U

U

U

1

1

1

1

Lab Name:	CAS/RC	CH			Contract:	IT LATHAM	<u> </u>		
Lab Code:	10145		ase No.:	R6-33204	SAS No	.: 8	SDG No.:	MRFA	DUP
Matrix: (soil/v	vater)	WATER	B. L		Lat	Sample ID:	930083	1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID:	T9007.	D	_
Level: (low/n	ned)	LOW			Dat	te Received:	8/16/06	<b>)</b>	~
% Moisture: r	not dec.		<del></del>		Dat	te Analyzed:	8/23/06		_
GC Column:	CA-62	4 ID: <u>C</u>	).18 (m	m)	Dilu	ution Factor:	1.0		_
Soil Extract V	olume:		(uL)	·	Soi	l Aliquot Volu	ıme:		_ (uL)
		,		CON	ICENTRAT	ION UNITS:			
CAS NO	).	COM	POUND	(ug/l	or ug/Kg)	UG/L		Q	
106-46	i-7	1.4-1	Dichlorobe	enzene			1	i U	

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Hexachlorobutadiene

1,2-Dibromo-3-chloropropane

95-50-1

96-12-8

120-82-1 87-68-3

87-61-6

1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CAS/RC	CH			Contract:	IT LATH	IAM		P DLAI	<b>N</b>
Lab Code:	10145	C	ase No.:	R6-33204	SAS No	.:	S	DG No.:	MRFA	DUP
Matrix: (soil/w	vater)	WATER			Lat	Sample	ID:	930083	1.0	
Sample wt/vo	ol:	25.0	_ (g/ml)	ML	Lab	File ID:		T9007.D	)	_
Level: (low/m	ned)	LOW			Dat	te Receiv	ed:	8/16/06		_
% Moisture: r	not dec.				Dat	te Analyz	ed:	8/23/06		_
GC Column:	CA-62	4 ID: 0	).18 (m	nm)	Dilu	ution Fact	or:	1.0		_
Soil Extract V	olume:	<del></del>	(uL)		Soi	l Aliquot ∖	√oluı	me:		_ (uL)
				CO	NCENTRAT	ION UNI	TS:			
Number TICs	found:	0		(ug/	L or ug/Kg)	UG/I	L			
CAS NO.		СОМРО	UND NAI	ИE		RT	ES	T. CONC	· ·	Q

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

COOLER BLANK

Lab Name:	CAS/RO	OCH			Contract:	IT LATHAN	<u> </u>	
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:	SDG No.:	MRFA DUP
Matrix: (soil/w	vater)	WATE	R		Lat	Sample ID	930084	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lab	File ID:	T9014.E	)
Level: (low/m	ned)	LOW	<del></del>		Dat	e Received:	8/16/06	· .
% Moisture: n	not dec.		-11		Dat	e Analyzed:	8/23/06	
GC Column:	CA-62	4_ ID:	<u>0.18</u> (m	nm)	Dilu	ition Factor:	1.0	·
Soil Extract V	olume:		(uL)		Soil	Aliquot Vol	ume:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	<del></del>	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		1	Ü
74-83-9	Bromomethane		1	Ü
75-00-3	Chloroethane		1	Ū
75-69-4	Trichlorofluoromethane		1	Ū
75-35-4	1,1-Dichloroethene		1	U
67-64-1	Acetone		5	UJ
75-15-0	Carbon Disulfide		1	U
75-09-2	Methylene Chloride		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-34-3	1,1-Dichloroethane		1	U
156-59-2	cis-1,2-Dichloroethene		1	U
78-93-3	2-Butanone		5	U.T
74-97-5	Bromochloromethane		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbon Tetrachloride		1	U
71-43-2	Benzene		1	U
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dichloropropane		1	U
75-27-4	Bromodichloromethane		1	U
10061-01-5	cis-1,3-Dichloropropene		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
108-88-3	Toluene		1	U
10061-02-6	trans-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
127-18-4	Tetrachloroethene		1	U
591-78-6	2-Hexanone		5	U
124-48-1	Dibromochloromethane		1	U
106-93-4	1,2-Dibromoethane		1	U
108-90-7	Chlorobenzene		1	U
100-41-4	Ethylbenzene		1	U
1330-20-7	(m+p) Xylene		1	U
1330-20-7	o-Xylene		1	Ü
100-42-5	Styrene		1	Ū
79-34-5	1,1,2,2-Tetrachloroethane		1	U
75-25-2	Bromoform		1	Ū
541-73-1	1,3-Dichlorobenzene		1	U

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

COOLER BLANK

Lab Name:	CAS/RC	CH		(	Contract:	: 1	T LATHA	M				
Lab Code:	10145	C	ase No.: R6	-33204	SAS N	lo.:		SDO	G No.:	MR	FAI	<b>4</b> UC
Matrix: (soil/v	water)	WATER			La	ab \$	Sample ID	: 9	30084	1.0		
Sample wt/vo	ol:	25.0	(g/ml) <u>M</u> l	L	Lá	ab I	File ID:	Ţ	9014.E	)		
Level: (low/n	ned)	LOW			D	ate	Received	: 8	/16/06			
% Moisture: r	not dec.				D	ate	Analyzed	: 8	/23/06			
GC Column:	CA-624	ID: 0	.18 (mm)		Di	iluti	on Factor:	<u>1</u> .	.0			
Soil Extract V	olume: _		(uL)		So	oil A	Aliquot Voi	ume	e:			(uL)
				CONC	ENTRA	TIC	N UNITS					
CAS NO		COMF	POUND	(ug/L d	or ug/Kg	)	UG/L				Q	
106.46	7	111	Vichlorobonza							7		$\neg$

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
106-46-7	1,4-Dichlorober	zene		1	U
95-50-1	1,2-Dichlorobenzene			1	U
96-12-8	1,2-Dibromo-3-0	1,2-Dibromo-3-chloropropane			
120-82-1	1,2,4-Trichlorob	enzene		1	Ü
87-68-3	Hexachlorobuta	diene		1	U
87-61 <b>-</b> 6	1,2,3-Trichlorob	enzene		1	- U

1E

#### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CAS/RO	осн			Contract:	IT LAT	HAM	COOL	ER BL	ANK
Lab Code:	10145		Case No.:	R6-33204	SAS No		SD	G No.:	MRFA	DUP
Matrix: (soil/	water)	WATE	₹		Lai	Sampl	e ID:	930084	1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID	): <u> </u>	T9014.E	)	
Level: (low/r	med)	LOW			Da	te Rece	ived: 8	B/16/06		_
% Moisture:	not dec.				Dat	te Analy	zed: 8	3/23/06		
GC Column:	CA-62	4 ID:	0.18 (m	ım)	Dilu	ıtion Fa	ctor: 1	1.0		_
Soil Extract V	/olume:		(uL)		Soi	l Aliquot	Volum	ne:		(uL)
				CON	ICENTRAT	ION UN	IITS:			
Number TICs	found:	0		(ug/L	or ug/Kg)	UG	G/L			
CAS NO.		СОМР	OUND NAN	ΛE		RT	EST	. CONC		,Q

#### 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: CAS/ROCH Contract: IT LATHAM

Lab Code: 10145 Case No.: R6-33204 SAS No.: SDG No.: MRFA DUP

	EPA	SMC1	TOT	]
	SAMPLE NO.	#	OUT	
01	LCS01	105	0	ĺ
02	VBLK01	98	0	ĺ
03	MRFA EFFLUEN	IT 90	0	
04	TRIP BLANK	95	0	
05	MRFA DUP	94	0	
06	MRFA INFLUEN	T 94	0	
07	MRFA INFLUEN	T- 106	0	٠,
08	MRFA INFLUEN	T· 104	0	-
09	COOLER BLANK	95	0	

MS MSD

**QC LIMITS** 

SMC1

4-Bromofluorobenzene

(80-120)

# Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D System Monitoring Compound diluted out

#### **VOLATILE METHOD BLANK SUMMARY**

EPA SAMPLE NO.

VBLK01

Lab Name: CAS/ROCH

Contract: IT LATHAM

Lab Code:

10145

Case No.: R6-33204

SAS No.: SDG No.: MRFA DUP

Lab File ID:

Lab Sample ID: 936828 1.0

T9005.D

Date Analyzed: 8/23/06

Time Analyzed: 16:17

GC Column:

CA-624 ID: 0.18 (mm) Heated Purge: (Y/N)

Instrument ID: GCMS#6

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	LCS01	936829 1.0	T9003.D	15:01
02	MRFA EFFLUENT	930082 1.0	T9006.D	16:49
03	TRIP BLANK	930083 1.0	T9007.D	17:19
04	MRFA DUP	930080 1.0	T9008.D	17:53
05	MRFA INFLUENT	930081 1.0	T9009.D	18:29
06	MRFA INFLUENTMS		T9011.D	19:43
07	MRFA INFLUENTM <b>S</b>	936831 1.0	T9012.D	20:22
08	COOLER BLANK	930084 1.0	T9014.D	21:35

**COMMENTS** 

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

VBLK01

Lab Name:	CAS/RO	DCH			Contract:	IT LATHAM	<u> </u>	
Lab Code:	10145		Case No.:	R6-33204	SAS No	.: 9	SDG No.:	MRFA DUP
Matrix: (soil/w	vater)	WATE	R		Lab	Sample ID:	936828	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lab	File ID:	T9005.D	
Level: (low/m	ned)	LOW			Dat	e Received:		
% Moisture: r	not dec.				Dat	e Analyzed:	8/23/06	
GC Column:	CA-62	4_ ID:	<u>0.18</u> (n	nm)	Dilu	ition Factor:	1.0	
Soil Extract V	olume:		(uL)	1	Soil	Aliquot Volu	ume:	(uL

74-87-3Chloromethane75-01-4Vinyl Chloride74-83-9Bromomethane75-00-3Chloroethane	***************************************		1 1 1	U
74-83-9 Bromomethane	***************************************		1	
	***************************************			
75-00-3 Chloroethane	***************************************			U
	***************************************		1	U
75-69-4 Trichlorofluoromet	3		1	U
75-35-4 1,1-Dichloroethene	-		1	U
67-64-1 Acetone			5	U
75-15-0 'Carbon Disulfide			1	U
75-09-2 Methylene Chloride	e_		1	U
156-60-5 trans-1,2-Dichloroe	ethene		1	U
75-34-3 1,1-Dichloroethane	;		1	U
156-59-2 cis-1,2-Dichloroeth	ene		1	U
78-93-3 2-Butanone			5	U
74-97-5 Bromochlorometha	ne		1	U
67-66-3 Chloroform			1	U
107-06-2 1,2-Dichloroethane	<b>)</b>		1	U
71-55-6 1,1,1-Trichloroetha	ne		_ 1	U
56-23-5 Carbon Tetrachloric	de		1	U
71-43-2 Benzene			1	U
79-01-6 Trichloroethene			1	U
78-87-5 1,2-Dichloropropan	е		1	U
75-27-4 Bromodichlorometh	nane		1	U
10061-01-5 cis-1,3-Dichloropro	pene	_	1	U
108-10-1 4-Methyl-2-Pentano	one	.	5	U
108-88-3 Toluene			1	U
10061-02-6 trans-1,3-Dichlorop	ropene		1	U
79-00-5 1,1,2-Trichloroethai	ne		1	U
127-18-4 Tetrachloroethene			1	U
591-78-6 2-Hexanone			5	U
124-48-1 Dibromochlorometh	ane		1	U
106-93-4 1,2-Dibromoethane			1	U
108-90-7 Chlorobenzene			1	U
100-41-4 Ethylbenzene			1	U
1330-20-7 (m+p) Xylene			1	U
1330-20-7 o-Xylene			1	U
100-42-5 Styrene			1	Ü
79-34-5 1,1,2,2-Tetrachloroe	ethane		1	Ū
75-25-2 Bromoform			1	Ū
541-73-1 1,3-Dichlorobenzene	e	<u> </u>	1	Ū

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK01

Lab Name:	CAS/RO	OCH			Contract:	IT LATHAN	<u> </u>	
Lab Code:	10145		Case No.:	R6-33204	SAS No	o.:	SDG No.:	MRFA DUP
Matrix: (soil/v	vater)	WATE	R		La	b Sample ID:	936828	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	La	b File ID:	T9005.	)
Level: (low/n	ned)	LOW			Da	te Received:	_	
% Moisture: r	not dec.				Da	te Analyzed:	8/23/06	
GC Column:	CA-62	4 ID:	<u>0.18</u> (m	nm)	Dile	ution Factor:	1.0	
Soil Extract V	olume:		(uL)		Soi	il Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
106-46-7	1,4-Dichlorobenzene		1	U
95-50-1	1,2-Dichlorobenzene		1	U
96-12-8	1,2-Dibromo-3-chloropropane		1	U
120-82-1	1,2,4-Trichlorobenzene		1	U U
87-68-3	Hexachlorobutadiene		1	- U
87-61 <b>-6</b>	1,2,3-Trichlorobenzene		1	U U

1E

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	CAS/RO	ЭСН			Contract:	IT LA	THAM	V	BLK0	1
Lab Code:	10145		Case No.:	R6-3320	4 SAS No	o.:	SDO	G No.:	MRFA	A DUP
Matrix: (soil/\	water)	WATE	R		La	b Sam	ple ID: 9	36828	1.0	<del></del>
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lai	b File I	D: T	9005.	)	
Level: (low/n	ned)	LOW			Da	te Rec	eived:			_
% Moisture: r	not dec.				Da	te Ana	lyzed: 8/	/23/06		_
GC Column:	CA-62	4 ID:	<u>0.18</u> (m	nm)	Dilu	ution F	actor: 1.	.0		_
Soil Extract V	olume:		(uL)		Soi	l Alique	ot Volume	ə:		_ _ (uL)
				COI	NCENTRAT	ION U	NITS:			
Number TICs	found:	0		(ug/	L or ug/Kg)	U	G/L		. ,	
CAS NO.		COMP	OUND NAM	ΛE		RT	EST.	CONC		·Q

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CAS/ROCH

Contract: IT LATHAM

Lab Code:

10145

Case No.: R6-33204 SAS No.: SDG No.: MRFA DU?

Matrix Spike - EPA Sample No LCS01

	SPIKE	SAMPLE	MS	MS	QC
÷	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Vinyl Chloride	5.0	0.0	4.1	82	60 - 140
1,2-Dichloroethane	5.0	0.0	4.8	96	60 - 140
Carbon Tetrachloride	5.0	0.0	4.8	96	60 - 140
Benzen <b>e</b>	5.0	. 0.0	4.8	96	60 - 140
Trichloroethene	5.0	0.0	4.9	98	60 - 140
1,2-Dichloropropane	5.0	0.0	4.9	98	60 - 140
cis-1,3-Dichloropropene	5.0	0.0	5.2	104	60 - 140
1,1,2-Trichloroethane	5.0	0.0	5.2	104	60 - 140
Tetrachloroethene	5.0	0.0	4.8	96	60 - 140
1,2-Dibromoethane	5.0	0.0	5.0	100	60 - 140
Bromoform	5.0	0.0	5.1	102	60 - 140
1,4-Dichlorobenzene	5.0	0.0	4.9	98	60 - 140

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

LCS01

Lab Name:	CAS/RO	OCH			Contract:	IT LATHA	м		
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:	SDG No.:	MRFA [	DUP
Matrix: (soil/v	water)	WATE	R		Lat	Sample ID	936829	1.0	
Sample wt/vo	ol: ,	25.0	(g/ml)	ML	Lat	File ID:	T9003.E	)	
Level: (low/n	ned)	LOW	<del></del>		Dat	te Received	l:		
% Moisture: r	not dec.				Dat	e Analyzed	: 8/23/06		
GC Column:	CA-62	4 ID:	<u>0.18</u> (m	nm)	Dilu	ition Factor:	: 1.0		
Soil Extract V	/olume:		(uL)		Soil	l Aliquot Vol	lume:		(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	5	
75-01-4	Vinyl Chloride	4	
74-83-9	Bromomethane	7	
75-00-3	Chloroethane	4	
75-69-4	Trichlorofluoromethane	4	
75-35-4	1,1-Dichloroethene	5	
67-64-1	Acetone	26	
75-15-0	Carbon Disulfide	20	
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Dichloroethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone	26	
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	5	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon Tetrachloride	5	
71-43-2	Benzene	5	
79-01 <b>-</b> 6	Trichloroethene	5	
78-87-5	1,2-Dichloropropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	28	
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	26	
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
1330-20-7	(m+p) Xylene	10	<del></del>
1330-20-7	o-Xylene	5	
100-42-5	Styrene	5	···
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25 <b>-</b> 2	Bromoform	5	
541-73-1	1,3-Dichlorobenzene	5	

### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

LCS01

Lab Name:	CAS/R	OCH			Contract:	IT LATHAN	<u>/</u>	
Lab Code:	10145		Case No.:	R6-33204	SAS No	.:	SDG No.:	MRFA DUP
Matrix: (soil/v	vater)	WATER			Lab	Sample ID	936829	1.0
Sample wt/vo	oi:	25.0	(g/ml)	ML	Lab	File ID:	T9003.I	)
Level: (low/m	ned)	LOW			Dat	e Received:		
% Moisture: r	not dec.		-		Dat	e Analyzed:	8/23/06	
GC Column:	CA-62	4 ID: (	0.18 (m	ım)	Dilu	tion Factor:	1.0	
Soil Extract V	olume:		(uL)		Soil	Aliquot Volu	ume:	(uL

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
106-46-7	1,4-Dichloroben	zene	5	
95-50-1	1,2-Dichloroben	zene	5	
96-12-8	1,2-Dibromo-3-c	chloropropane	5	
120-82-1	1,2,4-Trichlorob		5	
87-68-3	Hexachlorobuta	diene	5	<del>-  </del>
87-61-6	1,2,3-Trichlorob	enze <b>ne</b>	5	

3A
WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

4 Lab Name: CAS/ROCH Contract: IT LATHAM

Matrix Spike - EPA Sample No MRFA INFLUENT

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Vinyl Chloride	5.0	0.0	4.3	86	60 - 140
1,2-Dichloroethane	5.0	0.0	4.9	98	60 - 140
Carbon Tetrachloride	5.0	24	28	80	60 - 140
Benzen <b>e</b>	5.0	0.0	4.9	98	60 - 140
Trichloroethen <b>e</b>	5.0	25	28	60	60 - 140
1,2-Dichloropropane	5.0	0.0	4.9	98	60 - 140
cis-1,3-Dichloropropene	5.0	0.0	4.9	98	60 - 140
1,1,2-Trichloroethane	5.0	0.0	5.1	102	60 - 140
Tetrachloroethene	5.0	0.0	4.9	98	60 - 140
1,2-Dibromoethane	5.0	0.0	4.8	96	60 - 140
Bromoform	5.0	0.0	4.5	90	60 - 140
1,4-Dichlorobenzene	5.0	0.0	4.7	94	60 - 140

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC I	IMITS
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC.
Vinyl Chloride	5.0	4.2	84	2	30	60 - 140
1,2-Dichloroethane	5.0	4.8	96	2	30	60 - 140
Carbon Tetrachloride	5.0	30	120	40 *	30	60 - 140
Benzene	5.0	4.8	96	2	30	60 - 140
Trichloroethene	5.0	28	60	0	30	60 - 140
1,2-Dichloropropane	5.0	4.8	96	2	30	60 - 140
cis-1,3-Dichloropropene	5.0	4.8	96	2	30	60 - 140
1,1,2-Trichloroethane	5.0	5.0	100	2	30	60 - 140
Tetrachloroethene	5.0	4.8	96	2	30	60 - 140
1,2-Dibromoethane	5.0	4.7	94	2	30	60 - 140
Bromoform	5.0	4.6	92	2	30	60 - 140
1,4-Dichlorobenzene	5.0	4.8	96	2	30	60 - 140

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 out of 12 outside limits

Spike Recovery: 0 out of 24 outside limits

COMMENTS:

^{*} Values outside of QC limits

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

<b>EPA</b>	SAMPL	LE NO
------------	-------	-------

MRFA INFLUENT	MS
MINI A INI ECEIVI	בייון

Lab Name:	CAS/RO	DCH			Contract:	IT LATHAM		
Lab Code:	10145		Case No.:	R6-33204	SAS No.	: S	SDG No.: J	MRFA DUP
Matrix: (soil/v	water)	WATER	₹		Lab	Sample ID:	936830 1	.0
Sample wt/vo	ol:	25.0	(g/ml)	ML .	Lab	File ID:	T9011.D	
Level: (low/n	ned)	LOW	<u>.</u>		Date	e Received:	8/16/06	
% Moisture: r	not dec.				Date	e Analyzed:	8/23/06	
GC Column:	CA-62	4 ID:	<u>0.18</u> (m	ım)	Dilut	tion Factor:	1.0	
Soil Extract V	olume:		(uL) ·	•	Soil	Aliquot Volu	ıme:	(uL)

#### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	4	
75-01-4	Vinyl Chloride	4	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	5	
75-35-4	1,1-Dichloroethene	5	
67-64-1	Acetone	5	U
75-15-0	`Carbon Disulfide	1	U
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Dichloroethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone	5	U
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	8	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon Tetrachloride	28	Ε
71-43-2	Benzene	5	
79-01-6	Trichloroethene	28	E
78-87-5	1,2-Dichloropropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
1330-20-7	(m+p) Xylene	10	. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1330-20-7	o-Xylene	5	
100-42-5	Styrene	5	
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25-2	Bromoform	4	
541-73-1	1,3-Dichlorobenzene	5	

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA	SAMP	LE NO
-----	------	-------

Lab Name:	CAS/RC	CH			Contract:	IT LATHA	<u>M</u>		
Lab Code:	10145	Cas	se No.:	R6-33204	SAS No	o.:	SDG No.:	MRFA	DUP
Matrix: (soil/v	vater)	WATER			Lat	Sample ID	936830	1.0	
Sample wt/vo	ol: ,	25.0	(g/ml)	ML	Lat	File ID:	T9011.	)	
Level: (low/n	ned)	LOW			Dat	te Received	i: <u>8/16/06</u>		
% Moisture: r	not dec.				Dat	te Analyzed	: 8/23/06		
GC Column:	CA-624	1 ID: <u>0.1</u>	8_ (m	m)	Dilt	ution Factor	: 1.0		
Soil Extract Volume:			(uL)			l Aliquot Vo	lume:	· 	(uL)
				CON	CENTRAT	ION UNITS	i:		
CAS NO		COMPC	UND	(ug/L	or ug/Kg)	UG/L		Q	
100.10	_	1 1 5				<del></del>			

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

FΡΔ	SAM	DI E	NΩ
ᄄᄼᄶ	SMINI	ᄗᆫ	INC

MRFA	INFLUENT	MSD

Lab Name:	CAS/RO	DCH			Contract:	IT LATHA	и	
Lab Code:	10145	····	Case No.:	R6-33204	SAS No	). <b>:</b>	SDG No.:	MRFA DUP
Matrix: (soil/v	vater)	WATER	2		Lal	o Sample ID	936831	1.0
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lat	File ID:	T9012.D	)
Level: (low/n	ned)	LOW	-		Da	te Received	: <u>8/16/0</u> 6	·
% Moisture: r	not dec.				Dat	te Analyzed	8/23/06	
GC Column:	CA-62	4_ ID:	<u>0.18</u> (m	nm)	Dilu	ution Factor:	1.0	·
Soil Extract V	olume:		(uL)		Soi	l Aliquot Vol	ume:	(al.)

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	4	
75-01-4	Vinyl Chloride	4	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	4	
75-35-4	1,1-Dichloroethene	5	
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Dichloroethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone	5	U
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	8	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon Tetrachloride	30	E
71-43-2	Benzene	5	
79-01-6	Trichloroethene	28	Е
78-8 <b>7-</b> 5	1,2-Dichloropropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
1330-20-7	(m+p) Xylene	10	
1330-20-7	o-Xylene	5	
100-42-5	Styrene	4	
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25-2	Bromoform	5	
541-73-1	1,3-Dichlorobenzene		1

#### **VOLATILE ORGANICS ANALYSIS DATA SHEET**

<b>EPA</b>	SAMPL	E NO
------------	-------	------

5

MRFA	INFLUENT	MSD
		, , _ ,

										-171 1712
Lab Name:	CAS/RC	CH			Contract:	IT LA	MAHT			
Lab Code:	10145	C	ase No.:	R6-33204	SAS No	o.:	s	DG No.:	MRFA	DUP
Matrix: (soil/v	vater)	WATER			La	b Sam	ple ID:	936831	1.0	
Sample wt/vo	ol:	25.0	_ (g/ml)	ML .	La	b File I	D:	T9012.E	)	
Level: (low/n	ned)	LOW			Da	ite Rec	eived:	8/16/06		
% Moisture:	not dec.				Da	ite Ana	ılyzed:	8/23/06		
GC Column:	CA-62	4 ID: <u>0</u>	.18_ (n	nm)	Dil	ution F	actor:	1.0		
Soil Extract V	/olume:	<u></u>	(uL)		So	il Aliqu	ot Volu	me:		(uL)
				CON	ICENTRAT	TION L	JNITS:			
CAS NO	).	COMP	OUND	(ug/l	or ug/Kg)	<u>_</u>	JG/L		Q	
106-46	<del>-</del> 7	1,4-0	ichlorob	enzen <b>e</b>			***	5		
95-50-	1	1,2-0	ichlorob	enzen <b>e</b>				5		
96-12-	8	1,2-0	ibromo-	3-chloropro	pan <b>e</b>			4		
120-82	-1	1,2,4	-Trichlor	obenzene				5		

Hexachlorobutadiene

1,2,3-Trichlorobenzene

87-68-3 87-61**-**6

# 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CAS/ROCH Contract: IT LATHAM Lab Code: 10145 Case No.: R6-33204 SAS No.: SDG No.: MRFA DUP Lab File ID (Standard): T8999.D Date Analyzed: 8/23/06 Instrument ID: GCMS#6 Time Analyzed: 12:45 GC Column: CA-624 ID: 0.18 (mm) Heated Purge: (Y/N)

			` ′					
		IS1		IS2		IS3		
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
	12 HOUR STD	557415	6.73	455276	9.19	215173	11.00	
	UPPER LIMIT	1114830	7.23	910552	9.69	430346	11.50	
	LOWER LIMIT	278708	6.23	227638	8.69	107587	10.50	
	EPA SAMPLE							
	NO.							
01	LCS01	607881	6.73	483368	9.19	226037	11.00	
02	VBLK01	581893	6.73	466558	9.19	201768	10.99	
03	MRFA EFFLUENT	557613	6.73	434333	9.19	189132	10.99	
04	TRIP BLANK	549495	6.72	446680	9.19	194120	11.00	
05	MRFA DUP ,	532647	6.73	425763	9.19	183806	11.00	
06	MRFA INFLUENT	532615	6.73	422257	9.19	190502	11.00	
07	MRFA INFLUENT	- 0.000	6.72	445866	9.19	225817	10.99	
08	MRFA INFLUENT	45D 563994	6.73	456049	9.19	218645	11.00	
09	COOLER BLANK	521082	6.73	413959	9.19	187360	10.99	

IS1 = 1,4-Difluorobenzene IS2 = Chlorobenzene-d5 IS3 = Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

EPA SAMPLE NO.

Lab Name:	cas/roci	1		Contract: IT		eff	luent		
			24067			DG No : e	ffluent		
Lab Code:	10145	Case N	0.: <u>10-34257</u>					-	
Matrix: (soil/	water)	WATER		Lab Sa	ample ID:	946926 1.	0		
Sample wt/ve	ol:	25.0 (g	ml) ML		le ID:				
Level: (low/r	med)	LOW		Date F	Received:	10/18/06	16/17/01	6 AM	11/21/06
% Moisture:					nalyzed:				
			<b>-</b> , ,						
GC Column:	db-624	ID: <u>0.18</u>	(mm)	Dilutio	n Factor.	1.0		•	
Soil Extract \	Volume	(ı	L)	Soil Al	iquot Volu	me:	(	uL)	
				NOCHTOATIO	NI LIMITO				
				NCENTRATIO					
CAS NO	<b>)</b> .	COMPOUN	ID (ug	/L or ug/Kg)	UG/L	·	Q		
74-87-	-3	Chlorome	thane			1	U	]	
75-01-		Vinyl Chlo				1	U		,
74-83-		Bromome				1	U		•
75-00-		Chloroeth				1	U		
75-69-			uoromethane	) ·		1	U		
75-35-		1,1-Diclet				1	U		
67-64-		Acetone				5	<b>パ</b> ラ	<u></u>	``
75-15-		Carbon D	sulfide			1	U		
75-09-			Chloride			. 1	U	· .	
156-60			Dichloroether	ne		1	· U		
75-34-		1,1-Diclet				1	U		•
156-59			chloroethene			1	U		
78-93-		2-Butanor				5	UJ	1	
74-97-			promethane			1	U	1	
67-66-		Chlorofor				1	U	1	
107-06		1,2-Dichlo				1	U		
71-55-			nloroethane			1	U	1	
56-23-			trachloride			0.32	J	1.	
71-43-		Benzene				1	U	BA	
79-01-		Trichloroe				0,25		1 11/15	
78-87-		1,2-Diclpr		······································		1	U	1	
75-27-			nloromethane	<u> </u>		1	U	1	
10061-			chloropropen			1	U	1	
108-10			2-Pentanone			5	Ū	7	•
108-88		Toluene	e-i cilianone			1	Ū	1	
			Dichloroprope	ne		1	Ū	1	
10061-			nloroethane	, inc		1	U		
79-00-		Tetrachlor				1	Ü	-	
127-18						5	Ü	4	
591-78		2-Hexano	nloromethane			1	Ü	<del> </del>	
124-48						1	U	<del>-</del>	
106-93		1,2-Dibror				1	U	-	
108-90		Chloroben			<del></del>	1	U	1	
100-41		Ethylbenz				4	U	-	
13677		(m+p) Xyl	ene				U	-	
95-47-		o-Xylene				1		-	
100-42		Styrene				1	U	<u>ـ</u> ـ	
79-34-			<u>trachioroetha</u>	ne		11	U	-	
75-25-2	2	Bromoforn	<u>n                                      </u>		<u> </u>	1	U	_	

1,3-DicIbenzene

1,2-Diclbenzene

1,2,3-Tcbenzene

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene Hexachlorobutadiene

95-50-1

96-12-8

120-82-1 87-68-3

87-61-6

EPA SAMPLE NO.

1

1

Lab Name:	cas\roch	1		Contract: IT		effluent	
Lab Code:	10145		case No.: <u>r6-3425</u>	7 SAS No.:	SDG	No.: effluent	
Matrix: (soil/v	water)	WATER		Lab San	nple ID: 946	6926 1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>ML</u>	Lab File		615.D	
Level: (low/n	ned)	LOW	· · · · ·	Date Re	ceived: 1 <del>0/</del>	<del>18/06</del> 10[/7]	36 AM 11/21/04
% Moisture: r	not dec.				alyzed: 10/		
GC Column:	db-624	ID: <u>(</u>	0.18 (mm)	Dilution	Factor: 1.0		
Soil Extract V	/olume _		(uL)	Soil Aliq	uot Volume:		(uL)
•			C	ONCENTRATION	UNITS:		
CAS NO	) <b>.</b>	COM	POUND (u	g/L or ug/Kg)	UG/L	Q	
106-46	-7	1,4-	Diclbenzene			1 U	

olc2.1

12

#### 1E

## **VOLATILE ORGANICS ANALYSIS DATA SHEET**

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: _c	cas\roch		Contract: IT	efflu	ent
Lab Code: 1	10145	Case No.: <u>r6-34257</u>	SAS No.:	SDG No.: effl	uent
Matrix: (soil/wa	ater) <u>WATE</u>	R	Lab Sample	ID: 946926 1.0	
Sample wt/vol:	25.0	(g/ml) ML	Lab File ID:	H3615.D	
Level: (low/me	ed) <u>LOW</u>		Date Receive	ed: 1 <del>0/18/06</del> /	5/17/04 and 11/21/04
% Moisture: no	t dec.		Date Analyze		
GC Column:	db-624 ID:	<u>0.18</u> (mm)	Dilution Fact	or: <u>1.0</u>	
Soil Extract Vo	lume	(uL)	Soil Aliquot \	/olume:	(uL)
Number TICs fo	ound: 0		NCENTRATION UNIT L or ug/Kg) UG/L		
CAS NO.	COME	POUND	RT	EST. CONC.	0

EPA SAMPLE NO.

influent

Lab Name:	cas\roch	າ	<u> </u>	Contr	act: IT			<u>j</u>
Lab Code:	10145	C	ase No.: <u>r6-34257</u>	SA	S No.:	SDG No.:	effluent	i
Matrix: (soil/v	water)	WATER		•	Lab Sample ID	: 946927	2.0	•
Sample wt/vo	ol:	25.0	(g/ml) ML		Lab File ID:	H3616.0	)	
Level: (low/n	ned)	LOW	· 		Date Received	: 1 <del>0/18/0</del> 0	3 10/17/d	4 MW 11/21/04
% Moisture:	not dec.				Date Analyzed	10/26/0	3	
GC Column:	db-624	ID: <u>0</u>	.18 (mm)		Dilution Factor	1820	<u>)                                    </u>	
Soil Extract \	/olume		(uL)		Soil Aliquot Vo	lume:	(ul	_)

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	2	U
75-01-4	Vinyl Chloride	2	U
74-83-9	Bromomethane	2	U
75-00-3	Chloroethane	2	· U
75-69-4	Trichlorofluoromethane	. 2	U
75-35-4	1,1-Diclethene	2	U .
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	2 2	U
75-09-2	Methylene Chloride	2	U
156-60-5	trans-1,2-Dichloroethene	2	U
75-34-3	1,1-Diclethane	2	U
156-59-2	cis-1,2-Dichloroethene	2	U
78-93-3	2-Butanone (MEK)	10	U
74-97-5	Bromochloromethane	2	U
67-66-3	Chloroform	4	
107-06-2	1,2-Dichloroethane	2	U
71-55-6	1,1,1-Trichloroethane	2	U
56-23-5	Carbon tetrachloride	38	
71-43-2	Benzene	2	U
79-01-6	Trichloroethene	27	
78-87-5	1,2-Diclpropane	2	U
75-27-4	Bromodichloromethane	2	U
10061-01-5	cis-1,3-Dichloropropene	2	U
108-10-1	4-Methyl-2-Pentanone	10	U
108-88-3	Toluene	2	U
10061-02-6	trans-1,3-Dichloropropene	2 2	U
79-00-5	1,1,2-Trichloroethane		U
127-18-4	Tetrachloroethene	2	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	2	U
106-93-4	1,2-Dibromoethane	2	U
108-90-7	Chlorobenzene	2	U
100-41-4	Ethylbenzene	2	U
136777-61-2	(m+p) Xylene	2	U
95-47-6	o-Xylene	2	U
100-42-5	Styrene	2	U
79-34-5	1,1,2,2-Tetrachloroethane	2	U
75-25-2	Bromoform	2	U
541-73-1	1,3-Diclbenzene	2	U

Hexachlorobutadiene 1,2,3-Tcbenzene

87-68-3 87-61-6

EPA	SAMI	PLE	NO

Lab Name:	cas\roch	t		Contract:	IT .	in	fluent	
Lab Code:	10145	Ca	se No.: <u>r6-342</u>	57 SAS No.:	s	DG No.:	effluent	•
Matrix: (soil/	water)	WATER	_	Lab	Sample ID:	946927 2	2.0	
Sample wt/ve	ol:	25.0	(g/ml) ML	Lab	File ID:	H3616.D		•
Level: (low/r	med)	LOW		Date	Received:	1 <del>0/18/06</del>	10117/0	6 LM 11/21/26
% Moisture:	not dec.		<del>-</del> . •	Date	Analyzed:	10/26/06		
GC Column:	db-624	ID: <u>0.</u>	18 (mm)	Dilut	ion Factor:	10 2.0		
Soil Extract \	/olume _		(uL)	Soil	Aliquot Volu	ıme:		(uL)
	÷		.(	CONCENTRATION	ON UNITS:			•
CAS NO	).	COMP	OUND (	ug/L or ug/Kg)	UG/L	-	Q	
106-46	<u> </u>	1.4-D	iclbenzene	· · · · · · · · · · · · · · · · · · ·		2	U	1
95-50-			iclbenzene	,		2	U	1
96-12-	·		ibromo-3-chlore	opropane		2	U	7
120-82			Trichlorobenze			2	U	

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:/ cas\r	och	Contract: IT
Lab Code: 1014		
Matrix: (soil/water)	WATER	Lab Sample ID: 946927 2.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID: H3616.D
Level: (low/med)	LOW	Date Received: 10/18/06 10/17/66 Und
% Moisture: not de	c	Date Analyzed: 10/26/06
GC Column: db-6	624 ID: 0.18 (mm)	Dilution Factor: 18 1.0
Soil Extract Volume	e (uL)	Soil Aliquot Volume: (uL)
	(ug	NCENTRATION UNITS: /L or ug/Kg) UG/L
Number TICs found	i: <u>0</u>	
CAS NO.	COMPOUND	RT EST. CONC. Q

EPA SAMPLE NO.

dupe a SDG No.: effluent Lab Sample ID: 946928 1.0 H3617.D Date Received: 19/18/96 10/17/06 Jms 11/21/04

LOW

(mm)

(g/ml) ML

Case No.: r6-34257

Date Analyzed: 10/26/06 Dilution Factor: 1.0

Soil Extract Volume (uL)

WATER

ID: 0.18

25.0

cas\roch

10145

Lab Name:

Lab Code:

Matrix: (soil/water)

Sample wt/vol:

Level: (low/med)

% Moisture: not dec.

GC Column: db-624

(uL) Soil Aliquot Volume: ____

#### **CONCENTRATION UNITS:**

Contract: IT

SAS No.:

Lab File ID:

CAS NO.	COMPOUND (ug/L or ug/Kg)	JG/L	Q.	
74-87-3	Chloromethane	1	U	
75-01-4	Vinyl Chloride	1	U	
74-83-9	Bromomethane	1	U	
75-00-3	Chloroethane	1	U	
75-69-4	Trichlorofluoromethane	1	U	
75-35-4	1,1-Diclethene	1	·U	
67-64-1	Acetone	5	UJ	
75-15-0	Carbon Disulfide	1	U	
75-09-2	Methylene Chloride	1	U	
156-60-5	trans-1,2-Dichloroethene	1	U	
75-34-3	1,1-Diclethane	1	U	
156-59-2	cis-1,2-Dichloroethene	1	U	
78-93-3	2-Butanone (MEK)	5	UJ	
74-97-5	Bromochloromethane	1	U	
67-66-3	Chloroform	1	U	
107-06-2	1,2-Dichloroethane	1	U	
71-55-6	1,1,1-Trichloroethane	11	U	
56-23-5	Carbon tetrachloride	0.28	J	\
71-43-2	Benzene	1	U	)
79-01-6	Trichloroethene	0.23	J	/
78-87-5	1,2-Diclpropane	1	U	
75-27-4	Bromodichloromethane	1	U	
10061-01-5	cis-1,3-Dichloropropene	1	U	
108-10-1	4-Methyl-2-Pentanone	5	U	
108-88-3	Toluene	11	U	
10061-02-6	trans-1,3-Dichloropropene	1	U	
79-00-5	1,1,2-Trichloroethane	1	U	
127-18-4	Tetrachloroethene	1	U	
591-78-6	2-Hexanone	5	U	
124-48-1	Dibromochloromethane	. 1	U	
106-93-4	1.2-Dibromoethane	1	U	
108-90-7	Chlorobenzene	1	U	
100-41-4	Ethylbenzene	1	· U	
136777-61-2	(m+p) Xylene	1	U	
95-47-6	o-Xylene	1	U	
100-42-5	Styrene	1	U	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	
75-25-2	Bromoform	1	U	
75-25-2 541-73-1	1,3-DicIbenzene	1	U	

EPA	SAI	M۲	ᄔ	NO.	

Lab Name	e: cas\roc	h .	Contract: IT	dupe a	
Lab Code:	10145	Case No.: r6-34257	SAS No.: S	DG No.: effluent	_
Matrix: (so	oil/water)	WATER	Lab Sample ID:	946928 1.0	
Sample w	t/vol:	25.0 (g/ml) ML	Lab File ID:	H3617.D	
Level: (lo	w/med)	LOW	Date Received:	10/18/06 10 17/00	s my 11/21/04
% Moistur	e: not dec.		Date Analyzed:		
GC Colum	nn: <u>db-62</u> 4	ID: <u>0.18</u> (mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume	(uL)	Soil Aliquot Volu	ıme:	(uL)
		CON	ICENTRATION UNITS:		
CAS	NO.	COMPOUND (ug/l	or ug/Kg) UG/L	Q	
106-	-46-7	1,4-Diclbenzene	·	1 U	]
95-5	50-1	1,2-Diclbenzene		1 U	]
96-1	2-8	1,2-Dibromo-3-chloropro	pane	1 U	
120-	-82-1	1,2,4-Trichlorobenzene		1 U	7
87-6	8-3	Hexachlorobutadiene		1 U	] .
87-6	31-6	1,2,3-Tcbenzene		1 U	

#### 1E

# VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	cas\roch		Contract: IT	dı	лре а	
Lab Code:	10145	Case No.: <u>r6-342</u>	57 SAS No.:	SDG No.:	effluent	•
Matrix: (soil/w	vater) <u>WA</u>	TER	Lab Sample	e ID: 946928 1	.0	
Sample wt/vo	l: <u>25.0</u>	) (g/ml) <u>ML</u>	Lab File ID:	H3617.D	· · · · · ·	
Level: (low/m	ned) <u>LOV</u>	<u>v</u>	Date Recei	ved: 1 <del>0/18/06</del>	10/17/06	4mil 11/21/04
% Moisture: n	ot dec.		Date Analy	zed: 10/26/06		
GC Column:	db-624	D: <u>0.18</u> (mm)	Dilution Fac	otor: 1.0		
Soil Extract V	olume	(uL)	Soil Aliquot	Volume:	(uL)	
Number TICs	found:	_	ONCENTRATION UN			
CAS NO.	COI	MPOUND	RT	EST. CONC.	Q	

### CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

SR#		
	٠	
CAR Comon		

SCOC-1102-08

Services MC.  An Employee - Owned Company One Musta	•	IY 14609-0859 • (585) 2					•						OF_	. SAL		CAS	S Conta	act	
Project Name GE - MR FA		-0200000	· · · · · ·				<del>!! **</del>				•	e Meth	od Nu	ımber	and C	ontain	er Pre	eservative)	
Project Manager	Report CC S, Meier/	/		PRE	SERVATIV	Έ							至	F	²	l			
Company/Address	N S. Meier	S. Harry		-		<del></del>	<del>) )</del>	/	<b> </b>	<del>}}</del>			T	12	T T	<b>)</b>	<u> </u>	Preservative Key	
Shaw Evi						/ /	/ /		_/				· /	- /	- /	_/	_/	/ / 0. NONE	
13 British	American Blu	v1.		CONTAINERS	/	_/					¥ .	<u>₹</u> / ,	Ø.					2. HNO ₃ 3. H ₂ SO ₄ 4. NãOH	
Lortham 1	1/ 12/10			ON	GCANS VOA'S	101	<u>i</u>	/ 8					71	/	/	/	/	/ 5. Zn. Acetate 6. MeOH	
Phone # 518-783-1996	ITMA#	13-8397		ő	1/0	4 48		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ 0 8/	医副	8 1	أنمر	X4)	/ /	′ /	/ /	/ /	7. NaHSO ₄ 8. Other	
Sampler's Signature	Sampler's Printed Nan	ne		NUMBER OF	1/20	188	\$ 10 5		000			Ν'	¥.					/-	
	FOR OFFICE USE ONLY	M. Plana and	T	Į₹	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$2/3		ig (8)	8/2		<u> </u>	$J/\zeta$	<b>\</b> \						
CLIENT SAMPLE ID	LAB ID	DATE TIME	MATRIX		189						7 0			1_	_	_	$L_{-}$	REMARKS/ ALTERNATE DESCRIPTION	
Effluent		10-1646 09:20	W	3				<u> </u>			X				·				
Influent		191.25	W	3							χ								
INF MS		0927	W	3							X					·			
INF MSD		0929	W	3					<u> </u>		X								
DUPE A			W	3							X						<u> </u>		
M-14D		1245	W	3	<u> </u>						X								
M-13D		1340	س	2		<u>.</u>						X	X						
M-27D		1435	W	5							X	X	X			<u>.</u>			
SW-B		1505	V	5					<u> </u>		×	X	x						
SW-A		1545	W	3							X							·	
SPECIAL INSTRUCTIONS/COMMENTS Metals	·	•		3			ROUND I SH (SURC		,			_	Its Only	EQUIRE	MENT	S		INVOICE INFORMATION	
/ rip Bla	NK - OLC-03	<b>U</b> /			·	24 hr STA	4	8 hŗ _	5	day				C Summa		d)	PO#		
NIP-B add	ed to COC	as per	na	rc	RE	,	FAX DAT	E .						C and C	alibration	· 1	BILL	.10:	
Trip Bla  DUP-B add  Flanaga  See QAPP	n sms 1	0/18/06						-				Summa		ion Repo	rt with F	law Data			
See QAPP	s for CrdCr	-16			RE(	QUESTED	REPORT	DATE		•	<b> </b>	V. Spek	calized F	Forms / C	Custom F	Report			
SAMPLE RECEIPT: CONDITION/COC	DLER TEMP:	CUS	STODY SEA	IS: Y	L						1	Edata		_Yes	1	io	SUB	MISSIÓN #:	
RELINQUISHED BY	RECEIVED BY		INQUISHED	_			RECEI	VED BY	Υ .			F	RELINO	UISHED	BY			RECEIVED BY	
Signature 600 a	Signature	Signature	· · · · · · · · · · · · · · · · · · ·		Sign	nature					Signat	ure					Signa	ature	
Printed Name Paulici	Printed Name Bache	Printed Name			Prin	ited Name	,	4.			Printed	i Name					Printed Name		
Firm Shaw	Firm CASt	Firm			Firm						Firm						Firm		
Date/Time CDW-16-06 1730	Date/Time 17/06 095	Date/Time			Date	e/Time					Date/T	ime					Date/	Time	

### APPENDIX B

# LABORATORY DATA, GROUNDWATER SAMPLES AND SURFACE WATER SAMPLES

OCTOBER 16, and 17, 2006



November 21, 2006

Mr. Brian Neumann **Shaw Environmental** 13 British American Blvd. Latham, NY 12110

Re: GE MRFA Project #810066-02000000

Submission # R2634257

#### Dear Mr. Neumann:

Enclosed is the analytical data report for the above referenced facility. A total of ftwenty five samples were received by our laboratory on October 17-18, 2006.

Any problems encountered with this project are addressed in a case narrative section which is presented later in this report.

This report consists of two (2) packages: the sample data package and the sample data summary package. The data package and summary package have been mailed to Judy Harry and the summary package only has been mailed to your attention and to Steve Meier. All data presented in this package has been reviewed prior to report submission. If you should have any questions or concerns, please contact me at (585) 288-5380.

Thank you for your continued use of our services.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Janice M. Jaeger

**Project Chemist** 

enc.

cc: Ms. Judy Harry **Data Validation Services** Cobble Creek Road North Creek, NY 12853

cc: Mr. Steve Meier **GE Corporate Environmental Programs** 319 Great Oaks Blvd. Albany, NY 12203



1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

#### THIS IS AN ANALYTICAL TEST REPORT FOR:

Client

: Shaw Environmental

Project Reference: GE-MRFA PROJECT #810066-02000000

Lab Submission # : R2634257

Project Manager : Janice Jaeger

Reported

: 11/17/06

Report Contains a total of 127 pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Dinechor to comply with NELAC standards prior to report submittal.

#### CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #: N	MRFA DUP	BATCH C	OMPLETE:yes		DATE REVIS						
SUBMISSION R	R2633204	DISKETT	E REQUESTED: Y_X N	DATE DUE: 9/13/06							
CLIENT: S		DATE: 08			<b>PROTOCOL</b>						
CLIENT REP: Ja	lanice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING N	o.:					
PROJECT: G	SE MRFA PROJECT #810066	CHAIN O	F CUSTODY: PRESENT/ABSENT	Γ:							
CAS JOB # IC	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS			
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION			
930080 N	MRFA DUP	WATER	OLC2.1-VOA	8/15/2006	8/16/2006						
9300081QC N	MRFA INFLUENT	WATER	OLC2.1-VOA	8/15/2006	8/16/2006						
930082 N	MRFA EFFLUENT	WATER	OLC2.1-VOA	8/15/2006	8/16/2006						
930083 T	TRIP BLANK	WATER	OLC2.1-VOA	8/15/2006	8/16/2006						
930084 C	COOLER BLANK	WATER	OLC2.1-VOA	8/15/2006	8/16/2006						
								,			
					· · · · · · · · · · · · · · · · · · ·						

SDG #:

BATCHIN1

SUBMISSION R2633204

MRFA DUP

BATCH COMPLETE: __yes___ DISKETTE REQUESTED: Y_X__ N___

DATE REVISED: DATE DUE: 9/13/06

8/16/2006

#### **CASE NARRATIVE**

COMPANY: Shaw Environmental GE MRFA Project #810066-02000000 SUBMISSION #: R2634257

Shaw samples were sampled on 10/16-17/06 and received at CAS on 10/17-18/06 in good condition.

#### **INORGANICS**

Four water samples were analyzed for Total and Hexavalent Chromium. Please see attached data pages for method numbers.

Site specific QC was not requested for these samples. All Blank spike recoveries were within limits.

No other analytical or QC problems were encountered.

#### **VOLATILE ORGANICS**

Twenty three water samples and one cooler blank were analyzed for OLC2.1 Volatiles by CLP methodology.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All Tuning criteria for BFB were met.

All surrogate standard recoveries were within QC limits.

Site specific QC was performed on M-11D and Influent as requested. All MS/MSD and Reference spike recoveries were within limits. All RPD's were within limits.

Various compounds for DUP-C have been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.







#### **ORGANIC QUALIFIERS**

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL. This flag is also used for DoD instead of "P" as indicated below.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P" ("J" for DoD).
- Q for DoD only indicates a pesticide/Aroclor target is not confirmed. This flag is used when there is ≥ 100% difference for the detected concentrations between the two GC columns.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- * This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

#### CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292







#### **INORGANIC QUALIFIERS**

C (Concentration) qualifier -

- B if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but was greater than or equal to the Instrument Detection Limit (IDL). This qualifier may also be used to indicate that there was contamination above the reporting limit in the associated blank. See Narrative for details.
- U if the analyte was analyzed for, but not detected

Q qualifier - Specified entries and their meanings are as follows:

- D Spike was diluted out
- E The reported value is estimated because the serial dilution did not meet criteria.
- J Estimated Value
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- W Post-digestion spike for Furnace AA Analysis is out of control limits (85-115), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis not within control limits.
- +- Correlation coefficient for the MSA is less than 0.995.

#### M (Method) qualifier:

- "P" for ICP
- "A" for Flame AA
- "F" for Furnace AA
- "PM" for ICP when Microwave Digestion is used
- "AM" for Flame AA when Microwave Digestion is used
- "FM" for Furnace M when Microwave Digestion is used
- "CV" for Manual Cold Vapor AA
- "AV" for Automated Cold Vapor AA
- "AF" for Automated Cold Vapor Atomic Fluorescence Spectrometry
- "CA" for Midi-Distillation Spectrophotometric
- "AS" for Semi-Automated Spectrophotometric
- "C" for Manual Spectrophotometric
- "T" for Titrimetric
- " " where no data has been entered
- "NR" if the analyte is not required to be analyzed.

#### CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Se

Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID # 68-786 Rhode Island ID # 158 West Virginia ID # 292



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

	SR#		
		٠	-
_	CAS Contact		

An Employee - Owned Company www.caslab.com One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAG

QUEST FURIN	O11 #
GE OF	CAS Contact

Project Name GE - MRFA Project Manager Brian New manifers Company/Address Shaw Envir	Project Number	-02000000		ANALYSIS REQUESTED (Include Method Number and Container										er Pre	er Preservative)						
Project Manager	Report CC	Y 1/2		PRES	SERVATIVI	E		T					FC	H	2				T		
Company/Address	susambal	J. Harry				<del>                                     </del>	<del>/ /</del>	- /	<del>, /</del>	$\rightarrow$	$\rightarrow$		1		4		/	$\vdash$	$\rightarrow$	Preservat 0. NONE	ve Key
13 P. 1.	A CH			SH3	/	/ /														1. HCL 2. HNO ₂	
	V	vA.	· · · · · · · · · · · · · · · · · · ·	CONTAINERS	/	a/	/	/ ,	۵ / ۵	/ ;		<u>\$</u> / :	\$							3. H ₂ SO 4. NaOH	
Lortham N	12110						]  }  }		) D	Spel	S be			/ ,	/ ,	/	/	/ /	/	<ol> <li>Zn. Ac</li> <li>MeOH</li> <li>NaHS</li> </ol>	l
518-783-1996		3-8397		R OF	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	188	0,00	ပ္ပဆ္တိ	8	Z E		6//	$\langle \uparrow \rangle$	/				/		8. Other	•
Sampler's Signature	Sampler's Printed Nam			NUMBER OF	8,00	30				18 8	\8\ \.		Υ,	\ _o \							<del>.</del>
CLIENT SAMPLE ID	FOR OFFICE USE ONLY	SAMPLING DATE TIME	MATRIX	Z	GCMS VOA'S GC, GC, GC, GC, GC, GC, GC, GC, GC, GC,				NA PARTY			$\mathcal{I}/\mathcal{C}$	$\mathcal{H}$	$\vec{\lambda}$	/	/		/ .	R	EMARKS/ TE DESCR	1071011
Effluent		10-1646 09:20	WAIRIA	3			10	70	/ ~ 0		X		-				-	<del>/ ^</del>	LIERNA	IE DESCH	IPTION
Influent		191.25	W	3		1					χ										
FUF MS		0927	W	3							X										
INT MSD		0929	W	3							X										
DUPE A			W	3							X										
M-14D		1245	W	_3							Χ										
M-13D		1340	٧١	2								X	X								
M-27D		1435	W	5							X	X	X								
SW-B		1505	V	5							X	یلا	X								
SW-A		1545	W	3							Χ										
SPECIAL INSTRUCTIONS/COMMENTS  Metals			W	3		TURNAF						•	•	QUIRE	MENT	8		INV	OICE IN	NFORMATI	ON
•	NK - OLC-02						H (SURCI 44			-		I. Resu	-	Summa	rice		PO#				
117 019		/				X STAN		-		,		-		/MSD as		1)	10#				
DUP-B godde Flangge See QAPP	ed to COC	as per	No	<u>_</u>	REC	QUESTED	ED FAX DATE III. Results + QC and Calibration Summaries						BILL	то:							
Flanaga	n and i	40/8/18			DEC	UESTED	DEDODT	- DATE				IV. Data	Validati	on Repo	rt with A	aw Data	L				
See QAPP	of for CrdCr	+6				AOLOI LD						V. Speid	alized F	forms / C	Sustom P	leport	L				
SAMPLE RECEIPT: CONDITION/COO			TODY SEA		N	<del></del>						Edata		_Yes	N	lo	SUB	MISSION	l #:		
RELINQUISHED BY	RECEIVED BY	REI	INQUISHED	BY			RECE	VED BY	,			F	ELINQ	UISHED	BY				RECE	IVED BY	
Signature All Tolland	signature achol on	Signature			Sign	ature		<del></del>			Signat	ure				:_	Signa	ature			
Printed Name Page 1361	Printed Name Boche	Printed Name	·····		Prin	ted Name					Printed	Name			•		Printed Name				
Shaw	-Firm CA5	Firm			Firm						Firm						Firm				
Date/Time 1730	Date/117106 095	Date/Time			Date/Time C				Date/Time						Date/Time						

# Cooler Receipt And Preservation Check Form

Project/Client_Shaw			Submission Numbe	r R2-3425	<u>57</u> .	·
Cooler received on 10 17 Obby	A)	_COU	RIER: CAS (U	PS FEDEX V	ELOCITY	CLIENT
<ol> <li>Were custody seals on outs.</li> <li>Were custody papers prope.</li> <li>Did all bottles arrive in good.</li> <li>Did any VOA vials have signer.</li> <li>Were cor Ice packs pres.</li> <li>Where did the bottles origin.</li> <li>Temperature of cooler(s) up</li> </ol>	rly filled of condition of condition of the condition of	out (in on (unl air bub	broken)?	YES	NO NO NO NO CLIENT	A
Is the temperature within 0°	° - 6° C?:	(	Yes Yes	Yes	Yes Y	es
If No, Explain Below			No No	No	No N	<b>l</b> o
Date/Time Temperatures T	aken:	~	10/17/06/0	0 1020		
Thermometer ID: 161	or (TRG	uly)	Reading From:	Temp Blank or	Sample	Bottle
If out of Temperature, Client Apper Secondary Review:	olete (i.e. sys agree wed for the	7 0 analys with cutests i	by:by:is, preservation, etc.stody papers?	YES	NO NO NO Bags Inflated	i N/A
	YES	NO	Sample I.D.	Reagent	Vol. Added	Final pH
pH Reagent						
≥12 NaOH		·	·			
≤2 HNO ₃	V.					
≤2 H ₂ SO ₄						
Residual Chlorine (+/-) for TCN & Pheno		<u> </u>				
YES = All samples OK NO =	Samples w	ere pres	erved at lab as listed	PC OK to adjust	pH	
VOC Vial pH Verific (Tested after Analy Following Sampl Exhibited pH > 1	sis) es 2	<u> </u>	Other Comm	ents:		



# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

	_			1
PAGE	1	ΩF	フ	1
		O.		10

SR#		
CAS Contact		

www.casiab.com																				
Project Name GE MRFA	Project Number	10066 1eier /Jud		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																
Project Manager Brian Neuman	Report CC	11 1	11 1	PRES	SERVATIVE							,							•	
Company/Address	Jeeve 1	reier Zoua	y marry	<del>1</del>	<u></u>	<del>)                                    </del>		$\rightarrow$		$\longrightarrow$	$\longrightarrow$	<del>-                                    </del>		L		<b>}</b>	<del> </del>	<del>                                     </del>	<b></b>	. 14
Shaw Environ	mental Inc	<		1	/	/ /	//	/ /				12/2	• /			/	′ /	/ {	Preservativ D. NONE I. HCL	e Key
13 British Am	nerican Blyd			NUMBER OF CONTAINERS	/		$\mathcal{I}/\mathcal{I}$		/ ;		<u> </u>								1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH	
Latham, N	y lano			CONT			PESTICIDES POR 1			LVE	? } }	/	/	/	/			/ :	o. Zn.Ace 6. MeOH	etate
Phone # 518,- 783 - 1996 Sampler's Signature	6 FAX# 518-7	783 - 83 9°	7	IR OF	74. 22.	183	05/80 05/80 05/80		<u> </u>		1)		-/	′ /	/ /	/	/ /	/	7. NaHSO 8. Other_	•
Sampler's Signature	Sampler's Printed Nam	9/151 /M.F		UMB	100	30,00		10/57	15, 15, 15, 15, 15, 15, 15, 15, 15, 15,		u/									
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLING DATE TIME		7 I	/ફુંંઢુંંંંફુંં					$\sqrt{\hat{\mathbf{c}}}$	5/	/	/					R	EMARKS/ FE DESCRIP	
DG-C - 45		10/17/00 0750		3	7 00 0	000	7-0/-	0/ = 8	78	$\frac{1}{X}$			_	-	-	$\leftarrow$	<del>/                                    </del>	LTERNA	TE DESCRIF	MOIT
DGC - 35	947675	0 83	1	171				-		Ŷ					<u> </u>		+			·
M-29D	947676	1000		+						Ý				<del>                                     </del>		$\vdash$	+			
	942627	-			-	-		<del>                                     </del>		X					1		†			
DUP-C M-240	947678	1025	-		•					X					<u> </u>		1			
M-UD	947679	1040								χ						ļ —	1			
m-110ms	942680	1041							,	V							1	***************************************		
m-110msD	947681	104	L							χ										
M-335	947682	1111								Χ										
m-33I	947683	1130		M				i		x	·									
SPECIAL INSTRUCTIONS/COMMENTS Metals		ū	į.	!"		RUSH	OUND REQ (SURCHARG	ES APPLY	)		REPC I. Resul	RT RE	QUIRE	MENT	S		IN	VOICE IN	IFORMATIO	N
						24 hr < STAN	48 hr	5	day		II. Resu (LCS, D				ď)	PO	#			
	•				1	NESTED F					III. Rest			•	•	BIL	ĹŤO:			
										١,	Summa /					-				<del></del>
					REQ	UESTED F	EPORT DATE	•			1V. Data					<b>-</b>		<u> </u>	<del></del>	н.
See QAPP										_	V. Speic				•	SUI	BMISSÍO	N#:	•	<b></b>
SAMPLE RECEIPT: CONDITION/COO	DLER TEMP:	С	USTODY SEA	LS: Y	N .										NO		/	126	3425	<u>`</u>
RELINQUISHED BY	RECEIVED BY	F	RELINQUISHED	BY			RECEIVED	BY			R	ELINOL	JISHED	BY				RECE	IVED BY	
Signature 2011	Signature Roch of Co	Signature			Signa	ature				Signate	ITO					Sigr	nature			
	Printed Name Buchell	Printed Name	· · · · · · ·		Printe	ed Name		· · · · · · · · · · · · · · · · · · ·		Printed	Name					Prin	ted Name	,		
Firm Shaw	Firm CAS,	Firm			Firm					Firm						Firm				
Date/Time 1600 10-17-06	Date/Time 18 06 100	5 Date/Time			Date/	/Time				Date/Ti	me					Date	e/Time			
Distribution: White - Return to Originator; Yellow	- Lab Copy; Pink - Retained by Clie	ent							•										SCO	C-1102-08



Distribution: White - Return to Originator; Yellow - Lab Copy, Pink | Retained by Client

	SR#	
2_	CAS Contact	

Columbia Analytical Services No.

An Employee - Owned Company

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475

PAGE 2 OF 2

www.caslab.com																								
Project Name	Project Number							ANAI	LYSIS	REQ	UEST	ED (Ir	nclude	Meth	od Nu	mber	and C	ontain	er Pre	servat	ive)			
Project Manager	Report CC				PRE	SERVATI	VE								ı							•		
Company/Address	1/1/5	<b>-</b>			NUMBER OF CONTAINERS		/ /	/	/	/	/		\$ 2	<u> </u>	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							Preserv 0. NO 1. HCl 2. HN 3. H ₂ S 4. NaC 5. Zn.	vative K NE L O ₃ SO ₄	беу
		<i></i>			CONTA	/	707	CLP	2/	Olp	/ db/	Pel				/ -						5. Zn. 6. Me 7. Nal	Acetate OH	е
Phone #	FAX#				H OF	/ 4	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		8) 8) 8)	8/	8/2	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SS     18     18   18   18   18   18   18	\. \.	/	′ /	/ /	/ /	/ /	/ /	/	<ol> <li>7. Nal</li> <li>8. Oth</li> </ol>		
Sampler's Signature	Sampler's Printed Nam	е			NOMBE	80		0.70			1.8.7	LS Smi		/ری										-
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMF DATE	PLING TIME	MATRIX	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	GCMS DEZA DCLP		7. J.		META	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	6		/					/ ^	LTERN	REMARK ATE DES	S/ CRIPTIC	ON
SWG	947614	10/17/00	1145	GW	3								X											
SW·存厂	947685	7	1215	7	1								X											
SW-E	947686		1300										X											
M-25D	947687		1345										χ											
40	947688		1405	}									X											
5WD	947689	4	1440	J	T																			
Trip Blank	947610																				····			
																						·		
SPECIAL INSTRUCTIONS/COMMENTS Metals				<del> </del>	·	_			IND RE						ORT RE	QUIRI	EMENT	S		IN	VOICE	INFORM	ATION	
						-  -			48 1	hr	5 c	lay			ults + Q(		aries s require	.an	PO	•				
			÷			]-		TANDAI						•			alibration		BILI	TO:		·······		
							REQUEST	ED FAX	DATE					Summa		o and o	alibiatio	•	-					
						-	REQUEST	ED REP	ORT D	ATE			1	W. Data	a Validat	ion Rep	ort with F	Raw Dat	a					
See QAPP						-							 	•			Custom I	·	SUE	MISSIO	N #:	221	72.4.	
SAMPLE RECEIPT: CONDITION/COC	OLER TEMP:			TODY SEA		N											'	WO .				226		52
RELINQUISHED BY	RECEIVED BY		REL	INQUISHED	BY			RE	ECEIVE	D BY				F	RELINQ	UISHE	D BY				HEC	EIVED B	Υ	
Signature My My	Machel Cone	∧ Sig	gnature			s	Signature					W-1	Signa	ture					Sign	ature				
Printed Name M. Pan 1:51	Printer Name	es Pi	nted Name			F	rinted Na	ne					Printe	d Name					Prin	ted Name	9			
	Firm CAS	Fire	m		<del></del>	F	irm						Firm						Firm					
	Date/Time OIS OK IC	)OS Da	te/Time				Date/Time						Date/	lime					Date	/Time		**		
																							SCOC-	1102-08

# Cooler Receipt And Preservation Check Form

Project/Client	haw		k	Submission Numbe	er_ R263	3425.7	
Cooler received on_	10/18/06 by:	70	_cou	RIER: CAS (U	PS FEDEX	VELOCITY	CLIENT
<ol> <li>Were custod</li> <li>Did all bottl</li> <li>Did any VO</li> <li>Were Ice or</li> <li>Where did t</li> </ol>	ly seals on outside ly papers properly es arrive in good of A vials have signi Ice packs present he bottles originat e of cooler(s) upon	filled of condition of the condition of	out (in on (unl air bub	oroken)?	YES YES YES YES CAS/RO	NO NO NO NO NO CLIENT	<b>A</b>
Is the tempe	rature within 0°-	6° C?:	(	Yes Yes	Yes	Yes Y	es
If No, Expl	ain Below			No No	No	No N	lo .
Date/Time	remperatures Tak	en:		10/18/00 @	3 1045		<del>\</del>
Thermomet	er ID: 161 or	(IR G	u)	Reading From:	Гетр Blank	or (Sample	Bottle
<ul><li>2. Did all bott</li><li>3. Were correct</li></ul>	ew:	te (i.e. agree w	analysith cutests i	by: is, preservation, etc stody papers?	YES YES	NO NO NO B Bags Inflated	I NA
		YES	NO	Sample I.D.	Reagent	Vol. Added	Final pH
рН	Reagent	YES	NO	Sample I.D.	Reagent	Vol. Added	Final pH
pH ≥12	Reagent NaOH	YES	NO .	Sample I.D.	Reagent	Vol. Added	Final pH
1		YES	NO	Sample I.D.	Reagent	Vol. Added	Final pH
≥12	NaOH	YES	NO	Sample I.D.	Reagent	Vol. Added	Final pH
≥12 ≤2	NaOH HNO ₃ H ₂ SO ₄ for TCN & Phenol						Final pH
≥12 ≤2 ≤2	NaOH HNO ₃ H ₂ SO ₄ for TCN & Phenol			Sample I.D.	Reagent PC OK to adju		Final pH
≥12  ≤2  ≤2  Residual Chlorine (+/-)  YES = All samples OK	NaOH HNO ₃ H ₂ SO ₄ for TCN & Phenol	mples we			PC OK to adju		Final pH

EPA SAMPLE NO.

				efflu	uent		
Lab Name: cas\ro		Contract: IT				j	
Lab Code: 10145	Case No.: r6-34257	SAS No.:	SD	G No.: ef	fluent		
Matrix: (soil/water)		Lab Samp					
	25.0 (g/ml) ML	_ Lab File II	D: <u>J</u>	-13615.D			
Level: (low/med)		- Date Rece	eived: 🖆	10/18/06	16/17/06	IM	11/21/06
% Moisture: not dec	<u> </u>	Date Anal					
GC Column: db-6	24 ID: <u>0.18</u> (mm)	Dilution F	actor: _	1.0			
	; (uL)	Soil Alique	ot Volur	ne:	(u	L)	
		NOTATION!	NITO:				
		NCENTRATION U			Q		
CAS NO.	COMPOUND (ug/	L or ug/Kg) <u>O</u>	G/L		<u>u</u>		
74-87-3	Chloromethane			1	U		
75-01-4	Vinyl Chloride			1	U		
74-83-9	Bromomethane				U		
75-00-3	Chloroethane			1	U		
75-69-4	Trichlorofluoromethane	·		1	U		
75-35-4	1,1-Diclethene			11	U		
67-64-1	Acetone			5	L U		
75-15-0	Carbon Disulfide			1	U		
75-09-2	Methylene Chloride			1	U		
	trans-1,2-Dichloroethen	ie .		1	U		
156-60-5	1,1-Diclethane			1	U		
75-34-3				1	U	_	
156-59-2	cis-1,2-Dichloroethene			5	ŪŢ	-	
78-93-3	2-Butanone (MEK)			1	U		
74-97-5	Bromochloromethane			1	U		
67-66-3	Chloroform			1	U		
107-06-2	1,2-Dichloroethane			1	U		
71-55-6	1,1,1-Trichloroethane						
56-23-5	Carbon tetrachloride			0.32	J	SA	
71-43-2	Benzene			1		Cilis	
79-01-6	Trichloroethene			0,25		112	
78-87-5	1,2-Diclpropane			1	U		
75-27-4	Bromodichloromethane			1	U		
10061-01-5	cis-1,3-Dichloropropene	e		11	U		
108-10-1	4-Methyl-2-Pentanone			5	U		
108-88-3	Toluene			1	U ·		
10061-02-6	trans-1,3-Dichloroprope	ene		1	U		
79-00-5	1,1,2-Trichloroethane			1	U		
	Tetrachloroethene			1	U		
127-18-4	2-Hexanone			5	U		
591-78-6	Dibromochloromethane			1	U		
124-48-1	1.2-Dibromoethane			1	U		
106-93-4				1	Ū		
108-90-7	Chlorobenzene				Ū		
100-41-4	Ethylbenzene			- 1	U		
136777-61-2				1 1	U		
95-47-6	o-Xylene						
100-42-5	Styrene			1	<u> </u>		
79-34-5	1,1,2,2-Tetrachloroetha	ne		1	<u> </u>		
75-25-2	Bromoform			1	U		
541-73-1	1,3-Diclbenzene			1	U		
J-71-7-J-1							

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3 87-61-6 EPA SAMPLE NO.

effluent

Lab Name:	cas\roch	1			Contract:	Τ				
Lab Code:	10145	Ca	se No.: <u>r</u> 6-	34257	SAS No.:	s	DG No.:	effluent	_	
Matrix: (soil/	water)	WATER	_		Lab	Sample ID:	946926	1.0		
Sample wt/v	ol:	25.0	(g/ml) <u>M</u> l	L		File ID:	H3615.			,
Level: (low/i	med)	LOW			Date	Received:	1 <del>0/18/0</del>	6 10/17/160	o the	11/21/04
% Moisture:	not dec.					Analyzed:				·
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		Dilut	ion Factor:	1.0			
Soil Extract \	Volume		_ (uL)		Soil	Aliquot Vol	ume:	(	uL)	
				COI	NCENTRATION	ON UNITS:				
CAS NO	O.	COMP	OUND	(ug/	L or ug/Kg)	UG/L		Q		
106-46	6-7	1,4-D	iclbenzene				1	U		
95-50-	-1	1,2-D	iclbenzene				1	U		
96-12-		1,2-D	ibromo-3-ch	loropr	opane		1	U	_	
120-83			Trichlorobe				1	U	1	

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	cas\roch			Contract: IT	efflu	ent	
Lab Code:	10145	Case No.:	r6-34257	SAS No.:	SDG No.: eff	luent	
Matrix: (soil/v	vater) <u>V</u>	/ATER		Lab Sam	ole ID: <u>946926 1.0</u>		
Sample wt/vo	ol: <u>25</u>	5.0 (g/ml)	ML	Lab File I		<del></del> .	
Level: (low/n	ned) <u>L</u> C	OW		Date Rec	eived: <u>1<del>0/18/06</del> </u>	0/17/04	and 11/21/04
% Moisture: r	not dec.				lyzed: 10/26/06		
GC Column:	db-624	ID: <u>0.18</u> (m	m)	Dilution F	actor: 1.0	<del></del>	
Soil Extract V	/olume	(uL)		Soil Aliqu	ot Volume:	(uL	)
Number TICs	found:	0		ICENTRATION U . or ug/Kg) <u>U</u>	NITS: G/L		
CAS NO.	С	OMPOUND		RT	EST. CONC.	Q	

EPA SAMPLE NO.

influent

Lab Name:	cas\roch	<u> </u>		Contract: IT		
Lab Code:	10145	Ca	se No.: <u>r6-34257</u>	SAS No.:	SDG No.: effluent	
Matrix: (soil/v	vater)	WATER	<u>-</u>	Lab Sample I	ID: 946927 2.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab File ID:	H3616.D	
Level: (low/n	ned)	LOW	-	Date Receive	ed: 1 <del>0/18/06</del> 10[17/06 4/10/	11/21/04
% Moisture: r	not dec.			Date Analyze	ed: 10/26/06	
GC Column:	db-624	ID: <u>0.</u>	18 (mm)	Dilution Factor	or: 1820	
Soil Extract V	/olume _		_ (uL)	Soil Aliquot V	/olume: (uL)	

#### **CONCENTRATION UNITS:**

	CONC	ENTRATION UNITS:		
CAS NO.	COMPOUND (ug/L o	or ug/Kg) <u>UG/L</u>	<u>.</u>	Q
74-87-3	Chloromethane		2	U
75-01-4	Vinyl Chloride		2	U
74-83-9	Bromomethane		2	U
75-00-3	Chloroethane		2	U
75-69-4	Trichlorofluoromethane		2	U
75-35-4	1,1-Diclethene		2	U
67-64-1	Acetone		10	U T
75-15-0	Carbon Disulfide		2	U
75-09-2	Methylene Chloride		2	U
156-60-5	trans-1,2-Dichloroethene		2	U
75-34-3	1,1-Diclethane		2	U
156-59-2	cis-1,2-Dichloroethene		2	U
78-93-3	2-Butanone (MEK)		10	u()
74-97-5	Bromochloromethane		2	U
67-66-3	Chloroform		4	
107-06-2	1,2-Dichloroethane		2	U
71-55-6	1,1,1-Trichloroethane		2	U
56-23-5	Carbon tetrachloride		38	
71-43-2	Benzene		2	U
79-01-6	Trichloroethene		27	
78-87-5	1,2-Diclpropane		2	U
75-27-4	Bromodichloromethane		2	U
10061-01-5	cis-1,3-Dichloropropene		2	U
108-10-1	4-Methyl-2-Pentanone		10	U
108-88-3	Toluene		2	U
10061-02-6	trans-1,3-Dichloropropene		2	U
79-00-5	1,1,2-Trichloroethane		2	U
127-18-4	Tetrachloroethene		2	U
591-78-6	2-Hexanone		10	U
124-48-1	Dibromochloromethane		2	U
106-93-4	1,2-Dibromoethane		2	U
108-90-7	Chlorobenzene		2	U
100-41-4	Ethylbenzene		2	U
136777-61-2	(m+p) Xylene		2	U
95-47-6	o-Xylene		2	U
100-42-5	Styrene		2	U
79-34-5	1,1,2,2-Tetrachloroethane		2	U
75-25-2	Bromoform		2	U
541-73-1	1,3-Diclbenzene		2	U

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3

87-61-6

EPA SAMPLE NO.

U

U

Lab Name:	cas\roct	1			Contract: [	Т	ir	nfluent	
Lab Code:	10145	Ca	se No.: re	5-34257	SAS No.:		SDG No.:	effluent	_
Matrix: (soil/	water)	WATER	_		Lab S	Sample ID	): <u>946927</u>	2.0	
Sample wt/v	ol:	25.0	(g/ml) <u>I</u>	ML	Lab f	File ID:	H3616.E	)	
Level: (low/	med)	LOW	_		Date	Received	I: <u>1<del>0/18/00</del></u>	3 10117/0	6 LM 11/21/126
% Moisture:	not dec.				Date	Analyzed	: 10/26/06	<u> </u>	
GC Column:	db-624	ID: <u>0.</u>	18 (mn	1) .	Diluti	on Factor	: 10 2.	0	
Soil Extract	Volume		_ (uL)		Soil A	Aliquot Vo	lume:	(	uL)
				COI	NCENTRATIO	ON UNITS	<b>S</b> :		
CAS NO	<b>D</b> .	COMP	DUND		L or ug/Kg)	UG/L		Q	
106-46	6-7	1 4-Di	iclbenzen			1	2	Ü	1
95-50-			iclbenzen		· · · · · · · · · · · · · · · · · · ·		2	U	
96-12-			ibromo-3-		opane		2	U	1
120.8			Trichlorob				2	U	

	Influent
Lab Name: cas\roch	Contract: IT
Lab Code: 10145 Case No.: r6-34257	SAS No.: SDG No.: effluent
Matrix: (soil/water) WATER	Lab Sample ID: 946927 2.0
Sample wt/vol: 25.0 (g/ml) ML	Lab File ID: H3616.D
Level: (low/med) LOW	Date Received: <u>1<del>0/18/06</del>   อ๋   7</u>   ๐ ๔ ๔๗ ๗ ๗ ๗ ๗
% Moisture: not dec.	Date Analyzed: 10/26/06
GC Column: <u>db-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 18 2.0
Soil Extract Volume (uL)	Soil Aliquot Volume: (uL)
(ug/	NCENTRATION UNITS: 'L or ug/Kg) UG/L
Number TICs found: 0	
CAS NO. COMPOUND	RT EST. CONC. Q

EPA SAMPLE NO.

		O a vatura etc. IT	du	ре а	
Lab Name: <u>cas\roct</u>		Contract: IT	_		1
Lab Code: <u>10145</u>	Case No.: <u>r6-34257</u>	SAS No.: S	DG No.: e	ffluent	
Matrix: (soil/water)	WATER	Lab Sample ID:	946928 1.	0	
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:			
Level: (low/med)	LOW	Date Received:	1 <del>0/18/06</del>	10/17/06	LM 11/21/04
% Moisture: not dec.		Date Analyzed:			
	4 ID: <u>0.18</u> (mm)	Dilution Factor:	1.0		
Call Extract Volume	(uL)	Soil Aliquot Volu	ıme:	(uL	_)
Soil Extract volume	(42)		<del></del>	· · · · · · · · · · · · · · · · · · ·	
	COI	NCENTRATION UNITS:			
CAS NO.	COMPOUND (ug/	L or ug/Kg) UG/L		Q	
74-87-3	Chloromethane		1	U	
75-01-4	Vinyl Chloride		1	U	
74-83-9	Bromomethane		1	U	
75-00-3	Chloroethane		1	U	
75-69-4	Trichlorofluoromethane		1	U	
75-35-4	1,1-Diclethene		11	U	
67-64-1	Acetone		5	UJ	
75-15-0	Carbon Disulfide		1	U	
75-09-2	Methylene Chloride		11	U	
156-60-5	trans-1,2-Dichloroethen	е	11	U	
75-34-3	1,1-Diclethane		1	U	
156-59-2	cis-1,2-Dichloroethene		1	<u> </u>	
78-93-3	2-Butanone (MEK)		5	UJ	
74-97-5	Bromochloromethane		1	U	
67-66-3	Chloroform		1	U	
107-06-2	1,2-Dichloroethane		1	U	
71-55-6	1,1,1-Trichloroethane		1	U	
56-23-5	Carbon tetrachloride		0.28		130
71-43-2	Benzene		1	U	1 11/
79-01-6	Trichloroethene		0.23	J U	براب
78-87-5	1,2-Diclpropane		11		
75-27-4	Bromodichloromethane		1	U	
10061-01-5	cis-1,3-Dichloropropene	)	<u>1</u> 5	U	
108-10-1	4-Methyl-2-Pentanone		1	U	
108-88-3	Toluene		1	U	
10061-02-6	trans-1,3-Dichloroprope	ne	1	U	
79-00-5	1,1,2-Trichloroethane		1	U	
127-18-4	Tetrachloroethene		5	U	
591-78-6	2-Hexanone		1	U	
124-48-1	Dibromochloromethane		<del></del>	U	
106-93-4	1,2-Dibromoethane		1	Ü	
108-90-7	Chlorobenzene		1	U	
100-41-4	Ethylbenzene		1	U	
136777-61-2	(m+p) Xylene		<del></del>	U	
95-47-6	o-Xylene		1	U	
100-42-5	Styrene	no	1	U	
1 70 04 5				. •	

Bromoform 1,3-Diclbenzene

75-25-2

541-73-1

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3 87-61-6

Lab Name: cas\roo	ch	Contract: IT	dupe a
Lab Code: 10145	Case No.: r6-34257	SAS No.: SD	G No.: effluent
Matrix: (soil/water)	WATER	Lab Sample ID: 9	946928 1.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:	H3617.D
Level: (low/med)	LOW	Date Received: 1	1 <del>0/18/06</del> 10/17/06 tmd 11/21/04
% Moisture: not dec.		Date Analyzed: 1	
GC Column: db-62	24 ID: <u>0.18</u> (mm)	Dilution Factor: 1	1.0
Soil Extract Volume	(uL)	Soil Aliquot Volum	ne: (uL)
	СО	NCENTRATION UNITS:	
CAS NO.	COMPOUND (ug/	/L or ug/Kg) UG/L	Q
106-46-7	1,4-Diclbenzene		1 U
95-50-1	1,2-Diclbenzene		1 U
96-12-8	1,2-Dibromo-3-chloropr	ropane	1 U
120-82-1	1,2,4-Trichlorobenzene		1 U

### 1E

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: ca	s\roch	Contract: IT dupe a
Lab Code: 10	145 Case No.: r6-34257	SAS No.: SDG No.: effluent
Matrix: (soil/wat	er) <u>WATER</u>	Lab Sample ID: 946928 1.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID: H3617.D
Level: (low/med	i) <u>LOW</u>	Date Received: 10/18/06- 10/17/06 vmv 11/21/04
% Moisture: not	dec	Date Analyzed: 10/26/06
GC Column: d	lb-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volu	ıme (uL)	Soil Aliquot Volume: (uL)
Number TICs for	(ug/l	CENTRATION UNITS: or ug/Kg) UG/L
CAS NO.	COMPOUND	RT EST. CONC. Q

EPA SAMPLE NO.

m-14d

Lab Name:	cas\roch			Contract: IT	
Lab Code:	10145	Cas	e No.: <u>r6-34257</u>	SAS No.:	SDG No.: effluent
Matrix: (soil/w	rater)	WATER		Lab Sample	ID: 946929 1.0
Sample wt/vo	l:	25.0	(g/ml) ML	Lab File ID:	H3618.D
Level: (low/m	ned)	LOW		Date Receiv	ed: <u>10/18/06 10(17/</u> 06 ums 11/21/0
% Moisture: n	ot dec.			Date Analyzo	ed: 10/26/06
GC Column:	db-624	ID: <u>0.1</u>	8 (mm)	Dilution Fact	or: 1.0
Soil Extract V	olume _		(uL)	Soil Aliquot	Volume: (uL)

### **CONCENTRATION UNITS:**

	OONOLINIKA			
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
75-69-4	Trichlorofluoromethane		1	U
75-35-4	1,1-Diclethene		1	U
67-64-1	Acetone		5	U
75-15-0	Carbon Disulfide		1	U
75-09-2	Methylene Chloride		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-34-3	1,1-Diclethane		1	U
156-59-2	cis-1,2-Dichloroethene		1	U
78-93-3	2-Butanone (MEK)		5	UJ
74-97-5	Bromochloromethane		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbon tetrachloride		1	U
71-43-2	Benzene		1	U
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Diclpropane		1	U
75-27-4	Bromodichloromethane		1	U
10061-01-5	cis-1,3-Dichloropropene		1	U
108-10-1	4-Methyl-2-Pentanone		5	Ų
108-88-3	Toluene		1	U
10061-02-6	trans-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
127-18-4	Tetrachloroethene		1	U
591-78-6	2-Hexanone		5	U
124-48-1	Dibromochloromethane		1	U
106-93-4	1,2-Dibromoethane		1	· U
108-90-7	Chlorobenzene		1	U
100-41-4	Ethylbenzene		1	U
136777-61-2	(m+p) Xylene		1	U
95-47-6	o-Xylene		1	U
100-42-5	Styrene		1	Ū
79-34-5	1,1,2,2-Tetrachloroethane		1	Ū
75-25-2	Bromoform		1	Ū
541-73-1	1,3-Diclbenzene		1	Ü

1,2-Diclbenzene

1,2,3-Tcbenzene

1,2,4-Trichlorobenzene

Hexachlorobutadiene

1,2-Dibromo-3-chloropropane

95-50-1

96-12-8

120-82-1

87-68-3

87-61-6

EPA SAMPLE NO.

U

U

U

U

1

1

							l m	-14d		
Lab Name:	cas\roch	<u> </u>		Contrac	ct: <u>IT</u>					
Lab Code:	10145	Ca	se No.: <u>r6-3</u> 4	4257 SAS	No.:	si	DG No.: e	effluent		
Matrix: (soil/	water)	WATER	<u>.</u>		Lab Samı	ple ID:	946929 1	.0		
Sample wt/v	ol:	25.0	(g/ml) ML		Lab File I		H3618.D			
Level: (low/i	med)	LOW	_		Date Rec	eived:	1 <del>0/18/08</del>	101171	06 Ams 11/2	1/06
% Moisture:	not dec.		····		Date Ana	lyzed:	10/26/06			
GC Column:	db-624	ID: 0.	18 (mm)	.	Dilution F	actor:	1.0			
Soil Extract \	Volume		_ (uL)	:	Soil Aliqu	ot Volu	me:	(	uL)	
				CONCENTR	RATION U	INITS:				
CAS NO	٥.	COMP	OUND	(ug/L or ug/k	(g) <u>U</u>	G/L		Q		
106-46	6-7	1,4-D	iclbenzene				1	U	- -	•

Lab Name: cas\roch	Contract: IT m-14d
Lab Code: 10145 Case No.: <u>r6-34257</u>	SAS No.: SDG No.: effluent
Matrix: (soil/water) WATER	Lab Sample ID: 946929 1.0
Sample wt/vol: 25.0 (g/ml) ML	Lab File ID: H3618.D
Level: (low/med) LOW	Date Received: 10/18/06   סן און און בון בון און בון בון און בון בון בון בון בון בון און בון בון בון בון בון בון בון בון בון ב
% Moisture: not dec.	Date Analyzed: 10/26/06
GC Column: <u>db-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume (uL)	Soil Aliquot Volume: (uL)
	NCENTRATION UNITS:
Number TICs found: 0 (ug/	L or ug/Kg) UG/L
CAŞ NO. COMPOUND	RT EST. CONC. Q

EPA SAMPLE NO.

Lab Name:	cas\roc	h		Contract: IT		m-27d		
Lab Code:	10145	c	ase No.: <u>r6-34257</u>	SAS No.:	SD	G No.: effluer	nt	
Matrix: (soil/	water)	WATER		Lab Samı	ole ID: 9	46931 1.0	_	
Sample wt/v	ol:	25.0	(g/ml) ML	Lab File I	D: <u>F</u>	13619.D	_	
Level: (low/ı	med)	LOW		Date Rec	eived: 1	<del>0/18/06</del> (a(n	106 LM 111	14/06
% Moisture:	not dec.			Date Ana	lyzed: 1	0/26/06	_	
GC Column:	db-62	4 ID: <u>0</u>	.18 (mm)	Dilution F	actor: 1	.0	_	
Soil Extract \	Volume	·	(uL)	Soil Aliqu	ot Volum	ie:	(uL)	
				•				

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q		
74-87-3	Chloromethane	1	U	7	
75-01-4	Vinyl Chloride	1	U	1	
74-83-9	Bromomethane	1	U	7	
75-00-3	Chloroethane	1	U		
75-69-4	Trichlorofluoromethane	1			
75-35-4	1,1-Diclethene	1	U		
67-64-1	Acetone	5	U )	<u> </u>	
75-15-0	Carbon Disulfide	. 1	U		
75-09-2	Methylene Chloride	1	U		
156-60-5	trans-1,2-Dichloroethene	1	U		
75-34-3	1,1-Diclethane	1	U	]	
156-59-2	cis-1,2-Dichloroethene	1	U		
78-93-3	2-Butanone (MEK)	5	UJ		
74-97-5	Bromochloromethane	111	U		
67-66-3	Chloroform	0.70	J	BANIS	
107-06-2	1,2-Dichloroethane	1	U		
71-55-6	1,1,1-Trichloroethane	1	U		
56-23-5	Carbon tetrachloride	12			
71-43-2	Benzene	1	U	]	
79-01-6	Trichloroethene	21			
78-87-5	1,2-Diclpropane	1	U		
75-27-4	Bromodichloromethane	11	U		
10061-01-5	cis-1,3-Dichloropropene	1	U		
108-10-1	4-Methyl-2-Pentanone	5	U		
108-88-3	Toluene	1	U		
10061-02-6	trans-1,3-Dichloropropene	1	U		
79-00-5	1,1,2-Trichloroethane	1	U	]	
127-18-4	Tetrachloroethene	1	U	, ]	
591-78-6	2-Hexanone	5	U		
124-48-1	Dibromochloromethane	1	U	ĺ	
106-93-4	1,2-Dibromoethane	1	U	:	
108-90-7	Chlorobenzene	1	U	i	
100-41-4	Ethylbenzene	1	U		
136777-61-2	(m+p) Xylene	1	U		
95-47-6	o-Xylene	1	U		
100-42-5	Styrene	1	U	· !	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	· !	
75-25-2	Bromoform 1 U				
541-73-1	1,3-Diclbenzene	1	U		
L	<u></u>				

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3 87-61-6

Lab Name:	cas\roch	<b>1</b> .	Con	tract: IT		m	-27d	
Lab Code:	10145	Case No.: r6-	34257 S	 AS No.:	SI	DG No.: <u>e</u>	ffluent	
Matrix: (soil/	water)	WATER		Lab Sa	mple ID:	946931 1.	0	
Sample wt/v	ol:	25.0 (g/ml) M	<u>L</u>	Lab Fil		H3619.D		
Level: (low/	med)	LOW		Date R	eceived:	1 <del>0/18/06</del>	10/17/06	umu 11/21/04
% Moisture:	not dec.			Date A	nalyzed:	10/26/06		
GC Column:	db-624	ID: <u>0.18</u> (mm)	· )	Dilution	n Factor:	1.0		
Soil Extract	Volume	(uL)		Soil Ali	quot Volu	me:	(ul	<b>L)</b>
			CONCEN	ITRATION	I UNITS:			
CAS NO	٥.	COMPOUND	(ug/L or u	ıg/Kg)	UG/L	·	Q	
106-4	6-7	1,4-Diclbenzene				1	U	
95-50-	-1	1,2-Diclbenzene				1	U	
96-12		1,2-Dibromo-3-c		9		1	U	
120.8		1 2 4-Trichlorobe				1	U	

Lab Name:	cas\roct	1	Contract: IT	m-27	7d
Lab Code:	10145	Case No.: <u>r6-34257</u>	SAS No.:	SDG No.: effl	uent
Matrix: (soil/v	water)	WATER	Lab Sample	ID: <u>946931 1.0</u>	
Sample wt/vo	ol:	25.0 (g/ml) ML	_ Lab File ID:	H3619.D	
Level: (low/n	ned)	LOW	Date Receiv	ed: 1 <del>0/18/06</del> اه	117/06 LAW 11/21/01
% Moisture: r	not dec.		Date Analyz	ed: 10/26/06	
GC Column:	db-624	ID: <u>0.18</u> (mm)	Dilution Fac	tor: <u>1.0</u>	
Soil Extract V	/olume _	(uL)	Soil Aliquot	Volume:	(uL)
Number TICs	found:		NCENTRATION UNI		
CAS NO.		COMPOUND	RT	EST. CONC.	Q

Lab Name:	cas\roch	1		Conti	act: IT			sw-b 		
Lab Code:	10145	c	ase No.: <u>r6-3</u>	4257 SA	S No.:	SD	OG No.:	effluent	<del></del>	
Matrix: (soil/w	vater)	WATER			Lab San	nple ID:	946932 1	.0		
Sample wt/vo	ol:	25.0	(g/ml) <u>ML</u>		Lab File		H3642.D			
Level: (low/n	ned)	LOW			Date Re	ceived:	1 <del>0/18/06</del>	10/17/01	6 LNW 11/21/1	14
% Moisture: r	not dec.				Date An	alyzed: _	10/27/06			
GC Column:	db-624	ID: _(	0.18 (mm)		Dilution	Factor:	1.0			
Soil Extract V	/olume _		(uL)		Soil Aliq	uot Volui	me:		(uL)	
				CONCEN.	TRATION	UNITS:				
CAS NO	) <b>.</b>	COM	POUND	(ug/L or uç	g/Kg)	UG/L		Q		

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q	
74-87-3	Chloromethane	1	U	
75-01-4	Vinyl Chloride	1	U	
74-83-9	Bromomethane	1	U	
75-00-3	Chloroethane	1	U	1
75-69-4	Trichlorofluoromethane	1	U	1
75-35-4	1,1-Diclethene	1	U	_
67-64-1	Acetone	5	<u> </u>	1
75-15-0	Carbon Disulfide	1	<u> </u>	
75-09-2	Methylene Chloride	1	U	1
156-60-5	trans-1,2-Dichloroethene	1	U	:
75-34-3	1,1-Diclethane	1	U .	i
156-59-2	cis-1,2-Dichloroethene	1	U	1
78-93-3	2-Butanone (MEK)	5	UJ	
74-97-5	Bromochloromethane	1	U	
67-66-3	Chloroform	1	U	
107-06-2	1,2-Dichloroethane	1	U	
71-55-6	1,1,1-Trichloroethane	1	U	+
56-23-5	Carbon tetrachloride	0.36	J	1201/2
71-43-2	Benzene	1	U	)3A11/15
79-01-6	Trichloroethene	0.25	J	`  -
78-87-5	1,2-Diclpropane	1	U	<u>!</u>
75-27-4	Bromodichloromethane	1	U	
10061-01-5	cis-1,3-Dichloropropene	1	U	3
108-10-1	4-Methyl-2-Pentanone	5	U	
108-88-3	Toluene	1	U	
10061-02-6	trans-1,3-Dichloropropene	1	U	
79-00-5	1,1,2-Trichloroethane	1	U	7
127-18-4	Tetrachloroethene	1	U	1
591-78-6	2-Hexanone	5	U	-
	Dibromochloromethane	1	U	
124-48-1	1,2-Dibromoethane	1	Ū	7
106-93-4	Chlorobenzene	1	Ū	
108-90-7		1	Ü	<del>-</del>
100-41-4	Ethylbenzene	1	U	7
136777-61-2	(m+p) Xylene	1	Ü	<del>-</del>
95-47-6	o-Xylene	1	Ü	<b>⊣</b>
100-42-5	Styrene	1	U	<u>-</u> :
79-34-5	1,1,2,2-Tetrachloroethane	1	U	<del>-</del>
75-25-2	Bromoform	1	Ü	₹
541-73-1	1,3-Diclbenzene			نـ

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3

87-61-6

EPA	SAMPLE	NO.
	ew_b	

L-b Nomo:	oos\rooh			Cr	ontract: IT	•		sw-b		
Lab Name:	cas\roch				milace. <u>11</u>					
Lab Code:	10145	Ca	ise No.: <u>r6-</u>	34257	SAS No.:	s	DG No.:	effluent		
Matrix: (soil/	water)	WATER	<del></del>		Lab S	ample ID:	946932	1.0		
Sample wt/ve	ol:	25.0	(g/ml) <u>M</u> l	<u> </u>		ile ID:	H3642.E			
Level: (low/r	med)	LOW			Date l	Received:	10/18/00	10/17/k	6 Lm	1 11/21/06
% Moisture:	not dec.					Analyzed:				
GC Column:	db-624	ID: 0.	18 (mm)		Dilutio	on Factor:	1.0			
Soil Extract \	Volume		_ (uL)		Soil A	liquot Volu	ıme:		(uL)	
				CONC	ENTRATIO	N UNITS:				
CAS NO	).	COMP	OUND		r ug/Kg)	UG/L	·	Q		
106-46	3-7	1.4-0	iclbenzene				1	U		* - *
95-50-			iclbenzene				1	U		
96-12-			ibromo-3-ch	nloropropa	ne		1	U		
120-82			-Trichlorobe				1	U		
120 02										

Lab Name: cas\roch	Contract: IT	sw-b
Lab Code: 10145 Case No.: r6-3425	57 SAS No.: SDG	No.: effluent
Matrix: (soil/water) WATER	Lab Sample ID: 94	6932 1.0
Sample wt/vol: 25.0 (g/ml) ML	Lab File ID: H3	3642.D
Level: (low/med) LOW	Date Received: 10	118106 10/17/06 Amu 11/21/06
% Moisture: not dec.	Date Analyzed: 10	
GC Column: db-624 ID: 0.18 (mm)	Dilution Factor: 1.0	)
Soil Extract Volume (uL)	Soil Aliquot Volume	: (uL)
	ONCENTRATION UNITS: g/L or ug/Kg) UG/L	
CAS NO. COMPOUND	RT EST.	CONC. Q

EPA SAMPLE NO.

sw-a

Lab Name:	cas\rocl	1		_ Contract	:: <u>IT</u>				
Lab Code:	10145		Case No.: <u>r6-3425</u>	7 SAS 1	No.:	SDG No.:	effluent		
Matrix: (soil/v	vater)	WATE	R	L	ab Sample ID	: <u>946933</u>	1.0		
Sample wt/vo	ol:	25.0	(g/ml) <u>ML</u>		ab File ID:	H3643.E			
Level: (low/n	ned)	LOW	·		ate Received	: <u>10/18/06</u>	3 10/17/0	6 em	11/21/04
% Moisture: r	not dec.				ate Analyzed:	10/27/06	3		
GC Column:	db-624	ID:	<u>0.18</u> (mm)		ilution Factor:	1.0			٠
Soil Extract V	/olume		(uL)	S	oil Aliquot Vol	lume:		(uL)	

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	UU
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	11	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	Uゴ
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U.
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	U

				•		sw-a	i
Lab Name:	cas\roch		Contr	act: IT	_		l
Lab Code:	10145	Case No.:	r6-34257 SA	S No.: S	DG No.:	effluent	
Matrix: (soil/	water) <u>W</u>	ATER		Lab Sample ID:	946933	1.0	
Sample wt/v	ol: <u>25</u>	.0 (g/ml)	ML	Lab File ID:	H3643.D		
Level: (low/r	med) <u>LC</u>	ow		Date Received:	1 <del>0/18/06</del>	10/17/06	And 11/21/04
% Moisture:	not dec.			Date Analyzed:			
GC Column:	db-624	ID: <u>0.18</u> (m	m)	Dilution Factor:	1.0		
Soil Extract \	Volume	(uL)		Soil Aliquot Volu	ıme:	(uL	)
			CONCENT	TRATION UNITS:			
CAS NO	<b>)</b> . ,	COMPOUND	(ug/L or ug	ı/Kg) <u>UG/L</u>		Q .	
106.46	. 7	1.4 Dichenzer	ne .		1		

106-46-7	1,4-Diclbenzene	1	U
95-50-1	1,2-Diclbenzene	1	U
96-12-8	1,2-Dibromo-3-chloropropane	1	U
120-82-1	1,2,4-Trichlorobenzene	1	כ
87-68-3	Hexachlorobutadiene	11	U
87-61-6	1,2,3-Tcbenzene	1	J

Lab Name: cas\roch	Contract: IT
Lab Code: 10145 Case No.: r6-34257	SAS No.: SDG No.: effluent
Matrix: (soil/water) WATER	Lab Sample ID: 946933 1.0
Sample wt/vol: 25.0 (g/ml) ML	Lab File ID: H3643.D
Level: (low/med) LOW	Date Received: <u>10/18/0</u> 6 שלוו לסט אוש יונילי
% Moisture: not dec.	Date Analyzed: 10/27/06
GC Column: <u>db-624</u> ID: <u>0.18</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume (uL)	Soil Aliquot Volume: (uL)
	NCENTRATION UNITS: L or ug/Kg) UG/L
CAS NO. COMPOUND	RT EST. CONC. Q

EPA SAMPLE NO.

trip blk

Lab Name:	cas\roch	7			Contract:	IT		прык		
Lab Code:	10145	Cas	e No.: <u>r6</u>	-34257	SAS No.	.:	SDG No.:	effluent	<u> </u>	
Matrix: (soil/	water)	WATER			Lab	Sample ID	): <u>946934</u>	1.0		
Sample wt/v	ol:	25.0	(g/ml) <u>N</u>	/L	Lab	File ID:	H3622.D	)		
Level: (low/r	med)	LOW			Dat	e Received	l: <del>10/18/06</del>	) 10/17/06	s who is	121/04
% Moisture:	not dec.				Date	e Analyzed	: 10/26/06	<u> </u>		
GC Column:	db-624	ID: <u>0.1</u>	8 (mm	) .	Dilu	tion Factor	: 1.0			
Soil Extract \	Volume _		(uL)		Soil	Aliquot Vo	lume:		(uL)	

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane		1 U
75-01-4	Vinyl Chloride		1 U
74-83-9	Bromomethane		1 U
75-00-3	Chloroethane		1 U
75-69-4	Trichlorofluoromethane		1 U
75-35-4	1,1-Diclethene		1 U
67-64-1	Acetone		5 U.J
75-15-0	Carbon Disulfide		1 U
75-09-2	Methylene Chloride		1 U
156-60-5	trans-1,2-Dichloroethene		1 U
75-34-3	1,1-Diclethane		1 U
156-59-2	cis-1,2-Dichloroethene		1 U
78-93-3	2-Butanone (MEK)		5 U.T
74-97-5	Bromochloromethane	•	1 0
67-66-3	Chloroform		I U
107-06-2	1,2-Dichloroethane		I U
71-55-6	1,1,1-Trichloroethane	•	U
56-23-5	Carbon tetrachloride		U
71-43-2	Benzene		U
79-01-6	Trichloroethene		U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane		U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone		i U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	U

1,2,3-Tcbenzene

96-12-8

120-82-1

87-68-3 87-61-6 1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene Hexachlorobutadiene

EPA SAMPLE NO.

1

1

			0.	antropt. IT		trip blk	
Lab Name:	cas\roch			ontract: <u>IT</u>			
Lab Code:	10145	Case No.:	r6-34257	SAS No.:	SDG N	No.: effluent	
Matrix: (soil	/water)	WATER		Lab Samp	le ID: <u>946</u>	934 1.0	
Sample wt/v	/ol:	25.0 (g/ml)	ML	Lab File II		22.D	
Level: (low/	/med)	LOW		Date Rece	eived: <u>10/</u> 1	1 <del>8/00</del> /4/7/04	, und 11/21/04
% Moisture:	not dec.				yzed: 10/2		
GC Column	: <u>db-624</u>	ID: <u>0.18</u> (n	nm)	Dilution Fa	actor: 1.0		
Soil Extract	Volume _	(uL)		Soil Alique	ot Volume:		(uL)
			CONC	ENTRATION U	NITS:		
CAS N	0.	COMPOUND	(ug/L or	r ug/Kg) <u>U</u>	G/L	Q	
106-4	6-7	1,4-Diclbenze	ene			1 U	
95-50		1,2-Diclbenze				1 U	_

### 1E LATILE ORGANICS ANAL

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		trip blk
Lab Name: cas\r	och	Contract: IT
Lab Code: 1014	5 Case No.: <u>r6-34257</u>	SAS No.: SDG No.: effluent
Matrix: (soil/water)	WATER	Lab Sample ID: 946934 1.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID: H3622.D
Level: (low/med)	LOW	Date Received: 10/18/06 נטלוז לסני שאיט וו בו / 66
% Moisture: not de	с	Date Analyzed: 10/26/06
GC Column: db-6	324 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume	e (uL)	Soil Aliquot Volume: (uL)
	co	ICENTRATION UNITS:
Number TICs found		or ug/Kg) UG/L
CAS NO.	COMPOUND	RT EST. CONC. Q
1. 000084-66-2	Diethyl Phthalate	12.60 2 JN

EPA SAMPLE NO.

cooler blk

Lab Name:	cas\rocl	<u>ի</u>		Contract:	IT	_ COOICI DIK	`
Lab Code:	10145	Ca	se No.: <u>r6-34257</u>	SAS No.	:s	DG No.: effluent	<u> </u>
Matrix: (soil/\	water)	WATER		Lab	Sample ID:	946935 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	_ Lab	File ID:	H3654.D	
_evel: (low/r	ned)	LOW	_	Date	e Received:	10/18/06	
% Moisture: ı	not dec.		<b></b>	Date	e Analyzed:	10/27/06	
GC Column:	db-624	4 ID: <u>0.1</u>	18 (mm)	Dilu	tion Factor:	1.0	
Soil Extract \	/olume		(uL)	Soil	Aliquot Volu	ıme:	(uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	UJ
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	U,T
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	U

EPA SAMPLE NO.

Lab Name	e: cas\roc	h			Contract	177	CO	oler blk	:
Lab Name	castroc	11			Contract:	IT	_		
Lab Code:	10145	Ca	se No.:	r6-34257	SAS No.:	: s	DG No.:	effluent	i
Matrix: (so	oil/water)	WATER	_		Lab	Sample ID:	946935	1.0	
Sample w	t/vol:	25.0	(g/ml)	ML	Lab	File ID:	H3654.E	<u> </u>	
Level: (lo	w/med)	LOW	_		Date	Received:	10/18/06	3	
% Moistur	e: not dec.				Date	Analyzed:	10/27/06	3	
GC Colum	ın: <u>db-62</u> 4	1 ID: <u>0.1</u>	18 (m	nm)	Dilut	ion Factor:	1.0		
Soil Extra	ct Volume		_ (uL)		Soil	Aliquot Volu	ıme:		(uL)
				CON	NCENTRATIO	ON UNITS:			
CAS	NO.	COMPO	DUND	(ug/l	L or ug/Kg)	UG/L		Q	
106-	-46-7	1,4-Di	clbenze	ne			1	U	
95-5	0-1	1,2-Di	clbenze	ne			1	U	
96-1	2-8		·	3-chloropro	pane		1	U	
120-	82-1			benzene			1	U	

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3

87-61-6

Lab Name:	cas\roct	1		Contra	ct: IT	cooler	. DIK
Lab Code:	10145	Cas	se No.: <u>r6-</u> 3	34257 SAS	No.:	SDG No.: effl	uent
Matrix: (soil/v	water)	WATER	_		Lab Sampl	e ID: 946935 1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>Ml</u>		Lab File ID	: <u>H3654.D</u>	
Level: (low/r	ned)	LOW	_		Date Rece	ived: 10/18/06	
% Moisture:	not dec.				Date Analy	zed: 10/27/06	
GC Column:	db-624	ID: <u>0.1</u>	18 (mm)		Dilution Fa	ctor: 1.0	
Soil Extract \	/olume _		_ (uL)		Soil Aliquo	t Volume:	(uL)
				CONCENT			
Number TICs	found:	0		(ug/L or ug/	Kg) <u>UG</u>	6/L	· · · · · · · · · · · · · · · · · · ·
CAS NO.		COMPOU	ND		RT	EST. CONC.	Q

EPA SAMPLE NO.

dgc-4s

Lab Name:	cas\roch				Contract:	IT	_ ugc 43	
Lab Code:	10145		Case No.: r6-	-34257	SAS No	.: s	SDG No.: effluent	
Matrix: (soil/v	vater)	WATE	₹		Lat	Sample ID:	947674 1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>M</u>	<u>L</u>	Lat	File ID:	H3623.D	
Level: (low/n	ned)	LOW			Da	te Received:	10/18/06	
% Moisture: r	not dec.				Dat	te Analyzed:	10/26/06	
GC Column:	db-624	_ ID:	0.18 (mm)	)	Dila	ution Factor:	1.0	
Soil Extract V	/olume _		(uL)		Soi	l Aliquot Vol	ume:	(uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	UJ
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	. 1	U
156-60-5	trans-1,2-Dichloroethene	11	U
75-34-3	1,1-Diclethane	11	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	UJ
74-97-5	Bromochloromethane	11	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	11	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-DicIbenzene	1	U

olc2.1

EPA SAMPLE NO.

							_	d	lgc-4s	1
Lab Name:	cas\roch				Contrac	it: I	<u> </u>	<u> </u>		
Lab Code:	10145	Cas	se No.: <u>r6-3</u>	34257	SAS	No.:	SI	DG No.:	effluent	
Matrix: (soil/w	vater) <u>V</u>	VATER				Lab S	Sample ID:	947674	1.0	
Sample wt/vo	ol: <u>2</u>	25.0	(g/ml) ML	-		Lab F	ile ID:	H3623.D	)	
Level: (low/n	ned) <u>L</u>	.OW				Date	Received:	10/18/06	<u> </u>	
% Moisture: r	not dec.				1	Date	Analyzed:	10/26/06	<u> </u>	
GC Column:	db-624	ID: <u>0.1</u>	8_ (mm)			Diluti	on Factor:	1.0		
Soil Extract V	olume		(uL)		;	Soil A	Aliquot Volu	ıme:		(uL)
				CON	NCENTR	ATIC	ON UNITS:			
CAS NO	٠.	COMPO	DUND	(ug/l	_ or ug/k	(g)	UG/L		Q	
106-46	<del>-</del> 7	1.4-Di	clbenzene		<del></del>			1	U	
95-50-			clbenzene					1	U	
96-12-8			bromo-3-ch	loropro	pane			1	U	
120.02		<del></del>	Crichlorober					1	U	

Hexachlorobutadiene 1,2,3-Tcbenzene

87-68-3

87-61-6

Lab Name:	cas\roch	1			Contrac	t: <u>IT</u>			ıgc-4s	
Lab Code:	10145	Ca	se No.: <u>r6-3</u>	4257	SAS	No.:	sı	DG No.:	effluent	<u>t                                      </u>
Matrix: (soil/v	vater)	WATER	_		L	₋ab Sam	ple ID:	947674	1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		_ 1	.ab File l	ID:	H3623.E	)	
Level: (low/n	ned)	LOW	_		[	Date Rec	eived:	10/18/06	<u> </u>	
% Moisture: r	not dec.					Date Ana	lyzed:	10/26/06	<u> </u>	
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		[	Dilution F	actor:	1.0		
Soil Extract V	olume _		_ (uL)		8	Soil Aliqu	ot Volu	me:		(uL)
Number TICs	found:	0	_		NCENTR L or ug/K		JNITS: JG/L	·		·.
CAS NO.		COMPOL	IND			RT	ES	T. CONC	<b>)</b> .	Q

EPA SAMPLE NO.

dgc-3s

Lab Name:	cas\roch_			Contract:	IT	ugo oo	
Lab Code:	10145	_ Case No	.: <u>r6-34257</u>	SAS No.:	: SC	OG No.: effluent	
Matrix: (soil/w	ater) <u>W</u>	ATER		Lab	Sample ID:	947675 1.0	
Sample wt/vol	l: <u>25</u>	5.0 (g/r	ni) ML	Lab	File ID:	H3624.D	
Level: (low/m	ed) <u>L</u> C	DW		Date	Received:	10/18/06	
% Moisture: no	ot dec.			Date	Analyzed:	10/27/06	
GC Column:	db-624	ID: <u>0.18</u>	(mm)	Dilut	tion Factor:	1.0	
Soil Extract Vo	olume	(uL	.)	Soil	Aliquot Volur	me:	(uL

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	Ú
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	11	J
67-64-1	Acetone	5	ָּרָל ט
75-15-0	Carbon Disulfide	1	J
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	. 1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	UJ
74-97-5	Bromochloromethane	11	<u> </u>
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ų
541-73-1	1,3-Diclbenzene	1	U

EPA SAMPLE NO.

dgc-3s Contract: IT Lab Name: cas\roch Lab Code: 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent WATER Lab Sample ID: 947675 1.0 Matrix: (soil/water) 25.0 __ (g/ml) ML Lab File ID: H3624.D Sample wt/vol: Date Received: 10/18/06 Level: (low/med) LOW Date Analyzed: 10/27/06 % Moisture: not dec. GC Column: db-624 ID: 0.18 (mm) Dilution Factor: 1.0 Soil Extract Volume _____ (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** (uall or ualka)

CAS NO.	COMPOUND	(ug/L. or.ug/Kg)	UG/L	<del></del>	Q
106-46-7	1,4-Diclbenzene	9		1	U
95-50-1	1,2-Diclbenzene		11	U	
96-12-8	1,2-Dibromo-3-0	1,2-Dibromo-3-chloropropane			U
120-82-1	1,2,4-Trichlorob	enzene		1	U
87-68-3	Hexachlorobuta	Hexachlorobutadiene			U
87-61-6	1,2,3-Tcbenzen		1	Ų	

								1 6	dgc-3s	
Lab Name:	cas\rock	1		Cont	ract:	IT		`		
Lab Code:	10145	Ca	se No.: <u>r6-</u> 3	34257 SA	AS No	).:	_ SD	G No.:	effluen	<u>t                                    </u>
Matrix: (soil/v	water)	WATER			Lal	o Sample	ID: 9	47675	1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		Lal	File ID:	<u> </u>	13624.[	)	
Level: (low/n	ned)	LOW	<del></del>		Da	te Receiv	/ed: <u>1</u>	0/18/06	<u> </u>	
% Moisture: r	not dec.		***		Da	te Analyz	ed: <u>1</u>	0/27/06	<u> </u>	
GC Column:	db-624	ID: 0.	18 (mm)		Dil	ution Fac	tor: <u>1</u>	.0		
Soil Extract \	/olume		(uL)		Soi	I Aliquot	Volum	ne:		(uL)
				CONCEN	TRAT	ION UNI	TS:			
Number TICs	found:	0	<del>_</del>	(ug/L or u	g/Kg)	<u>UG/</u>	L			
CAS NO.		COMPOL	JND			RT	EST	. CONC	<b>&gt;</b> .	Q

EPA SAMPLE NO.

Lab Name:	cas\roch	1		Contract:	IT	- III-23u
Lab Code:	10145		Case No.: <u>r6-3425</u>	7 SAS No	o.: s	SDG No.: effluent
Matrix: (soil/v	water)	WATE	<u>R</u>	Lai	b Sample ID:	947676 2.0
Sample wt/vo	ol:	25.0	(g/ml) ML	Lai	b File ID:	H3625.D
Level: (low/r	ned)	LOW		Da	te Received:	10/18/06
% Moisture: ı	not dec.			Da	te Analyzed:	10/27/06
GC Column:	db-624	ID:	<u>0.18</u> (mm)	Dil	ution Factor:	1.0 2.0 3AN 15
Soil Extract \	Volume _		(uL)	So	il Aliquot Vol	ume: (uL

#### CONCENTRATION UNITS

	CONCENTRATION UNITS:						
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q				
74-87-3	Chloromethane	2	U				
75-01-4	Vinyl Chloride	2	U				
74-83-9	Bromomethane	2	U				
75-00-3	Chloroethane	2	U				
75-69-4	Trichlorofluoromethane	2	U				
75-35-4	1,1-Diclethene	2	U				
67-64-1	Acetone	10	UJ				
75-15-0	Carbon Disulfide	2	U				
75-09-2	Methylene Chloride	2	U				
156-60-5	trans-1,2-Dichloroethene	2	U				
75-34-3	1,1-Diclethane	2	U				
156-59-2	cis-1,2-Dichloroethene	2	U				
78-93-3	2-Butanone (MEK)	10	UJ				
74-97-5	Bromochloromethane	2	U				
67-66-3	Chloroform	4					
107-06-2	1,2-Dichloroethane	2	U				
71-55-6	1,1,1-Trichloroethane	4					
56-23-5	Carbon tetrachloride	33					
71-43-2	Benzene	2	U				
79-01-6	Trichloroethene	12					
78-87-5	1,2-Diclpropane	2	U				
75-27-4	Bromodichloromethane	2	U				
10061-01-5	cis-1,3-Dichloropropene	2	U				
108-10-1	4-Methyl-2-Pentanone	10	U				
108-88-3	Toluene	2	U				
10061-02-6	trans-1,3-Dichloropropene	2	U				
79-00-5	1,1,2-Trichloroethane	2	U				
127-18-4	Tetrachloroethene	2	U				
591-78-6	2-Hexanone	10	U				
124-48-1	Dibromochloromethane	2	U				
106-93-4	1.2-Dibromoethane	2	U				
108-90-7	Chlorobenzene	2	U				
100-41-4	Ethylbenzene	2	U				
136777-61-2	(m+p) Xylene	2	U				
95-47-6	o-Xylene	2	U				
100-42-5	Styrene	2	U				
79-34-5	1,1,2,2-Tetrachloroethane	2	U				
75-25-2	Bromoform	2	U				
541-73-1	1,3-Diclbenzene	2	U				

EPA SAMPLE NO.

m-29d Lab Name: cas\roch Contract: IT Lab Code: 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent Matrix: (soil/water) WATER Lab Sample ID: 947676 2.0 (g/ml) ML Sample wt/vol: 25.0 Lab File ID: H3625.D LOW Level: (low/med) Date Received: 10/18/06 % Moisture: not dec. Date Analyzed: 10/27/06 GC Column: db-624 ID: 0.18 (mm) Dilution Factor: 1.0 2.3 BRILE Soil Extract Volume (uL) Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** 

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
106-46-7	1,4-Diclbenzene			2	U
95-50-1	1,2-Diclbenzene		2	U	
96-12-8	1,2-Dibromo-3-chlor	1,2-Dibromo-3-chloropropane			Ų
120-82-1	1,2,4-Trichlorobenze	ene		2	U
87-68-3	Hexachlorobutadien	Hexachlorobutadiene			U
87-61-6	1,2,3-Tcbenzene		2	U	

DLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.
TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:	cas\rocl	1			Contrac	t: <u>IT</u>			n-29a	
Lab Code:	10145	Cas	e No.: <u>r6-3</u>	4257	SAS	No.:	sc	G No.:	effluent	[
Matrix: (soil/v	water)	WATER			İ	Lab Samp	le ID:	947676	2.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		_	Lab File IC	): <u> </u>	H3625.E	)	
Level: (low/r	LOW			·	Date Rece	ived: _	10/18/06	<u> </u>		
% Moisture: r	not dec.		_		Į	Date Analy	/zed: _	10/27/06	<u> </u>	
GC Column:	db-624	ID: <u>0.18</u>	3_ (mm)		[	Dilution Fa	ctor:	1.0	·	
Soil Extract V	/olume .		(uL)		\$	Soil Aliquo	t Volur	ne:		(uL)
				CON	NCENTR	ATION UN	NITS:			
Number TICs	found:	0		(ug/l	L or ug/K	(g) <u>UC</u>	S/L			
CAS NO.		COMPOUN	ID			RT	EST	T. CONC	<b>.</b>	Q

Case No.: r6-34257

EPA SAMPLE NO.

Contract: IT	dup-c
SAS No.: S	DG No.: effluent
Lab Sample ID:	947677 1.0
Lab File ID:	H3626.D
Data Danaharda	40/49/06

Sample wt/vol: Level: (low/med)

Matrix: (soil/water)

Lab Name: cas\roch

Lab Code:

10145

25.0 LOW

WATER

(g/ml) ML

Lab File ID: Date Received: 10/18/06

% Moisture: not dec.

Date Analyzed: 10/27/06

Soil Extract Volume _____ (uL)

GC Column: db-624 ID: 0.18 (mm)

Dilution Factor: 1.0 Soil Aliquot Volume:

(uL)

### **CONCENTRATION UNITS:**

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L Q	
74-87-3	Chloromethane	1 U	
75-01-4	Vinyl Chloride	1 U	
74-83-9	Bromomethane	1 U	
75-00-3	Chloroethane	1 U	
75-69-4	Trichlorofluoromethane	1 U	
75-35-4	1,1-Diclethene	0.21 J BAILL	<
67-64-1	Acetone	5 U 🕇	
75-15-0	Carbon Disulfide	1 U	
75-09-2	Methylene Chloride	1 U	
156-60-5	trans-1,2-Dichloroethene	1 U	
75-34-3	1,1-Diclethane	1 U	
156-59-2	cis-1,2-Dichloroethene	1 U	
78-93-3	2-Butanone (MEK)	5 UJ	
74-97-5	Bromochloromethane	1 0 3-07	
67-66-3	Chloroform	4	
107-06-2	1,2-Dichloroethane	1 U	
71-55-6	1,1,1-Trichloroethane	4	
56-23-5	Carbon tetrachloride	31 -37 -E	
71-43-2	Benzene	1 U	
79-01-6	Trichloroethene	14	
78-87-5	1,2-Diclpropane	1 U	
75-27-4	Bromodichloromethane	1 U	
10061-01-5	cis-1,3-Dichloropropene	1 U	
108-10-1	4-Methyl-2-Pentanone	5 U	
108-88-3	Toluene	1 U	
10061-02-6	trans-1,3-Dichloropropene	1 U	
79-00-5	1,1,2-Trichloroethane	1 U	
127-18-4	Tetrachloroethene	1 U	
591-78-6	2-Hexanone	5 U	
124-48-1	Dibromochloromethane	1 U	
106-93-4	1,2-Dibromoethane	1 U	
108-90-7	Chlorobenzene	1 U	
100-41-4	Ethylbenzene	1 U	
136777-61-2	(m+p) Xylene	1 U	
95-47-6	o-Xylene	1 U	
100-42-5	Styrene	1 U	
79-34-5	1,1,2,2-Tetrachloroethane	1 ° U	
75-25-2	Bromoform	1 U	
	1,3-Diclbenzene	1 U	
541-73-1	1,3-Diclbenzene	<u>1 U</u>	

EPA	SAMPL	Ε	NO.

									dup-c	
Lab N	lame:	cas\roch				Contract:	IT	_		
Lab C	Code:	10145	Ca	se No.: <u>r</u>	6-34257	SAS No.	: s	DG No.:	effluent	
Matrix	x: (soil/v	vater)	WATER	•		Lab	Sample ID:	947677	1.0	
Samp	ole wt/vo	ol:	25.0	(g/ml)	ML	Lab	File ID:	H3626.	)	
Level	: (low/n	ned)	LOW	_		Date	e Received:	10/18/06	<u> </u>	
% Mo	oisture: r	not dec.				Date	e Analyzed:	10/27/06	}	
GC C	olumn:	db-624	ID: 0.1	8 (mı	m)	Dilu	tion Factor:	1.0		
Soil E	Extract V	/olume _		_ (uL)		Soil	Aliquot Volu	ıme:		(uL)
					COI	NCENTRATI	ON UNITS:			
, (	CAS NO	).	COMP	DUND	(ug/	L or ug/Kg)	UG/L		Q	
Γ	106-46	-7	1,4-Di	clbenzer	ne			1	U	
_	95-50-	1	1.2-Di	clbenzer	ne			1	U	
	96-12-				-chloropr	opane		1	U	
	120-82				benzene			1	U	
	87-68-3			hlorobut				1	U	

1,2,3-Tcbenzene

87-61-6

Lab Name:	cas\roch	1	•		Contrac	et: IT	•		dup-c	
Lab Code:	10145	Ca	se No.: <u>r</u> 6	-34257	SAS	 No.: _	s	DG No.:	effluent	t
Matrix: (soil/v	vater)	WATER				Lab S	ample ID:	947677	1.0	
Sample wt/vo	oi:	25.0	(g/ml) <u>N</u>	1L		Lab F	ile ID:	H3626.E	)	
Level: (low/n	ned)	LOW	_		i	Date I	Received:	10/18/06	3	
% Moisture: r	not dec.		<del></del>		ł	Date /	Analyzed:	10/27/06	3	
GC Column:	db-624	ID: <u>0.</u>	18 (mm	)	i	Dilutio	n Factor:	1.0		
Soil Extract V	olume _		_ (uL)		:	Soil A	liquot Volu	me:	···· ×	(uL)
Number TICs	found:	0			ICENTR . or ug/K		N UNITS: UG/L	· 		
CAS NO.		COMPOL	IND			R	T ES	T. CONC	<b>)</b> . (	Q

VOLATILE ORGANICS ANALY		YSIS DATA SHE	===		
Lab Name: cas\roch	· · · · · · · · · · · · · · · · · · ·	Contract: IT		du	ıp-c di
Lab Code: 10145	Case No.: <u>r6-34257</u>	SAS No.:	SDC	G No.:	effluent
Matrix: (soil/water) V	VATER	Lab San	nple ID: 9	47677 2	2.0
Sample wt/vol: 2	5.0 (g/ml) ML		ID: H		
<del></del>	<del></del>	•	_		
Level: (low/med) Low	**************************************	Date Re	ceived: 10	0/18/06	<del>/</del>
% Moisture: not dec	·	Date An	alyzed: 10	0/27/06	
GC Column: db-624	1D: <u>0.18</u> (mm)	Dilution (	Factor: 2.	.0 /	<u>/</u>
Soil Extract Volume	(uL)	Soil Aliq	uot Volum	e: /	(uL
	CON	ICENTRATION I	UNITS:	/	
CAS NO.	COMPOUND (ug/L	or ug/Kg)	JG/L /	<u>.                                     </u>	Q
74.07.0	1 014				·
74-87-3	Chloromethane			2	U
75-01-4 74-83-9	Vinyl Chloride Bromomethane			2	U
75-00-3	Chloroethane		<del>/</del>	2 2	U
75-69-4	Trichlorofluoromethane	<del>/</del>	<u>/</u>	2	U
75-35-4	1,1-Diclethene	<del>/ </del>		2	U
67-64-1	Acetone	<del>/- </del>		10	U
75-15-0	Carbon Disulfide			2	U
75-09-2	Methylene Chloride			2	U
156-60-5	trans-1,2-Dichloroethene			2	Ü
75-34-3	1,1-Diclethane			2	U
156-59-2	cis-1,2-Dichloroethene			2	U
78-93-3	2-Butanone (MEK)	/		10	U
74-97-5	Bromochloromethane			2	U
67-66-3	Chloroform			4	D
107-06-2	1,2-Dichloroethane			2	Ū
71-55-6	1,1,1-Trichloroethane			4	D
56-23-5	Carbon tetrachloride			31	D
71-43-2	Benzene /			2	U
79-01-6	Trichloroethene/			12	D
78-87-5	1,2-Diclpropané			2	U
75-27-4	Bromodichloromethane			2	U
10061-01-5	cis-1,3-Dichloropropene			2	U
108-10-1	4-Methyl-2/Pentanone			10	U
108-88-3	Toluene /			2	U
10061-02-6	trans-1,3-Dichloropropene	)		2	U
79-00-5	1,1,2-7richloroethane			2	U
127-18-4	Tetrachloroethene			2	U
591-78-6	2-Hexanone			10	U
124-48-1	Dipromochloromethane			2	U
106-93-4	1/2-Dibromoethane			2	U
108-90-7	Chlorobenzene			2	<u> </u>
100-41-4	/ Ethylbenzene		<del> </del>	2	U
136777-61-2	(m+p) Xylene			2	U
95-47-6	o-Xylene			2	U
100-42-5	Styrene			2	U
79-34-5	1,1,2,2-Tetrachloroethane			2	U
75-25-2	Bromoform			2	U
541-73-1	1,3-Diclbenzene			2	U

EPA SAMPLE NO.

2

U

dup-c dl Lab Name: cas\roch Contract: IT 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent Lab Code: Matrix: (soil/water) WATER Lab Sample ID: 947677 2.0 (g/ml) ML Sample wt/vol: 25.0 Lab File ID: H3646.D LOW Level: (low/med) Date Received: 10/18/06 % Moisture: not dec. Date Analyzed: 10/27/06/ GC Column: db-624 ID: 0.18 (mm) Dilution Factor: 2.0 Soil Extract Volume Soil Aliquot Volume:/ (uL) **CONCENTRATION UNITS;** CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 106-46-7 1,4-Diclbenzene 1,2-Diclbenzene 95-50-1 2 96-12-8 1,2-Dibromo-3-chloropropane 2 U 120-82-1 1,2,4-Trichlorobenzene 2 U Hexachlorobutadiene 87-68-3 2

1,2,3-Tcbenzene

87-61-6

		TENTATI	VELY IDENT	IFIED COM	POUNDS			
Lab Name:	cas\roch	1		Contra	ict: <u>IT</u>		dup-	: dl
Lab Code:	10145	Cas	se No.: <u>r6-34</u>	257 SAS	S No.:	_ SD	G No.: effl	uent
Matrix: (soil/v	vater)	WATER			Lab Sample	e ID: 9	947677 2.0	<u>.</u>
Sample wt/vo	ol:	25.0	(g/ml) ML		Lab File ID	: <u>ł</u>	H3646.D	<del></del>
Level: (low/n	ned)	LOW		•	Date Recei	ved: <u>1</u>	10/18/06	
% Moisture: r	not dec.				Date Analy	zed: <u>1</u>	10/27/06	
GC Column:	db-624	ID: <u>0.1</u>	8 (mm)		Dilution Fac	ctor: /2	2.0	
Soil Extract V	/olume _		_ (uL)		Soil Aliquot	: Volun	ne:	(uL)
Number TICs	found:	0		CONCENTI (ug/L or ug/	RATION UN Kg) <u>UG</u>			<b></b>
CAS NO.		COMPOU	ND		RT	EST	CONC.	Q

EPA SAMPLE NO.

m-24d

Lab Name:	cas\rocl	1		Contract: IT	111-240
Lab Code: 10145		Case No.: <u>r6-34257</u>		SAS No.:	SDG No.: effluent
Matrix: (soil/	water)	WATER	_	Lab Sample	ID: <u>947678 1.0</u>
Sample wt/ve	ol:	25.0	(g/ml) ML	Lab File ID:	H3627.D
Level: (low/r	ned)	LOW	_	Date Receive	ed: 10/18/06
% Moisture:	not dec.			Date Analyze	ed: 10/27/06
GC Column:	db-624	ID: 0.1	18 (mm)	Dilution Fact	or: <u>1.0</u>
Soil Extract \	/olume	·	_ (uL)	Soil Aliquot \	Volume: (ul

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q	
74-87-3	Chloromethane	1	U	
75-01-4	Vinyl Chloride	1	U	
74-83-9	Bromomethane	1	U	
75-00-3	Chloroethane	1	U	
75-69-4	Trichlorofluoromethane	1	U	_
75-35-4	1,1-Diclethene	1	U	
67-64-1	Acetone	5	UJ	<del> </del>
75-15-0	Carbon Disulfide	1	U	
75-09-2	Methylene Chloride	1	U	
156-60-5	trans-1,2-Dichloroethene	1	U	
75-34-3	1,1-Diclethane	1	U	<u> </u>
156-59-2	cis-1,2-Dichloroethene	1	U	_
78-93-3	2-Butanone (MEK)	5	UJ	1
74-97-5	Bromochloromethane	1	U	
67-66-3	Chloroform	0.44	J	BAILIS
107-06-2	1,2-Dichloroethane	1	U	
71-55-6	1,1,1-Trichloroethane	1	U	
56-23-5	Carbon tetrachloride	11		
71-43-2	Benzene	1	U	
79-01-6	Trichloroethene	1	U	j
78-87-5	1,2-Diclpropane	1	U	
75-27-4	Bromodichloromethane	1	U	
10061-01-5	cis-1,3-Dichloropropene	1	U	
108-10-1	4-Methyl-2-Pentanone	5	U	
108-88-3	Toluene	1	U	
10061-02-6	trans-1,3-Dichloropropene	1	U	
79-00-5	1,1,2-Trichloroethane	1	U	
127-18-4	Tetrachloroethene	1	U	
591-78-6	2-Hexanone	5	U	
124-48-1	Dibromochloromethane	1	U	
106-93-4	1,2-Dibromoethane	1	U	
108-90-7	Chlorobenzene	1	Ú	
100-41-4	Ethylbenzene	1	U	
136777-61-2	(m+p) Xylene	1	U	
95-47-6	o-Xylene	1	U	
100-42-5	Styrene	1	U	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	
75-25-2	Bromoform	1	U	
541-73-1	1,3-Dicibenzene	1	U	

EPA SAMPLE NO.

Lab Name:	cas\roch				Contract	t: 17	-	. !	m-24d	
Lab Code:	10145	c	ase No.:	r6-34257	SAS	ــــ ِ :.ov	s	DG No.:	effluent	<u> </u>
Matrix: (soil/v	vater)	WATER	<u> </u>		L	ab S	ample ID:	947678	1.0	
Sample wt/vo	ol:	25.0	_ (g/ml)	ML	_ L	ab F	ile ID:	H3627.	) .	
Level: (low/n	ned)	LOW		•		)ate l	Received:	10/18/06	3	
% Moisture: r	ot dec.					ate /	Analyzed:	10/27/06	3	
GC Column:	db-624	ID: 0	).18 (m	ım)		ilutio	n Factor:	1.0		
Soil Extract V	olume _		(uL)		S	oil A	liquot Volu	me:	· · · · · · · · · · · · · · · · · · ·	(uL)
				CON	NCENTRA	OITA	N UNITS:			
CAS NO		COM	POUND	(ug/l	L or ug/K	g)	UG/L	<u> </u>	Q	
106-46	<del>-</del> 7	1,4-[	Diclbenze	ne				1	U	
95-50-1		1,2-[	Diclbenze	ne				1	U	
96-12-8	3	1,2-[	Dibromo-3	3-chloropro	opane			1	U	

1,2,4-Trichlorobenzene

Hexachlorobutadiene

1,2,3-Tcbenzene

120-82-1

87-68-3

87-61-6

Lab Name:	cas\roch	1		Contra	act:	IT		n	n-24d	
	10145		se No.: r6-3	4257 SAS	S No	o.:	SD	G No.:	effluent	1
Matrix: (soil/v	vater)	WATER	_		La	b Sample	ID:	947678	1.0	
Sample wt/vo	oł:	25.0	(g/ml) ML	·	La	b File ID:	1	H3627.D	)	
Level: (low/n	ned)	LOW	-		Da	ite Receiv	ed: _	10/18/06		
% Moisture: r	not dec.				Da	ite Analyz	ed: _	10/27/06		
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		Dil	lution Fact	tor:	1.0		
Soil Extract V	/olume		_ (uL)		So	il Aliquot	Volur	ne:		(uL)
				CONCENT						
Number TICs	found:	0		(ug/L or ug	/Kg)	) <u>UG/</u>	<u> </u>			
CAS NO.		COMPOL	IND			RT	ES'	T. CONC	<u>.</u>	Q

EPA SAMPLE NO.

Lab Name:	cas\roch	n	Contract: IT	m-11a
_ab Code:	10145	Case No.: <u>r6-3425</u>	57 SAS No.: SD	G No.: effluent
Matrix: (soil/v	water)	WATER	Lab Sample ID: 9	947679 1.0
Sample wt/vo	ol:	25.0 (g/ml) ML	Lab File ID: <u>F</u>	13628.D
_evel: (low/n	ned)	LOW	Date Received: 1	0/18/06
% Moisture: r	not dec.		Date Analyzed: 1	0/27/06
GC Column:	db-624	1 ID: <u>0.18</u> (mm)	Dilution Factor: 1	.0
Soil Extract V	/olume	(uL)	Soil Aliquot Volum	ne: (ul

	,	CONCENTRATIO	ON UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride	· · · · · · · · · · · · · · · · · · ·		1	U
74-83-9	Bromomethane	· · · · · · · · · · · · · · · · · · ·		1	U
75-00-3	Chloroethane			1	U
75-69-4	Trichlorofluorome	ethane		1	U
75-35-4	1,1-Diclethene			1	٦
67-64-1	Acetone			5	U
75-15-0	Carbon Disulfide			1	U
75-09-2	Methylene Chloric	de		1	U
156-60-5	trans-1,2-Dichlord	ethene		1	U
75-34-3	1,1-Diclethane			1	U
156-59-2	cis-1,2-Dichloroet	hene		1	U
78-93-3	2-Butanone (MEK	()		5	UJ
74-97-5	Bromochlorometh			1	U
67-66-3	Chloroform			3	
107-06-2	1,2-Dichloroethan	е		1	U
71-55-6	1,1,1-Trichloroeth	ane		1	U
56-23-5	Carbon tetrachlori	de		12	
71-43-2	Benzene			1	U
79-01-6	Trichloroethene	<u></u>		2	
78-87-5	1,2-Diclpropane			1	U
75-27-4	Bromodichlorome	thane		1	U
10061-01-5	cis-1,3-Dichloropro			1	U
108-10-1	4-Methyl-2-Pentar			5	U
108-88-3	Toluene			1	U
10061-02-6	trans-1,3-Dichloro	propene		1	U
79-00-5	1,1,2-Trichloroetha			1	U
127-18-4	Tetrachloroethene			1	U
591-78-6	2-Hexanone			5	U
124-48-1	Dibromochloromet	hane		1	U
106-93-4	1.2-Dibromoethan	e		1	U
108-90-7	Chlorobenzene			1	Ū
100-41-4	Ethylbenzene			1	U
136777-61-2	(m+p) Xylene			1	U
95-47-6	o-Xylene			1	Ū
100-42-5	Styrene			1	Ü
79-34-5	1,1,2,2-Tetrachlord	ethane		1	Ū
75-25-2	Bromoform			1	U
541-73-1	1,3-Diclbenzene			1	U

EPA SAMPLE NO.

Lab Name:	cas\roch			Contract:	IT	1	m-11d	
Lab Code:	10145	Case No.: r6	-34257	SAS No	.:s	DG No.:	effluent	
Matrix: (soil/	water)	WATER		Lat	Sample ID:	947679	1.0	
Sample wt/ve	ol:	25.0 (g/ml) <u>N</u>	/L	Lat	File ID:	H3628.	)	
Level: (low/r	med)	LOW		Dat	te Received:	10/18/06	3 )	
% Moisture:	not dec.			Dat	te Analyzed:	10/27/06	3	
GC Column:	db-624	ID: 0.18 (mm	)	Dilu	ution Factor:	1.0		
Soil Extract \	/olume	(uL)		Soi	l Aliquot Vol	ume:		(uL)
			CON	ICENTRAT	ION UNITS:			
CAS NO	).	COMPOUND	(ug/L	or ug/Kg)	UG/L	<del></del>	Q	
106-46	)-7	1,4-Diclbenzene				1	U	
95-50-	1	1,2-Diclbenzene	)			1	U	
96-12-		1,2-Dibromo-3-c	hloropro	pane		1	U	
120-82		1,2,4-Trichlorob	enzene			11	U	
87-68-	3	Hexachlorobuta	diene			1	U	

1,2,3-Tcbenzene

87-61-6

Lab Name:	cas\rocl	h		Cont	ract: IT		m-11	a
Lab Code:	10145	Ca	se No.: <u>r6-3</u>	4257 SA	.S No.:	SD	G No.: efflu	ent
Matrix: (soil/	water)	WATER	_		Lab Sam	ple ID: 9	47679 1.0	
Sample wt/v	ol:	25.0	(g/ml) <u>ML</u>		Lab File	ID: <u>F</u>	13628.D	
Level: (low/r	med)	LOW	_		Date Red	eived: 1	0/18/06	
% Moisture:	not dec.				Date Ana	ılyzed: 1	0/27/06	
GC Column:	db-624	4 ID: 0.	18 (mm)		Dilution F	actor: 1	.0	
Soil Extract \	Volume		_ (uL)		Soil Aliqu	iot Volum	ne:	(uL)
				CONCEN	TRATION (	JNITS:		
Number TICs	s found:	0	_	(ug/L or u	g/Kg) <u>l</u>	JG/L		
CAS NO.		COMPOL	JND		RT	EST	. CONC.	Q

EPA SAMPLE NO.

Lab Name:	cas\roct	ו		Contract:	IT	m-338	
Lab Code:	10145	c	ase No.: <u>r6-34257</u>	SAS No.:	SI	DG No.: effluent	t
Matrix: (soil/\	water)	WATER	· ·	Lab	Sample ID:	947680 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab	File ID:	H3629.D	
Level: (low/r	ned)	LOW		Date	Received:	10/18/06	
% Moisture: ı	not dec.			Date	Analyzed:	10/27/06	
GC Column:	db-624	ID: 0	).18 (mm)	Dilut	ion Factor:	1.0	
Soil Extract \	/olume		(uL)	Soil	Aliquot Volu	me:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	0.2
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	UJ
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01 <b>-</b> 6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	Ų
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	Ū
541-73-1	1,3-DicIbenzene	1	U

	> 1-				0 4	. IT		1	m-33s	
Lab Name:	cas\roch				Contrac	t: <u>IT</u>		_		
Lab Code:	10145	Cas	se No.: <u>r6</u>	-34257	SASI	No.:	s	DG No.:	effluent	
Matrix: (soil/v	vater)	WATER	_		L	ab Sa	mple ID:	947680	1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>N</u>	IL	_ L	ab File	e ID:	H3629.E	)	
Level: (low/n	ned)	LOW	_		- · [	Date Re	eceived:	10/18/06	<u> </u>	
% Moisture: r	not dec.		_		C	Date Ar	nalyzed:	10/27/06	3	
GC Column:	db-624	ID: <u>0.1</u>	 18 (mm)	)	10	Dilution	Factor:	1.0		
Soil Extract V	/olume _		_ (uL)		S	Soil Alio	quot Volu	ıme:	·	(uL)
				CON	NCENTRA	ATION	UNITS:			
CAS NO	).	СОМРО	DUND		L or ug/K		UG/L	·	Q	
106-46	-7	1,4-Di	clbenzene		··· · · · · · · · · · · · · · · · · ·	<del> </del>		1	U	
95-50-			clbenzene			,		1	U	
96-12-8	3	1,2-Di	bromo-3-c	hloropr	opane	,		1	U	
120-82	-1	1,2,4-	Trichlorobe	enzene				1	U	
87-68-3	3	Hexac	hlorobutac	liene				1	U	
87-61-6	3	1,2,3-	Tcbenzene	)				1	U	

Lab Name:	cas\roch		Contract	: IT	m-	33s
Lab Code:	10145	Case No.: <u>r6-342</u>	257 SAS N	10.:	SDG No.: ef	fluent
Matrix: (soil/wa	ater) <u>WATE</u>	R_	L	ab Sampl	e ID: <u>947680 1.0</u>	<u> </u>
Sample wt/vol	: <u>25.0</u>	(g/ml) <u>ML</u>		ab File ID	: <u>H3629.D</u>	
Level: (low/m	ed) LOW			ate Recei	ved: 10/18/06	
% Moisture: no	ot dec.		Ç	ate Analy	zed: 10/27/06	
GC Column:	<u>db-624</u> ID:	<u>0.18</u> (mm)		ilution Fa	ctor: 1.0	
Soil Extract Vo	olume	(uL)	S	oil Aliquot	Volume:	(uL)
			CONCENTRA			
Number TICs f	found: 0		ug/L or ug/Ko	, 00	/ las	٠.
CAS NO.	COMF	POUND	·	RT	EST. CONC.	Q

Lab Name:	cas\roct	1		Contract: IT	m-331	
Lab Code:	10145	c	Case No.: <u>r6-34257</u>	SAS No.: SE	OG No.: effluent	
Matrix: (soil/v	water)	WATER		Lab Sample ID:	947681 1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>ML</u>	Lab File ID:	H3630.D	
Level: (low/n	ned)	LOW		Date Received:	10/18/06	
% Moisture: r	not dec.			Date Analyzed:	10/27/06	
GC Column:	db-624	ID: <u>(</u>	0.18 (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume _		(uL)	Soil Aliquot Volur	me:	(uL

	CONCENTRATIO	ON UNITS:	•	
COMPOUND	(ug/L or ug/Kg)	UG/L	<del>_</del>	Q
Chloromethane			1	U
Vinyl Chloride			1	U
Bromomethane			1	U
Chloroethane			1	U
Trichlorofluorom	ethane		1	U
1,1-Diclethene			1	U
Acetone			5	UJ
Carbon Disulfide	<b>)</b>		1	U
Methylene Chlor	ide		1	U
trans-1,2-Dichlor	oethene		1	U
1,1-Diclethane			1	U
cis-1,2-Dichloroe	ethene		1	U
			5	UT
Bromochloromet	hane		1	U
Chloroform			1	U
1,2-Dichloroetha	ne		1	U
1,1,1-Trichloroet	hane		1	U
			1	U
Benzene			1	U
Trichloroethene			1	U
			1	U
	ethane		1	U
cis-1,3-Dichlorop	ropene		1	U
4-Methyl-2-Penta	inone		5	U
Toluene			1	U
trans-1,3-Dichlor	opropene		1	U
			1	U
Tetrachloroethen	e		1	U
2-Hexanone			5	U
	ethane		1	U
			1	U
Chlorobenzene			1	U
			1	U
				U
			1	U
			1	U
	roethane			Ū
	110114			U
1,3-Diclbenzene			1	U
	Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluorom 1,1-Diclethene Acetone Carbon Disulfide Methylene Chlor trans-1,2-Dichloroe 2-Butanone (ME Bromochloromet Chloroform 1,2-Dichloroetha 1,1,1-Trichloroet Carbon tetrachlo Benzene Trichloroethene 1,2-Diclpropane Bromodichloromet cis-1,3-Dichloromethal 1,1,1-Trichloroethene 1,2-Diclpropane Bromodichloromethal Toluene trans-1,3-Dichloromethal Toluene trans-1,3-Dichloroethal 1,1,2-Trichloroethene 2-Hexanone Dibromochloromethal Chlorobenzene Ethylbenzene (m+p) Xylene o-Xylene Styrene 1,1,2,2-Tetrachloroethene	Compound (ug/L or ug/Kg)  Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Diclethene Acetone Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Diclethane cis-1,2-Dichloroethene 2-Butanone (MEK) Bromochloromethane Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Benzene Trichloroethene 1,2-Diclpropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-Pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane Chlorobenzene Ethylbenzene (m+p) Xylene o-Xylene Styrene 1,1,2,2-Tetrachloroethane Bromoform	Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Diclethene Acetone Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene 1,1-Diclethane cis-1,2-Dichloroethene 2-Butanone (MEK) Bromochloromethane Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloroethane cis-1,3-Dichloropropene 4-Methyl-2-Pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene ((m+p) Xylene o-Xylene Styrene 1,1,2,2-Tetrachloroethane Bromoform	Compound         (ug/L or ug/Kg)         UG/L           Chloromethane         1           Vinyl Chloride         1           Bromomethane         1           Chloroethane         1           Trichlorofluoromethane         1           1,1-Diclethene         1           Acetone         5           Carbon Disulfide         1           Methylene Chloride         1           trans-1,2-Dichloroethene         1           1,1-Diclethane         1           cis-1,2-Dichloroethene         1           2-Butanone (MEK)         5           Bromochloromethane         1           Chloroform         1           1,2-Dichloroethane         1           1,1,1-Trichloroethane         1           1,1,1-Trichloroethane         1           1,2-Diclpropane         1           1         1,2-Diclpropane         1           1         1,2-Diclpropane         1           2-Include trachloroethane         1           1         1,2-Diclpropane         1           1         1,1,2-Trichloroethane         1           1         1,1,2-Trichloroethane         1           1

EPA SAMPLE NO.

			m-33i	- 1
_ab Name: <u>_cas\r</u>	och	Contract: <u>IT</u>		
_ab Code: <u>1014</u>	5 Case No.: r6-342	57 SAS No.: S	DG No.: effluent	
Matrix: (soil/water)	WATER	Lab Sample ID:	947681 1.0	
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:	H3630.D	
_evel: (low/med)	LOW	Date Received:	10/18/06	
% Moisture: not de	c.	Date Analyzed:	10/27/06	
GC Column: db-	624 ID: 0.18 (mm)	Dilution Factor:	1.0	
Soil Extract Volum	e (uL)	Soil Aliquot Vol	ume:	(uL)
	C	ONCENTRATION UNITS:		
CAS NO.	COMPOUND (L	ıg/L or ug/Kg) <u>UG/L</u>	Q	
106-46-7	1,4-Diclbenzene		1 U	
95-50-1	1,2-Diclbenzene		1 U	
96-12-8	1,2-Dibromo-3-chloro	propane	1 U	
120-82-1	1,2,4-Trichlorobenzei	ne	1 U	

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3 87-61-6

EPA S	SAMPL	E NO
-------	-------	------

Lab Name: cas\roc	h	Contract: IT	m-33i
Lab Code: 10145	Case No.: r6-34257	SAS No.:SE	OG No.: effluent
Matrix: (soil/water)	WATER	Lab Sample ID:	947681 1.0
Sample wt/vol:	25.0 (g/ml) ML	_ Lab File ID:	H3630.D
Level: (low/med)	LOW	Date Received:	10/18/06
% Moisture: not dec.		Date Analyzed:	10/27/06
GC Column: db-624	4 ID: <u>0.18</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume	(uL)	Soil Aliquot Volur	me: (uL)
	со	NCENTRATION UNITS:	
Number TICs found:	0 (ug/	/L or ug/Kg) UG/L	
CAS NO.	COMPOUND	RT ES	T. CONC. Q

EPA SAMPLE NO.

Dilution Factor: 1.0

Soil Aliquot Volume: _____ (uL)

Lab Name:	cas\roch	1		Contract:	IT	- Swy
Lab Code:	10145	c	ase No.: <u>r6-34257</u>	SAS No	.: s	DG No.: effluent
Matrix: (soil/w	vater)	WATER	_	Lat	Sample ID:	947682 1.0
Sample wt/vo	ol:	25.0	(g/ml) ML	Lat	File ID:	H3631.D
Level: (low/m	ned)	LOW		Dat	te Received:	10/18/06
% Moisture: n	ot dec.			Dat	te Analyzed:	10/27/06

CONCENTRATION UNITS:

GC Column: <u>db-624</u> ID: <u>0.18</u> (mm)

Soil Extract Volume _____ (uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	υj
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	U/
74-97-5	Bromochloromethane	1	ບິ
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	Ū
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1	Ū
75-25-2	Bromoform	1	Ū
541-73-1	1,3-Diclbenzene	1	Ū

EPA SAMPLE NO
swg

Lab Name:	cas\rock	<u> </u>		Contract: IT	
Lab Code:	10145	c	Case No.: <u>r6-34257</u>	SAS No.:	SDG No.: effluent
Matrix: (soil/v	water)	WATER	<u></u>	Lab Sample	ID: <u>947682 1.0</u>
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab File ID:	H3631.D
Level: (low/n	ned)	LOW		Date Receiv	red: 10/18/06
% Moisture: r	not dec.			Date Analyz	ed: 10/27/06
GC Column:	db-624	ID: <u>(</u>	0.18 (mm)	Dilution Fact	tor: <u>1.0</u>
Soil Extract V	/olume _		(uL)	Soil Aliquot	Volume: (uL)
			201		

CAS NO.	COMPOUND (ug/L of ug/kg)	UG/L	Q
106-46-7	1,4-Diclbenzene	1	U
95-50-1	1,2-Diclbenzene	1	U
96-12-8	1,2-Dibromo-3-chloropropane	1	U
120-82-1	1,2,4-Trichlorobenzene	1	U
87-68-3	Hexachlorobutadiene	1	U
87-61-6	1,2,3-Tcbenzene	1	U

Lab Name: cas\roc	zh	Contract: IT	swg	
Lab Code: 10145	Case No.: <u>r6-3</u>	34257 SAS No.:	SDG No.: efflue	ent
Matrix: (soil/water)	WATER	Lab Sample	e ID: 947682 1.0	
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:	: <u>H3631.D</u>	
Level: (low/med)	LOW	Date Recei	ved: 10/18/06	
% Moisture: not dec.		Date Analya	zed: 10/27/06	
GC Column: db-62	4 ID: <u>0.18</u> (mm)	Dilution Fac	otor: 1.0	
Soil Extract Volume	(uL)	Soil Aliquot	Volume:	_ (uL)
		CONCENTRATION UN	ITS:	
Number TICs found:	0	(ug/L or ug/Kg) UG	<u>/L</u>	
CAS NO.	COMPOUND	RT	EST. CONC.	Q

EPA SAMPLE NO.

Lab Name:	cas\roch		Contract: I	т	sw-f
Lab Code:	10145	Case No.: r6-34257	SAS No.:	SDC	S No.: effluent

Matrix: (soil/water) WATER Lab Sample ID: 947683 1.0
Sample wt/vol: 25.0 (g/ml) ML Lab File ID: H3632.D

Level: (low/med) LOW Date Received: 10/18/06

% Moisture: not dec. Date Analyzed: 10/27/06

GC Column: db-624 ID: 0.18 (mm) Dilution Factor: 1.0

Soil Extract Volume (uL) Soil Aliquot Volume: (uL)

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	Ū
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	UD
75-15-0	Carbon Disulfide	. 1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	UJ
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	U

olc2.1

EPA	SAMPLE	NO.

								SW-T	
Lab Name:	cas\roch	)			Contract:	<u>IT</u>	_		
Lab Code:	10145	Cas	se No.: <u>r</u> e	3-34257	SAS No	.: S	DG No.:	effluent	
Matrix: (soil/	water)	WATER	_		Lat	Sample ID:	947683	1.0	
Sample wt/v	ol:	25.0	(g/ml) <u>N</u>	ИL	Lat	File ID:	H3632.	)	
Level: (low/i	med)	LOW			Dat	te Received:	10/18/0	6	
% Moisture:	not dec.		-	•	Dat	te Analyzed:	10/27/0	6	
GC Column:	db-624	ID: 0.1	8 (mm	1)	Dile	ution Factor:	1.0		
Soil Extract \	Volume		(uL)		Soi	l Aliquot Vol	ume:		(uL)
				CON	NCENTRAT	ION UNITS:			
CAS NO	<b>D</b> .	COMPO	DUND	(ug/l	L or ug/Kg)	UG/L	·	Q	
106-46	3-7	1.4-Di	clbenzene	<del></del>			1	U	
95-50-			clbenzene				1	U	
96-12-			bromo-3-		ppane		1	U	
120-82			Trichlorob				1	U	
1200			1-1				- 1	11	

87-61-6

olc2.1

Lab Name:	cas\roch	1		Contrac	t: IT			sw-f	
Lab Code:	10145	Ca	se No.: <u>r6-342</u>	 57_ SAS I	No.:	SD	G No.:	effluen	<u>t</u>
Matrix: (soil/v	water)	WATER		L	.ab Samp	le ID: 9	47683	1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	, L	.ab File IC	): <u>H</u>	13632.E	)	
Level: (low/r	ned)	LOW	-	- [	Date Rece	ived: 1	0/18/06	3	
% Moisture: r	not dec.				Date Analy	/zed: 1	0/27/06	3	
GC Column:	db-624	ID: 0.	18 (mm)		Dilution Fa	ctor: 1	.0		
Soil Extract \	/olume _		_ (uL)	S	Soil Aliquo	t Volum	e:		(uL)
Number TICs	found:	0	_	ONCENTRA		NITS: S/L			
CAS NO.		COMPOU	ND		RT	EST.	CONC	<b>.</b>	Q

#### 1A II ATII E ORGANICS ANA

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.	<b>EPA</b>	SAMI	PLE	NO.
----------------	------------	------	-----	-----

	VOLATILE ORGANICS AN			SHEET		sw-e		
Lab Name: <u>cas</u>	roch		Contract:	IT	_	sw-е 	J	
Lab Code: <u>101</u>	45 Ca	se No.: r6-34257	SAS No	.: 8	SDG No.:	effluent		
Matrix: (soil/wate	) WATER		Lab	Sample ID:	947684 1	.0		
		<del>-</del>						
Sample wt/vol:	25.0	(g/ml) ML	. Lac	File ID:	H3041.D	<del></del>		
Level: (low/med)	LOW		Dat	e Received:	10/18/06			
% Moisture: not d	ec.		Dat	e Analyzed:	10/27/06			
GC Column: db			Dilu	tion Factor:	1.0			
		<del></del>		Aliquot Vol	****	(ul		
Soil Extract Volur	.ie	_ (uL)		Allquot Vol	uiiic		-/	
		CON	ICENTRAT	ION UNITS:				
CACNO	COMP					Q		
CAS NO.	COMPC	OUND (ug/L	or ug/Kg)	UG/L		Q		
74-87-3	Chlore	methane			1	U		
75-01-4		Chloride			1	Ū		
74-83-9		methane			1	U		
75-00-3	Chloro	ethane			1	U		
75-69-4	Trichlo	orofluoromethane			1	U		
75-35-4	1,1-Di	clethene			1	U		
67-64-1	Acetor				5	UJ		
75-15-0		n Disulfide			1	U		
75-09-2		lene Chloride			1	U		
156-60-5		1,2-Dichloroethene	)		1	U		
75-34-3		clethane			1	U		
156-59-2		-Dichloroethene			<u>1</u> 5	UU		
78-93-3		none (MEK)	<del></del>		1	U		
74-97-5	Chloro	chloromethane			1	U		
67-66-3		chloroethane			1	U		
107-06-2 71-55-6		richloroethane			1	U		
56-23-5		n tetrachloride			0.74		3211	
71-43-2	Benzei				1	Ū		
79-01-6		roethene			1	U		
78-87-5		propane			1	U		
75-27-4		dichloromethane			1	U		
10061-01-5		-Dichloropropene			1	U		
108-10-1	4-Meth	yl-2-Pentanone			5	U		
108-88-3	Toluen	е			1	U		
10061-02-6	trans-1	,3-Dichloropropen	е		1	U		
79-00-5	1,1,2-T	richloroethane			1	U		
127-18-4	Tetrach	nloroethene			1	U		
591-78 <b>-</b> 6	2-Hexa				5	U		
124-48-1		ochloromethane			1	U		
106-93-4		romoethane			1	U		
108-90-7		penzene			11	U		
100-41-4	Ethylbe				1	U		
136777-61-2					1	U		
95-47-6	o-Xylen				1	U		
100-42-5	Styrene				1	U		
79-34-5		<u>Tetrachloroethan</u>	<u>e                                      </u>		1	U		
75-25-2	Bromof				1	U		
541-73-1	1,3-Dic	lbenzene			1	U		

Lab Name:	cas\roch				Contract:	IT		_	sw-e	
Lab Code:	10145	Ca	se No.: <u>r6-</u> :	34257	SAS N	o.:	s	DG No.:	effluent	
Matrix: (soil/v	water)	WATER	_		La	b Sa	mple ID:	947684	1.0	
Sample wt/vo	ol:	25.0	(g/ml) Mi	-	La	b File	e ID:	H3647.E	)	
Level: (low/r	ned)	LOW			Da	ate R	eceived:	10/18/06	3	
% Moisture: ı	not dec.		<del></del>		Da	ite Ai	nalyzed:	10/27/06	3	
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		Di	lution	Factor:	1.0		
Soil Extract \	/olume _		_ (uL)		So	il Ali	quot Volu	ıme:		(uL)
				CON	ICENTRA	TION	UNITS:			
CAS NO	),	COMP	DUND	(ug/l	or ug/Kg)	)	UG/L		Q	
106-46	-7	1,4-Di	iclbenzene					1	U	
95-50-	1	1,2-Di	iclbenzene					1	U	
96-12-	В	1,2-Di	ibromo-3-ch	loropro	pane			1	U	
120-82	-1	1,2,4-	Trichlorobe	nzene				11	U	
87-68-3	3	Hexad	chlorobutadi	ene				1	U	
87-61-6	3	1,2,3-	Tcbenzene					1	U	

								1	sw-e	- 1
Lab Name:	cas\roch	<u> </u>			Contrac	ct: <u>IT</u>				
Lab Code:	10145	Ca	se No.: <u>r6-</u> 3	34257	SAS	No.:	SE	OG No.:	effluen	<u>t</u>
Matrix: (soil/	water)	WATER	_			Lab Samp	le ID:	947684	1.0	
Sample wt/vo	oi:	25.0	(g/ml) <u>Ml</u>	-		Lab File I	):	H3647.E	)	
Level: (low/r	ned)	LOW	<u>-</u>			Date Rece	eived:	10/18/06	·	
% Moisture: ı	not dec.					Date Anal	yzed:	10/27/06	<b>i</b>	
GC Column:	db-624	ID: <u>0.</u>	18 (mm)			Dilution Fa	actor:	1.0		
Soil Extract \	/olume _		_ (uL)			Soil Aliquo	t Volu	me:		(uL)
Number TICs	s found:	0	_		CENTR	RATION UI	NITS: G/L			
CAS NO.		COMPOL	IND			RT	ES	T. CONC	<b>:</b> .	Q

EPA SAMPLE NO.

Lab Name:	cas\roch	1			Contract:	IT	m-25d
Lab Code: 10145 Case		ase No.: <u>r6</u>	-34257	SAS No.: S		DG No.: effluent	
Matrix: (soil/v	water)	WATER			Lab	Sample ID:	947685 5.0
Sample wt/vol:		25.0	(g/ml) <u>N</u>	<u>1L</u>	Lab	File ID:	H3648.D
Level: (low/n	ned)	LOW			Dat	e Received:	10/18/06
% Moisture: r	not dec.				Dat	e Analyzed:	10/27/06
GC Column:	db-624	ID: <u>0</u>	).18 (mm	)	Dilu	ition Factor:	1.0 5.0 BAIL/15
Soil Extract V	/olume _	·	(uL)		Soil	Aliquot Volu	me: (uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	5	U
75-01-4	Vinyl Chloride	5	Ū
74-83-9	Bromomethane	5	U
75-00-3	Chloroethane	5	U
75-69-4	Trichlorofluoromethane	5	U
75-35-4	1,1-Diclethene	5	U
67-64-1	Acetone	25	U
75-15-0	Carbon Disulfide	5	U
75-09-2	Methylene Chloride	5	U
156-60-5	trans-1,2-Dichloroethene	5	U
75-34-3	1,1-Diclethane	5	U
156-59-2	cis-1,2-Dichloroethene	1	J
78-93-3	2-Butanone (MEK)	25	UJ
74-97-5	Bromochloromethane	5	U
67-66-3	Chloroform	7	
107-06-2	1,2-Dichloroethane	5	U
71-55-6	1,1,1-Trichloroethane	5	U
56-23-5	Carbon tetrachloride	71	
71-43-2	Benzene	5	U
79-01-6	Trichloroethene	22	
78-87-5	1,2-Diclpropane	5	U
75-27-4	Bromodichloromethane	5	U
10061-01-5	cis-1,3-Dichloropropene	5	U
108-10-1	4-Methyl-2-Pentanone	25	U
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	U
79-00-5	1,1,2-Trichloroethane	5	U
127-18-4	Tetrachloroethene	5	U
591-78-6	2-Hexanone	25	U
124-48-1	Dibromochloromethane	5	U
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
100-41-4	Ethylbenzene	5	U
136777-61-2	(m+p) Xylene	5	U
95-47-6	o-Xylene	5	U
100-42-5	Styrene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
75-25-2	Bromoform	5	U
541-73-1	1,3-Diclbenzene	5	Ū

EPA SAMPLE NO.

Lab Name:	cas\roch	1			Contract: IT		,	n-25ď	
Lab Čode:	10145	Ca	se No.:	r6-34257	SAS No.:	SI	DG No.:	effluent	
Matrix: (soil/	water)	WATER	_		Lab S	ample ID:	947685	 5.0	_
Sample wt/v	ol:	25.0	(g/ml)	ML	Lab F	ile ID:	H3648.E	)	
_evel: (low/r	ned)	LOW			Date F	Received:	10/18/06	,	
% Moisture:	not dec.		•		Date A	Analyzed:	10/27/06		
GC Column:	db-624	ID: 0.1	 18 (m:	m)		n Factor:		344/15	
Soil Extract Volume			(uL)			Iiquot Volui			(uL)
				CON	ICENTRATIO	N UNITS:			
CAS NO	).	COMPO	DUND	(ug/L	or ug/Kg)	UG/L		Q	
106-46	-7	1,4-Di	clbenzer	ne			5	U	7
95-50-	1		clbenzen				5	Ū	7
96-12-8	3			-chloropro	pane		5	Ü	7
120-82	-1			benzene			5	U	1
87-68-3	3	Hexac	hlorobut	adiene			5	U	1

1,2,3-Tcbenzene

87-68-3 87-61-6

								1 n	n-25d	1
Lab Name:	cas\roch				Contrac	ot: <u>IT</u>				
Lab Code:	10145	Ca	ase No.:	r6-34257	SAS	No.:	SD	G No.:	effluen	t
Matrix: (soil/w	/ater)	WATER				Lab Samp	ole ID: 9	47685	5.0	
Sample wt/vo	1:	25.0	_ (g/ml)	ML	_	Lab File II	D: <u>F</u>	H3648.D	)	
Level: (low/m	ned)	LOW	_			Date Rec	eived: 1	0/18/06	i	
% Moisture: n	ot dec.				!	Date Anal	yzed: <u>1</u>	0/27/06		
GC Column:	db-624	ID: <u>0</u>	.18 (m	m)		Dilution F	actor: 1	ha 50	344	15
Soil Extract V	olume _		(uL)		;	Soil Alique	ot Volum	ne:		(uL)
Number TICs	found:	0			NCENTR L or ug/h	(g) U	NITS: G/L			
CAS NO.		COMPO	JND			RT	EST	. CONC		Q

EPA SAMPLE NO.

Lab Name:	cas\roch				Contract: IT		4d	
Lab Code:	10145	Ca	ase No.: <u>r6-3</u>	4257	SAS No.:	SD	G No.: effluent	
Matrix: (soil/wa	ater)	WATER	_		Lab Sa	mple ID: 9	947686 1.0	
Sample wt/vol	l: _	25.0	(g/ml) ML		Lab Fil	e ID: <u>H</u>	H3649.D	
Level: (low/m	ed)	LOW	_		Date R	eceived: 1	10/18/06	
% Moisture: no	ot dec.				Date A	nalyzed: 1	10/27/06	
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		Dilutior	Factor: 1	1.0	
Soil Extract Vo	olume _	-	(uL)		Soil Ali	quot Volum	ne:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	UJ
75-15-0	Carbon Disulfide	. 1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	U
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	U
95-47-6	o-Xylene	1	U
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1 1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	Ü

EPA SAMPLE NO.

1

1

1

U

U

U

			1 40 1
Lab Name: cas\roch		Contract: IT	74
Lab Code: 10145	_ Case No.: <u>r6-34257</u>	SAS No.: SD	G No.: effluent
Matrix: (soil/water) <u>W</u>	/ATER	Lab Sample ID: 9	947686 1.0
Sample wt/vol: 25	5.0 (g/ml) ML	Lab File ID: <u>F</u>	13649.D
_evel: (low/med)	OW	Date Received: 1	10/18/06
% Moisture: not dec.		Date Analyzed: 1	0/27/06
GC Column: db-624	ID: <u>0.18</u> (mm)	Dilution Factor: 1	.0
Soil Extract Volume	(uL)	Soil Aliquot Volum	ne: (uL)
	CON	ICENTRATION UNITS:	
CAS NO.	COMPOUND (ug/L	or ug/Kg) UG/L	Q
106-46-7	1,4-Diclbenzene		1 U
95-50-1	1,2-Diclbenzene		1 U

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

Hexachlorobutadiene

1,2,3-Tcbenzene

96-12-8

120-82-1

87-68-3

87-61-6

TENTATIVELY IDENTIFIED COMPOUNDS

								1	4d	ĺ
Lab Name:	cas\rocl	<u>h</u>			Contrac	t: <u>IT</u>	·	_		
Lab Code:	10145		Case No.:	r6-34257	SAS	No.:	s	DG No.:	effluent	<u>t</u>
Matrix: (soil/v	vater)	WATE	R		l	ab S	ample ID:	947686	1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML		ab F	ile ID:	H3649.	<u> </u>	
Level: (low/m	ned)	LOW	nic Sulfranscomme		. [	Date F	Received:	10/18/06	3	
% Moisture: n	ot dec.				[	Date A	Analyzed:	10/27/06	3	
GC Column:	db-624	ID:	<u>0.18</u> (m	im)	ב	Dilutio	n Factor:	1.0		
Soil Extract V	olume .		(uL)		5	Soil A	liquot Volu	me:		(uL)
				CON	NCENTRA	ATIO	N UNITS:			
Number TICs	found:	0		(ug/l	L or ug/K	g)	UG/L	··-	•	
CAS NO.		COMP	OUND			R	T ES	T. CONC	<b>5</b> .	Q

EPA SAMPLE NO.

ab Name:	cas\roch	1		Contract:	IT	swd	
_ab Code:	10145	Ca	se No.: <u>r6-342</u>		o.: s	DG No.: effluent	t
Matrix: (soil/	water)	WATER		Lal	Sample ID:	947687 1.0	
Sample wt/v	ol:	25.0	(g/ml) ML	Lal	File ID:	H3650.D	
_evel: (low/r	med)	LOW	· -	Da	te Received:	10/18/06	
% Moisture:	not dec.			Da	te Analyzed:	10/27/06	
GC Column:	db-624	ID: <u>0.1</u>	18 (mm)	Dil	ution Factor:	1.0	
Soil Extract \	Volume		(uL)	Soi	l Aliquot Volu	me.	(ul

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q	
74-87-3	Chloromethane			U	7
75-01-4	Vinyl Chloride		1	Ü	-
74-83-9	Bromomethane	<del></del>	1	Ü	1
75-00-3	Chloroethane		1	Ü	-
75-69-4	Trichlorofluoromethane		1	U	-
75-09-4 75-35-4	1,1-Diclethene		1	U	-
67-64-1	Acetone		2	J	-
75-15-0	Carbon Disulfide		1	Ü	4
75-13-0 75-09-2	Methylene Chloride		1	Ü	1
156-60-5	trans-1,2-Dichloroethene		1	Ü	1
75-34-3	1,1-Diclethane		1	Ü	1
156-59-2	cis-1,2-Dichloroethene		1	Ü	<u>.</u>
78-93-3	2-Butanone (MEK)		5	<u> </u>	<b>†</b>
74-97-5	Bromochloromethane		1		†
67-66-3	Chloroform		1	Ü	
107-06-2	1,2-Dichloroethane		1	U U	
71-55-6	1,1,1-Trichloroethane		1	U	<u>!</u> !
56-23-5	Carbon tetrachloride		0.30	J	BANIS
71-43-2	Benzene		1	<del>U</del>	Wr. Tr
79-01-6	Trichloroethene		1	U U	<u> </u>
78-87-5	1,2-DicIpropane	<del>-  </del>	1	U	
75-27-4	Bromodichloromethane		1	U	
10061-01-5	cis-1,3-Dichloropropene		1	Ü	
108-10-1	4-Methyl-2-Pentanone		5	Ü	
	Toluene		1	Ü	
108-88-3	trans-1,3-Dichloropropene		1	U	
10061-02-6			1	Ü	
79-00-5	1,1,2-Trichloroethane Tetrachloroethene			U	
127-18-4			5	U	
591-78-6	2-Hexanone			U	
124-48-1	Dibromochloromethane		1	U	
106-93-4	1,2-Dibromoethane		1		
108-90-7	Chlorobenzene		1	U	
100-41-4	Ethylbenzene		1	U	
136777-61-2	(m+p) Xylene		1	U	
95-47-6	o-Xylene		1	U	
100-42-5	Styrene	-	1	U	
79-34-5	1,1,2,2-Tetrachloroethane		1	U	
75-25-2	Bromoform	1	1 +	U	
541-73-1	1,3-Diclbenzene	!	1	U	

EPA SAMPLE NO.

	•							swd	ļ
Lab Name:	cas\roch				Contract: IT		L		
Lab Code:	10145	Cas	se No.: <u>r6-</u>	34257	SAS No.:	si	OG No.:	effluent	
Matrix: (soil/	water)	WATER			Lab Sai	nple ID:	947687	1.0	
Sample wt/v	ol:	25.0	(g/ml) Mi	L	Lab File	D:	H3650.E	<u> </u>	
Level: (low/i	med)	LOW	_		Date Re	eceived:	10/18/06	3	
% Moisture:	not dec.		•		Date Ar	nalyzed:	10/27/06	3	
GC Column:	db-624	ID: 0.1	18 (mm)		Dilution	Factor:	1.0		
Soil Extract \	Volume		(uL)		Soil Alic	quot Volu	me:		(uL)
				CON	NCENTRATION	UNITS:			
CAS NO	D.	COMPO	DUND	(ug/l	L or ug/Kg)	UG/L		Q	
106-46	6-7	1,4-Di	clbenzene			Τ	1_	U	
95-50-			clbenzene				1	U	
96-12-			bromo-3-ct	nloropr	opane		1	U	
120-82			Trichlorobe				1	U	_
87-68-			chlorobutad				1_	U	_

1,2,3-Tcbenzene

87-61-6

COMPOUND

CAS NO.

## TENTATIVELY IDENTIFIED COMPOUNDS

		TENTAT	IVELY IDEN	TIFIED C	OMPOUND	S		
Lab Name:	cas\roch	<u> </u>		Co	ontract: IT		swd	
Lab Code:	10145	Ca	se No.: <u>r6-3</u>	4257	SAS No.: _	SI	OG No.: effluen	<u>it</u>
Matrix: (soil/v	water)	WATER	<b></b>		Lab Sa	mple ID:	947687 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		Lab Fil	e ID:	H3650.D	-
Level: (low/n	ned)	LOW	_		Date R	eceived:	10/18/06	
% Moisture: r	not dec.				Date A	nalyzed:	10/27/06	•
GC Column:	db-624	ID: <u>0.</u>	18 (mm)		Dilution	Factor:	1.0	_
Soil Extract \	/olume _		_ (uL)		Soil Ali	quot Volu	me:	(uL)
				CONC	ENTRATION	UNITS:		
Number TICs	found:	0	_	(ug/L o	ug/Kg)	UG/L	·	
,							!	

EPA SAMPLE NO.

EST. CONC.

RT

EPA SAMPLE NO.

Lab Name:	cas\roch	1			Contract:	IT	trip bik	
Lab Code:	10145		Case No.:	r6-34257	SAS No	.: s	DG No.: effluen	t
Matrix: (soil/v	water)	WATER	₹		Lat	Sample ID:	947688 1.0	
Sample wt/vo	ol:	25.0	(g/ml)	ML.	Lab	File ID:	H3651.D	
Level: (low/r	ned)	LOW			Dat	e Received:	10/18/06	
% Moisture: r	not dec.				Dat	e Analyzed:	10/27/06	
GC Column:	db-624	ID:	<u>0.18</u> (m	nm)	Dilu	ution Factor:	1.0	
Soil Extract V	/olume	-	(uL)		Soi	l Aliquot Volu	ıme:	(uL)

		CONCENTRATIO	און אוט אוכ:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane			1	U
75-01-4	Vinyl Chloride			1	U
74-83-9	Bromomethane			1	U
75-00-3	Chloroethane			1	U
75-69-4	Trichlorofluorom	ethane		1	U
75-35-4	1,1-Diclethene			1	U
67-64-1	Acetone			5	UT
75-15-0	Carbon Disulfide			1	U
75-09-2	Methylene Chlor			1	U
156-60-5	trans-1,2-Dichlor			1	U
75-34-3	1,1-Diclethane			1	U
156-59-2	cis-1,2-Dichloroe	thene		1	Ū
78-93-3	2-Butanone (MEI			5	U.T
74-97-5	Bromochloromet			1	U
67-66-3	Chloroform			1	U
107-06-2	1,2-Dichloroetha	ne		1	U
71-55-6	1,1,1-Trichloroetl			1	U
56-23-5	Carbon tetrachlo			1	U
71-43-2	Benzene			1	U
79-01-6	Trichloroethene			1	U
78-87-5	1,2-Diclpropane			1	U
75-27-4	Bromodichlorome	ethane		1	U
10061-01-5	cis-1,3-Dichlorop			1	U
108-10-1	4-Methyl-2-Penta			5	U
108-88-3	Toluene			1	U
10061-02-6	trans-1,3-Dichloro	propene		1	U
79-00-5	1,1,2-Trichloroeth			1	U
127-18-4	Tetrachloroethen			1	U
591-78-6	2-Hexanone			5	U
124-48-1	Dibromochlorome	ethane		1	Ü
106-93-4	1,2-Dibromoethar			1	U
108-90-7	Chlorobenzene			1	Ū
100-41-4	Ethylbenzene			1	Ū
136777-61-2	(m+p) Xylene			1 1	Ū
95-47-6	o-Xylene			1	U
100-42-5	Styrene			1	Ü
79-34-5	1,1,2,2-Tetrachlor	nethane		1	U
75-25-2	Bromoform	COUNTRY		1	Ü
541-73-1	1,3-Diclbenzene			1	U

EPA SAMPLE NO.

Lab Name:	cas\roch				Contrac	xt: 17	г	t	rip blk	
Lab Code:	10145	Cas	se No.: r6-	34257	SAS	No.:	s	- DG No.:	effluent	
Matrix: (soil/	water) <u>\</u>	NATER				Lab S	Sample ID:	947688	1.0	
Sample wt/vo	ol: <u>2</u>	25.0	(g/ml) M	L		Lab F	ile ID:	H3651.E	)	
Level: (low/r	ned) L	_OW				Date	Received:	10/18/06	3	
% Moisture:	not dec.				l	Date .	Analyzed:	10/27/06	3	
GC Column:	db-624	ID: 0.1	8 (mm)	)		Dilutio	on Factor:	1.0		
Soil Extract \	/olume		(uL)		;	Soil A	diquot Volu	ıme:		(uL)
				CON	ICENTR	ATIO	N UNITS:			
CAS NO	).	COMPO	DUND	(ug/L	or ug/K	(g)	UG/L		Q	
106-46	6-7	1,4-Di	clbenzene					1	U	
95-50-	1	1,2-Di	cibenzene					11	U	
96-12-	8	1,2-Di	bromo-3-cl	hloropro	pane			1	U	
120-82	!-1	1,2,4-	Trichlorobe	nzene				1	U	
87-68-	3	Hexac	hlorobutad	liene				1	U	

1,2,3-Tcbenzene

87-68-3 87-61-6

Lab Name:	cas\roch	1			Contrac	ct:	iΤ		t	rip blk	
Lab Code:	10145	Ca	se No.: <u>r6-3</u> 4	4257	SAS	No	.:	_ s	DG No.:	effluen	t
Matrix: (soil/	water)	WATER				Lab	Sample	ID:	947688	1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML		_	Lab	File ID:		H3651.E	)	
Level: (low/r	ned)	LOW	_			Dat	e Receiv	ed:	10/18/06	3	
% Moisture: r	not dec.				ĺ	Dat	e Analyz	ed:	10/27/06	 6	
GC Column:	db-624	ID: _0.	18 (mm)		1	Dilu	tion Fac	tor:	1.0		
Soil Extract \	/olume _		(uL)		;	Soil	Aliquot	Volu	me:		(uL)
				CON	ICENTR	AT	ION UNI	TS:			
Number TICs	found:	0	-	(ug/L	. or ug/K	(g)	UG/	L	<del></del> .		
CAS NO.		COMPOU	IND				RT	ES	T. CONC	<b>)</b> .	Q

# 2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	cas\roch		Contract:	IT	
Lab Code:	10145	Case No.: r6-34257	SAS No	.: SDG No.:	effluent

	EPA	SMC1	TOT
	SAMPLE NO.	#	OUT
01	LCS1	96	0
02	MET BLK1	97	0
03	EFFLUENT	99	0
04	INFLUENT	99	0
05	DUPE A	100	0
06	M-14D	98	0
07	M-27D	100	0
08	TRIP BLK	100	0
09	DGC-4S	102	0
10	DGC-3S	100	0
11[	M-29D	100	0
12	DUP-C	99	0
13	M-24D	98	0
14	M-11D	100	0
15	M-33S	103	0
16	M-33I	102	0
17	SWG	101	0
18	SW-F	99	0
19	LCS2	94	0
20	MET BLK2	94	0
21	SW-B	94	0
22	SW-A	94	0
23	INFLUENTMS	102	0
24	INFLUENTMS		0
25	DUP-C DL	98	0
26	SW-E	98	0
27	M-25D	98	0
28	4D	96	0
29	SWD	96	0
30	TRIP BLK	95	0
31	M-11DMS	99	0
32	M-11DMSD	96	0
33	COOLER BLK	96	0

SMC1 = SURR2,BFB

QC LIMITS (80-120)

# Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

## METALS COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Contract: R2634	1257					SDG No.:	EFFL	JENT
ab Code:		Case No.:	•	•		SAS No.:		
SOW No.: CLP ILMS	5.3	Client:	Shaw En	vironmental				•
								<del>-                                    </del>
	Sample No.			Lab Sample	e ID.			Terror and the second s
	M-13D			946930				
•	M-27D		·	946931				
	SW-B			946932				•
	DUP-B			946936				•
•					•			
							•	
•								•
					•			
·			•			٠.,		•
					•		· .	
•		٠						
	٠							
	•							
•	•							
•			•	•• •	•			
	•					·		
Were ICP intere	lement correction	ons applied	<b>i?</b>			Yes/No	YES	•
	ound corrections					Yes/No	YES	
If yes-were applicatio	e raw data gener n of background	ated befor correction	re ns?			Yes/No	NO	
	· ·				• •	•		
Comments: See 1	Attached Case Na	rrative		· ·		. :		·
				· · · · · · · · · · · · · · · · · · ·				<u> </u>
				:				<u> </u>
				,				
						*		
T certify that 1	this data packag	e is in co	mpliance	with the	terms and o	condition	s of t	:he
contract, both	technically and	for comple	teness,	for other	than the co	onditions	detai	.led
above. Release	of the data con	tained in	this har	dcopy data	package a	nd in the		
computer-readabl	le data submitte	d on diske	tte has	been author	rized by the	he Labora	tory 1	fanager or
the Manager's de	esign <b>ee</b> , as veri	fied by th	e follow	ing signat	ure.			
					Λ Λ	. ^ .		•
m //	1 //X / -	•		. M∧.~	Charles I	Port-1		
Signature: //k/h	my 4 ferry		Name	: 1146	MUKX F	new/	· · · · · · · · · · · · · · · · · · ·	
	ulzalar		Titl	<i>f</i>	had t	M 0 10 0000		8
Date:	42406		Titl	e: <u> </u>	TO SUUCCE	<u>manage</u>	<i>V</i>	8

-1-

#### **INORGANIC ANALYSIS DATA SHEET**

SAMPLE	NO.	 
DUP-B		

Contract: R2634257

ab Code:

Case No.:

SAS No.:

SDG NO.:

EFFLUENT

fatrix (soil/water): WATER

Lab Sample ID: 946936

Level (low/med):

LOW

Date Received: 10/18/06

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	С	Q _.	M
7440-47-3	Chromium	15.9			P

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

COLORLESS Color After:

Clarity After:

CLEAR

Artifacts:

-1-

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

M-13D

Contract: R2634257

lab Code:

Case No.:

SAS No.:

SDG NO.: EFFLUENT

fatrix (soil/water):

WATER

Lab Sample ID: 946930

Level (low/med):

Date Received: 10/18/06

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	С	Q	М
7440-47-3	Chromium	17.1			P

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

Clarity After: COLORLESS

**CLEAR** 

Artifacts:

#### INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.	
M-27D		

Contract: R2634257

Case No.:

SAS No.:

SDG NO.: EFFLUENT

fatrix (soil/water):

WATER

Lab Sample ID: 946931

.evel (low/med):

ab Code:

LOW

Date Received: 10/18/06

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	С	Q	M
7440-47-3	Chromium	1.7	В	4	P

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

Color After: COLORLESS

Clarity After:

CLEAR

Artifacts:

-1-

#### INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

SW-B

:ontract: R2634257

ab Code:

Case No.:

SAS No.:

SDG NO.: EFFLUENT

latrix (soil/water): WATER

Lab Sample ID: 946932

evel (low/med):

Date Received: 10/18/06

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	С	Q.	М
7440-47-3	Chromium	0.70	ש	1	P

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

Color After: COLORLESS

Clarity After:

CLEAR

Artifacts:

Reported: 11/17/06

Shaw Environmental

Project Reference: GE-MRFA PROJECT #810066-02000000 Client Sample ID : M-13D

Date Sampled: 10/16/06 13:40
Date Received: 10/18/06 Su

Order #: 946930

Sample Matrix: WATER

		-					
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
HEXAVALENT CHROMIUM	7196A	0.0100	0.0142	MG/L	10/17/06	12:05	1.0

Reported: 11/17/06

Shaw Environmental

Project Reference: GE-MRFA PROJECT #810066-02000000

Client Sample ID : M-27D

Date Sampled : 10/16/06 14:35 Date Received: 10/18/06

Order #: 946931

Sample Matrix: WATER

	•						
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
HEXAVALENT CHROMIUM	7196A	0.0100	0.0100 U	MG/L	10/17/06	12:05	1.0

Reported: 11/17/06

Shaw Environmental

Project Reference: GE-MRFA PROJECT #810066-02000000

Client Sample ID : SW-B

Date Sampled : 10/16/06 15:05 Date Received: 10/18/06 Order #: 946932 Sample Matrix: WATER

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
HEXAVALENT CHROMIUM	7196A	0.0100	0.0100 U	MG/L	10/17/06	12:05	1.0

Reported: 11/17/06

Shaw Environmental

Project Reference: GE-MRFA PROJECT #810066-02000000

Client Sample ID : DUP-B

Date Sampled: 10/16/06 Date Received: 10/18/06 Order #: 946936 Sample Matrix: WATER

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZED	DILUTION
HEXAVALENT CHROMIUM	7196A	0.0100	0.0100 U	MG/L	10/17/06 12:05	1.0

#### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	cas\roch		Contract:	IT		
Lab Code:	10145	Case No.: <u>r6-34257</u>	SAS No	.:	SDG No.:	effluent

Matrix Spike - EPA Sample No.: Ics1

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Vinyl Chloride	5.0	0.0	5.0	100	60 - 140
1,2-Dichloroethane	5.0	0.0	4.7	94	60 - 140
Carbon tetrachloride	5.0	0.0	4.9	98	60 - 140
Benzene	5.0	0.0	5.0	100	60 - 140
Trichloroethene	5.0	0.0	5.1	102	60 - 140
1,2-Diclpropane	5.0	0.0	5.0	100	60 - 140
cis-1,3-Dichloropropene	5.0	0.0	5.1	102	60 - 140
1,1,2-Trichloroethane	5.0	0.0	5.2	104	60 - 140
Tetrachloroethene	5.0	0.0	5.0	100	60 - 140
1,2-Dibromoethane	5.0	0.0	5.0	100	60 - 140
Bromoform	5.0	0.0	4.9	98	60 - 140
1,4-Diclbenzene	5.0	0.0	5.2	104	60 - 140

# Column to be used to flag recovery and RPD values with an asterisk

RPD: 12 out of 12 outside limits

Spike Recovery: 12 out of 24 outside limits

COMMENTS:	

^{*} Values outside of QC limits

EPA SAMPLE NO.

Lab Name:	cas\roch	<u> </u>		Contract: IT	ICS1
Lab Code:	10145	(	Case No.: <u>r6-34257</u>	7 SAS No.:	SDG No.: effluent
Matrix: (soil/v	vater)	WATER		Lab Sample II	D: 956185 1.0
Sample wt/vo	ol:	25.0	(g/ml) ML	_ Lab File ID:	H3612.D
Level: (low/n	ned)	LOW		Date Receive	d:
% Moisture: r	not dec.			Date Analyzed	d: 10/26/06
GC Column:	db-624	ID: <u>(</u>	0.18 (mm)	Dilution Facto	r: <u>1.0</u>
Soil Extract V	olume _		(uL)	Soil Aliquot Vo	olume: (uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	5	
75-01-4	Vinyl Chloride	5	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	5	
75-35-4	1,1-Diclethene	5	
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Diclethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone (MEK)	5	Ū
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	5	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon tetrachloride	5	
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	
78-87-5	1,2-Diclpropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
136777-61-2	(m+p) Xylene	10	
95-47-6	o-Xylene	5	
100-42-5	Styrene	5	. ,
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25-2	Bromoform	5	
541-73-1	1,3-Diclbenzene	5	

EPA	SAMP	LE	NO.

Lab Name: cas\roch	1	Contract: IT	lcs1	
Lab Code: 10145	Case No.: r6-3425		DG No.: effluent	
Matrix: (soil/water)	WATER	Lab Sample ID:	956185 1.0	
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:	H3612.D	
Level: (low/med)	LOW	Date Received:		
% Moisture: not dec.		Date Analyzed:	10/26/06	
GC Column: db-624	ID: 0.18 (mm)	Dilution Factor:	1.0	
Soil Extract Volume	(uL)	Soil Aliquot Vol	ume:	(uL)
	Co	ONCENTRATION UNITS:		
CAS NO.	COMPOUND (u	g/L or ug/Kg) UG/L	Q	
106-46-7	1,4-Diclbenzene		5	
95-50-1	1,2-DicIbenzene		5	
96-12-8	1,2-Dibromo-3-chloro	oropane	4	
120-82-1	1,2,4-Trichlorobenzen	е	5	
87-68-3	Hexachlorobutadiene		5	

1,2,3-Tcbenzene

87-61-6

## 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: cas\roch Contract: IT

Lab Code: 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent

Matrix Spike - EPA Sample No.: Ics2

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Vinyl Chloride	5.0	0.0	4.8	96	60 - 14
1,2-Dichloroethane	5.0	0.0	4.7	94	60 - 14
Carbon tetrachloride	5.0	0.0	4.5	90	60 - 14
Benzene	5.0	0.0	4.7	94	60 - 14
Trichloroethene	5.0	0.0	4.7	94	60 - 14
1,2-Dicipropane	5.0	0.0	4.6	92	60 - 14
cis-1,3-Dichloropropene	5.0	0.0	4.9	98	60 - 14
1,1,2-Trichloroethane	5.0	0.0	4.7	94	60 - 14
Tetrachloroethene	5.0	0.0	4.6	92	60 - 14
1,2-Dibromoethane	5.0	0.0	4.9	98	60 - 14
Bromoform	5.0	0.0	4.9	98	60 - 14
1,4-Diclbenzene	5.0	0.0	4.6	92	60 - 14

# Column to be used to flag recovery and RPD values with an asterisk

RPD: 12 out of 12 outside limits

Spike Recovery: 12 out of 24 outside limits

**COMMENTS:** 

^{*} Values outside of QC limits

EPA SAMPLE NO.

•					ICS2	- 1
_ab Name:	cas\rocl	h	Contract: IT			
_ab Code:	10145	Case No.: r6-	34257 SAS No.: _	SD	G No.: effluent	
Matrix: (soil/	water)	WATER	Lab Sa	ample ID: 9	956191 1.0	
Sample wt/v	ol:	5.0 (g/ml) MI	LLab Fil	le ID: <u>F</u>	13640.D	
_evel: (low/r	med)	LOW	Date R	Received: _		
% Moisture:	not dec.		Date A	nalyzed: 1	0/27/06	
GC Column:	db-62	4 ID: <u>0.18</u> (mm)	Dilution	n Factor: 1	1.0	
Soil Extract \	Volume	(uL)	Soil Al	iquot Volum	ne:	(uL

CAS NO.	COMPOUND (ug/L or ug/Kg)		Q
74-87-3	Chloromethane	5	
75-01-4	Vinyl Chloride	5	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	5	
75-35-4	1,1-Diclethene	5	
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	Ū
75-19-0 75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Diclethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone (MEK)	5	U
74-97-5	Bromochloromethane	4	
67-66-3	Chloroform	5	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon tetrachloride	4	
71-43-2	Benzene	5	
79-01-6	Trichloroethene	5	
78-87-5	1,2-Diclpropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	4	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
136777-61-2	(m+p) Xylene	9	
95-47-6	o-Xylene	4	
100-42-5	Styrene	4	
79-34-5	1,1,2,2-Tetrachloroethane	5	
75-25-2	Bromoform	5	
541-73-1	1,3-Diclbenzene	5	

ELY PHINLE	= NO.
r	
10	
l cc2	

				lcs2	
Lab Name: <u>cas\roch</u>		Contract: IT			
Lab Code: <u>10145</u>	Case No.: <u>r6-34257</u>	SAS No.:	_ SDG No.:	effluent	
Matrix: (soil/water) <u>W</u>	/ATER	Lab Sample	ID: <u>956191</u>	1.0	
Sample wt/vol: 5.	0 (g/ml) ML	Lab File ID:	H3640.E	<u> </u>	
Level: (low/med) LC	ow	Date Receiv	ved:		
% Moisture: not dec.		Date Analyz	ed: 10/27/06	5	
GC Column: db-624	ID: <u>0.18</u> (mm)	Dilution Fac	tor: <u>1.0</u>		
Soil Extract Volume	(uL)	Soil Aliquot	Volume:		(uL)
	CON	ICENTRATION UNI	TS:		
CAS NO.	COMPOUND (ug/L	or ug/Kg) UG/	<u>L</u>	Q	
106-46-7	1,4-Diclbenzene		5		
95-50-1	1,2-Diclbenzene		5		
96-12-8	1,2-Dibromo-3-chloropro	pane	4		
120 82 1	1.2.4-Trichlorobenzene		5		7

Hexachlorobutadiene

87-68-3

87-61-6

#### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: cas\roch

Contract: IT

Lab Code:

10145

Case No.: r6-34257

SAS No.: SDG No.: effluent

Matrix Spike - EPA Sample No.: influent

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.
Vinyl Chloride	10	0.0	11	110	60 - 140
1,2-Dichloroethane	10	0.0	9.9	99	60 - 140
Carbon tetrachloride	10	38	47	91	60 - 140
Benzene	10	0.0	. 11	110	60 - 140
Trichloroethene	10	27	37	97	60 - 140
1,2-Diclpropane	10	0.0	10	100	60 - 140
cis-1,3-Dichloropropene	10	0.0	10	100	60 - 140
1,1,2-Trichloroethane	10	0.0	10	100	60 - 140
Tetrachloroethene	10	0.0	11	110	60 - 140
1,2-Dibromoethane	10	0.0	10	100	60 - 140
Bromoform	10	0.0	10	100	60 - 140
1,4-Diclbenzene	10	0.0	11	110	60 - 140

	SPIKE	MSD	MSD			
	ADDED	ADDED CONCENTRATION		%	QC I	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC.
Vinyl Chloride	10	11	110	0	30	60 - 140
1,2-Dichloroethane	10	9.1	91	8	30	60 - 140
Carbon tetrachloride	10	45	70	25	30	60 - 140
Benzene	10	10	100	10	30	60 - 140
Trichloroethene	10	35	80	22	30	60 - 140
1,2-Diclpropane	10	9.8	98	2	30	60 - 140
cis-1,3-Dichloropropene	10	9.8	98	2	30	60 - 140
1,1,2-Trichloroethane	10	9.3	93	7	30	60 - 140
Tetrachloroethene	10	11	110	0	30	60 - 140
1,2-Dibromoethane	10	9.6	96	4	30	60 - 140
Bromoform	10	9.5	95	5	30	60 - 140
1,4-Diclbenzene	10	10	100	10	30	60 - 140

# (	Column	to be	used to	flag	recovery	and RPD	values wi	th an	asterisk
-----	--------	-------	---------	------	----------	---------	-----------	-------	----------

RPD: 0 out of 12 outside limits

Spike Recovery: 0 out of 24 outside limits

COMMENTS:

	The state of the s	**** *

olc2.1

^{*} Values outside of QC limits

EPA SAMPLE NO.

influentms

Lab Name:	cas\roch	h	Contract: IT	
Lab Code:	10145	Case No.: <u>r6-34257</u>	SAS No.: SD	G No.: effluent
Matrix: (soil/	water)	WATER	Lab Sample ID: 9	956187 2.0
Sample wt/v	ol:	25.0 (g/ml) ML	Lab File ID:	H3644.D
Level: (low/r	med)	LOW	Date Received: 1	0/18/06
% Moisture:	not dec.		Date Analyzed: 1	0/27/06
GC Column:	db-624	4 ID: <u>0.18</u> (mm)	Dilution Factor: 1	8 2.0
Soil Extract \	√olume _	(uL)	Soil Aliquot Volun	ne: (uL

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	11	
75-01-4	Vinyl Chloride	11	
74-83-9	Bromomethane	9	
75-00-3	Chloroethane	11	
75-69-4	Trichlorofluoromethane	11	
75-35-4	1,1-Diclethene	12	
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	2	U
75-09-2	Methylene Chloride	10	
156-60-5	trans-1,2-Dichloroethene	11	
75-34-3	1,1-Diclethane	11	
156-59-2	cis-1,2-Dichloroethene	11	
78-93-3	2-Butanone (MEK)	10	U
74-97-5	Bromochloromethane	10	
67-66-3	Chloroform	14	
107-06-2	1,2-Dichloroethane	['] 10	
71-55-6	1,1,1-Trichloroethane	11	
56-23-5	Carbon tetrachloride	47	
71-43-2	Benzene	11	
79-01-6	Trichloroethene	37	, <b>.</b>
78-87-5	1,2-Diclpropane	10	
75-27-4	Bromodichloromethane	10	
10061-01-5	cis-1,3-Dichloropropene	10	
108-10-1	4-Methyl-2-Pentanone	10	U
108-88-3	Toluene	11	
10061-02-6	trans-1,3-Dichloropropene	10	
79-00-5	1,1,2-Trichloroethane	10	
127-18-4	Tetrachloroethene	11	
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	
106-93-4	1,2-Dibromoethane	10	
108-90-7	Chlorobenzene	11	
100-41-4	Ethylbenzene	11	
136777-61-2	(m+p) Xylene	21	
95-47-6	o-Xylene	10	
100-42-5	Styrene	10	
79-34-5	1,1,2,2-Tetrachloroethane	10	
75-25-2	Bromoform	10	
541-73-1	1,3-Diclbenzene	10	

EPA SAMPLE NO.

11

10

influentms Contract: IT Lab Name: cas\roch SDG No.: effluent 10145 SAS No.: Lab Code: Case No.: r6-34257 Lab Sample ID: 956187 2.0 WATER Matrix: (soil/water) 25.0 Lab File ID: H3644.D Sample wt/vol: (g/ml) ML LOW Date Received: 10/18/06 Level: (low/med) Date Analyzed: 10/27/06 % Moisture: not dec. GC Column: db-624 ID: 0.18 Dilution Factor: 1.0 2.0 (mm) Soil Extract Volume Soil Aliquot Volume: (uL) **CONCENTRATION UNITS:** COMPOUND UG/L Q CAS NO. (ug/L or ug/Kg) 106-46-7 1,4-Diclbenzene 11 10 1,2-Diclbenzene 95-50-1 1,2-Dibromo-3-chloropropane 9 96-12-8 11 1,2,4-Trichlorobenzene 120-82-1

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3

87-61-6

EPA SAMPLE NO.

influentmsd

Lab Name:	cas\roch	າ			Contract:	IT		
Lab Code:	10145		Case No.:	r6-34257	SAS No	.: 8	SDG No.: effluent	
Matrix: (soil/\	water)	WATER	<u> </u>		Lab	Sample ID:	956188 2.0	<del>.</del>
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lab	File ID:	H3645.D	
Level: (low/r	ned)	LOW			Dat	e Received:	10/18/06	
% Moisture: ı	not dec.			•	Dat	e Analyzed:	10/27/06	
GC Column:	db-624	ID:	<u>0.18</u> (m	ım)	Dilu	ition Factor:	10 2.0	
Soil Extract \	/olume _		(uL)		Soil	Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	10	
75-01-4	Vinyl Chloride	11	
74-83-9	Bromomethane	9	
75-00-3	Chloroethane	10	
75-69-4	Trichlorofluoromethane	11	
75-35-4	1,1-Diclethene	11	
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	2	U
75-09-2	Methylene Chloride	10	
156-60-5	trans-1,2-Dichloroethene	10	
75-34-3	1,1-Diclethane	10	
156-59-2	cis-1,2-Dichloroethene	10	
78-93-3	2-Butanone (MEK)	10	U
74-97-5	Bromochloromethane	9	
67-66-3	Chloroform	13	
107-06-2	1,2-Dichloroethane	9	
71-55-6	1,1,1-Trichloroethane	11	
56-23-5	Carbon tetrachloride	45	
71-43-2	Benzene	10	
79-01-6	Trichloroethene	35	
78-87-5	1,2-Diclpropane	10	
75-27-4	Bromodichloromethane	10	
10061-01-5	cis-1,3-Dichloropropene	10	
108-10-1	4-Methyl-2-Pentanone	10	U
108-88-3	Toluene	10	
10061-02-6	trans-1,3-Dichloropropene	9	
79-00-5	1,1,2-Trichloroethane	9	
127-18-4	Tetrachloroethene	11	
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	9	
106-93-4	1,2-Dibromoethane	10	
108-90-7	Chlorobenzene	10	
100-41-4	Ethylbenzene	10	
136777-61-2	(m+p) Xylene	20	
95-47-6	o-Xylene	9	
100-42-5	Styrene	9	
79-34-5	1,1,2,2-Tetrachloroethane	9	
75-25-2	Bromoform	10	
541-73-1	1,3-Diclbenzene	10	

EPA SAMPLE NO.

Q

influentmsd Contract: IT Lab Name: cas\roch SAS No.: SDG No.: effluent Case No.: r6-34257 Lab Code: 10145 Lab Sample ID: 956188 2.0 WATER Matrix: (soil/water) (g/ml) ML Lab File ID: H3645.D Sample wt/vol: 25.0 Date Received: 10/18/06 LOW Level: (low/med) Date Analyzed: 10/27/06 % Moisture: not dec. Dilution Factor: 1.0 2.0 GC Column: db-624 ID: 0.18 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume

#### **CONCENTRATION UNITS:**

UG/L

(ug/L or ug/Kg)

106-46-7	1,4-Diclbenzene	10
95-50-1	1,2-Diclbenzene	10
96-12-8	1,2-Dibromo-3-chloropropane	7
120-82-1	1,2,4-Trichlorobenzene	10
87-68-3	Hexachlorobutadiene	12
87-61-6	1.2.3-Tcbenzene	10

COMPOUND

CAS NO.

#### 3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	cas\roch	Contract:	IT

Lab Code: 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent

Matrix Spike - EPA Sample No.: m-11d

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS	
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC#	REC.	
Vinyl Chloride	5.0	0.0	5.3	106	60 - 140	
1,2-Dichloroethane	5.0	0.0	4.8	96	60 - 140	
Carbon tetrachloride	5.0	12	16	84	60 - 140	
Benzene	5.0	0.0	5.1	102	60 - 140	
Trichloroethene	5.0	1.5	6.8	106	60 - 140	
1,2-Diclpropane	5.0	0.0	4.9	98	60 - 140	
cis-1,3-Dichloropropene	5.0	0.0	5.1	102	60 - 140	
1,1,2-Trichloroethane	5.0	0.0	4.8	96	60 - 140	
Tetrachloroethene	5.0	0.0	5.4	108	60 - 140	
1,2-Dibromoethane	5.0	0.0	4.7	94	60 - 140	
Bromoform	5.0	0.0	4.8	96	60 - 140	
1,4-Diclbenzene	5.0	0.0	5.1	102	60 - 140	

	SPIKE	MSD	MSD				
	ADDED	CONCENTRATION	%	%	QC I	LIMITS	
COMPOUND	(ug/L)	(ug/L)	REC#	RPD#	RPD	REC.	
Vinyl Chloride	5.0	5.4	108	2	30	60 - 140	
1,2-Dichloroethane	5.0	4.9	98	2	30	60 - 140	
Carbon tetrachloride	5.0	17	100	22	30	60 - 140	
Benzene	5.0	5.3	106	4	30	60 - 140	
Trichloroethene	5.0	7.1	112	6	30	60 - 140	
1,2-Diclpropane	5.0	4.9	98	0	30	60 - 140	
cis-1,3-Dichloropropene	5.0	5.1	102	0	30	60 - 140	
1,1,2-Trichloroethane	5.0	4.8	96	0	30	60 - 140	
Tetrachloroethene	5.0	5.5	110	2	30	60 - 140	
1,2-Dibromoethane	5.0	4.8	96	2	30	60 - 140	
Bromoform	5.0	4.7	94	2	30	60 - 140	
1,4-Diclbenzene	5.0	4.8	96	6	30	60 - 140	

# Column to be used to flag r	recovery and RPD	values with a	n asterisk
-------------------------------	------------------	---------------	------------

RPD: 0 out of 12 outside limits

Spike Recovery: 0 out of 24 outside limits

**COMMENTS:** 

5:				
	 	 The second of the second of th	 	 

olc2.1

^{*} Values outside of QC limits

EPA SAMPLE NO.

m-11dms

Lab Name:	cas\roct	1		Contract:	IT	_
Lab Code:	10145	C:	ase No.: <u>r6-34257</u>	SAS No	o.: s	DG No.: effluent
Matrix: (soil/v	water)	WATER	_	La	b Sample ID:	956193 1.0
Sample wt/vo	ol:	25.0	(g/ml) ML	_ Lai	b File ID:	H3652.D
Level: (low/r	ned)	LOW	· · ·	Da	te Received:	10/18/06
% Moisture: r	not dec.			Da	te Analyzed:	10/27/06
GC Column:	db-624	ID: 0	.18_ (mm)	Dil	ution Factor:	1.0
Soil Extract \	/olume		(uL)	So	il Aliquot Volu	ıme: (uL

#### CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	5	
75-01-4	Vinyl Chloride	5	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	5	
75-35-4	1,1-Diclethene	6	
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Diclethane	5	
156-59-2	cis-1,2-Dichloroethene	5	
78-93-3	2-Butanone (MEK)	5	U
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	8	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon tetrachloride	16	
71-43-2	Benzene	5	
79-01-6	Trichloroethene	7	
78-87-5	1,2-Diclpropane	5	·
75-27-4	Bromodichloromethane	5	-
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	5	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
136777-61-2	(m+p) Xylene	10	
95-47-6	o-Xylene	5	
100-42-5	Styrene	5	
79-34-5	1,1,2,2-Tetrachloroethane	5	,
75-25-2	Bromoform	5	
541-73-1	1,3-Diclbenzene	5	

108

EPA SAMPLE NO.

			m-11dms
Lab Name: <u>cas</u>	\roch	Contract: IT	
Lab Code: <u>101</u>	45 Case No.: <u>r6-34</u>	1257 SAS No.: S	DG No.: effluent
Matrix: (soil/wate	r) <u>WATER</u>	Lab Sample ID:	956193 1.0
Sample wt/vol:	25.0 (g/ml) ML	Lab File ID:	H3652.D
Level: (low/med)	LOW	Date Received:	10/18/06
% Moisture: not d	lec	Date Analyzed:	10/27/06
GC Column: dt	o-624 ID: <u>0.18</u> (mm)	Dilution Factor:	1.0
Soil Extract Volur	ne (uL)	Soil Aliquot Volu	ime: (uL)
		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
106-46-7	1,4-Diclbenzene		5
95-50-1	1,2-Diclbenzene		5
96-12-8	1,2-Dibromo-3-chlo	propropane	4
120-82-1	1,2,4-Trichlorobena	zene	5
87-68-3	Hexachlorobutadie	ne	6
87-61-6	1,2,3-Tcbenzene		5

EPA SAMPLE NO.

_ab Name:	cas\roct	າ		Contract:	IT	m-11amsa	
_ab Code:	10145	Cas	se No.: <u>r6-34257</u>	SAS No.	: sı	DG No.: effluent	
Matrix: (soil/\	water)	WATER		Lab	Sample ID:	956194 1.0	
Sample wt/vo	ol:	25.0	(g/ml) ML	Lab	File ID:	H3653.D	
_evel: (low/r	ned)	LOW		Date	e Received:	10/18/06	
% Moisture: ı	not dec.		*****	Date	e Analyzed:	10/27/06	
GC Column:	db-624	ID: <u>0.1</u>	8 (mm)	Dilu	tion Factor:	1.0	
Soil Extract \	/oluma		(ut )	Soil	Aliquet Volu	ma:	/ul '

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	5	
75-01-4	Vinyl Chloride	5	
74-83-9	Bromomethane	4	
75-00-3	Chloroethane	5	
75-69-4	Trichlorofluoromethane	5	
75-35-4	1,1-Diclethene	6	
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	5	
156-60-5	trans-1,2-Dichloroethene	5	
75-34-3	1,1-Diclethane	5	
156-59-2	cis-1,2-Dichloroethene	. 5	
78-93-3	2-Butanone (MEK)	5	U
74-97-5	Bromochloromethane	5	
67-66-3	Chloroform	8	
107-06-2	1,2-Dichloroethane	5	
71-55-6	1,1,1-Trichloroethane	5	
56-23-5	Carbon tetrachloride	17	
71-43-2	Benzene	5	
79-01-6	Trichloroethene	7	
78-87-5	1,2-Diclpropane	5	
75-27-4	Bromodichloromethane	5	
10061-01-5	cis-1,3-Dichloropropene	5	
108-10-1	4-Methyl-2-Pentanone	-5	U
108-88-3	Toluene	5	
10061-02-6	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	
127-18-4	Tetrachloroethene	6	
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	5	
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5	
100-41-4	Ethylbenzene	5	
136777-61-2	(m+p) Xylene	10	
95-47-6	o-Xylene	5	
100-42-5	Styrene	5	
79-34-5	1,1,2,2-Tetrachloroethane	4	
75-25-2	Bromoform	5	
541-73-1	1,3-Diclbenzene	5	

EPA SAMPLE NO.

m-11dmsd Contract: IT Lab Name: cas\roch Case No.: r6-34257 SAS No.: SDG No.: effluent 10145 Lab Code: WATER Lab Sample ID: 956194 1.0 Matrix: (soil/water) 25.0 (g/ml) ML Lab File ID: H3653.D Sample wt/vol: Level: (low/med) LOW Date Received: 10/18/06 Date Analyzed: 10/27/06 % Moisture: not dec. Dilution Factor: 1.0 GC Column: db-624 ID: 0.18 Soil Aliquot Volume: (uL) Soil Extract Volume

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
106-46-7	1,4-Diclbenzene		5	
95-50-1	1,2-Diclbenzene		5	
96-12-8	1,2-Dibromo-3-c	hloropropane	4	
120-82-1	1,2,4-Trichlorobe	enzene	5	
87-68-3	Hexachlorobutad	liene	6	
87-61-6	1.2.3-Tcbenzene	2	5	

## **VOLATILE METHOD BLANK SUMMARY**

EPA SAMPLE NO.

Lab Name:	cas\roch		Contract:	<u>IT</u>	m	et DIK1
Lab Code:	10145	Case No.: <u>r6-34257</u>	SAS No	.: SI	DG No.:	effluent
Lab File ID:	H3614.D		Lat	Sample ID:	956184	1.0

Date Analyzed: 10/26/06 Time Analyzed: 19:24

Heated Purge: (Y/N) GC Column: db-624 ID: 0.18 (mm) Ν

Instrument ID: msvoa8

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS1	956185 1.0	H3612.D	18:27
02	EFFLUENT	946926 1.0	H3615.D	19:52
03	INFFLUENT	946927 2.0	H3616.D	20:21
04	DUPE A	946928 1.0	H3617.D	20:49
05	M-14D	946929 1.0	H3618.D	21:17
06	M-27D	946931 1.0	H3619.D	21:46
07	TRIP BLK	946934 1.0	H3622.D	23:11
08	DGC-4S	947674 1.0	H3623.D	23:39
09	DGC-3S	947675 1.0	H3624.D	00:08
10	M-29D	947676 2.0	H3625.D	00:36
11	DUP-C	947677 1.0	H3626.D	01:04
12	M-24D	947678 1.0	H3627.D	01:33
13	M-11D	947679 1.0	H3628.D	02:01
14	M-33S	947680 1.0	H3629.D	02:30
15	M-33I	947681 1.0	H3630.D	02:58
16	SWG	947682 1.0	H3631.D	03:26
17	SW-F	947683 1.0	H3632.D	03:55

COMMENTS	

EPA SAMPLE NO.

met blk1

Lab Name:	cas\rocl	n	Contract: IT	
Lab Code:	10145	Case No.: <u>r6-34</u>	257 SAS No.: SE	G No.: effluent
Matrix: (soil/\	water)	WATER	Lab Sample ID:	956184 1.0
Sample wt/ve	ol:	25.0 (g/ml) ML	Lab File ID:	H3614.D
Level: (low/r	ned)	LOW	Date Received:	
% Moisture: ı	not dec.		Date Analyzed:	10/26/06
GC Column:	db-624	1 ID: <u>0.18</u> (mm)	Dilution Factor:	1.0
Soil Extract \	/olume	(uL)	Soil Aliquot Volur	ne: (uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
74-87-3	Chloromethane	1	U
75-01-4	Vinyl Chloride	1	U
74-83-9	Bromomethane	1	U
75-00-3	Chloroethane	1	U
75-69-4	Trichlorofluoromethane	1	U
75-35-4	1,1-Diclethene	1	U
67-64-1	Acetone	5	U
75-15-0	Carbon Disulfide	1	U
75-09-2	Methylene Chloride	1	U
156-60-5	trans-1,2-Dichloroethene	1	U
75-34-3	1,1-Diclethane	1	U
156-59-2	cis-1,2-Dichloroethene	1	U
78-93-3	2-Butanone (MEK)	5	U
74-97-5	Bromochloromethane	1	U
67-66-3	Chloroform	1	U
107-06-2	1,2-Dichloroethane	1	U
71-55-6	1,1,1-Trichloroethane	1	U
56-23-5	Carbon tetrachloride	1	U
71-43-2	Benzene	1	U
79-01-6	Trichloroethene	1	U
78-87-5	1,2-Diclpropane	. 1	U
75-27-4	Bromodichloromethane	1	U
10061-01-5	cis-1,3-Dichloropropene	1	U
108-10-1	4-Methyl-2-Pentanone	5	U
108-88-3	Toluene	1	U
10061-02-6	trans-1,3-Dichloropropene	1	U
79-00-5	1,1,2-Trichloroethane	1	U
127-18-4	Tetrachloroethene	1	U
591-78-6	2-Hexanone	5	U
124-48-1	Dibromochloromethane	1	U
106-93-4	1,2-Dibromoethane	1	U
108-90-7	Chlorobenzene	1	U
100-41-4	Ethylbenzene	1	U
136777-61-2	(m+p) Xylene	1	Ū
95-47-6	o-Xylene	1	Ū
100-42-5	Styrene	1	U
79-34-5	1,1,2,2-Tetrachloroethane	1	U
75-25-2	Bromoform	1	U
541-73-1	1,3-Diclbenzene	1	<del></del> /

EPA SAMPLE NO.

					<b>.</b>			m	et blk1	
_ab Name:	cas\roch				Contract:	IT		_		
_ab Code:	10145	Cas	se No.: <u>r6</u>	-34257	SAS N	o.:	s	DG No.:	effluent	
Matrix: (soil/v	water)	WATER	-		La	ıb San	nple ID:	956184	1.0	
Sample wt/vo	ol:	25.0	(g/ml) <u>N</u>	/L	La	ıb File	ID:	H3614.E	)	
_evel: (low/n	ned)	LOW	_		Da	ate Re	ceived:			
% Moisture: r	not dec.				Da	ate An	alyzed:	10/26/06	3	
GC Column:	db-624	ID: <u>0.1</u>	8 (mm	)	Di	lution	Factor:	1.0		
Soil Extract V	/olume _		_ (uL)		So	pilA liq	uot Volu	me:	······································	(uL)
				CON	ICENTRA	TION	UNITS:			
CAS NO	).	COMPO	DUND	(ug/l	or ug/Kg	) <u> </u>	UG/L		Q	
106-46	-7	1,4-Di	clbenzene	· · · · · · · · · · · · · · · · · · ·				1	U	
95-50-	1	1,2-Di	clbenzene					1	U	
96-12-8		1,2-Di	bromo-3-c	hloropro	pane			1	U	
120-82		1,2,4-	Trichlorobe	enzene				1	U	

Hexachlorobutadiene

1,2,3-Tcbenzene

87-68-3

87-61-6

## 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.

Lab Name: ca	s\roch		Contrac	t: IT	met b	IK1
	145	Case No.: r6-3	4257 SAS	No.:	SDG No.: efflu	uent
Matrix: (soil/wate	er) WATE	R		ab Sample	e ID: 956184 1.0	<del></del>
Sample wt/vol:	25.0	(g/ml) <u>ML</u>		ab File ID	: <u>H3614.D</u>	
Level: (low/med	) LOW			Date Recei	ved:	···
% Moisture: not	dec.			Date Analy:	zed: 10/26/06	
GC Column: d	b-624 ID:	0.18 (mm)	Ι	Dilution Fa	ctor: 1.0	·
Soil Extract Volu	ime	(uL)	•	Soil Aliquot	Volume:	(uL)
Number TICs for	und: 0		CONCENTR (ug/L or ug/K			
, Tamber 1100 101						<u></u>
CAS NO.	COME	POUND		RT	EST. CONC.	Q

#### 4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

met blk2

Lab Name:	cas\roch	Contract:	IT	

Lab Code: 10145 Case No.: r6-34257 SAS No.: SDG No.: effluent

Lab File ID: <u>H3641.D</u> Lab Sample ID: <u>956190 1.0</u>

Date Analyzed: 10/27/06 Time Analyzed: 12:38

GC Column: db-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: msvoa8

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS2	956191 1.0	H3640.D	12:06
02	SW-B	946932 1.0	H3642.D	13:13
03	SW-A	946933 10	H3643.D	13:46
04	INFLUENTMS	956187 2.0	H3644.D	14:15
05	INFLUENTMSD	956188 2.0	H3645.D	14:42
06	DUP-C DL	947677 2.0	H3646.D	15:09
07	SW-E	947684 1.0	H3647.D	15:36
08	M-25D	947685 5.0	H3648.D	16:03
09	4D	947686 1.0	H3649.D	16:30
10	SWD	947687 1.0	H3650.D	16:56
11	TRIP BLK	947688 1.0	H3651.D	17:23
12	M-11DMS	956193 1.0	H3652.D	17:50
13	M-11DMSD	956194 1.0	H3653.D	18:18
14	COOLER BLK	946935 1.0	H3654.D	18:45

COMMENTS	

EPA SAMPLE NO.

met blk2

Lab Name:	cas\rock	1			Contract: IT			
Lab Code:	10145		ase No.:	r6-34257	SAS No.:	SDG No.	: effluent	
Matrix: (soil/v	water)	WATER			Lab Sampl	e ID: 956190	0 1.0	,
Sample wt/vo	ol:	25.0	(g/ml)	ML	Lab File ID	: <u>H3641</u>	.D	
Level: (low/r	med)	LOW			Date Rece	ived:		
% Moisture: r	not dec.				Date Analy	zed: 10/27/0	06	
GC Column:	db-624	<u> </u>	<u>).18</u> (m	nm)	Dilution Fa	ctor: 1.0		
Soil Extract \	/olume		(uL)		Soil Aliquo	t Volume:		(uL)

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	_	Q
74-87-3	Chloromethane		1	U
75-01-4	Vinyl Chloride		1	U
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		1	U
75-69-4	Trichlorofluoromethane		1	U
75-35-4	1,1-Diclethene		1	U
67-64-1	Acetone		5	U
75-15-0	Carbon Disulfide		1	U
75-09-2	Methylene Chloride		1	U
156-60-5	trans-1,2-Dichloroethene		1	U
75-34-3	1,1-Diclethane		1	U
156-59-2	cis-1,2-Dichloroethene		1	U
78-93-3	2-Butanone (MEK)		5	U
74-97-5	Bromochloromethane		1	U
67-66-3	Chloroform		1	U
107-06-2	1,2-Dichloroethane		1	U
71-55-6	1,1,1-Trichloroethane		1	U
56-23-5	Carbon tetrachloride		1	U
71-43-2	Benzene		1	U
79-01-6	Trichloroethene		1	U
78-87-5	1,2-Dicipropane		1	U
75-27-4	Bromodichloromethane		1	U
10061-01-5	cis-1,3-Dichloropropene		1	U
108-10-1	4-Methyl-2-Pentanone		5	U
108-88-3	Toluene		1	U
10061-02-6	trans-1,3-Dichloropropene		1	U
79-00-5	1,1,2-Trichloroethane		1	U
127-18-4	Tetrachloroethene		1	U
591-78-6	2-Hexanone		5	U
124-48-1	Dibromochloromethane		1	U
106-93-4	1,2-Dibromoethane		1	U
108-90-7	Chlorobenzene		11	U
100-41-4	Ethylbenzene		1	U
136777-61-2	(m+p) Xylene		1	U
95-47-6	o-Xylene		1	U
100-42-5	Styrene		1	U
79-34-5	1,1,2,2-Tetrachloroethane		1	U
75-25-2	Bromoform		1	U
541-73-1	1,3-Diclbenzene		1	U

EPA SAMPLE NO.

met blk2 Contract: IT Lab Name: cas\roch SAS No.: SDG No.: effluent Case No.: r6-34257 10145 Lab Code: Lab Sample ID: 956190 1.0 WATER Matrix: (soil/water) H3641.D 25.0 (g/ml) ML Lab File ID: Sample wt/vol: Date Received: Level: (low/med) LOW Date Analyzed: 10/27/06 % Moisture: not dec. Dilution Factor: 1.0 GC Column: db-624 ID: 0.18 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume (uL) **CONCENTRATION UNITS:** UG/L Q CAS NO. COMPOUND (ug/L or ug/Kg)

	_		
106-46-7	1,4-Diclbenzene	1	U
95-50-1	1,2-Diclbenzene	1	U
96-12-8	1,2-Dibromo-3-chloropropane	1	U
120-82-1	1,2,4-Trichlorobenzene	1	U
87-68-3	Hexachlorobutadiene	1	U
87-61-6	1,2,3-Tcbenzene	1	U

## 1E

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

<b>EPA</b>	SAMPL	E NO.
------------	-------	-------

Lab Name: 0	cas\roch		Contrac	t: IT	met b	IKZ
Lab Code: 1	10145	Case No.: r6-34	257 SAS	No.:	SDG No.: efflu	uent
Matrix: (soil/wa	ater) WATE	R	(	_ab Sample	e ID: <u>956190 1.0</u>	-
Sample wt/vol	<u> 25.0</u>	(g/ml) ML		_ab File ID:	H3641.D	
Level: (low/mo	ed). LOW			Date Recei	ved:	<del>-</del>
% Moisture: no	ot dec.			Date Analyz	zed: 10/27/06	
GC Column:	db-624 ID:	0.18 (mm)	ſ	Dilution Fac	otor: 1.0	·
Soil Extract Vo	olume	(uL)		Soil Aliquot	Volume:	(uL)
Number TICs f	found: 0		CONCENTR (ug/L or ug/K			
CAS NO.	COMF	POUND		RT	EST. CONC.	Q

-3-

**BLANKS** 

Contract: R2634257

ab Code:

Case No.:

SAS No.:

SDG NO.: EFFLUENT

reparation Blank Matrix (soil/water): WATER

reparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Con	tinuing Blank	Calibr (ug/L)	ation		Preparation Blank		
Analyte	(ug/L)	С	1	C	2	С	3	С	•	c	М
Chromium	0.	7 ט	0.	7 ט	0.	ן ט   ד	0.	7   ט	-0.879	В	P

-3-

**BLANKS** 

ontract: R2634257

ab Code:

Case No.:

SAS No.:

SDG NO.: EFFLUENT

reparation Blank Matrix (soil/water): WATER

reparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Preparation Blank								
Analyte	(ug/L)	С	1	C	2	С	. 3	С		С	;	М
Chromium	1		0.	ט   7	0	ן ט				<u> </u>		P

#### INORGANIC BLANK SPIKE SUMMARY

CAS Submission #: R2634257

Client: Shaw Environmental

GE-MRFA PROJECT #810066-02000000

#### BLANK SPIKES

BLANK FOUND		ADDED	% REC	LIMITS	RUN	UNITS	
0.0100 U	0.100	0.100	100	90 - 109	136169	MG/L	

HEXAVALENT CHROMIUM

## 5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Contract: IT cas\roch Lab Name: SAS No.: SDG No.: effluent 10145 Case No.: r6-34257 Lab Code: BFB Injection Date: 10/26/06 H3600.D Lab File ID: BFB Injection Time: 11:44 Instrument ID: msvoa8 Heated Purge: (Y/N) GC Column: db-624 ID: 0.18 Ν (mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	19.5
75	30.0 - 80.0% of mass 95	46.3
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.4
173	Less than 2.0% of mass 174	0.0 ( 0.0)1
174	50.0 - 120.0% of mass 95	60.1
175	5.0 - 9.0% of mass 174	4.8 ( 8.0)1
176	95.0 - 101.0% of mass 174	59.3 ( 98.7)1
177	5.0 - 9.0% of mass 176	4.2 ( 7.1)2

1-Value is % mass 174

2-Value is % mass 176

## THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD1	1	H3602.D	10/26/06	13:19
02	VSTD2	2	H3603.D	10/26/06	13:48
03	VSTD3	5	H3604.D	10/26/06	14:16
04	VSTD5	25	H3606.D	10/26/06	15:13
05	VSTD4	10	H3608.D	10/26/06	16:39

## 5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: cas\roch Contract: IT SDG No.: effluent Lab Code: 10145 Case No.: r6-34257 SAS No.: BFB Injection Date: 10/26/06 Lab File ID: H3609.D BFB Injection Time: 17:00 Instrument ID: msvoa8 Heated Purge: (Y/N) ID: 0.18 Ν GC Column: db-624

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	19.9
75	30.0 - 80.0% of mass 95	48.4
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.0 ( 0.0)1
174	50.0 - 120.0% of mass 95	62.5
175	5.0 - 9.0% of mass 174	5.0 ( 8.0)1
176	95.0 - 101.0% of mass 174	60.4 ( 96.7)1
177	5.0 - 9.0% of mass 176	3.8 ( 6.3)2

1-Value is % mass 174

2-Value is % mass 176

## THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

[	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD1	CCV	H3611.D	10/26/06	17:59
02	LCS1	956185 1.0	H3612.D	10/26/06	18:27
03	MET BLK1	956184 1.0	H3614.D	10/26/06	19:24
04	EFFLUENT	946926 1.0	H3615.D	10/26/06	19:52
05	INFFLUENT	946927 2.0	H3616.D	10/26/06	20:21
06	DUPE A	946928 1.0	H3617.D	10/26/06	20:49
07	M-14D	946929 1.0	H3618.D	10/26/06	21:17
08	M-27D	946931 1.0	H3619.D	10/26/06	21:46
09	TRIP BLK	946934 1.0	H3622.D	10/26/06	23:11
10	DGC-4S	947674 1.0	H3623.D	10/26/06	23:39
11	DGC-3S	947675 1.0	H3624.D	10/27/06	00:08
12	M-29D	947676 2.0	H3625.D	10/27/06	00:36
13	DUP-C	947677 1.0	H3626.D	10/27/06	01:04
14	M-24D	947678 1.0	H3627.D	10/27/06	01:33
15	M-11D	947679 1.0	H3628.D	10/27/06	02:01
16	M-33S	947680 1.0	H3629.D	10/27/06	02:30
17	M-33I	947681 1.0	H3630.D	10/27/06	02:58
18	SWG	947682 1.0	H3631.D	10/27/06	03:26
19	SW-F	947683 1.0	H3632.D	10/27/06	03:55

## 5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Contract: IT Lab Name: cas\roch SDG No.: effluent Case No.: r6-34257 SAS No.: Lab Code: 10145 BFB Injection Date: 10/27/06 Lab File ID: H3636.D BFB Injection Time: 09:20 Instrument ID: msvoa8 GC Column: db-624 ID: 0.18 Heated Purge: (Y/N) Ν (mm)

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	15.0 - 40.0% of mass 95	19.3
75	30.0 - 80.0% of mass 95	45.6
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.0
173	Less than 2.0% of mass 174	0.0 ( 0.0)1
174	50.0 - 120.0% of mass 95	62.0
175	5.0 - 9.0% of mass 174	4.8 ( 7.8)1
176	95.0 - 101.0% of mass 174	59.3 ( 95.5)1
177	5.0 - 9.0% of mass 176	3.8 ( 6.4)2

1-Value is % mass 174

2-Value is % mass 176

## THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

. [	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD2	CCV	H3638.D	10/27/06	10:53
02	LCS2	956191 1.0	H3640.D	10/27/06	12:06
03	MET BLK2	956190 1.0	H3641.D	10/27/06	12:38
04	SW-B	946932 1.0	H3642.D	10/27/06	13:13
05	SW-A	946933 1.0	H3643.D	10/27/06	13:46
06	INFLUENTMS	956187 2.0	H3644.D	10/27/06	14:15
07	INFLUENTMSD	956188 2.0	H3645.D	10/27/06	14:42
08	DUP-C DL	947677 2.0	H3646.D	10/27/06	15:09
09	SW-E	947684 1.0	H3647.D	10/27/06	15:36
10	M-25D	947685 5.0	H3648.D	10/27/06	16:03
11	4D	947686 1.0	H3649.D	10/27/06	16:30
12	SWD	947687 1.0	H3650.D	10/27/06	16:56
13	TRIP BLK	947688 1.0	H3651.D	10/27/06	17:23
14	M-11DMS	956193 1.0	H3652.D	10/27/06	17:50
15	M-11DMSD	956194 1.0	H3653.D	10/27/06	18:18
16	COOLER BLK	946935 1.0	H3654.D	10/27/06	18:45

## 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Contract: IT Lab Name: cas\roch SDG No.: effluent Case No.: r6-34257 SAS No.: Lab Code: 10145 Date Analyzed: 10/26/06 Lab File ID (Standard): H3611.D Time Analyzed: 17:59 Instrument ID: msvoa8 ID: 0.18 Heated Purge: (Y/N) GC Column: db-624 (mm)

		,					
		IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR ST	279965	4.24	198593	6.68	73589	8.89
	LOWER LIMIT	167979	3.74	119156	6.18	44153	8.39
	UPPER LIMIT	391951	4.74	278030	7.18	103025	9.39
	EPA SAMPLE						
	NO.						
01	LCS1	290593	4.24	200794	6.68	73193	8.89
02	MET BLK1	291207	4.24	202024	6.68	69764	8.89
03	EFFLUENT	288422	4.25	198587	6.68	73298	8.89
04	INFFLUENT	281589	4.24	194470	6.67	67598	8.89
05	DUPE A	286649	4.25	204044	6.67	70358	8.89
06	M-14D	288139	4.24	200384	6.68	72492	8.89
07	M-27D	290403	4.24	200797	6.68	72580	8.89
08	TRIP BLK	275999	4.24	196707	6.68	67249	8.89
09	DGC-4S	276981	4.25	192907	6.67	68753	8.89
10	DGC-3S	279218	4.25	195958	6.67	68625	8.89
11	M-29D	283998	4.25	199340	6.68	69698	8.89
12	DUP-C	279135	4.25	198457	6.68	67752	8.89
13	M-24D	275526	4.25	191130	6.68	66911	8.89
14	M-11D	275549	4.25	194908	6.68	69225	8.90
15	M-33S	282761	4.25	200326	6.68	71908	8.89
16	M-33I	273678	4.25	190995	6.68	66714	8.89
17	SWG	274042	4.25	189918	6.68	66971	8.89
18	SW-F	279060	4.25	197465	6.68	68834	8.89

IS1

= 1,4-Difluorobenzene

IS2

d5-Chlorobenzene

IS3

= d4-Dichlorobenzene

AREA UPPER LIMIT = +40% of internal standard area

AREA LOWER LIMIT = - 40% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

## 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Contract: IT Lab Name: cas\roch Case No.: r6-34257 SAS No.: SDG No.: effluent 10145 Lab Code: Date Analyzed: 10/27/06 Lab File ID (Standard): H3638.D Time Analyzed: 10:53 Instrument ID: msvoa8 Heated Purge: (Y/N) Ν ID: 0.18 GC Column: db-624 (mm)

		IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12 F	IOUR ST	325651	4.25	230748	6.68	90155	8.90
LOV	VER LIMIT	195391	3.75	138449	6.18	54093	8.40
UPF	ER LIMIT	455911	4.75	323047	7.18	126217	9.40
EPA	SAMPLE					## T T T T T T T T T T T T T T T T T T	
	NO.						
01 LC	S2	338179	4.25	237731	6.68	95136	8.90
02 ME	T BLK2	340396	4.25	239220	6.68	89982	8.90
03 SW	/-B	327516	4.25	230635	6.68	80707	8.90
04 SW	/-A	329075	4.25	227334	6.69	83638	8.91
05 INF	LUENTMS	311384	4.25	218348	6.69	84145	8.90
06 INF	LUENTMS	344528	4.25	236215	6.69	88450	8.91
07 DU	P-C DL	339949	4.25	233413	6.69	89302	8.90
08 SW	/-E	317460	4.25	219378	6.69	78992	8.91
09 M-2	25D	319890	4.25	222067	6.69	82941	8.90
10 4D		315008	4.25	213188	6.69	80874	8.91
11 SW	/D	327798	4,25	225115	6.69	83625	8.91
12 TRI	P BLK	314623	4.25	218752	6.69	80056	8.91
13 M-1	1DMS	317701	4.25	221344	6.69	84264	8.91
14 M-1	1DMSD	324620	4.25	220385	6.69	87552	8.91
15 CO	OLER BLK	332213	4.26	231030	6.69	88088	8.91

IS1

= 1,4-Difluorobenzene

IS2

d5-Chlorobenzene

IS3

= d4-Dichlorobenzene

AREA UPPER LIMIT = +40% of internal standard area
AREA LOWER LIMIT = -40% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column to be used to flag values outside QC limit with an asterisk.

olc2.1

^{*} Values outside of contract required QC limits

# APPENDIX C DATA VALIDATION REPORTS

RECEIVED

JAN 1 1 2007

## **Data Validation Services**

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 Facsimile (518) 251-4428

GE Malta 8A

## LETTER OF TRANSMITTAL

ГО:	Mark Flannagan
COMPANY:	Shaw Group
FROM:	Judy Harry
DATE:	01-10-07
ENCLOSED:	Validation report for the GE MRFA site CAS Sub Nos. R2633204 and R2634257
	Associated lab summary packages with qualifiers applied in red ink to report forms
	Associated invoice
COMMENTS:	
Ship via: US Express	UPS US Priority_XFed ExOther

## **QUALIFIED REPORT FORMS**

## **Data Validation Services**

120 Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

Facsimile 518-251-4428

January 10, 2007

Marc Flanagan Shaw Environmental 13 British American Blvd. Latham, NY 12110

RE: Validation of MRFA Malta Site Data Packages

CAS Sub Nos. R2633204 and R2634257

Dear Mr. Flanagan:

Review has been completed for the data packages generated by Columbia Analytical Services (CAS), pertaining to aqueous samples collected 08/15/06, 10/16/06, and 10/17/06 at the MRFA Malta Site. Twenty-two samples (including three field duplicates) and cooler blanks, and trip blanks were processed for site-specific low level volatiles. Two of these, an additional sample, and a field duplicate were also analyzed for total and hexavalent chromium. Methodologies utilized are those of the USEPA OLC02.1, EPA CLP ILM and SW846 7196.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6, with consideration for the specific methodologies. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration/CRI Standards
- * Instrument IDLs
- * ICP Serial Dilutions
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was conducted primarily with compliance to protocol requirements and with adherence to quality criteria. Sample results are usable as reported, or with minor qualification of some results as estimated, or with edit to non-detection. These are discussed in the following analytical sections.

Copies of laboratory case narratives are attached to this narrative, and should be reviewed in conjunction with this narrative. Data summary packages are also submitted with qualifiers applied in red ink to report forms.

#### **Data Completeness**

Data packages were complete as received, and no resubmissions were required.

#### Low Level Volatile Analyses

The results for analytes initially flagged as "E" by the laboratory are to be derived from the dilution analyses of the samples.

Acetone and 2-butanone exhibited low relative response factors (RRFs) in the calibration standards that are inherent with the methodology. The usability of those data are evidenced by spike recoveries and standard areas, but their reporting limits in all of the project samples should be considered estimated ("UJ" or "J" qualifiers), possibly biased low.

Carbon disulfide and hexachlorobutadiene show elevated outlying responses in the continuing calibration standard associated with some of the samples collected in October (31%D and 57%D). Because the responses were elevated and the associated samples show no presence of these analytes, there is no effect on the usability of the reported data, and no qualification is indicated.

Matrix spikes of MRFA Influent (both events) and M-11 show acceptable accuracy and precision, with the exception of one elevated duplicate correlation value for carbon tetrachloride (40%RPD, above the 30%RPD recommended limit) in the August influent. The recoveries were acceptable and no qualification to the result of the parent sample is made.

Volatile field duplicate correlations for MRFA Effluent (8/15), MRFA Effluent (10/16), and M-29D are well within validation guidelines.

Some of the samples were processed at dilution due to concentrations of certain target compounds. Therefore, reporting limits of analytes that are not detected are increased proportionally in those samples.

Blanks show no contamination of analytes detected in the field samples.

The laboratory Forms 8A show incorrect acceptance limits for internal standard responses. The sample analyses meet the protocol requirement.

#### **Total Chromium Analyses**

No matrix spike/lab duplicate accuracy and precision determinations were performed. Therefore, the matrix effect on total chromium recovery from the samples has not been determined. Historical data show acceptable recoveries and duplicate correlations.

Field duplicate evaluation for 13D shows good correlation.

The serial dilution evaluation is not applicable due to low sample concentrations.

The results for chromium in M-27D and SW-B are qualified as estimated, and have a possible low bias, due to low (compliant) negative response in the associated method blank.

Instrument performance was acceptable. Reported results are substantiated by the raw data, and generated in compliance with required protocols. Quality control parameter results meet validation requirements.

## **Hexavalent Chromium Analyses**

No matrix spike/lab duplicate accuracy and precision determinations were performed. Therefore, the matrix effect on hexavalent chromium recovery from the samples has not been determined. Historical data show acceptable recoveries and duplicate correlations.

The field duplicate correlation for 13D was within guidelines.

Reported results are substantiated by the raw data, and generated in compliance with required protocols.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Indy Harry

## VALIDATION QUALIFIER DEFINITIONS

#### DATA QUALIFIER DEFINITIONS

The following definitions provide brief explanations of the national qualifiers assigned to results in the data review process. If the Regions choose to use additional qualifiers, a complete explanation of those qualifiers should accompany the data review.

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit.

  However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

19/

## LABORATORY SAMPLE IDs AND CASE NARRATIVES

DATE REVISED: BATCH COMPLETE: __yes_ DG #: **EFFLUENT** 

**DATE DUE: 11/13/06 RUSH** DISKETTE REQUESTED: Y_X__ N__ **UBMISSION R2634257** PROTOCOL: SW846 DATE: 10/18/06 LIENT: **Shaw Environmental** 

SHIPPING No.: **CUSTODY SEAL: PRESENT/ABSENT:** LIENT REP: Janice Jaeger

CAS JOB#	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE SAMPLED	DATE RECEIVED	pH (SOLII		% SOLIDS	REMARKS AMPLE CONDITION
946926	EFFLUENT	WATER	OLC2.1VOA	10/16/2006	10/18/2006				
	INFLUENT	WATER	OLC2.1VOA	10/16/2006		1			
946928	DUPE A	WATER	OLC2.1VOA	10/16/2006					
946929	M-14D	WATER	OLC2.1VOA	10/16/2006			• • • • •		
946930	M-13D	WATER	CR,CR6	10/16/2006	10/18/2006			·	
946931	M-27D	WATER	OLC2.1VOA,CR,CR6	10/16/2006	1 <del>0/18/2</del> 006				
946932	SW-B	WATER	OLC2.1VOA,CR,CR6	10/16/2006	10/18/2006				
946933	SW-A	WATER	OLC2.1VOA	10/16/2006	10/18/2006				
946934	TRIP BLANK	WATER	OLC2.1VOA	10/16/2006	10/18/2006				
946935	COOLER BLANK	WATER	OLC2.1VOA	10/18/2006	10 <del>/18/2006</del>	V	1011	8/06	
946936	DUP-B	WATER	CR,CR6	10/16/2006	10/18/2006	•	-		
947674	DGC-4S	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
947675	DGC-3S	WATER	OLC2.1VOA	10/17/2006	10/18/2006				· .
947676	M-29D	WATER	OLC2.1VOA	10/17/2006	10/18/2006				<b>.</b>
947677	DUP-C	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
947678	M-24D	WATER	OLC2.1VOA	10/17/2006	10/18/2006	<u> </u>		<u> </u>	·
947679QC	M-11D	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
947680	M-33S	WATER	OLC2.1VOA	10/17/2006					
947681	M-33I	WATER	OLC2.1VOA	10/17/2006					
947682	SWG	WATER	OLC2.1VOA	10/17/2006				<u> </u>	
947683	SW-F	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
947684	SW-E	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
947685	M-25D	WATER		10/17/2006			Ċ		·
947686	4D	WATER	OLC2.1VOA	10/17/2006					
947687	SWD	WATER	OLC2.1VOA	10/17/2006	10/18/2006	1			
947688	TRIP BLANK	WATER	OLC2.1VOA	10/17/2006	10/18/2006				
					-				

3DG #: **EFFLUENT 3UBMISSION R2634257** 

BATCH COMPLETE: __yes_ DISKETTE REQUESTED: Y_X_ N_ DATE REVISED:

**DATE DUE: 11/13/06 RUSH** 

## CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #:	MRFA DUP		OMPLETE:yes		DATE REVIS			
SUBMISSION	R2633204	DISKETT	E REQUESTED: Y_X N		DATE DUE:			
CLIENT:	Shaw Environmental	DATE: 08			PROTOCOL			*
	Janice Jaeger		Y SEAL: PRESENT/ABSENT:		SHIPPING N	0.:		
PROJECT:	GE MRFA PROJECT #810066	CHAIN O	F CUSTODY: PRESENT/ABSENT	Γ:				
CAS JOB#	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED		(SOLIDS)	SOLIDS	AMPLE CONDITION
930080	MRFA DUP	WATER	OLC2.1-VOA	8/15/2006				
9300081QC	MRFA INFLUENT	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
930082	MRFA EFFLUENT	WATER	OLC2.1-VOA	8/15/2006				
930083	TRIP BLANK	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
930084	COOLER BLANK	WATER	OLC2.1-VOA	8/15/2006	8/16/2006			
						,		
						<u> </u>		ļ
				<u> </u>				
					<u></u>			

1

SDG #:

BATCHIN1

SUBMISSION R2633204

MRFA DUP

BATCH COMPLETE: __yes____ DISKETTE REQUESTED: Y_X__ N___ DATE REVISED: DATE DUE: 9/13/06

#### **CASE NARRATIVE**

COMPANY: Shaw Environmental GE MRFA Project #810066 SUBMISSION #: R2633204

Shaw samples were sampled on 08/15/06 and received at CAS on 08/16/06 in good condition.

### **VOLATILE ORGANICS**

Four water samples and one cooler blank were analyzed for a site specific list of Volatiles by method OLC2.1.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All Tuning criteria for BFB were met.

All surrogate standard recoveries were within QC limits.

Site specific QC was performed on MRFA Influent as requested. All MS/MSD recoveries were within limits. All Reference spike recoveries were within limits. All RPD's were within limits except Carbon Tetrachloride and has been flagged with an "*".

Various compounds for MRFA InfluentMS and MRFA InfluentMSD have been flagged with an "E" as being outside the calibration range of the instrument.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

#### **CASE NARRATIVE**

COMPANY: Shaw Environmental
GE MRFA Project #810066-02000000
SUBMISSION #: R2634257

Shaw samples were sampled on 10/16-17/06 and received at CAS on 10/17-18/06 in good condition.

### **INORGANICS**

Four water samples were analyzed for Total and Hexavalent Chromium. Please see attached data pages for method numbers.

Site specific QC was not requested for these samples. All Blank spike recoveries were within limits.

No other analytical or QC problems were encountered.

## **VOLATILE ORGANICS**

Twenty three water samples and one cooler blank were analyzed for OLC2.1 Volatiles by CLP methodology.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All Tuning criteria for BFB were met.

All surrogate standard recoveries were within QC limits.

Site specific QC was performed on M-11D and Influent as requested. All MS/MSD and Reference spike recoveries were within limits. All RPD's were within limits.

Various compounds for DUP-C have been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

## APPENDIX D AIR STRIPPER FLOW DATA

		Well #2	Well #1	Well #2	Well #1	Total Daily
Date		Flow	Flow	Average	Average	Average Flow
		(gal)	(gal)	(gpm)	(gpm)	(gpm)
6/21/2006	Total	1,160	590	0.81	0.41	1.22
6/22/2006	Total	1,150	600	0.80	0.42	1.22
6/23/2006	Total	1,610	40	1.12	0.03	1.15
6/24/2006	Total	1,730	0	1.20	0.00	1.20
6/25/2006	Total	1,760	0	1.22	0.00	1.22
6/26/2006	Total	1,650	0	1.15	0.00	1.15
6/27/2006	Total	1,440	0	1.00	0.00	1.00
6/28/2006	Total	1,650	0	1.15	0.00	1.15
6/29/2006	Total	1,650	0	1.15	0.00	1.15
6/30/2006	Total	1,830	0	1.27	0.00	1.27
7/1/2006	Total	1,590	0	1.10	0.00	1.10
7/2/2006	Total	1,560	0	1.08	0.00	1.08
7/3/2006	Total	1,660	0	1.15	0.00	1.15
7/4/2006	Total	1,560	0	1.08	0.00	1.08
7/5/2006	Total	1,550	0	1.08	0.00	1.08
7/6/2006	Total	1,680	0	1.17	0.00	1.17
7/7/2006	Total	1,620	0	1.13	0.00	1.13
7/8/2006	Total	1,720	0	1.19	0.00	1.19
7/9/2006	Total	1,670	0	1.16	0.00	1.16
7/10/2006	Total	1,860	0	1.29	0.00	1.29
7/11/2006	Total	1,870	0	1.30	0.00	1.30
7/12/2006	Total	1,870	0	1.30	0.00	1.30
7/13/2006	Total	1,980	0	1.38	0.00	1.38
7/14/2006	Total	1,870	0	1.30	0.00	1.30
7/15/2006	Total	1,970	0	1.37	0.00	1.37
7/16/2006	Total	1,770	0	1.23	0.00	1.23
7/17/2006	Total	1,880	0	1.31	0.00	1.31
7/18/2006	Total	1,900	0	1.32	0.00	1.32
7/19/2006	Total	1,780	470	1.24	0.33	1.56
7/20/2006	Total	1,240	620	0.86	0.43	1.29
7/21/2006	Total	1,230	630	0.85	0.44	1.29
7/22/2006	Total	1,290	690	0.90	0.48	1.38
7/23/2006	Total	1,130	620	0.78	0.43	1.22
7/24/2006	Total	1,290	710	0.90	0.49	1.39
7/25/2006	Total	1,210	650	0.84	0.45	1.29
7/26/2006	Total	1,300	700	0.90	0.49	1.39
7/27/2006	Total	1,170	660	0.81	0.46	1.27
7/28/2006	Total	1,280	730	0.89	0.51	1.40
7/29/2006	Total	1,570	470	1.09	0.33	1.42
7/30/2006	Total	1,860	0	1.29	0.00	1.29
7/31/2006	Total	1,880	0	1.31	0.00	1.31
8/1/2006	Total	2,060	0	1.43	0.00	1.43
8/2/2006	Total	1,880	0	1.31	0.00	1.31
8/3/2006	Total	1,980	0	1.38	0.00	1.38
8/4/2006	Total	1,990	0	1.38	0.00	1.38
8/5/2006	Total	1,870	0	1.30	0.00	1.30
8/6/2006	Total	1,780	0	1.24	0.00	1.24
8/7/2006	Total	1,980	0	1.38	0.00	1.38
8/8/2006	Total	1,860	0	1.29	0.00	1.29
8/9/2006	Total	2,020	0	1.40	0.00	1.40
8/10/2006	Total	2,060	0	1.43	0.00	1.43

		Well #2	Well #1	Well #2	Well #1	Total Daily
Date		Flow	Flow	Average	Average	Average Flow
		(gal)	(gal)	(gpm)	(gpm)	(gpm)
8/11/2006	Total	1,870	0	1.30	0.00	1.30
8/12/2006	Total	2,080	0	1.44	0.00	1.44
8/13/2006	Total	1,770	0	1.23	0.00	1.23
8/14/2006	Total	1,870	0	1.30	0.00	1.30
8/15/2006	Total	1,880	0	1.31	0.00	1.31
8/16/2006	Total	1,400	430	0.97	0.30	1.27
8/17/2006	Total	1,200	680	0.83	0.47	1.31
8/18/2006	Total	1,210	670	0.84	0.47	1.31
8/19/2006	Total	1,070	590	0.74	0.41	1.15
8/20/2006	Total	1,200	680	0.83	0.47	1.31
8/21/2006	Total	1,160	670	0.81	0.47	1.27
8/22/2006	Total	1,220	710	0.85	0.49	1.34
8/23/2006	Total	970	580	0.67	0.40	1.08
8/24/2006	Total	1,190	700	0.83	0.49	1.31
8/25/2006	Total	1,200	700	0.83	0.49	1.32
8/26/2006	Total	1,050	630	0.73	0.44	1.17
8/27/2006	Total	1,120	670	0.78	0.47	1.24
8/28/2006	Total	1,110	670	0.77	0.47	1.24
8/29/2006	Total	1,030	630	0.72	0.44	1.15
8/30/2006	Total	1,250	750	0.87	0.52	1.39
8/31/2006	Total	1,170	720	0.81	0.50	1.31
9/1/2006	Total	1,050	640	0.73	0.44	1.17
9/2/2006	Total	1,110	680	0.77	0.47	1.24
9/3/2006	Total	1,110	680	0.77	0.47	1.24
9/4/2006	Total	970	590	0.67	0.41	1.08
9/5/2006	Total	1,070	650	0.74	0.45	1.19
9/6/2006	Total	1,160	700	0.81	0.49	1.29
9/7/2006	Total	1,480	870	1.03	0.60	1.63
9/8/2006	Total	1,050	640	0.73	0.44	1.17
9/9/2006	Total	1,060	650	0.74	0.45	1.19
9/10/2006	Total	740	450	0.51	0.31	0.83
9/11/2006	Total	980	610	0.68	0.42	1.10
9/12/2006	Total	1,120	700	0.78	0.49	1.26
9/13/2006	Total	1,050	650	0.73	0.45	1.18
9/14/2006	Total	960	620	0.67	0.43	1.10
9/15/2006	Total	1,110	700	0.77	0.49	1.26
9/16/2006	Total	970	620	0.67	0.43	1.10
9/17/2006	Total	1,050	670	0.73	0.47	1.19
9/18/2006	Total	1,020	660	0.71	0.46	1.17
9/19/2006	Total	1,040	670	0.72	0.47	1.19
9/20/2006	Total	1,030	680	0.72	0.47	1.19
9/21/2006	Total	1,090	720	0.76	0.50	1.26
9/22/2006	Total	1,030	680	0.72	0.47	1.19
9/23/2006	Total	1,090	730	0.76	0.51	1.26
9/24/2006	Total	1,000	680	0.69	0.47	1.17
9/25/2006	Total	1,010	680	0.70	0.47	1.17
9/26/2006	Total	940	640	0.65	0.44	1.10
9/27/2006	Total	1,000	700	0.69	0.49	1.18
9/28/2006	Total	1,020	700	0.71	0.49	1.19
9/29/2006	Total	1,070	730	0.74	0.51	1.25
9/30/2006	Total	1,000	680	0.69	0.47	1.17

		Well #2	Well #1	Well #2	Well #1	Total Daily
Date		Flow	Flow	Average	Average	Average Flow
		(gal)	(gal)	(gpm)	(gpm)	(gpm)
10/1/2006	Total	1,080	730	0.75	0.51	1.26
10/2/2006	Total	1,080	730	0.75	0.51	1.26
10/3/2006	Total	930	620	0.65	0.43	1.08
10/4/2006	Total	1,010	690	0.70	0.48	1.18
10/5/2006	Total	940	630	0.65	0.44	1.09
10/6/2006	Total	1,020	690	0.71	0.48	1.19
10/7/2006	Total	1,020	690	0.71	0.48	1.19
10/8/2006	Total	870	600	0.60	0.42	1.02
10/9/2006	Total	1,010	680	0.70	0.47	1.17
10/10/2006	Total	930	650	0.65	0.45	1.10
10/11/2006	Total	1,140	780	0.79	0.54	1.33
10/12/2006	Total	950	660	0.66	0.46	1.12
10/13/2006	Total	1,050	720	0.73	0.50	1.23
10/14/2006	Total	970	660	0.67	0.46	1.13
10/15/2006	Total	930	640	0.65	0.44	1.09
10/16/2006	Total	1,000	690	0.69	0.48	1.17
10/17/2006	Total	1,050	710	0.73	0.49	1.22
10/18/2006	Total	950	630	0.66	0.44	1.10
10/19/2006	Total	950	640	0.66	0.44	1.10
10/20/2006	Total	950	640	0.66	0.44	1.10
10/20/2006	Total	1,030	680	0.72	0.47	1.19
10/21/2006	Total	950	640	0.66	0.44	1.10
10/23/2006	Total	900	590	0.63	0.44	1.03
10/23/2006	Total	950	640	0.66	0.44	1.10
10/25/2006	Total	1,020	680	0.71	0.47	1.18
10/26/2006	Total	970	640	0.67	0.44	1.12
10/20/2006	Total	890	600	0.62	0.44	1.03
10/28/2006	Total	980	640	0.68	0.42	1.13
10/29/2006	Total	890	590	0.62	0.41	1.03
10/30/2006	Total	420	270	0.02	0.41	0.48
10/30/2006	Total	1,190	780	0.23	0.54	1.37
11/1/2006	Total	1,100	720	0.76	0.50	1.26
11/2/2006	Total	960	630	0.67	0.44	1.10
11/3/2006	Total	1,040	680	0.72	0.47	1.19
11/4/2006	Total	1.0.10	670	0.70		
11/5/2006	Total	1,040 910	570	0.72	0.47	1.19 1.03
11/6/2006	Total	980	620	0.68	0.43	1.11
11/7/2006	Total	970	620	0.67	0.43	1.10
11/8/2006	Total	980	620	0.68	0.43	1.11
11/9/2006	Total	960	620	0.67	0.43	1.10
11/10/2006	Total	990	620	0.69	0.43	1.12
11/11/2006	Total	890	570	0.62	0.43	1.01
11/11/2006	Total	980	630	0.68	0.44	1.12
11/13/2006	Total	950	610	0.66	0.44	1.08
11/14/2006	Total	980	630	0.68	0.42	1.12
11/15/2006	Total	1,020	650	0.71	0.44	1.16
11/16/2006	Total	1,110	720	0.77	0.50	1.27
11/17/2006	Total	940	600	0.65	0.42	1.07
11/18/2006	Total	940	600	0.65	0.42	1.07
11/19/2006	Total	740	470	0.63	0.42	0.84
11/20/2006	Total	920	590	0.64	0.33	1.05
11/20/2000	i Ulai	320	380	0.04	0.41	1.00

Date		Well #2 Flow (gal)	Well #1 Flow (gal)	Well #2 Average (gpm)	Well #1 Average (gpm)	Total Daily Average Flow (gpm)
11/21/2006	Total	990	640	0.69	0.44	1.13
11/22/2006	Total	920	580	0.64	0.40	1.04
11/23/2006	Total	970	630	0.67	0.44	1.11
11/24/2006	Total	920	590	0.64	0.41	1.05
11/25/2006	Total	840	540	0.58	0.38	0.96
11/26/2006	Total	910	580	0.63	0.40	1.03
11/27/2006	Total	920	590	0.64	0.41	1.05
11/28/2006	Total	980	630	0.68	0.44	1.12
11/29/2006	Total	890	560	0.62	0.39	1.01
11/30/2006	Total	1,000	640	0.69	0.44	1.14
12/1/2006	Total	980	620	0.68	0.43	1.11
12/2/2006	Total	980	630	0.68	0.44	1.12
12/3/2006	Total	850	540	0.59	0.38	0.97
12/4/2006	Total	910	580	0.63	0.40	1.03
12/5/2006	Total	920	590	0.64	0.41	1.05
12/6/2006	Total	990	630	0.69	0.44	1.13
12/7/2006	Total	930	580	0.65	0.40	1.05
12/8/2006	Total	990	620	0.69	0.43	1.12
12/9/2006	Total	850	510	0.59	0.35	0.94
12/10/2006	Total	1,010	630	0.70	0.44	1.14
12/11/2006	Total	990	610	0.69	0.42	1.11
12/12/2006	Total	1,010	620	0.70	0.43	1.13
12/13/2006	Total	930	580	0.65	0.40	1.05
12/14/2006	Total	930	570	0.65	0.40	1.04
12/15/2006	Total	920	570	0.64	0.40	1.03
12/16/2006	Total	1,000	620	0.69	0.43	1.13
12/17/2006	Total	850	530	0.59	0.37	0.96
12/18/2006	Total	860	530	0.60	0.37	0.97
12/19/2006	Total	920	580	0.64	0.40	1.04
12/20/2006	Total	930	580	0.65	0.40	1.05
12/21/2006	Total	870	540	0.60	0.38	0.98
12/22/2006	Total	920	580	0.64	0.40	1.04
12/23/2006	Total	940	590	0.65	0.41	1.06
12/24/2006	Total	790	480	0.55	0.33	0.88
12/25/2006	Total	870	540	0.60	0.38	0.98
12/26/2006	Total	870	530	0.60	0.37	0.97
12/27/2006	Total	930	580	0.65	0.40	1.05
12/28/2006	Total	920	570	0.64	0.40	1.03
12/29/2006	Total	790	490	0.55	0.34	0.89
Grand To	otal	229,730	94,000	0.831	0.340	1.171

## APPENDIX E TELEPHONE INTERVIEW LOGS

## Annual Telephone Interview Log Remedial Work Element IV - Institutional Controls Malta Rocket Fuel Area Site Malta and Stillwater, New York

	X New York State Energy Research and Developmental Authority			
Indicate Property Owner Interviewed:	SARATOGA ECONOMIC DEVELOPMENT CORRENATION			
Mr. Hal Brodie 518-862-1090, ext. 3280	Luther Forest Corporation			
Date of Interview: /- ユ3-0フ	Property Owner Representative: Mr. Hal Brodie			
Interview Questions:	Representative Response:			
Do you have any knowledge of current or proposed future use of groundwater within the area of the Environmental Restriction Zone? Do not include activities associated with Remedial Work Element II, Malta Test Station Drinking Water System.	NO			
Are you aware of any current or proposed changes in land use within the area of the Environmental Restriction Zone?	HAL suggested we check last interieur us Currently a technology park is being developed but not in the Ear 2 at this time.			
Are you aware of the notice requirements associated with the Environmental Restriction Easement and Declaration of Restrictive Covenants?	yes			
Have you provided any interested parties with a notice of Environmental Restriction Easement and Declaration of Restrictive Covenants in any instrument (document) conveying an interest in any part of the affected property? If so, please provide a date of execution and recording reference number, as provided by the Office of the Clerk of Saratoga County, New York.	NO			
Are you aware of any other conditions or actions within the Environmental Restriction Zone that would impact any condition of the Environmental Restriction Easement and Declaration of Restrictive Covenants?	NO			
Interview completed by: Milli Paglisi	Interviewer signature: AN OyC Date: /- 23-07			

## Annual Telephone Interview Log Remedial Work Element IV - Institutional Controls Malta Rocket Fuel Area Site Malta and Stillwater, New York

Indicate Property Owner Interviewed:	New York State Energy Research and Developmental Authority			
	X SARATOLA ELONOMIC DEVELOPMENT CORPORATION			
JON A. KELLEY 518-587-0945	TOWN OF MALTA, NEW YORK STATE			
Date of Interview: -18-07	Property Owner Representative: JON KELLEY			
Interview Questions:	Representative Response:			
Do you have any knowledge of current or proposed future use of groundwater within the area of the Environmental Restriction Zone? Do not include activities associated with Remedial Work Element II, Malta Test Station Drinking Water System.	No.			
Are you aware of any current or proposed changes in land use within the area of the Environmental Restriction Zone?	TOWN OF ENVIRONMENTAL GASEMENT RESTRICTIONS ON DEE			
Are you aware of the notice requirements associated with the Environmental Restriction Easement and Declaration of Restrictive Covenants?	VES.			
Have you provided any interested parties with a notice of Environmental Restriction Easement and Declaration of Restrictive Covenants in any instrument (document) conveying an interest in any part of the affected property? If so, please provide a date of execution and recording reference number, as provided by the Office of the Clerk of Saratoga County, New York.	YES. TOWN OF MALTA, CHICAGO TITLE COMPANY AND ADVANCED MICRO DEVICES (AMD)			
Are you aware of any other conditions or actions within the Environmental Restriction Zone that would impact any condition of the Environmental Restriction Easement and Declaration of Restrictive Covenants?	165. LOCATED 2-10,000 GALLON STORAGE TANK VESSEL THEY CONTAINED 3000-3500 GALLONS OF PLACET FIVE			
Interview completed by: MARC FLANACAN	Interviewer signature: /NSTRVCTED TO CALC THETR CONSULTANT, OT I Date: A FOR DETAILS.			

Bhuffhuar (Brian Newmann) for Marc Flanagan 1/18/07

## Annual Telephone Interview Log Remedial Work Element IV - Institutional Controls Malta Rocket Fuel Area Site Malta and Stillwater, New York

	New York State Energy Research and Developmental Authority
Indicate Property Owner Interviewed:	SARATOLA ELONOMIC DEVELOPMENT CORPORATION
Kevin King, Town of Malta Comptroller 518-899-2552 comptroller@malta	X TOWN OF MALTA, NEW YORK STATE
Date of Interview: 219107 BN 218109 -town.org	Property Owner Representative: KEVIN KING
Interview Questions:	Representative Response:
Do you have any knowledge of current or proposed future use of groundwater within the area of the Environmental Restriction Zone? Do not include activities associated with Remedial Work Element II, Malta Test Station Drinking Water System.	WEDO NOTAT THIS TIME
Are you aware of any current or proposed changes in land use within the area of the Environmental Restriction Zone?	DALK and lov recreational Durposes Dursuant to
Are you aware of the notice requirements associated with the Environmental Restriction Easement and Declaration of Restrictive Covenants?	TOWN of Malta PDD#169A-52. The Town is aware
Have you provided any interested parties with a notice of Environmental Restriction Easement and Declaration of Restrictive Covenants in any instrument (document) conveying an interest in any part of the affected property? If so, please provide a date of execution and recording reference number, as provided by the Office of the Clerk of Saratoga County, New York.	VES. these were included in the deed of the subject propulg of the Town NA - we are the princhasers and have not transferred by any interest to any other party, exther that to allow the develope
Are you aware of any other conditions or actions within the Environmental Restriction Zone that would impact any condition of the Environmental Restriction Easement and Declaration of Restrictive Covenants?	to travelse certain dirt made and paths on a temporary base
Interview completed by: Brian Nellemann	Interviewer signature: Milefyllier 2/8/07 Date: