

Environment

Prepared for: Superfund Standby Program NYSDEC Albany, NY Prepared by: AECOM Latham, NY 60135839 November 2009 Revised: April 2011

Final Periodic Review Report Fort Edward Landfill Site 5-58-001 Work Assignment No. D004445-19

Environment

Prepared for: Superfund Standby Program NYSDEC Albany, NY Prepared by: AECOM Latham, NY 60135839 November 2009 Revised: April 2011

Final Periodic Review Report Fort Edward Landfill Site 5-58-001 Work Assignment No. D004445-19

Engineering Certification

I, Scott A. Underhill, certify that I am currently a NYS registered professional engineer and that this Periodic Review Report for the Ft. Edward Landfill Site (Site Number # 5-58-001) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Respectfully submitted,

AECOM Technical Services Northeast, Inc.

scott Underhill 4/25/2011

Scott Underhill Registered Professional Engineer

New York License No. 075332

Date

Contents

1.0	Execu	itive Summary	1
	1.1	Site History and Remedial Program	1
	1.2	Remedy Evaluation	1
2.0	Site O	verview	2-1
	2.1	Site Background	2-1
	2.2	Remedial History	2-1
3.0	Evalua	ate Remedy Performance, Effectiveness and Protectiveness	3-1
	3.1	IC/EC Certification Plan Report	3-1
		3.1.1 IC / EC Requirements and Compliance	
		3.1.2 IC/EC Certification Forms	
	3.2	Monitoring Plan Compliance Report	
		3.2.1 Confirm Compliance with Monitoring Plan3.2.2 Confirm that Performance Standards are Being Met	
	3.3	Operation and Maintenance Plan Compliance Report	
	0.0	3.3.1 O&M Plan Compliance Report	
		3.3.2 Evaluation of O&M Activities	
4.0	Costs		4-1
5.0	Concl	usions and Recommendations	5-1
	5.1	Conclusions	5-1
	5.2	Recommendations	5-1

List of Appendices

Appendix A IC/EC Certification Forms

Appendix B Air Stripper Effluent and CWTS Effluent Analytical Results:

List of Tables

Table 1	Groundwater Elevation Table (2000 - 2008)
Table 2	Groundwater Analytical Results (1995-2008)
Table 3	Influent Analytical Data (1998-2009)
Table 4	Effluent Analytical Data (1998-2009)

List of Figures

- Figure 1 Site Location Map
- Figure 2 Groundwater Monitoring Locations and Groundwater Flow
- Figure 3 VOC Exceedances by Well
- Figure 4 Metals Exceedances by Well METALS EXCEEDANCES BY WELL
- Figure 5 Influent Sampling Results (1998 2009)
- Figure 6 Effluent Sampling Results (1998 2009)
- Figure 7 Proposed Additional Monitoring Points

1.1 Site History and Remedial Program

The Fort Edward Landfill Inactive Hazardous Waste Site (Site) is located in the Town of Fort Edward, Washington County, New York (Figure 1). The Site is approximately 23 acres in size, and is a former mixed-waste landfill (Figure 2).

Volatile organic compounds (VOCs) (vinyl chloride, 1,2-dichloroethene, toluene, xylenes, benzene, and chlorobenzene) and metals (iron and manganese) are identified as the primary contaminants of concern (COC) for the Site.

The selected remedy consisted of a groundwater/leachate collection trench and three extraction wells for plume control, a holding tank, an air stripper, three constructed wetland treatment cells, an effluent "polishing" pond, and the implementation of site controls, including fencing and groundwater monitoring. Based on a review of the deed for the property, institutional controls are not currently present for the Site.

The air stripper was taken off-line in October 1998, after the NYSDEC determined that the constructed wetland treatment cells were providing sufficient VOC removal.

The remediation was conducted in conformance with *Draft DER-10: Technical Guidance for Site Investigation and Remediation* (NYSDEC, December 2002). Regular monitoring is conducted on the treatment system and includes daily remote system monitoring via computer link and monthly visits to collect influent and effluent VOC and metals samples. Groundwater sampling is performed every five quarters to monitor the effects of the remedy on the groundwater contamination. The last groundwater monitoring event occurred in October 2008; the next is scheduled to take place in the first quarter 2010.

1.2 Remedy Evaluation

The periodic review process is used for determining if a remedy is properly managed, as set forth in the Operation and Maintenance (O&M) Manual for the Site (URS, February 2000), and if it is protective of human health and the environment.

The overburden aquifer and landfill leachate is impacted with solvents and metals. Residences and businesses adjacent to the landfill have been provided with a municipal water supply eliminating the potential for the ingestion of COCs from impacted groundwater. The landfill cap eliminates the potential for air transport and direct contact exposures.

The treatment system at the Site was started in September 1998 and was in operation until June 2004. The treatment system was restarted in August 2007 and is currently being operated at a limited capacity. COC concentrations in groundwater are measured in monitoring wells established for this purpose. One of three extraction wells (W-1) is online. The remaining extraction wells cannot (W-2 and W-3) be brought online until upgrades are made to the control system. Overall, the remedial measures in place at the Site continue to be effective in protecting human health.

Volatile organic compound (VOC) concentrations in the system influent are effectively treated by the system and are not detectable in the system effluent.

Since AECOM assumed O&M responsibilities at the Site in July of 2007, the treatment system has run without significant downtime. A spare pump and motor are maintained on the site, so if a pump needs cleaning or a motor fails, the spare unit is installed, minimizing downtime.

The O&M Manual (URS, February 2000) is the only element of a Site Management Plan (SMP) available for the Site. The manual requires groundwater sampling from monitoring wells (MW-1, MW-1A, MW-2, MW-2A, MW-6, MW-6A, MW-6B, MW-7, MW-8, and MW-NEW) on a "five-quarter" basis (i.e., once every 15 months). Groundwater sampling has been conducted continuously since 1998, with the exception of a period from July 2004 through July 2007, during which time no samples were collected. Monitoring well MW-5 has not been sampled since August 2004 due to a damaged riser. There are not sufficient sampling locations downgradient of the Site to effectively delineate the full extent of the groundwater impacts or to ensure that the leachate collection and treatment system is capturing the entire plume. Full understanding of the environmental risks cannot be determined without being able to delineate the extent of the groundwater contamination.

Total annual costs for operation of the treatment system and completion of all required monitoring are approximately \$91,500 based on costs incurred from June 2007 through September 2009.

An annual, field oversight PRR is recommended for this site because the remedy includes a treatment system with an O&M Manual as a component of the SMP.

2.0 Site Overview

2.1 Site Background

The Site is a mixed-waste landfill located in the Town of Fort Edward, New York (see Figure 1). The Site is roughly 23 acres and is bounded by the Glens Falls Feeder Canal to the northeast, beyond which is the Kingsbury Landfill; by a wooded area, private residences and commercial businesses (Burgoyne Avenue) to the northwest; by Leavy Hollow Lane and private residences to the west and southwest; and by farm fields to the south and east.

The geology underlying the Site consists of variable thickness of glacially deposited soil underlain by black shale bedrock. The glacial soil consists of delta sands and interbedded sand-clay lenses. The deltaic sediments overlay lacustrine clay and glacial till. On site monitoring wells are screened in the shallow delta sands (MW-1, MW-2, MW-5, MW-6, MW-7, and MW-8), the interbedded san and clay (MW-2A and MW-6A), and the deeper lacustrine clays (MW-1A and MW-6B). The extraction wells are screened at the landfill waste/delta sand interface.

The landfill contains non-hazardous municipal waste and hazardous industrial waste, including polychlorinated biphenyl (PCB)-containing electrical components and solvents. The landfill requires continued site management including operation, maintenance and monitoring (OM&M) of the active leachate collection and treatment system, which has been in operation since late 1998 (refer to Figure 2).

This Periodic Review Report (PRR) has been prepared to evaluate the overall effectiveness of the remedies chosen, and their implementation at the Site. The NYSDEC has determined that the Fort Edward Landfill Site, ID No. 5-58-001, is a Class 2 Site, meaning that the disposal of hazardous waste has been confirmed and the presence of such hazardous waste or its components or breakdown products represent a significant threat to the environment or to public health.

2.2 Remedial History

The Fort Edward Landfill was used for the disposal of approximately 70% municipal waste and approximately 30 percent PCB-containing scrap capacitor waste from General Electric, Inc., as well as solvents, from 1969 to 1982. Following a rise in public concern regarding the use of PCBs in the late 1970s, investigation began on the Fort Edward Landfill Site among others, and the Site was placed on the New York State Registry of Inactive Hazardous Waste Sites (5-58-001).

In 1984, the NYSDEC approved plans and specifications for a containment remedy for the landfill, but allowed the Town of Fort Edward to receive non-hazardous municipal waste until a waste management system was implemented. The landfill was closed in 1991, and a temporary soil cap was installed over the waste materials between 1990 and 1993.

The original on-site leachate collection and treatment system, which discharges treated water to the Glens Falls Feeder Canal to the northeast of the Site, consisted of:

- A groundwater/leachate collection trench and three extraction wells for plume control;
- An air stripper for treatment of VOCs;
- A holding tank;
- Three constructed wetland treatment cells consisting of phragmites plants;
- An effluent collection "polishing" pond; and
- The implementation of site controls, including fencing and groundwater monitoring.

The landfill was covered with a multi-layer cap in 1997 and 1998. The leachate collection and treatment system was designed by URS beginning in 1995, and construction began in July 1997. The remedial system began operating in September 1998. In October 1998, the air stripper was taken offline since the VOCs were sufficiently being removed by the constructed wetland treatment system. The O&M of the treatment system and groundwater monitoring responsibilities were assigned to AECOM on June 19, 2007. O&M responsibilities were then transferred from AECOM to Aztech Technologies, Inc. (Aztech) on May 28, 2009.

Monitoring, maintenance and reporting of the system's performance for compliance with permit requirements and its efficiency of operation have been conducted according to the frequency indicated in Section 3.2.1.

3.0 Evaluate Remedy Performance, Effectiveness and Protectiveness

3.1 IC/EC Certification Plan Report

The Institutional and Engineering Controls Certification Form generated by the NYSDEC indicates that the following controls are applicable to the site.

	Deficienci	ies Observed
Institutional Controls	Yes	No
Decision Document	▼*	
Ground Water Use Restriction		
Land Use Restriction		
Soil Management Plan	▼*	
Surface Water Use Restriction		
Engineering Controls		·
Cover System		
Fencing/Access Control		A
Groundwater Containment	▼**	
Leachate Collection		A
Point-of-Entry Water Treatment		
Pump & Treat	▼**	
Subsurface Barriers		

* Does not exist for this Site.

**System is not operating at full capacity.

Neither a SMP nor a Record of Decision (ROD) exists for the Fort Edward Landfill; however, an O&M Manual for the Site is available (URS, February 2000). A review of the O&M manual and *Draft DER-10: Technical Guidance for Site Investigation and Remediation* (NYSDEC, December 2002) suggest the following remedial goals should be applied to the Fort Edward Landfill Site:

- Prevent ingestion of groundwater outside of the landfill boundaries with contaminant levels exceeding drinking water standards;
- Prevent contact with or inhalation of volatiles from contaminated groundwater;
- · Prevent the discharge of contaminants to surface water; and
- Maintenance and compliance of engineering and institutional controls.

3-1

3.1.1 IC / EC Requirements and Compliance

An inspection of the ICs/ECs currently present at the Site was conducted on October 9, 2009. During the inspection, several deficiencies were observed. The deficiencies include:

Prevent ingestion of groundwater outside of the landfill boundaries with contaminant levels exceeding drinking water standards

Residential and commercial properties adjacent to the landfill have been connected to the municipal water supply thereby preventing the ingestion of impacted groundwater from private wells immediately adjacent to the Site. However the downgradient extent of the impacted groundwater plume is unknown.

The sentinel monitoring network established for monitoring the performance of the leachate collection system is inadequate. No monitoring wells are in place downgradient of MW-5 which has historically had the highest concentrations of COCs of all monitoring wells at the Site. This problem has been designated as severe because without an adequate monitoring network it is not possible to evaluate the effectiveness of the remedy.

Downgradient monitoring well MW-5 is in a state of disrepair. This well is a sentinel well for monitoring the effectiveness of the groundwater collection system. Elevated COCs were noted in the last groundwater samples collected from this monitoring well. This problem is categorized as moderate.

Figure 7 includes a highlighted area of concern to the southeast of the landfill where impacted groundwater may be impacting off site groundwater and surface water.

Prevent the discharge of contaminants to surface water

A pond adjacent to MW-5 may be impacted by groundwater contamination. This pond appears to drain into the canal and may be a transport mechanism for groundwater impacts to the canal. MW-5 is screened at a very shallow depth and high concentrations of VOCs have been detected in samples from this well. Additionally, the PVC pipe cleanout at the eastern leg of the groundwater collection trench was found to be broken, resulting in overflow of water and iron bacteria across the ground into an adjacent wetland area. These issues are categorized as moderate, (as it has the potential for human exposure to impacted surface water) and to cause environmental damage to the adjacent wetlands.

3.1.2 IC/EC Certification Forms

An Institutional and Engineering Conditions Certification Form is provided in Appendix A.

3.2 Monitoring Plan Compliance Report

3.2.1 Confirm Compliance with Monitoring Plan

Activity	Required Frequ	iency (X)	Compliance Dates
	Monthly	Five-Quarter	
Influent/Effluent Sampling	Х		August 2007-2009
Water Level Gauging		Х	August 2007-2009
Groundwater Sampling		Х	August 2007-2009

3.2.2 Confirm that Performance Standards are Being Met

Groundwater Elevations

Water levels were measured at the ten sampled monitoring wells periodically between 2000 and 2009 (Table 1). Measuring-point elevations were obtained from the Final Engineering Report (URS, 1995). Depth-to-water measurements were converted to water table elevations and contoured as shown in Figure 2. The wells selected for contouring were those determined to be screened in the upper delta sand unit underlying the landfill. Wells screened at deeper intervals were not utilized for contouring. The overall direction of groundwater flow beneath the landfill is predominantly to the east.

Groundwater Analytical

Historically, groundwater at the Site has been contaminated with vinyl chloride, total 1,2dichloroethene, toluene, benzene, chlorobenzene, xylenes, and typical landfill-associated iron and manganese. Polychlorinated biphenyls (PCBs) have not been detected in groundwater samples collected from monitoring wells, except in MW-6 during two sampling events.

The last groundwater monitoring event for the Site took place in October 2008. A site plan displaying the VOC exceedances in wells from the event is presented as Figure 3. Although monitoring well MW-5 was last sampled in August 2004, results from that sampling event have been included in the figure for comparison purposes.

In October 2008, VOC concentrations in the ten sampled monitoring wells ranged from below reporting limits (<10 micrograms per liter [µg/L]) in most wells, to 23 µg/L of chlorobenzene in MW-6 (refer to Table 2). Samples from only two wells, MW-6 and MW-6A, showed detectable concentrations of VOCs; these wells are located on the northeast (downgradient) side of the landfill. However, MW-5, a downgradient monitoring well which has yielded highly impacted samples in the past, has not been sampled in several years.

Since 2004, chlorobenzene is the only VOC that has been consistently present at concentrations exceeding the New York State Ambient Water Quality Standards (AWQS). Samples from MW-6 have exceeded the AWQS for chlorobenzene from 1995 through October 2008. Concentrations of all other VOCs in MW-6 decreased to non-detectable levels between May 1995 and July 2007. Chlorobenzene concentrations in MW-6 have varied between 17 μ g/L and 55 μ g/L between 1995-2008 with no apparent trend.

MW-5 was last sampled in August 2004, due to damage to the well's solid riser. Historical data indicates that concentrations of total VOCs reached an all-time high in October 2000, followed by a slow decline in 2003 and 2004. No 2001 or 2002 sampling data is available for MW-5. August 2004 exceedances of the AWQS included vinyl chloride (2,100 μ g/L) and 1,2-dichloroethene (2,600 μ g/L). Additional VOCs that slightly exceeded the AWQS were 1,1-dichloroethene, benzene, ethylbenzene, toluene and xylenes.

Analytical results from MW-6 indicated detectable concentrations of PCBs in 2004 and 2008 that exceeded the AWQS.

During the October 2008 sampling event, all monitoring wells, with the exception of upgradient well MW-8, exceeded the AWQS for several individual metals (Table 2). MW-6, MW-6A and MW-6B contained the most individual metals. Mercury was the only metal in the 23-metal CLP scan that was not detected. The most commonly exceeded AWQS was for iron (in eight of ten sampled wells), followed by sodium (seven wells) and manganese (five wells). Concentrations of arsenic, cadmium, chromium, lead, iron and nickel were significantly lower in most wells than in the July 2007 groundwater samples. **Figure 5** displays the metals results for each well sampled in October 2008. Data from the August 2004 sampling of MW-5 is also included in the figure.

Influent and Effluent

The limitations for the treatment system effluent discharged to the feeder canal are as follows:

Analyte	Concentration (µg/L, Daily Maximum)*
Instantaneous pH (Range)	6.0 - 9.0 Standard Units
Total Dissolved Solids	500,000
Total Suspended Solids	50,000
Arsenic	150
Barium	3,500 (Daily Average)
Cadmium	1
Chromium (Total)	210
Cobalt	5
Copper	24
Iron	300
Lead	3.2
Mercury	0.8
Nickel	9.6
Vanadium	14
Zinc	170
Vinyl Chloride	50
Chloroethane	20

Analyte	Concentration (µg/L, Daily Maximum)*
Methylene Chloride	50
1,1-Dichloroethane	30
1,2-Dichloroethene (Total)	30
Chloroform	150
Bromodichloromethane	30
Benzene	10
Toluene	10
Chlorobenzene	10
Ethylbenzene	10
Xylenes, Total	10
Phenols, Total Phenolics	8 (Daily Average)
Aroclor 1016 (PCB)	ND (0.065)
Aroclor 1221 (PCB)	ND (0.065)
Aroclor 1242 (PCB)	ND (0.065)

* Unless otherwise indicated

Monthly system influent and effluent monitoring by AECOM began in September 2007 (refer to Tables 3 and 4, respectively). Since that time, the reported VOC concentrations in effluent have not exceeded the permit limitations established for the system. Exceedances of the permit limitation for iron have taken place on numerous occasions, the most recent of which was in June 2009 (see Table 4). Iron is often present in Site groundwater above the AWQS as a natural condition of the site. Due to the frequency of flooding at the effluent discharge point to the Glens Falls Feeder Canal, samples are often collected at an overflow location, at which water has received a lesser degree of treatment than water exiting the effluent polishing pond and entering the Feeder Canal. Therefore, not all of the iron exceedances are representative of the actual concentrations being discharged to the Glens Falls Feeder Canal.

Since 2007, vinyl chloride concentrations have consisted of 37% to 85% of the total VOCs in the treatment system influent samples (Figure 4). Concentrations of vinyl chloride in the influent have ranged from non-detect in late 2007 to 780 μ g/L in May 2008. Vinyl chloride has been nondetect in treatment system effluent samples.

Analysis of VOC concentrations in the treatment system influent since 1998 indicates no significant increase or decrease over time (see Table 3). The variability of reported VOCs in the influent may be related to the proportions of groundwater drawn from the collection trench and the extraction wells prior to treatment.

Following start-up of the remediation system in September 1998 and through February 1999, samples were regularly collected from the air stripper effluent and/or from effluent from each of the three constructed wetland treatment cells, presumably for evaluation of the effectiveness of each of the treatment processes at the Site. These results are presented in Appendix B.

3.3 Operation and Maintenance Plan Compliance Report

The current O&M program involves operation and maintenance of the groundwater treatment system, specifically:

- Remote system monitoring via computer link;
- Performing system maintenance; and
- Collection of influent and effluent VOC and metals samples.

Activity	Required F	requency (X)	Compliance Dates
	Daily	Monthly	Quarterly	
Remote System Monitoring	х			2007-2009
System Maintenance	As Necessa	ary		2007-2009
Influent and Effluent Sampling		Х		2007-2009

3.3.1 O&M Plan Compliance Report

3.3.2 Evaluation of O&M Activities

Evaluation of Treatment Units

AECOM began monthly performance monitoring of the treatment system influent and effluent in August 2007. Samples are analyzed for select VOCs by EPA method 8260 and select metals by EPA method 6010.

The influent and effluent of the treatment system are sampled monthly. Results of the influent and effluent sampling that was performed between September 1998 and June 2009 are presented in Figures 5 and 6, respectively. VOCs have not been detected in the effluent since June 2003. No data was collected between June 2004 and August 2007, presumably because the leachate collection and treatment system was not in operation.

In 2009, various individual metals, including barium, lead, mercury and zinc, among others, were detected during each sampling event. However, iron is the only parameter that has exceeded its effluent limitation. Iron concentrations have been detected at levels up to 50 times greater than the limitation of 300 μ g/L. Iron levels have fluctuated greatly over the life of the treatment system; this apparent fluctuation is due in part to the variability of the sampling location. The outfall where the effluent discharges to the Glens Falls Feeder Canal is often submerged due to high water in the canal. When this occurs, the effluent sample is collected from a point between the constructed wetland treatment cells and the effluent polishing pond.

The polishing pond appears to remove the majority of the metals in the water; therefore, analytical data for effluent samples collected before the water reaches the polishing pond are not representative of concentrations actually being discharged into the Glens Falls Feeder Canal.

Vinyl chloride, chlorobenzene, benzene and xylenes have consistently been detected in the treatment system influent during 2009. Since AECOM begin sampling in 2007, the concentration of total VOCs in the influent has generally decreased. However, only one extraction well has been operated during this period. If the other extraction wells are brought on-line there would likely be a spike in influent VOC concentrations. The overall decline in the influent has been marked with fluctuating VOC concentrations which reached a peak in January 2008. The variability of reported VOCs in the influent may be related to the proportions of groundwater drawn from the collection trench and the extraction wells prior to treatment. Total phenols have also occasionally been detected in the effluent; the highest concentration was 0.51 milligrams per liter (mg/L) in March 2009.

The extraction well is subject to drawdown and recovery periods, resulting in intermittent contributions to the influent stream. Flow meters on the influent pumps and in the pretreatment building are not currently operational; therefore, a correlation between influent flow rates and concentrations cannot be made. Moreover, samples have not been drawn from individual influent streams for chemical analysis.

Site Maintenance

Since AECOM assumed O&M responsibilities at the Site in July of 2007, the treatment system has run without significant down time. However, the system has not operated at full capacity for several years. Only one of three extraction wells, W-1, was online during the period July 2007 through May 2010. In June 2010, W-1 was damaged beyond repair when the O&M contractor attempted to pull the submersible pump. Consequently, no extraction wells were online from June 2, 2010, until at least February 3, 2011, the last date on which AECOM remotely monitored the treatment system.Pumping from the remaining two extraction wells, W-2 and W-3, cannot be resumed until upgrades are made to the control system. Aztech began performing system O&M and influent/effluent sampling activities in May 2009. Routine maintenance is conducted as necessary. A detailed discussion of all system maintenance activities since 2007 have been provided to the NYSDEC in AECOM's Quarterly Operation, Maintenance and Monitoring Reports (2007-2009) and will not be fully reiterated herein. Notable repairs and/or enhancements to treatment system since 2007 included:

- July 2007 Vacuumed materials from the bottoms of the three extraction well manholes. Started all three submersible pumps – they operated in "hand" mode, but not on "auto" because of communication faults in the control panels at each well. Replaced broken 2" PVC check valve on discharge pump P-201 in treatment building. Installed new pressure gauges on four discharge pumps (P-201 – P-204). None of the pumps work. Disassembled and cleaned the nearly-plugged piping of P-203. Installed pump in effluent collection sump W-5; works in "hand" mode, but not "auto" mode. Attached new combination padlock to site gate and combination lockbox to treatment building.
- August 2007 Disassembled and cleaned discharge pump P-204. Installed spare clean, undersized impeller that was onsite. Installed a butterfly valve on the discharge side of the holding tank in the treatment building. Removed pump P-203 for offsite repair. Pulled and checked water level transducers for the three extraction wells and the two collection sumps (effluent and collection trench). Could not pull pump from W-1. Able to run pump in effluent collection sump in "auto" mode. Cleaned the contacts on the holding tank pressure transmitter, and restored the connection of the corroded wires which had prevented the

pressure transmitter from controlling the operation of the discharge pumps. Able to run the submersible pump in W-1 in "auto" mode.

- October 2007 Disassembled, cleaned, and reassembled one of the four holding tank discharge pumps (P-202), and put pump back online. Extraction well W-1 pump was put back online. Pulled, cleaned and re-installed submersible pumps in extraction wells W-2 and W-3.
- February 29, 2008 Installed a new Goulds 1¹/₂-inch pump in building sump.
- June 23, 2008 Backflushed the four holding tank discharge pumps. Installed new threephase motor on pump in W-4 manhole. Determined that the pump is not controlled by the (properly functioning) water-level sensor in W-4 manhole. Once again installed the floatcontrolled submersible pump in W-4; directed discharge to treatment plant.
- **December 5, 2008** High water alarm, holding tank overflowing. Three of four holding tank discharge pumps were clogged. Disassembled pumps, cleaned and drilled out impellers, reassembled and restarted. Completely opened force main valve, allowing for maximum flow into holding tank. Cleaned pumps can handle the improved flow.
- April 16, 2009 Installed a new 2-horsepower pump in the effluent collection sump. Disassembled and cleaned the 'T' bar that conveys water from the holding tank to the discharge pumps.
- **June 23, 2009** Aztech flushed holding tank discharge pumps and associated piping. Cleaned stripper and pulled *phragmites* runners from around treatment cells.
- July 7, 2009 Aztech arrived at Site to find the holding tank overflowing. Shut down the system, cleaned the piping, pumps and other equipment and backwashed the pipes to the treatment cells, and restarted the system.
- August 26, 2009 Pump 3 not working; turn off power at collection sump in landfill. Pumps 1, 2 and 4 continued working.
- August 27, 2009 Replace fuses on Pump 3 and restarted system restarted.

4.0 Costs

Since AECOM accepted responsibility for the O&M of the treatment system on June 19, 2007, and, including the time period since Aztech accepted O&M responsibilities on May 28, 2009, the system has run continuously.

Total annual costs for operation of the treatment system and completion of the required monitoring has been approximately \$91,500, based on yearly average costs incurred from June 2007 through September 2009. Major cost components are allocated as follows:

Plant Operations	COST
Labor & Travel	\$21,000
Subcontractors	\$2,500
Laboratory Fees	\$5,000
Utilities	\$6,500
Plant Maintenance	
Labor & Travel	\$34,000
Subcontractors	\$2,000
Equipment & Repairs	\$3,500
Groundwater Monitoring (per event)	
Labor & Travel	\$5,000
Laboratory Fees	\$3,000
Reporting	
Labor	\$9,000
TOTAL ANNUAL COSTS:	\$91,500

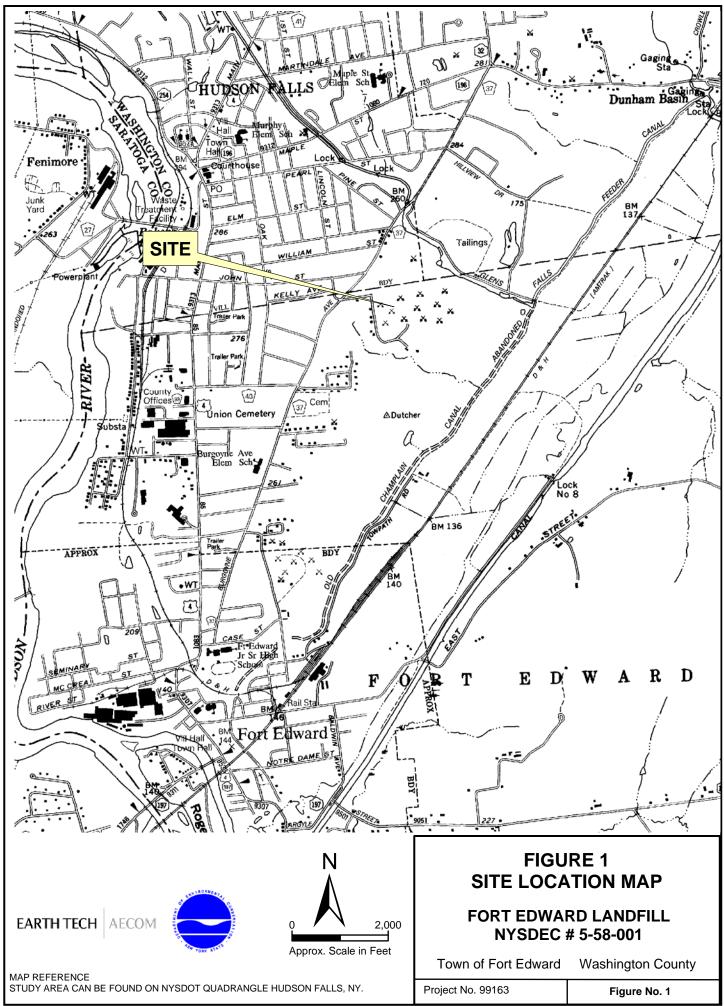
The periodic review process is used for determining if a remedy continues to be properly managed, as set forth in the O&M Manual, and if the remedy continues to be protective of human health and the environment. The remedial measures in place appear to be effective in protecting human health. Protectiveness of the environment cannot be determined due to data gaps in the monitoring program. Treatment system OM&M should continue until such time as the remedial action objectives have been achieved at the site.

The conclusions and recommendations are based on the October 9, 2009 site inspection, the document review, and site knowledge.

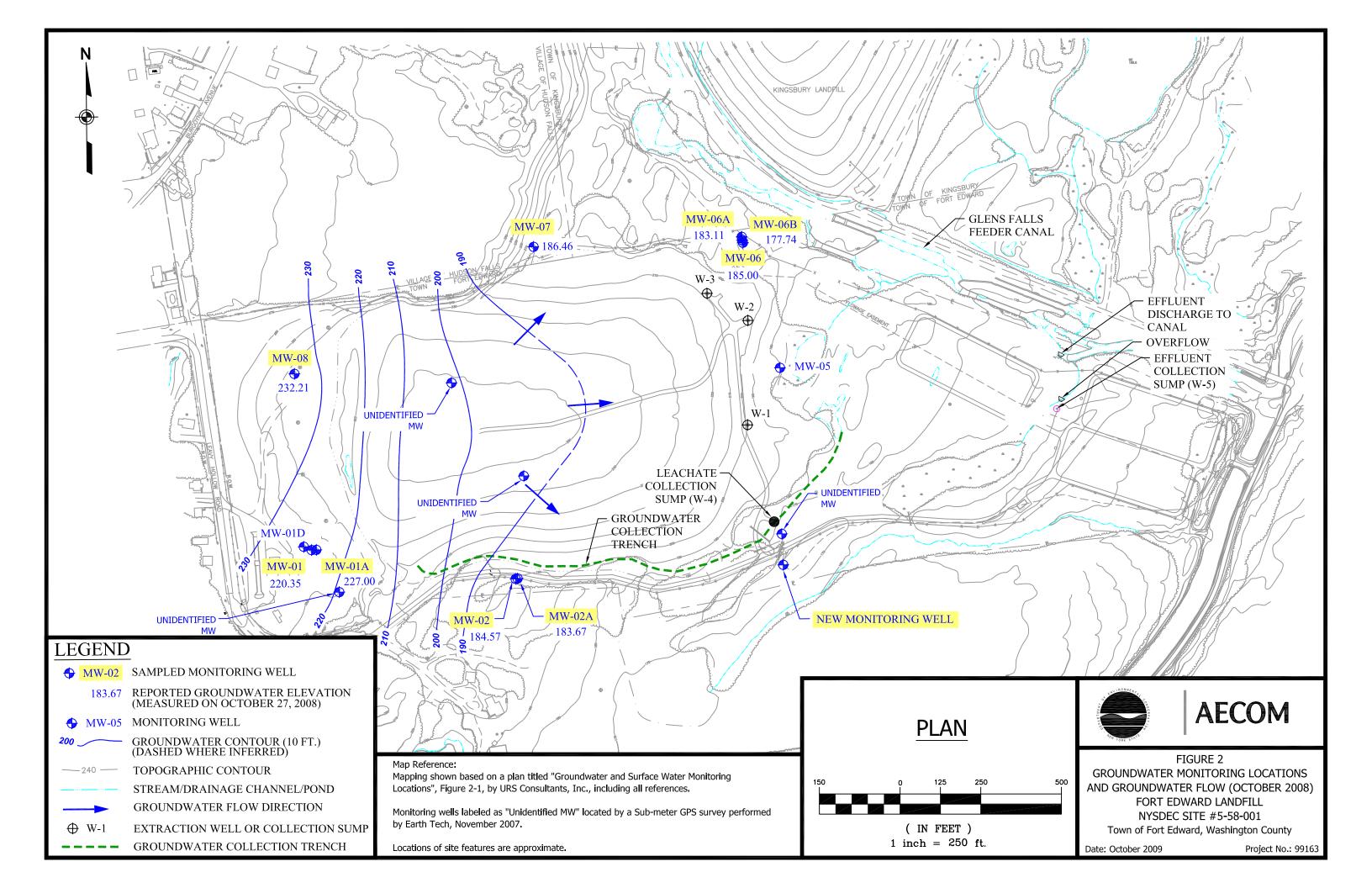
5.1 Conclusions

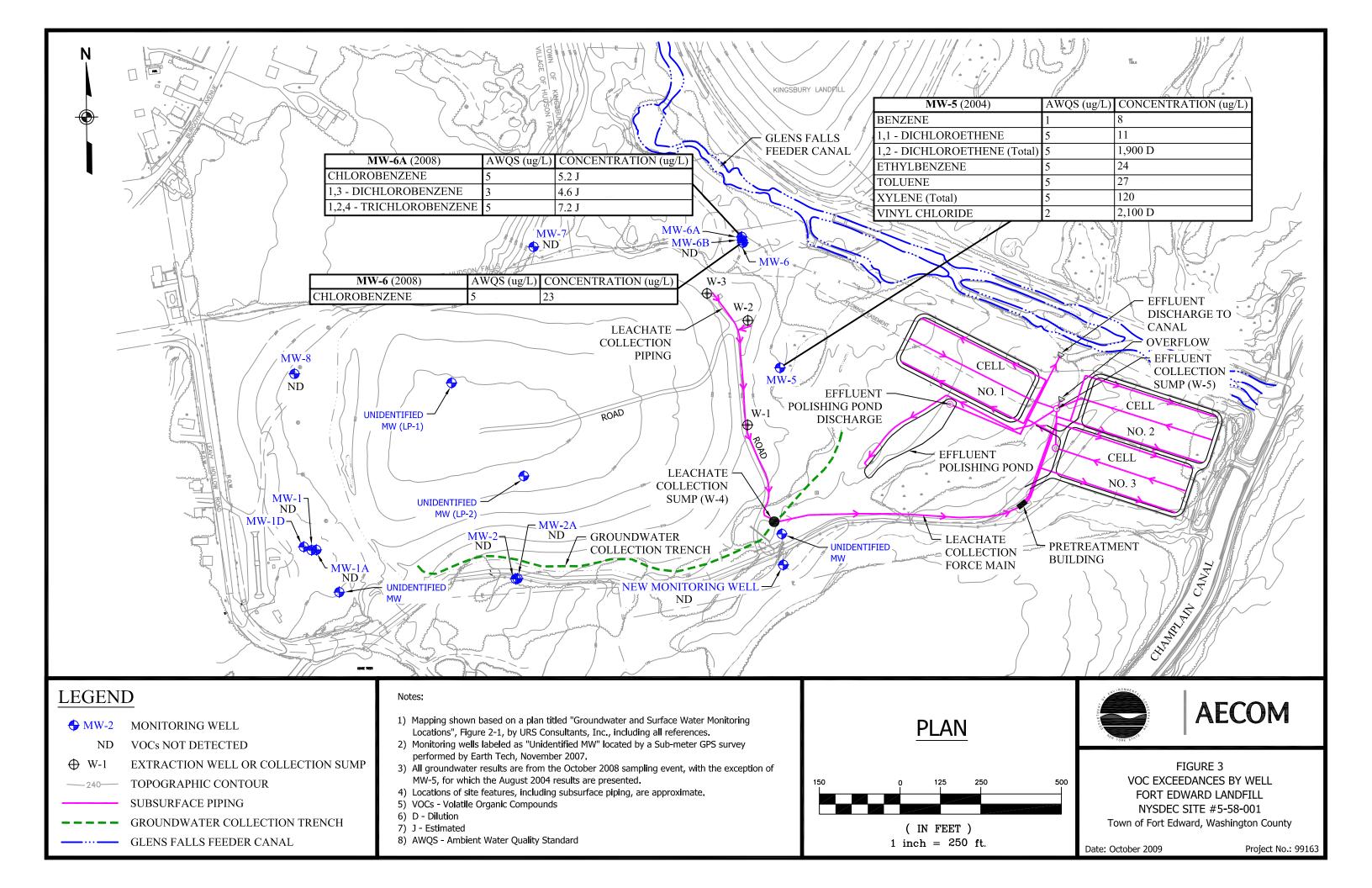
Maintenance and compliance of engineering and institutional controls which require attention include:

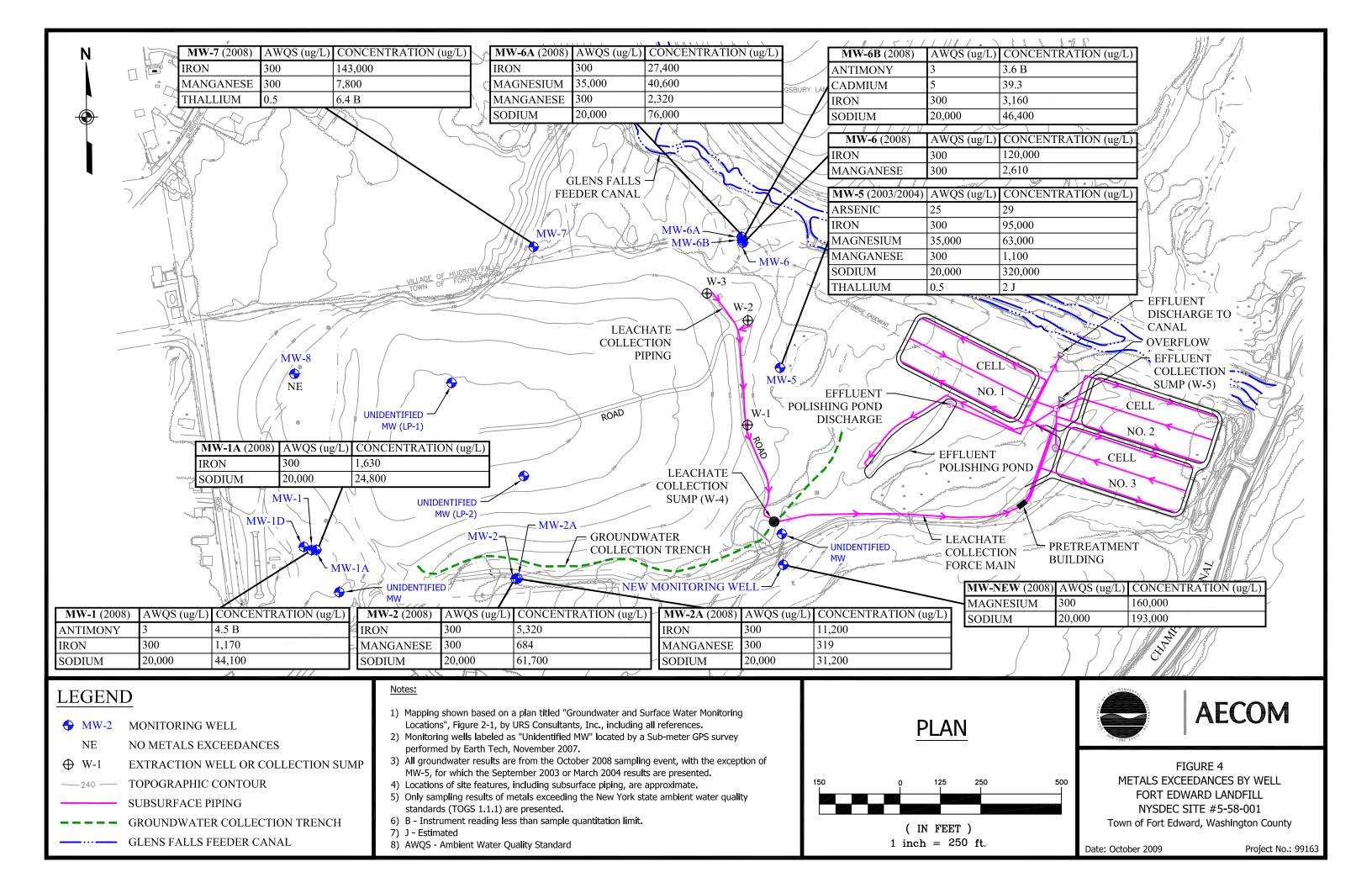
- The groundwater collection system is currently operating in a limited capacity because extraction wells W-2 and W-3 are not functioning. It is possible that impacted leachate from landfill could be impacting downgradient receptors. This problem is categorized as moderate, as it has the potential to cause environmental damage.
- The effluent polishing pond discharge structure requires repair.
- Evaluation of the iron bacteria problems at the Site, including repeated blockage of treatment system pipes, valves and pumps and exceedances of the effluent limitations for iron. This problem has been categorized as moderate. The buildup of iron bacteria in the treatment plant can result in the shutdown of the system.
- The landfill gas vents are in poor condition. Carbon drums for gas treatment were found to contain water preventing or restricting the flow of gasses.
- The system outfall at the feeder canal is often flooded when effluent samples are collected. Historically when the outfall flooded effluent samples are collected from piping prior to treatment in the polishing pond. This may have resulted in false positive metal levels in effluent samples.
- During the site visit the screens on many of the discharge pipes in the surface water collection system were found to be missing or broken. The screens are in place to prevent animals from entering the pipes.

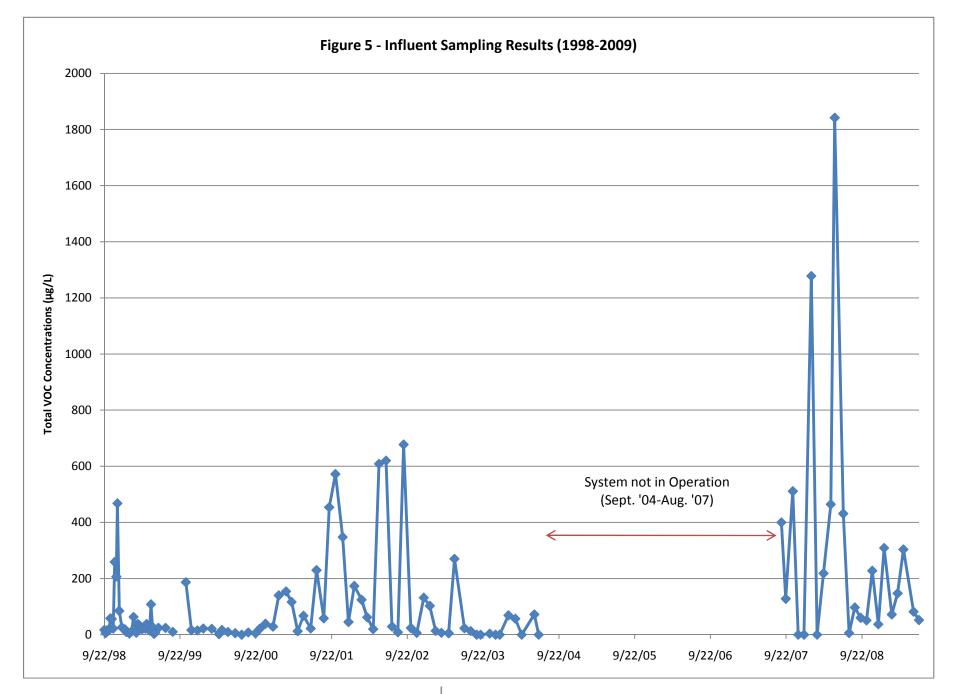

5.2 Recommendations

The following recommendations are made for the Fort Edward Landfill Site:

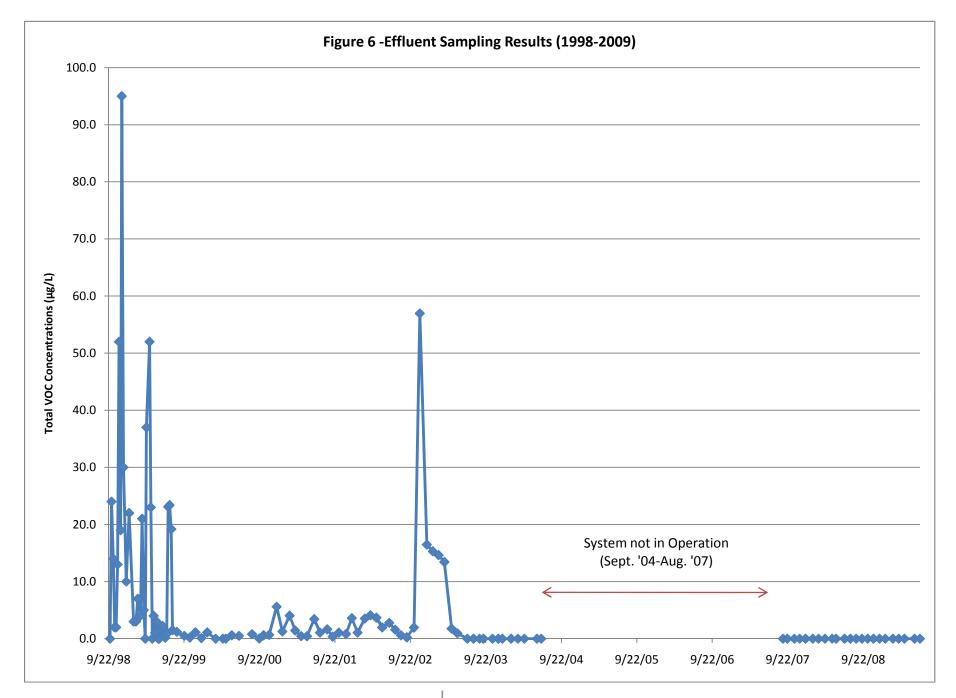

All extraction wells should be repaired and brought back online. Flow meters should be added to the wells and treatment system.

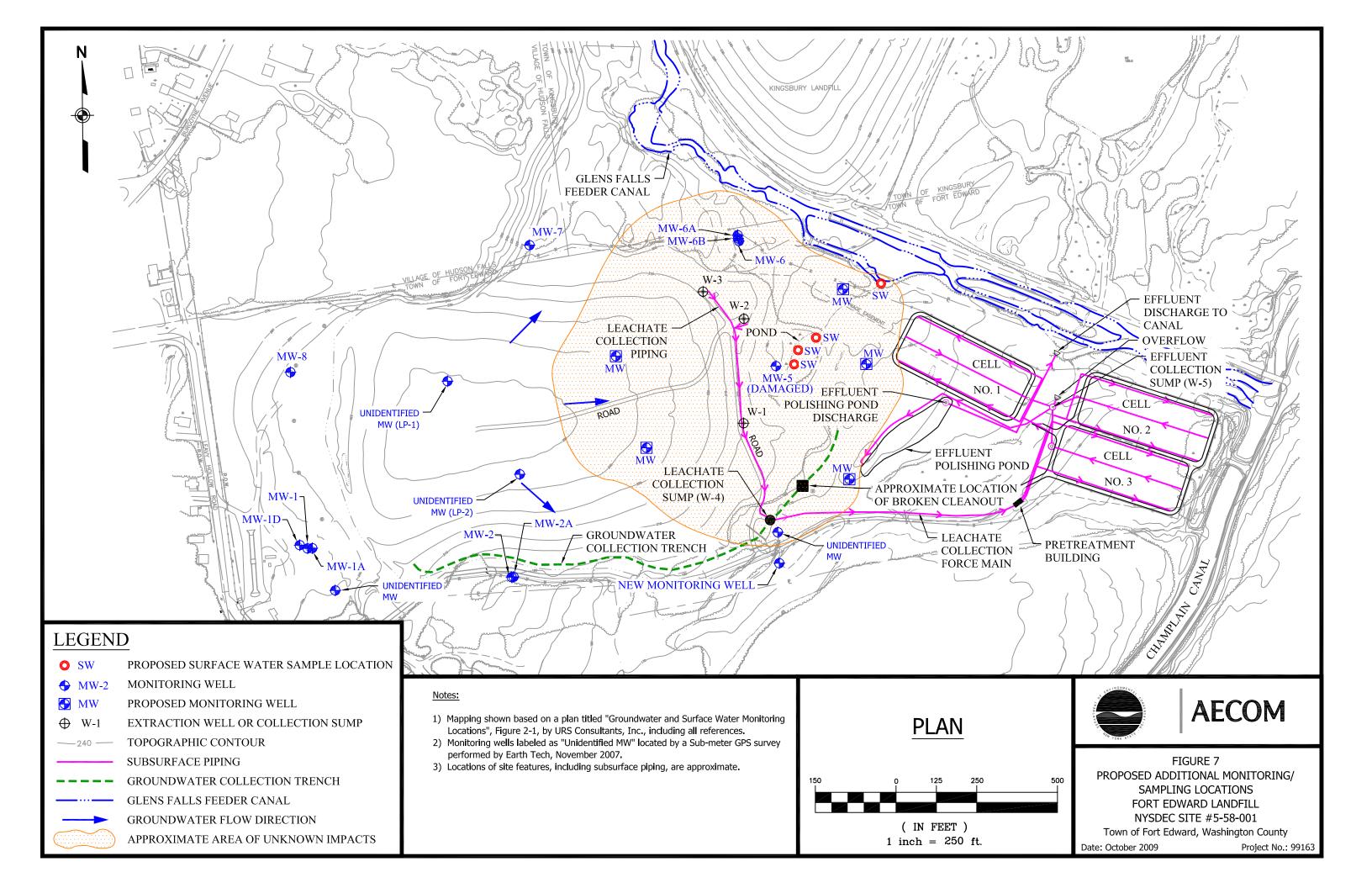

- Repair MW-5 (expected to be repaired by removing the protective casing, cutting the riser at ground level, sleeving on a new section of riser, and restoring the existing casing and concrete).
- The broken PVC cleanout should be repaired to prevent further release of water from the groundwater collection trench.
- Treatment of iron should be evaluated and implemented to reduce iron fouling bacteria in the system components.
- Screens should be placed on the discharge pipes from the surface water collection system.
- The landfill gas collection system should be repaired and monitored. Carbon adsorbers should be repaired if they are deemed necessary to treat the landfill gas. The fitting of turbine ventilators to the gas vents should be considered.
- Surface water samples should be collected from the canal and the pond area adjacent to MW-5. Potential sampling locations are presented on Figure 7.
- Evaluation of the existing site hydrogeologic model to confirm that the current system is capable of meeting established goals for the site.
- An effluent sampling port should be installed in the piping between the polishing pond and the feeder canal outfall or the outfall should be raised to prevent flooding.
- Installation of five additional monitoring wells (three 20-ft deep, 2-inch diameter wells downgradient of MW-05, and two 80-ft deep, 2-inch diameter monitoring wells within the limits of the landfill) and data collection, including sampling for the full list of the Site COC. The potential locations for these monitoring wells are presented on Figure 7.
- Completion of screening level calculations to evaluate the performance of the recovery well system and to calculate potential fate and transport of vinyl chloride in the wetland area between the landfill and the Glens Falls Feeder Canal.
- Evaluation of the constructed wetland treatment cells and the polishing pond to determine current/optimal performance. This would include sampling/analysis (VOCs, total/dissolved metals, other water quality parameters) for a mass balance and to determine system efficacy, and measurements and observations to confirm current system capacity (e.g., residence time, solids settling capacity, condition of biota).
- A SMP should be developed for the Site in accordance with NYSDEC guidance.


Figures



L:\WORK\99163\CADD\GIS\99163_SiteLoc.mxd





AECOM

AECOM

Tables

Table 1 Groundwater Elevation Table Fort Edward Landfill Town Of Fort Edward, New York Site #5-58-001

		Depth to	GW	Depth to	GW	Depth to	GW	Depth to	GW	Depth to	GW	Depth to
	Well	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Bottom
Well #	Elevation*	May 5-	6, 2000	October 1	0-11, 2000	September	[•] 9-10, 2003	July 11-	12, 2007	October 2	Dottom	
MW-1	258.87	40.44	218.43	38.19	220.68	38.95	219.92	37.31	221.56	38.52	220.35	48.6
MW-1A	257.51	41.4	216.11	40.2	217.31	40.25	217.26	38.92	218.59	30.51	227	65.07
MW-2	192.59	8.11	184.48	9.6	182.99	9.36	183.23	8.16	184.43	8.02	184.57	18.24
MW-2A	192.4	8.68	183.72	10.2	182.2	10.32	182.08	9.27	183.13	8.73	183.67	26.8
MW-5	183.48	8.13	175.35	8.09	175.39	8.05	175.43	-	-	-	-	-
MW-6	193.08	6.59	186.49	8.35	184.73	8.23	184.85	8.23	184.85	8.08	185	17.9
MW-6A	193.61	9.54	184.07	10.57	183.04	10.5	183.11	10.44	183.17	10.5	183.11	61.3
MW-6B	193.68	16.78	176.9	17.49	176.19	16.4	177.28	15	178.68	15.94	177.74	81.7
MW-7	203.43	18.03	185.4	16.51	186.92	17.69	185.74	15.8	187.63	16.97	186.46	27.5
MW-8	240.24	8.13	232.11	7.91	232.33	-	-	7.8	232.44	8.03	232.21	12.83
MW-NEW	-	5.83	-	8.42	-	7.91	-	7.93	-	7.04	-	22.13

* Elevation Data From URS 1995 Survey

Volatiles (µg/L)	NYSAWQS*	5/16/95	8/9/1995	E/E/4000			MW-1													MW-1A											
			0/9/1995	5/5/1999	10/21/99	05/03/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/12/07	10/27/08	5/17/95	8/9/95	5/5/99	10/21/99	5/2/00	10/11/00	5/8/02	09/09/03*	03/03/04*	8/18/04	07/12/07	10/27/08						
	50	5 J	ND	NA	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND												
Benzene	1	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Bromodichloromethane	50	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Chlorobenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Chloroethane	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Chloroform	7	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
1,1-Dichloroethene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
1,2 -Dichloroethene (Total)	5	ND	ND	ND	ND	ND	11	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND						
1, 3 -Dichlorobenzene	3	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
1, 4 -Dichlorobenzene	3	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Ethylbenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Methylene Chloride	5	ND	NA	2 JB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	4 JB	ND	ND													
Toluene	5	ND	NA	ND	ND	ND	7	9	1 J	ND	3 J	ND	ND	ND	NA	1 J	ND	ND													
Xylene (total)	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Vinyl Chloride	2	ND	ND	ND	ND	ND	8 J	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND						
1, 2, 4 -Trichlorobenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND													
Total VOCs		5	ND	ND	ND	ND	19	ND	ND	NA	2	ND	ND	7	11	1	ND	3	ND	ND	ND	NA	5	ND	ND						
			•	•				•																							
PCBs (µg/L)																															
Aroclor-1221	0.09	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND						
Aroclor-1242		NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND						
Metals (μg/L)	•																	•													
Aluminum	NS	32,100	8,590 J	47.7 B	140	750	99 B	200 B	NA	640	NA	8,350	169 B	815	548 J	951	1500	1,800	1,900	230	NA	300	NA	11,100	996						
Antimony	3	ŃD	ND	ND	ND	ND	ND	ND	NA	ND	NA	ŃD	4.5 B	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ŃD	ND						
Arsenic	25	8.4 J	3 B	ND	ND	ND	ND	ND	NA	1 J	ND	ND	2.4 B	11.1	10.3	8.7	ND	11	ND	ND	NA	ND	8.5	18.6	12.1						
Barium	1000	277	105 B	32.1 B	ND	ND	ND	ND	NA	10 J	26	86.2 B	26.4 B	20.1 B	19.7 B	20.5	ND	ND	ND	ND	NA	20 J	21.9	123 B	29.6 B						
Beryllium	3	1.4 B	0.56 B	ND	ND	ND	ND	ND	NA	ND	NA	0.60 B	0.056 B	0.09 B	0.1 B	ND	ND	ND	ND	ND	NA	ND	NA	0.58 B	0.11 B						
Cadmium	5	ND	NA	ND	ND	0.24 B	0.33 B	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.59 B												
Calcium	NS	75,200	74,200	41,800	39,000	43,000	43,000	56,000	NA	23,000	NA	43,600	53,200	14,500	19,300	12,300	16,000	31,000	62,000	12,000	NA	50,000	NA	32,300	22,400						
Chromium	50	30.9	9.5 B	2.3 B	ND	ND	ND	ND	NA	5 J	0.62	9.0 B	1.2 B	1.6 B	ND	3 B	ND	ND	ND	ND	NA	4 J	5.1	13.4	1.4						
Cobalt	NS	25.5 B	7.5 B	ND	ND	ND	ND	ND	NA	0.8 J	NA	7.6 B	1.5 B	ND	ND	ND	ND	ND	ND	ND	NA	1 J	NA	6.6 B	2.1 B						
Copper	200	35	16.9 B	25.6 B	ND	ND	ND	ND	NA	2 J	NA	9.0 B	13.1 B	3.7 B	2.7 B	24.8 B	ND	ND	ND	ND	NA	3 J	NA	14.1 B	11.6 B						
Cyanide	200	ND	NA	2 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA						
Iron	300	45,400	13,000	498	1,100	2,200	1,100	1,600	NA	1,100	NA	20,100	1,170	827	331	750	2,100	2,600	2,800	410	NA	1,100	NA	11,500	1,630						
Lead	25	10	2.8 B	ND	ND	ND	ND	ND	NA	0.7 J	ND	3.8	0.81 B	ND	ND	ND	ND	ND	4.4	ND	NA	0.4 J	ND	8.0	1.3 B						
Magnesium	35,000 (GV)	22,900	18,000	9,740	8,200	11,000	9,800	12,000	NA	1,800	NA	11,200	12,000	1,420 B	919 B	1,510	2,200	2700 B	3500 B	1400 B	NA	10,000	NA	6,340	2,580 B						
Manganese	300	798	256	54.3	61	74	130	50	NA	0.3 J	NA	516	50.5	18.5	8 B	21.4	76	91	230	13 B	NA	42	NA	267	123						
Nickel	100	31.6 B	11.5 B	ND	ND	ND	ND	ND	NA	2 J	NA	12.4 B	1.7 B	2 B	1.8 B	ND	ND	ND	ND	ND	NA	4 J	NA	14.2 B	3.5 B						
Potassium	NS	8,870	3,630 B	1,360	ND	ND	ND	ND	NA	780	NA	2,320 B	1,430 B	2,710 B	4,110 B	1250	ND	ND	ND	ND	NA	1200	NA	3,320 B	910 B						
Selenium	10	ND	NA	2.5	ND	10.3	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	11.2	ND												
Silver	50	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND												
Sodium	20,000	46,300 J	40,200	36,300	36,000	38,000	40,000	32,000	NA	26,000	NA	54,900	44,100	22,900 J	23,200	19,100	20,000	24,000	22,000	22,000	NA	48,000	NA	25,600	24,800						
Thallium	0.5 (GV)	ND	ND	3.3	ND	ND	ND	ND	NA	0.2 J	NA	3.7 B	ND	ND	ND	4.4	ND	ND	ND	ND	NA	0.9 J	NA	ND	ND						
Vanadium	ŃS	60	19.1 B	3.1	ND	ND	ND	ND	NA	0.9 J	NA	23.4 B	2.0 B	7 B	3.4 B	25.7	ND	ND	ND	ND	NA	0.6 J	NA	57.0	10.4 B						
Vanadium												56.7	63.2						15 B	ND					36.9						

Notes:

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

* New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

							M	W-2						MW-2A											
Volatiles (µg/L)	NYSAWQS*	05/11/95	08/08/95	05/05/99	10/21/99	05/03/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08	05/11/95	08/09/95	05/05/99	10/21/99	05/03/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08
Acetone	50	3	3	8	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	4	ND	ND	ND	ND	ND	NA	ND	ND	ND
Benzene	1	1	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND						
Bromodichloromethane	50	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Chlorobenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Chloroethane	5	4	3	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Chloroform	7	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
1,1-Dichloroethene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
1.2 -Dichloroethene (Total)	5	1 1	2	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1, 3 -Dichlorobenzene	3	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
1, 4 -Dichlorobenzene	3	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Ethylbenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Methylene Chloride	5	ND	ND	2	ND	ND	ND	ND	ND	NA	5 JB	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	NA	4 JB	ND	ND
Toluene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Xylene (total)	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Vinyl Chloride	2	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
1, 2, 4 -Trichlorobenzene	5	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND							
Total VOCs	-	9	8	10	ND	ND	ND	ND	ND	NA	5	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	NA	4	ND	ND
											-					, i i i i i i i i i i i i i i i i i i i							-		
PCBs (µg/L)		1																							
Aroclor-1221	0.09	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND
Aroclor-1242		ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	ND	ND
Metals (µg/L)																									
Aluminum	NS	565	862	329	320	370	ND	93 B	NA	74	NA	530	ND	116	76.1 B	264	430	1.000	310	550	NA	230	NA	4.810	26.9 B
Antimony	3	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND						
Arsenic	25	ND	NA	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND						
Barium	1000	61.3 B	81.6 B	74.7	ND	ND	ND	ND	NA	20 J	26.8	27.8 B	24.3 B	61.5 B	68.7 B	92.4	ND	ND	ND	ND	NA	80 J	78.3	117 B	73.2 B
Beryllium	3	0.09 B	0.11 B	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	0.25 B	ND
Cadmium	5	ND	NA	ND	ND	15.3	0.43 B	0.46 B	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.080 B						
Calcium	NS	194,000	227,000	103,000	120,000	78,000	79,000	76,000	NA	86,000	NA	63,100	81,900	52,600	63,400	61.200	67,000	58,000	52,000	52,000	NA	54,000	NA	42,800	42,600
Chromium	50	1.8 B	11.2	4.2	ND	ND	ND	ND	NA	0.6 J	ND	0.69 B	ND	ND	ND	3.1	ND	ND	ND	ND	NA	0.8 J	ND	6.2 B	ND
Cobalt	NS	15.4 B	13.8 B	8	ND	ND	ND	ND	NA	1 J	NA	2.3 B	0.59 B	1.4 B	ND	ND	ND	ND	ND	ND	NA	0.5 J	NA	3.1 B	ND
Copper	200	4.7 B	10.9 B	30.6	ND	71	ND	ND	NA	3 J	NA	618	24.2 B	2 B	5.1 B	23.9	ND	ND	ND	ND	NA	ND	NA	5.5 B	4.3 B
Cvanide	200	ND	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	1.270	8.030	7.620	2.900	15,000	1.100	5.800	NA	5.200	NA	9.860	5,320	4.620	4.890	4.380	8.600	13.000	7,500	9.300	NA	6.800	NA	15.200	11,200
Lead	25	ND	ND	6.3	ND	ND	ND	ND	NA	2 J	ND	1.3 B	ND	ND	ND	3	ND	ND	ND	ND	NA	ND	ND	2.6 B	ND
Magnesium	35,000 (GV)	62,300	71,400	31,800	31,000	25,000	20,000	19,000	NA	19,000	NA	11,300	14,700	16,900	21,500	22,300	24,000	24,000	20,000	19,000	NA	20,000	NA	17,400	15,900
Manganese	300	1,350	2,320	1,940	1,300	500	350	400	NA	130	NA	423	684	414	492	505	430	700	400	400	NA	310	NA	459	319
Nickel	100	11.8 B	18.2 B	9.2	ND	ND	ND	ND	NA	2 J	NA	5.4 B	1.7 B	1.9 B	1.8 B	ND	ND	ND	ND	ND	NA	0.5 J	NA	7.0 B	0.72 B
Potassium	NS	4.420 BJ	4.720 B	3.120	3.400	ND	ND	ND	NA	2.800	NA	2.420 B	2.510 B	1.310 BJ	1.790 B	2.090	2.400	ND	ND	ND	NA	2.400	NA	2.800 B	1,850 B
Selenium	10	ND	NA	ND	ND	12.4	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	11.8	ND						
Silver	50	1.8 B	ND	6.2	ND	ND	ND	ND	NA	ND	ND	6.1 B	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	2.1 B	ND
Sodium	20.000	76,100 B	106.000	37,700	51,000	28.000	28.000	29.000	NA	29.000	NA	60,100	61.700	18.700 J	27,000	23.000	26.000	28.000	27,000	27,000	NA	36.000	NA	28.900	31,200
Thallium	0.5 (GV)	ND	ND	4.8	ND	ND	ND	ND	NA	0.4 J	NA	4.3 B	ND	ND	ND	ND	ND	ND	ND	ND	NA	0.9 J	NA	ND	ND
Vanadium	NS	3.9 B	5.4 B	6.6	ND	20 B	ND	ND	NA	2 J	NA	20.5 B	5.8 B	1.3 B	1.2 B	ND	ND	ND	ND	ND	NA	0.7 J	NA	8.4 B	ND
Zinc	5,000 (GV)	18.6 BJ	24.7	15.5	ND	ND	ND	ND	NA	15	NA	103	26	4.4 BJ	13.2 BJ	23.8	10	ND	ND	ND	NA	ND	NA	36.3	18.9 B
Notes:	-, (-)																					=			

Notes:

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

* New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

					MW-5				MW-6										
Volatiles (µg/L)	NYSAWQS*	05/05/95	08/08/95	05/02/00	10/10/00	09/09/03*	03/03/04*	08/18/04	05/15/95	08/09/95	05/05/99	10/21/99	05/02/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	(
Acetone	50	ND	ND	64	ND	ND	NA	13	9 J	12	ND	ND	ND	ND	ND	ND	NA	ND	T
Benzene	1	ND	ND	8 J	16	10	NA	8	13	14	2	4	ND	4 J	6 J	3 J	NA	3 J	Γ
Bromodichloromethane	50	ND	ND	ND	ND	ND	NA	ND	NA	ND	T								
Chlorobenzene	5	ND	ND	4 J	ND	2 J	NA	2 J	24	29	24	34	36	52	54	34	NA	55	
Chloroethane	5	ND	ND	ND	ND	ND	NA	ND	ND	2	4	ND	ND	ND	ND	ND	NA	3 J	Τ
Chloroform	7	ND	ND	ND	ND	ND	NA	ND	NA	ND									
1,1-Dichloroethene	5	ND	ND	34	77	ND	NA	11	ND	NA	ND								
1,2 -Dichloroethene (Total)	5	3400	5000	19,063 D	25,000 ED	2,600 D	NA	1,900 D	ND	ND	ND	ND	ND	3 J	ND	ND	NA	ND	
1, 3 -Dichlorobenzene	3	ND	ND	ND	ND	ND	NA	ND	NA	ND									
1, 4 -Dichlorobenzene	3	ND	ND	ND	ND	ND	NA	ND	5	ND	3	3	2 J	3 J	ND	ND	NA	ND	
Ethylbenzene	5	47	48 J	29	27	45	NA	24	ND	NA	ND	1							
Methylene Chloride	5	ND	ND	ND	12	ND	NA	4 JB	ND	NA	2 BJ	T							
Toluene	5	54	ND	37	44	34	NA	27	3	ND	NA	ND	T						
Xylene (total)	5	140	190 J	95	95	161	NA	120	68	40	ND	ND	ND	ND	ND	ND	NA	ND	T
Vinyl Chloride	2	5,000	6,200	7,700 D	25,000 ED	8500 D	NA	2100 D	7	ND	NA	ND	T						
1, 2, 4 -Trichlorobenzene	5	ND	ND	ND	ND	ND	NA	ND	NA	ND									
Total VOCs		8,641	11,438	27,034	50,271	11,352	NA	4,209	129	97	33	41	38	62	60	37	NA	63	1
		Í																	
PCBs (µq/L)																			-
Aroclor-1221	0.09	ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	ND	Т
Aroclor-1242		ND	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	3.3	
Metals (µg/L)																			<u> </u>
Aluminum	NS	6.000	1870 J	5,200	630	NA	760	NA	2,020	9,120 J	261	420	210	110 B	260	NA	96	NA	Τ
Antimony	3	ND	ND	ND	ND	NA	ND	NA	ND	NA	0.4 J	NA	+						
Arsenic	25	13.2	17.7	17	ND	NA	29	32	18.5	31	17.7	40	10	ND	ND	NA	16	29.6	
Barium	1000	262	188 B	350	400	NA	640	650	368	516	210	160	ND	ND	ND	NA	90 J	420	1
Beryllium	3	0.2 B	0.09 B	ND	ND	NA	ND	NA	0.06 B	0.29 B	ND	ND	ND	ND	ND	NA	ND	NA	+
Cadmium	5	ND	1.4 B	ND	ND	NA	ND	ND	ND	1.2 B	2.2	18	ND	ND	ND	NA	ND	NA	1
Calcium	NS	150.000	145.000	230.000	170.000	NA	150.000	NA	103.000	117.000	111.000	80.000	110.000	100.000	110.000	NA	120.000	NA	1
Chromium	50	9 B	3.6 B	ND	ND	NA	3 J	2	5.1 B	45.3	1.7	ND	ND	ND	ND	NA	1 J	ND	1
Cobalt	NS	25.3 B	24.9 B	ND	ND	NA	27	NA	26.4 B	37.6	22.8	ND	ND	ND	ND	NA	35	NA	1
Copper	200	10.4 B	7.9 B	ND	ND	NA	4 J	NA	6.3 B	27.9	ND	ND	ND	ND	ND	NA	3 J	NA	1
Cyanide	200	ND	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	1						
Iron	300	82,500	66,200	130,000	95,000	NA	95,000	ND	37,400	63,700	49,300	80,000	84,000	97,000	100,000	NA	130,000	NA	1
Lead	25	ND	ND	10	6.9	NA	1 J	NA	2.2	11.3	8.1	ND	ND	5.3	ND	NA	0.7 J	NA	
Magnesium	35,000 (GV)	54,900	51,700	77,000	59,000	NA	63,000	NA	40,700	46,700	45,000	28,000	51,000	38,000	36,000	NA	36,000	NA	+
Manganese	300	2850	1880	3,500	2,400	NA	1.100	NA	651	499	1.930	2,300	2,300	5,400	2,400	NA	5.000	NA	
Nickel	100	20.6 B	19.9	ND	ND	NA	32	NA	33.1 B	45.7	31	ND	ND	ND	ND	NA	6.9	NA	T
Potassium	NS	6.850 B	4,940	12,000	29.000	NA	20,000	NA	66,300 J	65,200	26,900	23,000	27,000	21,000	20,000	NA	15,000	NA	1
Selenium	10	ND	ND	ND	ND	NA	3	NA	ND	NA	3	NA							
Silver	50	ND	ND	ND	ND	NA	ND	NA	ND	ND	8.3	ND	ND	ND	ND	NA	1.7	NA	1
Sodium	20,000	110,000 J	137,000	230,000	230,000	NA	320,000	NA	199,000	283,000	71,100	100,000	84,000	37,000	36,000	NA	9,800	NA	1:
Thallium	0.5 (GV)	ND	ND	ND	ND	NA	2 J	NA	ND	NA	0.8 J	NA							
Vanadium	NS	17.8 B	9.5 B	49 B	ND	NA	7	NA	9.9 B	26.1 B	3.2	19	21 B	ND	ND	NA	1 J	NA	T
Zinc	5,000 (GV)	101 J	34.4 J	24	81	NA	10	NA	55.1 J	65.4 J	8	16	ND	ND	ND	NA	11	NA	+

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

* New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

07/11/07	10/27/08
ND	ND
ND	ND
ND	ND
17	23
ND	ND
17	23
ND	0.43
ND	ND
545	31.4 B
ND	ND
10.9	17.5
51.6 B	53.2 B
ND	0.036 B
0.70 B	0.73 B
67,800	76,100
ŃD	ŃD
32.4 B	24.8 B
ND	2.4 B
NA	NA
135,000	120,000
2.3 B	ND
17,200	16,500
4,360	2,610
5.6 B	3.1 B
5,800	6,950
29.8	3.4 B
ND	ND
3,370 B	17,700
28.7	ND
0.80 B	1.6 B
22	18.4 B

		MW-6A										MW-6B												
Volatiles (µg/L)	NYSAWQS*	05/15/95	08/09/95	05/05/99	10/21/99	05/02/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08	05/17/95	08/09/95	05/05/99	10/21/99	05/02/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08
Acetone	50	ND	4	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	5 J	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Benzene	1	ND	ND	ND	2	ND	ND	ND	ND	NA	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Bromodichloromethane	50	6 J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	1	10 J	11	9 J	11	NA	10	6 J	5.2 J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	3 J	2 J	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Chloroform	7	30	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1.1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1,2 -Dichloroethene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1. 3 -Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	4.6 J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1, 4 -Dichlorobenzene	3	ND	ND	ND	ND	3 J	5 J	ND	5 J	NA	ND	ND	2.3 J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Methylene Chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	3 JB	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	4 BJ	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	30	ND	8	ND	ND	ND	ND	NA	ND	ND	ND
Xylene (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Vinvl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
1. 2. 4 -Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	7.2 J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND
Total VOCs	0	36	4	ND	3	13	16	9	16	NA	17	8	19.3	35	ND	8	ND	ND	ND	ND	NA	4	ND	ND
10141 10003			4	ND	Ū	10	10	Ĵ	10	11/1		v	13.0		ND	Ū	ND	ND	ND	ND	11/1		ND	ND
PCBs (µq/L)																								
Aroclor-1221	0.09	ND	NA	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND
Aroclor-1221 Aroclor-1242	0.03	ND	NA	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND
Metals (µg/L)		ND	NA	ND	ND	ND	INA	NA NA	NA.	INA	ND	ND	ND	ND	ND	NA	ND	ND	INA	NA.	114	ND	ND	ND
Aluminum	NS	293	132	209	200	ND	ND	ND	NA	220	NA	99.6 B	ND	8.330	19.800 J	ND	920	9.400	5.600	NA	26.000	NA	116.000	1.720
Antimony	3	293 ND	ND	ND	ND	ND	ND	ND	NA	7.1	NA	99.0 B	ND	ND	ND	ND	ND	9,400 ND	ND	NA	20,000 1 J	NA	ND	3.6 B
Arsenic	25	ND	ND	ND	ND	13	ND	21	NA	19	20	16.3	17	9.3 B	12.6	6	ND	ND	ND	NA	7	16.4	30.3	10 B
Barium	1000	27.8 B	93.2	127	160	200	260	290	NA	320	20	224	184 B	86.5 B	204	491	ND	ND	ND	NA	250	233	965	54.8 B
Beryllium	3	ND	93.2 ND	ND	ND	200 ND	200 ND	290 ND	NA	0.3 J	NA	ND	ND	0.36 B	0.98 B	ND	ND	ND	ND	NA	230	233 NA	6.3	0.26 B
Cadmium	5	1.8 B	0.32	ND	ND	ND	ND	ND	NA	ND	ND	0.69 B	0.17 B	ND	ND	83.4	ND	8	ND	NA	16	4.8	679	39.3
Calcium	NS	49.000	126.000	108.000	110.000	140.000	140.000	140.000	NA	150.000	NA	115.000	106.000	31.100	28.700	03.4 ND	9.800	91.000	58.000	NA	90.000	NA	326.000	39.3
Chromium	50	49,000 0.95 B	ND	0.96	ND	ND	ND	ND	NA	3 J	ND	ND	ND	10.8	25.5	52.4	9,000 ND	17	12	NA	62	70.4	189	2.7 B
Cobalt	NS	1.1 B	4.9	5.5	ND	ND	ND	ND	NA	18	NA	12.5 B	5.8 B	5.1 B	11.7 B	34	ND	ND	ND	NA	20	NA	85.3	4.3 B
-	200	20.8 B	17.3	5.4	ND	ND	ND	ND	NA	8.2	NA	12.5 B	3.5 B	11 B	31	115	ND	23 B	ND	NA	39	NA	182	21.8 B
Copper Cvanide	200	20.0 B	NA	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	1.9	NA	NA	NA	NA	NA	NA	NA	NA
Iron	300	404	428	388	2.600	35.000	35.000	49.000	NA	54.000	NA	33.100	27.400	8.130	19.900	49.000	1.200	17.000	9.100	NA	38.000	NA	157.000	3.160
Lead	25	ND	+20 ND	12.5	2,000 ND	ND	ND	49,000 ND	NA	1 J	ND	ND	27,400 ND	1.9 B	6.6	37	ND	7	<u>9,100</u> 7	NA	15	12.9	64.3	3,100 3.0 B
Magnesium	35,000 (GV)	10,100	40,900	48,100	42.000	60,000	51,000	50,000	NA	54,000	NA	43,500	40,600	4,610 B	8,950	25,100	1,800	15,000	7,300	NA	18,000	NA	69,600	4,070 B
Magnesian	300 (GV)	214	4.910	2.410	3.200	5.200	5.900	4.100	NA	3.800	NA	2,620	2.320	213	419	1,600	60	640	420	NA	880	NA	3,820	280
Nickel	100	3.1 B	8.3	23.5	3,200 ND	ND		4,100 ND	NA	3,800	NA	2,020 26.7 B	2,320 19.1 B	11 B	28.7 B	79.5	ND	ND	420 ND	NA	63	NA	219	9.4 B
Potassium	NS	2,940 BJ	2,830	3.740	6,200	11.000	11,000	12,000	NA	12.000	NA	10,400	9.530	3,590	7,230	8,350	ND	ND	ND	NA	5,000	NA	219	9.4 B 868 B
Selenium	10	2,940 BJ	2,030 ND	ND	0,200 ND	ND	ND	ND	NA	4.9	ND	10,400	9,550 ND	3,390 ND	ND	0,350 ND	ND	ND	ND	NA	ND	ND	14.9	ND
Silver	50	ND	ND	1.3	ND	ND	ND	ND	NA	4.9	ND	4.4 B	ND	ND	ND	7.1	ND	ND	ND	NA	0.64	ND	ND	ND
Sodium	20,000	31,700	36,600	90,300	87,000	130,000	120,000	120,000	NA	140,000	NA	96,900	76,000	44,600	44,700	42,700	39,000	47,000	45,000	NA	50,000	NA	54,800	46,400
Thallium	0.5 (GV)	ND	ND	90,300 ND	ND	ND	ND	ND	NA	2 J	NA	7.9 B	ND	ND	ND	42,700 ND	ND	ND	+3,000 ND	NA	0.07 J	NA	23.8	ND
manian	· · · /																							4.8 B
Vanadium	NS	1/18	1 5																					
Vanadium Zinc	NS 5,000 (GV)	1.4 B 132 J	1.5 40.8	ND 15.9	ND 66	ND ND	ND ND	ND ND	NA NA	2 J 40	NA NA	ND 26.7	ND 12.0 B	20.8 B 37.3 J	39.7 B 72.7 J	ND 193	ND 130	27 B 150	ND 46	NA NA	43 200	NA NA	206 735	4.0 B

Notes:

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

serial dilution analysis * New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

			MW-7												MW-8											
Volatiles (μg/L)	NYSAWQS*	05/15/95	08/09/95	05/05/99	10/21/99	05/02/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08	05/16/95	08/09/95	05/05/99	10/21/99	05/02/00	10/10/00	05/08/02	08/18/04	07/11/07	10/28/08			
Acetone	50	ND	NA	6 J	ND	2 J	ND	ND																		
Benzene	1	ND	NA	ND																						
Bromodichloromethane	50	ND	NA	ND																						
Chlorobenzene	5	ND	NA	ND																						
Chloroethane	5	3 J	ND	5	ND	ND	ND	ND	ND	NA	2 J	ND														
Chloroform	7	ND	NA	ND																						
1,1-Dichloroethene	5	ND	NA	ND																						
1,2 -Dichloroethene (Total)	5	ND	NA	ND																						
1, 3 -Dichlorobenzene	3	ND	NA	ND																						
1, 4 -Dichlorobenzene	3	ND	NA	ND																						
Ethylbenzene	5	ND	NA	ND																						
Methylene Chloride	5	ND	NA	3 JB	ND	4 JB	ND	ND																		
Toluene	5	ND	NA	ND																						
Xylene (total)	5	ND	NA	ND																						
Vinyl Chloride	2	ND	NA	ND																						
1, 2, 4 -Trichlorobenzene	5	ND	NA	ND																						
Total VOCs		3	ND	5	ND	ND	ND	ND	ND		11	ND	6	ND	ND											
						•					·	•				·			•							
PCBs (µg/L)																										
Aroclor-1221	0.09	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	ND			
Aroclor-1242		ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	ND			
Metals (µq/L)		1																								
Aluminum	NS	24,500	32,600 J	176	190	3,700	ND	1,000	NA	20 J	NA	217	15.3 B	185	355 J	841	430	820	190 B	1,300	NA	16,500	139 B			
Antimony	3	ŃD	ND	1.9	ND	ND	ND	ŃD	NA	ND	NA	ND	ŃD	NA	ŃD	ND										
Arsenic	25	ND	7.4 B	ND	ND	ND	ND	ND	NA	2 J	5.7	ND	7.0 B	ND	7.2 B	3.5 B										
Barium	1000	129 B	171 B	27.9	ND	ND	ND	ND	NA	60 J	56	34.5 B	22.3 B	41.7 B	38.9 B	28.1	ND	ND	ND	ND	32.1	147 B	22.2 B			
Beryllium	3	0.8 B	1.2 B	ND	ND	ND	ND	ND	NA	ND	NA	ND	0.034 B	ND	NA	0.92 B	0.065 B									
Cadmium	5	0.21 B	0.66 B	0.45	24	ND	ND	ND	NA	ND	ND	1.4 B	0.90 B	ND	0.68	ND	0.36 B									
Calcium	NS	60,900	56,300	89,900	92,000	100,000	74,000	160,000	NA	140,000	NA	76,000	56,900	44,300	37,600	35,100	43,000	53,000	57,000	67,000	NA	55,400	50,500			
Chromium	50	18.6	25.4	1.8	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	ND	2.7	19.3	0.71 B			
Cobalt	NS	11.1 B	12.5 B	16.5	ND	ND	ND	ND	NA	26	NA	138	21.7 B	ND	NA	9.5 B	0.40 B									
Copper	200	16.7 B	29.5	1.4	ND	ND	ND	ND	NA	ND	NA	ND	1.7 B	1.7 B	7.3 B	24.3	ND	ND	ND	ND	NA	10.7 B	8.1 B			
Cyanide	200	ND	NA	3.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	2.2	NA									
Iron	300	23,600	30,800	8,060	2,200	17,000	23,000	27,000	NA	240,000	NA	217,000	143,000	195	362	873	460	1,400	290	2,300	NA	19,900	250			
Lead	25	7.4	13.4	10.6	ND	ND	ND	7.1	NA	ND	3.5	4.3	ND	8.4	1.1 B											
Magnesium	35,000 (GV)	16,400	17,800	26,000	24,000	32,000	19,000	39,000	NA	29,000	NA	16,600	14,200	7,090	6,390	8,410	8,800	13,000	13,000	14,000	NA	15,700	12,100			
Manganese	300	1,080	1,000	4,040	4,900	15,000	17,000	38,000	NA	31,000	NA	12,600	7,800	191	178	382	130	74	150	73	NA	267	71.5			
Nickel	100	16.8 B	20.9 B	11.8	ND	ND	ND	ND	NA	2 J	NA	49.2	3.1 B	ND	NA	17.6 B	1.2 B									
Potassium	NS	2,540 BJ	3,410 B	896	ND	ND	ND	ND	NA	5,100	NA	2,390 B	1,650 B	1,260 BJ	1,490 B	1,140	ND	ND	ND	ND	NA	3,990 B	797 B			
Selenium	10	ND	NA	ND	ND	34.2	ND	11.5	ND																	
Silver	50	ND	ND	4.8	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Sodium	20,000	4,830 BJ	4,650 B	6,260	8,400	8,900	7,300	12,000	NA	4,100	NA	3,490 B	3,460 B	8,600 J	7,320	7,360	8,500	9,600	8,700	10,000	NA	12,000	13,300			
TL 11'	0.5 (GV)	ND	5 B	5.5	ND	ND	ND	ND	NA	ND	NA	63.3	6.4 B	ND	ND	3.1	ND	ND	ND	ND	NA	ND	ND			
Thallium						1							NIP	100				NID								
Vanadium	NS	34.6 B	49.1 B	2.8	ND	22 B	ND	ND	NA	2 J	NA	ND	ND	1.3 B	2.3 B	2.9	ND	ND	ND	ND	NA	28.4 B	0.61 B			

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

* New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

		MW-NEW													
Volatiles (µg/L)	NYSAWQS*	5/5/1999	10/21/99	05/02/00	10/10/00	05/08/02	09/09/03*	03/03/04*	08/18/04	07/11/07	10/27/08				
Acetone	50	6	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Benzene	1	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Bromodichloromethane	50	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Chloroethane	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Chloroform	7	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
1,2 -Dichloroethene (Total)	5	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND				
1, 3 -Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
1, 4 -Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Methylene Chloride	5	1 J	ND	ND	ND	ND	ND	NA	4 JB	ND	ND				
Toluene	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Xylene (total)	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
1, 2, 4 -Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND				
Total VOCs		7	ND	ND	ND	ND	ND		4	ND	ND				
			·			·	·	·							
PCBs (µg/L)															
Aroclor-1221	0.09	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND				
Aroclor-1242		NA	ND	ND	NA	NA	NA	NA	NA	ND	ND				
Metals (μg/L)															
Aluminum	NS	896	630	1,300	300	240	NA	2,200	NA	800	ND				
Antimony	3	ND	ND	ND	ND	ND	NA	ND	NA	5.2 B	ND				
Arsenic	25	ND	ND	ND	ND	ND	NA	35	ND	ND	ND				
Barium	1000	60 B	ND	ND	ND	ND	NA	110	62.4	69.8 B	62.1 B				
Beryllium	3	ND	ND	ND	ND	ND	NA	ND	NA	ND	ND				
Cadmium	5	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND				
Calcium	NS	64,000	64,000	63,000	67,000	69.000	NA	83,000	NA	74,300	76,200				
Chromium	50	3.5 B	ND	ND	ND	ND	NA	14	0.67	1.3 B	0.40 B				
Cobalt	NS	ND	ND	ND	ND	ND	NA	2 J	NA	1.4 B	ND				
Copper	200	27.5 B	ND	ND	ND	ND	NA	6.4	NA	2.5 B	4.4 B				
Cyanide	200	1.2 B	ND	NA	NA	NA	NA	NA	NA	NA	NA				
Iron	300	946	560	2,000	260	390	NA	5,300	NA	1,590	213				
Lead	25	3.6	ND	ND	ND	ND	NA	13	3.3	ŇD	ND				
Magnesium	35,000 (GV)	128,000	110,000	140,000	130,000	150,000	NA	180,000	NA	153,000	160,000				
Manganese	300	51.6	46	120	42	42	NA	82	NA	66.3	30.7				
Nickel	100	ND	ND	ND	ND	ND	NA	6.3	NA	3.8 B	2.0 B				
Potassium	NS	3180	2,000	ND	ND	ND	NA	2,200	NA	2,230 B	2,460 B				
Selenium	10	ND	ND	ND	ND	ND	NA	ND	ND	10.2	ND				
Silver	50	ND	ND	ND	ND	ND	NA	ND	ND	8.6 B	ND				
Sodium	20,000	196,000	170,000	200,000	200,000	210,000	NA	240,000	NA	197,000	193,000				
Thallium	0.5 (GV)	ND	ND	ND	ND	ND	NA	2 J	NA	ND	ND				
Vanadium	NS	ND	ND	24 B	ND	ND	NA	13	NA	1.6 B	ND				

Notes:

B - Inorganics: The reported value was obtained from an instrument reading that was less than the sample quantitation limit (SQL).

B - Organics: The associated analyte was also detected in the method blank.

ND - Compound not detected at or above the detection limit.

J - Estimated concentration less than the contract required detection limits.

D - Analysis performed on a diluted sample

E - indicates an estimated surface sample for the presence of interferences, as determined by serial dilution analysis

* New York State Ambient Water Quality Standards (TOGs 1.1.1) GV - guidance value.

BOLD font in shaded cell indicates exceedances of AWQS+GV.

NA - Not Analyzed

NS - No Standard or Guidance Value

Table 3 INFLUENT ANALYTICAL DATA (1998-2009) Fort Edward Landfill Town of Fort Edward, New York Site No. 5-58-001

			INFLUENT - 1998														INFLUE	NT - 1999						
Analyte	Units	9/22/98	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	11/4/98	11/11/98	11/19/98	11/24/98	12/3/98	8 12/16/98	12/30/98	1/6/99	1/21/99	2/1/99	2/10/99	2/23/99	3/3/99	3/11/99	3/18/99	3/24/99	4/8/99
Vinyl Chloride	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	4 J	1 J	1 J	ND	ND	ND	ND	ND	ND	ND	ND	5 J	ND	ND	5 J
Bromomethane	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	3 J	3 J	3 J	3 J	2 J	1 J	2 J	2 J	2 J	ND	2 J	2 J	ND	2	ND	ND	1 J	ND	ND	ND	ND	ND	4 J
1,2-Dichloroethene (total)	μg/L	ND	ND	3 J	ND	ND	ND	ND	ND	3 J	2 J	3 J	ND	ND	ND	ND	2 J	ND	ND	2 J	9	ND	2 J	4 J
Acetone	μg/L	11	ND	ND	7 J	51	50	ND	27	ND	ND	41	16	ND	ND	ND	ND	42	ND	22	ND	17	ND	ND
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	ND	ND	220 E	170	430 E	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	ND	ND	2 JB	3 JB	2 JB	3 JB	2 JB	ND	6 B	2 J	7 B	2 J	1 JB	4 JB	2 J	4 JB	3 JB	ND	ND	ND	1	1 JB	ND
Methyl t-butyl ether	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	19	12	ND	11	ND	ND	ND	11	ND	12	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	2 J	NA
Chloroform	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	6	ND	3 J	6	12	ND
Benzene	μg/L	ND	1 J	1 J	1 J	ND	1 J	3 J	3 J	2 J	2 J	3 J	1 J	ND	1	ND	2 J	ND	ND	ND	4 J	ND	2 J	2 J
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	13	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	3 J	2 J	1 J	2 J	2 J	ND	2 J	ND	2 J	2 J	2 J	2 J	ND	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	8	ND	ND	ND	3 J	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	ND	ND	ND	ND	1 J	1 J	1 J	2 J	1 J	2 J	2 J	1 J	ND	1	2	ND	ND	ND	ND	2 J	ND	ND	ND
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	1 J
Xylene (total)	μg/L	ND	ND	ND	ND	ND	ND	4 J	5	4 J	4 J	6	ND	ND	ND	ND	4 J	ND	1 J	2 J	8	ND	1 J	5 J
Styrene	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total VOCs	μg/L	17	6	16	16	58	56	22	259	207	468	85	26	19	10	4	12	63	7	38	33	25	20	21
Aluminum	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	106	139	93.5	87.7	62.8	114	52.9	65.4	116 B
Beryllium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5	ND	ND	ND	ND	ND	ND	ND	1.1 B
Calcium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	11 B
Copper	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.4	17.5	19.8	13.8	18.1	14.2	13.8	16.2	ND
Iron	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	33,300	38,100	26,000	23,500	924	29,400	2,670	5,380	38,600
Lead	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.2	ND	ND	ND	5.4	4.3	6.6	ND	16
Magnesium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.321	ND	ND	ND	ND	ND	ND	ND
Nickel	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	4.6 B
Potassium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	2.6 B
Zinc	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21.6	16.3	16.6	40.6	13.2	ND	72.2	136	5.5 B
INTES																								-

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.

 ${\bf E}$ - indicates an estimated concentration due to the presence of

interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

*Possible human error (may be Value x 1,000)

										INF	LUENT - 199	99 cont.									
Analyte	Units	4/14/99	4/21/99	4/28/99	5/5/99	5/12/99	5/20/99	5/25/99	6/10/99	6/16/99	6/23/99	6/30/99	7/7/99	7/14/99	7/22/99	7/28/99	8/18/99	9/23/99	10/20/99	11/16/99	12/15/99
Vinyl Chloride	μg/L	ND	4 J	1 J	19	8 J	ND	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	110	ND	ND
Bromomethane	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	ND	ND	ND							
Chloroethane	μg/L	ND	2 J	3 J	1 J	2 J	2 J	2 J	3 J	NA	NA	NA	NA	3 J	NA	NA	3 J	NA	3 J	3 BJ	2 J
1,2-Dichloroethene (total)	μg/L	8 J	5 J	2 J	22	6 J	ND	2 J	3 J	NA	NA	NA	NA	0.7 J	NA	NA	1 J	NA	58	3 BJ	2 J
Acetone	μg/L	ND	NA	NA	NA	NA	3 BJ	NA	NA	ND	NA	ND	ND	ND							
Carbon disulfide	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	ND	ND	ND							
Methylene Chloride	μg/L	ND	NA	NA	NA	NA	0.3 BJ	NA	NA	0.3 BJ	NA	0.3 BJ	0.4 BJ	0.3 BJ							
Methyl t-butyl ether	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,1-Dichloroethane	μg/L	ND	0.6 J	NA	NA	NA	NA	0.6 J	NA	NA	0.6 J	NA	0.6 J	ND	0.5 J						
2-Butanone	μg/L	ND	NA	NA	NA	NA	4 BJ	NA	NA	ND	NA	ND	ND	7 J							
Bromodichloromethane	μg/L	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA									
Chloroform	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	ND	ND	ND							
Benzene	μg/L	4 J	4 J	2 J	8 J	2 J	ND	1 J	4 J	NA	NA	NA	NA	4 J	NA	NA	0.8 J	NA	3 J	2 BJ	0.9 J
1,2-Dichloroethane	μg/L	ND	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	ND	ND							
Trichloroethene	μg/L	ND	ND	2 J	ND	2 J	ND	2 J	2 J	NA	NA	NA	NA	0.6 J	NA	NA	2 J	NA	0.7 J	2 BJ	1 J
4-Methyl-2-pentanone	μg/L	ND	NA	NA	NA	NA	NA	NA	NA	ND	NA	ND	ND	ND							
Toluene	μg/L	9 J	4 J	2 J	14	1 J	ND	ND	0.6 J	NA	NA	NA	NA	0.1 J	NA	NA	0.1 J	NA	0.5 J	0.5 BJ	0.2 BJ
Tetrachloroethene	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	ND	ND	ND							
Chlorobenzene	μg/L	2 J	2 J	ND	4 J	2 J	1 J	ND	1 J	NA	NA	NA	NA	2 J	NA	NA	1 J	NA	3 J	2 BJ	1 BJ
Ethylbenzene	μg/L	2 J	1 J	ND	7 J	1 J	ND	ND	5 BJ	NA	NA	NA	NA	0.8 J	NA	NA	0.9 J	NA	0.8 J	0.4 BJ	0.07 BJ
Xylene (total)	μg/L	13	7 J	3 J	33	4 J	ND	ND	5 BJ	NA	NA	NA	NA	5 J	NA	NA	0.4 BJ	NA	7 J	3 BJ	0.3 BJ
Styrene	μg/L	ND	0.2 J	NA	NA	NA	NA	ND	NA	NA	ND	NA	0.07 J	ND	ND						
Bromoform	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	NA	ND	ND	ND							
Isopropylbenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,3-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,4-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,2-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
1,2,4-Trichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
Total VOCs	μg/L	38	29	15	108	28	3	7	24.4					24.1			10.1		186.97	16.3	15.27
Aluminum	μg/L	NA	ND	31.5 B	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	48	ND	ND	ND
Antimony	μg/L	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND						
Arsenic	μg/L	ND	8.8 B	6.3 B	13.9	16.2	9.3 B	4.2 B	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Barium	μg/L	122 B	139 B	117 B	202	196 B	114 B	117 B	82	NA	NA	NA	NA	94	NA	NA	86	239	98	99	95
Beryllium	μg/L	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND						
Cadmium	μg/L	0.8 B	1.1 B	0.8 B	2.9 B	3.1 B	ND	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Calcium	μg/L	NA	130,000	113,000	124,000	120,000	116000	116000	116*	NA	NA	NA	NA	113*	NA	NA	112*	126*	115,000	120,000	114,000
Chromium	μg/L	0.96 B	1.9 B	2.9 B	2.2 B	3.8 B	ND	1.4 B	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Cobalt	μg/L	11 B	13.7 B	14.6 B	16.6 B	16.5 B	11.1 B	10.9 B	5	NA	NA	NA	NA	8	NA	NA	9	8	7	9	7
Copper	μg/L	ND	ND	0.89 B	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Iron	μg/L	29,500	34,800	20,000	46,900	53,800	35,900	34,900	23,100	NA	NA	NA	NA	32,900	NA	NA	32,700	105,000	30,600	35,300	34,200
Lead	μg/L	7.4	9.1	8.1	8.9	10.9	7.4 B	9.8 B	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Magnesium	μg/L	NA	38,400	35,100	41,300	37,600	33,600	36,000	32.2	NA	NA	NA	NA	30.8	NA	NA	31.7	30.4	31,000	34,100	31,100
Manganese	μg/L	NA	3,550	3,290	2,830	3,120	3,480	3,460	3,000	NA	NA	NA	NA	3,030	NA	NA	3,060	3,230	2,890	2,890	2,840
Mercury	μg/L	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND							
Nickel	μg/L	6.8 B	10.6 B	10 B	13.1 B	12.4 B	5.4 B	5.9 B	5	NA	NA	NA	NA	5	NA	NA	5	12	7	5	ND
Potassium	μg/L	NA	9,750	6,920	18,800	15,400	6,090	5,780	5.8	NA	NA	NA	NA	5.8	NA	NA	5.3	6.4	6,600	5,600	6,300
Selenium	μg/L	NA	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND						
Silver	μg/L	NA	4.5 B	6.2 B	6.3 B	7.6 B	4.2 B	1.8 B	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Sodium	μg/L	NA	68,600	57,200	91,700	79,900	59,900	59,100	56.8	NA	NA	NA	NA	54.1	NA	NA	54.9	63.4	54,200	55,700	56,700
Thallium	μg/L	NA	ND	ND	3.3 B	3.1 B	3.3 B	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Vanadium	μg/L	ND	2.8 B	4.5 B	8 B	9.1 B	2 B	ND	ND	NA	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND	ND
Zinc	μg/L	58.4	47	15.8 B	27.3	45.7	27.2 B	31.6 B	48	NA	NA	NA	NA	33	NA	NA	28	47	ND	ND	15

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.

E - indicates an estimated concentration due to the presence of interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

							INFLUE	NT - 2000											INFLUE	NT - 2001					
Analyte	Units	1/12/00	2/22/00	3/28/00	4/11/00	5/10/00	6/14/00	7/15/00	8/16/00	9/20/00	10/11/00	11/7/00	12/13/00	1/10/01	2/14/01	3/13/01	4/11/01	5/9/01	6/13/01	7/11/01	8/15/01	9/10/01	10/10/01	11/14/01	12/12/01
Vinyl Chloride	μg/L	ND	2 J	ND	ND	ND	ND	NA	ND	ND	5 J	10	9 J	80	54	54	ND	25	10	92	27	190	200 E	130	17
Bromomethane	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	2 J	ND	ND	2 J	2 J	ND	NA	2 J	3 J	2 J	2 J	2 J	4 J	2 J	1 J	2 J	2 J	ND	1 J	2 J	1 J	ND	ND	2 J
1,2-Dichloroethene (total)	μg/L	8 J	ND	ND	5 J	2 J	0.8 J	NA	0.9 J	ND	6 J	13	9 J	24	54	38	5 J	20	7 J	77	14	192	233	142	15
Acetone	μg/L	ND	ND	ND	ND	ND	2 J	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 BJ	2 J	2 BJ	ND	3 BJ	ND	ND	ND
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	0.2 BJ	ND	ND	0.2 J	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	0.3 BJ	ND	ND	0.5 BJ	1 BJ	0.5 BJ	NA	0.3 BJ	0.3 BJ	0.2 BJ	0.4 BJ	0.3 BJ	0.6 BJ	0.3 BJ	0.2 BJ	0.6 BJ	0.3 BJ	0.2 BJ	0.3 BJ	0.3 BJ	0.3 BJ	0.3 BJ	1 BJ	0.4 BJ
Methyl t-butyl ether	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.7 J	1 J	ND	ND	ND						
1,1-Dichloroethane	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	0.3 J	0.4 J	ND	0.8 J	0.8 J	ND	ND	0.4 J	ND	0.7 J	0.4 J	0.7 J	0.8 J	ND	ND
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L	ND	ND	ND	ND	0.9 J	ND	NA	ND	ND	0.3 J	0.8 J	0.6 J	1 BJ	ND	0.3 BJ	0.7 BJ	0.3 BJ	0.3 J	0.2 BJ	ND	ND	ND	0.5 BJ	ND
Benzene	μg/L	2 J	6 J	ND	2 J	ND	ND	NA	1 J	ND	1 J	2 J	ND	7 J	12	5 J	0.8 J	4 J	1 J	15	3 J	20	22	14 J	2 J
1,2-Dichloroethane	μg/L	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	ND	ND	ND	1 J	2 J	0.2 J	NA	0.2 J	ND	0.2 J	ND	ND	0.2 J	0.2 J	0.2 J	ND	0.1 J	0.2 J	ND	ND	ND	0.2 J	ND	ND
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	1	2 J	ND	0.6 J	0.06 J	0.09 BJ	NA	0.4 J	ND	ND	0.2 BJ	0.3 J	0.4 BJ	2 J	0.2 J	0.1 J	0.2 BJ	0.2 J	0.6 BJ	0.2 BJ	0.9 BJ	1 J	1 J	0.1 J
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 BJ
Chlorobenzene	μg/L	2	1 J	0.9 J	1 J	0.6 J	0.5 BJ	NA	0.6 J	1 J	1 BJ	2 BJ	2 J	6 J	4 J	3 J	1 J	4 J	1 BJ	4 J	2 J	15	18	11 J	2 J
Ethylbenzene	μg/L	0.7	2 J	ND	0.5 J	0.2 J	0.3 J	NA	0.5 BJ	0.07 J	0.5 BJ	1 BJ	0.5 BJ	2 BJ	4 J	0.9 J	0.7 J	0.8 BJ	0.3 BJ	4 BJ	0.4 BJ	3 BJ	3 J	3 J	0.2 BJ
Xylene (total)	μg/L	6	8 J	0.6 J	4 J	0.9 J	1 BJ	NA	2 BJ	0.7 J	5 BJ	7 BJ	5 BJ	14 B	21 B	14	0.9 J	8 BJ	1 BJ	31 B	7 BJ	31 B	53 B	36 BJ	4 BJ
Styrene	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.3 J	1 J	0.5 J	3 J	0.7 J	6 J	8 J	5 J	0.6 BJ						
1,3-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.1 BJ	0.05 BJ	ND	0.06 BJ	0.4 BJ	0.4 BJ	0.4 BJ	0.3 BJ						
1,4-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.4 BJ	1 BJ	0.4 BJ	0.7 BJ	0.5 BJ	3 BJ	4 BJ	3 BJ	0.8 BJ						
1,2-Dichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.05 BJ	0.2 BJ	0.07 BJ	0.2 BJ	0.09 BJ	0.5 BJ	0.6 BJ	0.5 BJ	0.2 BJ						
1,2,4-Trichlorobenzene	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.08 BJ	ND	0.2 BJ	ND	0.1 BJ	0.1 BJ	0.4 BJ	0.6 BJ						
Total VOCs	μg/L	22	21	1.5	16.6	9.66	5.39	NA	7.9	5.07	21.5	38.8	28.7	140	154	117	13	67	22	230	58	454	572	348	45
Aluminum	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	32	ND	38	40	ND	ND	59	ND	ND	333	ND	ND	
Antimony	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	μg/L	ND	10	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	110	180	250	13	ND	ND	ND	12	15	ND	ND
Barium	μg/L	68	98	83	86	76	102	NA	69	60	84	97	104	108	198	356	76	95	230	150	121	339	465	211	101
Beryllium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	1	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	4	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium	μg/L	106,000	117,000	107,000	114,000	114,000	108,000	NA	107,000	96,400	117,000	96,900	102,000	115,000	122,000	126,000	103,000	109,000	108,000	120,000	114,000	140,000	161,000	129,000	110,000
Chromium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	μg/L	7	7	7	5	8	7	NA	8	9	5	6	5	8	ND	ND	6	6	5	8	10	8	8	13	ND
Copper	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Iron	μg/L	15,400	41,600	31,000	22,400	29,000	44,500	NA	33,300	29,500	36,200	34,000	38,400	223	140,000	247,000	11,700	35,200	69,000	33,500	53,100	47,000	48,700	39,000	20,200
Lead	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium	μg/L	26,100	32,500	26,500	32,300	31,000	28,400	NA	27,100	24,300	29,700	26,100	26,400	34,200	33,700	32,200	25,000	27,600	26,000	36,100	29,600	51,700	58,100	44,300	29,000
Manganese	μg/L	2,740	2,340	2,880	2,700	3,060	2,820	NA	3,440	3,210	3,480	2,500	3,060	2,220	2,740	3,010	2,760	3,070	3,120	1,990	2,420	765	805	1,390	2,880
Mercury	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	μg/L	ND	10	ND	ND	ND	ND	NA	ND	ND	7	ND	ND	6	8	9	ND	5	5	10	ND	14	22	15	ND
Potassium	μg/L	5,500	10,900	4,900	7,100	4,500	7,900	NA	4,000	3,700	5,500	9,300	7,600	18,000	14,500	15,000	3,700	9,400	6,000	23,600	8,700	50,900	55,400	38,200	6,600
Selenium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	μg/L	51,300	70,500	52,000	51,000	46,500	52,000	NA	47,900	38,700	52,600	53,100	51,600	95,800	78,000	77,300	42,900	57,500	49,500	91,900	55,900	197,000	229,000	156,000	54,900
Thallium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	μg/L	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	6	9	ND	ND	ND	ND	ND	6	ND	ND	ND
Zinc	μg/L	13	23	13	79	ND	ND	NA	41	13	11	28	69	22	37	40	ND	ND	100	28	ND	13	40	12	ND

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.

E - indicates an estimated concentration due to the presence of interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

							INFLUE	NT - 2002					
Analyte	Units	1/9/02	2/13/02	3/12/02	4/10/02	5/8/02	6/11/02	7/10/02	8/7/02	9/4/02	10/9/02	11/6/02	12/10/02
Vinyl Chloride	μg/L	67	40	28	ND	240 E	230 E	ND	ND	300	9 J	ND	43
Bromomethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	2 J	2 J	2 J	ND	ND	ND	2 J	2 J	ND	2 J	2 J	1 J
1.2-Dichloroethene (total)	μg/L	70.9 J	32.7 J	9.3 JB	2 J	293 E	314 E	0.6 J	1 J	304	8 J	0.45 J	68
Acetone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	μg/L	ND	ND	0.2 BJ	ND	ND	ND	ND	ND	2 BJ	0.2 BJ	ND	ND
Methylene Chloride	μg/L	0.4 BJ	0.5 BJ	0.3 BJ	ND	0.3 BJ	ND	ND	0.2 J	ND	0.2 BJ	0.4 BJ	0.3 BJ
Methyl t-butyl ether	μg/L	ND	ND	0.8 J	ND	1 J	ND	0.5 J	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	ND	0.8 J	0.0 0 0.7 J	ND	0.5 J	ND	0.0 U	0.2 J	ND	ND	ND	0.3 J
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	ND	ND	ND
Benzene	μg/L	6 J	13	4 J	8 J	19	20	8 J	3 J	18 J	0.9 J	1 J	5 J
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	ND	ND	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	0.4 J	0.4 J	0.2 BJ	0.2 J	ND	0.7 BJ	0.4 BJ	0.2 J	0.8 J	0.1 BJ	0.1 BJ	0.2 BJ
Tetrachloroethene	μg/L	0.4 J ND	0.4 J ND	0.2 BJ	0.2 J	ND	ND	0.4 BJ	ND	0.6 BJ	0.1 BJ	ND	0.2 BJ
Chlorobenzene	μg/L	6 J	11	0.3 DJ	0.2 DJ 2 J	16	16 B	9 J	ND	14 J	1 J	0.8 J	0.00 DJ 3 J
Ethylbenzene	μg/L	1 BJ	3 BJ	0.8 BJ	2 BJ	2 BJ	2 J	33 1 BJ	0.5 BJ	2 J	0.1 BJ	0.08 BJ	0.5 BJ
Xylene (total)		15 B	14 B	2 BJ	2 BJ 3 BJ	2 DJ 24 B	27	3 BJ	1 BJ	28 BJ	0.1 BJ	0.08 BJ	8 BJ
Styrene	μg/L	ND	ND	2 BJ ND	ND	ND	ND	ND	ND	20 BJ	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	2 J	2 J	1 BJ	0.4 J	7 BJ	6 J	1 BJ	0.2 J	6 J	0.3 J	0.3 J	1 BJ
1,3-Dichlorobenzene	μg/L	0.2 BJ	0.3 BJ	0.6 BJ	0.4 J 0.2 BJ	0.6 BJ	0.6 J	0.2 BJ	0.2 J 0.08 BJ	ND	0.3 J 0.1 BJ	0.3 J 0.09 BJ	0.2 BJ
1.4-Dichlorobenzene	μg/L μg/L	2 BJ	4 BJ	3 BJ	0.2 BJ	4 BJ	3 J	2 BJ	0.08 BJ	2 BJ	0.1 BJ	0.09 BJ	0.2 BJ
1.2-Dichlorobenzene		0.3 BJ	4 BJ 0.5 BJ	0.6 BJ	0.8 BJ	4 BJ 0.6 BJ	0.4 J	2 BJ 0.2 BJ	ND	2 BJ ND	0.4 BJ	0.3 BJ 0.1 BJ	0.2 BJ
1.2.4-Trichlorobenzene	μg/L μg/L	0.3 BJ	0.5 BJ	1 BJ	0.2 BJ	0.8 BJ	0.4 J	0.2 BJ	ND	ND	0.1 BJ 0.3 BJ	0.08 BJ	ND
Total VOCs	μg/L	173.4	124.4	62	19.9	608.8	620.1	28.98	8.78	677.4	23.7	6.2	131.76
		ND	ND	ND	ND	ND	ND	109	55	077.4 ND	23.7 ND	290	ND
Aluminum Antimony	μg/L	ND ND	6	ND	7	7	5	109	55 6	6	7	290	6 10D
Arsenic	μg/L	ND	ND	ND	17	14	ND S	102	17	ND	8	19	8
Barium	μg/L	147	259	180	334	379	371	413	133	424	90	120	° 110
Beryllium	μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	424 ND	90 ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	μg/L	100,000	121,000	103,000	120,000	139,000	156,000	110,000	103,000	130,000	86,000	110,000	96,000
Calcium Chromium	μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	96,000 ND
Cobalt	μg/L μg/L	7	12	11	10	14	14	14	8	8	7	9	8
		ND	ND	ND	ND	ND	ND	14	8 ND	8 7	/ ND	9 14	8 ND
Copper Iron	μg/L	39,300	21,300	31,600	57,500	53,500	20,600	96,900	41,600	37,300	35,600	53,000	36,000
	μg/L	39,300 ND	21,300 ND	ND	57,500 ND	ND	20,800 ND	96,900 ND	41,600 ND	37,300 ND	35,600 ND	53,000 ND	36,000 ND
Lead	μg/L												
Magnesium	μg/L	30,000 2,020	43,000	32,000	39,000	53,000	59,000	35,000	27,000	49,000	21,000	28,000	26,000
Manganese	μg/L	,	1,450	2,040	1,840	752	860	1,930	2,770 ND	625	2,500	3,300 ND	2,600 ND
Mercury	μg/L	ND	ND	ND	ND	ND 10	ND	ND 10	ND	ND 10	ND ND	ND ND	
Nickel	μg/L	7	14	9	8	19	20	10		18			ND
Potassium	μg/L	17,700	38,000	20,000	28,000	59,000	68,000	22,000	4,000 ND	54,000	4,000 ND	5,000	9,000
Selenium	μg/L	ND	ND	ND	ND	ND	ND	ND	=	ND		ND	ND
Silver	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	μg/L	85,700	158,000	107,000	118,000	205,000	223,000	113,000	47,000	185,000	38,000	49,000	59,000
Thallium Mana atiwa	μg/L	ND	13	6	7	ND	12	ND	ND	ND	12	ND	9
Vanadium	μg/L	ND 17	ND	ND 01	9	9	ND	25	ND 40	ND	ND	ND	ND
Zinc NOTES:	μg/L	17	32	21	31	19	9	69	40	38	62	51	5

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.

E - indicates an estimated concentration due to the presence of interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

							INFLUEN	IT - 2003								INFLUE	NT - 2004		
Analyte	Units	1/8/03	2/5/03	3/5/03	4/9/03	5/7/03	6/24/03	7/24/03	8/22/03	9/10/03	10/24/03	11/21/03	12/11/03	1/22/04	2/24/04	3/26/04	5/26/04	6/16/04	9/27/04
Vinyl Chloride	μg/L	30	5 J	ND	ND	100	11	4 J	ND	ND	ND	ND	ND	ND	ND	ND	50	ND	NA
Bromomethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Chloroethane	μg/L	1 J	2 J	2 J	1 J	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethene (total)	μg/L	60.8	1 J	ND	0.6 J	151	12	9 J	ND	ND	4 J	ND	ND	ND	ND	ND	22	ND	NA
Acetone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Carbon disulfide	μg/L	0.2 J	0.2 J	0.06 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methylene Chloride	μg/L	0.4 BJ	0.2 BJ	0.2 BJ	0.2 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Methyl t-butyl ether	μg/L	ND	0.4 J	0.5 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1-Dichloroethane	μg/L	ND	0.3 J	0.3 J	0.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	NA
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Chloroform	μg/L	0.1 J	0.1 J	0.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	58	57	ND	ND	ND	NA
Benzene	μg/L	3 J	0.9 J	0.7 J	0.3 J	5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Trichloroethene	μg/L	ND	ND	0.3 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Toluene	μg/L	0.2 J	0.1 J	0.08 BJ	0.1 BJ	0.3 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	μg/L	0.06 BJ	0.1 BJ	0.07 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Chlorobenzene	μg/L	2 J	1 J	1 J	0.5 J	3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	μg/L	0.2 BJ	0.1 BJ	0.06 BJ	0.1 BJ	0.4 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Xylene (total)	μg/L	3 BJ	0.7 BJ	0.3 BJ	0.4 BJ	5 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Bromoform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Isopropylbenzene	μg/L	0.5 BJ	0.2 BJ	0.2 BJ	0.1 BJ	2 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1.3-Dichlorobenzene	μg/L	0.1 BJ	0.1 BJ	0.09 BJ	0.2 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,4-Dichlorobenzene	μg/L	0.5 BJ	0.8 BJ	0.6 BJ	0.4 BJ	0.6 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichlorobenzene	μg/L	0.1 BJ	0.2 BJ	0.1 BJ	0.1 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2,4-Trichlorobenzene	μg/L	0.5 BJ	0.1 BJ	0.04 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Total VOCs	μg/L	102.66	13.5	6.8	5.3	270.1	23	13	0	0	4	0	0	69	57	0	72	0	
Aluminum	μg/L	92	ND	ND	ND	NA	ND	110	115	29 B	97	85	58	110	120	NA	NA	NA	NA
Antimony	μg/L	10	10	8	7	7	ND	ND	ND	ND	ND	ND	5.8	ND	ND	NA	NA	NA	NA
Arsenic	μg/L	11	23	8	19	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	NA	NA	NA	16
Barium	μg/L	160	140	92	89	120	77 B	466	43	30 B	70 BJ	60 BJ	90 BJ	20 BJ	30 BJ	NA	NA	NA	58.6
Beryllium	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.82	ND	ND	NA	NA	NA	NA
Cadmium	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	0.48
Calcium	μg/L	110,000	98,000	100,000	99,000	110,000	118000	136,000	117.000	115,000	120,000	99,000	150,000	12,000	22,000	NA	NA	NA	NA
Chromium	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 BJ	ND	2 BJ	2 BJ	2 BJ	NA	NA	NA	1.1
Cobalt	μg/L	9	9	8	7	8	ND	ND	ND	ND	7 BJ	6 BJ	9 BJ	2 BJ	6 BJ	NA	NA	NA	4.7
Copper	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 BJ	8.3	8.8	6.1	15	NA	NA	NA	0.52
Iron	μg/L	60,000	56,000	35,000	48,000	37,000	30,600	246,000	42,100	30,600	22,000	21,000	63,000	6,000	5,300	NA	NA	NA	38,400
Lead	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3 BJ	0.6 BJ	1 BJ	1 BJ	2 BJ	NA	NA	NA	ND
Magnesium	μg/L	30,000	26,000	26,000	24,000	30,000	28,200	28,600	28,300	27,200	30,000	24,000	37,000	1,600	2,800	NA	NA	NA	NA
Manganese	μg/L	2,900	2,600	2,900	3,100	2,600	3,330	4,220	3,920	3,980	3,200	3,200	3,200	0.5 BJ	75	NA	NA	NA	NA
Mercury	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND
Nickel	μg/L	ND	6	ND	ND	5	ND	ND	ND	ND	4 BJ	4 BJ	5.5	1 BJ	4 BJ	NA	NA	NA	3.3
Potassium	μg/L	12,000	10,000	6,000	3,000	14,000	5880	3770 B	3560 B	3250 B	5,400	3,100	5,500	780	1200	NA	NA	NA	NA
Selenium	μg/L	ND	ND	0,000 ND	3,000 ND	ND	2 B	ND	ND	ND	3,400 ND	3,100 ND	4.9	ND	4.5	NA	NA	NA	NA
Silver	μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.9 2.5	ND	4.5 ND	NA	NA	NA	NA
Sodium	μg/L	68,000	57,000	51,000	42,000	68,000	36,900	33,200	35,100	34,400	51,000	40,000	62,000	27,000	27,000	NA	NA	NA	NA
Thallium	μg/L μg/L	12	19	23	42,000	14	ND	33,200 ND	ND	34,400 ND	0.9 BJ	40,000 0.5 BJ	2 BJ	0.3 BJ	0.4 BJ	NA	NA	NA	NA
Vanadium	μg/L μg/L	ND	ND	ND 23	ND	ND	ND	ND	ND	ND	1 BJ	1 BJ	2 BJ 3 BJ	1 BJ	1 BJ	NA	NA	NA	0.91
Zinc	μg/L μg/L	ND 9	14	7	10	6	ND	ND	ND	ND	9.2	10	55	26	76	NA	NA	NA	29.8
NOTES:	μg/ L	3	14	1	10	0					3.2	10	55	20	70	11/1			23.0

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

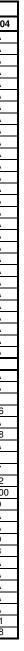
mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.


 ${\bf E}$ - indicates an estimated concentration due to the presence of

interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

*Possible human error (may be Value x 1,000)

Page 5 of 6

			IN	FLUENT - 20	007							INFLUE	NT - 2008								INFLUEN	IT - 2009		
Analyte	Units	8/30/07	9/20/07	10/24/07	11/19/07	12/17/07	1/21/08	2/18/08	3/20/08	4/24/08	5/13/08	6/23/08	7/21/08	8/18/08	9/15/08	10/13/08	11/10/08	12/9/08	1/6/09	2/12/09	3/12/09	4/9/09	5/28/09	6/23/09
Vinyl Chloride	μg/L	210 D	43	170	ND	ND	510 D	ND	67	180	780 D	180 D	ND	65	42	19	100	17	150	26	56	120	28	22
Bromomethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (total)	μg/L	190	85	313	ND	ND	697 D	ND	140	273.1 D	1011	240 D	5.9 J	32	18	32	120	20	150	46	87	172.4	48	30
Acetone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.1	ND
Methyl t-butyl ether	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	μg/L	ND	ND	6 J	ND	ND	15	ND	3.8 J	3.7 J	23	3.4 J	ND	ND	ND	ND	2.5 J	ND	3.7 J	ND	2.2 J	4.7 J	ND	ND
1,2-Dichloroethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	ND	ND	7 J	ND	ND	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	ND	ND	4 J	ND	ND	10	ND	2.7 J	2.9 J	15	3.0 J	ND	ND	ND	ND	2.4 J	ND	2.6 J	ND	2.1 J	3.6 J	ND	ND
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	3 J	ND	ND	ND	3.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	μg/L	ND	ND	11	ND	ND	27	ND	5.1 J	4.9 J	3.9 J	4.9 J	ND	ND	ND	ND	2.7 J	ND	2.6 J	ND	ND	2.9 J	ND	ND
Styrene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	ND	ND	ND	ND	ND	4 J	ND	ND	ND	5.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	μg/L	400	128	511	0	0	1278	0	218.6	464.6	1841.7	431.3	5.9	97	60	51	227.6	37	308.9	72	147.3	303.6	82.1	52
Aluminum	μg/L	17 B	11.4 B	64.6 B	12.2 B	ND	18.4 B	197 B	ND	ND	ND	15 B	12.8 B	13.8 B	51.6 B	9.4 B	ND	20.2 B	89.5	ND	ND	ND	NA	NA
Antimony	μg/L	ND	ND	ND	ND	ND	ND	4 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3 B	ND	ND	NA	NA
Arsenic	μg/L	ND	5.1 B	105	ND	ND	ND	ND	8.1 B	ND	ND	4.6 B	4.0 B	5.3 B	4.0 B	4.2 B	4.0 B	2.9 B	89.5	8.3 B	ND	ND	ND	ND
Barium	μg/L	110 B	107 B	286	47.2 B	62.0 B	263	62.5 B	134 B	89.8 B	270	91.9 B	83.2 B	68.2 B	65.5 B	74.1 B	89.3 B	73.4 B	255	89.1 B	69.4 B	101 B	73	74
Beryllium	μg/L	ND	ND	0.17 B	ND	ND	ND	ND	ND	ND	0.041 B	ND	0.034B	0.040 B	ND	ND	ND	ND	ND	ND	0.21 B	ND	NA	NA
Cadmium	μg/L	ND	ND	0.61 B	ND	0.23 B	ND	0.53 B	ND	ND	ND	0.24 B	ND	ND	ND	ND	ND	0.27 B	2.1 B	ND	0.35 B	0.27 B	ND	NA
Calcium	μg/L	98,800	103,000	117,000	86,200	88,900	135,000	87,500	104,000	102,000	162,000	98,400	100,000	95,800	100,000	94,100	98,300	103,000	127,000	96,900	88,900	101,000	NA	NA
Chromium	μg/L	ND	ND	ND	ND	ND	1.2 B	2.3 B	0.22 B	ND	ND	0.45 B	0.17 B	ND	0.25 B	0.29 B	0.63 B	ND	0.64 B	0.21 B	1.1 B	0.27 B	ND	ND
Cobalt	μg/L	7.8 B	7.6 B	11.3 B	5.5 B	4.8 B	8.0 B	3.9 B	5.1 B	6.3 B	8.4 B	4.3 B	3.2 B	4.2 B	4.1 B	3.4 B	3.8 B	3.4 B	2.5 B	3.4 B	4.9 B	3.8 B	ND	ND
Copper	μg/L	ND	1.2 B	26.6	4.5 B	1.0 B	ND	0.60 B	4.4 B	2.5 B	3.3 B	3.2 B	ND	ND	3.0 B	ND	1.8 B	4.4 B	ND	5.0 B	1.6 B	ND	ND	ND
Iron	μg/L	39,800	40,500	187,000	15,800	18,200	44,200	21,300	46,300	32,700	27,600	38,100	39,800	40,100	26,600	38,400	28,000	26,100	136,000	48,300	13,400	23,300	32,100	29,800
Lead	μg/L	ND	3.5	8.6	ND	1.8 B	1.6 B	ND	ND	1.6 B	ND	2.0 B	ND	2.0 B	ND	2.4 B	ND	ND	ND	ND	2.7 B	2.3 B	ND	ND
Magnesium	μg/L	25,700	28,700	33,500	22,000	22,400	47,300	22,600	29,300	29,300	63,900	26,100	26,200	25,200	25,700	25,100	26,700	27,300	31,400	25,800	24,600	29,400	NA	NA
Manganese	μg/L	2,770	2,650	2,530	2,560	2,550	1,440	2,430	2,160	2,510	688	2,590	2,760	2,700	2,450	2,580	2,390	2,490	2,700	2,470	2,160	2,160	NA	NA
Mercury	μg/L	ND	ND	ND	0.062 B	ND	0.086 B	ND	ND	ND	0.084 B	ND	ND	ND	ND	ND	ND	ND	ND	0.79	0.016 B	ND	ND	ND
Nickel	μg/L	4.9 B	7.3 B	11.4 B	4.4 B	5.6 B	17.5 B	5.2 B	6.8 B	6.6 B	23.5 B	5.1 B	2.8 B	1.9 B	4.0 B	4.3 B	5.2 B	3.5 B	5.3 B	4.0 B	5.6 B	6.2 B	ND	ND
Potassium	μg/L	4,350 B	9,860	15,500	3,320 B	3,480 B	35,200	3,560	12,900	11,100	56,200	8,110	4,760	5,420	5,070	6,350	9,120	5,660	8,360	6,280	6,790	10,700	NA	NA
Selenium	μg/L	20.7	16.9	ND	21.7	10.9	10.7	8.4	9.8	ND	ND	ND	ND	ND	12.8	ND	ND	6,8	48.8	16.1	ND	ND	NA	NA
Silver	μg/L	3.8 B	ND	47.8	ND	ND	ND	3.2 B	4.7 B	ND	1.1 B	ND	ND	4.1 B	ND	ND	1.1 B	ND	ND	0.62 B	2.3 B	ND	NA	NA
Sodium	μg/L	47,700	69,300	93,500	41,500	45,000	168,000	43,900	81,400	71,600	243,000	58,500	44,700	45,700	45,500	51,600	61,400	50,500	63,800	54,500	56,800	72,100	NA	NA
Thallium	μg/L	11.6	4.1 B	ND	8.5 B	3.3 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA						
Vanadium	μg/L	0.81 B	1.8 B	14.0 B	1.6 B	1.2 B	4.7 B	0.96 B	ND	1.0 B	1.8 B	ND	ND	ND	1.1 B	1.6 B	1.2 B	ND	1.0 B	0.61 B	1.7 B	ND	ND	ND
Zinc	μg/L	3.5 B	1.0 B	7.6 B	6.7 B	2.2 B	0.74 B	6.5 B	6.2 B	4.5 B	8.5 B	12.0 B	9.9 B	11.3 B	15.2 B	15.7 B E	9.0 B	7.6 B	14.2 B	12.1 B	17.4 B	9.3 B	12	ND
NOTES	· · ·																							

NOTES:

Data are shown only for individual detected VOCs, and for metals subject to effluent limitations.

Analysis by EPA Method OLM 4.3 for volatile organics, and ILM 4.1 (+

mercury) for metals.

D - Analysis performed on diluted sample.

J - Estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting limit, and equal

to or above the detection limit for the metal.

E - indicates an estimated concentration due to the presence of interferences, as determined by serial dilution analysis.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

		Discharge						EFF	LUENT - 1	1998												EFFLUE	NT - 1999						
Analyte	Units	Limit	9/22/98	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	11/4/98	11/11/98	11/19/98	11/24/98	12/3/98	12/16/98	12/30/98	1/21/99	2/1/99	2/10/99	2/23/99	3/3/99	3/11/99	3/18/99	3/24/99	4/8/99	4/14/99	4/21/99	4/28/99	5/5/99	5/12/99
Vinyl Chloride	μg/L	50	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
Bromomethane	μg/L	NV	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	20	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	1 J	ND	ND
Carbon disulfide	μg/L	5	NA	ND	ND	ND	ND	ND	ND	37	2 J	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	50	NA	ND	4 JB	2 JB	2 JB	2 JB	1 JB	ND	5 B	1	9 B	2 J	2 JB	3 J	3 JB	7 B	ND	ND	ND	NA	1 JB	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	μg/L	30	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (Total)	μg/L	30	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	1 J	ND	1 J
Acetone	μg/L	NV	NA	ND	14	12	ND	ND	ND	ND	ND	ND	8 J	ND	18	ND	ND	ND	ND	ND	ND	NA	36	15 J	23 J	ND	ND	ND	ND
Chloroform	μg/L	150	NA	ND	6	ND	ND	ND	12	13	10	10	11	6	ND	ND	ND	ND	4 J	7	5 J	NA	ND	33	ND	ND	ND	ND	ND
2-Butanone	μg/L	NV	NA	ND	ND	ND	ND	ND	ND	ND	ND	80	ND	ND	ND	ND	ND	ND	ND	13	ND	NA	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	30	NA	ND	ND	ND	ND	ND	ND	2 J	2 J	2	2 J	2 J	2	ND	ND	ND	ND	1 J	ND	NA	ND	4 J	ND	ND	ND	ND	ND
Benzene	μg/L	10	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	1 J
Toluene	μg/L	10	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	1 J	1 J
2-Hexanone	μg/L	5	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	10	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	μg/L	10	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	μg/L	NV	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	NV	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes, Total	μg/L	10	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	NV	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	ND	13	ND	ND	ND	ND	ND
Tetrachloroethene	μg/L	NV	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	μg/L	-		0.0	24.0	14.0	2.0	2.0	13.0	52.0	19.0	95.0	30.0	10.0	22.0	3.0	3.0	7.0	4.0	21.0	5.0	0.0	37.0	65.0	23.0	0.0	4.0	1.0	3.0
Aluminum, Total	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	88.8 B	14.9 B	24.9 B	ND	ND
Antimony, Total	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	1.9 B	ND	ND	ND
Arsenic, Total	μg/L	150	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	3.9 B	3.2 B	10.6	6.5 B
Barium, Total	μg/L	Monitor	NA	ND	59.1	62.8	66.4	ND	ND	72.0	59.5	76.9	86.3	NA	93.8	67.1	176	202	111	59 B	86.2 B	NA	ND	54.3 B	152 B	157 B	160 B	166 B	161 B
Cadmium, Total	μg/L	1	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	0.42 B	ND	ND	0.36 B	0.71 B
Calcium, Total	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 10.7	NA	NA	NA	NA	NA	NA	124,000	125,000	123,000	118,000	116,000
Chromium, Total	μg/L	210	NA	ND ND	ND	ND	ND	ND	ND	ND	17 ND	ND	ND	NA	ND ND	ND	8.5	13.7	ND ND	ND	ND	NA	ND ND	1.2 B	1.2 B	1.5 B	3 B	0.92 B	1.2 B
Cobalt, Total	μg/L	24	NA		ND	ND	ND	NA 49.1	ND 483	ND 62		ND	ND 00.0	NA		ND 25.2	33.8	53.4		ND 22.6 B	ND 10.0 D	NA		3 B	14.1 B	15 B ND	13.8 B	15.2	14.4 B
Copper, Total Iron, Total	μg/L	300	NA NA	28.2 148	60.0 116	50.3 262	67.0 122	154	246	237	46.2 595	473 262	29.9 458	NA NA	22.2 199	189	26.9 688	22.2 2.240	14.8 10.500	357	19.8 B 4.260	NA NA	17.4 2.440	7.9 B	ND 20.200	17.200	ND 19.400	ND 19.100	ND 24,400
Lead, Total	μg/L μg/L	3.2	NA	4.53	15.2	6.85	ND	3.38	10.4	237 ND	ND	42.2	436 ND	NA	ND	4.2	7.1	2,240 ND	4.4	ND	4,260	NA	3.2	5,420 11.4	7.7	7.1	7.3	7.5	9.6
Magnesium, Total	μg/L μg/L		NA	4.53 NA	NA	0.05 NA	NA	3.30 NA	NA	NA	NA	42.2 NA	NA	NA	NA	4.2 NA	NA	NA	A.4 NA	NA	NA	NA	NA	NA	32,500	34,000	35,900	32,800	33,600
0 /	μg/L μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,620	2.640	2,580	2,280	2,770
Manganese, Total	10								NA	ND		NA	NA			NA		-	NA		-		NA	NA ND	2,620 ND	2,640 ND	2,580 ND	2,280 ND	2,770 ND
Mercury, Total Nickel, Total	μg/L μg/l	0.8 9.6	NA NA	ND ND	ND ND	NA ND	NA ND	NA NA	ND	ND	ND ND	ND	ND	NA NA	0.817 ND	ND	ND 31.2	ND 30.2	ND	ND ND	ND ND	NA NA	ND	4.8 B	16.4 B	17.6 B	15.5 B	17.9 B	13.9 B
Potassium	μg/L μg/L	9.6 NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	31.2 NA	30.2 NA	NA	NA	ND	NA	NA	4.8 B	8.800	9.260	8.340	9.760	7.870
Silver	μg/L μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.1	9,260 3.1 B	8,340 3.3 B	9,760 4.7 B	7,870 3.9 B
Sodium	μg/L μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	53,000	55.900	57,400	4.7 D 55,400	53,100
Thallium	μg/L μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	53,000 ND	55,900 ND	57,400 ND	55,400 ND	53,100 ND
Vanadium. Total	μg/L μα/L	14	NA	ND	ND	ND	NA	NA	ND	ND	NA	ND	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	2.3 B	2.2 B	1.7 B	3.7 B	2.2 B
Zinc, Total	μg/L μg/L	14	NA	131	96.2	108	108	75	233	139	97.3	398	222	NA	312	438	141	280	58.9	34.3	181	NA	208	63.6 B	2.3 D 11.6 B	9.3 B	ND	23.1	62.9
Total Dissolved Solids	mg/L	500	NA	460	50.2	390	370	470	430	530	390	470	490	560	700	350	550	640	490	370	410	NA	140	420	670	700	730	340	730
Total Suspended Solids	mg/L	50	NA	460	5	14	1	470	430 ND	<u> </u>	390	470	430	3	5	350 4	300	10	30	370	13	NA	29	74	68	49	ND	540 50	41
i otai Suspended Solids	iliy/∟	50	IN/A	U	5	14	1	U		0	0	3	2	3	5	4	0	10	30	4	10	11/4	23	/4	00	43	ND	50	41

NOTES:

Effluent samples are occasionally collected prior to treatment in effluent polishing pond. Data are shown for all analytes for which monitoring requirements have been established. Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics. **J & E** - Each indicates an estimated concentration.

 ${\boldsymbol{\mathsf{B}}}$ - Indicates a "trace" concentration below the reporting

limit, and equal to or above the detection limit for the metal. $\ensuremath{\text{ND}}$ - Compound not detected at or above the detection limit.

NA - Not Analyzed

		Discharge	1							EFFLUENT	- 1999 co	ont.												EFFLUE	NT - 2000					
Analyte	Units	Limit	5/20/99	5/25/99	6/2/99	6/10/99	6/16/99	6/23/99	6/30/99	7/7/99	7/14/99	7/22/99	7/28/99	8/18/99	9/23/99	10/20/99	11/16/99	12/15/99	1/12/00	2/22/00	3/28/00	4/11/00	5/10/00	6/14/00	7/15/00	8/16/00	9/20/00	10/11/00	11/7/00	12/13/00
Vinyl Chloride	μg/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Bromomethane	μg/L	NV	ND	ND	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Chloroethane	μg/L	20	ND	ND	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Carbon disulfide	μg/L	5	ND	ND	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Methylene Chloride	μg/L	50	ND	ND	ND	0.2 BJ	0.2 BJ	ND	0.2 BJ	0.8 BJ	0.4 BJ	0.5 BJ	0.6 BJ	ND	0.2 BJ	0.2 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	0.2 BJ	ND	NA	ND	ND	0.2 BJ	0.4 BJ	0.2 BJ
Methyl t-butyl ether	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
1,1-Dichloroethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
1,2-Dichloroethene (Total)	μg/L	30	ND	0.3 J	ND	0.1 J	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	0.9 J						
Acetone	μg/L	NV	ND	13 B	19 B	14 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	4 J						
Chloroform	μg/L	150	ND	ND	0.08 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
2-Butanone	μg/L	NV	ND	7 BJ	4 BJ	3 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND						
Bromodichloromethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Benzene	μg/L	10	ND	ND	0.09 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Toluene	μg/L	10	ND	ND	0.2 BJ	0.5 BJ	0.3 BJ	0.1 B	0.5 BJ	2 J	ND	0.5 BJ	0.7 BJ	0.2 J	0.3 J	ND	0.8 BJ	ND	ND	ND	ND	ND	0.4 J	0.4 BJ	NA	0.7 J	ND	0.3 J	0.2 BJ	0.4 J
2-Hexanone	μg/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Chlorobenzene	μg/L	10	ND	ND	0.08 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	0.04 J
Ethylbenzene	μg/L	10	ND	ND	0.2 BJ	0.2 BJ	ND	ND	ND	ND	ND	0.02 BJ	ND	0.7 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Styrene	μg/L	NV	ND	ND	0.2 BJ	0.3 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02 BJ	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Bromoform	μg/L	NV	ND	ND	ND	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Isopropylbenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
1,3-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
1,4-Dichlorobenzene	μg/L	NV	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	μg/L	NV	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	μg/L	NV	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							
Xylenes, Total	μg/L	10	ND	ND	0.8 BJ	0.8 BJ	0.2 BJ	0.06 BJ	0.1 BJ	ND	ND	0.2 BJ	ND	0.3 BJ	ND	ND	0.1 BJ	ND	0.1 J	ND	ND	ND	ND	0.1 BJ	NA	0.1 BJ	0.03 J	0.1 BJ	0.07 BJ	0.06 BJ
Trichloroethene	μg/L	NV	ND	ND	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Tetrachloroethene	μg/L	NV	ND	ND	0.05 BJ	0.04 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Total VOCs	μg/L	-	0.0	0.0	1.53	2.24	0.7	0.16	0.8	23.1	23.4	19.19	1.5	1.2	0.5	0.2	1.12	0.1	1.1	0.0	0.0	0.0	0.6	0.5		0.8	0.03	0.6	0.67	5.6
Aluminum, Total	μg/L	NV	30.9 B	43.6 B	32	ND	ND	ND	ND	59	ND	115	ND	ND	348	ND	ND	ND	399	41	49	650	ND	ND	NA	39	ND	ND	153	53
Antimony, Total	μg/L	NV	20.8 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND						
Arsenic, Total	μg/L	150	ND	10	ND	17	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	18	ND	ND	ND	18						
Barium, Total	μg/L	Monitor	49.6 B	50.8 B	25	36	41	43	70	155	75	186	142	90	67	46	56	67	99	51	25	25	93	52	NA	120	76	96	82	168
Cadmium, Total	μg/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Calcium, Total	μg/L	NV	88,100	103,000	83,700	92.2	98.1	103	88.7	128	82.4	123	109	103	57.8	92,000	96,400	103,000	103,000	124,000	34,200	33,900	95,200	71,600	NA	76,900	92,200	86,900	83,900	120,000
Chromium, Total	μg/L	210	1.2 B	1.1 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Cobalt, Total	μg/L	5	1.9 B	3.8 B	ND	ND	ND	ND	ND	6	ND	5	ND	ND	ND	ND	ND	ND	8	5	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Copper, Total	μg/L	24	1.4 B	2.2 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Iron, Total	μg/L	300	520	529	389	1,090	766	280	476	7,470	98	24,000	4,500	210	1,150	39	82	81	7,690	339	467	1,100	11,600	7,190	NA	39,600	5,300	8,260	8,300	18,900
Lead, Total	μg/L	3.2	5.2 B	8.1 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Magnesium, Total	μg/L	NV	35,800	35,100	31,700	35.4	36.1	37.5	36.5	37.8	33.5	35.8	32.6	33.3	15	26,400	27,200	29,100	20,300	48,800	8,300	7,800	23,600	18,300	NA	20,100	25,900	25,000	25,200	31,500
Manganese, Total	μg/L	NV	445	507	1,480	2,290	715	162	1,270	1,380	103	1,400	786	437	987	11	27	7	1,760	1,330	289	117	1,290	812	NA	1,250	1,050	837	1,050	2,490
Mercury, Total	μg/L	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND							
Nickel, Total	μg/L	9.6	9.1 B	11.4 B	11	10	5	6	6	12	5	9	8	ND	ND	5	7	5	8	7	ND	ND	6	ND	NA	ND	ND	8	ND	10
Potassium	μg/L	NV	6,570	6,400	4,800	4.8	4.7	2.8	2.5	11.8	2.3	11.2	10.4	6.6	6.6	5,600	8,400	9,000	5,200	1,900	1,100	1,400	5,800	2,300	NA	4,600	6,700	11,000	9,800	13,900
Silver	μg/L	NV	3.9 B	2.7 B	ŃD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ŃD	ND	ŃD
Sodium	μg/L	NV	49,300	57,300	56,100	61.2	62.7	64.7	60.6	73	54.5	62.9	62.4	60.4	20.1	38,400	44,100	41,900	30,400	44,000	8,000	6,300	38,200	25,600	NA	32,000	38,600	43,800	35,100	50,900
Thallium	μg/L	NV	ŃD	ŃD	ŃD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ŃD	ŃD	ŃD	ŃD	ŃD	ND	ND	ND	ŃD	NA	ŃD	ŃD	ŃD	ŃD	ŃD
Vanadium, Total	μg/L	14	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	5	ND	ND	ND	ND							
Zinc, Total	μg/L	170	40 B	42.5 B	53	70	55	23	25	ND	18	12	ND	35	110	ND	17	30	ND	201	ND	ND	ND	ND	NA	41	ND	ND	ND	ND
Total Dissolved Solids	mg/L	500	550	620	580	622	663	666	617	702	547	747	676	643	309	501	541	564	478	604	140	179	470	320	NA	410	516	NA	487	640
Total Suspended Solids	mg/L	50	ND	ND	4	10	5	10	17	25	3	17	21	6	11	ND	ND	ND	44	3	4	10	32	15	NA	63	14	23	64	45
1	~								•	•		•	•	•								•	•							

NOTES:

Effluent samples are occasionally collected prior to treatment in effluent polishing pond. Data are shown for all analytes for which monitoring requirements have been established. Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics. **J & E** - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting

limit, and equal to or above the detection limit for the metal. \mathbf{ND} - Compound not detected at or above the detection limit.

NA - Not Analyzed

		Discharge	1					EFFLUE	NT - 2001											EFFLUE	NT - 2002				
Analyte	Units	Limit	1/10/01	2/14/01	3/13/01	4/11/01	5/9/01	6/13/01	7/11/01	8/15/01	9/10/01	10/10/01	11/14/01	12/12/01	1/9/02	2/13/02	3/12/02	4/10/02	5/8/02	6/11/02	7/10/02	8/7/02	9/4/02	10/9/02	11/6/02 12/10/02
Vinyl Chloride	μg/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33 ND
Bromomethane	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Chloroethane	μg/L	20	ND	ND	ND	ND	ND	ND	ND	0.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1J 0.6J
Carbon disulfide	μg/L	5	ND	ND	0.2 BJ	0.04 BJ	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	0.2 BJ	ND	ND	0.1 BJ	0.2 BJ	ND	ND	0.1 BJ	ND 0.2 BJ
Methylene Chloride	μg/L	50	0.4 BJ	0.2 BJ	0.2 BJ	0.3 BJ	0.09 BJ	0.3 BJ	0.1 BJ	0.2 BJ	0.1 BJ	0.2 BJ	0.3 BJ	0.3 BJ	0.3 BJ	0.5 BJ	0.1 BJ	ND	0.1 BJ	ND	0.1 BJ	ND	ND	ND	0.3 BJ 0.4 BJ
Methyl t-butyl ether	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1-Dichloroethane	μg/L	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND ND									
1,2-Dichloroethene (Total)	μg/L	30	0.8 J	0.8 J	1 J	ND	ND	ND	ND	0.5 J	ND	0.4 J	0.4 J	0.8 J	ND	2 J	0.5 J	0.3 J	ND	0.2 J	ND	ND	ND	ND	16.4 6 J
Acetone	μg/L	NV	ND	3 BJ	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 7 J
Chloroform	μg/L	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
2-Butanone	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Bromodichloromethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Benzene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J ND
Toluene	μg/L	10	ND	ND	ND	0.1 J	0.06 BJ	ND	0.2 BJ	0.3 BJ	0.07 BJ	0.3 BJ	0.06 J	ND	ND	0.3 J	0.1 BJ	ND	ND	ND	ND	0.04 J	0.1 J	0.7 BJ	0.7 BJ 1 BJ
2-Hexanone	μg/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Chlorobenzene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9 J ND
Ethylbenzene	μg/L	10	ND	ND	ND	ND	0.06 BJ	0.05 BJ	0.06 BJ	0.05 BJ	ND	ND	ND	0.1 BJ	0.04 BJ	0.06 BJ	0.1 BJ	0.08 BJ	0.07 BJ	ND	0.06 BJ	ND	0.05 J	0.07 BJ	0.2 BJ 0.07 BJ
Styrene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1 BJ	ND	ND ND						
Bromoform	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Isopropylbenzene	μg/L	NV	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	ND	0.1 BJ	ND	ND	0.1 BJ	ND	0.5 J ND						
1,3-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	0.02 BJ	ND	0.03 BJ	0.01 BJ	0.01 BJ	ND	ND	0.3 BJ	0.1 BJ	0.1 BJ	0.4 BJ	0.2 BJ	0.2 BJ	0.2 BJ	0.2 BJ	ND	ND	0.1 BJ	0.1 BJ 0.2 BJ
1,4-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	0.02 BJ	ND	0.04 BJ	0.02 BJ	0.03 BJ	ND	ND	0.4 BJ	0.1 BJ	0.1 BJ	0.4 BJ	0.3 BJ	0.2 BJ	0.09 BJ	0.2 BJ	ND	0.02 BJ	0.2 BJ	0.2 BJ 0.2 BJ
1,2-Dichlorobenzene	μg/L	NV	NA	NA	NA	NA	0.02 BJ	ND	0.04 BJ	ND	0.02 BJ	ND	ND	0.2 BJ	0.06 BJ	0.07 BJ	0.3 BJ	0.2 BJ	0.2 BJ	0.09 BJ	0.1 BJ	ND	ND	0.08 BJ	0.1 BJ 0.2 BJ
1,2,4-Trichlorobenzene	μg/L	NV	NA	NA	NA	NA	0.06 BJ	ND	0.2 BJ	0.06	0.08 BJ	0.07 BJ	0.06 BJ	0.7 BJ	0.3 BJ	0.2 BJ	1 BJ	2 BJ	0.9 BJ	2 BJ	0.1 BJ	ND	ND	0.3 BJ	0.1 B 0.2 BJ
Xylenes, Total	μg/L	10	0.05 BJ	0.04 BJ	0.03 J	ND	0.1 BJ	0.08 BJ	0.4 BJ	0.3 BJ	0.04 BJ	0.08 BJ	ND	0.4 BJ	0.1 BJ	0.2 BJ	0.5 BJ	0.4 BJ	0.2 BJ	ND	0.4 BJ	0.2 BJ	ND	0.3 BJ	0.4 BJ 0.3 BJ
Trichloroethene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Tetrachloroethene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3 BJ	0.06 BJ	ND	0.3 BJ	0.2 BJ	0.1 BJ	0.09 BJ	0.2 BJ	ND	0.06 BJ	0.1 BJ	0.06 BJ 0.1 BJ
Total VOCs	μg/L	-	1.25	4.04	1.43	0.44	0.43	3.43	1.07	1.64	0.35	1.05	0.82	3.60	1.06	3.53	4.1	3.68	1.97	2.77	1.56	0.24	0.23	1.95	56.96 16.47
Aluminum, Total	μg/L	NV	ND	39	484	253	103	ND	53	40	344	125	ND	72	63	ND	ND	ND	ND	ND	305	ND	ND	ND	81 230
Antimony, Total	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 5
Arsenic, Total	μg/L	150	ND	ND	ND	ND	ND	ND	ND	ND	ND 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	7	ND	ND	ND	11 7
Barium, Total	μg/L	Monitor	69	75	50	/	29 ND	21	28	144	46	41	43	81	36	106	74	68	65 ND	36	89 ND	33	43	56	430 180
Cadmium, Total	μg/L		ND	ND 0.1.000	ND	ND	ND	ND 10.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 07.000	ND ND
Calcium, Total	μg/L	NV 010	105,000	94,900	68,500	5,300	70,100	42,900	66,000	120,000	105,000	111,000	124,000	121,000	117,000	115,000	69,000	77,000	87,000	115,000	104,000	100,000	90,000	97,000	160,000 130,000
Chromium, Total	μg/L	210 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND 5	ND ND	ND ND 7 10
Cobalt, Total Copper, Total	μg/L μg/L	5 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	7	ND ND	D ND	ND ND	ND ND
Iron, Total	μg/L μg/L	300	1.320	1,920	1,230	575	343	569	643	55.600	4.350	4480	574	1010	978	1,600	4,070	1,170	5.720	51	22.200	300	4.530	2.370	39.000 30.000
Lead, Total	μg/L μg/L	3.2	ND	ND	ND	ND	343 ND	ND	ND	ND	4,350 ND	ND	22	ND	ND	ND	4,070 ND	ND	ND	ND	ND	ND	4,530 ND	2,370 ND	ND ND
Magnesium, Total	μg/L μg/L	NV	32.300	29.500	21.400	2,500	25.200	17.700	23.800	44.700	42.000	40.400	49.000	30.900	55.100	30,000	16.000	18.000	28.000	55.000	50.000	50.000	45.000	44.000	40,000 30,000
Magnesiani, Total Manganese, Total	μg/L μg/L	NV	1300	29,500	1370	86	209	158	452	2,190	973	668	1,810	30,900	1,730	1,260	1,290	426	780	21	1,490	186	1,590	1,250	2,600 3,800
Manganese, Total Mercury, Total	μg/L μg/L	0.8	ND	2450 ND	ND	ND	209 ND	ND	432 ND	2,190 ND	973 ND	ND	ND	399 ND	ND	1,260 ND	1,290 ND	426 ND	ND	ND	1,490 ND	ND	1,390 ND	1,250 ND	ND ND
Nickel, Total	μg/L μg/L	9.6	ND	5	5	ND	5	ND	ND	6	ND	ND	ND	ND	5	8	ND	6	ND	7	ND	ND	ND	ND	14 8
Potassium	μg/L μg/L	9.0 NV	8.600	7,800	5,700	ND	3.600	3,000	2,900	8,800	4,500	5,300	6,600	12,600	4,200	8,000	5,000	5,000	5,000	4,000	3,000	3,000	3,000	4,000	27,000 13,000
Silver	μg/L μg/L	NV	0,000 ND	7,000 ND	0,700 ND	ND	0,000 ND	ND	2,300 ND	0,000 ND	4,300 ND	0,000 ND	0,000 ND	ND	4,200 ND	0,000 ND	3,000 ND	0,000 ND	0,000 ND	4,000 ND	0,000 ND	0,000 ND	3,000 ND	4,000 ND	ND ND
Sodium	μg/L μg/L	NV	41.900	37.300	30.600	1.500	21.200	20,700	23.000	37.100	46.100	46.000	37.700	56.700	39.400	40.000	17.000	20.000	27.000	38.000	34.000	33.000	31.000	28.000	120.000 49.000
Thallium	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	+0,100 ND	+0,000 ND	ND	ND	ND	15	11	11	6	15	ND	ND	ND	15	ND 10
Vanadium. Total	μg/L	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 5
Zinc, Total	μg/L	170	48	19	29	15	110	62	13	129	56	46	ND	34	ND	7	ND	ND	7	ND	46	ND	16	29	18 18
Total Dissolved Solids	mg/L	500	570	510	410	84	374	280	380	680	600	650	700	710	730	630	360	370	470	690	630	640	680	640	960 670
Total Suspended Solids	mg/L	50	6	10	20	9	ND	200	4	13	33	8	3	10	6	33	3	2	19	13	49	ND	14	90	79 59
			i v					-		.0	50	, v	, J		Ň			-			10				

NOTES:

Effluent samples are occasionally collected prior to treatment in effluent polishing pond. Data are shown for all analytes for which monitoring requirements have been established. Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics. **J & E** - Each indicates an estimated concentration.

 ${\bf B}$ - Indicates a "trace" concentration below the reporting

limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

		Discharge						EFFLUE	NT - 2003								EFFL
Analyte	Units	Limit	1/8/03	2/5/03	3/5/03	4/9/03	5/7/03	6/24/03	7/24/03	8/22/03	9/10/03	10/24/03	11/21/03	12/11/03	1/22/04	2/24/04	3/26/0
Vinvl Chloride	μg/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Bromomethane	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chloroethane	μg/L	20	0.7 J	ND	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	μg/L	5	ND	0.1 J	0.1 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	50	0.4 BJ	0.2 BJ	0.2 BJ	0.2 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether	μg/L	NV	ND	0.2 J	0.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	30	ND	ND	0.06 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (Total)	μg/L	30	7 J	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	μg/L	NV	4 J	8 J	10 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L	150	ND	ND	ND	ND	ND	ND	ND	ND	ND						
2-Butanone	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Bromodichloromethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Benzene	μg/L	10	0.4 J	0.3 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	10	0.4 J	0.9 J	1 BJ	0.1 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	μg/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Chlorobenzene	μg/L	10	ND	ND	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	μg/L	10	0.1 BJ	0.06 BJ	0.05 BJ	0.08 BJ	0.07 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	μg/L	NV	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Isopropylbenzene	μg/L	NV	0.2 BJ	0.07 BJ	0.06 BJ	0.08 BJ	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	μg/L	NV	0.2 BJ	0.1 BJ	0.09 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	NV	0.3 BJ	0.2 BJ	0.1 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	NV	0.2 BJ	0.1 BJ	0.05 BJ	0.1 BJ	0.08 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	μg/L	NV	0.8 BJ	0.1 BJ	0.05 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	μg/L	10	0.4 BJ	0.2 BJ	0.2 BJ	0.3 BJ	0.2 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Tetrachloroethene	μg/L	NV	0.1 BJ	0.1 BJ	0.07 BJ	0.2 BJ	0.1 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	μg/L	-	15.30	14.63	13.43	1.76	0.95	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aluminum, Total	μg/L	NV	220	76	94	1,000	NA	ND	196	102	69	360	1,300	99	130	85	NA
Antimony, Total	μg/L	NV	7	9	7	ND	ND	ND	ND	ND	ND	ND	4 BJ	ND	ND	ND	NA
Arsenic, Total	μg/L	150	ND	6	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Barium, Total	μg/L	Monitor	150	160	170	27	25	37 B	ND	60	58 B	60 BJ	20 BJ	20 BJ	30 BJ	50 BJ	NA
Cadmium, Total	μg/L	1	ND	ND	ND	ND	1.4	ND	ND	ND	NA						
Calcium, Total	μg/L	NV	110,000	110,000	120,000	26,000	78,000	130,000	92,900	139,000	136,000	160,000	29,000	120,000	130,000	140,000	NA
Chromium, Total	μg/L	210	ND	ND	ND	2 BJ	3 BJ	2 BJ	2 BJ	3 BJ	NA						
Cobalt, Total	μg/L	5	9	8	9	ND	ND	ND	ND	ND	ND	4 BJ	1 BJ	1 BJ	1 BJ	3 BJ	NA
Copper, Total	μg/L	24	ND	ND	ND	3 BJ	5.6	2 BJ	2 BJ	2 BJ	NA						
Iron, Total	μg/L	300	22,000	27,000	34,000	1,500	190	7,470	809	12,600	11,500	9,000	1,600	170	2,100	2,000	NA
Lead, Total	μg/L	3.2	ND	ND	ND	2 BJ	2 BJ	0.6 BJ	0.5 BJ	0.8 BJ	NA						
Magnesium, Total	μg/L	NV	26,000	23,000	25,000	11,000	22,000	49,300	23,300	43,200	42,300	68,000	10,000	30,000	35,000	60,000	NA
Manganese, Total	μg/L	NV	2,700	3,100	3,300	100	13	1520	92 B	1810	1,790	1,200	56	70	140	850	NA
Mercury, Total	μg/L	0.8	ND	ND	ND	ND	ND	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA
Nickel, Total	μg/L	9.6	7	5	6	ND	ND	ND	ND	ND	ND	6.1	4 BJ	2 BJ	3 BJ	4 BJ	NA
Potassium	μg/L	NV	8,000	9,000	9,000	3,000	3,000	6,670	1,760	6,530	6,080	6,300	5,900	2,600	3,800	7,600	NA
Silver	μg/L	NV	ND	ND	ND	ND	0.68	0.86	ND	ND	NA						
Sodium	μg/L	NV	42,000	32,000	36,000	7,000	18,000	28,300	14,300	26,200	26,000	42,000	5,100	28,000	37,000	32,000	NA
Thallium	μg/L	NV	15	23	25	ND	15	ND	ND	ND	ND	0.9 BJ	0.7 BJ	0.9 BJ	0.5 BJ	0.2 BJ	NA
Vanadium, Total	μg/L	14	ND	ND	ND	3 BJ	3 BJ	0.4 BJ	0.8 BJ	1 BJ	NA						
Zinc, Total	μg/L	170	13	6	12	62	10	ND	11 B	ND	ND	47	63	18	13	16	NA
Total Dissolved Solids	mg/L	500	600	530	550	140	424	NA	440	600	590	674	152	419	471	580	138
Total Suspended Solids	mg/L	50	51	61	77	44	5	NA	24	24	28	53	15.3 J	ND	ND	ND	ND

NOTES:

Effluent samples are occasionally collected prior to treatment in effluent polishing pond. Data are shown for all analytes for which monitoring requirements have been established. Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics. J & E - Each indicates an estimated concentration.

 ${\boldsymbol{\mathsf{B}}}$ - Indicates a "trace" concentration below the reporting

limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

EFFLUE	NT - 2004		
3/26/04	5/26/04	6/16/04	9/27/04
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
NA	NA	NA	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
ND	ND	ND	NA
0.0	0.0	0.0	NIA
NA	NA	NA	NA
NA NA	NA NA	NA NA	NA ND
NA	NA	NA	47.5
NA NA	NA NA	NA NA	ND NA
NA	NA	NA	1 1
NA	NA	NA	1.1
NA	NA	NA	1.1
NA	NA	NA	4,830
NA	NA	NA	-,050 ND
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	ND
NA	NA	NA	1.9
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	1.2
NA	NA	NA	28.4
138	160	450	NA
ND	NA	36	NA

		Discharge		EFF	FLUENT - 2	007							EFFLUE	NT - 2008								EFFLUE	NT - 2009		
Analyte	Units	Limit	8/30/07	9/20/07	10/24/07	11/19/07	12/17/07	1/21/08	2/18/08	3/20/08	4/24/08	5/13/08	6/23/08	7/21/08	8/18/08	9/15/08	10/13/08	11/10/08	12/9/08	1/6/09	2/12/09	3/12/09	4/9/09	5/28/09	6/23/09
Vinyl Chloride	μg/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/L	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	μg/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/L	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl t-butyl ether	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (Total)	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/L	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	μg/L	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	μg/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	μg/L	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	μg/L	NV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total VOCs	μg/L	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aluminum, Total	μg/L	NV	707	172 B	548	317	165 B	60.4 B	554	1,810	ND	33.2 B	62.8 B	61.6 B	67.6 B	75.9 B	79.4 B	ND	60.7 B	54.9	391	1,570	26.1 B	NA	NA
Antimony, Total	μg/L	NV	ND	ND	ND	ND	ND	ND	3.9 B	ND	ND	ND	ND	ND	ND	2.2 B	3.1 B	ND	ND	ND	2.6 B	ND	ND	NA	NA
Arsenic, Total	μg/L	150	ND	ND	15.5	ND	ND	ND	ND	ND	ND	ND	ND	7.9 B	6.8 B	ND	2.7 B	ND	ND	ND	ND	ND	ND	ND	ND
Barium, Total	μg/L	Monitor	88.1 B	59.2 B	141 B	45.2 B	60.6 B	33.5 B	44.7 B	38.4 B	29.0 B	40.1 B	27.7 B	86.2 B	78.7 B	39.3 B	69.9 B	24.7 B	56.4 B	43.5 B	40.9 B	30.7 B	48.2 B	62	68
Cadmium, Total	μg/L	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26 B	ND	ND	ND	ND	ND	ND
Calcium, Total	μg/L	NV	107,000	107,000	116,000	79,400	104,000	60,700	45,600	30,600	67,100	81,500	74,500	101,000	83,000	94,700	101,000	80,200	99,500	89,200	73,300	34,300	57,000	NA	NA
Chromium, Total	μg/L	210	0.38 B	ND	0.68 B	ND	ND	ND	0.70 B	2.9 B	0.23 B	ND	0.79 B	1.1 B	0.86 B	0.67 B	0.51 B	ND	0.77 B	0.89 B	1.2 B	2.8 B	0.38 B	ND	ND
Cobalt, Total	μg/L	5	6.7 B	4.0 B	3.7 B	2.0 B	1.6 B	0.73 B	0.97 B	1.4 B	1.6 B	1.3 B	0.65 B	1.2 B	2.5 B	2.9 B	0.67 B	0.46 B	1.4 B	0.80 B	0.90 B	1.3 B	0.76 B	<50**	<50**
Copper, Total	μg/L	24	5.0 B	6.0 B	11.7 B	4.9 B	7.3 B	7.3 B	3.6 B	10.0 B	4.4 B	16.7 B	5.3 B	24.9 B	5.2 B	10 B	2.7 B	3.5 B	5.6 B	6.5 B	7.9 B	3.5 B	4.7 B	ND	ND
Iron, Total	μg/L	300	20,100	9,460	35,600	2,080	569	123	2,160	2,500	270	1,450	586	11,500	9,420	1,200	13,100	157	1,340	410	1400	2260	4,840	5530	15100
Lead, Total	μg/L	3.2	1.3 B	4.0	9.4	ND	1.2 B	ND	ND	1.8 B	1.9 B	1.6 B	1.8 B	6.9	3.5	ND	ND	1.6 B	ND	1.3 B	ND	2.1 B	2.6 B	ND	ND
Magnesium, Total	μg/L	NV	57,200	47,700	20,200	21,400	22,600	21,900	11,300	7,750	18,300	24,900	21,700	14,700	15,700	19,100	28,800	25,600	25,100	26,300	18,600	11,000	12,300	NA	NA
Manganese, Total	μg/L	NV	932	427	1,640	30.5	217.0	114.0	215.0	202.0	134.0	261.0	85.7	1,270	1,220	257	1,260	119	501	29.2	74.2	52.5	710	NA	NA
Mercury, Total	μg/L	0.8	ND	ND	ND	0.075 B	ND	0.088 B	ND	ND	ND	0.092 B	ND	ND	ND	ND	ND	ND	ND	0.018 B	0.061 B	ND	ND	ND	ND
Nickel, Total	μg/L	9.6	6.0 B	6.0 B	7.7 B	4.2 B	6.0 B	3.3 B	3.4 B	3.2 B	3.2 B	2.7 B	3.4 B	3.2 B	3.7 B	4.6 B	4.1 B	2.5 B	3.5 B	4.0 B	3.3 B	3.5 B	3.0 B	ND	ND
Potassium	μg/L	NV	4,770	4,550	5,160	7,830	6,900	3,290 B	6,140	3,720	5,110	4,290 B	1,540 B	5,260	8,760	4,670 B	5,810	2,230	12,300	6,850	7,450	3,140	5,530	NA	NA
Silver	μg/L	NV	6.0 B	ND	1.4 B	ND	ND	6.7 B	3.3 B	5.7 B	ND	0.51 B	ND	1.8 B	4.4 B	0.34 B	ND 10.000	1.2 B	ND	ND	1.7 B	ND	ND	NA	NA
Sodium	μg/L	NV	32,700	31,600	33,000	17,600	16,700	16,600	9,640	6,100	14,800	19,000	19,600	18,900	22,900	24,400	42,000	21,700	38,700	33,100	25,900	8,180	16,900	NA	NA
Thallium	μg/L	NV	ND	4.4 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Vanadium, Total	μg/L	14	4.1 B	1.5 B	7.6 B	2.7 B	1.6 B	ND 7.0 D	1.4 B	3.3 B	ND	0.52 B	0.85 B	2.9 B	ND 05.0	1.3 B	1.4 B	0.43 B	0.44 B	0.45 B	1.8 B	3.0 B	0.43 B	<20*	<20*
Zinc, Total	μg/L	170	29.0	12.3 B	39.8 E	20 B	23.7	7.9 B	8.6 B	16.2 B	11.5 B	27.7	22.2	45.6	25.9	20.4	16 B E	6.4 B	14.3 B	15.2 B	27.2	35.0	4.3 B	18	ND
Total Dissolved Solids	mg/L	500	620	600	520	370	430	320	220	170	310	380	360	410	370	860	500	380	450	410	340	230	280	340	377
Total Suspended Solids	mg/L	50	100	46	78	<10	<10	<10	<10	<10	<10	<10	<10	<10	18	<10	28	32	<10	<10	15	<10	16	<1.0	42

NOTES:

Effluent samples are occasionally collected prior to treatment in effluent polishing pond. Data are shown for all analytes for which monitoring requirements have been established. Concentrations exceeding discharge limitations are shown in bold font in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics. J & E - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

NV - No Value

*5/28/09 and 6/23/09 vanadium analysis has a PQL (20 ug/L) higher than discharge limit (14 ug/L). **5/28/09 and 6/23/09 cobalt analysis has a PQL (50 ug/L) higher

than discharge limit (5 ug/L).

Appendix A

IC/EC Certification Forms

New York State Department of Environmental Conservation

Division of Environmental Remediation, 11th Floor

625 Broadway, Albany, New York 12233-7011 Phone: (518) 402-9553 Fax: (518) 402-9577 Website: www.dec.ny.gov

45-Day Reminder Notice: Site Management Periodic Review

Fort Edward, NY 12828

August 21, 2009 Site Name: Fort Edward Landfill Site No.: 558001 Site Address: Burgoyne Avenue Fort Edward, NY 12828

Dear :

This is a reminder that as part of the last phase of a site's remedial program (i.e., "Site Management" (SM)), a progress report for your site is to be submitted by you, the site owner or Remedial Party, to the New York State Department of Environmental Conservation (Department) by **Monday, November 2, 2009**. This report, now referred to as the Periodic Review Report (PRR) documents the implementation of and compliance with the Site Management requirements for this site. SM is a concept defined in regulation (6 NYCRR 375-1.2(at)). A suggested outline for the PRR is enclosed. If the site is comprised of multiple properties or parcels, then you as the owner or Remedial Party must arrange to submit one PRR for all parcels that comprise the site.

Depending on the age of the remedial program for your site, the document(s) governing SM for your site will be different. Previously, SM requirements were contained in separate documents with specific titles (e.g., Operation, Maintenance, and Monitoring Plan or Soil Management Plan) and are now being incorporated into one comprehensive "Site Management Plan" (SMP). A SMP may contain one or all of the following elements as applicable to the site; a plan to maintain institutional and/or engineering controls ("IC/EC Plan"), a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"), and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the requirements for SM are normally stated in the decision document (e.g., Record of Decision) and/or the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), please sign and include the enclosed forms documenting that all SM requirements are being met. If there is some reason you cannot certify that all SM requirements are being met, you should indicate this and include a statement of explanation in the PRR with a schedule for addressing the problem(s). The Periodic Review process will not be considered complete until all necessary corrective measures are completed and any required controls are certified. Instructions for completing the certifications are enclosed.

If you have any questions, or need additional information, please contact Payson Long, Project Manager at 518-402-9813.

Enclosures

ec: Payson Long, Project Manager Robert Knizek, Bureau Director Russ Huyck, Hazardous Waste Remediation Engineer, Region 5 Gary Litwin, DOH

cc: Fort Edward Corp

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. 558001	ite Details	Box 1	
Sit	e Name Fort Edward Landfill			
Sit	e Address: Burgoyne Avenue Zip Code	e: 12828		
Cit	y/Town: Fort Edward			
Co	unty: Washington			
Alle	owable Use(s) (if applicable, does not add	ress local zoning): Industrial		
Sit	e Acreage: 23.0			
			Bo	x 2
	Verifica	tion of Site Details	YES	NO
1.	Are the Site Details above, correct?			
1.	If NO, are changes handwritten above or	included on a congrate cheet?		
2.	Has some or all of the site property been		_	
۷.	tax map amendment since the initial/last			
	If YES, is documentation or evidence tha submitted included with this certification?			
3.	Have any federal, state, and/or local perr for or at the property since the initial/last		ed □	
	If YES, is documentation (or evidence the submitted) included with this certification			
4.	If use of the site is restricted, is the curre restrictions?	nt use of the site consistent with those		
	If NO, is an explanation included with this	s certification?		
5.	For non-significant-threat Brownfield Clean has any new information revealed that as Assessment regarding offsite contaminat	ssumptions made in the Qualitative Expo		
	If YES, is the new information or evidenc submitted included with this Certification?		sly □	
6.	For non-significant-threat Brownfield Clea		415.7(c),	
	are the assumptions in the Qualitative Excertified every five years)?	posure Assessment suit valla (must de		
	If NO, are changes in the assessment inc	cluded with this certification?		

SITE NO. 558001		Box 3									
Description of Institutiona	al Controls										
Parcel	Institutional Control										
S_B_L Image: 1631-2											
0	Decision Document										
	Ground Water Use Restriction										
	Landuse Restriction										
	Soil Management Plan										
	Surface Water Use Restriction										
		Box 4									
Description of Engineerin	g Controls										
Parcel	Engineering Control										
 S_B_L Image: 1631-2											
0	Cover System										
	Fencing/Access Control										
	Groundwater Containment										
	Leachate Collection										
	Point-of-Entry Water Treatment										
	Pump & Treat Subsurface Barriers										
	Subsultace Dalliels										
Attach documentation if IC/EC (See instructions)	s cannot be certified or why IC/ECs are no longer applicable.										
	Control Description for Site No. 558001										
Parcel: 1631-2											

		Box 5
Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification; 	ction of	, and
b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gene engineering practices; and the information presented is accurate and compete.		
	YES	NO
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below tha following statements are true: 	each Ir at all of t	nstitutional he
(a) the Institutional Control and/or Engineering Control(s) employed at this site i the date that the Control was put in-place, or was last approved by the Departme		anged since
(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public ł	nealth and
 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	e the rer	nedy,
(d) nothing has occurred that would constitute a violation or failure to comply wir Management Plan for this Control; and	th the S	ite
(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the subscription of the su		
	YES	NO
 If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in Document); 	n the De	ecision
I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as req	luired in	the
Decision Document) are being met.	YES	NO
4. If this site has a Monitoring Plan (or equivalent as required in the remedy selection do	cument)	;
I certify by checking "YES" below that the requirements of the Monitoring Plan (or equiva	alent as	required
in the Decision Document) is being met.	YES	NO

		RTIFICATIONS E NO. 558001	
			Box 6
l certify that all inform		Boxes 2 and/or 3 are true	E SIGNATURE e. I understand that a false rsuant to Section 210.45 of the
	at		
print nai	ne	print business ad	dress
am certifying as			(Owner or Remedial Party)
or the Site named in	n the Site Details Section of	of this form.	
Signature of Owner	or Remedial Party Render	ring Certification	Date
		ERTIFICATIONS	Box 7
I certify that all inform	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu	TAL PROFESSIONAL (Control of the true. I understand the uant to Section 210.45 of the true	QEP) SIGNATURE at a false statement made herein is of the Penal Law.
l certify that all inforr punishable as a Cla I print nar	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, purst at me	TAL PROFESSIONAL (C re true. I understand tha uant to Section 210.45 o print business add	QEP) SIGNATURE at a false statement made herein is of the Penal Law.
I certify that all inforr punishable as a Clas I print nai am certifying as a Q	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu	TAL PROFESSIONAL (C re true. I understand that uant to Section 210.45 o print business add ofessional for the	QEP) SIGNATURE at a false statement made herein is of the Penal Law. , dress
I certify that all inforr punishable as a Clas I print nai am certifying as a Q	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro	TAL PROFESSIONAL (C re true. I understand that uant to Section 210.45 o print business add ofessional for the	QEP) SIGNATURE at a false statement made herein is of the Penal Law. , dress
I certify that all inforr punishable as a Clas I print nai am certifying as a Q	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro	TAL PROFESSIONAL (C re true. I understand that uant to Section 210.45 o print business add ofessional for the	QEP) SIGNATURE at a false statement made herein is of the Penal Law. , dress
I certify that all inforr punishable as a Clas I print nai am certifying as a Q	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro	TAL PROFESSIONAL (C re true. I understand that uant to Section 210.45 o print business add ofessional for the	QEP) SIGNATURE at a false statement made herein is of the Penal Law. , dress
I certify that all inforr punishable as a Clas I print nai am certifying as a Q	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro	TAL PROFESSIONAL (C re true. I understand that uant to Section 210.45 of print business add ofessional for the	QEP) SIGNATURE at a false statement made herein is of the Penal Law.
I certify that all inforr punishable as a Cla I print nar am certifying as a Q (Owner or Remedial Gignature of Qualifie	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro Party) for the Site named	TAL PROFESSIONAL (Greature in the integration of the integrated of the integration of the integration of the integr	QEP) SIGNATURE at a false statement made herein is of the Penal Law. , dress
I certify that all inforr punishable as a Cla I print nar am certifying as a Q (Owner or Remedial Gignature of Qualifie	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro Party) for the Site named	TAL PROFESSIONAL (Greature in the integration of the integrated of the integration of the integration of the integr	QEP) SIGNATURE at a false statement made herein is of the Penal Law.
I certify that all inforr punishable as a Cla I print nar am certifying as a Q (Owner or Remedial Gignature of Qualifie	ALIFIED ENVIRONMENT mation in Boxes 4 and 5 and ss "A" misdemeanor, pursu at me ualified Environmental Pro Party) for the Site named	TAL PROFESSIONAL (Greature in the integration of the integrated of the integration of the integration of the integr	QEP) SIGNATURE at a false statement made herein is of the Penal Law.

Enclosure 2

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the six questions in the Verification of Site Details Section. Questions 5 and 6 only refer to sites in the Brownfield Cleanup Program. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional / Engineering Controls (Boxes 3, 4, and 5)

- 1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party is to petition the Department requesting approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you cannot certify "YES" for each Control and/or certify the other SM Plan components that are applicable, continue to complete the remainder of this **Certification** form. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a statement of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) is to be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page. Where the only control is an Institutional Control on the use of the property the certification statement in Box 6 shall be completed and may be made by the property owner. Where the site has Institutional <u>and</u> Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional (see table below).

Table 1. Signature Requirements for Control Certification Page										
Type of Control	Example of IC/EC	Required Signatures								
EC which does not include a treatment system or engineered caps.	Fence, Clean Soil Cover, Individual House Water Treatment System, Vapor Mitigation System	A site or property owner or remedial party, and a QEP. (P.E. license not required)								
EC that includes treatment system or an engineered cap.	Pump & Treat System providing hydraulic control of a plume, Part 360 Cap.	A site or property owner or remedial party, and a QEP with a P.E. license.								

WHERE to mail the signed Certification Form by Monday, November 2, 2009:

New York State Department of Environmental Conservation 625 Broadway, BURE Albany, NY 12233

Attn: Payson Long, Project Manager

Please note that extra postage may be required.

Appendix B

Air Stripper Effluent and CWTS Effluent Analytical Results: 1998 - 1999

Appendix B Air Stripper Effluent Fort Edward Landfill Town of Fort Edward, New York Site #5-58-001

		Air Stripper Effluent												
Analyte	Units	9/22/98	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	Criteria						
Vinyl Chloride	μg/L	ND	ND	ND	ND	ND	ND	50						
Chloroethane	μg/L	ND	ND	ND	ND	ND	ND	20						
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	ND	-						
Methylene Chloride	μg/L	ND	ND	ND	5 B	1 JB	3 JB	50						
1,2-Dichloroethene (Total)	μg/L	ND	ND	ND	ND	ND	ND	30						
Acetone	μg/L	ND	ND	16	9 J	53	33	-						
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	150						
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	-						
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	30						
Benzene	μg/L	ND	ND	ND	ND	ND	ND	10						
Toluene	μg/L	ND	ND	ND	ND	ND	ND	10						
Chlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	10						
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	ND	10						
Xylenes, Total	μg/L	ND	ND	ND	ND	ND	ND	10						
Trichloroethene	μg/L	ND	ND	ND	ND	ND	ND	-						
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	-						
Phenols, Total Phenolics	mg/L	NA	NA	NA	NA	NA	NA	0.008						
рН	SU	NA	NA	NA	NA	NA	NA	6.0-9.0						
Arsenic, Total	μg/L	13.1	10.4	ND	24.7	ND	ND	150						
Barium, Total	μg/L	120	120	160	227	116	119	3500						
Cadmium, Total	μg/L	ND	ND	ND	12.1	ND	ND	1						
Chromium, Total	μg/L	ND	ND	ND	13.6	ND	ND	210						
Cobalt, Total	μg/L	ND	ND	ND	ND	ND	ND	5						
Copper, Total	μg/L	12.6	ND	14.6	14.9	ND	ND	24						
Iron, Total	μg/L	36,400	36,400	28,600	34,400	34,600	34,300	300						
Lead, Total	μg/L	12.2	7.59	13.5	18.0	6.56	11.2	3.2						
Mercury, Total	μg/L	ND	ND	ND	ND	ND	ND	0.8						
Nickel, Total	μg/L	ND	ND	ND	ND	ND	ND	9.6						
Zinc, Total	μg/L	26	20.3	28.5	27.3	10.3	ND	170						
Total Dissolved Solids	mg/L	NA	NA	NA	NA	NA	NA	500						
Total Suspended Solids	mg/L	NA	NA	NA	NA	NA	NA	50						

NOTES:

Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics.

J & E - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting limit, and equal to or above the detection limit for the metal.
 ND - Compound not detected at or above the detection limit.
 NA - Not Analyzed

Appendix B CWTS Effluent Analytical Results - Cell 1 Effluent Data Fort Edwards Landfill Town of Fort Edward, New York Site # 5-58-001

										Cell 1	Effluent									Criteria
Analyte	Units	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	11/4/98	11/11/98	11/19/98	11/24/98	12/3/98	12/16/98	12/30/98	1/6/99	1/21/99	2/1/99	2/10/99	2/23/99	3/3/99	Criteria
Vinyl Chloride	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	ND	ND	50
Chloroethane	μg/L	ND	ND	2 J	ND	ND	ND	2 J	ND	ND	1 J	ND	ND	2	ND	ND	ND	ND	ND	20
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	26	ND	ND	<u> </u>
Methylene Chloride	μg/L	ND	ND	10 B	3 JB	3 JB	2 JB	ND	6 B	1	5 JB	ND	3 JB	5 JB	ND	5 JB	4 JB	2 J	ND	50
1,2-Dichloroethene (Total)	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	30
Acetone	μg/L	ND	19	ND	ND	ND	13	ND	15	9	ND	ND	19	19	ND	ND	ND	ND	17	-
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	4 J	4 J	5 J	ND	150
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	11	ND	ND	ND	ND	-
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	30
Benzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	10
Toluene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Chlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Xylenes, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Trichloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Phenols, Total Phenolics	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.008
рН	SU	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.0-9.0
Arsenic, Total	μg/L	ND	ND	20.8	ND	12.1	27.6	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	150
Barium, Total	μg/L	103	107	297	157	201	322	175	158	130	149	NA	157	171	140 B	112	109	94.2 B	84.4 B	3500
Cadmium, Total	μg/L	ND	ND	ND	ND	ND	14.2	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1
Chromium, Total	μg/L	ND	ND	ND	ND	ND	15.4	ND	ND	ND	ND	NA	ND	5.8	ND	ND	ND	ND	ND	210
Cobalt, Total	μg/L	ND	ND	21.0	21.6	22.6	26.1	29.6	22.7	ND	24.9	NA	23.6	ND	22.4 B	ND	ND	ND	ND	5
Copper, Total	μg/L	19.5	30.8	ND	ND	ND	17.7	21.8	ND	15.2	ND	NA	ND	ND	21.6 B	19.5	19.5	11.9 B	15.6 B	24
Iron, Total	μg/L	8,630	4,840	7,380	7,200	4,710	10,200	8,020	4,820	4,930	5,910	NA	12,500	15,500	2,460	5,380	7,180	7,240	652	300
Lead, Total	μg/L	14.40	60.1	8.11	5.08	6.26	ND	ND	4.1	5.3	ND	NA	4.3	ND	5.8	3.4	8.2	ND	5.2	3.2
Mercury, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	0.261	ND	ND	ND	0.8
Nickel, Total	μg/L	ND	ND	ND	ND	ND	ND	31.8	34.8	ND	ND	NA	ND	32	35.2 B	ND	ND	ND	ND	9.6
Zinc, Total	μg/L	269	44.6	78.5	188	24.7	376	27	43.1	32.2	45.9	NA	31.9	68.2	189	125	103	27.1	26.1	170
Total Dissolved Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	500
Total Suspended Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50

NOTES:

Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics.

J & E - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

Appendix B CWTS Effluent Analytical Results - Cell 2 Effluent Data Fort Edward Landfill Town of Fort Edward, New York Site #5-58-001

										Cell 2	Effluent									Criteria
Analyte	Units	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	11/4/98	11/11/98	11/19/98	11/24/98	12/3/98	12/16/98	12/30/98	1/6/99	1/21/99	2/1/99	2/10/99	2/23/99	3/3/99	Criteria
Vinyl Chloride	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	50
Chloroethane	μg/L	ND	ND	2 J	ND	1 J	ND	ND	ND	ND	2 J	ND	ND	1	ND	ND	1 J	ND	ND	20
Carbon disulfide	μg/L	ND	ND	ND	12	ND	ND	2 J	8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene Chloride	μg/L	ND	ND	7 B	3 JB	3 JB	ND	ND	5 B	1	14 B	ND	2 JB	5 JB	2 J	4 JB	3 JB	ND	ND	50
1,2-Dichloroethene (Total)	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	ND	30
Acetone	μg/L	51	ND	8 J	ND	ND	ND	ND	15	ND	ND	58	12	46	ND	ND	ND	ND	ND	
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9	5	150
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	130	ND	ND	7 J	ND	ND	ND	ND	T - 7
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	30
Benzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	1 J	ND	ND	10
Toluene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Chlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Xylenes, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Trichloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	ND	-
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Phenols, Total Phenolics	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.008
рН	SU	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.0-9.0
Arsenic, Total	μg/L	ND	ND	12.9	ND	21.8	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	150
Barium, Total	μg/L	189	236	171	188	376	128	211	233	181	206	NA	163	156	164 B	140	148	94.9 B	74.3 B	3500
Cadmium, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1
Chromium, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	210
Cobalt, Total	μg/L	ND	23.5	ND	25.0	28.6	ND	ND	ND	ND	29.9	NA	20.8	ND	23.3 B	20.8	ND	ND	ND	5
Copper, Total	μg/L	ND	ND	ND	ND	ND	ND	14.5	ND	ND	ND	NA	ND	ND	21.5 B	12.4	14.8	17 B	17.8 B	24
Iron, Total	μg/L	7,270	7,150	9,050	5,820	28,200	2,260	10,000	3,370	1,910	12,300	NA	10,800	10,100	12,800	10,800	19,500	11,900	521	300
Lead, Total	μg/L	ND	14.6	14.4	5.51	4.85	ND	ND	ND	ND	ND	NA	ND	ND	8	ND	ND	3.8	5.8	3.2
Mercury, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	0.545	ND	ND	ND	ND	ND	ND	0.8
Nickel, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	41.6	ND	31.6	NA	ND	ND	ND	ND	ND	ND	ND	9.6
Zinc, Total	μg/L	98.3	31.4	19.6	292	14.1	77.2	45.3	49.8	42	25.3	NA	27.1	195	207	46.7	48.6	22.1	62.7	170
Total Dissolved Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	500
Total Suspended Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50

NOTES:

Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics.

J & E - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed

Appendix B CWTS Effluent Analytical Results - Cell 3 Effluent Data Fort Edward Landfill Town of Fort Edward, New York Site #5-58-001

										Cell 3	Effluent									Criteria
Analyte	Units	9/29/98	10/6/98	10/14/98	10/21/98	10/28/98	11/4/98	11/11/98	11/19/98	11/24/98	12/3/98	12/16/98	12/30/98	1/6/99	1/21/99	2/1/99	2/10/99	2/23/99	3/3/99	Criteria
Vinyl Chloride	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Chloroethane	μg/L	2 J	ND	3 J	1 J	ND	ND	ND	ND	ND	1 J	ND	ND	2	ND	ND	1 J	ND	ND	20
Carbon disulfide	μg/L	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Methylene Chloride	μg/L	ND	ND	5 B	3 JB	3 JB	3 JB	ND	6 B	1	5 JB	ND	1 JB	5	1 J	4 JB	4 JB	ND	ND	50
1,2-Dichloroethene (Total)	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	30
Acetone	μg/L	ND	ND	ND	ND	ND	14	ND	14	11	ND	ND	13	ND	ND	ND	ND	ND	ND	-
Chloroform	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	ND	1 J	3 J	6	4 J	150
2-Butanone	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	-
Bromodichloromethane	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30
Benzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	1	ND	ND	ND	ND	ND	10
Toluene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	10
Chlorobenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Ethylbenzene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Xylenes, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND	10
Trichloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	-
Tetrachloroethene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Phenols, Total Phenolics	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.008
рН	SU	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.0-9.0
Arsenic, Total	μg/L	ND	ND	11.8	ND	ND	ND	ND	ND	17.5	ND	NA	ND	ND	ND	ND	ND	ND	ND	150
Barium, Total	μg/L	129	174	116	216	156	204	147	160	144	171	NA	156	161	125 B	128	116	98.6 B	84.7 B	3500
Cadmium, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1
Chromium, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	210
Cobalt, Total	μg/L	ND	27.2	ND	26.6	20.4	ND	25.3	30.4	25.4	24.5	NA	24.7	22.7	20 B	ND	ND	ND	ND	5
Copper, Total	μg/L	ND	ND	ND	ND	ND	ND	24.1	ND	17.2	ND	NA	18.9	10	50.8	13.5	14.6	12.3 B	17 B	24
Iron, Total	μg/L	5,840	4,620	3,970	25,100	3,320	12,300	5,530	1,240	499	7,790	NA	8,560	11,800	7,720	8,750	10,200	8,590	456	300
Lead, Total	μg/L	ND	11.7	6.69	3.42	3.13	ND	6.3	ND	17.7	ND	NA	8.1	ND	9.3	ND	ND	ND	ND	3.2
Mercury, Total	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	1.09	ND	ND	0.261	ND	ND	ND	0.8
Nickel, Total	μg/L	ND	ND	ND	ND	ND	ND	30	30.7	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	9.6
Zinc, Total	μg/L	27.6	26.0	26.6	396	43.4	135	58.4	29.2	24.3	66.2	NA	17.3	94.8	155	39.9	42	18.9 B	54.1	170
Total Dissolved Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	500
Total Suspended Solids	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50

NOTES:

Concentrations exceeding discharge limitations are shown in **bold font** in a shaded cell. Analysis by EPA Method OLM 4.3 for volatile organics, SW 8082 (modified) for PCBs, ILM 4.1 (+ mercury) for metals, SM2540 for TDS & TSS, and SM5530 for phenolics.

J & E - Each indicates an estimated concentration.

B - Indicates a "trace" concentration below the reporting limit, and equal to or above the detection limit for the metal.

ND - Compound not detected at or above the detection limit.

NA - Not Analyzed