RECEIVED JAN 2 5 1989

EVALUATION OF OFF-SITE
BEDROCK HYDROGEOLOGY
FOR THE
CIBA-GEIGY GLENS FALLS FACILITY
GLENS FALLS, NEW YORK

Prepared for:

Ciba-Geigy Corporation Lower Warren Street Glens Falls, New York

AWARE Incorporated 1200 MacArthur Boulevard Mahwah, New Jersey 07430

January 1989

consultants in environmental management

January 23, 1989

6966 6993

Mrs. LaVerne Fagel CIBA-GEIGY Corporation Lower Warren Street Glens Falls, New York 12801

RE: Glens Falls Main Plant Site

Dear Mrs. Fagel:

AWARE is pleased to submit the following reports for your review:

- o Evaluation Of Off-Site Bedrock Hydrogeology
- o Groundwater Monitoring Task

As requested, we have also forwarded copies to the appropriate offices at NYSDEC.

Should you have any questions, please feel free to contact us at (201) 529-0800.

Very truly yours,

AWARE Incorporated

William G. Soukup

Senior Hydrogeologist

WGS:k1 enclosures

TABLE OF CONTENTS

Tran	smittal Letter	Page 1
1.0	Introduction	1
	1.1 Objectives and Scope1.2 Technical Approach1.3 Site Characteristics	1 2 3
2.0	Field Investigation	5
	 2.1 Drilling and Well Construction 2.2 Downhole Geophysical Program 2.3 Hydraulic Conductivity Determinations 2.4 Monitoring Well Sampling and Analysis 2.5 Quarry Sampling Program 2.6 Water Level Monitoring 	5 7 11 14 14 15
3.0	Analytical Chemistry	16
	 3.1 Certification 3.2 Analytical Methods, References and Reporting Limits 3.3 Quality Assurance/Quality Control 3.4 Analytical Results 	16 16 17 18
4.0	Hydrogeologic Conditions	19
	 4.1 Regional Geologic Setting 4.2 Site Stratigraphy 4.3 Identification of Hydrostratigraphic Horizons 4.4 Groundwater Flow 4.5 Groundwater Quality 	19 20 23 27 31
5.0	Conclusions and Recommendations	37

Appendices

```
Appendix A - Analytical Data Summary Tables
```

Appendix B - Exploratory Boring Logs

Appendix C - Hydraulic Conductivity Determinations

Appendix D - Major Ion Data Graphs

Attachments (bound separately)

Attachment A - Geophysical Logs

Attachment B - Water Sampling Protocol

Attachment C - Water Quality Data

Ŧ	T (7	Ο.	ra '	T 1	\sim t	TD	EC
т.	. 1 :	5 I	()	H	H I	lγl	JK	ES

LIST OF FIGURES	
	Follows Page No.
Figure 1-1 Site Location	2
Figure 4-1 Regional Bedrock Geology	19
Figure 4-2 Generalized Geologic Section	20
Figure 4-3 Comparison of Temperature, Caliper, Spontaneous Potential, and Gamma Logs for AW-1	23
Figure 4-4 Profiles of Packer Test Hydraulic Conductivity	24
LIST OF TABLES	
Table 2-1 Summary of Water Level Data	15
Table 3-1 Analytical Methods, References and Reporting	16
Table 3-2 Summary of Samples and Quality Assurance Samples	18
Table 4-1 Summary of Packer Test Data	24
Table 4-2 Stratigraphic Elevation Data	24
Table 4-3 Elevation of Geologic Formulations from Glens Falls Cement Company, Incorporated	25
Table 4-4 Preliminary Well Categorization by Horizon	27
Table 4-5 Summary of Inorganic Water Quality Data	31
Table 4-6 Summary of Organic Water Quality Data	32

LIST OF SHEETS

Sheet 6966-1 - Location of Wells and Cross-Sections

Sheet 6966-2 - Structural Contour Map - Hydrostratigraphic Horizon B

Sheet 6966-3 - Structural Contour Map - Hydrostratigraphic Horizon C

Sheet 6966-4 - Hydrostratigraphic Cross-Section A-A'

Sheet 6966-5 - Hydrostratigraphic Cross-Section B-B'

Sheet 6966-6 - Hydrostratigraphic Cross-Sections C-C' and D-D'

Sheet 6966-7 - Generalized Piezometric Surface - Horizon A

Sheet 6966-8 - Generalized Piezometric Surface - Horizon B

Sheet 6966-9 - Generalized Piezometric Surface - Horizon C

Sheet 6966-10 - Water Quality Data Summary - Inorganics

Sheet 6966-11 - Water Quality Data Summary - Organics

1.0 INTRODUCTION

During the past several years, the Ciba-Geigy Glens Falls site has been the subject of several hydrogeologic investigations. The two principal studies have been conducted by Dunn Geoscience Corporation in 1980 and Malcolm Pirnie in 1987. Both of these investigations included activities focused on the Main Plant site itself, and have produced a sizable amount of subsurface information. These studies provided 15 overburden wells, 13 shallow rock wells, 9 deeper rock wells, and 11 wells screened over more than one interval. In addition, 78 soil borings were installed in the overburden materials. This current evaluation by AWARE has added two on site wells and three off site wells, plus another round of water quality information.

These investigations provide a thorough understanding of the area's geology, groundwater movement, and water quality both on site as well as across the Hudson River. These studies have identified areas requiring additional work which is proposed in the work plan for the Groundwater Monitoring Task prepared by AWARE (January 1989).

1.1 OBJECTIVES AND SCOPE

The overall goal of this off site bedrock evaluation is to determine the ultimate discharge point or fate of groundwater in the bedrock originating in the western portion of the Ciba-Geigy Main Plant site. (It has been shown in the Malcolm Pirnie report that groundwater in the overburden discharges into the Hudson River.) In order to accomplish this goal, four specific objectives have been identified as follows:

- Define the stratigraphy and structural relationships which exist between the Main Plant site and the limestone quarry located south of the Hudson River.
- o Define all relevant stratigraphic horizons which act as groundwater flow zones.
- o Define the direction of groundwater flow within each zone.
- o Define the groundwater quality within each zone.

The scope of this investigation includes the western portion of the Main Plant site from Lower Warren Street to the Hudson River. Across the river, the area includes the entire active quarry as well as the quarry property to the south as shown on Figure 1-1. Since the focus of this evaluation is on the regional hydrogeologic conditions, this report does not attempt to provide a complete historic account of groundwater quality on the Main Plant site. Although groundwater quality data collected during this study as well as previous studies were used to aid in the interpretation of regional impacts, (if any) it was not specifically evaluated relative to potential source areas or existing soil quality data. This type of detailed on site evaluation will be conducted as part of the proposed Groundwater Monitoring Plan and will have the benefit of the additional soils data collected during the Soil Sampling Plan.

1.2 TECHNICAL APPROACH

The approach used to achieve the objectives stated above was to first develop a conceptual model of the geologic framework and groundwater flow conditions within the study area. This model was developed during the preparation of the work plan and will not be repeated in this report. In order to test this model, the following investigative tasks were implemented:

- o Exploratory coring at five regional locations to depths well below the lowest (western) quarry floor elevation of 116 feet (mean sea level).
- o Downhole geophysics in each of these wells plus the two available plant production wells. Geophysics included spontaneous potential (SP), resistivity, natural gamma, temperature, and caliper.
- o Packer pressure testing in each of the five exploratory wells.
- o Installation of monitoring wells in each of the five exploratory holes.

- o Groundwater sample collection and analysis for major ions, volatile organics, selected semi-volatile organics, metals, and selected indicator parameters.
- o Water sample collection from within the limestone quarry including two flowing coreholes in the western floor, a seep in the northern wall, and the quarry pond prior to discharge to the Hudson River. Four monthly rounds of these samples were collected.
- Water level monitoring in new and existing wells.

1.3 SITE CHARACTERISTICS

The study area of this regional bedrock evaluation is shown on the USGS quadrangle of Figure 1-1 and can be divided into three principal portions. The northern section consists of the Main Plant site which encompasses approximately 75 acres. The central portion is the active limestone quarry operated by Glens Falls Cement Co., Inc. The southern portion consists of the lands owned by Glens Falls Cement Co. throughout which a number of exploratory borings (drill holes) have been conducted by the cement company. The data from these borings have been provided to AWARE.

The Main Plant site has been described in a number of previous documents and thus its characteristics will not be repeated herein. The other two portions of the study area warrant a brief summary of their important features.

The limestone quarry occupies approximately 50 acres and can be generally divided into two portions. The eastern portion has a floor elevation of approximately 160 feet above mean sea level and is not currently being mined. The walls surrounding this portion are nearly vertical with no significant observable seeps. According to quarry personnel, this area does not require dewatering and only receives water from incipient precipitation.

The western portion is much deeper with a floor elevation of approximately 116 feet above mean sea level and is currently being mined along its southern face.

The walls are benched as a result of the mining of individual limestone members within the Glens Falls formation. Several seeps can be observed with the predominant one located in the north wall. This seep is observed to occur directly over a horizontally continuous clay layer. This layer ranges in thickness from one to six inches and has been interpreted to represent the top of the Isle La Motte formation (refer to Section 3.2.3).

Another prominent feature of the western quarry is the open coreholes which have been drilled into the floor by the cement company. According to the data received from the cement company, there are 13 coreholes ranging in depth from 10 to 40 feet and located as shown on Sheet 6966-1. A number of the coreholes are actively discharging groundwater to the quarry floor. This water drains into a number of quarry floor ponds and is ultimately discharged via pumps to the Hudson River.

The lands to the south of the quarry contain a number of drill holes conducted by the cement company in order to map the geology down dip ahead of their operation. The cement company has provided AWARE with the geologic logs of 11 of these drill holes. Six were drilled in 1974 (dh74-1 through dh74-6) and five were drilled in 1979 (dh79-1 through dh79-5). The locations of these borings are shown on Sheet 6966-1.

To properly map the data collected during this study, a single base map of the entire study area was needed. For this report, AWARE joined a reduced version of the Main Plant site topographic map and a map of the quarry provided by Glens Falls Cement Co. The maps which were used are referenced on Sheet 6966-1. Certain inaccuracies may be present due to this process and thus AWARE assumes no responsibility for its accuracy.

2.0 FIELD INVESTIGATION

2.1 DRILLING AND WELL CONSTRUCTION

In order to identify the nature of the bedrock present beneath the site and to allow for the installation of monitoring wells, exploratory bedrock borings were drilled at five locations. These locations are identified by an "AW" (AWARE Well) prefix in the various maps, tables, and appendices that accompany this report. Identification numbers were assigned to the five locations at the beginning of the investigation, and are numbered consecutively (AW-1 through AW-5). The geologic logs and well completion data for each boring are contained in Appendix B.

Drilling services were provided by Empire Soils of Latham, New York, using a truck-mounted Failing F-10 rotary drill rig. Fresh potable water was used as the drilling fluid. At four of the five locations, the bedrock was continuously cored with an NX (3-inch diameter) boring bit using a wireline system. The three-inch coreholes were then reamed to six inches with a rollerbit prior to well installation. Well AW-5 was not cored due to its excessive depth (over 400 feet), distance from the Main Plant site and the predominance of nearby drill hole data from the cement company borings.

All drilling, testing, and well construction activities were performed under the direct observation of AWARE Incorporated. The core was visually inspected and placed in clearly marked core boxes, which are currently in storage at the Ciba-Geigy Main Plant site in Glens Falls, New York, for reference.

Initially, the regional bedrock evaluation was designed to examine the bedrock to an elevation of 60 feet above mean sea level, approximately 50 feet below the quarry's western floor. The borings, as described in the Regional Bedrock Evaluation Work Plan (AWARE, 1988), were all targeted to intercept this elevation. However, after completion of AW-1 and AW-2 on the Main Plant site, the presence of a deep, laterally continuous, south dipping water-bearing fracture (Horizon C) was identified. The exploratory program was consequently modified in order to reach this deeper fracture horizon. The following changes were made relative to well depth.

Well Number	Anticipated Depth	Actual Depth	Screen Depth
AW- 1	220	220	133-143
AW-2	175	206	156-166
AW-3	51	151	89-99
AW-4	100	206	180-190
AW-5	260	407	394-406

Well construction consisted of a two-inch diameter PVC well screen installed on a two-inch PVC riser. Where the corehole depth exceeded the desired screen depth, grout and/or bentonite pellets were used as backfill to minimize potential hydraulic communication with the deeper cored section. The NX (nominal three-inch diameter) corehole was enlarged to six inches in diameter to the desired screen depth with a rollerbit reaming assembly. The screens placed in the borehole were ten feet in length. Clean, coarse sand was placed in the annular space around the well screen and riser from the base of the reamed corehole to approximately two feet above the screen. A layer of bentonite pellets at least three feet in thickness was placed above the sand pack. The annular space above the bentonite seal was grouted with Volclay by the "tremie" method. An outer protective casing with locking cap was set into the grout to a minimum depth of three feet.

One well (AW-2) included the installation of a permanent outside casing through the overburden soils. The double-casing consisted of a six-inch diameter black-steel casing within an eight-inch diameter borehole. Installation of the casing was conducted by augering to competent bedrock. The augers were filled with cement grout and then removed leaving an open eight-inch borehole filled with the grout slurry. The six-inch casing was fitted with a bottom plug and inserted into the cement-filled borehole. The cement was allowed to cure for 18 hours before resumption of the coring operation.

2.2 DOWNHOLE GEOPHYSICAL PROGRAM

Borehole geophysics, or downhole logging, involves lowering sensing devices into a borehole to record physical parameters that may be interpreted as specific rock characteristics. The basic system involves a generator-powered unit which controls the tool output, receives data detected by the tool, and records the data on a chart. The unit contains a synchronized winch which raises and lowers tools into the borehole in time with the advancing chart recorder. Thus, the resulting logs furnish continuous records of subsurface conditions which may be compared or correlated from one well to another. The charted log data allowed rapid field interpretation and comparison with pre-existing logs, permitting immediate well screen depth selection. The geophysical logs are reproduced in Attachment A.

A Mineral Logging System (MLS) Model 1502 Downhole Logging Unit was used to conduct the borehole logging program described herein. The system consists of a modular control panel, a pen recorder, a motorized winch, and, in this case, four individual downhole tools. Initial system calibration was performed at the site in order to establish general guidelines to optimize the performance of each tool relative to site conditions. The initial calibration effort included multiple tool runs in AW-1, with comparison of the logs to the core samples from that borehole. Subsequent logs were obtained using these established guidelines. Prior to each logging run, each tool was individually calibrated using detailed instructions supplied by the manufacturer.

2.2.1 Natural Gamma Logging

Rocks contain traces of naturally occurring radioactive materials which emit gamma rays. The natural gamma tool detects the rate of gamma ray emissions. An electrical signal which is proportional to the number of gamma rays counted per unit time is sent continuously uphole from the tool to the logging unit. Whereas carbonates emit comparatively low to moderate natural radioactivity, shales are typically among the most radioactive sedimentary rocks. The noted increase in the natural radioactivity as shale content increases has been attributed to both the depositional environment of shales and to selective concentration of radioactive ions through cation exchange and adsorption

(Norris, 1972). The gamma response is, therefore, a useful indicator of the shaliness of the formations within the borehole. Thin, individual shale beds are useful marker beds which correlate nicely between boreholes. Natural gamma logs may be obtained through steel or PVC casing, permitting logging inside cased holes or wells, and are not dependent upon a fluid-filled borehole. The natural gamma log has proven to be the most reliable tool for stratigraphic correlation for the conditions encountered during this investigation.

The natural gamma tool is a 1-11/16 inch diameter probe that is eighty-four inches in length. The probe registers gamma ray emissions using a scintillation counter. The control module for this probe allows the selection of variable scales, measured in counts per second (cps). During the initial calibration period, variable scales and logging speeds were evaluated and compared to available core samples. A scale of 0 to 500 cps at a logging speed of twenty-five feet per minute was selected as most appropriate for site conditions. Running the tool at slower logging speeds results in excessive background noise; higher speeds risk the loss of stratigraphic detail.

2.2.2 Caliper Logging

The caliper log is a mechanical device which continuously measure the diameter of a borehole with depth. It is a useful tool for identifying less consolidated formations which have produced larger diameter borehole sections. It is also useful in identifying horizontal fractures; however, vertical fractures are generally not detected by the caliper. The caliper tool used during this investigation is three-armed, without wall contact pads. The arms are coupled and thus react to the borehole shape simultaneously. This tool is run uphole only.

The caliper was used on both NX boreholes (nominal diameter three inches) and reamed boreholes (nominal diameter six inches). Before each run, the tool was calibrated to known diameters on a calibration board.

2.2.3 Temperature Logging

Temperature logging can be useful to locate and track sections in the borehole where fluids enter or exit. Two temperature devices, gradient and differential (included in the same tool), were used during the investigation. Whereas the gradient device measures the actual temperature of borehole fluid, the differential device measures relative changes in borehole fluid temperature. While both logs typically respond to temperature changes of the magnitude encountered during the investigation, the differential tool exhibits a much higher sensitivity to both fluid migration and variable thermal conductivity (Basham and Macune, 1952).

The temperature tool is run in uncased boreholes, preferably after the fluid has equilibrated to natural temperature conditions. Even in the absence of complete equilibrium, the temperature logs are useful for identifying zones of drilling fluid loss that are indicative of increased hydraulic conductivity (Nelson, 1982). This tool is logged downhole to avoid fluid mixing induced by the probe itself. The temperature tool has been extremely helpful in delineating discrete water-bearing zones which exhibit anomalous temperatures relative to the fluid within the borehole.

The temperature tool is a 1-7/16 inch diameter probe that is 37 inches in length. As noted above, the tool provides both temperature gradient and differential temperature measurements. The temperature tool utilizes high resistance semiconductor sensing elements (resistors) that rapidly respond to changes in temperature with a proportional change in resistance. The change in resistance is calibrated to degrees Fahrenheit. The gradient temperature log is provided by a sensing element located at the bottom of the tool. The differential log is provided by comparing the bottom sensing element to a second sensing element located 30 inches above the lower element. The temperature tool was calibrated to a range of 20°F based upon site conditions encountered during the initial calibration period. A logging speed of thirty feet per minute, based on the manufacturer's recommendations, was used throughout the program.

2.2.4 Spontaneous Potential and Single-Point Resistivity Logging

Spontaneous potential (SP) and single-point resistivity logging measure the natural electrical properties of lithologic formations in the subsurface. Both techniques are combined in a single logging tool. In general, an electrode is placed within a borehole, electric currents are generated by the logging system, and the resulting electrical potential distribution is measured and printed on the log form. The potential distribution is dependent on the magnitude of the electrical resistivities encountered in the borehole. Resistivity is the inverse of conductivity.

Conventional resistivity logging involves the passing of currents of known intensity through the formation. Resistivity logging conducted during this investigation employed the use of a "normal" resistivity device in which a constant current was passed between two electrodes on the surface and two electrodes on the downhole tool. The distance between electrodes on the tool is called the spacing, and the point midway between is termed the point of The spacing of the normal device is 16 inches. inscription. measurements of the tool are taken at the point of inscription, accordingly, the tool is termed a single-point resistivity device. The fact that different rocks have different resistivities provides a means of establishing stratigraphic correlations from borehole to borehole. The single-point resistivity tool measures the response of a relatively small volume of rock immediately adjacent to the borehole. As a consequence of the short electrode spacing, stratigraphic detail is enhanced, minimizing the depth-averaging effect of larger electrode arrays. Resistivity logging was not instrumental in the hydrogeological aspect of this investigation, but proved helpful in interpreting lithology.

Spontaneous Potential (SP) logs are generated by lowering an insulated cable, with an electrode ground at the surface, into the well. As the electrode is moved, an electrical potential is measured between differing rock types and varies with lithology. A well-defined baseline, termed the "shale line", is often recognized on the SP log. Deflections from this baseline typically correspond to more permeable horizons, such as sand intervals.

Both resistivity and SP logging require an uncased, water-filled borehole. The resistivity/SP tool is a 1.5-inch diameter probe that is 27.5 inches in length. During the initial calibration period variable scales and logging speeds were evaluated. A scale of 0 to 800 ohms per chart division at a logging speed of 30 feet per minute was selected for the resistivity function. The SP scale was calibrated to record 100 millivolts per chart division.

2.3 HYDRAULIC CONDUCTIVITY DETERMINATIONS

The measure of hydraulic conductivity in the subsurface describes the ability of a rock or soil deposit to transmit water. Hydraulic conductivities present beneath the site represent perhaps the most critical parameter in characterizing fluid interaction with the subsurface system. Given sufficient continuity of the strata and known hydraulic gradients, it is the hydraulic conductivity that will control the migration pathways for fluids as well as the volumetric rates of groundwater flow.

In this section, several hydraulic conductivity testing methods used in the investigation are described. These methods include two methods of direct, in situ, field testing; packer (pressure) testing of the open bedrock corehole and variable head recovery tests of individual wells. The data generated from each test are presented in Appendix C.

2.3.1 In Situ Variable Head Recovery Tests

To determine the in-place lateral hydraulic conductivity of the saturated materials, variable head recovery tests were performed on three of the five AWARE wells. The field tests involve rapidly lowering the water level in the well and measuring the change in head with respect to time as the well is allowed to recover.

The field methodology utilized an In Situ, Inc. Hermit model automatic data logger and pressure transducer system to measure water level changes. The Hermit data logger permitted measurement of water levels at frequent time intervals, much more frequently than could have been achieved manually. The recovery tests were conducted as follows:

- o The static water level in the monitoring well was measured and recorded.
- o The pressure transducer was placed in the well, followed by a standard PVC bailer. Water level measurements were continued until the water level had returned to static conditions following introduction of the transducer and bailer.
- Once static conditions were re-established, the bailer was rapidly removed from the water column, thus creating a virtually instantaneous decline of the water level in the well. Coincident with the withdrawal of the bailer, automatic logging of the water levels was initiated using the Hermit data logger.
- o The water level measurements were typically continued until water levels had recovered to within 10 percent of the original static level (90 percent recovery).

It is assumed that the rate of inflow to the well screen after pumping, at any time, is proportional to the hydraulic conductivity (k) and to the unrecovered head distance. A semi-log plot of the unrecovered head distance or head ratio $(h_{\mathsf{t}}/h_{\mathsf{o}})$ versus time (t) typically indicates an exponential decline in the recovery rate over time.

The following equation is used to calculate the in situ hydraulic conductivity of the saturated materials at the screened interval of the piezometer (Cedergren, 1977).

$$r^2$$
 $k = \frac{\ln(L/R) \times \ln(h_1/h_2)}{2L(t_2 - t_1)}$

Where:

L = Screen length, in cm

r = Screen radius, in cm

R = Gravel pack radius, in cm

 t_1 = Time interval corresponding to h_1 , in sec

 t_2 = Time interval corresponding to h_2 , in sec

 h_1 = Head ratio at time t_1 , dimensionless

 h_2 = Head ratio at time t_2 , dimensionless

k = Hydraulic conductivity, in cm/sec

The results of the in situ recovery tests are provided in Appendix C of this report.

2.3.2 Packer Testing

Packer testing (permeability pressure testing) is a method of determining the hydraulic conductivity of isolated bedrock zones within a borehole. The test apparatus consists of a perforated pipe enclosed within two inflatable rubber packers spaced at a specified interval. Non-perforated pipe is connected to the perforated pipe isolated in the borehole. The packers are inflated with compressed nitrogen to seal off the test zone from the remainder of the borehole. Clean, potable water from the surface is pumped at a constant, known pressure into the isolated packer test section. The water volume pumped is calculated through time, and the water volume which enters the bedrock under the specified pressure is a function of the hydraulic conductivity. An assembly of gauges at the ground surface control water pressure and record volume pumped. Values observed are related to hydraulic conductivity k, by the equation:

$$k = Cp Q$$

Where k is calculated in cm/sec, Cp is the packer coefficient (a shape factor that accounts for test section length and borehole diameter), Q is the constant rate of flow, and H is the differential pressure head.

In boreholes AW-1 through AW-4 packer tests were performed in 11.2 foot test sections at ten-foot continuous intervals. In well AW-5 packer tests were performed in 10.6 foot test sections (due to a slightly different packer requirements for the six-inch diameter borehole) at ten-foot continuous intervals. However, the upper 240 feet of this well were not packer tested as it contains formations which are not present on or near the Main Plant site. An untested zone approximately three feet in length exists at the base of each hole due to the length of the lower packer. The packer test results were used in conjunction with the geophysical logging data in selecting well screen depths. Results of the packer testing program are discussed in Section 4.3.1.

2.4 Monitoring Well Sampling and Analysis

Each of the five AWARE wells and 17 selected existing wells were purged and sampled by Aquatec Inc. of Burlington, Vermont. The wells were chosen based on their location in the western portion of the Main Plant site and on the fact that they were twice previously sampled. The first round was during the Malcolm Pirnie investigation, and the second was during a supplemental groundwater sampling program in December of 1987.

Each well was sampled in accordance with the protocols described in Attachment B for the parameters listed in Section 3. The results are contained in Attachment C and are summarized and discussed in section 4.5.

2.5 Quarry Sampling Program

In an effort to evaluate the quality of water entering the quarry, four sampling locations were chosen in the western floor. This area was selected since it represents the regional discharge area of groundwater in the bedrock

and contains active seeps and flowing coreholes which can be readily sampled. These locations are coreholes 2 and 5, the seep on the north wall, and the ponded water east of corehole 5. Coreholes 2 and 5 represent discharge from Horizon B; the seep represents discharge from Horizon A and the quarry pond represents the quality of water prior to discharge to the Hudson River.

In order to broaden the data base, each location was sampled monthly for a period of four months (August through November, 1988). The results are contained in Attachment C and further discussed in section 3.5.

2.6 Water Level Monitoring

A complete round of water levels were obtained by AWARE on October 6, 1988. Unfortunately, access to several of the wells was not possible due to a variety of physical reasons (obstruction, rusted caps, etc.). To include the newly installed AWARE wells, the ground surface and top of PVC casing was surveyed for elevation by Vermont Survey Consultants, Inc. Water level and related data are summarized on Table 2-1.

Table 2-1 SUMMARY OF WATER LEVEL DATA (October 6, 1988)

WELL	REF. ELEV.	DEPTH Water	ELEV. WATER	NOTES		WELL	REF. ELEV.		DEPTH Nater	ELEV. Nater	NOTES
	(ft.,msl)	(ft)	(ft.,msl)				(ft.,msl	}	(ft)	(ft.,msl)	
MW-1	240.1B :	27.4	212.78		!!	MU 070	244 /4		71 40	210 17	
MW-2	240.1B : 240.14 :	11.3	212.78 228.84		!! !!	MW-27S MW-27D	241.64 242.53	;	31.48 37.71	210.16 204.82	
MH-4	241.11	31.83	209.28		!!	MW-28	241	:	11.78	229.22	
MM-5	241.03	27.9	213.13		11	MW-295	236.82	;	33.03	203.79	
MW-6	236.99	2/17	213.13	NA	11	MW-30S	216.44	:	12.5	203.74	
MW-7	236.66			dry	;;	MW-30D	216.78	!	12.3	203.74	
MW-8	242.66	14.65	228.01	ur y	11			•			
nw-0 MW-9	242.35	6,47	235.88			MW-31	217.44	;	8.06	209.38	
7M-7 州製-10					!!	MW-33S	254.11	;	19.34	234.77	
	257.41	26.54	230.87		!!	MW-33D	254.34	!	41.51	212.B3	
MW-13	234.32	25.83	208.49		11	MW-34	239.61	1	19.09	220.52	
MW-14	234.32	15.48	21B.B4		11	MW-35S	240.32	1			NA
MW-15	282.6	42	240.6	uest.	11	MW-35D	239.93	;	36.51	203.42	
MW-16	283.12			dry	;;	MW-36S	261.96	¦	27.62	234.34	
MW-175	285.98			NA	11	MW-36D	262.94	ł	44.48	218.46	
MW-17D	286.18 ;			NA	11	MW-37S	266.08	;	8.25	257.83	
MM-18	286.73			NA	11	MW-40S	281.5	ł	16.65	264.85	
MW-19	245.58			NA	11	MW-40D	281.39	1	48.66	232.73	
MW-205	262.27	19.94	242.33		11	MW-45	249.74	;	13.45	236.29	
MM-20D	263.15	41.83	221.32		11	P-46	277.89	;	8.3	269.59	
HW-21	239.75	26.83	212,92		11	P-53	242.98	ì			NA
MW-22	241.13	8.9	232,23		11	P-71	244.29	1			NA
MW-23S	282.91	17.41	265.5		11			1			
MW-23D	283.64	25.59	258.05		!!	AW-1	282.78	1	74.5	208.28	
MM-24	283.33 ;	B.54	274.79		. !!	AW-2	237.97	1	59.58	178.39	
MW-25S	238.74 :	25.97	212.77		11	AN-3	131.03	1	2.54	128.49	
MW-25D	237.91 :			ugged	11	AW-4	160.11	!	6.26	153.85	
MW-26	238.57 :	7.98	230.59		11	AW-5	315.72	1			NA
					11			1			
					11	P₩-1	265	1	63.57	201.43	
					11	PW-2	265	i			NA
					11	PW-7	-30	ì			NA

3.0 ANALYTICAL CHEMISTRY

3.1 Certification

Aquatec, Inc., located in Burlington, Vermont, provided analytical chemistry services for this project. Aquatec's analytical laboratory is currently certified for analysis by both the New York State Department of Environmental Conservation and the New York State Department of Health. These certifications are the result of Aquatec's satisfactory participation in performance evaluations issued by these agencies.

3.2 Analytical Methods, References and Reporting Limits

Presented in Table 3.1 is the method number, method reference, and reporting limit for each parameter analyzed during this investigation. The method references are as follows:

- l: Test Methods for the Evaluation of Solid Waste: SW-846.
 USEPA Office of Solid Waste and Emergency Response,
 Washington, DC 20460. Third Edition, November 1986.
- 2: Methods for Chemical Analysis of Water and Wastes: EPA-600/4-79-020. USEPA Office of Research and Development, Cincinnati, OH 45268. March 1983.
- 3: Standard Methods for the Examination of Water and Wastewater: Sixteenth Edition. American Public Health Association, Washington, DC 20005. 1987.

Reporting limits are given for each parameter in Table 3-1. The reporting limit is the lowest concentration at which a parameter can be identified and

Table 3.1 Analytical methods, references, and reporting.

I.	Inc	organics	Reference	Method <u>Number</u>	Reporting Limit(mg/l)
	Α.	Metallics			
		 Antimony 	1	3010/7041	0.06
		2. Arsenic	1	3020/7060	0.01
		3. Beryllium	1	3010/6010	0.01
		4. Cadmium	1	3010/6010	0.01
		5. Calcium	1	3010/6010	1.0
		6. Chromium, Total	1	3010/6010	0.01
		7. Chromium, Hexavalent		7196	0.005
		8. Copper	1	3010/6010	0.025
		9. Lead	1	3020/7421	0.025
		10. Magnesium	1	3010/6010	1.0
		· ·	1	•	
		11. Manganese	1	3010/6010 7470	0.015
		12. Mercury			0.0005
		13. Nickel	1	3010/6010	0.04
		14. Potassium	1	3010/6010	1.0
		15. Selenium	1	3020/7740	0.005
		16. Sodium	1	3010/6010	1.0
		17. Thallium	1	3020/7841	0.01
		18. Zinc	1	3010/6010	0.02
	В.	Complex Ions and Chlorid	le		
		 Bicarbonate 	3	406C	1.0
		Carbonate	3	406C	1.0
		Chloride	3	407A	0.5
		4. Cyanide	1	9010	0.01
		5. Sulfate	1	9038	1.0
	С.	рН	1	9040	
	D.	Total Dissolved Solids	2	160.1	2.0
II.	Or	ganics			
	Α.	Total Organic Halogens	1	9020	0.020
	В.	Volatile Organics			
		1. Methylene Chloride	1	8240	.005
		2. Chloromethane	ī	8240	.01
		3. Bromomethane	1	8240	.01
		4. Bromoform	1	8240	.005
		5. Bromodichloro-	ı	0240	.003
		methane	1	0240	005
			1	8240	.005
			,	00/0	005
		methane	1	8240	.005
		7. Tetrachloroethene	1	8240	.005
		8. Toluene	1	8240	.005
		9. Trichloroethene	1	8240	.005

Table 3.1. (continued).

	Reference	Method <u>Number</u>	Reporting Limit(mg/l)
10. Vinyl Chloride	1	8240	.01
11. Acetone	1	8240	.01
12. 2-Butanone	1	8240	.01
Carbon Disulfide	1	8240	.005
14. 2-Hexanone 15. 4-Methyl-2-	1	8240	.01
pentanone	1	8240	.01
16. Styrene	ī	8240	.005
17. Vinyl Acetate	1	8240	.01
18. Total Xylenes	ī	8240	.005
19. Benzene	ī	8240	.005
20. Carbon Tetra-	-	02.10	.003
chloride	1	8240	. 005
21. Chlorobenzene	1	8240	.005
22. 1,2-Dichloro-			
ethane	1	8240	.005
23. 1,1,1-Trichloro-			
ethane	1	8240	.005
24. 1,1-Dichloroethane	1	8240	.005
25. 1,1,2-Trichloro-			
ethane	1	8240	.005
26. 1,1,2,2-Tetrachloro	•		
ethane	1	8240	.005
Chloroethane	1	8240	.01
28. 2-Chloroethyl Vinyl			
Ether	1	8240	.01
29. Chloroform	1	8240	.005
30. l,1-Dichloroethene	1	8240	.005
31. 1,2-Dichloroethene	1	8240	.005
32. 1,2-Dichloropropane	1	8240	.005
33. Trans-1,3-Dichloro-			
propene	1	8240	.005
34. cis-1,3-Dichloro-			
propene	1	8240	.005
35. Ethylbenzene	1	8240	.005
36. o-Dichlorobenzene	1	8240	.005

quantified by a given method. The reporting limit for a parameter on a sample specific basis may vary and can be increased. An increase would be due to analysis related dilution of the sample to reduce sample related interferences.

3.3 Quality Assurance/Quality Control

The quality assurance/quality control (QA/QC) program for this investigation was designed to provide data regarding the accuracy and precision of the analytical results.

Three types of QA/QC samples were analyzed: blanks, duplicates, and matrix spikes. Two types of blanks were analyzed and reported: trip blanks and laboratory reagent blanks. The trip blank represents the possible contamination a sample could receive upon transportation from the laboratory to the site and back to the laboratory. Laboratory reagent blanks represent the possible contamination a sample could receive by handling in the laboratory.

Duplicate analyses are a measure of analytical precision. Two types of duplicates were utilized in this study, they are field and laboratory duplicates. Field duplicates permit the estimation of the overall sampling and analysis program precision, while laboratory duplicates only point to the precision of the laboratory measurements.

The accuracy of sample analyses was monitored through the use of matrix spike analyses. A matrix spike analysis is a separate analysis on a sample aliquot to which the parameters of interest are added in known amounts. These spiked samples are then analyzed and percent recoveries are computed. Additional information regarding accuracy have also been included in the form of surrogate spike recoveries and calibration check standards results. Three surrogate spikes used for organic analysis were toluene- D_8 , BFB (bromofluorobenzene), and 1,2-dichloroethane- D_4 .

The QA/QC analyses types discussed above have been reported on Aquatec's original Analytical Reports which are included in Attachment C.

3.4 Analytical Results

Samples were collected over a four-month period, August-November 1988, as listed in Table 3-2. In each month, samples were collected from the seep in the limestone quarry (Seep), from a pond in the quarry (Q-Pond), and from two coreholes (CH-2 and CH-5). Note that on Aquatec's Analytical Reports which are contained in Attachment C, sample stations CH-2 and CH-5 are labeled CH-1 and CH-2, respectively.

From 13 to 15 September 1988, 17 on site wells were sampled in addition to the monthly samples in the limestone quarry. Well MW-40D had slow recovery and was sampled on 29 September 1988. The new AWARE wells (AW-1, AW-2, AW-3, AW-4, and AW-5) were sampled from 22 September to 25 October 1988; AW-2 was sampled twice.

Three samples were collected and analyzed in duplicate: CH-2, Q-Pond and MW-9. Three samples were selected for volatile organic matrix spike and matrix spike duplicate analysis, MW-27D, CH-5, and Q-Pond. Inorganic replicate and matrix spike analyses were conducted on MW-27D, Seep (twice), CH-2, CH-5, AW-1, AW-2 and AW-4. These samples and quality control analyses are indicated in Table 3-2.

Summary tables of Analytical Report sheets are contained in Appendix A of this report. Four summary tables in Appendix A contain the inorganic, organic, and field measurement results. Table A-1 has metals only; Table A-2 has hexavalent chromium and four major ions. Additional major ions, TDS, total cyanide, and laboratory pH are in Table A-3. Table A-3 also has field measurements. Organic results are in Table A-4 including TOX. Results of the two samples analyzed for base/neutral acid extractable compounds are in Attachment C.

Table 3.2. Summary of samples and quality assurance samples.

11/22/88 15711 <u>111</u>	TB CH-2 CH-5 Q-Pond Seep
10/24-25/88 15452 III	TB AW-2(r) AW-5 CH-2(r) CH-5 Q-Pond(o) Seep(r)
10/3/88 15216 111	TB AW-1(r) AW-4(r)
9/29/88 15175 111	TB AW-2 MW-40D
9/22/88 15094 111	 AW-3
9/14-15/88 15008 111	TB MW-8 MW-9(d) MW-19 MW-36D MW-36S MW-40S P-53(b)
9/13-14/88 14980 III	TB CH-2 CH-5(r, o) Q-Pond Seep(r) MW-20D MW-20S MW-35D MW-35D
9/13/88 14962 111	TB MW-25S MW-26 MW-27D(r,o) MW-27S MW-28
8/15/88 14617 11	TB CH-2(d) CH-5 Q-Pond(d) Seep
Date: ETR No.: Level (1):	Samples:

Notes:

Samples (unfiltered) were analyzed for parameters listed in Table 3.1. Field filtered samples collected for all samples except TB (trip blank) and MW-27S; field filtered samples were analyzed for priority pollutant metals plus calcium potassium, magnesium, and sodium.

- 1 = Field duplicate collected and analyzed.
- Sample analyzed for base/neutral and acid extractable semivolatile organic compounds.
- = Replicate and matrix spike analyzed for various combinations of TOX, metals, and other inorganics.
- = Matrix spike and matrix spike duplicate analyzed for volatile organic compounds.
- 1 = Level of analysis III means internal laboratory quality assurance reported for each sample. Level II indicates internal QA not reported, see Addendum E for results.

4.0 HYDROGEOLOGIC CONDITIONS

4.1 REGIONAL GEOLOGIC SETTING

The study area is situated over middle and lower Ordovician Age bedrock. The history of Ordovician sedimentation in northern New York was influenced by the Taconic orogeny (Cisne et al, 1982), which uplifted the Appalachian mountains to the east, and subtly warped continental crust within central New York State. This orogeny may be subdivided into three phases, the later two being the Vermontian and Hudson Valley phases. The tectonic disturbance resulted in crustal subsidence accompanied by a westward marine invasion of transgressing seas. The early Ordovician shallow marine environment led to a maximum carbonate production in the Upper Beekmantown Group. The pure carbonates are interrupted by occasional thin shale beds, as clay was still a very small component of oceanic shelf sediments to the east (Fisher, 1984).

During the middle Ordovician, compressional stresses from the Vermontian phase of the Taconic orogeny initiated block faulting and elevation of the North American plate creating a major marine recession. This resulted in a sedimentation break and exposure of the Beekmantown Group to the forces of erosion. The eroded Beekmantown surface is called the Knox Unconformity. Further tectonic disturbance led to interior crustal subsidence and a late middle Ordovian marine transgression. Limestone deposited on the subsiding planar surface initiated formation of a carbonate platform, which in turn led to accumulation of the Black River and Trenton Group limestones.

These strata represent marine sedimentary deposits that have subsequently been solidified, slightly deformed, and uplifted to near their present position. The uplift and deformation have resulted in a slight tilting of the deposits to the south and southwest, away from the Adirondacks, at a dip of approximately three degrees.

The most recent publication regarding the regional geology has been the "Bedrock Geology of the Glens Falls - Whitehall Region, New York" by Fisher (1984). Figure 4-1 illustrates the interpretation of bedrock geology contained in this report.

4.2 SITE STRATIGRAPHY

The bedrock stratigraphy underlying the study area has been well defined during this investigation. Information obtained from the geophysical logging of well AW-5 and Ciba-Geigy Production Well No. 2 provides over 600 feet of continuous sedimentary record. The 406 feet of geophysical log from well AW-5 provides data beginning 85 feet within the Snake Hill formation down into the middle of the Fort Ann formation. The 365 feet of geophysical log from Production Well No. 2 (located up dip from AW-5) provides data from the top of the Fort Ann down into the Skene member of the Whitehall formation. The two logs contain approximately 100 feet of overlapping section from which a nearly identical gamma trace can be observed.

The complete stratigraphic sequence is depicted on Figure 4-2 and was developed from Fisher's interpretation of the core from Production Well No. 2 (as published in his report) and from the logs provided by the Glens Falls Cement Co. The individual formations were measured to be of generally uniform thickness across the study area and dip to the south at approximately three degrees. Locally, there are likely to be gentle undulations in the beds such as the slight anticlinal structure observed in the north wall of the western quarry area. However, as shown on Sheets 6966-2 and 6966-3 individual stratigraphic horizons can be mapped for a horizontal distance of over 4,800 feet and are regionally quite uniform. These two maps depict hydrostratigraphic horizons B and C and are further discussed in Section 4.3.

Each of the bedrock formations are further discussed below in ascending order and are depicted on the cross-sections of Sheets 6966-4, 6966-5 and 6966-6.

4.2.1. White Hall Formation

The oldest bedrock formation encountered in the investigation is the Skene member of the White Hall formation. This formation was observed in the last 15 feet of the geophysical log of Production Well No. 2. According to Fisher (1984), this formation is a crystalline, tan to light gray, medium to coarse grained, vuggy dolostone.

AGE	GROUP	FORMATION	LITHOLOGY	THK. (ft.)	SUB UNITS	REMARKS
SIAN		SNAKE HILL	MUDSTONE	0-100	DOLGE- VILLE	CAPROCK
MIDDLE ORDOVICIAN	TRENTON	GLENS FALLS	LIMESTONE	130	UPPER SUGAR RIVER LOWER SUGAR RIVER	ACTIVELY MINED BY GLENS FALLS CEMENT CO INC.
*	BLACK RIVER	ISLE LA MOTTE	LIMESTONE	20		CLAY MARKER BED
IAN	BEEKMAN- TOWN	FORT ANN	CALCITIC DOLOSTONE AND DOLOMITIC LIMESTONE	140		
R ORDOVICIAN		GREAT MEADOWS	DOLOSTONE	150	FORT EDWARD	
TOWE		SANDSTONE SILTSTONE SHALE	70	WINCHELL CREEK		
		WHITEHALL	DOLOSTONE	20 +	SKENE	

FIGURE 4-2

GENERALIZED GEOLOGIC SECTION

CIBA - GEIGY CORPORATION GLENS FALLS PLANT

NASHVILLE, TENNESSEE MAHWAH, NEW JERSEY NASHVILLE , TENNESSEE

4.2.2. Great Meadows Formation

The Great Meadows formation consists of two members, the Winchell Creek overlain by the Fort Edwards. The Winchell Creek member was only identified in the geophysical log of Production Well No. 2 as shown on Sheet 6966-6. The upper portion of the Great Meadows formation (Fort Edwards Member) was encountered in two of the AWARE wells, AW-l and AW-3, as well as Production Well No. 2. According to Fisher, the Fort Edwards consists of a light gray vuggy dolostone with variable amounts of quartz crystals, dolomite rhombs and chert. The Winchell Creek is a clastic member consisting of interbedded sandstone, siltstone, and gray shale with pyrite, and dolomitic and calcite cement.

4.2.3. Fort Ann Formation

The Fort Ann formation is approximately 140 feet thick across the study area and directly overlies the Great Meadows formation. The rock is generally described as undifferentiated dolostones and limestones (Fisher 1984). Testing of the extracted drill core with a 5 percent HCL solution has confirmed this. The rock is predominantly high in magnesium carbonate (dolostone) with thin (up to two-feet thick) isolated zones of pure calcium carbonate (limestone). Simple visual inspection of the core does not reveal the magnesium content.

The Fort Ann may be described as a predominately medium light gray (N6) to medium dark gray (N4) nodular, sometimes stylolitic or fossiliferous dolomite with intercalated, undulating thin seams of brownish black (5 YR 2/1) shale. The fauna of the Beekmantown includes nautiloid cephalopods, high—and low—spired gastropods, abundant trilobites, scarce articulate brachiopods, and the earliest ostracods (Fisher, 1984). Although bioclastic zones were observed in the drill core, most fossils were not recognizable as definite paleo—environmental indicators.

4.2.4. Isle La Motte Formation

The contact between the Fort Ann formation dolomite and the overlying Isle La Motte limestone has been identified in the literature as an erosional surface (Knox Unconformity). However, inspection of the core retrieved during this study and discussions with Mr. Robert Olgilby, geologist for Glens Falls Cement Co., does not provide direct evidence of such a contact.

The Isle La Motte is described as massive, fine-grained, dark gray to black, conchoidally fractured limestone (weathers to light gray). Reported fossils, which are scarce, include bracheopods, gastropods, and corals (Fisher, 1984).

The upper surface of the Isle La Motte consists of a prominent but thin semi-consolidated clay layer. This layer varies in thickness from one to six inches and in competence from soft plastic clay to soft shale. In outcrop along the northern wall of the western quarry area, the unit can easily be traced for hundreds of feet. It is strikingly apparent since it serves to impede infiltrating groundwater and in doing so creates a long prominent seep.

The core from this interval often contained loose broken pieces of the soft shale, but the clay had apparently washed out of the sample by the coring action. The clay serves as an excellent marker bed in the gamma logs. It was present in four of the five AWARE wells but had been mined in the AW-3 location where it was observed in outcrop.

4.2.5. Glens Falls Formation

The Glens Falls limestone is approximately 130 feet thick and is actively mined in the quarry. The drill hole logs provided by the cement company indicate that they have subdivided this formation into three sub-members: the Larrabee, Lower Sugar River and Upper Sugar River. This division is apparently based on the quality of the limestone (i.e., calcium carbonate content) for cement manufacturing. The data indicates that the percent of calcium carbonate increases with depth in each successive layer. The three sub-members are reflected by the different "bench" elevations of the active quarry face. As shown on the cross-sections, only a thin portion of the Glens Falls formation is present north of the Hudson River on the Main Plant site.

The Glens Falls formation is classified within the Trenton Group Limestone and is described by Reudemann (1912) as thin-bedded, fine to medium grained, dark

gray to black limestone (upper) and thin to medium-bedded, medium to coarse grained, light to medium gray limestone (lower). The two sections are equally fossiliferous with bracheopods, gastropods, and trilobites predominating.

4.2.6 Snake Hill Formation

The Snake Hill formation is the uppermost bedrock unit in the study area. The formation consists of shale and thus is the "cap rock" which must be removed by quarry operations. Since the quarry operation is progressing down dip (south), an increasing thickness of shale is encountered. The shale is described by Reudemann (1912) as dark gray to black shale and mudstone with a few siltstone beds. The lower 45 feet consist of harder, calcareous argillite and contain pyritized trilobites, graptolites, and bracheopod faunas.

4.3 IDENTIFICATION OF HYDROSTRATIGRAPHIC HORIZONS

Groundwater flow through bedrock will be generally controlled by the size, frequency, and orientation of openings or fractures within the rock. In relatively flat-lying sedimentary bedrock formations such as within the study area, fractures can be divided into two types; horizontal fractures oriented parallel or sub-parallel to bedding and vertical fractures resulting from jointing and/or high angle faulting. Using this same system of classification, groundwater flow and hydraulic conductivity of the bedrock can be defined in terms of their horizontal and vertical components. It has been demonstrated during this study that the horizontal fractures predominate as the controlling factors of groundwater flow.

4.3.1. Horizontal Fractures

The existence of identifiable, areally extensive fractures occurring within the same stratigraphic position has been accomplished primarily by the downhole geophysical program. Interpretations involving borehole geophysical methods rely on integrating all the data obtained from the four logging tools and comparing it with the extracted drill core. Figure 4-3 provides a comparison of a portion of the geophysical logs for AW-l and illustrates the conjunctive use of each log to identify the presence of a water-bearing fracture.

AW-I

TEMPERATURE LOG

CALIPER LOG

S.P. LOG

GAMMA LOG

LEGEND: ANOMALY AT DEEP FRACTURE SCREENED INTERVAL -- 140' ELEVATION (ABOVE MEAN SEA LEVEL)

FIGURE 4-3

COMPARISON OF TEMPERATURE, CALIPER, S.P. AND GAMMA LOGS FOR AW-I

> CIBA - GEIGY CORPORATION GLENS FALLS PLANT

RURRE WEST MILFORD, NEW JERSEY NASHVILLE, TENNESSEE

Pilot geophysical logging data obtained at the onset of this investigation contributed substantially to development of an exploration strategy for delineation of water-bearing zones. Although the drill core aided in the detection of zones of fracture permeability, horizontal bedding plane fractures are not easily differentiated from drilling-induced bedding plane breaks. Furthermore, examination of the core alone does not provide an indication that the fracture is open and actively transmitting water.

The principal logging devices used to identify water-bearing fractures was the caliper and temperature tools. Logging several coreholes with these instruments revealed the presence of a caliper anomaly (fracture) existing at a particular stratigraphic horizon. The corresponding temperature anomaly indicated that this fracture was in fact open and providing a temperature contrast with the water standing in the hole. Further review of the other logging data (primarily gamma) reveals that this fracture also occurs at a relatively consistent stratigraphic position. This is perhaps best illustrated in boring AW-l at an approximate elevation of 140 feet (msl).

In order to supplement the downhole geophysical interpretations, packer pressure test data from discrete (10-feet) intervals was compiled and reviewed. This information is summarized on Table 4-1 and presented graphically on Figure 4-4. The hydraulic conductivity profiles clearly illustrate the B and C horizons as well as other intermediate zones of moderate permeability. These intermediate zones however, do not occur at consistent stratigraphic horizons, nor do they provide a caliper or temperature anomaly.

Using these methods, three laterally extensive hydrostratigraphic horizons have been identified as having the potential to impact groundwater flow. These are illustrated on the cross-sections and have been termed the A, B, and C horizons in order of their depth. The deepest horizon (C) was chosen as the target zone for the AWARE well screen settings in this investigation. As discussed in Section 4.2, the structural configuration of the two prominent horizons (B and C) was also mapped in plan view on Sheets 6966-2 and 6966-3 respectively. A summary of the data used to produce these maps is provided on Table 4-2.

TABLE 4-1
SUMMARY OF PACKER TEST DATA

WELL # AN-1

WELL # AW-2

	TEST INTERVAL (FEET BELOW) (GROUND SURFACE)	CONDUCTIVITY (CH/SEC)	1		TEST INTERVAL (FEET BELDW) (GROUND SURFACE)	CONDUCTIVITY (CH/SEC)
20	21.3 - 32.5	1.2 X 10-5	1	14	29.8 - 41.0	6.4 X 10-5
19	26.3 - 37.5	2.8 X 10-5	1 .	13	39.8 - 51.0	< 1 X 10-8
18		1.5 X 10-5			49.B - 61.0	
17	46.3 - 57.5	B.4 X 10-6	}	11	59.8 - 71.0	2.5 X 10-5
16	56.3 - 67.5	< 1 X 10-8	1	10	69.8 - 81.0	< 1 X 10-8
15	66.3 - 77.5	< 1 X 10-8	1	9	79.8 - 91.0	< 1 X 10-8
14	76.3 - 87.5	< 1 X 10-8	ì	8	89.8 - 101.0	< 1 X 10-B
13	86.3 - 97.5	1.1 X 10-5	;	7	99.8 - 111.0	< 1 X 10-8
12	96.3 - 107.5	< 1 X 10-8	ł t	6	109.8 - 121.0	6.6 X 10-8
11	106.3 - 117.5	< 1 X 10-8	1	5	119.8 - 131.0	1.3 X 10-6
10	116.3 - 127.5	2.0 X 10-7	}	4	129.8 - 141.0	< 1 X 10-8
Ģ	126.3 - 137.5	1.0 X 10-7	1	3	139.8 - 151.0	< 1 X 10-B
В	136.3 - 147.5	4.8 X 10-6	į	2	149.8 - 161.0	1.5 X 10-5
7	146.3 - 157.5	9.0 X 10-7	1	1	159.8 - 171.0	3.0 X 10-7
6	156.3 - 167.5	< 1 X 10-B	1			
5	166.3 - 177.5	< 1 X 10-B	1			
4	176.3 - 187.5	2.0 X 10-8	}			
3	186.3 - 197.5	< 1 X 10-B	;			
2	196.3 - 207.5	< 1 X 10-8	1			
1	206.3 - 217.5	3.2 X 10-8	1			

TABLE 4-1
SUMMARY OF PACKER TEST DATA

WELL # AW-3 WELL # AW-4

TEST #	TEST INTERVAL (FEET BELDW) (GROUND SURFACE)	HYDRAULIC CONDUCTIVITY (CM/SEC)	;	TEST #	TEST INTERVAL (FEET BELDW) (GROUND SURFACE)	HYDRAULIC CONDUCTIVITY (CM/SEC)
14	7 7 (D.E.	7 E V (A 7				7 E V (A 7
		3.5 X 10-3	!		7.3 - 18.5	
13	17.3 - 28.5	3.2 X 10-4		19	12.3 - 23.5	
12	27.3 - 38.5	1.9 X 10-3	1	18	22.3 - 33.5	2.5 X 10-5
11	37.3 - 48.5	1.9 X 10-3	į	17	32.3 - 43.5	5.0 X 10-5
10	47.3 - 58.5	8.3 X 10-5	;	16	42.3 - 53.5	9.7 X 10-4
9	57.3 - 68.5	1.2 X 10-3	-	15	52.3 - 63.5	3.6 X 10-4
8	67.3 - 78.5	1.3 X 10-3	;	14	62.3 - 73.5	1.7 X 10-3
7	77.3 - BB.5	1.3 X 10-3	;	13	72.3 - 83.5	2.7 X 10-5
6	B7.3 - 98.5	1.1 X 10-3	1	12	82.3 - 93.5	< 1 X 10-B
5	97.3 - 108.5	1.1 X 10-3	1	11	92.3 - 103.5	6.0 X 10-7
4	107.3 - 118.5	9.9 X 10-4	1	10	102.3 - 113.5	< 1 X 10-8
3	117.3 - 128.5	8.3 X 10-4	;	9	112.3 - 123.5	5.5 X 10-5
2	127.3 - 138.5	6.0 X 10-7	i	8	122.3 - 133.5	6.0 X 10-7
1	137.3 - 148.5	< 1 x 10-8	ł	7	132.3 - 143.5	< 1 X 10-8
			ł	6	142.3 - 153.5	< 1 X 10-8
			1	5	152.3 - 163.5	7.1 X 10-6
			;	4	162.3 - 173.5	5.5 X 10-6
			ŀ	3	172.3 - 183.5	1.9 X 10-4
			1	2	182.3 - 193.5	2.8 X 10-5
			,	1	192.3 - 203.5	1.3 X 10-4

TABLE 4-1 SUMMARY OF PACKER TEST DATA

WELL # AW-5 WELL #

TEST #	TEST INTERVAL (FEET BELOW) (GROUND SURFACE)	CONDUCTIVITY	1	TEST #	TEST INTERVAL (FEET BELOW) (BROUND SURFACE)	CONDUCTIVITY
16	242.2 - 252.8	3.0 Y 10-6	:===== !	========		
15		3.0 X 10-6	!			
14		4.7 X 10-6	•			
13	272.2 - 282.8		;			
12	282.2 - 292.8		i			
11	292.2 - 302.8	< 1 X 10-8	1			
10	302.2 - 312.8	< 1 X 10-8	İ			
9	312.2 - 322.8	5.0 X 10-7	1			
8	322.2 - 332.8	1.0 X 10-6	1			
7	332.2 - 342.8	5.0 X 10-7	+			
Ь	342.2 - 352.8	< 1 X 10-8	1			
5	352.2 - 362.8	8.0 X 10-7	1			
4	362.2 - 372.8	B.O X 10-7	+			
3	372.2 - 382.8	1.3 X 10-6	;			
2	382.2 - 392.8	1.0 X 10-6	1			
1	392.2 - 402.8	4.3 X 10-6	}			

TABLE 4-2 STRATIBRAPHIC ELEVATION DATA

	REFERENCE E	LEVATION		BEDROCK S	SURFACE		MONITORI	NG INTERV	AL	ELEVATIO	ON D	F FRACTUR	EΗ	OR17DNS		
DATA LOCATION	ground surface	top of casing		cepth from	elevation (esl)		bottom elev.	top Elev.	thickness (ft)	horiz:	חו	horizo B	u 	horiza C	מנ	
						,					-		-			
MW-1	238.1	240.18	i	26.0	212.1	;	198	212	14	NP	i	NP	i	142	i	
MW-2	238.1		1	26.0		;	212	217	5 +			NP		142		
MW-4	239.2		1	25.4	213.8	;	199	211	12	NP	í	NP	i	125		
MW-5	239.0		1	15.0		1	211	216	5 1	NP	i	NP		125		
MW-6	235.1		;	15.0		;	195	215	20 1			125			i	
MW-7	235.2		1	18.5		1	225	230	5 ;			185			i	
MH-8	241.6		1	18.5		1	197	221	24			188		90		;
HH-9	240.4		1	12.1		;	230	235	5 ;			188		90		;
MW-10	256.1	257.41	;	12.1		1	203	240	37 ;			22B				
MH-13	233.0		1	36.3	196.7		196	199	3 ;		i	NP		92		
MW-14	232.7	234.32	!	36.3	196.4	1	216	221	5 1		i		i	92		1
MW-15	280.5		1	24.0			221	254	34 ;			229	-	140		
M¥-16	281.2		1	24.0	257.2		268	273	5 1	252			i	140		1
MW-175	284.5		1	11.0	273.5	1	258	268	10	NP		NP.	-	175		
K₩-17	284.6		1	10.0		1	205	273	69 1			NP		175		;
MW-18	284.B	286.73		10.0	274.8	;	274	279	5 1	NP	í	NP		175		;
HH-19	243.3	245.58	:	10.5	232.8	i	201	232	31	21B	i	195		98		
MW-205	265.9	262.27	i	16.0		ì	230	240	10	235	i	212		115		,
MH-20D	260.B	263.15	1	15.0	245.8	1	206	216	10	235	i	212		115		
MW-21	238.5		;	18.6		1	194	219	26	NP	i	NP		115		;
HW-22	238.8	241.13		B.0	230.8	1	194	229	36	254	-	213	-	110		1
HK-235	281.3	282.91	1	11.5	269.8	;	255	265	10 :			250	-	152		
MW-23D	281.4	283.64	1	11.6	269.8	;	234	244	10	273		250		152		;
MW-24	281.5	283.33	;			1	270	275	5 1	273		250	•	152		
HW-25S	236.1	238.74	į	24.5	211.6	1	197	207	10	201		17B			i	
M¥-25D	236.3	237.91	;	23.2	213.1	1	176	186	10	201		178		75		
H¥-26	236.7	238.57	;			;	229	234	5	199	_	176	-	75		
MW-275	240.4	241.64	1	28.0	212.4	;	198	207	10 :	203		180	•			
MW-27D	241.0	242.53	;	27.1	213.9	1	175	185	10 ;	203		180				
MW-28	240.2	241	1	27.3	212.9	}	213	218	5 ;	203		180	•	78		;
MW-295	235.1	236.82	ì	25.0	210.1	:	196	203	7 1	213	_	190			i	

TABLE 4-2 STRATIGRAPHIC ELEVATION DATA

	REFERENCE E	LEVATION	BEDROCK S	SURFACE		MONITORI	NG INTERV	AL	ELEVATI	ON D	F FRACTUR	E H	IOR I ZONS		
DATA LOCATION	ground surface	top of casing	depth from	elevation (asl)	-	botios elev.	top elev.	thickness (ft)	horiza A	on .	horizo B	n	horiza C)ħ	
			;		;							-		-	
MW-30S	214.8	216.44	16.5	198.3	}	183	193	10	NP	í	NP	i	99	i	1
MW-30D	215.1	216.78	16.B	198.3	i t	164	173	10	NP	i	NP	i	99	i	
MW-31	215.0	217.44	16.0	199.0	1	199	204	5 :	NP	í	NP	i	99	i	
MW-33S	251.9	254.11	16.0	235.9	;	220	230	10	NP	i	NP	i	175	i	
MW-33D	252.2	254.34	16.0	236.2	1	200	209	10	NP	i	NP	i	175	i	
MH-34	238.0	239.61	30.0	208.0	1	202	207	5	198	i	175		79	i	
MW-35S	238.5	240.32	32.5	206.0	;	190	199	9	198	i	176		79	i	
MW-35D	238.7	239.93	34.5	204.2	!	172	182	10	198	i	176	i	79	i	
MW-365	250.7	261.96	18.1	242.6	;	228	237	9	231	i	205		115	i	
MW-36D	260.9	262.94	18.6	242.3	1	204	214	10	231	i	205		115	i	
MW-375	263.8	266.08	6.0	257.B	1	244	253	9	NP	-	NP		165	_	
MW-405	279.6		18.0	261.6	1	246	256	10	259		236		145		
MH-40D	279.6	281.39	18.0	261.6	i	227	237	10	259	_	236		145	_	
HH-45	247.7		1		i	234	239	5		i	NP		175		
P-46	276.8		21.4	255,4	1	255	262	7	na	•	230		138	_	
P-53	240.2	242.99	}		1	226	236	10	na		185		82	_	
P-71	242,5	244.29	1		1	234	244	10	na		193		95	-	
			:		1						• • •	•		•	
AW-1	280.8	282.78	16.0	264.8	ļ.	137	147	10	257	8	237	Đ	144	٥	
A¥-2	235.8	237.97	24.5	211.3	;	70	ВО	10	202	•	182		78	Ď	
AN-3	116.7	131.03	0.0	116.7	1	15	25	10	NF	5	118	-	27	-	
AN-4	158.9	160.11	0.0	158.9	;	-31	-21	10	115	2	91		-23	ğ	
AK-5	313.8	315.72	42.0	271.8	1	-92	-82	10	49	•	22		-B2	•	
			}		,	. =				7		•		7	
P#-1	266.0		20.0	246.0	?	113	246	133	NP	٥	246	0	140	٥	
P₩-2	265.0		9.0	256.0	;	-101	256	357		ğ	NP	•	168	•	

^{&#}x27;g' indicates elevation obtained from geologic data (logs).
"i' indicates data interpolated from structural contour maps.

[&]quot;NP" indicates contact not present.

All elevations are in feet above mean sea level.

Horizon A represents the top of the Isle La Motte formation and is identified by the distinctive gamma response (signature) to the thin clay layer discussed in Section 4.2.3. This horizon is considered significant since it exists close to the bedrock surface beneath the Main Plant site and intersects a number of existing monitoring wells. As observed in quarry outcrop, the horizon has the ability to significantly restrict the vertical percolation of water into lower portions of the rock. There are some indications that it may also be significant as a horizontal fracture horizon. In some instances, this layer (probably just above the clay) produces a temperature anomaly as well as a relatively high horizontal hydraulic conductivity from the packer pressure tests. On the Main Plant site many of the western "shallow" (S-designated) monitoring wells are completed in this horizon.

Sheet 6966-2 depicts the structural surface of the Fort Ann dolomite (Horizon B) which has been intersected by each of the cement company drill holes. A summary of these logs is presented on Table 4-3. This is the surface reported to be the Knox Unconformity and has been shown to correspond to a water bearing horizontal fracture. Caliper and temperature anomalies, as well as strong packer test hydraulic conductivities, have been identified. This horizon exists directly beneath the western quarry floor and is penetrated by a number of the flowing core holes. On the Main Plant site, this horizon "outcrops" along a north-south trace just east of Buildings 41, 43, and 8 (refer to Sheet 6966-2). This "outcrop", of course, exists at the bedrock surface and is covered by the unconsolidated soil. Thus, west of this outcrop, Isle La Motte limestone overlies the Fort Ann dolomite, whereas east of this trace, the Fort Ann is the uppermost bedrock unit.

It is of interest to note that the quarry "outcrop" of Horizon B also traces parallel to and possibly beneath the Hudson River. If this horizon was in good communication with the river, significant quantities of water could be induced into this fracture and may explain the prolific nature of the coreholes. Large quantities of river water would also serve to dilute any contaminants in this horizon as they move downgradient toward their discharge area.

Horizon C exists approximately 100 feet below Horizon B, two-thirds of the way down into Fort Ann formation. Again, temperature and caliper anomalies were

Table 4-3

Inc.
°;
Cement
Falls
Glens
from
Formations from Glens
Geologic
Ť.
Elevation c

* Top of rock is Upper Sugar River - Top of this formation not differentiated

strong indications of an open fracture at this stratigraphic position. These observations were true for the AWARE wells and the two production wells. In fact, the packer test evaluation conducted by Malcolm Pirnie identified one particular zone in each of these wells which was contributing the most flow. These zones correspond directly to Horizon C as shown on cross-section C-C' on Sheet 6966-6.

Horizon C, being the deepest of the encountered horizontal fracture zones, was chosen as the target horizon for the AWARE wells. In well AW-5, Horizon C was encountered at a depth of approximately 400 feet. At this depth, the overburden pressures are such that the existence of caliper and temperature anomalies were speculative at best. These data in conjunction with the extremely poor recovery from a subsequent bail-down test suggests the fracture is nearly or completely closed. In order to maintain continuity, however, this stratigraphic horizon was screened using an extra long sand pack.

4.3.2. Vertical Fractures

The ability of the bedrock to transmit water vertically is a function of the openness and frequency of joints and/or high angle faults. Since these structures are oriented parallel to the exploratory drilling efforts, it is difficult to obtain direct measurements of their influence. Although the existence of the limestone quarry provides a unique opportunity to view these structures in outcrop, this information is limited to the formations above the Fort Ann dolomite.

The Glens Falls and Isle La Motte formations appear to contain a primary joint set oriented N70°E with a nearly vertical dip. The distance between joints ranges between 10 and 60 feet. With very few exceptions, the joints do not appear to function as active groundwater flow zones as they were filled with secondary mineralization. Nearly all of the active seeps observed in the walls were oriented horizontally. No vertical faults were observed.

The relatively small influence of vertical fractures can also be qualitatively assessed in the lower formations by observations of water levels. On the Main Plant site very large vertical gradients (downward) are observed over

relatively short screened intervals. This suggests that vertical communication is small relative to the horizontal communication within a hydrostratigraphic horizon. A similar observation is made in the western quarry floor. The coreholes represent man-made vertical fractures and flow naturally, producing large quantities of water from underlying horizontal fractures. If vertical communication existed in joints, one would expect numerous seeps throughout the floor area. Yet no "natural" seeps have been observed despite the strong upward (discharge) gradient which exists.

The foregoing discussion is not intended to imply that the vertical hydraulic conductivity of the bedrock is zero. The joint system likely induces a "regional" vertical hydraulic conductivity to the bedrock which may be orders of magnitude less than the horizontal conductivity in the fracture zones. However, from a contaminant transport standpoint, man-made vertical conduits, such as open rock wells, are likely to have a greater local impact. The "outcrop" of horizontal fracture horizons is also likely to provide a direct conduit to near surface contamination.

4.4 GROUNDWATER FLOW

In order to evaluate the fate of groundwater movement in the bedrock environment, the horizontal and vertical components of flow must be identified. Furthermore, the horizontal components must be discussed in terms of their discrete fracture zones or hydrostratigraphic horizons. Only wells representing the same horizon should be considered for comparison. The first task, therefore, is to identify or categorize each of the existing monitoring wells based upon the elevation of their open intervals relative to the three hydrostratigraphic horizons. This categorization is presented on Table 4-4 and is considered preliminary since a certain amount of extrapolation (of structural contours) was necessary. Field confirmation of these categories is recommended in Section 5.

Table 4-4 illustrates that the majority of the wells do intersect only one horizon and thus can be used in this fashion. There are a number of wells however, which are either open over two horizons or do not intersect any of the three. Most of the latter type are located on the eastern portion of the

Table 4-4

Preliminary Well Categorization by Hydrostratigraphic Horizon

Overburden	Weathered Bedrock	Hy dr ostr A	atigraphi B	c Horizon C	Undefined
2	1	6	10	AW-1	17
7	4	8	15*	A W -2	17S
9	5	15*	20D	AW-3	21
14	13	19	22*	AW-4	29S
16	34	22*	23D	AW-5	30s
18		20S	25D		30D
24		238	27D		33S
26		25S	35D		33D
28		278	36D		37S
31		35S			40D
45		36S			40S
P-46					
P-53					
P-71					

^{*}Well may represent two horizons.

site where the A and B horizons are absent and the C horizon is well beneath their bottom elevations.

A fourth category has also been created which includes four wells screened in the very uppermost portion of the bedrock surface. This zone often consists of fractures resulting from the movement of glacial ice and subsequent weathering. This weathered zone, unlike the hydrostratigraphic horizons is independent of stratigraphic position. In situ recovery tests are recommended in order to confirm the existence of this zone and its relative importance to groundwater flow.

It should be noted that although this list is preliminary, certain observations reported during prior sampling events appear to support these interpretations. For example, well MW-40D is shown not to intersect any of the three horizons (cross-section A-A) and is unable to sustain a yield during sampling. Furthermore, two of the wells (MW-27S and MW-40S) which are open across the clay layer (Horizon A) report to have "bentonite" accumulations in the bottom of their open rock boreholes. This may be due to the deterioration of this layer into the open rock well bore.

Water level data collected on October 6, 1988, from monitoring representing Horizons A, B and C were used to develop the piezometric contour maps on Sheets 6966-7, 6966-8 and 6966-9 respectively. Each map contains a number of data points on the Main Plant site and thus this area has been contoured with solid lines indicating a good degree of certainty. In each case groundwater flow is generally from north to south and generally supports the results presented in the Malcolm Pirnie report. With the exception of Horizon C, water level data south of the Hudson River consists only of observations made in the quarry and thus cannot be contoured with the same degree of confidence. Contour lines in this area have therefore been identified as "conceptual" and are shown as dashed lines. It is the intent of these maps to portray this conceptual scenario of groundwater flow based on the following observations and interpretations.

4.4.1 Horizon A

Horizon A is limited in its areal extent both on the Main Plant site and in the western quarry area. As discussed in Section 4.2.4, this horizon outcrops in a seep in the north wall of the western quarry at an elevation of approximately 140 feet (msl). The piezometric head at any location is equal to the pressure head plus the elevation head. Since the pressure head is zero (atmospheric) at the seep, the piezometric head is equal to the elevation of the seep or approximately 140 feet (msl). Plotting this value on Sheet 6966-7 and interpolating the contours has defined a conceptual piezometric surface from the Main Plant site to the seep.

4.4.2 Horizon B

Horizon B can be thought of as an aquifer that is actively being pumped by a number of open rock wells in close proximity to one another. Collectively, these wells comprise a "pumping center" which creates a cone of depression in the piezometric surface of Horizon B. These wells are the coreholes drilled into Horizon B in the western quarry floor and "pump" continuously by virtue of their low elevation. (Actually, the "pump" can be thought of as the quarry's sump pump which periodically keeps the quarry dewatered).

Although the precise shape of this depression in the piezometric surface cannot be defined without additional wells, the "pumping level" or lowest level in the system can. This level is the elevation of the quarry floor adjacent to the flowing coreholes and is approximately 116 feet (msl). Using this information and the hydrologic principles which govern groundwater flow to wells, a conceptual depiction of the piezometric surface south of the Hudson River was developed and is shown on Sheet 6966-8. It should be noted that the pumping level is over 100 feet below the elevation of the Hudson River and thus its "drawdown" is quite sufficient to induce water beneath the river to the quarry. The impact of this cone of influence can be seen in the Horizon B wells directly adjacent to the river. Piezometric elevations in these wells (i.e., MW-25D) are also below the Hudson River level.

The other indirect observation which tends to support this flow model is that the eastern quarry does not receive groundwater discharge. With a floor elevation (158 feet msl) approximately 60 feet below the Hudson River, the only feasible explanation for this is that the cone of depression from the corehole pumping center has lowered the piezometric surface below the floor elevation.

4.4.3 Horizon C

Horizon C has been screened by each of the five AWARE wells as shown on Sheet 6966-9. However, due to the low hydraulic conductivity associated with this Horizon at AW-5, a static water level in this well could not be obtained for this report. Thus, the data consists of two locations on the Main Plant site and two in the quarry. Although the "pumping" associated with the quarry is not directly from Horizon C, its impact has been observed in wells AW-3 and AW-4. Well AW-3 has a piezometric surface elevation of 128.49 feet (msl) or approximately 12 feet above the head in Horizon B. This strong upward gradient is to be expected from a lower semi-confined aquifer adjacent to a pumping center. Well AW-4 has a piezometric surface elevation of 153.85 feet (msl) or about seven feet below the floor of the quarry. Thus, for the same reasons described for Horizon B, the "drawdown" in Horizon C is sufficient to "dewater" the eastern quarry area.

Although the actual volume of discharge from Horizon C to Horizon B in the vicinity of the pumping center is not known, the fact that discharge does occur is supported by the packer test data. Figure 4-4 illustrates that the hydraulic conductivity throughout the Fort Ann formation between Horizons C and B is generally greater than 1.0×10^{-3} cm/sec. This is much different than the other four wells and likely reflects the unloading or "pop-up" effect of mining the overlying rock. Thus, with vertical communication enhanced, the corehole pumping center has also produced a cone of depression in Horizon C (although less pronounced) as conceptually depicted on Sheet 6966-9.

Another way of evaluating the flow scenarios presented above is through the process of elimination. The approach consists of trying to identify any other scenario or mechanism which would produce similar data measurements and

observations. In order for the western quarry area <u>not</u> to be the local (within the study area) discharge point, some other nearby sink would need to exist and be maintained at an even lower elevation. Such a sink would almost have to be a pumping well in close proximity to the quarry.

The only known active pumping wells completed in bedrock are the South Glens Falls water supply wells located approximately 1.7 miles southwest of the quarry. According to the report, "Quantity and Quality of Water from Public Supply Wells and Springs in the Village of South Glens Falls, New York" (Appendix to USEPA "Moreau Site" Record of Decision; 7-13-87), there are two wells at this location. Each well is 210 feet deep and is completed in the shale of the Snake Hill formation. The wells are used only during the summer months and pump approximately 450 gpm each. Considering the distance and stratigraphic position of the wells relative to the quarry and their intermittent use, it is extremely unlikely they would have any discernible impact on piezometric elevations.

4.5 Water Quality

For the purposes of this discussion, groundwater quality has been divided into three categories; indicators related to the major ion evaluation, inorganics (metals) and organics.

4.5.1 Inorganics

Laboratory analyses results for metals total cyanide and pH have been summarized on Table 4-5. Of the inorganic parameters, only five exceeded these standards during the study. Of these hexavalent chromium and total cyanide were the most prevalent and exceeded the standards by the largest amount. As a result, these two parameters were chosen to provide an overview of their distribution within the study area and are plotted on Sheet 6966-10. The reader is referred to Table 4-5 and Attachment C for information regarding the other parameters.

These data illustrate that hexavalent chromium is found predominantly in the overburden wells and in one case (MW-19) in the A horizon. This is no surprise since many of these wells are completed directly in the chrome ore

TABLE 4.5

Cyanide
Total
and
Metals
Data:
ity
Qual
Water
ø
Summary

						Summary of	Water Qua	lity Data:	Metals an	Summary of Water Quality Data: Metals and Total Cyanide	nide				
Lab ID Number	Date Sampled	Location	Filtered	arsenic mg/l	beryllium mg/l	cadmium mg/l	chromium mg/l	copper mg/l	lead mg/l	mercury mg/l	nickel mg/l	silver mg/l	zinc mg/l	hexavalent chromium mg/l	total cyanide mg/l
Overbure 88998	den 13 - Sep - 88	Σ				;	13.6	;	:	;	:	:	:	13.2	6.7
89003			L	0.016	; ;	: :	14.1	0.00	0.088	: :	: :	0.03	0.04	1.39	0.43
89004	Sep-	Σ	L.	0.042	;	:	1.61	0.031	0.038	:	:	0.03	0.02		
89079	Sep	Σ		0.0	:	;	4.5	:	;	:	: :	: :	: :	7.4	0.19
89175	Sep-	Ξ	_	0.010	: :	: :	4.8	: :	: :	: :	: :	:	: :	41	1.19
89176	Sep	Σ	L	0.015	:	:	07	:	:	:	:	:	:		
89177	Sep-	Σ		0.011	:	:	75	:	:	:	:	:	0.02	75	26.0
89178	Sep	Ξ	L.	0.018	;	;	37	:	: 6	:	:	:		6	0
89187	vep.	2 0	u	: :	; ;	; ;	0.60	: :	,00°0	: :	: :	::	0.03	10.0	0.0
2	}	-	-			•									
Horizon							,					70	:	7 6	78 0
80180	Sep			: :	: :	: :	2.3	; ;	: :	: :	: :	90	: :	**2	8
89077	Sep		_	0.047	: :	: :	::	: :	:	0.0012	0.13	:	:	;	1.49
82008	-Sep		L.	0.024	:	:	:	:	:	:	0.11	:	:		3
88996	Sep			:	:	:	:	:	:;	:	:	:	;	:	0.23
88997	Sep		u.	: 6	: 6	: 6	: ;	: 6	.0,	: :			 טמי	:	75 0
8008	Sep			0.041	0.02	20.0	2.3	0.040	04.0	: :	٠ ٠	::	0.06	1.32	0.16
89084	Sep		L	20.0	: :	: :	1.30	::	:	:	:	:	0.03		
89183	Sep				:	:	:	;	;	;	90.0	0.04	0.03	:	0.32
89184	Sep		L.		;	:	: 6	:	;	:	0.05	: :	: 0	810.0	72.0
89173	Sep			0.010	:	:	80.0	: :	; ;	: :	: :	: :		20.0	0.5
87409	Aug		L	: :	: :	; ;	*	: :	::	::	:	:	:	:	;
87410 1	Aug		L	:	:	:	:	:	;	:	:	:	: }		
	d-Sep-			:	:	:	:	:	:	:	:	;	0.03	:	:
	das-		L.	:	:	:	:	:	;	:	:	:	:		
	4-0ct			:	:	:	:	:	:	: :	: :	: :	: ;	:	: .
	2 - OC 1		_	:	:	: :	: :	: :	: :	: :	: :	:	:	:	:
92343 2	2-Nov-88	SEEP	L	: :	: :	: :	: :	: ;	: :	:	:	:	:		
Horizon 87300	15-Aug-88	CH-2		:	;	;	;	;	:	;	:	:	:	:	;
	¥ de		L	:	: :	: :	:	:	:	:	:	:	;		
	Aug.			:	:	:	:	;	:	:	:	:	:	:	:
	Aug-		L.	:	:	:	:	:	;	:	:	:	:		
	Sep.			:	:	:	:	;	:	:	: :	: :	: :	;	
	oeb.		_	;	: :	:	: :	: ;	: :	: :	: :	:	0.26	:	:
	3 2			: :	: :	: :	: :	: :	: :	:	:	:	:		
	Š			;	:	:	:	:	:	:	:	:	:	:	:
	Ş	CH-2	L.	:	;	:	:	:	:	:	:	:	:		
	Aug-			:	:	;	:	:	;	:	:	:	:	:	;
	₽ď	CH-5	L.	:	:	:	:	:	:	:	:	: :	: :	:	:
	o de	^ ±		;	;	;	:	: :	: :	: :	: :	: :	:		
	200	. F.	L	: :	: :	: :	: :	: :	::	:	:	:	0.02	:	:
	4-0ct-88	CH-5	L	:	;	:	;	;	:	:	:	:	:		
	<u>ک</u>	CH-5		:	:	;	:	:	:	:	:	:	: :	:	
	٥ <u>۲</u>	CH-5	L	: 6	:	:	:	700 0	17.7	: :	: :	: :	: :	:	0.03
	Sep	MU-200		510.0	: :	: :	: :	170.0	<u>+</u> :	:	:	:	:		
	3	,													

TABLE 4-5

Summary of Water Quality Data: Metals and Total Cyanide

Lab 10 Number	Date Sampled	Location	Location Filtered	arsenic mg/l	beryllium mg/l	cachium mg/l	chromium mg/l		lead mg/l	mercury mg/l	nickel mg/l	silver mg/l	zinc mg/l	hexavalent chromium mg/l	total cyanide mg/l
:	13. Sep. 88 13. Sep. 88 14. Sep. 88	MV-270 MV-270 MV-350	·	0.011		: ; ; ;	: : :		0.018	:::	:::	: : :	0.03	: :	0.23
89082 89181 89182	14-Sep-88 15-Sep-88 15-Sep-88	MV-350 MV-360 MV-360	<u>ш</u> ш	0.052		:::	20.0	:::	:::	::	0.07	0.04	0.02	<0.0>	0.043
Horizon 90245 0	n C 03-0ct-88	AW-1		0.042		:	:		:	:	:	:	0.05	0.005	:
90246	03-0ct-88 29-Sep-88	AV-1 AV-2	L	0.046	::	::	: 97		::	::	: :	::	0.03	25	0.87
90043	29-Sep-88	AV-2	<u>.</u>	::	::	::	25		::	::	::	::	0.03	95	0.72
91293	25-0ct-88	AN-2	.	:	:	;	25		: :	: :	: :	: :	::	:	:
89604	22 - Sep - 88	AN-3	L	: :	::	: :	: :		: :	::	:	:	:		
90247	04-0ct-88	AM-4		:	:	;	:		:	:	:	:	:	:	:
90248	04-0ct-88	AM-4	L	:		;	:		: 6	: :	: :	: :	: 0	:	:
91294	25-0ct-88 25-0ct-88	AU-5	u.	::	::	::	::		10.0	::	::	::	0.41	•	
Surface										1	,	;	;	:	:
		o POND		:	: :	; ;	: ;		; ;	: :	: :	: :	:		
	15-Aug-88	3 C	_	: :	: :	: :	:		:	:	:	:	:	:	:
	15-Aug-88			;	;	:	:		:	;	:	:	;		
	14-Sep-88	0		:	:	:	:		:	:	:	:	:	:	:
	14-Sep-88	ø		:	;	:	:		:	:	;	:	: :	;	:
	24-0ct-88	o (:	:	:			: :	: :	: :	: :	: :	! :	
	24-0ct-88	9 0	_	: :		: :	: :		: :	: :	:	:	:	:	:
92341	22-Nov-88	DONO D	ı.	:	:	:	:		:	:	:	:	:		
Undefined	bed bed	207-111		810	:	;	8		0.20	:	:	:	0.32	:	:
8018	15. Cen. 88	505-MM		:	:	:			:		:	:	;		
77006	29-Sep-88	MV-400	•	:	:	:	:		:	:	;	:	0.05	:	:
90045	29-Sep-88	MN-400	L	:	:	:	:		:	:	:	:	0.04		
_	anks									;	;	:	:	:	:
	13 - Sep - 88	18		:	: :	: :	: :		: :	: :	:	:	:	:	:
	13 - Sep - 88	9 2		: :		:	:		:	:	:	:	:	:	:
	28-Sen-88	2 ==		:	:	:	:		:	:	:	:	;	:	:
	03-0ct-88	2 2		:	:	:	:		:	;	:	:	:	:	: :
	24-0ct-88	18		:	:	:	:		:	:	:	:	:	:	: ;
92335	22-Nov-88	18		:	:	:	:		:	:	:	:	:	;	;
				Link ind	70 00 00400	00 010010	الم + مرا								

blank indicates no analysis conducted -- indicates not detected above reporting limit F in the fourth column indicates a field filtered sample

tailings. These data also show that none of the B horizon wells contains hexavalent chromium above the 0.05 ppm standard. This would indicate that the chromium is not being transported vertically from these shallow zones to the lower bedrock horizons.

Well AW-2 contained 46 ppm of hexavalent chromium and would appear to undermine this scenario. However, the water quality results obtained during the Malcolm Pirnie study showed that the central portion of the Main Plant site in the vicinity of Production Well No. 1 contained hexavalent chromium in the groundwater. Wells 21 and 22, for example, contained 50 and 15.5 ppm hexavalent chromium respectively. Furthermore, Production Well No. 1 was shown to contain over 30 ppm and the time-series sampling concluded that the source of chromium in this well was near its surface.

As shown on Sheet 6966-6, cross-section C-C', Horizon C is in direct hydraulic communication with Production Well No. 1 and thus this reported source of chromium. Furthermore, there are at least three other production wells (Nos. 3, 4 and 6) in this immediate vicinity which undoubtedly have open rock coreholes intersecting the C Horizon. The reason that the B Horizon does not also reflect this potential source is not known. It may be, as it is in the case of Production Well No. 1, that the B Horizon intersects the wells above their static water levels.

Whatever the source, none of the inorganic parameters was found off site in the samples collected in the quarry. In the western quarry area, the seep represents Horizon A, the corehole water represents Horizon B and of course AW-3 is screened in Horizon C. Thus, no off site impact from the inorganic metals or cyanide was observed.

4.5.2 Organics

A similar overview of the organic parameters indicates that there are only two compounds which are reported above the detection limit. These are chlorobenzene and o-dichlorobenzene. Benzene and toluene were also reported but only in one well, MW-20S. The reader is referred to Table 4-6 and Appendix A for the complete organic data summary.

TABLE 4-6
Summary of Water Quality Data: Organics

Lab ID Date Number Sampled	Location	7OX mg∕l	chloro- benzene ug/l	o- dichloro- benzene ug/l	benzene ug/l	toluene ug/l	total xylenes ug/l	1,1,1- trichloro- ethane ug/l	tri- chloro- ethene ug/l
0verburden									
88998 13-Sep-8 89003 13-Sep-8 89079 14-Sep-8 89175 15-Sep-8 89177 15-Sep-8 89187 15-Sep-8	3 MW-28 3 MW-34 3 MW-9 3 MW-9	7.7 0.102 0.105 0.20 0.21 0.032	 	37000 190 8J	2J 	2J 	2J 	:: :: ::	
Horizon A									
89179 15-Sep-88 89077 14-Sep-88 88996 13-Sep-88 89002 13-Sep-88 89183 14-Sep-88 89183 15-Sep-88 89173 15-Sep-88 87409 15-Aug-88 89087 14-Sep-88 91302 24-Oct-88 92342 22-Nov-88	MW-20S MW-25S MW-27S MW-35S MW-36S MW-8 SEEP SEEP SEEP	1.37 0.72 11.3 0.97 0.060 35 12.1	860 	66J 	48 	50		2J	16J
Horizon B									
87399 15-Aug-88 87401 15-Aug-88 89071 14-Sep-88 91296 24-Oct-88 92336 22-Nov-88 89073 14-Sep-88 91298 24-Oct-88 92338 22-Nov-88 89073 14-Sep-88 89000 13-Sep-88 89081 14-Sep-88	3 CH-2 3 CH-2 3 CH-2 3 CH-5 3 CH-5 3 CH-5 3 CH-5 3 MW-27D 3 MW-27D	0.146 0.140 0.049 0.080 0.037 0.152 0.051 0.071 0.041 0.061 9.2 0.21	 92 3400 41 1300	410					
Horizon C									
90245 03-0ct-86 90042 29-Sep-86 91292 25-0ct-86 89604 22-Sep-86 90247 04-0ct-86 91294 25-0ct-86	3 AW-2 3 AW-2 3 AW-3 3 AW-4	0.34 0.30 0.26 0.036	 	18 21 	1J 	3J 1J	••	··· ··· ··· ···	7 5
Surface									
87405 15-Aug-86 87407 15-Aug-86 89085 14-Sep-86 91300 24-Oct-86 92340 22-Nov-86	Q POND Q POND Q POND	0.082 0.066 0.037 0.050 0.029	:: :: ::	••	 	 	 		
Undefined									
89185 15-Sep-84 90044 29-Sep-84 Trip Blanks		::	::	::	::	::	::	::	::
88995 13-Sep-8	з тв			••				••	
89070 13-Sep-8 89170 14-Sep-8 90041 28-Sep-8 90244 03-Oct-8 91291 24-Oct-8 92335 22-Nov-8	3 TB 3 TB 3 TB 3 TB 3 TB	 	 	 	··· ··· ···	:: :: :: ::	 	:: :: :: ::	··· ··· ···

⁻⁻ indicates not detected above reporting limit

J an estimated value which is below the reliable detection limit

The results for the two organic compounds listed above have been plotted on Sheet 6966-11. The data appear to indicate that for chlorobenzene, the source may be associated with the south waste pile as this was the only area in which chlorobenzene was found above the B Horizon. Down gradient of this area (on site) chlorobenzene is consistently found in, and only in, Horizon B.

O-dichlorobenzene was found in only two locations, both at the on site down gradient edge of the Main Plant site. The overburden well MW-26 contained the highest concentration of all organics (37,000 ug/1) and may indicate a source in the overburden.

None of the organic parameters which were sampled was detected off site. This includes the A, B and C Horizons at the AW-3 location and the three other C Horizon wells.

4.5.3 Major Ion Analysis

To provide yet another tool to aid in the evaluation of groundwater slow through the bedrock, a major ion analysis was conducted on groundwater samples collected from selected wells. In theory, groundwater collected from two wells which represent similar flow regimes would possess similar distributions of the major cations and anions. Conversely, groundwater originating in different environments or flowing in different regimes would exhibit a dissimilar major ion characteristic. Since it is quite possible to have exceptions to these relationships, the major ion analysis is considered a qualitative tool to be used along with other information sources.

The major ion data have been analyzed using computer software marketed by Hall Groundwater Consultants, Inc. of St. Albert, Alberta, Canada, under the name "Groundwater Chemistry Programs, Version 7.0". The software allows efficient calculation of the ionic balance and generates Piper trilinear and Stiff diagrams. These diagrams are particularly useful for assessing the similarities and differences in water quality between wells and between water-bearing zones. The Stiff diagram, in particular, often possesses a distinctive shape that is characteristic of the water in a given water-bearing zone or a portion thereof. The Piper trilinear diagram permits the plotting of all of the analyses on a single diagram. In constructing a Piper trilinear

diagram, the relative percentages of cations (calcium, magnesium, and sodium plus potassium) are plotted on the lower left cation triangle, while the relative percentages of anions (chloride, sulfate, and carbonate plus bicarbonate) are plotted on the anion triangle, located on the lower right side of the diagram. A central plotting position is then established for each point in the central plotting rhomb by projecting the intersection of rays of the plotting positions from the cation and anion triangles. Water from distinct water-bearing zones will typically plot within separate, reasonably well-defined fields on the central "diamond" in the trilinear diagram. This technique theoretically provides the ability to distinguish between groundwater which originates from geochemically distinct water-bearing zones and to identify groundwater which may represent a mixture of differing groundwater types as discussed above (Davis and DeWiest, 1966; Hem, 1970).

The major ion data for wells screened in the overburden are presented in graphical form on the figures in Appendix D. The Piper trilinear diagram indicates that wells MW-9, MW-26, and MW-28 plot within the same half of the diamond (alkali). Well P-53 plots in a separate field and may reflect a difference in well construction for the piezometer. The three overburden wells which plot close within the trilinear diagram also exhibit somewhat similar Stiff diagram "patterns". The similar pattern is marked by dominant sodium plus potassium with an absence of calcium and magnesium. comprises a dominant anion with variable sulfate. The concentrations of dominant ions in equivalent per million (EPM) is between 20 and 40. Overburden well P-53 exhibits a dissimilar Stiff diagram "pattern" and is characterized by a much lower concentration of less than 10 EPM for its dominant ions.

The majority of wells sampled within Horizon A exhibit clear similarities in chemical composition. Monitoring wells MW-8, MW-20S, MW-27S, MW-34, MW-35S, and MW-36S all contain sodium plus potassium as the predominant cation, sulfate as the predominant anion, and plot towards the extreme right of the central plotting rhomb (non-carbonate alkali) typically representing ocean waters and brines (Walton, 1984). The predominant groundwater type encountered in Horizon A may thus be classified as a sodium-sulfate type (Davis and DeWiest, 1966).

Horizon A wells MW-19 and MW-25S plot towards the center of the rhomb classifying them as a somewhat "neutral" chemistry where no cation-anion pair exceeds 50 percent of the total dissolved solids. This characteristic is also seen in the Stiff diagram "patterns" in which the aforementioned "brine" wells exhibit somewhat similar patterns and EPM concentrations between 30 and 100. Wells MW-19 and MW-27S exhibit dissimilar Stiff "patterns" with EPM concentrations of less than 20. The "brine" Stiff patterns are marked by dominant sodium plus potassium and sulfate with variable calcium magnesium and bicarbonate. The apparently anomalous major ion characteristics for these two wells may again be due to their construction. Well MW-19 contains a long (35 foot) open interval which starts at the top of the bedrock surface. Well MW-27S is located within several feet of the new well AW-2 and may have been impacted by drilling fluid during construction.

Of the four wells screened within Horizon B (MW-20D, MW-27D, MW-35D, and MW-36D), three exhibit similar chemical properties. For reasons unknown at this time, well MW-35D exhibits dissimilar chemical properties. The majority of these B wells contain sodium plus potassium, and sulfate as their dominant cations and anions, respectively. These wells also plot within the extreme right of the plotting rhomb, characterizing them as a sodium sulfate type water. The Stiff "patterns" of these wells are marked by similar values of predominant sodium plus potassium and sulfate which exceed concentrations of 35 EPM (predominantly greater than 50).

Of the five wells (AW-1 through AW-5) screened within Horizon C, few similarities in the major ion data can be observed. It should be noted that the water quality database for these wells consist of analytical results from sampling episodes conducted shortly after the wells were completed.

A major ion evaluation of water from the two quarry coreholes was also conducted. It is noteworthy that both coreholes plot close together on the trilinear diagram, towards the center of the plotting rhomb. This area corresponds to the "neutral" field in which no one cation-anion pair exceeds fifty percent of the total ions. Comparison of the similar Stiff diagram "patterns" suggest equally similar water chemistry between the coreholes (as would be expected). Perhaps the most significant characteristic inherent of

the corehole Stiff graph involves the extremely weak ion strength (less than 3 EPM) which is not usually characteristic of groundwater. This property may suggest that groundwater discharging from the coreholes is being recharged by the Hudson River as discussed in Section 4.4.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions have been drawn from the data and interpretations presented in this report.

- Over 600 feet of bedrock stratigraphy have been identified beneath the study area. The formations consist of shale, limestone and dolomite of Ordovician Age and dip to the south at approximately three degrees.
- Three hydrostratigraphic horizons (fractures) have been identified and correlated for over 4,800 feet across the study area. At least two of these horizons (B and C) have been shown to significantly control the horizontal movement of groundwater flow.
- o Groundwater flow in each of the three horizons has been conceptually shown to discharge to the western area of the limestone quarry, south of the Hudson River. These flow scenarios were developed using direct water level measurements from wells, indirect observations of seeps and flowing rock coreholes and the application of standard principles for converging flow to a discharge area.
- o Groundwater in the overburden soils flows south discharging into the Hudson River.
- The quality of groundwater determined in selected wells on the Main Plant site generally confirms previously collected data. Several organic and inorganic constituents were present in concentrations exceeding drinking water standards.
- None of the organics which were analyzed was reported south of the Hudson River, in or near the limestone quarry. Furthermore, none of the inorganic constituents was reported above or even close to drinking water standards off site. These results were repeated for four consecutive months of testing.

The Main Plant site is not having a detectable impact on groundwater (or surface water in the seep) at its discharge point in the limestone quarry.

The following recommendations are offered and have been addressed in the Groundwater Monitoring Plan.

- Horizon A is only present over a limited area on the Main Plant site and is represented by ten existing wells. Across the river, Horizon A outcrops in a seep in the northern wall of the western quarry area. This seep has been sampled four times and was found not to contain detectable concentrations of contaminants. As a consequence, no additional A horizon wells are necessary.
- o B Horizon wells are needed south of the Hudson River. These wells should be located east and south of the discharge area. This approach would not only provide a definition of the B Horizon but would provide vertical gradients.
- o Two Additional C Horizon wells on the eastern portion of the Main Plant site are necessary to evaluate groundwater quality in this horizon.
- o Further attempts should be made to locate the remaining production wells on the Main Plant site. They should be geophysically logged and then sealed to prevent continued vertical connection between horizons.
- The water quality in the quarry should be monitored on a quarterly basis.

REFERENCES

Basham, R.B., and W. Macune, 1952. "The Delta-Log, a differential temperature surveying method", Petroleum Trans., AIME, v. 195, pp. 123-128

Davis, S.N. and R.J.M. DeWiest, 1986. Hydrogeology, John Wiley & Sons, 463 p.

Fisher, D.W., 1984. Bedrock Geology of the Glens Falls-Whitehall Region, New York; New York State Museum, Map and Chart Series Number 35.

Hem, J.D., 1972. "Study and interpretation of the chemical characteristics of natural water," 2nd ed., U.S. Geol. Survey Water Supply Paper No. 473, 363 p.

Norris, S.E., 1972. "The use of gamma logs in determining the character of unconsolidated sediments and well construction features," Ground Water, v. 10, No. 6, pp. 14-21.

Ruedemann, R., 1912. Lower Siluric Shales of the Mohawk Valley, N.Y. State Museum Bulletin 162.

USEPA Record of Decision (ROD) for "Moreau Site", July 13, 1987; Appendix D: "Quantity and Quality of Water from Public Supply Wells and Springs in the Village of South Glens Falls, New York."

APPENDIX A ANALYTICAL DATA SUMMARY TABLES

U	٦
1	_
61	J
+	ı
Mot	U
÷	5
-	•
_	
٠	
ż	ľ
	Ī
٠.	
и	
_	J
	3
=	7
TAB	
۰	۰

	hexavalent chromium	13.2 1.39 4.7 41 42 0.81	2.4 <0.005 <0.005 1.32 <0.005 <0.005 <0.005 <0.005	 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
	zinc h	0.0000000000000000000000000000000000000	0,000000000000000000000000000000000000	000000000000000000000000000000000000000
	thallium	\$	66666666666666666666666666666666666666	666666666666666666666666666666666666666
	silver	000000000000000000000000000000000000000	00000000000000000000000000000000000000	0.0000000000000000000000000000000000000
	selenium	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	6.005 6.005	0.000000000000000000000000000000000000
	nickel	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	66000600000000000000000000000000000000	000000000000000000000000000000000000000
	per Liter mercury	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.000 0.000	0.0005 0.0005
	Milligrams p lead	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
	ions in Mi copper	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	60.025 60
	Chromium	13.6 1.58 1.61 4.2 4.2 4.0 3.7 0.60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
	cadmium	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	beryllium	000000000000000000000000000000000000000	666666966666666666666666666666666666666	666666666666666666666666666666666666666
Metals	arsenic	0.017 0.025 0.042 0.042 0.010 0.010 0.011 0.011	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
TABLE A-1:	antimony	66666666666666666666666666666666666666	\$	\$
	‡			
	Location	MU-26 MU-28 MU-28 MU-34 MU-9 MU-9 P-53	74-19 74-19 74-10 74-20 74-20 74-20 74-20 74-20 74-30 74-30 74-30 8-6-7	\$222222222 \$22222222222222222222222222
	Date	13. Sep. 88 13. Sep. 88 14. Sep. 88 14. Sep. 88 14. Sep. 88 15. Sep. 88 15. Sep. 88 15. Sep. 88	15-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 13-Sep-88 14-Sep-88 14-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88 16-Sep	15-Aug-88 15-Aug-88 15-Aug-88 14-Sep-88 14-Sep-88 24-Oct-88 22-Nov-88 15-Aug-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88
	Lab 10	88998 88998 88999 89003 89004 89079 89175 89176 89178 89178	B9179 B9179 B9078 B9078 B8096 B8996 B8996 B9083 B9083 B9083 B9184 B9173 B9173 B9174 B9173 B9174 B9173 B9174 B9173 B9174 B9173 B9174 B9173 B9174 B9173 B9174 B9173 B9174 B9176	201212424848484848484848484848484848484848

### Dear Contion Factor Concentration in Militarina per Liter Concentration in Militarina per Liter Concentration	hexavalent	<0.005 <0.005 <0.005	0.005 47 46 <0.005 <0.005	<pre><0.002 <0.002 <0.005 <0.005 <0.005</pre>	<0.005	60.005 60.005 60.005 60.005 60.005
	zinc	0.02 0.03 0.02 0.02 0.02	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.32 <0.02 0.05 0.04	0.02 0.02 0.02 0.02 0.02 0.02 0.02
15.55P-88 W-230 Co.06 Co.01 Co.07	thallium	66,666.66 22.2222	666666666666	0000000000	<pre></pre>	00000000
13.58pc 88 Hr.200 1	silver	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	<0.02 <0.02 <0.02 <0.02	0.02 0.02 0.03 0.03 0.03 0.03
13.55p-38 W-270 Concentrations in Milligrams per Liter-15 W-270 Concentrations in Milligrams per Liter-15 W-270 Co. 0.0	selenium	60.00 60.00 60.10 60.11 60.11				
1.5 Sep-88 W-270 F -0.06 -0.01 -0.01 -0.01 -0.02 -0.02 -0.005	nickel	000000000000000000000000000000000000000			70.00 70.00 70.00 70.00	
	per Liter	40.000540.000540.000540.000540.0005			<0.0005 <0.0005 <0.0005	60.0005 60.0005 60.0005 60.0005 60.0005 60.0005
	illigrams lead	60.005 60.005 60.005 60.005 60.005				
14-Sep-88 MV-200 F -0.06 -0.01	ions in copper	0.025 0.025 0.025 0.025 0.025 0.025 0.025			<0.025 <0.025 <0.025 <0.025	
14-Sep-88 MV-200 F -0.06 -0.01	Concentrat	60.02 60.02 60.03 60.03 60.03	0.05 4,4,4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	000000000000000000000000000000000000000	0.06 <0.02 <0.02 <0.02	60.02 60.03 60.03 60.03 60.03 60.03 60.03
14.5ep-88 MV-270 F 0.06 0.011 15.5ep-88 MV-370 F 0.06 0.011 15.5ep-88 MV-350 F 0.06 0.052 15.5ep-88 MV-350 F 0.06 0.052 15.5ep-88 MV-350 F 0.06 0.052 15.5ep-88 MV-2 F 0.06 0.012 15.5ep-88 AV-2 F 0.06 0.012 15.5ep-88 AV-2 F 0.06 0.011 15.4ug-88 A POND F 0.06 0.011 15.5ep-88 MV-405 F 0.06 0.011 15.5ep-88 MV-406 F 0.06 0.011 15.5ep-88 MV-405 0.06 0.011 15.5ep-88 MV-405 0.06 0.011	admicm	6666666 9999999999	666666666666		6.0.0 0.0.0 10.0 10.0	
Date Location ** antimony 14-Sep-88 MW-270 13-Sep-88 MW-270 14-Sep-88 MW-270 14-Sep-88 MW-270 15-Sep-88 MW-370 15-Sep-88 MW-350 15-Sep-88 MW-3 15-Sep-88 MW-3 15-Sep-88 MW-3 15-Sep-88 MW-3 15-Sep-88 MW-4	beryllium	666666 22222222	6666666666666		6.00 6.00 10.00 10.00	6666666 2222222
14. Sep-88 MW-270 F 13. Sep-88 MW-270 F 14. Sep-88 MW-270 F 14. Sep-88 MW-270 F 14. Sep-88 MW-270 F 15. Sep-88 MW-350 F 15. Sep-88 MW-2 F 15. Sep-88 MW-4 F 15. Sep-88 Q POND F 15. Aug-88 Q POND F 15. Aug-88 Q POND F 15. Sep-88 MW-40S F 18. Sep-88	arsenic	40.01 0.011 40.01 40.01 40.01 0.052 0.059	0.00 0.045 0.00 0.00 0.00 0.00 0.00 0.00		0.018 <0.01 <0.01 <0.01	6,6,6,6,6,6 2,2,2,2,2,2
Date Location 14. Sep-88 MW-200 13. Sep-88 MW-270 14. Sep-88 MW-270 14. Sep-88 MW-270 15. Sep-88 MW-350 15. Sep-88 MW-350 15. Sep-88 MW-350 15. Sep-88 MW-350 15. Sep-88 AW-2 25. Sep-88 AW-4 04. Oct -88 AW-4 04. Oct -88 AW-4 04. Oct -88 AW-2 25. Sep-88 AW-4 05. Sep-88 AW-4 06. Oct -88 AW	antimony	99999999 8889899999	00000000000000000000000000000000000000		0.00 0.00 0.00 0.00	
Date L L L Sep-88 H L Sep-88 H L Sep-88					4 <u>.</u> 1 <u>.</u>	
Date 14. Sep- 13. Sep- 15. Sep- 16. Sep- 17. Sep	Locatio		AAV-22 AAV-24 AAV-34 AAV-44 AA		007-MW 007-MW 007-MW 007-MW	8118 118 118 118 118
*	Date	Sep-	oct.	Avug- Avug- Sep- Sep- Sep- Vov-	15.8ep- 15.8ep- 29.8ep- 29.8ep-	Sep- Sep- Sep- Oct- Nov-
ν 5 -	Lab 10	89076 89000 89001 89081 89082 89181 89181	Horizon C 90245 90245 90042 90042 91293 91293 89604 89604 90247 90247 91294 91295	Surface 87405 87406 87406 87408 87408 89086 99086 91300 91301 92341		88995 89070 89170 90041 90244 91291

** F indicates sample filtered

	per Liter	sodium		700 690 690 2220 2220 1650 770 770 770 135		81 1110 960 380 400 380 1780 370 370 13.1 13.1 15.6 9.6		7%7% 5.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
so.	lligrams p	magnesium		2.0 2.0 4.1 6.6 8.7 8.7 6.5 7.3 5.8 5.8 5.8 5.8		28 28 28 28 28 28 28 28 28 28 28 28 28 2		0-020m-2000-0000-7-7-8
: Major lons	tions in Mi	potassium		4.4.4.5.1.0.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		4.7 4.6 4.7 4.6 4.7 4.0 8.2 11.3 11.3 8.3 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		22777 11.3 2002 23.4 23.3 2003 23.4 23.4 23.4 24.4 25.4 25.4 25.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26
TABLE A-2	Concentra	calcium		2.2.1.8 2.2.2.0 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		128 128 128 128 128 128 128 128 128 128		55588333333333333333333333333333333333
		‡						
		Location		MU-26 MU-28 MU-34 MU-9 MU-9 MU-9 P-53		MW-19 MW-20S MW-25S MW-25S MW-25S MW-25S MW-35S MW-36S MW-8 MW-8 SEEP SEEP SEEP SEEP SEEP SEEP SEEP SEE		¥ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		Date	_	13. Sep-88 13. Sep-88 13. Sep-88 14. Sep-88 14. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88		15. Sep-88 14. Sep-88 13. Sep-88 13. Sep-88 14. Sep-88 14. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 24. Oct 1-88 22. Oct 1-88 22. Nov-88		15- Aug-88 15- Aug-88 14- Sep-88 14- Sep-88 14- Sep-88 22- Nov-88 15- Aug-88 16- Sep-88 16- Sep-88 22- Nov-88 16- Sep-88 14- Sep-88 22- Nov-88 14- Sep-88
		Lab ID	Overburde	88998 88903 89004 89004 89079 89175 89177 89178 89188	Horizon A	89179 89180 89077 89078 88997 89083 89184 89174 89174 89174 89174 89174 89174 89174 89173 91302 91303 92343	Horizon B	87399 87401 87401 87401 89072 91296 91297 92337 87403 89074 89074 89074 89074 89074 89074 89074 89074

	per Liter
TABLE A-2: Major lons	Concentrations in Milligrams per Liter

sodium	80 330 370 1110 1090 470 480		330 330 330 330 330 330 330 330 330 330	31 88		18.5 19.2 19.1	36.2.68		29 19.0 13.3		~~~~~~
magnesium	33 68 68 60 61 61 61		1.29 41 16.5 15.9 18.4 14.0 14.3	18.3 7.2 6.6		26265			30 6.0 84 76		555555
potassium	24 470 520 21 16.4 2000 2100		440000000 646101010			77 74 74 74 75 75 80 80	32.7.3		8.5 3.8 24 21		~~~~~
calcium	53 260 280 190 177 200 197		74.54 74.57 73.83 83 83 83 83.83 83 83 83 83 83 83 83 83 83 83 83 83 8	23 62 33		58 53 53 54	7 7 7 7 7 7 7 7 8 8 8 7 7 7 7 8 7 7 7 7		168 58 210 195		~~~~~~
*				<u>. </u>		<u>. </u>			<u> </u>		
Location	MV-200 MV-270 MV-350 MV-350 MV-350 MV-360		AAU-22 AAU-22 AAU-33 AU-33 AU-34 AU-			POND POND POND POND POND POND POND POND			007-MW 007-MW WM-408 WM-408		118 118 118 118 118
Date	14 - Sep - 88 13 - Sep - 88 14 - Sep - 88 14 - Sep - 88 15 - Sep - 88 15 - Sep - 88		03-0ct-88 03-0ct-88 29-sep-88 29-sep-88 25-0ct-88 22-sep-88 22-sep-88	\$ \$ \$ \$		15-Aug-88 15-Aug-88 15-Aug-88 15-Aug-88 14-Sep-88	4.Sep- 4.Oct- 2.Nov- 2.Nov-		15.Sep-88 15.Sep-88 29.Sep-88 29.Sep-88	ks	13-Sep-88 13-Sep-88 14-Sep-88 28-Sep-88 03-Oct-88 24-Oct-88
Lab ID	89076 89000 89001 89081 89082 89181 89182	Horizon C	90245 90246 90043 90043 91292 91293 89604	90248 91294 91295	Surface	87405 87406 87407 87408 89085	89086 91300 91301 92340 92341	Undefined	89185 89186 90044 90045	Trip Blank	88995 89070 89170 90041 91291 92335

** F indicates sample filtered

															•															
	purge volume gallons		1.2	3.0	5.9	3.0		2.4	18.0	:	2	8.7	9.5	7.0	15.3														i	30
	depth to water feet		7.55	10.89	18.19	5.43		11.01	7 80	;	17.37	25.53	30.90 31.05	26.53	14.04															41.28
	temp. deg C		15.3	14.4/12.9	23.6	14.3/15.0		19.2	5	2	10.7/11.4	10.4	10.7 18.5	10.9	10.5	21.6	21.4	9.8			12.9			12.7		12.2		12.5		11.1
	conduc- tivity mmho/cm.		2.82	1.5/1.8	6.20	3.18/3.30 14.3/15		1.24		5	4.93/5.0	2.90	1.49	3.55	3.98/4.15	.729	.85	1.068			.205			.186		.275		.152		.854
	field pH		10.1	10.9				•		•		8.3	9.5			8.03					7.66					7.33				٠
	Date		13-Sep-88	13-Sep-88	14-Sep-88	15-Sep-88		15 - Sep-88		12-sep-00	14-Sep-88	13-Sep-88	13-Sep-88 14-Sep-88	15-Sep-88	15-Sep-88	15-Aug-88	14-Sep-88	24-0ct-88			15-Aug-88			24-0ct-88		15-Aug-88		24-Oct-88		14-Sep-88
	total hardness mg/l as CaCO3	5000 60 1/6	43	41 2.5	2.8 64	50 57 57	252	796 787 387	į	609 477	782	298	320 904 169	153 588	687 54	40 360	396	303	525 521		119	116	29	355	8 10	126	165	107	134	612
	bicarbonate (as CaCO3) mg/l	À	337	18	250	159	139	929	į	386	880	189	264 71	285	202	84	18	109	26		120	119	28	106	108	125	150	124	126	546
field measurements	carbonate (as CaCO3)) fill	411	655	408	708	242	5	,	⊽	⊽	45	80 146	526	114	₽	7.0	₽	⊽		⊽	⊽	3.4	⊽	08.0	⊽	⊽	⊽	⊽	88
ield m	lab pk					10.4	10.5	7.4		7.1				9.3	8.4															
PH,	total cyanide	, file	6.7	0.43	0.19	1.19	26.0	5.0		0.86	1.49	0.23	0.37	0.32	0.27	<0.01	<0.01	<0.01	<0.010		<0.01	<0.01	<0.01	<0.01	<0.010	<0.01	<0.01	<0.01	<0.010	0.03
ns, 10S,		, ki	2000	1160	4450	2320	2320	730		260	3890	2400	960	2760	2970	265	610	908	290		279	272	165	210	292	274	320	544	278	7.50
A-3: Major ions,	sulfate mg/l	7	710	230	2500	950	860	69		280	2200	1290	360	1530	1490	330	390	570	067		87	20	52	43	87	53	55	87	20	45
TABLE A-3:	chloride	1/6	7	3.9	550	16.3	15.6	52		1.9	35	58	16.4	88	69	3.6	5.7	4.2	3.7		33	33	13.4	27	2.8	34	37	31	31	&
	*			L	ш.	ш.	L	<u></u>		u	_ '	L	L	u.	L.	L	u.	u.	<u>. </u>		,		٠ ـ	٠ .		<u>.</u> .	<u>.</u> 1	<u>.</u> .		_
	Locat ion MV-26 MV-28 MV-38 MV-39 MV-9 MV-9 MV-9 MV-9 MV-9 MV-9 MV-9									MV-19	MV-20S	MW-20S MW-25S	MU-25S MU-27S MU-35S	MU-358	MW-36S MW-8	MW-8 SEEP	SEEP SEEP	SEEP SEEP	SEEP SEEP SEEP		CH-2	7-7- CH-5	CH-2	CH-5	CH-2 CH-2		CH-5	CH-5		MW-200
	Date		, ,	, ,, ,,	7, 7,	9, 9,	0,0,	15 - Sep - 88 15 - Sep - 88 15 - Sep - 88		15 - Sep - 88	14 - Sep - 88	14 - Sep - 88 13 - Sep - 88	13 · Sep · 88 13 · Sep · 88 14 · Sep · 88	14 - Sep - 88	15 - Sep - 88 15 - Sep - 88	15-Sep-88 15-Aug-88	15-Aug-88 14-Sep-88	14-Sep-88 24-Oct-88	24.Oct-88 22.Nov-88 22.Nov-88		15 - Aug - 88	15-Aug-88	15-Aug-88 14-Sep-88	14 - Sep - 88 24 - Oct - 88	24 - Oct - 88 22 - Nov - 88	22-Nov-88 15-Aug-88	15 - Aug - 88 14 - Sep - 88	14 · Sep · 88 24 · Oct · 88	24-Oct-88 22-Nov-88	14 - Sep - 88
	Lab 10	doction	RROOR A	88999	89004	89080 89175	89176 89177	89178 89187 89188	⋖										91303 92342 92343	Horizon B					91297					

	purge volume gallons	57.3	20.3	52	2	₹ .	;	ş		06	2.0							12	7.0						
	depth to water feet	36.72	35.88	43.83	70 67	50 20	7	59.88	2.58	5.83	387.1							16.63	48.66						
	temp. deg C	10.7	15.3	10.9		2.1.2	- (10.9	10.5	10.8	Ξ.		21.7		18.0	11.3		16.6	1.1						
	conduc- tivity mmho/cm.	4.4	97.9	13.4	ć	14.7	0).	3.10/3.14	99:	.761	. · ·		.477		87.	.505		.411	1.54/1.66						
	field pH	6.9	8.32							7.3			8.07												
	Date	13-Sep-88	14 · Sep · 88	15-Sep-88	;	03-0ct-88	29-Sep-88	25-0ct-88	22·Sep-88	04-Oct-88	25-Oct-88 22-Nov-88		15-Aug-88		14-Sep-88	24-0ct-88		15-Sep-88	29 - Sep - 88						
	total hardness mg/l as CaCO3	268 921	979 812	664 664 657	,	18.8 11.2	253	281 288	560	282	273 184 160		210	210	197	171	157	543	170 870		ı	\ \ \ \ \	>	>	
	bicarbonate (as CaCO3) mg/l	342	240	255		⊽ ¦	350	340	230	250	82		116	116	108	114	140	157	310		1	3.2.5 2.2.5	3.5 0.51 2.5	2.8	
pH, field measurements	carbonate (as CaCO3) mg/l	₽	₽	⊽		360	⊽	⊽	⊽	⊽	⊽		⊽	⊽	8.0	⊽	⊽	2	. ∠			⊽ ⊽⊽	555	⊽	
ield m	lab PH			7.8		11.5	7.4		7.3	7.7								0	7.2	6.5 6.5			6.8 6.8		
TDS, pH, f	total cyanide mg/l	0.23	0.12	0.043		<0.01	0.87	0.72	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.010	5				6.6.6 2.2.2	6.6.6 2.2.2	<0.010	filtered
ions, TC	1DS mg/l	3330	3890	7190		1440	1130	1130	390	727	432		333	325	340	257	335	000	1210			25 25 10 10	9.0	30.	sample f
Major	sulfate mg/l	1880	2800	4700		260	350	350	52	33	53		118	110	104	89	89	*	510			~~ ~	555	⊽	F indicates sa
TABLE A-3:	chloride mg/l	%	121	112		22	126	129	45	22	154		21	22	23	22	30	÷	8 29			0.00 2.00 5.00 5.00 5.00 5.00 5.00 5.00	000	0.0	** F ind
	*		ш.	<u>u</u> u		u	٠,	_	u.	ш.	ட			L	u.	L	ш ц		L	u.					
	Location	MW-200	MW-270	MV-350 MV-360 MV-360		AV-1	-2- -2-	AU-2 AU-2	AU-2 AU-3	AW-3	AW-5 AW-5						Q POND Q POND Q POND		007-MW	MM-40D		18 18	82 82	8 8	
	Date	Sep.	Sep.	14 - Sep - 88 15 - Sep - 88 15 - Sep - 88		03-0ct-88	29 - Sep - 88	29-Sep-88 25-Oct-88	25.0ct-88 22.Sep-88	22-Sep-88 04-0ct-88	04-0ct-88 25-0ct-88 25-0ct-88		15-Aug-88	15-Aug-88 15-Aug-88	15 - Aug - 88 14 - Sep - 88	14-Sep-88 24-Oct-88	24-Oct-88 22-Nov-88 22-Nov-88	, ,	15 - Sep - 88 15 - Sep - 88 29 - Sep - 88	29-Sep-88	anks	13-Sep-88 13-Sep-88	28-Sep-88 03-Oct-88	22-Nov-88	
	Lab ID	89076	89001 89081	89082 89181 89182	Horizon C	90245	90042	90043	91293 89604	89605	90248 91294 91295	Surface					91301 92340 92341		89185 89186 90044	90045	Trip Blar		90041		

TABLE A-4: Organics

	chloro- form	12500 50 50 50 50 50 50 50 50	ž	222222222222222222222222222222222222222		8288888888 <u>8</u> 888		4 20 20 4 70 70 70 70 70 70 70 70 70 70 70 70 70		22222		20
	2- chloroethyl vinyl ether	25000 100 100 100 100 100	Ē	5655555555		999999999999999		555555		55555		100
	chloro- ethane	25000 1001 1001 1001 1001	Ş	5355555555		255555555555555555555555555555555555555		900000 1000000		900000		100
	1,1,2,2- tetrachloro- ethane	12500 50 50 50 50 50 50	ā	ZZZZZZZZZZZZZZZZZ		2222222222 <u>5</u> 23 <u>5</u>		222222		22222		20
ل	1,12. trichloro- ethane	2550 25 25 25 25 25 25 25 25	i			22222222222222222222222222222222222222		22222		22222		20
ns per liter	11. dichloro- ethane	1250U 50 50 50 50 50 50 50	į	22222222 22222222		3222222222222 322222222222222222222222		22222		22222		20
in micrograms	1,11. trichforo- ethane	1250 22 22 22 23 23 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	i	22222222222222222222222222222222222222		ន្តនន្តនន្តនន្តនន្តន		22222		2222		20
Concentrations	12- dichloro- ethane	12500 50 50 50 50 50 50	i	22222222		**************************************		222222		22223		ΣΩ
Con	chloro. benzene	1250U 50 50 50 50 50 50	i	222222222222222222222222222222222222222		3,420 3,420 3,410 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,		222222		2222		50
	carbon tetra: chloride	1250U 50 50 50 50 50 50	i	35222223333		23222222222222222222222222222222222222		222222		22223		20
	benzene	12500 52 23 50 50 50 50	i	22222222		ZZZZZZZZZZZZZZZZZZZZZZZZZ		222223		22222		20
	T0X	0.102 0.105 0.20 0.21 0.21	,	1.37 0.72 11.3 0.060 35 12.1 <0.020 <0.020 <0.020		0.146 0.140 0.049 0.037 0.152 0.051 0.051 0.061 9.2		0.34 0.30 0.26 0.036 0.020		0.082 0.066 0.037 0.050 0.029		<0.020
	Location	8 MV-26 8 MV-34 8 MV-34 8 MV-9 8 MV-9 9 P-53		M. 19 M. 20S M. 20S M. 27S M. 35S M. 35S M. 36S M.		CH-2 3 CH-2 3 CH-2 5 CH-2 5 CH-2 5 CH-2 6 CH-2 6 CH-2 7 CH-3 7 CH-3 8 CH-2 8 CH		AV-2 AV-2 AV-4 AV-5		D POND D		MM-408
	Date	13-Sep-88 13-Sep-88 14-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88		15. Sep. 88 14. Sep. 88 13. Sep. 88 14. Sep. 88 15. Sep. 88 15. Sep. 88 15. Sep. 88 15. Sep. 88 15. Sep. 88 15. Sep. 88		15-Aug-88 14-Sep-88 14-Sep-88 22-Nov-88 15-Aug-88 14-Sep-88 14-Sep-88 14-Sep-88		03-0ct-88 29-Sep-88 25-0ct-88 22-Sep-88 04-0ct-88 25-0ct-88		15 - Aug - 88 15 - Aug - 88 14 - Sep - 88 24 - Oct - 88 22 - Nov - 88	_	15-Sep-88
	Cab 1D	88998 1 89003 1 89079 1 89175 1 89177 11		89179 889077 88908 89003 89083 89183 89173 87409 89087	Horizon B	87389 87401 89071 91296 92336 87403 89073 91298 92338 89075 89000 89018	Horizon C	90245 90042 91292 89604 90247	Surface	87405 87407 89085 91300 92340	Undefined	89185

ဗ
•=
gan
Ģ
ō
••
4
ż
•
ш
_
ABI
\succeq

	bromodi- chloro- methane	1250U 50 50 50 50 50 50	200 200 200 200 200 200 200 200 200 200	\$\$\$\$\$\$\$\$\$\$\$ <u>\$</u> \$	222222	33333	20
	bromoform	12500 50 50 50 50 50 50	282222223233 282222323333	3888888888 <u>8</u> 88	222222	22223	50
	bromo- methane	25000 100 100 100 100 100 100	56555555555	90000000000000000000000000000000000000	001 1001 1001 1001	100 100 100 100 100	100
	chloro- methane	2500U 100 100 100 100 100	565555555555555555555555555555555555555	001 1001 1001 1001 1001 1001 1001 1001	0000000	001 1001 1001 1001	100
r liter	methylene chloride	851 851 851 851 851	25.000	25555555555555555555555555555555555555	6 6 6 7 7 7 8 7 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8	05 821 821 821 821	NS.
פת אוופיוסטי	dichloro- benzene	37000 190	799	410	21		
im ai	ethyl - benzene	1250U 50 50 50 50 50 50 50 50	ನನನನನನನನ	ೱೱೱೱೱೱೱೱೱೱೱೱೱ	22222	22222	20
Concontrations in microarams per liter	cis-1,3- dichloro- propene	125 50 50 50 50 50 50 50 50 50 50 50 50 50	222222222 2222222222	888888888 <u>8</u> 88	22222	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	NS
	trans-1,3- dichloro- propene	1250 20 30 30 30 30 30 30 30 30 30 30 30 30 30	222222222 222222222	ននននននននន្តិនន្ត	SSSSS	2222	50
	1,2- dichloro- propane	125 02 02 03 03 03 03 03	\$	888888888 <u>8</u> 88	22222	22222	SU.
	1,2. dichloro- ethene	12500 22 32 32 32 32 32	222222222 222222222	32222222222 32232222222222222222222222	22222	22.22.22.22.22.22.22.22.22.22.22.22.22.	20
	1, 1. dichloro- ethene	12500 50 50 50 50 50 50	222222222 222222222	3323232323 <u>5</u> 35	22222	22222	20
	Location	MV-26 MV-28 MV-3 MV-9 P-53	MW-19 MW-20S MW-25S MW-35S MW-35S MW-35S MW-36S SEEP SEEP SEEP SEEP	\$22.50 \$25.50 \$4.50 \$5.5	AV-1 AV-2 AV-4 AV-5	a Pond a Pond a Pond a Pond a Pond	MM-40S
	Date	13 · Sep · 88 13 · Sep · 88 14 · Sep · 88 15 · Sep · 88 15 · Sep · 88 15 · Sep · 88	15. Sep-88 114. Sep-88 113. Sep-88 14. Sep-88 14. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 16. Sep-88 17. Sep-88	15-Aug-88 15-Aug-88 14-Sep-88 24-Oct-88 22-Nov-88 15-Aug-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88	03-0ct ·88 29-Sep·88 25-0ct ·88 22-Sep·88 04-0ct ·88 25-0ct ·88	15-Aug-88 15-Aug-88 14-Sep-88 24-Oct-88 22-Nov-88	15-Sep-88
	Lab ID Overburden	88998 89003 89079 89175 89177	Horizon A 89179 89077 88906 89083 89183 89173 87409 89087 91302	Horizon B 87399 87401 89071 91296 974336 89073 89075 89080 89081 89181	Horizon C 90245 90042 91292 89604 90247	Surface 87405 87407 89085 91300 92340	Undefined 89185

Organics
A-4:
ABLE
-

:					
	chloro-	50		2222223	
	bromoform	50		222222	
	bromo- methane	100		555555	
	chloro- methane	100		5555555	
r liter	methylene chloride	2€		888888 83	
crograms pe	o- dichloro-				
ons in mi	ethyl- benzene	20		222222	
Concentrati	cis-1,3- dichloro-	propene 50		222222	
Concentrations in micrograms per liter	trans-1,3. dichloro-	propene 50		22222	
	1,2- dichloro-	propane 50		222222	
	1,2- dichloro	etnene 50		222222	
	1,1- dichloro-	etnene 50		222222	
	Location	MW-40D		18 18 18 18 18 18	
	Date	29 - Sep - 88	ks	13. Sep-88 14. Sep-88 14. Sep-88 28. Sep-88 03. Oct -88 24. Oct -88 22. Nov-88	
	Lab ID	5006	Trip Blanks	88995 89070 89170 90041 90244 91291	

U · Compound analysed for but not detected; the number shows the detection level for the compound LCD · Compound detected, but at low concentration, comparable to that in the blank C · Number has been corrected for the presence in the blank J · An estimated value which is below the reliable detection limit

									•		
total xylenes	1250U 50 23 50 50 50 50		25222523333		888888888 <u>8</u> 88		222222		22222		20
vinyl acetate	2500U 10U 10U 10U 10U 10U		5655555555		\$5555555555555555555555555555555555555		<u> </u>		<u> 55555</u>		100
styrene	1250U 50 50 50 50 50 50		222222222222222222222222222222222222222		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		50 50 50 50 50 50 50		22222		20
4-methyl. 2-pentanone	2500U 100U 100U 100U 100U		99999999999		999999999999999		955555		<u>55555</u>		100
2. hexanone	2500U 100 100 100 100 100		<u>58555555555</u>		25222222222222		<u>555555</u>		55555		100
carbon disulfide	1250 22 22 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25		22222222		នឹងស្តីឧងឧងឧងឧ		********		22222		20
2. butanone	100 100 100 100		96 96 96 96 96 96 96 96 96 96 96 96 96		E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6666668 6666668		100 100 100 100		100
acetone	108 108 260 450 108		100 100 100 100 100 100 100 100 100 100		8888558888888		24C 1CB 1CB 1CB 1CB 1CB		8332 <u>5</u> 6		FCB
vinyl chloride	25 00 00 00 00 00 00 00 00 00 00 00 00 00		56555555555		9999999999999		999999		55555		100
tri. chloro. ethene	25 25 25 25 25 25 25 25 25 25 25 25 25 2		22222222 2222222		322222222222 3222222222222222222222222		52.25		22222		20
toluene	1250U 51 23 50 50 50 50		££££\$\$£££8£		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		122222		22223		20
tetra- chloro- ethene	125 02 02 03 03 03 03 03		252222232		2222222222 <u>5</u> 23 <u>5</u>		222222		22222		20
dibromo- chloro- methane	1250 22 22 23 23 23 34 34		***************************************		22222222222 20222222222222222222222222		222222		22222		20
Location	MV-26 MV-34 MV-9 MV-9		M. 19 M. 208 M. 278 M. 358 M. 358 M. 368 M.		在		AAA.22 54.32 54.32		ONOO O O O O O O O O O O O O O O O O O		807-MW
Date	13-Sep-88 13-Sep-88 14-Sep-88 15-Sep-88 15-Sep-88 15-Sep-88		15. Sep-88 14. Sep-88 13. Sep-88 14. Sep-88 15. Sep-88 15. Sep-88 15. Sep-88 14. Sep-88 24.0ct-88		15-Aug-88 14-Sep-88 24-Oct-88 25-Nov-88 15-Nov-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88 14-Sep-88		03-0ct-88 29-sep-88 25-oct-88 22-sep-88 04-oct-88		15-Aug-88 15-Aug-88 14-Sep-88 24-Oct-88		15-Sep-88
Lab ID Overburde	88998 89003 89079 89175 89177	Horizon A	89179 89077 88996 89002 89183 89173 89173 87109 87109 87302	Horizon B	87399 87401 87401 87203 87403 87403 87403 87403 87403 87603 8763 8763 8763 8763 8763 8763 8763 876	Horizon C	90245 90042 91292 89604 90247	Surface	87405 87407 89085 91300 92340	Undefined	89185
	dibromo- tetra- tri- vinyl 2· carbon 2· 4·mcthyl· vinyl chloro- butanone disulfide hexanone 2·pentanone styrene acetate burden	Date Location dibromoring chloro- tri- vinyl 2- carbon disulfide 2- 4-methyl- vinyl 3-Sep-88 MW-26 1250U 100U 100U	dibromo- tetra- tri- vinyl 2- carbon 2- 4-methyl- vinyl 3- carbon 2- 4-methyl- vinyl 3- carbon 2- 4-methyl- vinyl 3- carbon 2- chloro-	Date Location chiloro- chil	13 15 15 15 15 15 15 15	Continue Continue	15.56p-88 NH-26. 1250u 1250u	Column C	## Coation Charter Coation Chicago Chi	Continue Continue	Continue Continue

TABLE A-4: Organics

	total cylenes	20		222222
	vinyl t scetate xy			222222
	styrene	20		222222
i alla	4-methyl- 2-pentanone	100		9999999
grams per	2. hexanone	100		99999999
concentrations in micrograms per	carbon disulfide	20		222222
ncentrario	2- butanone	FCB		900000000000000000000000000000000000000
	acetone	FCB		15C 1CB 24C 1CB 1CB 1CB
	vinyl chloride	100		555555
	tri- chloro-	etnene 50		222222
	toluene	20		222222
	tetra. chloro-	etnene 50		222222
	dibromo- chloro-	methane 50		222222
	Location	MW-40D		88 88 88 88 88 88 88 88 88 88 88 88 88
	Date	29·Sep-88	ıks	13. Sep-88 13. Sep-88 14. Sep-88 28. Sep-88 03. Oct-88 24. Oct-88
	Lab ID	90044	Trip Blanks	88995 89070 89170 90041 90244 91291

U - Compound analysed for but not detected; the number shows the detection level for the compound LCD - Compound detected, but at low concentration, comparable to that in the blank C - Number has been corrected for the presence in the blank J - An estimated value which is below the reliable detection limit

TABLE A-4: Organics

:	torm form	_		- -		-	٥.	_
	Ū			22	<u> </u>	. X	Т	አ አ
	2- chloroethyl	100		5 10 10 10	500	19	2	100
	chloro- ethane	100		55	55	100	1 0	100
	1,1,2,2- tetrachloro-	20		22	35	203	20	25
Ji	trichloro-	0S		22	3.5	22	20	2
in micrograms per liter	dichloro-	OS SU		33	3.5	22	25	2
	trichloro-	50		33	3.5	22	25	2
Concentrations	dichloro-	50		22	3.5	22	25	25
ος	chloro- benzene	20		25 20 20	3.5	22	25	2
	carbon tetra:	DS 20		22	3.5	22	25	Σ.
	benzene	20		33	25.5	22	3	20
	T0X	<0.020		<0.020	<0.020	<0.020	<0.020	<0.0>
	Location	MM-40D		18	18	18	18	18
	Date	29·Sep-88	ıks	13-Sep-88 13-Sep-88	14 - Sep-88	03-0ct-88	24-0ct-88	22-Nov-88
	Lab 1D	50044	Trip Blanks	88995 89070	89170	90244	91291	92335

U · Compound analysed for but not detected; the number shows the detection level for the compound LCD · Compound detected, but at low concentration, comparable to that in the blank C · Number has been corrected for the presence in the blank J · An estimated value which is below the reliable detection limit

APPENDIX B EXPLORATORY BORING LOGS

IUCOU	IRRE PORRTED		T BORING	G LOG	NO. AW-		
	gional Bedroc		<u>-</u>			of 5	
	<u>ba-Geigy Corp</u> HLLING DATA	•	1	CAMPI INI		6966	
CONTRACTOR:		1.		SAMPLIN	G METHODS TUBE	cor	R E
DRILLER:	Empire Soi Ed Cole	<u> 15</u>	TYPE	SAMPLER	100	NX.	
	Sailing F-10		DIAMETER			3"	
	later Rotary			REAM TO 6"			
	ELL CONSTRUCTI	ON	WELL DEV	ELOPMENT	GROUND	WELL	PROT CSC
	RISER	INTAKE	METHOD: Comp		ELEV 280.81	282.78	
MATERIAL	PVC	PVC		hours	DATE STARTED		58
DIAMETER	2"	211	YIELD:		DATE COMPLETE		
COUPLING	flush	flush	OTHER:	_	INSPECTOR: Ro	binson	
WELL CONSTRUCTION	E FI SAMP	LE	CLASSIFICA	TION			
	ODE DITHE	BLOWS PER 6 INCHES	(AFTER BURMIST		REMARKS		ROD
VOLCLAY G-ROUT 2" Sh. 40 PVC	-15 -20 -25	LARI V DE 6 LIME Wavy Style	DVERBURDEN RABEE LIMES ray, Vf.grained stone, inc beds (poss blites) LE LA MOTTE & Gray, V.f.q	TONE I fossiliferous ludes sible 23.0' FORMATION	0.4' FRACTUR (a 17.5' HORIZON A' Oxidatión	ı	59%
6"	-30 35 35 40	foss with few bec 2.1	iliferous Lin h wavy be o thin orga	MESTONE ds and a liaceous SEAM s become	,		85 % 62 %

	UARE RPORRTED	TEST BORING LOG	NO. AW-1	
PROJECT:	Regional Bedrock Eva	luation	SHEET NO. 2 of 5	
CLIENT:	Ciba-Geigy Corn.		PROJECT NO. 6966	
WELL CONSTRUCTION	를 SAMPLE	CLASSIFICATION	2544546	
	SAMPLE SAMPLE NO. TYPE BLOWS PER GINCHES	(AFTER BURMISTER, 1959)	REMARKS	RQD
3 1	1 40 GINCHES			HOLD
	-45 50	FORT ANN FORMATION Lt. Gray DOLOMITE ω/ horrlike, wavy beds which thicken with depth; siltite 18.0'	,	37%
	-55	U. Lt. Gray DOLOSTONE W/ diffusely bridged darker reones, freason offining sithite J	bedding plane pyrite @ 60.5'	90%
VOLCLAY GROUT	-65	SHALE beds to 3.0" thick 60.5" MASSIVE CALCISILTITE, Variable Mg content, mottled Lt and dk gray, rare calcite-filled vugs	(0) = 10(0, 0)	81%
701	-75 -80	Nodular Dolostone W/ argillaceous stringers Mottled Hand medium gray - Shale beds @		l∞%
	-85	U. Lt Gray, Stylolitic, phose- porallel bedard dolostone SILTITE. W/ Irregular Shale beds, Variable Mg content	Assilu 88.8-89.1	94%

	-	JU	LOU!	ALE	0			BORING LOG		NO. AW-1	
PROJ						ock Eval	uation			HEET NO. 3 of 5	
CLIEN		(liba-	Geis	y Co	rp.			P	ROJECT NO. 6966	
CONS	TRUC	TION	FE E		SAMI	PLE BLOWS DED		LASSIFICATION		REMARKS	2.5
			100 F	NO.	TYPE	BLOWS PER 6 INCHES	(AF1)	ER BURMISTER, 1959)			RaD
	and the district course to the district course of the district cours		-95 -100				bedded, n	clane-parallel lodular and LIMESTONE			98%
	D' PVC	VOLCLMY GROUT	-105 - - - - - -								100%
Pellet Seal	property of were an intender provident tenand edicators, britain a sebulative freigna		-115 - - - - - - - - -				modula w/thin interbed	112 Ided to bed r Doloston shale stringe ded "/ plane- bedded SILTI	rs -		100%
Bentonite			-130					s isolated t zoncs.			100%
SAND DACK			- - - - - - - - - - - -				stick	ne bed who nsides e interbeds	ŧ	WEATHERED - Breaks along SHALE Breaks in "poker Chips" HORIZON C"	97%

AMARE
IDCOGGGGGTED

TEST BORING LOG NO. AW-1

	DRPORATED	1 = -	SI BURING LUG	NO. 71W-1	
PROJECT:	Regional Bedroo	k Evaluatio	n	SHEET NO. 4 of 5 PROJECT NO. 6966	
WELL	Ciba-Geigy Corpon E F SAMPL		CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	RQD
	-145	Wavi Cald Thir	y bedded to bedded nodular cisiltite. Dolostone "/ n shale stringers, bedded "/ plane-parallel TITE 151.0'	Calcite-filled hairline fractures	100%
e-centerat Grout	-155	Vug bec	ular, plare-parallel add Dolostone	vugs are catato. filled	93%
HOLE Filled wy Bentonite - Comment	-165		160.9' Ny bedaud / bedaud Nular Doloston E	vertical, hairline fracture network w/	98%
NX CORE A	-130	Brea	ccia, calcite filling bytwo gular clasts. 180.5'	pyrite bed vertical, calcite - filled fractures	98%
	-135	GRE U	thed and stylolitic LOSTONE W/Irregular ds 186.0' THT MEADOWS FORMATION Gray, sucrosic, vugular carenitic Dolostone	uugs are calcite-filled	∞°/₀

AU			_		TEST	BOF	RING	LOG	NO. <i>‡</i>	1-WF	
PROJECT:]	Regio	nal	Bedr	ock Eval	uation				SHEET NO	. 5 of 5	
CLIENT: (i ba-	Geis		-					PROJECT N	10. 6966	
WELL	달		SAM	PLE		CLASS	SIFICATION	1	REM	ARKS	
	DEPTH O(FEET)	NO.	TYPE	BLOWS PER 6 INCHES	(4	FTER B	URMISTER, I	959)	I I I	AIII	ROD
	190			OTHORES	Comm	, n=n N		0.00			
+ 7					GKEHI	MIEHD	2M7 +0	RMATION			
Bontonite Cement			1		Lt Gray, S	Horos	יווו כאנ	aulac			1
انة	-			_	Li Gay,		, ou	y a lar			
3 1	-195	ļ			calcare	nta	DOPOR	TONE			
	-										19190
	-	ļ]								' '
1 5 /	F	ļ									
\ \frac{5}{2} \ 1	-										
1 1 1	-200										
1711	}				Plane-pa	aralle	.l bedo	ling @			<u> </u>
1 ' 3	-				201,5	- 207	7,91	J			
	 						- ' '				
Filled with					1+ 6-01	and	Mad	1+			
1 11	-205				Lt. Grav Gray, n Sucros	0.11	1 100				1000/
1 /					Gray, n	nottle	a, vu	gulai,			100%
w /1					Sucros	10	Dolos	TONE			
HOLE		1	-		0.0.0.	, •					
	-210				Possib	in de	140	2099'			
CORE	-				1	, C C C	سي احد	20 1. 1			
	-										
1 . 1	-		1								-
×	-	ļ]		
	-215		1						!		
\p	-										100%
1 Y	 	ŀ							1		
	†										
	1		1					250.0,			
+-	220	1				~ _	(1		
	†				END	01	COKI	NG			
	-								-		
	-225	1									
	-		1								
1	-										
	ŀ]
	-										
			1						1		
										-	
	_										
	_										
	-									•	
	-										
	-										
	-										

PROJECT: RECLIENT: C: DR CONTRACTOR: DRILLER: EQUIPMENT: I METHOD: V	PORATED egional Bedrock ba-Geigy Corp RILLING DATA Empire Soi Ed Cole Failing F-10 Water Rotary ELL CONSTRUCTION	k Evaluation	T BORING TYPE DIAMETER OTHER WELL DEVI	SAMPLING SAMPLER REPROSED TO 6" ELOPMENT	PROJECT NO. METHODS TUBE GROUND ELEV 235.78	of 4 6966 COP NX 3" WELL	PROT CSG
MATERIAL DIAMETER	PVC	PVC		hours_	DATE STARTED		
COUPLING	2"	211	YIELD:		DATE COMPLETE		188
WELL	flush	flush	OTHER:		INSPECTOR: Ro	DINSON	
CONSTRUCTION	NO. TYPE B	LE BLOWS PER 6 INCHES	CLASSIFICAT		REMARKS		ROD
VOLCLAY GROUT 2 Sch. 40 PW 6" outer Casin 5 T	-10 -15 -20 -25 -35	LARI MED (CALS tread -Fair ISL	RBURDEN PABEE LIM DX Gray, V ISILTITE), for LIMEST TH STYlolit E LA MOTT DX Gray, W Clostic LIM	fine-grained intry one w/ es 33.0°	Abundant bedaing plan fractures veetical Fracture 3 "HORIZON A	1-320'	43%
	<u> </u>						

AMARE
IDCORPORRIED

TEST BORING LOG NO. AW-Z

		RPDR				TEST BONNIES ESS	10. 7100 2	
PROJE	CT:				ock Eval	uation	SHEET NO. 2 of 4	
CLIEN.	T: /ELL	Ciba-	Gei	y Co	rp.		PROJECT NO. 6966	
CONS	TRUCTION	DEPTH (FEET	NO.	TYPE	PLE BLOWS PER ! 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	RQD
		-45				Argillaceous. Wally beds become thicker of depth		91%
	<i>6</i> "	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Rounded limestone Clasts and possible devotering structures. FORT ANN TORMATION Lt Gray DOLOSTONE W/ hairlike, wavy beds	"HOIZIZON B" Pyrite btwn Shale partings	63°h
T	an pre	-60				Very Lt. Gray and faint object bodded modular	Variable reactions to 5% HCI soln.	100%
CLAY GROUT) - - -70				texture.		100%
2701		-75				Predominantly plane-parallel bedded calcisitite	Vugs calcite-filler Calcite-filled, hoirline fractures	94%
		-85 -90				DOLOSTONE, few rugs Shale bed @ 88.5' 90.8'	hoirline troctures	89%

						_	TEST BORING LOG	NO. AW-2	
PROJ						ock Eva	luation	SHEET NO. 3 of 4	
CLIEN		TION	iba-	Geis	SAMI	rp.		PROJECT NO. 6966	
CONS	TRUC	NOLTS	뜐	NO	TYPE	PLE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	ROD
- {		ζ.	190	110.	11172	6 INCHES			ngv
			- -95				DOLOSTONE SILTITE W/ Twavy beds - bedded, nodula itexture. 940' MED Gray plane. parallel		98%
	PVC		-100				bedded Dolostone sittle of stylolites and noclules	Calcite-filled yertical fracture	65%
	4		-105 -				@102' Calcite-filled vugs		
GROUT			-110				Mottled w/ bedded nodules		98%
VOLCLAY			-120				Plane-parallel, mottled and wavy bedded DOLOSTONE w/ shale Stringer		100%
			-125				Vugular, plane-parallel bedded and wavij bedded calcisiltite		1∞%
			-130 -135				DOLOSTONE	-	100%
		}	- - -140 -						100%

	PORRTED		TEST BORING LOG	NO. AW. 2	
PROJECT: R	egional Bedi	rock Eval	uation	SHEET NO. 4 of 4	
CLIENT: C	iba-Geigy Co			PROJECT NO. 6966	
CONSTRUCTION	NO. TYPE	BLOWS PER	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	ROD
{	-		FORT ANN FORMATION		
VOLCLAY G-ROUT			DOLOSTONE		100%
2" PVC Dentrijte Pelikts	- 		Thin SHALE interbeds		99%
PACK	-155 - - - - -110			"HORIZON C"	
SAND PACK	- - - -165		wavy bedded to bedded nodular calcisitate		100%
7	- <i>1</i> 70 -		DOLOSTONE w/ thin shale stringers interbedded ->/ plans-parallel siltite		100%
Bontonite Pellets	- -ns		END OF CORING	_	
Bent P	-1 3 0 -1-130 -			-	
·	-less				}
	- -90 -				

	PORRTED	TES	T BORING	LOG	NO. AW-	·3	
	gional Bedroc	k Evaluation			SHEET NO. 0	of 4	
	ba-Geigy Corp				PROJECT NO.	6966	
DRI	ILLING DATA			SAMPLIN	G METHODS		
CONTRACTOR:	Empire Soi	ls		SAMPLER	TUBE	COF	RE
DRILLER:	Ed Cole		TYPE			NX 3"	
	ailing F-10		DIAMETER			3"	_
	ater Rotary ELL CONSTRUCTI	ON	OTHER WELL DEV	REAM TO 6"	GROUND	WELL F	PROT CSG
***	RISER	INTAKE	METHOD: Comp		ELEV 116.72	131.03	PRUTUS
MATERIAL	PVC	PVC		hours	DATE STARTED		3
DIAMETER	2"	2"	YIELD:		DATE COMPLETE	D: 9/27	2188
COUPLING	flush	flush	OTHER:		INSPECTOR: Ro		
WELL CONSTRUCTION	NO. TYPE		CLASSIFICATION (AFTER BURMIST		REMARKS		RUD
VOICLAY GROUT VOLCLAY GROUT VOLCLAY GROUT S" Sch. 40 PVC E 4" pre CASING (upper portion removed)	5 10 15 20 25 30 35	Lt. w/w/ w/zo bed	T ANN FOR	y Dolostone lternating ne-parallel	Calcite-fille vertical fi	d, acture	49%

			OR	J A (ATE	D		TEST BORING LOG	NO. AW-3	
PR	OJE	CT:					ock Eva	luation	SHEET NO. 2 of 4 PROJECT NO. 6966	
		ELL RUCT	(iba-	Geig	y Co Sam	_		PROJECT NO. 0900	
LCC	TRMC	RUCT	ION	DEPTH CFEET)	NO.		BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	ROD
	VOLCLMY	1.73	C. R. C. C.	-45				Lt to MED GRAY DOLOSTONE W/ wav/ beds alternating W/ yorks of plans-paratel beds	Calcite-filled fractures	9190
7	0000	tenito Pollets		-55 - 50				MED DK VUQUIAT DOLOSTANE	Calcite-Alled vug.	99%
0	//	77	, , ,	- - - - -				MED DK Vugular DOLOSTONE faintly mottled		100%
	6///	10 1/2	0	-70 -7				It to MED Gray DOLOSTONE W/wavy beds alternating I yones of plane-paratul beds.		98%
	Pea Gravelo	6	, ,	-35 -80 -85				Wavy bedded and bedded noclular DOLOSTONE W breccuated Clasts. 17.5' Lt to MED GRAY DOLOSTONE	-	73%
	SAND DACK			-90				Lt to MED GRAY DOLOSTOVE "Iwavy beds alternating w/zoncs of plan-paraitil beds		93%

			T		
	JARE RPORRTED	TEST BORING LOG	NO. AW-3		
	Regional Bedrock Ev	aluation	SHEET NO. 3 of 4		
WELL CONSTRUCTION	Ciba-Geigy Corp. 본유 SAMPLE		PROJECT NO. 6966		
CONSTRUCTION	NO. TYPE BLOWS P		REMARKS	Rad	
	-95 -95	Alternating wavy bedded and notices of plane-paraillel bedding	"HORIZON C"	93%	
Bentmite// / Pellets// 0 6 6	-100	1/4" Assile SHALE @ 98.9"		97%	
	-106	101 5			
	-110 -115	Darker vugular Dolostone Whole parallel bedding 109.01 Alternating wavy bedding		32%	
0 0	-120	Alternating wavy bedding and nones of plane- parallel bedding	open vertical Joint	96%	
	-125	Thin SHALE beds w/ pyrite 126.5'			
Û 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_130	Plane-parallel beds, Some disrupted by Calcite-filled fractures unto breccia	crackle breccia	95%	
	135	136.0			
	-140	Brecciated DOLOSTONE 139.5' GREAT MEADOWS FORMATION MED Gray, mid-grained, Sucrosic DOLOSTONE	45° Fracture 1/shekensy	4 9690	
		Sucrosic DOLOSTONE			

-		T
RUPRE	TEST BORING LOG	NO. AW-3
PROJECT: Regional Bedro	k Evaluation	SHEET NO. 4 of 4 PROJECT NO. 6966
CLIENT: Ciba-Geigy Cor WELL	F	PROJECT NO. 0900
NO. TYPE B	CLASSIFICATION OWS PER (AFTER BURMISTER, 1959) BINCHES	REMARKS
	GREAT MEADOWS FM.	96%
5 - 150	MED Gay, med-grained Sucrosic Dolostone	Open vertical joint
-155	END OF CORING	Open sug
-160 -160		
- -165		

	_	_						_	-					
		וכסר	וייסטו				T BOR	RING	S LC)G	NO.	AW-	4	
PROJE				al Bedroc		ation					SHEET		of 5	
CLIEN	1:			eigy Corp IG DATA),					CAMPI IN	PROJEC		6966	
CONT	RAC	_		mpire Soi	1s				SAM	SAMPLING PLER		JBE	СО	RE
DRILL				d Cole			TYPE		JAM					_
EQUIP			Faili	ng F-10			DIAMETER						NX 3"	
METHO	OD:			Rotary CONSTRUCT	ION		OTHER			TO 6"		Longuine	14/51 :	DDGT 666
		<u> </u>		RISER	INTA	AKE	WELL METHOD:		ELOPME		ELEV	159.87	 	PROT CSG
MATE	RIAL	_		VC	PV		DURATION		hour			STARTED		33
DIAME				11	2"		YIELD:				DATE C	OMPLET	ED:9/9/	95
COUPL	VELL		± f	lush	flus	<u>h</u>	OTHER:	_		_	INSPEC	TOR: Ro	binson	
CONST	TRŪC	TION	DEPTH (FEET)	NO. TYPE			CLASS (AFTER BU				1	REMARKS		ROD
Ì		ζ				GLEN	INC TOU	٠ -	'A D TWY	271061				
		5	-				INS FALL							
		(-			LOWE	R SUGA	12 R	IVER	LIMESTON	ΙE			
			-5			MED.	TO DU G	العمر	med	to La				
	l	("			graine	to Dr (1 HILL	10 Tine		CAL FK		
		(-			arail	laceous	hec	10	1		6-6.5	I	11001-
	ĺ	- 1	-											43%
		(-10			LAR	RABEE		IME ST	TONE				:
	ļ	1				DV (-010	and					
		\rangle	[110	ady find	ryiu F	MEU					
) [PVC	. (ŀ	_		UII	1621010							
	0	51	-15											
		200) [_'5،ط				74%
	6	GROUT												
	<u>,:</u>		-			MED	DK Graves	4,4	ine-q	rained				
	524	7	-20			LIM	estone	ω_l	ahır	dan+				
1		7				וויד	1 2 HOTE	₹ 5 -†1	rinae	ברכ				
	100	77				and	ubon k	les	arc	ja				
)		VOLCLAY	} -											
)		7	-25			1200 (oarser(CO I CO	sien(te, beas				
		1	' -											87%
))								20 E I				
		(L							28.5′				
		1	-30			MED	Gray, Fin	v-gr	ainea	l, faintli				
\			-			plan	Gray, fin 1-parall ESTONE		horld	ed /				
		}				1100	· Parala	- W	مامريون مرمد ل []	1001				
		(-			D00	1010E	- Oi.	140					
((-35	. -		pup	cr-thin	3n	a le l	sal nagria				
						and	1 a few	Jan	us of					31%
)				Coar	lafew ser(oo.	lear	enife	and				' /
		}	-			_ Calo	truatife	· 41	MEST	ONE				
]		(-40			'Rar	e stylol	110	ς	i				
			-			W/			, 	_39.3'_				
		(MED D	k Gay, for	אים וער (J, UM	そってのだ				
	+					151112	<u>- at - 25 (17) (3).</u>	par.			_			J

			IARE		TEST BORING LOG	NO. AW-4	
PROJE				Bedrock Eval	uation	SHEET NO. 2 of 5 PROJECT NO. 6966	
	/ELL FRUCTI	ON	DEPTH (FEET) SZ	SAMPLE TYPE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	Rad
			-40 - - -45 - - - -50		LARRABEE LIMESTONE Fine-grained, plans parallel bedded LIMESTONE W/ DK vargilloceous beds at base, ISLE LA MOTTE FORMATION LI Gray, f-grained, plans- varallel bedded LIMESTONE 48.01	"HORIZON A"	70%
	Roat		-55 - - - - - - - - - - - - - - - - - -		MEDLY Gray, f-grained, bio- clastic, bedded nodular Limestone. Nodulis formed by abundant hairline shale partings and stylolites 57.5'		89%
	" prc	VOLCLAY	- 65 - -		Limestone of frequent, Limestone of frequent, Thicker shale portings (tol) 65.2. Viltigray, f-groined Limestone of paper-thin shale partings and stylolites. (9.5)	core broken in zonis 65.7-68.5 "HOZIZON B"	48%
			-75 -80		FORT ANN FORMATION MED Gray and Lt Gray Mottled, medium-gravel, Massive Dolostone	thigh angle, én-echetor fractures	98%
			-85		Abundant shale partings		99%
			-90 - -		91.3'		

_	וכסר		ATE	5		TEST BORING LOG	NO. AW-4	
PROJECT		Regio	nal	Bedr	ock Eval	uation	SHEET NO. 3 of 5	
CLIENT:		Ciba-	Geis	y Co	rp.		PROJECT NO. 6966	
WELI CONSTRUC	TION	CPEPTH CO	NO.	SAM!	BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	RQD
2" pvc	CLMY FROUT	100 - 100 -		TYPE	BLOWS PER 6 INCHES	Plane-parallel and wavy bedded and noaular-textured Dolostone. Rare calcite-filled vugs; accessional shall beds— 101.0' Variable Lixtures, including bedded nodular plane-parallel, and Isolated closts. Mottled Closts. Mottled Hand Dk Gray, bedded nodular plane-parallel vugs and shale partings and shale partings. Very Lt Gray mottled and stylolitic Dolostone WI few shall stringers. Plane-parallel bedded	·	100% 100% 100%
		- 135 - - - 140				Lighter Gray, bedded nodubrand stylolitic Dolostone. Lt Gray, wavy bedded Dolostone was of		93%
		-				DOLOSTONE W/ Jones of darker gray, plans paratul beas		

	1 9 08		_		TEST BORING LOG	NO. AW-4	
PROJECT:	Regio	nal	Bedr	ock Eval	uation s	SHEET NO. 4 of 5	
CLIENT:	Ciba-	Gei	gy Co	orp.		PROJECT_NO. 6966	
WELL CONSTRUCTION	Cipa (1334)		SAM	PLE	CLASSIFICATION	REMARKS	515
-, , -		NO.	TYPE	BLOWS PER 6 INCHES	(AFTER BURMISTER, 1959)		RQD
	-H5				Lt Gray, wavy bedded DOLOSTONE w/ Jones of clarker gray, plans-parallel beds Vugular w/calcite filling 148,5-151,4'		98%
VC VOLCLMY GROW	-155 - - - - - - - - - - - - - - - - - -				Clasts and Shell frags.		100%
8 8	- - -165				(64.8'		100%
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-170				Bedded Nodular and Wavy beaded DolostonE		100%
SAWB PACK	185 - 185 - 186 -				MED DK Gray, ungular DOLOSTONE 183.21 Plane-parally, wavy bedded 2/ shall partings	uugs calcite-filled "HORIZON C"	91%

incor	JARE	:0	TEST BORING LOG	NO. AW-4	
PROJECT:	Regional	Bedrock Eval	uation	SHEET NO. 5 of 5 PROJECT NO. 6966	
CLIENT: WELL CONSTRUCTION	Ciba-Gei Ĕ 戻	gy Corp. SAMPLE			
CONSTRUCTION		TYPE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	RQD
E	190	6 INCHES			1.50
HOLE	- -AS		Plone-parallel, wavy bedaed Dolostone w/ shale partings	VERTICAL CAUTE-FILLED	96%
11/2 12/2 12/2 12/2 12/2 12/2 12/2 12/2				CALCITE-FILLED	
Bantonite Pellets	-200		Plane-parallel and wavy bedded DolostonE		95%
88	-205		201 01		
الممل			END OF CORING		
	-		EIND OF COKING		
	-210				
	- 10				
	-				
	- 1				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	_				
	Fİ			-	
	-				
	-			·	
	- 1				
	_				
	-				

INCOR	JARE PORATED egional Bedrock		T BORING	LOG	NO. AW-		
	gional Bedrock ba-Geigy Corp.	SHEET NO. 1 C	of 9 6966				
	RILLING DATA			SAMPLINI	METHODS	0900	
CONTRACTOR:	Empire Soil			SAMPLER	TUBE	CORE	
ORILLER:	Ed Cole		TYPE	JAMELLA	, 000	NX	
	Failing F-10		DIAMETER			3"	
	Vater Rotary			REFIT TO 6"		<u> </u>	
	<u>Kater Kotary</u> ELL CONSTRUCTION		WELL DEVI	FLOPMENT	GROUND	WELL PRO	OT CS
	RISER	INTAKE	METHOD: Comp		ELEV 313,94		J. 00
MATERIAL	PVC	PVC		hours	DATE STARTED:		
DIAMETER	2"	2"	YIELD:	HOULS	DATE COMPLETE		
COUPLING	flush	flush	OTHER:		INSPECTOR: Ro		
WELL CONSTRUCTION	E E SAMPL				10		
CONSTRUCTION		LOWS PER 6 INCHES	CLASSIFICAT		REMARKS		
J" Sch. 40 PVC	-5 -10 -15 -20 -25 -30 -35		VEZBUZDE	42.0	NOT SAMPI OR CORED FORMATION CONTACTS MINED FIRE GAMMA L	DETER-	

		COF		ATE				BORING	LOG	NO.	AW-9	
PROJ	ECT:		Regio	nal	Bedr	ock Eval	uation			SHEET NO). 2 of 9	
CLIE	VT:		Ciba-	Geis	y Co	rp.				PROJECT	NO. 6966	
CONS	WELL TRUC	TION	□Ĕ E		SAM	PLE		CLASSIFICATIO	N	BEN	MARKS I	
			CFEET)	NO.	TYPE	BLOWS PER 6 INCHES	(A	FTER BURMISTER,		"	ARRO	
1		- 3	+ 40			DINCHES						
{	ļ	. {						_	42.0'	}		
) (ļ	\ \	[1			China	July 6.04	MATI ANI	1		
1 }		\ \					SINHLE	HILL FOR	MALIUN			
1 1	l		-45)								
)		\ \	- '				Black	SHALE		}		
(\	-									
1 1		(-									
1 1	l)	-	1						1		
}		(-50		1					1		
{			-									
+1	l		-									
)		{	†							1		
1 5	ļ	(5-									
(1	1	-55)		
)		\								1		
(ĺ											
1 ()								ì		ļ
1)		(-60							1		
1 (1	- 20									
}		}	-									}
{		(-							}		
1 /	V	1	-							}		
	PVC		-65		1							
171	0	1	-									
}		ROL	-									Ì
(u Co	18	-									Ì
)	. 6	3	1							}		1
((-70		l					1		
1 1		(ج	 									
{		3								1		
1 / 1		3)	L							}		
1 \		VOLCLAY	-75							1		
+ ($-$		11	ļ',							}		1
}			-									
()	-									
1)		(1							1		Ì
(1	-80									
171		}	Γ								-	
1)		1										
15												}
(-		-85									
		(•				
)		1	-									
		\	-									1
			-		l							
)	-90									
{		\										

		OR		ATE	כ		TEST BORING LOG	NO. AW-5
PROJE	ECT:		Regio	nal	Bedr	ock Eva	luation	SHEET NO. 3 of 9
CLIEN			liha-	Geig	y Co	rp.	1	PROJECT NO. 6966
CONS	VELL TRUCT	ION	OFEET)	NO.	TYPE	PLE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS
}		}					SNAKE HILL FORMATION	
			-95 -				Black SHALE	
T 20			-100					
GR04			-105 -					
OLCLAY			- -110 -				- - - - -	
2	PVC		-115					
	1,0		-120 -				- - - - -	
			-125					
			-130 -					
			- - 35 -				GUENNS FALLS FORMATION	
	7 .		140				UPPETR SUGAR RIVER LIMESTONE LIMESTONE	

TEST BORING LOG NO. AW-5

		אנים ונים היים ונים		10. AW-5			
PROJECT	Γ:	Regior	nal	Bedrock Eval	uation	SHEET NO. 4 of 9	二
CLIENT:	.1.	Ciba-(ieig	y Corp.		PROJECT NO. 6966	-
CONSTRI	ÜČTION	DEPTI (FEET	NO.	SAMPLE TYPE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS	
2" OVI		S S S S S S S S S S S S S S S S S S S	NO.	TYPE BLOWS PER 6 INCHES			
		- -175			LOWER SUGAR RIVER		
		180			LIMESTONE		
		-185 -					
		- -90 -					

TEST BORING LOG NO. AW-5

	IHWIHIRE INCORPORATED							TEST BORING LOG				NO. HW-5		
PROJ	ECT:	F	Regio	nal	Bedi	ock	Eval	luation				SHEET NO.	5 of 9	
CLIEN	WELL		iha-	Geis	zy Co	orp.		1	_			PROJECT N	<u>u. 6966 </u>	
CONS	WELL TRUCT	ION	DEPTI (FEET	NO.	SAM	PLE BLOW 6 IN	S PER CHES	(,	CLASSIFIC			REM.	ARKS	
		}	-190 - -195						SUGA IMESTO	R RIVER	2			
GROUT			- , 200					Lin	10T23N	ソビ				
VOLCLAY G			-205 -											
701			- -210 - -											
	2" PVC		-215 -				,							
		}	270 - -											
			-225 -275							229,	٥'			
			-230					LARR	ABEE	LIMESTO			-	
			-235					 	IMESTO	NE				
		}	-シ 4 0 - -											

	IUC	WARE ORPORATED	TEST BORING LOG	NO. AW-5
PROJE	CT:	Regional Bedrock Eva	luation	SHEET NO. 6 of 9
CLIEN	<u>/Fi </u>	Ciba-Geigy Corp.		PROJECT NO. 6966
CONS	ELL RUCTI	ON E SAMPLE NO. TYPE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS
VOLCLAY GROUT		-250	LARRABEE LIMESTONE LIMESTONE	
	DAD "C	-275	ISLE LA MOTTE FORMATION LIMESTONE	"HORIZON A"
	-	-285	288.0' FORT ANN FORMATION DOLOSTONE	- "HORIZON B"

	JARE	TEST BORING LOG	NO. AW-5
PROJECT:	Regional Bedrock Eval	uation	SHEET NO. 7 of 9 PROJECT NO. 6966
WELL CONSTRUCTION	Ciba-Geigy Corp. H	CLASSIFICATION (AFTER BURMISTER, 1959)	REMARKS
2" PVC VOLCEMY GROUT	-340 -395 -305 -315 -315 -320 -325 -335 -340	FORT ANN FORMATION DOLOSTONE	

RUPRE TEST BORING LOG					NO. AW-5				
PROJE	CT:		Regio	nal	Bedr	ock Eval	luation	SHEET NO. 8 of 9	
CLIENT: C WELL CONSTRUCTION		Ciba-Geigy COTD. E D SAMPLE SAMPLE NO. TYPE BLOWS PER GINCHES		PLE	CLASSIFICATION (AFTER BURMISTER, 1959)	PROJECT NO. 6966 REMARKS			
			345				FORT ANN FORMATION		
VO1 CL MY	And the state of t		-35D - -35S				DOLOSTONE		
	DNC		360						
	118		-370 -379						
Bontonite Polets?			-380 -385 -390					-	

RWF	RATED	TEST BORING LOG	NO. AW-5
PROJECT: Reg	ional Bedrock Eval	uation	SHEET NO. 9 of 9
CONSTRUCTION LA	SAMPLE NO. TYPE BLOWS PER 6 INCHES	CLASSIFICATION (AFTER BURMISTER, 1959)	PROJECT NO. 6966 REMARKS
SAND: PACK.	95	FORT ANN FORMATION DOLOSTONE 407.0' END OF CORING	"HORIZON C"

APPENDIX C HYDRAULIC CONDUCTIVITY DETERMINATIONS

AWARE, INC.						
IN SITU VARIABLE HEAD						
HYDRAULIC CONDUCTIVITY TEST	Γ					

PIEZOMETER NO. TEST NO.

AW-1

PROJECT NO:	6966	TEST DATA (PAI	RTIAL LIST)
CLIENT:	CIBA GEIGY	ELAPSED TIME;	HEAD RATIO
GEOLOGIC UNIT:	Beekmantown	0.0	1.000 1.000
dEoDodio UNII.	Deekmantown	19.2	1.000
SOIL CLASSIFICATION:	Dolomite	85.2 330.2	0.995 0.989
		1200.2	0.981
TESTED BY:	JQR	2880.2 4560.2	0.970 0.957
DATE OF TEST:	October 3, 1988	7200.2	0.916
		15600.2 24000.2	0.862 0.822
		32400.2	0.795
		40800.2 49200.2	0.768 0.741
		1	J. 7 11

METHOD:

 $k = \frac{r^2}{2L(t_2 - t_1)} ln(L/R) ln(H_1/H_2)$

k = hydraulic conductivity k = 2.3E-07 cm/sec

in cm/sec

r = well radius in cm 2.54 R = bore radius in cm 7.62 L = effective length in cm 381

H1 = head ratio at t1 0.951

t1 = elapsed time at H1 5520.2 sec

H2 = head ratio at t2 0.657 t2 = elapsed time at H2 59400.2 sec

AWARE, INC. IN SITU VARIABLE HEAD HYDRAULIC CONDUCTIVITY TEST				PIEZOMETER NO. AW-2 TEST NO. 1			
PROJECT NO:	6966			ITEST DATA (PA	ARTIAL LIST)		
CLIENT:	Ciba-Geigy			: ELAPSED TIME	HEAD RATIO		
GEOLOGIC UNIT:	Beekmantown			0.0 1	0.997		
SOIL CLASSIFICATION:	Dolomite			1 3.2 1 7.2 1	0.997 0.980		
TESTED BY:	JQR			11.2 15.2			
DATE OF TEST:	October 3,	1988		19.2 35.2 55.2 75.2 95.2 115.2 210.2	0.878 0.834 0.796 0.761 0.726		
1.00 0.79 0.63 0.80 0.40 0.32 0.25 0.20 0.16 0.13 0.10 0.08 0.06 0.05 0.04 0.05 0.04	0.2	(after Hy	AL ANALYS vorsiev, 1955) Dougands) ne (in esconde				
METHOD: $k = \frac{r^2}{2L(t_2 - t_1)} ln(H_1/H_2)$							
<pre>k = hydraulic co in cm/sec r = well radius R = bore radius L = effective le</pre>	in cm in cm	2.54 7.62 3 74.9 04	k =	9.4E-05	cm/sec		
H1 = head ratio t1 = elapsed tim H2 = head ratio t2 = elapsed tim	e at H1 at t2	0.805 70.2 0.216 540.2					

ΔW	\sim	_		T	N	_	
		-		_ L.			-

IM	SITU	VA	ARIABLE	HEAD	
HYD	RAUL	IC	CONDUCT	YTIVIT	TEST

PIEZOMETER NO. TEST NO. ⊖W-4 1

PROJECT NO:	6966	TEST DATA (PARTIAL LIST)
CLIENT:	CIBA GEIGY	ELAPSED TIME! HEAD RATIO
GEOLOGIC UNIT:	Beekmantown) 0.0 1.000 0.6 0.930
SOIL		1.2 0.924 1.8 0.902
CLASSIFICATION:	Dolomite	1 3.2 0.883 1 6.2 0.859
TESTED BY:	JOR	9.2 0.835
DATE OF TEST:	October 4, 1988	12.2 0.840 15.2 0.791
		18.2 0.770 25.2 0.694
		40.2 0.604 55.2 0.523
		70.2 0.447
	we have then day the box can take him too and the bear that the new one that her to a sign the time that wen over rule and the fire	

GRAPHICAL ANALYSIS

METHOD:

$$k = \frac{r^2}{2L(t_2 - t_1)} \ln(L/R) \ln(H_1/H_2)$$

k = hydraulic conductivity

k =

3.4E-04 cm/sec

in cm in cm 2.54

R = bore radius

7.62

L = effective length in cm

387.096

0.729

t1 = elapsed time at H1

20.2 sec

H2 = head ratio at t2

0.268

t2 = elapsed time at H2

115.2 sec

APPENDIX D

MAJOR ION DATA GRAPHS

PROJECT: CIBA-GEIGY FILE: 6966 LOCATION: GLENS FALLS

AWARE THE

FIGURE: D-2

CIBA-GEIGY PROJECT: FILE: 6966 LOCATION: GLENS FALLS

FIGURE: D-6

PROJECT: CIBA-GEIGY
FILE: 6966
LOCATION: GLENS FALLS

AWARF INC.

FIGURE: D-8

PROJECT: CIBA-GEIGY FILE: 6966 LOCATION: GLENS FALLS

FIGURE: D-12

