APPENDIX L

TDCS EXTENSOMOTER INSTALLATION DATA

Contents of Appendix L

Extensometer Installation Figures

Figure	MPBX-1
Figure	MPBX-2
Figure	MPBX-3
Figure	MPBX-4

Extensometer Drilling Logs Borehole E-1 Borehole E-2 Borehole E-3

Extensometer Borehole Geophysical Logging

Boreholes E-1, E-2 and E-3: Report by Hager-Richter Geoscience Report of Borehole Geophysical Logging, December 2008

		APPROVED	JFB	FIGURE
L	TETRA TECH GEO	DRAFTED	RMK	1.1
G		PROJECT#	117-2204	180,
		DATE	APRIL 2011	hu.

			(CORF	E BOI	RING	REPORT			BORING NO.	E-1
PROJECT:	TDCS, Hud	son Falls, NY									
CLIENT:	General Elect	tric • Constructio	n Compony							JOB NO.:	<u>117-2204177</u>
EOUIPMEN	T USED: In	e Constructio oversoll Rand	n Company ECM590 - H	[vdrauli	c Hamn	ıer				FLEVATION:	188.45
GROUN	D WATER		DEPTH TC):			ORIENTATION	C	ORE BARREL	DATE START:	7/2/2008
DATE	HRS AFT	MATED	BOT. OF	BOT	ſ. OF	X	VERTICAL	TYPE	NA	DATE FINISH:	7/2/2008
DATE	COMP	WATER	CASING	HC	DLE		HORIZONTAL	SIZE	NA	DRILLER:	Alpine Cons.
							INCLINED	Bit (ft)	NA	PREPARED BY:	JAL
							BEARING	Barrel (ft)	NA	LOCATION:	E-1
						0	ANG. FROM VERT.	Total (ff)	NA		
DEPTH IN	DRILL RATE	CORE NO. DEPTH	SAMPLE NUMBER	RECO	VERY	RQD (%)		FIELD CI	ASSIFICATION AND RE	EMARKS	
FEE I	MIIN/F I	RANGE		FT	%						
		-					Extensometer #1 completed the Op logs on July 2, 20	was not cor otical Televi)08.	ed. In its place Hage ewer (OTV) and Aco	r-Richter Geosc oustic Teleview	ience, Inc. er (ATV)
5							A model A3 Mul on July 3, 2008 a grouted into the H Displacement Tra within the boreho for both manual (tiple Positic t E-1. Two l tole at 10 ft ansducers at tole. Installin Mitutovo de	In Borehole Extensor borehole anchors and and 40 ft, as well as, the same depths enc g both the 1/4" steel enth micrometer) and	neter (MPBX) v l 1/4" steel rods two Vibrating ' ased in a 3/4" P rods and transdu l electric reading	vas installed were Wire VC pipe ucers allows 95 (Geokon
10							404 datalogger) t box/manhole cov from the element	o be taken er was insta s.	A watertight protecti lled at the collar of t	ve steel roadwa he installation to	y protect it
15		-									
		-									
		_									
		_									
20											
20											
		-									
25											
25		-									
		-									
		-									
		-									
		-									
30		-									
		-									
		-									
		-									
		-									
35		-									
		-									
		-									
		-									
		-									
40		-					Bottom of boring	at 40 ft			
								1		1	
FI	ELD HARDN	ESS	BEI	DDING		AT	ITTUDE AND ANGLE	JOINTS /	SHEAR / FRACTURE	WEATH	ERING
v. hard hard	- KNIFE CAN'I - SCRATCHES	SCRATCH DIFFICULT	V. THIN THIN	< 2"·	2" •12"	SHALL	HURIZONTAL (0-5°) OW OR LOW ANGLE (5-35°)	V. CLOSE CLOSE	<2" 2"-12"	FRES V. SLI	sn GHT
MOD. HARD SOFT V. SOFT	- SCRATCHES - GROVES - CARVES	LASILY	MEDIUM THICK V. THICK	12" 36"- >1	-36" -120" 20"	MODH STEEI	SRATELY DIPPING (35-55°) P OR HIGH ANGLE (55-85°) VERTICAL (85-90°)	MOD. CLOSE WIDE V. WIDE	12"-36" 36"-120" >120"	SLIG MODEF MOD. SE V. SEV COMPI	HI VATE JVERE TERE LETE

			C	ORF	BOI	RING	REPORT			BORING NO.	E-2					
PROJECT:	TDCS, Hud	lson Falls, NY														
CLIENT:	General elect	ric Construction	TIC							JOB NO.:	<u>117-2204177</u>					
EOUIPMEN	T USED: Ir	gersoll Rand	ECM590 - H	vdrauli	e Hamn	ıer				ELEVATION:	186.36					
GROUN	D WATER	•	DEPTH TO	• •:			ORIENTATION	C	ORE BARREL	DATE START:	7/2/2008					
DATE	HRS AFT	WATED	BOT. OF	BOI	. OF	X	VERTICAL	TYPE	NA	DATE FINISH:	7/2/2008					
DAIL	COMP	WAILK	CASING	HC	DLE		HORIZONTAL	SIZE	NA	DRILLER:	Alpine Cons.					
							INCLINED	Bit (ft)	NA	PREPARED BY:	JAL					
						0	ANG FROM VERT	Barrel (ft)	NA	LOCATION:	E-2					
DEPTH IN	DRILL RATE	CORE NO. DEPTH	SAMPLE	RECO	VERY	RQD	ANG. FROM VERT.	ANG. FROM VERT. Total (ft) NA								
FEET	MIN/FT	RANGE	NUMBER	БL	0/	(%)										
		-			70		Extensometer #2 was not cored. In its place Hager-Richter Geoscience, Inc. completed the Optical Televiewer (OTV) and Acoustic Televiewer (ATV) logs on July 2, 2008.									
5		-					A model A3 Mul on July 3, 2008 a grouted into the h Displacement Tra within the boreho for both manual (tiple Positic t E-2. Two l tole at 10 ft ansducers at tle. Installin Mitutovo de	n Borehole Extensor porehole anchors and and 40 ft, as well as, the same depths enc g both the 1/4" steel : anth micrometer) and	neter (MPBX) v l 1/4" steel rods two Vibrating V ased in a 3/4" P rods and transdu l electric reading	vas installed were Wire VC pipe Icers allows s (Geokon					
10							404 datalogger) to box/manhole cov from the elements	o be taken. , er was insta s.	A watertight protecti lled at the collar of t	ve steel roadwa he installation to	protect it					
15		-														
20		-														
25		-														
30																
35		-														
40		-					Bottom of boring	at 40 ft								
FI	ELD HARDN	ESS	BEI	DDING		AT	TITUDE AND ANGLE	JOINTS /	SHEAR / FRACTURE	WEATH	ERING					
V. HARD HARD MOD. HARD SOFT V. SOFT	- KNIFE CAN'I - SCRATCHES - SCRATCHES - GROVES - CARVES	TSCRATCH DIFFICULT EASILY	V. THIN THIN MEDIUM THICK V. THICK	< 2"- 12" 36"- >1	2" 12" -36" 120" 20"	SHALL MODE STEEF	HORIZONTAL (0-5°) OW OR LOW ANGLE (5-35°) SYRATELY DIPPING (35-55°) POR HIGH ANGLE (55-85°) VERTICAL (85-90°)	V. CLOSE CLOSE MOD. CLOSE WIDE V. WIDE	<2" 2"-12" 12"-36" 36"-120" >120"	FRES V. SLIG MODEF MOD. SE V. SEV COMPI	iH 3HT HT CATE WERE ERE LETE					

	CORE BORING REPORT									BORING NO.	E-3					
PROJECT:	TDCS, Hud	son Falls, NY									117 220 4177					
CLIENI: CONTRACT	General Elec 'OR: Parra	tric t-Wolff, Inc.								JOB NO.: PAGE NO.:	11/-22041// 1 of 2					
EQUIPMEN	T USED: C	ME-75								ELEVATION:	177.5					
GROUNI	D WATER		DEPTH TO):			ORIENTATION	C	ORE BARREL	DATE START:	4/29/2008					
DATE	HRS AFT	WATER	BOT. OF	вот	. OF	X	VERTICAL	TYPE	Wire Line	DATE FINISH:	4/30/2009					
	COMP		CASING	HO	LE		HORIZONTAL	SIZE	но	DRILLER:	Bill Rice					
							INCLINED	Bit (ft)		PREPARED BY:	JAL/GP					
						0	ANG FROM VERT	Total (ft)		LUCATION:	E-3					
DEPTH IN	DRILL RATE	CORE NO. DEPTH	SAMPLE	RECO	VERY	RQD	FIELD CLASSIFICATION AND PEMADICS									
FEET	MIN/FT	RANGE	NUMBER	ET	0/	(%)										
		0.2	1	1.0	70 00	75	Mod. Hard to har	d. fresh. da	rk grav to black SHA	LE: med-grav h	orizontal					
		0-2	1	1.0	90	75	laminar banding;	calcite heal	ed fractures at 60°,3	0°,0°,1/8" to 1" t	hick.					
5		2-6	2	4	100	75	Hard, fresh, dark banding;4.0' - 9.3 "marbled" appear	gray to blac ' numerous ance, micro	ck SHALE; med-gray , irregular calcite hea o "offsets", healed mi	y horizontal lami led fractures/vei .cro-brecciated sl	nar ns imparting hale,					
		6-11	3	5	100	51.7	graphite coated s	hear fractur	es. NOTE- Lower Fa	ult Plane at 9.0 f	.t.					
10		-					banding; occasion spacing, mostly n	nal calcite h nidangle to	ealed fractures and v subvertical (35° to 8	veins, close to mo 5°), $1/16''$ to $1/4''$	nar oderate " thick;					
15		11-16	4	5.05	101	100	occassional pyrite partings/laminae	e nodules (u (1/16" to 1/	p to 1"; occasional h 4" thick)	orizontal pyrite	,					
20		16-21	5	5.05	101	99										
25		21-26	6	4.8	96	95.7										
30		26-31	7	4.95	99	100										
35		31-36	8	4.95	99	99										
40		36-41	9	4.95	99	99										
45		41-46	10	5	100	100	Hard, fresh, dark banding; occasion spacing, mostly n occasional pyrite	gray to blac nal calcite h nid-angle to nodules (up	ck SHALE; med-gray ealed fractures and v subvertical (35° - 8: to 1"); occasional h	y horizontal lami reins, close to mo 5°), 1/16" to 1/4' orizontal pyrite	nar oderate ' thick;					
50		46-51	11	5	100	100	partings/laminae	(1/16" to 1/	4" thick).							
55		51-56	12	4.95	99	100	SHALE, similar t spacing.	to above, ex	cept calcite healed fi	ractures moderat	e to wide					
		56-61	13	4.95	99	100			(Continued)							
		FCC				4.77		IODITO	CHEAD / ED ACTTIDE	33717 A 1717	DING					
FIELD HARDNESS BEDDING A V. HARD - KNIFE CAN'T SCRATCH V. THIN <2"						AT. SHALL MODE STEEL	HITUDE AND ANGLE HORIZONTAL (0-5°) OW OR LOW ANGLE (5-35°) POR HIGH ANGLE (55-55°) VERTICAL (85-90°)	V. CLOSE CLOSE MOD. CLOSE WIDE V. WIDE	<pre>SHEAK / FKACTURE</pre>	WEATHI FRES V. SLIG MODER MOD SE V. SEVI COMPL	H H HT ATE VERE ERE ETE					

CORE BORING REPORT							REPORT	BORING NO. E-3						
DEDUIT	DDH I	CODENIO						PAGE 2 OF 2						
DEPTH IN FEET	RATE MIN/FT	CORE NO. DEPTH RANGE	SAMPLE NUMBER	RECO	VERY	RQD (%)	FIELD CLASSIFICATION AND RE	MARKS						
				гі	70		SHALE, similar to above, except calcite healed fr	actures moderate to wide						
		61-66	14	5	100	100	spacing. (continued)							
65		01.00		5	100	100								
		66-71	15	5	100	100								
70														
		71-76	16	5	100	100	SHALE, similar to above, except with wide to ver fossil shell horizons.	ry widely spaced, very thin						
75														
		76-81	17	5	100	98								
80														
		81-86	18	4.95	99	100								
85														
		86-91	19	4.95	99	100	_							
90														
0.5		91-96	20	4.95	99	100	Hard, fresh, dark gray to black SHALE; med-gray horizontal laminar							
95														
100		96-101	21	4.9	98	100	 banding; occasional calcite healed fractures and veins, moderate to wide spacing, mostly mid-angle to subvertical (35° - 85°), 1/16" to 1/4" thick; occasional pyrite nodules (up to 1"); occasional horizontal pyrite partings/laminae (1/16" to 1/4" thick); occasional very thin fossil shell horizons 							
100														
105		101-106	22	5.05	101	100								
							Bottom of Boring at Depth 106.0 ft							
110							Note: See separate detailed Discontinuity Log for fractures observed in core for boring E-3. Note th	description of Joints and at with few exceptions, the						
							fractures detailed in log are considered to be Drill induced (di) fractures along intact incipient feature	Breaks (DB) or drilling es.						
115							Hager Richter Optical and Acoustic Televiewer lo	ogs were done on May 22,						
							A model A3 Multiple Position Borehole Extensor	neter (MPBX) was installed						
120							on May 27, 2008 at E-3. Three borehole anchors a grouted into the hole at 24 ft, 48 ft, and 99 ft, as w	and 1/4" steel rods were vell as, three Vibrating Wire						
							Displacement Transducers at the same depths enc within the borehole. Installing both the 1/4" steel	ased in a 3/4" PVC pipe rods and transducers allows						
125							404 datalogger) to be taken. A watertight protecti box/manhole cover was installed at the collar of the	ve steel roadway he installation to protect it						
							from the elements.	. .						
130														
FIE	ELD HARDN	ESS	BEI	DDING		ATT	TTUDE AND ANGLE JOINTS / SHEAR / FRACTURE	WEATHERING						
V. HARD HARD MOD. HARD SOFT V. SOFT	- KNIFE CAN'T - SCRATCHES - SCRATCHES - GROVES - CARVES	SCRATCH DIFFICULT EASILY	V. THIN THIN MEDIUM THICK V. THICK	<, 2"- 12" 36"- >1;	2" 12" -36" 120" 20"	SHALL MODE STEEF	HORIZONTAL (0-5°) V. CLOSE <2" OW OR LOW ANGLE (5-35°) CLOSE 2"-12" RATELY DIPING (35-55°) MOD. CLOSE 12"-36" POR HIGH ANGLE (55-85°) WIDE 36"-120" VERTICAL (85-90°) V. WIDE >120"	FRESH V. SLIGHT SLIGHT MODERATE MOD. SEVERE V. SEVERE COMPLETE						

BOREHOLE GEOPHYSICAL LOGGING GENERAL ELECTRIC HUDSON FALLS TDCS SOUTH GLENS FALLS, NEW YORK

Prepared for:

Alpine Construction, LLC 10 Broad Street Schuylerville, New York

Prepared by:

Hager-Richter Geoscience, Inc. 846 Main Street Fords, New Jersey 08863

File 08RG15 December 2008

©2008 Hager-Richter Geoscience, Inc.

December 4, 2008 File 08RG15

John Conley, P.E. Alpine Construction, LLC 10 Broad Street Schuylerville, New York

- Tel: 518.695.6739 Fax: 518.695.6824 Cell: 518.312.6511 Email: JConley@alpineconstruction.biz
 - RE: Borehole Geophysical Logging General Electric Hudson Falls TDCS South Glens Falls, New York

Dear Mr. Conley:

In this report, we summarize the results of borehole geophysical logging conducted by Hager-Richter Geoscience, Inc. (Hager-Richter) in three (3) exploratory boreholes for the General Electric Hudson Falls TDCS Project in South Glens Falls, New York for Alpine Construction, LLC (Alpine). The scope of work was specified by Alpine.

Introduction

The three logged boreholes were located at a facility identified as the Boralex Powerhouse in South Glens Falls, New York. The general location of the site is shown in Figure 1, and Figure 2 is a site plan showing the approximate locations of the logged boreholes. Alpine requested acoustic televiewer (ATV) and optical televiewer (OTV) logging as part of a geotechnical investigation of the site. Alpine was interested in determining the depth and orientation (dip azimuth and dip angle) of bedrock fractures intersected by the exploratory boreholes.

The three logged boreholes were identified as E-1, E-2, and E-3. The datum for depths in this report is the top of bedrock at the location of each borehole. There was no overburden at the locations of the three logged boreholes. Therefore, the ground surface at the boreholes was the top of bedrock. Borehole E-1 was cased with 3-inch PVC casing to a depth of less than five feet and was open-hole in the remainder of the 3.5-inch diameter exploratory borehole to a depth of approximately 42 feet. Borehole E-2 was cased with 3-inch casing to a depth of less than 5 feet and was open-hole in the remainder of the 3.5-inch diameter exploratory borehole to a depth of approximately 43 feet. Borehole E-3 was cased with 4-inch PVC casing to a depth of less than four feet and was open-hole in the remainder of the HQ cored (3.8-inch diameter) exploratory borehole to a depth of approximately 106 feet. According to Alpine, the bedrock penetrated by the boreholes primarily consists of Snake Hill Shale.

Objective

The objective of the ATV logging was to determine the depth and orientation (dip azimuth and dip angle) of bedrock fractures intersected by the boreholes.

The Field Operations

Robert Garfield and Alexis Martinez of Hager-Richter conducted the field operations on May 2 and July 2, 2008. The project was coordinated with Mr. John Conley, P.E. of Alpine, who was present during field operations on May 2 and July 2, 2008. Mr. Gary Page, P.G., of Brierley Associates, LLC was present during field operations on May 2, 2008. Data analysis and interpretation were completed at the Hager-Richter offices. Original data and field notes reside in the Hager-Richter files and will be retained at least three years. Preliminary borehole geophysical logging data were provided to Alpine electronically on May 18, 2008. Final borehole geophysical logging data were provided to Alpine electronically on November 25, 2008.

Equipment

A Mount Sopris Matrix portable digital logging system was used with a 4MXA-1000 winch for the borehole geophysical logging. Data were recorded along with depth in digital format using a PC. Data were displayed in real time in the field and were processed in the office using WellCAD v. 4.2, commercially licensed software.

Optical Televiewer. An ALT OBI-40 optical televiewer (OTV) probe was used for this project. The OTV acquires a high resolution, effectively continuous, magnetically oriented, 360° image of the borehole wall. The image can be used to detect bedrock structures such as fractures, foliation, and bedding planes and to provide information about lithology. The probe includes a 3-axis magnetometer and three accelerometers to orient the image and to provide borehole deviation data that are used to correct structure orientations from apparent to true orientations.

Acoustic Televiewer. An ALT ABI-40 acoustic televiewer (ATV) probe was used for this project. The ATV acquires a high resolution, effectively continuous, magnetically oriented, 360° image of the borehole wall using the reflected signal of sound waves in the ultrasonic frequency range. Both amplitude and travel time of the reflected signal are displayed and can be used to detect bedrock structures such as fractures, foliation, and bedding planes. The probe includes a 3-axis magnetometer and three accelerometers to orient the image and to provide borehole deviation data that are used to correct structure orientations from apparent to true orientations. ATV travel time data can also be used to calculate an acoustic caliper log. The acoustic caliper log measures the average borehole diameter as a function of depth. The acoustic caliper log is derived from the travel time data and the velocity of the acoustic signal in water. The acoustic caliper log is used to locate possible fractures and to aid in the interpretation of other borehole geophysical logs.

Limitations of the Method

With the 4MXA-1000 winch, the logging cable passes over a calibrated wheel, and an encoder counts the revolutions, which are converted to depth. Slippage of the logging cable may occur, resulting in errors in recorded depth. At the beginning and end of a logging run, fiducial depths (commonly ground surface or top of casing) are measured and are compared to determine if slippage occurred.

Optical Televiewer. The OTV can be acquired in both air and optically clear water-filled boreholes. If the borehole is water-filled, the clarity of the water directly affects the quality of the OTV image. The OTV probe must be centralized in the borehole to acquire optimal images of the borehole wall. If the borehole wall is rough and/or irregular or the diameter of the open borehole is larger than the diameter of the casing, the probe may not be adequately centralized and the quality of the optical images may be compromised.

The OTV logs are used to determine the depth and orientation of fractures and other planar features intersected by a borehole. In some cases, natural planar features in the bedrock, such as mineral veins, bedding, and foliation may appear to be fractures in the OTV logs, but are not actual discontinuities in the bedrock. The OTV images are also used to provide information about lithology.

The accuracy of the orientation measured by the OBI-40, as stated by the manufacturer, is $\pm 0.5^{\circ}$ for the inclination data and $\pm 1^{\circ}$ for the azimuth data. The OBI-40 relies on the earth's magnetic field to determine azimuth. Therefore, in areas where the magnetic field may be significantly affected by local magnetic objects, the dip azimuths reported in the logs may be compromised. Specifically, the dip azimuth of bedrock structures and the borehole deviation data within approximately five feet of steel casing are not accurate. However, the depth and dip angle of bedrock structures within five feet of steel casing are accurate.

Acoustic Televiewer. ATV logging requires that liquid be present in the portion of the borehole to be logged. However, the liquid does not need to be optically clear. The ATV probe must be centralized in the borehole to acquire optimal images of the borehole wall. If the borehole wall is rough and/or irregular or the diameter of the open borehole is larger than the diameter of the casing, the probe may not be adequately centralized and the quality of the acoustic images may be compromised.

The ATV logs are used to determine the depth and orientation of fractures and other planar features intersected by a borehole. In some cases, natural planar features in the bedrock, such as mineral veins, bedding, and foliation may appear to be fractures in the ATV logs, but are not actual discontinuities in the bedrock.

The accuracy of the orientation measured by the ABI-40, as stated by the manufacturer, is $\pm 0.5^{\circ}$ for the inclination data and $\pm 1^{\circ}$ for the azimuth data. The ABI-40 relies on the earth's magnetic field to determine azimuth. Therefore, in areas where the magnetic field may be significantly affected by local magnetic objects, the accuracy of dip azimuths reported in the logs may be reduced. Specifically, the dip azimuth data of bedrock structures and the borehole deviation data within approximately five feet of steel casing are not accurate. However, the depth and dip angle of bedrock structures within approximately five feet of steel casing are accurate.

The acoustic caliper data is unlikely to indicate the presence of high angle fractures and fractures with small apertures. High angle fractures with large apertures may show small enlargements in the caliper log at both the top and bottom of the intersection of the fracture with the borehole. It also may be difficult to identify fractures in the caliper log located near the bottom of casing where a significant enlargement commonly occurs and may be due to causes other than natural fractures.

Field Procedures & Data Acquisition

Adequate tension was maintained with the logging cable during the borehole geophysical logging and the depth encoder was cleaned after each logging run in order to maintain accurate depth measurements. Repeat sections were acquired to verify depth consistency. In addition, at the beginning and end of a logging run, a fiducial depth (top of casing or ground surface) was measured and checked for consistency. The data acquisition parameters are listed in Table 1.

Log	Sampling Interval	Logging Speed	Logging Direction		
OTV	0.01 feet	5 feet per minute	down and up		
ATV & Acoustic Caliper	0.01 feet	6 - 8 feet per minute	down and up		

 Table 1 – Data Acquisition Parameters

Data Processing

The processing consists mainly of selecting scales, filters, and the layout of the tracks. In addition, the OTV and ATV data require determining the depth, orientation, and category of

the bedrock structures detected. To increase the quality of the images, the brightness and contrast of the OTV images were adjusted and the ATV travel time images were digitally centralized. The ATV amplitude images can be normalized, although normalization was not applied to the ATV amplitude data for this project.

Data Interpretation & Presentation

Fractures can be identified on the basis of the OTV images, ATV amplitude images, and/or the ATV travel time images. Some, if not most, of the criteria for the identifying fractures require a judgment call, and different log analysts will not necessarily make the same call. Hence, some of the bedrock structures identified as fractures may not be fractures. Bedding, foliation, veins, and other planar geologic features in the rock may appear similar to fractures in the borehole geophysical data.

The WellCAD software program reports the orientation of bedrock structures (fractures, bedding, foliation, veins, and other planar geologic features) as the dip azimuth (dip direction) and dip angle of each structure. The dip azimuth is perpendicular to the strike as used commonly by geologists. The dip azimuth data are referenced to magnetic north and the dip angle data are reported as the bedrock structure's angle from horizontal. The datum for depths in this report is the ground surface at the location of each borehole. The WellCAD software program reports the depth of a bedrock structure as the average of the depth of the top and bottom intersections of the bedrock structure and the borehole wall.

Bedrock structures detected in the televiewer logs are grouped into five categories: Fracture Rank 1, Fracture Rank 2, Fracture Rank 3, Healed Fractures and Veins, and Bedding. The categories are shown as color-coded lines and symbols on the structure projection plots, tadpole plots, and on the structure statistics plots. Figure 3 explains the bedrock structure categories, and Figure 4 explains how to read the tadpole plots.

Fracture Rank 1 describes minor fractures that are not distinct and may not be continuous around the borehole. Fracture Rank 2 describes intermediate fractures that are distinct and continuous around the borehole with little or no apparent aperture. Fracture Rank 3 describes major fractures that are distinct and continuous around the borehole with apparent aperture. The Healed Fractures and Veins category describes planar structures in the bedrock interpreted as healed fractures or veins. The Bedding category describes planar structures in the bedrock interpreted as bedding.

The structure projection plots display the structural interpretation of the televiewer data and displays the bedrock structures as they appear in the televiewer images. The depth, orientation, and category of the bedrock structures can be read from the structure projection plots. The data in the structure projection plots are apparent data and are not corrected from apparent to true dip azimuth and dip angle.

The tadpole plots are created from the structure projection plots after the data are corrected from apparent to true dip azimuth and dip angle. The tadpole plots graphically display the depth, orientation, and category of the bedrock structures interpreted from the televiewer images. The orientation of bedrock structures are graphically displayed on the tadpole plots by a tadpole made up of a circle, the head, and a line, the tail. The position of the head, left to right on the tadpole plot, gives the dip angle of the bedrock structure. The left side of the track indicates a dip angle of 0° and the right side of the track indicates a dip angle of 90° from horizontal. The position of the tail gives the dip azimuth of the fracture and can be read like a compass. The tail pointing directly up is 0° , magnetic north. We note explicitly that the dip azimuth is perpendicular to the strike as the term is used by geologists.

Borehole deviation data are reported as Northing, Easting, and True Vertical Depth (TVD). The Northing and Easting data are the distance in feet the borehole has horizontally deviated from where the borehole would be if it was vertical. Zero Northing and zero Easting is located at the start of the data acquisition, typically the bottom of casing. TVD is the vertical depth of the hole, assuming the borehole is vertical for the cased portion of the hole. The depth track in the logs and tables is the depth along the borehole (i.e. the length of the borehole), which, if the borehole is vertical will be equal to the TVD. The deviation log can not be acquired in the steel casing due to the magnetic interference of the casing.

Results

The general location of the site is shown in Figure 1, and Figure 2 is a site plan showing the approximate locations of the logged boreholes. The borehole geophysical logs are given in Appendix 1, the tables of bedrock structures are given in Appendix 2, and the bedrock structure statistics plots are given in Appendix 3. The dip azimuth data are referenced to magnetic north, and the dip angle data are reported as the bedrock structure's angle from horizontal. The datum for depths in this report is the top of bedrock at the location of each borehole. There was no overburden at the locations of the three logged boreholes. Therefore, the ground surface at the boreholes was the top of bedrock.

The three logged boreholes were identified as E-1, E-2, and E-3. Borehole E-1 was cased with 3-inch PVC casing to a depth of less than five feet and was open-hole in the remainder of the 3.5-inch diameter exploratory borehole to a depth of approximately 42 feet. Borehole E-2 was cased with 3-inch casing to a depth of 4.4 feet and was open-hole in the remainder of the 3.5-inch diameter exploratory borehole to a depth of approximately 43 feet. Borehole E-3 was cased with 4-inch PVC casing to a depth of less than four feet and was open-hole in the remainder of the HQ cored (3.8-inch diameter) exploratory borehole to a depth of approximately 106 feet. According to Alpine the bedrock penetrated by the boreholes primarily consists of Snake Hill Shale.

ATV data can only be acquired in the water filled portion of the boreholes. The water level in borehole E-2 was in the casing at less than one foot below the ground surface at the time of logging. The water level in boreholes E-1 and E-3 were below the bottom of casing at the time of logging. Therefore, water was added from the top of casing before acquiring ATV data in boreholes E-1 and E-2 in order to acquire ATV data throughout the un-cased portion of the borehole.

The ATV data quality for boreholes E-1 and E-2 is not as high quality as the ATV data for borehole E-3 due to the conditions in boreholes E-1 and E-2. The surface casing used in boreholes E-1 and E-2 was 3 inches in diameter. However, the open boreholes were approximately 3.5 inches in diameter. Due to casing with smaller diameter than the open borehole, it was not possible to properly centralize the ATV probe in boreholes E-1 and E-2. In addition to having smaller casing diameter than the open boreholes, the deviation of boreholes E-1 and E-2 also caused poor ATV probe centralization. Borehole E-1 deviates a maximum of approximately 17° degrees from vertical, and borehole E-2 deviates a maximum of approximately 22° from vertical. The ATV data for borehole E-3 are high quality. Borehole E-3 only deviates a maximum of approximately 5° from vertical. Water clarity in the boreholes directly affects the quality of the OTV images. Due to poor water clarity in borehole E-2, it was not possible to detect bedding in borehole E-2 from the OTV data.

The number of bedrock structures interpreted as fractures in each borehole and the most prominent orientations of the fractures detected in each borehole are reported in Table 2 and are evident in the bedrock structure statistics plots in Appendix 3. The number of bedrock structures interpreted as bedding in each borehole and the mean orientation of the foliation and veins detected in each borehole are reported in Table 3 and are evident in the bedrock structure statistics plots in Appendix 3.

Borehole ID	Total Number of Fractures	Most Prominent Fracture Dip Azimuth(s)	Most Prominent Fracture Dip Angle(s)
E-1	81	southeast (120°-165°)	no prominent fracture dip angle
E-2	29	southeast (135°-150°)	no prominent fracture dip angle
E-3	81	southeast (120°-180°)	no prominent fracture dip angle

Table 2 - Bedrock Fracture Statistics

Borehole ID	Total Number of Foliation and Veins	Mean Foliation and Vein Dip Azimuth	Mean Foliation and Vein Dip Angle				
E-1	58	172° (south-southeast)	9°				
E-2	bedding was not detected due to the water clarity in borehole E-2						
E-3	41	199° (south-southwest)	6°				

Table 3 - Bedrock Foliation and Vein Statistics

Based on the borehole geophysical logging data, the most prominent orientation of bedrock fractures detected in the three logged boreholes is approximately parallel to bedding at the site. The bedrock in boreholes E-1, E-2, and E-3 is very competent with few open fractures based on the borehole geophysical logging data. Only two of the 191 fractures detected in the three logged boreholes have significant apparent aperture, the other 189 fractures are either healed or have little to no apparent aperture.

Limitations on the Use of this Report

This letter report was prepared for the exclusive use of Alpine Construction, LLC (Client). No other party shall be entitled to rely on this Report or any information, documents, records, data, interpretations, advice or opinions given to Client by Hager-Richter Geoscience, Inc. in the performance of its work. The Report relates solely to the specific project for which Hager-Richter has been retained and shall not be used or relied upon by Client or any third party for any variation or extension of this project, any other project or any other purpose without the express written permission of Hager-Richter. Any unpermitted use by Client or any third party shall be at Client's or such third party's own risk and without any liability to Hager-Richter.

Hager-Richter has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by Hager-Richter should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

Except as expressly provided in this limitations section, Hager-Richter makes no other representation or warranty of any kind whatsoever, oral or written, expressed or implied; and all implied warranties of merchantability and fitness for a particular purpose, are hereby disclaimed.

If you have any questions or comments on this report, please contact us at your convenience. It has been a pleasure to work with Alpine on this project. We look forward to working with you again in the future.

Sincerely yours, HAGER-RICHTER GEOSCIENCE, INC.

Robert l. Darfield

Robert Garfield Senior Borehole Geophysicist Dorothy Richter, P.G. President

Enclosures:

Figures:	Figure 1.	General Site Location
	Figure 2.	Site Plan
	Figure 3.	Bedrock Structure Category Figure
	Figure 4.	Tadpole Explanation Figure

Appendix 1: Borehole Geophysical LogsAppendix 2: Tables of Bedrock StructuresAppendix 3: Bedrock Structure Statistics Plots

FIGURES

Tadpole	Structure Category (Symbol Color)	Description
	Bedding (Brown)	Planar structure interpreted to be bedding
◀	Healed Fracture or Vein (Orange)	Planar structure interpreted to be foliation or a vein
Ó	Fracture Rank 1 (Light Blue)	Minor Fracture - not distinct and may not be continuous around the borehole
	Fracture Rank 2 (Blue)	Intermediate Fracture - distinct and continuous around the borehole with little or no apparent aperture
•	Fracture Rank 3 (Red)	Major Fracture - distinct and continuous around the borehole with apparent aperture

Figure 3. Key to bedrock structure categories.

Figure 4. Key to tadpoles. The orientation of the bedrock structures is graphically displayed by a tadpole made up of a circle, the head, and a line, the tail. The position of the head, left to right on the tadpole plot, gives the dip angle of the structure. The left side of the track indicates a dip angle of 0° , and the right side of the track indicates a dip angle of 90° from horizontal. The position of the tail gives the dip azimuth of the structure and can be read like a compass. The tail pointing directly up is 0° , magnetic north.

APPENDIX 1

BOREHOLE GEOPHYSICAL LOGS

HAGER-RIC		ER 846 Main Street Fords, NJ 08863 Phone: 732-661-0	555		BOREHOLE ID	:		E-1			
GEOSCIEN	۶E,	INC. Fax: 732-661-012	3		DATE LOGGED:				July 2, 2008		
CLIENT: Alpine PROJECT: Genera LOCATION: Borale CITY, STATE: South INSTRUMENTATION: LOGGING GEOPHYSI PROJECT REPRESEN	Constru al Electi x Powe Glens F CIST(S TATIVI	uction, LLC ric Hudson Falls TDCS rhouse Falls, New York Mount Sopris Matrix): R. Garfield & A. Ma E(S): John Conley	< rtinez		H-R FILE: LOG DATUM: LOG DATUM E ORIENTATION CASING STICK BOREHOLE DI WATER LEVEL	08RG15 Top of Rock (TOR) 186.4 Feet (NGVD) Magnetic North 0.4 Feet Above TOR 3.5 Inches 6.0 Feet					
STRUCTURE LEGENE Fracture Rank 1 NOTE: Water was ac) dded to	Fracture Rank 2	Fract	ture Ra t to ac	nk 3 ◀ quire ATV data f	Heale or the	d Fracture or Vein	ed porti	Beddii	^{ng} f the bore	hole.
OTV Image	Depth ATV Amplitude		0°	ATV 90°	Travel Time	Ас <u>3</u>	Acoustic Caliper 3 Inches 4.5		0	Northing Feet Easting	6
0° 90° 180° 270° 0°	(Feet)	0° 90° 180° 270° 0°		Structu	ure Projection		Fadpole Plot	(Feet)	-6	Feet TVD	0
	- 6 - - 8 -					-		- 180-			
	- 10 - - 12 -					*		- 176-			
	- 14 -										

	- 34 -				-152-		
	- 36 -						
	- 38 -						
	- 40 -				- 146-		
			Structure Projection	Tadpole Plot		TVD	
OTV Image	Depth	ATV Amplitude	0° 90° 180° 270° 0°	0 90	Elev.	U ⊦eet Easting	45
	(Feet)		ATV Travel Time	Acoustic Caliper	(Feet)	-6 Feet	0
0° 90° 180° 270° 0°	. 7	0° 90° 180° 270° 0°	0° 90° 180° 270° 0°	3 Inches 4.5		Northing 0 Feet	6

HAGER-RICHTER GEOSCIENCE INC BA46 Main Street Fords, NJ 08863 Phone: 732-661-0555 Fax: 732-661-0123			BOREHOLE ID: E-2					
GEUSCIENCE	, INC. $(132-001-012)$	5	DATE LOGGED: July 2, 2008					
CLIENT: Alpine Con PROJECT: General Ele LOCATION: Boralex Po CITY, STATE: South Gler INSTRUMENTATION: LOGGING GEOPHYSICIST PROJECT REPRESENTAT	rtinez	H-R FILE:08RG15LOG DATUM:Top of Rock (TOR)LOG DATUM ELEVATION:188.5 Feet (NGVD)ORIENTATION REFERENCE:Magnetic NorthCASING STICK-UP:0.4 Feet Above TOFBOREHOLE DIAMETER:3.5 InchesWATER LEVEL DEPTH:0.8 Feet			ł			
STRUCTURE LEGEND	STRUCTURE LEGEND Image: Fracture Rank 1 Image: Fracture Rank 2 Image: Fracture Rank 1							
OTV Image De	th ATV Amplitude	ATV 0° 90°	/ Travel Time 180° 270° 0°	Acoustic Caliper 3 Inches 4	Elev.	0 Feet Easting	<u>)</u> 9	
0° 90° 180° 270° 0° (Fe	et) 0° 90° 180° 270° 0°	Struc	ture Projection	Tadpole Plot	(Feet)	-9 Feet TVD 0 Feet	0 45	
					-184- -182- -180- -180-			
- 1				مهراله بر المراجع ا	-176-			

HAGER-RIC	HAGER-RICHTER GEOSCIENCE INC Base 732-661-0123			BOREHOLE ID:			E-3				
GEOSCIEN	GEOSCIENCE, INC.				DATE LOGGED:		May 2, 2008				
CLIENT: Alpine Construction, LLC PROJECT: General Electric Hudson Falls TDCS LOCATION: Boralex Powerhouse CITY, STATE: South Glens Falls, New York INSTRUMENTATION: Mount Sopris Matrix LOGGING GEOPHYSICIST(S): R. Garfield & A. Martinez				<u>r</u>	H-R FILE:08RG15LOG DATUM:Top of RowLOG DATUM ELEVATION:177.5 FeeORIENTATION REFERENCE:Magnetic ICASING STICK-UP:1.9 Feet ABOREHOLE DIAMETER:3.8 Inchest			5 Rock Feet (tic No et Ab hes (: (TOR) (NGVD) orth ove TOR HQ)		
PROJECT REPRESEN	TATIV	E(S): J. Conley & G. Page	;		WATER LEVI	el de	EPTH:	26.2 Fe	eet		
STRUCTURE LEGEND) -	Fracture Rank 2			Healed F	ractui	re or Vein	Bedd	ing		
NOTE: Water was ad		the borehole in order to ac	quire	AIV	data for the en		n-cased portion	of the b	oren		
OTV Image	Depth	ATV Amplitude	0°	ATV 90°	Travel Time 180° 270° 0	° 3.	Acoustic Caliper 3 Inches 4.4	Elev.	0	Northing Feet Easting	6
0° 90° 180° 270° 0°	(Feet)	0° 90° 180° 270° 0°		Struct	ure Projection		Tadpole Plot	(Feet)	-2	Feet	1
0 00 100 270 0		0 30 100 270 0	0°	90°	180° 270° 0	• <u>-</u>	90		0	Feet	120
	- 4 -							-172-			
	- 10 - - 10 - - 12 -							-168- 			

Page 24 of 43

APPENDIX 2

TABLES OF BEDROCK STRUCTURES

CLIENT	Alpine Construction, LLC
PROJECT	General Electric Hudson Falls TDCS
LOCATION	Boralex Powerhouse
CITY, STATE	South Glens Falls, New York
H-R FILE	08RG15

BOREHOLE ID	E-1
DATE LOGGED	July 2, 2008
LOG DATUM	Top of Rock
LOG DATUM ELEV.	186.4 Feet (NGVD)
DIP AZIMUTH	Magnetic North
DIP ANGLE	Measured as the Angle from Horizontal

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
5.2	181.2	171	11	Fracture Rank 3
5.7	180.8	56	47	Healed Fracture or Vein
6.2	180.2	341	71	Fracture Rank 1
7.1	179.3	292	71	Healed Fracture or Vein
7.1	179.3	38	42	Healed Fracture or Vein
7.7	178.7	161	14	Healed Fracture or Vein
8.8	177.6	147	56	Fracture Rank 3
8.9	177.5	353	58	Healed Fracture or Vein
10.2	176.2	322	77	Fracture Rank 1
10.2	176.2	189	10	Bedding
10.3	176.1	203	5	Bedding
10.4	176.0	167	13	Bedding
10.9	175.5	39	33	Healed Fracture or Vein
11.3	175.1	156	14	Bedding
11.4	175.0	157	10	Bedding
12.3	174.1	158	25	Bedding
12.8	173.6	137	75	Healed Fracture or Vein
12.8	173.6	143	16	Healed Fracture or Vein
13.7	172.7	163	13	Healed Fracture or Vein
13.8	172.6	171	45	Healed Fracture or Vein
13.9	172.5	142	83	Healed Fracture or Vein
14.2	172.3	158	5	Healed Fracture or Vein
15.8	170.6	168	60	Fracture Rank 2
16.0	170.4	169	74	Fracture Rank 2
16.1	170.3	164	36	Fracture Rank 2
16.2	170.2	151	34	Fracture Rank 2
16.6	169.8	83	65	Fracture Rank 2
16.8	169.6	137	44	Healed Fracture or Vein
16.9	169.5	152	43	Healed Fracture or Vein
17.5	168.9	190	21	Fracture Rank 2
17.7	168.7	180	18	Bedding

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
17 9	168 5	176	15	Bedding
18.1	168.3	180	15	Bedding
18.2	168.2	330	60	Healed Fracture or Vein
18.2	168.2	183	16	Bedding
18.3	168.1	178	10	Bedding
19.5	167.0	170	10	Bedding
10.5	107.9	174	10	Bedding
10.0	107.0	104	19	Bedding
19.0	107.4	1/1	12	Dedding
19.3	107.2	100	11	Bedding
19.4	107.0	100	11	Bedding
19.4	167.0	180	81	Fracture Rank 2
19.6	166.8	180	11	Bedding
19.8	166.6	172	11	Bedding
20.3	166.1	162	11	Bedding
20.7	165.7	144	13	Bedding
20.9	165.5	178	8	Bedding
21.2	165.2	173	4	Bedding
21.4	165.0	162	11	Bedding
21.6	164.9	117	9	Bedding
21.7	164.8	132	10	Bedding
21.7	164.7	106	3	Bedding
22.0	164.4	178	11	Bedding
22.1	164.3	155	9	Bedding
22.1	164.3	192	6	Bedding
22.3	164.1	169	8	Bedding
22.6	163.9	168	6	Bedding
23.0	163.4	180	7	Bedding
23.3	163.1	156	11	Bedding
24.2	162.2	205	62	Healed Fracture or Vein
24.2	162.2	153	4	Bedding
24.3	162.2	143	5	Bedding
24.4	162.0	139	4	Bedding
24.6	161.9	163	5	Bedding
24.7	161.7	137	8	Bedding
24.9	161.5	129	6	Bedding
25.0	161.0	153	7	Bedding
25.2	161.2	140	11	Bedding
25.5	160.9	190	5	Bedding
25.5	160.8	312	55	Healed Fracture or Vein
25.0	160.6	1/6	Q	Redding
20.0	160.0	120	7	Bodding
20.0	100.4	109	7	Bedding
20.1	100.3	174	<u> </u>	Deduling
20.2	100.2	1/4	4	
26.3	160.1	111	(Beaaing

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
27.2	159.3	157	31	Healed Fracture or Vein
27.3	159.1	80	13	Fracture Rank 2
27.3	159 1	205	7	Healed Fracture or Vein
27.4	159.0	57	8	Fracture Rank 2
27.5	158.9	182	14	Healed Fracture or Vein
27.7	158.7	174	9	Bedding
27.8	158.6	144	24	Healed Fracture or Vein
27.0	158.5	156	70	Healed Fracture or Vein
28.2	158.2	126	21	Healed Fracture or Vein
20.2	158.1	120	46	Fracture Dank 2
20.5	158.0	125	62	Healed Fracture or Vein
20.4	150.0	123	56	Healed Fracture of Vein
20.0	157.0	131	30	Healed Flacture of Vein
28.8	157.0	132	48	Healed Fracture of Vein
28.9	157.0	130	40	Healed Fracture or Vein
29.0	157.4	138	44	Healed Fracture or Vein
29.4	157.1	138	52	Healed Fracture or Vein
29.5	156.9	145	42	Fracture Rank 2
29.7	156.7	133	27	Healed Fracture or Vein
30.0	156.4	139	26	Healed Fracture or Vein
30.0	156.4	139	38	Healed Fracture or Vein
30.1	156.3	152	42	Healed Fracture or Vein
30.2	156.2	144	39	Healed Fracture or Vein
30.4	156.1	141	40	Healed Fracture or Vein
30.4	156.0	138	18	Healed Fracture or Vein
30.5	155.9	265	7	Healed Fracture or Vein
30.6	155.8	258	8	Bedding
30.6	155.8	251	9	Bedding
30.8	155.7	275	3	Healed Fracture or Vein
31.1	155.3	135	16	Healed Fracture or Vein
31.2	155.2	283	4	Bedding
31.3	155.1	184	6	Healed Fracture or Vein
31.5	154.9	223	4	Healed Fracture or Vein
31.7	154.7	302	11	Healed Fracture or Vein
31.8	154.6	166	28	Fracture Rank 2
32.0	154.5	350	6	Fracture Rank 2
32.4	154.1	249	4	Bedding
32.8	153.6	203	4	Bedding
32.8	153.6	144	69	Fracture Rank 2
33.3	153.1	132	74	Fracture Rank 1
33.5	152.9	68	81	Healed Fracture or Vein
33.7	152.7	151	56	Fracture Rank 1
33.9	152.6	141	79	Fracture Rank 1
34.0	152.4	239	2	Bedding
34.5	151.9	63	83	Healed Fracture or Vein

Depth (feet)	Elevation (feet)	Dip Azimuth (degrees)	Dip Angle (degrees)	Bedrock Structure Category
34.9	151.5	95	62	Fracture Rank 1
35.6	150.8	144	68	Fracture Rank 2
36.0	150.5	133	67	Fracture Rank 2
36.1	150.4	62	85	Healed Fracture or Vein
36.3	150.1	162	4	Healed Fracture or Vein
36.4	150.0	158	71	Fracture Rank 2
36.9	149.6	146	78	Fracture Rank 1
37.1	149.3	143	76	Fracture Rank 1
37.4	149.0	222	4	Bedding
38.6	147.8	210	2	Bedding
38.8	147.6	209	4	Healed Fracture or Vein
39.1	147.3	144	73	Fracture Rank 1
39.3	147.1	196	9	Bedding
39.9	146.6	134	71	Fracture Rank 1
40.2	146.2	238	5	Bedding
40.3	146.1	151	61	Fracture Rank 1
40.9	145.5	146	35	Fracture Rank 1
41.0	145.4	261	5	Healed Fracture or Vein
41.1	145.3	130	64	Fracture Rank 1
41.1	145.3	216	5	Healed Fracture or Vein

CLIENT	Alpine Construction, LLC
PROJECT	General Electric Hudson Falls TDCS
LOCATION	Boralex Powerhouse
CITY, STATE	South Glens Falls, New York
H-R FILE	08RG15

BOREHOLE ID	E-2
DATE LOGGED	July 2, 2008
LOG DATUM	Top of Rock
LOG DATUM ELEV.	188.5 Feet (NGVD)
DIP AZIMUTH	Magnetic North
DIP ANGLE	Measured as the Angle from Horizontal

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
4.7	183.8	138	27	Healed Fracture or Vein
5.1	183.4	154	15	Healed Fracture or Vein
5.3	183.3	158	20	Healed Fracture or Vein
5.9	182.6	147	11	Fracture Rank 2
6.3	182.2	153	19	Healed Fracture or Vein
8.3	180.2	163	17	Healed Fracture or Vein
8.4	180.1	171	25	Fracture Rank 2
10.1	178.4	343	74	Fracture Rank 1
15.9	172.6	142	71	Fracture Rank 2
16.2	172.3	140	35	Fracture Rank 2
21.3	167.2	326	39	Fracture Rank 2
22.7	165.8	353	26	Fracture Rank 2
23.4	165.1	149	8	Healed Fracture or Vein
25.4	163.1	329	90	Fracture Rank 1
26.6	161.9	149	79	Fracture Rank 1
27.7	160.8	136	54	Fracture Rank 2
28.6	159.9	142	80	Fracture Rank 1
30.9	157.6	142	66	Fracture Rank 1
31.6	156.9	141	10	Healed Fracture or Vein
31.7	156.8	126	7	Fracture Rank 2
31.8	156.8	128	74	Fracture Rank 2
33.7	154.8	316	83	Fracture Rank 1
34.2	154.3	137	59	Fracture Rank 1
38.1	150.4	110	4	Fracture Rank 1
39.9	148.6	124	9	Healed Fracture or Vein
40.0	148.5	94	7	Fracture Rank 2
40.4	148.1	128	61	Fracture Rank 1
41.4	147.1	140	55	Fracture Rank 2
42.6	146.0	145	61	Fracture Rank 2

CLIENT	Alpine Construction, LLC
PROJECT	General Electric Hudson Falls TDCS
LOCATION	Boralex Powerhouse
CITY, STATE	South Glens Falls, New York
H-R FILE	08RG15

BOREHOLE ID	E-3
DATE LOGGED	May 2, 2008
LOG DATUM	Top of Rock
LOG DATUM ELEV.	177.5 Feet (NGVD)
DIP AZIMUTH	Magnetic North
DIP ANGLE	Measured as the Angle from Horizontal

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
4.2	173.3	102	16	Healed Fracture or Vein
4.5	173.0	72	8	Healed Fracture or Vein
4.6	172.9	178	6	Fracture Rank 2
4.7	172.8	131	83	Healed Fracture or Vein
5.1	172.4	1	10	Fracture Rank 2
5.1	172.4	307	76	Healed Fracture or Vein
5.2	172.3	179	17	Fracture Rank 2
5.9	171.6	272	4	Fracture Rank 2
6.0	171.5	171	14	Healed Fracture or Vein
6.1	171.4	164	35	Healed Fracture or Vein
6.2	171.3	166	28	Healed Fracture or Vein
6.2	171.3	290	7	Fracture Rank 1
6.3	171.2	169	38	Healed Fracture or Vein
6.4	171.1	179	42	Healed Fracture or Vein
6.5	171.1	180	35	Healed Fracture or Vein
6.6	170.9	141	37	Fracture Rank 1
6.6	170.9	186	29	Healed Fracture or Vein
6.7	170.9	174	33	Healed Fracture or Vein
6.7	170.8	138	39	Fracture Rank 1
7.0	170.5	166	32	Healed Fracture or Vein
7.1	170.4	154	36	Healed Fracture or Vein
7.2	170.3	162	35	Healed Fracture or Vein
7.6	169.9	124	53	Fracture Rank 2
7.8	169.7	219	36	Healed Fracture or Vein
7.9	169.6	200	24	Healed Fracture or Vein
8.2	169.3	211	43	Fracture Rank 2
8.2	169.3	211	40	Healed Fracture or Vein
8.4	169.2	313	62	Healed Fracture or Vein
8.8	168.7	4	10	Healed Fracture or Vein
8.9	168.6	211	23	Healed Fracture or Vein
8.9	168.6	222	7	Fracture Rank 2

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
9.0	168 5	215	18	Healed Fracture or Vein
9.0	168.4	210	10	Healed Fracture or Vein
9.1	168.3	188	7	Bedding
9.5	168.2	213	0	Eracture Pank 2
9.3	169.1	196	9	Rodding
9.4	100.1	100	0	Bedding
9.0	107.0	190	7	Bedding
9.9	107.0	190	1	Bedding
10.2	107.3	228	4	Bedding
10.3	167.2	338	82	Fracture Rank 1
11.2	166.3	191	/	Bedding
11.8	165.8	196	7	Bedding
12.0	165.5	208	8	Bedding
12.2	165.3	254	4	Bedding
12.4	165.1	187	8	Bedding
12.5	165.0	198	6	Bedding
12.6	164.9	216	6	Bedding
12.7	164.8	193	7	Bedding
12.8	164.7	200	6	Bedding
13.1	164.4	209	5	Bedding
13.4	164.1	195	8	Bedding
13.6	163.9	180	6	Bedding
13.7	163.8	200	4	Bedding
13.9	163.6	198	10	Bedding
14.5	163.1	183	5	Bedding
14.9	162.7	202	8	Bedding
15.1	162.4	210	6	Bedding
15.5	162.0	185	5	Bedding
15.5	162.0	191	2	Bedding
15.6	161.9	216	6	Bedding
16.4	161.1	214	5	Bedding
17.1	160.4	192	6	Bedding
17.2	160.3	203	4	Bedding
17.4	160.1	244	3	Bedding
17.6	159.9	246	4	Bedding
18.4	159.1	216	3	Bedding
18.5	159.0	180	7	Bedding
18.8	158.7	100	5	Bedding
18.0	158.6	221	85	Healed Eracture or Vein
10.9	158.5	221	5	Redding
10.6	159.0	10/	5	Bedding
10.7	150.0	102	S	Dedding
19.7	157.0	193	0	Deduling
20.1	157.4	212	0	Dedding
20.4	157.1	193	×	Beading
20.6	156.9	86	2	Beading

Depth	Elevation	Dip Azimuth	Dip Angle	Bedrock Structure
(feet)	(feet)	(degrees)	(degrees)	Category
21.3	156.2	167	9	Bedding
21.4	156.1	184	8	Bedding
21.9	155.7	186	11	Fracture Rank 2
21.9	155.6	156	80	Healed Fracture or Vein
22.9	154.6	221	22	Healed Fracture or Vein
23.2	154.3	317	74	Healed Fracture or Vein
26.6	150.9	84	57	Fracture Rank 1
28.6	148.9	153	76	Fracture Rank 1
31.1	146.4	233	5	Fracture Rank 1
33.9	143.6	125	67	Fracture Rank 1
39.8	137.7	228	2	Fracture Rank 1
41.3	136.2	151	59	Fracture Rank 1
42.7	134.8	143	60	Fracture Rank 1
43.6	134.0	144	72	Fracture Rank 1
44.4	133.1	161	44	Fracture Rank 1
44.7	132.9	160	43	Fracture Rank 1
45.7	131.9	134	66	Fracture Rank 1
46.8	130.7	126	70	Fracture Rank 1
47.7	129.9	136	62	Fracture Rank 1
48.6	128.9	147	53	Fracture Rank 1
49.7	127.8	140	53	Fracture Rank 1
50.2	127.4	121	55	Fracture Rank 1
51.2	126.3	121	59	Fracture Rank 1
51.5	126.0	140	59	Fracture Rank 1
53.3	124.2	163	71	Fracture Rank 1
53.7	123.8	141	66	Fracture Rank 1
54.9	122.7	157	76	Fracture Rank 1
57.2	120.3	161	7	Fracture Rank 2
59.8	117.7	166	67	Healed Fracture or Vein
61.9	115.6	53	79	Fracture Rank 1
65.1	112.4	169	10	Fracture Rank 2
66.3	111.2	144	57	Fracture Rank 1
72.2	105.3	57	76	Healed Fracture or Vein
77.9	99.6	322	6	Fracture Rank 1
77.9	99.6	153	11	Fracture Rank 2
85.4	92.1	120	61	Fracture Rank 1
85.6	91.9	136	63	Fracture Rank 1
90.5	87.0	144	57	Fracture Rank 1
91.0	86.5	326	8	Fracture Rank 1
92.8	84.7	136	66	Fracture Rank 1
93.4	84.1	130	73	Fracture Rank 1
93.5	84.0	341	11	Fracture Rank 1
93.5	84.0	204	4	Fracture Rank 2
93.8	83.7	38	78	Healed Fracture or Vein

Depth (feet)	Elevation (feet)	Dip Azimuth (degrees)	Dip Angle (degrees)	Bedrock Structure Category
94.5	83.0	136	75	Fracture Rank 1
96.0	81.5	107	64	Fracture Rank 1
98.0	79.5	132	60	Fracture Rank 1

APPENDIX 3

BEDROCK STRUCTURE STATISTICS PLOTS

