oct 13/1994

ECKENFELDER INC.

RFI REPORT FOR THE PRETREATMENT PLANT SWMU CIBA-GEIGY SITE GLENS FALLS, NEW YORK

VOLUME I TEXT AND APPENDICES A THROUGH F

Prepared for:

Hercules Incorporated Hercules Plaza Wilmington, Delaware 19894

Prepared by:

ECKENFELDER INC.® 1200 MacArthur Boulevard Mahwah, New Jersey 07430

October 1994

TABLE OF CONTENTS

				Page No.
RFI	Sum	mary Re	eport	RS-1
1.0	INTRODUCTION			1-1
	1.1	Goal	and Objectives	1-2
	1.2	Site I	Description	1-3
	1.3	Histo	ry and Operation	1-4
	1.4	Previe	ous Investigations	1-5
		1.4.1	Soil	1-6
		1.4.2	Groundwater	1-7
2.0	INVESTIGATIVE METHODS AND PROCEDURES		2-1	
	2.1	Soil In	nvestigation	2-1
		2.1.1	Soil Boring Locations	2-1
		2.1.2	Soil Sampling Procedures	2-3
		2.1.3	Soil Sample Analysis	2-5
	2.2	Groundwater Investigation		2-5
		2.2.1	Piezometer Installation	2-6
		2.2.2	Water Level Measurements	2-6
		2.2.3	Groundwater Sampling and Analysis	2-7
3.0	INV	ESTIG	ATIVE FINDINGS	3-1
	3.1	Soil In	nvestigation	3-1
		3.1.1	Overburden Geology	3-1
		3.1.2	Soil Quality	3-2
		3.1.3	Soil Leachate Quality	3-5
	3.2	2 Groundwater Investigation		3-5
		3.2.1	Overburden Water-Bearing Zone	3-5
		3.2.2	Groundwater Flow	3-6
		3.2.3	Groundwater Quality	3-9

TABLE OF CONTENTS (CONTINUED)

	Page No.
4.0 CONCLUSIONS	4-1
5.0 RECOMMENDATIONS	5-1
REFERENCES	R-1

1

LIST OF APPENDICES

- Appendix A Soil Boring Logs
- Appendix B Soil Quality Data Summary
- Appendix C Water Level Data July 7, 1994 and July 13, 1994
- Appendix D Field Data Sheets
- Appendix E Groundwater Quality Data
- Appendix F Potentiometric Surface Maps from "RFA Sampling Visit, Pretreatment Plant, CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER Engineering, P.C., July 1992) and
 - "Groundwater Addendum to RFA Report for Pretreatment Plant SWMU, CIBA-GEIGY Site, Glens Falls, New York (ECKENFELDER Engineering P.C., September 1993)
- Appendix G Laboratory Data Packages
- Appendix H Data Validation Reports

RFI REPORT FOR THE PRETREATMENT PLANT SWMU

LIST OF TABLES

Table No.	Title	Page No.	
1-1	Cyanide Concentrations in Groundwater, Second and Third Quarters 1993	1-8	
2-1	Parameter List for Soil Analysis	2-5	
2-2	Semivolatile Organic Compound List for Soil Analysis	2-5	
2-3	Wells and Piezometers Sampled	2-7	

LIST OF FIGURES

Figure No.	Title	
1-1	Pretreatment Plant Location Map	1-1
1-2	Pretreatment Plant SWMU Area	1-3
2-1	Soil Boring and Groundwater Sample Locations	2-1
3-1	Generalized Structural Contour Map Top of Lacustrine Clay Unit	3-2
3-2	Generalized Isoconcentration Map of Total Cadmium in Soils	3-2
3-3	Generalized Isoconcentration Map of Total Chromium in Soils	3-2
3-4	Generalized Isoconcentration Map of Total Lead in Soils	3-2
3-5	Generalized Isoconcentration Map of Total Mercury in Soils	3-2
3-6	Generalized Isoconcentration Map of Total Cyanide in Soils	3-2
3-7	Generalized Potentiometric Surface Map Overburden Water-Bearing Zone (July 7, 1994)	3-6
3-8	Generalized Potentiometric Surface Map Overburden Water-Bearing Zone (July 13, 1994)	3-6
3-9	Generalized Hydrogeologic Cross Section A-A'	3-6
3-10	Total Cyanide in Groundwater (July 1994)	3-9

1

L

0

8

1

RFI SUMMARY REPORT

INTRODUCTION

The goal of this investigation was to complete the characterization and evaluation of the extent of soil and groundwater contamination at the Pretreatment Plant SWMU. To achieve this goal, the following objectives were identified:

- Evaluate the spatial extent of contaminated soil in the eastern portion of the Pretreatment Plant where constituent concentrations were found to exceed soil action levels and in areas where cadmium concentrations are elevated relative to the majority of the Pretreatment Plant.
- Evaluate the spatial distribution of hazardous constituent concentrations in groundwater which exceed Groundwater Protection Concentrations (GWPCs) (i.e., cyanide) and evaluate if off-site migration of hazardous constituents in groundwater has occurred.

SOIL AND GROUNDWATER INVESTIGATION

Soil borings were drilled around the eastern perimeter and in the central portion of the Pretreatment Plant area. Samples from these borings were analyzed in the laboratory.

Water levels were measured in the wells, piezometers and staff gauges associated with the Pretreatment Plant area. Groundwater samples from the existing piezometers and monitoring wells and from locations in the western portion of the Pretreatment Plant area and south of the Feeder Canal, along an area southeast of the Pretreatment Plant area, were analyzed for total cyanide.

CONCLUSIONS

The following conclusions are made based on the findings of the soil and groundwater investigations conducted for this RFI:

RS-1

Soil Investigation

- The highest concentrations of hazardous constituents in the soil are within the easternmost portion of the Pretreatment Plant area and decrease markedly away from this area.
- In a small area within the central portion of the Pretreatment Plant area, cadmium concentrations are elevated slightly above concentrations in surrounding areas.
- The maximum concentrations of constituents in the soils were typically in the zero- to two-foot depth interval.

Groundwater Investigation

- Cyanide concentrations in the groundwater are highest beneath the area extending from north of Tank T-110 to the vicinity of piezometer P-6. To the west, south and east, cyanide concentrations steadily decrease. The northern extent of the high concentrations is limited by the stream located to the north, since this serves as a groundwater flow divide.
- Cyanide concentrations exceed the GWPC to the northern, eastern and southern boundaries of the Pretreatment Plant area. Along the western border of the site, concentrations decrease to below or near the GWPC. Concentrations in two of the four samples collected south of the Feeder Canal exceed the GWPC.

RECOMMENDATIONS

A site-specific risk assessment was initiated to establish soil cleanup levels for the Pretreatment Plant SWMU. A Supplemental RFI Report will be submitted presenting the results of the risk assessment and recommendations regarding cleanup levels for the desired post-remedial uses of the Pretreatment Plant SWMU. If the risk assessment indicates a need for modifications to the previously submitted "Corrective Measure Study for On-Site Soil and Groundwater, CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER Engineering P.C., August 1994) (referred to as "CMS Report") with respect to soils at the Pretreatment Plant SWMU an addendum to the CMS Report will be submitted. Concentrations of total cyanide in the groundwater exceed the GWPC within the overburden water-bearing zone beneath the Pretreatment Plant SWMU and off site. Based on the findings in this investigation, an addendum to the CMS Report is recommended to address corrective measures for groundwater in the overburden at the Pretreatment Plant SWMU.

The Supplemental RFI Report will be submitted within 60 days of the submittal of this report. The Addendum to the CMS Report will be submitted within 60 days of receiving approval of this report and the Supplemental RFI Report.

1.0 INTRODUCTION

A RCRA Facility Assessment (RFA) of the Pretreatment Plant Solid Waste Management Unit (SWMU) at the CIBA-GEIGY Site in the Town of Queensbury near Glens Falls, New York (Figure 1-1) was conducted pursuant to the 6 NYCRR Part 373 Hazardous Waste Management (HWM) Permit and the Hazardous Solid Waste Amendments (HSWA) Permit for the site. Based on the findings of the RFA soil investigation, as presented in the report entitled "RFA Sampling Visit, Plant. Pretreatment **CIBA-GEIGY** Site, Glens Falls, New York" (ECKENFELDER Engineering P.C., July 1992) (referred to hereafter as the "RFA-SV Report"), the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency (USEPA) issued a notification to Hercules in a letter dated October 29, 1992 that a RCRA Facility Investigation (RFI) was required for the Pretreatment Plant SWMU. This report presents the findings of the RFI of the Pretreatment Plant SWMU.

The notification requiring a RFI was issued prior to the completion of the groundwater investigation for the RFA. The RFA groundwater investigation included the installation of monitoring wells, based on the results of the water level monitoring presented in the RFA-SV Report, and the sampling of groundwater from these wells. In the notification, the Agencies stated that the development of the RFI work plan could be postponed until the results of the groundwater sampling from the RFA monitoring wells were available. The results of the RFA groundwater investigation were submitted upon completion of one round of groundwater quality sampling (second quarter 1993) in an addendum to the RFA-SV Report, entitled "Groundwater Addendum to RFA Report for Pretreatment Plant SWMU, York" **CIBA-GEIGY** Plant Site. Falls. New Glens (ECKENFELDER Engineering P.C., September 1993) (hereafter referred to as the "RFA Groundwater Addendum Report"). Although the Work Plan for the RFA ["Work Plan for RFA Sampling Visit at Pretreatment Plant, CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER INC., September 1991)] specified that the evaluation of groundwater would include two quarters of sampling from the Pretreatment Plant monitoring wells, the RFA Groundwater Addendum Report was submitted based on the results of only one round to expedite the completion of the RFA and the initiation of the RFI. An expeditious initiation of the RFI was intended

to allow the Corrective Measure Study (CMS) for the Pretreatment Plant SWMU to be incorporated into, and conducted on the same schedule as the CMS for the main plant site. However, approval of the RFI Work Plan was not received in time for the RFI data to be incorporated into the CMS. Therefore, the evaluations for the Pretreatment Plant SWMU in the CMS Report ["Corrective Measure Study for On-Site Soil and Groundwater" (ECKENFELDER Engineering P.C., August 1994)] are based on the RFA sampling results. The results of the second quarter of sampling were presented in the 1993 Third Quarter Groundwater Monitoring Report (ECKENFELDER INC., December 1993).

The original draft of the Work Plan was submitted to the NYSDEC and USEPA on November 5, 1993. Comments on the draft work plan were provided by the Agencies in letters dated February 17, 1994 and March 8, 1994 and in a meeting between Hercules, ECKENFELDER INC., and the Agencies on March 10, 1994. The Work Plan was revised based on these comments and submitted to the Agencies on April 20, 1994. On June 7, 1994, the Agencies issued a letter conditionally approving the revised Work Plan.

1.1 GOAL AND OBJECTIVES

The goal of this investigation was to complete the characterization and evaluation of the extent of soil and groundwater contamination at the Pretreatment Plant SWMU. To achieve this goal, the following objectives were identified:

- Further evaluate the spatial extent of contaminated soil in the eastern portion of the Pretreatment Plant area where constituent concentrations were found to exceed action levels during the RFA.
- Evaluate the spatial extent of soil with concentrations of cadmium elevated relative to the majority of the Pretreatment Plant area in the vicinity of boring PT-8.
- Refine the interpretation of groundwater flow in the overburden.

 Evaluate the spatial distribution of hazardous constituent concentrations in groundwater which exceed the Groundwater Protection Concentrations (GWPCs) listed in Table V-2 of the HWM permit, and evaluate if off-site migration of hazardous constituents in groundwater has occurred.

The evaluation of cadmium concentrations in the soil near boring PT-8 was requested by the Agencies in their February 17, 1994 letter.

1.2 SITE DESCRIPTION

The Pretreatment Plant SWMU is part of the CIBA-GEIGY Site, which is located in the Town of Queensbury in Warren County, New York, just east of the City of Glens Falls (Figure 1-1). It occupies approximately four acres of the site, situated north of the Glens Falls Feeder Canal and River Street and east of Quaker Road (Figure 1-2).

The topography of the Pretreatment Plant SWMU is generally flat (see Figure 1-2) and consists of both paved and unpaved surfaces. The eastern two-thirds of the Pretreatment Plant area is predominantly paved surfaces, and remnant foundations mark the locations of several former structures. Several operating structures exist here, including a treatment building and an above-ground wastewater storage tank. The western one-third of the Pretreatment Plant area consists of open fields with grass and other vegetation. Directly to the north and east are vegetated and marshy areas that grade away from the plant. A small stream flows near the northern boundary of the Pretreatment Plant area and into a marshy area east of the Pretreatment Plant. This marsh area drains to the Feeder Canal through an open section in the northern wall of the Feeder Canal. The Feeder Canal is situated adjacent to the Pretreatment Plant area and comprises much of its southern boundary. South of the Feeder Canal, the land surface slopes to the south-southeast towards another marsh area and stream situated in a topographically low area. Paved roads (River Street and Quaker Road) comprise the remainder of the southern and western boundaries of the Pretreatment Plant area, respectively.

The Pretreatment Plant is situated in an area of mixed development consisting of industrial, commercial and residential properties. The property adjacent to the

northern boundary of the Pretreatment Plant area is a corridor for electrical power lines operated by the Niagara Mohawk Power Corporation. The strip of property directly east of the Pretreatment Plant is denoted in the Town of Queensbury Tax Assessment Office as being residential. However, it is not a buildable lot because it is very narrow and isolated. Immediately beyond this strip to the east is property associated with the Feeder Canal and owned by the State of New York.

1.3 HISTORY AND OPERATION

In 1972 through 1973, Hercules constructed a wastewater treatment plant (now the Pretreatment Plant) to treat the wastewater generated at the main plant site prior to discharge to the Hudson River. The treatment process removed solids by settling and neutralized acidity with slaked lime. A second treatment stage was added in 1974 through 1975, which removed heavy metals by closer control of pH in addition to utilizing fine sand and pressure filtration. Wastewater from the industrial sewer was fed into a 420,000 gallon holding tank (tank T-110). From the holding tank, the water was then piped to the neutralization tanks for pH adjustment. The water was then transferred to the clarifiers. The top water from the clarifiers was passed through sand filters. Water passing through the sand filters was discharged to the Hudson River until 1983, when it was diverted to the effluent pump station and pumped to the City of Glens Falls Wastewater Treatment Plant (City WWTP) via a dedicated pipeline. Sludge from the sand filters was transferred to the press holding tanks, and subsequently pressed to remove water. The water removed by the presses was transferred back to the holding tank. The tanks at the Pretreatment Plant were cleaned annually. Solids in the tanks, as well as press filter cakes, press cloths, and filter media were disposed in a secure landfill. Figure 2-2 in the "Pretreatment Plant Addendum to RFI Task I Report, CIBA-GEIGY Site, Glens Falls, New York", (ECKENFELDER Engineering P.C., January, 1992) depicts the location of former and existing plant facilities. (Personal Communication, 1991 and 1992)

Subsequent to the construction of the Pretreatment Plant, measures were taken to control stormwater runoff. A curb was installed around the entire Pretreatment Plant area. Storm sewers and catch basins were then installed which conveyed stormwater to the holding tank. (Personal Communication, 1992)

Q:\9427\RI0913B.DOC

A major portion of the Pretreatment Plant was decommissioned in 1990 in conjunction with the decommissioning and demolition of the main plant site. A scaled down version remains in operation to treat water collected in the industrial and sanitary sewer systems. Currently, the wastewater is mixed with a ferrous sulfate solution to precipitate and flocculate heavy metals and is piped to the holding tank. The water is then pumped through filters and gravity fed to the effluent pump station, from where it is pumped to the City WWTP. Sludge from the holding tank and filter bags are disposed in a secure landfill. (Personal Communication, 1992)

1.4 PREVIOUS INVESTIGATIONS

In November 1991, the RFA of the Pretreatment Plant was initiated. The purpose of the RFA, as stated in the RFA Work Plan, was to characterize soil and groundwater conditions to evaluate potential environmental impacts, if any, from Pretreatment Plant operations.

The RFA was conducted in two phases. In the first phase, soil quality at the Pretreatment Plant was evaluated. Also included in the first phase were the installation of piezometers and staff gauges, and subsequent water level monitoring, to evaluate groundwater flow direction in the overburden beneath the plant. The results of the first phase of the RFA were presented in the RFA-SV Report, which included proposed locations for three monitoring wells to characterize groundwater quality beneath the plant. The second phase of the RFA included the installation of the monitoring wells, subsequent sampling and analysis of groundwater from these wells, and additional water level monitoring. The monitoring well locations proposed in the RFA-SV Report were revised in a letter dated December 18, 1992, based on comments from the Agencies in an October 29, 1992 letter. The locations were approved in a February 24, 1993 letter from the Agencies. The wells were installed in May 1993, and sampled in June and September of 1993. Water levels in the wells and piezometers were measured prior to sampling. The results of the RFA groundwater evaluation were presented in the RFA Groundwater Addendum Report. However, the results of the September 1993 groundwater sampling were not available at the time the RFA Groundwater Addendum Report was submitted, as previously noted. These results were presented in the 1993 Third Quarter Groundwater Monitoring Report (ECKENFELDER INC., December 1993). The results of the RFA soil and groundwater investigations are discussed in the following sections.

1.4.1 Soil

The soil borings drilled during the RFA were advanced to bedrock or to a depth two feet below the top of a lacustrine clay unit which overlies bedrock, whichever was encountered first. The Pretreatment Plant was found to be underlain by approximately 10 to 23 feet of unconsolidated overburden material. "Clean" fill material was encountered over most of the site. The fill typically overlies a unit of lacustrine sand, silt and clay interbeds, which in turn overlies the more massive lacustrine clay unit.

The soil samples were analyzed for a group of "target" metals -- barium, cadmium, chromium and lead -- and screened for volatile and semivolatile organic compounds. Approximately five percent of the samples were analyzed for an "expanded" list of inorganic constituents based on the results of the target metal analysis. Samples were subjected to an expanded analysis for volatiles or semivolatile organics if concentrations measured during the screening procedure were above the method detection limit.

The NYSDEC and USEPA determined that soil action levels for lead (500 mg/kg) and hexavalent chromium (400 mg/kg) were exceeded in the eastern portion of the Pretreatment Plant area based on the results of two of the soil samples -- one sample from boring PT-10 and one from boring PT-15 (see Figure 1-2). Noteworthy is that the analysis for chromium was conducted for total chromium only. The exceedance of the action level for hexavalent chromium was conservatively determined by assuming all chromium present in the sample was hexavalent. Both samples were from the zero to two-foot depth interval from their respective borings. Mercury was also detected in the zero to two foot interval from boring PT-10 at a concentration (31 mg/kg) above the soil action level (20 mg/kg). However, holding times for this sample were exceeded prior to analysis, and the location was consequently resampled at the same depth interval. The mercury analysis of the resample indicated a concentration of 0.64 mg/kg, well below the mercury action level. Polychlorinated biphenyl (PCB) compounds Aroclor 1232 and 1248 were tentatively identified compounds (TICs) in the semivolatile analysis of the zero to two foot interval from PT-10. The total estimated PCB concentration (4,580 μ g/kg) exceeds the action level for soil (1,000 μ g/kg). The detection of PCBs at this location was not confirmed by analysis specifically for PCBs. Noteworthy is that PCBs reportedly were not handled at the Pretreatment Plant and are not known to have been in the waste stream at the site.

In summary, based on the RFA, the soil contamination at the Pretreatment Plant SWMU was found to be limited to local areas of surficial soil, primarily within the eastern portion of the SWMU. Both samples which exceeded action levels were from the zero to two-foot depth interval.

1.4.2 Groundwater

The nature of groundwater flow beneath the Pretreatment Plant SWMU was evaluated during the RFA, based on the information from soil borings and the monitoring of water levels in the wells, piezometers and staff gauges, as described in the RFA Groundwater Addendum Report. Groundwater quality was evaluated based on the sampling of the monitoring wells installed for the RFA. A summary of the understanding of groundwater conditions based on the RFA is presented in the following paragraphs.

Groundwater beneath the Pretreatment Plant area flows laterally through the relatively permeable fill and lacustrine sands in the overburden. The massive lacustrine clay unit, situated in the lower portion of the natural overburden deposits, forms the lower boundary of this zone. Locally, where the clay unit is absent, the top of the bedrock surface forms the base of this zone. The topography of the top of clay surface influences groundwater flow in the overburden, especially in areas within saturated zones.

Groundwater flow is generally east toward the stream and associated marsh which lie to the east and north (see Figure 1-2). There was no discernible effect on groundwater elevations or flow directions in the Pretreatment Plant area when water levels were monitored during the filling of the canal. This indicated that the groundwater beneath the Pretreatment Plant area is not in direct hydraulic communication with the Feeder Canal west of the open section of the canal.

The hydraulic gradient and direction of groundwater flow in the western part of the Pretreatment Plant area were observed to vary with time. Also, on occasion a groundwater flow divide was observed to form in this area creating a component of groundwater flow to the west or southwest toward the main plant site.

It is unlikely that an underlying bedrock water-bearing zone receives a significant contribution of groundwater flow from the overburden zone in the area of the Pretreatment Plant. The downward migration of groundwater flow is greatly restricted by the lacustrine clay unit. Further, the two upper bedrock zones defined at the main plant site, Horizons A and B, subcrop southwest of the Pretreatment Plant and thus are not present [see the "RCRA Facility Investigation Report for CIBA-GEIGY Groundwater, Site, Glens Falls. New York" Based on projections of (ECKENFELDER Engineering P.C., March 1993)]. structural contours, the lower bedrock zone, Horizon C, is separated from the overburden by a 60- to 70-foot thick section of competent rock.

The monitoring wells were sampled in June and September of 1993 and analyzed for metals (filtered and unfiltered), cyanide, volatile and semivolatile organic compounds, and indicator and field parameters. Based on the results of these analyses, cyanide was the only constituent detected in the groundwater at concentrations above the GWPC. Total cyanide was detected in samples from each of the three monitoring wells during both sampling events (see Table 1-1). Cyanide concentrations in samples from wells MW-OB18 and MW-OB19 were at concentrations above the GWPC of $100 \mu g/L$ in both sampling events. The cyanide concentration in well MW-OB17 was below the GWPC in June, but increased by approximately ten times in September to concentrations above the action level. Few other constituents for which GWPCs are established were detected, and these were present at concentrations below GWPCs.

TABLE 1-1

	Total Cy	anide (ug/L)
	June 1993	September 1993
MW-0B17	83	928
MW-OB18	237	387
MW-OB19	2,000	1,080

CYANIDE CONCENTRATIONS IN GROUNDWATER SECOND AND THIRD QUARTERS 1993

2.0 INVESTIGATIVE METHODS AND PROCEDURES

The RFI of the Pretreatment Plant SWMU was conducted in accordance with the approved Work Plan. The following sections describe the methods and procedures used to conduct the RFI of the Pretreatment Plant SWMU.

2.1 SOIL INVESTIGATION

2.1.1 Soil Boring Locations

Borings for Analytical Samples

Soil samples were collected for laboratory analysis during this investigation to provide for the following:

- An evaluation of the extent of soil contamination in the eastern portion of the Pretreatment Plant area where soil samples collected during the RFA were found to exceed action levels.
- An evaluation of the extent of soil near boring PT-8 with concentrations of cadmium that are elevated relative to the majority of the Pretreatment Plant area.

As discussed in Section 1.4, based on sampling results from the RFA, the soil in the eastern portion of the Pretreatment Plant area (borings PT-10 and PT-15) was identified as exceeding action level concentrations in the zero to two-foot depth interval for chromium and lead. Further, sampling results from the RFA indicated that the highest constituent concentrations were typically within the zero to two-foot depth interval. Accordingly, hand auger borings to a depth of approximately four feet were drilled around the area of the borings PT-10 and PT-15 to evaluate the extent of soil contamination in the eastern portion of the Pretreatment Plant SWMU.

The soil boring locations in the eastern portion of the Pretreatment Plant area are shown in Figure 2-1. The sampling in this investigation focused on soil along the

northern, eastern and southern boundaries of the eastern portion of the Pretreatment Plant. The initial set of eight borings, PT-16 through PT-23, extended around the eastern portion of the Pretreatment Plant area just inside of the fence surrounding the Pretreatment Plant, from approximately 40 feet east of PT-6, around the northern, eastern, and southern perimeter, to approximately 40 feet east of PT-14 (see Figure 2-1).

The samples from these borings were submitted to the laboratory for analyses, as described in Section 2.1.3. The sample analyses were expedited and preliminary results were provided within two weeks of sampling. Soil action levels were used to screen the results of the initial samples. The action levels used are listed in Appendix I of NYSDEC Technical Administrative Guidance Document (TAGM) 3028 (NYSDEC, November 1992). The borings for which sample concentrations exceed soil action levels were identified. The borings identified were PT-17, PT-18, PT-19, PT-20, and PT-22. Borings PT-36 through PT-41 were subsequently drilled adjacent to the identified locations but outside of the fence which surrounds the Pretreatment Plant area. Samples from these borings were submitted for analysis. Visual examination of the uppermost sample from boring PT-37, drilled outside of the fence from PT-18, indicated the presence of waste material. Accordingly, another boring, PT-41, was drilled and sampled approximately ten feet farther away from the fence. Samples from PT-41 did not show visible evidence of contamination.

In addition to the soil borings described above, boring PT-24 was drilled in the eastern portion of the Pretreatment Plant area adjacent to the PT-10 location (see Figure 2-1). This boring was sampled and analyzed to further characterize the soil in the area where action levels were found to be exceeded during the RFA (see Section 1.4).

Four soil borings, PT-25 through PT-28, were drilled in the central portion of the Pretreatment Plant area in a pattern surrounding boring PT-8 (see Figure 2-1). These borings were sampled and analyzed to evaluate the extent of soil in this area with elevated concentrations of cadmium relative to the majority of the Pretreatment Plant area.

2-2

Borings for Descriptive Samples

Two soil borings in the western portion of the Pretreatment Plant area, PT-29 and PT-30, and five soil borings along the canal towpath, PT-31 through PT-35, were drilled to provide information on the depth of saturation (i.e., water table) and the depth of the lacustrine clay unit in these areas (see Figure 2-1). This information was used to select the depth for in-situ groundwater sampling as described in Section 2.2.3, as well as to provide additional information on the configuration of the surface of the clay unit.

2.1.2 Soil Sampling Procedures

The borings for the collection of analytical samples, PT-16 through PT-28 and PT-36 through PT-41, were drilled with a stainless steel hand auger to a depth of four feet, or to auger refusal, whichever was encountered first. Soil samples were collected from each two-foot interval in the boring. At several locations one to two layers of asphalt pavement were present. The pavement and associated roadbed gravel were removed with a jackhammer to a depth where samplable material was encountered. At these locations sampling was conducted from the depth to which the pavement and associated material was removed to four feet below this depth, or to auger refusal. Upon completion, each boring was backfilled with its auger cuttings. The soil borings were surveyed for location and elevation by a licensed surveyor from Thermo Consulting Engineers.

The borings for the collection of descriptive samples, PT-29 through PT-35, were drilled using a drill rig equipped with 3 1/4-inch inside diameter hollow-stem augers and 2-inch diameter split-spoons. At these locations, soil samples were collected in two-foot intervals during the advancement of each boring, in accordance with ASTM D-1586-87 protocols, from ground surface to a depth of approximately two feet into the lacustrine clay unit. The soil borings were completed by filling the boring with cement grout. These locations were also surveyed for location and elevation.

Soil samples from both sets of borings were visually classified and described in accordance with the Burmister Soils Classification System and the Unified Soil Classification System. The description and classification, along with other pertinent information such as boring depths, length of recovered portion of the sample interval, blow counts (for split-spoon samples), depth to saturation and other distinguishing characteristics of the soil (e.g., odor, color, presence of waste), if present, were recorded. These observations are contained in the boring logs in Appendix A.

The soil samples submitted for analysis from each location were collected from a homogenized mixture of the soil from the sample interval to minimize sample bias. Homogenization was accomplished by placing the sample from the hand auger into a stainless steel pan and mixing it with a stainless steel spoon. Samples of the homogeneous mixture were transferred to 125 mL and 250 mL glass jars with Teflon[®] (TFE) lined caps.

Two duplicate soil samples and three equipment blanks were collected and submitted for analysis. The equipment blanks were prepared by pouring analyte-free water over decontaminated sampling equipment, and into the sample containers.

Upon sample collection, the sample jars were labeled, sealed with chain-of-custody tape, and placed in a cooler containing ice in sealed plastic bags. The samples were shipped to the laboratory via overnight courier, Federal Express, in sealed coolers containing ice. The custody of the samples was documented using chain-of-custody forms. These forms were filled out by the samplers and placed in the sample coolers prior to relinquishing the coolers to the courier for delivery to the laboratory. The chain-of-custody forms are included with the laboratory data package (see Appendix G).

To minimize the potential for sample cross-contamination and the introduction of contamination to a sample location, the sampling equipment (e.g., split-spoons, hand augers, spoons, pans, etc.) was decontaminated between samples. Decontamination of this equipment was conducted according to the following protocol:

- 1. Scrub with tap water and non-phosphate detergent.
- 2. Rinse with tap water.
- 3. Rinse with 1% nitric acid.

- 4. Rinse with tap water.
- 5. Rinse with hexane.
- 6. Rinse with methanol.
- 7. Rinse with deionized water.
- 8. Air dry.
- 9. Wrap in polyethylene bag or sheeting until ready for use.

2.1.3 Soil Sample Analysis

Soil samples from borings PT-16 through PT-28 and PT-36 through PT-41 were analyzed for the parameters listed in Table 2-1 pursuant to the approved Work Plan. As noted in Table 2-1, the samples were subjected to screening for semivolatile organic compounds. All samples failed the screen (i.e., total semivolatile organics were detected above the detection limit) and were analyzed for the individual semivolatile organic compounds listed in Table 2-2. The sample from the zero to two-foot depth interval in the soil boring PT-24, drilled adjacent to the PT-10 location was subjected to the Toxicity Characteristic Leaching Procedure (TCLP) for metals, in addition to the other analyses.

The soil analyses were conducted by the ECKENFELDER INC. laboratory in Nashville, Tennessee, which is certified by the NYSDOH. A summary of the analytical results is presented in Appendix B. The laboratory data package is contained in Appendix G. The analyses, were conducted in accordance with the site QAPjP (July, 1993), which reflects current NYSDEC and USEPA protocol. Twenty-five percent of the analytical data were validated by an independent data validator. The data validation report and comments on the report are included in Appendix H.

2.2 GROUNDWATER INVESTIGATION

The groundwater investigation was focused on evaluating the distribution of cyanide in the overburden water-bearing zone and whether off-site migration of cyanide via groundwater has occurred. This approach was based on the findings of previous investigations (as described in Section 1.4.2). Based on the findings of the RFI for groundwater conducted at the main plant site, it is unlikely that underlying bedrock

TABLE 2-1

PARAMETER LIST FOR SOIL ANALYSIS

Chromium, total Cadmium, total Lead, total Mercury, total Cyanide, total Semivolatile Organic Compounds^a TCLP Metals (only on boring PT-24)

b TCLP-Toxicity Characteristic Leaching Procedure.

a Screened for semivolatile organics. If sample failed screen (i.e., total semivolatiles were detected above the detection limit), the analysis for individual semivolatile organic compounds was conducted on the sample (see Table 2-3). All samples failed the screen.

TABLE 2-2

Compound	Soil Reporting Limit (µg/kg)
2.4.6-Trichlorophenol	330
p-Chloro-m-cresol	330
2-Chlorophenol	330
2 4-Dichlorophenol	330
2.4-Dimethylphenol	330
2-Nitrophenol	330
4-Nitrophenol	1600
2 4-Dinitrophenol	1600
4.6-Dinitro-2-methylphenol	1600
Pentachlomphanol	1600
Phonol	330
Represe Acid	1600
9 Mothylphonol	220
4 Methylphenol	220
4-Methylphenol	1000
2,4,5-1 Fichiorophenol	2000
Acenaphthene	330
1,2,4-Trichlorobenzene	330
Hexachlorobenzene	330
Hexachloroethane	330
Bis(2-chloroethyl)ether	330
2-Chloronaphthalene	330
1,2-Dichlorobenzene	330
1,3-Dichlorobenzene	330
1,4-Dichlorobenzene	330
3,3'-Dichlorobenzidine	330
2,4-Dinitrotoluene	330
2,6-Dinitrotoluene	330
Fluoranthene	330
4-Chlorophenyl phenyl ether	330
4-Bromophenyl phenyl ether	330
Bis(2-chloroisopropyl)ether	330
Bis(2-chloroethoxy)methane	330
Hexachlorobutadiene	330
Hexachlorocyclopentadiene	330
Isophorone	330
Naphthalene	330
Nitrobenzene	330
N-nitrosodiphenylamine	330
N-nitrosodipropylamine	. 330
Bis(2-ethylhexyl)phthalate	330
Butylbenzylphthalate	330
Di-n-butylphthalate	330
Di-n-octylphthalate	330
Diethylphthalate	330

SEMIVOLATILE ORGANIC COMPOUND LIST FOR SOIL ANALYSIS

TABLE 2-2 (CONTINUED)

Compound	Soil Reporting Limit (µg/kg)	
Dimethylphthalate	330	
Benzo[a]anthracene	330	
Benzo[a]pyrene	330	
Benzo[b]fluoranthene	330	
Benzo[k]fluoranthene	330	
Chrysene	330	
Acenaphthylene	330	
Anthracene	330	
Benzo[g,h,i]perylene	330	
Fluorene	330	
Phenanthrene	330	
Dibenz[a,h]anthracene	330	
Ideno[1,2,3-cd]pyrene	330	
Pyrene	330	
Benzyl Alcohol	330	
4-Chloroaniline	330	
Dibenzofuran	330	
2-Methylnaphthalene	330	
2-Nitroaniline	1600	
3-Nitroaniline	1600	
4-Nitroaniline	1600	
Aniline	1600	
Benzidine	660	

SEMIVOLATILE ORGANIC COMPOUND LIST FOR SOIL ANALYSIS

water-bearing zones receive a significant contribution of groundwater flow from the overburden zone in the area of the Pretreatment Plant. Thus, the investigation was concentrated on the overburden zone. Further, the evaluation of groundwater conducted during the RFA of the Pretreatment Plant indicated that cyanide was the only constituent for which a GWPC was exceeded.

2.2.1 Piezometer Installation

Two shallow piezometers were installed in the overburden to evaluate the apparent groundwater flow divide along the stream and marsh to the north and east of the Pretreatment Plant area. As shown in Figure 2-1, one piezometer, P-16 was installed north of the stream, near staff gauge SG-1, and a second piezometer, P-15, was installed on the east side of the marsh, just north of the northern wall of the Feeder Canal. Water levels in these piezometers were measured in conjunction with the water level measurements described below.

The piezometers are constructed of approximately 1-1/4-inch diameter black steel pipe, with an approximately 1.5-foot long interval of stainless steel screen and a cast iron drive-point at the base. The boring for each piezometer was drilled using a hand-auger to a depth approximately one foot below the water level in the boring. The piezometer was then placed in the bottom of the borehole. The annulus between the piezometer and the boring was backfilled with auger cuttings. The piezometers were surveyed for location, ground surface elevation and top-of-casing elevation by a licensed surveyor from Thermo Consulting Engineers. The boring logs for these piezometers are included in Appendix A.

2.2.2 Water Level Measurements

Water levels in the wells, piezometers and staff gauges associated with the Pretreatment Plant area, including the two piezometers described in Section 2.2.1, were measured on two occasions during the field investigation -- July 7 and July 13, 1994. The first round of water levels (July 7, 1994) was conducted just prior to the initiation of groundwater sampling for this investigation (see Section 2.2.3). The second round (July 13, 1994) was conducted following a four-day hiatus in sampling, during which water levels at the sampled locations recovered to static conditions.

The round of water level measurements from July 13, 1994 also included measurements from four temporary piezometers in the western portion of the Pretreatment Plant area, IG-1 through IG-4, installed for the in-situ groundwater sampling described in Section 2.2.3. These locations were installed after the July 7, 1994 round. The water level measurements and the calculated water elevations are listed in Appendix C.

The water levels were measured using an electronic water level indicator. The indicator probe was lowered into the well or piezometer (or alongside a staff gauge) until the instrument indicated water was reached. The probe was then raised above the water level and slowly lowered again until water was indicated. The indicator cable was held against the innermost casing at the reference point designated for water level measurements and a depth reading recorded. This procedure was conducted three times or until a consistent value was obtained. The value was recorded to the nearest 0.01 feet. The probe was then raised to the surface and together with the length of cable that entered the well, was decontaminated with a non-phosphate detergent (Alconox Φ) wash and a distilled water rinse.

2.2.3 Groundwater Sampling and Analysis

Sampling Locations

To evaluate the spatial distribution of cyanide in groundwater in the Pretreatment Plant area, samples from the nine one-inch diameter piezometers and the three monitoring wells installed during the RFA (see Table 2-3 and Figure 2-1) were collected and analyzed for total cyanide. Although the one-inch piezometers do not meet the construction specifications for a monitoring well with regards to surface completion and prior well development, samples collected from these piezometers provide an indication of the groundwater quality with respect to cyanide. The distribution of the piezometers and wells provide coverage across the Pretreatment Plant area both in the central locations and at the boundaries of the Pretreatment Plant. Samples were collected from piezometers P-1, P-3, P-7, and P-8 on July 8, 1994. The remaining piezometers and the monitoring wells were sampled on July 13 and 14, 1994.

TABLE 2-3

Monitoring Wells	Piezometers	
MW-OB17	P-1	
MW-OB18	P-3	
MW-OB19	P-6	
	P-7	
	P-8	
	P-10	
	P-11	
	P-12	
	P-14	

WELLS AND PIEZOMETERS SAMPLED

Į

1

1

1

In addition to the sampling of the existing wells and piezometers, in-situ groundwater samples were collected from the overburden from eight locations. Four locations, IG-1 through IG-4, were sampled west and southwest of MW-OB17, in the western portion of the Pretreatment Plant area. Four other locations, IG-7 through IG-10, were sampled south of the Feeder Canal, along an area southeast of the Pretreatment Plant and directly south of the marsh area which drains to the Feeder Canal. Nine in-situ sampling locations were originally proposed in the Work Plan for the area south of the Feeder Canal. However, the soil borings drilled along the canal prior to the sampling (see Section 2.1.1) indicated that no saturation was present above the lacustrine clay unit west of the pipe bridge across the canal south of Tank T-110 (see Figure 2-1). Thus, in-situ sampling was not attempted west of the pipe bridge. Attempts were made to collect in-situ samples from two locations, IG-5 and IG-6, within the area approximately 80 feet east of the pipe bridge where the soil borings indicated a thin wet zone above the clay. No water was recovered from these locations despite allowing a day for water to enter the sampling pipe. The in-situ samples were collected on July 12 and July 13, 1994.

Purging and Sampling of Wells and Piezometers

Prior to groundwater sampling, each monitoring well or piezometer was sounded for total depth and the depth to the static water level was measured. These measurements were used to calculate the volume of water within the well. Water levels were measured as described in Section 2.2.2. The wells were sounded by lowering the water level probe to the bottom of the well. The tape was then raised until the tension indicated the probe tip is positioned at total depth bottom. A measurement from the measuring point on the top of the well casing was recorded (accounting for the length of the probe).

The well or piezometer was purged of three well volumes of water or completely evacuated, depending on recharge rates, prior to sampling. Purging was performed by bailing with a disposable Teflon[®] bailer for the monitoring wells, and through disposable polyethylene tubing using a peristaltic pump equipped with disposable Tygon tubing for the piezometers. New tubing or bailers were used for each

2-8

location. Purged groundwater was collected in buckets and transferred to the CIBA-GEIGY industrial sewer system for disposal. Information regarding the volumes purged from each location is provided in the field data sheets (see Appendix D).

Groundwater samples were collected from the monitoring wells using a disposable Teflon[®] bailer with nylon bailer cord. Samples from the one-inch diameter piezometers were collected through disposable polyethylene tubing using a peristaltic pump.

Typically, groundwater samples were collected immediately after purging. However, low yielding wells and piezometers which recover insufficiently to collect the entire sample volume immediately following purging required samples to be collected in stages. Attempts were made to collect a 1,000 mL sample volume, although volumes of approximately 200 mL were adequate for the required analysis. The samples were collected in 1,000 mL plastic bottles and preserved with sodium hydroxide to maintain a pH of greater than 12. The sample bottles were then placed in a cooler containing ice in a sealed plastic bag.

If adequate sample volume was available, specific conductance, pH, and temperature measurements (i.e., field parameters) were recorded after the collection of the sample (see Appendix E). If adequate sample volume was not available, the sample was collected without measuring the field parameters.

In-Situ Groundwater Sampling

In situ groundwater samples were collected using Geoprobe® equipment provided by Burlington Environmental. Based on information from the nearby soil borings, it was decided that the saturated thickness of the overburden is too thin to provide an adequate volume of sample using the typical Geoprobe system of driving a steel rod to depth and collecting a sample through the rod. This situation was anticipated as a possibility in the Work Plan, and as such the alternate method of in-situ sampling proposed in the Work Plan was utilized. This method involved the installation of a temporary 1-inch or 1 1/4-inch I.D. PVC pipe, with a three- to six-foot long screen section (0.010-inch slot screen) and a 1.5-inch diameter drive-point threaded to the base. A steel rod connected to the Geoprobe unit was inserted through the PVC pipe, down to the drive-point. The pipe was then driven hydraulically to a depth below the water table, and the rod extracted from inside the pipe. The depth of the water table was estimated based on the borings drilled for descriptive samples, as described in Section 2.2.1. The water level in the pipe was then allowed to stabilize to allow for collecting an adequate sample volume.

The groundwater sample was collected using disposable 1/4-inch diameter polyethylene tubing using a peristaltic pump equipped with disposable Tygon tubing. The sample was poured directly from the tubing into the sample container. A minimum of 200 mL of sample was collected from each of the eight locations. Several locations required repeated sampling over an approximately 24-hour period to obtain the 200 mL volume for the cyanide analysis. The samples were collected in 1,000 mL plastic bottles and preserved with sodium hydroxide to maintain a pH of greater than 12. The sample bottles were then placed in a cooler containing ice in a sealed plastic bag. If adequate sample volume was available after the collection of the sample for cyanide analysis, the pH, specific conductivity, and temperature (i.e., field parameters) of the sample were measured in the field (see Appendix E).

Upon completion of the sampling, attempts were made to withdraw the PVC pipe from the soil at the locations south of the Feeder Canal. At each of these locations, portions of the PVC could not be removed. The remaining hole and the portions of PVC pipe in the hole, were filled with bentonite. The PVC pipe in IG-1 through IG-4, which are located on CIBA-GEIGY property, was left in the hole to serve as a temporary water level monitoring point.

Each of the in-situ sampling locations was surveyed for location and ground surface elevation by a licensed surveyor from Thermo Consulting Engineers. The elevation of the top of the PVC pipe remaining in IG-1 through IG-4 was also surveyed for a water level measurement reference point.

Field Measures for Quality Control/Quality Assurance

Two duplicate groundwater samples and two equipment blanks were collected and submitted for analysis. One equipment blank was prepared by pumping

Q:\9427\RI0913B.DOC
analyte-free water through new disposable polyethylene tubing using the peristaltic pump equipped with a new section of disposable Tygon tubing. The second equipment blank was prepared by pouring analyte-free water into a new disposable Teflon[®] bailer and into the sample container.

Upon sample collection, the bottles were labeled, sealed with chain-of-custody tape, and placed in a cooler containing ice in sealed plastic bags. The samples were shipped to the laboratory via overnight courier, Federal Express, in sealed coolers containing ice. The custody of the samples was documented using chain-of-custody forms. These forms were filled out by the samplers and placed in the sample coolers prior to relinquishing the coolers to the courier for delivery to the laboratory. The chain-of-custody forms are included with the laboratory data package (see Appendix G).

Groundwater Sample Analysis

1

Į

U

The analyses of the groundwater samples for total cyanide were conducted by the ECKENFELDER INC. laboratory in Nashville, Tennessee, which is certified by the NYSDOH. A summary of the analytical results is presented in Appendix E. The laboratory data package is contained in Appendix G. The analyses were conducted in accordance with the site QAPjP (July, 1993), which reflects current NYSDEC and USEPA protocol. Twenty-five percent of the analytical data were validated by an independent data validator. The data validation report and comments on the report are included in Appendix H.

3.0 INVESTIGATIVE FINDINGS

3.1 SOIL INVESTIGATION

3.1.1 Overburden Geology

Descriptions of the overburden material encountered in each soil boring during this investigation are presented in the soil boring logs in Appendix A. Soil boring logs for the previously drilled borings, PT-1 through PT-15 are included in Appendix A of the RFA-SV Report. Soil boring logs for the three monitoring wells, MW-OB17, MW-OB18, and MW-OB19, are included in Appendix A of the RFA Groundwater Addendum Report. The nature of the various overburden deposits is described in the following sections based on the findings from this investigation and those presented in the reports for the RFA.

<u>Fill</u>

Fill material consisting of sand, silt, clay, gravel, and occasional concrete fragments was encountered over most of the site. The maximum thickness of fill encountered was 10.3 feet in PT-1, located in the northern portion of the Pretreatment Plant area. Fill was not encountered on site in borings PT-4, PT-12, PT-14, PT-29, and PT-30. An isopachous map of total fill thickness was included in Figure 4-3 of the RFA-SV Report.

Lacustrine Deposits

The lacustrine deposits consist of sand, silt and clay interbeds overlying a massive lacustrine clay unit. Above the massive clay, sand is the predominant grain size, with varying amounts of silt. The sand is often interbedded with clay or silt intervals.

The lacustrine clay unit comprises a relatively thick accumulation of predominantly silty clay. Based on the borings in this area which were drilled to bedrock, the

lacustrine clay unit directly overlies bedrock, and thicknesses up to 12.5 feet have been recorded. The lacustrine clay unit is typically varved, exhibiting very thin partings along more silt- or sand-rich layers.

Figure 3-1 depicts the configuration of the surface of the massive lacustrine clay unit. Beneath most of the Pretreatment Plant area, the clay surface undulates between relatively high and low areas. In the vicinity of borings PT-1 and PT-2, the lacustrine clay unit is absent, and fill directly overlies the bedrock. The clay was likely removed by excavation associated with construction of Pretreatment Plant facilities.

In the eastern portion of the Pretreatment Plant area, the clay surface dips toward the southeast. This southeasterly dip continues to at least south of the Feeder Canal. The top of clay surface elevation decreases from 279.2 feet NGVD to 257.7 NGVD over the approximately 430-foot distance between PT-9, located in the eastern portion of the Pretreatment Plant area, and PT-35, located south of the Feeder Canal and south of the Pretreatment Plant area.

To the south of the Pretreatment Plant, the clay was apparently partially excavated to construct the Feeder Canal. The elevation of the base of the Feeder Canal is approximately 272 feet NGVD. Based on structural projections from soil borings, the clay surface on both sides of the canal is above the base of the Feeder Canal along the southern boundary of the Pretreatment Plant area. Directly east of the Pretreatment Plant area, the clay surface apparently dips below the base of the Feeder Canal.

3.1.2 Soil Quality

In this section, the results of the soil sample analyses from this investigation and previous investigations are evaluated with respect to the spatial distribution of constituents. Isoconcentration maps were constructed by plotting the maximum concentration measured in each boring and are presented in Figures 3-2 through 3-6

for each inorganic constituent analyzed during this investigation. Isoconcentration maps for the semivolatile organic compounds were not prepared since their occurrence was sporadic and because most of the compounds detected are not likely related to Pretreatment Plant operations, as discussed below.

Figures 3-2 through 3-6 indicate that the highest concentrations of constituents are in the easternmost portion of the Pretreatment Plant area. Within this area, the highest concentrations were measured north of Tank T-110. To the west, concentrations decrease to levels typical of the remainder of the Pretreatment Plant area, as indicated by the concentrations measured in samples from borings PT-16, PT-9 and PT-14. Concentrations also decrease markedly in the soil outside the fence surrounding the eastern portion of the Pretreatment Plant area to concentration ranges typical of the western portion of the Pretreatment Plant area.

In the central portion of the Pretreatment Plant area, cadmium concentrations are elevated slightly above typical concentrations in the surrounding areas, as indicated by borings PT-8 and PT-27 (see Figure 3-2). The lower concentrations measured in nearby borings indicate this is a very localized occurrence.

The cyanide concentration in soil from PT-6, located along the northern fence line in the eastern half of the Pretreatment Plant area is comparable to levels typical of the area north of tank T-110 (see Figure 3-6). Cyanide concentrations in adjacent borings are within the range typical of the central and western portions of the Pretreatment Plant area.

Semivolatile organic compounds were detected in soil samples in the surface to four-foot depth interval at several locations across the Pretreatment Plant area. The compounds are predominantly polynuclear aromatic hydrocarbons (PAHs). The PAH concentrations appear to be more sporadically distributed than the inorganic constituents described above. Non-PAH semivolatile compounds were only detected in the eastern portion of the Pretreatment Plant area, within the area of the highest concentrations of inorganic constituents.

During the RFA, the soil borings were sampled to a depth of eight feet or more and thus provided a depth profile of constituent concentrations. The maximum

concentrations of constituents in the soil at these borings were typically in the zeroto two-foot depth interval. In general, concentrations decreased markedly below a depth of two to four feet. During this investigation, samples were collected to a depth of four feet or less from the top of each boring. Concentrations in the zero- to two-foot interval from these borings were typically much higher than those from the two- to four-foot interval, with very few exceptions, thus confirming the findings of the RFA.

The source of the elevated concentrations of constituents in the surficial soils of the Pretreatment Plant area was likely minor spills and leaks which occurred during past operations, prior to the decommissioning of most of the treatment facilities in 1990 (see Section 1.3). The presence of the highest concentrations in the eastern portion of the Pretreatment Plant area is explained by the type of facilities which were located there. During operations at the main plant site, wastewater from the main plant was initially fed into Tank T-110, located in the eastern portion of the Pretreatment Plant, which served as a holding tank. As such, the water and bottom sludge in this tank had the highest constituent concentrations of the materials handled at the Pretreatment Plant. Thus, the likelihood of causing elevated concentrations in the soils due to spills or leaks was greater in this area than for other areas. Several other treatment tanks were located in this area as well. Evaluations and inspections of the Pretreatment Plant facilities which are currently operating indicate that these facilities are of satisfactory integrity [see report on "Phase I Industrial Sewer Integrity Evaluation, CIBA-GEIGY Plant Site, Glens Falls, New York", (ECKENFELDER Engineering P.C., February 1992)].

The PAH compounds detected at several locations across the site are probably not related to site operations. This is supported by the dissimilarity in the concentration patterns between the constituents known to be related to site operations, and the PAH compounds, as discussed above. These compounds were likely derived from a number of potential sources, such as asphalt pavement, internal combustion engine emissions, coal burning, etc.

3-4

3.1.3 Soil Leachate Quality

The results of the analysis of the leachate from the zero- to two-foot soil sample at boring PT-24, extracted using the TCLP method (see Section 2.1.3) are presented in Appendix B. The leachate concentrations of cadmium, 1.87 mg/L, and lead, 18.0 mg/L, exceed the regulatory limits for characteristic hazardous waste of 1.0 and 5.0 mg/L, respectively. This sample has the highest concentrations of inorganic constituents of those measured for this or previous investigations of the Pretreatment Plant area.

3.2 GROUNDWATER INVESTIGATION

In the following sections the findings of the groundwater investigation of the Pretreatment Plant area are presented. Section 3.2.1 provides a description of the hydrogeologic character of the overburden water-bearing zone. Section 3.2.2 discusses the nature of groundwater flow within this zone. Finally, Section 3.2.3 describes the distribution and source of groundwater contamination. The general understanding of groundwater flow within the overburden water-bearing zone gained from this investigation is consistent with that developed during the RFA (see Section 1.4). However, several refinements to the conceptual model of groundwater flow in this area were made based on the findings in this investigation.

3.2.1 Overburden Water-Bearing Zone

The nature of the lacustrine deposits and fill in the overburden at the Pretreatment Plant was described in Section 3.1.1. Groundwater beneath the Pretreatment Plant flows laterally through the relatively permeable fill and lacustrine sands in the overburden. The massive lacustrine clay unit, situated in the lower portion of the natural overburden deposits, has a relatively low hydraulic conductivity and retards the downward migration of groundwater towards the bedrock. Thus, the clay unit forms the lower boundary of the overburden water-bearing zone. In the one area identified where the clay unit is absent due to excavation, near soil borings PT-1 and PT-2, the top of the bedrock forms the base of this zone. Due to the thin saturated

U

thickness throughout most of the Pretreatment Plant area, the topography of the clay surface likely influences horizontal groundwater flow directions in the more permeable material overlying the clay unit (see Figure 3-1).

Slug tests were conducted in the monitoring wells to estimate the hydraulic conductivity of the overburden water-bearing zone during the RFA. The hydraulic conductivity estimates for MW-OB17, MW-OB18, and MW-OB19 are 1.0×10^{-4} cm/sec, 4.3×10^{-6} cm/sec, and 2.1×10^{-5} cm/sec, respectively (see Appendix B of RFA Groundwater Addendum Report for slug test evaluations). This large range in hydraulic conductivity values is expected, considering the variety of materials comprising this zone.

3.2.2 Groundwater Flow

Groundwater potentiometric surface maps (i.e., groundwater table maps) of the overburden water-bearing zone at the Pretreatment Plant were prepared for the two rounds of water level measurements, July 7 and July 13, 1994, made during this investigation (see Figures 3-7 and 3-8). Potentiometric surface maps prepared from previous rounds of water level measurements are included in Appendix F. These include three maps presented in the RFA-SV Report, prepared from measurements made prior to the installation of the three monitoring wells, and one map presented in the RFA Groundwater Addendum Report, which includes data from the monitoring wells. Additionally, a west-to-east oriented hydrogeologic cross section extending from the Pretreatment Plant area to across the stream and marsh area to the east is provided in Figure 3-9. This cross section was prepared using water levels measured on July 7, 1994.

The potentiometric surface maps indicate that in general groundwater beneath the Pretreatment Plant area flows toward the small stream and associated marsh areas which lie to the north and east. Groundwater elevations measured in the piezometers on the opposite side of the stream from the Pretreatment Plant, P-15 and P-16, were greater than the surface water elevations in the stream and marsh. This indicates that the stream serves as a groundwater flow divide in the overburden. Thus, groundwater does not flow past this stream, but either discharges to the stream or marsh, or flows parallel to it toward the Feeder Canal.

FC

As described in Section 3.1.1, the surface of the lacustrine clay unit dips to elevations below the base of the Feeder Canal east of the Pretreatment Plant beneath the marsh area (see Figures 3-1 and 3-9). Thus, groundwater flowing toward the stream and marsh can either discharge to the surface water and eventually flow to the Feeder Canal, or flow under the canal. Groundwater passing under the Feeder Canal would likely flow toward the stream and marsh area located approximately 150 feet south and downslope from the canal.

To the west, where the surface of the lacustrine clay is above the base of the canal, groundwater apparently does not flow past the Feeder Canal. This conclusion is based on the lack of saturation in the overburden deposits above the lacustrine clay sampled in borings PT-31 and PT-32, located south of the Feeder Canal, and the lack of groundwater above the clay indicated at in-situ sample locations IG-5 and IG-6.

It is possible that groundwater from the southern portions of the Pretreatment Plant area discharges to the canal through leaks in the canal wall. However, the Feeder Canal is lined with plastic south of the Pretreatment Plant up to the open section in the north wall of the canal. Further, monitoring of water levels in the piezometers at the Pretreatment Plant during the seasonal filling of the Feeder Canal in April 1992, as reported in the "RCRA Facility Investigation Report for **CIBA-GEIGY** New York" Site. Glens Falls Groundwater. (ECKENFELDER Engineering P.C., March 1993), indicated that the water level in the Feeder Canal had no discernible effect on groundwater levels or flow directions in the overburden beneath the Pretreatment Plant area. Thus, groundwater beneath the southern portion of the Pretreatment Plant is apparently not in direct hydraulic communication with the water in the canal. However, groundwater from the southern area of the Pretreatment Plant could flow into a potential zone of enhanced permeability which may exist between the bottom and sides of the canal and the lacustrine clay. The occurrence of a zone of enhanced permeability, if present, might be attributed to soil disturbance or backfilling during excavation for canal construction. Groundwater in such a zone would likely flow eastward, parallel to the course and gradient of the Feeder Canal, to where the clay surface dips below

l

the bottom of the canal. In the absence of an enhanced permeability zone, groundwater from the southern portion of the Pretreatment Plant area likely flows eastward, parallel to, and north of, the wall of the canal.

The potentiometric surface maps also indicate that the gradient and the flow direction in the western part of the Pretreatment Plant area is variable. The potentiometric surface configurations for July 7 and 13, 1994 (Figures 3-7 and 3-8) indicate a small, generally eastward gradient with components of flow to the north and south. A significant component of southward flow was identified on the July 13, 1994 map based on the additional water level monitoring points provided by in-situ sampling locations IG-1 through IG-4. The potentiometric surface configurations for February 12 and April 22, 1992 (see Appendix F) also indicate a small to nearly flat gradient in the western portion of the site. The configuration of the potentiometric surface from June 21, 1993 (see Appendix F) indicates a groundwater mound, or flow divide, in the western area, near piezometers P-1 and P-7, with radial flow away from the mound. In contrast, the potentiometric surface configuration for December 4, 1991 (see Appendix F) indicates a steep eastward gradient in this area. It is likely that groundwater flowing to the west and south from the Pretreatment Plant area eventually flows toward the main plant site, since the general slope of the lacustrine clay unit in this area, based on investigations at the main plant site, is to the south toward the Hudson River.

This variability in groundwater flow directions is likely caused by local variations in rates of recharge to the groundwater from precipitation due to the variable nature of the ground surface features (see Section 1.2), the influence of the topography of the clay unit surface due to the thin of the saturated thickness above the clay, and/or local variations in hydraulic conductivity. In a hydrogeologic setting such as this, complex, local flow patterns can develop which cannot be fully defined by the monitoring of water levels in wells. For example, it is possible during periods of low recharge for the groundwater flow to be locally controlled by the slope of the clay unit depending on the distribution of groundwater elevations relative to the topography of the clay surface in the area. In this situation, local flow paths may be opposite or cross-gradient from the flow direction interpreted from water levels

measured across the site. The uncertainty in the direction of flow diminishes as the saturated thickness becomes large relative to the relief on the clay surface, or where the clay surface is demonstrated to dip in the same general direction as the potentiometric surface interpreted from the water level monitoring data.

3.2.3 Groundwater Quality

In this section, the results of the total cyanide analyses of the groundwater samples collected from the monitoring wells, piezometers and in-situ groundwater monitoring locations are evaluated with respect to the spatial distribution of concentrations. An isoconcentration map of the total cyanide concentrations is presented in Figure 3-10, using a logarithmic contour interval beginning at the GWPC for cyanide, 100 μ g/L.

Figure 3-10 indicates that the highest cyanide concentrations in the groundwater, above 5,000 μ g/L, are located in the area extending from north of tank T-110 to the vicinity of piezometer P-6. Relatively high concentrations continue from this area to the vicinity of P-8, where a concentration of 2,230 μ g/L was measured. To the west, south and east of this area, cyanide concentrations decrease. The northern extent of the area of high concentrations is limited by the stream north of the Pretreatment Plant, since this is a groundwater divide (see Section 3.2.2).

Cyanide concentrations exceed the GWPC to the northern, eastern and southern boundaries of the Pretreatment Plant area. Along the western border of the Pretreatment Plant area, concentrations further decrease to below or near the GWPC. Concentrations in two of the four samples collected south of the Feeder Canal, directly south of the section of the canal open to the marsh area, exceed the GWPC.

The likely source of the cyanide in groundwater is spills and possible leaks from a treatment tank which was located northwest of tank T-110, within the area of highest cyanide concentrations in both the groundwater and the soil (see Figure 3-6). The tank was used to hold cyanide-bearing sludge prior to introduction into the treatment system. The tank was open-topped and was buried three-quarters below ground level. The tank was removed during decommissioning

in 1990. Analyses of soil samples collected near the former location of this tank (i.e., PT-6, PT-10, and PT-24) indicate elevated levels of cyanide relative to the remainder of the Pretreatment Plant area (see Figure 3-6).

The occurrence of cyanide in the groundwater east of the suspected source area, such as the locations south of the Feeder Canal, is readily explained by the discussion of groundwater flow presented in Section 3.2.2. Groundwater containing cyanide flows eastward from the source area toward the stream and marsh area. Since this area serves as a groundwater divide, groundwater is directed to the south and under the canal where the lacustrine clay unit is below the base of the Feeder Canal.

Cyanide concentrations to the west of the suspected source are likely the result of the complex groundwater flow patterns caused by the interaction between the undulating surface of the lacustrine clay unit, the relatively thin saturated thickness above the clay, and fluctuations in groundwater elevations, as discussed in Section 3.2.2. One possible scenario for cyanide migration to these areas involves the mound in the clay surface in the area of highest cyanide concentrations. Groundwater moving from this area down the slope of the clay surface likely contributed to the elevated concentrations in piezometer P-8. Since the area of P-8 at times is located where on occasion a groundwater "mound" has been observed to develop, cyanide would be able to migrate to any of the remaining portions of the Pretreatment Plant area. This scenario is supported by the steady decrease in concentrations with distance from the suspected source area.

3-10

4.0 CONCLUSIONS

The following conclusions are made based on the findings of the soil and groundwater investigations conducted for this RFI:

Soil Investigation

- The overburden material in the Pretreatment Plant area consists of lacustrine deposits overlain throughout most of the area by fill deposits. The fill consists of sand, silt, clay, gravel and occasional concrete fragments. The lacustrine deposits consist of a unit of predominantly sand with silt and clay intervals overlying a massive lacustrine clay unit. The lacustrine clay unit directly overlies bedrock throughout most of the area.
- The surface of the lacustrine clay unit undulates beneath most of the Pretreatment Plant area. In the eastern portion of the Pretreatment Plant area, the clay unit dips toward the southeast. This southeastward dip continues beyond the south side of the Feeder Canal. Directly south of the Pretreatment Plant area, the excavation for the Feeder Canal partially extends into the clay unit. The base of the Feeder Canal is below the top of the clay surface on either side of the canal. East of the Pretreatment Plant, the surface of the clay unit dips below the base of the Feeder Canal.
- The highest concentrations of hazardous constituents in the soil are within the easternmost portion of the Pretreatment Plant area. To the west, concentrations decrease to levels typical of the remainder of the Pretreatment Plant area. Concentrations also decrease markedly in the soils outside the fence surrounding the eastern portion of the Pretreatment Plant to the north, east, and south.
- In a small area within the central portion of the Pretreatment Plant area, near boring PT-8, cadmium concentrations are elevated slightly above concentrations in surrounding areas.

- Semivolatile organic compounds were detected in soil samples in the surface to four-foot depth interval at several locations across the Pretreatment Plant area. The compounds are predominantly polynuclear aromatic hydrocarbons (PAHs). The PAH concentrations appear to be more sporadically distributed than the inorganic constituents. Non-PAH semivolatile compounds were detected only in the eastern portion of the site, within the area of the highest concentrations of inorganic constituents.
- The maximum concentrations of constituents in the soils were typically in the zero- to two-foot depth interval.
- The source of the elevated concentrations of constituents in the surficial soils of the Pretreatment Plant area is likely minor spills and leaks which occurred during past operations, prior to the decommissioning of most of the treatment facilities in 1990. The PAH compounds detected at several locations across the Pretreatment Plant area are probably not related to Pretreatment Plant operations.
- TCLP analysis of the soil sample from the zero- to two-foot depth interval of boring PT-24, located in the center of the eastern portion of the Pretreatment Plant area, indicates that cadmium and lead concentrations exceed the regulatory limits for characteristic hazardous waste.

Groundwater Investigation

- Groundwater beneath the site flows laterally through the relatively permeable fill and lacustrine sands in the overburden. The massive lacustrine clay unit, situated in the lower portion of the natural overburden deposits, forms the lower boundary of the overburden water-bearing zone. Where the clay unit is absent due to excavation (in the vicinity of PT-1 and PT-2), the top of the bedrock surface forms the base of this zone.
- The general direction of groundwater flow beneath the Pretreatment Plant area is to the east toward the small stream and associated marsh areas which lie to the north and east. The stream is a local groundwater flow

divide. Thus, groundwater does not flow past the stream, but discharges to the stream and marsh, or flows parallel to the stream. Groundwater flowing toward the stream and marsh will either discharge to the surface water and flow into the Feeder Canal, or flow under the canal where the surface of the lacustrine clay unit dips below the bottom of the canal.

- Where the surface of the clay unit is above the base of the Feeder Canal, adjacent to the southern portions of the Pretreatment Plant, groundwater could possibly flow into a potential zone of enhanced permeability which may exist between the bottom and sides of the canal and the lacustrine clay. Groundwater in such a zone would likely flow eastward, parallel to the course and gradient of the Feeder Canal, to where the clay surface dips below the bottom of the canal. In the absence of the enhanced permeability zone, groundwater from the southern portion of the Pretreatment Plant area likely flows eastward, parallel to, and north of, the wall of the canal.
- The groundwater gradient and flow direction in the western part of the Pretreatment Plant area are variable. The gradient varies from a steep to nearly flat eastward gradient. Components of flow to the north and south are often developed. Also, on occasion, a groundwater flow divide forms in this area, thus creating a component of flow from the western Pretreatment Plant area to the west or southwest. Groundwater flowing west or south from the Pretreatment Plant area likely flows toward the main plant site to the south.
- The variability in groundwater flow directions is likely caused by local variations in rates of recharge to the groundwater from precipitation, the influence of the topography of the clay unit surface due to the thin saturated thickness above the clay, and/or local variations in hydraulic conductivity. In this setting, complex, local flow patterns can develop which cannot be resolved by the monitoring of water levels in wells.
- Cyanide concentrations in the groundwater are highest beneath the area extending from north of tank T-110 to the vicinity of piezometer P-6. To

the west, south, and east, cyanide concentrations steadily decrease. The northern extent of the elevated concentrations is limited by the stream to the north, since this serves as a groundwater flow divide.

- Cyanide concentrations exceed the GWPC to the northern, eastern, and southern boundaries of the Pretreatment Plant area. Along the western border of the site, concentrations decrease to below or near the GWPC. Concentrations in two of the four samples collected south of the Feeder Canal exceed the GWPC.
- The likely source of the cyanide in groundwater is spills and possible leaks from a former holding tank for cyanide-bearing sludge located northwest of Tank T-110. The tank was removed in 1990.
- The complex, local groundwater flow patterns created by the interaction among the undulating surface of the lacustrine clay unit, the relatively thin saturated thickness above the clay, and fluctuations in groundwater elevations resulted in the migration of cyanide-bearing groundwater from the source to the western portions of the Pretreatment Plant area.

5.0 RECOMMENDATIONS

In a January 10, 1994 letter to the NYSDEC, the NYSDOH provided soil cleanup criteria for attaining an unrestricted use designation for soils at the Pretreatment Plant SWMU in the event that unrestricted use is the desired remediation goal. This letter was included as an attachment to the February 17, 1994 letter from the NYSDEC and the USEPA which contained the comments on the original draft of the Work Plan for this investigation. These soil cleanup criteria were provided prior to the collection and analysis of samples from the "background sample area", sampled as part of the RFI of the Adjacent Off-Site Land AOC, to guide the RFI for the Pretreatment Plant SWMU. In accordance with the notification requiring a CMS for on-site soils and groundwater, dated March 15, 1993, the concentrations of metals measured in the background sample area are to be used as the Target Cleanup Levels (i.e., levels that would allow for unrestricted use) for on-site soils. Corrective measures for on-site soil, including soil within the Pretreatment Plant SWMU, were evaluated in the "Corrective Measure Study for On-Site Soil and Groundwater, CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER Engineering P.C., August, 1994) (hereafter referred to as the "CMS Report"). The background sample data were not available for use in the CMS.

The soil cleanup criteria provided for the Pretreatment Plant SWMU in the January 10, 1994 letter from the NYSDOH are generally higher than the concentrations measured in the background sample area. Given this inconsistency and the need for health-based criteria to evaluate potential future uses and corrective measure alternatives, a site-specific risk assessment was initiated to establish soil cleanup levels for the Pretreatment Plant SWMU. A Supplemental RFI Report will be submitted presenting the methods, procedures, and findings of the risk assessment, as well as recommendations regarding cleanup levels for the desired post-remedial uses of the Pretreatment Plant SWMU. Any modifications to the CMS Report with respect to soils at the Pretreatment Plant SWMU, based on the results of the risk assessment, will be submitted as an addendum to the CMS Report.

Concentrations of total cyanide in the groundwater are above the GWPC within the overburden water-bearing zone beneath the Pretreatment Plant SWMU. Further,

cyanide-bearing groundwater has migrated off site, where locally, concentrations are above the GWPC. The CMS Report was submitted prior to the evaluation of groundwater quality at the Pretreatment Plant SWMU conducted as part of this RFI. Section 5.1 of the CMS Report states that if the RFI data indicate that corrective measures for groundwater are required for the Pretreatment Plant SWMU, this would be addressed at a later date. Based on the findings in this investigation, an evaluation of corrective measures for groundwater in the overburden at the Pretreatment Plant SWMU is required. This evaluation will be provided in an addendum to the CMS Report.

The supplemental RFI Report, containing the results of the risk assessment, will be submitted to the Agencies within 60 days of the submittal of this report. The addendum to the CMS Report, containing an evaluation of corrective measure alternatives for groundwater at the Pretreatment Plant SWMU and any modifications to the recommended corrective measures for soil at the Pretreatment Plant SWMU, will be submitted within 60 days of receiving approval of this report and the Supplemental RFI Report.

REFERENCES

- Bodek, Lyman, Reehl, and Rosenblatt, eds., 1988. "Environmental Inorganic Chemistry, Properties, Processes and Estimation Methods", Pergamon Press, New York.
- ECKENFELDER Engineering P.C., August 1994, "Corrective Measure Study for On-Site Soils and Groundwater, CIBA-GEIGY Site, Glens Falls, New York.
- ECKENFELDER Engineering P.C., March 1993, "RCRA Facility Investigation Report for Groundwater, CIBA-GEIGY Site, Glens Falls, New York.
- ECKENFELDER Engineering P.C., September 1993, "Groundwater Addendum to RFA Report for Pretreatment Plant SWMU, CIBA-GEIGY Site, Glens Falls, New York".
- ECKENFELDER Engineering P.C., February 1992, "Report on Phase I Industrial Sewer Integrity Evaluation, CIBA-GEIGY Plant Site, Glens Falls, New York".
- ECKENFELDER Engineering P.C., July 1992, "RFA Sampling Visit, Pretreatment Plant, CIBA-GEIGY Site, Glens Falls, New York".
- ECKENFELDER INC., April 1994, "RFI Work Plan for the Pretreatment Plant SWMU, CIBA-GEIGY Site, Glens Falls, New York".
- ECKENFELDER INC., July 1993, "Quality Assurance Project Plan for the RCRA Facility Investigation and Groundwater Monitoring at the CIBA-GEIGY Site, Glens Falls, New York".
- ECKENFELDER INC., December 1993, "Third Quarter Groundwater Monitoring Report, CIBA-GEIGY Site, Glens Falls, New York.
- ECKENFELDER INC., December 1992, "Pretreatment Plant Addendum to RFI Task I Report, CIBA-GEIGY Site, Glens Falls, New York".
- ECKENFELDER INC., September 1991. "Work Plan for RFA Sampling Visit at the Pretreatment Plant, CIBA-GEIGY Site, Glens Falls, New York".
- New York State Department of Environmental Conservation (NYSDEC), 1992, "'Contained-In' Criteria for Environmental Media", Technical Administrative Guidance Memorandum (TAGM) 3028.

Personal Communication, 1992. Warren Cutler, Hercules Incorporated.

Personal Communication, 1991. Glen Schmiesing, Hercules Incorporated.

Q:\9427\RI0913B.DOC

RFI REPORT FOR THE PRETREATMENT PLANT SWMU

APPENDIX A

SOIL BORING LOGS

U

L

Į

1

L

L

U

1

1

T

U

1

ECKE	INFEL	DER INC.				B	orir	ng Log	PT-16			Page 1 of 1	
Project: /	RFI of Pre	etreatment Plant	SWML	1			P	oject No.:	Start Date: 6/30/94				
Client: He	ercules/Cl	BA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Dat	e: 6/3	0/94		
		DRILLING DA	TA						SAMPLIN	GMET	HODS		
Inspector	r: Bob O'N	Veill, David Puente	25						Sampler	TI	ube	Core	
Contracto	or: NA							Туре:	SS Hand Auger	/	NA	NA	
Equipmen	t: SS Han	d Auger						Diameter:	4" and 3.25"		NA	NA	
Method: /	VA							Other:	NA	· · ·	NA	NA	
		WELL CONSTRU	CTIO	N				DEVE	OPMENT	1	SURVEY	NGVD	
Mahariak	-	Riser		3	cree	en		DEVELOPMENT		Crede	205.66		
Material:	(10).	IVA NA			NA			Duration: MA		TWC	E. 205.00		
Coupling	(10).	NA NA						Cale Purced	N/A	TPC.	NA		
Coupling.		1774						Ship Test: M	104	North	· 1207566	7303	
	WELL CO	NSTRUCTION	rock	SAMPLE				(cm/sec)		Fast	693557 7	523	
-			TUCA		-	-				Cast.	083337.7323		
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	K no				
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RGD		CLAS	VISUAL SIFICATION	N	REMARKS		
0+	LV I							ASPHALT AN	D GRAVEL	0.0	Renewed	hat the sec	
-	4					SW-SM		FILL		0.0	gravel to	0.9' below grade	
-	N.			NA	NA	CL	NM	Md. brown c	mf SAND, little to		(2 layers of asphalt)		
-		Backfilled						Gravel (angular to round), some			Samples of	listurbed by	
	V	cuttings	2	NA	NA	SW-SC	NM	pieces of mo	1. brown Silty CLAY		Water in hole to 1.9'		
_]	5								4.9	waterinn	1018 (0 1.9		
5-								End of borin	g at 4.9 feet.]		
-								-					
-								-					
-								-					
10]								Γ					
10-								-					
-								-					
-								-					
-								-					
15								Γ					
15-								-					
-								-					
-								-					
-								-					
-								-					
-								-					
-								-					
-								-					
21													

I

ECK	ENFE	LDER INC	•			Bo	orin	ng Log	PT-17			Page 1 of	
Project:	RFI of Pr	etreatment Plant	SWML	1			P	oject No.:	Start Date	e: 6/30	0/94		
Client: H	lercules/C	IBA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Date	e: 6/30	0/94		
		DRILLING D	ATA						SAMPLIN	G METH	HODS		
Inspecto	or: Bob O'	Neill, David Puent	es						Sampler	Tu	be	Core	
Contrac	tor: NA							Туре:	SS Hand Auger	٨	IA	NA	
Equipme	nt: SS Hai	nd Auger						Diameter:	4" and 3.25"	٨	IA	NA	
Method:	NA							Other:	NA	^	IA	NA	
		WELL CONSTRU		N				DEVE	ELL		SURVEY	DATA	
Mataiak	-	Riser		5	scree	n.		DEVEL	OFMENT	0	DATUR.	NOTO	
Material		NA			NA			Method: NA		Grade	: 285.67		
Coupling	r (10):	NA NA			NA			Duration: NA		TRC: /	VA		
Louping								Chie Tests MA		IPC: /	VA	0001	
	WELL CONSTRUC		SON	SA	MPLE	DAT	A	(cm/sec)		Faet:	603602 7	9001	
-			TOCK						-	Cast.	093002.7	330	
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	og: Uyes	M no	>		
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL SIFICATION	N	RE	ARKS	
0+	LV.	A						ASPHALT AN	O GRAVEL	0.8	Demound	anahali and	
	0		1	NA	NA	SW,CL	NM	EILL Md. brown to	o orange-brown cmi	1	gravel to 0.8' below gra (2 layers of asphalt)		
-	1	Backfilled with	-		-			(angular to	sub-rounded), tr (+)	2.8	isturbed by		
-	V V	cuttings	2	NA	NA	SM,ML CL	NM	Md. to dk. I	prown f SAND and rootlets	3.8	Mo6st @ a	pprox. 3.8'	
5-	_							Orange-red Sand (brick	Silty CLAY, some red)				
-								End of borin					
-								-					
1								-					
10-								-					
-								Ļ					
-													
1-1								T					
15-								-					
-								-					
-								-					
-								-					
-	•							_					
1													
-								-					
-								-					
								-					
24				_									

ECK	ENFE	LDER INC	•			Bo	ori	ng Log	PT-18	Loourit		Page 1 of		
Project	RFI of P	Pretreatment Plant	SWML	J			P	roject No.:	Start Date	: 6/30	0/94			
Client: /	Hercules/	CIBA-GEIGY Site.	Glens	s Falls,	NY		9	427	Finish Date	e: 6/30	0/94			
		DRILLING D	ATA						SAMPLING	SMETH	HODS			
Inspect	or: Bob O	Neill, David Puent	es						Sampler	Tu	be	Core		
Contrac	tor: NA							Type:	SS Hand Auger	N	IA	NA		
Equipme	ent: SS Ha	and Auger						Diameter:	4" and 3.25"	N	IA I	NA		
Method	. NA	WELL CONSTRU	CTIO	N				Other:	NA	<u>^</u>		NA		
	Г	Riser			cree	0		DEVEL	OPMENT		DATUM:	NGVD		
Materia	e F	NA			NA			Method: NA		Grade	Grade: 285.16			
Diamete	er (ID):	NA			NA			Duration: NA		TWC: /	VA			
Coupling	a:	NA			NA			Gals, Purged:	NA	TPC: A	VA			
WELL CONSTRUCTIO			soil			-		Slug Test: NA		North:	1207543	.0381		
WELL CONS		CONSTRUCTION	rock	SAI	SAMPLE DATA			(cm/sec)		East:	693626.7	304		
feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L	.og: 🗌 yes	🛛 no	no			
Depth (Run No.	Hydraul. Cond.	Rec. (ft.)	RQD		CLASS		REMARKS				
0+	IUI	·····	-	Cm/sec				ULAJ	JII 104 110	0.5				
	P'		-					ASPHALT AN	D GRAVEL		Removed	asphalt and		
	0		1	NA	NA	GM-GC	NM	Md. brown, #	nd. gray, black cmf		graver to 0.5 below gra			
	Pe	Backfilled	-					Gravel and c	l and cmf SAND, some to 2.5 Clayey Silt to Silty Clay,		Samples of hand aug	listurbed by ering		
1	D	with cuttings	2	NA	NA	SM,CL	NM	, rootlets, met	al band, occ. black	/	none objerning			
-						ML		Or greenish o	coating on gravel	4.5				
5-								-\ SILT, tr f Gr	avel, occ. piece of	/				
-								End of horin	ootiets					
									y ut 4.4 leet.					
1								-						
10-								-						
-								-						
-								-						
-								-						
15														
10-														
-								-				6		
-								-						
-														
1								-						
-								-						
-								-						
-								-						
21							-							

Į

l

6

1

į

1

į

l

ECK	ENFE	ELDER INC	•			B	orir	ng Log	PT-19			Page 1 d	
Project:	RFI of F	Pretreatment Plant	SWML	/			P	oject No.:	Start Date	: 6/30/	94		
Client: /	Hercules/	CIBA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Dat	e: 6/30/	/94		
		DRILLING D	ATA				_		SAMPLIN	S METHO	DDS		
Inspect	or: Bob (O'Neill, David Puent	es						Sampler	Tub	e	Core	
Contrac	tor: NA							Туре:	SS Hand Auger	NA		NA	
Equipme	ent: SS H	and Auger						Diameter:	4" and 3.25"	NA		NA	
Method:	NA							Other:	NA	NA		NA	
		WELL CONSTRU	ICTIO	N				1	ELL		SURVEY	DATA	
		Riser		S	cree	n	_	UEVEL	UPMENT		UATUME	NGVU	
Material	:	NA			NA			Method: NA		Grade:	286.25		
Diamete	er (ID):	NA			NA			Duration: NA		TWC: NA	4		
Coupling]: [NA			NA			Gals. Purged:	NA	TPC: NA	1		
	WELL	CONSTRUCTION	soil	SA	APLE	DAT	A	Slug Test: NA	1	North: /	207508.	0230	
			rock					(Cm/sec)		East: 6	93637.16	74	
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	Log: 🗌 yes	🛛 no			
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLAS	4	REMARKS			
0	0,0		1	NA	NA	GW,CL	NM	EILL - Dk. gray c Gravet (angular) and dk. brown fmc SAND, little Clayey Silve Clayey 2.0					
-	0	Backfilled with cuttings	2	NA	NA	SW,CL	NM	Md. brown t fm Gravel, tr piece of Silt	ece of Silty CLAY o tan cmf SAND, sol ace to little Silt, oc v CLAY	Ne C. 4.0	Samples damp		
5-								End of borin	g at 4.0 feet.				
24								-					

ECK	ENFE	LDER INC.				B	DS	ng Log	PT-20	Locatio		Page 1 d	
Project	RFI of Pr	etreatment Plant	SWML	/			P	oject No.:	Start Date: 6/30/94				
Client: /	Hercules/C	IBA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Date	e: 6/30	0/94		
		DRILLING DA	ATA						SAMPLIN	G METH	IODS		
Inspect	or: Bob O'	Neill, David Puente	es						Sampler	Tul	Tube Co		
Contrac	tor: NA							Type:	SS Hand Auger	N	A	NA	
Equipme	ent: SS Hai	nd Auger						Diameter:	4" and 3.25"	N	A	NA	
Method:	NA							Other:	NA	N	A	NA	
		WELL CONSTRU	CTIO	N				1	TELL		SURVEY	DATA	
		Riser		S	scree	n		DEVE	LOPMENT		DATUM:	NGVD	
Materia	:	NA			NA			Method: NA		Grade:	284.87		
Diamete	er (ID):	NA			NA			Duration: NA		TWC: A	VA		
Coupling	oupling: NA				NA			Gals. Purged:	NA	TPC: N	IA		
WELL CONSTRUCTION		ONSTRUCTION	soil	SAL	MPLE	DAT		Slug Test: N	4	North:	1207480	.8980	
			rock					(cm/sec)		East: 693641.5733			
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	🛛 no				
Depth	Depth			Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		VISUAL CLASSIFICATION			RE	ARKS	
0	20	Daali fillad	1	NA	NA	SW,CL	NM	- Md. to dk. mc GRAVEL,	brown finc SAND and little Clayey Silt,	1 2.0	Samples disturbed by hand augering		
	0	with cuttings	2	NA	NA	SW	NM	OCC. Diece LACUSTRIN Tan to oran Gravel, trac	of Silty CLAY, roots <u>E DEPOSITS</u> ge fm (c) SAND, little e Silt	4.0	Samples dry to damp		
5									g at no foot				
15													
24													

U

U

L

1

l

Я

]

			01.00			BC		ig Log		Page 1 Start Date: 6/30/04			
Project: RI	-1 of Pret	treatment Plant	SWML				P	oject No.:	Start Date: 6/30/94				
Client: Her	cules/CIE	SA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Dat	e: 6/30	1/94		
	2	DRILLING DA	ATA				-		SAMPLIN	SMEIH	IOUS	0	
Inspector:	BOD O'NE	eill, David Puente	es					_	Sampler	Tut	be	Core	
Contractor	NA NA							Type:	SS Hand Auger	N	NA		
=quipment:	SS Hand	Auger						Diameter:	4 and 3.25"	N	A	NA	
Method: NA	4	WELL CONSTRU	CTIO	AI				Uther:	NA	/v.	<u>A</u>	NA	
	1	Riser		N	Cree	0		DEVE	LOPMENT		DATUM:	NGVD	
Material:		NA	-+-		NA			Method: NA		Grade:	284.77		
Diameter ((D)·	NA			NA			Duration: NA		TWC: A	VA		
Couplina:	oupling: NA				NA			Gals. Purged:	NA	TPC: N	IA		
								Slug Test: N	4	North:	1207458.	6550	
	WELL CON	STRUCTION	Soll SAMPL			DAT	•	(cm/sec)		East:		796	
-				Olevert			010						
(feet)			Samp. No.	Blows/ 6 in.	(ft.)	USCS	(ppm)	Geophysical Comments:	Log: LJ yes		REMARKS		
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLAS	VISUAL SIFICATIO	N			
	2	Backfilled	1	NA	NA	SW,CL	NM	EILL - Md. to dk. brown fmc SAND, some mc Gravel, trace (+) Silt, price of Silt (1) Silt, 2.0					
1	P	with cuttings	2	NA	NA	SW-SM	NM	Md. to dk. brown fmc SAND and 3.0			Samples damp		
1			-					to some c G	RAVEL, occ. piece	of /	Refusal @ 3.0"		
-								Silty CLAY,					
5-								End of borin	ig at 3.0 reet.				
-								L					
1								Γ					
-								-					
10-								-					
-								-					
-								-					
15								[
15-								-					
-								-				*	
-								-					
								4					
1								-					
-								-					
-								-					
-								-					
			1	1	1	1	1						

l

l

1

E

1

1

l

ECK	ENF	EL	DER INC	•			Bo	orir	ng Log	PT-22			Page 1 o	
Project	RFI o	f Preti	reatment Plant	SWML	1			P	oject No.:	Start Date	: 6/30	/94		
Client:	Hercule	s/CIB	A-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Date	e: 6/30	0/94		
			DRILLING D	ATA						SAMPLIN	G METH	IODS		
Inspec	tor: Bol	b O'Ne	ill, David Puent	es						Sampler	Tu	be	Core	
Contra	ctor: N/	4							Туре:	SS Hand Auger	N	IA	NA	
Equipm	ent: SS	Hand	Auger						Diameter:	4" and 3.25"	N	IA	NA	
Method	: NA								Other:	NA	N	IA	NA	
		1	WELL CONSTRU	JCT IO	N				DEVE	ELL		SURVEY	DATA	
Matoria			Riser		3	MA	n		Method: MA		Grade	284 67		
Diamet	er (ID) [.]		NA			NA			Duration: NA		TWC: A	VA		
Countin	a.		NA			NA			Gals, Purged:	NA	TPC: A	VA		
Coupin	9.								Slug Test: N	A North		1207444	.2635	
	WEL	L CON	STRUCTION	rock	SAI	MPLE	DAT	•	(cm/sec)		East:	693683.0	407	
F														
(feet)				Samp. No.	Blows/ 6 in.	(ft.)	USCS	(ppm)	Geophysical Comments:					
O Depth				Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLAS	VISUAL SIFICATION	N	REM	ARKS	
-		000		1	NA	NA	SW-SM CL	NM	- Md. to dk. some Clayey	brown finc SAND, Silt, trace to little	2.0	Samples of hand auge	listurbed by ering	
-		0	with cuttings	2	NA	NA	ML	NM	CLAY, trace pieces of pl Dk. brown (4.0	4.0			
5-									End of borin	ng at 4.0 feet.				
10-									-					
-									-					
2														
									-					
									-					
24									-					
ECKE	INFE	LDER INC	•			B	orir	ng Log	PT-23		Page 1 of			
------------	----------	--------------------	--------------	-----------------------------	---------------	------	--------------	----------------------------------	---	------------------	---------------------------			
Project: /	RFI of P	Pretreatment Plant	SWML	1			PI	oject No.:	Start Date	: 6/30/94				
Client: He	ercules/	CIBA-GEIGY Site	Glens	Falls,	NY		9	427	Finish Date	e: 6/30/94				
		DRILLING D	ATA						SAMPLING	S METHODS				
nspecto	r: Bob C	Neill, David Pueni	tes						Sampler	Tube	Core			
Contracto	or: NA							Type:	SS Hand Auger	NA	NA			
quipmen	t: SS Ha	and Auger						Diameter:	4" and 3.25"	NA	NA			
lethod: /	VA	WELL CONSTR		N				Uther:	NA	NA	NA			
	1	Riser		N (CIRE	0		DEVEL	IELL LOPMENT	DATU	K NGVD			
Material:	F	NA			NA			Method: NA		Grade: 284.8	6			
Diameter	(ID):	NA			NA			Duration: NA		TWC: NA				
Coupling:		NA			NA			Gals. Purged:	NA	TPC: NA				
			soil					Slug Test: NA	1	North: 120743	31.2232			
	WELL (UNSTRUCTION	rock	SA	MPLE	UAT	•	(cm/sec)		East: 683558	.0150			
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	Log: 🗌 yes	🛛 no				
O Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLAS	VISUAL SIFICATION	N RE	EMARKS			
	280	Backfilled	1	NA	NA	SW	NM	- Md. to dk. I some to little	brown finc SAND, Clavey Silt, tr (+)	Sample hand a	s disturbed by ugering			
5								End of borin	g at L7 feet.	nerusa	- vi bourdet e L			
-														

l

ECKE	NFE	LDER INC.				B	orir	ng Log	PT-24			Page 1 o
Project: A	RFI of Pri	etreatment Plant	SWML	1			P	oject No.:	Start Date	: 7/1/9	94	, uge i u
Client: He	ercules/C	IBA-GEIGY Site.	Glens	Falls,	NY		9	427	Finish Date	e: 7/1/	94	
		DRILLING DA	ATA						SAMPLING	METH	HODS	
Inspector	: Bob 0'	Neill, David Puente	es						Sampler	Tu	be	Core
Contracto	or: NA							Type:	SS Hand Auger	٨	IA	NA
Equipmen	t: SS Har	nd Auger						Diameter:	4" and 3.25"	٨	IA	NA
Method: /	VA							Other:	NA	٨	IA	NA
		WELL CONSTRU	CTIO	N				H	ELL		SURVE	Y DATA
		Riser	-	5	Scree	en		DEVEL	OPMENT		DATUM	NGVD
Material:		NA			NA			Method: NA		Grade	: 285.42	
Diameter	(ID):	NA			NA			Duration: NA		TWC: /	VA	
Coupling:		NA	1		NA			Gals. Purged:	NA	IPC: /	VA	2 1770
	WELL CO	ONSTRUCTION	SOIL	SAI	MPLE	DAT	A	(cm/sec)		East.	693602	6313
			TOCK							IL Cast.	000002.	
(feet)			Samp. No.	Blows/ 8 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical I Comments:	og: Lyes	No 12		
Depth			Run No.	Hydraul. Cond.	Rec.	RQD		CLASS			RE	MARKS
0	IVI			cm/sec		-		ULAS	JI IOATIO			
_	P.V					-		ASPHALT		0.7	Removed	asphalt to 0.7
_	0	Backfilled	1	NA	NA	SW	NM	Md. to dk. t	orown, black,		Constant St	disturb ad bu
		with			-			little finc Gra	in cint SAND, some t ivel, trace to little	0	hand au	disturbed by gering
1	נסו	cuttings	2	NA	NA	5M-SU	NM	Silt or Clayer	y Silt, pieces of	3.4	Green a	nd blue staining
_1								- 2.0' some	to little Clayey Silt I	0	occ. fle	cks of red and
5-								- Silty Clay	a al 2 / faat		yenow m	
-								- End of Dorin	y at 3.4 reet.		Samples	damp
-								-			Refusal	e 3.4
-								-				
								-				
10												
1								F				
1												
-												
-								-				
15-								-				
-								-				
-								Ļ				
								-				
-								F				
-								-				
-								-				
			1	1	1	1	1			1		
-								F				

E

11

ECK	ENFE	LDER INC	•			Bo	ori	ng Log	PT-25			Page 1 o
Project:	RFI of P	Pretreatment Plant	SWML	J			P	roject No.:	Start Date	: 7/1./	94	
Client: /	Hercules/	CIBA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Dat	e: 7/1/	94	
		DRILLING D	ATA						SAMPLIN	G METH	HODS	
Inspect	or: Bob C	Neill, David Puent	es						Sampler	Tu	be	Core
Contrac	tor: NA							Туре:	SS Hand Auger	N	IA	NA
Equipme	ent: SS Ha	and Auger						Diameter:	4" and 3.25"	N	IA	NA
Method:	NA							Other:	NA	N	IA	NA
		WELL CONSTRU	CTIO	N				1	ELL		SURVEY	DATA
	-	Riser	_	S	scree	en		DEVE	LOPMENT		DATUM	NGVU
Material	:	NA			NA			Method: NA		Grade	: 284.77	
Diamete	er (ID):	NA			NA			Duration: NA		TWC: /	VA	
Coupling	g:	NA			NA			Gals. Purged:	NA	TPC: A	VA	100
	WELL C	ONSTRUCTION	soil	SA	APLE	DAT	A	Slug Test: N/	1	North:	1207494	.6868
-			rock		-	1	_	(Cill/Sec)		East:	693447.11	23
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical Comments:	Log: 🗌 yes	🛛 no		
0 Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLAS	VISUAL	V	REN	ARKS
0+	LV I								O GRAVEL	0.6	Demonst	anaball and
	0		1	NA	NA	SM-SC CL	NM	EILL Md. to It. b	rown cmf SAND and		course gra	asphait and avel to 0.6' de
-	S S	Backfilled with cuttings	2	NA	NA	SW-SM /SC,Cl	NM	Lt. to md. I cmf GRAVEL	pieces of Silty CLA prown cmf SAND and some to little Claye	Y 4.0	Samples d hand auge Water in h	isturbed by pring ole @ 1.6°
10-115-11-11-11-11-11-11-11-11-11-11-11-11								End of borin	g at 4.8 feet.			
24								-				

l

ECK	ENF	ELDER IN	С.			B	ori	ng Log	PT-26			Page I of
Project:	RFIO	Pretreatment Pla	nt SWM	U			P	oject No.:	Start Date	: 7/1/9	94	
Client: H	lercule.	s/CIBA-GEIGY Sit	e, Glen	s Falls,	NY		9	427	Finish Date	e: 7/1/9	94	
		DRILLING	DATA						SAMPLING	METH	IODS	
Inspecto	or: Bob	O'Neill, David Pue	ntes						Sampler	Tu	be	Core
Contrac	tor: NA							Туре:	SS Hand Auger	N	IA	NA
Equipme	nt: SS	Hand Auger						Diameter:	4" and 3.25"	N	IA	NA
Method:	NA							Other:	NA	N	IA	NA
		WELL CONST	RUCTIC	DN C				DEVE	OPMENT		SURVEY	NGVO
Material		NA			MA	:		Method: N/A		Grade	284 82	
Diameter	r (ID):	NA			NA			Ouration: NA		TWC: A	VA	
Coupling	1:	NA			NA			Gals, Purged:	NA	TPC: A	VA	
		1	soil					Slug Test: N	4	North:	1207479	.7674
	WELL	CONSTRUCTION	rock	SA	MPLE	DAT	A	(cm/sec)		East:	683434.	6665
eet)			Samp No.	Blows/ 8 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical	Log: 🗌 yes	N no		
Depth (1			Run	Hydraul. Cond.	Rec.	ROD		Comments:	VISUAL	.	RE	MARKS
0			140.	cm/sec	(10)	-		ULAS	SIFICATION	4		
	þ	Backfill		-	-	-		ASPHALT an	d GRAVEL	0.8	Removed	asphalt and
-		0. with cuttings	1	NA	NA	SW,CL	NM	Hd. brown t	o orange-brown cmi		gravel to	disturbed by
5- 10- 15- 15- 15- 15- 15- 15- 15- 15- 15- 15								to cmr SAN tr (+) to litti pieces of Si End of borin), some (-) Gravel, e Clayey Silt, occ. Ity CLAY g at 2.5 feet.		Sample d Refusal	amp 2 2.5'
24								-				

l

l

l

ECR	ENFE	LUER INC.	•			Bo	orir	ng Log	PT-27		Page 1 of
Projec	t: RFI of Pri	etreatment Plant	SWML	J		- Anna	P	roject No.:	Start Date	: 7/1/94	
Client:	Hercules/C	IBA-GEIGY Site,	Glens	s Falls,	NY		9	427	Finish Date	e: 7/1/94	1
		DRILLING D	ATA						SAMPLIN	S METHO	DS
Inspec	tor: Bob O'l	Neill, David Puente	es						Sampler	Tube	e Core
Contra	ctor: NA							Type:	SS Hand Auger	NA	NA
Equipm	ent: SS Har	nd Auger						Diameter:	4" and 3.25"	NA	NA
Method	d: NA							Other:	NA	NA	NA
		WELL CONSTRU	CTIO	N					ELL	S	URVEY DATA
	. –	Riser		S	Scree	n		UEVEI	LUPMENT		ATUR NGVU
Materia		NA			NA			Method: NA		Grade: 2	84.74
Cauplin	er (10):	NA			NA			Duration: NA		TWC: NA	
Coupiin	ig.	174	L eoil		IVA			Slug Toet: M	NA	North: /	07499 0069
	WELL CO	DNSTRUCTION	rock	SAI	IPLE	DAT	A	(cm/sec)	4	Fast: 60	3416 5998
					-				-	NA	
eet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	(ppm)	Geophysical	Log: L yes	2 no	
h (f			-					Comments:			
Jept			Run	Cond.	Rec.	RGD			VISUAL		REMARKS
0			140.	cm/sec	00			CLAS	SIFICATION	0.2	
	V					0.1.5		ASPHALT AN	D GRAVEL		Removed asphalt and
	0		1	NA	NA	SW,CL	NM	FILL/LACUS	TRINE and SAND and fm (c)		pravel to 0.2" below gra
1	Part	Backfilled	-					GRAVEL (SU	b-rounded to	i li	Samples disturbed by
-	0	with	2	NA	NA	SM,CL	NM	pieces of Si	ity CLAY	/ [[later in hole to 10' hele
-	b.	currings	-				-	- Md. brown t	o orange-brown cm	42	Age at the formation of
5-								- fin (c) Grave	(+) Llayey Sit, tr I, some large pieces	/	
								of gray to b	rown Silty CLAY		
								End of borin	ig at 4.2 feet.		
1								Γ			
1								F			
-								-			
10-								-			
								L			
]											
1								Γ			
- 1								-			
15-								-			
-								-			
-								-			•
	•										
								Γ			
-								-			
-								-			
								-			
-			1		1			1			
								-		1	

Į

l

1

L

1

į

ĺ

Į

ECKE	NFEL	DER INC.				B	orir	ng Log	PT-28			Page 1 of
Project: RI	FI of Pre	treatment Plant	SWML	1	-		Pi	oject No.:	Start Date	: 7/1/	94	
Client: Her	cules/CI	BA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Date	e: 7/1/	94	
		DRILLING DA	ATA						SAMPLING	S METH	HODS	
Inspector:	BOD O'N	eill, David Puente	es						Sampler	Tu	be	Core
Contractor	r: NA							Туре:	SS Hand Auger	٨	VA	NA
Equipment:	: SS Hand	d Auger						Diameter:	4" and 3.25"	٨	VA	NA
Method: NA	4							Other:	NA	^	VA	NA
		WELL CONSTRU	CTIO	N			_	W	ELL		SURVEY	DATA
	-	Riser	-	S	cree	n		UEVEL	OPMENT	-	DATUM	NGVU
Material:		NA			NA			Method: NA		Grade	285.08	
Diameter	(ID):	NA			NA			Duration: NA		TWC:	NA	
Coupling:		NA	1		NA			Gals. Purged:	NA	TPC: /	VA	0007
	WELL CO	NSTRUCTION	SOIL	SA	MPLE	DAT		Slug Test: NA		North	1207509	.022/
			rock					(Cill/ SEC)		East:	093428.8	189
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	.og: 🗌 yes	🛛 no		
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL SIFICATION	N	RE	MARKS
0	LV I				-	-		ASPHALT AN	DCONCRETE	0.8	Renewed	has the date
-	Q	Backfilled	1	NA	NA	SW,CL	NM	FILL/LACUST Md. brown cr some fm (c) G	TRINE Inf SAND, little to Gravel, trace Silt to		broken co below gra	oncrete to 0.1 de
-	4	with cuttings	2	NA	NA	SHCI	NIM	Clayey Silt, S	Silty CLAY at base of	of	Samples of	listurbed by
		een inge	-	NA	INA	JH,UL	1414	End of boring	n at 35 feet	3.3	Hotor in h	cing
5								End of Dorall	y di 0.0 icci.		grade, ru	nning sands
5-											Refusal @	3.5'
1								-				
-						1		-				
-								-				
-								-				
10												
-								1				
-								-				
-								F				
-								-				
15-								-				
1								Γ				
-								Ē				
-								-				
-								-				
-								L				
1												
-								F				
24								-		- 3		
24			1		1				in the second			

I

.

1

i

ECK	ENFE	LDER INC	•			B	orir	ng Log	PT-29			Page 1 of
Project:	RFI of	Pretreatment Plant	SWML	J			P	oject No.:	Start Dat	e: 7/6/	94	
Client: H	Hercules/	CIBA-GEIGY Site	Glens	Falls, I	NY		9	427	Finish Dat	e: 7/6/	/94	
		DRILLING D	ATA						SAMPLIN	G METH	HODS	
Inspect	or: Bob	0'Neill							Sampler	Tu	be	Core
Contrac	tor: Emp	ire Soil's Investiga	tions					Type:	Split spoon	٨	IA	NA
Equipme	ent: CME-	-55						Diameter:	2 inch	٨	IA	NA
Method:	3 1/4" I	D HS Augers						Other:	140#/30"	٨	IA	NA
		WELL CONSTR	UCTIO	N				W	ELL		SURVEY	DATA
		Riser		S	cree	n		DEVEL	OPMENT		DATUM:	NGVD
Material	:	NA			NA			Method: NA		Grade	: 286.25	
Diamete	r (ID):	NA			NA			Duration: NA		TWC: /	VA	
Coupling): 	NA			NA			Gals. Purged:	NA	TPC: /	VA	
	WELL	CONSTRUCTION	soil	SAN	PLE	DAT		Slug Test: NA		North:	1207461.0	5425
			rock					(cm/sec)		East:	693030.9	761
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	.og: 🗌 yes	🛛 no		
O Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL SIFICATIO	N	REM	ARKS
			1	3-3-3-4	1.2	ML-OL SW	NM	TOPSOIL Dark brown o Sand, rootlet	rganic SILT, little s	1		
		Coment	2	5-5-5-5	1.1	SW	NM	LACUSTRINE Tan, orange- trace (+) mf	DEPOSITS brown finc SAND, Gravel, trace Silt			
5-	Cement Grout			8-5-4-2	1.2	SW	NM	Medium gray occasional th	Silty CLAY with in brown siltier	4.9	e 4.0 teel	Wet to mois
-	K		4	3-4-4	1.5	CL	NM	layers		7.5	Siltier laye	ers (0.5" thic
10-115-115-115-115-115-115-115-115-115-1								- End of boring 	at 7.5 feet.		Split spoo feet	n refusal at
24								-				

ECK	ENFE	LDER INC	•			Bo	orir	ng Log	PT-30			Page 1 o
Project	RFI of	Pretreatment Plant	SWML	J			PI	oject No.:	Start Date	e: 7/6/9	94	
Client: /	Hercules/	CIBA-GEIGY Site,	Glens	s Falls, I	VY		9	427	Finish Dat	e: 7/6/	94	
		DRILLING D	ATA						SAMPLIN	G METH	ODS	
Inspect	or: Bob (o'Neill							Sampler	Tut	be	Core
Contrac	tor: Emp	ire Soils Investiga	tions					Type:	Split spoon	N	A	NA
Equipme	ent: CME-	-55						Diameter:	2 inch	N	A	NA
Method	: 3 1/4" I	D HS Augers						Other:	140#/30"	N	A	NA
		WELL CONSTRU	UCTIO	N					ELL	T	SURVEY	DATA
		Riser		S	cree	n		DEVEL	OPMENT		DATUM:	NGVD
Materia	1:	NA			NA			Method: NA		Grade:	286.54	
Diamete	er (ID):	NA			NA			Duration: NA		TWC: A	IA	
Coupling	g:	NA			NA			Gals. Purged:	NA	TPC: N	A	
			soil					Slug Test: NA		North:	1207319.1	1566
	WELL	CONSTRUCTION	rock	SAN	APLE	DAT	•	(cm/sec)		East: (593054.6	949
et)			Samp.	Blows/	Rec.	USCS	PID	Geophysical L	.og: 🗌 yes			
th (fe			110.	Hydraul	(11.)	-	(ppm)	Comments:	TCUAL			
Be			No.	Cond. cm/sec	Rec. (ft.)	RQD		CLASS	SIFICATIO	N	REN	MARKS
			1	5-4-4-4	1.1	CL-OL SW	NM	TOPSOIL Med. gray to CLAY, little f	o dk. brown Silty In Sand, rootlets	0.7		
-		Compati	2	3-3-3-4	1.1	SW	NM	LACUSTRINE Orange, tan, SAND, tr (+)	DEPOSITS md. brown fm to fi Silt, little to no f	NC		
5-		Grout	3	7-8-5-5	IJ	SW SW	NM	Gravel (roun	ded)			
			4	8-7-7-7	2.0	SW	NM	Md. gray Sil thin brown si	ty CLAY, occasiona Itier layers	<u>6.5</u>	@ 6.5' wel	t
-	Y		5	4-8-8-4	2.0	a	NM	Orange, md. Silt	brown fm SAND, tr			
10-								CLAY, with o Clayey SILT Encl of borin	(0.5") g at 10.0 feet.			
1								-				
15-								-				
-								-				
-								-				
								L				
-								-				
-												
21												

ECKEN	FELDER INC	2.			Bu	DS	ng Log	PT-31	Lucatio		Page 1 g
Project: RFT	of Pretreatment Plan	t SWML	J		-	P	oject No.:	Start Date	e: 7/6/	94	r age r c
Client: Hercul	es/CIBA-GEIGY Site	. Glens	s Falls. I	VY		9	427	Finish Dat	e: 7/6/	/94	
	DRILLING	DATA						SAMPLIN	G METH	HODS	
Inspector: Bo	ob O'Neill							Sampler	Tu	be	Core
Contractor: E	mpire Soils Investig	ations					Type:	Split spoon	N	IA	NA
Equipment: Ci	ME-55						Diameter:	2 inch	N	IA	NA
Method: 3 1/4	" ID HS Augers						Other:	140#/30"		IA	NA
	WELL CONSTR	UCTIO	N			-	W	ELL	1	SURVEY	DATA
	Riser		S	cree	n		DEVEL	OPMENT		DATUM:	NGVD
Material:	NA			NA			Method: NA		Grade	: 281.9	
Diameter (ID): NA			NA			Duration: NA		TWC: /	VA	
Coupling:	NA			NA			Gals. Purged:	NA	TPC: A	VA	
WE	LL CONSTRUCTION	soil rock	SAN	IPLE	DAT	A	Slug Test: NA (cm/sec)		North: East:	. 1207268. 6 93 369.5	9097 453
(feet)		Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	og: 🗌 yes	🛛 no		
Depth		Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL	N	REN	ARKS
	$\langle \rangle$	1	6-6-6-8	1.4	ML CL-ML	NM	TOPSOIL Dk. brown or Sand	ganic SILT, tr (+)	0.0 f		
		2	4-18-50/0*	0.5	ML	NM	EILL Hd. to dk. b	rown Silty CLAY to		Dk. gray	linestone
5-	Cement Grout	3	8-7-6-4	NR		NM	Gravel			spoon, re No recove	fusal @ 3.0' ery 4.0'-6.0'
		4	7-7-7-11	1.6	CL-ML	NM	Hd. brown Si SILT & CLAY	DEPOSITS Ity CL6Y w/ thin layers; to SILT &	6.3	Angular lin fragments	nestone i @ 6.0'
		5	7-8-7-7	1.9	CL	NM	Orange fin S/ Md. brown to	d, tr Gravel ND layer @ 8.3' md. gray Silty	10.0		
							End of boring	g at 10.0 feet.			
15-											
24							-				

ļ

ü

ECK	ENFE	LDER INC	•			Bo	ori	ng Log	PT-32		Page 1 o
Project:	RFI of Pro	etreatment Plant	SWML	J			P	roject No.:	Start Date	e: 7/6/94	, ege / v
Client: He	ercules/C	IBA-GEIGY Site	Glens	Falls, I	VY		9	427	Finish Dat	e: 7/6/94	
		DRILLING D	ATA						SAMPLIN	G METHODS	S
Inspecto	r: Bob O'l	Veill							Sampler	Tube	Core
Contract	or: Empire	Soils Investiga	tions					Type:	Split spoon	NA	NA
Equipmer	t: CME-5	5						Diameter:	2 inch	NA	NA
Method:	3 1/4" ID	HS Augers						Other:	140#/30"	NA	NA
		WELL CONSTR	UCTIO	N					ELL	SU	NEY DATA
		Riser		S	cree	en		DEVEL	OPMENT	DAT	TUM: NGVD
Material:		NA			NA			Method: NA		Grade: 281	.57
Diameter	(ID):	NA			NA			Duration: NA		TWC: NA	
Coupling:		NA			NA			Gals. Purged:	NA	TPC: NA	
			soil		-			Slug Test: NA		North: 120	7340.9784
	WELL CO	INSTRUCTION	rock	SAN	APLE	UAT	•	(cm/sec)		East: 6935	535.4358
			6	Discont	0		010			M	and all a family all the s
(feet)			No.	Biows/ 6 in.	(ft.)	USCS	(ppm)	Geophysical L Comments:	.og: Lyes		
Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL	N	REMARKS
-	1		1	7-12-14-14	0.7	OL-ML	NM	Dk. brown to	Black organic SIL	T, /	
-			2	5-4-3-3	1.2	SW-SM	NM	EILL		2.0	
-	14	Cement Grout	-			CI -MI		HICL to dik. to little (-) cmf	Sand, tr f Gravel		
-0	11		3	4-2-4-5	1.4	SW-ML	NM	Md. to dk. to SAND, little f 2.3'-2.8' finc	nc Gravel SAND and SILT, tr	18.0	
-			4	10-11-7-9	1.7	ML-CL	NM	2.8'-5.2' finc	SAND, tr SILT		
-	E		5	3-4-5-0	2.0	α	NM	Clayey SILT	tr Sand, tr Gravel m SAND, tr Silt, ILT, little f Sand		
10-								Hd. brown S	ILT to Silty CLAY,	tr	
								- Md. brown C	LAY & SILT to		
								End of borin	g at 10.0 feet.		
1											
15-								-			
-								-			
_								-			
								4			
1								Γ			
-								Ē.			
-								-			
								-			
]								-			
24								- Chillion			

U

1

ECK	ENFE	LDER INC	•			B	DS	ng Log	PT-33	Locatio		Page 1 o
Project	: RFI of P	Pretreatment Plant	SWML	J			P	roject No.:	Start Date	e: 7/6/	94	
Client:	Hercules/	CIBA-GEIGY Site,	Glens	Falls, M	VY		9	427	Finish Dat	e: 7/6/	94	
		DRILLING D	ATA						SAMPLIN	G METH	IODS	
Inspect	tor: Bob C)'Neill							Sampler	Tu	be	Core
Contrac	ctor: Empi	re Soils Investiga	tions					Type:	Split spoon	N	A	NA
Equipme	ent: CME-	55						Diameter:	2 inch	· N	A	NA
Method	: 3 1/4" IL	HS Augers						Other:	140#/30"	N	A	NA
		WELL CONSTRU	UCTIO	N				H	ELL		SURVEY	DATA
		Riser		S	cree	n		DEVEL	OPMENT	-	DATUM:	NGVD
Materia	l:	NA			NA			Method: NA		Grade	281.72	
Diamete	er (ID):	NA			NA			Duration: NA		TWC: A	VA	
Couplin	g:	NA	-		NA			Gals. Purged:	NA	TPC: A	IA	
	WELL	CONSTRUCTION	soil	SAN	PLF	DAT		Slug Test: NA		North:	1207392.	0652
-			rock					(Cm/sec)		East:	693686.4	906
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical I Comments:	.og: 🗌 yes	🛛 no		
o Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL SIFICATIO	N	RE	MARKS
			1	12-8-8-10	0.4	ML-OL	NM	TOPSOIL/FIL Dk. brown S SILT), little f	L ILT (and organic in (c) Sand, tr (+) f	c 2.0		
-		Cement	2	7-9-7-5	0.6	SM-SN	NM	Hd. brown to	DEPOSITS o orange-brown D, tr to some Silt, tu			ţ
5-		Grout	3	4-4-3-2	1.3	SW	NM	TC Gravel, oc	ccasional Siit layers			
-			4	3-3-4-5	1.3	SW	NM	-			,	
1		1	5	4-4-7-9	1.4	SW	NM			9.1	Moist to r	1am 8 9 1
10	1	1				ML		Lt. to dk. b	few CLAY lavers			10mp @ 0.1
			6	3-4-8-9	1.8		NM	Md. brown S & SILT or SI	to Clayey SILT ility CLAY, thin CLA ILT layers	Y		
-	P		7	12-14-14-14	1.8	a	NM			14.0		
1	2							End of borin	g at 14.0 feet.		Sinail and	unt of water
15-	•.							-				
24								F				

LUN	ENFI	LLUEN INC	•			Bo	orir	ng Log	1-34			Page 1 o
Project	RFI of	Pretreatment Plan	SWML				PI	oject No.:	Start Date	e: 7/6/	94	
Client:	Hercules	CIBA-GEIGY Site	Glens	s Falls, I	NY		9	427	Finish Dat	e: 7/6/	94	
-		DRILLING C	ATA						SAMPLIN	GMETH	IODS	
Inspec	tor: Bob	0'Neill						_	Sampler	Tu	be	Core
Contra	ctor: Emp	pire Soils Investiga	tions					Туре:	Split spoon	N	A	NA
Equipm	ent: CME	-55						Diameter:	2 inch	N		NA
Method	: 3 1/4"	ID HS Augers						Other:	140#/30"	N		NA
		WELL CONSTR	00110					DEVEL	OPMENT		DATUM	NGVD
Matoria	1.	AISER		3	AIA	511		Method: MA		Grade	· 281 A1	
Diamot	. (ID).	NA NA			NA			Duration: MA		TWC	. 201.41	
Couplin	er (10).	N/A N/A			NA			Gale Purced	NA	TPC A		
Coupin	9 .		l soil	1	IVA			Sing Test. NA		North	1207426	9880
	WELL	CONSTRUCTION	rock	SAN	IPLE	DAT	•	(cm/sec)		East:	693844.1	645
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	(ppm)	Geophysical I Comments:	.og: L yes	I no		
spth			Run	Hydraul.	Rec.	000		1	/ISUAL		DE	MADKE
			No.	cm/sec	(ft.)	HUD		CLASS	SIFICATIO	N	nci	MANNO
	V	1	1	4-4-8-8	0.5	ML-OL	NM	- Dk. brown S	L ILT (and organic		WOR - Ma	ight of rode
		1						SILT), some rootlets	fm Sand, tr Gravel,	2.0	WOH - We	ight of hamn
		1	2	8-8-5-5	1.2	SW-SN	NM	LACUSTRINE	DEPOSITS			
		Coment						finc SAND, tr	ace to little Silt,			
E	V	Grout				ML.CL		trace Gravel	, interbedded w/			
57		1	3	8-6-4-5	1.0	SM-ML	NM	gray Silt, Cla	yey SILT, Silty CL	AY		
1	V					MI CH		t				
-		1	4	6-6-6-6	1.3	CL-ML	NM	-				
-	V	1	-		-	-		ł				
-	V	1	5	5-5-4-2	1.2	ML,SW	NM	-				
10-		1										
10	V	1		2-WOR-	1.5	CHIM	NIM					
	1	2	0	I-WOR	1.5	DW,ML	NM	Γ				
-	V	1						t			Wet to Sa	aturated @ 12.
-		1	7	HOH-2-4-3	2.0	SW,ML	NM	F				
-			-	-		-		Gray-brown	to dk. gray Silty	14.0		
15-		1	8	3-4-6-9	0.8	a	NM	- CLAY W/ thin	layers of SILT &			
-	4	1	-		-			CLAT				
	F	1	9	2-3-3-8	20	CI	NM	-				4
	K									18.0		
								End of borin	g at 18.0 feet.			
1								Γ				
-								-				
-								-				
								-				
								-				

U

1

U

L

1

I

ECK	ENF	FEL	DER INC				Su Bo	Ds	ng Log	PT-35	Lucatio		Page 1 of a
Project	RFI a	of Pret	treatment Plant	SWML	,			P	oject No.:	Start Date	e: 7/7/	'94	
Client:	Hercule	es/CIE	BA-GEIGY Site,	Glens	Falls, I	VY		9	427	Finish Dat	e: 7/7/	/94	
			DRILLING D	ATA						SAMPLIN	G METH	HODS	
Inspec	tor: Bo	b O'Ne	eill							Sampler	Tu	ibe	Core
Contrac	ctor: E	mpire	Soils Investiga	tions					Туре:	Split spoon	٨	VA	NA
Equipmo	ent: CM	1E-55							Diameter:	2 inch	^	VA	NA
Method	: 3 1/4	" ID H	S Augers	ICTIO	Al				Other:	140#/30"	<u> </u>	VA	NA
			Ricer			croc	20		DEVEL	OPMENT		DATUM:	NGVD
Materia	d:		NA			NA			Method: NA		Grade	: 281.77	
Diamete	er (ID)	:	NA			NA			Duration: NA		TWC:	NA	
Couplin	g:		NA			NA			Gals. Purged:	NA	TPC: /	VA	
		1.001		soil			DAT		Slug Test: NA		North:	1207447	.8958
	WEL	LCUN	STRUCTION	rock	SAN	APLE	UAT	•	(cm/sec)		East:	693593.2	999
(feet)				Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	.og: 🗌 yes	🛛 no		
o Depth				Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	/ISUAL SIFICATIO	N	REI	MARKS
	ł	1		1	3-5-5-10	1.1	ML-OL SW,SM	NM	- TOPSOIL Dk. brown of Sand, tr fin G	rganic SILT, little f Gravel, rootlets	0.4		
-			Commit	2	5- 6- 5-8	1.0	SW	NM	LACUSTRINE Orange-brow md. gray fm little Silt, tra	DEPOSITS m, mddk. brown, c SAND, trace to ce Gravel			
5-			Grout	3	4-4-4-4	0.8	SW	NM	(sub-rounde	d to rounded)			
-				4	4-3-2-2	2.0	SW	NM	[@ 7.3' we	t, wet to
10				5	1-1-1-3	1.4	SM-Sk	NM					
		1		6	3-3-6-6	1.6	SM-SK	NM	-				
-		A		7	8-10-12-14	2.0	SW	NM	-				
15-		1		8	4-6-8-10	2.0	SW	NM	-				
		1		9	8-10-10-15	2.0	SW	NM	-			Pourod	antonilo cherry
-		1		10	3-6-17-19	NR	-	NM	-			into auge sands	rs due to runni
		1		11	12-14-14-18	1.3	SW	NM	-				
24	ł	1		12	20-20-14-1	2.0	SW	NM	-				

l

Į

ļ

l

ų

ECK	KENFELDER INC				B	orin	g Log	PT-35	Page 2 of 2
Project	t: RFI of Pretreatment Plan. Hercules/CIRA-GEIGY Site	SWML	J Falls	NY		Pro	iject No.:	Start Date: 7/7	7/94
	WELL CONSTRUCTION	soil	SAI	APLE	DAT	A	21	T milan Date. //	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
feet)		Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)		(CONTINUA	TION)
Depth (Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		V CLASS	ISUAL IFICATION	REMARKS
24+		13	4-3-7-8	2.0	α	NM -	Md. to dk. gr Silty CLAY w/ SILT & CLAY	ay, gray-brown some thin layers of 28	Poured bentonite slurry into augers due to runnin sands
29- 34- 39-							End of boring	at 26.0 feet.	
44-	9-								
56						-			

ļ

ECK	KENFE	LDER INC	•			Bo	orir	ng Log	PT-36			Page I of
Project	RFI of F	Pretreatment Plant	SWML	/			PI	roject No.:	Start Date	: 7/19,	/94	
Client:	Hercules/	CIBA-GEIGY Site,	Glens	s Falls,	NY		9	427	Finish Date	e: 7/19	/94	
		DRILLING D	ATA						SAMPLIN	S METH	HODS	
Inspec	tor: Bob C)'Neill							Sampler	Tu	be	Core
Contra	ctor: ECKE	ENFELDER INC.						Туре:	SS Hand Auger	٨	IA	NA
Equipm	ent: SS Ha	and Auger						Diameter:	4" and 3.25"	٨	IA	NA
Method	I: NA							Other:	NA	٨	IA	NA
		WELL CONSTRU	JCTIO	N					ELL		SURVE	Y DATA
	.	Riser		5	Scree	en		UEVEI			UATUR	NGVU
Materia	aterial: NA iameter (ID): NA							Method: NA		Grade	: 284.25	
Diamet	er (10):	NA			NA			Duration: NA		TWC: /	VA	
Couplin	g:	IVA			NA	_		Gais. Purged:	NA	IPC: /	VA	2 0100
	WELL C	CONSTRUCTION	rock	SAI	MPLE	DAT	A	(cm/sec)	4	East:	693603.	3.2102 8895
(teet)			Samp. No,	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical	Log: 🗌 yes			
O Depth (f			Run	Hydraul.	Rec.			Comments:	VISUAL		DE	MADKE
0			No.	cin/sec	(ft.)	HUD		CLAS	SIFICATION	1	RE	MARKS
-	0	Backfilled	1	NA	NA	SM,CL	NM	- Md. to dk. and Clayey	<u>USTRINE DEPOSITS</u> brown fm (c) SAND SILT to SILT & CLA'	r.	Samples hand au	disturbed by gering
-	0	with cuttings	2	NA	NA	CL,SC	NM	CLAY, roots, @ 2.0' CLAY	leaves, etc. @ grad & SILT and fmc	je da	Samples	damp
5-	<u>م</u> ــا							red finc SAN then it. bro	D and CLAY & SILT, wn Silty CLAY			
-								End of borin	g at 4.0 feet.			
-								-				
]								[
10												
: -												
1								F				
-								-				
-								-				
15-								-				
-								-				
_								Ļ				-
	•											
-												
-								-				
-								ŀ				
-								-				
								-				

1

U

l

Ū

l

Į

1

ECK	ENFE	LUER INC.	•			Bo	orir	ng Log	PT-37			Page 1 of
Project:	RFI of Pr	etreatment Plant	SWML	1			Pr	oject No.:	Start Date	: 7/19/	'94	
Client: H	lercules/C	IBA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Date	e: 7/19/	/94	
		DRILLING DA	ATA						SAMPLING	METH	IODS	
Inspect	or: Bob O	Neill							Sampler	Tul	be	Core
Contrac	tor: ECKE	NFELDER INC.						Type:	55 Hand Auger	N	A	NA
Equipme	nt: SS Ha	nd Auger						Diameter:	4" and 3.25"	N	A	NA
Method:	NA		OTIO					Other:	NA	N	<u>A</u>	NA
		WELL CONSTRU		N				DEVEL	ELL		SURVEY	NGVD
Matorial	. ⊢	Riser	-	3	ALA	n		Mathad: MA		Grada	283 48	
Diamoto	(10)	NA			NA			Duration: MA		THC. A	14	
Coupling		NA			NA			Gale Purged	MA	TPC. A	14	
	. 1	/\/A	- I soil		IVA			Shin Test NA		North:	1207548	2336
	WELL C	ONSTRUCTION	rock	SAN	MPLE	DAT		(cm/sec)		Fast:	69363186	5.34
-			TOCA				-		_		000001.00	
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	og: L yes			
O Depth			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL	4	REM	ARKS
	200		1	NA	NA	SC,ML	NM	FILL Dk. brown, bl Silty CLAY	lack finc SAND and	LO	Samples d hand auge	listurbed by ering
		with cuttings	2	NA	NA	ML-CL	NM	Brown to ora	DEPOSITS nge-brown Clayey little f (+)mc Sand.	3.5	Occ. red flecks, dk blue stain	and yellow green and ing on soils fr
-								grading to Si cavings from	ity CLAY (also som above)	•	0'-1.0' Samples d	lamp
5-								- End of boring	g at 3.5 feet.		Refusal @	3.5'
-								-				
1								t				
10												
TOT								Γ				
1								1				
1								F				
-								-				
-								-				
15-								-				
1												
-								t i				
-								F				
-								-				
-								-				
-								-				
					1							

I

fi

l

[

ECKE	NFE	LDER INC.				Su Bo	Ds prir	ng Log	PT-38	.ocati0	n1:	Page 1 of
Project: A	RFI of Pr	etreatment Plant	SWML	J			P	roject No.:	Start Date	: 7/19/	/94	
Client: He	rcules/C	IBA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Date	e: 7/19	/94	
		DRILLING DA	TA						SAMPLIN	S METH	IODS	
Inspector	Bob O	Neill							Sampler	Tu	be	Core
Contracto	or: ECKE	NFELDER INC.						Type:	SS Hand Auger	N	IA	NA
Equipment	t: SS Ha	nd Auger						Diameter:	4" and 3.25"	N	IA	NA
Hethod: A	VA							Other:	NA	N	IA	NA
		WELL CONSTRU	CTIO	N				W	ELL		SURVEY	DATA
1. C.	-	Riser	-	S	cree	n		UEVEL	UPMENT		UATUR.	NOVD
Material:		NA			NA			Method: NA		Grade	: 283.78	
Diameter	(10):	NA			NA			Duration: NA		TWC: /	VA	
Coupling:		NA			NA			Gals. Purged:	NA	TPC: A	VA	0.45.4
	WELL C	ONSTRUCTION	soil	SA	IPLE	DAT		Slug Test: NA		North:	1207507.	9454
			rock			-	-	(Cm/ SEC)		East:	093644.4	///
(feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	.og: 🗌 yes	🛛 no		
O Depth (f			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL SIFICATION	N	REN	ARKS
-	200		1	NA	NA	SM SW	NM	- TOPSOIL Dk. brown fm some Silt to f	(c) SAND and to Clayey Silt (organic	0.5 c), /	Samples d hand auge	listurbed by ering
1	Pd	with	2	NA	NA	SW	NM	I ACUSTRINE	OFPOSITS		Samples d	ry to damp
1	لنحا	cuttings	-				-	Hd. brown to	tan finc SAND, litt	le 32	Refusal @	3.2"
-								- to tr (+) finc	Gravel, tr (+) Silt			
5-												
-												
10-								-				
-								-				
24								-				

1

U

l

ECKI		LUER INC	•			Bo	orir	ng Log	PT-39			Page 1
Project:	RFI of F	Pretreatment Plant	SWML	J	-		P	roject No.:	Start Date	: 7/19/	94	
Client: H	ercules/	CIBA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Date	e: 7/19/	94	
		DRILLING D	ATA						SAMPLIN	METH	ODS	
Inspecto	r: Bob C)'Neill							Sampler	Tub	e	Core
Contract	or: ECKE	ENFELDER INC.						Туре:	SS Hand Auger	NA	1	NA
Equipmer	nt: SS Ha	and Auger						Diameter:	4" and 3.25"	NA	1	NA
Method:	NA							Other:	NA	NA		NA
	r	WELL CONSTRU	JCTIO	N				DEVEL	ELL		SURVEY D	ATA
Matadak	ł	Riser			Scree	en		UEVEL	OFMENT	0	DATUR	10 10
Material:	(10).	NA			NA			Method: NA		Grade:	283.21	
Coupling	(10).	NA			NA			Gals Purged	NA	TPC: N	4	
			soil					Slug Test: NA		North:	1207484.7	523
	WELL C	CONSTRUCTION	rock	SAI	MPLE	DAT	•	(cm/sec)		East: 6	93209.012	23
-			Samo	Blows/	Rec		PTO	Geophysical				
fee			No.	6 in.	(ft.)	USCS	(ppm)	Comments	. vy yes			
th	epth (Hydraul				Jonnierita.	TCUAL	Г		
Det			No.	Cond	(ft.)	RGD		CLASS	SIFICATION		REM	ARKS
0+	IVI			Cally SEC	-	SM		TOPCON		0.5		
4	2		1	NA	NA	SW	NM	- Dk. brown fi	SAND and SILT	Л	Samples dis hand augeri	turbed by
-	0	Backfilled	-		-			(organic), ro	OFPOSITE		Samlar da	to dame
		with	2	NA	NA	SH	NM	Md. brown to	tan finc SAND,		compres (If)	to gamp
	N.	Currings	L				1.1.1	little (+) finc	Gravel, tr Silt	4.0		
5								End of boring	g at 4.0 feet.			
2-								Γ				
-								-				
-								F				
-								-				
-								-				
10-								L				
								Γ				
1								-				
-								-				
15-								-				
-								-				
-								-				
	•											
1								Γ				
-								-				
1								-				
								-				
1 1			1		1							

ECKE	NFEL	.UER INC.				Bo	orir	ng Log	PT-40	1	-	Page I of
Project: RF	FI of Pre	etreatment Plant	SWML)			PI	oject No.:	Start Date	: 7/19/	/94	
Client: Her	cules/CI	BA-GEIGY Site,	Glens	Falls, I	NY		9	427	Finish Date	e: 7/19.	/94	-
		DRILLING DA	TA						SAMPLING	S METH	IODS	
Inspector:	BOD O'N	leill							Sampler	Tu	be	Core
Contractor	ECKEN	IFELDER INC.						Type:	55 Hand Auger	N	A	NA
Equipment:	SS Han	d Auger						Diameter:	4" and 3.25"	N	A	NA
Method: NA	4		_					Other:	NA	N	A	NA
		WELL CONSTRU	CTIO	N				W	ELL		SURVEY	DATA
		Riser		S	cree	en		DEVEL	OPMENT		DATUM:	NGVD
Material:		NA			NA			Method: NA		Grade	282.12	
Diameter ((ID):	NA			NA			Duration: NA		TWC: A	VA	
Coupling:		NA			NA			Gals. Purged:	NA	TPC: A	IA	
		NETRICTION	soil	CAL		DAT		Slug Test: NA		North:	1207436.	7849
	WELL CO	NOCITON	rock	SA	TLE	UAI	•	(cm/sec)		East:	693595.10	67
O Depth (feet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	og: 🗌 yes	🛛 no		
			Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL	4	REM	ARKS
1	0,0	Pook filled	1	NA	NA	HL-OL CL	NM	- Dk. brown SI (mostly orga	LUVIUM LT to Clayey SILT nic), some fm Sand	2.0	Samples di hand auge	sturbed by ring
	0	with cuttings	2	NA	NA	ML,CL	NM	LACUSTRINE Md. brown Cl	DEPOSITS ayey SILT to SILT	£ 4.0	Samples dr	y to damp
5-								End of boring	at 4.0 feet.			
10-								-				
15-								-				•
24								-				

T

l

ECK	ENFEL	DER INC.				Bo	orir	ng Log	PT-41		Page 1
Project:	RFI of Pre	etreatment Plant	SWML	1			Pr	oject No.:	Start Date	: 7/19/94	, cyc /
Client: H	ercules/Cl	BA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Date	e: 7/19/94	
		DRILLING DA	ATA						SAMPLING	S METHODS	
Inspecto	or: Bob O'N	Veill							Sampler	Tube	Core
Contract	tor: ECKEN	FELDER INC.						Туре:	SS Hand Auger	NA	NA
Equipmer	nt: SS Han	d Auger						Diameter:	4" and 3.25"	NA	NA
Method:	NA							Other:	NA	NA	NA
		WELL CONSTRU	CTIO	N				1	IELL	SURV	EY DATA
1		Riser		5	Scree	n		UEVEL	OPMENT	UATU	ING YU
Material:	(10)	NA			NA			Method: NA		Grade: 283.1	
Ulameter	(10):	NA			NA			Gala Duration: NA	N/4	TRC: NA	
Coupling:	·	IVA	1 101		IVA			Slug Test. M	NA I	North: 12075	48.8808
	WELL CO	NSTRUCTION	rock	SAI	MPLE	DAT		(cm/sec)		East: 69363	9.8879
					1						
eet)			Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	(ppm)	Geophysical	Log: L yes	i no	
t) (t				Liberture	-			Comments:		- 1	
Dept	Depth		Run	Cond.	Rec.	ROD			VISUAL	R	EMARKS
0			140.	cm/sec	1.0			CLAS	SIFICATION	N I	
	O Backfill			NA	MA	CH	LIM	TOPSOIL/FL	000 PLAIN/FILL	Sample	es disturbed by
	Backfille			na.		J	1477	then md. br	own fin SAND and	2.0	augering
1	ΕV.	cuttings			-			SILT to Clay	rey SILT, tr finc	Sample	es dry to damp
-								LACUSTRINE	FILL	Refus	al @ 2.2'
-								Hd. brown t	o orange-brown SIL ILT, some f Sand,	.T	
5								_ tr (+) cmf Gr	avel (sub-rounded)		
PC											
57								End of borin	g at 2.2 feet.	_	
5								End of borin	g at 2.2 feet.		
57								End of borin	g at 2.2 feet.		
								End of borin	g at 2.2 feet.		
								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		
								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		•
10-								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		•
3 - - - - - - - - - - - - - - - - - - -								End of borin	g at 2.2 feet.		
10-								End of borin	g at 2.2 feet.		·
10-								End of borin	g at 2.2 feet.		

8

ECKE	INFE	LUER INC	•			B	orin	ng Log	P-15			Page 1
Project:	RFI of Pr	retreatment Plant	SWML	J			P	oject No.:	Start Date	: 7/5/	94	
Client: He	ercules/C	IBA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Date	e: 7/5/	/94	
		DRILLING D	ATA						SAMPLIN	S METH	HODS	
Inspecto	r: Bob O	Neill							Sampler	Tu	be	Core
Contract	or: NA							Туре:	SS Hand Auger	٨	IA	NA
Equipmen	t: SS Ha	nd Auger						Diameter:	3.25"	٨	IA	NA
Method: /	Hand Aug	ger						Other:	NA	^	IA	NA
		WELL CONSTRU	ICTIO	N				N DEVEL	ELL		SURVE	DATA
	-	Riser		5	Scree	en		UEVEL	UPMENT		DATUM	NGVD
Material:	(10)	Steel, Sch. 40		<i>CI/S</i>	S Wei	II POII 	nt	Method: NA		Grade	: 281.13	
Caupliner	(10):	1.25			1.25			Duration: NA		THU: A	284.40	
Coupling.		33	1 = 01		33			Slug Test: MA	IVA	North:	120752	0536
	WELL C	ONSTRUCTION	rock	SAI	MPLE	DAT	Ά	(cm/sec)		East'	693846	4547
	_		IVER							57	000040.	4047
eet)	E E	2.21	Samp. No.	Blows/ 6 in.	Rec.	USCS	PID (DDm)	Geophysical l	.og: LJ yes	X no		
4 (t		Stickup						Comments:				
lept			Run	Hydraul. Cond.	Rec.	ROD		1	/ISUAL	.	RE	MARKS
0			NO.	cm/sec	(11)			CLASS	SIFICATION			
0		Piece						TOPSOIL/FIL		1.0	Samples	disturbed by
1		Kiser						Clayey Silt, I	ittle c Gravel	Л	hand au	gering
1								- (angular)				
-		Screen						Tan, orange	DEPOSITS -brown fin (c) SAND,			
-	E	(3.1-4.7')						tr rounded f	Gravel, occ. Silty			
5-	Q.	Drive Point								5.4	Water in	hole @ approx
								End of borin	g at 5.4 feet.	0.4	4.T'	
1								[
1								F				
-								F				
10-								-				
4								-				
4								-				
15												
13-												
-								-				
4								-				
								Ě.				
-								-				
						1						
1							1					
1								t i				
24								-				
24			1		1	1	1					

ECKE	ENFE	LDER INC	•			Bo	orir	ng Log	P-16			Page 1 of
Project:	RFI of PI	retreatment Plant	SWML	1			P	roject No.:	Start Date	: 7/5/	94	
Client: He	ercules/C	CIBA-GEIGY Site,	Glens	Falls,	NY		9	427	Finish Dat	e: 7/5/	94	
		DRILLING D	ATA						SAMPLIN	G METH	IODS	
Inspecto	r: Bob O	Neill							Sampler	Tu	be	Core
Contract	or: NA							Type:	55 Hand Auger	N	A	NA
Equipmer	nt: SS Ha	nd Auger						Diameter:	3.25"	N	A	NA
Method:	Hand Aug	ger						Other:	NA	N	A	NA
-		WELL CONSTRU	ICTIO	N		_		W	ELL		SURVEY	DATA
	L	Riser	_	5	Scree	n		DEVEL	OPMENT		DATUM	NGVU
Material:		Steel, Sch. 40		CI/SS	S Wei	I Poir	nt	Method: NA		Grade	283.60	
Diameter	(ID):	1.25"			1.25			Duration: NA		TWC: 2	285.55	
Coupling:		SS			SS		_	Gals. Purged:	NA	TPC: A	IA	
	WELL C	ONSTRUCTION	soil	SA	MPLE	DAT		Slug Test: NA		North:	1207700	0.2911
			rock		-	T	-	(Cm/sec)		East:	693331.18	387
(feet)	_		Samp. No.	Blows/ 6 in.	Rec. (ft.)	USCS	PID (ppm)	Geophysical L Comments:	og: 🗌 yes	🛛 no		
Depth		2.0' Stickup	Run No.	Hydraul. Cond. cm/sec	Rec. (ft.)	RQD		CLASS	ISUAL	N	RE	MARKS
0+-		Piner	-									
-		hiser						Fi Dk. brown Si	ty CLAY to Clayey	0.9	Samples hand aug	disturbed by ering
	Ξ	Screen						SILT, tr Sand	l, roots, moist		Water in I	hole to 18'
	Ξ	(1.4 2.0)						Conf SAND an	DEPOSITS d Clavey SILT to		Hotel art	
1	$\nabla_{\mathbf{x}}$	Drive Point						Silty CLAY		Π		
-								- Gray Silty CL	AY			
5-								End of boring) at 3.0 feet.			
1								-				
1												
1								1				
-								-				
10-								-				
1								[
-								F				
-								-				
15-								F				
								-				
1								-				
-								ŀ				
-								ŀ				
-								-				
-								T				
-								-				
21			1		1	1	1	1				

RFI REPORT FOR THE PRETREATMENT PLANT SWMU

APPENDIX B

SOIL QUALITY DATA SUMMARY

1

B

1

1

RESULTS OF SOIL SAMPLE ANALYSES (a) RFI OF PRETREATMENT PLANT SWMU INORGANIC CONSTITUENTS AND MISCELLANEOUS PARAMETERS

Name	Date	Cadmium	Chromium	Lead	Mercury	Total Cyanide	% Solids
PT-16-1	06/30/94	0.79	18.	16.	0.05 U	0.60 U	82.8
PT-16-2	06/30/94	0.13	6.0	3.3	0.05 U	0.60 U	89.8
PT-17-1	06/30/94	4.0	256.	291.	2.1	4.5	88.5
PT-17-2	06/30/94	2.8	123.	105.	0.39	3.0	82.7
PT-18-1	06/30/94	153.	828.	2.390.	11.	186.	86.0
PT-18-2	06/30/94	10.	77.	133.	0.83	3.5	86.3
PT-19-1	06/30/94	57.	216.	4.570	22.	65.	88.4
PT-19-2	06/30/94	2.1	9.3	99.	0.32	3.1	93.8
PT-20-1	06/30/94	15.	79.	641.	6.1	76.	90.4
PT-20-2	06/30/94	0.71	7.0	24.	0.05 U	7.5	95.8
PT-21-1	06/30/94	2.7	38.	51.	0.53	4.6	90.6
PT-21-2	06/30/94	5.5	60.	78.	0.92	3.8	89.2
PT-22-1	06/30/94	3.3	48.	245.	0.51	3.7	89.5
PT-22-2	06/30/94	1.1	20.	115.	1. 0.41	0.58	86.3
PT-23-1	06/30/94	7.1 .19	88 1	1 226	0.92 A	15 25	90.4
e PT-24-1	07/01/94	622,+014 = 610	597 T 911 : 1	3,200+410	34, +51	375	88.2
PT-24-2	07/01/94	22.	44.	156.	0.70	22.	88.0
PT-25-1	07/01/94	7.6	46.	160.	0.35	2.9	83.6
PT-25-2	07/01/94	9.6	36.	49.	1.7	4.9	83.7
PT-26-1	07/01/94	3.1	13.	14.	0.05 U	0.28	90.0
PT-27-1	07/01/94	52.	91.	237.	1.8	9.7	87.9
PT-27-2	07/01/94	30.	61.	132.	1.2	7.8	79.4
PT-28-1	07/01/94	6.3	38.	67.	0.54	8.7	89.5
PT-28-2	07/01/94	0.95	9.8	8.6	0.05 U	0.59	85.4
PT-36-1	07/19/94	5.6	110.	144.	1.5	2.4	88.4
PT-36-2	07/19/94	1.6	49	34.	0.35	0.64	85.4
PT-37-1	07/19/94	116.	(885.)	3,560.	4.2	77.	88.6
PT-37-2	07/19/94	2.8	54.	96.	0.05 U	7.1	84.9
PT-38-1	07/19/94	2.0	26.	31.	0.17	0.58	94.4
PT-38-2	07/19/94	0.44	9.6	9.3	0.05 U	0.60 U	96.6
PT-39-1	07/19/94	4.6	60.	60.	0.81	0.60 U	94.3
PT-39-2	07/19/94	0.26	5.4	3.8	0.05 U	0.60 U	96.4
PT-40-1	07/19/94	3.8	77.	101.	0.80	0.62	89.1
PT-40-2	07/19/94	0.71	18.	54.	0.05 U	0.60 U	90.0
PT-41-1	07/19/94	6.5	76.	93.	0.48	6.9	89.0
PT-41-2	07/19/94	1.7	25.	26.	0.05 U	3.1	87.8
L	- 29	1055,24 To-	3909,3	16,555,4	89.44	875.22	
		36,29 200	134,8 AUG	570.81 AU	4 3.08 ANG	30.18 AUG	
-1 DUPLICATION	DUPLICATE	> 36)	38 50	NEXT	3,39	25,94	

U - analyzed for but not detected, number is the reporting limit

BORING PT8

RESULTS OF SOIL SAMPLE ANALYSES (a)(Continued) RFI OF PRETREATMENT PLANT SWMU INORGANIC CONSTITUENTS AND MISCELLANEOUS PARAMETERS

	Name	Date	Cadmiu 1669,81 53,86	m Tor Avg	Chron	nium	Lead		Mercu	ıry	Total Cyanide	% Solide	3
PT16-1	DUP-063094 (d)	06/30/94	0.57		17.		15.		0.0	5 U	0.60 U	85.1	-
PT24-1	DUP-070194 (d)	07/01/94	614.		817.		4,140.		52		1 29 .	88.5	P.
-	EB-063094	06/30/94	5.0	U	10.	U	5.0	U	0.5	U	10. U	(e)	an st
	EB-070194	07/01/94	5.0	U	10.	U	5.0	U	0.5	U	10. U	(K. Dr

(a) Sediment results reported in milligrams/kilogram, except where noted. Equipment blank ("EB") results reported in milligrams/liter.

- (b) Action levels for hexavalent and trivalent chromium, respectively
- (c) NA indicates not available
- (d) DUP-063094 is a duplicate sample of PT-16-1 DUP-070194 is a duplicate sample of PT-24-1
- (e) -- indicates parameter not analyzed

or almol of mol or 22th 50

RESULTS OF SOIL SAMPLE ANALYSES (a) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 1 of 6)

Sample Name	mg log Date	Acena	۶ ⁹ hthen	e Acenapl	4 hthylene	0 Anil	line	50 Anthre	cene	्र Benzidine	Benz	io (a) acene	Benzo	(a) ne	Ben: fluora	zo (b) inthene	Benzo pery	(g,h,i) dene
										mg/.	leg							
PT-16-1	06/30/94	0.3 /*	refleg	0.3	TI	1.7	IJ	0.3	TI	17 11	0.3	II	0.3	TI	0.01	J	0.3	IJ
PT-16-2	06/30/94	0.3	Ŭ	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-17-1	06/30/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.02	J	0.3	U	0.02	J	0.3	U
PT-17-2	06/30/94	0.3	U	0.01	J	1.7	U	0.3	U	1.7 U	0.03	J	0.3	U	0.04	J	0.01	J
PT-18-1	06/30/94	0.3	U	0.3	U	0.8	J	0.01	J	1.7 U	0.3	U	0.3	U	0.04	J	0.3	U
PT-18-2	06/30/94	0.3	U	0.01	J	0.1	J	0.01	J	1.7 U	0.02	J	0.3	U	0.05	J	0.01	J
PT-19-1	06/30/94	0.3	U	0.3	U	0.4	J	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-19-2	06/30/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-20-1	06/30/94	0.3	U	0.03	J	0.2	J	0.02	J	1.7 U	0.1	J	0.3	U	0.1	J	0.03	J
PT-20-2	06/30/94	0.3	U	0.3	U	1.7	U	0.004	J	1.7 U	0.02	J	0.02	J	0.02	J	0.01	J
PT-21-1	06/30/94	0.3	U	0.3	U	0.1	J	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-21-2	06/30/94	0.3	U	0.01	J	0.1	J	0.01	J	1.7 U	0.1	J	0.1	J	0.1	J	0.02	J
PT-22-1	06/30/94	0.03	J	1.0		1.7	U	0.7		1.7 U	4.4		4.6		5.9		1.1	
PT-22-2	06/30/94	0.3	U	0.02	J	0.01	J	0.01	J	1.7 U	0.1	J	0.1	J	0.1	J	0.02	J
PT-23-1	06/30/94	0.3	U	0.04	J	0.02	J	0.03	J	1.7 U	0.2	J	0.2	J	0.2	J	0.04	J
PT-24-1	07/01/94	1.5	U	1.5	U	2.7	JD	1.5	U	8.5 U	0.04	JD	1.5	U	0.06	JD	1.5	U
PT-24-2	07/01/94	0.3	U	0.3	U	0.04	J	0.004	J	1.7 U	0.02	J	0.3	U	0.3	U	0.3	U
PT-25-1	07/01/94	1.5	U	1.5	U	8.5	U	1.5	U	8.5 U	1.5	U	1.5	U	1.5	U	1.5	U
PT-25-2	07/01/94	0.3	U	0.3	U	0.03	J	0.003	J	1.7 U	0.01	J	0.3	U	0.3	U	0.003	3 J
PT-26-1	07/01/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.005	J	0.3	U	0.3	U	0.3	U
PT-27-1	07/01/94	1.5	U	1.5	U	0.2	JD	1.5	U	8.5 U	0.02	JD	1.5	U	1.5	U	1.5	U
PT-27-2	07/01/94	1.5	U	1.5	U	0.1	JD	0.06	JD	8.5 U	0.1	JD	1.5	U	0.1	JD	1.5	U
PT-28-1	07/01/94	0.3	U	0.3	U	0.03	J	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-28-2	07/01/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.005	j	0.3	U	0.3	U	0.3	U
PT-36-1	07/19/94	0.03	J	0.01	J	0.01	J	0.06	J	1.7 U	0.1	J	0.09	J	0.1	J	0.04	J

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 1 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 1 of 6)

14

É

Sample Name	Date	Acenap	hther	ne Acenaph	nthylene	Anil	ine	Anthra	icen	e Benzidine	Benz anthr	zo (a) racene	Benzo pyre	(a) ne	Ben: fluora	zo (b) nthene	Benzo pery	(g,h,i) 'lene
PT-36-2	07/19/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.01	J	0.01	J	0.02	J	0.01	J
PT-37-1	07/19/94	0.3	U	0.01	J	0.7	J	0.02	J	1.7 U	0.07	J	0.3	U	0.08	J	0.02	J
PT-37-2	07/19/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-38-1	07/19/94	0.09	J	1.1		0.01	J	1.1		1.7 U	3.4		2.3		3.4		0.7	J
PT-38-2	07/19/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.02	J	0.01	J	0.01	J	0.01	J
PT-39-1	07/19/94	0.3	U	0.008	J	1.7	U	0.005	J	1.7 U	0.04	J	0.03	J	0.04	J	0.02	J
PT-39-2	07/19/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
PT-40-1	07/19/94	0.03	J	0.8		1.7	U	0.5		1.7 U	3.2		3.0		4.4		0.4	
= PT-40-2	07/19/94	0.04	J	0.8		1.7	U	0.7		1.7 U	3.4		3.2		3.0		0.8	
PT-41-1	07/19/94	0.3	U	0.006	J	0.01	J	0.008	J	1.7 U	0.03	J	0.03	J	0.04	J	0.02	J
PT-41-2	07/19/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.3	U	0.3	U
DUP-063094(c)	06/30/94	0.3	U	0.3	U	1.7	U	0.3	U	1.7 U	0.3	U	0.3	U	0.01	J	0.3	U
DUP-070194(c)	07/01/94	0.009	J	0.01	J	2.3		0.3	U	1.7 U	0.04	J	0.3	U	0.3	U	0.3	U
EB-063094	06/30/94	10.	U	10.	U	50.	U	10.	U	50. U	10.	U	10.	U	10.	U	10.	U
EB-070194	07/01/94	10.	U	10.	U	50.	U	10.	U	50. U	10.	U	10.	U	10.	U	10.	U

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 2 of 6)

Sample Name	Benzo (k) fluoranthene	Benzoic Acid	Benzyl Alcohol	bis (2- Chloroethyl) Ether	bis (2-Chloro- isopropyl) Ether	bis (2- Ethylhexy Phthala	bis(2-Chloro- yl) ethoxy) te Methane	4-Bromo- phenyl- Phenylether	Butyl Benzyl Phthalate	4-Chloro- aniline
PT-16-1	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-16-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-17-1	0.02 J	1.7 U	0.3 U	0.3 U	0.3 U	0.05 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-17-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.03 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-18-1	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.3 J	0.3 U	0.3 U	0.3 U	0.2 J
PT-18-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-19-1	0.3 U	0.4 J	0.3 U	0.3 U	0.3 U	1.6	0.3 U	0.3 U	0.3 U	0.3 U
PT-19-2	0.3 U	1.7 U	0.3 U	0.02 J	0.3 U	0.1 J	B 0.3 U	0.3 U	0.3 U	0.3 U
PT-20-1	0.2 J	1.7 U	0.3 U	0.3 U	0.3 U	2.1	0.3 U	0.3 U	0.3 U	0.1 J
PT-20-2	0.02 J	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-21-1	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-21-2	0.1 J	1.7 U	0.3 U	0.3 U	0.3 U	0.05 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-22-1	3.1	1.7 U	0.3 U	0.3 U	0.3 U	0.05 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-22-2	0.1 J	1.7 U	0.3 U	0.3 U	0.3 U	0.2 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-23-1	0.1 J	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-24-1	0.05 JD	8.5 U	1.5 U	1.5 U	1.5 U	1.6 J	D 1.5 U	1.5 U	1.5 U	0.3 JD
PT-24-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.1 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-25-1	1.5 U	8.5 U	1.5 U	1.5 U	1.5 U	0.5 J	D 1.5 U	1.5 U	1.5 U	1.5 U
PT-25-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.02 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-26-1	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.01 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-27-1	1.5 U	8.5 U	1.5 U	1.5 U	1.5 U	3.0 J	D 1.5 U	1.5 U	1.5 U	1.5 U
PT-27-2	0.04 JD	8.5 U	1.5 U	1.5 U	1.5 U	1.1 J	D 1.5 U	1.5 U	1.5 U	1.5 U
PT-28-1	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.08 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-28-2	0.3 U	1.7 U	0.3 U	0.3 U	0.3 U	0.01 J	0.3 U	0.3 U	0.3 U	0.3 U
PT-36-1	0.08 J	1.7 U	0.3 U	0.3 U	0.3 U	0.01 J	0.3 U	0.3 U	0.3 U	0.3 U

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 3 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 2 of 6)

	Sample Name	Ben: fluora	zo (k) inthene	Benze Acie	oic d	Benzy Alcoho		bis hlor Et	(2- oethyl) her	bis (2-C isopro Eth	Chloro- opyl) ner	bis (2 Ethylhe Phthal	2- xyl) late	bis(2-0 eth Met	Chloro- oxy) hane	4-Br phe Pheny	omo- nyl- 'lether	Buty Benz Phtha	yl yl late	4-Chloro aniline	-
	PT-36-2	0.01	J	1.7	U	0.3 1	J	0.3	U	0.3 1	U	0.01	J	0.3	U	0.3	U	0.3 1	J	0.3 U	
	PT-37-1	0.05	J	1.7	U	0.3 T	J	0.3	U	0.3	U	0.08	J	0.3	U	0.3	U	0.3 T	J	0.1 J	
	PT-37-2	0.3	U	1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.008	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
E(PT-38-1	1.2		1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.08	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
	PT-38-2	0.01	J	1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.01	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
	PT-39-1	0.02	J	1.7	U	0.3 T	J	0.3	U	0.3	U	0.06	J	0.3	U	0.3	U	0.3 U	J	0.3 U	
	PT-39-2	0.3	U	1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.004	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
E	PT-40-1	1.6		1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.06	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
E	PT-40-2	2.9		1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.3	U	0.3	U	0.3	U	0.3 T	J	0.3 U	
	PT-41-1	0.03	J	1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.02	J	0.3	U	0.3	U	0.3 T	J	0.3 U	
	PT-41-2	0.3	U	1.7	U	0.3 T	J	0.3	U	0.3	U	0.01	J	0.3	U	0.3	U	0.3 1	J	0.3 U	
	DUP-063094(c)	0.3	U	1.7	U	0.3 T	J	0.3	U	0.3 1	U	0.01	J	0.3	U	0.3	U	0.3 1	U	0.3 U	
	DUP-070194(c)	0.04	J	1.7	U	0.3 1	J	0.3	U	0.3	U	1.7		0.3	U	0.3	U	0.3 1	U	0.3 U	
	EB-063094	10.	U	50.	U	10. T	J 1	0.	U	10.	U	10.	U	10.	U	10.	U	10. T	U	10. U	
	EB-070194	10.	U	50.	U	10. T	J 1	0.	U	10.	U	10.	U	10.	U	10.	U	10. T	U	10. U	

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 4 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 3 of 6)

Sample Name	4-Chloro- 3-Methyl- phenol	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl- Phenylether	Chrys	ene	Di Bu phth	-N- ityl- nalate	Di- Oct phthe	N- yl- late	Diben: anthr	z (a,h) acene	Diben fura	zo- n	1,2 Dichle benze	oro-	1,3 Dichl benz	l- oro- ene
PT-16-1	0.3 U	0.3 U	0.3 U	0.3 U	0.01	J	0.1	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-16-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3	U	0.1	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-17-1	0.3 U	0.3 U	0.3 U	0.3 U	0.03	J	0.1	JB	0.3	U	0.3	U	0.3	0	0.3	U	0.3	U
PT-17-2	0.3 U	0.3 U	0.3 U	0.3 U	0.04	J	0.2	JB	0.3	U	0.3	U	0.01	J	0.3	U	0.3	U
PT-10-1	0.3 U	0.3 0	0.3 U	0.3 U	0.03	J	0.2	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.02	J
PT-10-2	0.3 U	0.3 U	0.3 U	0.3 0	0.03	J	0.1	JD	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-19-1	0.3 U	0.3 0	0.3 0	0.3 U	0.3	U	0.1	JD TD	0.3	U	0.3	U	0.3	U	0.0	U	0.02	J
PI-19-2	0.3 U	0.3 0	0.3 0	0.3 0	0.3	U	0.1	D	0.3	U	0.3	U	0.3	U	0.0	TI	0.0	U
PT-20-1	0.3 U	0.3 0	0.3 0	0.3 0	0.1	J	0.03	JD	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-20-2	0.3 U	0.3 U	0.3 0	0.3 U	0.03	J	0.02	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-21-1	0.3 U	0.3 U	0.3 U	0.3 U	0.01	J	0.02	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-21-2	0.3 U	0.3 0	0.3 0	0.3 U	0.1	9	0.02	JB	0.3	U	0.3	U I	0.3	U	0.3	U	0.3	U
PT-22-1	0.3 U	0.3 U	0.3 0	0.3 0	4.2	т	0.02	JB	0.3	U	0.4	J	0.1	U	0.3	U	0.3	U
PT-22-2	0.3 U	0.3 U	0.3 U	0.3 U	0.1	J	0.02	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-23-1	0.3 U	0.3 U	0.3 0	0.3 U	0.2	J	0.01	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-24-1	1.5 U	1.5 U	1.5 U	1.5 U	0.06	1D	0.06	1BD	1.5	U	1.5	U	1.5	U	1.5	U	0.07	JD
PT-24-2	0.3 U	0.3 U	0.3 U	0.3 U	0.02	J	0.04	JB	0.02		0.3	U	0.3	U	0.3	U	0.3	U
PT-25-1	1.5 U	1.5 U	1.5 U	1.5 U	1.5	U	0.05	JBD	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
PT-25-2	0.3 U	0.3 U	0.3 U	0.3 U	0.02	J	0.03	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-26-1	0.3 U	0.3 U	0.3 U	0.3 U	0.006	J	0.04	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-27-1	1.5 U	1.5 U	1.5 U	1.5 U	0.04	JD	0.05	JBD	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
PT-27-2	1.5 U	1.5 U	1.5 U	1.5 U	0.1	JD	0.06	JBD	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
PT-28-1	0.3 U	0.3 U	0.3 U	0.3 U	0.01	J	0.05	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-28-2	0.3 U	0.3 U	0.3 U	0.3 U	0.008	J	0.03	JB	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U
PT-36-1	0,3 U	0.3 U	0.3 U	0.3 U	0.1	J	0.03	JB	0.3	U	0.01	J	0.02	J	0.3	U	0.3	U

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 5 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 3 of 6)

	Sample Name	4-Chloro- 3-Methyl- phenol	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl- Phenylether	Chrysene	Di-N- Butyl- phthalate	Di-N- Octyl- phthalate	Dibenz (a,h) anthracene	Dibenzo- furan	1,2- Dichloro- benzene	1,3- Dichloro- benzene
	PT-36-2	0.3 U	0.3 U	0.3 U	0.3 U	0.02 J	0.04 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
	PT-37-1	0.3 U	0.3 U	0.3 U	0.3 U	0.08 J	0.03 JB	0.3 U	0.3 U	0.007 J	0.03 J	0.05 J
/	PT-37-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.03 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
2	PT-38-1	0.3 U	0.3 U	0.3 U	0.3 U	3.6	0.04 JB	0.3 U	0.2 J	0.1 J	0.3 U	0.3 U
	PT-38-2	0.3 U	0.3 U	0.3 U	0.3 U	0.02 J	0.02 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
	PT-39-1	0.3 U	0.3 U	0.3 U	0.3 U	0.04 J	0.02 JB	0.3 U	0.003 J	0.004 J	0.3 U	0.3 U
	PT-39-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.01 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
E	PT-40-1	0.3 U	0.3 U	0.3 U	0.3 U	3.1	0.02 JB	0.3 U	0.3 J	0.04 J	0.3 U	0.3 U
E	PT-40-2	0.3 U	0.3 U	0.3 U	0.3 U	3.2	0.02 JB	0.3 U	0.3 J	0.04 J	0.3 U	0.3 U
	PT-41-1	0.3 U	0.3 U	0.3 U	0.3 U	0.04 J	0.02 JB	0.3 U	0.003 J	0.3 U	0.3 U	0.3 U
	PT-41-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.02 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
	DUP-063094(c)	0.3 U	0.3 U	0.3 U	0.3 U	0.01 J	0.03 JB	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
	DUP-070194(c)	0.3 U	0.3 U	0.3 U	0.3 U	0.05 J	0.02 JB	0.3 U	0.3 U	0.01 J	0.03 J	0.2 J
	EB-063094	10. U	10. U	10. U	10. U	10. U	2.5 JB	10. U	10. U	10. U	10. U	10. U
	EB-070194	10. U	10. U	10. U	10. U	10. U	2.6 JB	10. U	10. U	10. U	10. U	10. U

			RESU	LTS OF S RFI OF SEMIVO	OIL SAM PRETRE DLATILE ((GR	PLE ANAI ATMENT ORGANIC OUP 4 of 6	LYSES (a) (PLANT SW COMPOUN 3)	Continu MU NDS	led)							
Sample Name	1,4- Dichloro benzene	3,3'- Dichloro benzidin	2,4- - Dichloro e phenol	- Diethyl- phthalate	2,4- Dimethyl- phenol	ی را ^M - Dimethyl- phthalate	4,6-Dinitro 2-Methyl- phenol	- 2,4- Dinitro phenol	2,4- - Dinitro- toluene	2,6- Dinitro- toluene	Fluc	or- ene	Fluor	ene	Her chlo benz	ka-)ro- tene
PT-16-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.01	J	0.3	U	0.3	U
PT-16-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.3	U	0.3	U	0.3	U
PT-17-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.04	J	0.3	U	0.3	U
PT-17-2	0.3 U	0.7 U	0.3 U	0.01 J	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.1	J	0.3	U	0.3	U
PT-18-1	0.2 J	0.1 J	0.3 U	0.01 J	0.3 U	0.3 J	1.7 U	1.7 U	0.3 U	0.3 U	0.1	J	0.3	U	0.1	J
PT-18-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.04	J	0.3	U	0.3	U
∈ PT-19-1	0.03 J	0.7 U	0.3 U	0.02 J	0.3 U	21. D	1.7 U	1.7 U	0.3 U	0.3 U	0.02	J	0.3	U	0.03	3 J
PT-19-2	0.3 U	0.7 U	0.3 U	0.01 J	0.3 U	0.3 J	1.7 U	1.7 U	0.3 U	0.3 U	0.01	J	0.3	U	0.3	U
∈ PT-20-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	2.1	1.7 U	1.7 U	0.3 U	0.3 U	0.2	J	0.3	U	0.02	2 J
PT-20-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.1 J	1.7 U	1.7 U	0.3 U	0.3 U	0.03	J	0.3	U	0.3	U
PT-21-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.2 J	1.7 U	1.7 U	0.3 U	0.3 U	0.01	J	0.3	U	0.3	U
PT-21-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.1 J	1.7 U	1.7 U	0.3 U	0.3 U	0.1	J	0.3	U	0.3	U
E PT-22-1	0.3 U	0.7 U	0.3 U	0.01 J	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	3.9		0.1	J	0.3	U
PT-22-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.1 J	1.7 U	1.7 U	0.3 U	0.3 U	0.1	J	0.3	U	0.3	U
E PT-23-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.6	1.7 U	1.7 U	0.3 U	0.3 U	0.2	J	0.3	U	0.3	U
PT-24-1	1.5 U	0.8 JI	D 1.5 U	1.5 U	1.5 U	0.1 JD	8.5 U	8.5 U	1.5 U	1.5 U	0.1	JD	1.5	U	0.2	JL
PT-24-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.03	J	0.3	U	0.3	U
PT-25-1	1.5 U	3.5 U	1.5 U	1.5 U	1.5 U	0.3 JD	8.5 U	8.5 U	1.5 U	1.5 U	1.5	U	1.5	U	1.5	U
PT-25-2	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.03	J	0.3	U	0.3	U
PT-26-1	0.3 U	0.7 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.01	J	0.3	U	0.3	U
PT-27-1	1.5 U	3.5 U	1.5 U	1.5 U	1.5 U	0.2 JD	8.5 U	8.5 U	1.5 U	1.5 U	0.06	JD	1.5	U	1.5	U
PT-27-2	1.5 U	3.5 U	1.5 U	1.5 U	1.5 U	0.07 JD	8.5 U	8.5 U	1.5 U	1.5 U	0.2	JD	1.5	U	1.5	U

1.7 U

1.7 U

1.7 U

0.03 J

0.3 U

0.3 U

1.7 U

1.7 U

1.7 U

0.3 U

0.3 U

0.3 U

0.3 U

0.3 U

0.3 U

0.01 J

0.009 J

0.3 J

0.3 U

0.3 U

0.03 J

1

0.7 U

0.7 U

0.7 U

0.3 U

0.3 U

0.3 U

PT-28-1

PT-28-2

PT-36-1

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

0.3 U

Page 7 of 12

0.3 U

0.3 U

0.3 U

9/30/94 8EMIVOA.XLS

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 4 of 6)

Sample Name	1,4 Dichle benze	oro-	3,3 Dichl benzi	dine	2,4- Dichloro phenol	Die phtł	thyl- nalate	2,4- Dimethyl- phenol	Dimethyl- phthalate	4,6-Dinitro- 2-Methyl- phenol	2,4- Dinitro- phenol	2,4- Dinitro- toluene	2,6- Dinitro- toluene	Fluor- anthene 50 P/A REMEDIAN	Fluorene	Hexe chlor benze	a- to-
PT-36-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.03 J	0.3 U	0.3	U
PT-37-1	0.08	J	0.03	J	0.3 U	0.3	U	0.3 U	0.04 J	1.7 U	1.7 U	0.3 U	0.3 U	0.1 J	0.3 U	0.1	J
PT-37-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.008 J	0.3 U	0.3	U
₽ PT-38-1	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.03 J	1.7 U	1.7 U	0.3 U	0.3 U	8.4 D	1.7	0.3	U
PT-38-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.02 J	0.3 U	0.3	U
PT-39-1	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.05 J	1.7 U	1.7 U	0.3 U	0.3 U	0.05 J	0.3 U	0.3	U
PT-39-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3	U
= PT-40-1	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.03 J	1.7 U	1.7 U	0.3 U	0.3 U	3.7	0.06 J	0.3	U
E-PT-40-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	4.2	0.3 J	0.3	U
PT-41-1	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.01 J	1.7 U	1.7 U	0.3 U	0.3 U	0.07 J	0.3 U	0.3	U
PT-41-2	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.005 J	0.3 U	0.3	U
DUP-063094(c)	0.3	U	0.7	U	0.3 U	0.3	U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 U	0.3 U	0.01 J	0.3 U	0.3	U
DUP-070194(c)	0.1	J	0.5	J	0.3 U	0.3	U	0.3 U	0.1 J	1.7 U	1.7 U	0.3 U	0.3 U	0.08 J	0.01 J	0.2	J
EB-063094	10.	U	20.	U	10. U	0.4	JB	10. U	10. U	50. U	50. U	10. U	10. U	10. U	10. U	10.	U
EB-070194	10.	U	20.	U	10. U	0.3	JB	10. U	10. U	50. U	50. U	10. U	10. U	10. U	10. U	10.	U

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 8 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 5 of 6)

Sample Name	Hexa- chloro- butadiene	Hexachloro- cyclo- pentadiene	Hexa- chloro- ethane	Inde (1,2,3 Pyre	no -cd) ene	Isophorone	2-Meth napht lene	hyl- ha-	2-Methyl- phenol	4-Methyl- phenol	N-Nitroso- Di-N-Propyl- amine	N-Nit diph am	troso- enyl- ine	Napht lend	ha-	2-Ni anil	tro- ine
DE 10 1	0.0.11	0.0.11	0.0.11	0.0		0.0.11			0.0.11	0.0.11	0.0.11	0.0		0.0		1.0	
PT-10-1	0.3 U	0.3 0	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-10-2	0.3 0	0.3 0	0.3 0	0.01	T	0.3 U	0.3	U	0.3 0	0.3 0	0.3 0	0.3	U	0.3	U	1.7	U
PT-17-2	0.3 U	0.3 U	0.3 U	0.01	J	0.3 U	0.02	J	0.3 U	0.3 0	0.3 0	0.3	II	0.01	J	1.7	U U
PT-18-1	0.3 U	031	0.3 11	0.01	II	03 11	0.02	II	0.3 U	0.3 U	03 11	0.3	II	0.01	II	1.7	II
PT-18-2	0.3 U	0.3 U	0.3 U	0.01	1	0.3 U	0.02	1	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-19-1	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.01	J	0.3 U	0.3 U	0.3 U	0.3	U	0.02	J	1.7	U
PT-19-2	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-20-1	0.3 U	0.3 U	0.3 U	0.04	J	0.3 U	0.01	J	0.3 U	0.3 U	0.3 U	0.3	U	0.01	J	1.7	U
PT-20-2	0.3 U	0.3 U	0.3 U	0.01	J	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-21-1	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-21-2	0.3 U	0.3 U	0.3 U	0.03	J	. 0.3 U	0.02	J	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
E PT-22-1	0.3 U	0.3 U	0.3 U	1.4	0,912	0.3 U	0.1	J	0.3 U	0.3 U	0.3 U	0.01	J	0.1	J	1.7	U
PT-22-2	0.3 U	0.3 U	0.3 U	0.02	J	0.3 U	0.01	J	0.3 U	0.3 U	0.3 U	0.3	U	0.01	J	1.7	U
PT-23-1	0.3 U	0.3 U	0.3 U	0.1	J	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-24-1	1.5 U	1.5 U	1.5 U	1.5	U	1.5 U	1.5	U	1.5 U	1.5 U	1.5 U	1.5	U	1.5	U	0.2	JD
PT-24-2	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.01	J	0.3 U	0.3 U	0.3 U	0.3	U	0.007	J	1.7	U
PT-25-1	1.5 U	1.5 U	1.5 U	1.5	U	1.5 U	1.5	U	1.5 U	1.5 U	1.5 U	1.5	U	1.5	U	8.5	U
PT-25-2	0.3 U	0.3 U	0.3 U	0.003	J	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-26-1	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-27-1	1.5 U	1.5 U	1.5 U	1.5	U	1.5 U	1.5	U	1.5 U	1.5 U	1.5 U	1.5	U	1.5	U	8.5	U
PT-27-2	1.5 U	1.5 U	1.5 U	0.02	JD	1.5 U	1.5	U	1.5 U	1.5 U	1.5 U	1.5	U	1.5	U	8.5	U
PT-28-1	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-28-2	0.3 U	0.3 U	0.3 U	0.3	U	0.3 U	0.3	U	0.3 U	0.3 U	0.3 U	0.3	U	0.3	U	1.7	U
PT-36-1	0.3 U	0.3 U	0.3 U	0.04	J	0.3 U	0.01	J	0.3 U	0.3 U	0.3 U	0.3	U	0.01	J	1.7	U

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 9 of 12

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 5 of 6)

	Sample Name	Hexa- chloro- butadiene	Hexachloro- cyclo- pentadiene	Hexa- chloro- ethane	Indeno (1,2,3-cd) Pyrene	Isophorone	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	N-Nitroso- Di-N-Propyl- amine	N-Nitroso- diphenyl- amine	Naphtha- lene	2-Nitro- aniline
	PT-36-2	0.3 U	0.3 U	0.3 U	0.01 J	0.3 U	0.008 J	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
	PT-37-1	0.3 U	0.3 U	0.3 U	0.02 J	0.3 U	0.03 J	0.3 U	0.3 U	0.3 U	0.3 U	0.02 J	0.03 J
	PT-37-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
Ē	PT-38-1	0.3 U	0.3 U	0.3 U	0.8	0.3 U	0.07 J	0.3 U	0.3 U	0.3 U	0.3 U	0.01 J	1.7 U
	PT-38-2	0.3 U	0.3 U	0.3 U	0.01 J	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
	PT-39-1	0.3 U	0.3 U	0.3 U	0.02 J	0.3 U	0.02 J	0.3 U	0.3 U	0.3 U	0.3 U	0.01 J	1.7 U
	PT-39-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
E	PT-40-1	0.3 U	0.3 U	0.3 U	1.0	0.3 U	0.06 J	0.3 U	0.3 U	0.3 U	0.3 U	0.06 J	1.7 U
13	PT-40-2	0.3 U	0.3 U	0.3 U	1.0	0.3 U	0.1 J	0.3 U	0.3 U	0.3 U	0.3 U	0.05 J	1.7 U
	PT-41-1	0.3 U	0.3 U	0.3 U	0.009 J	0.3 U	0.009 J	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
	PT-41-2	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
	DUP-063094(c)	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	1.7 U
	DUP-070194(c)	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.04 J	0.3 U	0.3 U	0.3 U	0.01 J	0.1 J	0.3 J
	EB-063094	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	50. U
	EB-070194	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	10. U	50. U

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 6 of 6)

	Sample Name	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	Penta- chloro- phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,5- Trichloro- phenol	2,4,6- Trichloro- phenol
	DTD 10 1	17 11	17 11	0.9 11	0.9.11	171	171	0.01 I	0.9 11	0.01 J	0.2 11	1711	1711
	PT-10-1	1.7 U	1.7 U	0.3 0	0.3 0	1.7 U	17 11	0.9 11	0.3 U	0.01 0	0.3 U	17 U	1.7 U
	PT-17-1	17 U	17 U	0.3 U	0.3 U	1.7 U	17 11	0.03 J	0.02 JB	0.03 J	0.3 U	1.7 11	1.7 U
	PT-17-2	17 U	17 U	0.3 U	0.3 U	17 11	17 11	0.04 J	0.02 JB	0.1 J	0.3 U	1.7 U	1.7 U
	PT-18-1	17 U	0.03 J	0.05 J	0.3 11	17 U	17 U	0.02 J	0.04 JB	0.1 J	0.3 U	1.7 U	1.7 U
	PT-18-2	17 U	1.7 II	0.3 U	0.3 U	1.7 U	1.7 U	0.02 J	0.03 JB	0.05 J	0.3 U	1.7 U	1.7 U
	PT-19-1	1.7 U	1.7 U	0.03 J	0.3 U	1.7 U	1.7 U	0.01 J	0.05 JB	0.05 J	0.3 U	1.7 U	1.7 U
	PT-19-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.005 J	0.03 JB	0.03 J	0.3 U	1.7 U	1.7 U
	PT-20-1	1.7 U	0.02 J	0.3 U	0.3 U	1.7 U	1.7 U	0.1 J	0.3 U	0.3 J	0.3 U	1.7 U	1.7 U
	PT-20-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.01 J	0.02 JB	0.04 J	0.3 U	1.7 U	1.7 U
	PT-21-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.01 J	0.03 JB	0.01 J	0.3 U	1.7 U	1.7 U
	PT-21-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.04 J	0.3 U	0.1 J	0.3 U	1.7 U	1.7 U
E	PT-22-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	1.5	0.04 JB	8.7 D	0.3 U	1.7 U	1.7 U
	PT-22-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.04 J	0.02 JB	0.2 J	0.3 U	1.7 U	1.7 U
	PT-23-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.1 J	0.3 U	0.3 J	0.3 U	1.7 U	1.7 U
	PT-24-1	8.5 IU	0.5 JD	0.2 JD	1.5 U	8.5 U	8.5 U	0.05 JD	0.03 JBD	0.2 JD	1.5 U	8.5 U	8.5 U
	PT-24-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.02 J	0.03 JB	0.04 J	0.3 U	1.7 U	1.7 U
	PT-25-1	8.5 U	8.5 U	1.5 U	1.5 U	8.5 U	8.5 U	1.5 U	1.5 U	1.5 U	1.5 U	8.5 U	8.5 U
	PT-25-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.02 J	0.03 JB	0.02 J	0.3 U	1.7 U	1.7 U
	PT-26-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.007 J	0.03 JB	0.008 J	0.3 U	1.7 U	1.7 U
	PT-27-1	8.5 U	8.5 U	1.5 U	1.5 0	8.5 5	8.5 0	0.05 JD	15 Ü	0.05 JD	1.5 U	8.5 U	8.5 U
	PT-27-2	8.5 U	8.5 U	1.5 U	1.5 U	8.5 U	8.5 U	0.3 JD	1.5 U	0.2 JD	1.5 U	8.5 U	5.5 U
	PT-28-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.009 J	0.03 JB	0.02 J	0.3 U	1.7 U	1.7 U
	PT-28-2	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.007 J	0.02 JB	0.01 J	0.3 U	1.7 U	1.7 U
	PT-36-1	1.7 U	1.7 U	0.3 U	0.3 U	1.7 U	1.7 U	0.3 J	0.02 JB	0.2 J	0.3 U	1.7 U	1.7 U

U - analyzed for but not detected, number is the reporting limit; J - estimated value; B - present in the method blank; D - diluted sample

Page 11 of 12
9/30/94 SEMIVOA.XLS

RESULTS OF SOIL SAMPLE ANALYSES (a) (Continued) RFI OF PRETREATMENT PLANT SWMU SEMIVOLATILE ORGANIC COMPOUNDS (GROUP 6 of 6)

	Sample Name	3-Nit anili	ne	4-Ni anil	tro- ine	Nitr benze	o- ene	2-Nitro phenol	- 4-Nitr	o- ol	Penta- chloro- phenol	Phe: anthr	n- ene	Phenol	Pyre	ne	1,2,4- Trichloro- benzene	2,4,5- Trichloro- phenol	2,4,6- Trichloro- phenol
	PT-36-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	J	1.7 U	0.02	J	0.03 JB	0.03	J	0.3 U	1.7 U	1.7 U
	PT-37-1	1.7	U	0.03	J	0.06	J	0.3 U	1.7 1	U	1.7 U	0.06	J	0.03 JB	0.1	J	0.3 U	1.7 U	1.7 U
	PT-37-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	0.006	J	0.03 JB	0.008	J	0.3 U	1.7 U	1.7 U
1.1	PT-38-1	1.7	U	1.7	U	0.3	U	0.3 U	1.7 0	U	1.7 U	14.	D	0.02 JB	9.8	D	0.3 U	1.7 U	1.7 U
	PT-38-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	0.007	J	0.02 JB	0.03	J	0.3 U	1.7 U	1.7 U
	PT-39-1	1.7	U	1.7	U	0.3	U	0.3 U	1.7 0	U	1.7 U	0.03	J	0.3 U	0.06	J	0.3 U	1.7 U	1.7 U
_	PT-39-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	0.3	U	0.3 U	0.3	U	0.3 U	1.7 U	1.7 U
E	PT-40-1	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	1.2		0.03 JB	5.3		0.3 U	1.7 U	1.7 U
E	PT-40-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 0	U	1.7 U	2.7		0.03 JB	5.2		0.3 U	1.7 U	1.7 U
	PT-41-1	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	0.03	J	0.02 JB	0.06	J	0.3 U	1.7 U	1.7 U
	PT-41-2	1.7	U	1.7	U	0.3	U	0.3 U	1.7 0	U	1.7 U	0.3	U	0.02 JB	0.005	J	0.3 U	1.7 U	1.7 U
	DUP-063094(c)	1.7	U	1.7	U	0.3	U	0.3 U	1.7 1	U	1.7 U	0.01	J	0.3 U	0.01	J	0.3 U	1.7 U	1.7 U
	DUP-070194(c)	0.06	5 J	0.2	J	0.3	J	0.3 U	1.7 1	U	1.7 U	0.07	J	0.06 JB	0.2	J	0.1 J	1.7 U	1.7 U
	EB-063094	50.	U	50.	U	10.	U	10. U	50. 1	U	50. U	10.	U	10. U	10.	U	10. U	50. U	50. U
	EB-070194	50.	U	50.	U	10.	U	10. U	50. 1	U	50. U	10.	U	10. U	10.	U	10. U	50. U	50. U

(a) Sediment results reported in milligrams/kilogram, except where noted. Equipment blank ("EB") results reported in milligrams/liter.

- (b) NA indicates not available
- (c) DUP-063094 is a duplicate sample of PT-16-1 DUP-070194 is a duplicate sample of PT-24-1

Parameter	Concentration (mg/l)
Arsenic	0.060 U (b)
Barium	4.73
Cadmium	1.87
Chromium	0.088
Lead	18.0
Mercury	0.002 U
Selenium	0.050 U
Silver	0.005 U

TCLP EXTRACT ANALYSIS (a) Sample PT-24-1

(a) TCLP-Toxicity Characteristic Leaching Procedure

-

2

1

(b) Analyzed for but not detected. Number is method detection limit.

Appendix C

WATER LEVEL DATA July 7, 1994 and July 13, 1994

1

WL070794.XLS

W	ATER LEVEL DATA
PRETR	EATMENT PLANT SWMU
	July 7, 1994

	Reference	Ground Surface	Depth to	Water
	Elevation	Elevation	Water from	Elevation
Location	(ft., NGVD)	(ft., NGVD)	Reference (ft.)	(ft., NGVD)
MW-OB17	289.91	287.07	7.79	282.12
MW-OB18	287.82	284.83	9.37	278.45
MW-OB19	287.69	285.00	8.51	279.18
P-1	287.76	284.70	5.89	281.87
P-3	287.37	285.60	5.20	282.17
P-6	287.75	285.10	dry	#VALUE!
P-7	288.18	285.80	6.07	282.11
P-8	286.95	284.80	5.17	281.78
P-10	287.82	285.20	9.35	278.47
P-11	291.06	288.40	9.05	282.01
P-12	287.81	285.60	6.27	281.54
P-14	287.41	285.10	7.22	280.19
SG-1	283.96	NA	2.56	281.40
SG-2	281.06	NA	4.51	276.55
P-15	284.40	281.13	7.54	276.86
P-16	285.55	283.60	3.26	282.29
IG-1	286.06	285.61	NA	#VALUE!
IG-2	287.02	286.92	NA	#VALUE!
IG-3	287.00	286.48	NA	#VALUE!
IG-4	288.96	288.36	NA	#VALUE!

NA=Not available

1

1

8

II

WL071394.XLS

Location	Reference Elevation (ft., NGVD)	Ground Surface Elevation (ft., NGVD)	Depth to Water from Reference (ft.)	Water Elevation (ft., NGVD)
MW-OB17	289.91	287.07	7.34	282.57
MW-OB18	287.82	284.83	9.03	278.79
MW-OB19	287.69	285.00	8.29	279.40
P-1	287.76	284.70	5.25	282.51
P-3	287.37	285.60	4.70	282.67
P-6	287.75	285.10	6.71	281.04
P-7	288.18	285.80	5.68	282.50
P-8	286.95	284.80	4.71	282.24
P-10	287.82	285.20	9.04	278.78
P-11	291.06	288.40	8.65	282.41
P-12	287.81	285.60	6.01	281.80
P-14	287.41	285.10	6.90	280.51
SG-1	283.96	NA	2.45	281.51
SG-2	281.06	NA	4.37	276.69
P-15	284.40	281.13	7.32	277.08
P-16	285.55	283.60	3.05	282.50
IG-1	286.06	285.61	3.12	282.94
IG-2	287.02	286.92	4.52	282.50
IG-3	287.00	286.48	5.40	281.60
IG-4	288.96	288.36	8.25	280.71

WATER LEVEL DATA PRETREATMENT PLANT SWMU July 13, 1994

NA=Not available

1

0

Page 1

APPENDIX D

FIELD DATA SHEETS

l

1

1

-

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
		GLENS FALLS, NEW YORK
PERSONNEL: RLO		SAMPLE ID: MW-6317
JOB NUMBER: 9427		DATE: 7-14-94 TIME: 10:10
WEATHER CONDITIONS:	75°F, mostly sunnel	
WELL DATA:	WELL NUMBER: Mil-05.7	WELL DESIGNATION:
CASING. DIAMETER: 2"	Stainless Ste	et Steel PVC Tetion O other
INTAKE, DIAMETER: 2"	Stainless Sta	el Galv. Steel CHVC C Teflon (C Open rock
DATUM: D TOP OF PROT.	CASING TOP OF WELL CASING	G OTHER:
DATUM ELEVATION: 201.9.	(NGVD) GROUND SURFA	CE ELEVATION: 297.07 (NGVD)
TOTAL DEPTH AT INSTALLATIC	ON (from gs): 14 // ELEV	ATION: 276.1
DEPTH TO (from datum):	STATIC WATER LEVEL: 7.42	BOTTOM OF WELL: 14,00
ELEVATION:	STATIC WATER LEVEL: 282.	44 BOTTOM OF WELL: 275,91
WELL CLEAN TO BOTTOM?	YES INO	WELL IN GOOD CONDITION? YES N
VOLUME OF WATER:	IN WELL 1, 1 gd	TO BE PURGED 5.3 gue
PURGE DATA:		
METHOD: BLADDER PUMP	D PERISTALTIC PUMP & BAIL	ER SUB. PUMP OTHER:
0	TEFLON	
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	TUBING ROPE: DPLYPROPYLENE
	D PVC	C NULDN
A 22	OTHER:	
WAS WELL EVACUATED	START TIME: 1100 STO	INABED OF WELL VOLUMES PURPED: 3.5
WAS WELL EVACUATED?		UMBER OF WELL VOLUMES FURGED.
ME SERIES DATA:	PRE- PURGE PRE-SAN	APLE POST SAMPLE
OM		
SPEC. COND.		P. 73B m Ulum
PURGING EQUIPMENT:		D OFF-SITE FIELD CLEANED
CAMPLINIC DATA.	(Compression)	
WATER LEVEL: NM	TIME: 10:10	
METHOD: SLADDER PUMP	D PERISTALTIC PUMP D BAIL	ER SUB. PUMP O OTHER:
-	TERION D PVC	T TEFLON E WYLON
MATERIALS: PUMP BAILER:	STAINLESS STEEL	TUBING POPP. D POLYPROPYLENE
U		
SAMPLING EQUIPMENT:		D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTER	D? I YES I NO	METHOD:
	AR Z TURBID COLOR: br	
	7.	METER SEDIAL NO -
FIELD DETERMINATIONS	DH- A METER MODEL	
FIELD DETERMINATIONS:	770 METER MODEL:	METER SERIAL NO .:
FIELD DETERMINATIONS: TEMP: 17.5% SPECIF. COND.: 0 LABORATORY ANALYSIS:	pH: <u>-1</u> METER MODEL: .770. Wheter MODEL: Total Gium de	METER SERIAL NO .:
FIELD DETERMINATIONS: TEMP: 17.5% SPECIF. COND.: 0 LABORATORY ANALYSIS:	pH: <u>1.1</u> METER MODEL: .770.034 METER MODEL: Total Gjun de	_ METER SERIAL NO.:
FIELD DETERMINATIONS: TEMP: 17.5% SPECIF. COND.: 0 LABORATORY ANALYSIS: NO. OF CONTAINERS:	pH: <u>1.1</u> METER MODEL: .730.001 METER MODEL: Total Gjun de FIELD BLANK I.D TRIP I	METER SERIAL NO.:
FIELD DETERMINATIONS: TEMP: 17.5% SPECIF. COND.: 0 LABORATORY ANALYSIS: NO. OF CONTAINERS: REMARKS:	pH: <u>1.1</u> METER MODEL: <u>730. What METER MODEL:</u> <u>Total Gjun ide</u> FIELD BLANK I.D TRIP I	METER SERIAL NO.:
HELD DETERMINATIONS: TEMP: 17.5% SPECIF. COND.: 0 LABORATORY ANALYSIS: NO. OF CONTAINERS: REMARKS:	pH: <u>1.1</u> METER MODEL: <u>770. What METER MODEL:</u> <u>Total Gjun ide</u> FIELD BLANK I.D TRIP I	_ METER SERIAL NO.:

Į

Į

	GROUNDWATER SAMPLING
ECKENFELDER Nash	ville, Tennessee FIELD DATA SHEET
INC. Mahy	wah, New Jersey HERCHIES INCORPORATED CIRA-GEIGY PLANT SIT
inter	GIENS FAILS NEW YORK
PERSONNEL: RLO	SAMPLE ID: MW-OBIS
JOB NUMBER: 9427	DATE: 7-14-44 TIME: 8:45
WEATHER CONDITIONS: 275°F	nostly support
	Jail
WELL DATA: WELL	NUMBER: MU-OBIB WELL DESIGNATION:
CASING, DIAMETER: 2	Stainless Steel U Steel U PVC U Teilon U Other:
DATUM	
DATUM ELEVATION: 367, 82 (NGV	D) GROUND SURFACE ELEVATION: 284.83 (NGVD)
TOTAL DEPTH AT INSTALLATION (from	gs): 189.5 ELEVATION: 274.90
DEPTH TO (from datum):	WATER LEVEL 914 BOTTOM OF WELL 12.88
ELEVATION: STATIC	WATER LEVEL: 276.65 BOTTOM OF WELL: 274.94
WELL CLEAN TO BOTTOM?	YES INO WELL IN GOOD CONDITION? YES I
VOLUME OF WATER: IN WELL	LO, 6 gul TO BE PURGED 1.8 gul
METUOD. BLADDER PUMP D PERIS	
	D TEFLON
MATERIALS: PUMP BAILER	TUBING ROPE
D PVC	NYLON
O OTHER:	OTHER:
PUMPING RATE: 01 Dupm STAR	AT TIME: 9:30 STOP TIME: 9:43 VOLUME PUMPED: 2ad
	ES DE NO NUMBER OF WELL VOLUMES PURGED:
TIME SERIES DATA: PRE- F	PURGE PRE-SAMPLE POST SAMPLE
SPEC. COND.	1.197.m.124.m
PURGING EQUIPMENT: DE DEDIC	CATED, PREPARED OFF-SITE D FIELD CLEANED
[A=P	
SAMPLING DATA:	8'73
METHOD: BLADDER PUMP PERIS	STALTIC PUMP & BAILER D SUB. PUMP D OTHER:
MATERIALS: PUMP/GAILER	
SAMPLING FOUIPMENT	CATED PREPARED OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERED?	YES NO METHOD:
FIELD DETERMINATIONS	4 METER MODEL
TEMP: 15,2 °C SPECIF. COND .: 1. 60-14	METER MODEL: METER SERIAL NO.:
LABORATORY ANALYSIS: Total	Lifande
	U
NO. OF CONTAINERS: FIELD I	BLANK I.D TRIP BLANK I.D DUPLICATE I.D
KEMAKK3:	
ertify that this sample was collected and h	andled in accordance with applicable regulatory and
project protocols. 11. P AN 1	
Signature: KANTA CIMU	Date: 7-14-94

FOURNESS DED		SKOUIDWATER SAMILLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SI
		GLENS FALLS. NEW YORK
PERSONNEL: RUC		SAMPLE ID: MW-CB19
JOB NUMBER: 9427		DATE: 7-14-94 TIME: 4:25
WEATHER CONDITIONS:	-75°F mostly sunna	
WELL DATA:	WELL NUMBER: MW-0519	WELL DESIGNATION:
CASING, DIAMETER:	Stainless Sta	eel Usteel MPVC Utefion U other:
DATUM ELEVATION 2876	9 (NGVD) GROUND SUPFA	CE ELEVATION 285.00 (NGVD)
TOTAL DEPTH AT INSTALLATIC	N (from as): 10 ELEN	VATION: 27480
	A 2 F	<u> </u>
DEPTH IO (from datum):	STATIC WATER LEVEL: 0.55	BOTTOM OF WELL: 13, 00
ELEVATION:	STATIC WATER LEVEL: 279.3	WELL IN GOOD CONDITIONS
VOLUME OF WATED	IN WELL OTECH	TO BE PURGED 23 CUL
VOLUNIE OF WATER.	IN WELL 0. 10 year	I DE FURGED
PURGE DATA:	0	
METHOD: SLADDER PUMP	PERISTALTIC PUMP DE BAIL	
	TEFLON	
MATERIALS: PUMP/PALLEP	STAINLESS STEEL	TUBING ROPER
PUMPING PATE: 8.500	STAPT TIME Q'13 ST	OP TIME: 9:22 VOLUME PUMPED: 2 Egg
WAS WELL EVACUATED?	VES INO N	UMBER OF WELL VOLUMES PURGED: 3 T
THE SEDIES DATA:		
TEMPERATURE	TRE-TORGE TRE-SAT	/56°C
pH		7.4
		1373-754-
SPEC. COND.		1.
PURGING EQUIPMENT:	DEDICATED D PREPARE	ED OFF-SITE FIELD CLEANED
PURGING EQUIPMENT:	DEDICATED DEPARE	ED OFF-SITE FIELD CLEANED
SAMPLING DATA:	DEDICATED DEPREPARE	
SAMPLING DATA: WATER LEVEL: <u>C</u> METHOD: BLADDER PUMP	TIME: 9:25	
SAMPLING DATA: WATER LEVEL: 2 METHOD: BLADDER PUMP	DEDICATED PREPARE	
DURGING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP	DEDICATED PREPARE	
SPEC. COND. PURGING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP, BAILER	DEDICATED PREPARE	ED OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP SAILER SAMPLING EQUIPMENT:	DEDICATED PREPARE	ED OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP BAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disparable) PERISTALTIC PUMP NO	ED OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP BAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposable) VES D NO CAR URBID COLOR:	ED OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP SAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS:	DEDICATED PREPARE	ED OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP SAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15.62 SPECIF. COND.:	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED NO PREPARE DEDICATED PREPARE (disposable) PREPARE	ED OFF-SITE FIELD CLEANED ILER SUB. PUMP OTHER: TUBING ROPE: POLYPROPYLENE OTHER: ED OFF-SITE FIELD CLEANED METHOD: METER SERIAL NO.: METER SERIAL NO.:
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP SAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15,6% SPECIF. COND.: LABORATORY ANALYSIS:	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposable) D? VES NO AR I TURBID COLOR: ph: 7.4 METER MODEL: Total Cycanide	ED OFF-SITE FIELD CLEANED LER SUB. PUMP O OTHER: TUBING (ROPE: POLYPROPYLENE OTHER: ED OFF-SITE FIELD CLEANED METHOD: METER SERIAL NO.: METER SERIAL NO.:
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP BAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15.6° SPECIF. COND.:	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED NO PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE DEDICATED PREPARE (disposable) PREPARE PREPARE	ED OFF-SITE FIELD CLEANED LER SUB. PUMP O OTHER: TUBING ROPE: POLYPROPYLENE OTHER: ED OFF-SITE FIELD CLEANED METHOD: CONTAINS IMMISCIBLE LIQUID METER SERIAL NO.: METER SERIAL NO.:
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP SAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15,6% SPECIF. COND.: LABORATORY ANALYSIS: NO. OF CONTAINERS: 1	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposible) DY ES NO AR I TURBID COLOR: ph: 7.4 METER MODEL: Tobl Cyconide FIELD BLANK I.D. TRIP	ED OFF-SITE FIELD CLEANED LER SUB. PUMP OTHER: TUBING (ROPE: POLYPROPYLENE OTHER: ED OFF-SITE FIELD CLEANED METHOD: METER SERIAL NO.: METER SERIAL NO.: BLANK I.D DUPLICATE I.D
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP, BAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15.6° SPECIF. COND.: LABORATORY ANALYSIS: NO. OF CONTAINERS: 1 REMARKS:	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL TEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposible) D? VES NO AR DIURBID COLOR: PH: 7.4 METER MODEL: PH: 7.4 METER MODEL: PH: 7.4 METER MODEL: FIELD BLANK I.D TRIP	ED OFF-SITE FIELD CLEANED LER SUB. PUMP O OTHER: TUBING ROPE: POLYPROPYLENE OTHER: ED OFF-SITE FIELD CLEANED METHOD: METER SERIAL NO.: BLANK I.D DUPLICATE I.D
SAMPLING EQUIPMENT: SAMPLING DATA: WATER LEVEL: METHOD: BLADDER PUMP MATERIALS: PUMP BAILER SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE APPEARANCE: CLE FIELD DETERMINATIONS: TEMP: 15.6% SPECIF. COND.: LABORATORY ANALYSIS: NO. OF CONTAINERS: 1 REMARKS:	DEDICATED PREPARE TIME: 9:25 PERISTALTIC PUMP BAIL DEFLON PVC STAINLESS STEEL OTHER: DEDICATED PREPARE (disposible) PREPARE DY STAINLESS STEEL OTHER: DEDICATED PREPARE DEDICATED PREPARE DY STAINLESS STEEL OTHER: DEDICATED PREPARE (disposible) PREPARE DY STAINLESS STEEL DEDICATED PREPARE (disposible) TELD BLANK I.D. TRIP	ED OFF-SITE FIELD CLEANED LER SUB. PUMP OTHER: TUBING FORE: OTHER: ED OFF-SITE FIELD CLEANED METHOD: METER SERIAL NO.: METER SERIAL NO.: BLANK I.D DUPLICATE I.D

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC	Mahwah New Jersey	
inc.	Manwan, New Verbey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
BEDSONNEL: BID		GLENS FALLS, NEW YORK
JOB NUMBER: 9417	· · · · · · · · · · · · · · · · · · ·	DATE: 7-8-94 TIME: 9:05
WEATHER CONDITIONS:	80°F Hund Dierost	
WELL DATA:	WELL NUMBER: P-1	WELL DESIGNATION:
INTAKE DIAMETER: 1	Stainiess Ste	
DATUM: D TOP OF PROT.	CASING TOP OF WELL CASING	
DATUM ELEVATION: 287.7	(NGVD) GROUND SURFA	CE ELEVATION: 284.70 (NGVD)
TOTAL DEPTH AT INSTALLATIO	N (from gs): 3 ELEV	ATION: 276.7
DEPTH TO (from datum):	STATIC WATER LEVEL: 4.22	BOTTOM OF WELL: 11.6
ELEVATION:	STATIC WATER LEVEL: 283,5	14 BOTTOM OF WELL: 276.16
WELL CLEAN TO BOTTOM?	YES INO	WELL IN GOOD CONDITION? YES
VOLUME OF WATER:	IN WELL U.Sgal	TO BE PURGED 0. 9 gal
PURGE DATA:	1	
METHOD: BLADDER PUMP	PERISTALTIC PUMP D BAIL	ER SUB. PUMP OTHER:
MATERIALS AUGO AUTO		TURING PORT
WATERIALS: PUMP/BAILER:	STAINLESS STEEL	
1	OTHER: Typen	OTHER:
PUMPING RATE: 20,201/mm	START TIME: 8:54 STO	OP TIME: 8:59 VOLUME PUMPED: 1.0
WAS WELL EVACUATED?	VES OF NO NI	UMBER OF WELL VOLUMES PURGED: 3+
TIME SERIES DATA:	PRE- PURGE PRE-SAN	APLE POST SAMPLE
TEMPERATURE		21.5℃
SPEC. COND.		0,43-776-
PURGING EQUIPMENT:		D OFF-SITE D FIELD CLEANED
SAMPLING DATA:	TIME 9'05	
METHOD: BLADDER PUMP	PERISTALTIC PUMP D BAIL	
MATERIALS: PUMP BAILER:	STAINLESS STEEL	TUBING/ROPE:
-		OTHER:
SAMPLING EQUIPMENT:		D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERE	D? VES NO	METHOD:
APPEARANCE: CLE	AR TURBID COLOR:	CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	PH: 7. 1 METER MODEL:	METER SERIAL NO.:
TEMP: 21.5% SPECIF. COND .: 6	. 4 3. U/c METER MODEL:	METER SERIAL NO.:
LABORATORY ANALYSIS:	Total Lyan. de	and the second
NO. OF CONTAINERS 2	FIELD BLANK I.D. TOIP	MANKID. DUPLICATE LD. DUPD 70894
REMARKS:		
-		
ertify that this sample was collected	ed and handled in accorda	nce with applicable regulatory and
oject protocols.	0N.11	7-8 011
Signature: 100 x.C.	1000	Date: 1-0-14

ECKENFELDER	Nachvilla Tannessee	FIELD DATA SHEFT
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SIT
PERSONNEL: RLO JOB NUMBER: 9427		SAMPLE ID: DATE: TIME:
WEATHER CONDITIONS:_~~	CF Humid Oversig T	
WELL DATA: CASING, DIAMETER: /" INTAKE, DIAMETER: /" DATUM: D TOP OF PROT. O DATUM ELEVATION: <u>287, 37</u> TOTAL DEPTH AT INSTALLATION	WELL NUMBER: <u>P-3</u> Stainless Stainless Stainl	WELL DESIGNATION: eel Isteel IFVC I Teffon I Other: eel I Gatv. Steel IFVC I Teffon I Open rock G I OTHER: CE ELEVATION: 285.6 (NGVD) VATION: 277.6
DEPTH TO (from datum): ELEVATION: WELL CLEAN TO BOTTOM? VOLUME OF WATER:	STATIC WATER LEVEL: 408 STATIC WATER LEVEL: 203, YES NO IN WELL 0.25 gul	BOTTOM OF WELL: 10,2 6 29 BOTTOM OF WELL: 277.1 WELL IN GOOD CONDITION? IF YES I TO BE PURGED 0.75g.L
PURGE DATA: METHOD: BLADDER PUMP		
MATERIALS: UMPBAILER:		TUBING ROPE: POLYPROPYLENE
PUMPING RATE: 0.33 8pm WAS WELL EVACUATED?	START TIME: 10:09 STO	OP TIME: 10.12 VOLUME PUMPED: 1gal
TIME SERIES DATA: TEMPERATURE pH SPEC. COND.	PRE- PURGE PRE-SAM	POST SAMPLE 16.9°C 7.3 1.31 mUkm
PURGING EQUIPMENT:	DEDICATED PREPARE	D OFF-SITE FIELD CLEANED
SAMPLING DATA: WATER LEVEL: <u>Nm</u> METHOD: BLADDER PUMP	TIME: 10:20 PERISTALTIC PUMP D BAIL	ER SUB. PUMP OTHER:
MATERIALS: PUMP/BAILER:	TEFLON D PVC STAINLESS STEEL	
SAMPLING EQUIPMENT: METALS SAMPLE FIELD FILTERE		METHOD:
APPEARANCE: CLEA FIELD DETERMINATIONS: TEMP: 16.82 SPECIF. COND.: 1. LABORATORY ANALYSIS:	AR I TURBID COLOR: <u>A</u> ph: <u>7.3</u> METER MODEL: <u></u> <u>3/aUfra</u> METER MODEL: <u></u> <u>Total Copuside</u>	METER SERIAL NO.:
NO. OF CONTAINERS:	FIELD BLANK I.D TRIP	BLANK I.D. DUPLICATE I.D.
ertify that this sample was collected	ed and handled in accorda	ince with applicable regulatory and

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCHIES INCORPORATED CHEA-GEIGY PLANT SU
		GIENS FALLS NEW YORK
PERSONNEL: RLD		SAMPLE ID: P-6
JOB NUMBER: 9427		DATE: 7-13-94 TIME: 15:20
WEATHER CONDITIONS: ~	85"F hund overact	
WELL DATA:	WELL NUMBER: P-G	WELL DESIGNATION:
CASING, DIAMETER:	Stainless St	
DATIM DIAMETER:	CASING TOP OF WELL CASIN	
DATUM ELEVATION: 297.75	(NGVD) GROUND SURFA	CE ELEVATION: 285.10 (NGVD)
TOTAL DEPTH AT INSTALLATIC	ON (from gs): 5' ELEY	VATION: 280,1
DEPTH TO (from datum):	STATIC WATER LEVEL: 6.7/	BOTTOM OF WELL: 7.08
ELEVATION:	STATIC WATER LEVEL: 281,0	14 BOTTOM OF WELL: 280,67
WELL CLEAN TO BOTTOM?	VES E NO	WELL IN GOOD CONDITION? BY YES
VOLUME OF WATER:	IN WELL 0.02	TO BE PURGED 0.06
PURGE DATA.		
METHOD: D BLADDER PUMP		LER SUB. PUMP OTHER:
	TEFLON	TEFLON
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	TUBING/ROPE: OFGLi/PROPYLENE
•	D PVC	D NYLCON
	E OTHER: Typen	
PUMPING RATE: 0.01 ypm	START TIME: 15.97 ST	OP TIME: 75. 20 VOLUME PUMPED: 0.1
WAS WELL EVACUATED?		UMBER OF WELL VOLUMES PURGED:
TIME SERIES DATA:	PRE- PURGE PRE-SAI	MPLE POST SAMPLE
DH		Ain
SPEC. COND.		Nim
PURGING EQUIPMENT:		ED OFF-SITE FIELD CLEANED
SAMPLING DATA:	Longenter	
WATER LEVEL: 6.71	TIME: 15:10	
METHOD: BLADDER PUMP		LER SUB. PUMP OTHER:
-	TEFLON D PVC	TEFLON ONYLO
MATERIALS: PUMP BAILER:	STAINLESS STEEL	TUBING/ROPE: OPOLYPROPYLENE
0	OTHER: Typen	
SAMPLING EQUIPMENT:	(dirighted)	ED OFF-SITE AFELD CLEANED
METALS SAMPLE FIELD FILTER	ED? Q YES NO	METHOD:
APPEARANCE: E Cu		ane CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	PH: NM METER MODEL:	METER SERIAL NO .:
TEMP: NM SPECIF. COND .:	NM METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS:		
DEMARKS	tott funde las ff	at when for following the
	di d	the provide that the production in a
certify that this sample was collect	ed and handled in accorde	ance with applicable regulatory and
project protocols. All Kill	is fi	
Signature: 100019,016	<i>ii</i>	Date: 7-13-44

	GROUNDWATER SAMPLING
ECKENFELDER Nashville, Tennessee	FIELD DATA SHEET
INC. Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SI
	GLENS FALLS, NEW YORK
PERSONNEL: RLO	SAMPLE ID: P-7
JOB NUMBER: 9427	DATE: 7-8-94 TIME: 13:40
WEATHER CONDITIONS: ~ BUT humid, everand	F
WELL DATA: WELL NUMBER: P-7	WELL DESIGNATION:
CASING, DIAMETER:	steel Steel SPVC Tellon D Other:
INTAKE, DIAMETER: I Stainless	
DATUM ELEVATION: 288,13 (NGVD) GROUND SURF	ACE ELEVATION: 285.8 (NGVD)
TOTAL DEPTH AT INSTALLATION (from gs): 7 EL	EVATION: 278,8
DEPTH TO (from datum): STATIC WATER LEVEL: 5, 3	4 BOTTOM OF WELL: 9.60
ELEVATION: STATIC WATER LEVEL: 282	.54 BOTTOM OF WELL: 278,58
WELL CLEAN TO BOTTOM?	WELL IN GOOD CONDITION? WES
VOLUME OF WATER: IN WELL U, I	TO BE PURGED _0,5
PURGE DATA:	
METHOD: BLADDER PUMP C PERISTALTIC PUMP C BA	
MATERIALS: NUMP BAILER	
	I NYLON
OTHER: Typen	OTHER:
PUMPING RATE: 0.2 gpm STARTTIME: 13:30 S	STOP TIME: 13 35 VOLUME PUMPED: 1 gal
WAS WELL EVACUATED?	NUMBER OF WELL VOLUMES PURGED: _C
TIME SERIES DATA: PRE- PURGE PRE-SA	AMPLE POST SAMPLE
SPEC. COND.	0.30mtskim
PURGING EQUIPMENT: DEDICATED PREPA	RED OFF-SITE FIELD CLEANED
SAMPLING DATA:	
WATER LEVEL: NM TIME: 13:40	
METHOD: U BLADDER PUMP UP PERISTALTIC PUMP U BA	AILER U SUB. PUMP U OTHER:
MATERIALS: MUMPRANER	
CIHED: THERE	
SAMPLING FOUIPMENT	RED OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERED?	o METHOD:
APPEARANCE: O CLEAR O TURBID O COLOR:	None CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS: pH: 6.9 METER MODEL:	METER SERIAL NO.:
TEMP: 24.62 SPECIF. COND .: 0.80 m UL AMETER MODEL	METER SERIAL NO.:
LABORATORY ANALYSIS: Total Cymide	
NO. OF CONTAINERS:	P BLANK I.D DUPLICATE I.D
REMARKS:	
ertify that this sample was collected and handled in accord	ance with applicable regulatory and
roject protocols	
Signature: 1 Calmy & Ohull.	Date: 7-8-94

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
		GLENS FALLS, NEW YORK
PERSONNEL: RLD		SAMPLE ID: P-B
JOB NUMBER: 9427		DATE: 7-8-94 TIME: 14:40
WEATHER CONDITIONS:	90°F, humid, overtais	£
WELL DATA.	WELL NUMBER P-9	WELL DESIGNATION:
CASING, DIAMETER:	Stainless Ste	et Steet Grvc Teffon D Other:
INTAKE, DIAMETER: 1"	Stainless Sta	eel Galv. Steel Grvc Teflon G Open rock
DATUM: DOP OF PROT.	CASING TOP OF WELL CASING	G OTHER:
DATUM ELEVATION: 286,95	(NGVD) GROUND SURFA	CE ELEVATION: 287, 5 (NGVD)
IOTAL DEPTH AT INSTALLATIO		7.00
DEPTH TO (from datum):	STATIC WATER LEVEL: 4.07	BOTTOM OF WELL: 2.79.45
WELL CLEAN TO BOTTOM?	YES ONO	WELL IN GOOD CONDITION?
VOLUME OF WATER:	IN WELL 0,14	TO BE PURGED 0, 42
DUDGE DATA.	and a second	
METHOD. BLADDER PUMP		ER SUB. PUMP OTHER:
MEINOD.	TEFLON	TEFLON
MATERIALS: PUMPIBAILER:	STAINLESS STEEL	TUBING ROPE: POLYPROPYLENE
0	D PVC	I NYLON
DUNDING DATE 202	CTADT TILAR. 14:25 ST	OR TIME: 14/35 VOLUME DUMPED: 075
WAS WELL EVACUATED?	YES INO N	UMBER OF WELL VOLUMES PURGED: 1.5+
TIME SEDIES DATA:	PDE PUDGE PDE SAN	
TEMPERATURE	TRE-TORGE TRE-OAN	8.03 28,6°C
pH		8.03
SPEC. COND.		0.54 m U/cm
PURGING EQUIPMENT:	DEDICATED PREPARE	D OFF-SITE FIELD CLEANED
SAMPLING DATA:		
WATER LEVEL: Nm	TIME: 14:40	
METHOD: BLADDER PUMP	ET PERISTALTIC PUMP LI BAIL	ER . SUS. PUMP . OTHER:
MATERIALS: DUNDRAUER	TEFLON D PVC	
	OTHER: Tran	
SAMPLING EQUIPMENT:		D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERE	D? I YES INO	METHOD:
APPEARANCE: CLE		Lat CONTAINS IMMISCIBLE UQUID
FIELD DETERMINATIONS:	PH: 203 METER MODEL:	METER SERIAL NO.:
TEMP: 28,6 SPECIF. COND .: C	SHADE METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS:	Total Gande	
NO. OF CONTAINERS:	FIELD BLANK I.D. TRIP	BLANK I.D. DUPLICATE I.D.
REMARKS:	Collected Sample between	en 14:40 und 15:15 - 5/ou reavers
-		0
ertify that this sample was collect	ed and handled in accorda	ince with applicable regulatory and
	Ovi 11	

	GROUNDWATER SAMPLING
ECKENFELDER Nashville, Tennessee	FIELD DATA SHEET
INC. Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
	GLENS FALLS, NEW YORK
PERSONNEL: RLO	SAMPLE ID: P-10
JOB NUMBER: 9427	DATE: 7-14-94 TIME: 7150
WEATHER CONDITIONS:	
WELL DATA: WELL NUMBER: P-10	WELL DESIGNATION:
CASING, DIAMETER: I	eet Steet CPVC Tellon D Other:
INTAKE, DIAMETER: 1"	leel Galv. Steel GPVC Tellon Gopen rock
DATUM: TOP OF PROT. CASING TOP OF WELL CASIN	IG OTHER:
DATUM ELEVATION: 287.82 (NGVD) GROUND SURFA	ACE ELEVATION: 285,20 (NGVD) VATION: 277,20
DEPTH TO (from datum): STATIC WATER LEVEL: 9/3	BOTTOM OF WELL: 18,47
ELEVATION: STATIC WATER LEVEL: 278.	69 BOTTOM OF WELL: 277.35
WELL CLEAN TO BOTTOM?	WELL IN GOOD CONDITION?
VOLUME OF WATER: IN WELL 0,05 que	TO BE PURGED 0.15 yul
PURGE DATA:	
METHOD: BLADDER PUMP C PERISTALTIC PUMP BAIL	LER SUB. PUMP OTHER:
MATERIALS: PUMP/BAILER: DI STAINLESS STEEL	TUBING/ROPE: DOLYPROPYLENE
D PVC	I NYLON
I OTHER: Tyyon	OTHER:
PUMPING RATE: 0.0300 START TIME: 7:39 ST	OP TIME: 7.49 VOLUME PUMPED: 0.25gal
WAS WELL EVACUATED? I TES E NO N	UMBER OF WELL VOLUMES FURGED:
TIME SERIES DATA: PRE- PURGE PRE-SA!	MPLE POST SAMPLE
SPEC COND	<u> </u>
FORGING EQUIPMENT: Orperable.	ED OFF-SITE C FIELD CLEARED
SAMPLING DATA:	
WATER LEVEL: 9.13 TIME: 7:22	
METHOD: C BLADDER PUMP & PERISTALTIC PUMP C BAIL	LER LI SUB. PUMP LI OTHER:
MATERIALS PUMP/BAILER: STAINLESS STEEL	TUBING ROPE: POLYPROPYLENE
OTHER: Tygen	OTHER:
SAMPLING EQUIPMENT: DEDICATED PREPARE	ED OFF-SITE I FIELD CLEANED
METALS SAMPLE FIELD FILTERED?	METHOD:
APPEARANCE: CLEAR D TURBID COLOR:	lone CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS: PH: 6.9 METER MODEL:	METER SERIAL NO.:
TEMP: NM SPECIF. COND .: NM METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS: Total Gymidie	
NO. OF CONTAINERS: 1 FIELD BLANK I.D. TRIP	BLANK I.D DUPLICATE I.D
REMARKS:	
ertify that this sample was collected and handled in accorda	ance with applicable regulatory and
roject protocols lel 1 m. 1 - M	_
Signature. lott of Other	Date: 7-14-94

FCKENEELDER Noten a	
INC. Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SIT
210	GLENS FALLS, NEW YORK
PERSONNEL: KLU	SAMPLE ID: P-II
JOB NUMBER: 9421	DATE: 7-13-44 TIME: 14:25
WEATHER CONDITIONS: 03 T, Hume, Button	
WELL DATA: WELL NUMBER: P-11	WELL DESIGNATION:
CASING, DIAMETER: / Stainless Ste	el Esteel EPVC Etellon E Giftier:
INTAKE, DIAMETER: /	el Galv. Steel GPVC GTeflon (J Open rock
DATUM: LI TOP OF PROT. CASING LA TOP OF WELL CASING	CE ELEVATION 28840 (NOVD)
TOTAL DEPTH AT INSTALLATION (from ds): // FLEW	ATION: 277.4 (NGVD)
	053
ELEVATION: STATIC WATER LEVEL: 4.67	10000 OF WELL: 27.57
WELL CLEAN TO ROTTOM? U YES OF NO	WELL IN GOOD CONDITION?
VOLUME OF WATER: IN WELL AGO.) and	TO BE PURGED B. Gan
PURGE DATA:	
METHOD: BLADDER FUMP DE PERISTALTIC FUMP LE BAIL	ER - SUB. FUMP - OTHER:
MATERIALS: AUGORAUSE	TIELON
INTATERIALS: UMPBAILER: U STAINLESS STEEL	
Horuson Tugoo	
PUMPING RATE: 01500 START TIME: 14'20 STO	OP TIME: 14:25 VOLUME PUMPED: 0.75
	UMBER OF WELL VOLUMES PURGED:
TEMPERATURE	19.5°C
pH	7.7
SPEC. COND.	O.C. 2 nUkm
PURGING EQUIPMENT: DEDICATED D PREPARE	D OFF-SITE FIELD CLEANED
SAMPLING DATA:	
METTOD. C SAUGERTOMI C PERITALIOTOMP C BAIL	
PT OTUER.	
PEDICATED PREPARE	D OFF-SITE FIELD CLEANED
METALS CAMPLE ELELD ELLTEDED?	METHOD
APPEARANCE: CLEAR M TURBID COLOR:	
FIELD DETERMINATIONS: pH: ". METER MODEL:	METER SERIAL NO.:
TEMP: 1410 SPECIF. COND.: 400 A METER MODEL:	_ METER SERIAL NO.:
LADURAIURI ANALTSIS: 18 TOL CHUNCE	
NO. OF CONTAINERS: FIELD BLANK I.D TRIP I	BLANK I.D DUPLICATE I.D
REMARKS: The Smith	
ertify that this sample was collected and handled in accorda	nce with applicable regulatory and

	GROUNDWATER SAMPLING
ECKENFELDER Nashville, Tennesse	e FIELD DATA SHEET
INC. Mahwah, New Jerse	HERCULES INCORPORATED CIBA-GEIGY PLANT SIT
	GLENS FALLS, NEW YORK
PERSONNEL: RLO	SAMPLE ID: 1-12
JOB NUMBER: 9927	DATE: 7-15-99 TIME: 13, 1
WEATHER CONDITIONS: NOS F, hum. d, even	trast
WELL DATA: WELL NUMBER:	WELL DESIGNATION:
CASING, DIAMETER: /	ss Steel Steel PVC Tetion Other:
INTAKE, DIAMETER: /	ss Steel Galv. Steel GPVC GTeflon G Open rock
DATUM: U TOP OF PROT. CASING UP TOP OF WELL CA	DEACE ELEVATION: 285 60 (NCVD)
TOTAL DEPTH AT INSTALLATION (from gs):	FIEVATION: 277.60 (NGVD)
	81 941
ELEVATION: STATIC WATER LEVEL: 0.	BOTTOM OF WELL: 1, 97
WELL CLEAN TO BOTTOM? STATIC WATER LEVEL: 28	WELL IN GOOD CONDITIONS IT YES IT
VOLUME OF WATED	TO BE PURGED 0.4 Boul
IN WELL	
PURGE DATA:	
METHOD: BLADDER PUMP LE PERISTALTIC PUMP	
	I TEFLON
MATERIALS: PUMP BAILER: STAINLESS STEEL	TUBING/ROPE: POLYPROPYLENE
L PVC	
PUMPING PATE: P.17 mm STADT TIME: 13'43	STOP TIME 13 46 VOLUME PUMPED: 0.5
WAS WELL EVACUATED?	NUMBER OF WELL VOLUMES PURGED: 31
TIME SEDIES DATA: PDE. DUDGE PDE.	
TEMPERATURE	20.7°C
PH	9.1
SPEC. COND.	0.805mU/cm
PURGING EQUIPMENT:	PARED OFF-SITE
SAMPLING DATA	
WATER LEVEL: 6.01 TIME: 13.40	
METHOD: BLADDER PUMP S PERISTALTIC PUMP	BAILER SUB. PUMP OTHER:
	TEFLON ANYLO
MATERIALS: PUMP BAILER:	TUBING /ROPE: DOLYPROPYLENE
OTHER: Tygen	OTHER:
SAMPLING EQUIPMENT:	PARED OFF-SITE
METALS SAMPLE FIELD FILTERED?	NO METHOD:
APPEARANCE E CLEAR D TURBID D COLOR	R: then clour CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS: DH: 9, 1 METER MODE	L: METER SERIAL NO.:
TEMP: 20,7 SPECIF. COND .: 0,805-04-METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS: Total Cyanid	
	DIDATIZOU
NO. OF CONTAINERS: A FIELD BLANK I.D. 1	IRIP BLANK I.D DUPLICATE I.D. JUPPUTTS 7
REMARNS: 17-314 -00078	
ertify that this sample was collected and handled in acco	rdance with applicable regulatory and
project protocols / / / / / //	
Singetime Walt & Ollul	Date: 7-13-44

The part and a second of the second s		GROUNDWATER SAMPLING
ECKENFELDER N	ashville, Tennessee	FIELD DATA SHEET
INC. M	ahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SH
		GLENS FALLS. NEW YORK
PERSONNEL: RLO		SAMPLE ID: P-14
JOB NUMBER: 9427		DATE: 7-13-94 TIME: 13:07
WEATHER CONDITIONS: 2857	- Hund overers.	P
WELL DATA: W	ELL NUMBER: P-14	WELL DESIGNATION:
CASING, DIAMETER: /"	Stainless Ste	el Esteel EPVC El Teñon El Other:
INTAKE, DIAMETER: /"	Stainless Ste	el Galv. Steel EPVC Teffon D Open rock
DATUM: TOP OF PROT. CASIN	G Z TOP OF WELL CASING	OTHER:
DATUM ELEVATION: 287.91 (N	GVD) GROUND SURFA	CE ELEVATION: 285.10 (NGVD)
TOTAL DEPTH AT INSTALLATION (fro	om gs): b' ELEV	ATION: 277,1
DEPTH TO (from datum): st	TIC WATER LEVEL: 6.90	BOTTOM OF WELL: 10,18
ELEVATION: ST	TIC WATER LEVEL: 280,	5/ BOTTOM OF WELL: 277,25
WELL CLEAN TO BOTTOM?	VYES OF NO	WELL IN GOOD CONDITION? WE YES
VOLUME OF WATER: IN	WELL _0, 13 face	TO BE PURGED _ C: 4 gal
PURGE DATA:		
METHOD: BLADDER PUMP	ERISTALTIC PUMP BAILE	R SUB. PUMP OTHER:
	LON	TEFLON
MATERIALS: (PUMP/BAILER: 0 ST	INLESS STEEL	TUBING ROPE: POLYPROPYLENE
	C Trong	U NTLON
PUMPING PATE: Platters	TADT TIME 13'00 STC	PTIME 13'05 VOLUME PUMPED: 0. Saul
WAS WELL EVACUATED?	YES NO NU	IMBER OF WELL VOLUMES PURGED: 3+
TEMPERATURE	E- FURGE FRE-SAM	19,5 °C
PH		7.2
SPEC. COND.		0.667 m U/cm
PURGING EQUIPMENT:		OFF-SITE FIELD CLEANED
SAMPLING DATA:	- speed of the second sec	
WATER LEVEL: 6.90 TIM	AE: 12:55	
METHOD: BLADDER PUMP		R SUB. PUMP OTHER:
		TEFLON ONYLO
MATERIALS: FUMPLAILER:	INLESS STEEL	TUBINGAROPE: D POLYPROPYLENE
	HER: Typen	OTHER:
SAMPLING EQUIPMENT:		OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERED?	VES O NO	METHOD:
APPEARANCE: CLEAR		
FIELD DETERMINATIONS: PH	7.2 METER MODEL:	METER SERIAL NO.:
TEMP: 14,5 % SPECIF. COND.: 0467,-0	METER MODEL:	METER SERIAL NO.:
LABORATORY ANALYSIS: Total	Ganide	
NO. OF CONTAINERS 3	LD BLANK I.D. TRIP B	LANK LD. DUPLICATE LD.
REMARKS:	to Simple	
	· · · · · · · · · · · · · · · · · · ·	
ertify that this sample was collected an	d handled in accordan	nce with applicable regulatory and
roject protocols. 7 111 AV	1.11	7-17-04
Signature: / May 2. 0/10	n	Date: /-//

	GROUNDWATER SAMPLING
ECKENFELDER Nashville, Tennessee	FIELD DATA SHEET
INC. Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
	GLENS FALLS. NEW YORK
PERSONNEL: RLO	SAMPLE ID: IG-1
JOB NUMBER: 9427	DATE: 7-12-94 TIME: 8:05
WEATHER CONDITIONS: 275°F, Claut	
WELL DATA . WELL NUMBED. TG-/	WELL DESIGNATION.
CASING. DIAMETER: /	teel Steel Cryc Clation C Other:
INTAKE, DIAMETER: / " Stainless s	test Gatv. Steel BPVC Tetton G Open rock
DATUM: TOP OF PROT. CASING TOP OF WELL CASIN	NG I OTHER: Ground Surface
DATUM ELEVATION: (NGVD) GROUND SURF	ACE ELEVATION: 285,61 (NGVD)
TOTAL DEPTH AT INSTALLATION (from gs): 5,5 ELE	
DEPTH TO (from datum): STATIC WATER LEVEL: 2.4	BOTTOM OF WELL: MER 5.5
ELEVATION: STATIC WATER LEVEL:	BOTTOM OF WELL:
WELL CLEAN TO BOTTOM?	WELL IN GOOD CONDITION? ET YES INO
VOLUME OF WATER: IN WELL	
PURGE DATA:	
METHOD: BLADDER PUMP U PERISTALTIC PUMP U BAI	
I STAINLESS STEEL	
	OTHER:
PUMPING RATE: START TIME: ST	OP TIME: VOLUME PUMPED:
WAS WELL EVACUATED?	UMBER OF WELL VOLUMES PURGED:
TIME SERIES DATA: PRE- PURGE PRE-SA	MPLE POST SAMPLE
TEMPERATURE	
рн	
SPEC. COND.	
PURGING EQUIPMENT: LI DEDICATED LI PREPAR	ED OFF-SITE LI FIELD CLEANED
SAMPLING DATA:	
WATER LEVEL: 2.99 TIME: 8.85	
METHOD: U BLADDER PUMP UP PERISTALTIC PUMP U BAI	LER LI SUB. PUMP LI OTHER:
MATERIALS: UMP/BAILER: DISTAINLESS STEEL	TUBING/ROPE: OP POLYPROPYLENE
SAMPLING EQUIPMENT: (Aspende)	METHOD
TEMP: NM SPECIE COND . NM METER MODEL:	METER SERIAL NO.:
LABORATORY ANALYSIS: Total Cym, de	
NO. OF CONTAINERS: / FIELD BLANK I.D. TRIP	BLANK I.D DUPLICATE I.D
REMARKS: In- Site Sample. In:	"Haren't volume for field parameters
Deren - 2.5 to 5.5' below G.S	nee with applicable requision and
$\frac{2.545.5'}{6} = \frac{6.5}{6}$ certify that this sample was collected and handled in accorded project protocols $\frac{6.16}{6} = \frac{6.16}{6} = \frac{6.16}{6}$	ance with applicable regulatory and

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
· INC.	Mahwah, New Jersey	HERCHIES INCORPORATED CIRA-GEIGY PLANT SIT
		GIENS FALLS NEW YORK
PERSONNEL: RIP		SAMPLE ID: JG-2
JOB NUMBER: 4427		DATE: 7-12-94 TIME: 8:25
WEATHER CONDITIONS: 275	F. Clean	
WELL DATA:	WELL NUMBER: 14-2	WELL DESIGNATION:
CASING, DIAMETER: /	Stainless Ste	
DATIIM: DI TOP OF PROT. CA	SING TOP OF WELL CASING	OT OTHER: Grand surface
DATUM ELEVATION:	(NGVD) GROUND SURFA	CE ELEVATION: 28892 (NGVD)
TOTAL DEPTH AT INSTALLATION	(from gs): 8.75' ELEV	ATION:
DEPTH TO (from datum):	STATIC WATER LEVEL. 447	BOTTOM OF WELL
ELEVATION:	STATIC WATER LEVEL:	BOTTOM OF WELL:
WELL CLEAN TO BOTTOM?	YES O NO	WELL IN GOOD CONDITION?
VOLUME OF WATER:	IN WELL	TO BE PURGED
BUDGE DATA.	· · · · · · · · · · · · · · · · · · ·	
METHOD. BLADDER PUMP		R SUB. PUMP OTHER:
	TEFLON	
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	TUBING ROPE: DOLYPROPYLENE
•	PVC	
0	OTHER:	OTHER:
PUMPING RATE:	START TIME: STC	
WAS WELL EVACUATED?	LI YES LI NO NU	IMBER OF WELL VOLUMES FURGED:
TIME SERIES DATA:	PRE- PURGE PRE-SAM	IPLE POST SAMPLE
IEMPERATURE -		
SPEC. COND.		
PURGING EQUIPMENT:		O OFF-SITE A FIELD CLEANED
		and a set of the set o
WATER LEVEL 4 47	TIME: 2:25	
		ER SUB. PUMP OTHER:
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	TUBING ROPE: DE POLYPROPYLENE
	OTHER: Typan	
SAMPLING EQUIPMENT:	DEDICATED PREPARED	D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERED?	YES O NO	METHOD:
		CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	PH: NHA METER MODEL:	METER SERIAL NO .:
TEMP: NM SPECIF. COND .: NM		METER SERIAL NO .:
LABORATORY ANALYSIS:	tel Cyunide	
	FIELD BLANK I.D TRIP B	LANK I.D DUPLICATE I.D
Screen 5.75 to 8.	5' below GS	SATTICIES I WILLIE TOT TIETU PERZANETU
certify that this sample was collected	and handled in accorda	nce with applicable regulatory and
project protocols	n' n	
Signature: 10mm 01	IN	Date: 1-12-94

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SIT
		GLENS FALLS. NEW YORK
PERSONNEL: RLD		SAMPLE ID: IG-3
JOB NUMBER: 9427		DATE: 7-12-94 TIME: 8:44
WEATHER CONDITIONS: ~7	5°F. Clean	
WELL DATA.	WELL MULLEED T(-)	
CASING DIAMETED	D Stalators H	WELL DESIGNATION:
INTAKE, DIAMETER	Stainless Ste	el Q Gaty, Steel Q PVC Q Tellon Q Open rock
DATUM: D TOP OF PROT.		G I OTHER: Ground Sitere
DATUM ELEVATION:	(NGVD) GROUND SURFA	CE ELEVATION: 288,48 (NGVD)
TOTAL DEPTH AT INSTALLATION	N (from gs): 8.5 ELEV	
DEPTH TO (from datum):	STATIC WATER LEVEL: 5.38	BOTTOM OF WELL: MAR 8.5
ELEVATION:	STATIC WATER LEVEL:	BOTTOM OF WELL:
WELL CLEAN TO BOTTOM?	YES D NO	WELL IN GOOD CONDITION?
VOLUME OF WATER:		TO BE PURGED
PURGE DATA:		
METHOD: BLADDER PUMP		ER SUB. PUMP OTHER:
	TEFLON	
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	TUBING POPE: DPOLYPROPYLENE
	D PVC	
WAS WELL EVACUATED?		
		WINDER OF WELL VOLUMES FURGED:
TEMPEDATIO	PRE- PURGE PRE-SAN	APLE POST SAMPLE
pH		
SPEC. COND.		
PURGING EQUIPMENT:		D OFF-SITE AFELD CLEANED
SAMPLING DATA	and the second part of the second	
WATER LEVEL: 538	TIME: 8:44	
METHOD: BLADDER PUMP		ER SUB. PUMP OTHER:
MATERIALS: PUMPLEAILER:	STAINLESS STEEL	TUBING ROPE: TOPOLYPROPYLENE
	OTHER: Typen	OTHER:
SAMPLING EQUIPMENT:	(dypower) PREPARE	D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILTERED	D? TYES INO	METHOD:
	AR IT TURBID I COLOR: DE	CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	PH: NM METER MODEL:	METER SERIAL NO.:
TEMP: NM SPECIF. COND .: 4	m METER MODEL:	METER SERIAL NO.:
LABORATORY ANALYSIS:	Total Lyan, de	
	U	
NO. OF CONTAINERS:	FIELD BLANK I.D TRIP E	SLANK I.D DUPLICATE I.D
Screen 5,5 Z	- 8,5 below 45	received the sure for till parometal
ertify that this sample was collecte	d and handled in accorda	nce with applicable regulatory and
roject protocols.	CII.1	712 211
Signature // Ky Ku	1 loca	Date: 1-12-94

	GROUNDWATER SAMPLING
ECKENFELDER Nashville, Tennessee	FIELD DATA SHEET
INC Mahwah New Jersey	
INC. Manwall, New Corsey	MERCULES INCORPORATED CIBA-GEIGY PLANT SIT
PERSONNEL DI 17	GLENS FALLS, NEW YORK
PERSONNEL: <u>KLU</u>	DATE TOTO UN TIME Q'OF
JOB NUMBER: 9727	DATE: 1-12-14 TIME: 11-3
WEATHER CONDITIONS: ~75 F Clear	
WELL DATA: WELL NUMBER: IG-4	WELL DESIGNATION:
CASING, DIAMETER: # Stainless St	teel Steel SPVC Teflon D Other:
INTAKE, DIAMETER:)	teel Gaty. Steel CPVC Toflon G Open rock
DATUM: U TOP OF PROT. CASING U TOP OF WELL CASIN	IG I OTHER: WITH JUSTICE
TOTAL DEPTH AT INSTALLATION (Irom or): 6.5' ELE	VATION: 200.76 (NGVD)
TOTAL DEPTH AT INSTALLATION (IIOIT 93). 310	
DEPTH TO (from datum): STATIC WATER LEVEL: 0.51	BOTTOM OF WELL: 10440 9.5
ELEVATION: STATIC WATER LEVEL:	
VOLUME OF WATED	TO BE PURGED
PURGE DATA:	
METHOD: BLADDER PUMP C PERISTALIIC PUMP C BAI	LER SUB. FOMP COTHER:
MATERIALS: PUMP/BAILER: U STAINLESS STEEL	
	Orheir:
PUMPING RATE: START TIME: ST	OP TIME: VOLUME PUMPED:
WAS WELL EVACUATED?	UMBER OF WELL VOLUMES PURGED:
	MDIE DOST SAMPLE
TEMPERATURE	
pH	
SPEC. COND.	
PURGING EQUIPMENT: DEDICATED PREPAR	ED OFF-SITE FIELD CLEANED
SAMPLING DATA:	
WATER LEVEL: 831 TIME: 9.05	
METHOD: BLADDER PUMP PERISTALTIC PUMP BAI	ILER SUB. PUMP OTHER:
	TEFLON O NYLO
MATERIALS: UMP/BAILER: STAINLESS STEEL	TUBING/ROPE: D FOLYPROPYLENE
DOTHER: Typan	
SAMPLING EQUIPMENT: U DEDICATED U PREPAR	
METALS SAMPLE FIELD FILTERED?	METHOD:
APPEARANCE: CLEAR TURBID COLOR	TOWN CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS: PH: AM METER MODEL:	METER SERIAL NO .:
TEMP: NM_ SPECIF. COND .: NM_ METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS: Jotal Cyconide	
NO. OF CONTAINERS: / FIELD BLANK I.D. TRIP	BLANK I.D. DUPLICATE I.D.
REMARKS: In Solu Gample	Instruct volume for field pursometer
Screen 5,5 to 8.5' below GS	
	and with applicable to substant and
ertify that this sample was collected and handled in accorde	ance with applicable regulatory and

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SIT
		GLENS FALLS, NEW YORK
PERSONNEL: RLD		SAMPLE ID: IG-7
JOB NUMBER: 9427		DATE: 7-12-94 TIME: 16:30
WEATHER CONDITIONS:	85 r, mostly sund	
WELL DATA:	WELL NUMBER: IG-7	WELL DESIGNATION:
CASING, DIAMETER: 1.25	Stainless Ste	et Steel BPVC Tellon Cother:
INTAKE, DIAMETER: 1.25		Bel Galv. Steel EPVC Confirm Copen rock
DATUM: LIPOPPRO	(NGVD) GROUND SURFA	CE ELEVATION: 282,03 (NGVD)
TOTAL DEPTH AT INSTALLATI	ON (from gs): 13.0' ELEV	/ATION:
DEPTH TO (from datum):	STATIC WATER LEVEL: NM	BOTTOM OF WELL: 13.0
ELEVATION:	STATIC WATER LEVEL:	BOTTOM OF WELL:
WELL CLEAN TO BOTTOM?	YES O NO	WELL IN GOOD CONDITION?
VOLUME OF WATER:		TO BE PURGED
PURGE DATA:		
METHOD:		
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	
	D PVC	NYLON
PUMPING RATE:		
WAS WELL EVACUATED?		
TIME SERIES DATA:	FRE- FURGE FRE-SAN	AFE FOST SAMPLE
pH		
SPEC. COND.		
PURGING EQUIPMENT:	U DEDICATED U PREPARE	D OFF-SITE I FIELD CLEANED
SAMPLING DATA:	11:04	
METHOD: BLADDER PUM	PERISTALTIC PUMP D BAIL	
MATERIALS: PUMPPBAILER:	STAINLESS STEEL	LUBINGAROPE: POLYPROPYLENE
	BOTHER: Tygon	
SAMPLING EQUIPMENT:	Dispriser OL	D OFF-SITE HELD CLEANED
METALS SAMPLE FIELD FILTER	RED? LI YES LI NO	METHOD:
APPEARANCE: C c	LEAR I TURBID I COLOR	CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	NM METER MODEL:	METER SERIAL NO :
LABORATORY ANALYSIS:	Total Cours, de	
*. *.		
NO. OF CONTAINERS:	FIELD BLANK I.D TRIP E	BLANK I.D. DUPLICATE I.D.
REMARKS: Sciern: 7013	below GS	Butterest Vehine tor tidd patrinet
ertify that this sample was coller	cted and handled in accorda	nce with applicable regulatory and
count und uns southing and count		

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC.	Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
		GLENS FALLS, NEW YORK
PERSONNEL: RLO		SAMPLE ID: 14-8
JOB NUMBER: 9427		DATE: 7-12-94 TIME: 16:10
WEATHER CONDITIONS: ~	25°F mostly sunny	
	J F	
WELL DATA:	WELL NUMBER: 14-0	WELL DESIGNATION:
CASING, DIAMETER: 1.25	Stainless Ste	et Esteel LTPVC Litetion Li Other:
		Protuce Ground Surface
DATUM ELEVATION:	(NGVD) GROUND SURFA	CE ELEVATION: 281.49 (NGVD)
TOTAL DEPTH AT INSTALLATIO	N (from gs): /3.5 ELEV	ATION:
DEPTH TO (from datum):	STATIC WATER IFUEL	n 100000 05 WELL /3.5
ELEVATION:	STATIC WATER LEVEL:	BOTTOM OF WELL:
WELL CLEAN TO BOTTOM?	OF YES D NO	WELL IN GOOD CONDITION?
VOLUME OF WATER:	IN WELL	TO BE PURGED
NETUOD. DATA:		
METROD: -		
MATERIALS: PUMP/BAILER:	STAINLESS STEEL	
	D PVC	I NYLON
		OTHER:
PUMPING RATE:	START TIME: STO	OP TIME: VOLUME PUMPED:
WAS WELL EVACUATED?	YES NO NI	IMBER OF WELL VOLUMES PURGED:
IME SERIES DATA:	PRE- PURGE PRE-SAN	IPLE POST SAMPLE
TEMPERATURE		
PH		
BURGING EQUIPMENT		
FURGING EQUIPMENT.	d DEDICATED d PREPARE	
SAMPLING DATA:	0 THE 4405	
	PERISTALTIC PULAR D BALL	
METHOD. G BLODER FUMP	E PERISIALIIG FOMP E BAIL	
MATEDIALS: AUTOR	TEFLON D PVC	
TO LETIALS. FUME BAILER:	STAINLESS STEEL	
	DEDICATED DEPARE	O OFF-SITE FIELD CLEANED
SAMPLING EQUIPMENI:	(despersible) D2 U YES U NO	METHOD
APPEARANCE:		
FIELD DETERMINATIONS:	PH: METER MODEL:	METER SERIAL NO.:
LAROPATODY ANALYSIS	Total Cana de	MEILR SERIAL NO.:
LABORAIORT ANALTOIS:	ipiac gan a	
NO. OF CONTAINERS:	FIELD BLANK I.DTRIP B	LANK I.D DUPLICATE I.D
REMARKS:	In-Sila Gample Insufficie	at volume for Carba In hy + Tangerstore
- Scien: 7,5 E	13,5'belan 45	<i></i>
ald a stand at the summer to sales and to all	ed and handled in accorda	ace with applicable regulatory and
mity that this sample was collected		ice with applicable regulatory and

		GROUNDWATER SAMPLING
ECKENFELDE	R Nashville, Tennessee	FIELD DATA SHEET
IN	C. Mahwah, New Jersey	HERCULES INCORPORATED CIBA-GEIGY PLANT SITE
		GLENS FALLS, NEW YORK
PERSONNEL: RLD		SAMPLE ID: IG-9
JOB NUMBER: 9427		DATE: 7-12-94 TIME: 15:50
WEATHER CONDITIONS:_	~ 25°F Mostly Sunny	
WELL DATA:	WELL NUMBER: IG-9	WELL DESIGNATION:
CASING, DIAMETER: 1.2	5 ⁴⁴ Stainless Ste	el Steel OfVC C Teflon C Other:
INTAKE, DIAMETER: 1, 2	Stainless Sta	el Galv. Steel DPVC Difetion D Open rock
		S OF OTHER: CHIEVE 28/42 MOUD
TOTAL DEPTH AT INSTALLA	TION (from as): /3.5 ELEN	ATION: (NGVD)
		12 5
DEPTH TO (from datum):	STATIC WATER LEVEL:	BOTTOM OF WELL: 73.7
WELL CLEAN TO BOTTOM		WELL IN GOOD CONDITION?
VOLUME OF WATER:	IN WELL	TO BE PURGED
BLADDER PU		
METHOD:		
MATERIALS: PUMP/BAILER:		
	D PVC	D NYLON
		OTHER:
PUMPING RATE:	START TIME: STO	OP TIME: VOLUME PUMPED:
WAS WELL EVACUATED?	VES INO NI	IMBER OF WELL VOLUMES PURGED:
TIME SERIES DATA:	PRE- PURGE PRE-SAN	APLE POST SAMPLE
TEMPERATURE		
SPEC. COND.		
PURGING FOUIPMENT		
SAMPLING DAIA:	tet-10 TIME. 15:42	•
METHOD: BLADDER PU	MP PERISTALTIC PUMP BAIL	
MATERIALS: FUMPIBAILER:	STAINLESS STEEL	TUBINGTROPE: DPOLYPROPYLENE
e	OTHER: Type	OTHER:
SAMPLING EQUIPMENT:	DEDICATED D PREPARE	D OFF-SITE FIELD CLEANED
METALS SAMPLE FIELD FILT	ERED? Q YES Q NO	METHOD:
		Saun CONTAINS IMMISCIBLE LIQUID
FIELD DETERMINATIONS:	PH: 7.2 METER MODEL:	METER SERIAL NO .:
TEMP: 15.5" SPECIF. COND	0.598 . Th METER MODEL:	METER SERIAL NO .:
LABORATORY ANALYSIS:	Till Gende	
NO OF CONTAINED		
REMARKS.	In Sile Sand	DUPLICATE I.D.
Sice.n: 7.5 € 1	3.5 ft below Grade	
entify that this sample was colle	ected and handled in accorda	nce with applicable regulatory and
roject protocols.		Detail
Signature:		Date:

		GROUNDWATER SAMPLING
ECKENFELDER	Nashville, Tennessee	FIELD DATA SHEET
INC	Mahwah, New Jersey	
inc.	Mail wall, Hew Verbey	HERCULES INCORPORATED CIBA-GEIGT PLANT SIT
PERSONNEL: RID		GLENS FALLS, NEW YORK
IOR NUMBER: 9427		DATE 7-12-94 TIME 15'00
WEATHER CONDITIONS: ~ 2	5°F anthrough	
WEATHER CONDITIONS	- , Most grand	
WELL DATA:	WELL NUMBER: IG-ID	WELL DESIGNATION:
CASING, DIAMETER: 1,25	Stainless Ste	el 🛛 steel 🖾 FVC 🖾 Teffon 🖾 Other:
DATUM		BE DI Gaiv. Steel DE PVC Di Tetion Di Open rock
DATUM ELEVATION:	(NGVD) GROUND SURFA	CE ELEVATION: 281.69 (NGVD)
TOTAL DEPTH AT INSTALLATION	(from gs): 10.5' ELEV	ATION:
DEPTH TO them delivery	100	105
	STATIC WATER LEVEL:	
WELL CLEAN TO BOTTOM?	BY YES Q NO	WELL IN GOOD CONDITION? BYES
VOLUME OF WATER:	IN WELL	TO BE PURGED
METHOD:		
MATERIALS: PUMP/BAILER:	3 STAINLESS STEEL	
] PVC	D NYLON
C	OTHER:	OTHER:
PUMPING RATE:	START TIME: STO	OP TIME: VOLUME PUMPED:
WAS WELL EVACUATED?	VES INO NU	IMBER OF WELL VOLUMES PURGED:
TIME SERIES DATA:	PRE- PURGE PRE-SAM	IPLE POST SAMPLE
TEMPERATURE		
PH SPEC COND		
PURGING FOUIPMENT		
SAMPLING DATA:	THE IT OF WEE	
METHOD		
METHOD. C BLADDER FUMP	- FERISIALIIC FOMP CE BAILE	
MATERIALS SUMPLANTER	TEFLON U PVC	
WATERIALS. (PUBP/BAILER:	STAINLESS STEEL	O OTHER
	DEDICATED D PREPARED	OFF-SITE RELD CLEANED
METALS SAMPLE FIELD ENTERED	2 VES D NO	METHOD
APPEARANCE: CLEAN	- COLOR: 4	
TEMP 20.5% SPECIE COND. 0.	DH: 0. 7 METER MODEL:	METER SERIAL NO.:
LABORATORY ANALYSIS:	Il lyan, de	
NO. OF CONTAINERS: 3	FIELD BLANK I.D TRIP B	LANK I.D. DUPLICATE I.D.
REMARKS:	In Situ Scople.	
5-000 457	10516-1-15	
Screen 4,5 7	10.5' be law G5	ace with applicable regulatory and
Screen 4,5 7 entify that this sample was collected	d and handled in accordar	nce with applicable regulatory and

APPENDIX E

GROUNDWATER QUALITY DATA SUMMARY

I

ŝ

1

FIELD PARAMETERS

1

1

Ų

U

1

f

l

Sample Location	Date	Temperature (°C)	рН	Conductivity (mS/cm) (a)
MW-OB17	7/14/94	17.8	7.1	0.738
MW-OB18	7/14/94	15.2	7.4	1.692
MW-OB19	7/14/94	15.6	7.4	1.373
P-1	7/8/94	21.5	7.1	0.430
P-3	7/8/94	16.8	7.3	1.310
P-6	7/13/94	NM	NM	NM
P-7	7/8/94	26.6	6.9	0.800
P-8	7/8/94	28.6	8.0	0.540
P-10	7/14/94	NM	6.9	NM
P-11	7/13/94	19.8	7.7	0.682
P-12	7/13/94	20.7	9.1	0.805
P-14	7/13/94	19.5	7.2	0.667
IG-1	7/12/94	NM	NM	NM
IG-2	7/12/94	NM	NM	NM
IG-3	7/12/94	NM	NM	NM
IG-4	7/12/94	NM	NM	NM
IG-7	7/12/94	NM	NM	NM
IG-8	7/12/94	NM	7.1	NM
IG-9	7/12/94	15.5	7.2	0.598
IG-10	7/12/94	20.5	6.9	0.363
Feeder Canal	7/12/94	25.6	NM	0.089

FIELD PARAMETERS GROUNDWATER AND SURFACE WATER

(a) mS/cm indicates millisiemens per centimeter

(b) NM indicates parameter was not measured

SUMMARY OF TOTAL CYANIDE ANALYSES

1

Ē

APPENDIX F

Potentiometric Surface Maps from "RFA Sampling Visit, Pretreatment Plant CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER Engineering P.C., July 1992)

and

"Groundwater Addendum to RFA Report for Pretreatment Plant SWMU, CIBA-GEIGY Site, Glens Falls, New York" (ECKENFELDER Engineering P.C., September 1993)

Sample	Total Cyanide		
Location	(ug/L)		
IG-1	86		
IG-2	103		
IG-3	74		
IG-4	147		
IG-7	121		
IG-8	29		
IG-9	195		
IG-10	28		
MW-OB17	123		
MW-OB18	380		
MW-OB19	229		
P-1	624		
P-3	91		
P-6	5280		
P-7	417		
P-8	2230		
P-10	5700		
P-11	448		
P-12	531		
P-14	277		
DUP-070894	618		
DUP-071394	777		
EB-071294	10 U		
EB-071494	10 U		

.

TOTAL CYANIDE IN GROUNDWATER

U - analyzed for but not detected, number is the reporting limit

E

看

E

100 III III

e

€

