Pre-Design Site Assessment Report Old Moreau and Special Area 13 Dredge Spoil Disposal Area Sites Moreau, New York

Site Numbers 546040 & 546041

December 2021

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Remedial Bureau E 625 Broadway Albany, New York 12233-7017

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING AND GEOLOGY, P.C. 368 Pleasant View Drive Lancaster, New York 14086

©2021 Ecology and Environment Engineering and Geology, P.C.

Volume 1

Section		Page
1	Introduction	1-1
2	Investigation Summary	2-1
	2.1 Pre-Field Investigation Activities	
	2.2 Monitoring Well Sampling	
	2.3 Test Pits	
	2.4 Direct-Push Soil Borings	
	2.5 Site Survey	
	2.6 Investigation-Derived Waste Management	
	2.7 Sample Handling and Analysis	
	2.8 Quality Assurance/Quality Control	
	2.9 Data Review	
3	Analytical Results	3-1
	3.1 MW-08 Groundwater Sample Results	
	3.2 Plastic Sample Results	
	3.3 Direct-Push Soil Sample Results	
4	References	4-1
Α	Photo Log	A-1
В	Field Data Forms	B-1
С	Laboratory Reports and Data Usability Reports	C-1

able of Contents

ist of Figures

Figure

- 2-1 Plastic Investigation Area and Drainage Ditch Test Pits, Old Moreau, Saratoga County, New York
- 2-2 Mill Site Road Dredge Spoil Test Pit Locations, Old Moreau, Saratoga County, New York
- 2-3 SA13 Fill Area 3 Direct-Push Soil Sample Locations, SA-13, Saratoga County, New York

ist of Tables

Table

2-1	Plastic Investigation Area Test Pit Summary, Old Moreau, Saratoga County,
	New York

- 3-1 Groundwater Sample Results, Old Moreau, Saratoga County, New York
- 3-2 Plastic-Like Material Sample Results, Old Moreau, Saratoga County, New York
- 3-3 Direct-Push Sample Results, SA13, Saratoga County, New York

ist of Abbreviations and Acronyms

bgs	Below ground surface
С	Celsius
DER	Division of Environmental Remediation
DUSR	Data Usability Summary Report
Е&Е	Ecology and Environment Engineering and Geology, P.C.
EPA	U.S. Environmental Protection Agency
IDW	Investigation-derived waste
LaBella	LaBella Associates, LLC
MW	monitoring well
NAD83	North American Datum of 1983
NAVD88	North American Vertical Datum of 1988
NYSDEC	New York State Department of Environmental Conservation
OM	Old Moreau Dredge Spoil Disposal Area
PCB	Polychlorinated biphenyl
ppm	Part per million
QA	Quality assurance
QC	Quality control
QAPP	Quality Assurance Project Plan
RAWP	Remedial Action Work Plan
SA	Site Assessment
SA13	Special Area 13 Dredge Disposal Area Site
SAP	Sampling and analysis plan
SCO	Soil cleanup objective
SOP	Standard operating procedure
SVOC	Semi-volatile organic compound
TestAmerica	TestAmerica Laboratories
VOC	Volatile organic compound

1

Introduction

Pursuant to Work Assignment Numbers D009807-15 and D009807-16, Ecology and Environment Engineering and Geology, P.C. (E & E) prepared this pre-design site assessment (SA) report for the Old Moreau Dredge Disposal Area (OM) site and the Special Area 13 Dredge Disposal Area (SA13) site in Moreau, Saratoga County, New York (see Figure 1-1). This report was prepared for the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation (DER) to support the development of a Remedial Action Work Plans (RAWPs) for the OM and SA13 Dredge Spoil Disposal Area Sites based on the 2012 Records of Decision for both sites (Sites No. 546040 and 546041). The sites are a former dredge spoil disposal area in the town of Moreau, New York, used by the New York State Department of Transportation to contain polychlorinated biphenyl (PCB) contaminated sediment and debris removed from the Hudson River in the 1950s through 1970s.

There were five primary objectives for this SA, and they include:

- Collect a groundwater sample from OM monitoring well (MW) OM-MW-08 to determine whether PCB contamination is present in the groundwater and if so, install soil boring/piezometer to define the extent of an excavation to comply with the soil cleanup objective of 3.2 parts per million (ppm) for protection of groundwater;
- Install test pits to assess the extent and thickness of the white plastic-like material located along the southeastern margin of the OM site near the western bank of the Hudson River and north of the GE Work Support Marina;
- Install a test pit across the Moreau dredge spoil containment cell drainage ditch north of the GE Work Support Marina access road to determine whether the ditch is asphalt-lined;
- Install test pits on the northern/western side of the Mill Site Road within 50 feet of West River Road to determine whether dredge spoil material is present and if so, the extent and thickness of the spoil material; and
- Install Geoprobe soil sample locations on the northern side of the Morrison residential property portion of the SA13 site to determine the extent and thickness of dredge spoil material exceeding the 1 ppm soil cleanup objective (SCO) for restricted residential use.

Investigation Summary

The purpose of the SA is to investigate areas of the OM and SA13 sites and collect additional information to assist with the development of the RAWPs. SA activities included a review of previous site investigations and figures; site reconnaissance, development of a sampling and analysis plan (SAP) (E & E 2021); collection of a groundwater sample from an existing OM site well; test pit installation on the OM site for visual inspection of plastic-like material; Geoprobe installation on the SA13 site to determine extent and depth of dredge spoil material above 1 ppm; site survey; investigation-derived waste management; and preparation of a summary report.

Field activities were performed by an E & E field team consisting of a geologist and a site safety officer during three field efforts. The first field effort involved the purging and low-flow sampling of one existing site monitoring well (OM-MW-08) on April 16, 2021. The second field effort involved the installation of 11 test pits over various areas of the site on May 13 and 14, 2021. The third field effort involved the installation and sampling of Geoprobe soil locations on the Morrison portion of the SA13 site and the collection of a plastic-like sample for laboratory analysis on July 23, 2021.

A summary of the field procedures and modifications to the planned field investigation is provided in the following subsections. A photographic log of field activities is presented in Appendix A, field data forms are presented in Appendix B, and laboratory data and data usability reports are presented in Appendix C.

2.1 Pre-Field Investigation Activities

Before initiating on-site activities, NYSDEC obtained access permission for SA activities.

A site reconnaissance of the OM, Moreau, and SA13 sites was conducted by NYSDEC and E & E project managers on April 8, 2021. The main purpose was to assess current site conditions and accessibility and to determine the appropriate sampling areas. After the site walkover, E & E prepared and submitted the OM SAP to the NYSDEC on May 3, 2021. A site-specific health and safety plan was prepared for this fieldwork and was included in the SAP.

E & E's test pit subcontractor, LaBella Associates of Rochester, New York (La-Bella), contacted Dig Safely New York to request mark-outs of underground utilities the week before beginning intrusive activities.

2.2 Monitoring Well Sampling

On April 16, 2021, OM-MW-08 was sampled using modified low-flow purging and sampling techniques with a bladder pump and dedicated polyethylene tubing to identify whether dissolved PCB contamination is present in groundwater. Purge water was pumped through a flow-through cell to collect water quality parameters. Upon stabilization of parameters, the groundwater sample and a duplicate sample were collected using a dedicated polyethylene bailer and rope and then field filtered using a 0.45-micron filter. The purge log that includes the final groundwater quality parameters measured at the time of sampling are provided in Appendix B.

Upon collection, the sample containers were labeled and immediately placed in a cooler maintained with ice at 4 degrees Celsius (C). The samples were delivered by E & E to Eurofins TestAmerica Laboratories (TestAmerica) in Buffalo, New York (under subcontract with NYSDEC), that same day for total PCBs analysis by U.S. Environmental Protection Agency (EPA) SW-846 Method 8082A.

2.3 Test Pits

LaBella had a one-person crew using a track Bobcat E35 excavator with an approximately 1-cubic-yard bucket with a maximum 8-foot reach to perform all the test pit work. E & E performed air monitoring in the work areas on of the excavated material using a MiniRAE 3000 photoionization detector with a 10.6 ev lamp, a QRAE 4-gas meter, and a Thermo pDR-1000AN Personal DataRAM Dust Monitor.

In general, all test-pitting and soil-logging procedures followed the objectives and methods identified in the geologic logging standard operating procedure (SOP) in E & E's Field Activities Plan. During test pit work, excavated surface and nonvisually impacted subsurface soils were placed on one side of the trench, while potentially impacted material (such as the white plastic-like material, dredge spoils, or garbage) were placed on the other side of the trench. Upon backfilling of each test pit, the potentially impacted material was placed in the trench first, followed by the soil material on top wherever possible.

Upon completion of test pit work in an area, foreign matter was removed, and excavator equipment was decontaminated using a high-pressure steam cleaner in the trench area so wastewater could run back into the subsurface of where it was generated.

Photos of all test pit work are presented in Appendix A, and Appendix B has the completed trench log forms.

2.3.1 White Plastic-like Test Pits

During previous investigation work performed at the site, a white plastic-like material was identified at the surface in a few areas along the southeast margin of the identified dredge spoil area of the OM site near the western bank of the Hudson River (see Figure 2-1). The white plastic-like material is believed to have been manufactured from the recycling processes at the former James River facility situated on the Georgia Pacific parcel where GE's Backfill Loading Storage Area was built.

E & E installed 11 test pits up to 80 feet long and 8 feet below ground surface (bgs) throughout the area in attempt to identify the extent and thickness of this white plastic-like material (see Figure 2-1). A summary of test pit findings presented in Table 2-1, with test pit trench field log forms provided in Appendix B. Although the white plastic-like material was identified a few areas at the surface in this area, it appears the majority of this material is found throughout the test pit area generally with 1 to 5 feet of soil/sandy material on top as cover. The depth of the plastic-like material exceeded the maximum 8-foot reach of the excavator at four of the 11 test pit locations (C, D, G, and I), so the total depth/thickness of the plastic-like material in these areas is unknown. It also appears dredge spoils may be present in the subsurface at a couple of the test pits (such as F).

In general, the material appears to be thin sheets to shredded white plastic with some colors and writing printed on the material in compacted layers 0.5 feet to 5 or more feet thick. At a few of the test pits (such as C and H), it appears the plastic-like material may have been burnt. There is an odor emanating from the material, but the highest reading detected on the photoionization detector was 0.2 ppm.

During the July 23 field effort, the white plastic-like material near the surface from the test pit area "I" was sampled for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and per- and polyfluoroalkyl sub-stances. Upon collection, the sample containers were labeled and immediately placed in a cooler maintained with ice at 4°C. The samples were shipped to Eurofins TestAmerica in Buffalo (under subcontract with NYSDEC) for next day delivery.

2.3.2 Moreau Drainage Ditch Test Pit

One test pit (J) was dug across the drainage ditch that channels surface water runoff from the Moreau-capped cell eastward to the Hudson River, about 100 feet west of the access road to the GE Work Support Marina. This test pit was dug to determine whether this section of the ditch was lined with asphalt (see Figure 2-1). The test pit started about 2 feet south of the center line of the ditch and was dug to a depth of about 2 feet bgs that extended northward to the edge of the ditch. The top 1.5 feet of material appears to be organic rich brown fine sandy silt. However, the white plastic-like material was similar to what was discussed in Section 2.3.1 above was identified in the trench starting at 1.5 feet bgs. Based on discussions with the NYSDEC, it was decided to not extend the trench deeper to identify the thickness of the plastic-like material.

2.3.3 Mill Site Road Test Pits

E & E installed six test pits up to 65 feet long and 4 feet deep on the northwest side of the Mill Site access road before the first access gate to the OM site to determine whether dredge spoil material was present on this side of the road (see Figure 2-2). Suspected dredge spoils were only identified in two test pits 1 to 2 feet in thickness and within 1 or 2 feet immediately adjacent to the road (see the logs for test pit N and O). Besides this minor amount of suspected dredge spoils, the remaining test pit material was primarily brown silty fine-grained sand with some organic material present in the top 6 inches.

2.4 Direct-Push Soil Borings

A total of four direct-push soil borings were installed on July 23 on the northern portion of Fill Area 3 (the Morrison residential property) on the SA13 site to determine the extent and depth of dredge spoils exceeding the 1 ppm SCO for restricted residential use. Soil borings were installed by LaBella using a Geoprobe Model 6019 DT direct-push machine attached to a skid-steer and 2.25-inch-diameter Macro-Core® probing rods with 1.5-inch-diameter, dedicated sleeves. The four boring locations are shown on Figure 2-3. Photos of the direct-push work are presented in Appendix A, while the soil boring logs are provided in Appendix B.

Five direct-push soil boring locations were initially proposed, but access to three of the locations were restricted due to trees (standing and fallen) and miscellaneous debris or vehicles located throughout the Morrison property. As a result, the locations for two of the samples were modified in the field and a total of four direct-push locations were sampled. Soil borings were extended 10 to 15 feet bgs and two or three soil samples were collected from each boring. In soil borings where suspected dredge spoil material was greater than 4 feet thick or found in multiple intervals, multiple samples of the suspected dredge material were collected. In soil borings where suspected from the suspected dredge material and a second sample was collected from the soil material approximately 1 to 2 feet below the suspected dredge material.

Soil samples were collected from the sampling device using a plastic spoon and then placed in a disposable paper bowl and stirred with the spoon before transfer to the laboratory container for and total PCBs analysis (Method 8082A). Upon collection, the sample containers were labeled and immediately placed in a cooler maintained with ice at 4°C. The samples were shipped by E & E to Eurofins Test-America, Buffalo (under subcontract with NYSDEC) for next day delivery

Following completion of soil sampling, the direct-push borings were backfilled with the remaining soil not used in sample collect to the extent possible, with any remaining soil spread at the surface around the sample point.

For the soil borings, the only portion of the direct-push tooling that came into contact with the soil samples (besides the sleeves) was the cutting shoe of the

Macro-Core casing. The shoe and the casing itself were decontaminated before each use by scrubbing with a laboratory-grade detergent (e.g., Alconox) solution and rinsing the equipment with potable water.

2.5 Site Survey

The preconstruction site survey was developed by WSP USA Inc.–licensed land surveying staff using a combination of aerial flight data and standard surveying technologies. The purpose of the survey was to locate all permanent and semi-permanent site features that may be relevant to the RAWP, construct a topographic survey across all three sites using 1-foot contour interval, and identify the test pit locations installed during the SA.

Standard surveying work was performed during four separate field efforts. The first survey effort was performed on April 19, 2021, to set up and survey targets before the collection of the aerial flight data on April 26, 2021. The second field effort was performed on May 14, 2021, to identify the horizontal position of the test pit trenches installed during the SA fieldwork and some key site features. The third field effort was performed on June 7 and 8, 2021, for spot elevation checks and to collect additional key site features that were obscured in the aerial survey by brush and tree canopy. The fourth field effort was performed on July 23, 2021, to identify the horizontal position of the four direct-push soil borings installed in Fill Area 3.

Horizontal coordinates were given in the New York State Plane (East Zone) coordinate system to an accuracy of ± 0.5 feet relative to the North American Datum of 1983 (NAD83). Vertical elevations were given relative to the North American Vertical Datum of 1988 (NAVD88).

2.6 Investigation-Derived Waste Management

The following types of investigation-derived waste (IDW) were generated during this investigation: monitoring well sampling purge water; excavated soil and material from test pits; decontamination water; and spent personal protective equipment (primarily nitrile gloves). No IDW material was containerized as the cover remedy will mitigate any IDW created during this investigation.

Liquid IDW, including water generated during equipment decontamination and purge water from groundwater sampling, was discharged onto the ground surface adjacent to the associated test pit/monitoring well as no signs of gross contamination were identified.

All test pit excavated material was backfilled to the extent possible at each test pit location. The potentially impacted material was placed in the trench first, and the remaining material was spread on the ground near the area of generation.

All expendable materials generated during the investigation (primarily nitrile gloves) was bagged and disposed of off-site as nonhazardous solid waste by the test pit subcontractor.

2.7 Sample Handling and Analysis

Groundwater samples were collected in containers provided by TestAmerica. Upon collection, the sample containers were labeled and immediately placed in a cooler maintained with ice at 4°C pending E & E's delivery to the Eurofins TestAmerica Buffalo laboratory.

The groundwater sample was analyzed by TestAmerica for total PCBs analysis by EPA Method SW8082A. The plastic-like material sample was analyzed for VOCs (Method SW8260C), SVOCs (Method SW8270D), and per- and polyfluoroalkyl substances (Method LC/MS/MS E537). The soil samples were analyzed for total PCBs analysis (Method SW8082A).

Reports were consistent with NYSDEC Analytical Services Protocol Category B deliverable requirements, and data were provided in NYSDEC EQuIS electronic data deliverables for review by E & E. Laboratory reports and DUSRs are provided in Appendix C.

2.8 Quality Assurance/Quality Control

Quality assurance (QA)/quality control (QC) samples, including field duplicates, were generally collected in accordance with the specifications of E & E's Quality Assurance Project Plan (for NYSDEC projects (E & E 2011).

Since only one groundwater sample was collected, only one duplicate sample of the groundwater was collected.

Due to a limited number of soil jars for the Geoprobe soil sampling and a third sample collected from soil boring location SA13-03, a duplicate soil sample was the only QA/QC soil sample collected.

The NYSDEC did not set up with the laboratory for any QA/QC samples to be collected of the white plastic-like material.

Duplicate samples provide insight into the homogeneity of the sample matrix and establish a degree of confidence in the precision of the field sampling and analytical method. A review of the duplicate sample results is provided in the data usability summary reports (DUSRs) provided in Appendix C.

2.9 Data Review

All laboratory deliverables were reviewed in accordance with the Quality Assurance Project Plan (E&E 2020). The data were qualified following general guidelines in the EPA Region 2 SOP, Hazardous Waste Support Section, EPA Region 2 SOP HW-2a (EPA 2012). DUSRs were prepared for each phase of sample analysis as specified in Appendix 2B of NYSDEC's *Technical Guidance for Site Investigation and Remediation* (NYSDEC 2010). The data review included an evaluation of the following:

- Holding times;
- Initial and continuing calibration;
- Reporting limits/dilutions;
- Calibration blanks and method blanks;
- Matrix spike/matrix spike duplicate samples;
- Laboratory control samples;
- Field duplicates; and
- Interference checks.

DUSRs were prepared by E & E's data validation chemist for all sampling events (see Appendix C). Any deviations from acceptable QC specifications are discussed in the DUSRs. Qualifiers were added to the data, if appropriate, to indicate potential concerns with data usability, and these qualifiers were transferred to the data summary tables presented in Appendix C. There were no significant impacts on data usability.

Analytical Results

This section presents the analytical results for the groundwater, soil, and plasticlike material sampling activities to provide a better understanding of the contamination present on the OM and SA13 sites for the RAWP development.

3.1 MW-08 Groundwater Sample Results

No PCBs were detected in the groundwater sample collected from OM-MW-08 (see Table 3-1).

3.2 Plastic Sample Results

VOCs and SVOCs were not detected in the plastic-like material sample collected from test pit I; however three per- and polyfluoroalkyl substances analytes were detected: perfluoroheptanesulfonic acid (PFHpS), perfluorobutanoic acid, and perfluorohexanoic acid (PFHxA) (see Table 3-2).

3.3 Direct-Push Soil Sample Results

One PCB aroclor (Aroclor 1248) was detected in four of the nine soil samples collected ranging from 4 ppm to 14 ppm (see Table 3-3).

References

Ecology and Environment Engineering, P.C. (E&E). 2020. *Master Quality Assurance Project Plan (QAPP) for New York State Department of Environmental Conservation Projects*. Prepared for New York State Department of Environmental Conservation, Albany, New York, April 2020.

. 2021. Site Assessment Sampling and Analysis Plan, Old Moreau Dredge Spoil Disposal Areas, NYSDEC Site No. 546040. Prepared for New York State Department of Environmental Conservation, Albany, New York, May 2021.

New York State Department of Environmental Conservation (NYDEC). 2010. DER-10, Technical Guidance for Site Investigation and Remediation, Division of Environmental Remediation, Albany, New York, May 2010.

U.S. Environmental Protection Agency (EPA) Region 2. 2012. Standard Operating Procedure (SOP), Hazardous Waste Support Section, SOP No. HW-2a Revision 15, ICP-AES Data Validation. New York, New York, December 2012.

Figures

TEST PIT LOCATION

ESTIMATED EXTENT OF PLASTIC MATERIAL (BASED ON CURRENT AND HISTORIC DATA)

LEGEND:

1. SAMPLE OM-PLASTIC-07232021 WAS COLLECTED AT THE SAME LOCATION AS TEST PIT "I".

corp.ene.com\files\BUF\CAD\NYSDEC 2021\October 2021 — Figures\Predesign Site Assessment report.dwg, 10/11/2021 4:55:28 PM, USKK689194

GURE 2–3 SA–13 FILL AREA 3 (MORRISON PROPERTY) SPECIAL AREA 13 MOREAU, NEW YORK

Tables

Table 2-1 Plastic Investigation Area Test Pit Summary

Trench ID	Approximate Length (ft)	Maximum Depth (ft bqs)	White Plastic Material Identified	Subsurface Description
	80	6	Yes	Primarily brown sility sand sand fill to 6 ft bgs. A 14ft long/5ft thick section of white plastic like material identified 20-35 ft from north end of test pit
В	15	3.5	Yes	Primarily brown sility sand sand fill to 3.5 ft bgs. A 7 foot long/1.5ft thick section of white plastic like material identified 1ft bgs from west end of test pit.
С	14	8	Yes	Primarily brown sility sand sand fill to 5.5 ft bgs. A 2.5-5.5+ ft thick section of white/black (burned?) plastic like material identified across bottom of test pit.
D	8	8	Yes	Primarily brown sility sand sand fill to 8 ft bgs. Thin layers of white plastic like material located 2.5-8ft bgs throughout test pit.
Е	8	7	Yes	Primarily brown sility sand sand fill to 7 ft bgs. White plastic like material identifed 0-4.5ft bgs on southeast half of test pit.
F	10	7.5	Yes	Primarily brown sility sand sand fill to 7.5 ft bgs. Up to 1ft thick layer of white plastic like material located 4-5ft bgs on eastern portion of test pit.
G	8	7	Yes	Primarily brown sility sand sand fill to 3ft bgs with a thin layer of dark organic material/PCB dredge material. White plastic like material 3ft bgs and deeper across bottom of test pit.
Н	8	7.5	Yes	Primarily brown sility sand sand fill to 7.5 ft bgs. Approximately 1ft thick white plastic like material layer 4.5-6 ft bgs across test pit.
I	8	8	Yes	Primarily brown sility sand sand fill to 2.5 ft bgs. White plastic like material identifed 2.5ft bgs and deeper across test pit.
J	8	2	Yes	Primarily brown sility sand sand fill to 2 ft bgs. White plastic like material identifed starting 1.25ft bgs on southwest end of test pit (center of drainage ditch).
K	65	4	No	Primarily brown sility sand sand fill to 3.8ft bgs, with brown silty clay below 3.8 ft bgs.
L	7	2	No	Primarily brown sility sand sand fill to 2 ft bgs.
М	12	1.5	No	Primarily brown sility sand sand fill to 1.5 ft bgs.
N	14	2.5	No	Primarily brown sility sand sand fill to 2.5 ft bgs. Suspected PCB spoils 0.5-2.5 ft bgs at southern end of test pit (adjacent to Mill Site Rd).
0	8	3	No	Primarily brown sility sand sand fill to 3 ft bgs. Suspected PCB spoils 0.5-1 ft bgs at southern end of test pit (adjacent to Mill Site Rd).
Р	15	2	No	Primarily brown sility sand sand fill to 2 ft bgs.

Key:

bgs = below ground surface

ft = feet

Table 3-1 Summary of Positive Analytical Results for Groundwater Monitoring Well SampleOld Moreau Dredge Spoil Disposal Area, Moreau, New York

Analyte	Location ID: Sample Name: Depth: Date:	MW-08 MW-08 8 - 18 ft 04/16/21	MW-08 MW-08D 8 - 18 ft 04/16/21
PCBs by Method SW8082A (µg/l)			
PCB-1016 (Aroclor 1016)		0.18 U	0.18 U
PCB-1221 (Aroclor 1221)		0.18 U	0.18 U
PCB-1232 (Aroclor 1232)		0.18 U	0.18 U
PCB-1242 (Aroclor 1242)		0.18 U	0.18 U
PCB-1248 (Aroclor 1248)		0.18 U	0.18 U
PCB-1254 (Aroclor 1254)		0.25 U	0.25 U
PCB-1260 (Aroclor 1260)		0.25 U	0.25 U
PCB-1262 (Aroclor 1262)		0.25 U	0.25 U
PCB-1268 (Aroclor 1268)		0.25 U	0.25 U

Key:

Qualifiers

U = Not detected (method detection limit shown)

Other

 $\mu g/L = Micrograms per liter$

"D" denotes field duplicate sample

Bold values denote positive hits.

Table 3-2 Summary of Positive Analytical Results for Plastic-Like Material Sample Old Moreau Dredge Spoil Disposal Area, Moreau, New York

Sample Name	e: OM-PLASTIC-07232021	OM-PLASTIC-07232021
Sample Type	e: TCLP	SPLP
Date	e: 07/23/21	07/23/21
Analyte		
Perfluorinated Compounds by LC/MS/MS E537(M) (ng/l)		
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	0.41 U	0.41 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	2.2 U	2.2 U
N-ethyl perfluorooctanesulfonamidoacetic acid	1.2 U	1.2 U
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	1.1 U	1.1 U
Perfluorobutanesulfonic acid (PFBS)	0.18 U	0.18 U
Perfluorobutanoic Acid	2.1 U	2.7 J
Perfluorodecanesulfonic acid (PFDS)	0.29 U	0.28 U
Perfluorodecanoic acid (PFDA)	0.28 U	0.28 U
Perfluorododecanoic acid (PFDoA)	0.49 U	0.49 U
Perfluoroheptanesulfonic acid (PFHpS)	0.41 J	0.17 U
Perfluoroheptanoic acid (PFHpA)	0.22 U	0.22 U
Perfluorohexanesulfonic acid (PFHxS)	0.51 U	0.51 U
Perfluorohexanoic acid (PFHxA)	0.52 U	0.57 J
Perfluorononanoic acid (PFNA)	0.24 U	0.24 U
Perfluorooctane Sulfonamide (FOSA)	0.88 U	0.87 U
Perfluorooctanesulfonic acid (PFOS)	0.48 U	0.48 U
Perfluorooctanoic acid (PFOA)	0.76 U	0.76 U
Perfluoropentanoic Acid (PFPeA)	0.44 U	0.44 U
Perfluorotetradecanoic acid (PFTA)	0.65 U	0.65 U
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	1.2 U	1.2 U
Perfluoroundecanoic Acid (PFUnA)	0.98 U	0.98 U
Volatile Organic Compounds by GC/MS SW8260C (mg/l)		
1,1-Dichloroethene	0.0029 U	0.0029 U
1,2-Dichloroethane	0.0021 U	0.0021 U
Benzene	0.0041 U	0.0041 U
Carbon Tetrachloride	0.0027 U	0.0027 U

Table 3-2 Summary of Positive Analytical Results for Plastic-Like Material Sample Old Moreau Dredge Spoil Disposal Area, Moreau, New York

Sample Name:	OM-PLASTIC-07232021	OM-PLASTIC-07232021
Sample Type:	TCLP	SPLP
Date:	07/23/21	07/23/21
Analyte		
Chlorobenzene	0.0075 U	0.0075 U
Chloroform	0.0034 U	0.0034 U
Methyl Ethyl Ketone (2-Butanone)	0.013 U	0.013 U
Tetrachloroethylene (PCE)	0.0036 U	0.0036 U
Trichloroethylene (TCE)	0.0046 U	0.0046 U
Vinyl Chloride	0.0090 U	0.0090 U
Semi-Volatile Organic Compounds by GC/MS SW8270D (mg/l)	-	
1,4-Dichlorobenzene	0.0018 U	0.0018 U
2,4,5-Trichlorophenol	0.0019 U	0.0019 U
2,4,6-Trichlorophenol	0.0024 U	0.0024 U
2,4-Dinitrotoluene	0.0017 U	0.0017 U
2-Methylphenol (O-Cresol)	0.0016 U	0.0016 U
3-Methylphenol	0.0016 U	0.0016 U
4-Methylphenol (P-Cresol)	0.0014 U	0.0014 U
Hexachlorobenzene	0.0020 U	0.0020 U
Hexachlorobutadiene	0.0027 U	0.0027 U
Hexachloroethane	0.0023 U	0.0023 U
Nitrobenzene	0.0011 U	0.0011 U
Pentachlorophenol	0.0088 U	0.0088 U
Pyridine	0.0016 U	0.0016 U

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

Other

ng/L = Nanograms per liter

mg/L = Milligrams per liter

Bold values denote positive hits.

Table 3-3 Summary of Positive Analytical Results for Direct-Push Soil Samples

SA-13 Dredge Spoil Disposal Area, Moreau, New York

Analuta	Location ID: Sample Name: Depth: Date:	GP01 GP01-01 18 - 24 ft 07/23/21	GP01 GP01-02 84 - 96 ft 07/23/21	GP02 GP02-01 12 - 18 ft 07/23/21	GP02 GP02-02 96 - 110 ft 07/23/21	GP02 GP02-03 130 - 140 ft 07/23/21	GP03 GP03-01 12 - 18 ft 07/23/21	GP03 GP03-02 30 - 36 ft 07/23/21	GP04 GP04-01 6 - 12 ft 07/23/21	GP04 GP04-02 18 - 24 ft 07/23/21	GP04 GPFD-01 18 - 24 ft 07/23/21
PCBs by Method SW8082A (mg/kg)											
PCB-1016 (Aroclor 1016)		0.27 U	0.052 U	0.056 U	0.064 U	0.041 U	0.040 U	0.050 U	0.45 U	0.049 U	0.053 U
PCB-1221 (Aroclor 1221)		0.27 U	0.052 U	0.056 U	0.064 U	0.041 U	0.040 U	0.050 U	0.45 U	0.049 U	0.053 U
PCB-1232 (Aroclor 1232)		0.27 U	0.052 U	0.056 U	0.064 U	0.041 U	0.040 U	0.050 U	0.45 U	0.049 U	0.053 U
PCB-1242 (Aroclor 1242)		0.27 U	0.052 U	0.056 U	0.064 U	0.041 U	0.040 U	0.050 U	0.45 U	0.049 U	0.053 U
PCB-1248 (Aroclor 1248)		14	0.052 U	6.2	0.064 U	0.041 U	4.0	0.050 U	13	0.049 U	0.053 U
PCB-1254 (Aroclor 1254)		0.65 U	0.13 U	0.13 U	0.15 U	0.098 U	0.096 U	0.12 U	1.1 U	0.12 U	0.13 U
PCB-1260 (Aroclor 1260)		0.65 U	0.13 U	0.13 U	0.15 U	0.098 U	0.096 U	0.12 U	1.1 U	0.12 U	0.13 U
PCB-1262 (Aroclor 1262)		0.65 U	0.13 U	0.13 U	0.15 U	0.098 U	0.096 U	0.12 U	1.1 U	0.12 U	0.13 U
PCB-1268 (Aroclor 1268)		0.65 U	0.13 U	0.13 U	0.15 U	0.098 U	0.096 U	0.12 U	1.1 U	0.12 U	0.13 U

Key:

<u>Qualifiers</u>

U = Not detected (method detection limit shown)

Other

mg/kg = Milligrams per kilogram

-- = Analyte not analyzed for

"FD" denotes field duplicate sample

Bold values denote positive hits.

	A CARE OF THE PROPERTY AND A DESCRIPTION OF	
	Constant 1	
2 m	A LANGER	
125		
200	a state of the	
	CARD TO DE	
	1 / AV / -	
A. In-	STATE - CAR	
1420	NOT CAR	
	F C	
Photo No.:	05	Direction of View: NA
Date:	05/13/2021	Subject: Test Pit J through Moreau Drainage Ditch.
Photographer:	Е&Е	Plastic-like material 1.5 feet below ground surface.

Photo No ·	07	Direction of View: NA
r noto No.:	07/22/2021	Direction of view: NA
Date:	0//23/2021	Subject: Direct-push subsurface soil collected from SA-
Photographer:	Ε&Ε	GP01.

Monitoring Well Purge and Sample Log

			WELL PL	JRGE & S	AMPLE	RECORD		oldr	noreau	
:	Site Name/Loca	ation; Old	Man	eary l	undf	11-	Well ID:	Mh	1-00	
	Projec	ENO .: BEITO	5007.	0015-	02		640	4/26/	<u> </u>	
	Well Sampl	od bis: Cole	1 Krieg	i				2		
1	nitial Depth to	Water: 8,78	feet TOIC	,		Wei	I Diameter:	100	inches	
	Total Well	Depth: 20.30	feet TOIC			1x We	ell Volume:	1.80	gallons	bales.
Pu	rging Method:	DK Pump blu	11.0	Bailer			Pump Type:	hladae	- porget	sampl
	Pump Rate:		105			Dep	th to Pump:	17	feet TOIC	
Pur	oe Start Time:	1325				Purge	End Time:		6	-
		Purce Volume	DH	Temp.	ORP	Conductivity	DO	Turbidity	Water	
	Time	(gallons/liters)	(s.u.)	(°C/¶)	(Vin)	(usien) misiem)	(mg/L)	(NIU)	0.97	
20,30	1341	0	87,70	8.2	-	1217		10	907	
- 8.78	1346		7.39	8.4	-	1210		222	910	111 133
	1351		7.01	8.4	-	1209	-	0300	9.12	
11-52	1356		6.80	8.4	-	1207	-	dord 127	9.25	
1/3	1401	The state of the state	6.71	8.4	-	1206		13.1	917	
X01163	1406		6.43	8.3	-	1205		8.71	9.14	
-188-1	1411	5 gallions	6.49	8.3	-	1198	-	- 17.01	9.15	
-1.003/	1416		6.20	8.5	Castra	1201		5.15	920	
/	1726 1426		6.15	8.5	-	1201	-	0.30	9.20	A STREET
11	1436 1436	5 gallons	6.07	8.5	-	1010		0.00	1. 10	
1 001,	+446-	0					/			
	-	purged 10		-	1					Can't I I I I I I I I I I I I I I I I I I I
1.88% 500	5	gallour		A CONTRACTOR						
= 5-640.		tola								
		1 4 2 A 1		/	1	-				
1-88×5vols	3		/							
QU		A PORAL								
= 1.7g		/								
								E mile for		
	Final	Sample Data:	6.07	85	-	1010	-	0.02	9,30	327/24
	Metals	Sample Data:								
		Mathadi [7]	Burn	M	Dedicate	d Bailer				
200	Sample ID:	ald Moreau	Mus-	08	Duplicate	2 Dupli	cate Sample I	D OLIM	acer 1	www-oph
	Cample Time	1458			MS/MSD	10				
Moto	Sample rime.	te/Time:	1			6	hadder.			
Wieta	Analyses	Method		Comments	: pu	yed of the	with	e m	0-	
	U VOC			Any	led ,	y harles	<u>es</u> e	ield fi	Verel	
	D SMOC			-upo	.45m	4 filter				
D	PCB/Pest		1-	-010	Maria	Mar Mar	-68			-
	Total Metals	-tulo	- Sought	Old	Man	my Mw	-080			-
I	Dissolved M	etals	- 207	-Dia	Ene	1458	- cops			
L	1			and the second second				New York Concerning of the Second		
<u>[</u>	1		15	enan	·U	Car	-	The second second second second second		-
	ampler Signat	ture:	17	for			Construction of the Owner of the	-		
			10							

Test Pit Trench Logs

ecology and environment engineering and geology, p.

1

TRENCH LOG

Environm	ental Specialists			Sheet:	of		
Project	Site Name Morea V	Project Numt	007.0015.02	Trench Location	Sketch	Ŧ	
Trench I	Number/Name A-A'		• • • • • • • • • • • • • • • • • • •			1 d So	
Name o	Inspector Chuck	Porreca					
Date Sta	arted/Finished 5-13-2021	5-13	3-21			· ~	
Contrac	tor LaBella	Equipment Bobcat E	E35 Excavator		ALL Y	Wire NA	
Final Le	ngth/Depth ~%0´						
Trench	Backfilled With Excavated	IDW Generat	ed 🗆 Y 🖄 N	rower/Pi	NORE LINE)	Pole	
Trench	Cross Section		4		57		
A	White plastic 20 White plastic Material ~ surface - 5' Dught - on west side of trench, some on east side	61845	total large		~	+ white Plastic Material interspe	'≆d
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		Description/Comn	nents		
			A. I' RES Me	d. brown si	Hy sand fi	Il med. grass	
			φιώ			Ŭ I	
-1- -2-			~1-6'BGS M	ed./H. brow Sand FII w/	sity @ in five - g poulets /1	rained	
-1- -2- -3-			n1-6'BGS M of wh (noted exte	ed./H. brow Sand FII w/ He plastic at in cross	situte - g pollets/1 material s-section)	rained layers	
-1- -2- -3- -4-			v1-6'BGS M of wh (noted exte	ed./H. brow Sand Fill w/ He plastic at in Cross	situ e in five - g pockets / 1 material s-section)	rained inyers	
-1- -2- -3- -4-			v1-6'BGS M of wh (noted exte	ed./H. brow Sand Fill w/ He plastic at in Cros.	situe - g poulets/1 material s-section)	rained invers	
-1- -2- -3- -4- -5- -6-			v 1-6'BGS M of wh (noted exte	ed./H. brow Sand Fill w/ He plastic at in Cros.	situe - g pockets / / material s-section)	rained invers	
-1- -2- -3- -4- -5- -6- -7-			v 1- 6' BGS M of wh (noted exte	ed./H. brow Sand Fill w/ He plastic ant in Cross	situ (D) in five - g pockets / / inaterial s-section)	rained inyers	
-1- -2- -3- -4- -5- -6- -7- -8-			v 1- 6' BG-S M of wh (noted exte	ed./H. brow Sand Fill w/ ite plastic at in Cross	sitte D in Five - g pockets // inaterial s-section)	rained inyers	
-1- -2- -3- -4- -5- -6- -7- -8- -9-			v 1- 6' BGS M of wh (noted exte	ed./H. brow Sand Fill w/ ite plastic at in Cross	situe - g poulets / / material s-section)	rained inyers	
-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-			v 1-6'BGS M of wh (noted exte	ed./H. brow Sand Fill w/ ite plastic ant in Cross	situ (D) in five - g pockets / / inaterial s-section)	rained inyers	

Signature:

2

0
	ecology and environment engineering and geology, p.c
U	engineering and geology, p Environmental Specialists

TRENCH LOG

Environ	neering and geology, p.c. mental Specialists			Sheet:of
Project	Site Name Old Moreau	Project Num EE170 S	nber -007.0015,02	Trench Location Sketch
Trench	Number/Name B-B	/		os pr
Name o	of Inspector Chuck F	orreca		
Date St	arted/Finished 5-13-2	5-	13-21	mw t wine
Contrac	tor LaBella	Equipment	Bobcat E35 Excavator	NA NA
Final Le	ength/Depth ~1\$1 /~3	.51		
Trench	Backfilled With Excavated Material	IDW Genera	ited I Y Str	Private Private Miles Support Pilo
Trench	Cross Section	71	1	
	B		Ground Surface	-J ^B
	Plastic	X B	Ser X	sitty sand fill
1	material	~3,5	665	v
_				
Depth (Feet)	Sample Number/Location ID	PiD/FID (ppm)		Description/Comments
			Ø-1' Hed brown	silty sand fill
-1-			1-2.5' BG5 -	white plastic material layer (n7' long from B)
-3-			2.5-3,5' BGS -	Med./It. brown silty wand fill fine (P)
-4-				
-5-				
-6-				
-7-				
-8-				
-9-				
-10-				
			Signature:	CAR

ecology and environment engineering and geology, p.c. Environmental Specialists

TRENCH LOG

engin Envirore	neering and geology, p.c.			Sheet:	of	
Project	Site Name	Project Num EE1705	ber 5007,0015,02	Trench Location S	iketch \	
Trench	Number/Name C - C	1				luds
Name o	of Inspector Chuck	Porreca				2
Date St	arted/Finished 5-13-21				11	
Contrac	ctor LaBella	Equipment	Bobcat E35 Excavator		- Hyou	ide A
Final Le	ength/Depth		Q.		New CI L	N
Trench	Backfilled With EXcavated Materia	IDW Genera	ted 🗌 Y 🖾 N	Power 7 Pi	hore lines	SUPPorte
Trench	Cross Section		~14'	ΰ,	1	
un to BI	ack III Not III	^ى 	q	13	7	1
Plastic			······································	Les a at 20	T	seamens
ĈD	epth	Trank and			8'	-likely BGS
	'e	enger 1	4.5' BGS Luger	C3.5'BG5 La	yer @ 2 5 Bos	pershad
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)	C	Description/Comme	ents	
			Ø-2.5' @ ('	0-5.5'0	PL med /	dark
-1-			Fill WSOME	redf. Ne-a	darker, o	rganizi
-2-			rich material	s and als	o meas of	gray/
-3-			Division Part w	intervals		
			2.5-8'ec',5.	5-8'00	: white/Blo	ula
-4-		· · · · · · · · · · · · · · · · · · ·	W/some Fil	Il lai	per mike	<u>' d</u>
-5-			sk 5 l		1 1001	
-6-			deeper than	s' does no	T exterio	
-7-						
-8-						
0						
-9-						
-10-						
					7	
			Signature:			

t

ecology and environment engineering and geology, p.c. Environmental Specialists

TRENCH LOG

	neering and geology, p.c.			Sheet:of
Project	Site Name Old Moseau	Trench Location Sketch		
Trench	Number/Name D - D) [/]		TA Las
Name o	finspector Chuck	Porreca		
Date St	arted/Finished 5-13-21	51	3-21	
Contrac	stor LaBella	Equipment (Bobcat E35 Excavator	i y Guile
Final Le	ength/Depth ~ & / ~	-81		M. NA
Trench	Backfilled With Excavated Material	IDW Generat	ed 🗆 Y 🖾 N	Fower/Phone Lines Support
Trench	Cross Section		►^	841
13' XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)	1	Description/Comments
-1-			NO-ZIS' MOST Fine sa	Hy med. brown silty med - ind fill w/interspersed
-2-			white pla_ ~2.5-8' B6-5	stic material white Plastic Material
-3-			w/inters	persed fill
-4-				
-5-				
-6-				
-7-				
-8-				
-9-				
-10-				
	· · · · · · · · · · · · · · · · · · ·			

ecology and environment engineering and geology, p.c.

TRENCH LOG

engin Envisore	neering and geology, p.c.			Sheet:of		
Project	Site Name	Project Num EE170	ber 5007.0015.02	Trench Location Sketch		
Trench	Number/Name E-E					
Nameo	f Inspector Chucle	Porrece	٦	i litt As		
Date St	arted/Finished 5-13-21	5-13-	-21			
Contrac	ctor La Bella	Equipment (Bobcat E35 Excavator			
Final Le	ength/Depth ~ 8'	/7'		NI NI		
Trench	Backfilled With Excavated Material	IDW Genera	ted 🛛 Y 🖄 N	Power/Phone Lines Suppose		
Trench	Cross Section		~8'			
	E V V V V V V V V V V V V V V V V V V V					
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		Description/Comments		
			Ø - 4.5' BGS	REP. white Plastic material		
-1-			medf.he-	raised sand fill grades		
-2-			to fill w	I some interspersed white		
-3-			plastic	tering toward E,		
-4-			D-8'CE me Bus fine-gra	a brown stifty med - ined sand fill		
-5-			same fo	F 4.5-8' @ E'		
-6-						
-7-						
-8-						
2						
-9-	56					
-10-						
	5			() SHL		

ecology and environment engineering and geology, p.c.

TRENCH LOG

ł

engin Envirorm	ieering and geology, p.c.			Sheet:of
Project	Site Name	Project Num FE170	ber 25007,0015,07	Trench Location Sketch
Trench	Number/Name F - F	va se		
Nameo	finspector Chuck (Brreca		FFI
Date St	arted/Finished 5-13-21	5	-13-2(
Contrac	tor LaBella	Equipment	Bobcat E35 Excavator	- A Fourte A
Final Le	ngth/Depth ~ / 0	1/~7	.5'	MW O WITE N
Trench	Backfilled With Excavated Material	IDW Generat	ed ⊡ Y Żłkn	Power/Phone Lines Support Pole
Trench	Cross Section F	~~~~~	10'	
	× ×	8 X 8		-7.51 -7.51
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)	C C	Description/Comments
			P-4' EF' M Bbs fine 9	ed. brown silty med rained sand fill . 1/+ race
-1-			white plas	tic material interspersed
-2-			possibly o	rganic materials of dredged
-3-			PLB Spoi	ls J
-4-				
-5-			4.5' BGS EF'	white plastic material, n F' toward F
5			5~75' Med.	brown /1+. brown silty
-6-			med ting Some whi	te plastic material
-7-			inte	s spersed
-8-			l 	
-9-				
-10-				
10-				
			Signature:	CAR

10	ecology and environment
	ongineeving and goalogs in
IΨ	engineering and geology, p.
U	Environmental Specialists

TRENCH LOG

Environm	nental Specialists	i,		Sheet:of	
Project	Site Name Old Moreau	Project Numl EE1705	007.0015.02	Trench Location Sketch	
Trench	Number/Name G - G	1			1 vds
Name o	f Inspector Chuck	Porrece	۹		ŝ
Date St	arted/Finished 5-13-21		5-13-21		カ
Contrac	tor La Bella	Equipment	Bobcat E 35 Excavator		1
Final Le	ngth/Depth	8' /-7	/	NW O A Y-GU	M N
Trench	Backfilled With Excanted Material	IDW Generat	ed 🗆 Y 🖄 N	Power / Phone Lines Sup,	Por
Trench	Cross Section +		~ 8		
	6	the with			
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		Description/Comments	
-1-			Ø-3- Med. 6 BGS grained black 5	sand fill w/some dark br	own/
-2-			or dredg Plastic M	ed PLB spoils, some m	wite
-3-			2 - (0,1,4	interspersed	
-4-			3-7 BGS h /.	fill interspersed	\
-5-					
-6-					
-7-					
-8-					
-9-					
-10-					
	I				

ecology and environment engineering and geology, p.c. Environmental Specialists

TRENCH LOG	Ì
-------------------	---

	Sheet:	_of	1
12	Trench Location Sketch	10)
' (

Project	Site Name Old Moreau	Project Nurr	1ber 5007,0015,02	Trench Location Sketch	
Trench Number/Name H - H '			H T S	-	
Nameo	f Inspector Chuck	Porrec	a	d S o	\$
Date Started/Finished 5-13-71 5-13-71					
Contrac	stor 1 a Bella	Equipment	Bobcat E35	、 、 、 、 、 、 、 、 、	2
Final Le	ingth/Depth	$1 \sim 7$	Excavator 51		
Trench	Backfilled With Excavited	IDW Genera	ted IY XN	A	1
Trench	Cross Section		~8/		
H H H H H H H H H H H H H H					
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		Description/Comments	
			Ø - 4.5' BGS@H	1,~ 5.5 BGS @H:	
-1-			grained s	and fill w/interspersed	
-2-			dark brown	/black possibly organic	
-3-			and trace	PCB spoils material streaks white plastic material	
-4-					
-5-	8		~4.5 ~ 5.5 BGS (PHY white Plastic Materia	2
			~5~6 B65 C	@H/ W/Fill	
-6-			25.5@H'~6'@	H~75' B65-	-
-7-			Med /1+ b	rown silty med - fine graine	ed
-8-			Sand Fill materi	l w/trace white plastiz	
-9-					
-10-		-	3		
					1
			Signature:	CYL	

ecology and environment engineering and geology, p.c. **TRENCH LOG**

I.

Environe	nertal Specalists			Sheet:	of	
Project Trench	Site Name Old Moreau Number/Name T-	Trench Location S	iketch	Hud		
Name of Inspector (HUC/L PORBECA						nos
Date St	arted/Finished 5-17-71	5	-13-21		. 1	
Contrac	stor La Bella	Equipment f	Bobcat E35 Excavator	I'm	N Goid Wir	ev
Final Le	pongth/Depth $\sim 8'/\sim$	8'		тЦ	=0-	
Trench	Backfilled With Excavated Material	IDW Generat	ed 🗆 Y 🖾 N		S-pp Pol	e N1
Trench		+++++++++++++++++++++++++++++++++++++++		T T T T T T T S	/	.e.
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		escription/Comme	ents	
-1-		_	Ø-2,5" B65-	Med brown	silty me	(^E
-2-	÷					
-3-			2,5-8'+ BGS Mate	- White 1 cial w/+ra	plastic	
-4-						=
-5-			* Excavator	reach no	greater +	han 8'
-6-			entirely c	amposed of	plastic m	aterial
-7-						
-8-						
-9-						
-10-						
					}	
				↓	1	

ecology and environment engineering and geology, p.c. Environmental Specialists

5

Old Moreau

huck

3-21

Project Site Name

Trench Number/Name

Date Started/Finished

Name of Inspector

5-13

Porreca

	Sheet:of
Project Number EE1705007,0015,02 /	Trench Location Sketch Parking Lot
r r r r r	

 \mathbf{T}

Contractor La Bella	Equipment Bobcat E35 Excavator	
Final Length/Depth ~ 81	/~2'	Daingers:
Trench Backfilled With Excavated Material	IDW Generated 🛛 Y 🖾 N	IN Enchinch was
Trench Cross Section	1.8"	
(.5']	5 The second sec	J *]2'

2/

Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)	Description/Comments
-1-			Øn1,25'@J',~2'@J - med. brown
-2-			fine sandy silt
-3-			~1.25-1.5@5' - white plastic materia
-4-			
-5-			
-6-			
-7-			e >
-8-			
-9-			
-10-			

ecology and environment engineering and geology, Environmental Speciatets

~ Z'R' =

Depth (Feet)

-10-

TRENCH LOG

a engin	neering and geology, p.c.			Sheet:of
Project	Site Name Old Moreau	Project Num	ber 5007,0015,02	Trench Location Sketch Funce
Trench	Number/Name K - K -			
Name c	t Inspector Chuck 1	Porreca		Rive K' Gate
Date St	arted/Finished 5-14-21		5-14.21	
Contrac	tor LaBella	Equipment	Bobcat E35 Excavator	word a grand
Final Le	ngth/Depth ~65' /	-2.5-4	(K HIPLot
Trench	Backfilled With Excavated Material	IDW General	ted 🛛 Y 🖾 N	N N
Trench	Cross Section			
- z'r' _ 4' -			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	K
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)		Description/Comments
1			Ø-1'BG5-	Med. brown sitty fine
-1- 2			asphal- darker, o	t material/chunker, some
-2-			1-21/2~3.8'B	65 - ned //t. brown silty
-4-			~ 3,8-4' B65	- silty clay mod It Learn
5				
-6-				
-7-				
-7-				
-8-				
-9-				
-10-				
				(V)

Ð	ecology and engineering	envi and	ironment geology,	p.c.
	Environmental Specia	etak		

TRENCH LOG

U Environ	nentat Specialists		Sheet:of
Project	Site Name Old Moreau	Project Num EE1705	ber 007 0: Telephone P-le
Trench	Number/Name	- L'	8.8
Name o	of Inspector Chuck	k Porre	ia K Gate
Date St	arted/Finished 5-14-21	5-14-	21
Contrac	ctor La Bella	Equipment	Bobcat E35
Final Le	ength/Depth $\sim \pi / 2$		Price V Viller
Trench	Backfilled With Excavated Material	JDW Genera	
Trench	Cross Section		. /
	2.] [
	ŀ-		7'
Depth (Feet)	Sample Number/Location ID	PID/FID (ppm)	Description/Comments
-1-			Ø-Z' BGS Med./Lt. brown silty Fine-graine sand Fill
-2-			
-3-			
-4-		<u>-</u>	
-5-			
-6-			
-7-		. <u></u>	
-8-			
-9-			
-10-			

L

(

Project Name Old Moreau Trench Location Sketch	X ° //
Job Number EE 170 5007,0015.02	M
Site Location Moreau, NY	Cape the
Date Started/Finished 5-14-21) '''e
Contractor La Bella	
Equipment Bobcat E35 Excavator	NA
Logger's Name Chuck, Porreca Trench Cross-Section	= Telephone Pole
Final Length/Depth $22/2.5^{\prime}$ M	M' Road
Photos Taken	
Description Key	
Trace 0 - 10% Few 10 - 20% Little 20 - 35% Some 35 - 50% Most > 50%	ŧ
Depth (Feet) Sample Number HNU / OVA (ppm) Description / C	Comments
0 Ø-1.5 BGS-N	red./H. brown
1 silty sand	F:(1
2	
3	
4	а а
5	
6	о - С
7	In
8	QK I
9	

ecology and e	nvironment, inc. In the Environment T	RENCH LO	DG FOR $N - N - M$
Project Name	011 14-		Trench Location Sketch
Job Number	EE170500	<u>F. 0015.02</u>	p.R. gate
Site Location	Morean, NY	/	N'S Keen
Date Started/Fi	nished 5-14	-21	1) ite Rd.
Contractor	a Bella		mounda will parking
Equipment Bo	bcat E35 E	<i>xcavator</i>	Ca) o l
Logger's Name	Chuck Porr	e ca	n = Telephone Pole
Final Length/Do	epth ~ 14'/~	1-2.5'	N Road
Photos Taken			2.5
Description Ke	y		Surpetel
Trace 0 - 10%	5. D	*	spoils
Little 20 - 35%)		
Some 35 - 50% Most > 50%)		
Depth (Feet)	Sample Number	HNU / OVA	Description / Comments
		(ppm)	
- 0		(ppm)	\$-2.5 Med.//t. brown silty
0		(ppm)	\$53 Med.//t. brown silty Fine-grained sand Fill
0 1 2		(ppm)	P-2.5 Med.//t. brown silty Fine-grained sand Fill Great /saturated
0 1 2 3	~	(ppm)	P-2.5 Med.//t. brown silty Fine-grained sand Fill Over /saturated NOIS-2.5' Suspected PCB spoils From NI Due II
0 1 2 3	2	(ppm)	P-2.5 Med.//t. brown silty Fine-grained sand Fill Event /saturated NOIS-2.5' Suspected PCB spoils From N' Extending N' towards N - Dark brown Iblack x1 law
0 1 2 3 4	2 2	(ppm)	P-2.5 Med.//t. brown silty File-grained sand Fill Dist /saturated NOIS-2.5' Suspected PCB spoils From N' Extending N' towards N - Dark brown/black shaley pieces/material
0 1 2 3 4 5	2	(ppm)	P-2.5 Med.//t. brown silty File-grained sand Fill Dwet /saturated NOIS-2.5' Suspected PCB spoils From N' Extending N' towards N - Dark brown/black shaley pieces/material
0 1 2 3 4 5 6		(ppm)	P-2.5 Med.//t. brown silty Fine-grained sand Fill Guet /saturated NOIS-2.5' Suspected PCB spoils From N' Extending N' towards N - Dark brown/black shaley pieces/material
0 1 2 3 4 5 6 7		(ppm)	D-2.5 Med.//t. brown silty Fine-grained sand Fill Direct /saturated NOIS-2.5' Suspected BCB spoils From N' Extending N' towards N - Dark brown/black shaley pieces/material
0 1 2 3 4 5 6 7 8		(ppm)	P-2.5 Med.//t. brown silty Fine-grained sand Fill Dist /saturated NOIS-2.5' Suspected PCB spoils From N' Extending N' towards N - Dark brown/black shaley pieces/material
0 1 2 3 4 5 6 7 8 9		(ppm)	P=2:5' BAREd.//t. brown silty Fine-grained sand Fill Duet /saturated NOIS-2:5' Suspected BCB spolls From N' Extending N' towards N - Dark brown/black shaley pieces/material

q:Vorms\graphics\P13Z0201.xls

ecology and e	In the Environment, inc.	RENCH L	OG FOR
Project Name	Old Mon	eau	Trench Location Sketen
Job Number E	E 1705007.0	0015.02	R.R. Cate
Site Location	Moreau, N	У	Don the the
Date Started/Finished 5-14-21			ad ite Rd.
Contractor	LaBella		a moving will Site herry
Equipment B	obcat E35	Excavator	Lot
Logger's Name	Chuck Por	reca	D=Telephone Pole NI Trench Cross-Section
Final Length/De	epth ~8' /~2'	12-3'	O' Road
Photos Taken	~		O Possibly
Description Ke	y	e	3' Suspected Spoils
Trace 0 - 10% Few 10 - 20%			
Little 20 - 35%			~8'
Most > 50%)		
Depth (Feet)	Sample Number	HNU / OVA	Description / Commente
		(ppm)	Description / Comments
0 2		(ppm)	Ø-3' BGS-Med./It. brown silty
0	21	(ppm)	Ø-3' BGS - Med./It. brown silty Fine-grained sand Fill
0 1 2	21	(ppm)	Ø-3' BGS - Med./It. brown silty Fine-grained sand Fill
0 1 2 3	21	(ppm)	Ø-3' BGS - Med./It. brown silty Fine-grained sand Fill 20.5-1 BGS Possibly suspect PEB spoils material
0 1 2 3 4		(ppm)	Ø-3' BGS - Med./It. brown silty Fine-grained sand Fill no.5-1' BGS Possibly suspect PEB spoils material - Darker, coarser-grained material
0 1 2 3 4 5		(ppm)	Ø-3' BGS - Med.//t. brown silty Fine-grained Sand Fill no.5-1' BGS Possibly suspect PEB spoils material - Darker, coarser-grained material
0 1 2 3 4 5 6		(ppm)	Ø-3' BGS - Med.//t. brown silty Fine-grained Sand Fill no.5-1' BGS Possibly suspect PCB spoils material - Darker, coarser-grained material
0 1 2 3 4 5 6 7		(ppm)	Ø-3' BGS-Med.//t. brown silty File-grained Sand Fill n0.5-1' BGS Possibly suspect PEB spoils material - Darker, coarser-grained material
0 1 2 3 4 5 6 7		(ppm)	Ø-3' B65-Med./It. brown silty Fine-grained Sand Fill no.5-1' B65 Possibly suspect PCB spoils material - Darker, coarser-grained material
0 1 2 3 4 5 6 7 8		(ppm)	Ø-3' B65 - Med./It. brown silty Fine-grained Sand Fill no.5-1' B65 Possibly suspect PEB spoils material - Darker, coarser-graiced material
0 1 2 3 4 5 6 7 8 9		(ppm)	Ø-3' BGS - Med.//t. brown silty Fine-grained Sand Fill n 0.5-1' BGS Possibly suspect PEB spoils material - Darker, coarser-grained material

ecology and e	nvironment, Inc. TI		DG FOR $P - P^-$
Project Name	Old Mo	rear	Trench Location Sketch
Job Number	E1705007	7.0015.02	R.R. Jake
Site Location	Morean, NY	1	The Rot Rence
Date Started/Finished 5-14-21			
Contractor	LaBella		mount for parking
Equipment B	obcat E35	Exiauctor	
Logger's Name	Chuck Porre	e ca	Trench Cross-Section
Final Length/Depth ~15' / ~1-2'			P Pl Bad
Photos Taken			And Full
Description Ke	у		Subbase
Trace 0 - 10% Few 10 - 20%	.33		Rix Rix
Little 20 - 35%			
Most > 50%			
Depth (Feet)	Sample Number	HNU / OVA	
Deptil (i eet)		(ppm)	Description / Comments
0		(ppm)	Ø=2' BGS - Med 17. brown
0 1		(ppm)	Ø = 2' BGS - Med 17. brown silty fine-grained sand
0 1 2		(ppm)	Ø = 2' BGS - Med 17. brown silty fine-grained sand fill
0 1 2	y	(ppm)	Description / Comments Ø = 2' BGS - Med 17. brown silty fine-grained sand Fill - From P' ~ z' extended
0 1 2 3		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ 2' extended towards P includes Some Dayl rullars main
0 1 2 3 4		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ 2' extended towards P includes some road subbase mix
0 1 2 3 4 5		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ 2' extended towards P includes some road subbase mix
0 1 2 3 4 5 6		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ 2' extended towards P includes some road subbase mix
0 1 2 3 4 5 6 7		(ppm)	Description / Comments Ø = Z' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ Z' extended towards P includes some road subbase mix
0 1 2 3 4 5 6 7		(ppm)	Description / Comments Ø = 2' BGS - Medi- It. brown silty fine-grained sand Fill -From P' ~ 2' extended towards P includes some road subbase mix
0 1 2 3 4 5 6 7 8		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' = z' extended towards P includes some road subbase mix
0 1 2 3 4 5 6 7 8 9		(ppm)	Description / Comments Ø = 2' BGS - Med It. brown silty fine-grained sand Fill - From P' ~ 2' extended towards P includes some road subbase mix

q:Vorms/graphics/F1370201.xls

Geoprobe Soil Logs

	logy and	d'enviro _{Colon}	onment-	enginee	ring, p.c.		BORING NO	o.: <u>SA13-6101</u> Page <u>1</u> of <u>1</u>		
DATE 7/23/21 E & E GEOLOGIST <u>Brian Cenui</u> SUBCONTRACTOR LaBella Associates DRILLER <u>Mike</u>							SITE NAME / LOCATION SA-13 Morrison Property E & E PROJECT ID ELEVATION LOCATION COORDINATES N /			
	DATE	W. TIME	ATER LEVE	LEVEL	REF. PT.		TYPE OF DRILL RIG NUMBER OF CORES COLLECT SOIL SAMPLING METHOD	Geoprobe ED Macro-Core		
							FINISHED TOTAL DEPTH			
Depth ft. BGS)	Core/SS No.	Blow Count	SAMP Recovery (ft)	LE INFORM PID/FID (ppm)	Lab/Fiel	d Sample ID Voalysis	SOIL	DESCRIPTION / COMMENTS		
1		N/A	4'			· · · · · · · · · · · · · · · · · · ·	B"-11" brow few organics	n / tan sand topsoil, , few silt, true gravel, moist		
2—			<u>50 N</u>		GP01-	01	Gravel, + Spoils,	me work expedent meist		
3—							36"-47" Blan Sund, tra	ce gravel, moist.		
4										
6			3,5 ⁺ 761				0"-12" black	brown silty send, el, trac dez, moist		
7					6P01-	02	Very moios 19"-37" back	I for pleshity		
8							Very month 37"-42" Gray	furct suspecter spoils That been silt and,		
10							trace grav	vel, luge stantino, moisi		
11—			9 804				grivel 11	1 gay silty sand, true		
12										
13 —										
14										
16				// *		1 44		14.12		
omm	^{ants} 5	and	es co	lleefe	at:	18 -	24" 6901-01 " 6901-02	at 11:00		
ethod o	f Completio	n / Backfill	Ŀ							
							Signatur	re:		

DATE	• ···	7	22/2		13			SA-13 Marrison Pronerty
EAEG	FOLOGIST	R	in a /	Pari		-		EE170 5707.0016
SUBCO	NTRACTOR	LaBella	Associate	es		-	ELEVATION	Datum
DRILLER	R	Mi	Ke	-		-	LOCATION COORDINATES	Outon
		14/						Coopean
ŀ	DATE	TIME				1		
	UAIL	1 1171			NEF: F1:		SOIL SAMPLING METHOD	Macro-Core
ľ						1		Macro core
			SAMP	LE INFORM		<u> </u>		
Depth	Core/SS	Blow	Recovery	PID/FID	Lab/Fiel	d Sample ID	SOIL	DESCRIPTION / COMMENTS
. 893) [110.	N/A	39	(ppm)		analysis	0"-10" Brun	A Sail Locil Some
ł				Des.			a contraction	trace dill' manist
1-1			785	U	GPO2	-01	101'- 12" B.	K Lace Sille Sail
Ì							A. Jan	have wond mint
2	· · · · · · · · · · · · · · · · · · ·					····· .	Susaret	O spails
							22"-46" Bom	in thack sill sand
3				\square			fen Grave	I moist to un moist
1								
5				V				
			4.2	Barro			0"-48" Blick	gray sand silt grating
6			Ľ				to silh:	Sand, toxic gravel, trace
			843				wood , h	vet, suspected spoils.
7								
ļ							46-52 Br	In gray silly sand, true
8-							gravel,	true work , wet ,
ŀ			<u> </u>		6102	-02	,	- · · ·
9		-		\square				
ŀ								
			1 1 1				- t cot 21 t	1 11 0 1-
ŀ			4.4	Open			828 Hack	fgray silly sand, true
1			all		6062	<u> </u>	gravel	trice work , wet
		_	000		GPOL	-03	Suspecto	- Spoils.
2-							Det UCK 7	
ŀ				- -			10-76 Dran	in Jank Thee left
3-							Toule of	nel just
ŀ							46"-52" K	lak off cut
4							46 - 35 0	wall story sunt, mae
ŀ			<u> </u>				grave	, bet
5	~							
6		+						
mme	nts 🦯	1	19.2	11 1	A	(n ⁿ .	Q" CPAD-AL	, 1140
	Sa	ingle	Col	lecto	ot: 1	or, -1	0 0100 01	1115
		¥				0-9	LP02-02	; 1150

Signature:

DATE			231	21			SITE NAME / LOCATION	SA-13 Morrison Property
E & E G	EOLOGIST	$_\mathcal{B}$	vian.	Cer	ท่		E & E PROJECT ID	EE 170 5007.0016
SUBCO	NTRACTOR	LaBella	Associate	es .			ELEVATION	Datum
DRILLE	R		<u>like</u>				LOCATION COORDINATES	<u>N</u> /
		w	ATER LEVE	L DATA			TYPE OF DRILL RIG	беоргове
	DATE	TIME	WATER	R LEVEL	REF. PT.		NUMBER OF CORES COLLECT	red
							SOIL SAMPLING METHOD	Macro-Core
							FINISHED TOTAL DEPTH	
Depth	Core/SS	Blow	SAMP Recovery	LE INFORM	Lab/Field	Sample ID	SOI	L DESCRIPTION / COMMENTS
BGS)	No.	Count	(ft)	(ppm)	& Ani	alysis	124 - 11 - 11	
			3.0	Opposed in the second s			0-29 Br	own / gray Silty Sand,
1—			04		6012-1	51	Ten gr	aver, few organics at
			606		0103	~1	Vor grue	17 1 mee mont
2 —							24"-32" Ta	alborn sail sett
					BP03-	32	feel and	vi. moist
J								
			1				32"-36" Br	own from silly chang,
-				V			low dish	ict, moist
5		_					/	
			4.0'	Oppn			0"-12" Bran	m/ten silly chang,
6 —			Call				Low plus	with, trace sand,
			206				Very K	Nri×F'
7							12" 184 1	Palat
							10 - 70 (SP	y T Sand foilt, very
8			1				FICALA / L	
9								
			L					
°								
1								
2								
3—								·····
								- ····
4 —								
5—								
6		÷			1			
omme	ents 5	amp	kes C	olleci	kl at	25'-	3' GP03-0	1; 12:30 12; 12:35

	logy and	d eavie	onment	enginee	ring, p.e.		BORING N	SA13- b.: <u>6904</u> Page <u>l</u> of <u>l</u>
DATE E & E G SUBCO DRILLE	EOLOGIST NTRACTOR R	7 LaBella	123/2 Associate Wike	21 Cerv	• •		SITE NAME / LOCATION E & E PROJECT ID ELEVATION LOCATION COORDINATES	SA-13 Morrison Property EE 170 500 7.001C
	DATE	TIME	WATER LEVE	EL DATA	REF, PT,		TYPE OF DRILL RIG NUMBER OF CORES COLLECT SOIL SAMPLING METHOD FINISHED TOTAL DEPTH	Geoprobe ED Macro-Core
Depth (ft. BGS)	Core/SS No.	Blow Count	SAMP Recovery (ft)	PID/FID (ppm)	AATION Lab/Fie & /	ld Sample ID Analysis	SOIL	DESCRIPTION / COMMENTS
1		N/A	37 64%	Ben-	6904-0	01	0 - 14 Bloc ten organ Slichtler	nic, fen grand, nic, fen grand, noist, arkitig sails
2—					6904	-62	14"-28" Brown	I tom Sandy silty
3							28"-38" Bran	sulgray chances silt.
5			2 01	~			trace san	l'impirit, no deshut
6			76%				trace f s	no protectly.
7							NG-45 (-gen moist /	vet.
8								
10								
11 —								
12								
14								· · · · · · · · · · · · · · · · · · ·
15								
16 Comme	ents S	and	les c	olle	Jel a	t: 0.5 1.5 1.5	-1.0 6904-01 -20 6904-0 -2.0 6950-0	; 1320 2; 1325 01; 1325 (field Dup of GP04.02)
	Complètió	n / Backfil	ι. 				Signatur	re:

C Laboratory Reports and Data Usability Reports

Data Usability Summary Report	Project: Hudson Old Moreau		
Date Completed: September 24, 2021	Completed by: Eridania Marte		

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- EPA Region 2 Data Validation SOP

Specific criteria for QC limits were obtained from the Site Assessment Sampling and Analysis Plan. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report
EE1705007.0015.02	480-183487-1	Test America, Buffalo

Table 1 Sample Listing Summary

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Field QC	ID Correc -tions
480-183487-1	WG	OLD MOREAU MW-08	480-183487-1	04/16/2021 14:58		
480-183487-1	WG	OLD MOREAU MW-08D	480-183487-2	04/16/2021 14:58		

Table 1A Sample Test Summary

		Test		# of	Sample
Work Orders	Matrix	Method	Method Name	Samples	Туре
480-183487-1	WG	SW8082A	Polychlorinated Biphenyls by GC	2	N/FD

Data Usability Summary Report	Project: Hudson Old Moreau		
Date Completed: September 24, 2021	Completed by: Eridania Marte		

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs Equipment Blank - 1/ set of samples per day for perfluorinated compounds and 1/ set per location for all other samples?	The associated sample was collected as a confirmation sample to determine if PCB contamination was present in the area of concern. Per the Sampling Analysis Plan, field QC was not required; however, field duplicate was still collected to confirm precision. 1 FD per 1 samples. 0 MS/MSD per 1 samples. No trip blank required. 0 rinsate blank.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS and ICV/CCV Outside Limits (Table 5)
- Reanalysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Hudson Old Moreau		
Date Completed: September 24, 2021	Completed by: Eridania Marte		

PCBs by GC/ECD – Method 8082A							
Description	Notes and Qualifiers						
Are any compounds present in method and field blanks as noted on Table 2?	No.						
For samples, if results are < 5 times the blank then "U" flag data.	Not applicable.						
Are surrogates for method blanks and LCS within limits (see Table 4)?	Yes.						
Are surrogates for samples and MS/MSD within limits (see Table 4)? Matrix effects should be established.	No. Surrogates tetrachloro-m-xylene and decachlorobiphenyl were recovered outside of the acceptance criteria for sample OLD MOREAU MW-08D. The associated sample results were non-detected; therefore, no qualification was made.						
Is laboratory QC frequency one blank and LCS with each batch and one MS/MSD per 20 samples?	Level II report provided; therefore, unable to determine frequency of MS/MSD.						
Are MS/MSD within QC criteria (see Table 3)? If out and LCS is compliant, then J flag positive data in original sample due to matrix.	MS/MSD was not submitted with associated SDG.						
Is LCS within QC criteria (see Table 5a)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes.						
Is initial calibration for target compounds <15 %RSD or curve fit? Is initial calibration verification <25%D (see Table 5b)?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.						
Is continuing calibration for target compounds < 20%D (see Table 5b)?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.						
Were any samples re-analyzed or diluted (see Table 7)? For any sample re-analysis and dilutions is only one reportable result by flagged?	No.						
Spot check retention time windows and second column confirmations as complete.	Yes.						
Do field duplicate results show good precision for all compounds (see Table 8)?	All samples results were non-detect; therefore, precision could not be determined.						

Summary of Findings • None

Data Usability Summary Report	Project: Hudson Old Moreau
Date Completed: September 24, 2021	Completed by: Eridania Marte

Table 2 - List of Positive Results for Blank Samples

Table 2A - List of Samples Qualified for Method Blank Contamination

Table 2B - List of Samples Qualified for Field Blank Contamination

Table 3 - List of Samples with Surrogates outside Control Limits

		Sample		Rec	Low	High	Dilution	
Method	Sample ID	Туре	Analyte	. %	Limit	Limit	Factor	Sample Qualifier
SW8082A	OLD MOREAU MW-08D	FD	Tetrachloro-m-xylene	128	39	121	1	None – High & ND
SW8082A	OLD MOREAU MW-08D	FD	Decachlorobiphenyl	126	19	120	1	None – High & ND

Table 3A – List of Samples with Isotope Dilution Recovery outside Control Limits

Table 4A – List of MS/MSD Recoveries outside Control Limits

Table 4B – List of MS/MSD RPDs outside Control Limits

 Table 5A – List of LCS Recoveries outside Control Limits

Table 5B – List of ICV/CCV Recoveries outside Control Limits

 Table 6 – Samples that were Re-analyzed

 Table 7A – Summary of Field Duplicate Results

Data Usability Summary Report	Project: Hudson Old Moreau	
Date Completed: September 24, 2021	Completed by: Eridania Marte	

Acronym List and Table Key:

CCV	=	continuing calibration verification
CCVL	=	continuing calibration verification low
COC	=	chain of custody
DUSR	=	data usability summary report
FD	=	field duplicate
GC/MS	=	gas chromatography / mass spectrometry
ICB	=	initial calibration blank
ICS	=	interference check standard
ICV	=	initial calibration verification
LCS	=	laboratory control sample
MB	=	method blank
MDL	=	method detection limit
µg/L	=	micrograms per liter
MS	=	matrix spike
MSD	=	matrix spike duplicate
Ν	=	normal (field) sample
ND	=	not detected
NYSDEC	=	New York State Department of Environmental Conservation
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RB	=	equipment rinse blank
RPD	=	relative percent difference
RL	=	reporting limit
SDG	=	sample delivery group
ТВ	=	trip blank
TRG	=	target compound
%D	=	percent difference
%RSD	-	nercent relative standard deviation

Data Usability Summary Report	Project: Hudson Old Moreau	
Date Completed: September 24, 2021	Completed by: Eridania Marte	

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- EPA Region 2 Data Validation SOPs

Specific criteria for QC limits were obtained from the Site Assessment Sampling and Analysis Plan. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report
EE1705007.0015.02	480-187617-1	Test America, Buffalo

Table 1 Sample Listing Summary

				Sample	Field	ID Correc
Work Order	Matrix	Sample ID	Lab ID	Date	QC	-tions
480-187617-1	WL	OM-PLASTIC-07232021	480-187617-1	07/23/2021 09:10		

Table 1A Sample Test Summary

Work Orders	Matrix	Test Method	Method Name	# of Samples	Sample Type
480-187617-1	WL	E537(M)	TCLP - Perfluorinated Compounds by LC/MS/MS	1	N
480-187617-1	WL	E537(M)	SPLP - Perfluorinated Compounds by LC/MS/MS	1	N
480-187617-1	WL	SW8260C	TCLP - Volatile Organic Compounds by GC/MS	1	N
480-187617-1	WL	SW8260C	SPLP - Volatile Organic Compounds by GC/MS	1	N
480-187617-1	WL	SW8270D	TCLP - Semivolatile Organic Compounds by GC/MS	1	N
480-187617-1	WL	SW8270D	SPLP - Semivolatile Organic Compounds by GC/MS	1	N

Data Usability Summary Report	Project: Hudson Old Moreau
Date Completed: September 24, 2021	Completed by: Eridania Marte

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs Equipment Blank - 1/ set of samples per day for perfluorinated compounds and 1/ set per location for all other samples?	Sample associated with SDG was collected from plastic material to confirm plastic was not leaching contamination to the surrounding area. No field QC required for associated sample.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS and ICV/CCV Outside Limits (Table 5)
- Reanalysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Hudson Old Moreau	
Date Completed: September 24, 2021	Completed by: Eridania Marte	

Volatile Organic Compounds by GC/MS – Method 8260C					
Description	Notes and Qualifiers				
Any compounds present in method, trip, or, field blanks (see Table 2)?	Yes. 2-Butanone (MEK) was detected in method blank 480-590596/1-A associated with SPLP leach batch 590596.				
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	Sample result for 2-Butanone (MEK) for OM- PLASTIC-07232021 was less than 5x the blank contamination. The sample result was U qualified as non-detect and PQL was elevated to sample result.				
Are surrogates for method blanks and LCS within limits?	Yes.				
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.				
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Level II report provided; therefore, unable to determine frequency of MS/MSD.				
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	MS/MSD was not submitted with associated SDG.				
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.				
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes.				
Is initial calibration for target compounds <20 %RSD or curve fit?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.				
Is %D in the continuing calibration for target compounds less than method specifications?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.				
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Sample OM-PLASTIC-07232021 was diluted due to the nature of the TCLP and SPLP sample matrix.				
For TICs are there any system related compounds that should not be reported?	No.				
Do field duplicate results show good precision for all compounds (see Table 7)?	Not applicable.				

Semi-volatile Organic Compounds by GC/MS -	- Method 8270D
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field	No.
blanks (see Table 2)?	
For samples, if results are < 5 times the blank or	Not applicable.
< 10 times the blank for common laboratory	
contaminants, then "U" flag data. Qualification	
also applies to TICs.	

Data Usability Summary Report	Project: Hudson Old Moreau				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

Semi-volatile Organic Compounds by GC/MS -	- Method 8270D
Description	Notes and Qualifiers
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Level II report provided; therefore, unable to determine frequency of MS/MSD.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	MS/MSD was not submitted with associated SDG.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes.
Is initial calibration for target compounds <20 %RSD or curve fit?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Is %D in the continuing calibration for target compounds less than method specifications?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.
For TICs are there any system related compounds that should not be reported?	No.
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.

Perfluorinated Compounds by LC/MS/MS – Method E537(M)							
Description	Notes and Qualifiers						
Any compounds present in method, trip, or, field blanks (see Table 2)?	Yes. Perfluorobutanoic acid (PFBA) was detected in method blank 320-510957/1-C associated with TCLP leach batch 510957.						
For samples, if results are < 5 times the blank contaminants, then "U" flag data.	Sample result for PFBA for OM-PLASTIC-07232021 was less than 5x the blank contamination. The sample result was U qualified as non-detect and PQL was elevated to sample result.						
Are surrogates for method blanks and LCS within limits?	Yes.						
Are surrogates for samples and MS/MSD within limits? (See Table 3).	Yes.						
Are surrogates/Isotope Dilution within limits? (See Table 3A).	Isotope Dilution Analyte (IDA) recovery for PFOA, PFNA, PFDA, PFUnA, C3PFBS, PFOS, PFOSA, d3NMFOS, d5NEFOS, M262FTS, and M282FTS were above the method recommended limit for TCLP						

Data Usability Summary Report	Project: Hudson Old Moreau					
Date Completed: September 24, 2021	Completed by: Eridania Marte					

Perfluorinated Compounds by LC/MS/MS – Me	thod E537(M)
Description	Notes and Qualifiers
	prep. Perfluoroheptane Sulfonate (PFHpS) was detected in sample OM-PLASTIC-07232021 and was J qualified as an estimated value. No qualification was made on non-detected values.
	Isotope Dilution Analyte (IDA) recovery for M262FTS and M282FTS were above the method recommended limit for SPLP prep. Perfluorobutyric Acid (PFBA) and Perfluorohexanoic Acid (PFHxA) were detected in sample OM-PLASTIC-07232021 and were J qualified as estimated values. No qualification was made on non-detected values.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Level II report provided; therefore, unable to determine frequency of MS/MSD.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	MS/MSD was not submitted with associated SDG.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria?	Yes.
Is initial calibration for compounds by isotope dilution <35 %RSD or curve fit; and compounds quantitated by isotope dilution analytes (IDA) <50% RSD? Is the initial calibration verification within or equal to 60-140% for all natives quantitated by isotope dilution or 50-150% for natives quantitated by IDA.	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Is continuing calibration for compounds by isotope dilution equal to or within 60-140% for all natives quantitated by isotope dilution or 50- 150% for natives quantitated by IDA.	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.
Do field duplicate results show good precision for all compounds (see Table 7)?	Not applicable.

Summary of Findings

VOCs by 8260C

• Sample result for 2-Butanone (MEK) for OM-PLASTIC-07232021 was less than 5x the blank contamination. The sample result was U qualified as non-detect and PQL was elevated to sample result.

Perfluorinated Compounds by E537(M)

- Sample result for PFBA for OM-PLASTIC-07232021 was less than 5x the blank contamination. The sample result was U qualified as non-detect and PQL was elevated to sample result.
- Multiple IDA were recovered above the method recommended limit for TCLP prep. Perfluoroheptane Sulfonate (PFHpS) was detected in sample OM-PLASTIC-07232021 and was J qualified as an estimated value.

Data Usability Summary Report	Project: Hudson Old Moreau				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

Summary of Findings

 IDA recovery for M262FTS and M282FTS were above the method recommended limit for SPLP prep. Perfluorobutyric Acid (PFBA) and Perfluorohexanoic Acid (PFHxA) were detected in sample OM-PLASTIC-07232021 and were J qualified as estimated values.

Data Usability Summary Report	Project: Hudson Old Moreau					
Date Completed: September 24, 2021	Completed by: Eridania Marte					

|--|

		Sample						
Method	Sample Name	Туре	Analyte	Result	Qualifier	Units	MDL	PQL
8260C	MB 480-590596/1-A	MB	2-Butanone (MEK)	0.0524		mg/L	0.013	0.05
E537(M)	MB 320-510957/1-C	MB	Perfluorobutanoic acid (PFBA)	14.3		ng/L	2.1	4.4

Table 2A - List of Samples Qualified for Method Blank Contamination

				Blank	Lab	Sample				Affected	Sample
Method	Method Blank	Matrix	Analyte	Result	Qual	Result	Units	MDL	PQL	Sample	Flag
8260C	MB 480-590596/1-A	WL	2-Butanone (MEK)	0.0524		0.056	mg/L	0.013	0.050	OM-PLASTIC- 07232021	U Flag
E537(M)	MB 320-510957/1-C	WL	Perfluorobutanoi c acid (PFBA)	14.3		18	ng/L	2.1	4.5	OM-PLASTIC- 07232021	U Flag

Table 2B - List of Samples Qualified for Field Blank Contamination

Table 3 - List of Samples with Surrogates outside Control Limits

Table 3A – List of Samples with Isotope Dilution Recovery outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dilution Factor	Sample Qualifier	No. IDAs Out
E537(M)	OM-PLASTIC- 07232021	SPLP	1H,1H,2H,2H-perfluoro-1-[1,2-13C2]- decane sulfonate (8:2)	181	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	SPLP	1H,1H,2H,2H-perfluoro-1-[1,2-13C2]- octane sulfonate (6:2)	308	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C2-Perfluorodecanoic acid	194	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C2-Perfluoroundecanoic acid	156	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C3-Perfluorobutane Sulfonate	215	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C4-Perfluorooctanesulfonate	164	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C5-Perfluorononanoic acid	165	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	13C8-Perfluorooctanesulfonamide	161	25	150	1	J Flag	1

Data Usability Summary Report	Project: Hudson Old Moreau		
Date Completed: September 24, 2021	Completed by: Eridania Marte		

E537(M)	OM-PLASTIC- 07232021	TCLP	, 1H,1H,2H,2H-perfluoro-1-[1,2-13C2]- decane sulfonate (8:2)		25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	1H,1H,2H,2H-perfluoro-1-[1,2-13C2]- octane sulfonate (6:2)	424	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	N-deuterioethylperfluoro-1- octanesulfonamidoacetic acid	199	25	150	1	J Flag	1
E537(M)	OM-PLASTIC- 07232021	TCLP	N-deuteriomethylperfluoro-1- octanesulfonamidoacetic acid	163	25	150	1	J Flag	1

Table 4A – List of MS/MSD Recoveries outside Control Limits

Table 4B – List of MS/MSD RPDs outside Control Limits

Table 5A - List of LCS Recoveries outside Control Limits

Table 5B – List of ICV/CCV Recoveries outside Control Limits

Table 6 –Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
OM-PLASTIC- 07232021	480-187617-1	8260C	WL	10X: diluted due to the nature of the TCLP and SPLP sample matrix.

Table 7A – Summary of Field Duplicate Results

Data Usability Summary Report	Project: Hudson Old Moreau
Date Completed: September 24, 2021	Completed by: Eridania Marte

Acronym List and Table Key:

CCV	=	continuing calibration verification
CCVL	=	continuing calibration verification low
COC	=	chain of custody
DUSR	=	data usability summary report
FD	=	field duplicate
GC/MS	=	gas chromatography / mass spectrometry
ICS	=	interference check standard
ICV	=	initial calibration verification
LCS	=	laboratory control sample
MB	=	method blank
MDL	=	method detection limit
mg/L	=	milligrams per liter
MS	=	matrix spike
MSD	=	matrix spike duplicate
ng/L	=	nanograms per liter
Ν	=	normal (field) sample
ND	=	not detected
NYSDEC	=	New York State Department of Environmental Conservation
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RB	=	equipment rinse blank
RPD	=	relative percent difference
RL	=	reporting limit
SDG	=	sample delivery group
ТВ	=	trip blank
TRG	=	target compound
%D	=	percent difference
%RSD	=	percent relative standard deviation

Data Usability Summary Report	Project: Hudson Old Moreau
Date Completed: September 24, 2021	Completed by: Eridania Marte

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- EPA Region 2 Data Validation SOP

Specific criteria for QC limits were obtained from the Site Assessment Sampling and Analysis Plan. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report
EE1705007.0015.02	480-187618-1	Test America, Buffalo

Table 1 Sample Listing Summary

					Field	ID Correc-
Work Order	Matrix	Sample ID	Lab ID	Sample Date	QC	tions
480-187618-1	SO	GP01-01	480-187618-2	07/23/2021 10:50		
480-187618-1	SO	GP01-02	480-187618-1	07/23/2021 11:00		
480-187618-1	SO	GP02-01	480-187618-3	07/23/2021 11:45		
480-187618-1	SO	GP02-02	480-187618-4	07/23/2021 11:55		
480-187618-1	SO	GP02-03	480-187618-5	07/23/2021 12:10		
480-187618-1	SO	GP03-01	480-187618-6	07/23/2021 12:30		
480-187618-1	SO	GP03-02	480-187618-7	07/23/2021 12:35		
480-187618-1	SO	GP04-01	480-187618-8	07/23/2021 13:20		
480-187618-1	SO	GP04-02	480-187618-9	07/23/2021 13:25		
480-187618-1	SO	GPFD-01	480-187618-10	07/23/2021 13:30		

Table 1A Sample Test Summary

		Test		# of	Sample
Work Orders	Matrix	Method	Method Name	Samples	Туре
480-183487-1	SO	SW8082A	Polychlorinated Biphenyls by GC	10	N/FD
Data Usability Summary Report	Project: Hudson Old Moreau				
------------------------------------	------------------------------				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs Equipment Blank - 1/ set of samples per day for perfluorinated compounds and 1/ set per location for all other samples?	No. Field QC samples were not collected as indicated in the project's Site Assessment Sampling and Analysis Plan. 1 FD per 9 samples. 0 MS/MSD per 9 samples. No trip blank required. 0 rinsate blank.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS and ICV/CCV Outside Limits (Table 5)
- Reanalysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Hudson Old Moreau				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

Description	Notes and Qualifiers
Are any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are < 5 times the blank then "U" flag data.	Not applicable.
Are surrogates for method blanks and LCS within limits (see Table 4)?	Yes.
Are surrogates for samples and MS/MSD within limits (see Table 4)? Matrix effects should be established.	Yes.
Is laboratory QC frequency one blank and LCS with each batch and one MS/MSD per 20 samples?	Level II report provided; therefore, unable to determine frequency of MS/MSD.
Are MS/MSD within QC criteria (see Table 3)? If out and LCS is compliant, then J flag positive data in original sample due to matrix.	MS/MSD was not submitted with associated SDG.
Is LCS within QC criteria (see Table 5a)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes.
Is initial calibration for target compounds <15 %RSD or curve fit? Is initial calibration verification <25%D (see Table 5b)?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Is continuing calibration for target compounds < 20%D (see Table 5b)?	Level II report provided; therefore, unable to determine and no issues noted in report's case narrative.
Were any samples re-analyzed or diluted (see Table 7)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes. Samples GP01-01 and GP04-01 were diluted to bring the concentration of target analytes within the calibration range.
Spot check retention time windows and second column confirmations as complete.	Yes.
Do field duplicate results show good precision for all compounds (see Table 8)?	All samples results were non-detect; therefore, precision could not be determined.

Summary of Findings None

Data Usability Summary Report	Project: Hudson Old Moreau				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

Table 2 - List of Positive Results for Blank Samples

 Table 2A - List of Samples Qualified for Method Blank Contamination

 Table 2B - List of Samples Qualified for Field Blank Contamination

Table 3 - List of Samples with Surrogates outside Control Limits

Table 3A – List of Samples with Isotope Dilution Recovery outside Control Limits

Table 4A – List of MS/MSD Recoveries outside Control Limits

Table 4B – List of MS/MSD RPDs outside Control Limits

Table 5A – List of LCS Recoveries outside Control Limits

Table 5B – List of ICV/CCV Recoveries outside Control Limits

Table 6 –Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
GP01-01	480-187618-2	SW8082A	SO	5X: diluted to bring the concentration of target analytes within the calibration range
GP04-01	480-187618-8	SW8082A	SO	10X: diluted to bring the concentration of target analytes within the calibration range

Table 7A – Summary of Field Duplicate Results

Data Usability Summary Report	Project: Hudson Old Moreau				
Date Completed: September 24, 2021	Completed by: Eridania Marte				

Acronym List and Table Key:

CCV	=	continuing calibration verification
CCVL	=	continuing calibration verification low
COC	=	chain of custody
DUSR	=	data usability summary report
FD	=	field duplicate
GC/MS	=	gas chromatography / mass spectrometry
ICB	=	initial calibration blank
ICS	=	interference check standard
ICV	=	initial calibration verification
LCS	=	laboratory control sample
MB	=	method blank
MDL	=	method detection limit
µg/L	=	micrograms per liter
MS	=	matrix spike
MSD	=	matrix spike duplicate
N	=	normal (field) sample
ND	=	not detected
NYSDEC	=	New York State Department of Environmental Conservation
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RB	=	equipment rinse blank
RPD	=	relative percent difference
RL	=	reporting limit
SDG	=	sample delivery group
ТВ	=	trip blank
TRG	=	target compound
%D	=	percent difference
%RSD	=	percent relative standard deviation

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-183487-1

Client Project/Site: Old Moreau Dredge Spoil Area #546040

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: John L Armitage

Judy Stone

Authorized for release by: 4/23/2021 4:55:44 PM

Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

udystme

Judy Stone Senior Project Manager 4/23/2021 4:55:44 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	11
Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Qualifiers

Qualifiers		3
GC Semi VOA Qualifier	Qualifier Description	4
S1+	Surrogate recovery exceeds control limits, high biased.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ŏ
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 480-183487-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-183487-1

Receipt

The samples were received on 4/17/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

GC Semi VOA

Method 8082A: Surrogate recovery for the following sample was outside the upper control limit: OLD MOREAU MW-08D (480-183487-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Client Sample ID: OLD MOREAU MW-08

No Detections.

Client Sample ID: OLD MOREAU MW-08D

No Detections.

Job ID: 480-183487-1

Lab Sample ID: 480-183487-1

Lab Sample ID: 480-183487-2

Eurofins TestAmerica, Buffalo

Client Sample ID: OLD MOREAU MW-08 Date Collected: 04/16/21 14:58 Date Received: 04/17/21 08:00

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1221	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1232	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1242	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1248	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1254	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1260	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1262	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 14:04	1
PCB-1268	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	68		39 - 121				04/21/21 14:57	04/22/21 14:04	1
DCB Decachlorobiphenyl	66		19 - 120				04/21/21 14:57	04/22/21 14:04	1

Matrix: Water

Lab Sample ID: 480-183487-1

Eurofins TestAmerica, Buffalo

11 12 13

Client Sample ID: OLD MOREAU MW-08D Date Collected: 04/16/21 14:58 Date Received: 04/17/21 08:00

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1221	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1232	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1242	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1248	ND		0.50	0.18	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1254	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1260	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1262	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 12:44	1
PCB-1268	ND		0.50	0.25	ug/L		04/21/21 14:57	04/22/21 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	128	S1+	39 - 121				04/21/21 14:57	04/22/21 12:44	1
DCB Decachlorobiphenyl	126	S1+	19 - 120				04/21/21 14:57	04/22/21 12:44	1

Matrix: Water

> 12 13

- 14
- 15

Prep Type: Total/NA

Prep Type: Dissolved

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCBP2	
Lab Sample ID	Client Sample ID	(39-121)	(19-120)	
LCS 480-577251/2-A	Lab Control Sample	103	71	
LCSD 480-577251/3-A	Lab Control Sample Dup	99	75	
MB 480-577251/1-A	Method Blank	95	86	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Water

		TCX2	DCBP2
Lab Sample ID	Client Sample ID	(39-121)	(19-120)
480-183487-1	OLD MOREAU MW-08	68	66
480-183487-2	OLD MOREAU MW-08D	128 S1+	126 S1+
Surrogate Legend			
TCX = Tetrachloro-m-xy	/lene		

DCBP = DCB Decachlorobiphenyl

Eurofins TestAmerica, Buffalo

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-577	251/1-A								Client S	ample ID: N	lethod	Blank
Matrix: Water										Prep Ty	/pe: To	tal/NA
Analysis Batch: 577242										Prep B	atch: 5	577251
	M	B MB										
Analyte	Resu	t Qualifier	RL		MDL	Unit		D F	Prepared	Analyze	d	Dil Fac
PCB-1016	N		0.50		0.18	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1221	N	C	0.50		0.18	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1232	N	C	0.50		0.18	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1242	N)	0.50		0.18	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1248	N	C	0.50		0.18	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1254	N	C	0.50		0.25	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1260	N))	0.50		0.25	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1262	N	C	0.50		0.25	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
PCB-1268	N	C	0.50		0.25	ug/L		04/2	21/21 14:57	04/22/21 0	9:34	1
	М	B MB										
Surrogate	%Recover	y Qualifier	Limits					ŀ	Prepared	Analyze	ed	Dil Fac
Tetrachloro-m-xylene	9	5	39 - 121					04/2	21/21 14:57	7 04/22/21 0	9:34	1
DCB Decachlorobiphenyl	8	6	19 - 120					04/	21/21 14:57	7 04/22/21 0	9:34	1
- Lab Sample ID: LCS 480-57	7251/2-4							Clien	t Sample	ID: Lah Co	ntrol S	amnle
Matrix: Water								•	c oumpio	Prep Tv	/pe: To	tal/NA
Analysis Batch: 577242										Prep B	atch: 5	77251
·			Spike	LCS	LCS					%Rec.		
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits		
PCB-1016			4.00	4.60			ug/L		115	62 - 130		
PCB-1260			4.00	4.75			ug/L		119	56 ₋ 123		
	105.10	·c					-					
Surrogato	% Pocovory O	alifior	Limits									
			39 121									
DCB Decachlorobiphenyl	71		19 - 120									
-											_	
Lab Sample ID: LCSD 480-5	77251/3-A						Clie	nt San	nple ID: I	Lab Control	Samp	le Dup
Matrix: Water										Prep Ty	/pe: To	tal/NA
Analysis Batch: 577242										Prep B	atch: 5	577251
			Spike	LCSD	LCS	D				%Rec.		RPD
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			4.00	4.46			ug/L		111	62 - 130	3	50
PCB-1260			4 00	4 71			ua/l		118	56 123	1	50

Limits

39 - 121

19 - 120

LCSD LCSD

%Recovery Qualifier

99

75

Surrogate

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

QC Association Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Job ID: 480-183487-1

GC Semi VOA

Analysis Batch: 577242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183487-1	OLD MOREAU MW-08	Dissolved	Water	8082A	577251
480-183487-2	OLD MOREAU MW-08D	Dissolved	Water	8082A	577251
MB 480-577251/1-A	Method Blank	Total/NA	Water	8082A	577251
LCS 480-577251/2-A	Lab Control Sample	Total/NA	Water	8082A	577251
LCSD 480-577251/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	577251
Prep Batch: 577251	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-183487-1	OLD MOREAU MW-08	Dissolved	Water	3510C	
480-183487-2	OLD MOREAU MW-08D	Dissolved	Water	3510C	
MB 480-577251/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-577251/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-577251/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Job ID: 480-183487-1

Matrix: Water

Matrix: Water

Lab Sample ID: 480-183487-1

Lab Sample ID: 480-183487-2

Client Sample ID: OLD MOREAU MW-08 Date Collected: 04/16/21 14:58 Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3510C			577251	04/21/21 14:57	ATG	TAL BUF
Dissolved	Analysis	8082A		1	577242	04/22/21 14:04	NC	TAL BUF

Client Sample ID: OLD MOREAU MW-08D Date Collected: 04/16/21 14:58 Date Received: 04/17/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3510C			577251	04/21/21 14:57	ATG	TAL BUF
Dissolved	Analysis	8082A		1	577242	04/22/21 12:44	NC	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040 Job ID: 480-183487-1

Laboratory: Eurofins TestAmerica, Buffalo The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateNew YorkNELAP1002604-01-22

Eurofins TestAmerica, Buffalo

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

l ah Samplo ID	Client Sample ID	Matrix	Collected	Pacaivad	AccetID
180-183/87-1		Water		04/17/21 08:00	Asset ID
400-103407-1		Water	04/16/21 14:50	04/17/21 00:00	
480-183487-2	OLD MOREAU MW-08D	vvater	04/16/21 14:58	04/17/21 08:00	

Eurofins TestAmerica, Buffalo

annuation Sample Cole C. Krieg E connert Brinder Cole C. Krieg E connert Brinder Brinder Descip E connert Brinder Brinder Brinder E connert Brinder Brinder Brinder Brinder connert Brinder B	Labor Control Control <th< th=""><th>rier Tracking No(s):</th><th>COC No 480-159093-34994.9 Page Page 9 of 9 Job #. A. HCL M. Hexane A. HCL M. Hexane A. Mone I - teun Other: Special Instructions/Note:</th></th<>	rier Tracking No(s):	COC No 480-159093-34994.9 Page Page 9 of 9 Job #. A. HCL M. Hexane A. HCL M. Hexane A. Mone I - teun Other: Special Instructions/Note:
ammeter Schart Ervi Prone and Evinoment Inc. 716-432-8126 Prone 200 and Environment Inc. 716-432-8126 Prone 200 and 2223-84774 Prone 200 and 2200 and 2223-84774 Prone 200 and 2223-84774 Prone 200 and 2200 and 2200 and 2223-84774 Prone 200 and 2223-84774 Prone 200 and 2200 and 2200 and 2200 and 2223-84774 Prone 200 and 2200 an	Lud Mail Lud Mail Lud Y Lud Y Lud Y Standard List (21 Analytes) - Sac R Benform MS/MSD (Yes or No) R Robit R Benform MS/MSD (Yes or No) R Robit R Robit R Standard List (21 Analytes) - Sac R Robit R Robit <	480-183487 Ch	Page 9 of 9 Job #:
and Environment, Inc. 716-432-5126 Prostor aster Pleasant View Drive Table Compared (app): Table Compared (ap)	Image: Second Standard List (21 Analytes) - Sac	sted	Job #: A-HCL M-Hexation Codes: A-HCL M-Hexane hain of Custody Phain of Custody Custody Other: Special Instructions/Note:
aster aster aster aster () 0 d. M. (1066) (1086) (1086) (1086) (1086) (1086) (1086) (1086) (1086) (1086) (1087) (1086) (1086) (1086) (1087) (1086) (1087) (1086	A B <td></td> <td>Preservation Codes: A. HCL M. Hexane hain of Custody Late Late Late Indian of Custody A. Hoxane hain of Custody hain of</td>		Preservation Codes: A. HCL M. Hexane hain of Custody Late Late Late Indian of Custody A. Hoxane hain of Custody hain of
aster Ten Ten Ten Ten Ten Ten Ten Ten	A B <td>480-183487 Ch</td> <td>A - Hocane hain of Custody L - Fich other: Special Instructions/Note:</td>	480-183487 Ch	A - Hocane hain of Custody L - Fich other: Special Instructions/Note:
1906 Compliance Project: Arei Ano 1906 Compliance Project: Arei Ano Compliance Project: Arei A	A A <td></td> <td>Tate hain of Custody frequency of Container of Container Letters other:</td>		Tate hain of Custody frequency of Container of Container Letters other:
102-275-47Tel) 716 289 1707 Callour 1D. 2000EF	A A <td>480-183487 Ch</td> <td>Indian of Custody I - true Contain of Custody I - true Custody I - true Custody Custody I - true Custody Custo</td>	480-183487 Ch	Indian of Custody I - true Contain of Custody I - true Custody I - true Custody Custody I - true Custody Custo
Genercone Drian. Constraint Interne Explored Protect # Interne Explored Protect # Interne Explored Some Interne Matrix Matrix	A A <td>480-183487 Ch</td> <td>Total Number of containe L - true Special Instructions/Note:</td>	480-183487 Ch	Total Number of containe L - true Special Instructions/Note:
Id Morreau Moreau Sovies Cld Project # CEED and Mathin Sovies So	A Image: Construction of the second		Special Instructions/Note:
Id Moreau Moreau Ssows ple Identification Moreau Ssows ple Identification Sample Date Sample Generation Preservation Codi Preservation Codi P	A B <td></td> <td>Cher: Special Instructions/Note:</td>		Cher: Special Instructions/Note:
Protection Sample Date Sample Date Sample Date Matrix Sample Date Horan Mu-OS and Mu-OS a	A A B <td></td> <td>Special Instructions/Note:</td>		Special Instructions/Note:
ble Identification Provention Provention Preservation Codi Preservation Codi Preserv			Special Instructions/Note:
A Morra MW-O8-W HU21 Geral Internation Cod A Morra MW-O8-W HU21 A Preservation Cod A Moreau MW-O8 4/1626 1458 3 W A Moreau MW-O8 2 4/1621 1458 3 W Wate			Special Instructions/Note:
HANNUMU-08-WC HU21 198 9 W HOFEAU MU-08 HU21 1458 9 W A Moreau Mu-08/D HU21 1458 9 W Wate			Re UC
A Moreau MW-08 4/16/26 1458 3 W A Moreau MW-08 D 4/16/26 1458 3 W Wate			R UC'
A Moreau MW-08 4/16/20 1458 3 W A Moreau MW-08/D 4/14/21 1458 3 W Wate			no the west
a Moreau Mui-08/D 4/14/21 1458 3 W Wate			
Water			L'AL C. Hereb
Water		1	
Mater			
ibio Hossed Identitientian			
Non-Hazard Centurcation Non-Hazard CElammable Skin Irritant Poison B Unknown Eadiological	Sample Disposal (A fee may be asse	essed if samples are retai	ained longer than 1 month)
erable Requested: I, II, IV, Other (specify)	Special Instructions/QC Requirements:	usai by Lab	
y Kit Relinquished by:	Time:	Method of Shipment:	
uished by Lullse K Cullse K Company	JSP Received Dr. Laper	Date/Jime	121 16 CAS COMPany
ushed by Jarl Jard Company	A Received by	Dale/Thy > /	Company Company
Luished by Date/Time Date/Time Company	The Reversely Williams	Date/Tfme:	Company
stody Seals Intact: Custody Seal No.: A Yes A No	Cooler Temperature(s) °C and Other Remark	C 1 7	1.00
			And Marken A

Eurofins TestAmerica, Buffalo

4/23/2021

Client: New York State D.E.C.

Login Number: 183487 List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	PES
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-187617-1

Client Project/Site: Old Moreau Dredge Spoil Area #546040

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: John L Armitage

Judy Stone

Authorized for release by: 8/10/2021 6:32:06 PM

Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

udystme

Judy Stone Senior Project Manager 8/10/2021 6:32:06 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
Isotope Dilution Summary	13
QC Sample Results	16
QC Association Summary	25
Lab Chronicle	27
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	33

Job ID: 480-187617-1

Qualifiers		3
GC/MS VOA	Qualifier Description	Δ
В	Compound was found in the blank and sample.	
		5
Qualifier	Qualifier Description	U
*5+	Isotope dilution analyte is outside acceptance limits, high biased.	6
В	Compound was found in the blank and sample.	
I	Value is EMPC (estimated maximum possible concentration).	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	3
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL		
PRES		
	Quality Control	
	Relative Linut relation (Relation)	
	Reporting Linit of Requested Linit (RadioCiterinistry) Relative Percent Difference, a measure of the relative difference between two points	
TEE	Toxicity Equivalent Eactor (Dioxin)	
TEO	Toxicity Equivalent Quotient (Dioxin)	
	Too Numerous To Count	

Job ID: 480-187617-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-187617-1

Comments

No additional comments.

Receipt

The sample was received on 7/24/2021 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

Method 8260C: The following samples were diluted due to the nature of the TCLP sample matrix: OM-PLASTIC-07232021 (480-187617-1), (LB 480-590594/1-A) and (LB 480-590596/1-A). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 1311: The physical characteristics of the following samples prohibited particle size reduction as required by SW-846 Method 1311: OM-PLASTIC-07232021 (480-187617-1). TCLP extraction was continued per the client request.

Method 1312: The physical characteristics of the following samples prohibited particle size reduction as required by SW-846 Method 1312: OM-PLASTIC-07232021 (480-187617-1). SPLP extraction was continued per the client request.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for the following sample: OM-PLASTIC-07232021 (480-187617-1). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte: OM-PLASTIC-07232021 (480-187617-1).

Method 537 (modified): The TCLP leachate blank (LB) contained Perfluorobutanoic acid (PFBA) above the reporting limit. The associated sample has this compound at a similar level. Due to limited sample volume the sample could not be re-extracted, therefore, the results are reported with a possible high biased result: OM-PLASTIC-07232021 (480-187617-1) and (LB 320-510957/1-C).

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for the following sample: OM-PLASTIC-07232021 (480-187617-1). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

poil Area #546040

Client Sample ID: OM-PLASTIC-07232021	Lab Sample ID: 480-187617-1
---------------------------------------	-----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	0.056	В	0.050	0.013	mg/L	10	8260C	SPLP
Perfluorobutanoic acid (PFBA)	18	В	4.5	2.1	ng/L	1	537 (modified)	TCLP
Perfluoroheptanesulfonic Acid (PFHpS)	0.41	JI	1.8	0.17	ng/L	1	537 (modified)	TCLP
Perfluorobutanoic acid (PFBA)	2.7	J	4.4	2.1	ng/L	1	537 (modified)	SPLP East
Perfluorohexanoic acid (PFHxA)	0.57	J	1.8	0.52	ng/L	1	537 (modified)	SPLP East

Job ID: 480-187617-1

Client Sample ID: OM-PLASTIC-07232021 Date Collected: 07/23/21 09:10

Date Received: 07/24/21 08:00

Method: 8260C - Volatile Orga	nic Compounds	by GC/MS -	TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			07/30/21 08:51	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			07/30/21 08:51	10
Benzene	ND		0.010	0.0041	mg/L			07/30/21 08:51	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			07/30/21 08:51	10
Chlorobenzene	ND		0.010	0.0075	mg/L			07/30/21 08:51	10
Chloroform	ND		0.010	0.0034	mg/L			07/30/21 08:51	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			07/30/21 08:51	10
Trichloroethene	ND		0.010	0.0046	mg/L			07/30/21 08:51	10
Vinyl chloride	ND		0.010	0.0090	mg/L			07/30/21 08:51	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			07/30/21 08:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120			-		07/30/21 08:51	10
4-Bromofluorobenzene (Surr)	98		73 - 120					07/30/21 08:51	10
Toluene-d8 (Surr)	100		80 - 120					07/30/21 08:51	10
Dibromofluoromethane (Surr)	98		75 - 123					07/30/21 08:51	10

Method: 8260C - Volatile Organic Compounds by GC/MS - SPLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			07/30/21 07:21	10
2-Butanone (MEK)	0.056	в	0.050	0.013	mg/L			07/30/21 07:21	10
Benzene	ND		0.010	0.0041	mg/L			07/30/21 07:21	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			07/30/21 07:21	10
Chlorobenzene	ND		0.010	0.0075	mg/L			07/30/21 07:21	10
Chloroform	ND		0.010	0.0034	mg/L			07/30/21 07:21	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			07/30/21 07:21	10
Trichloroethene	ND		0.010	0.0046	mg/L			07/30/21 07:21	10
Vinyl chloride	ND		0.010	0.0090	mg/L			07/30/21 07:21	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			07/30/21 07:21	10

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		07/30/21 07:21	10
4-Bromofluorobenzene (Surr)	98	73 - 120		07/30/21 07:21	10
Toluene-d8 (Surr)	100	80 - 120		07/30/21 07:21	10
Dibromofluoromethane (Surr)	98	75 - 123		07/30/21 07:21	10

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.040	0.0018	mg/L		07/28/21 15:12	07/29/21 19:25	1
2,4-Dinitrotoluene	ND		0.020	0.0017	mg/L		07/28/21 15:12	07/29/21 19:25	1
2,4,5-Trichlorophenol	ND		0.020	0.0019	mg/L		07/28/21 15:12	07/29/21 19:25	1
2,4,6-Trichlorophenol	ND		0.020	0.0024	mg/L		07/28/21 15:12	07/29/21 19:25	1
2-Methylphenol	ND		0.020	0.0016	mg/L		07/28/21 15:12	07/29/21 19:25	1
3-Methylphenol	ND		0.040	0.0016	mg/L		07/28/21 15:12	07/29/21 19:25	1
4-Methylphenol	ND		0.040	0.0014	mg/L		07/28/21 15:12	07/29/21 19:25	1
Hexachlorobenzene	ND		0.020	0.0020	mg/L		07/28/21 15:12	07/29/21 19:25	1
Hexachlorobutadiene	ND		0.020	0.0027	mg/L		07/28/21 15:12	07/29/21 19:25	1
Hexachloroethane	ND		0.020	0.0023	mg/L		07/28/21 15:12	07/29/21 19:25	1
Nitrobenzene	ND		0.020	0.0011	mg/L		07/28/21 15:12	07/29/21 19:25	1
Pentachlorophenol	ND		0.040	0.0088	mg/L		07/28/21 15:12	07/29/21 19:25	1

Eurofins TestAmerica, Buffalo

Job ID: 480-187617-1

Lab Sample ID: 480-187617-1

Matrix: Solid

5

6

Client Sample ID: OM-PLASTIC-07232021 Date Collected: 07/23/21 09:10

Date Received: 07/24/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyridine	ND		0.10	0.0016	mg/L		07/28/21 15:12	07/29/21 19:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	110		41 - 120				07/28/21 15:12	07/29/21 19:25	1
2-Fluorobiphenyl	100		48 - 120				07/28/21 15:12	07/29/21 19:25	1
2-Fluorophenol (Surr)	49		35 - 120				07/28/21 15:12	07/29/21 19:25	1
Nitrobenzene-d5 (Surr)	87		46 - 120				07/28/21 15:12	07/29/21 19:25	1
p-Terphenyl-d14 (Surr)	109		60 - 148				07/28/21 15:12	07/29/21 19:25	1
Phenol-d5 (Surr)	37		22 - 120				07/28/21 15:12	07/29/21 19:25	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - SPLP East

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.040	0.0018	mg/L		07/28/21 15:12	07/29/21 21:01	1
2,4-Dinitrotoluene	ND		0.020	0.0017	mg/L		07/28/21 15:12	07/29/21 21:01	1
2,4,5-Trichlorophenol	ND		0.020	0.0019	mg/L		07/28/21 15:12	07/29/21 21:01	1
2,4,6-Trichlorophenol	ND		0.020	0.0024	mg/L		07/28/21 15:12	07/29/21 21:01	1
2-Methylphenol	ND		0.020	0.0016	mg/L		07/28/21 15:12	07/29/21 21:01	1
3-Methylphenol	ND		0.040	0.0016	mg/L		07/28/21 15:12	07/29/21 21:01	1
4-Methylphenol	ND		0.040	0.0014	mg/L		07/28/21 15:12	07/29/21 21:01	1
Hexachlorobenzene	ND		0.020	0.0020	mg/L		07/28/21 15:12	07/29/21 21:01	1
Hexachlorobutadiene	ND		0.020	0.0027	mg/L		07/28/21 15:12	07/29/21 21:01	1
Hexachloroethane	ND		0.020	0.0023	mg/L		07/28/21 15:12	07/29/21 21:01	1
Nitrobenzene	ND		0.020	0.0011	mg/L		07/28/21 15:12	07/29/21 21:01	1
Pentachlorophenol	ND		0.040	0.0088	mg/L		07/28/21 15:12	07/29/21 21:01	1
Pyridine	ND		0.10	0.0016	mg/L		07/28/21 15:12	07/29/21 21:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepareo	d Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	101		41 - 120	07/28/21 15	5:12 07/29/21 21:01	1
2-Fluorobiphenyl	97		48 - 120	07/28/21 15	5:12 07/29/21 21:01	1
2-Fluorophenol (Surr)	48		35 - 120	07/28/21 15	5:12 07/29/21 21:01	1
Nitrobenzene-d5 (Surr)	87		46 - 120	07/28/21 15	5:12 07/29/21 21:01	1
p-Terphenyl-d14 (Surr)	103		60 - 148	07/28/21 15	5:12 07/29/21 21:01	1
Phenol-d5 (Surr)	36		22 _ 120	07/28/21 15	5:12 07/29/21 21:01	1

Method: 537 (modified) - Fluorinated Alkyl Substances - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	18	В	4.5	2.1	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	0.44	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorotridecanoic acid (PFTrDA)	ND		1.8	1.2	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		08/03/21 13:01	08/05/21 02:47	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.41	JI	1.8	0.17	ng/L		08/03/21 13:01	08/05/21 02:47	1

Eurofins TestAmerica, Buffalo

5

6

Lab Sample ID: 480-187617-1 Matrix: Solid

Client Sample ID: OM-PLASTIC-07232021 Date Collected: 07/23/21 09:10

Date Received: 07/24/21 08:00

14-41-507		The sector stands at a li		TOLD	(0	
Method: 537 (modified) - Fluorinated Alk	yi Substances	- ICLP	(Continued)	

Method: 537 (modified) - Fluorina	ated Alkyl Sub	stances - T	CLP (Continued	1)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		08/03/21 13:01	08/05/21 02:47	1	
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	ng/L		08/03/21 13:01	08/05/21 02:47	1	6
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.88	ng/L		08/03/21 13:01	08/05/21 02:47	1	
NMeFOSAA	ND		4.5	1.1	ng/L		08/03/21 13:01	08/05/21 02:47	1	
NEtFOSAA	ND		4.5	1.2	ng/L		08/03/21 13:01	08/05/21 02:47	1	_
6:2 FTS	ND		4.5	2.2	ng/L		08/03/21 13:01	08/05/21 02:47	1	8
8:2 FTS	ND		1.8	0.41	ng/L		08/03/21 13:01	08/05/21 02:47	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	9
13C4 PFBA	96		25 - 150				08/03/21 13:01	08/05/21 02:47	1	
13C5 PFPeA	136		25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C2 PFHxA	132		25 - 150				08/03/21 13:01	08/05/21 02:47	1	
13C4 PFHpA	143		25 - 150				08/03/21 13:01	08/05/21 02:47	1	
13C4 PFOA	94		25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C5 PFNA	165	*5+	25 - 150				08/03/21 13:01	08/05/21 02:47	1	
13C2 PFDA	194	*5+	25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C2 PFUnA	156	*5+	25 - 150				08/03/21 13:01	08/05/21 02:47	1	4.9
13C2 PFDoA	116		25 - 150				08/03/21 13:01	08/05/21 02:47	1	13
13C2 PFTeDA	43		25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C3 PFBS	215	*5+	25 - 150				08/03/21 13:01	08/05/21 02:47	1	
1802 PFHxS	148		25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C4 PFOS	164	*5+	25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
13C8 FOSA	161	*5+	25 - 150				08/03/21 13:01	08/05/21 02:47	1	
d3-NMeFOSAA	163	*5+	25 _ 150				08/03/21 13:01	08/05/21 02:47	1	16
d5-NEtFOSAA	199	*5+	25 - 150				08/03/21 13:01	08/05/21 02:47	1	
M2-6:2 FTS	424	*5+	25 _ 150				08/03/21 13:01	08/05/21 02:47	1	
M2-8:2 FTS	434	*5+	25 _ 150				08/03/21 13:01	08/05/21 02:47	1	

Method: 537	(modified)	 Fluorinated Alky 	I Substances -	 SPLP Ea 	st

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.7	J	4.4	2.1	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluoropentanoic acid (PFPeA)	ND		1.8	0.44	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorohexanoic acid (PFHxA)	0.57	J	1.8	0.52	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorotridecanoic acid (PFTrDA)	ND		1.8	1.2	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28	ng/L		08/03/21 13:01	08/05/21 03:23	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.87	ng/L		08/03/21 13:01	08/05/21 03:23	1
NMeFOSAA	ND		4.4	1.1	ng/L		08/03/21 13:01	08/05/21 03:23	1
NEtFOSAA	ND		4.4	1.2	ng/L		08/03/21 13:01	08/05/21 03:23	1
6:2 FTS	ND		4.4	2.2	ng/L		08/03/21 13:01	08/05/21 03:23	1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-187617-1 Matrix: Solid

Client Sample ID: OM-PLASTIC-07232021

Job ID: 480-187617-1

Lab Sample ID: 480-187617-1 Matrix: Solid

Date Collected: 07/23/21 09:10 Date Received: 07/24/21 08:00

Method: 537 (r	modified) - Fluorinat	ed Alkyl Substances	- SPLP East (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
8:2 FTS	ND		1.8	0.41	ng/L		08/03/21 13:01	08/05/21 03:23	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	6
13C4 PFBA	80		25 _ 150				08/03/21 13:01	08/05/21 03:23	1	
13C5 PFPeA	97		25 _ 150				08/03/21 13:01	08/05/21 03:23	1	
13C2 PFHxA	92		25 _ 150				08/03/21 13:01	08/05/21 03:23	1	
13C4 PFHpA	89		25 _ 150				08/03/21 13:01	08/05/21 03:23	1	8
13C4 PFOA	96		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C5 PFNA	118		25 _ 150				08/03/21 13:01	08/05/21 03:23	1	
13C2 PFDA	117		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C2 PFUnA	100		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C2 PFDoA	94		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C2 PFTeDA	56		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C3 PFBS	128		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
18O2 PFHxS	96		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C4 PFOS	99		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
13C8 FOSA	107		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
d3-NMeFOSAA	110		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
d5-NEtFOSAA	116		25 - 150				08/03/21 13:01	08/05/21 03:23	1	
M2-6:2 FTS	308	*5+	25 - 150				08/03/21 13:01	08/05/21 03:23	1	
M2-8:2 FTS	181	*5+	25 _ 150				08/03/21 13:01	08/05/21 03:23	1	

Eurofins TestAmerica, Buffalo

Job ID: 480-187617-1

Prep Type: TCLP

Prep Type: SPLP

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCA BFB TOL DBFM Client Sample ID (77-120) (73-120) (80-120) (75-123) Lab Sample ID LCS 480-590975/6 Lab Control Sample 97 100 102 98 MB 480-590975/8 Method Blank 96 99 101 97 Surrogate Legend DCA = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr) TOL = Toluene-d8 (Surr) DBFM = Dibromofluoromethane (Surr) Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

		Percent Surrogate Recovery (Acceptance L						
		DCA	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)			
480-187617-1	OM-PLASTIC-07232021	96	98	100	98			
LB 480-590594/1-A	Method Blank	97	99	100	98			
Surrogate Legend								
DCA = 1,2-Dichloroetha	ane-d4 (Surr)							
BFB = 4-Bromofluorobe	enzene (Surr)							
TOL = Toluene-d8 (Sur	r)							
DBFM = Dibromofluoro	methane (Surr)							

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limi					
		DCA	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)		
480-187617-1	OM-PLASTIC-07232021	96	98	100	98		
LB 480-590596/1-A	Method Blank	96	99	100	98		
Surrogate Legend							

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix:	Solid
---------	-------

		Percent Surrogate Recovery (Acceptance Limits)						
		ТВР	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(60-148)	(22-120)	
LCS 480-590798/2-A	Lab Control Sample	109	103	56	100	113	40	
LCSD 480-590798/3-A	Lab Control Sample Dup	112	104	55	101	112	41	
MB 480-590798/1-A	Method Blank	95	100	53	94	108	38	

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

Eurofins TestAmerica, Buffalo

Surrogate Summary

Client: New York State D.E.C.

Project/Site: Old Moreau Dredge Spoil Area #546040

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid								Prep Type	9: TC	
_		Percent Surrogate Recovery (Acceptance Limits)								
		ТВР	FBP	2FP	NBZ	TPHd14	PHL			
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(60-148)	(22-120)			
480-187617-1	OM-PLASTIC-07232021	110	100	49	87	109	37			
LB 480-590592/1-D	Method Blank	97	96	51	89	109	37			
Surrogate Legend										
TBP = 2,4,6-Tribromophen	nol (Surr)									
FBP = 2-Fluorobiphenyl										
2FP = 2-Fluorophenol (Su	rr)									
NBZ = Nitrobenzene-d5 (S	Surr)									
TPHd14 = p-Terphenyl-d14	4 (Surr)									

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

-			Percent Surrogate Recovery (Acceptance Li						
		ТВР	FBP	2FP	NBZ	TPHd14	PHL		
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(60-148)	(22-120)		
480-187617-1	OM-PLASTIC-07232021	101	97	48	87	103	36		
LB 480-590595/1-B	Method Blank	94	94	48	88	105	36		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Prep Type: TCLP

Prep Type: SPLP East

7

Matrix: Solid

Method: 537 (modified) - Fluorinated Alkyl Substances

Prep Type: Total/NA

5

8 9

_		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
LCS 320-512646/2-A	Lab Control Sample	93	90	102	101	100	101	94	94
MB 320-512646/1-A	Method Blank	88	85	93	106	87	88	105	87
			Р	ercent Isotor	be Dilution Re	ecoverv (Acc	eptance Limi	its)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	, d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
LCS 320-512646/2-A	Lab Control Sample	93	94	108	95	91	96	91	105
MB 320-512646/1-A	Method Blank	94	90	99	93	85	92	84	89
			Р	ercent Isotor	pe Dilution Re	ecoverv (Acc	eptance Limi	its)	
		M262FTS	M282FTS					,	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
LCS 320-512646/2-A	Lab Control Sample	102	95						
MB 320-512646/1-A	Method Blank	101	93						
Surrogate Legend									
PFBA = 13C4 PFBA									
PFPeA = 13C5 PFPeA									
PFHxA = 13C2 PFHxA									
C4PFHA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									
PFDoA = 13C2 PFDoA									
PFTDA = 13C2 PFTeDA									
C3PFBS = 13C3 PFBS									
PFHxS = 18O2 PFHxS									
PFOS = 13C4 PFOS									
PFOSA = 13C8 FOSA									
d3NMFOS = d3-NMeFOSAA	١								
d5NEFOS = d5-NEtFOSAA									
M262FTS = M2-6:2 FTS									

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid

M282FTS = M2-8:2 FTS

-		Percent Isotope Dilution Recovery (Acceptance Limits)								
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
480-187617-1	OM-PLASTIC-07232021	96	136	132	143	94	165 *5+	194 *5+	156 *5+	
LB 320-510957/1-C	Method Blank	93	90	97	102	98	96	99	99	
		Percent Isotope Dilution Recovery (Acceptance Limits)								
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
480-187617-1	OM-PLASTIC-07232021	116	43	215 *5+	148	164 *5+	161 *5+	163 *5+	199 *5+	
LB 320-510957/1-C	Method Blank	95	93	106	97	89	98	84	96	

Prep Type: TCLP

Isotope Dilution Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Solid

			Perce	ent Isotope Dilution Red	covery (Acceptance	Limits)
		M262FTS	M282FTS			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)			
480-187617-1	OM-PLASTIC-07232021	424 *5+	434 *5+			
LB 320-510957/1-C	Method Blank	102	103			
Surrogate Legend						
PFBA = 13C4 PFBA						
PFPeA = 13C5 PFPeA						
PFHxA = 13C2 PFHxA						
C4PFHA = 13C4 PFHpA						
PFOA = 13C4 PFOA						
PFNA = 13C5 PFNA						
PFDA = 13C2 PFDA						
PFUnA = 13C2 PFUnA						
PFDoA = 13C2 PFDoA						
PFTDA = 13C2 PFTeDA						
C3PFBS = 13C3 PFBS						
PFHxS = 18O2 PFHxS						
PFOS = 13C4 PFOS						
PFOSA = 13C8 FOSA						
d3NMFOS = d3-NMeFOSA	A					
d5NEFOS = d5-NEtFOSA	A Contraction of the second seco					
M262FTS = M2-6:2 FTS						
M282FTS = M2-8:2 FTS						

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid							Р	rep Type: S	PLP East	
_			Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
480-187617-1	OM-PLASTIC-07232021	80	97	92	89	96	118	117	100	
LB 320-511099/1-B	Method Blank	94	89	101	105	97	102	111	98	
		Percent Isotope Dilution Recovery (Acceptance Limits)								
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
480-187617-1	OM-PLASTIC-07232021	94	56	128	96	99	107	110	116	
LB 320-511099/1-B	Method Blank	99	101	106	100	94	99	89	97	
		Percent Isotope Dilution Recovery (Acceptance Limits)								
		M262FTS	M282FTS							
Lab Sample ID	Client Sample ID	(25-150)	(25-150)							
480-187617-1	OM-PLASTIC-07232021	308 *5+	181 *5+							
LB 320-511099/1-B	Method Blank	99	97							
Surrogate Legend										
PFBA = 13C4 PFBA										
PFPeA = 13C5 PFPeA										
PFHxA = 13C2 PFHxA										
C4PFHA = 13C4 PFHpA										
PFOA = 13C4 PFOA										

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

Prep Type: TCLP 5

8

9

Isotope Dilution Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040 PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 1802 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS

Eurofins TestAmerica, Buffalo
Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-590975/8

Matrix: Solid Analysis Batch: 590975

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.0010	0.00021	mg/L			07/30/21 00:54	1
2-Butanone (MEK)	ND		0.0050	0.0013	mg/L			07/30/21 00:54	1
Benzene	ND		0.0010	0.00041	mg/L			07/30/21 00:54	1
Carbon tetrachloride	ND		0.0010	0.00027	mg/L			07/30/21 00:54	1
Chlorobenzene	ND		0.0010	0.00075	mg/L			07/30/21 00:54	1
Chloroform	ND		0.0010	0.00034	mg/L			07/30/21 00:54	1
Tetrachloroethene	ND		0.0010	0.00036	mg/L			07/30/21 00:54	1
Trichloroethene	ND		0.0010	0.00046	mg/L			07/30/21 00:54	1
Vinyl chloride	ND		0.0010	0.00090	mg/L			07/30/21 00:54	1
1,1-Dichloroethene	ND		0.0010	0.00029	mg/L			07/30/21 00:54	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 _ 120		07/30/21 00:54	1
4-Bromofluorobenzene (Surr)	99		73 - 120		07/30/21 00:54	1
Toluene-d8 (Surr)	101		80 - 120		07/30/21 00:54	1
Dibromofluoromethane (Surr)	97		75 - 123		07/30/21 00:54	1

Lab Sample ID: LCS 480-590975/6 Matrix: Solid

Analysis Batch: 590975 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits 1,2-Dichloroethane 0.0250 0.0229 92 75 - 120 mg/L 0.110 2-Butanone (MEK) 0.125 mg/L 88 57 - 140 0.0250 0.0247 99 71 - 124 Benzene mg/L 0.0250 Carbon tetrachloride 0.0277 111 72 - 134 mg/L Chlorobenzene 0.0250 0.0243 mg/L 97 80 - 120 Chloroform 0.0250 0.0240 96 73 - 127 mg/L Tetrachloroethene 0.0250 0.0246 mg/L 98 74 - 122 Trichloroethene 0.0250 0.0248 99 74 - 123 mg/L Vinyl chloride 0.0250 0.0230 mg/L 92 65 - 133 1,1-Dichloroethene 0.0250 0.0253 101 66 - 127 mg/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Toluene-d8 (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	98		75 - 123

Lab Sample ID: LB 480-590594/1-A Matrix: Solid Analysis Batch: 590975

LB LB Result Qualifier RL MDL Unit Dil Fac Analyte D Prepared Analyzed 1,2-Dichloroethane ND 0.010 07/30/21 07:44 0.0021 mg/L 10 2-Butanone (MEK) ND 0.050 0.013 mg/L 07/30/21 07:44 10 Benzene ND 0.010 0.0041 mg/L 07/30/21 07:44 10 07/30/21 07:44 Carbon tetrachloride ND 0.010 0.0027 mg/L 10

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Method Blank

5 9

Client Sample ID: Lab Control Sample

Prep Type: TCLP

Prep Type: Total/NA

RL

0.010

0.010

0.010

0.010

MDL Unit

0.0075 mg/L

0.0034 mg/L

0.0036 mg/L

0.0046 mg/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LB LB

Qualifier

Result

ND

ND

ND

ND

94/1-A	Lab Sample ID: LB
--------	-------------------

Matrix: Solid Analysis Batch: 590975

Analyte

Chlorobenzene

Tetrachloroethene

Trichloroethene

Chloroform

Client Sample ID: Method Blank Prep Type: TCLP

Analyzed

07/30/21 07:44

07/30/21 07:44

07/30/21 07:44

07/30/21 07:44

10

10

Vinyl chloride	ND		0.010	0.0090	mg/L			07/30/21 07:44	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			07/30/21 07:44	10
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		07/30/21 07:44	10
4-Bromofluorobenzene (Surr)	99		73 - 120					07/30/21 07:44	10
Toluene-d8 (Surr)	100		80 - 120					07/30/21 07:44	10
Dibromofluoromethane (Surr)	98		75 - 123					07/30/21 07:44	10
Lab Sample ID: LB 480-590596	6/1-A						Client S	ample ID: Metho	d Blank
Matrix: Solid								Prep Typ	e: SPLP
Analysis Batch: 590975									
-	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			07/30/21 06:58	10
2-Butanone (MEK)	0.0524		0.050	0.013	mg/L			07/30/21 06:58	10
Benzene	ND		0.010	0.0041	mg/L			07/30/21 06:58	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			07/30/21 06:58	10
Chlorobenzene	ND		0.010	0.0075	mg/L			07/30/21 06:58	10
Chloroform	ND		0.010	0.0034	mg/L			07/30/21 06:58	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			07/30/21 06:58	10
Trichloroethene	ND		0.010	0.0046	mg/L			07/30/21 06:58	10
Vinyl chloride	ND		0.010	0.0090	mg/L			07/30/21 06:58	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			07/30/21 06:58	10
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					07/30/21 06:58	10
4-Bromofluorobenzene (Surr)	99		73 - 120					07/30/21 06:58	10

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

100

98

Lab Sample ID: MB 480-590798/1-A Matrix: Solid Analysis Batch: 590902

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00045	mg/L		07/28/21 15:12	07/29/21 16:31	1
2,4-Dinitrotoluene	ND		0.0050	0.00043	mg/L		07/28/21 15:12	07/29/21 16:31	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		07/28/21 15:12	07/29/21 16:31	1
2,4,6-Trichlorophenol	ND		0.0050	0.00060	mg/L		07/28/21 15:12	07/29/21 16:31	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		07/28/21 15:12	07/29/21 16:31	1
3-Methylphenol	ND		0.010	0.00040	mg/L		07/28/21 15:12	07/29/21 16:31	1

80 - 120

75 - 123

Eurofins TestAmerica, Buffalo

07/30/21 06:58

07/30/21 06:58

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 590798

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank Prep Type: Total/NA 5 6

Lab Sample ID: MB 480-590798/1-A Matrix: Solid

Analysis Batch: 590902								Prep Batch:	590798
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methylphenol	ND		0.010	0.00035	mg/L		07/28/21 15:12	07/29/21 16:31	1
Hexachlorobenzene	ND		0.0050	0.00050	mg/L		07/28/21 15:12	07/29/21 16:31	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		07/28/21 15:12	07/29/21 16:31	1
Hexachloroethane	ND		0.0050	0.00058	mg/L		07/28/21 15:12	07/29/21 16:31	1
Nitrobenzene	ND		0.0050	0.00028	mg/L		07/28/21 15:12	07/29/21 16:31	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		07/28/21 15:12	07/29/21 16:31	1
Pyridine	ND		0.025	0.00040	mg/L		07/28/21 15:12	07/29/21 16:31	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	95		41 - 120				07/28/21 15:12	07/29/21 16:31	1
2-Fluorobiphenyl	100		48 - 120				07/28/21 15:12	07/29/21 16:31	1
2-Fluorophenol (Surr)	53		35 _ 120				07/28/21 15:12	07/29/21 16:31	1
Nitrobenzene-d5 (Surr)	94		46 - 120				07/28/21 15:12	07/29/21 16:31	1
p-Terphenyl-d14 (Surr)	108		60 _ 148				07/28/21 15:12	07/29/21 16:31	1
Phenol-d5 (Surr)	38		22 - 120				07/28/21 15:12	07/29/21 16:31	1
- Lab Sample ID: LCS 480-5907	98/2- A					c	lient Sample I	D: Lab Control	Sample
Matrix: Solid								Prep Type:	Total/NA

Analysis Batch: 590902

Analysis Batch: 590902							Prep Bate	h: <mark>59079</mark> 8:
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0500	0.0451		mg/L		90	51 - 120	
2,4-Dinitrotoluene	0.0500	0.0561		mg/L		112	69 ₋ 120	
2,4,5-Trichlorophenol	0.0500	0.0547		mg/L		109	65 - 126	
2,4,6-Trichlorophenol	0.0500	0.0533		mg/L		107	64 ₋ 120	
2-Methylphenol	0.0500	0.0448		mg/L		90	39 - 120	
3-Methylphenol	0.0500	0.0426		mg/L		85	39 - 120	
4-Methylphenol	0.0500	0.0426		mg/L		85	29 ₋ 131	
Hexachlorobenzene	0.0500	0.0549		mg/L		110	61 - 120	
Hexachlorobutadiene	0.0500	0.0492		mg/L		98	35 - 120	
Hexachloroethane	0.0500	0.0441		mg/L		88	43 - 120	
Nitrobenzene	0.0500	0.0498		mg/L		100	53 - 123	
Pentachlorophenol	0.100	0.0966		mg/L		97	29 - 136	
Pyridine	0.100	0.0267		mg/L		27	10 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	109		41 - 120
2-Fluorobiphenyl	103		48 - 120
2-Fluorophenol (Surr)	56		35 - 120
Nitrobenzene-d5 (Surr)	100		46 - 120
p-Terphenyl-d14 (Surr)	113		60 - 148
Phenol-d5 (Surr)	40		22 - 120

Spike

Added

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.100

0.100

LCSD LCSD

0.0452

0.0573

0.0561

0.0550

0.0452

0.0439

0.0439

0.0544

0.0513

0.0443

0.0491

0.0970

0.0345

Result Qualifier

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-590798/3-A	
Matrix: Solid	

Matri	. . U	onu	
Analy	vsis	Batch:	590902

Analyte

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dinitrotoluene

2-Methylphenol

3-Methylphenol

4-Methylphenol

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

Nitrobenzene

Pyridine

Client Sample	ID: L	ab	Contro	Sample	e Dup
			Pren T	vne: Tot	al/NA

			riop ijpor rotanini						
		Prep Batch: 590798							
			%Rec.		RPD				
Unit	D	%Rec	Limits	RPD	Limit				
mg/L		90	51 - 120	0	36				
mg/L		115	69 _ 120	2	20				
mg/L		112	65 _ 126	3	18				
mg/L		110	64 - 120	3	19				
mg/L		90	39 - 120	1	27				
mg/L		88	39 - 120	3	30				
mg/L		88	29 - 131	3	24				
mg/L		109	61 _ 120	1	15				
mg/L		103	35 - 120	4	44				
mg/L		89	43 - 120	0	46				
mg/L		98	53 - 123	1	24				
mg/L		97	29 - 136	0	37				
mg/L		35	10 - 120	26	49				

LCSD	LCSD	
%Recovery	Qualifier	Limits
112		41 - 120
104		48 - 120
55		35 - 120
101		46 - 120
112		60 - 148
41		22 - 120
	LCSD %Recovery 112 104 55 101 112 41	LCSD LCSD %Recovery Qualifier 112 104 55 101 112 41

Lab Sample ID: LB 480-590592/1-D Matrix: Solid

Analysis Batch: 590902

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.040	0.0018	mg/L		07/28/21 15:12	07/29/21 17:45	1
2,4-Dinitrotoluene	ND		0.020	0.0017	mg/L		07/28/21 15:12	07/29/21 17:45	1
2,4,5-Trichlorophenol	ND		0.020	0.0019	mg/L		07/28/21 15:12	07/29/21 17:45	1
2,4,6-Trichlorophenol	ND		0.020	0.0024	mg/L		07/28/21 15:12	07/29/21 17:45	1
2-Methylphenol	ND		0.020	0.0016	mg/L		07/28/21 15:12	07/29/21 17:45	1
3-Methylphenol	ND		0.040	0.0016	mg/L		07/28/21 15:12	07/29/21 17:45	1
4-Methylphenol	ND		0.040	0.0014	mg/L		07/28/21 15:12	07/29/21 17:45	1
Hexachlorobenzene	ND		0.020	0.0020	mg/L		07/28/21 15:12	07/29/21 17:45	1
Hexachlorobutadiene	ND		0.020	0.0027	mg/L		07/28/21 15:12	07/29/21 17:45	1
Hexachloroethane	ND		0.020	0.0023	mg/L		07/28/21 15:12	07/29/21 17:45	1
Nitrobenzene	ND		0.020	0.0011	mg/L		07/28/21 15:12	07/29/21 17:45	1
Pentachlorophenol	ND		0.040	0.0088	mg/L		07/28/21 15:12	07/29/21 17:45	1
Pyridine	ND		0.10	0.0016	mg/L		07/28/21 15:12	07/29/21 17:45	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	97		41 - 120				07/28/21 15:12	07/29/21 17:45	1
2-Fluorobiphenyl	96		48 - 120				07/28/21 15:12	07/29/21 17:45	1
2-Fluorophenol (Surr)	51		35 - 120				07/28/21 15:12	07/29/21 17:45	1

07/29/21 17:45

07/29/21 17:45

07/28/21 15:12

07/28/21 15:12

07/28/21 15:12 07/29/21 17:45

Client Sample ID: Method Blank Prep Type: TCLP

46 - 120

60 - 148

22 - 120

89

109

37

1

1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LB 480-590595/1-B Matrix: Solid

Analysis Batch: 590902

-	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.040	0.0018	mg/L		07/28/21 15:12	07/29/21 18:10	1
2,4-Dinitrotoluene	ND		0.020	0.0017	mg/L		07/28/21 15:12	07/29/21 18:10	1
2,4,5-Trichlorophenol	ND		0.020	0.0019	mg/L		07/28/21 15:12	07/29/21 18:10	1
2,4,6-Trichlorophenol	ND		0.020	0.0024	mg/L		07/28/21 15:12	07/29/21 18:10	1
2-Methylphenol	ND		0.020	0.0016	mg/L		07/28/21 15:12	07/29/21 18:10	1
3-Methylphenol	ND		0.040	0.0016	mg/L		07/28/21 15:12	07/29/21 18:10	1
4-Methylphenol	ND		0.040	0.0014	mg/L		07/28/21 15:12	07/29/21 18:10	1
Hexachlorobenzene	ND		0.020	0.0020	mg/L		07/28/21 15:12	07/29/21 18:10	1
Hexachlorobutadiene	ND		0.020	0.0027	mg/L		07/28/21 15:12	07/29/21 18:10	1
Hexachloroethane	ND		0.020	0.0023	mg/L		07/28/21 15:12	07/29/21 18:10	1
Nitrobenzene	ND		0.020	0.0011	mg/L		07/28/21 15:12	07/29/21 18:10	1
Pentachlorophenol	ND		0.040	0.0088	mg/L		07/28/21 15:12	07/29/21 18:10	1
Pyridine	ND		0.10	0.0016	mg/L		07/28/21 15:12	07/29/21 18:10	1
	LB	LB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	94		41 _ 120				07/28/21 15:12	07/29/21 18:10	1
2-Fluorobiphenyl	94		48 - 120				07/28/21 15:12	07/29/21 18:10	1
2-Fluorophenol (Surr)	48		35 - 120				07/28/21 15:12	07/29/21 18:10	1
Nitrobenzene-d5 (Surr)	88		46 - 120				07/28/21 15:12	07/29/21 18:10	1
p-Terphenyl-d14 (Surr)	105		60 - 148				07/28/21 15:12	07/29/21 18:10	1
Phenol-d5 (Surr)	36		22 - 120				07/28/21 15:12	07/29/21 18:10	1

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-512646/1-A Matrix: Solid Analysis Batch: 513625

Prep Batch: 512646 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) ND 5.0 2.4 ng/L 08/03/21 13:01 08/05/21 01:25 1 ND Perfluoropentanoic acid (PFPeA) 2.0 0.49 ng/L 08/03/21 13:01 08/05/21 01:25 1 08/03/21 13:01 Perfluorohexanoic acid (PFHxA) ND 2.0 0.58 ng/L 08/05/21 01:25 1 Perfluoroheptanoic acid (PFHpA) ND 2.0 0.25 08/03/21 13:01 08/05/21 01:25 ng/L 1 Perfluorooctanoic acid (PFOA) ND 08/03/21 13:01 2.0 0.85 ng/L 08/05/21 01:25 1 Perfluorononanoic acid (PFNA) ND 2.0 0.27 ng/L 08/03/21 13:01 08/05/21 01:25 1 Perfluorodecanoic acid (PFDA) ND 2.0 0.31 ng/L 08/03/21 13:01 08/05/21 01:25 1 Perfluoroundecanoic acid (PFUnA) ND 2.0 08/03/21 13:01 08/05/21 01:25 1.1 ng/L 1 Perfluorododecanoic acid (PFDoA) ND 2.0 0.55 08/03/21 13:01 08/05/21 01:25 ng/L 1 ND 2.0 08/05/21 01:25 Perfluorotridecanoic acid (PFTrDA) 1.3 ng/L 08/03/21 13:01 1 Perfluorotetradecanoic acid (PFTeA) ND 2.0 0.73 ng/L 08/03/21 13:01 08/05/21 01:25 1 Perfluorobutanesulfonic acid (PFBS) ND 2.0 08/03/21 13:01 08/05/21 01:25 0.20 ng/L 1 Perfluorohexanesulfonic acid (PFHxS) ND 2.0 0.57 ng/L 08/03/21 13:01 08/05/21 01:25 Perfluoroheptanesulfonic Acid ND 2.0 0.19 ng/L 08/03/21 13:01 08/05/21 01:25 1 (PFHpS) Perfluorooctanesulfonic acid (PFOS) ND 2.0 08/03/21 13:01 08/05/21 01:25 0.54 ng/L Perfluorodecanesulfonic acid (PFDS) ND 20 08/03/21 13:01 08/05/21 01:25 0.32 ng/L 1 Perfluorooctanesulfonamide (FOSA) ND 2.0 0.98 ng/L 08/03/21 13:01 08/05/21 01:25 1 **NMeFOSAA** ND 5.0 1.2 ng/L 08/03/21 13:01 08/05/21 01:25 1 **NEtFOSAA** ND 5.0 1.3 ng/L 08/03/21 13:01 08/05/21 01:25 1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: SPLP East Prep Batch: 590798

5

9

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-512646/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	iotal/NA
Analysis Batch: 513625								Prep Batch:	512646
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
6:2 FTS	ND		5.0	2.5	ng/L		08/03/21 13:01	08/05/21 01:25	1
8:2 FTS	ND		2.0	0.46	ng/L		08/03/21 13:01	08/05/21 01:25	1
	МВ	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	88		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C5 PFPeA	85		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C2 PFHxA	93		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C4 PFHpA	106		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C4 PFOA	87		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C5 PFNA	88		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C2 PFDA	105		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C2 PFUnA	87		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
13C2 PFDoA	94		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C2 PFTeDA	90		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C3 PFBS	99		25 - 150				08/03/21 13:01	08/05/21 01:25	1
18O2 PFHxS	93		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C4 PFOS	85		25 - 150				08/03/21 13:01	08/05/21 01:25	1
13C8 FOSA	92		25 - 150				08/03/21 13:01	08/05/21 01:25	1
d3-NMeFOSAA	84		25 - 150				08/03/21 13:01	08/05/21 01:25	1
d5-NEtFOSAA	89		25 - 150				08/03/21 13:01	08/05/21 01:25	1
M2-6:2 FTS	101		25 _ 150				08/03/21 13:01	08/05/21 01:25	1
M2-8:2 FTS	93		25 - 150				08/03/21 13:01	08/05/21 01:25	1

Lab Sample ID: LCS 320-512646/2-A Matrix: Solid

Analysis Batch: 513625

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 512646

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanoic acid (PFBA)	40.0	44.0		ng/L		110	76 - 136	
Perfluoropentanoic acid (PFPeA)	40.0	45.6		ng/L		114	71 ₋ 131	
Perfluorohexanoic acid (PFHxA)	40.0	40.7		ng/L		102	73 - 133	
Perfluoroheptanoic acid (PFHpA)	40.0	42.9		ng/L		107	72 ₋ 132	
Perfluorooctanoic acid (PFOA)	40.0	46.3		ng/L		116	70 ₋ 130	
Perfluorononanoic acid (PFNA)	40.0	42.6		ng/L		107	75 ₋ 135	
Perfluorodecanoic acid (PFDA)	40.0	43.5		ng/L		109	76 ₋ 136	
Perfluoroundecanoic acid	40.0	45.5		ng/L		114	68 - 128	
(PFUnA)								
Perfluorododecanoic acid	40.0	42.9		ng/L		107	71 - 131	
(PFDoA)								
Perfluorotridecanoic acid	40.0	49.9		ng/L		125	71 - 131	
(PFTrDA)								
Perfluorotetradecanoic acid	40.0	43.1		ng/L		108	70 - 130	
(PFTeA)								
Perfluorobutanesulfonic acid	35.4	33.3		ng/L		94	67 - 127	
(PFBS)								
Perfluorohexanesulfonic acid	36.4	37.7		ng/L		104	59 ₋ 119	
(PFHxS)								
Perfluoroheptanesulfonic Acid	38.1	42.7		ng/L		112	76 _ 136	
(PFHpS)								
Perfluorooctanesulfonic acid	37.1	40.5		ng/L		109	70 _ 130	
(PFOS)								

Eurofins TestAmerica, Buffalo

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-51 Matrix: Solid Analysis Batch: 513625	2646/2-A						Client	t Sample	ID: Lab Contro Prep Type Prep Batc	ol Sample : Total/NA h: 512646
,			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorodecanesulfonic acid (PFDS)			38.6	42.1		ng/L		109	71 - 131	
Perfluorooctanesulfonamide (FOSA)			40.0	40.6		ng/L		101	73 - 133	
NMeFOSAA			40.0	47.1		ng/L		118	76 - 136	
NEtFOSAA			40.0	40.8		ng/L		102	76 - 136	
6:2 FTS			37.9	40.5		ng/L		107	59 - 175	
8:2 FTS			38.3	41.2		ng/L		107	75 ₋ 135	
	LCS	LCS								
Isotope Dilution	%Recovery	Qualifier	Limits							
13C4 PFBA	93		25 _ 150							
13C5 PFPeA	90		25 - 150							
13C2 PFHxA	102		25 _ 150							
13C4 PFHpA	101		25 _ 150							
13C4 PFOA	100		25 _ 150							
13C5 PFNA	101		25 _ 150							
13C2 PFDA	94		25 - 150							
13C2 PFUnA	94		25 _ 150							
13C2 PFDoA	93		25 _ 150							
13C2 PFTeDA	94		25 _ 150							
13C3 PFBS	108		25 _ 150							
18O2 PFHxS	95		25 - 150							
13C4 PFOS	91		25 _ 150							
13C8 FOSA	96		25 _ 150							
d3-NMeFOSAA	91		25 _ 150							
d5-NEtFOSAA	105		25 _ 150							
M2-6:2 FTS	102		25 - 150							
M2-8:2 FTS	95		25 - 150							

Lab Sample ID: LB 320-510957/1-C Matrix: Solid Analysis Batch: 513625

LB LB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Perfluorobutanoic acid (PFBA) 14.3 4.4 08/03/21 13:01 08/05/21 02:38 2.1 ng/L 1 ND 1.7 08/03/21 13:01 Perfluoropentanoic acid (PFPeA) 0.43 ng/L 08/05/21 02:38 1 Perfluorohexanoic acid (PFHxA) ND 1.7 0.51 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluoroheptanoic acid (PFHpA) ND 1.7 0.22 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluorooctanoic acid (PFOA) ND 1.7 0.74 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluorononanoic acid (PFNA) ND 08/03/21 13:01 08/05/21 02:38 1.7 0.24 ng/L 1 Perfluorodecanoic acid (PFDA) ND 1.7 0.27 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluoroundecanoic acid (PFUnA) ND 1.7 0.96 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluorododecanoic acid (PFDoA) ND 1.7 08/03/21 13:01 0.48 ng/L 08/05/21 02:38 1 Perfluorotridecanoic acid (PFTrDA) ND 1.7 08/03/21 13:01 1.1 ng/L 08/05/21 02:38 1 Perfluorotetradecanoic acid (PFTeA) ND 08/03/21 13:01 08/05/21 02:38 1.7 0.64 ng/L 1 Perfluorobutanesulfonic acid (PFBS) ND 1.7 0.17 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluorohexanesulfonic acid (PFHxS) ND 1.7 0.50 ng/L 08/03/21 13:01 08/05/21 02:38 1 Perfluoroheptanesulfonic Acid ND 1.7 0.17 ng/L 08/03/21 13:01 08/05/21 02:38 1 (PFHpS) Perfluorooctanesulfonic acid (PFOS) ND 1.7 0.47 ng/L 08/03/21 13:01 08/05/21 02:38 1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 512646

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 512646

Lab Sample ID: LB 320-510957/1-C

Matrix: Solid

a charle Details 540005

Analysis Batch: 513625								Prep Batch:	512040
	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.28	ng/L		08/03/21 13:01	08/05/21 02:38	1
Perfluorooctanesulfonamide (FOSA)	ND		1.7	0.86	ng/L		08/03/21 13:01	08/05/21 02:38	1
NMeFOSAA	ND		4.4	1.0	ng/L		08/03/21 13:01	08/05/21 02:38	1
NEtFOSAA	ND		4.4	1.1	ng/L		08/03/21 13:01	08/05/21 02:38	1
6:2 FTS	ND		4.4	2.2	ng/L		08/03/21 13:01	08/05/21 02:38	1
8:2 FTS	ND		1.7	0.40	ng/L		08/03/21 13:01	08/05/21 02:38	1
	LB	LB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	93		25 - 150				08/03/21 13:01	08/05/21 02:38	1
13C5 PFPeA	90		25 - 150				08/03/21 13:01	08/05/21 02:38	1
13C2 PFHxA	97		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C4 PFHpA	102		25 - 150				08/03/21 13:01	08/05/21 02:38	1
13C4 PFOA	98		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C5 PFNA	96		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C2 PFDA	99		25 - 150				08/03/21 13:01	08/05/21 02:38	1
13C2 PFUnA	99		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C2 PFDoA	95		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C2 PFTeDA	93		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C3 PFBS	106		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
18O2 PFHxS	97		25 - 150				08/03/21 13:01	08/05/21 02:38	1
13C4 PFOS	89		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
13C8 FOSA	98		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
d3-NMeFOSAA	84		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
d5-NEtFOSAA	96		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
M2-6:2 FTS	102		25 - 150				08/03/21 13:01	08/05/21 02:38	1
M2-8:2 FTS	103		25 _ 150				08/03/21 13:01	08/05/21 02:38	1
-									

Lab Sample ID: LB 320-511099/1-B Matrix: Solid

Analysis Batch: 513625

LB LB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Perfluorobutanoic acid (PFBA) ND 4.8 2.3 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluoropentanoic acid (PFPeA) ND 1.9 0.47 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluorohexanoic acid (PFHxA) ND 1.9 0.56 ng/L 08/03/21 13:01 08/05/21 03:14 1 ND Perfluoroheptanoic acid (PFHpA) 1.9 0.24 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluorooctanoic acid (PFOA) ND 1.9 0.82 ng/L 08/03/21 13:01 08/05/21 03:14 1 08/03/21 13:01 Perfluorononanoic acid (PFNA) ND 1.9 0.26 ng/L 08/05/21 03:14 1 Perfluorodecanoic acid (PFDA) ND 1.9 08/03/21 13:01 08/05/21 03:14 0.30 ng/L 1 Perfluoroundecanoic acid (PFUnA) ND 1.9 1.1 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluorododecanoic acid (PFDoA) ND 1.9 0.53 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluorotridecanoic acid (PFTrDA) ND 1.9 08/03/21 13:01 08/05/21 03:14 1.3 ng/L 1 Perfluorotetradecanoic acid (PFTeA) ND 1.9 0.71 ng/L 08/03/21 13:01 08/05/21 03:14 1 ND Perfluorobutanesulfonic acid (PFBS) 1.9 0.19 ng/L 08/03/21 13:01 08/05/21 03:14 1 Perfluorohexanesulfonic acid (PFHxS) ND 1.9 0.55 ng/L 08/03/21 13:01 08/05/21 03:14 1 ND 1.9 08/03/21 13:01 08/05/21 03:14 Perfluoroheptanesulfonic Acid 0.18 ng/L 1 (PFHpS) ND 08/03/21 13:01 Perfluorooctanesulfonic acid (PFOS) 1.9 0.52 ng/L 08/05/21 03:14 1 08/03/21 13:01 ND 08/05/21 03:14 Perfluorodecanesulfonic acid (PFDS) 1.9 0.31 ng/L 1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: SPLP East

Prep Batch: 512646

8/10/2021

Lab Sample ID: LB 320-511099/1-B

Matrix: Solid

5

9

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: Method Blank Prep Type: SPLP East Prep Batch: 512646

Analysis Batch: 513625								Prep Batch:	512646
	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonamide (FOSA)	ND		1.9	0.95	ng/L		08/03/21 13:01	08/05/21 03:14	1
NMeFOSAA	ND		4.8	1.2	ng/L		08/03/21 13:01	08/05/21 03:14	1
NEtFOSAA	ND		4.8	1.3	ng/L		08/03/21 13:01	08/05/21 03:14	1
6:2 FTS	ND		4.8	2.4	ng/L		08/03/21 13:01	08/05/21 03:14	1
8:2 FTS	ND		1.9	0.44	ng/L		08/03/21 13:01	08/05/21 03:14	1
	LB	LB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	94		25 - 150				08/03/21 13:01	08/05/21 03:14	1
13C5 PFPeA	89		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C2 PFHxA	101		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C4 PFHpA	105		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C4 PFOA	97		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C5 PFNA	102		25 - 150				08/03/21 13:01	08/05/21 03:14	1
13C2 PFDA	111		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C2 PFUnA	98		25 - 150				08/03/21 13:01	08/05/21 03:14	1
13C2 PFDoA	99		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C2 PFTeDA	101		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C3 PFBS	106		25 - 150				08/03/21 13:01	08/05/21 03:14	1
18O2 PFHxS	100		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
13C4 PFOS	94		25 - 150				08/03/21 13:01	08/05/21 03:14	1
13C8 FOSA	99		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
d3-NMeFOSAA	89		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
d5-NEtFOSAA	97		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
M2-6:2 FTS	99		25 _ 150				08/03/21 13:01	08/05/21 03:14	1
M2-8:2 FTS	97		25 - 150				08/03/21 13:01	08/05/21 03:14	1

QC Association Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Job ID: 480-187617-1

15 16

Leach	Batch:	590594

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	1311	
LB 480-590594/1-A	Method Blank	TCLP	Solid	1311	
Leach Batch: 590596					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187617-1	OM-PLASTIC-07232021	SPLP	Solid	1312	
LB 480-590596/1-A	Method Blank	SPLP	Solid	1312	
Analysis Batch: 59097	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-187617-1	OM-PLASTIC-07232021	SPLP	Solid	8260C	590596
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	8260C	590594
LB 480-590594/1-A	Method Blank	TCLP	Solid	8260C	590594
LB 480-590596/1-A	Method Blank	SPLP	Solid	8260C	590596
MB 480-590975/8	Method Blank	Total/NA	Solid	8260C	
LCS 480-590975/6	Lab Control Sample	Total/NA	Solid	8260C	
GC/MS Semi VOA					
Leach Batch: 590592					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	1311	
LB 480-590592/1-D	Method Blank	TCLP	Solid	1311	
Leach Batch: 590595					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-187617-1	OM-PLASTIC-07232021	SPLP East	Solid	1312	
LB 480-590595/1-B	Method Blank	SPLP East	Solid	1312	
Prep Batch: 590798					
Prep Batch: 590798	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
Prep Batch: 590798 Lab Sample ID 480-187617-1	Client Sample ID OM-PLASTIC-07232021	Prep Type SPLP East	Matrix Solid	<u>Method</u> 3510C	Prep Batcl
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021	Prep Type SPLP East TCLP	Matrix Solid Solid	Method 3510C 3510C	Prep Batcl 59059 59059
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank	Prep Type SPLP East TCLP TCLP	Matrix Solid Solid Solid	Method 3510C 3510C 3510C 3510C	Prep Batcl 59059 59059 59059 59059
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank	Prep Type SPLP East TCLP TCLP SPLP East	Matrix Solid Solid Solid Solid	Method 3510C 3510C 3510C 3510C 3510C	Prep Batcl 59059 59059 59059 59059 59059
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank	Prep Type SPLP East TCLP TCLP SPLP East Total/NA	Matrix Solid Solid Solid Solid Solid	Method 3510C 3510C 3510C 3510C 3510C 3510C	Prep Batcl 59059 59059 59059 59059 59059
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank Lab Control Sample	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 3510C 3510C 3510C 3510C 3510C 3510C 3510C	Prep Batcl 59059 59059 59059 59059
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank Lab Control Sample Lab Control Sample Dup	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C 3510C 3510C 3510C 3510C 3510C 3510C 3510C	Prep Batcl 590593 590593 590593 590593
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590902	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank Lab Control Sample Lab Control Sample Dup	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 3510C 3510C 3510C 3510C 3510C 3510C 3510C 3510C	Prep Batcl 590599 590592 590592 590592
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590903 Lab Sample ID	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup 2 Client Sample ID	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid Matrix	Method 3510C Method	Prep Batcl 590592 590592 590592 590592 590592
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590900 Lab Sample ID 480-187617-1	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank Lab Control Sample Lab Control Sample Dup 2 Client Sample ID OM-PLASTIC-07232021	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA Prep Type SPLP East	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C	Prep Batch 590592 590592 590592 590592 590592 Prep Batch 590798
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590900 Lab Sample ID 480-187617-1 480-187617-1 480-187617-1	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Lab Control Sample Dup 2 Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA Prep Type SPLP East TCLP	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C	Prep Batcl 590593 590593 590593 590593 590593 Prep Batcl 590793 590793
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590903 Lab Sample ID 480-187617-1 LB 480-590592/1-D	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup 2 Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA Prep Type SPLP East TCLP	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C	Prep Batcl 590592 590592 590592 590592 590592 590792 590792 590792
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590798/1-A LCS 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590902 Lab Sample ID 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA Prep Type SPLP East TCLP SPLP East Total/NA Total/NA SPLP East TCLP SPLP East TCLP SPLP East TCLP TCLP TCLP SPLP East	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C 3510C<	Prep Batcl 590592 590592 590592 590592 590592 590792 590792 590792 590792
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/2-A LCSD 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590902 Lab Sample ID 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Total/NA Prep Type SPLP East TCLP TCLP SPLP East TCLP SPLP East Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C 3510C<	Prep Batcl 59059: 59059: 59059: 59059: 59059: 59079: 59079: 59079: 59079: 59079: 59079:
Prep Batch: 590798 Lab Sample ID 480-187617-1 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/2-A LCSD 480-590798/2-A LCSD 480-590798/3-A Analysis Batch: 590902 Lab Sample ID 480-187617-1 LB 480-590592/1-D LB 480-590595/1-B MB 480-590798/1-A LCS 480-590798/2-A	Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Lab Control Sample Lab Control Sample Dup Client Sample ID OM-PLASTIC-07232021 OM-PLASTIC-07232021 Method Blank Method Blank Method Blank Lab Control Sample	Prep Type SPLP East TCLP TCLP SPLP East Total/NA Total/NA Prep Type SPLP East TCLP SPLP East Total/NA Total/NA SPLP East TCLP SPLP East TCLP SPLP East Total/NA Total/NA	Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	Method 3510C 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D<	Prep Batcl 59059 59059 59059 59059 59059 59079 59079 59079 59079 59079 59079 59079

QC Association Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040 Job ID: 480-187617-1

LCMS Leach Batch: 510957

Lab Sample ID	Client Sample ID	Bren Type	Matrix	Method	Pron Batch
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	1311	
LB 320-510957/1-C	Method Blank	TCLP	Solid	1311	
Leach Batch: 511099					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-187617-1	OM-PLASTIC-07232021	SPLP East	Solid	1312	
LB 320-511099/1-B	Method Blank	SPLP East	Solid	1312	
Prep Batch: 512646					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187617-1	OM-PLASTIC-07232021	SPLP East	Solid	3535	511099
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	3535	510957
LB 320-510957/1-C	Method Blank	TCLP	Solid	3535	510957
LB 320-511099/1-B	Method Blank	SPLP East	Solid	3535	511099
MB 320-512646/1-A	Method Blank	Total/NA	Solid	3535	
LCS 320-512646/2-A	Lab Control Sample	Total/NA	Solid	3535	
Analysis Batch: 51362	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187617-1	OM-PLASTIC-07232021	SPLP East	Solid	537 (modified)	512646
480-187617-1	OM-PLASTIC-07232021	TCLP	Solid	537 (modified)	512646
LB 320-510957/1-C	Method Blank	TCLP	Solid	537 (modified)	512646
LB 320-511099/1-B	Method Blank	SPLP East	Solid	537 (modified)	512646
MB 320-512646/1-A	Method Blank	Total/NA	Solid	537 (modified)	512646
LCS 320-512646/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	512646

Dilution

Factor

10

10

1

1

1

1

Run

Batch

Number

590596

590975

590594

590975

590595

590798

590902

590592

590798

590902

511099

512646

513625

510957

512646

513625

Prepared

or Analyzed

07/27/21 13:08

07/30/21 07:21

07/27/21 13:06

07/30/21 08:51

07/27/21 13:07

07/28/21 15:12

07/29/21 21:01

07/27/21 13:05

07/28/21 15:12

07/29/21 19:25

07/29/21 14:29

08/03/21 13:01

08/05/21 03:23

07/28/21 21:17

08/03/21 13:01

08/05/21 02:47

Analyst

LMS

CRL

LMS

CRL

LMS

CMC

JMM

LMS

CMC

JMM

JLV

KJW

JRB

CF

KJW

JRB

Lab

TAL BUF

TAL SAC

TAL SAC

TAL SAC

TAL SAC

TAL SAC

TAL SAC

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Client Sample ID: OM-PLASTIC-07232021 Date Collected: 07/23/21 09:10 Date Received: 07/24/21 08:00

Batch

1312

8260C

1311

8260C

1312

3510C

8270D

1311

3510C

8270D

1312

3535

1311

3535

537 (modified)

537 (modified)

Method

Batch

Туре

Leach

Leach

Leach

Prep

Leach

Prep

Analysis

Leach

Prep

Leach

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Lab Sample ID: 480-187617-1 Matrix: Solid

Laboratory References:

Prep Type

SPLP

SPLP

TCLP

TCLP

TCLP

TCLP

TCLP

TCLP

TCLP

TCLP

SPLP East

SPLP East

SPLP East

SPLP East

SPLP East

SPLP East

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

 Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-22

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	11666	04-01-22

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
537 (modified)	3535	Solid	6:2 FTS
537 (modified)	3535	Solid	8:2 FTS
537 (modified)	3535	Solid	NEtFOSAA
537 (modified)	3535	Solid	NMeFOSAA
537 (modified)	3535	Solid	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	3535	Solid	Perfluorobutanoic acid (PFBA)
537 (modified)	3535	Solid	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	3535	Solid	Perfluorodecanoic acid (PFDA)
537 (modified)	3535	Solid	Perfluorododecanoic acid (PFDoA)
537 (modified)	3535	Solid	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	3535	Solid	Perfluoroheptanoic acid (PFHpA)
537 (modified)	3535	Solid	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	3535	Solid	Perfluorohexanoic acid (PFHxA)
537 (modified)	3535	Solid	Perfluorononanoic acid (PFNA)
537 (modified)	3535	Solid	Perfluorooctanesulfonamide (FOSA)
537 (modified)	3535	Solid	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	3535	Solid	Perfluorooctanoic acid (PFOA)
537 (modified)	3535	Solid	Perfluoropentanoic acid (PFPeA)
537 (modified)	3535	Solid	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	3535	Solid	Perfluorotridecanoic acid (PFTrDA)
537 (modified)	3535	Solid	Perfluoroundecanoic acid (PFUnA)

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

			- 2
Method Description	Protocol	Laboratory	
Volatile Organic Compounds by GC/MS	SW846	TAL BUF	- 1
Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF	
Fluorinated Alkyl Substances	EPA	TAL SAC	E
TCLP Extraction	SW846	TAL BUF	Ð
TCLP Extraction	SW846	TAL SAC	
SPLP Extraction	SW846	TAL BUF	
SPLP Extraction	SW846	TAL SAC	
Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF	
Solid-Phase Extraction (SPE)	SW846	TAL SAC	
Purge and Trap	SW846	TAL BUF	8

Protocol References:

Method

8260C

8270D

1311

1311

1312 1312

3510C

3535

5030C

537 (modified)

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: New York State D.E.C. Project/Site: Old Moreau Dredge Spoil Area #546040

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-187617-1	OM-PLASTIC-07232021	Solid	07/23/21 09:10	07/24/21 08:00

Client: New York State D.E.C.

Login Number: 187617 List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Login Number: 187617 List Number: 2 Creator: Cahill, Nicholas P

Job Number: 480-187617-1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1558420
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.7C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-187618-1

Client Project/Site: Special Area 13 Dredge Spoil #546041

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: John L Armitage

Authorized for release by: 8/6/2021 10:52:55 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Rebecca Jones Project Management Assistant I 8/6/2021 10:52:55 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	17
QC Sample Results	18
QC Association	19
Chronicle	20
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Definitions/Glossary

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Job ID: 480-187618-1

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ð
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Taviaity Equivalent Quatiant (Diavia)	

TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Job ID: 480-187618-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-187618-1

Comments

No additional comments.

Receipt

The samples were received on 7/24/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

GC Semi VOA

Method 8082A: The following samples were diluted to bring the concentration of target analytes within the calibration range: GP01-01 (480-187618-2) and GP04-01 (480-187618-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3550C: The following samples: GP01-02 (480-187618-1) and GP02-02 (480-187618-4) was decanted prior to preparation.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Job ID: 480-187618-1

1	
1	
1	
2	
	5
3	
<u> </u>	
_	8
4	9
5	
_	
6	
_	13
7	
8	

Client Sample ID: GP01-02						Lal	b S	ample ID:	480-187618-1
No Detections.									
Client Sample ID: GP01-01						Lal	b S	ample ID:	480-187618-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	14		1.4		mg/Kg	5	<u></u>	8082A	Total/NA
Client Sample ID: GP02-01						Lal	b S	ample ID:	480-187618-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	6.2		0.29		mg/Kg	1	₽	8082A	Total/NA
Client Sample ID: GP02-02						Lal	b S	ample ID:	480-187618-4
No Detections.									
Client Sample ID: GP02-03						Lal	b S	ample ID:	480-187618-5
No Detections.									
Client Sample ID: GP03-01						Lal	b S	ample ID:	480-187618-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	4.0		0.20		mg/Kg	1	₽	8082A	Total/NA
Client Sample ID: GP03-02						Lal	b S	ample ID:	480-187618-7
No Detections.									
Client Sample ID: GP04-01						Lal	b S	ample ID:	480-187618-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
PCB-1248	13		2.3		mg/Kg	10	₽	8082A	Total/NA
Client Sample ID: GP04-02						Lal	b S	ample ID:	480-187618-9
No Detections.									
Client Sample ID: GPFD-01						Lab	Sa	mple ID:	480-187618-10

No Detections.

Client Sample ID: GP01-02

Date Collected: 07/23/21 11:00 Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-1 Matrix: Solid

Percent Solids: 69.1

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	Chromatograp	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27		mg/Kg	\$	07/28/21 08:14	08/02/21 03:12	1
PCB-1221	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1232	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1242	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1248	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1254	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1260	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1262	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
PCB-1268	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 03:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	110		60 - 154				07/28/21 08:14	08/02/21 03:12	1
Tetrachloro-m-xylene	113		60 - 154				07/28/21 08:14	08/02/21 03:12	1
DCB Decachlorobiphenyl	126		65 - 174				07/28/21 08:14	08/02/21 03:12	1
DCB Decachlorobiphenyl	119		65 - 174				07/28/21 08:14	08/02/21 03:12	1

Client Sample ID: GP01-01 Date Collected: 07/23/21 10:50

Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-2 Matrix: Solid

Percent Solids: 75.5

Method: 8082A - Polychlorin	ated Biphenyls (PO	CBs) by Gas	s Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1221	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1232	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1242	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1248	14		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1254	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1260	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1262	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
PCB-1268	ND		1.4		mg/Kg	¢	07/28/21 08:14	08/02/21 16:51	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	127		60 - 154				07/28/21 08:14	08/02/21 16:51	5
Tetrachloro-m-xylene	128		60 - 154				07/28/21 08:14	08/02/21 16:51	5
DCB Decachlorobiphenyl	170		65 - 174				07/28/21 08:14	08/02/21 16:51	5
DCB Decachlorobiphenyl	141		65 - 174				07/28/21 08:14	08/02/21 16:51	5

Client Sample ID: GP02-01 Date Collected: 07/23/21 11:45

Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-3 Matrix: Solid

Percent Solids: 87.1

Method: 8082A - Polychlorin	ated Biphenyls (PC	CBs) by Gas	s Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1221	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1232	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1242	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1248	6.2		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1254	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1260	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
PCB-1262	ND		0.29		mg/Kg	₽	07/28/21 08:14	08/02/21 04:04	1
PCB-1268	ND		0.29		mg/Kg	¢	07/28/21 08:14	08/02/21 04:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	112		60 - 154				07/28/21 08:14	08/02/21 04:04	1
Tetrachloro-m-xylene	112		60 - 154				07/28/21 08:14	08/02/21 04:04	1
DCB Decachlorobiphenyl	108		65 - 174				07/28/21 08:14	08/02/21 04:04	1
DCB Decachlorobiphenyl	108		65 - 174				07/28/21 08:14	08/02/21 04:04	1

Client Sample ID: GP02-02 Date Collected: 07/23/21 11:55

Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-4 Matrix: Solid

Percent Solids: 62.4

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.33		mg/Kg	ф	07/28/21 08:14	08/02/21 04:17	1
PCB-1221	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1232	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1242	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1248	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1254	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1260	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1262	ND		0.33		mg/Kg	¢	07/28/21 08:14	08/02/21 04:17	1
PCB-1268	ND		0.33		mg/Kg	₽	07/28/21 08:14	08/02/21 04:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	115		60 - 154				07/28/21 08:14	08/02/21 04:17	1
Tetrachloro-m-xylene	119		60 - 154				07/28/21 08:14	08/02/21 04:17	1
DCB Decachlorobiphenyl	106		65 - 174				07/28/21 08:14	08/02/21 04:17	1
DCB Decachlorobiphenyl	107		65 - 174				07/28/21 08:14	08/02/21 04:17	1

Client Sample ID: GP02-03

Date Collected: 07/23/21 12:10 Date Received: 07/24/21 08:00

loh	ın	480-	187	61	8-1
JUD	ID.	400-	107	01	0-1

Lab Sample ID: 480-187618-5 Matrix: Solid

Percent Solids: 83.7

5

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	s Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21		mg/Kg		07/28/21 08:14	08/02/21 04:30	1
PCB-1221	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1232	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1242	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1248	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1254	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1260	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1262	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
PCB-1268	ND		0.21		mg/Kg	¢	07/28/21 08:14	08/02/21 04:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	115		60 - 154				07/28/21 08:14	08/02/21 04:30	1
Tetrachloro-m-xylene	116		60 - 154				07/28/21 08:14	08/02/21 04:30	1
DCB Decachlorobiphenyl	101		65 - 174				07/28/21 08:14	08/02/21 04:30	1
DCB Decachlorobiphenyl	99		65 - 174				07/28/21 08:14	08/02/21 04:30	1

Client Sample ID: GP03-01

Date Collected: 07/23/21 12:30 Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-6 Matrix: Solid

Percent Solids: 87.5

wethou: 0002A - Polychlorin	ated Biphenyls (PC	bs) by Gas	surromatograp	ліу					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.20		mg/Kg	\$	07/28/21 08:14	08/02/21 04:42	1
PCB-1221	ND		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
PCB-1232	ND		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
PCB-1242	ND		0.20		mg/Kg	₽	07/28/21 08:14	08/02/21 04:42	1
PCB-1248	4.0		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
PCB-1254	ND		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
PCB-1260	ND		0.20		mg/Kg	₽	07/28/21 08:14	08/02/21 04:42	1
PCB-1262	ND		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
PCB-1268	ND		0.20		mg/Kg	¢	07/28/21 08:14	08/02/21 04:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	107		60 - 154				07/28/21 08:14	08/02/21 04:42	1
Tetrachloro-m-xylene	111		60 - 154				07/28/21 08:14	08/02/21 04:42	1
DCB Decachlorobiphenyl	106		65 - 174				07/28/21 08:14	08/02/21 04:42	1
DCB Decachlorobiphenyl	101		65 - 174				07/28/21 08:14	08/02/21 04:42	1

Client Sample ID: GP03-02

Date Collected: 07/23/21 12:35 Date Received: 07/24/21 08:00

Job	ID:	480-	187	61	8-1
000	·D.	100	101	U 1	<u> </u>

Lab Sample ID: 480-187618-7 Matrix: Solid

Percent Solids: 86.9

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	s Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1221	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1232	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1242	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1248	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1254	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1260	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1262	ND		0.26		mg/Kg	¢	07/28/21 08:14	08/02/21 04:55	1
PCB-1268	ND		0.26		mg/Kg	₽	07/28/21 08:14	08/02/21 04:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	120		60 - 154				07/28/21 08:14	08/02/21 04:55	1
Tetrachloro-m-xylene	123		60 - 154				07/28/21 08:14	08/02/21 04:55	1
DCB Decachlorobiphenyl	117		65 - 174				07/28/21 08:14	08/02/21 04:55	1
DCB Decachlorobiphenyl	113		65 - 174				07/28/21 08:14	08/02/21 04:55	1

Client Sample ID: GP04-01

Date Collected: 07/23/21 13:20 Date Received: 07/24/21 08:00

Lab Sample ID: 480-187618-8 Matrix: Solid

Percent Solids: 89.0

5

Method: 8082A - Polychlorin	ated Biphenyls (Po	CBs) by Gas	Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1221	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1232	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1242	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1248	13		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1254	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1260	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1262	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
PCB-1268	ND		2.3		mg/Kg	¢	07/28/21 08:14	08/02/21 17:03	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	130		60 - 154				07/28/21 08:14	08/02/21 17:03	10
Tetrachloro-m-xylene	131		60 - 154				07/28/21 08:14	08/02/21 17:03	10
DCB Decachlorobiphenyl	154		65 - 174				07/28/21 08:14	08/02/21 17:03	10
DCB Decachlorobiphenyl	134		65 - 174				07/28/21 08:14	08/02/21 17:03	10

Client Sample ID: GP04-02

Date Collected: 07/23/21 13:25 Date Received: 07/24/21 08:00

Job	ID:	480-	187	61	8-1
000	ıю.	-00	107	01	0

Lab Sample ID: 480-187618-9 Matrix: Solid

Percent Solids: 89.2

Method: 8082A - Polychlorin	ated Biphenyls (PC	CBs) by Gas	s Chromatograp	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1221	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1232	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1242	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1248	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1254	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1260	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1262	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
PCB-1268	ND		0.25		mg/Kg	¢	07/28/21 08:14	08/02/21 05:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	122		60 - 154				07/28/21 08:14	08/02/21 05:21	1
Tetrachloro-m-xylene	128		60 - 154				07/28/21 08:14	08/02/21 05:21	1
DCB Decachlorobiphenyl	118		65 - 174				07/28/21 08:14	08/02/21 05:21	1
DCB Decachlorobiphenyl	115		65 - 174				07/28/21 08:14	08/02/21 05:21	1

Client Sample ID: GPFD-01

Date Collected: 07/23/21 13:30 Date Received: 07/24/21 08:00

Job ID: 480-187618-1

Lab Sample ID: 480-187618-10 Matrix: Solid

Percent Solids: 90.3

Method: 8082A - Polychlorin	ated Biphenyls (PC	Bs) by Gas	S Chromatograp	ohy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1221	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1232	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1242	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1248	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1254	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1260	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1262	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
PCB-1268	ND		0.27		mg/Kg	¢	07/28/21 08:14	08/02/21 05:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	131		60 - 154				07/28/21 08:14	08/02/21 05:34	1
Tetrachloro-m-xylene	141		60 - 154				07/28/21 08:14	08/02/21 05:34	1
DCB Decachlorobiphenyl	164		65 - 174				07/28/21 08:14	08/02/21 05:34	1
DCB Decachlorobiphenyl	166		65 - 174				07/28/21 08:14	08/02/21 05:34	1

тсх2

(60-154)

113

128

112

119

116

111

123

131

128

141

147

130

DCBP1

(65-174)

126

170

108

106

101

106

117

154

118

164

140

123

TCX1

(60-154)

110

127

112

115

115

107

120

130

122

131

141

123

Percent Surrogate Recovery (Acceptance

DCBP2

(65-174)

119

141

108

107

99

101

113

134

115

166

142

122

Client Sample ID

GP01-02

GP01-01

GP02-01

GP02-02

GP02-03

GP03-01

GP03-02

GP04-01

GP04-02

GPFD-01

Method Blank

Lab Control Sample

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

	Prep	Type:	Total/NA
Limits)			

Surrogate Legend

Lab Sample ID 480-187618-1

480-187618-2

480-187618-3

480-187618-4

480-187618-5

480-187618-6

480-187618-7

480-187618-8

480-187618-9

480-187618-10

LCS 480-590691/2-A

MB 480-590691/1-A

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

5
DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

8

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-590691/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Prep Batch: 590691 Analysis Batch: 591232 MB MB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed PCB-1016 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1221 ND 0.24 07/28/21 08:14 08/02/21 00:13 mg/Kg 1 PCB-1232 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1242 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1248 ND 0.24 07/28/21 08:14 08/02/21 00:13 mg/Kg 1 PCB-1254 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1260 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1262 ND 0.24 mg/Kg 07/28/21 08:14 08/02/21 00:13 1 PCB-1268 ND 0.24 07/28/21 08:14 08/02/21 00:13 mg/Kg 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 123 60 - 154 07/28/21 08:14 08/02/21 00:13 1 60 - 154 Tetrachloro-m-xylene 130 07/28/21 08:14 08/02/21 00:13 1 DCB Decachlorobiphenyl 123 65 - 174 07/28/21 08:14 08/02/21 00:13 1 65 - 174 07/28/21 08:14 08/02/21 00:13 DCB Decachlorobiphenyl 122 1 Lab Sample ID: LCS 480-590691/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 591232 Prep Batch: 590691 LCS LCS Spike %Rec. Added **Result Qualifier** Analyte Unit D %Rec Limits 2.07 PCB-1016 2.66 128 51 - 185 mg/Kg PCB-1260 2.07 127 2.63 mg/Kg 61 - 184 LCS LCS %Recovery Surrogate Qualifier Limits Tetrachloro-m-xylene 141 60 - 154 Tetrachloro-m-xylene 147 60 - 154

65 - 174

65 - 174

140

142

Prep Type Total/NA

Prep Type

Total/NA

Total/NA

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Client Sample ID

GP01-02

GP01-01

GP02-01

GP02-02

GP02-03

GP03-01

GP03-02

GP04-01

GP04-02

GPFD-01

Method Blank

Lab Control Sample

Client Sample ID

GP01-02

GP02-01

Prep Batch

Method

3550C

Matrix

Solid

Matrix

Solid

Solid

9

	Prep Batch	Method
	590691	8082A
	590691	8082A
40	590691	8082A
13	590691	8082A
	500601	00004

480-187618-3

Analysis Batch: 591232

GC Semi VOA Prep Batch: 590691 Lab Sample ID

480-187618-1

480-187618-2

480-187618-3

480-187618-4

480-187618-5

480-187618-6

480-187618-7

480-187618-8

480-187618-9

480-187618-10

Lab Sample ID

480-187618-1

MB 480-590691/1-A

LCS 480-590691/2-A

480-187618-4	GP02-02	Iotal/NA	Solid	8082A	590691
480-187618-5	GP02-03	Total/NA	Solid	8082A	590691
480-187618-6	GP03-01	Total/NA	Solid	8082A	590691
480-187618-7	GP03-02	Total/NA	Solid	8082A	590691
480-187618-9	GP04-02	Total/NA	Solid	8082A	590691
480-187618-10	GPFD-01	Total/NA	Solid	8082A	590691
MB 480-590691/1-A	Method Blank	Total/NA	Solid	8082A	590691
LCS 480-590691/2-A	Lab Control Sample	Total/NA	Solid	8082A	590691
Analysis Batch: 591353					

atc

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187618-2	GP01-01	Total/NA	Solid	8082A	590691
480-187618-8	GP04-01	Total/NA	Solid	8082A	590691

General Chemistry

Analysis Batch: 590660

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187618-1	GP01-02	Total/NA	Solid	Moisture	
480-187618-2	GP01-01	Total/NA	Solid	Moisture	
480-187618-3	GP02-01	Total/NA	Solid	Moisture	
480-187618-4	GP02-02	Total/NA	Solid	Moisture	
480-187618-5	GP02-03	Total/NA	Solid	Moisture	
480-187618-6	GP03-01	Total/NA	Solid	Moisture	
480-187618-7	GP03-02	Total/NA	Solid	Moisture	
480-187618-8	GP04-01	Total/NA	Solid	Moisture	
480-187618-9	GP04-02	Total/NA	Solid	Moisture	
480-187618-10	GPFD-01	Total/NA	Solid	Moisture	

.lob ID[.] 480-187618-1

lient Samp	le ID: GP01-	02					Lal	o Sample	D: 480-187618-1
ate Collected	: 07/23/21 11:0	0							Matrix: Solid
ate Received:	07/24/21 08:00	U							
-	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF	
Client Samp	le ID: GP01-	02					Lal	o Sample	ID: 480-187618-1
Date Collected	: 07/23/21 11:0	0							Matrix: Solid
Date Received:	07/24/21 08:00	D							Percent Solids: 69.1
_	Batch	Batch		Dilution	Batch	Bronarod			
Pren Tyne	Type	Method	Run	Factor	Number	or Analyzed	∆nalvst	lah	
Total/NA	Pren				590691	07/28/21 08.14	VXF	TAL BUF	
Total/NA	Analvsis	8082A		1	591232	08/02/21 03:12	NC	TAL BUF	
					201202				
Client Samp	le ID: GP01-	01					Lal	b Sample	ID: 480-187618-2
Date Collected	: 07/23/21 10:5	0							Matrix: Solid
Jate Received:	07/24/21 08:00	U							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF	
Client Same		01					1.0	h Sampla	ID: 180-187619 2
Date Collected	07/22/24 40-5	0					Lai	Jample	Matrix: Calid
Date Received:	07/24/21 08.01	0							Percent Solids: 75.5
-		-							
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF	
Total/NA	Analysis	8082A		5	591353	08/02/21 16:51	NC	TAL BUF	
Client Samp	le ID: GP02-	01					Lal	b Sample	ID: 480-187618-3
Date Collected	: 07/23/21 11:4	5						-	Matrix: Solid
Date Received:	07/24/21 08:00	D							
_	Batch	Batch		Dilution	Batch	Prepared			
Pren Tyne	Type	Method	Run	Eactor	Number	or Analyzed	Analyst	lah	
Total/NA	Analysis	Moisture		_ <u>1 uctor</u>	590660	07/27/21 17:59	IMZ	TAL BUF	
	.,								
Client Samp	le ID: GP02-	01 -					Lal	o Sample	D: 480-187618-3
Date Collected	: 07/23/21 11:4	5							Matrix: Solid
Jate Received:	07/24/21 08:00	J							Percent Solids: 87.1
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF	
Total/NA	Analysis	8082A		1	591232	08/02/21 04:04	NC	TAL BUF	
Client Same	ר כסטאי עון פו	02					ام ا	h Sample	ID: 480-187618-4
Date Collected	· 07/23/21 11·5	5					Lai	o Gample	Matriv: Solid
Date Received:	07/24/21 08:00	0							
		-							
	Batch	Batch		Dilution	Batch	Prepared			
	Trune	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Prep Type	Туре								
Prep Type Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Client Samp	le ID: GP02-	.02					Lab	o Sample	ID: 480-187618-4	
Date Collected: Date Received:	: 07/23/21 11:5	0							Percent Solids: 62.4	
	Batch	Batch		Dilution	Batch	Prenared				
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF		
Total/NA	Analysis	8082A		1	591232	08/02/21 04:17	NC	TAL BUF		
Client Samp	le ID: GP02-	03					Lab	o Sample	ID: 480-187618-5	
Date Collected	: 07/23/21 12:1	0							Matrix: Solid	
Date Received:	07/24/21 08:0	0								
Γ	Batch	Batch		Dilution	Batch	Prepared				
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF		7
Client Samp	le ID: GP02-	03					Lat	o Sample	ID: 480-187618-5	1
Date Collected	: 07/23/21 12:1	0							Matrix: Solid	
Date Received:	07/24/21 08:0	0							Percent Solids: 83.7	
Г	Batch	Batch		Dilution	Batch	Prenared				
Pren Tyne	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lah		
	Prep				590691	07/28/21 08.14				
Total/NA	Analysis	8082A		1	591232	08/02/21 04:30	NC	TAL BUF		
Client Samp	le ID: GP03-	01					Lat	Sample	ID: 480-187618-6	
Date Collected	: 07/23/21 12:3	0							Matrix: Solid	
Date Received:	07/24/21 08:0	0								
[Batch	Batch		Dilution	Batch	Prepared				
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF		
Client Samp	le ID: GP03-	01					Lat	o Sample	ID: 480-187618-6	
Date Collected	: 07/23/21 12:3	0							Matrix: Solid	
Date Received:	07/24/21 08:0	0							Percent Solids: 87.5	
	Batch	Batch		Dilution	Batch	Prepared				
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF		
Total/NA	Analysis	8082A		1	591232	08/02/21 04:42	NC	TAL BUF		
Client Samp	le ID: GP03-	.02					Lat	o Sample	ID: 480-187618-7	
Date Collected	: 07/23/21 12:3	5							Matrix: Solid	
Date Received:	07/24/21 08:0	0								
Γ	Batch	Batch		Dilution	Batch	Prepared				
Dren Tune	Tuno	Mathad	Dum	Factor	Number	an Analymod	Analyst	Lab		

	Datch	Balch		Dilution	Datch	Frepareu		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF

Client: New York State D.E.C Project/Site: Special Ar

Project/Site: Sp	ecial Area 13 [Dredge Spoil #54	6041					·		
Client Samp	le ID: GP03-	·02					Lab	Sample	ID: 480-187618-7	
Date Collected	: 07/23/21 12:3	5							Matrix: Solid	
Date Received:	07/24/21 08:0	0							Percent Solids: 86.9	
Γ	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		5
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF		
Total/NA	Analysis	8082A		1	591232	08/02/21 04:55	NC	TAL BUF		
Client Samp	le ID: GP04-	·01					Lat	Sample	ID: 480-187618-8	
Date Collected	: 07/23/21 13:2	20						-	Matrix: Solid	
Date Received:	07/24/21 08:0	0								6
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF		
Client Samp	le ID: GP04-	-01					Lat	Sample	ID: 480-187618-8	1
Date Collected	: 07/23/21 13:2	20							Matrix: Solid	
Date Received:	07/24/21 08:0	0							Percent Solids: 89.0	
	Batch	Batch	_	Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst			1
Total/NA	Prep	35500		10	590691	07/28/21 08:14				
	Analysis	0002A		10	591353	08/02/21 17.03	NC	TAL BUF		
Client Samp	le ID: GP04-	·02					Lab	o Sample	ID: 480-187618-9	
Date Collected	: 07/23/21 13:2	25							Matrix: Solid	
Date Received:	07/24/21 08:0	0								
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF		
Client Samp	le ID: GP04-	·02					Lat	Sample	ID: 480-187618-9	
Date Collected	: 07/23/21 13:2	25							Matrix: Solid	
Date Received:	07/24/21 08:0	0							Percent Solids: 89.2	
Γ	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF		
Total/NA	Analysis	8082A		1	591232	08/02/21 05:21	NC	TAL BUF		
Client Samp	le ID: GPFD	-01					Lab	Sample I	D: 480-187618-10	
Date Collected	· 07/23/21 13·3	0 .					Lub	Campier	Matrix: Solid	
Date Received	07/24/21 08.0	0								
		v								

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	590660	07/27/21 17:59	IMZ	TAL BUF

Eurofins TestAmerica, Buffalo

Matrix: Solid

Lab Sample ID: 480-187618-10

Client Sample ID: GPFD-01 Date Collected: 07/23/21 13:30 Date Received: 07/24/21 08:00

Date Received	ate Received: 07/24/21 08:00 P										
	Batch	Batch		Dilution	Batch	Prepared					
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total/NA	Prep	3550C			590691	07/28/21 08:14	VXF	TAL BUF			
Total/NA	Analysis	8082A		1	591232	08/02/21 05:34	NC	TAL BUF			

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Laboratory: Eurofins TestAmerica, Buffalo Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number Expiration Date Program New York NELAP 10026 04-01-22 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte Moisture Solid Percent Moisture Moisture Percent Solids Solid

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF
3550C	Ultrasonic Extraction	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C. Project/Site: Special Area 13 Dredge Spoil #546041

Job	ID:	480-	187	618-	1
				0.0	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-187618-1	GP01-02	Solid	07/23/21 11:00	07/24/21 08:00
480-187618-2	GP01-01	Solid	07/23/21 10:50	07/24/21 08:00
480-187618-3	GP02-01	Solid	07/23/21 11:45	07/24/21 08:00
480-187618-4	GP02-02	Solid	07/23/21 11:55	07/24/21 08:00
480-187618-5	GP02-03	Solid	07/23/21 12:10	07/24/21 08:00
480-187618-6	GP03-01	Solid	07/23/21 12:30	07/24/21 08:00
480-187618-7	GP03-02	Solid	07/23/21 12:35	07/24/21 08:00
480-187618-8	GP04-01	Solid	07/23/21 13:20	07/24/21 08:00
480-187618-9	GP04-02	Solid	07/23/21 13:25	07/24/21 08:00
480-187618-10	GPFD-01	Solid	07/23/21 13:30	07/24/21 08:00

🐝 eurofins - Environment Testing America	COC No.	480-163278-35880.1 Page:	Page 1 of 1 Job #:	Preservation Codes:	A - HCL M - Hexane B - NaOH N - None	C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S F - MANSO4	F - MeOH R - M22503	Dodecahydrate	5 specify)	ain of Custody		Total Special Instructions/Note:		1.5 -2.0 +4	+10-10-1	1 90-944	1 11.0 -12.0 54	110-1.54+	12.5-3.07+	10.7-1.051	11.5-2.0fr	(retained longer than 1 month)	Archive For Months		Cho I I T Comany	H/M MAC Company	Company	tel ary	Ver: 06/08/2021
	Carrier Tracking No(s):	State of Origin: NU S	Bonnotod	belland							480-18/09/0									· · · · ·			y be assessed if samples are	Disposal By Lab lirements:	Method of Shipment:	Date/Time:	Date fing	Date/Time:	Other Remarks:	7 8 9 1
Record	o PM: Dne, Judy L	hail: dy.Stone@Eurofinset.com					(00 00 (0)	и: ю. яе N: Ю. яе	Iqmsق ک) OS عد	k betefite M/SM moo PCL PCI			4 7	NN X	X N X	NNX XNN	X W X	XXX	7 7	× × ×	A	Sample Disposal (A fee ma	Special Instructions/QC Requ	Time:	Received by Aber	the Received by all the	Received by:	Cooler Temperature(s) °C and C	1 1 1 1
ain of Custody I	Sto	2-8/26 E-N	PWSID:		-	∠wee/(5 ∆ Yes ∆ No					Sample Matrix Type (wewater, Type Setolid,	Time Gegrab) Bransweight.	101 C Solid	osu G Solid	45 & Solid	55 6 Solid	UIO 6 Solid	230 6 Solid	255 (Solid	SJO C Solid	Solid Solid		Radiological	500 D	e.	1 15 X Company	1 120 Company	Company		1
ban) _{ch}	Sampler: CE & V	Phone: 76 Y3		Due Date Requested:	TAT Requested (days):	Compliance Project:	PO#: 139459	:# OM	Project #: 48022825	SSOW#:	Ŭ	Sample Date	7/23/2021	7/25/2011	7/23/20011	1 105 82 1	7123/2020 13	7/23/2024 []	1122 201	76-12-021	1/23/2011	-	Poison B		Dat	Date/Time: Date/2 /2	Date/Time:	Date/ Inme:		-
10 Hazelwood Drive Autor Autor Autor Autor Autor Amherst. NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Client Information	Client Contact Mr. Brian Cervi	Company Ecology and Environment. Inc.	Address 368 Pleasant View Drive	city: Lancaster	State, Zip: NY, 14086	FINARE 518-402-9683(Tel) John (1175 DEC	Email: brian.cervi@wsp.com	Project Name. Projectial Area 13 Dredge Spoil #546041	<u>G</u> r		Sample Identification	\$ P G1 - 00	1010101	6002-01	6p62-02	5 F 0 2 - 0 3	6 8 63 - 01	6004 - 01	6004 - M	GPFD-01	Bossikla Harvetti atter ti	Non-Hazard Identification	Deliverable Requested: I, II, III, IV, Other (specify)	Empty Kit Relinquished by:	Relinquished of fort	Reinquistred by Reinquisted by	Culstody Seals Intack: Custody Seal No -	Δ Yes Δ No	

Client: New York State D.E.C.

Login Number: 187618 List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo