# 2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

# 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

# Prepared for

Utica Holding Company c/o Danaher Corporation 1500 Mittel Boulevard Wood Dale, IL 60191

Prepared by



Synapse Risk Management, LLC. 400 University Building 120 East Washington Street Syracuse, New York 13202

# **CERTIFICATION**

I, Paul M. Fisher, P.E., as a licensed Professional Engineer in the State of New York, certify that the 2004 Annual Operation, Maintenance and Monitoring Report, Sections 1 through 5, for the property located at 2200 Bleecker Street, Utica, New York, pursuant to the Draft DER-10, December 2002, Section 1.5(a)8, has been prepared in accordance with good engineering practices. I further certify that the inspections and evaluations, for said sections, were implemented and that all activities were completed in accordance with the Department-approved Operation, Maintenance and Monitoring Manual and/or Department-approved changes, and were personally witnessed by me or by a person under my direct supervision.

Synapse Engineering, PLLC

PAUL M. FISHER, P.E.

#### **CERTIFICATION**

I, James R. Heckathorne, P.E., as a licensed Professional Engineer in the State of New York, certify that Section 6 of the 2004 Annual Operation, Maintenance and Monitoring Report, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a)8 and has been prepared in accordance with good engineering practices.

#### **O'BRIEN & GERE**

JAMES R. HECKATHORNE, P.E.

# **TABLE OF CONTENTS**

| Secti  | <u>on</u> |                                                    | <u>Page</u> |
|--------|-----------|----------------------------------------------------|-------------|
| Certi  | fication  | for Sections 1-5                                   | i           |
| Certif | fication  | for Section 6                                      | ii          |
| Table  | of Con    | tents                                              | iii         |
| Acro   | nyms ar   | nd Abbreviations                                   | v           |
| Asso   | ciated [  | Documents                                          | vi          |
| 1.0    | INTR      | ODUCTION                                           | 1-1         |
|        | 1.1       | REGULATORY HISTORY                                 |             |
|        | 1.2       | PURPOSE                                            | 1-1         |
|        | 1.3       | REPORT ORGANIZATION                                |             |
|        | 1.4       | PROPERTY MANAGEMENT                                | 1-2         |
| 2.0    | PRO       | PERTY INSPECTION AND MAINTENANCE                   |             |
|        | 2.1       | PROPERTY HISTORY                                   | 2-1         |
|        | 2.2       | PROPERTY GEOLOGY AND HYDROGEOLOGY                  |             |
|        | 2.3       | PROPERTY ACTIVITIES                                |             |
|        | 2.4       | INSPECTION                                         | 2-2         |
|        | 2.5       | PROPERTY DRAINAGE AND OUTFALLS                     |             |
|        | 2.6       | SUMMARY                                            |             |
|        | 2.7       | FIGURES                                            | 2-4         |
| 3.0    | REMI      | 3-1                                                |             |
|        | 3.1       | CONSTRUCTION                                       | 3-1         |
|        | 3.2       | OPERATIONS AND INSPECTIONS                         |             |
|        | 3.3       | MAINTENANCE                                        |             |
|        | 3.4       | LEACHATE COLLECTION                                |             |
|        | 3.5       | LEACHATE DISPOSAL                                  |             |
|        | 3.6       | SUMMARY                                            |             |
|        | 3.7       | TABLES                                             |             |
|        | 3.8       | CHARTS                                             |             |
|        | 3.9       | FIGURES                                            | 3-8         |
| 4.0    | GRO       | UNDWATER MONITORING                                | 4-1         |
|        | 4.1       | MONITORING WELL CONSTRUCTION                       |             |
|        | 4.2       | GROUNDWATER ELEVATION MEASUREMENT                  | 4-1         |
|        | 4.3       | GROUNDWATER SAMPLING                               | 4-2         |
|        | 4.4       | GROUNDWATER ANALYTICAL RESULTS                     |             |
|        | 4.5       | SUMMARY                                            | 4-4         |
|        | 4.6       | TABLES                                             | 4-5         |
|        | 4.7       | FIGURES                                            | 4-6         |
| 5.0    | PROI      | PERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM | 5-1         |
|        | 5.1       | OUTFALL CONTRIBUTIONS                              |             |
|        | 5.2       | OUTFALL CONSTRUCTION                               |             |
|        | 5.3       | MONITORING                                         |             |
|        | -         | 5.3.1 Routine Monitoring                           |             |
|        |           | 5.3.2 EPA Method 1668A PCB Study                   |             |
|        |           | 5.3.3 Acute Toxicity Testing                       |             |
|        | 5.4       | SUMMARY                                            |             |
|        | 5.5       | TABLES                                             |             |
|        | 5.6       | FIGURES                                            | 5-8         |
|        |           |                                                    |             |

| 6.0 | GRO | DUNDWATER TREATMENT SYSTEM | 6-1 |
|-----|-----|----------------------------|-----|
|     |     | SYSTEM CONSTRUCTION        |     |
|     |     | OPERATION                  |     |
|     | 6.3 | MAINTENANCE                |     |
|     | 6.4 | SPDES OUTFALL 03A          |     |
|     | 6.5 | SUMMARY                    | 6-4 |
|     | 6.6 | TABLES                     |     |
|     | 6.7 | FIGURES                    | 6-6 |

# **LIST OF APPENDICES**

| APPENDIX A | Site Inspection Reports - Form A & Form A1             |
|------------|--------------------------------------------------------|
| APPENDIX B | Auto Dialer Alarm Incident and Testing Report - Form F |
| APPENDIX C | Leachate Disposal Correspondence and Analytical Data   |
| APPENDIX D | Water Level Field Logs - Form D                        |
| APPENDIX E | Groundwater Sampling Logs- Form E                      |
| APPENDIX F | Groundwater Analytical Data                            |
| APPENDIX G | Groundwater Treatment System Inspection Logs           |

#### **ACRONYMS AND ABBREVIATIONS**

ABBREVIATION NAME

BBL Blasland, Bouck & Lee

bgs below ground surface
cfm cubic feet per minute
cis-1,2-DCE cis-1,2-dichloroethene
CMP corrugated metal pipe

Coolidge Coolidge Utica Properties, LLC
CPTC Chicago Pneumatic Tool Company

Danaher Corporation

DER-10 NYSDEC's Draft DER-10, Technical Guidance for Site Investigation and Remediation dated December 25, 2002

DMRs Discharge Monitoring Reports
Fathead Minnow Pimephales promelas (vertebrate)

FER Final Engineering Report

gpd gallons per day gpm gallons per minute

GTS groundwater treatment system HDPE high-density polyethylene

IRM Surface Water Interim Remedial Measures

ISACC Intelligent System for Automatic Control & Communication (Auto Dialer System)

Main Building former main manufacturing building

MH Manhole

NCT northern collection trench

ng/l nanograms/liter

NYSDEC New York State Department of Environmental Conservation

OBG O'Brien and Gere Engineers, Inc.

OCDWC Oneida County Department of Water Quality and Water Pollution Control

OM&M Operation, Maintenance and Monitoring

PCB polychlorinated biphenyl

ppb parts per billion
ppm parts per million
ppt parts per trillion
PVC polyvinyl chloride

QA/QC Quality assurance/quality control

RA Remedial Action

RAF Remedial Action Facility
RD Remedial Design
RI Remedial Investigation
ROD Record of Decision
SCT southern collection trench

SECOR SECOR International Incorporated

SPDES State Pollutant Discharge Elimination System

TCE Trichloroethylene

the Property 2200 Bleecker Street in Utica, New York

TOGS 1.1.1 NYSDEC Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality and Guidance Values

and Groundwater Effluent Limitations dated June 1998

trans-1,2-DCE trans-1,2-dichloroethene
TSS total suspended solids
UHC Utica Holding Company

VC vinyl chloride

VOC volatile organic compound
Water Flea Ceriodaphnia dubia (invertebrate)

# **ASSOCIATED DOCUMENTS**

| ABBREVIATION | TITLE                                                                         | AUTHOR | DATE     |
|--------------|-------------------------------------------------------------------------------|--------|----------|
| Phase 1      | Phase I Investigation                                                         | BBL    | 8/85     |
| SIR          | Site Investigation Report                                                     | BBL    | 7/90     |
| PSA          | Preliminary Site Assessment                                                   | NYSDEC | 11/90    |
| Order        | Order on Consent for RI/FS<br>Index No. A6-0279-920-04                        | NYSDEC | 10/26/93 |
| RI           | Remedial Investigation Report                                                 | BBL    | 10/94    |
| IRM          | Surface Water Interim Remedial Measures (Design)                              | BBL    | 10/94    |
| IRM-DWG      | IRM Contract Drawing                                                          | BBL    | 04/95    |
| IRM OM&M     | IRM Operation & Maintenance Manual                                            | BBL    | 04/95    |
| RI/FS        | Health and Safety Plan - Addendum #1 Remedial Investigation/Feasibility Study | BBL    | 10/95    |
| SRI/FS       | Supplemental Remedial Investigation<br>Report/Feasibility Study               | BBL    | 12/95    |
| ROD          | Record of Decision - Site No. 622003                                          | NYSDEC | 3/29/96  |
| ORDER        | Administrative Order on Consent<br>Index No. B6-0491-96-04                    | NYSDEC | 10/02/97 |
| RD           | Remedial Design Work Plan                                                     | BBL    | 11/97    |
| RDS          | Remedial Design Specifications                                                | BBL    | 4/98     |
| SPDES-SAP    | SPDES Stormwater Action Plan                                                  | SECOR  | 6/00     |
| FER          | Final Engineering Report (Final)                                              | SECOR  | 8/01     |
| OMM          | Operation, Maintenance & Monitoring Manual (Final)                            | SECOR  | 4/01     |
| 2000-RPT     | 2000 Annual Operation, Maintenance & Monitoring Report                        | SECOR  | 4/01     |
| 2001-RPT     | 2001 Annual Operation Maintenance & Monitoring Report                         | SECOR  | 8/02     |
| UHC SPDES    | Utica Holding Company SPDES Permit No. NY-0257087                             | NYSDEC | 9/1/02   |
| CPTC SPDES   | Chicago Pneumatic SPDES Permit No. NY-0108537                                 | NYSDEC | 9/1/02   |
| 2002-RPT     | 2002 Annual Operation, Maintenance and Monitoring Report                      | SECOR  | 3/03     |
| 2003-RPT     | 2003 Annual Operation, Maintenance and Monitoring Report                      | Domani | 3/04     |

#### 1.0 INTRODUCTION

This 2004 Operation, Maintenance and Monitoring Report (OM&M Report) provides an annual account of activities relative to the property located at 2200 Bleecker Street in Utica, New York (the Property). The Chicago Pneumatic Tool Company (CPTC) occupied the Property from 1948 through 1997 for manufacturing. The Property is currently owned by Utica Holding Company (UHC), a subsidiary of Danaher Corporation (Danaher), with the exception of the former main manufacturing building (Main Building) structure and the land beneath that structure, which is presently owned by Coolidge Utica Properties, LLC (Coolidge). The surrounding property, owned by UHC, is leased to Utica Land Equities, LLC (ULE).

# 1.1 Regulatory History

Environmental assessments and investigations conducted between 1985 and 1990 identified impacted soil, surface water, and groundwater at the Property, and prompted the New York State Department of Environmental Conservation (NYSDEC) to issue an Administrative Order on Consent in 1993, directing the investigation and remediation of impacted areas at the Property. In 1996, NYSDEC issued a Record of Decision (ROD) for the Property, and listed it in the Registry of Inactive Hazardous Waste Disposal Sites, followed by a second administrative Order on Consent. This set forth a Remedial Design (RD) and subsequent Remedial Action (RA) required for the Property. Following completion of the RA construction and reporting activities, NYSDEC issued a letter indicating that the RA had been approved. A chronological list entitled Associated Documents, Page vi, summarizes key documents.

# 1.2 Purpose

This OM&M Report has been prepared in conformance with the requirements set forth in NYSDEC's Draft DER-10, dated December 25, 2002, *Technical Guidance for Site Investigation and Remediation* (DER-10), and has been prepared in reference to the Final Engineering Report (FER), previously submitted and accepted by NYSDEC for the Property. This OM&M Report, as directed by the OM&M Manual, has the following objectives:

- To provide an evaluation of the compliance of the RA with the requirements of the ROD and subsequent Order on Consent;
- To provide an evaluation of the operation and the effectiveness of the ongoing remedial operations and treatment systems in use at the Property, and identification of any needed repairs or modifications;
- To provide an evaluation of the performance and effectiveness of the remedy;
- To document any necessary changes to the remedy and/or monitoring systems;
- To provide recommendations for changes and/or new conclusions regarding environmental impact at the Property based on this evaluation; and
- To provide information to the public.

# 1.3 Report Organization

This report has been organized into six sections, each addressing a specific physical area/feature and/or regulatory program/requirement pertaining to ongoing operations at the Property as follows:

Section 1.0 – Introduction - Discusses the regulatory history of the Property, the purpose of this annual report, the report's originations and an overview of party contributions and subsequent responsibilities;

Section 2.0 - Property Inspection and Maintenance - Discusses the current ownership and uses of the Property, and the ongoing inspection and maintenance requirements associated with the Property's general ongoing use;

Section 3.0 - Remedial Action Facility - Discusses the Remedial Action Facility (RAF) at the Property, primarily consisting of a containment cell, a leachate collection and storage system, and the inspection and maintenance requirements associated with the RAF's ongoing operation;

Section 4.0 - Groundwater Monitoring - Discusses the groundwater monitoring well network at the Property, the groundwater sampling and analytical requirements and subsequent results;

Section 5.0 - Property SPDES - Discusses the State Pollutant Discharge Elimination System (SPDES) permitted surface water discharges through three outfalls at the Property, and the routine and additional effluent sampling, to include the analytical programs required by the permit; and

Section 6.0 - Groundwater Treatment System - Discusses the operation and maintenance of the groundwater treatment system (GTS) installed and currently operating at the Property.

This OM&M Report also discusses, and presents as appendices, applicable data and information collected in compliance with satisfying the DER-10 requirements, such as site inspection forms, field monitoring logs, and laboratory analytical data. The NYSDEC provided comments to the 2003 Annual OM&M Report, dated April 27, 2004, that requested that monthly discharge monitoring reports (DMRs) and associated reports not be included in future Annual OM&M Reports.

#### 1.4 Property Management

On behalf of UHC, Synapse Risk Management, LLC (Synapse), of Syracuse, New York, has been managing the administrative and technical requirements pursuant to the RA since June 18, 2004, with the exception of the GTS, which has been operated by O'Brien and Gere Engineers, Inc. (OBG), of East Syracuse, New York. As indicated in a July 2004 letter transmitted to NYSDEC, personnel historically responsible for managing the administrative and technical requirements pursuant to the RA, with the exception of the GTS, transitioned from Domani, LLC to Synapse. This change occurred without lapse to the OM&M at the Property.

#### 2.0 PROPERTY INSPECTION AND MAINTENANCE

The overall Property consists of a 77-acre parcel (see Figure 2-1 – Aerial Property Map) located in an industrial setting, with approximately 35 acres of undeveloped woodland at the southern portion of the Property. UHC retains ownership of the Property, which includes the ancillary buildings and the land, excluding the Main Building (see Figure 2-2 – Facility Plan). The Main Building is presently owned by Coolidge, whom subsequently rents/leases portions/sections of the building to various tenants. The peripheral Property receives monthly inspection and maintenance in conjunction with the required inspections of the RAF and associated components. This section includes inspection and maintenance of the peripheral Property only. The RAF, groundwater monitoring, Property SPDES, and GTS are discussed in Section 3, Section 4, Section 5, and Section 6, respectively.

#### 2.1 Property History

CPTC occupied the Property from 1948 until 1997 for the manufacture of pneumatic tools. Danaher owned CPTC, but later transferred ownership to Atlas Copco. The Property, with the exception of the Main Building, is currently owned by UHC, a subsidiary of Danaher. The 458,000 square foot Main Building has been owned by Coolidge and the remaining land, owned by UHC, is leased by ULE, both of Houlihan-Parnes Realtors, since 1997.

Potential environmental conditions of the Property were first identified in a 1985 Phase I Site Assessment (see Associated Documents). A subsequent site investigation was conducted in July 1990, and NYSDEC conducted a Preliminary Site Assessment later that year. Based on the findings presented in these investigation reports, NYSDEC issued an Administrative Order on Consent in 1993 which mandated the further investigation and remediation of impacted areas at the Property. Pursuant to this Order on Consent, Blasland Bouck & Lee, Inc. (BBL) submitted a Remedial Investigation (RI) report and a Surface Water Interim Remedial Measures (IRM) design in 1994, and a Supplemental Remedial Investigation/Feasibility Study in 1995. In 1996, NYSDEC issued a Record of Decision for the Property, and listed the Property in the Registry of Inactive Hazardous Waste Sites (No. 622003 - Class 2), specifying the RA required for the Property. A second administrative Order on Consent was issued in 1997 followed by the RD.

The IRM, which included an air stripper, has been in operation since 1995. The air stripper and pumping appurtenance were incorporated into the RA. The RA was implemented from May 1998 through December 1999. A June 2000 SPDES Stormwater Action Plan was prepared and transmitted to NYSDEC to document SPDES corrective actions performed at the Property and to set forth contingency measures. NYSDEC issued a letter dated December 11, 2001 indicating that the FER and accompanying drawing and OM&M Manual for the Property had been approved. Additionally, the NYSDEC issued an earlier letter dated March 7, 2000 reclassifying the Property as a Class 4 Inactive Hazardous Waste Disposal Site. CPTC and Danaher retain responsibility for implementing long term OM&M of the GTS and RAF, respectively, at the Property.

The RA included the following major components:

- Remediation involving soil and sediment removal at 14 identified source areas (see Figure 2-3 -Historical Remedial Action Area);
- Construction of a containment cell to store impacted soil and sediment from the 14 identified source areas. The containment cell and associated leachate collection system and building are surrounded by a perimeter fence and access is limited to authorized individuals associated with UHC. This fenced area is referred to as the RAF; and
- Construction and connection of two trenches, northern collection trench (NCT) and southern collection trench (SCT), to the existing air stripper creating the GTS.

UHC currently maintains responsibility for the SPDES permit associated with three outfalls located on the Property, which is discussed in Section 5. CPTC maintains responsibility for the GTS and associated SPDES permit which is discussed in Section 6.

# 2.2 Property Geology and Hydrogeology

The Property is located on the southern side of the Mohawk Valley, which is a broad, east-west trending lowland, the floor of which consists of a uniform sequence of laminated, calcareous black shale known as the Utica Shale. South of the Property, the land surface rises abruptly off the valley floor, forming a bluff capped by limestone. The Mohawk River is located approximately 3,000 feet north of the Property. In general, regional dip of the bedrock units is to the southwest. Regional estimates of depth to bedrock range from 21 to 75 feet.

Subsurface materials at the Property were described during installation of monitoring wells, soil borings, test pits, and excavations performed during investigative and remedial actions conducted primarily between 1988 and 1999. The unconsolidated subsurface materials are composed of varying consistencies of sand, silt, and clay. Some of the materials have been reworked to varying depths across the site by former facility activity and are classified as fill. The depth of the unconsolidated natural material across the Property ranges from three 3 feet to 12 feet below grade. A till layer was encountered below the unconsolidated material and ranged in thickness from 12 to 24 feet. The till deposits are described as over-consolidated, dark gray silt and clay, that dips gradually toward the north-northwest.

The regional groundwater flow is northeast, toward the Mohawk River. Two distinct hydrogeologic units, separated by a semi-confining till unit, are present at the Property. The first water-bearing unit is the unconsolidated overburden material (sand, silt, clay). Depth to first groundwater encountered in the overburden at the Property is generally within 5 feet of the ground surface. Weathered shale bedrock is the second water-bearing unit, and was reportedly encountered between 23 and 30 feet below ground surface.

#### 2.3 Property Activities

The majority of the Property buildings are currently occupied by tenants that generally include trucking, cosmetic storage, food (dough) manufacturing, and printing businesses. The Main Building, 458,000 square feet, is surrounded by approximately 57,000 square feet of ancillary buildings. Paved access roads and parking areas cover approximately 12 acres. An approximate 35-acre wooded tract, at the southern portion of the Property, remains inactive. No specific changes in the Property's makeup or unusual activities related to the operation and maintenance requirements were noted during the calendar year 2004.

#### 2.4 Inspection

Scheduled Property visits and subsequent Site Inspection Reports – Form A and Form A1, (Appendix A) are performed and prepared to track Property activities and monitor Property drainage. These reports indicate required maintenance and provide a follow-up to ensure the subsequent maintenance effectiveness. Scheduled and unscheduled Property visits are documented on additional forms, and are discussed in appropriate sections throughout this report. During 2004, the Property ditches were inspected and observed to be well vegetated, and overall, not generally prone to sedimentation. Additionally, the ditches are inspected for unusual staining and deposits, of which none were identified. The Property culverts are inspected as well, to insure they are clear and functional.

# 2.5 Property Drainage and Outfalls

The Property is generally drained via existing drainage ditches located at the east and west portions of the Property. The west unnamed creek, Area 1 (See Figure 2-3), flows from the south through a wooded area and runs along the western extent of the Property, exiting at the northwest corner of the Property. The unnamed creek drainage contribution primarily consists of roof leaders conveyed via the northern and southwestern stormwater systems emanating from of the Main Building. Surface water runoff from the western parking lot and surface water runoff from a southern agriculture area also contribute to the unnamed creek. The southwestern and northern stormwater systems are monitored from manholes identified as SPDES Outfall 001 and Outfall 002, respectively. SPDES outfall monitoring for the Property is discussed in Section 5. The unnamed creek floods occasionally in the spring and fall, primarily due to restrictions in an off-site stormwater piping system. A new culvert was installed in 2003 by the county across Bleecker Street, approximately 300 feet off-site to the west. This culvert was installed to limit flooding of Bleecker Street by water backing up the unnamed creek, Area 1.

Two east-west oriented surface water drainage ditches, Area 4 and Area 6, originate from the mid portion of the Property, south of the former Main Building, and converge to form one north-south ditch, Area 14, along the eastern portion of the Property. This east drainage ditch joins a road ditch located parallel to Bleecker Street. Treated effluent from the GTS, which is covered in Section 6, is discharged to the east drainage ditch via SPDES Outfall 03A. The east drainage ditch also receives stormwater from roof leaders connected to the southeastern stormwater system and the RAF surface drainage, as well as surface water from the eastern parking lots. The SPDES Outfall 003 is located near the northern end of the eastern drainage ditch; prior to joining a drainage ditch parallel to Bleecker Street.

# 2.6 Summary

The northern portion of the Property continued to be active throughout 2004, however, the southern portion remains wooded and inactive. Tenants occupy approximately 80% of the Main Building and continue to use the surrounding access roads and parking lots. The Property is accessed a minimum of once per month allotting reviews of ongoing activities and inspection of the drainage system. No reportable issues of concern were noted with regard the property drainage or makeup, therefore, continuation of the scheduled inspection is recommended for this aspect of the Property.

# 2.7 Figures

- 2-1 Aerial Property Map
- 2-2 Facility Plan
- 2-3 Historical Remedial Action Areas



-x-x-x- CHAIN LINK FENCE )----- SURFACE DRAINAGE CULVERT --- DRAINAGE DITCH TREE LINE

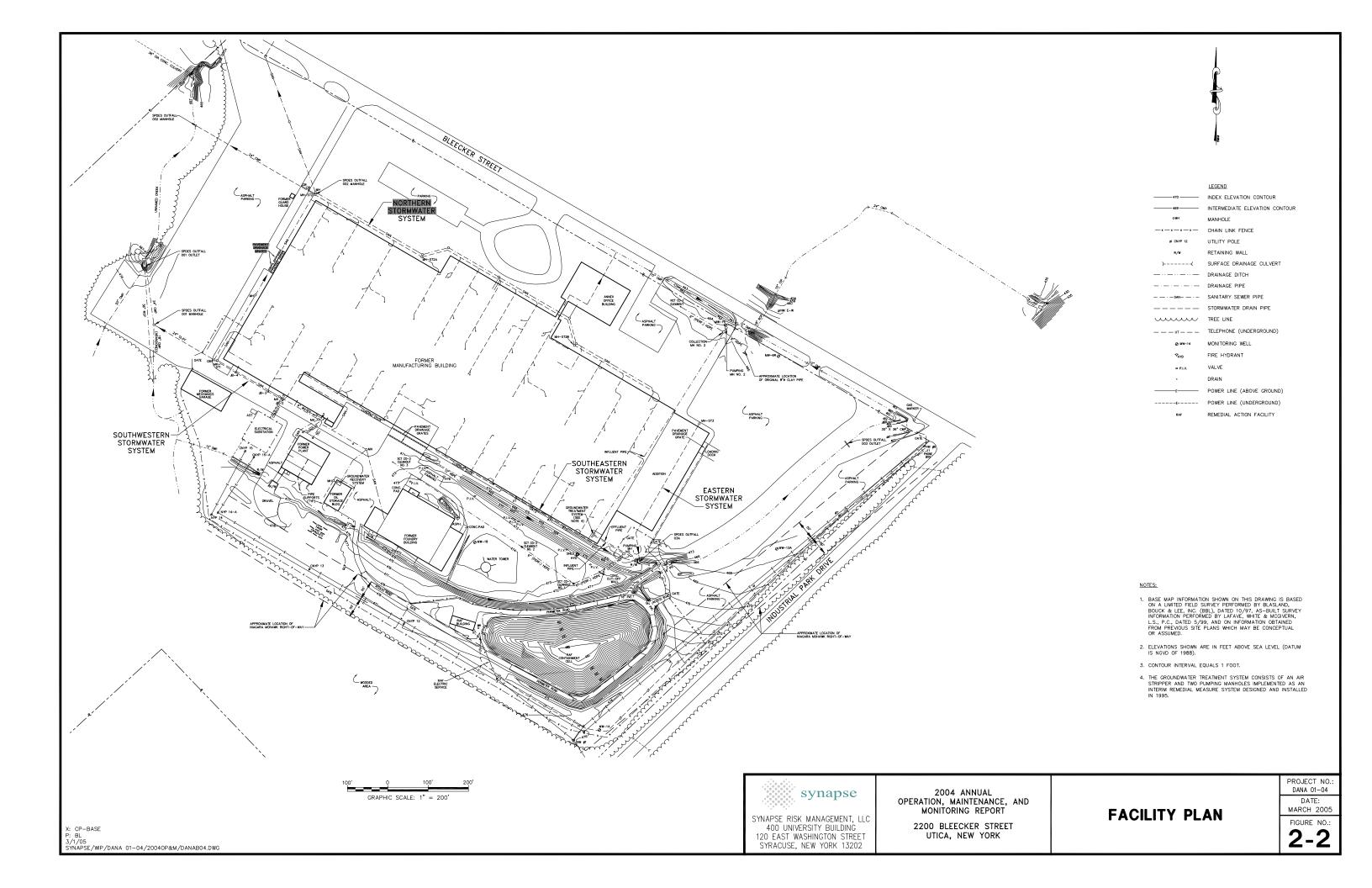
LEGEND

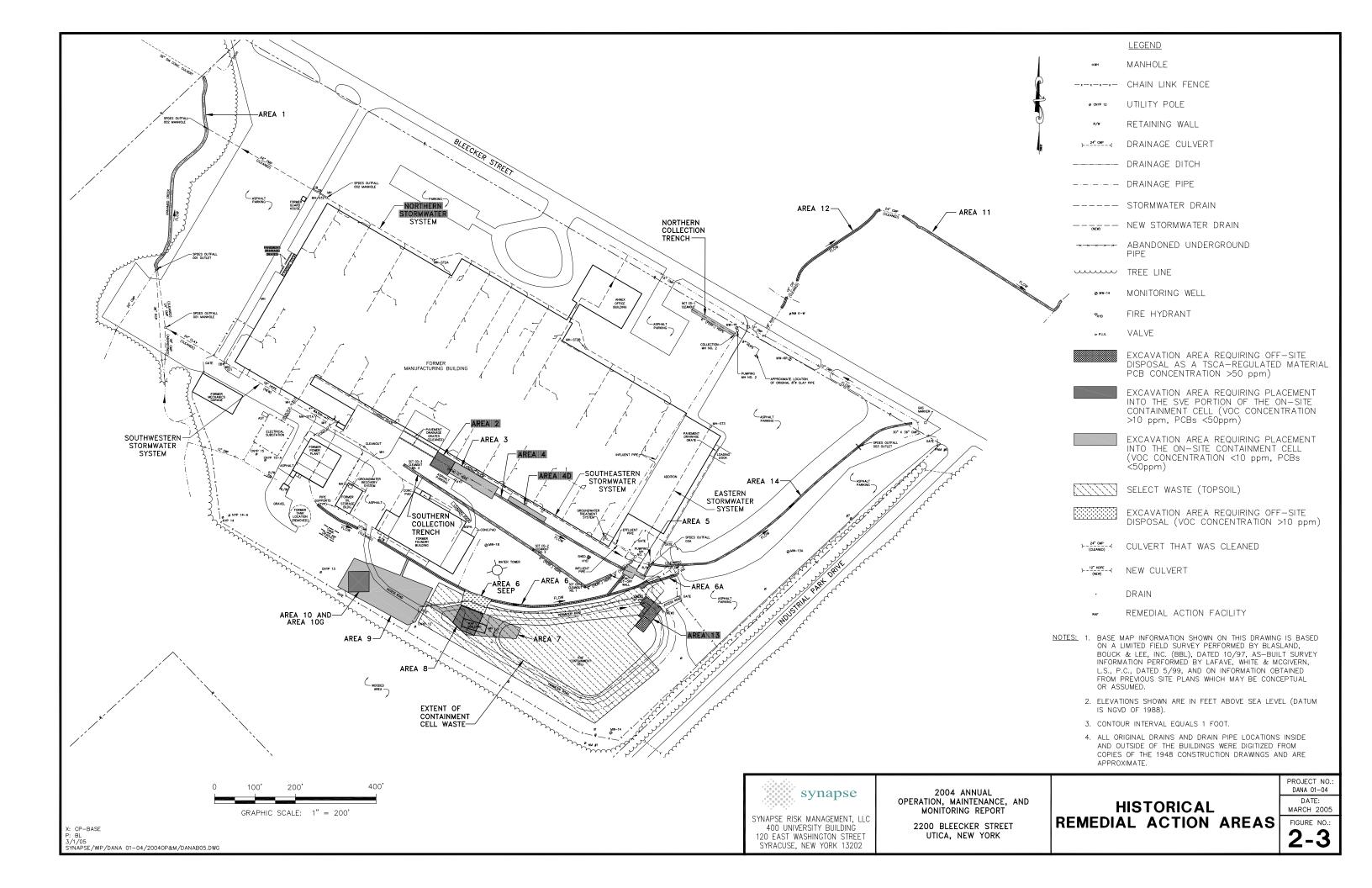
- 1. BASE MAP INFORMATION SHOWN ON THIS DRAWING IS BASED ON A LIMITED FIELD SURVEY PERFORMED BY BLASLAND, BOUCK & LEE, INC. (BBL), DATED 10/97, AS-BUILT SURVEY INFORMATION PERFORMED BY LAFAVE, WHITE & MCGUYERN, L.S., P.C., DATED 5/99, AND ON INFORMATION OBTAINED FROM PREVIOUS SITE PLANS WHICH MAY BE CONCEPTUAL OR ASSUMED.
- 2. PROPERTY LINE INFORMATION TAKEN FROM HERKIMER COUNTY TAX MAPS AND IS APPROXIMATE.
- 3. AIR PHOTO DATED 5/31/90.



SYNAPSE RISK MANAGEMENT, LLC 400 UNIVERSITY BUILDING 120 EAST WASHINGTON STREET SYRACUSE, NEW YORK 13202

2004 ANNUAL
OPERATION, MAINTENANCE, AND
MONITORING REPORT


2200 BLEECKER STREET UTICA, NEW YORK


**AERIAL PROPERTY MAP** 

PROJECT NO.: DANA 01-04 DATE:

MARCH 2005 FIGURE NO.:

X: CP-BASE P: DL2BC 3/1/05 SYNAPSE/WIP/DANA 01-04/20040P&M/DANAB03.DWG





#### 3.0 REMEDIAL ACTION FACILITY

The RAF is situated in the mid-eastern portion of the Property, as presented on Figure 3-1 – Remedial Action Facility Plan, and contained within a fenced area encompassing approximately 3.8 acres; providing security for the, generally unmanned, facility. The OM&M of the RAF was conducted by Synapse, in accordance with the guidelines set forth in the NYSDEC-approved OM&M Manual dated April 2001. Field reports provide documentation of the site inspection events and any adjustments made. The results of these inspections generally set forth maintenance, if required.

Key components of the RAF are the fences, roads, drainage, containment cell, leachate collection, and building systems, which constitute the engineering controls. The primary function of the RAF is to collect and subsequently dispose of leachate generated from the containment cell.

The groundwater monitoring wells, with the exception of MW-14, and the GTS are located outside of the perimeter fence of the RAF and are reviewed in Section 4 and Section 6, respectively.

#### 3.1 Construction

The RAF is surrounded by an 8-foot high barbed wire over chain link fence, with access gates to the north and west, with the primary access via the western gate. The RAF is generally comprised of the following components:

- Containment Cell In 1999, construction of a 1.4-acre containment cell was completed to store 16,117 cubic yards of impacted soil and sediment generated during the RA. The containment cell was lined with a single composite liner system and completed with and a composite cap placed over the impacted soil and sediment. Two gas vents and a leachate collection pipe were also installed within the containment cell. A series of ditches were installed around the containment cell to collect surface water runoff and direct stormwater offsite. A gravel service/perimeter road surrounds the containment cell providing for vehicle access and subsequent inspection and maintenance.
- Leachate Collection System A leachate collection system, comprised of a collection pipe running the length of the containment cell, and connected to the collection manhole, which is installed adjacent to the western side of the containment cell. The collection manhole is equipped with two pumps to transfer leachate to a storage tank prior to disposal. All components of the leachate collection system are double contained with fail safe monitoring systems.
- Leachate Storage System Leachate pumped from the collection manhole is stored in an aboveground 5,000-gallon steel storage tank within a steel secondary containment structure as shown on Figure 3-2 Building, Tank, and Piping Plan. A flow totalizer is used to track the quantity of leachate pumped to the tank from the collection manhole, and level sensor installed in the tank is used to determine the quantity of leachate in the tank. The level sensor is also electronically connected to an auto dialer system to notify Synapse personnel of alarm conditions via telephone and facsimile. The tank is also equipped with a sampling port, drain fitting, electric heating elements, and insulation utilized to prevent freezing of the tank and piping during winter months. In addition, a concrete truck pad with grated sump is located adjacent to the tank to facilitate pumping of leachate from the tank to a tanker truck prior to disposal.
- RAF Building A 1,278-square foot building constructed of a steel frame and siding on a concrete slab foundation is used to house the leachate collection tank (tank area), and truck pad (truck loading area), noted above. Additionally, the building enclosure has an office area for maintaining OM&M records, the communication components, electrical service boxes and a storage area for tools, supplies, and equipment, known as the office/storage area. The building is located west of the containment cell and collection manhole.

# 3.2 Operations and Inspections

The leachate collection system operated continuously during 2004. The RAF and associated components are scheduled for monthly visual inspection and documentation as set forth in the OM&M Manual. Operation is also monitored via telecommunication with the RAF auto dialer system, Intelligent System for Automatic Control & Communication (ISACC). Scheduled site visits and subsequent Site Inspection Reports – Form A (Appendix A) consists of the following inspection components associated with the RAF:

- General Property Access and Drainage;
- Cell Perimeter Components;
- Containment Cell;
- Leachate Collection Manhole:
- Building Structure, Electrical, Telephone, and Auto Dialer Controls; and
- Leachate Storage System.

The cell perimeter road and facility access road were reviewed during the monthly inspections to ensure access for facility maintenance. The immediate surface drainways were inspected to insure that ponding or erosion does not occur from runoff. All Property ditches and culverts were accessed and viewed during the inspection, for the same. The RAF perimeter fence was also inspected to insure facility security, and the facility overhead utilities were viewed and tested, in the building, as well.

Inspection of the containment cell involved viewing the cell from the perimeter road and traversing its surface. Components viewed were the four perimeter drains, the two passive gas vents, and the cell cleanout pipe. These were checks for functionality, which also included periodic screening of the passive gas vents for volatile organic compounds (VOCs). The surface of the cell was inspected for stressed vegetation, burrows, erosion, and movement.

Operation of the leachate collection manhole involves structural, electrical, pumping, and alarm components. Each inspection required checking the manhole control panel and recording running hours of the two pumps. Additionally, this included testing the operation of each pump, as well as opening the manhole and conducting visual inspection of its components. As this is a lead/lag pumping system, lead duties are periodically changed between Pump No. 1 and Pump No. 2 during inspections.

The RAF building was viewed during the inspection for inconsistencies in the structural, security, electrical, and telephone systems, as well as assuring the heat and vent systems were functional. The ISACC, located in the RAF building, provides continuous monitoring information of the leachate collection manhole and leachate storage tank. The ISACC system is generally accessed remotely semi-monthly for data collection and management. ISACC was accessed from the Synapse office by modem to download specific information. In the event of an alarm condition, the ISACC system alerts designated Synapse personnel based on the guidelines set forth in the OM&M Manual and the ISACC program logic. The Auto Dialer Alarm Incident and Testing Report, Form F, included in Appendix B, provides documentation of alarm conditions, if any, and testing during the 2004 calendar year. An annual total system check was performed, as required, and reportedly, no alarm was received during 2004.

The leachate storage system, which is housed in the center portion of the RAF Building, was inspected and total flow readings were recorded. The 5,000-gallon storage tank, containment system, and plumbing were viewed for leaks and any abnormalities. The tank was internally inspected, generally after leachate was removed, to assure the control of corrosion. The influent pipe is equipped with a flow totalizer, which was manually recorded during monthly inspections. The flow totalizer indicated that approximately 4,700 gallons were pumped during 2004, totaling 53,700 gallons pumped since monitoring commenced in May 1999. The collected leachate sampling and disposal are reviewed in later subsections.

#### 3.3 Maintenance

General maintenance requirements of the RAF are set forth in the OM&M Manual, which provides inspection criteria, forms, guidance, and procedures to perform scheduled maintenance requirements, as well as contingency plans for unscheduled matters. The OM&M procedures and protocols are generally cross-referenced with and supported by the August 2001 FER.

#### Scheduled Maintenance

The scheduled maintenance activities associated with the RAF and site components that occurred during the 2004 calendar year consisted of the following:

- RAF site access (snow removal, road maintenance, and fence maintenance);
- RAF building (ISACC program diagnostic/communication response);
- Containment cell (vegetation management, mowing, seeding, vector burrows, and erosion control);
- Drainage ditches (vegetation, riprap and culvert management); and
- Truck pad sump (pumping during leachate removal, Section 3.5).

#### **Unscheduled Maintenance**

Unscheduled maintenance activities associated with the RAF and site components that occurred during the 2004 calendar year consist of the following:

- Adjustment of the tank liquid level sensor;
- Elimination of persistent and damaging vectors from the containment cell;
- Placement and grading of top soil;
- Spot restoration of vegetative cover on the containment cell;
- Installation of additional sheet metal barrier panels and bird netting to continue to prevent pigeon roosting in the open portion of the RAF building; and
- General cleaning to include pressure washing the tank and truck loading area of the building.

#### 3.4 Leachate Collection

The leachate generated from the containment cell is collected, conveyed, and stored on-site. The leachate generated from the containment cell is drained, via gravity flow, to a perforated 6-inch, high-density polyethylene (HDPE) pipe located along the bottom of the containment cell, just above the liner. The leachate collection pipe passes through the western perimeter berm, and discharges into the leachate collection manhole. The portion of the leachate collection pipe between the containment cell and collection manhole is equipped with secondary containment, double-walled piping. The leachate collected in the manhole is then transferred, via redundant, automatically controlled pumps, to the on-site leachate storage tank.

Leachate collection/generation is monitored by two means; measuring the fill height in the tank and through a flow totalizer. The on-site ISACC system provides real time data and remote location communication with the RAF. The operation of this unit, associated with the leachate collection system, is discussed in the OM&M Manual. One of the eight programmed ISACC channels provides tracking of tank filling events (i.e., water level in the tank). The tank filling was monitored and has a shut down system so as not to overfill.

The inline flow totalizer was read and recorded during the monthly inspections and accounts for the leachate generation. Table 3-1 – Cumulative Leachate Generation provides a summary of the recorded flow from May 1999, inception, through December 2004. Chart 3-1 – Cumulative Leachate Generation graphically represents the data in Table 3-1. A total of 4,700 gallons was metered during 2004, indicative of an average flow of approximately 13 gallons per day (gpd). The overall trend of yearly leachate production has decreased as evaluated in Table 3-2 – Leachate Generation Per Year, and Chart 3-2 – Leachate Generation Per Year

### 3.5 Leachate Disposal

The leachate is temporarily stored in the on-site 5,000-gallon storage tank within a steel secondary containment. The leachate requires analytical analysis prior to bulk batch disposal. The scheduling of the sampling events and subsequent disposal is based on tank level data monitored by the ISACC system. The sampling and disposal of the leachate were performed during 2004 in accordance with the guidance set forth in the OM&M Manual. One sample of the leachate from storage tank filling number 12 (LT-12), was collected and analyzed as set forth in Permit No. GW-050 issued by the Oneida County Department of Water Quality and Water Pollution Control (OCDWPC). The filling for LT-12 began on December 5, 2003.

The analytical results of the leachate sample collected for LT-12, indicated compliance with the permit limits set forth by the OCDWPC. On August 26, 2004, Leachate for LT-12 was disposed of to the OCDWPC sanitary sewer system and leachate storage tank number 13 (LT-13) began. The leachate disposal authorization for LT-12 from OCDWPC and analytical data packages are provided in Appendix C - Leachate Disposal Correspondences and Analytical Data. The total leachate disposal for 2004 was approximately 2,760 gallons for LT-12.

# 3.6 Summary

The RAF facility and associated components generally operated as planned through 2004. The monitoring and inspection continues, as necessary, to evaluate trends and the ongoing condition of the facility. The operation and maintenance performed during the 2004 calendar year were performed within the guidelines set forth in the OM&M Manual.

In addition to scheduled maintenance, unscheduled maintenance conditions were recognized and corrected as follows:

- Persistent and damaging vectors were eliminated from the containment cell; and
- The vegetative cover on the containment cell was restored.

The evaluation of the data relating to the leachate generated and collected during 2004 (4,700 gallons), indicates an overall downward tend in leachate generated to date. The average production rate for 2004 was approximately 13 gpd. The leachate generated and batch discharged from the containment cell continues to meet the requirements set forth in the OCDWPC permit. Only one bulk disposal event was required in 2004 totaling approximately 2,760 gallons indicated as LT-12.

Synapse concludes that the RAF performed as designed during 2004, and recommends continuing OM&M as prescribed and scheduled.

# 3.7 Tables

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation Per Year

# TABLE 3-1 CUMULATIVE LEACHATE GENERATION

## 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Reading Date            | Monitoring Period | Totalizer Reading | Gallons Per Period | Flow (gpd) |
|-------------------------|-------------------|-------------------|--------------------|------------|
| 5/19/1999               | 0                 | 0                 | 0                  | 0          |
| 6/1/1999                | 13                | 4200              | 4200               | 323        |
| 6/22/1999               | 21                | 8200              | 4000               | 190        |
| 7/23/1999               | 31                | 12200             | 4000               | 129        |
| 9/27/1999               | 66                | 16200             | 4000               | 61         |
| 12/21/1999              | 85                | 20200             | 4000               | 47         |
| 1/21/2000               | 31                | 21400             | 1200               | 39         |
| 2/4/2000                | 14                | 22400             | 1000               | 71         |
| 3/14/2000               | 39                | 23800             | 1400               | 36         |
| 4/21/2000               | 38                | 24800             | 1000               | 26         |
| 5/11/2000               | 20                | 25700             | 900                | 45         |
| 6/6/2000                | 26                | 26700             | 1000               | 38         |
| 7/11/2000               | 35                | 27700             | 1000               | 29         |
| 8/18/2000               | 38                | 28800             | 1100               | 29         |
| 9/1/2000                | 14                | 29500             | 700                | 50         |
| 10/27/2000              | 56                | 31000             | 1500               | 27         |
| 11/14/2000              | 18                | 31600             | 600                | 33         |
| 12/15/2000              | 31                | 32700             | 1100               | 35         |
| 1/31/2001               | 47                | 33800             | 1100               | 23         |
| 2/28/2001               | 28                | 34400             | 600                | 21         |
| 3/29/2001               | 29                | 34800             | 400                | 14         |
| 4/26/2001               | 28                | 35400             | 600                | 21         |
| 5/23/2001               | 27                | 35900             | 500                | 19         |
| 6/21/2001               | 29                | 36500             | 600                | 21         |
| 7/17/2001               | 26                | 37100             | 600                | 23         |
| 8/15/2001               | 29                | 37600             | 500                | 17<br>27   |
| 9/14/2001               | 30                | 38400             | 800                |            |
| 10/23/2001              | 39<br>41          | 39200<br>40000    | 800<br>800         | 21<br>20   |
| 12/3/2001               |                   |                   |                    |            |
| 12/18/2001<br>1/11/2002 | 15<br>24          | 40400<br>40800    | 400<br>400         | 27<br>17   |
| 2/6/2002                | 26                | 41400             | 600                | 23         |
| 3/5/2002                | 27                | 41800             | 400                | 15         |
| 4/16/2002               | 42                | 42300             | 500                | 12         |
| 5/9/2002                | 23                | 42700             | 400                | 17         |
| 6/5/2002                | 27                | 43100             | 400                | 15         |
| 7/23/2002               | 48                | 43900             | 800                | 17         |
| 8/9/2002                | 17                | 44100             | 200                | 12         |
| 9/19/2002               | 41                | 44900             | 800                | 20         |
| 10/16/2002              | 27                | 45400             | 500                | 19         |
| 11/27/2002              | 42                | 46200             | 800                | 19         |
| 12/13/2002              | 16                | 46400             | 200                | 13         |
| 1/31/2003               | 49                | 47200             | 800                | 16         |
| 2/18/2003               | 18                | 47400             | 200                | 11         |
| 3/19/2003               | 29                | 47800             | 400                | 14         |
| 4/16/2003               | 28                | 48200             | 400                | 14         |
| 5/15/2003               | 29                | 48400             | 200                | 7          |
| 6/5/2003                | 21                | 48600             | 200                | 10         |
| 7/9/2003                | 34                | 49200             | 600                | 18         |
| 8/1/2003                | 23                | 49600             | 400                | 17         |
| 9/23/2003               | 53                | 50400             | 800                | 15         |
| 10/2/2003               | 9                 | 50400             | 0                  | 0          |
| 11/21/2003              | 50                | 51500             | 1100               | 22         |
| 12/31/2003              | 40                | 52600             | 1100               | 28         |
| 1/13/2004               | 13                | 52600             | 0                  | 0          |
| 2/27/2004               | 45                | 54100             | 1500               | 33         |
| 3/10/2004               | 12                | 54100             | 0                  | 0          |
| 4/7/2004                | 28                | 54600             | 500                | 18         |
| 5/18/2004               | 41                | 54800             | 200                | 5          |
| 6/18/2004               | 31                | 55200             | 400                | 13         |
| 7/29/2004               | 41                | 55800             | 600                | 15         |
| 8/26/2004               | 28                | 56200             | 400                | 14         |
| 9/23/2004               | 28                | 56500             | 300                | 11         |
| 10/20/2004              | 27                | 56700             | 200                | 7          |
| 11/30/2004              | 41                | 57100             | 400                | 10         |
| 12/17/2004              | 17                | 57300             | 200                | 12         |

# NOTES:

- 1. Monitoring Period = Days between totalizer readings.
- 2. Totalizer reading in gallons.
- 3. gpd = Gallons per day.

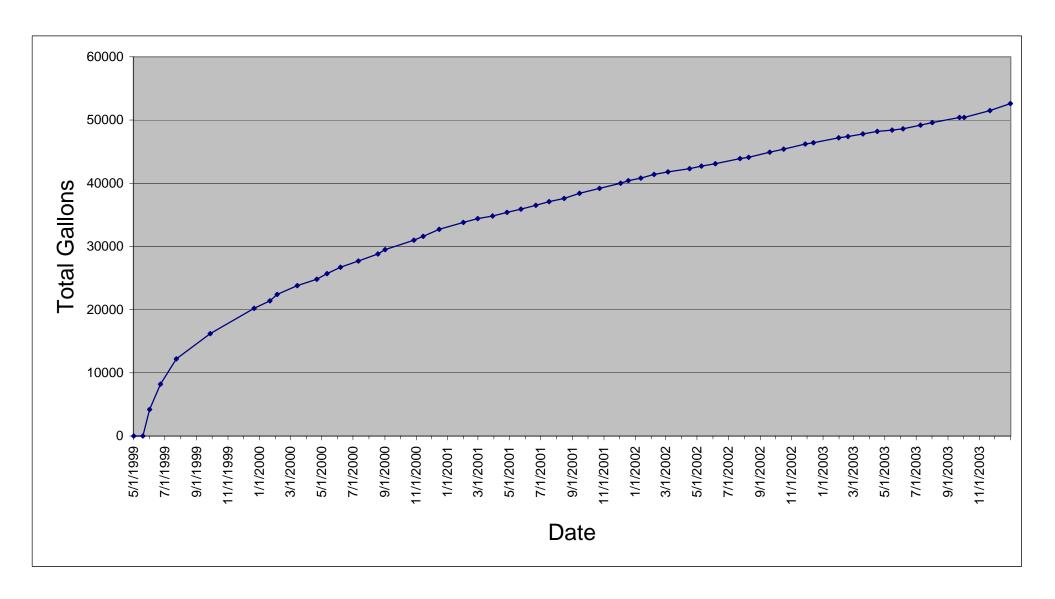
# TABLE 3-2 LEACHATE GENERATION PER YEAR

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Year  | Reading    | Monotoring | Totalizer | Gallons  | Flow  | Flow   |
|-------|------------|------------|-----------|----------|-------|--------|
| I cai | Date       | Period     | Reading   | Per Year | (gpd) | (gpm)  |
| Begin | 5/19/1999  |            | 0         |          |       |        |
| 1999  | 12/21/1999 | 216        | 20200     | 20200    | 93.5  | 0.0649 |
| 2000  | 12/15/2000 | 360        | 32700     | 12500    | 34.7  | 0.0241 |
| 2001  | 12/18/2001 | 368        | 40400     | 7700     | 20.9  | 0.0145 |
| 2002  | 12/13/2002 | 360        | 46400     | 6000     | 16.7  | 0.0116 |
| 2003  | 12/31/2003 | 383        | 52600     | 6200     | 16.2  | 0.0112 |
| 2004  | 12/17/2004 | 352        | 57300     | 4700     | 13.4  | 0.0093 |

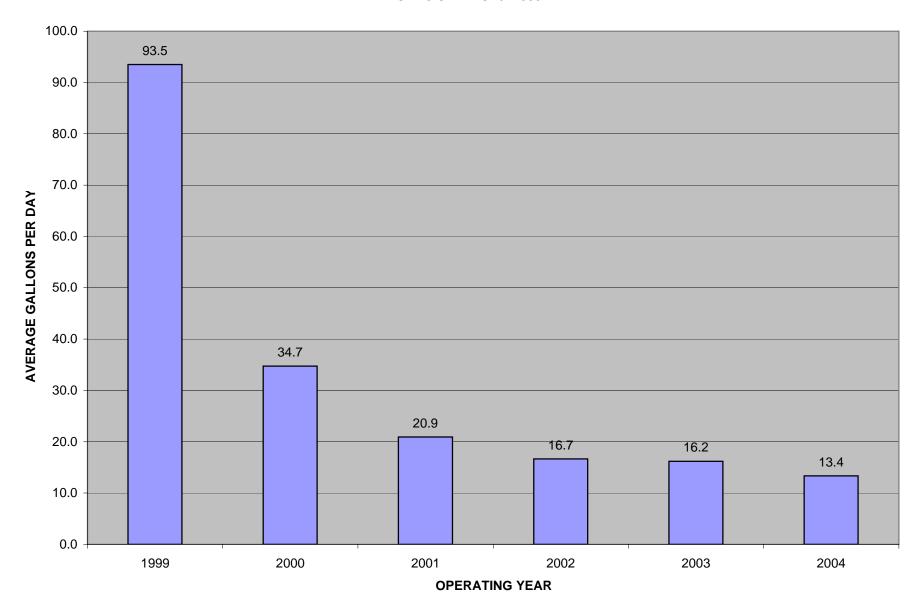
#### NOTES:

- 1. Monitoring Period = Days between totalizer readings.
- 2. Totalizer reading in gallons.
- 3. gpd = Gallons per day.
- 4. gpm = Gallons per minute.


1 of 1

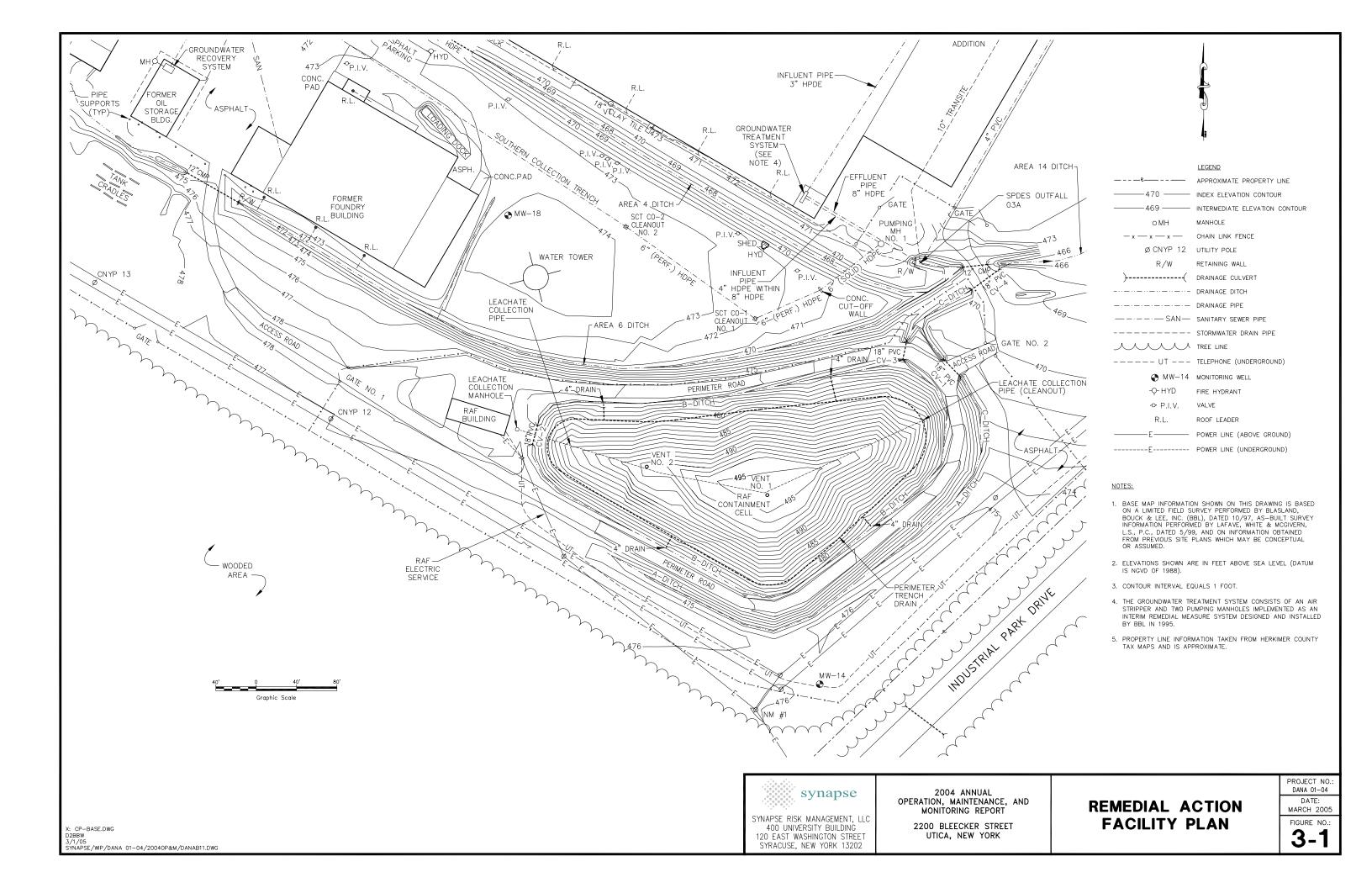
# 3.8 Charts

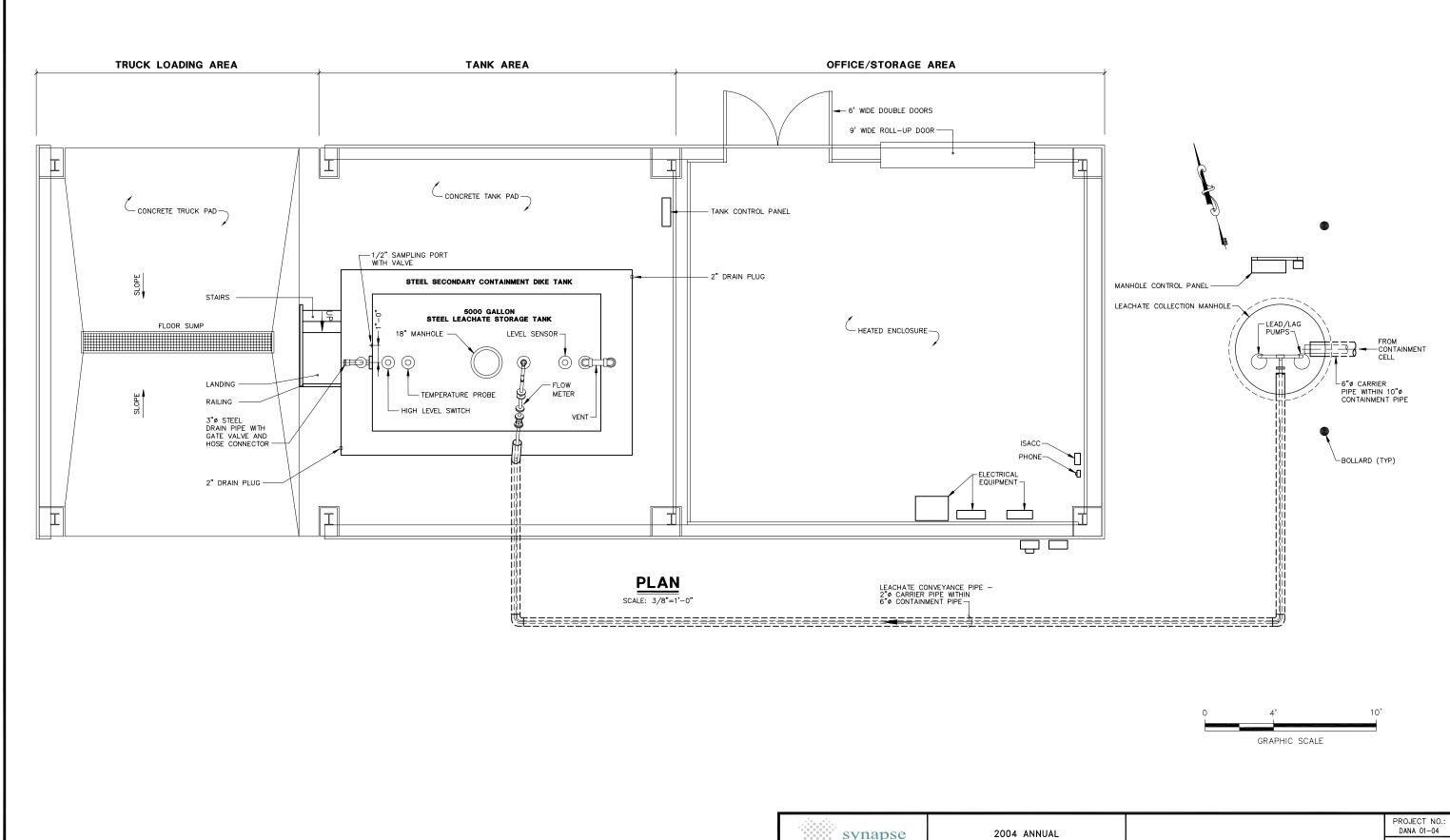
- 3-1 Cumulative Leachate Generation Over Time
- 3-2 Leachate Generation Per Year


# CHART 3-1 CUMULATIVE LEACHATE GENERATION

# 2003 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003




# CHART 3-2 LEACHATE GENERATION PER YEAR


# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003



# 3.9 Figures

- 3-1 Remedial Action Facility Plan
- 3-2 Building, Tank, and Piping Plan





D2BBW 3/1/05 SYNAPSE/WIP/DANA 01-04/20040P&M/DANAB10.DWG

synapse

SYNAPSE RISK MANAGEMENT, LLC 400 UNIVERSITY BUILDING 120 EAST WASHINGTON STREET SYRACUSE, NEW YORK 13202

2004 ANNUAL OPERATION, MAINTENANCE, AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK

**BUILDING, TANK, AND** PIPING PLAN

DATE:

MARCH 2005 FIGURE NO.:

#### 4.0 GROUNDWATER MONITORING

This section presents the results of the semi-annual groundwater monitoring events conducted at the Property in 2004. The Property OM&M Manual details the procedures that were followed during groundwater monitoring. The FER details the procedures followed during the implementation of the RA that adjusted the groundwater monitoring program that included well decommissioning and new well installation. The sections that follow review the construction, monitoring, sampling, and data evaluation of the groundwater monitoring program and include specific tables and figures. The summary section provides comments, conclusions, and recommendations.

### 4.1 Monitoring Well Construction

The monitoring well network currently consists of five monitoring wells designated as: MW-6R, MW-13A, MW-14, MW-17, and MW-18. A sixth monitoring well, MW-3 was properly abandoned on September 14, 2001. The monitoring wells are located to provide groundwater quality data for site-specific RA areas and verify the influence of the GTS.

The monitoring wells consist of 2-inch diameter polyvinyl chloride (PVC) risers and 10-foot lengths of 0.010-inch slotted PVC screen. The well screens were installed to straddle the water table and intersect the overburden soils above the glacial till. Shallow groundwater flow is generally from the south to the north across the Property. The locations of the monitoring wells are shown on Figure 2-2. The detailed descriptions of the monitoring well locations, as well as hydraulic consideration, are as follows:

- MW-6R, located hydraulically downgradient of the eastern portion of the Property;
- MW-13A, located hydraulically crossgradient (east) of RA Areas 5, 7, 8, 13, and 14 as well as the RAF;
- MW-14, located at the southeastern corner of the Property hydraulically upgradient of all RA areas and the RAF;
- MW-17, located hydraulically downgradient of the NCT; and
- MW-18, located hydraulically downgradient of RA Areas 6, 7, 8, 9, and 10, as well as hydraulically upgradient of the SCT.

#### 4.2 Groundwater Elevation Measurement

As part of the groundwater monitoring program, water level elevations were measured from the aforementioned monitoring wells on April 22, 2004 and October 18, 2004. Water levels in the cleanouts for the NCT and SCT were measured during the 2004 events, as well. Monitoring well water levels were measured from a designated reference point at the top of the PVC well riser using the procedures outlined in the OM&M Manual. The water levels were measured consecutively, on the same day, prior to sampling or other activities. Water level measurements were recorded on a dedicated field sheet, Water Level Field Logs – Form D and are provided in Appendix D. The water level measurements were converted to elevations based on as-built survey information. The water levels for the two groundwater sampling events conducted in 2004 are shown in Table 4-1 – Groundwater Elevation Summary. Note that MW-17 was found to have insufficient water to sample, during both sampling events. This is attributed to the installation of Pumping Manhole No. 2, as part of the GTS, which effectively lowered the water table to an elevation at or less than the total depth of MW-17. Refer to Figure 4-1 – Overburden Groundwater Elevation Contour Map - April 22, 2004, and Figure 4-2 – Overburden Groundwater Elevation Contour Map - October 18, 2004. A summary of water levels from 1999 to 2004 is provided in Table 4-2 – Cumulative Groundwater Elevations.

# 4.3 Groundwater Sampling

Groundwater samples were obtained during two groundwater sampling events conducted on April 22 and 23, 2004 and October 18 and 19, 2004, as part of the OM&M. Groundwater samples were collected from monitoring wells MW-6R, MW-13A, MW-14, and MW-18. As discussed in Section 4.1, MW-17 had insufficient water during both sampling events, and as such, a sample could not be collected.

Based on the guidance set forth in the OM&M Manual, the groundwater sampling events completed in 2004 were scheduled as semi-annual. The groundwater samples were submitted for laboratory analysis for VOCs of concern, polychlorinated biphenyls (PCBs), and select metals. Analytical results for VOCs, PCBs, and metals were compared to standards presented in the NYSDEC Division of Water *Technical and Operation Guidance Series* (1.1.1) (TOGS 1.1.1), June 1998.

To assure that the groundwater samples were representative of the shallow groundwater aquifer, a minimum of three static well volumes were purged from each well. Groundwater field parameters were obtained from each well prior to sampling, and included water levels, pH, conductivity, dissolved oxygen, turbidity, and temperature. The wells were observed to have moderate recharge capacity. Well purging was performed using a disposable Teflon® bailer. The purged groundwater was containerized and transferred to the on-site leachate collection manhole, part of the RAF, for subsequent disposal.

Groundwater samples were collected using a new disposable Teflon® bailer for each well. During the April and October 2004 groundwater sampling events, samples to be analyzed for VOCs and PCBs were collected on the first day of each sampling event. Samples to be analyzed for metals were collected on the second day, 24 hours after purging the well, to limit turbidity in the samples collected. Each grab sample was placed directly into laboratory-provided containers, labeled, logged in to a chain of custody document, and stored on ice in an insulated cooler pending delivery to the laboratory for analysis. Quality assurance/quality control (QA/QC) groundwater samples were collected at a frequency described below.

#### Trip Blanks

On events/days when aqueous samples were shipped/delivered to the laboratory for VOC analysis, a trip blank was included. A trip blank is an aliquot of analyte-free water, sealed in a 40 milliliter glass vial with a Teflon-lined septum cap prepared prior to initiation of fieldwork. The sealed vials were prepared by the laboratory and included with each shipment of sample bottles for aqueous media sampling at the Property. The trip blank may determine if any contamination of the samples has occurred during shipment/delivery.

#### **Duplicate Samples**

Duplicate samples were collected and analyzed to evaluate the reproducibility of the analytical technique used. One duplicate sample (DUP-1) was collected for all parameters during each sampling event. Groundwater from a selected monitoring well was divided between the primary sample and the duplicate sample laboratory containers, logged on the chain of custody and submitted to the laboratory.

#### Matrix Spikes / Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples were collected to measure the accuracy of organic analyte recovery from the sample matrices. For organic constituents and metals, one matrix spike and one matrix spike duplicate sample was analyzed for each sampling event.

The April and October 2004 samples were submitted to Life Science Laboratories of East Syracuse, New York. Table 4-3 – Groundwater Constituents, Methods, and Practical Quantification Limits, details the groundwater sample analytical requirements. The Groundwater Sampling Logs - Form E, used during well sampling to record the groundwater field parameters, are provided in Appendix E.

#### 4.4 Groundwater Analytical Results

The analytical results from the semi-annual groundwater sampling events, as compared to the TOGS 1.1.1 are presented in the subsequent summary tables. Table 4-4 – 2004 Groundwater Analytical Results, summarizes the groundwater analytical data from the two semi-annual sampling events. Table 4-5 – Cumulative Groundwater Analytical Results, provides a historic summary of the groundwater analytical results from 1999 through 2004. The original laboratory analytical data for 2004 were provided under separate cover to NYSDEC upon receipt from the laboratory, and are provided in Appendix F – Groundwater Analytical Data. The following summarizes analytical data from each well:

#### MW-6R

- Analytical results for VOCs indicated no detectable concentrations for both 2004 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2004 sampling events;
- The metal concentrations from both 2004 groundwater sampling events were below TOGS 1.1.1 guidance values and are comparable with historically identified concentrations; and
- Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

#### MW-13A

- Analytical results for VOCs indicated no detectable concentrations for both 2004 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2004 sampling events;
- The metal concentrations from both 2004 groundwater sampling events were below TOGS 1.1.1 guidance values and are comparable with historically identified concentrations; and
- Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

#### MW-14

- Analytical results for VOCs indicated no detectable concentrations for both 2004 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2004 sampling events;
- The metal concentrations from both 2004 groundwater sampling events were below TOGS 1.1.1 guidance values, and are comparable with historically identified concentrations; and
- Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

#### MW-17

Monitoring well had insufficient water to allow sample collection during both 2004 events.

# <u>MW-18</u>

- Vinyl chloride (VC) was detected at a concentration of 3.5 parts per billion (ppb), which exceeded the TOGS 1.1.1 guidance value of 2 ppb, during the April 2004 sampling event. All other VOCs were not detected at concentrations above method detection limits;
- Vinyl chloride (VC) was detected at a concentration of 7 ppb, which exceeded the TOGS 1.1.1 guidance value of 2 ppb, during the October 2004 sampling event. All other VOCs were not detected at concentrations above method detection limits:
- Concentrations of metals were detected below TOGS 1.1.1 guidance values during both 2004 groundwater sampling events and are comparable with historically identified concentrations;
- Analytical results for PCBs indicated no detectable concentrations for both 2004 sampling events;
   and
- Historically, PCBs have never been detected at concentrations above method detection limits.

#### 4.5 Summary

An interpretation of the groundwater elevation measurements obtained during the April and October 2004 sampling events indicated that the overburden groundwater flow was generally to the north. The groundwater flow direction was influenced in the vicinity of the NCT and the SCT, where depressed groundwater levels were observed during the operation of the GTS. Monitoring well MW-17 continues to have insufficient water to measure or sample, as a result of the depressed groundwater.

The groundwater quality from both the April and October 2004 groundwater sampling events are generally consistent with historical data, with the exception of concentrations of VC detected in monitoring well MW-18, VC has been identified above its analytical method detection limit for five consecutive sampling events. Concentration of select metals did not exceed TOGS 1.1.1 guidance values and have not demonstrated exceedances since the RA. Detectable concentrations of PCBs were not and have never been identified in groundwater from any of the current monitoring locations.

The elevated concentrations of VCs in MW-18 are most likely due to the effectiveness of the SCT. As MW-18 is upgradient of the groundwater depression created by the SCT, (see Figure 4-1 and 4-2), the groundwater monitored at MW-18 is directed, collected, and treated via the GTS, discussed in Section 6.

Given five years of certain consistent analytical data, Synapse recommends the following modification to the groundwater monitoring program:

- Groundwater sampling and analysis for PCBs should be discontinued from the groundwater monitoring program given that PCBs have never been detected at concentrations above method detection limits in the any of the OM&M monitoring wells;
- MW-13A located cross-gradient, should be decommissioned as the select analytical parameters of VOCs and PCBs have never been detected at concentrations above method detection limits..
- MW-14, located upgradient of the RAF, should be reduced to annual sampling; and
- The remainder of the monitoring wells should be sampled as presently scheduled in the OM&M Manual.

# 4.6 Tables

- 4-1 2004 Groundwater Elevation Summary
- 4-2 Cumulative Groundwater Elevations
- 4-3 Groundwater Constituents, Methods, and Practical Quantification Limits
- 4-4 2004 Groundwater Analytical Results
- 4-5 Cumulative Groundwater Analytical Results

# TABLE 4-1 2004 GROUNDWATER ELEVATION SUMMARY

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Monitoring Well ID   | Ground<br>Surface<br>Elevation | Installed Depth from TOR | Measured<br>Depth from<br>TOR | TOR<br>Elevation | Water Depth from TOR | Water<br>Elevation |
|----------------------|--------------------------------|--------------------------|-------------------------------|------------------|----------------------|--------------------|
| Date Gauged: 4/22/04 |                                |                          |                               |                  |                      |                    |
| MW-6R                | 462.69                         | 10.52                    | 10.52                         | 465.47           | 3.88                 | 461.59             |
| MW-13A               | 467.30                         | 11.07                    | 11.05                         | 469.23           | 2.56                 | 466.67             |
| MW-14                | 475.71                         | 12.94                    | 12.90                         | 478.45           | 3.03                 | 475.42             |
| MW-17                | 463.89                         | 11.25                    | 11.24                         | 466.02           | Dry                  | Note 5             |
| MW-18                | 474.10                         | 11.78                    | 11.79                         | 475.96           | 4.71                 | 471.25             |
| SCT CO-1             | NA                             | NA                       | NA                            | 472.30           | Dry                  | 465.20             |
| SCT CO-2             | NA                             | NA                       | NA                            | 473.42           | 7.80                 | 465.62             |
| SCT CO-3             | NA                             | NA                       | NA                            | 471.21           | Dry                  | 465.61             |
| NCT CO-1             | NA                             | NA                       | NA                            | 464.70           | Dry                  | 453.42             |
| MH-2                 | NA                             | NA                       | NA                            | 465.31           | 12.21                | 453.10             |

| Monitoring Well ID    | Ground<br>Surface<br>Elevation | Installed Depth from TOR | Measured<br>Depth from<br>TOR | TOR<br>Elevation | Water Depth from TOR | Water<br>Elevation |  |  |  |
|-----------------------|--------------------------------|--------------------------|-------------------------------|------------------|----------------------|--------------------|--|--|--|
| Date Gauged: 10/18/04 | Date Gauged: 10/18/04          |                          |                               |                  |                      |                    |  |  |  |
| MW-6R                 | 462.69                         | 10.52                    | NM                            | 465.47           | 4.44                 | 461.03             |  |  |  |
| MW-13A                | 467.30                         | 11.07                    | NM                            | 469.23           | 4.22                 | 465.01             |  |  |  |
| MW-14                 | 475.71                         | 12.86                    | MM                            | 478.37           | 5.84                 | 472.53             |  |  |  |
| MW-17                 | 463.89                         | 11.25                    | NM                            | 466.02           | Dry                  | NA                 |  |  |  |
| MW-18                 | 474.10                         | 11.78                    | NM                            | 475.96           | 4.70                 | 471.26             |  |  |  |
| SCT CO-1              | NA                             | NA                       | NA                            | 472.30           | Dry                  | 465.20             |  |  |  |
| SCT CO-2              | NA                             | NA                       | NA                            | 473.42           | 7.80                 | 465.62             |  |  |  |
| SCT CO-3              | NA                             | NA                       | NA                            | 471.21           | Dry                  | 465.61             |  |  |  |
| NCT CO-1              | NA                             | NA                       | NA                            | 464.70           | Dry                  | 453.42             |  |  |  |
| MH-2                  | NA                             | NA                       | NA                            | 465.31           | 12.30                | 453.01             |  |  |  |

#### Notes:

- 1. All values reported in feet.
- 2. TOR = Top of Riser.
- 3. Depth measurements are taken in hundreths of a foot from the TOR, which is a reference point at the highest part on the 2-inch riser pipe.
- 4. Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.
- $5. \, \text{MW-17}$  was found dry during both monitoring events, bottom elevation =  $454.70 \, \text{feet}$ .
- 6. The top of riser elevation was adjusted during maintenance on May 15, 2003 for monitoring wells MW-6R and MW-14.
- 7. MW = Monitoring Well.
- 8. SCT = Southern Collection Trench.
- 9. NCT = Northern Collection Trench.
- 10. CO = Clean Out (Depths and Elevations are Approximate).
- 11. MH = Manhole.
- 12. NA = Not Applicable.
- 13. NM = Not measured. Installed well depths used to calculate well casing columes.
- 14. Groundwater elevations were inferred at the following locations: SCT CO-1, SCT CO-2, SCT CO-3, and NCT CO-1.

# TABLE 4-2 CUMULATIVE GROUNDWATER ELEVATIONS

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

|             |        |        | Well ID |        |        |        |
|-------------|--------|--------|---------|--------|--------|--------|
| Sample Date | MW-3   | MW-6R  | MW-13A  | MW-14  | MW-17  | MW-18  |
|             |        |        |         |        |        |        |
| 3/26/1999   | 467.93 | 461.78 | 465.83  | 474.82 | 462.14 | 469.97 |
| 9/20/1999   | 467.60 | 461.14 | 464.36  | 470.78 | 460.70 | 467.83 |
| 3/14/2000   | 467.72 | 461.63 | 466.38  | 475.05 | 459.45 | 470.03 |
| 9/14/2000   | 467.42 | 461.15 | 464.98  | 473.72 | 457.37 | 468.83 |
| 3/29/2001   | 470.86 | 456.35 | 460.93  | 467.74 | 457.24 | 469.52 |
| 9/13/2001   | Note 2 | 460.85 | 464.18  | 470.9  | 457.11 | 469.56 |
| 3/27/2002   | Note 2 | 460.96 | 466.89  | 475.19 | DRY    | 470.82 |
| 9/19/2002   | Note 2 | 461.21 | 465.41  | 470.92 | DRY    | 468.10 |
| 4/24/2003   | Note 2 | 461.55 | 466.81  | 475.24 | DRY    | 472.13 |
| 10/22/2003  | Note 2 | 460.97 | 465.23  | 474.66 | DRY    | 469.61 |
| 4/22/2004   | Note 2 | 461.59 | 466.67  | 475.34 | DRY    | 471.25 |
| 10/18/2004  | Note 2 | 461.03 | 465.01  | 472.53 | DRY    | 468.93 |

- 1. All elevations reported in feet.
- 2. MW-3 was decommissioned in September 2001.
- 3. MW-17 has been dry since the installation of Pumping MH-2 in March 2002.

# TABLE 4-3 GROUNDWATER CONSTITUENTS, METHODS AND PRACTICAL QUANTIFICATION LIMITS

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Constituent                         | Practical Quantification<br>Limits (PQLs) |  |  |  |  |
|-------------------------------------|-------------------------------------------|--|--|--|--|
| VOCs of Concern - USEPA Method 8260 |                                           |  |  |  |  |
| cis-1,2-Dichloroethene              | 1                                         |  |  |  |  |
| trans-1,2-Dichloroethene            | 1                                         |  |  |  |  |
| Trichloroethylene                   | 1                                         |  |  |  |  |
| Vinyl Chloride                      | 1                                         |  |  |  |  |
| Metals of Concern - USEPA M         | lethod 200.7                              |  |  |  |  |
| Chromium                            | 10                                        |  |  |  |  |
| Copper                              | 10                                        |  |  |  |  |
| Lead                                | 10                                        |  |  |  |  |
| Zinc                                | 10                                        |  |  |  |  |
| PCBs - USEPA Method 608             |                                           |  |  |  |  |
| Aroclor 1016                        | 0.05                                      |  |  |  |  |
| Aroclor 1221                        | 0.05                                      |  |  |  |  |
| Aroclor 1232                        | 0.05                                      |  |  |  |  |
| Aroclor 1242                        | 0.05                                      |  |  |  |  |
| Aroclor 1248                        | 0.05                                      |  |  |  |  |
| Aroclor 1254                        | 0.05                                      |  |  |  |  |
| Aroclor 1260                        | 0.05                                      |  |  |  |  |

- 1. All values reported in micrograms per liter (ug/l), approximately equivalent to parts per billion (ppb).
- 2. VOCs = Volatile Organic Componds.
- 3. PCBs = Polychlorinated biphenyls.
- 4. VOCs of concern PQLs are based on USEPA SW-846 Method 8260 contract requirred quantification limits (CRQLs). Specific quantifications are highly matrix dependent. The quantification limits shown are provided for guidance and may not always be achievable.
- 5. USEPA Method 200.7 will be used for analysis of metals of concern. PQLs presented are based on RCRA TCL CRQLs. CQRLs shown for metals of concern are provided for guidance and may not always be achievable.

# TABLE 4-4 2004 GROUNDWATER ANALYTICAL RESULTS

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

April 2004 Sampling Event

| Well ID                   | Detection | Standards       | MW-6R        | MW-13A       | MW-14        | MW-17        | MW-18        | 042204/042304      |
|---------------------------|-----------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------------|
| Date Sampled              | Limit     | and<br>Guidance | 4/22-23/2004 | 4/22-23/2004 | 4/22-23/2004 | 4/22-23/2004 | 4/22-23/2004 | 4/22-23/2004       |
| Sample Type               |           | Values          | Primary      | Primary      | Primary      | Primary      | Primary      | Duplicate of MW-14 |
| Volatile Organic Compound | ds        |                 |              |              |              |              |              |                    |
| cis-1,2-Dichloroethene    | 1         | 5               | <1           | <1           | <1           | NS           | <1           | <1                 |
| trans-1,2-Dichloroethene  | 1         | 5               | <1           | <1           | <1           | NS           | <1           | <1                 |
| Trichloroethylene         | 1         | 5               | <1           | <1           | <1           | NS           | <1           | <1                 |
| Vinyl Chloride            | 1         | 2               | <1           | <1           | <1           | NS           | 3.5          | <1                 |
| Metals                    |           | -               |              |              |              |              |              |                    |
| Chromium                  | 10        | 50              | <10          | <10          | <10          | NS           | <10          | <10                |
| Copper                    | 10        | 200             | <10          | <10          | 12           | NS           | <10          | <10                |
| Lead                      | 10        | 25              | <10          | <10          | <10          | NS           | <10          | <10                |
| Zinc                      | 10        | 2,000           | <10          | 29           | 17           | NS           | 18           | 20                 |
| Polychlorinted Biphenyls  |           | -               |              |              |              |              |              |                    |
| Aroclor 1016              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | <0.05        | < 0.05             |
| Aroclor 1221              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | < 0.05       | < 0.05             |
| Aroclor 1232              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | < 0.05       | < 0.05             |
| Aroclor 1242              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | < 0.05       | < 0.05             |
| Aroclor 1248              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | < 0.05       | < 0.05             |
| Aroclor 1254              | 0.05      | 0.09            | < 0.05       | < 0.05       | < 0.05       | NS           | < 0.05       | < 0.05             |
| Aroclor 1260              | 0.05      | 0.09            | <0.05        | < 0.05       | < 0.05       | NS           | <0.05        | <0.05              |

October 2004 Sampling Event

| Well ID                   |           | Standards       | MW-6R         | MW-13A        | MW-14         | MW-17         | MW-18         | 101804/101904       |  |
|---------------------------|-----------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------------|--|
| vveii 1D                  | Detection |                 | IVIVV-OR      | IVIVV-13A     | 10100-14      | 10100-17      | 10100-10      | 101004/101904       |  |
| Date Sampled              | Limit     | and<br>Guidance | 10/18-19/2004 | 10/18-19/2004 | 10/18-19/2004 | 10/18-19/2004 | 10/18-19/2004 | 10/18-19/2004       |  |
| Sample Type               |           | Values          | Primary       | Primary       | Primary       | Primary       | Primary       | Duplicate of MW-13A |  |
| Volatile Organic Compound | ds        |                 |               |               |               |               |               |                     |  |
| cis-1,2-Dichloroethene    | 1         | 5               | <1            | <1            | <1            | NS            | <1            | <1                  |  |
| trans-1,2-Dichloroethene  | 1         | 5               | <1            | <1            | <1            | NS            | <1            | <1                  |  |
| Trichloroethylene         | 1         | 5               | <1            | <1            | <1            | NS            | <1            | <1                  |  |
| Vinyl Chloride            | 1         | 2               | <1            | <1            | <1            | NS            | 7.0           | <1                  |  |
| Metals                    |           |                 |               |               |               |               |               |                     |  |
| Chromium                  | 10        | 50              | <10           | <10           | <10           | NS            | <10           | <10                 |  |
| Copper                    | 10        | 200             | <10           | <10           | <10           | NS            | <10           | <10                 |  |
| Lead                      | 10        | 25              | <10           | <10           | <10           | NS            | <10           | <10                 |  |
| Zinc                      | 10        | 2,000           | 19            | 12            | <10           | NS            | <10           | 17                  |  |
| Polychlorinted Biphenyls  |           | •               |               |               |               |               |               |                     |  |
| Aroclor 1016              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1221              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1232              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1242              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1248              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1254              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |
| Aroclor 1260              | 0.05      | 0.09            | < 0.05        | < 0.05        | < 0.05        | NS            | < 0.05        | < 0.05              |  |

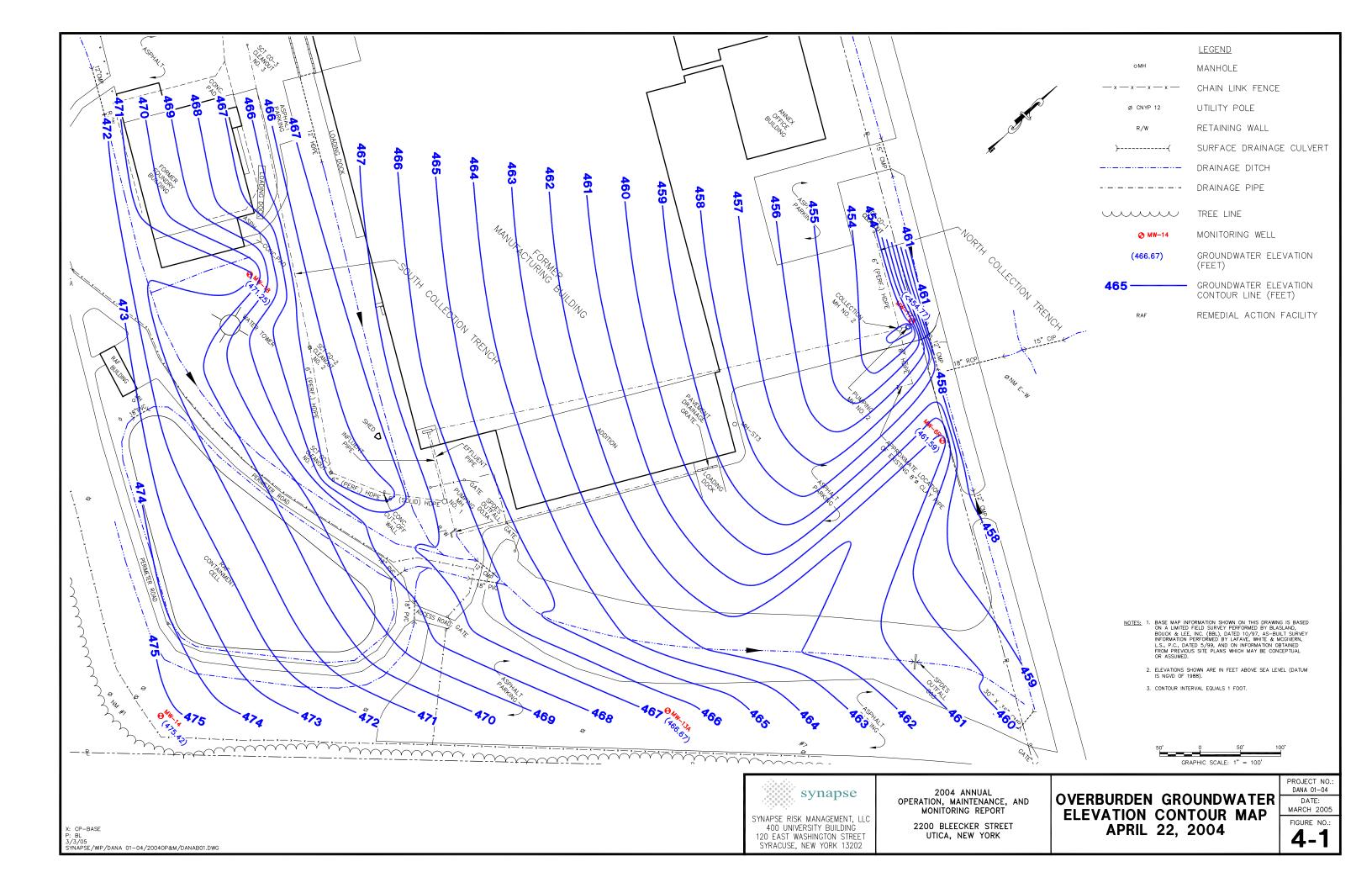
- 1. Sample results and NYSDEC Standards reported in ug/l; approximately equivalent to parts per billion (ppb).
- 2. Guidance Values are established by NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1).
- 3. NS = Not Sampled (Well Dry).
- 4. Bolded values exceed the constituent's established Standards and Guidance Values.

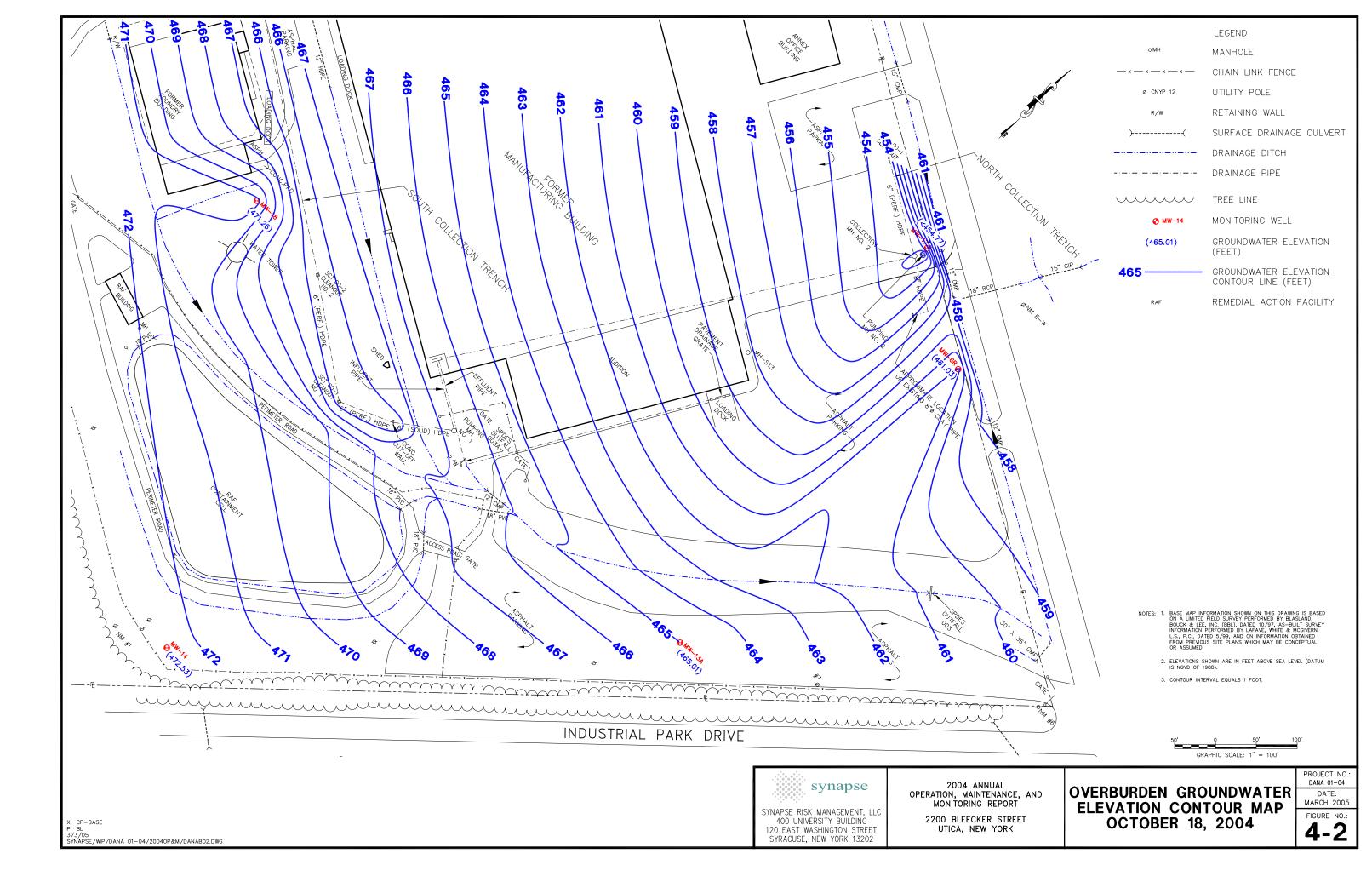
| Analytes               | MW-3          | MW-6R | MW-13A | MW-14 | MW-17 | MW-18         | DUP-1 | DUP Well |
|------------------------|---------------|-------|--------|-------|-------|---------------|-------|----------|
| Volatile Organic Comp  | ounds         |       |        |       | •     |               | •     |          |
| cis-1,2-Dichloroethene |               |       |        |       |       |               |       |          |
| Feb/March 1999         | <5            | <5    | <5     | <5    | <5    | <5            | <5    | MW-18    |
| Sep-99                 | <b>&lt;</b> 5 | <5    | <5     | <5    | 7     | <5            | <5    | MW-13A   |
| Mar-00                 | <b>&lt;</b> 5 | <5    | <5     | <5    | <5    | <5            | <5    | MW-13A   |
| Sep-00                 | <b>&lt;</b> 5 | <5    | <5     | <5    | 5.2   | <5            | 5     | MW-17    |
| Mar-01                 | NS-1          | <5    | <5     | <5    | 8.9   | <5            | 9.2   | MW-17    |
| Sep-01                 | NS-1          | <5    | <5     | <5    | 7.4   | <5            | 7.4   | MW-17    |
| Mar-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |
| Sep-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-6R    |
| Apr-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Oct-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Apr-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-14    |
| Oct-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |
| trans-1,2-Dichloroethe | ne            |       |        |       |       |               |       |          |
| Feb/March 1999         | <5            | <5    | <5     | <5    | <5    | <5            | <5    | MW-18    |
| Sep-99                 | <b>&lt;</b> 5 | <5    | <5     | <5    | <5    | <5            | <5    | MW-13A   |
| Mar-00                 | <b>&lt;</b> 5 | <5    | <5     | <5    | <5    | <5            | <5    | MW-13A   |
| Sep-00                 | <b>&lt;</b> 5 | <5    | <5     | <5    | <5    | <5            | <5    | MW-17    |
| Mar-01                 | NS-1          | <5    | <5     | <5    | <5    | <5            | <5    | MW-17    |
| Sep-01                 | NS-1          | <5    | <5     | <5    | <5    | <5            | <5    | MW-17    |
| Mar-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |
| Sep-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-6R    |
| Apr-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Oct-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Apr-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-14    |
| Oct-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |
| Trichloroethylene      |               |       |        |       |       |               |       |          |
| Feb/March 1999         | <b>&lt;</b> 5 | <5    | <5     | <5    | <5    | <b>&lt;</b> 5 | <5    | MW-18    |
| Sep-99                 | <5            | <5    | <5     | <5    | 25    | <5            | <5    | MW-13A   |
| Mar-00                 | <5            | <5    | <5     | <5    | 22    | <5            | <5    | MW-13A   |
| Sep-00                 | <5            | <5    | <5     | <5    | 22    | <5            | 25    | MW-17    |
| Mar-01                 | NS-1          | <5    | <5     | <5    | 24    | <5            | 25    | MW-17    |
| Sep-01                 | NS-1          | <5    | <5     | <5    | 16    | <5            | 16    | MW-17    |
| Mar-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |
| Sep-02                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-6R    |
| Apr-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Oct-03                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-18    |
| Apr-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-14    |
| Oct-04                 | NS-1          | <1    | <1     | <1    | NS-2  | <1            | <1    | MW-13A   |

| Analytes  |            | MW-3  | MW-6R | MW-13A | MW-14 | MW-17 | MW-18 | DUP-1 | DUP Well |
|-----------|------------|-------|-------|--------|-------|-------|-------|-------|----------|
| Vinyl Chl | oride      |       |       |        |       |       |       |       |          |
| Feb/      | March 1999 | <2    | <2    | <2     | <2    | <2    | <2    | <2    | MW-18    |
|           | Sep-99     | <2    | <2    | <2     | <2    | <2    | <2    | <2    | MW-13A   |
|           | Mar-00     | <5    | <5    | <5     | <5    | <5    | <5    | <5    | MW-13A   |
|           | Sep-00     | <5    | <5    | <5     | <5    | <5    | <5    | <5    | MW-17    |
|           | Mar-01     | NS-1  | <2    | <2     | <2    | <2    | <2    | <2    | MW-17    |
|           | Sep-01     | NS-1  | <5    | <5     | <5    | <5    | <5    | <5    | MW-17    |
|           | Mar-02     | NS-1  | <1    | <1     | <1    | NS-2  | <2    | <1    | MW-13A   |
|           | Sep-02     | NS-1  | <1    | <1     | <1    | NS-2  | 2.6   | <1    | MW-6R    |
|           | Apr-03     | NS-1  | <1    | <1     | <1    | NS-2  | 3.9   | 3.8   | MW-18    |
|           | Oct-03     | NS-1  | <1    | <1     | <1    | NS-2  | 6.1   | 6.1   | MW-18    |
|           | Apr-04     | NS-1  | <1    | <1     | <1    | NS-2  | 3.5   | <1    | MW-14    |
|           | Oct-04     | NS-1  | <1    | <1     | <1    | NS-2  | 7.0   | <1    | MW-13A   |
| Metals    | 1          |       |       |        |       |       |       |       |          |
| Chromiu   |            |       |       |        |       |       |       |       | _        |
| Feb/      | March 1999 | 4.4   | 19.9  | 7.8 B  | 20.4  | 4     | 60.1  | 15    | MW-18    |
|           | Sep-99     | 4.6 B | 2.2 B | 4.8 E  | <10   | 21 B  | 19.4  | 6 B   | MW-13A   |
|           | Mar-00     | <10   | <10   | 19     | <10   | <10   | <10   | <10   | MW-13A   |
|           | Sep-00     | <10   | <10   | <10    | <10   | <10   | <10   | <10   | MW-17    |
|           | Mar-01     | NS-1  | <10   | <10    | <10   | <10   | <10   | <10   | MW-17    |
|           | Sep-01     | NS-1  | 23    | <10    | <10   | <10   | <10   | NS    | MW-17    |
|           | Mar-02     | NS-1  | <10   | <10    | <10   | NS-2  | <10   | <10   | MW-13A   |
|           | Sep-02     | NS-1  | <10   | 200    | <10   | NS-2  | <10   | <10   | MW-6R    |
|           | Apr-03     | NS-1  | <10   | <10    | <10   | NS-2  | <10   | <10   | MW-18    |
|           | Oct-03     | NS-1  | <10   | <10    | <10   | NS-2  | <10   | <10   | MW-18    |
|           | Apr-04     | NS-1  | <10   | <10    | <10   | NS-2  | <10   | <10   | MW-14    |
|           | Oct-04     | NS-1  | <10   | <10    | <10   | NS-2  | <10   | <10   | MW-13A   |
| Copper    |            |       |       |        |       |       |       |       |          |
| Feb/      | March 1999 | 16.8  | 45    | 47.8   | 47.9  | 16 B  | 109   | 41.6  | MW-18    |
|           | Sep-99     | 6.1 B | 6.7 B | 5.3 B  | 6 B   | ND    | 29.1  | 7.6 B | MW-13A   |
|           | Mar-00     | <10   | <10   | <10    | <10   | <10   | <10   | <10   | MW-13A   |
|           | Sep-00     | <10   | <10   | <10    | <10   | <10   | <10   | <10   | MW-17    |
|           | Mar-01     | NS-1  | <10   | <10    | <10   | <10   | <10   | <10   | MW-17    |
|           | Sep-01     | NS-1  | 58    | <10    | <10   | <10   | <10   | NS    | MW-17    |
|           | Mar-02     | NS-1  | 11    | 14     | <10   | NS-2  | <10   | <10   | MW-13A   |
|           | Sep-02     | NS-1  | <10   | 20     | <10   | NS-2  | <10   | <10   | MW-6R    |
|           | Apr-03     | NS-1  | 34    | <10    | <10   | NS-2  | <10   | <10   | MW-18    |
|           | Oct-03     | NS-1  | 17    | 14     | 27    | NS-2  | 11    | 14    | MW-18    |
|           | Apr-04     | NS-1  | <10   | <10    | 12    | <10   | <10   | <10   | MW-14    |
|           | Oct-04     | NS-1  | <10   | <10    | <10   | <10   | <10   | <10   | MW-13A   |

| Ana  | lytes               | MW-3       | MW-6R         | MW-13A       | MW-14         | MW-17    | MW-18        | DUP-1        | DUP Well  |
|------|---------------------|------------|---------------|--------------|---------------|----------|--------------|--------------|-----------|
| Lea  |                     |            |               |              |               |          |              |              |           |
| Lea  | Feb/March 1999      | 5.5        | 7.4           | 9.2          | 7.9           | 2.4 B    | 35.6         | 5.4          | MW-18     |
|      |                     |            | 3.6           | 2.28         |               |          | 9.3          | 4.3          | MW-13A    |
|      | Sep-99<br>Mar-00    | 4          |               |              | <5<br><5      | <5<br>-5 |              |              | MW-13A    |
|      |                     | <5<br>.F   | <5<br>.5      | <5<br>.5     |               | <5<br>.5 | <5<br>       | <5<br>.5     |           |
|      | Sep-00              | <5<br>NC 4 | <5<br>.5      | <5<br>.5     | <5            | <5<br>.5 | <5<br>       | <5<br>.5     | MW-17     |
|      | Mar-01              | NS-1       | <5            | <5           | <5            | <5       | <5           | <5<br>NC     | MW-17     |
|      | Sep-01              | NS-1       | 23            | <10          | <10           | <10      | <10          | NS           | MW-17     |
|      | Mar-02              | NS-1       | <10           | <10          | <10           | NS-2     | <10          | <10          | MW-13A    |
|      | Sep-02              | NS-1       | <10           | <10          | <10           | NS-2     | <10          | <10          | MW-6R     |
|      | Apr-03              | NS-1       | 14            | <10          | <10           | NS-2     | <10          | <10          | MW-18     |
|      | Oct-03              | NS-1       | 13            | <10          | 10            | NS-2     | <10          | 10           | MW-18     |
|      | Apr-04              | NS-1       | <10           | <10          | <10           | NS-2     | <10          | <10          | MW-14     |
| Zina | Oct-04              | NS-1       | <10           | <10          | <10           | NS-2     | <10          | <10          | MW-13A    |
| Zinc | Feb/March 1999      | 15.1       | 49.5          | 38.1         | 36            | 14.6 B   | 172          | 36.6         | MW-18     |
|      | Sep-99              | 16.1 B     | 26.5          | 10.7 B       | 6.5 B         | 7.1 B    | 51.2         | 13.8 B       | MW-13A    |
|      | Mar-00              | 13         | 26            | 29           | 28            | 13       | 16           | 24           | MW-13A    |
|      | Sep-00              | 38         | 47            | 47           | 42            | 57       | 58           | 58           | MW-17     |
|      | Маr-01              | NS-1       | 19            | 10           | 15            | 32       | 21           | 18           | MW-17     |
|      | Sep-01              | NS-1       | 140           | <10          | <10           | <10      | 22           | NS           | MW-17     |
|      | Mar-02              | NS-1       | 64            | 18           | <10           | NS-2     | <10          | <10          | MW-13A    |
|      | Sep-02              | NS-1       | 29            | 92           | 20            | NS-2     | <10          | 35           | MW-6R     |
|      | Apr-03              | NS-1       | 100           | <10          | 29            | NS-2     | 11           | 14           | MW-18     |
|      | Oct-03              | NS-1       | 24            | 19           | 100           | NS-2     | 17           | 31           | MW-18     |
|      | Apr-04              | NS-1       | <10           | 29           | 17            | <10      | 18           | 20           | MW-14     |
|      | Oct-04              | NS-1       | 19            | 12           | <10           | <10      | <10          | 17           | MW-13A    |
| Doly | rchlorinated Biphen |            | 19            | 12           | <10           | <10      | <10          | 17           | WW-13A    |
|      | clor 1016           | yıs        |               |              |               |          |              |              |           |
|      | Feb/March 1999      | <0.10      | <0.10         | <0.10        | <0.10         | <0.10    | <0.10        | <0.10        | MW-18     |
|      | Sep-99              | <0.10      | <0.10         | <0.10        | <0.10         | <0.10    | <0.10        | <0.10        | MW-13A    |
|      | Mar-00              | <0.10      | <0.10         | <0.10        | <0.10         | <0.10    | <0.10        | <0.10        | MW-13A    |
|      | Sep-00              | <0.05      | <0.05         | <0.05        | <0.05         | <0.05    | <0.05        | <0.05        | MW-17     |
|      | Mar-01              | NS-1       | <0.05         | <0.05        | <0.05         | <0.05    | <0.05        | <0.05        | MW-17     |
|      | Sep-01              | NS-1       | <0.10         | <0.10        | <0.10         | <0.10    | <0.10        | <0.10        | MW-17     |
|      | Mar-02              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-13A    |
|      | Sep-02              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-6R     |
|      | Apr-03              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-18     |
|      | Oct-03              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-18     |
|      | Apr-04              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-14     |
|      | Oct-04              | NS-1       | <0.05         | <0.05        | <0.05         | NS-2     | <0.05        | <0.05        | MW-13A    |
|      | OCI-04              | 140-1      | <b>~</b> 0.00 | <b>\0.03</b> | <b>~</b> 0.03 | 110-7    | <b>\0.00</b> | <b>\0.00</b> | IVIVV-13A |

| _        | or 1221<br>Feb/March 1999<br>Sep-99<br>Mar-00<br>Sep-00<br>Mar-01 | <0.10<br><0.10<br><0.10 | <0.10<br><0.10 | MW-13A<br><0.10 | MW-14  | MW-17  | MW-18  | DUP-1  | DUP Well |
|----------|-------------------------------------------------------------------|-------------------------|----------------|-----------------|--------|--------|--------|--------|----------|
| _        | Sep-99<br>Mar-00<br>Sep-00                                        | <0.10                   |                | <0.10           |        |        |        | ·      |          |
| <u>-</u> | Sep-99<br>Mar-00<br>Sep-00                                        | <0.10                   |                | <() 1()         | 0.40   | 0.40   | 0.40   | 0.40   | 100/40   |
|          | Mar-00<br>Sep-00                                                  |                         | <0.10          |                 | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|          | Sep-00                                                            | <0.10                   |                | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          |                                                                   |                         | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          | Mar-01                                                            | <0.05                   | <0.05          | <0.05           | <0.05  | <0.05  | <0.05  | <0.05  | MW-17    |
|          |                                                                   | NS-1                    | <0.05          | <0.05           | < 0.05 | <0.05  | <0.05  | < 0.05 | MW-17    |
|          | Sep-01                                                            | NS-1                    | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|          | Mar-02                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | < 0.05 | MW-13A   |
|          | Sep-02                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | < 0.05 | MW-6R    |
|          | Apr-03                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-18    |
|          | Oct-03                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-18    |
|          | Apr-04                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-14    |
|          | Oct-04                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-13A   |
| Arock    | or 1232                                                           |                         |                |                 |        |        |        |        |          |
| F        | eb/March 1999                                                     | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|          | Sep-99                                                            | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          | Mar-00                                                            | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          | Sep-00                                                            | < 0.05                  | < 0.05         | < 0.05          | < 0.05 | < 0.05 | < 0.05 | < 0.05 | MW-17    |
|          | Mar-01                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | < 0.05 | < 0.05 | < 0.05 | MW-17    |
|          | Sep-01                                                            | NS-1                    | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|          | Mar-02                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | <0.05  | MW-13A   |
|          | Sep-02                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | <0.05  | MW-6R    |
|          | Apr-03                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | <0.05  | MW-18    |
|          | Oct-03                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | <0.05  | MW-18    |
|          | Apr-04                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-14    |
|          | Oct-04                                                            | NS-1                    | < 0.05         | < 0.05          | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-13A   |
| Arock    | or 1242                                                           |                         | 1.             | 1               |        |        |        |        |          |
| F        | eb/March 1999                                                     | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|          | Sep-99                                                            | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          | Mar-00                                                            | <0.10                   | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|          | Sep-00                                                            | <0.05                   | < 0.05         | < 0.05          | < 0.05 | <0.05  | <0.05  | <0.05  | MW-17    |
|          | Mar-01                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | <0.05  | <0.05  | <0.05  | MW-17    |
|          | Sep-01                                                            | NS-1                    | <0.10          | <0.10           | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|          | Mar-02                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | <0.05  | MW-13A   |
|          | Sep-02                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | < 0.05 | MW-6R    |
|          | Apr-03                                                            | NS-1                    | < 0.05         | <0.05           | <0.05  | NS-2   | <0.05  | < 0.05 | MW-18    |
|          | Oct-03                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | <0.05  | MW-18    |
|          | Apr-04                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | <0.05  | MW-14    |
| -        | Oct-04                                                            | NS-1                    | <0.05          | <0.05           | <0.05  | NS-2   | <0.05  | <0.05  | MW-13A   |


# 2004 ANNUAL OM&M REPORT 2200 BLEEKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003


| Analy | rtes          | MW-3   | MW-6R  | MW-13A | MW-14  | MW-17  | MW-18  | DUP-1  | DUP Well |
|-------|---------------|--------|--------|--------|--------|--------|--------|--------|----------|
| Arocl | or 1248       |        |        |        |        |        |        |        |          |
| F     | eb/March 1999 | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|       | Sep-99        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Mar-00        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Sep-00        | 0.46 C | 1.2 C  | < 0.05 | 0.62 C | < 0.05 | 0.15 C | 0.19 C | MW-17    |
|       | Mar-01        | NS-1   | < 0.05 | < 0.05 | <0.05  | < 0.05 | < 0.05 | < 0.05 | MW-17    |
|       | Sep-01        | NS-1   | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|       | Mar-02        | NS-1   | < 0.05 | < 0.05 | <0.05  | NS-2   | < 0.05 | < 0.05 | MW-13A   |
|       | Sep-02        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-6R    |
|       | Apr-03        | NS-1   | < 0.05 | < 0.05 | <0.05  | NS-2   | < 0.05 | < 0.05 | MW-18    |
|       | Oct-03        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | <0.05  | < 0.05 | MW-18    |
|       | Apr-04        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | <0.05  | < 0.05 | MW-14    |
|       | Oct-04        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-13A   |
| Arocl | or 1254       |        |        |        |        | 1      |        |        |          |
| F     | eb/March 1999 | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|       | Sep-99        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Mar-00        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Sep-00        | <0.05  | < 0.05 | < 0.05 | < 0.05 | <0.05  | <0.05  | < 0.05 | MW-17    |
|       | Mar-01        | NS-1   | < 0.05 | < 0.05 | < 0.05 | <0.05  | <0.05  | < 0.05 | MW-17    |
|       | Sep-01        | NS-1   | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|       | Mar-02        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-13A   |
|       | Sep-02        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-6R    |
|       | Apr-03        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-18    |
|       | Oct-03        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-18    |
|       | Apr-04        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | < 0.05 | < 0.05 | MW-14    |
|       | Oct-04        | NS-1   | < 0.05 | < 0.05 | < 0.05 | NS-2   | <0.05  | < 0.05 | MW-13A   |
| Arocl | or 1260       |        |        |        |        |        |        |        |          |
| F     | eb/March 1999 | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-18    |
|       | Sep-99        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Mar-00        | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-13A   |
|       | Sep-00        | <0.05  | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | MW-17    |
|       | Mar-01        | NS-1   | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | MW-17    |
|       | Sep-01        | NS-1   | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | <0.10  | MW-17    |
|       | Mar-02        | NS-1   | < 0.05 | <0.05  | <0.05  | NS-2   | <0.05  | <0.05  | MW-13A   |
|       | Sep-02        | NS-1   | < 0.05 | <0.05  | <0.05  | NS-2   | <0.05  | <0.05  | MW-6R    |
| ı     | Apr-03        | NS-1   | < 0.05 | <0.05  | <0.05  | NS-2   | <0.05  | <0.05  | MW-18    |
| ı     | Oct-03        | NS-1   | < 0.05 | <0.05  | <0.05  | NS-2   | <0.05  | < 0.05 | MW-18    |
| ı     | Apr-04        | NS-1   | < 0.05 | <0.05  | <0.05  | NS-2   | <0.05  | < 0.05 | MW-14    |
|       | Oct-04        | NS-1   | <0.05  | <0.05  | <0.05  | NS-2   | <0.05  | < 0.05 | MW-13A   |

- 1. All results reported in micrograms per liter (ug/l) approximately equivalent to parts per billion (ppb).
- 2. B = The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- 3. C = Value was reported as a laboratory cross-contaminant.
- 4. E = The reported value is estimated due to the presence of interference(s).
- 5. NS-1 = No Sample Well Decommissioned.
- 6. NS-2 = No Sample Well Dry.
- 7. Bolded values exceed the constituent's established TOGS 1.1.1 guidance values.

# 4.7 Figures

- 4-1 Overburden Groundwater Elevation Contour Map April 22, 2004
- 4-2 Overburden Groundwater Elevation Contour Map October 18, 2004





#### 5.0 PROPERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM

UHC was issued a SPDES permit (No. NY0257087) for the Property on September 1, 2002, with two subsequent modifications issued by NYSDEC, dated August 1, 2003, and November 20, 2003. On behalf of UHC, Synapse has been tasked to administer the scheduled technical and reporting requirements set forth in the SPDES Permit.

The SPDES Permit is specific to activities conducted at the Property, including the Coolidge owned Main Building, and permits water discharge from three outfalls as depicted in Figure 5-1 – SPDES Outfall 001 Manhole Plan and Section, Figure 5-2 – SPDES Outfall 002 Manhole Plan and Section, and Figure 5-3 – SPDES Outfall 003 Plan and Section. Approximately 92% of the water discharged at these outfalls is stormwater from overland flow and building roof leaders. A portion of the remaining contribution is from CPTC's Outfall 03A, permitted under SPDES Permit No. NY0108537 (see Section 6.4). The following section reviews Outfall contributions and construction, routine monitoring and subsequent results, specialized studies and testing, as well as, unscheduled maintenance.

#### 5.1 Outfall Contributions

Water contributions that discharge via the three SPDES outfalls are as follows:

#### Outfall 001

- Building roof leaders;
- Parking lot catch basin;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate.

#### Outfall 002

- Building roof leaders;
- Parking lot catch basins,
- Boiler blowdown (periodic):
- Sprinkler system drains (periodic); and
- Air conditioning condensate.

#### Outfall 003

- Building roof leaders;
- Stormwater from overland flow, including that from the RAF;
- Parking lots;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic);
- Air conditioning condensate; and
- Post treated effluent from the GTS via Outfall 03A (SPDES Permit No. NY0108537).

Figure 5-4 – Stormwater System Partial Plan, depicts the numerous source points and areas, particularly from the Main Building, that contribute water to each outfall.

#### 5.2 Outfall Construction

The three SPDES outfalls were located and constructed to facilitate collection of effluent samples and flow measurements representative of actual discharge conditions at the Property. The construction of each outfall is provided below:

#### Outfall 001

Outfall 001 construction activities were conducted between April 16 and April 26, 2002, and incorporated the following:

- Pavement and soil was excavated to install Outfall 001 at an area in the western parking lot where an existing drainage pipes, a 24-inch corrugated metal pipe (CMP) and a 24-inch vitrified clay pipe (VCP) intersected, approximately 5 feet below ground surface (bgs);
- A prefabricated 5-foot diameter cast concrete manhole base, with influent and effluent pipe penetrations, was placed in line with the existing subsurface drainage pipes and grouted;
- An 8-inch thick concrete cover, with a cast iron access cover, was installed to complete the manhole structure, followed by engineered fill and paving;
- A stainless steel, sharp edged, 120-degree, V-notch weir was installed at the effluent side of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and calibrated to allow measurements of effluent flow rates based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted at the outfall outlet.

A detailed drawing of SPDES Outfall 001 Manhole is presented on Figure 5-1. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek, Area 1.

#### Outfall 002

Outfall 002 was constructed from an existing 10.5-foot deep, 4- foot diameter red brick manhole near the northwestern corner of the Main Building. A 24-inch VCP, that is the part of the northern stormwater system, is sectioned by this manhole. As such, effluent flowing through the manhole was accessible and measurable upon application of the following upgrades:

- A stainless steel sharp edge, 120-degree, V-notch weir was installed adjacent to the effluent 24inch VCP, at the bottom of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and effluent flow rates were calibrated based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted on the bank, adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 002 Manhole is presented on Figure 5-2. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek, Area 1.

#### Outfall 003

Outfall 003 was constructed in an existing unnamed tributary to the Mohawk River, Area 14, at the northeastern extent of the Property as follows:

 A 12-inch HDPE pipe was installed within a concrete headwall spanning the width of the tributary forcing 100% of the normal flow through the pipe. Samples are collected and parameters measured directly from the effluent end of the 12-inch HDPE pipe;

- A monitoring port was installed adjacent to the concrete headwall to facilitate flow measurement data collection representative of actual discharge conditions. The monitoring port was constructed by installing a horizontal 2-inch PVC pipe at a measured elevation adjacent to the influent side of the headwall. This horizontal pipe connects (via a 90 degree elbow) to a vertical riser extending several feet above grade adjacent to the tributary. The water level of the tributary, and thus the flow rate, can be measured from this monitoring port; and
- A NYSDEC-approved sign was posted on the bank adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 003 is presented on Figure 5-3.

#### 5.3 Monitoring

A primary regulatory requirement of the Property SPDES permit is to monitor concentrations of select constituents and physical parameters in the outfall effluent. A schedule of routine monitoring of effluent from Outfalls 001, 002, and 003 has been prescribed by NYSDEC, as discussed in Section 5.3.1. In addition, two non-routine monitoring/sampling programs have been prescribed for by NYSDEC, to include, PCB Congeners and Acute Toxicity, as discussed in Sections 5.3.2 and 5.3.3, respectively.

### 5.3.1 Routine Monitoring

August and November 2003 modifications to the Permit have resulted in minor changes to the monitoring parameters and/or their scheduled monitoring frequencies. The current routine monitoring parameters and sampling frequencies, as prescribed for each outfall, are summarized in the following table:

| Parameter                    | Units          | Mo           | onitoring Frequen | су           |
|------------------------------|----------------|--------------|-------------------|--------------|
| Farameter                    | Ullits         | Outfall 001  | Outfall 002       | Outfall 003  |
| рН                           | S.U.           | Once/2 weeks | Once/2 weeks      | Once/2 weeks |
| Flow (in-situ measurement)   | gpd            | Once/2 weeks | Once/2 weeks      | Once/2 weeks |
| Temperature                  | <sup>0</sup> F | Once/2 weeks | Once/2 weeks      | Once/2 weeks |
| Oil & Grease                 | mg/l           | Monthly      | Monthly           | Monthly      |
| Total Suspended Solids (TSS) | mg/l           | Once/2 weeks | Once/2 weeks      | Once/2 weeks |
| Total Residual Chloride      | ug/l           | NR           | NR                | Once/2 weeks |
| Phenolics                    | ug/l           | Monthly      | Monthly           | Monthly      |
| Antimony                     | ug/l           | Quarterly    | NR                | NR           |
| Chromium                     | ug/l           | Semi-Annual  | NR                | NR           |
| Copper                       | ug/l           | Once/2 weeks | NR                | NR           |
| Fluoride                     | ug/l           | Semi-Annual  | Semi-Annual       | NR           |
| Lead                         | ug/l           | Semi-Annual  | NR                | Semi-Annual  |
| Zinc                         | ug/l           | Semi-Annual  | NR                | Semi-Annual  |
| Chloroform                   | ug/l           | Once/2 weeks | NR                | Once/2 weeks |
| cis 1,2-dichloroethylene     | ug/l           | Once/2 weeks | NR                | Once/2 weeks |
| Trans 1,2- dichloroethylene  | ug/l           | Once/2 weeks | NR                | Once/2 weeks |
| Trichloroethylene            | ug/l           | Once/2 weeks | NR                | Once/2 weeks |
| Vinyl chloride               | ug/l           | NR           | NR                | Once/2 weeks |
| PCBs                         | ng/l           | NR           | NR                | Quarterly    |

#### Notes:

S.U. = Standard Units

<sup>0</sup>F = Degrees Fahrenheit

mg/l = milligrams per liter, approximately equal to parts per million (ppm)

ug/l = micrograms per liter, approximately equal to parts per billion (ppb)

ng/l = nanograms per liter, approximately equal to parts per trillion (ppt)

NR = Not Required

5-3

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Analytical data and real-time measurements obtained from the 2004 routine monitoring events are summarized in Table 5-1 – Cumulative Summary of SPDES Monitoring Results. This data was also reduced and reported in monthly DMRs for submittal to NYSDEC.

Results from routine monitoring events were compared to effluent compliance levels set in the Permit. There were no excursions of compliance levels for the above parameters in 2004, with the exception of detected oil and grease, copper, and cis-1,2-dichloroethylene concentrations in certain samples. These excursions were reported to the NYSDEC Region 6, Division of Water representative, Chad Kehoe, by telephone followed by written notification, with an accompanying evaluation and recommendations. Details of the excursions that were reported during the 2004 monitoring period are provided below:

- The cis-1,2-dichloroethylene daily maximum allowable level of 10 ug/l at the Outfall 003 was exceeded during one bi-weekly monitoring event; a concentration of 11 ug/l was detected in the sample collected on January 28, 2004. Upon receipt of the laboratory analytical report, Synapse verbally notified NYSDEC Region 6 of this concentration. Given the historic analytical data since the effective date of the Permit, this result appears to be an anomaly and possibly attributable to effluent from CP's Outfall 003A (SPDES Permit No. NY-0108537) which is located upstream of UHC's Outfall 003. It is our understanding that CP dismantled and cleaned the air stripper in February, 2004. VOCs have not been detected above Permit compliance levels in Outfall 003 subsequent to the January 28, 2004 sampling event.
- Oil & grease concentrations of 26 mg/l and 45 mg/l were detected in the monthly effluent samples collected from Outfalls 001 and 002, respectively, on October 20, 2004. These values exceeded the Permit compliance level of 15 mg/l. Upon receipt of the laboratory analytical report, Synapse verbally notified NYSDEC Region 6, of these concentrations. Given the historic oil & grease analytical data since the effective date of the Permit, these results are sporadic, possibly attributable to the main building and/or the parking lot catch basins connected to the outfalls.
- The copper daily maximum allowable level of 100 ug/l at the Outfall 001 was exceeded during one bi-weekly monitoring event. A concentration of 420 ug/l was detected in the sample collected on October 20, 2004. Upon receipt of the laboratory analytical report, Synapse verbally notified NYSDEC Region 6 of this concentration. Given the historic analytical data since the effective date of the Permit, this result appears to be an anomaly and cannot be attributed to any known conditions or activities conducted at the site. Subsequent copper exceedances have not been detected in Outfall 001.

#### 5.3.2 EPA Method 1668A PCB Study

Pursuant to the August 2003 SPDES Permit Modification, a three-year study of PCB congeners is required at Outfall 003. Using USEPA Method 1668A, sampling and analysis of 209 PCB congeners is being conducted at Outfall 003 on a quarterly basis. Four quarterly sampling events were conducted in 2004. Sampling is expected to continue on a quarterly basis through July 2005.

One grab sample was collected from Outfall 003 during the monitoring events listed below and was split for the purpose of collecting parallel PCB congener/aroclor data. The samples were submitted to Alta Analytical Perspectives in Wilmington, North Carolina for analysis of PCB Congeners in accordance with EPA Method 1668A and to LSL for analysis of PCB aroclors in accordance with USEPA Method 608. As indicated in the August 2003 Permit modification, PCB compliance is determined using the EPA Method 608 analytical results. The analytical results for USEPA Method 1668A are transmitted to NYSDEC in both digital and printed formats.

Analytical results for the four samples collected and analyzed during 2004 are summarized in the following table:

| Sample Date       | Total PCB Congeners | Total PCB Aroclors      |
|-------------------|---------------------|-------------------------|
|                   | USEPA Method 1668A  | <b>USEPA Method 608</b> |
| March 10, 2004    | 3.009 ng/l          | <50 ng/l                |
| July 15, 2004     | 4.134 ng/l          | <50 ng/l                |
| October 20, 2004  | 2.136 ng/l          | <50 ng/l                |
| December 17, 2004 | 2.630 ng/l          | <50 ng/l                |

#### Notes:

- 1) Concentrations reported in nanograms/liter (ng/l), approximately equivalent to parts per trillion.
- 2) Reported concentrations represent sample results minus concentration detected in the method blank.

At this point in the study, no conclusion or subsequent recommendations are provided.

### 5.3.3 Acute Toxicity Testing

Pursuant to the original September 2002 SPDES Permit and the August 2003 SPDES Permit Modification, a Tier 1 acute toxicity testing program is required at Outfalls 001, 002, and 003. The Tier 1 toxicity testing program is intended to identify acute toxicity of the effluent from the outfalls.

Using analytical method EPA/600/4-90/027F, sampling and analysis of acute toxicity of effluent utilizing the vertebrate, Fathead Minnow (*Pimephales promelas*) and invertebrate, Water Flea (*Ceriodaphnia dubia*) test species, respectively, is required on a quarterly basis at Outfalls 001 and 002 during calendar years ending in 3 and 8, and at Outfall 003 on a quarterly basis during calendar years ending in 0 and 5.

The toxicity testing programs for Outfalls 001 and 002 were initiated during the first quarter of 2003, and as such, four sampling events were conducted at each outfall for the year. NYSDEC's evaluation of 2003 Tier 1 Acute toxicity test data, documented in a letter dated January 27, 2004, concluded:

For Outfall 001, all tests indicated that no toxicity was present with LC50 values > 100%, however, the September 2003 report did indicate 25% mortality in 100% effluent, although this was not considered to be statistically significant. For Outfall 002, half the tests indicated that unacceptable toxicity was present, with LC50 values ranging from 73.20% to >100%.

Given 2003 analytical results, NYSDEC required that toxicity testing continue through 2004. Each acute toxicity sampling event involved two days (48 hours) in which an automated sampling device was used to collect two composite samples, one for each day. The automatic sampling device is programmed to collect a specific volume of water hourly during each 24-hour sampling period. The samples were delivered to AquaTox Research, Inc., a NYSDEC-approved laboratory, located in Syracuse, New York, for acute toxicity analysis. Analytical results were provided to NYSDEC upon receipt.

The Tier 1 acute toxicity testing program at Outfalls 001 and 002 was originally scheduled to be conducted during calendar years ending in 3 and 8. With a current mortality rate of 0%, additional Tier 1 acute toxicity testing at Outfall 001 is not required by NYSDEC until calendar year 2008. Given that half of the 2003 tests indicated unacceptable toxicity for *Ceriodaphnia dubia* for Outfall 002, NYSDEC required that Tier 1 acute toxicity testing be conducted for an additional year (2004) for *Ceriodaphnia dubia*, and reevaluated accordingly.

*Ceriodaphnia dubia* failed to pass its acute effluent toxicity tests for the 1<sup>st</sup> and 2<sup>nd</sup> quarterly sampling events, conducted in March 2004 and June 2004, respectively. Due to the acute effluent toxicity test results, Synapse conducted corrective measures at Outfall 002 as follows:

- Problematic research focusing on potential conditions and/or constituents that may be responsible for the decreased Ceriodaphnia dubia survival rate;
- Additional sampling of Outfall 002 and analytical testing of select constituents; and
- Flushing and cleaning manholes MH-ST2 and MH-ST2A, and building laterals that contribute to Outfall 002.

Corrective measures were thoroughly described in a letter report provided to the NYSDEC, dated September 24, 2004. Subsequent to completion of the above corrective measures, no toxicity was detected during the 3<sup>rd</sup> and 4<sup>th</sup> quarter acute toxicity sampling events. The *Ceriodaphnia dubia* survival rate over the four quarterly sampling events are depicted as follows.

| March                  | June                   | July                   | October                |
|------------------------|------------------------|------------------------|------------------------|
| 48-hr LC <sub>50</sub> | 48-hr LC <sub>50</sub> | 48-hr LC <sub>50</sub> | 48-hr LC <sub>50</sub> |
| 68.3%                  | 61.3%                  | >100%                  | >100%                  |

### 5.4 Summary

UHC was issued a SPDES permit for Outfalls 001, 002, and 003 on September 1, 2002. During 2003, NYSDEC issued two modifications to the SPDES Permit, as discussed earlier. On behalf of UHC, Synapse has been conducting the technical and reporting requirements set forth in the SPDES Permit.

Data collected from the 2004 routine monitoring and sampling events indicate target constituents and field parameters have not been consistently identified at any of the outfalls above their respective enforceable compliance levels. Anomalous exceptions and or excursions from the enforceable compliance levels have been evaluated and not believed to be a consistent threat to the environment. As such, it is recommended that routine monitoring be continued as scheduled.

The EPA Method 1668A PCB Study is ongoing with no reportable excursions, and will continue as scheduled.

The acute toxicity testing of Outfall 002 for *Ceriodaphnia dubia* was performed quarterly in 2004. Greater than 50% *Ceriodaphnia dubia* mortality was identified during the 1<sup>st</sup> and 2<sup>nd</sup> quarters at Outfall 002, believed to be attributed to from residual constituents in roof leaders, building laterals, and/or manholes. Corrective measures were implemented, restoring the *Ceriodaphnia dubia* survival rate to an acceptable level for the 3<sup>rd</sup> and 4<sup>th</sup> quarters. However, due to the *Ceriodaphnia dubia* survival rate reported during the 1<sup>st</sup> and 2<sup>nd</sup> quarters of 2004, acute toxicity testing for *Ceriodaphnia dubia* will continue at Outfall 002 through the 2005 calendar year. Quarterly acute toxicity testing at Outfall 003 is also scheduled to be conducted during the 2005 calendar year for *Ceriodaphnia dubia* and *Pimephales promelas*.

# 5.5 Tables

Table 5-1 Cumulative Summary of SPDES Monitoring Results

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

| Monitoring Period | EC    | L     |          | Septeml   | ber 2002  |           |           | Octobe     | er 2002    |            |           | Nov       | vember 2   | 002        |            |           | Decemb     | er 2002    |            |
|-------------------|-------|-------|----------|-----------|-----------|-----------|-----------|------------|------------|------------|-----------|-----------|------------|------------|------------|-----------|------------|------------|------------|
| Monitoring Date   | Daily | Unite | 9/6/2002 | 9/11/2002 | 9/16/2002 | 9/23/2002 | 10/3/2002 | 10/10/2002 | 10/16/2002 | 10/25/2002 | 11/1/2002 | 11/6/2002 | 11/11/2002 | 11/22/2002 | 11/27/2002 | 12/5/2002 | 12/13/2003 | 12/20/2003 | 12/27/2003 |
| Sampler ID        | Max   | Units | rsn      | bhm       | bhm       | rrc       | rsn       | bhm        | bhm        | rsn        | rrc       | rsn       | rrc/rsn    | rsn        | rsn        | rrc       | bhm        | bhm        | rrc        |

#### SPDES Outfall 001

| Flow Rate                  | Monitor  | gpd    | HTW | 3505     | 15801 | 2314 | 7530           | 152 | 185634 | <152 | 152 | 35901 | HTW | HTW        | 13987 | 2314 | 30835 | 35901 | 21739 |
|----------------------------|----------|--------|-----|----------|-------|------|----------------|-----|--------|------|-----|-------|-----|------------|-------|------|-------|-------|-------|
| Temperature                | 90       | ٥F     |     | 67       | 71    |      | 66             |     | 57     |      |     | 47    |     | 53         |       | 49   | 46    |       |       |
| pH                         | 6.0-9.0  | SU     |     | 7.6      | 7.3   |      | 7.1            |     | 7.0    |      |     | 6.7   |     | 7.0        |       | 6.6  | 7.9   |       |       |
| Solids, Total Suspended    | 10 (dry) | mg/l   |     | <4       | <4    |      | <4             |     | 15     |      |     | <4    |     | <4         |       | 14   | 15    |       |       |
| Solius, Total Suspended    | 50 (wet) | ilig/i |     | <b>~</b> | <4    |      | \ <del>\</del> |     | 15     |      |     | .4    |     | <b>~</b> 4 |       | 14   | 15    |       |       |
| cis-1,2-Dichloroethylene   | 10       | ug/l   |     | 7.9      | 1     |      | 1              |     | 2.7    |      |     | <1    |     | 3.6        |       | <1   | <1    |       |       |
| trans-1,2-Dichloroethylene | 10       | ug/l   |     | <1       | <1    |      | <1             |     | <1     |      |     | <1    |     | <1         |       | <1   | <1    |       |       |
| Trichloroethylene          | 10       | ug/l   |     | 1.1      | <1    |      | <1             |     | <1     |      |     | <1    |     | <1         |       | <1   | <1    |       |       |
| Chloroform                 | 46       | ug/l   |     | <1       | <1    |      | <1             |     | <1     |      |     | <1    |     | <1         |       | <1   | <1    |       |       |
| Copper, Total              | 100      | ug/l   |     | 73       | 34    |      | 55             |     | 50     |      |     | 20    |     | 25         |       | 11   | 24    |       |       |
| Oil & Grease               | 15       | mg/l   |     | <5       |       |      | 8.3            |     |        |      |     | <5    |     |            |       | <5   |       |       |       |
| Phenolics, Total           | 28       | ug/l   |     | <20      |       |      | <20            |     |        |      |     | <20   |     |            |       | <20  |       |       |       |
| Antimony, Total            | 300      | ug/l   |     | <10      |       |      |                |     |        |      |     |       |     |            |       | <10  |       |       |       |
| Chromium, Total            | 51       | ug/l   |     | 22       |       |      |                |     |        |      |     |       |     |            |       |      |       |       |       |
| Fluoride, Total            | 2500     | ug/l   |     | 340      |       |      |                |     |        |      |     |       |     |            |       |      |       |       |       |
| Lead, Total                | 13       | ug/l   |     | <10      |       |      |                |     |        |      |     |       |     |            |       |      |       |       |       |
| Zinc, Total                | 210      | ug/l   |     | 72       |       |      |                |     |        |      |     |       |     |            |       |      |       |       |       |

#### SPDES Outfall 002

| Flow Rate               | Monitor  | gpd  | 43871 | 47168 | 50610      | 43871 | 47168      | 47168 | 528383 | 29476 | 27001 | 166744 | 34824 | HTW | HTW | 27001      | 88412 | 133097 | 27001 |
|-------------------------|----------|------|-------|-------|------------|-------|------------|-------|--------|-------|-------|--------|-------|-----|-----|------------|-------|--------|-------|
| Temperature             | 90       | °F   |       | 70    | 72         |       | 70         |       | 52     |       |       | 45     | 47    |     |     | 49         | 46    |        |       |
| рН                      | 6.0-9.0  | SU   |       | 8.8   | 8.4        |       | 8.2        |       | 7.1    |       |       | 7.3    | 8.5   |     |     | 8.6        | 8.1   |        |       |
| Solids, Total Suspended | 10 (dry) | ma/l |       | -1    | -1         |       | <4         |       | -1     |       |       | -1     | -1    |     |     | <4         | -1    |        |       |
| Solids, Total Suspended | 50 (wet) | mg/i |       | <4    | <b>~</b> 4 |       | <b>~</b> 4 |       | <4     |       |       | <4     | <4    |     |     | <b>~</b> 4 | <4    |        |       |
| Oil & Grease            | 15       | mg/l |       | <5    |            |       | 11         |       |        |       |       | <5     |       |     |     | <5         |       |        |       |
| Phenolics, Total        | 24       | ug/l |       | <20   |            |       | <20        |       |        |       |       | <20    |       |     |     | <20        |       |        |       |
| Fluoride, Total         | 1500     | ug/l |       | 1000  |            |       |            |       |        |       |       |        |       |     |     |            |       |        |       |

### SPDES Outfall 003

| Flow Rate                     | Monitor  | gpd    | 6943 | 20829 | 83314 | 48600 | 36450      | 35345 | 198367     | 24300 | 18225 | 116640 | 36450      | 194400 | 48600 | 48600      | 42261      | 116640 | 29160 |
|-------------------------------|----------|--------|------|-------|-------|-------|------------|-------|------------|-------|-------|--------|------------|--------|-------|------------|------------|--------|-------|
| Temperature                   | 90       | ٥F     |      | 64.2  | 70.3  |       | 65.5       |       | 51.3       |       |       | 44     | 58         |        |       | 35         | 44         |        |       |
| рН                            | 6.0-9.0  | SU     |      | 7.6   | 7.7   |       | 7.4        |       | 7.1        |       |       | 7.1    | 7.2        |        |       | 7.6        | 6.9        |        |       |
| Solids, Total Suspended       | 10 (dry) | mg/l   |      | 6     | <4    |       | <4         |       | <4         |       |       | <4     | <4         |        |       | <4         | <4         |        |       |
| Solids, Total Suspended       | 50 (wet) | ilig/i |      |       | <4    |       | <b>~</b> 4 |       | <b>~</b> 4 |       |       | \ 4    | <b>~</b> 4 |        |       | <b>~</b> 4 | <b>~</b> 4 |        |       |
| Chlorine, Total Residual      | 100      | ug/l   |      | 80    | 70    |       | 70         |       | 85         |       |       | 20     | 80         |        |       | 50         | 50         |        |       |
| cis-1,2-Dichloroethylene      | 10       | ug/l   |      | <1    | 1.1   |       | 1.9        |       | <1         |       |       | 4      | <1         |        |       | 4.9        | 8.3        |        |       |
| trans-1,2-Dichloroethylene    | 10       | ug/l   |      | <1    | <1    |       | <1         |       | <1         |       |       | <1     | <1         |        |       | <1         | <1         |        |       |
| Trichloroethylene             | 10       | ug/l   |      | <1    | <1    |       | <1         |       | <1         |       |       | <1     | <1         |        |       | <1         | <1         |        |       |
| Vinyl Chloride                | 10       | ug/l   |      | <1    | <1    |       | <1         |       | <1         |       |       | <1     | <1         |        |       | <1         | <1         |        |       |
| Chloroform                    | 46       | ug/l   |      | <1    | <1    |       | <1         |       | <1         |       |       | <1     | <1         |        |       | <1         | <1         |        |       |
| Oil & Grease                  | 15       | mg/l   |      | <5    |       |       | 6.6        |       |            |       |       | <5     |            |        |       | <5         |            |        |       |
| Phenolics, Total              | 44       | ug/l   |      | <20   |       |       | <20        |       |            |       |       | <20    |            |        |       | <20        |            |        |       |
| PCBs, Aroclors (Compliance)   | 300      | ng/l   |      |       |       |       |            |       | <50        |       |       |        |            |        |       |            |            |        |       |
| PCBs, Congeners (1668A Study) | NA       | pg/l   |      |       |       |       |            |       | 7824       |       |       |        |            |        |       |            |            |        |       |
| Lead, Total                   | 10       | ug/l   |      | <10   |       |       |            |       |            |       |       |        |            |        |       |            |            |        |       |
| Zinc, Total                   | 120      | ug/l   |      | <10   |       |       |            |       |            |       |       |        |            |        |       |            |            |        |       |

1 of 5

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.
- 3. °F = Degrees Farenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

| <del>  </del>         |       |            |           |           |           |           |          | ry 2003   |           |           |          | larch 200 | <u> </u>  |           |          | April :   | 2003      |           | <u> </u> |          | May 2003  | <u>,                                      </u> |           |
|-----------------------|-------|------------|-----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|----------|-----------|------------------------------------------------|-----------|
| Monitoring Date Daily | Units | 12/30/2002 | 1/10/2003 | 1/17/2003 | 1/24/2003 | 1/29/2003 | 2/3/2003 | 2/10/2003 | 2/18/2003 | 2/25/2003 | 3/7/2003 | 3/12/2003 | 3/19/2003 | 3/25/2003 | 4/4/2003 | 4/11/2003 | 4/16/2003 | 4/25/2003 | 5/2/2003 | 5/9/2003 | 5/15/2003 | 5/23/2003                                      | 5/29/2003 |
| Sampler ID Max        | Units | bhm        | bhm       | bhm       | bhm       | rsn       | rsn/sjm  | sjm       | rrc/sjm   | sjm       | rsn      | bhm       | rrc/pmf   | rrc/bhm   | rrc      | pmf       | rsn       | rrc       | rrc      | sjm      | bhm       | sjm                                            | bhm       |

#### SPDES Outfall 001

| Flow Rate                  | Monitor  | gpd  | 26116 | HTW | 152 | No Flow | <152 | 6112 | <152 | <152 | HTW | HTW | 2160 | HTW | HTW | 2880 E | HTW | <1440 E | <1440 E | 41320 | <1440 E | 928 | <1440 E | 743 |
|----------------------------|----------|------|-------|-----|-----|---------|------|------|------|------|-----|-----|------|-----|-----|--------|-----|---------|---------|-------|---------|-----|---------|-----|
| Temperature                | 90       | ٩F   |       |     | 41  | 35      |      | 46   |      | 40   |     |     | 43   |     | 54  |        |     | 56      | 52      |       |         |     | 58      | 60  |
| pН                         | 6.0-9.0  | SU   |       |     | 7.0 | 7.2     |      | 7.0  |      | 7.1  |     |     | 7.1  |     | 7.2 |        |     | 7.0     | 7.2     |       |         |     | 7.0     | 6.9 |
| Solids, Total Suspended    | 10 (dry) | mg/l |       |     | 10  | 51      |      | -4   |      | _    |     |     | 17   |     | 7   |        |     | 45      | _       |       |         |     | 31      | 10  |
| Solids, Total Suspended    | 50 (wet) | mg/i |       |     | 10  | 31      |      | <4   |      | 5    |     |     | 17   |     | ,   |        |     | 45      | 5       |       |         |     | 31      | 10  |
| cis-1,2-Dichloroethylene   | 10       | ug/l |       |     | 1   | <0.5    |      | 1    |      | 4    |     |     | 4    |     | 6   |        |     | <1      | <1      |       |         |     | <1      | <1  |
| trans-1,2-Dichloroethylene | 10       | ug/l |       |     | <1  | <0.5    |      | <1   |      | <1   |     |     | <1   |     | <1  |        |     | <1      | <1      |       |         |     | <1      | <1  |
| Trichloroethylene          | 10       | ug/l |       |     | <1  | <0.5    |      | <1   |      | 1    |     |     | <1   |     | 2   |        |     | <1      | <1      |       |         |     | <1      | <1  |
| Chloroform                 | 46       | ug/l |       |     | <1  | <0.5    |      | <1   |      | <1   |     |     | <1   |     | <1  |        |     | <1      | <1      |       |         |     | <1      | <1  |
| Copper, Total              | 100      | ug/l |       |     | 22  | <10     |      | 53   |      | 21   |     |     | 16   |     | <10 |        |     | 17      | 16      |       |         |     | 22      | 19  |
| Oil & Grease               | 15       | mg/l |       |     | <5  |         |      | <5   |      |      |     |     | <5   |     |     |        |     | 13      |         |       |         |     |         | <5  |
| Phenolics, Total           | 28       | ug/l |       |     | <20 |         |      | <20  |      |      |     |     | <20  |     |     |        |     | <20     |         |       |         |     |         | <2  |
| Antimony, Total            | 300      | ug/l |       |     |     |         |      |      |      |      |     |     |      |     |     |        |     | <10     |         |       |         |     |         |     |
| Chromium, Total            | 51       | ug/l |       |     |     |         |      |      |      |      |     |     |      |     |     |        |     | <10     |         |       |         |     |         |     |
| Fluoride, Total            | 2500     | ug/l |       |     |     |         |      |      |      |      |     |     |      |     |     |        |     | 540     |         |       |         |     |         |     |
| Lead, Total                | 13       | ug/l |       |     |     |         |      |      |      |      |     |     |      |     |     |        |     | <10     |         |       |         |     |         |     |
| Zinc, Total                | 210      | ug/l |       |     |     |         |      |      |      |      |     |     |      |     |     |        |     | 99      |         |       |         |     |         |     |

#### SPDES Outfall 002

| Flow Rate               | Monitor  | gpd  | 22434 | HTW | 1582 | No Flow | 574 | 11643 | HTW | 10241 | HTW | 208 | 3966       | HTW | HTW | 2880 E | HTW | 844 | 37   | 47168 | 101 | 364 | 1582 | <250 E |
|-------------------------|----------|------|-------|-----|------|---------|-----|-------|-----|-------|-----|-----|------------|-----|-----|--------|-----|-----|------|-------|-----|-----|------|--------|
| Temperature             | 90       | ٥F   |       |     | 49   | 38      |     | 48    |     | 45    |     |     | 48         |     | 53  |        |     | 54  | 51   |       |     |     | 58   | 60     |
| рН                      | 6.0-9.0  | SU   |       |     | 7.0  | 7.6     |     | 7.0   |     | 7.4   |     |     | 6.7        |     | 7.3 |        |     | 7.3 | 7.2  |       |     |     | 7.7  | 7.1    |
| Solids, Total Suspended | 10 (dry) | ma/l |       |     | -1   | 7       |     | -1    |     | -1    |     |     | <4         |     | 11  |        |     | 7   | 11   |       |     |     | 5    | 10     |
| Solids, Total Suspended | 50 (wet) | mg/i |       |     | <4   | ,       |     | <4    |     | <4    |     |     | <b>~</b> 4 |     | 11  |        |     | ,   | - '' |       |     |     | 3    | 10     |
| Oil & Grease            | 15       | mg/l |       |     | <5   |         |     | <5    |     |       |     |     | 8          |     |     |        |     | 12  |      |       |     |     |      | <5     |
| Phenolics, Total        | 24       | ug/l |       |     | <20  |         |     | <20   |     |       |     |     | <20        |     |     |        |     | <20 |      |       |     |     |      | <2     |
| Fluoride, Total         | 1500     | ug/l |       |     |      |         |     |       |     |       |     |     |            |     |     |        |     | 460 |      |       |     |     |      |        |

# SPDES Outfall 003

| Flow Rate                     | Monitor  | gpd  | 53018 | 53018 | 25357 | 7200 E | 7200 E | 14400 E  | 48600 | 2880 E | 13886 | 23328 | 18225 | 83314 | 97200 | 7200 E | 144000 E | 24300 E | 291600 E | 172800 E | 20000 E | 64800 | 15247          | 28800 |
|-------------------------------|----------|------|-------|-------|-------|--------|--------|----------|-------|--------|-------|-------|-------|-------|-------|--------|----------|---------|----------|----------|---------|-------|----------------|-------|
| Temperature                   | 90       | ٥F   |       | 40    |       | 33     |        | 40       |       | 33     |       |       | 38    |       | 58    |        |          | 59      | 51       |          |         |       | 61             | 66    |
| рН                            | 6.0-9.0  | SU   |       | 7.1   |       | 7.5    |        | 7.1      |       | 7.5    |       |       | 7.4   |       | 7.2   |        |          | 7.3     | 7.4      |          |         |       | 7.5            | 7.4   |
| Solids, Total Suspended       | 10 (dry) | ma/l |       | <4    |       | 5      |        | <4       |       | <4     |       |       | <4    |       | <4    |        |          | 4       | NA       |          |         |       | <4             |       |
| Johns, Total Gusperideu       | 50 (wet) | mg/i |       | ~~    |       | 3      |        | <b>~</b> |       |        |       |       | \4    |       |       |        |          | 7       | IVA      |          |         |       | \ <del>-</del> |       |
| Chlorine, Total Residual      | 100      | ug/l |       | 70    |       | 60     |        | 70       |       | 47     |       |       | 50    |       | 60    |        |          | 10      | 60       |          |         |       | 30             | 40    |
| cis-1,2-Dichloroethylene      | 10       | ug/l |       | 6     |       | 3      |        | 3        |       | 8      |       |       | 8     |       | 5     |        |          | <1      | 2        |          |         |       | <1             | <1    |
| trans-1,2-Dichloroethylene    | 10       | ug/l |       | <1    |       | <0.5   |        | <1       |       | <1     |       |       | <1    |       | <1    |        |          | <1      | <1       |          |         |       | <1             | <1    |
| Trichloroethylene             | 10       | ug/l |       | 6     |       | <0.5   |        | <1       |       | 2      |       |       | 9     |       | 3     |        |          | <1      | <1       |          |         |       | <1             | <1    |
| Vinyl Chloride                | 10       | ug/l |       | <1    |       | <0.5   |        | <1       |       | <1     |       |       | <1    |       | <1    |        |          | <1      | <1       |          |         |       | <1             | <1    |
| Chloroform                    | 46       | ug/l |       | <1    |       | <0.5   |        | <1       |       | <1     |       |       | <1    |       | <1    |        |          | <1      | <1       |          |         |       | <1             | <1    |
| Oil & Grease                  | 15       | mg/l |       | <5    |       |        |        | <5       |       |        |       |       | <5    |       |       |        |          | <5      |          |          |         |       |                | <5    |
| Phenolics, Total              | 44       | ug/l |       | <20   |       |        |        | <20      |       |        |       |       | <2    |       |       |        |          | <20     |          |          |         |       |                | <2    |
| PCBs, Aroclors (Compliance)   | 300      | ng/l |       | <50   |       |        |        |          |       |        |       |       |       |       |       |        |          | <50     |          |          |         |       |                |       |
| PCBs, Congeners (1668A Study) | NA       | pg/l |       | 2641  |       |        |        |          |       |        |       |       |       |       |       |        |          | 4268    |          |          |         |       |                |       |
| Lead, Total                   | 10       | ug/l |       |       |       |        |        |          |       |        |       |       |       |       |       |        |          | <10     |          |          |         |       |                |       |
| Zinc, Total                   | 120      | ug/l |       |       |       |        |        |          |       |        |       |       |       |       |       |        |          | <10     |          |          |         |       |                |       |

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.
- 3. °F = Degrees Farenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

|                               | ı.                   |          | n <del>-</del> |           |           | ,         | i.       |          |           |           |               |          |           |           | li-      |           |           |            | 1         |            | i -       |            |
|-------------------------------|----------------------|----------|----------------|-----------|-----------|-----------|----------|----------|-----------|-----------|---------------|----------|-----------|-----------|----------|-----------|-----------|------------|-----------|------------|-----------|------------|
| Monitoring Period             | EC                   | L        |                | June      | 2003      |           |          | July     | 2003      |           |               | Augus    | t 2003    |           | Septem   | ber 2003  | Octobe    | er 2003    | Novem     | ber 2003   | Decemb    | oer 2003   |
| Monitoring Date               | Daily                | Units    | 6/4/2003       | 6/11/2003 | 6/18/2003 | 6/25/2003 | 7/2/2003 | 7/9/2003 | 7/17/2003 | 7/23/2003 | 8/1/2003      | 8/6/2003 | 8/13/2003 | 8/29/2003 | 9/8/2003 | 9/23/2003 | 10/8/2003 | 10/23/2003 | 11/5/2003 | 11/21/2003 | 12/5/2003 | 12/17/2003 |
| Sampler ID                    | Max                  | Offics   | sjm            | sjm       | sjm       | pmf/bhm   | sjm      | pmf/bhm  | sjm       | rsn       | sjm/bhm       | bhm      | rrc       | sjm       | bhm      | bhm       | bhm       | sjm        | sjm       | bhm        | rsn       | rsn        |
|                               |                      |          | •              |           |           |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           |            |
| SPDES Outfall 001             |                      |          |                |           |           |           |          |          |           |           |               |          |           |           | ,        |           |           |            |           |            | ,         |            |
| Flow Rate                     | Monitor              | gpd      | <1440 E        | 4770      | <1440 E   | <1440 E   | <1440 E  | 11676    | <1440 E   | 12253     | 64800         | 4713     | <1440 E   | <1440 E   | <1440 E  | 32112     | 626       | <4114E     | <4114 E   | HTW        | <4114 E   | <20736 E   |
| Temperature                   | 90                   | ٥F       | 60             |           | 61        |           |          | 66       |           | 69        | 66            |          | 68        | 74        | 69       | 65        | 68        | 51         | 55        | 54         | 44        | 43         |
| pН                            | 6.0-9.0              | SU       | 7.0            |           | 7.4       |           |          | 7.3      |           | 7.2       | 6.6           |          | 6.8       | 7.2       | 7.4      | 7.0       | 6.8       | 6.8        | 7.4       | 6.5        | 6.8       | 6.8        |
| Solids, Total Suspended       | 10 (dry)<br>50 (wet) | mg/l     | 39             |           | 30        |           |          | 46       |           | <4        | <4            |          | <4        | 30        | 15       | <4        | <4        | 8          | 6         | 7          | 21        | <4         |
| cis-1,2-Dichloroethylene      | 10                   | ug/l     | <1             |           | 1         |           |          | 1        |           | <1        | <1            |          | 4         | <1        | <1       | <1        | <1        | <1         | <1        | 2          | <1        | <1         |
| trans-1,2-Dichloroethylene    | 10                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | <1        | <1         | <1        | <1         |
| Trichloroethylene             | 10                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | <1        | <1         | <1        | <1         |
| Chloroform                    | 46                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | <1        | <1         | <1        | <1         |
| Copper, Total                 | 100                  | ug/l     | <10            |           | 13        |           |          | 27       |           | 62        | 41            |          | 29        | 26        | 14       | 15        | 26        | 17         | 14        | <10        | 12        | 14         |
| Oil & Grease                  | 15                   | mg/l     |                |           | 22        |           |          | <5       |           |           | <5            |          |           |           | <5       |           | <5        |            |           | <5         |           | 24         |
| Phenolics, Total              | 28                   | ug/l     |                |           | <20       |           |          | <20      |           |           | <20           |          |           |           | <20      |           | <20       |            |           | <20        |           | <20        |
| Antimony, Total               | 300                  | ug/l     |                |           | <10       |           |          |          |           |           |               |          |           | <10       |          |           |           |            |           |            |           | <10        |
| Chromium, Total               | 51                   | ug/l     |                |           | <10       |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | <10        |
| Fluoride, Total               | 2500                 | ug/l     |                |           | 380       |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | 240        |
| Lead, Total                   | 13                   | ug/l     |                |           | <10       |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | <10        |
| Zinc, Total                   | 210                  | ug/l     |                |           | 44        |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | 38         |
| SPDES Outfall 002             |                      |          |                |           |           |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           |            |
| Flow Rate                     | Monitor              | gpd      | 101            | 3247      | 1582      | 208       | 101      | 56       | <1440 E   | 18366     | 126908        | HTW      | 101       | 101       | 37       | 34824     | 208       | 208        | 11643     | HTW        | HTW       | HTW        |
| Temperature                   | 90                   | ٥F       | 61             |           | 66        |           |          | 68       |           | 70        | 66            |          | 68        | 74        | 69       | 66        | 68        | 53         | 56        | 60         | 48        | 47         |
| рН                            | 6.0-9.0              | SU       | 7.3            |           | 7.2       |           |          | 6.5      |           | 7.0       | 6.6           |          | 6.8       | 7.8       | 7.2      | 6.9       | 7.0       | 7.2        | 7.4       | 6.6        | 6.9       | 6.7        |
| Solids, Total Suspended       | 10 (dry)<br>50 (wet) | mg/l     | <4             |           | <4        |           |          | <4       |           | <4        | <4            |          | 9         | 15        | <4       | <4        | <4        | 7          | <4        | 4          | <4        | <4         |
| Oil & Grease                  | 15                   | mg/l     |                |           | <5        |           |          | <5       |           |           | <5            |          |           |           | <5       |           | <5        |            |           | 9          |           | 16         |
| Phenolics, Total              | 24                   | ug/l     |                |           | <20       |           |          | <20      |           |           | <20           |          |           |           | <20      |           | <20       |            |           | <20        |           | <20        |
| Fluoride, Total               | 1500                 | ug/l     |                |           | 150       |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | 200        |
| 00000 0 16 H 000              |                      |          |                |           |           |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           |            |
| SPDES Outfall 003             | Manitan              |          |                | 1 1       |           |           | l        |          |           | 1         |               |          |           | T         | l        | 1         |           |            | 1         | 1          | <u> </u>  | l          |
| Flow Rate                     | Monitor              | gpd      | 21600          | 18514     | 17280     | 15549     | 6480     | 18783    | 11782     | 74057     | 94255         | 47127    | 14811     | 28800     | 9969     | 103680    | 13642     | 15247      | 25920     | 43200      | 25920     | 37029      |
| Temperature                   | 90<br>6.0-9.0        | °F<br>SU | 64             |           | 64        |           |          | 67       |           | 70        | 65            |          | 72        | 73        | 71       | 64        | 63        | 45         | 52        | 48         | 35        | 42         |
| pН                            |                      | 30       | 7.5            |           | 7.6       |           |          | 7.2      |           | 7.1       | 7.3           |          | 7.4       | 7.7       | 7.8      | 7.2       | 7.6       | 7.6        | 7.1       | 7.1        | 7.3       | 6.8        |
| Solids, Total Suspended       | 10 (dry)<br>50 (wet) | mg/l     | <4             |           | <4        |           |          | <4       |           | <4        | <4            |          | <4        | <4        | <4       | <4        | <4        | <4         | <4        | 4          | 4         | <4         |
| Chlorine, Total Residual      | 100                  | ug/l     | 50             |           | 50        |           |          | 50       |           | 60        | 70            |          | 50        | 50        | 50       | 80        | 50        | 30         | 50        | 90         | 30        | 50         |
| cis-1,2-Dichloroethylene      | 10                   | ug/l     | <1             |           | <1        |           |          | 50<br><1 |           | 2         | <1            |          | <1        | <1        | <1       | 1         | <1        | <1         | 2         | 3          | 10        | 6          |
| trans-1,2-Dichloroethylene    | 10                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | <1        | <1         | <1        | <1         |
| Trichloroethylene             | 10                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | 1         | 2          | 8         | 1          |
| Vinyl Chloride                | 10                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | -<br><1   | <1         | <1        | <1         |
| Chloroform                    | 46                   | ug/l     | <1             |           | <1        |           |          | <1       |           | <1        | <1            |          | <1        | <1        | <1       | <1        | <1        | <1         | <1        | <1         | <1        | <1         |
| Oil & Grease                  | 15                   | mg/l     |                |           | 6         |           |          | <5       |           |           | <5            |          |           |           | <5       |           | <5        |            |           | 8          |           | <5         |
| Phenolics, Total              | 44                   | ug/l     |                |           | <20       |           |          | <20      |           |           | <20           |          |           |           | <20      |           | <20       |            |           | <20        |           | <20        |
| PCBs, Aroclors (Compliance)   | 300                  | ng/l     |                |           | <50       |           |          |          |           |           |               |          | <50       |           |          |           |           |            |           |            |           | <50        |
| PCBs, Congeners (1668A Study) | NA                   | pg/l     |                |           | 6283      |           |          |          |           |           |               |          | 4546      |           |          |           |           |            |           |            |           | 3449       |
| Lead, Total                   | 10                   | ug/l     |                |           | <10       |           |          |          |           |           |               |          | .5.0      |           |          |           |           |            |           |            |           | <10        |
| Zinc, Total                   | 120                  | ug/l     |                |           | <10       |           |          |          |           |           |               |          |           |           |          |           |           |            |           |            |           | 11         |
| ×1                            | .20                  |          | Notes:         |           |           |           |          |          |           |           | 7.  ng/l = na |          | 11.       |           |          |           | /         |            |           |            |           |            |

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.
- 3. °F = Degrees Farenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

|                               | -1.5     |       | F          |             |           | i P       | J 110. 111-0 | 1         |               | i P            |               | i <del>-</del>  |                  | 1-        |           |
|-------------------------------|----------|-------|------------|-------------|-----------|-----------|--------------|-----------|---------------|----------------|---------------|-----------------|------------------|-----------|-----------|
| Monitoring Period             | EC       | L     |            | January '04 |           | Febru     | ary '04      | Marc      | :h '04        | Apri           | il '04        | May             | y '04            | Jun       | e '04     |
| Monitoring Date               | Daily    |       | 12/31/2003 | 1/13/2004   | 1/30/2004 | 2/12/2004 | 2/27/2004    | 3/10/2004 | 3/24/2004     | 4/7/2004       | 4/22/2004     | 5/6/2004        | 5/18/2004        | 6/1/2004  | 6/18/2004 |
| Sampler ID                    | Max      | Units | sjm        | sjm         | rsn       | sjm       | bhm          | rsn       | sjm           | rsn            | rsn           | rsn             | rsn              | rsn       | rsn       |
| SPDES Outfall 001             |          |       |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Flow Rate                     | Monitor  | gpd   | 3600 E     | 5760        | 4114      | 770 E     | 626          | 1775 E    | 2880E         | 2880E          | 5722E         | 3497E           | 1377E            | 3292E     | 4770E     |
| Temperature                   | 90       | °F    | 46         | 46          | 42        | 44        | 40           | 44        | 46            | 44             | 58            | 53              | 66               | 64        | 66        |
| pH                            | 6.0-9.0  | SU    | 6.3        | 6.8         | 6.6       | 7.4       | 6.6          | 6.8       | 6.6           | 6.8            | 6.3           | 6.4             | 6.8              | 6.8       | 6.6       |
|                               | 10 (dry) |       |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Solids, Total Suspended       | 50 (wet) | mg/l  | 5          | 5           | <4        | <4        | 9            | 7         | 6             | 9              | <4            | <4              | 7                | <4        | <4        |
| cis-1,2-Dichloroethylene      | 10       | ug/l  | 1          | <1          | <1        | <1        | 2            | 2         | 4             | 1              | <1            | <1              | <1               | 1         | 1         |
| trans-1,2-Dichloroethylene    | 10       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Trichloroethylene             | 10       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | 1             | <1             | <1            | <1              | 1                | <1        | <1        |
| Chloroform                    | 46       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Copper, Total                 | 100      | ug/l  | 18         | 33          | 20        | 25        | 17           | 25        | 32            | 28             | 35            | 32              | 25               | 29        | 30        |
| Oil & Grease                  | 15       | mg/l  | <5         |             |           |           | <5           | <5        |               | <5             |               |                 | <5               |           | <5        |
| Phenolics, Total              | 28       | ug/l  | <20        |             |           |           | <20          | <20       |               | <20            |               |                 | <20              |           | <20       |
| Antimony, Total               | 300      | ug/l  |            |             |           |           |              | <10       |               |                |               |                 |                  |           |           |
| Chromium, Total               | 51       | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Fluoride, Total               | 2500     | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Lead, Total                   | 13       | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Zinc, Total                   | 210      | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
|                               |          |       | -          |             |           | •         |              |           |               | •              |               | •               |                  |           |           |
| SPDES Outfall 002             |          |       | I .        |             |           | ,         |              |           |               | ,              |               |                 |                  |           |           |
| Flow Rate                     | Monitor  | gpd   | 28800 E    | 43871       | 32084     | 5672      | 1178         | 3247      | 8947          | 8947           | 3966          | 2058            | 208              | 2058      | 3966E     |
| Temperature                   | 90       | ۰F    | 49         | 41          | 36        | 46        | 43           | 50        | 49            | 51             | 57            | 54              | 68               | 66        | 69        |
| pН                            | 6.0-9.0  | SU    | 6.3        | 7.5         | 7.6       | 6.9       | 7.3          | 6.9       | 6.8           | 7.4            | 6.5           | 6.5             | 7.2              | 6.9       | 6.2       |
| Solids, Total Suspended       | 10 (dry) | mg/l  | <4         | <4          | <4        | <4        | <4           | 6         | <4            | 8              | <4            | <4              | <4               | <4        | <4        |
|                               | 50 (wet) |       |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Oil & Grease                  | 15       | mg/l  | <5         |             |           |           | <5           | <5        |               | <5             |               |                 | <5               |           | 6         |
| Phenolics, Total              | 24       | ug/l  | <20        |             |           |           | <20          | <20       |               | <20            |               |                 | <20              |           | <20       |
| Fluoride, Total               | 1500     | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| SPDES Outfall 003             |          |       |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Flow Rate                     | Monitor  | gpd   | 32400      | 47127       | 21600     | 8361      | 5400         | 51840     | 32400         | 25920          | 51840         | 39273           | 10327            | 33188     | 33010E    |
| Temperature                   | 90       | ۰F    | 43         | 34          | 33        | 37        | 36           | 48        | 51            | 45             | 60            | 56              | 75               | 71        | 73        |
| рН                            | 6.0-9.0  | SU    | 6.1        | 6.9         | 7.1       | 7.1       | 7.0          | 6.8       | 7.4           | 7.1            | 7.0           | 6.9             | 7.0              | 7.3       | 7.1       |
| •                             | 10 (dry) |       |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Solids, Total Suspended       | 50 (wet) | mg/l  | <4         | <4          | <4        | 4         | 17           | 5         | <4            | <4             | <4            | <4              | <4               | <4        | <4        |
| Chlorine, Total Residual      | 100      | ug/l  | 50         | 30          | 20        | 30        | 40           | 50        | 50            | 30             | 60            | 30              | 10               | 30        | 20        |
| cis-1,2-Dichloroethylene      | 10       | ug/l  | 4          | 11          | 2         | 5         | 2            | 3         | 3             | 2              | 1             | <1              | <1               | <1        | <1        |
| trans-1,2-Dichloroethylene    | 10       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Trichloroethylene             | 10       | ug/l  | 3          | 3           | 1         | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Vinyl Chloride                | 10       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Chloroform                    | 46       | ug/l  | <1         | <1          | <1        | <1        | <1           | <1        | <1            | <1             | <1            | <1              | <1               | <1        | <1        |
| Oil & Grease                  | 15       | mg/l  | <5         |             |           |           | <5           | <5        |               | <5             |               |                 | <5               |           | <5        |
| Phenolics, Total              | 44       | ug/l  | <20        |             |           |           | <20          | <20       |               | <20            |               |                 | <20              |           | <20       |
| PCBs, Aroclors (Compliance)   | 300      | ng/l  |            |             |           |           |              | <50       |               |                |               |                 |                  |           |           |
| PCBs, Congeners (1668A Study) | NA       | pg/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Lead, Total                   | 10       | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
| Zinc, Total                   | 120      | ug/l  |            |             |           |           |              |           |               |                |               |                 |                  |           |           |
|                               |          |       | Notes:     |             |           |           |              |           | 7 ng/l = nanc | grams per lite | r approximate | ly equivalent t | n narts ner tril | ion (nnt) |           |

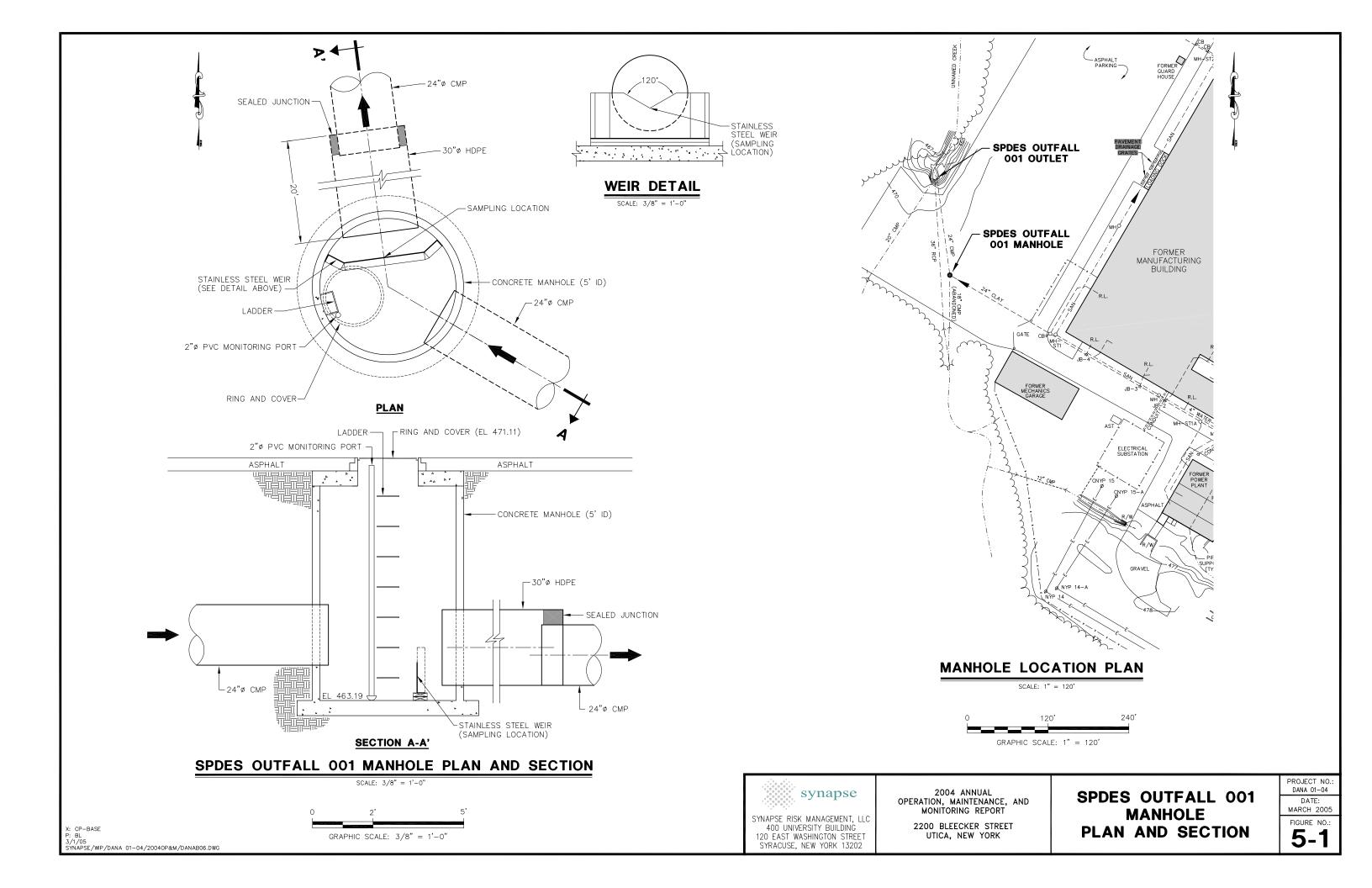
4 of 5

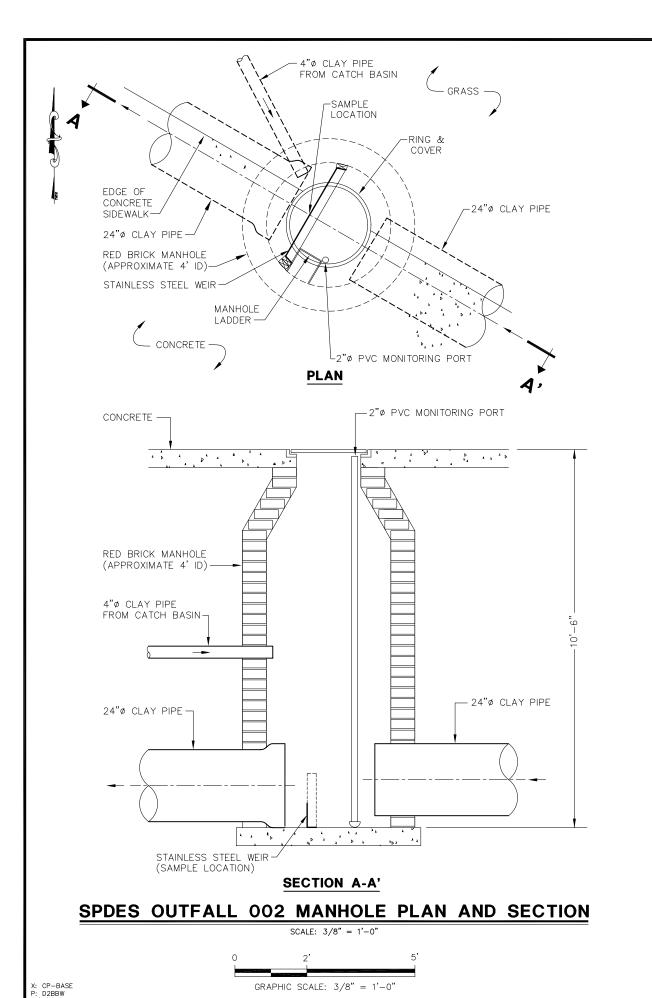
- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.
- 3.  ${}^{\circ}F$  = Degrees Farenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

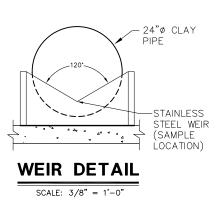
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK **SPDES NO. NY-0257087**

| Monitoring Period             | EC         | L            |           | July '04  |           | Aug       | ט' (1     |           | Sept '04  |               | Oct             | ' 04          | Nov             | ' ' 04           | Decemb     | er 2004    |
|-------------------------------|------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------------|---------------|-----------------|------------------|------------|------------|
| Monitoring Date               | Daily      |              | 6/30/2004 | 7/15/2004 | 7/29/2004 | 8/13/2004 | 8/26/2004 | 9/10/2004 | 9/22/2004 | 9/23/2004     | 10/6/2004       | 10/20/2004    | 11/3/2004       | 11/15/2004       | 11/30/2004 | 12/17/2004 |
| Sampler ID                    | Max        | Units        | rrc       | rrc       | rrc       | sjm       | rrc       | sjm       | sjm       | sjm           | sjm             | sjm           | sjm             | sjm              | sjm        | sjm        |
|                               |            |              |           |           |           | -,        |           | 2,        | 2,        | -,            | 5,              | -,            | -,              | -,               | -,         | 2,         |
| SPDES Outfall 001             |            |              |           |           |           |           |           |           |           |               |                 |               |                 |                  |            |            |
| Flow Rate                     | Monitor    | gpd          | 4770E     | 2314E     | 1196E     | 26111     | 3505      | 2314      | 1196      |               | 0               | 1196          | 5200            | 1140             | HTW        | 2880       |
| Temperature                   | 90         | ٥F           | 19        | 67        | 71        | 70        | 64        | 68        | 68        |               | 62              | 56            | 55              | 49               | 51         | 48         |
| pН                            | 6.0-9.0    | SU           | 6.8       | 6.8       | 6.8       | 6.6       | 6.9       | 6.5       | 6.3       |               | 6.2             | 7.4           | 6.5             | 7.0              | 7.2        | 7.1        |
| Solids, Total Suspended       | 10 (dry)   | mg/l         | 10        | <4        | 6         | <4        | 5         | <4        | <4        |               | <4              | <4            | 6               | <4               | <4         | 14         |
| Collady, Total Gasperlada     | 50 (wet)   | mg/i         | 10        |           | o o       |           |           |           |           |               |                 |               |                 |                  |            | 1.4        |
| cis-1,2-Dichloroethylene      | 10         | ug/l         | <1        | 1         | 4         | <1        | <1        | 2         | <1        |               | <1              | <1            | <1              | 1                | 2.2        | 1.4        |
| trans-1,2-Dichloroethylene    | 10         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        | <1        |               | <1              | <1            | <1              | <1               | <1         | <1         |
| Trichloroethylene             | 10         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        | <1        |               | <1              | <1            | <1              | <1               | <1         | <1         |
| Chloroform                    | 46         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        | <1        |               | <1              | <1            | <1              | <1               | <1         | <1         |
| Copper, Total                 | 100        | ug/l         | 50        | 34        | 43        | 29        | 17        | 41        | 38        |               | <10             | 20            | 62              | 420              | <10        | <10        |
| Oil & Grease                  | 15         | mg/l         | <5        |           |           | <5        | 9         | <5        |           |               | <5              | 26            | <5              | <5               |            | <5         |
| Phenolics, Total              | 28         | ug/l         | <20       |           |           | <20       | <20       | <20       |           |               | <20             | <20           | <20             | <20              |            | <20        |
| Antimony, Total               | 300        | ug/l         |           | <10       |           |           | <10       | 13        |           |               |                 | <10           |                 | <10              |            |            |
| Chromium, Total               | 51<br>2500 | ug/l         |           |           |           |           | 42        |           |           |               |                 |               |                 | <10              |            |            |
| Fluoride, Total               | 13         | ug/l         |           |           |           |           | 410       |           |           |               |                 |               |                 | 930              |            |            |
| Lead, Total Zinc, Total       | 210        | ug/l<br>ug/l |           |           |           |           | <10<br>58 |           |           |               |                 |               |                 | <10<br><10       |            |            |
| Ziiic, Totai                  | 210        | ug/i         |           |           |           |           | 36        |           |           |               |                 |               |                 | <10              |            |            |
| SPDES Outfall 002             |            |              |           |           |           |           |           |           |           |               |                 |               |                 |                  |            |            |
| Flow Rate                     | Monitor    | gpd          | 1178E     | 3247E     | 3966E     | 50610     | 1178      | 3247      | 37        |               | 208             | 2612          | 2058            | 208              | HTW        | 2058       |
| Temperature                   | 90         | °F           | 19        | 68        | 69        | 72        | 64        | 67        | 71        |               | 66              | 57            | 57              | 55               | 54         | 49         |
| pH                            | 6.0-9.0    | SU           | 7.2       | 7.1       | 6.8       | 6.6       | 7.3       | 6.9       | 6.9       |               | 6.9             | 7.9           | 5.8             | 7.3              | 7.8        | 7.0        |
|                               | 10 (dry)   |              |           |           |           |           |           |           |           |               |                 |               |                 |                  |            |            |
| Solids, Total Suspended       | 50 (wet)   | mg/l         | <4        | <4        | <4        | <4        | <4        | <4        | 9.0       |               | 4.0             | <4            | <4              | <4               | <4         | <4         |
| Oil & Grease                  | 15         | mg/l         | <5        |           |           | <5        | 10        | <5        |           |               | <5              | 45            | 6               | <5               |            | <5         |
| Phenolics, Total              | 24         | ug/l         | <20       |           |           | <20       | <20       | <20       |           |               | <20             | <20           | <20             | <20              |            | <20        |
| Fluoride, Total               | 1500       | ug/l         |           |           |           |           | 380       |           |           |               |                 |               |                 | 490              |            |            |
|                               |            |              |           |           |           |           |           |           |           |               |                 |               |                 |                  |            |            |
| SPDES Outfall 003             | 1          |              | ı-        | •         | 7         | Tr-       | •         | ı         | i         | i e           | 16              | 1             | i <del>-</del>  | •                | 1          |            |
| Flow Rate                     | Monitor    | gpd          | 20000E    | 21000     | 33200E    | 75000     | 25000     | 15549     |           | 10540         | 8934            | 8640          | 23542           | 10800            | 37008      | 21600      |
| Temperature                   | 90         | °F           | 25        | 75        | 71        | 70        | 70        | 66        |           | 69            | 61              | 50            | 51              | 42               | 48         | 37         |
| pH                            | 6.0-9.0    | SU           | 7.6       | 7.5       | 7.8       | 7.1       | 7.7       | 6.6       |           | 6.4           | 6.7             | 7.5           | 6.4             | 7.6              | 7.7        | 7.1        |
| Solids, Total Suspended       | 10 (dry)   | mg/l         | <4        | <4        | <4        | <4        | <4        | <4        |           | <4            | <4              | <4            | 12              | 8                | <4         | <4         |
| Chlorine, Total Residual      | 50 (wet)   | ug/l         | 30        | 40        | 30        | 60        | 65        | 30        |           | 40            | 60              | 50            | 20              | 70               | 50         | 40         |
| cis-1,2-Dichloroethylene      | 100        | ug/l         | <1        | <1        | <1        | 1         | <1        | <1        |           | <1            | <1              | <1            | <1              | 70<br><1         | 2.1        | 3.8        |
| trans-1,2-Dichloroethylene    | 10         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        |           | <1            | <1              | <1            | <1              | <1               | <1         | <1         |
| Trichloroethylene             | 10         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        |           | <1            | <1              | <1            | <1              | <1               | <1         | <1         |
| Vinyl Chloride                | 10         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        |           | <1            | <1              | <1            | <1              | <1               | <1         | <1         |
| Chloroform                    | 46         | ug/l         | <1        | <1        | <1        | <1        | <1        | <1        |           | <1            | <1              | <1            | <1              | <1               | <1         | <1         |
| Oil & Grease                  | 15         | mg/l         | <5        |           |           | <5        | <5        | <5        |           |               | <5              | <5            | 5               | <5               |            | <5         |
| Phenolics, Total              | 44         | ug/l         | <20       |           |           | <20       | 79        | <20       |           |               | <20             | <20           | <20             | <20              |            | <20        |
| PCBs, Aroclors (Compliance)   | 300        | ng/l         |           | <50       |           |           | <50       |           |           |               |                 | <50           |                 | <50              |            | <50        |
| PCBs, Congeners (1668A Study) | NA         | pg/l         |           | 4134      |           |           |           |           |           |               |                 | 2137          |                 |                  |            | 2761       |
| Lead, Total                   | 10         | ug/l         |           |           |           |           | <10       |           |           |               |                 |               |                 | <10              |            |            |
| Zinc, Total                   | 120        | ug/l         |           |           |           |           | <10       |           |           |               |                 |               |                 | <10              |            |            |
|                               |            |              | Notes:    |           |           |           |           |           |           | 7 ng/l – nang | narams ner lite | r annrovimate | ly equivalent t | n narts ner tril | lion (nnt) |            |


5 of 5


- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.
- 3. °F = Degrees Farenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.


# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

# 5.6 Figures

- 5-1 SPDES Outfall 001 Manhole Plan and Selection
- 5-2 SPDES Outfall 002 Manhole Plan and Selection
- 5-3 SPDES Outfall 003 Plan and Selection
- 5-4 Stormwater System Partial Plan







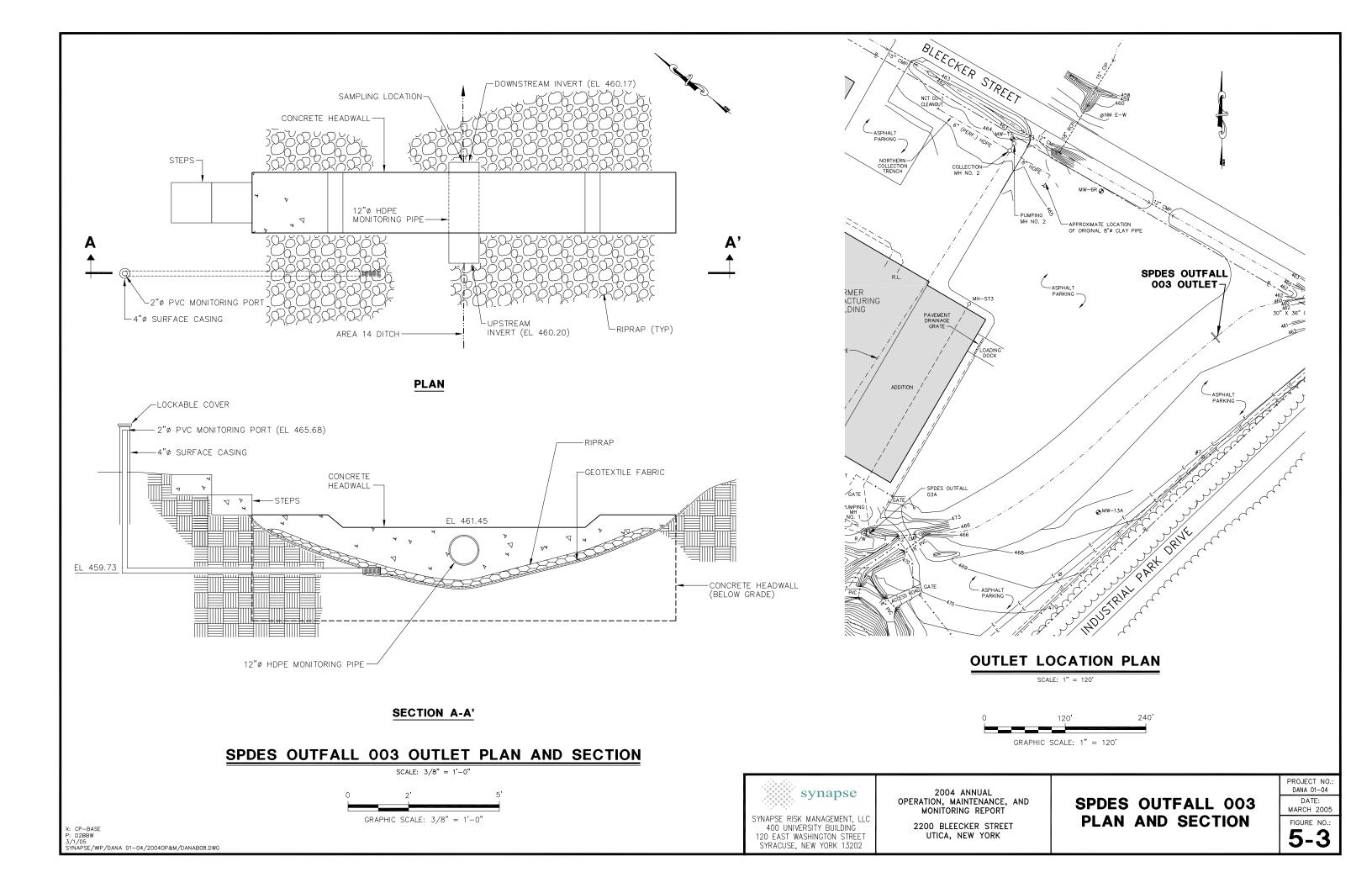


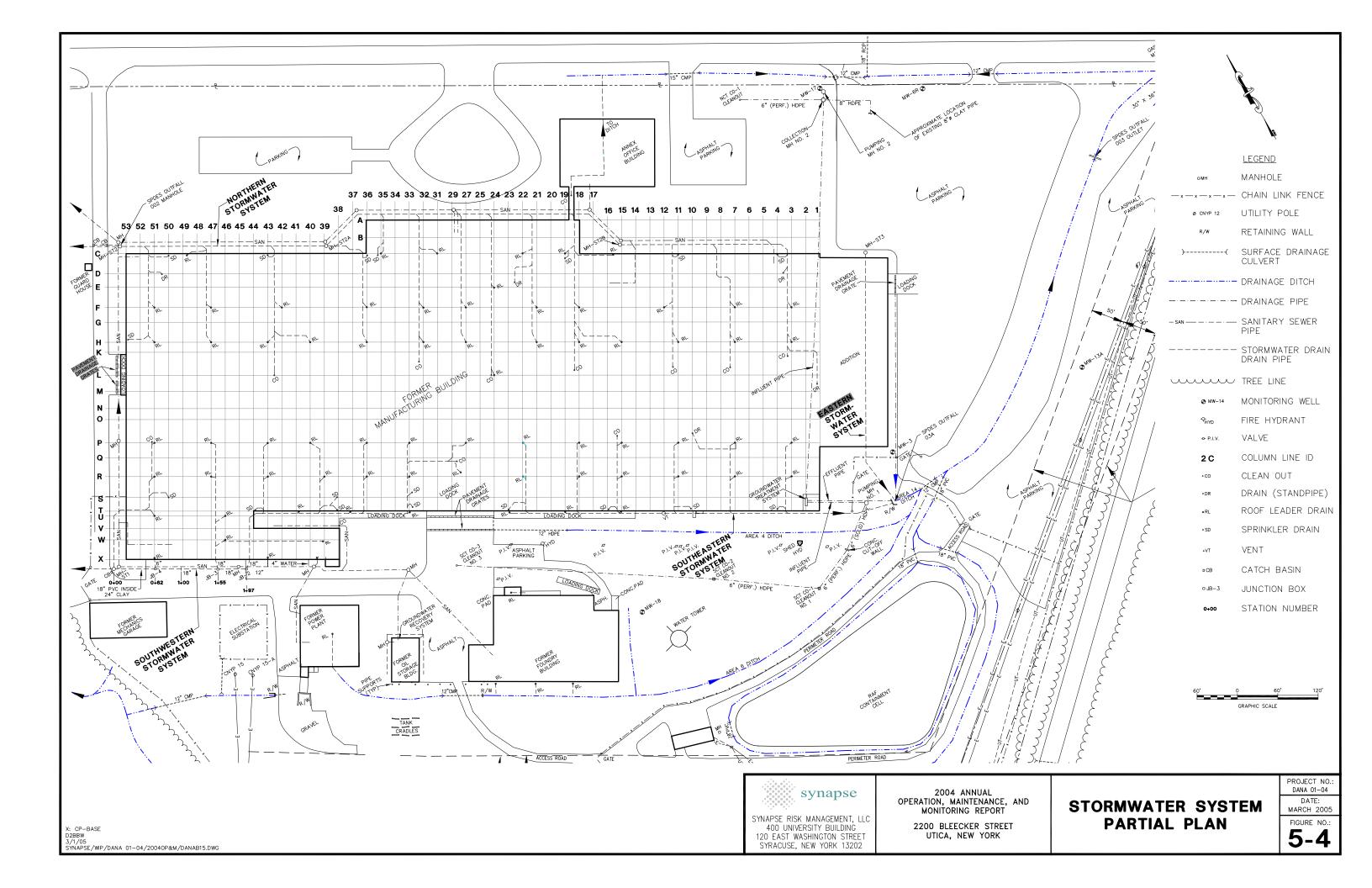
# MANHOLE LOCATION PLAN | SCALE: 1" = 120'

0 120' 240'

GRAPHIC SCALE: 1" = 120'




SYNAPSE RISK MANAGEMENT, LLC 400 UNIVERSITY BUILDING 120 EAST WASHINGTON STREET SYRACUSE, NEW YORK 13202 2004 ANNUAL
OPERATION, MAINTENANCE, AND
MONITORING REPORT


2200 BLEECKER STREET UTICA, NEW YORK SPDES OUTFALL 002
MANHOLE
PLAN AND SECTION

PROJECT NO.: DANA 01-04 DATE:

MARCH 2005
FIGURE NO.:
5-2

3/1/05 SYNAPSE/WIP/DANA 01-04/20040P&M/DANAB07.DWG





#### 6.0 GROUNDWATER TREATMENT SYSTEM

This section documents the OM&M of the GTS, originally constructed as an IRM to address VOCs present in surface water and groundwater. The system became fully operational in March 1995 and is still in operation. As part of the selected RA, the system was modified to only collect and treat groundwater in 1999. Presently, the GTS consists of an air stripper unit, located in the southeast corner of the Main Building, the NCT, the SCT, and two pumping manholes designated Pumping Manhole No. 1 (MH-1) and Pumping Manhole No. 2 (MH-2). Figure 6-1 – Groundwater Treatment System Plan provides the location of these components. OBG, on behalf of CPTC, conducts the OM&M of the GTS.

#### 6.1 System Construction

The treatment process involves removal of VOCs from influent water using a low-profile air stripper shown in Figure 6-2 - Air Stripper Plan. The low-profile air stripper treats influent groundwater pumped from MH-1 and MH-2 detailed on Figure 6-3 - Pumping Manhole Plans and Sections. MH-1 currently receives groundwater from the SCT. MH-2 was constructed at the northern (downgradient) extent of the Property to collect effluent water from an existing clay pipe and groundwater from the NCT. Groundwater is directed, via gravity feed, to the manholes where it is then pumped to the air stripper. The collection trenches were constructed as part of the RA at prescribed locations on the Property to collect groundwater.

Each pumping manhole contains two submersible pumps, arranged in lead/lag mode, and five bulb type control switches. MH-1 is equipped with two 3/4 horsepower (hp), 65 gallons per minute (gpm) pumps and MH-2 has two 1/2 hp, 10 gpm pumps. The pump controls are set, top to bottom, as follows:

- High level alarm;
- Lag pump start;
- Lead pump start;
- Both pumps stop; and
- Low level alarm, second off.

The main control panel for each pump is located in the Main Building, adjacent to the air stripper. Pumped water is conveyed to the air stripper via a double containment system. The low-profile air stripper is a four tray ShallowTray® 31200 Series model, equipped with a 3 phase, 20 hp, 1,800 cubic feet per minute (CFM) blower and is reportedly capable of processing 6 to 425 gpm. Certain aspects of the GTS are continuously monitored by an auto dialer system, a Sensaphone Model 4100, which includes a battery backup. The autodialer is programmed to monitor the following conditions:

- MH-1 High/low water level;
- MH-2 High/low water level; and
- Air stripper high water level/low air pressure.

Should an alarm condition occur, the auto dialer places a call to OBG. This initiates review and maintenance of the GTS.

The treated water from the low-profile air stripper discharges by gravity through an effluent pipe to SPDES Outfall 03A located at the upstream end of the eastern drainage ditch, formerly Area 14. The eastern drainage ditch is ultimately monitored as SPDES Outfall 003, prior to discharging off-site at the northern Property boundary, as shown on Figure 6-1.

The operation and maintenance for the IRM GTS is provided in a separate O&M Manual, dated April 1995, prepared by BBL to address the GTS components. The RA OM&M Manual reviews the IRM GTS in general and provides specific information for inspection and cleanout procedures for the NCT and SCT.

# 6.2 Operation

The GTS is designed to operate continuously. The manhole lead and lag pumps operate, as needed, controlling the level of water. Control bulbs normally activate the lead pump. Should the lead pump fail to control the water level in the manhole, the lag pump is set to be automatically activated. If the lead and lag pump system fail to control the water level, an alarm is triggered and the auto dialer is activated, notifying OBG. The inspection logs, included in Appendix G - Groundwater Treatment System Inspection Logs, provide documentation of recorded alarm conditions and maintenance during 2004. A summary of alarm conditions and maintenance for 2004 is presented in the following table:

| DATE     | INCIDENT/RESOLUTION                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/1/04   | MH-2 in high alarm. The flow meter paddle wheel was cleaned and replaced. This did not stop alarm. The alarm remained on until the blockage in MH-2 piping was vacuumed out on 3/31/04. Once the water level lowered and the alarm was reset. |
| 2/9/04   | Air stripper shut down for cleaning. Restarted system on 2/12/04. MH-2 was still in high alarm.                                                                                                                                               |
| 3/31/04  | Manholes and piping were cleaned of sediment. MH-2 alarm was reset on 4/1/04                                                                                                                                                                  |
| 4/8/04   | Air stripper alarm sounded. Everything appeared to be operating properly, but no influent flow at time of visit. Reset alarms and restarted air stripper.                                                                                     |
| 5/8/04   | Reset tripped control for pumps in MH-2. No apparent cause for alarm.                                                                                                                                                                         |
| 5/13/04  | MH-1 in alarm. Reset alarm. No apparent cause for alarm.                                                                                                                                                                                      |
| 5/18/04  | Air stripper alarm sounded and system shut down due to power outage. Reset alarms and restarted air stripper.                                                                                                                                 |
| 5/25/04  | Air stripper alarm sounded and system shut down due to power outage. Manholes in high alarm due to high water levels. Possibly caused by heavy rains. Reset alarms and restarted air stripper.                                                |
| 6/1/04   | MH-2 in high alarm. Reset alarm. No apparent cause for alarms.                                                                                                                                                                                |
| 6/10/04  | Air stripper shut down apparently due to heavy rains and power outage. Reset alarms and restarted air stripper.                                                                                                                               |
| 6/23/04  | Air stripper shut down for cleaning. Restarted system on 6/25/04. Manhole alarms reset on 6/25/04.                                                                                                                                            |
| 6/30/04  | MH-2 in high alarm. Reset alarm. No apparent cause for alarm.                                                                                                                                                                                 |
| 9/15/04  | Air stripper alarm sounded and system shut down due to power outages. Reset alarms and restarted air stripper.                                                                                                                                |
| 10/19/04 | Air stripper shut down for cleaning. Restarted system on 10/22/04.                                                                                                                                                                            |
| 10/25/04 | Air stripper in low alarm. Replaced broken tubing on a sensor. Reset alarms and restarted air stripper.                                                                                                                                       |
| 12/22/04 | Air stripper shut down to inspect trays. Restarted stripper and pumps. Cleaning will be required in the near future.                                                                                                                          |

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and totalizing flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump. During 2004, a total of approximately 3,685,090 gallons of water was pumped, treated, and released to Outfall 03A. Table 6-1 – 2004 Manhole Flow Summary, indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for 2004. For MH-1, the weekly recorded low, average, and high flow rates are 487, 3,937 and 15,445 gallons per day

(gpd), respectively. For MH-2, the weekly recorded low, average and high flow rates are 0, 6,215, and 11,639 gpd per monitoring period, respectively. The GTS pumped an average of 10,152 gpd during 2004.

Air stripper influent and effluent samples are collected and analyzed for required VOCs. Effluent analytical data is collected to satisfy required conditions of CPTC's SPDES Permit (No. NY-0108537), discussed in Section 6.4. Table 6-2-2004 Influent and Effluent Analytical Summary provides the analytical data for MH-1 and MH-2 influent generally on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3-2004 Air Stripper Flow Summary provides weekly and average monthly flows measured during sampling events.

Information presented in Tables 6-2 and 6-3 were used to evaluate mass removal. Table 6-4 – 2004 Air Stripper Mass Removal Summary provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed during 2004. As shown, the total average annual removal efficiency was 99.9%, resulting in 11.7 pounds of VOCs removed in 2004. Due to a sediment buildup in the pipes and manhole at MH-2 flow data measurements were not accurate for the months of January, February, and March 2004. Therefore, the data for these months was not incorporated into the removal efficiency evaluation. As shown in Table 6-1, following the cleaning of the manhole and associated piping, the performance of MH-2 greatly increased.

#### 6.3 Maintenance

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS:

- MH-1 and MH-2 were pressure washed and sediment removed. Additionally, MH-1 influent piping was pressure washed and vacuumed to remove a blockage and restored to operation on 3/31/04;
- The GTS was shut down and the air stripper internally inspected and cleaned on February 9, June 23, and October 19, 2004;
- The GTS shut down due to apparent power outages on May 18, May 25, June 10, and September 15, 2004. The system alarms were reset and the air stripper restarted; and
- The GTS was shut down and the trays inspected on December 22, 2004. The system was restarted, but it was noted that a cleaning would be necessary sometime in the near future.

#### 6.4 SPDES Outfall 03A

The effluent from the air stripper, SPDES Outfall 03A, requires sampling, analytical analysis, and flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
  - trichloroethylene (TCE);
  - cis-1,2-dichloroethene (cis-1,2-DCE);
  - trans-1,2-dichloroethene (trans-1,2-DCE); and
  - vinyl chloride (VC).

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Samples are collected by Upstate Laboratories, Inc. (ULI) personnel and analyzed at ULI on behalf of CPTC. These samples are collected from the SPDES Outfall 03A sampling port located in the effluent pipe prior to discharge to the eastern drainage ditch. Results from weekly sampling from 2000 to 2004 are provided in Table 6-5, Cumulative Summary of SPDES Outfall 03A Analytical Results. The analytical results are submitted by OBG to the NYSDEC in the form of monthly DMRs. Excursions of SPDES Permit effluent limits were recognized in January 2004, as noted on the DMRs. However, with the cleaning and adjustments that were performed on the system throughout the year, no further excursions were recorded in 2004. Additionally, the aforementioned DMRs are not included in this report, per the request of the NYSDEC.

### 6.5 Summary

The GTS has been in operation for approximately 9 years. Operation of the air stripper, pumps, and appurtenances has been consistent and continuous with only a few exceptions. The GTS was shut down for short durations for maintenance, which included system checks and acid cleaning of the internal air stripper components. The treatment system flow totalizer, as recorded on inspection reports, indicates that approximately 3,685,090 gallons (10,152 gpd) of groundwater were processed during 2004, removing 11.7 pounds of VOCs. It should be noted that excursions reported in January 2004, ceased after an air stripper cleaning program. The reduced flow rates reported in January 2004 lead to an investigation and corrective action to remove a blockage in the influent pipe to MH-2 and cleaning of MH-1 and MH-2. As per the October 15, 2004 CPT letter submitted to NYSDEC, it is recommended that the GTS continue to operate and be maintained on a routine basis, including a scheduled cleaning program.

# 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

# 6.6 Tables

| 6-1 | 2004 Manhole Flow Summary                                  |
|-----|------------------------------------------------------------|
| 6-2 | 2004 Influent and Effluent Analytical Summary              |
| 6-3 | 2004 Air Stripper Flow Summary                             |
| 6-4 | 2004 Air Stripper Mass Removal Summary                     |
| 6-5 | Cumulative Summary of SPDES Outfall 03A Analytical Results |

# TABLE 6-1 2004 MANHOLE FLOW SUMMARY

| Monitoring | Flow Totalizer  | Reading (gal) | Flow per Monitoring Period (gpd) |       |       |  |  |  |  |
|------------|-----------------|---------------|----------------------------------|-------|-------|--|--|--|--|
| Date       | MH-1            | MH-2          | MH-1                             | MH-2  | Total |  |  |  |  |
| 1/1/2004   | 28438270        | 9162030       |                                  |       |       |  |  |  |  |
| 1/8/2004   | 28476830        | 9162050       | 5509                             | 3     | 5512  |  |  |  |  |
| 1/16/2004  | 28500520        | 9162080       | 2961                             | 4     | 2965  |  |  |  |  |
| 1/23/2004  | 28517730        | 9162090       | 2459                             | 1     | 2460  |  |  |  |  |
| 1/29/2004  | 28528580        | 9162100       | 1808                             | 2     | 1810  |  |  |  |  |
| A۱         | erage Monthly F | low           | 3225                             | 3     | 3228  |  |  |  |  |
| 2/5/2004   | 28540930        | 9162100       | 1764                             | 0     | 1764  |  |  |  |  |
| 2/12/2004  | 28550720        | 9162110       | 1399                             | 1     | 1400  |  |  |  |  |
| 2/20/2004  | 28574140        | 9162130       | 2928                             | 3     | 2931  |  |  |  |  |
| 2/27/2004  | 28589840        | 9162140       | 2243                             | 1     | 2244  |  |  |  |  |
| A۱         | erage Monthly F | low           | 2112                             | 1     | 2113  |  |  |  |  |
| 3/4/2004   | 28618730        | 9162160       | 4815                             | 3     | 4818  |  |  |  |  |
| 3/12/2004  | 28674520        | 9162190       | 6974                             | 4     | 6978  |  |  |  |  |
| 3/18/2004  | 28698870        | 9162200       | 4058                             | 2     | 4060  |  |  |  |  |
| 3/26/2004  | 28734150        | 9162220       | 4410                             | 3     | 4413  |  |  |  |  |
| A۱         | erage Monthly F | low           | 5154                             | 3     | 5157  |  |  |  |  |
| 4/1/2004   | 28776630        | 9180850       | 7080                             | 3105  | 10185 |  |  |  |  |
| 4/6/2004   | 28837990        | 9232910       | 12272                            | 10412 | 22684 |  |  |  |  |
| 4/8/2004   | 28868880        | 9255140       | 15445                            | 11115 | 26560 |  |  |  |  |
| 4/23/2004  | 29054720        | 9411280       | 12389                            | 10409 | 22798 |  |  |  |  |
| 4/30/2004  | 29095950        | 9492750       | 5890                             | 11639 | 17529 |  |  |  |  |
| A۱         | erage Monthly F | low           | 10337                            | 9444  | 19781 |  |  |  |  |
| 5/8/2004   | 29126970        | 9573510       | 3878                             | 10095 | 13973 |  |  |  |  |
| 5/13/2004  | 29150190        | 9624400       | 4644                             | 10178 | 14822 |  |  |  |  |
| 5/14/2004  | 29154440        | 9635130       | 4250                             | 10730 | 14980 |  |  |  |  |
| 5/18/2004  | 29165770        | 9663830       | 2833                             | 7175  | 10008 |  |  |  |  |
| 5/25/2004  | 29193180        | 9720080       | 3916                             | 8036  | 11952 |  |  |  |  |
| A۱         | erage Monthly F | low           | 3889                             | 9093  | 12982 |  |  |  |  |
| 6/1/2004   | 29199940        | 9799200       | 966                              | 11303 | 12269 |  |  |  |  |
| 6/8/2004   | 29203350        | 9856570       | 487                              | 8196  | 8683  |  |  |  |  |
| 6/10/2004  | 29207170        | 9865840       | 1910                             | 4635  | 6545  |  |  |  |  |
| 6/16/2004  | 29226010        | 9913440       | 3140                             | 7933  | 11073 |  |  |  |  |
| 6/25/2004  | 29244940        | 9962720       | 2103                             | 5476  | 7579  |  |  |  |  |
| 6/30/2004  | 29248250        | 10004280      | 662                              | 8312  | 8974  |  |  |  |  |
| A          | erage Monthly F | low           | 1530                             | 7894  | 9424  |  |  |  |  |
| 7/9/2004   | 29269090        | 10068000      | 2316                             | 7080  | 9396  |  |  |  |  |
| 7/16/2004  | 29288700        | 10125040      | 2801                             | 8149  | 10950 |  |  |  |  |
| 7/23/2004  | 29315890        | 10187810      | 3884                             | 8967  | 12851 |  |  |  |  |
| 7/30/2004  | 29349840        | 10254160      | 4850                             | 9479  | 14329 |  |  |  |  |
| A          | erage Monthly F | low           | 3386                             | 8329  | 11715 |  |  |  |  |

# TABLE 6-1 2004 MANHOLE FLOW SUMMARY

# 2004 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Monitoring | Flow Totalizer  | Reading (gal) | Flow per Monitoring Period (gpd) |       |       |  |  |  |  |
|------------|-----------------|---------------|----------------------------------|-------|-------|--|--|--|--|
| Date       | MH-1            | MH-2          | MH-1                             | MH-2  | Total |  |  |  |  |
| 8/13/2004  | 29398040        | 10366760      | 3443                             | 8043  | 11486 |  |  |  |  |
| 8/20/2004  | 29422090        | 10428470      | 3436                             | 8816  | 12252 |  |  |  |  |
| 8/23/2004  | 29438070        | 10460980      | 5327                             | 10837 | 16164 |  |  |  |  |
| 8/31/2004  | 29469960        | 10533440      | 3986                             | 9058  | 13044 |  |  |  |  |
| A۱         | erage Monthly F | low           | 3754                             | 8728  | 12482 |  |  |  |  |
| 9/10/2004  | 29501710        | 10608810      | 3175                             | 7537  | 10712 |  |  |  |  |
| 9/15/2004  | 29515790        | 10646070      | 2816                             | 7452  | 10268 |  |  |  |  |
| 9/21/2004  | 29533810        | 10691850      | 3003                             | 7630  | 10633 |  |  |  |  |
| 9/28/2004  | 29551470        | 10740500      | 2523                             | 6950  | 9473  |  |  |  |  |
| A۱         | erage Monthly F | low           | 2911                             | 7395  | 10306 |  |  |  |  |
| 10/8/2004  | 29572730        | 10803330      | 2126                             | 6283  | 8409  |  |  |  |  |
| 10/12/2004 | 29579830        | 10826210      | 1775                             | 5720  | 7495  |  |  |  |  |
| 10/19/2004 | 29592830        | 10867180      | 1857                             | 5853  | 7710  |  |  |  |  |
| 10/22/2004 | 29599230        | 10868310      | 2133                             | 377   | 2510  |  |  |  |  |
| 10/25/2004 | 29601530        | 10871740      | 767                              | 1143  | 1910  |  |  |  |  |
| A۱         | erage Monthly F | low           | 1854                             | 4861  | 6715  |  |  |  |  |
| 11/1/2004  | 29622740        | 10929040      | 3030                             | 8186  | 11216 |  |  |  |  |
| 11/5/2004  | 29633740        | 10958190      | 2750                             | 7288  | 10038 |  |  |  |  |
| 11/12/2004 | 29655570        | 11010900      | 3119                             | 7530  | 10649 |  |  |  |  |
| 11/19/2004 | 29661020        | 11063050      | 779                              | 7450  | 8229  |  |  |  |  |
| 11/23/2004 | 29681100        | 11079570      | 5020                             | 4130  | 9150  |  |  |  |  |
| A۱         | erage Monthly F | low           | 2744                             | 7167  | 9911  |  |  |  |  |
| 12/3/2004  | 29740370        | 11186750      | 5927                             | 10718 | 16645 |  |  |  |  |
| 12/10/2004 | 29777900        | 11257210      | 5361                             | 10066 | 15427 |  |  |  |  |
| 12/17/2004 | 29826590        | 11336420      | 6956                             | 11316 | 18272 |  |  |  |  |
| 12/22/2004 | 29843780        | 11371350      | 3438                             | 6986  | 10424 |  |  |  |  |
| 12/29/2004 | 29867240        | 11418150      | 3351                             | 6686  | 10037 |  |  |  |  |
| A۱         | erage Monthly F | low           | 5171                             | 9405  | 14576 |  |  |  |  |

| Total Flow | gal       | gpd   |
|------------|-----------|-------|
| MH-1       | 1,428,970 | 3937  |
| MH-2       | 2,256,120 | 6215  |
| Total      | 3,685,090 | 10152 |

- 1. All data based on flow meter readings taken during inspections.
- 2. gal = gallons
- 3. gpd = gallons per day

#### TABLE 6-2 2004 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

|              |                    |            |                    |                                              |      |                  | MILO I AL OLL ETT  |                            |        |       |                                               |       |                    |             |       |       |                     |
|--------------|--------------------|------------|--------------------|----------------------------------------------|------|------------------|--------------------|----------------------------|--------|-------|-----------------------------------------------|-------|--------------------|-------------|-------|-------|---------------------|
|              | Influent from MH-1 |            |                    |                                              |      |                  | Influent from MH-2 |                            |        |       | Air Stripper Effluent                         |       |                    |             |       |       |                     |
| Sample Date  |                    | Sir.       | 1.2.Dichloroethene | Tri                                          | Tot. | \$.50<br>1,60°,5 | A) Chloride        | 1,2Dichloroethene<br>trans | 7ricu. | Torse | \$.50<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Sk. 1 | T.2.Dichloroethene | Trichloroeu | Glari | Woo   | Milly Average VOC's |
| Permit Limit | //                 | <i>,</i> 8 | / ~ <del>*</del>   | ;/ <u>~</u>                                  | ^    |                  | / 0                | , ÷                        |        |       | 10                                            | 10    | / &/<br>10         | 10          |       | 4     | 7                   |
| 1/9/2004     |                    |            |                    |                                              |      |                  |                    |                            |        |       | <5                                            | 56    |                    | 89          | 145   |       | i                   |
| 1/16/2004    |                    | 4          | <2                 | 17                                           | 21   | <200             | 1700               | <200                       | 4600   | 6300  | <5                                            | 84    | <5                 | 120         | 204   |       | i                   |
| 1/23/2004    |                    |            | \2                 | 1,                                           |      | 7200             | 1700               | \200                       | 4000   | 0000  | <del>&lt;</del> 5                             | 39    |                    | 66          | 105   |       |                     |
| 1/30/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | 14    |                    | 19          | 33    | 121.8 |                     |
| 2/6/2004     |                    | 330        | <50                | 1000                                         | 1330 | <100             | 330                | <100                       | 1100   | 1430  | <1                                            | 9     | <1                 | 17          | 26    | 12110 |                     |
| 2/13/2004    |                    | 000        | 100                | 1000                                         | 1000 | 1100             | 000                | 1100                       | 1100   | 1 100 | <1                                            | <1    | <1                 | 1           | 1     |       |                     |
| 2/20/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | 1           | 1     |       |                     |
| 2/27/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 7.0   |                     |
| 3/5/2004     | 2                  | <2         | <2                 | . <2                                         | 2    | <100             | 610                | <100                       | 2500   | 3110  | <1                                            | <1    | <1                 | 2           | 2     |       |                     |
| 3/12/2004    |                    | ,_         | 1-                 | <u>'                                    </u> | _    | 1.00             | 0.0                | 1100                       | 2000   | 0.10  | <1                                            | <1    | <1                 | 1           | 1     |       |                     |
| 3/19/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 3/26/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | 1           | 1     | 1.0   |                     |
| 4/2/2004     | <20                | 200        | <20                | 440                                          | 640  | <10              | 110                | <10                        | 170    | 280   | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 4/8/2004     |                    |            |                    |                                              |      |                  |                    | <20                        |        | 440   |                                               | <1    | <1                 | 1           | 1     |       |                     |
| 4/16/2004    |                    | 150        | <20                | 280                                          | 430  | <20              | 130                | <20                        | 250    | 380   | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 4/23/2004    |                    | 1.3        |                    |                                              |      |                  | 2.9                | <1                         | 5.8    |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 4/30/2004    |                    | 1.1        |                    |                                              |      | <50              | 360                | <50                        | 980    |       |                                               | <1    | <1                 | <1          | 0     | 0.2   |                     |
| 5/7/2004     | 2.3                | 12         |                    |                                              |      | <50              | 130                | <50                        | 340    |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 5/14/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 5/21/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 5/28/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 0.0   |                     |
| 6/4/2004     |                    | 23         | <5                 | 73                                           | 96   | <50              | 150                | <50                        | 410    | 560   | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 6/11/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 6/18/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 6/25/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 0.0   |                     |
| 7/2/2004     | <10                | 35         | <10                | 150                                          | 185  | <50              | 160                | <50                        | 690    | 850   | <1                                            | 2.2   | <1                 | 7.2         | 9.4   |       |                     |
| 7/9/2004     |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 7/16/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | J                   |
| 7/23/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 7/30/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 1.9   |                     |
| 8/6/2004     | 3.3                | 13         | <2                 | 34                                           | 50.3 | <50              | 110                | <50                        | 470    | 580   | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 8/13/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 8/20/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       |                     |
| 8/27/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 0.0   |                     |
| 9/3/2004     | 9.1                | 2.4        | <1                 | 7.5                                          | 19   | <50              | 240                | <50                        | 910    | 1150  | <1                                            | <1    | <1                 | <1          | 0     |       | J                   |
| 9/10/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | j                   |
| 9/17/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | J                   |
| 9/24/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     | 0.0   | j                   |
| 10/1/2004    |                    | <1         | <1                 | <1                                           | 7.4  | <5               | 36                 | <5                         | 73     | 109   |                                               | <1    | <1                 | <1          | 0     |       | j                   |
| 10/8/2004    |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | j                   |
| 10/15/2004   |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | J                   |
| 10/22/2004   |                    |            |                    |                                              |      |                  |                    |                            |        |       | <1                                            | <1    | <1                 | <1          | 0     |       | j                   |

#### TABLE 6-2 2004 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

|                |       | Influ               | ent from              | MH-1                   |       |          |               | Influe             | ent from | MH-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Air Str              | ipper E                | ffluent      |     |                 |
|----------------|-------|---------------------|-----------------------|------------------------|-------|----------|---------------|--------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|------------------------|--------------|-----|-----------------|
| Sample Date // | Vind. | S. School of Street | 25-1,2-Dichloroethene | Pans-12-Dichloroethene | Torri | <u> </u> | IIIV Chloride | 1.2-Dichloroethene | Tr.:     | remonder of the second of the | ) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2 | S. Horige | 75-1-2-Dichlorethene | Pars-12-Dichloroethene | Tohlorethene |     | My Alerge 10C's |
| 10/29/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   |                        | _            |     |                 |
| 11/5/2004      | 10    | <1                  | <                     | 1 <1                   | 10    | <5       | 83            | <50                | 140      | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1        | <1                   | <1                     | C            | )   |                 |
| 11/12/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | 1.2                    | 1.2          | 2   |                 |
| 11/19/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | <1                     | C            | )   |                 |
| 11/24/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | 1.4                    | 1.4          | 0.7 | 7               |
| 12/3/2004      | 7.5   | <1                  | <                     | 1 <1                   | 7.5   | <50      | 350           | <50                | 470      | 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1        | <1                   | 2.2                    | 2.2          | 2   |                 |
| 12/10/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | 1.8                    | 1.8          | 3   |                 |
| 12/17/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | 1                      | 1            |     |                 |
| 12/23/2004     |       |                     |                       |                        |       |          |               |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1        | <1                   | 3.9                    | 3.9          | 2.2 | 2∥              |

- Notes:

  1. All concentrations reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).
- 2. VOCs = Volatile Organic Compounds.
- 3. Bolded numbers exceed consitituent's TOGS 1.1.1 guidance values.

#### TABLE 6-3 2004 AIR STRIPPER FLOW SUMMARY

| Sample Date | Average Flow During Monitoring Period (gpd) |       |
|-------------|---------------------------------------------|-------|
| 1/9/2004    | 4012                                        |       |
| 1/16/2004   | 2930                                        |       |
| 1/23/2004   | 2460                                        |       |
| 1/30/2004   | 1773                                        |       |
|             | Average Monthly Flow (gpd):                 | 2794  |
| 2/6/2004    | 1761                                        |       |
| 2/13/2004   | 2514                                        |       |
| 2/20/2004   | 2038                                        |       |
| 2/27/2004   | 2244                                        |       |
|             | Average Monthly Flow (gpd):                 | 2139  |
| 3/5/2004    | 5382                                        |       |
| 3/12/2004   | 6797                                        |       |
| 3/19/2004   | 3859                                        |       |
| 3/26/2004   | 33050                                       |       |
|             | Average Monthly Flow (gpd):                 | 12272 |
| 4/2/2004    | 12260                                       |       |
| 4/8/2004    | 5450                                        |       |
| 4/16/2004   | 28328                                       |       |
| 4/23/2004   | 19227                                       |       |
| 4/30/2004   | 3166                                        |       |
|             | Average Monthly Flow (gpd):                 | 13686 |
| 5/7/2004    | 13920                                       |       |
| 5/14/2004   | 1502                                        |       |
| 5/21/2004   | 11334                                       |       |
| 5/28/2004   | 19895                                       |       |
|             | Average Monthly Flow (gpd):                 | 11663 |
| 6/4/2004    | 8957                                        |       |
| 6/11/2004   | 7831                                        |       |
| 6/18/2004   | 11211                                       |       |
| 6/25/2004   | 7803                                        |       |
|             | Average Monthly Flow (gpd):                 | 8951  |

#### TABLE 6-3 2004 AIR STRIPPER FLOW SUMMARY

#### 2004 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

| Sample Date | Average Flow During Monitoring Period (gpd) |       |
|-------------|---------------------------------------------|-------|
| 7/2/2004    | 5830                                        |       |
| 7/9/2004    | 29578                                       |       |
| 7/16/2004   | 12695                                       |       |
| 7/23/2004   | 12877                                       |       |
| 7/30/2004   | 13050                                       |       |
|             | Average Monthly Flow (gpd):                 | 14806 |
| 8/6/2004    | 12664                                       |       |
| 8/13/2004   | 10340                                       |       |
| 8/20/2004   | 12288                                       |       |
| 8/27/2004   | 14011                                       |       |
|             | Average Monthly Flow (gpd):                 | 12326 |
| 9/3/2004    | 12702                                       |       |
| 9/10/2004   | 10428                                       |       |
| 9/17/2004   | 9747                                        |       |
| 9/24/2004   | 10880                                       |       |
|             | Average Monthly Flow (gpd):                 | 10939 |
| 10/1/2004   | 11220                                       |       |
| 10/8/2004   | 8264                                        |       |
| 10/15/2004  | 13872                                       |       |
| 10/22/2004  | 12625                                       |       |
| 10/29/2004  | 14145                                       |       |
|             | Average Monthly Flow (gpd):                 | 12025 |
| 11/5/2004   | 13675                                       |       |
| 11/12/2004  | 12620                                       |       |
| 11/19/2004  | 12605                                       |       |
| 11/24/2004  | 13504                                       |       |
|             | Average Monthly Flow (gpd):                 | 13101 |
| 12/3/2004   | 12419                                       |       |
| 12/10/2004  | 12716                                       |       |
| 12/17/2004  | 3698                                        |       |
| 12/23/2004  | 8767                                        |       |
|             | Average Monthly Flow (gpd):                 | 9400  |

#### Note:

1. gpd = gallons per day.

#### TABLE 6-3 2004 AIR STRIPPER FLOW SUMMARY

#### 2004 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

2. Average flow data is from laboratory analytical data sheets recorded during sampling.

#### TABLE 6-4 2004 AIR STRIPPER MASS REMOVAL SUMMARY

#### 2004 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

|        | Air Stripper Influent - | Air Stripper Effluent -  |              |         |                       |               |
|--------|-------------------------|--------------------------|--------------|---------|-----------------------|---------------|
|        | Average Monthly         | Average Monthly          | VOC's        |         | Air Stripper Effluent |               |
| Sample | VOC Concentration       | <b>VOC Concentration</b> | Removed      | % VOC's | Average Monthly       | VOC's         |
| Month  | (ug/l)                  | (ug/l)                   | (ug/l)       | Removed | Flow (gpd)            | Removed (lbs) |
| Jan    | *                       | *                        |              |         | *                     |               |
| Feb    | *                       | *                        |              |         | *                     |               |
| Mar    | *                       | *                        |              |         | *                     |               |
| Apr    | 391                     | 0                        | 391          | 99.9    | 13686                 | 1.3           |
| May    | 345                     | 0                        | 345          | 100.0   | 11663                 | 1.0           |
| Jun    | 485                     | 0                        | 485          | 100.0   | 8951                  | 1.1           |
| Jul    | 658                     | 2                        | 656          | 99.7    | 14806                 | 2.5           |
| Aug    | 421                     | 0                        | 421          | 100.0   | 12326                 | 1.3           |
| Sep    | 831                     | 0                        | 831          | 100.0   | 10939                 | 2.3           |
| Oct    | 81                      | 0                        | 81           | 100.0   | 12025                 | 0.3           |
| Nov    | 164                     | 1                        | 163          | 99.6    | 13101                 | 0.5           |
| Dec    | 532                     | 2                        | 530          | 99.6    | 9400                  | 1.3           |
|        |                         | Ann                      | ual Average: | 99.9    | Annual Total:         | 11.7          |

#### Notes:

- 1. VOCs = Volatile Organic Compounds
- 2. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)
- 3. gpd = gallons per day
- 4. lbs = pounds
- \* Due to problems with MH-2 during January, February, and March, mass removal values could not be calculated.

|               |             |               | Paramet          | er              |               |    |
|---------------|-------------|---------------|------------------|-----------------|---------------|----|
| Date          | cis-1,2-DCE | trans-1,2-DCE | TCE              | VC              | Flow          | рН |
| Permit Limits | 10          | 10            | 10               | 10              |               | •  |
| 1/14/00       | <1          | <1            | 2                | <1              | 6,326         |    |
| 1/21/00       | <1          | <1            | 3                | <1              | 8,002         |    |
| 1/28/00       | <1          | <1            | 4                | <1              | 6,334         |    |
| 2/4/00        | <1          | <1            | 3                | <1              | 11,974        |    |
| 2/11/00       |             | Data no       |                  | ossibly no flow |               |    |
| 2/18/00       | <1          | <1            | 4                | <1              | 4,007         |    |
| 2/25/00       | <1          | <1            | <1               | <1              | 7,548         |    |
| 3/3/00        | <1          | <1            | 2                | <1              | 12,811        |    |
| 3/10/00       | <1          | <1            | 1                | <1              | 9,617         |    |
| 3/17/00       | <1          | <1            | <1               | <1              | 9,103         |    |
| 3/24/00       | <1          | <1            | 2                | <1              | 9,637         |    |
| 3/31/00       | <1          | <1            | <1               | <1              | 8,373         |    |
| 4/7/00        | <1          | <1            | 1                | <1              | 1,975         |    |
| 4/14/00       | <1          | <1            | 2                | <1              | 14,689        |    |
| 4/21/00       |             | Data no       | ot available, po | ossibly no flow | , , , , , , , |    |
| 4/28/00       |             |               |                  | ossibly no flow |               |    |
| 5/1/00        |             |               | , ,              |                 | no flow       |    |
| 5/12/00       |             |               |                  |                 | no flow       |    |
| 5/15/00       | 2           | <1            | 7                | <1              | 4,922         |    |
| 5/22/00       | <1          | <1            | <1               | <1              | 5,120         |    |
| 5/26/00       | <1          | <1            | <1               | <1              | 10,300        |    |
| 6/2/00        | <1          | <1            | <1               | <1              | 18,686        |    |
| 6/9/00        | <1          | <1            | <1               | <1              | 10.123        |    |
| 6/16/00       | <1          | <1            | <1               | <1              | 10,269        |    |
| 6/23/00       | <1          | <1            | <1               | <1              | 9,873         |    |
| 6/30/00       | <1          | <1            | <1               | <1              | 7,627         |    |
| 7/13/00       | <1          | <1            | <1               | <1              | 6,060         |    |
| 7/14/00       | <1          | <1            | <1               | <1              | 6,060         |    |
| 7/21/00       | <1          | <1            | <1               | <1              | 4,936         |    |
| 7/28/00       | <1          | <1            | <1               | <1              | 14,750        |    |
| 8/4/00        | <1          | <1            | <1               | <1              | 2,092         |    |
| 8/11/00       | <1          | <1            | <1               | <1              | 1,771         |    |
| 8/18/00       | <1          | <1            | <1               | <1              | 7,820         |    |
| 8/25/00       | <1          | <1            | <1               | <1              | 6,169         |    |
| 9/7/00        | <1          | <1            | <1               | <1              | 5,683         |    |
| 9/8/00        | <1          | <1            | <1               | <1              | 5,683         |    |
| 9/15/00       | <1          | <1            | <1               | <1              | 6,023         |    |
| 9/22/00       | <1          | <1            | <1               | <1              | 7,481         |    |
| 10/6/00       | <1          | <1            | <1               | <1              | 3,359         |    |
| 10/13/00      | <1          | <1            | <1               | <1              | 7,188         |    |
| 10/20/00      | <1          | <1            | 6                | <1              | 3,171         |    |
| 10/27/00      | <1          | <1            | 2                | <1              | 9,261         |    |
| 11/2/00       | <1          | <1            | <1               | <1              | 7,300         |    |
| 11/3/00       | <1          | <1            | <1               | <1              | 7,300         |    |
| 11/9/00       | 1           |               | ripper cleaning  |                 | .,000         |    |
| 11/17/00      | <1          | <1            | <1               | <1              | 10,361        |    |
| 11/22/00      | <1          | <1            | 3                | <1              | 4,818         |    |
| 12/1/00       | <1          | <1            | 1                | <1              | 9,057         |    |
| 12/8/00       | <1          | <1            | 3                | <1              | 7,230         |    |
| 12/15/00      | <1          | <1            | 3                | <1              | 5,397         |    |
| 12/22/00      | <1          | <1            | 4                | <1              | 7,013         |    |

|               |             |               | Paramet          | er |        |     |
|---------------|-------------|---------------|------------------|----|--------|-----|
| Date          | cis-1,2-DCE | trans-1,2-DCE | TCE              | VC | Flow   | рН  |
| Permit Limits | 10          | 10            | 10               | 10 |        |     |
| 1/3/01        | <1          | <1            | 5                | <1 | 7,109  |     |
| 1/12/01       | <1          | <1            | <1               | <1 | 5,775  |     |
| 1/19/01       | <1          | <1            | 3                | <1 | 6,435  |     |
| 1/26/01       | <1          | <1            | 2                | <1 | 6,151  |     |
| 2/7/01        | <1          | <1            | <1               | <1 | 6,170  |     |
| 2/9/01        | 8           | <1            | 21               | <1 | 6,355  |     |
| 2/20/01       | <1          | <1            | 3                | <1 | 7,278  |     |
| 2/23/01       | <1          | <1            | 4                | <1 | 6,460  |     |
| 3/2/01        | <1          | <1            | 2                | <1 | 7,923  |     |
| 3/9/01        | <1          | <1            | 2                | <1 | 6,801  |     |
| 3/16/01       | 29          | <1            | 20               | <1 | 7,100  |     |
| 3/23/01       | <1          | <1            | 2                | <1 | 10,539 |     |
| 3/30/01       | 5           | <1            | 14               | <1 | 12,270 |     |
| 4/3/01        | <1          | <1            | 1                | <1 | 16,000 |     |
| 4/11/01       | <1          | <1            | <1               | <1 | 15,820 |     |
| 4/20/01       | <1          | <1            | <1               | <1 | 9,996  |     |
| 4/27/01       | 3           | <1            | 8                | <1 | 6,790  |     |
| 5/5/01        |             |               | f service, elect |    | 0,700  |     |
| 5/11/01       | <1          | <1            | 1                | <1 | 6,217  |     |
| 5/18/01       | <1          | <1            | <1               | <1 | 4,177  |     |
| 5/25/01       | <1          | <1            | <1               | <1 | 3,822  |     |
| 6/1/01        | 3           | <1            | 13               | <1 | 5,320  |     |
| 6/8/01        | <1          | <1            | <1               | <1 | 10,420 |     |
| 6/15/01       | <1          | <1            | <1               | <1 | 26,778 |     |
| 6/22/01       | 7           | <1            | 2                | <1 | 2,894  |     |
| 6/29/01       | <1          | <1            | <1               | <1 | 8,897  |     |
| 7/6/01        | <1          | <1            | <1               | <1 | 4,584  |     |
| 7/13/01       | <1          | <1            | <1               | <1 | 4,290  |     |
| 7/20/01       | <1          | <1            | <1               | <1 | 6,627  |     |
| 7/27/01       | <1          | <1            | <1               | <1 | 6,017  |     |
| 8/3/01        | 1           | <1            | 4                | <1 | 5,078  |     |
| 8/10/01       | <1          | <1            | <u>-</u><br><1   | <1 | 4,747  |     |
| 8/17/01       | 2           | <1            | 4                | <1 | 4,757  |     |
| 8/24/01       | <1          | <1            |                  | <1 | 4,044  |     |
| 8/31/01       | <1          | <1            | <1               | <1 | 1,107  |     |
| 9/7/01        | <1          | <1            | <1               | <1 | 10,930 |     |
| 9/14/01       | <1          | <1            | 3                | <1 | 1,850  |     |
| 9/21/01       | <1          | <1            | <1               | <1 | 1,151  |     |
| 9/28/01       | <1          | <1            | <1               | <1 | 4,194  |     |
| 10/5/01       | <1          | <1            | <1               | <1 | 4,405  |     |
| 10/12/01      | <1          | <1            | <1               | <1 | 4,238  |     |
| 10/19/01      | <1          | <1            | <1               | <1 | 4,441  |     |
| 10/26/01      | <1          | <1            | <1               | <1 | 4,481  |     |
| 11/2/01       | <1          | <1            | <1               | <1 | 4,752  | 8.3 |
| 11/9/01       | <1          | <1            | <1               | <1 | 5,181  | 8.1 |
| 11/16/01      | <1          | <1            | <1               | <1 | 4,588  | 7.8 |
| 11/21/01      | <1          | <1            | <1               | <1 | 4,522  | 7.7 |
| 11/30/01      | <1          | <1            | <1               | <1 | 4,942  | 7.6 |
| 12/7/01       | <1          | <1            | <1               | <1 | 6,549  | 8.1 |
| 12/14/01      | <1          | <1            | <1               | <1 | 5,721  | 8.2 |
| 12/21/01      | <1          | <1            | <1               | <1 | 8,104  | 7.1 |
| 12/28/01      | <1          | <1            | 3                | <1 | 7,515  | 7.2 |

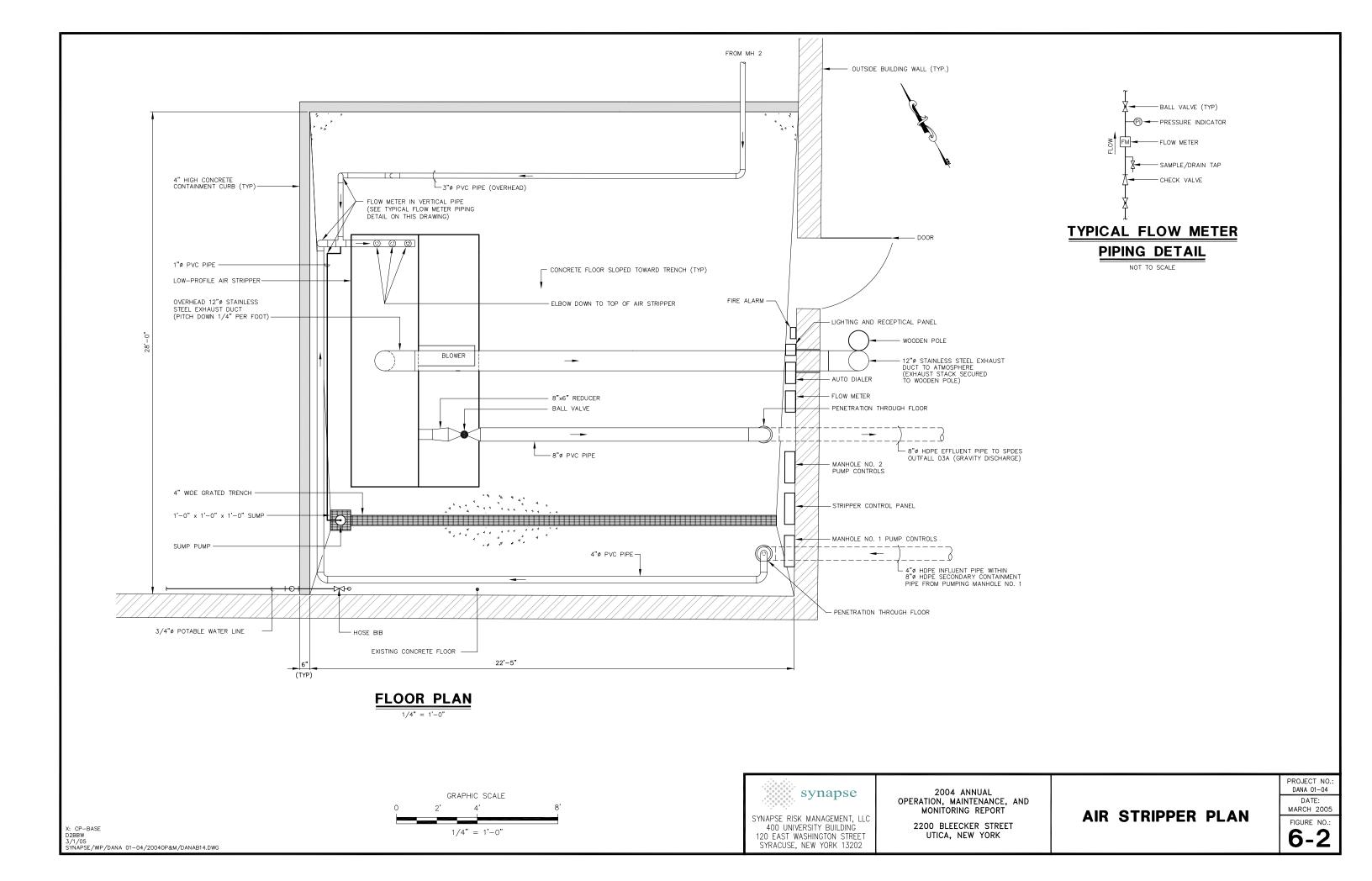
|               |             |               | Paramet        | er       |        |     |
|---------------|-------------|---------------|----------------|----------|--------|-----|
| Date          | cis-1,2-DCE | trans-1,2-DCE | TCE            | VC       | Flow   | рН  |
| Permit Limits | 10          | 10            | 10             | 10       |        |     |
| 1/4/02        | <1          | <1            | 3              | <1       | 5,721  |     |
| 1/11/02       | <1          | <1            | 1              | <1       | 5,020  |     |
| 1/18/02       | <1          | <1            | <1             | <1       | 6,455  |     |
| 1/25/02       | <1          | <1            | <1             | <1       | 6,380  |     |
| 2/1/02        | <1          | <1            | 4              | <1       | 7,925  | 8.1 |
| 2/13/02       | 11          | <2            | 33             | <2       | 10,570 | 8.0 |
| 2/15/02       | <1          | <1            | 2              | <1       | 10,041 | 7.8 |
| 2/22/02       | <1          | <1            | <1             | <1       | 8.651  | 8.0 |
| 3/1/02        | <1          | <1            | <1             | <1       | 8,928  | 7.8 |
| 3/8/02        | <1          | <1            | 2              | <1       | 6,687  | 7.9 |
| 3/15/02       | 6           | <1            | 11             | <1       | 7,048  | 7.9 |
| 3/22/02       | 5           | <1            | 11             | <1       | 11,341 | 7.7 |
| 3/29/02       | 2           | <1            | 6              | <1       | 6,348  | 7.8 |
| 4/5/02        | 79          | <10           | 230            | <10      | 5,741  | 7.5 |
| 4/12/02       | 4           | <1            | 10             | <1       | 10,452 | 7.7 |
| 4/19/02       | 3           | <1            | 17             | <1       | 12,160 | 7.9 |
| 4/26/02       | 2           | <1            | 6              | <1       | 7,711  | 7.8 |
| 5/3/02        | 1           | <1            | 5              | <1       | 11,707 | 7.9 |
| 5/10/02       | <1          | <1            | <1             | <1       | 9,758  | 7.6 |
| 5/17/02       | <1          | <1            | <1             | <1       | 12,755 | 7.8 |
| 5/24/02       | <1          | <1            | <1             | 1        | 2,360  | 7.3 |
| 5/31/02       | <1          | <1            | <1             | 1 1      | 7,725  | 7.6 |
| 6/7/02        | <1          | <1            | <1             | <1       | 9,408  | 7.4 |
| 6/14/02       | <1          | <1            | <1             | <1       | 10,371 | 7.7 |
| 6/20/02       | <1          | <1            | <1             | <1       | 8,717  | 7.6 |
| 6/27/02       | <1          | <1            | <1             | <1       | 7,690  | 7.8 |
| 7/3/02        | <1          | <1            | <1             | <1       | 10,938 | 7.6 |
| 7/11/02       | <1          | <1            | 2              | <1       | 9,475  | 7.7 |
| 7/18/02       | 1           | <1            | 3              | <1       | 6,841  | 7.6 |
| 7/25/02       | <1          | <1            | <1             | <1       | 6,005  | 7.4 |
| 8/1/02        | <1          | <1            | <1             | <1       | 5,867  | 7.7 |
| 8/9/02        | <1          | <1            | <1             | <1       | 5,932  | 7.2 |
| 8/16/02       | <1          | <1            | <1             | <1       | 3.951  | 7.2 |
| 8/23/02       | <1          | <1            | <1             | <1       | 5,285  | 7.3 |
| 8/30/03       | <1          | <1            | <1             | <1       | 7,774  | 7.9 |
| 9/5/02        | <1          | <1            | <1             | <1       | 5,180  | 7.2 |
| 9/13/02       | <1          | <1            | <1             | <1       | 6,027  | 7.3 |
| 9/20/02       | 1           | <1            | 2              | <1       | 6,008  | 7.8 |
| 9/27/02       | <1          | <1            | <u></u>        | <1       | 6,745  | 8.2 |
| 10/4/02       | <1          | <1            | 2              | <1       | 8,864  | 8.0 |
| 10/4/02       | <1          | <1            | <u> </u>       | <1       | 6,698  | 7.7 |
| 10/21/02      | <1          | <1            | <1             | <1       | 10,371 | 7.7 |
| 10/25/02      | <1          | <1            | <1             | <1       | 8.178  | 7.8 |
| 11/1/02       | <1          | <1            | 1              | <1       | 10,244 | 7.6 |
| 11/8/02       | <1          | <1            | 2              | <1       | 8,274  | 7.7 |
| 11/15/02      | <1          | <1            | <u> </u>       | <1       | 7,975  | 7.7 |
| 11/22/02      | 6           | <1            | 11             | <1       | 3,597  | 7.7 |
| 11/27/02      | <1          | <1            | 3              | <1       | 18,722 | 7.7 |
| 12/6/02       |             |               |                |          | 11,440 | 7.6 |
| 12/13/02      | 7           | <2<br><1      | 19<br>16       | <2<br><1 | 5,595  | 7.6 |
| 12/13/02      | <1          | <1            | 4              |          | 6,027  | 7.6 |
| 12/20/02      | <1          | <1            | <u>4</u><br><1 | <1       | 0,027  | 7.9 |

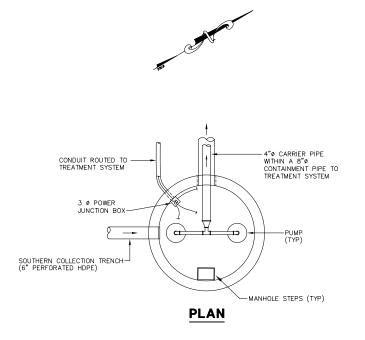
| Dot-          |             |               | Paramet | er   |        |     |
|---------------|-------------|---------------|---------|------|--------|-----|
| Date          | cis-1,2-DCE | trans-1,2-DCE | TCE     | VC   | Flow   | рН  |
| Permit Limits | 10          | 10            | 10      | 10   |        |     |
| 1/3/03        | 1           | <1            | 3       | <1   | 7,475  | 7.8 |
| 1/10/03       | 3           | <1            | 13      | <1   | 7,830  | 7.9 |
| 1/16/03       | 1           | <1            | 4       | <1   | 5,976  | 7.8 |
| 1/24/03       | <1          | <1            | 4       | <1   | 2,968  | 7.9 |
| 1/31/03       | 3           | <1            | 10      | <1   | 5,874  | 7.6 |
| 2/7/03        | <1          | <1            | 3       | <1   | 3,234  | 7.8 |
| 2/14/03       | 1           | <1            | 3       | <1   | 7,585  | 7.8 |
| 2/20/03       | <1          | <1            | 2       | <1   | 4,705  | 8.1 |
| 2/28/03       | 8           | <1            | 20      | <1   | 4,912  | 8.0 |
| 3/7/03        | 220         | <20           | 470     | <20  | 3,785  | 7.8 |
| 3/14/03       | 7           | <1            | 15      | <1   | 3,881  | 7.9 |
| 3/20/03       | 12          | <2            | 28      | <2   | 6,746  | 7.7 |
| 3/28/03       | 21          | <2            | 42      | <2   | 9,658  | 7.7 |
| 4/4/03        | 8           | <1            | 20      | <1   | 6,748  | 7.9 |
| 4/11/03       | 25          | <5            | 72      | <5   | 6,442  | 7.4 |
| 4/18/03       | <1          | <1            | <1      | <1   | 9,922  | 7.7 |
| 4/25/03       | <1          | <1            | <1      | <1   | 13,811 | 7.6 |
| 5/1/03        | <1          | <1            | <1      | <1   | 10,060 | 8.0 |
| 5/9/03        | <1          | <1            | <1      | <1   | 12,273 | 8.3 |
| 5/16/03       | <1          | <1            | <1      | <1   | 12,995 | 7.8 |
| 5/23/03       | <1          | <1            | <1      | <1   | 11,427 | 8.2 |
| 5/30/03       | <1          | <1            | <1      | <1   | 11,432 | 7.6 |
| 6/6/03        | <1          | <1            | <1      | <1   | 12,687 | 7.8 |
| 6/13/03       | <1          | <1            | <1      | <1   | 9,532  | 8.0 |
| 6/20/03       | <1          | <1            | <1      | <1   | 9,820  | 7.7 |
| 6/27/03       | <1          | <1            | <1      | <1   | 11,562 | 8.1 |
| 7/7/03        | <1          | <1            | <1      | <1   | 7,104  | 7.9 |
| 7/11/03       | <1          | <1            | <1      | <1   | 7,090  | 7.8 |
| 7/18/03       | <1          | <1            | <1      | <1   | 7,861  | 7.1 |
| 7/25/03       | <1          | <1            | <1      | <1   | 5,090  | 7.5 |
| 8/1/03        | <1          | <1            | <1      | <1   | 6,548  | 7.9 |
| 8/8/03        | 15          | <2            | 38      | <2   | 3,011  | 7.3 |
| 8/18/03       | <1          | <1            | <1      | <1   | 11,376 | 7.8 |
| 8/22/03       | 15          | <5            | 56      | <5   | 9,385  | 8.1 |
| 8/29/03       | 8           | <1            | 11      | <1   | 8,387  | 8.2 |
| 9/5/03        | 3           | <1            | 6       | <1   | 9,115  | 8.4 |
| 9/12/03       | 4           | <1            | 5       | <1   | 8,095  | 7.8 |
| 9/19/03       | 27          | <5            | 77      | <5   | 8,285  | 7.8 |
| 9/26/03       | <1          | <1            | 1       | <1   | 8,334  | 8.3 |
| 10/3/03       | <1          | <1            | <1      | <1   | 3,837  | 7.9 |
| 10/10/03      | 5           | <1            | 6       | <1   | 12,301 | 8.3 |
| 10/17/03      | <1          | <1            | <1      | <1   | 10,700 | 8.5 |
| 10/24/03      | <1          | <1            | <1      | <1   | 10,488 | 8.2 |
| 11/7/03       | 14          | <1            | 20      | <1   | 7,150  | 8.1 |
| 11/14/03      | 11          | <2            | 36      | <2   | 3,960  | 7.8 |
| 11/21/03      | 42          | <5            | 74      | <5   | 10,938 | 8.1 |
| 11/28/03      | 13          | <1            | 20      | <1   | 10,925 | 8.4 |
| 12/5/03       | 15          | <1            | 26      | <1   | 8,643  | 7.9 |
| 12/12/03      | 43          | <5            | 100     | <5   | 5,151  | 7.7 |
| 12/19/03      | 19          | <2            | 31      | <2   | 4,908  | 8.2 |
| 12/23/03      | <100        | 630           | 2000    | <100 | 872    | 8.3 |
| 12/30/03      | 2           | <1            | 4       | <1   | 942    | 8.0 |

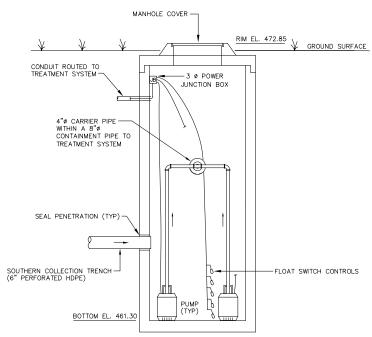
#### 2003 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

|                 |             |               | Paramet        | er       |        |     |
|-----------------|-------------|---------------|----------------|----------|--------|-----|
| Date            | cis-1,2-DCE | trans-1,2-DCE | TCE            | VC       | Flow   | рН  |
| Permit Limits   | 10          | 10            | 10             | 10       |        |     |
| 1/9/04          | 56          | <5            | 89             | <5       | 4,012  | 7.8 |
| 1/16/04         | 84          | <5            | 120            | <5       | 2,930  | 7.4 |
| 1/23/04         | 39          | <5            | 66             | <5       | 2,460  | 8.1 |
| 1/30/04         | 14          | <1            | 19             | <1       | 1,773  | 7.8 |
| 2/6/04          | 9           | <1            | 17             | <1       | 1,761  | 8.1 |
| 2/13/04         | <1          | <1            | 1              | <1       | 2,514  | 8.3 |
| 2/20/04         | <1          | <1            | 1              | <1       | 2,038  | 7.9 |
| 2/27/04         | <1          | <1            | <u>-</u><br><1 | <1       | 2,244  | 8.1 |
| 3/5/04          | <1          | <1            | 2              | <1       | 5,382  | 8.1 |
| 3/12/04         | <1          | <1            | 1              | <1       | 6,797  | 8.1 |
| 3/12/04         | <1          | <1            | <u>-</u> <1    | <1       | 3,859  | 7.9 |
| 3/26/04         | <1          | <1            | 1              | <1       | 33,050 | 8.3 |
| 4/2/04          | <1          | <1            | <1             | <1       | 12,260 | 7.6 |
| 4/8/04          | <1          | <1            | 1              | <1       | 5,450  | 7.0 |
| 4/16/04         |             |               | <u> </u>       |          | 28,328 |     |
| 4/16/04 4/23/04 | <1          | <1            |                | <1       | 19,227 | 8.5 |
| 4/23/04         | <1<br><1    | <1<br><1      | <1<br><1       | <1<br><1 | 3,166  | 8.2 |
|                 |             |               |                |          |        | 8.4 |
| 5/7/04          | <1          | <1            | <1             | <1       | 13,920 | 7.9 |
| 5/14/04         | <1          | <1            | <1             | <1       | 1,502  | 8.4 |
| 5/21/04         | <1          | <1            | <1             | <1       | 11,334 | 8.3 |
| 5/28/04         | <1          | <1            | <1             | <1       | 19,895 | 8.3 |
| 6/4/04          | <1          | <1            | <1             | <1       | 8,957  | 8.2 |
| 6/11/04         | <1          | <1            | <1             | <1       | 7,831  | 8.2 |
| 6/18/04         | <1          | <1            | <1             | <1       | 11,211 | 8.2 |
| 6/25/04         | <1          | <1            | <1             | <1       | 7,803  | 8.2 |
| 7/2/04          | 2.2         | <1            | 7.2            | <1       | 5,830  | 8.1 |
| 7/9/04          | <1          | <1            | <1             | <1       | 29,578 | 8.1 |
| 7/16/04         | <1          | <1            | <1             | <1       | 12,695 | 8.3 |
| 7/23/04         | <1          | <1            | <1             | <1       | 12,877 | 8.2 |
| 7/30/04         | <1          | <1            | <1             | <1       | 13,050 | 8.0 |
| 8/6/04          | <1          | <1            | <1             | <1       | 12,664 | 8.2 |
| 8/13/04         | <1          | <1            | <1             | <1       | 10,340 | 8.3 |
| 8/20/04         | <1          | <1            | <1             | <1       | 12,288 | 8.2 |
| 8/27/04         | <1          | <1            | <1             | <1       | 14,011 | 8.0 |
| 9/3/04          | <1          | <1            | <1             | <1       | 12,702 | 8.3 |
| 9/10/04         | <1          | <1            | <1             | <1       | 10,428 | 8.4 |
| 9/17/04         | <1          | <1            | <1             | <1       | 9,747  | 8.1 |
| 9/24/04         | <1          | <1            | <1             | <1       | 10,880 | 8.2 |
| 10/1/04         | <1          | <1            | <1             | <1       | 11,220 | 8.2 |
| 10/8/04         | <1          | <1            | <1             | <1       | 8,264  | 8.1 |
| 10/15/04        | <1          | <1            | <1             | <1       | 13,872 | 8.2 |
| 10/22/04        | <1          | <1            | <1             | <1       | 12,625 | 8.1 |
| 10/29/04        | <1          | <1            | <1             | <1       | 14,145 | 8.1 |
| 11/5/04         | <1          | <1            | <1             | <1       | 13,675 | 8.1 |
| 11/12/04        | <1          | <1            | 1.2            | <1       | 12,620 | 8.4 |
| 11/19/04        | <1          | <1            | <1             | <1       | 12,605 | 8.2 |
| 11/24/04        | <1          | <1            | 1.4            | <1       | 13,504 | 8.3 |
| 12/3/04         | <1          | <1            | 2.2            | <1       | 12,419 | 8.1 |
| 12/10/04        | <1          | <1            | 1.8            | <1       | 12,716 | 8.0 |
| 12/17/04        | <1          | <1            | 1.0            | <1       | 3,698  | 8.3 |
| 12/23/04        | <1          | <1            | 3.9            | <1       | 8,767  | 8.3 |

#### Note:


- 1. cis-1,2-DCE = cis-1,2-Dichloroethene in micrograms per liter (ug/l).
- 2. trans-1,2-DCE = trans-1,2-Dichloroethene in micrograms per liter (ug/l).
- 3. TCE = Trichloroethylene in micrograms per liter (ug/l).
- 4. VC = Vinyl Chloride in micrograms per liter (ug/l).
- 5. Flow = Average gallon per day.
- 6. Bolded values exceed permit effluent compliance levels.

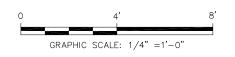

#### 2004 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

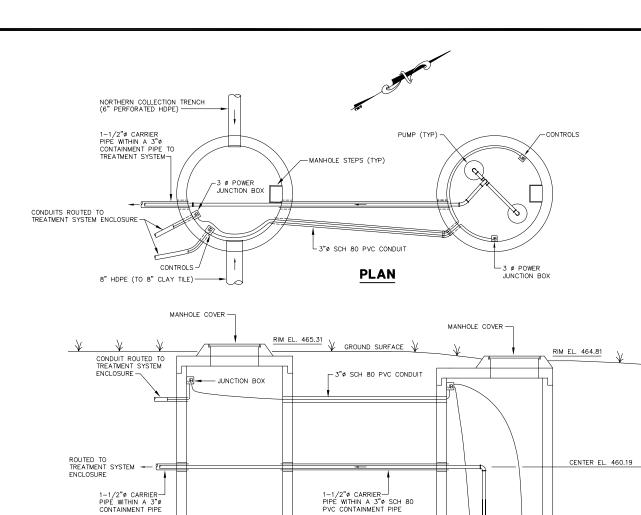

### 6.7 Figures

- 6-1 Groundwater Treatment System Plan
- 6-2 Air Stripper Plan
- 6-3 Pumping Manhole Plans and Sections








#### **GENERAL SECTION**

### PUMPING MANHOLE NO. 1 PLAN AND SECTION

SCALE: 1/4" = 1'-0"





**COLLECTION MANHOLE** 

**PUMPING MANHOLE** 

-FLOAT SWITCH CONTROLS

BOTTOM EL. 450.64

INVERT

EL. 451.94

#### GENERAL SECTION

-SEAL PENETRATION (TYP)

6"ø SCH 80 PVC DRAIN -

### PUMPING MANHOLE NO. 2 PLAN AND SECTION

SCALE: 1/4" = 1'-0"



SYRACUSE, NEW YORK 13202

BOTTOM EL. 452.51

NORTHERN COLLECTION TRENCH-(6" PERFORATED HDPE)

2004 ANNUAL
OPERATION, MAINTENANCE, AND
MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK PUMPING MANHOLE PLANS AND SECTIONS

PROJECT NO.: DANA 01-04 DATE: MARCH 2005

FIGURE NO.: **6-3** 

## APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

## APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

### APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

# APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

### APPENDIX E GROUNDWATER SAMPLING LOGS – FORM E

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

# APPENDIX F GROUNDWATER ANALYTICAL DATA

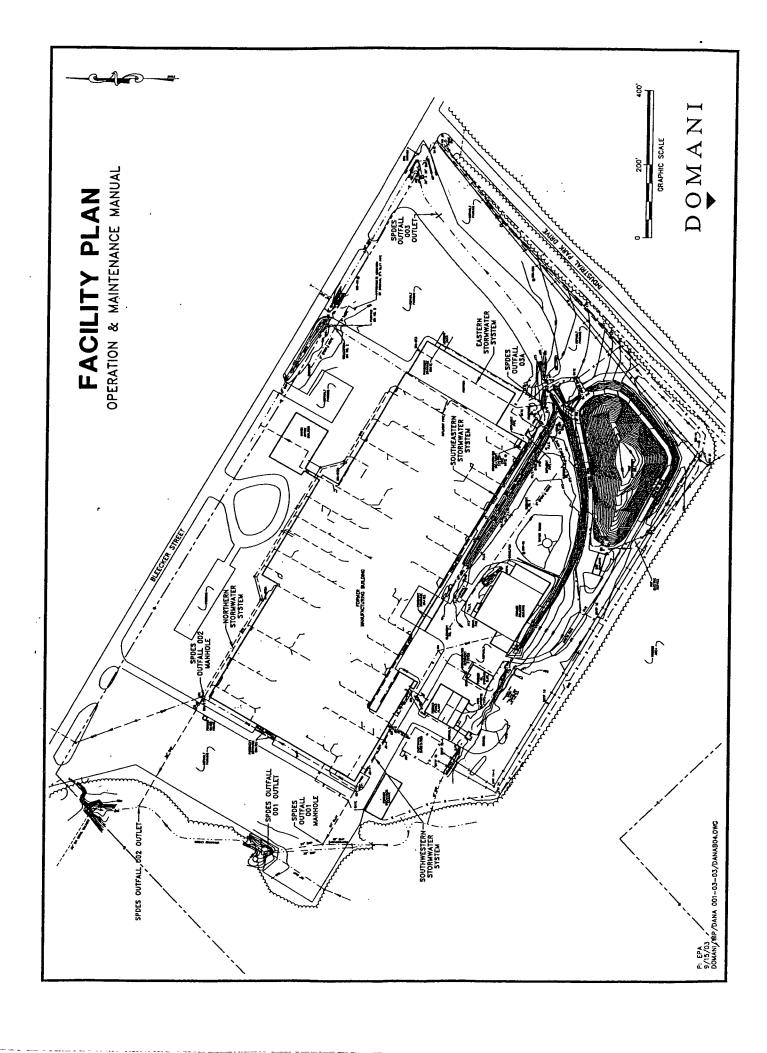
2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

# APPENDIX G GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003


# APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

# RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

| DOMA   | NI Representative: S. NAH    | Date: 1.13.04                                     |                      |
|--------|------------------------------|---------------------------------------------------|----------------------|
| Catego | ry Inspected                 | Observation/Condition                             | J                    |
| 1 Ger  | eral Property                |                                                   |                      |
| Α      | General Property Access      |                                                   | 1                    |
| В      | General Property Drainage    | SPDES Outfall (001 / 002 / 003 / ) Sufface Flozen |                      |
| 2 Cell | Perimeter Components         |                                                   |                      |
| A      | Perimeter and Access Roads   |                                                   | $\sqrt{}$            |
| В      | Ditches                      |                                                   | √_                   |
| С      | Culverts                     | /                                                 | √.                   |
| D      | Perimeter Fence              | Gates_1//                                         | $\int_{\mathcal{L}}$ |
| E      | Utilities                    | Elec. V Phone V                                   | $\sqrt{}$            |
| 3 Cor  | ntainment Cell               |                                                   |                      |
| A      | Surface Cover System         | Burrows Vegetation SNOW COVEVED                   |                      |
| В      | Gas Vents (2)                | OK                                                | 1                    |
| В'     | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm    |                      |
| С      | Collection Pipe / Cleanout   |                                                   |                      |
| D      | Perimeter Drains (4)         | SNOW Covered                                      |                      |
| 4 Lea  | chate Collection Manhole     |                                                   |                      |
| A      | Structure                    | External V Internal V                             | /                    |
| В      | Pumps and Plumbing           | Pump 1 Hours 12.9 Pump 2 Hours 212.6              | 1                    |
| B'     | Pump Changeover              | (Y or N) Lead Pump Lag Pump                       |                      |
| B'     | Test Automatic Pump Controls | LSHH_V, LSH_V, LSL_V OK                           |                      |
| С      | Electrical Components        | Test Pumps (Y) or N), Light Bulbs OLC             | 1                    |
| D      | Manhole Interstitial Space   | OK                                                |                      |
| E      | Conveyance Pipe              | OIC                                               | 1                    |
| F      | Influent Pipe                | a OK                                              | 1                    |
| G      | Confined Space Entry         | (Y of N) see Form B)                              |                      |



## RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

| Synapse Representative: 5. Mothews | Date: | 1-13-04 |  |
|------------------------------------|-------|---------|--|
|------------------------------------|-------|---------|--|

| Catego  | ory Inspected            | Observation/Condition                 | J   |
|---------|--------------------------|---------------------------------------|-----|
| 5 Build | ling                     |                                       |     |
| Α       | Structure                | Lock, Vent, Heater                    | V   |
| В       | Electrical and Telephone | Elec_V Phone_V                        | V   |
| С       | Auto Dialer and Controls | Test Functions (Y or (N) (see Form F) | V   |
| 6 Leac  | hate Storage System      |                                       | *** |
| Α       | Tank (External)          | Internal (Y or N                      | - V |
| A'      | Flow Totalizer           | Reading =00 gal.                      | V   |
|         | O do O to in-mont        | Liquid (Y or(N)                       | 1/  |
| В       | Secondary Containment    |                                       | -   |
| В       | Piping Components        |                                       | i   |
|         |                          | Lock Light Bulbs                      | i l |

| <br> |  |
|------|--|
|      |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

| DOMANI Representative: 5, Mathews | Date: 1.13.04 |
|-----------------------------------|---------------|
|-----------------------------------|---------------|

| Category | Inspected                   | <del></del>          | Observation/C            | ondition    |                                        |          | J |
|----------|-----------------------------|----------------------|--------------------------|-------------|----------------------------------------|----------|---|
| 1 Inspe  | ction Overview              |                      |                          |             |                                        |          |   |
| Α        | Reason for Inspection       | RAF GW               | I SPDES_                 |             |                                        |          |   |
| В        | Regulatory Inspection       | DER DO               | N                        |             |                                        |          |   |
| С        | Photos Taken                | 35mm Dig             | tal                      |             |                                        |          |   |
| 2 Grou   | ndwater Monitoring Wells    |                      |                          | -           |                                        |          |   |
| Α        | Condition                   | MW-6R, MW-           | 13A, MW-14               | , MW-17     | , <b>MW</b> -18                        | _        |   |
| В        | Water Levels                | (Y or N) (see Form   | ı C)                     |             |                                        |          |   |
| С        | Groundwater Sampling        | (Y or N) (see Form   | n D)                     |             |                                        |          |   |
| 3 Colle  | ction Trenches              |                      |                          |             |                                        |          |   |
| Α        | MH-1                        | DTW                  | Total: <u>11.55</u>      |             |                                        |          |   |
| В        | MH-2C (Collection)          | DTW                  | Total: <u>12,80</u>      |             |                                        |          |   |
| С        | MH-2P (Pumping)             | DTW                  | Total: <u>14.17</u>      |             |                                        |          |   |
| 4 Air S  | tripper                     |                      |                          |             |                                        |          |   |
| A        | MH-1 - Flow Totalizer       | Reading = 284        | 9269 0 gal.              | Rate:       | 0                                      | _gpm     |   |
| В        | MH-2 - Flow Totalizer       | Reading = 0 9        | <u> (207 0 gal.</u>      | Rate:       | O                                      | _gpm     |   |
| С        | Sump - Flow Totalizer       | Reading = OC         | 17840 0 gal.             | Rate:       | <u></u> 0                              | _gpm     |   |
| D        | Blower Hours                | Reading = 203        | 5 O ∙SHours.             |             |                                        |          |   |
| Addition | l<br>nal Comments:          | <u></u>              | <u> </u>                 |             | <del></del>                            |          |   |
|          |                             | tanhole *2           |                          |             |                                        |          |   |
|          |                             | C-to ( to to         |                          |             |                                        |          |   |
|          | Blower @ 5" HZO             | 1-1-6                | m outside ve             | 240 L       |                                        |          |   |
|          |                             | onucled The          | ) <del>M 0013197 N</del> |             |                                        |          |   |
| Contac   |                             | 475 2700             | NYSDEC, DOW, C           | had Kehoe   |                                        | 793.2554 |   |
|          | l Syracuse Office           | 475.3700<br>733.6230 | Evergreen, Tom C         | ehia (cell) |                                        | 725.3200 |   |
| RAF      |                             | 866.7403             | Dodge Graphics,          | Don Zimbler | *                                      | 735.9226 |   |
| Coolidg  | e Equities, Jessie Bailey   | 534.3490 (cell)      | Utica Converters,        | Al Born     |                                        | 733.8974 |   |
| Coolidg  | e Maintenance, Charles Dovi | 785.2605             | Deiorio's, Richard       | l Vifi      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 724.2401 |   |
| NYSDE    | C, DER, Phil Waite          | 100.2000             | Delotto S, Richard       | 4 4 141     |                                        |          |   |

| DOMANI Representative: 5. Mathews | Date: 1.13.04 |
|-----------------------------------|---------------|
|-----------------------------------|---------------|

| Cate                                  | gory                                                                                                                                             | Inspected                 | Observation/Condition |                               |             |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------------|-------------|
| 1 lı                                  | nspe                                                                                                                                             | ction Overview            |                       |                               |             |
|                                       | A                                                                                                                                                | Reason for Inspection     | RAF GV                | / SPDES                       |             |
|                                       | В                                                                                                                                                | Regulatory Inspection     | DER DO                | N                             |             |
|                                       | c                                                                                                                                                | Photos Taken              | 35mm Dig              | tal                           |             |
| 2 (                                   | Groui                                                                                                                                            | ndwater Monitoring Wells  |                       |                               |             |
| -                                     | Α                                                                                                                                                | Condition                 | MW-6R, MW-            | 13A, MW-14, MW-17, MW-18_     | _           |
| · · · · · · · · · · · · · · · · · · · | В                                                                                                                                                | Water Levels              | (Y or N) (see Forn    | 1 C)                          |             |
|                                       | С                                                                                                                                                | Groundwater Sampling      | (Y or N) (see Forr    | 1 D)                          |             |
| 3 (                                   | Colle                                                                                                                                            | ction Trenches            | <u> </u>              |                               |             |
|                                       | Α                                                                                                                                                | MH-1                      | DTW                   | Total: 11.55                  | -           |
|                                       | В                                                                                                                                                | MH-2C (Collection)        | DTW                   | Total: <u>12.80</u>           |             |
| -                                     | С                                                                                                                                                | MH-2P (Pumping)           | DTW                   | Total: <u>14.17</u>           |             |
| 4 /                                   | Air St                                                                                                                                           | tripper                   | ,                     |                               |             |
| <del></del>                           | Α                                                                                                                                                | MH-1 - Flow Totalizer     | Reading = 2.64        | 9269 0 gal. Rate: (2          | gpm         |
|                                       | В                                                                                                                                                | MH-2 - Flow Totalizer     | Reading = 09          | (207 0 gal. Rate: 0           | gpm         |
|                                       | c                                                                                                                                                | Sump - Flow Totalizer     | Reading = 00          | <u> ୮୯,୯୮୦ o</u> gal. Rate: ପ | gpm         |
|                                       | D                                                                                                                                                | Blower Hours              | Reading = 203         | O SHours.                     |             |
| Ado                                   | <u>dition</u>                                                                                                                                    | al Comments:              |                       |                               | <del></del> |
|                                       |                                                                                                                                                  | High alarm @ 1            | tanhole *2            |                               |             |
|                                       |                                                                                                                                                  | Blower @ 5" 170           |                       |                               |             |
|                                       |                                                                                                                                                  | 0.0                       | onumbed fro           | m outside vent.               |             |
| Col                                   | ntacts                                                                                                                                           |                           | onwered 110           | of Oak and a                  |             |
|                                       |                                                                                                                                                  | Syracuse Office           | 475.3700              | NYSDEC, DOW, Chad Kehoe       | 793.2554    |
| RAI                                   |                                                                                                                                                  |                           | 733.6230              | Evergreen, Tom Gehig (cell)   | 725.3200    |
|                                       |                                                                                                                                                  | e Equities, Jessie Bailey | 866.7403              | Dodge Graphics, Don Zimbler   | 735.9226    |
|                                       |                                                                                                                                                  |                           | 534.3490 (cell)       | Utica Converters, Al Born     | 733.8974    |
|                                       | Coolidge Maintenance, Charles Dovi534.3490 (cell)Utica Converters, Al Born733.8974NYSDEC, DER, Phil Waite785.2605Deiorio's, Richard Viti724.2401 |                           |                       |                               |             |

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

| A | 7 20 | ed  | M        | ore |
|---|------|-----|----------|-----|
| W | Form | A - | 1 -      | For |
| 1 | ,    | she | $\Omega$ |     |

DOMANI Representative:\_

KSN

Date: 1/30 04

| ategory | Inspected                                          | Observation/Condition                                                                                                                                                                                                                                                                                                                   | <b>J</b>            |
|---------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Inspe   | ction Overview                                     |                                                                                                                                                                                                                                                                                                                                         | <u></u>             |
| Α       | Reason for Inspection                              | RAF GW SPDES                                                                                                                                                                                                                                                                                                                            |                     |
| В       | Regulatory Inspection                              | DER DOW                                                                                                                                                                                                                                                                                                                                 | <del> </del>        |
| С       | Photos Taken                                       | 35mm Digital                                                                                                                                                                                                                                                                                                                            |                     |
| Grou    | ndwater Monitoring Wells                           | .,                                                                                                                                                                                                                                                                                                                                      |                     |
| Α       | Condition                                          | MW-6R, MW-13A, MW-14, MW-17, MW-18                                                                                                                                                                                                                                                                                                      |                     |
| В       | Water Levels                                       | (Y or N) (see Form C)                                                                                                                                                                                                                                                                                                                   |                     |
| С       | Groundwater Sampling                               | (Y or N) (see Form D)                                                                                                                                                                                                                                                                                                                   |                     |
| Colle   | ction Trenches                                     |                                                                                                                                                                                                                                                                                                                                         |                     |
| Α       | MH-1                                               | DTW Total: <u>11.55</u>                                                                                                                                                                                                                                                                                                                 |                     |
| В       | MH-2C (Collection)                                 | DTW Total: <u>12.80</u>                                                                                                                                                                                                                                                                                                                 |                     |
| С       | MH-2P (Pumping)                                    | DTW Total: <u>14.17</u>                                                                                                                                                                                                                                                                                                                 | <u> </u>            |
| Air St  | ripper                                             |                                                                                                                                                                                                                                                                                                                                         |                     |
| Α       | MH-1 - Flow Totalizer                              | Reading = 2853013 0 gal. Rate:gpm                                                                                                                                                                                                                                                                                                       |                     |
| В       | MH-2 - Flow Totalizer                              | Reading = 916210 0 gal. Rate:gpm                                                                                                                                                                                                                                                                                                        |                     |
| С       | Sump - Flow Totalizer                              | Reading = 17840 0 gal. Rate:gpm                                                                                                                                                                                                                                                                                                         |                     |
| D       | Blower Hours                                       | Reading = 26350 Hours.                                                                                                                                                                                                                                                                                                                  |                     |
|         | Inspe A B C Groun A B C Collect A B C Air St A B C | Inspection Overview  A Reason for Inspection  B Regulatory Inspection  C Photos Taken  Groundwater Monitoring Wells  A Condition  B Water Levels  C Groundwater Sampling  Collection Trenches  A MH-1  B MH-2C (Collection)  C MH-2P (Pumping)  Air Stripper  A MH-1 - Flow Totalizer  B MH-2 - Flow Totalizer  C Sump - Flow Totalizer | Inspection Overview |

Additional Comments:

High level ARARM IN MH-Z

Air Pressure - 5" HO

Contacts:

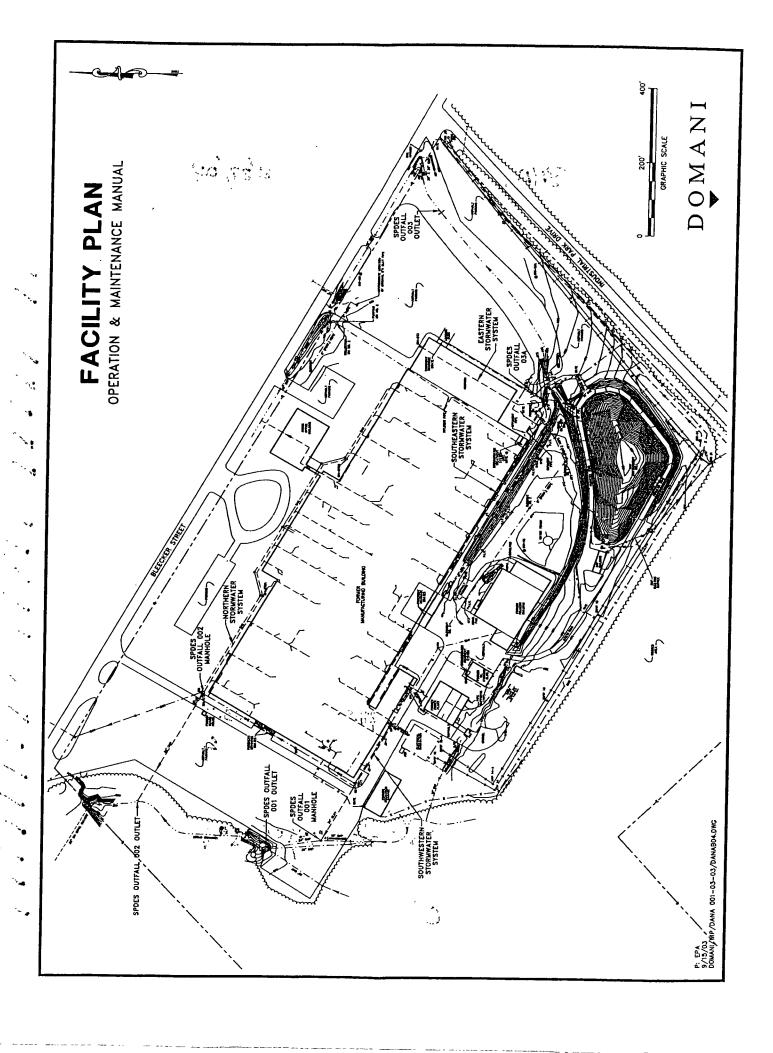
| DOMANI Syracuse Office             | 475.3700        | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
|------------------------------------|-----------------|-----------------------------|----------|
| RAF                                | 733.6230        | Evergreen, Tom Gehig (cell) | 725.3200 |
| Coolidge Equities, Jessie Bailey   | 866.7403        | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge Maintenance, Charles Dovi | 534.3490 (cell) | Utica Converters, Al Born   | 733.8974 |
| NYSDEC, DER, Phil Waite            | 785.2605        | Deiorio's, Richard Viti     | 724.2401 |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

|        | Depresentative  |
|--------|-----------------|
| DOMANI | Representative: |

S. Matthews

\_\_\_\_\_\_ Date: 2 · 12 · 0 1


| tion Overview  Reason for Inspection  Regulatory Inspection | RAF GV                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ·                                                           | RAF GV                                                                                                                                                                                                    | Inspection Overview                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Regulatory Inspection                                       |                                                                                                                                                                                                           | VSPDES_                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| regulatory moposition                                       | DER DO                                                                                                                                                                                                    | W                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Photos Taken                                                | 35mm Dig                                                                                                                                                                                                  | ital                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| dwater Monitoring Wells                                     |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Condition                                                   | MW-6R, MW                                                                                                                                                                                                 | -13A, MW-14                                             | _, MW-17, MW-18_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Water Levels                                                | (Y or N) (see Form                                                                                                                                                                                        | n C)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Groundwater Sampling                                        | (Y or N) (see Form                                                                                                                                                                                        | n D)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| tion Trenches                                               | ···                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| ИН-1                                                        | DTW                                                                                                                                                                                                       | Total: <u>11.55</u>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| MH-2C (Collection)                                          | DTW                                                                                                                                                                                                       | Total: <u>12.80</u>                                     | · • · • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| MH-2P (Pumping)                                             | DTW                                                                                                                                                                                                       | Total: <u>14.17</u>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| pper                                                        |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| MH-1 - Flow Totalizer                                       | Reading = 285:                                                                                                                                                                                            | <b>5 0 3 %</b> <u>0</u> gal.                            | Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| MH-2 - Flow Totalizer                                       | Reading = 09                                                                                                                                                                                              | 6210 0 gal.                                             | Rate: ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Sump - Flow Totalizer                                       | Reading = 001                                                                                                                                                                                             | <u>7656 0</u> gal.                                      | Rate: <i>O</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gpm/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Blower Hours                                                | Reading = 203                                                                                                                                                                                             | 50. Hours.                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Comments:                                                   | ,                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                             | 0                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>              |                                                                                                                                                                                                           | ures IVI.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| HAT STOPPET NOT CONY                                        | ring                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                             |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Syracuse Office                                             | 475 3700                                                                                                                                                                                                  | NYSDEC DOW C                                            | had Kehoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 793.2554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                             |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 725.3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Equities, Jessie Bailev                                     |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 735.9226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                             |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 733.8974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                             |                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 724.2401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                             | Condition Vater Levels Froundwater Sampling ion Trenches MH-1 MH-2C (Collection) MH-2P (Pumping) pper MH-1 - Flow Totalizer MH-2 - Flow Totalizer Sump - Flow Totalizer Blower Hours Comments:  Comments: | Water Levels (Y or N) (see Formation Trenches  MH-1 DTW | Alt-1 - Flow Totalizer  When the Flow Totalize | Water Levels (Y or N) (see Form C)  Groundwater Sampling (Y or N) (see Form D)  ion Trenches  AH-1 DTW Total: 11.55  AH-2C (Collection) DTW Total: 12.80  AH-1-P (Pumping) DTW Total: 14.17  pper  AH-1 - Flow Totalizer Reading = 285503\$ 0 gal. Rate: O  AH-2- Flow Totalizer Reading = 39 (200 gal. Rate: O  Sump - Flow Totalizer Reading = 200 Hours.  Comments: Air  High Water or Low (1255012 alarm 1) +  Art 510 pper 10 (1255012 alarm 1) +  Syracuse Office 475.3700 NYSDEC, DOW, Chad Kehoe  733.6230 Evergreen, Tom Gehig (cell)  Equities, Jessie Bailey 866.7403 Dodge Graphics, Don Zimbler  Maintenance, Charles Dovi 534.3490 (cell) Utica Converters, Al Born |  |  |  |  |

# RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: BHM Date: Z/27/04

| Ca | tegory | Inspected                    | Observation/Condition                          | J                                            |  |  |
|----|--------|------------------------------|------------------------------------------------|----------------------------------------------|--|--|
|    |        |                              |                                                |                                              |  |  |
|    | Α      | General Property Access      |                                                |                                              |  |  |
|    | В      | General Property Drainage    | SPDES Outfall (001 002 003)                    |                                              |  |  |
| 2  | Cell P | Perimeter Components         |                                                |                                              |  |  |
|    | A      | Perimeter and Access Roads   |                                                |                                              |  |  |
|    | В      | Ditches                      |                                                |                                              |  |  |
|    | С      | Culverts                     |                                                |                                              |  |  |
| ļ  | D      | Perimeter Fence              | Gates                                          | V                                            |  |  |
|    | Ε      | Utilities                    | Elec Phone                                     |                                              |  |  |
| 3  | Cont   | ainment Cell                 |                                                | <u>,                                    </u> |  |  |
|    | Α      | Surface Cover System         | Burrows Vegetation                             |                                              |  |  |
|    | В      | Gas Vents (2)                | •                                              |                                              |  |  |
|    | B'     | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm | /                                            |  |  |
|    | С      | Collection Pipe / Cleanout   |                                                |                                              |  |  |
|    | D      | Perimeter Drains (4)         |                                                |                                              |  |  |
| 4  | Leac   | hate Collection Manhole      |                                                |                                              |  |  |
| -  | A      | Structure                    | External Internal                              | //                                           |  |  |
|    | В      | Pumps and Plumbing           | Pump 1 Hours 127.8 Pump 2 Hours 213.7          | V                                            |  |  |
|    | B'     | Pump Changeover              | (Y or N) Lead Pump Lag Pump 1                  | '                                            |  |  |
|    | В"     | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                           |                                              |  |  |
|    | С      | Electrical Components        | Test Pumps (Y) or N), Light Bulbs              |                                              |  |  |
|    | D      | Manhole Interstitial Space   | Leachate 54,00 ga                              |                                              |  |  |
|    | E      | Conveyance Pipe              |                                                |                                              |  |  |
|    | F      | Influent Pipe                |                                                |                                              |  |  |
|    | G      | Confined Space Entry         | (Y or N) (see Form B)                          |                                              |  |  |



## RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

| DOMA     | VI Rep                                 | resentative:                         | Date: 2/27/04                        |         |  |
|----------|----------------------------------------|--------------------------------------|--------------------------------------|---------|--|
| Categ    | orv                                    | Inspected                            | Observation/Condition                |         |  |
| 5 Build  |                                        |                                      |                                      | L       |  |
| A        | Struc                                  | cture                                | Lock, Vent, Heater                   |         |  |
| В        | Elec                                   | trical and Telephone                 | Elec Phone                           | -       |  |
| С        | Auto                                   | Dialer and Controls                  | Test Functions (Y or N) (see Form F) |         |  |
| 6 Lead   | hate S                                 | Storage System                       |                                      | <u></u> |  |
| . A      | Tank                                   | (External)                           | Internal (Y or N)                    | -       |  |
| Α'       | Flow                                   | Totalizer                            | Reading = <u>54</u> 00 gal.          |         |  |
| В        | Seco                                   | ondary Containment                   | Liquid (Y or N)                      | -       |  |
| С        | Pipir                                  | ng Components                        |                                      |         |  |
| D        | Electrical Components Lock Light Bulbs |                                      |                                      | U       |  |
| E        | Lead                                   | Leachate Sampling (Y or (See Form C) |                                      |         |  |
| Addition | nal Col                                | mments:                              |                                      |         |  |
|          |                                        |                                      |                                      |         |  |

| DOMANI Representative: | BHM | Date: | 2/27/ | oul |
|------------------------|-----|-------|-------|-----|
| •                      |     |       | t (   |     |

| Category | Inspected                 |                   | Observation/Condition       | 1        |
|----------|---------------------------|-------------------|-----------------------------|----------|
| 1 Inspe  | ction Overview            |                   |                             | <u>'</u> |
| Α        | Reason for Inspection     | RAF G             | W SPDES                     |          |
| В        | Regulatory Inspection     | DER DC            | W                           |          |
| С        | Photos Taken              | 35mm Di           | gital                       |          |
| 2 Grou   | ndwater Monitoring Wells  |                   |                             | <b>I</b> |
| Α        | Condition                 | MW-6R, MW         | -13A, MW-14, MW-17, MW-18   | B        |
| В        | Water Levels              | (Y or N) (see For | m C)                        |          |
| С        | Groundwater Sampling      | (Y or N) (see For | m D)                        |          |
| 3 Colle  | ction Trenches            |                   |                             | [        |
| Α        | MH-1                      | DTW               | Total: <u>11.55</u>         | T        |
| В        | MH-2C (Collection)        | DTW               | Total: <u>12.80</u>         |          |
| С        | MH-2P (Pumping)           | DTW               | Total: <u>14.17</u>         |          |
| 4 Air St | ripper                    |                   | A 2002 Am 1                 |          |
| Α        | MH-1 - Flow Totalizer     | Pooding = #3      | <u>1858984</u>              | anm      |
| A        | ^                         |                   | -                           | gpm.     |
| В        | MH-2 - Flow Totalizer     | Reading =         | 714 0 gal. Rate: 6          | gpm      |
| С        | Sump - Flow Totalizer     | Reading = 178     | 0 gal. Rate:                | gpm      |
| D        | Blower Hours              | Reading = 703     | O. S Hours.                 |          |
| Addition | al Comments: MH           | + 2 Alarm         |                             |          |
|          |                           | C TROOM           |                             |          |
| •        |                           |                   |                             |          |
|          |                           |                   |                             |          |
|          |                           |                   |                             |          |
| Contacts | <u>5:</u>                 |                   |                             |          |
| DOMANI   | Syracuse Office           | 475.3700          | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
| RAF      |                           | 733.6230          | Evergreen, Tom Gehig (cell) | 725.3200 |
|          | Equities, Jessie Bailey   | 866.7403          | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge | Maintenance, Charles Dovi | 534.3490 (cell)   | Utica Converters, Al Born   | 733.8974 |
| NYSDEC   | , DER, Phil Waite         | 785.2605          | Deiorio's, Richard Viti     | 724.2401 |

LAST LOS

## RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 DMR- Need 11/03-12/03 1/04-2/04 W/ANAIYTICAIS TOXICITY - 4 Phar

DOMANI Representative: RSN SM Date: 3/10/01

| Ca | ategory | Inspected                    | Observation/Condition                                            | J        |
|----|---------|------------------------------|------------------------------------------------------------------|----------|
| 1  | Gene    | ral Property                 |                                                                  |          |
|    | Α       | General Property Access      | OK ,                                                             |          |
|    | В       | General Property Drainage    | SPDES Outfall (001 002 003)                                      |          |
| 2  | Cell P  | erimeter Components          |                                                                  | •        |
|    | Α       | Perimeter and Access Roads   | ôΥ                                                               |          |
|    | В       | Ditches                      | DK                                                               | <b>/</b> |
|    | С       | Culverts                     | OK                                                               |          |
|    | D       | Perimeter Fence              | Gates                                                            |          |
|    | E       | Utilities                    | Elec Phone                                                       |          |
| 3  | Conta   | inment Cell                  |                                                                  | _        |
|    | Α       | Surface Cover System         | Burrows Vegetation                                               |          |
|    | В       | Gas Vents (2)                | ·                                                                |          |
|    | B'      | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm                   |          |
|    | С       | Collection Pipe / Cleanout   |                                                                  |          |
|    | D       | Perimeter Drains (4)         |                                                                  |          |
| 4  | Leach   | nate Collection Manhole      |                                                                  |          |
|    | A       | Structure                    | Pump 1 Hours Pump 2 Hours 213.7  (Y or N) Lead Pump Y Lag Pump Y | 1/       |
| -  | В       | Pumps and Plumbing           | Pump 1 Hours Pump 2 Hours 213.7                                  | 1        |
| ,  | B'      | Pump Changeover              | (Y or N) Lead Pump Y Lag Pump Y                                  | V        |
| 1  | В"      | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                                             |          |
|    | С       | Electrical Components        | Test Pumps (Y or N), Light Bulbs /                               | 2        |
|    | D       | Manhole Interstitial Space   | OK                                                               |          |
|    | E       | Conveyance Pipe              | OK.                                                              | 1        |
| :  | F       | Influent Pipe                | 2016                                                             | 1        |
|    | G       | Confined Space Entry         | (Y or N) (see Form B)                                            |          |
| H  | - 1     |                              | <b>1</b>                                                         | 1        |

## RAF MONTHLY INSPECTION REPORT (FORM A) OPERATION, MAINTENANCE AND MONITORING

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK , NYSDEC SITE NO. 622003

**Observation/Condition** 

DOMANI Representative: RSN/SM Date: 3/10/64

Inspected

Category

| 5 Build | ding                     |                                              |   |
|---------|--------------------------|----------------------------------------------|---|
| A       | Structure                | Lock V, Vent V, Heater V                     | 1 |
| В       | Electrical and Telephone | Elec Phone                                   |   |
| С       | Auto Dialer and Controls | Test Functions (Y or (1) (see Form F) No 7es |   |
| 6 Lead  | hate Storage System      |                                              |   |
| A       | Tank (External)          | Internal (Y or N)                            | 1 |
| A'      | Flow Totalizer           | Reading = <u>541 00</u> gal.                 |   |
| В       | Secondary Containment    | Liquid (Y or N) No Li Qui O                  |   |
| С       | Piping Components        | OK                                           | 1 |
| D       | Electrical Components    | Lock Light Bulbs O                           |   |
| E       | Leachate Sampling        | (Y or N) (see Form C) NO SAMPLING            | 1 |
|         |                          |                                              |   |
|         |                          |                                              |   |

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: RSN SM Date: 3/10/04

| Category                             | Inspected                 |                      | Observation/Condition                                    | J                    |
|--------------------------------------|---------------------------|----------------------|----------------------------------------------------------|----------------------|
| 1 Inspe                              | ction Overview            |                      |                                                          |                      |
| Α                                    | Reason for Inspection     | RAF_ G\              | NSPDES_V                                                 | V                    |
| В                                    | Regulatory Inspection     | DER DO               |                                                          |                      |
| С                                    | Photos Taken              | 35mm Dig             | ital NONE                                                |                      |
| 2 Groundwater Monitoring Wells       |                           |                      |                                                          |                      |
| Α                                    | Condition                 | MW-6R, MW            | -13A, MW-14, MW-17, MW                                   | -18                  |
| В                                    | Water Levels              | (Y or N) (see For    | m C)                                                     |                      |
| С                                    | Groundwater Sampling      | (Y or N) (see For    | m D)                                                     |                      |
| 3 Collec                             | ction Trenches            | <u> </u>             |                                                          | <u>.</u>             |
| Α                                    | MH-1                      | DTW                  | Total: <u>11.55</u> ·                                    |                      |
| В                                    | MH-2C (Collection)        | DTW                  | Total: <u>12.80</u>                                      |                      |
| С                                    | MH-2P (Pumping)           | DTW                  | Total: <u>14.17</u>                                      |                      |
| 4 Air St                             | ripper                    |                      |                                                          |                      |
| A                                    | MH-1 - Flow Totalizer     | Reading = 2860       | <u> 532 0</u> gal. Rate: <u></u>                         | gpm                  |
| В                                    | MH-2 - Flow Totalizer     | Reading = 9/6        | 0 gal. Rate: 0.0                                         | gpm                  |
| С                                    | Sump - Flow Totalizer     | Reading =            | 856 <u>0</u> gal. Rate: 0.0                              | gpm                  |
| D                                    | Blower Hours              | Reading =            | Hours.                                                   |                      |
| Addition                             | al Comments: MH- 2        | Alarm Li             | OF ON                                                    |                      |
|                                      |                           | `                    |                                                          |                      |
|                                      | MAGNELELI                 | c = 15" of           | WC                                                       |                      |
| MH-2                                 | ?-3"-> 11/2"-3" MH-1      | - 4" - z" -          | <b>&gt;</b> 4 "                                          |                      |
| Contacts                             |                           |                      |                                                          |                      |
|                                      | Syracuse Office           | 475.3700             | NYSDEC, DOW, Chad Kehoe                                  | 793.2554             |
| RAF Coolidge Equities, Jessie Bailey |                           | 733.6230<br>866.7403 | Evergreen, Tom Gehig (cell)  Dodge Graphics, Don Zimbler | 725.3200<br>735.9226 |
| Coolidge                             | Maintenance, Charles Dovi | 534.3490 (cell)      | Utica Converters, Al Born                                | 733.8974             |
|                                      | , DER, Phil Waite         | 785.2605             | Deiorio's, Richard Viti                                  | 724.2401             |
|                                      | and Gere – Martin Kovely  | 729-1300 (cell)      | <b>'</b>                                                 |                      |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

NYSDEC SITE NO. 622003

DOMANI Representative: 25N BHM Date: 3/19/04

| Category | · · · · · · · · · · · · · · · · · · · | Observation/Condition                                                                               | 1                                                |  |  |
|----------|---------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| 1 Inspe  | ection Overview                       |                                                                                                     |                                                  |  |  |
| Α        | Reason for Inspection                 | RAF SPDES                                                                                           |                                                  |  |  |
| В        | Regulatory Inspection                 | DER DOW                                                                                             | 1                                                |  |  |
| С        | Photos Taken                          | 35mm Digital NONE                                                                                   |                                                  |  |  |
| 2 Grou   | ndwater Monitoring Wells              |                                                                                                     |                                                  |  |  |
| Α        | Condition                             | MW-6R, MW-13A, MW-14, MW-17, MW-18                                                                  |                                                  |  |  |
| В        | Water Levels                          | (Y or N) (see Form C)                                                                               |                                                  |  |  |
| С        | Groundwater Sampling                  | (Y or N) (see Form D)                                                                               |                                                  |  |  |
| 3 Colle  | ction Trenches                        |                                                                                                     | 1                                                |  |  |
| Α        | MH-1                                  | DTW Total: <u>11.55</u>                                                                             |                                                  |  |  |
| В        | MH-2C (Collection)                    | DTW Total: <u>12.80</u>                                                                             |                                                  |  |  |
| С        | MH-2P (Pumping)                       | DTW Total: <u>14.17</u>                                                                             |                                                  |  |  |
| 4 Air S  | tripper                               |                                                                                                     |                                                  |  |  |
| Α        | MH-1 - Flow Totalizer                 | Reading = <u>0</u> gal. Rate: gpm                                                                   |                                                  |  |  |
| В        | MH-2 - Flow Totalizer                 | Reading = <u>0</u> gal. Rate: gpm                                                                   |                                                  |  |  |
| С        | Sump - Flow Totalizer                 | Reading =         0 gal.         Rate:         gpm                                                  | <del>                                     </del> |  |  |
| D        | Blower Hours                          | Reading = Hours.                                                                                    |                                                  |  |  |
| Addition | nal Comments: SPDES                   | ANNUAL INSPECTION W/ Chad Kence<br>Wed SPDFS Files & DATA. INSPECTED<br>FILES and OUTFAILS WERE OK. | <u> </u>                                         |  |  |
| 1/457    | DEC-DOW- Devie                        | WED SPIES FILES & DATA. INSPECTED                                                                   | 1                                                |  |  |
| OutFo    | alls 001,002 \$ 003                   | . Files and Outfalls Were OK.                                                                       |                                                  |  |  |
| <u> </u> |                                       | wither Actions are needed frequire                                                                  | De la                                            |  |  |
| Contact  |                                       | WINCI ACTIONS WILL HEACT TAGUIT                                                                     | <u>~</u>                                         |  |  |
| DOMAN    | I Syracuse Office                     | 475.3700 NYSDEC, DOW, Chad Kehoe 793.2554                                                           | 4                                                |  |  |
| RAF      |                                       | 733.6230 Evergreen, Tom Gehig (cell) 725.3200                                                       |                                                  |  |  |
|          | e Equities, Jessie Bailey             | 866.7403 Dodge Graphics, Don Zimbler 735.922                                                        | 6                                                |  |  |
| Coolidg  | e Maintenance, Charles Dovi           | 534.3490 (cell) Utica Converters, Al Born 733.897                                                   | - 4                                              |  |  |
|          | C, DER, Phil Waite                    | 785.2605 Deiorio's, Richard Viti 724.240                                                            | 1                                                |  |  |
| O'Brien  | and Gere – Martin Kovely              | 729-1300 (cell)                                                                                     |                                                  |  |  |

| DC      | OMAN   | I Representative: 5. Ma#M   | ws                          | Date: 3-24-04                                         |                      |  |  |
|---------|--------|-----------------------------|-----------------------------|-------------------------------------------------------|----------------------|--|--|
| Cat     | egory  | Inspected                   | Observation/Condition       |                                                       |                      |  |  |
| 1       | Inspe  | ection Overview             |                             |                                                       |                      |  |  |
|         | Α      | Reason for Inspection       | RAF GW                      | / SPDES                                               |                      |  |  |
|         | В      | Regulatory Inspection       | DER DO\                     | N                                                     |                      |  |  |
|         | С      | Photos Taken                | 35mm Digi                   | tal                                                   |                      |  |  |
| 2       | Grou   | ndwater Monitoring Wells    |                             |                                                       |                      |  |  |
|         | Α      | Condition                   | MW-6R, MW-                  | 13A, MW-14, MW-17, MW-18_                             | _                    |  |  |
|         | В      | Water Levels                | (Y or N) (see Forn          | 1 C)                                                  |                      |  |  |
|         | С      | Groundwater Sampling        | (Y or N) (see Form          | n D)                                                  |                      |  |  |
| 3       | Colle  | ction Trenches              |                             |                                                       |                      |  |  |
|         | A      | MH-1                        | DTW                         |                                                       |                      |  |  |
|         | В      | MH-2C (Collection)          | DTW                         | Total: <u>12.80</u>                                   |                      |  |  |
|         | С      | MH-2P (Pumping)             | DTW                         | Total: <u>14.17</u>                                   |                      |  |  |
| 4       | Air S  | tripper                     |                             |                                                       |                      |  |  |
|         | A      | MH-1 - Flow Totalizer       | Reading = 281               | 2.6 0 gal. Rate: 0                                    | gpm                  |  |  |
| <u></u> | В      | MH-2 - Flow Totalizer       | Reading = 00                | <b>4727</b> 0 gal. Rate: ○                            | gpm                  |  |  |
|         | С      | Sump - Flow Totalizer       | Reading = 60                | 1656 0 gal. Rate: 0                                   | gpm                  |  |  |
|         | D      | Blower Hours                | Reading = 203               | 56.5Hours.                                            |                      |  |  |
| A       | dditio | nal Comments:               | <u> </u>                    |                                                       |                      |  |  |
|         |        | MHZ - code f                | Lee                         |                                                       |                      |  |  |
| C       | ontac  | <u>ts:</u>                  |                             |                                                       |                      |  |  |
| D       | OMAN   | Il Syracuse Office          | 475.3700                    | NYSDEC, DOW, Chad Kehoe                               | 793.2554             |  |  |
|         | AF     |                             | 733.6230                    | Evergreen, Tom Gehig (cell)                           | 725.3200<br>735.9226 |  |  |
| C       | oolidg | e Equities, Jessie Bailey   | 866.7403                    | Dodge Graphics, Don Zimbler Utica Converters, Al Born | 733.8974             |  |  |
| C       | oolide | e Maintenance, Charles Dovi | 534.3490 (cell)             | Deiorio's, Richard Viti                               | 724.2401             |  |  |
|         |        | C, DER, Phil Waite          | 785.2605<br>729-1300 (cell) | Delotto S, Nichara VIII                               | , = 112 / 0          |  |  |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: 1.1 TSHER + 8 NIGULAD ate: 4-7-04

| Categor  | y Inspected                  | Observation/Condition                          | 1           |
|----------|------------------------------|------------------------------------------------|-------------|
| 1 Gene   | eral Property                |                                                |             |
| Α        | General Property Access      | TRACE SHOW                                     |             |
| В        | General Property Drainage    | SPDES Outfall (001 V 002 003 V) SAMPLED        | -           |
| 2 Cell I | Perimeter Components         |                                                |             |
| Α        | Perimeter and Access Roads   |                                                | -           |
| В        | Ditches                      |                                                | 4           |
| С        | Culverts                     |                                                |             |
| D        | Perimeter Fence              | Gates                                          | -           |
| E        | Utilities                    | ElecPhone                                      | V           |
| 3 Cont   | ainment Cell                 |                                                | •           |
| Α        | Surface Cover System         | Burrows (1) Vegetation VEW GROWS               |             |
| В        | Gas Vents (2)                |                                                |             |
| B'       | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm |             |
| С        | Collection Pipe / Cleanout   |                                                |             |
| D        | Perimeter Drains (4)         |                                                | /           |
| 4 Leac   | hate Collection Manhole      |                                                | <del></del> |
| Α        | Structure -                  | External Internal                              |             |
| В        | Pumps and Plumbing           | Pump 1 Hours /22.9 Pump 2 Hours 2/4.0          | V           |
| B'       | Pump Changeover              | (Yor N) Lead Pump / Lag Pump Z                 |             |
| В"       | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                           |             |
| С        | Electrical Components        | Test Pumps (Y or N), Light Bulbs OK            |             |
| D        | Manhole Interstitial Space   |                                                | 1/          |
| E        | Conveyance Pipe              |                                                | 1           |
| F        | Influent Pipe                |                                                |             |
| G        | Confined Space Entry         | (Y of N) (see Form B)                          |             |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

| ng                       |                                                                                                                                                                                     | ŀ                                                                                                                                                                                                                                                                          |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ' <del>'</del>           |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Structure                | Lock_, Vent_0ff, Heater_0N                                                                                                                                                          |                                                                                                                                                                                                                                                                            |
| Electrical and Telephone |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Auto Dialer and Controls | Test Functions (Y or N) see Form F)                                                                                                                                                 | V                                                                                                                                                                                                                                                                          |
| ate Storage System       |                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                   |
| Tank (External)          | Internal (Y of Ny                                                                                                                                                                   | · /                                                                                                                                                                                                                                                                        |
| Flow Totalizer           | Reading = <u>546 00</u> gal.                                                                                                                                                        | ·                                                                                                                                                                                                                                                                          |
| Secondary Containment    | Liquid (Y or N)                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Piping Components        |                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                          |
| Electrical Components    | Lock Light Bulbs                                                                                                                                                                    |                                                                                                                                                                                                                                                                            |
| _eachate Sampling        | (Y or N) (see Form C)                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                   |
| SPDES SAMP               | LE TODAY                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |
|                          |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
|                          |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
|                          |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
|                          | Electrical and Telephone Auto Dialer and Controls ate Storage System Fank (External) Flow Totalizer Secondary Containment Piping Components Electrical Components Leachate Sampling | Electrical and Telephone  Auto Dialer and Controls  Test Functions (Y or N) (see Form F)  Ate Storage System  Tank (External)  Flow Totalizer  Reading = 546 00 gal.  Diping Components  Electrical Components  Lock Light Bulbs  Leachate Sampling  (Y or N) (see Form C) |

I

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK NYSDEC SITE NO. 622003**

160MAN Date: 4-7-04 DOMANI Representative:

| Cat | Category Inspected Observation/Condition |                          |                                                                         | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J        |
|-----|------------------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1   | Inspe                                    | ction Overview           | /                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | Α                                        | Reason for Inspection    | RAF GW SPDES                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | В                                        | Regulatory Inspection    | DER DOW                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~        |
|     | С                                        | Photos Taken             | 35mm Digital                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~        |
| 2   | Grour                                    | ndwater Monitoring Wells |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | Α                                        | Condition                | MW-6R, MW-13A, MW-14, MW-1                                              | 7_, MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|     | В                                        | Water Levels             | (Y or N) (see Form C)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | С                                        | Groundwater Sampling     | (Y or N) (see Form D)                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 3   | Collec                                   | ction Trenches           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |
|     | Α                                        | MH-1                     | DTW_ <b>88</b> Total: <u>11.55</u>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | В                                        | MH-2C (Collection)       | DTW <b>/ 4 7</b> Total: <u>12.80</u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | С                                        | MH-2P (Pumping)          | DTW_ <b>/4/</b> " Total: <u>14.17</u> <b>/37</b> "                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 4   | Air St                                   | ripper                   | START 13:30 END                                                         | ) 15.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|     | A                                        | MH-1 - Flow Totalizer    | START 13:30 END<br>Reading = 2885301 0 gal Report                       | <b>こ8955フラ</b> 0 gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|     | В                                        | MH-2 - Flow Totalizer    | Reading = <u>092, 4492, 0</u> gal <del>. Rate</del> :                   | 09245510 gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|     | С                                        | Sump - Flow Totalizer    | Reading = 00/7 89/ 10 gal Rabe.                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|     | D                                        | Blower Hours             | Reading = 20350.5 Hours.                                                | 20350.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Aa  | dition                                   | al Comments: 42(option   | 70 (OPEN)                                                               | Control of the Contro | •        |
|     | M4                                       | 1 / Pump 1 = 0K          | UMPZ = OK GOGPM / 1366                                                  | PM BOTH W/VALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 OPE   |
|     | MPH-                                     | T / PUMP 1 = OK /        | PUMPZ = OK GOGPM / 1366<br>PUMPZ RIGHAY BAD / 20<br>EXTERS - CHECK VALU | \$10 6PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W.       |
|     | ontacts                                  | METER COUNT GO           | L BOTH DIRECTION                                                        | es voi vona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|     |                                          | Syracuse Office          | 475.3700 NYSDEC, DOW, Chad Kel                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| RA  | \ <u> </u>                               |                          | 733.6230 Evergreen, Tom Gehig (co                                       | ell) 725.3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>'</u> |

866.7403

785.2605

534.3490 (cell)

729-1300 (cell)

Dodge Graphics, Don Zimbler

Utica Converters, Al Born

Deiorio's, Richard Viti

735.9226

733.8974

724.2401

N

Coolidge Equities, Jessie Bailey

O'Brien and Gere - Martin Kovely

NYSDEC, DER, Phil Waite

Coolidge Maintenance, Charles Dovi

# REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: RSN/5JM Date: 4/22/04

| Catego     | Category Inspected Observation/Condition |                                                            |  |  |
|------------|------------------------------------------|------------------------------------------------------------|--|--|
| 1 Ins      | pection Overview                         |                                                            |  |  |
| A          | Reason for Inspection                    | RAF GW SPDES                                               |  |  |
| В          | Regulatory Inspection                    | DER DOW                                                    |  |  |
| С          | Photos Taken                             | 35mm Digital                                               |  |  |
| 2 Gro      | undwater Monitoring Wells                |                                                            |  |  |
| Α          | Condition                                | MW-6R, MW-13A, MW-14, MW-17, MW-18                         |  |  |
| В          | Water Levels                             | (Y or N) (see Form C)                                      |  |  |
| С          | Groundwater Sampling                     | (Y or N) (see Form D)                                      |  |  |
| 3 Col      | lection Trenches                         |                                                            |  |  |
| , <b>A</b> | MH-1                                     | DTW Total: <u>11.55</u>                                    |  |  |
| В          | MH-2C (Collection)                       | DTW Total: <u>12.80</u>                                    |  |  |
| С          | MH-2P (Pumping)                          | DTW Total: <u>14.17</u>                                    |  |  |
| 4 Air      | _l<br>Stripper                           |                                                            |  |  |
| А          | MH-1 - Flow Totalizer                    | Reading = <u>1905104@ 0</u> gal. Rate: <u>55 (</u> #2) gpm |  |  |
| В          | MH-2 - Flow Totalizer                    | Reading = <u>9403550</u> 0 gal. Rate: <u>22</u> gpm        |  |  |
| С          | Sump - Flow Totalizer                    | Reading =                                                  |  |  |
| D          | Blower Hours                             | Reading = <u>203,50</u> Hours.                             |  |  |

Additional Comments: As MADNeLelic - 1011 HZD

#### Contacts:

| DOMANI Syracuse Office             | 475.3700        | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
|------------------------------------|-----------------|-----------------------------|----------|
| RAF                                | 733.6230        | Evergreen, Tom Gehig (cell) | 725.3200 |
| Coolidge Equities, Jessie Bailey   | 866.7403        | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge Maintenance, Charles Dovi | 534.3490 (cell) | Utica Converters, Al Born   | 733.8974 |
| NYSDEC, DER, Phil Waite            | 785.2605        | Deiorio's, Richard Viti     | 724.2401 |
| O'Brien and Gere – Martin Kovely   | 729-1300 (cell) |                             |          |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: FISHER | WEGOLIAN Date: 5-18-04

| Categor | ry Inspected                 | Observation/Condition                          | 1  |
|---------|------------------------------|------------------------------------------------|----|
| 1 Gen   | eral Property                |                                                |    |
| Α       | General Property Access      |                                                |    |
| В       | General Property Drainage    | SPDES Outfall (001 002 003 ) 5AM P42           | -  |
| 2 Cell  | Perimeter Components         |                                                |    |
| A       | Perimeter and Access Roads   |                                                |    |
| В       | Ditches                      |                                                |    |
| С       | Culverts                     |                                                |    |
| D       | Perimeter Fence              | Gates_                                         | 1  |
| E       | Utilities                    | Elec. Phone                                    | 1  |
| 3 Con   | tainment Cell                | - N. J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |    |
| Α       | Surface Cover System         | Burrows 284 Vegetation 600                     | i  |
| В       | Gas Vents (2)                |                                                | 1  |
| B'      | PID Readings                 | (Y of N) Background ppm, @ 20' ppm, @ Vent ppm |    |
| С       | Collection Pipe / Cleanout   |                                                |    |
| D       | Perimeter Drains (4)         |                                                | 1  |
| 4 Lead  | chate Collection Manhole     |                                                |    |
| Α       | Structure                    | External_V Internal_V                          | V  |
| В       | Pumps and Plumbing           | Pump 1 Hours /23.0 Pump 2 Hours 2-14.0         | 1  |
| B'      | Pump Changeover              | (Y or N) Lead Pump Lag Pump _ Z                | 1  |
| В"      | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                           | 1/ |
| С       | Electrical Components        | Test Pumps (Y or N), Light Bulbs               |    |
| D       | Manhole Interstitial Space   |                                                | 1  |
| E       | Conveyance Pipe              |                                                | 1  |
| F       | Influent Pipe                |                                                | 1  |
| G       | Confined Space Entry         | (Y of N)/(see Form B)                          | +  |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: Fisher/Negolian Date: 5-18-04

| Category Inspected |                       | Inspected             | Observation/Condition                 | 1       |  |
|--------------------|-----------------------|-----------------------|---------------------------------------|---------|--|
| Buil               | ding                  |                       | 1                                     |         |  |
| Α                  | Struc                 | ture                  | Lock, Vent, Heater                    |         |  |
| В                  | Electi                | rical and Telephone   | Elec Phone                            |         |  |
| С                  | Auto                  | Dialer and Controls   | Test Functions (Y or N) (see Form F)  |         |  |
| Lea                | hate S                | torage System         | · · · · · · · · · · · · · · · · · · · | <u></u> |  |
| Α                  | Tank                  | (External)            | Internal (Y or N)                     |         |  |
| A'                 | Flow                  | Totalizer             | Reading = <u>5 4 8 00</u> gal.        |         |  |
| В                  | Secondary Containment |                       | Liquid (Y or N)                       |         |  |
| С                  | Pipin                 | g Components          |                                       |         |  |
| D                  | Electi                | rical Components      | Lock Light Bulbs                      |         |  |
| E                  | Leacl                 | hate Sampling         | (Y or N) (see Form C)                 |         |  |
| Additio            | nal Con               | nments:<br>CKITED BUR | OWS                                   |         |  |

| The state of the s |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

|                        | • •   | 110000112 | .to. ozzoo | '    | 1   |  |
|------------------------|-------|-----------|------------|------|-----|--|
| DOMANI Representative: | RSW 1 | PMF       | Date:      | 5/18 | 104 |  |
| •                      |       | 1 1 1     |            |      |     |  |

| Category | y Inspected                 |                   | Observation/Condition          | J                                       |
|----------|-----------------------------|-------------------|--------------------------------|-----------------------------------------|
| 1 Inspe  | ection Overview             |                   |                                |                                         |
| Α        | Reason for Inspection       | RAF G\            | N SPDESV                       | ů.                                      |
| В        | Regulatory Inspection       | DER DO            | w                              |                                         |
| С        | Photos Taken                | 35mm Dig          | ital                           | V                                       |
| 2 Grou   | ndwater Monitoring Wells    |                   |                                |                                         |
| Α        | Condition                   | MW-6R, MW         | -13A, MW-14, MW-17, MW-1       | 8 /                                     |
| В        | Water Levels                | (Y or N) (see For | m C)                           | V                                       |
| С        | Groundwater Sampling        | (Y or N) (see For | m D)                           | V                                       |
| 3 Colle  | ction Trenches              |                   |                                |                                         |
| Α        | MH-1                        | DTW               | Total: <u>11.55</u>            |                                         |
| В        | MH-2C (Collection)          | DTW               | Total: 12.80 OPEN              | V                                       |
| С        | MH-2P (Pumping)             | DTW               |                                | V                                       |
| 4 Air S  | tripper                     | <u> </u>          | <i>υ, μ</i>                    |                                         |
| Α        | MH-1 - Flow Totalizer       | Reading = 2911    | 05 (6 ( 0 gal. Rate:           | gpm /                                   |
| В        | MH-2 - Flow Totalizer       | Reading = 960     | 6378 0 gal. Rate:              | gpm _/                                  |
| С        | Sump - Flow Totalizer       | Reading = 180     | 12 0 gal. Rate:                | gpm _/                                  |
| D        | Blower Hours                | Reading = 203     | <i>5<sub>0</sub> .5</i> Hours. | *************************************** |
| Addition | nal Comments: GPTS )        | ~() N /           | MARTIN ONS, TE - REST          | ART                                     |
| MH       | -18 MH-2 - AIArm            | Lit               | (CLOSED VALVE-SHU              | DONN)                                   |
| _        |                             |                   | Air Pressure Alar              | m                                       |
| Contact  | <u>s:</u>                   |                   |                                | 100                                     |
| DOMAN    | l Syracuse Office           | 475.3700          | NYSDEC, DOW, Chad Kehoe        | 793.2554                                |
| RAF      |                             | 733.6230          | Evergreen, Tom Gehig (cell)    | 725.3200                                |
|          | e Equities, Jessie Bailey   | 866.7403          | Dodge Graphics, Don Zimbler    | 735.9226                                |
| Coolidge | e Maintenance, Charles Dovi | 534.3490 (cell)   | Utica Converters, Al Born      | 733.8974                                |
|          | C, DER, Phil Waite          | 785.2605          | Deiorio's, Richard Viti        | 724.2401                                |
|          | and Gere – Martin Kovely    | 729-1300 (cell)   |                                |                                         |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: Fisher Negolian Date: 5-28-04

| Categor  | y Inspected                                              |                                          | Observation/Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |
|----------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
| 1 Inspe  | ection Overview                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |
| Α        | Reason for Inspection                                    | RAF G                                    | W SPDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |
| В        | Regulatory Inspection                                    | DER DC                                   | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |  |  |
| С        | Photos Taken                                             | 35mm Dig                                 | pital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |
| 2 Grou   | ndwater Monitoring Wells                                 |                                          | - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |  |  |
| Α        | Condition                                                | MW-6R, MW                                | -13A, MW-14, MW-17, M\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-18                 |  |  |
| В        | Water Levels                                             | (Y or N) (see For                        | m C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |  |  |
| С        | Groundwater Sampling                                     | (Y or N) (see For                        | m D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |  |  |
| 3 Colle  | ction Trenches                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |
| Α        | MH-1                                                     | DTW                                      | Total: <u>11.55</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |
| В        | MH-2C (Collection)                                       | DTW                                      | Total: <u>12.80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |
| С        | MH-2P (Pumping)                                          | DTW                                      | Total: <u>14.17</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |  |  |
| 4 Air S  | tripper                                                  |                                          | order of the first |                      |  |  |
| Α        | MH-1 - Flow Totalizer                                    | Reading = 2                              | 11878 0 gal. Rate: <i>55</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gpm                  |  |  |
| В        | MH-2 - Flow Totalizer                                    | Reading = 95                             | 5168 0 gal. Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gpm                  |  |  |
| С        | Sump - Flow Totalizer                                    | Reading = 180                            | 12 <u>0</u> gal. Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gpm                  |  |  |
| D        | Blower Hours                                             | Reading = <u>20350</u> . <u>5</u> Hours. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |
| Addition | nal Comments: Air Strí                                   | pper Pressi                              | ure 12" 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |
| Contact  | <u>s:</u>                                                | 44 17 E                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |
|          | l Syracuse Office                                        | 475.3700                                 | NYSDEC, DOW, Chad Kehoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 793.2554             |  |  |
| RAF      | - Equition Innois Balley                                 | 733.6230                                 | Evergreen, Tom Gehig (cell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 725.3200             |  |  |
|          | e Equities, Jessie Bailey<br>e Maintenance, Charles Dovi | 866.7403<br>534.3490 (cell)              | Dodge Graphics, Don Zimbler Utica Converters, Al Born                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 735.9226<br>733.8974 |  |  |
|          | c, DER, Phil Waite                                       | 785.2605                                 | Deiorio's, Richard Viti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 724.2401             |  |  |
|          | and Gere – Martin Kovely                                 | 729-1300 (cell)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK** NYSDEC SITE NO. 622003

| Catego  | ry Inspected              | Observation/Condition                                    | J          |  |  |  |
|---------|---------------------------|----------------------------------------------------------|------------|--|--|--|
| 1 Insp  | Inspection Overview       |                                                          |            |  |  |  |
| A       | Reason for Inspection     | RAF GW SPDES                                             | <b>\</b>   |  |  |  |
| В       | Regulatory Inspection     | DER DOW                                                  |            |  |  |  |
| С       | Photos Taken              | 35mm Digital                                             | <b>/</b> / |  |  |  |
| 2 Gro   | undwater Monitoring Wells |                                                          | <u>-L</u>  |  |  |  |
| Α       | Condition                 | MW-6R, MW-13A, MW-14, MW-17, MW-18                       |            |  |  |  |
| В       | Water Levels              | (Y or N) (see Form C)                                    |            |  |  |  |
| С       | Groundwater Sampling      | (Y or N) (see Form D)                                    |            |  |  |  |
| 3 Coll  | ection Trenches           |                                                          |            |  |  |  |
| Α       | MH-1                      | DTW Total: <u>11.55</u>                                  |            |  |  |  |
| В       | MH-2C (Collection)        | DTW Total: <u>12.80</u>                                  | -          |  |  |  |
| С       | MH-2P (Pumping)           | DTW Total: <u>14.17</u>                                  |            |  |  |  |
| 4 Air S | Stripper                  |                                                          |            |  |  |  |
| Α       | MH-1 - Flow Totalizer     | Reading = <u>291999</u> 0 gal. Rate:gpm                  |            |  |  |  |
| В       | MH-2 - Flow Totalizer     | Reading = 98004 0 gal. Rate: gpm                         |            |  |  |  |
| С       | Sump - Flow Totalizer     | Reading = <u>/8012</u> <u>0</u> gal. Rate: <u>gpm</u>    |            |  |  |  |
| D       | Blower Hours              | Reading = 26350.5 Hours. A/S MAG. = 12" H <sub>2</sub> O |            |  |  |  |

| - REVIEW NW KOUPLEADERS     |             |
|-----------------------------|-------------|
|                             |             |
| - FILLED 2 GROUND HOE HOLES | AT RAF CELL |
|                             |             |

#### Contacts:

| DOMANI Syracuse Office             | 475.3700        | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
|------------------------------------|-----------------|-----------------------------|----------|
| RAF                                | 733.6230        | Evergreen, Tom Gehig (cell) | 725.3200 |
| Coolidge Equities, Jessie Bailey   | 866.7403        | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge Maintenance, Charles Dovi | 534.3490 (cell) | Utica Converters, Al Born   | 733.8974 |
| NYSDEC, DER, Phil Waite            | 785.2605        | Deiorio's, Richard Viti     | 724.2401 |
| O'Brien and Gere – Martin Kovely   | 729-1300 (cell) |                             |          |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative: RSN Date: 6/18/04

| Cate                        | gor    | Inspected                    | Observation/Condition                               | 1       |
|-----------------------------|--------|------------------------------|-----------------------------------------------------|---------|
| 1 (                         | Gene   | ral Property                 |                                                     |         |
|                             | A      | General Property Access      | OK.                                                 | TV      |
| B General Property Drainage |        | General Property Drainage    | SPDES Outfall (001V002003)                          | 1       |
| 2 (                         | Cell F | Perimeter Components         |                                                     | 1-      |
|                             | Α      | Perimeter and Access Roads   | OF                                                  | T/      |
|                             | В      | Ditches                      | O.C.                                                | V       |
|                             | С      | Culverts                     | OK                                                  | 1       |
|                             | D      | Perimeter Fence              | Gates_V_                                            | V       |
|                             | E      | Utilities                    | Elec. Phone /                                       | -       |
| 3 C                         | Conta  | ainment Cell                 |                                                     |         |
|                             | Α      | Surface Cover System         | Burrows 2 Vegetation OL FilleD                      | 1       |
|                             | В      | Gas Vents (2)                | OK                                                  | 1       |
|                             | B'     | PID Readings                 | (Y o(N) Background ppm, @ 20' ppm, @ Vent ppm       |         |
|                             | С      | Collection Pipe / Cleanout   | OK '                                                |         |
|                             | D      | Perimeter Drains (4)         | OF                                                  |         |
| 4 L                         | .eacl  | nate Collection Manhole      | /                                                   |         |
|                             | Α      | Structure                    | External Internal                                   |         |
|                             | В      | Pumps and Plumbing           | Pump 1 Hours <u>123.1</u> Pump 2 Hours <u>214.0</u> | <u></u> |
|                             | B'     | Pump Changeover              | (Y or (N) Lead Pump 1 Lag Pump 2 OK                 | -       |
| 1                           | В"     | Test Automatic Pump Controls | LSHH_V, LSH_V, LSL_V, LSLL_V                        | 1       |
|                             | С      | Electrical Components        | Test Pumps (M) or N), Light Bulbs V                 | -       |
|                             | D      | Manhole Interstitial Space   | OK                                                  | 1       |
|                             | E      | Conveyance Pipe              | OK                                                  | 1       |
|                             | F      | Influent Pipe                | 014                                                 | ·-      |
|                             | G      | Confined Space Entry         | (Y or N) (see Form B)                               |         |
|                             |        |                              |                                                     | 1       |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

**Observation/Condition** 

DOMANI Representative: R5N Date: 6 (18 04

|        |                                       |                                      | '        |
|--------|---------------------------------------|--------------------------------------|----------|
| 5 Buil | ding                                  |                                      |          |
| Α      | Structure                             | Lock V, Vent V, Heater V             |          |
| В      | Electrical and Telephone              | Elec / Phone /                       |          |
| С      | Auto Dialer and Controls              | Test Functions (Y or N) (see Form F) |          |
| Lead   | chate Storage System                  |                                      |          |
| Α      | Tank (External)                       | Internal ( or N) TANK OK             | V        |
| A'     | Flow Totalizer                        | Reading = <u>552</u> 00 gal.         |          |
| В      | Secondary Containment                 | Liquid (Y or N)                      |          |
| С      | Piping Components                     | 014                                  |          |
| D      | Electrical Components                 | Lock Light Bulbs O F                 |          |
| E      | Leachate Sampling                     | (Y or(N)) (see Form C)               |          |
|        | 2 BUTTOWS TO                          | UND & FILLED                         |          |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        |                                       |                                      | <u> </u> |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        |                                       |                                      |          |
|        | · · · · · · · · · · · · · · · · · · · |                                      |          |
|        |                                       |                                      |          |

Category

Inspected

| DOMANI Representative:_ | RSN | Date: | 6 | 118 | 100 | 1 |
|-------------------------|-----|-------|---|-----|-----|---|
|                         |     |       | _ | į   | V - |   |

| Reason for Inspection Regulatory Inspection Photos Taken Water Monitoring Wells Condition Vater Levels | RAF_ GW_ SPDES_   DER_ DOW_   35mm_ Digital_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Regulatory Inspection Photos Taken dwater Monitoring Wells Condition                                   | DER DOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| Photos Taken  dwater Monitoring Wells  Condition                                                       | 35mm Digital/\\(\sigma\) \(\sigma\) \(\sigma |                                                  |
| dwater Monitoring Wells                                                                                | MW-6R, MW-13A, MW-14, MW-17, MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| Condition                                                                                              | MW-6R, MW-13A, MW-14, MW-17, MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| Vater Levels                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                        | (Y or (N) (see Form C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |
| Groundwater Sampling                                                                                   | (Y or(N))(see Form D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                |
| ion Trenches                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ــــــ                                           |
| <b>/IH-1</b>                                                                                           | DTW Total: <u>11.55</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| MH-2C (Collection)                                                                                     | DTW Total: <u>12.80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| MH-2P (Pumping)                                                                                        | DTW Total: <u>14.17</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                         |
| pper                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\vdash$                                         |
| /IH-1 - Flow Totalizer                                                                                 | Reading = <u>2923171</u> <u>0</u> gal. Rate: <u>gpm</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                         |
| 1H-2 - Flow Totalizer                                                                                  | Reading = <u>992.898</u> 0 gal. Rate:gpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>                                     </del> |
| ump - Flow Totalizer                                                                                   | Reading = <u>18013</u> <u>0</u> gal. Rate: <u>gpm</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\vdash$                                         |
| lower Hours                                                                                            | Reading = <u>20350</u> Hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| Comments: Alc - 1/                                                                                     | 1 <sup>11</sup> 11 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                          |
| 71/3 = 1                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |
| **                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                        | ion Trenches IH-1 IH-2C (Collection) IH-2P (Pumping) Oper IH-1 - Flow Totalizer IH-2 - Flow Totalizer ump - Flow Totalizer Iower Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DTW                                              |

| DOMANI Syracuse Office             | 475.3700        | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
|------------------------------------|-----------------|-----------------------------|----------|
| RAF                                | 733.6230        | Evergreen, Tom Gehig (cell) | 725.3200 |
| Coolidge Equities, Jessie Bailey   | 866.7403        | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge Maintenance, Charles Dovi | 534.3490 (cell) | Utica Converters, Al Born   | 733.8974 |
| NYSDEC, DER, Phil Waite            | 785.2605        | Deiorio's, Richard Viti     | 724.2401 |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

SYNAPSE

DOMANI Representative:

|            | 1 01              |
|------------|-------------------|
| AUL MISHER | Date: 4 - 25 - 04 |

| Ca | ategory | Inspected                | Observation/Condition                     | J |
|----|---------|--------------------------|-------------------------------------------|---|
| 1  | Inspe   | ction Overview           |                                           |   |
| 2  | Α       | Reason for Inspection    | RAF GW SPDES /030-11:11                   |   |
|    | В       | Regulatory Inspection    | DER Y DOW PHIC WAITE (KARCY)              | V |
|    | С       | Photos Taken             | 35mm_ Digital Pur c                       |   |
| 2  | Grou    | ndwater Monitoring Wells |                                           | 1 |
|    | Α       | Condition                | MW-6R, MW-13A, MW-14, MW-17, MW-18        |   |
|    | В       | Water Levels             | (Y or N) (see Form C)                     |   |
|    | С       | Groundwater Sampling     | (Y or N) (see Form D)                     |   |
| 3  | Colle   | ction Trenches           |                                           |   |
|    | Α       | MH-1                     | DTW Total: <u>11.55</u>                   |   |
|    | В       | MH-2C (Collection)       | DTW Total: <u>12.80</u>                   |   |
|    | С       | MH-2P (Pumping)          | DTW Total: <u>14.17</u>                   |   |
| 4  | Air St  | ripper                   | 1                                         |   |
|    | Α       | MH-1 - Flow Totalizer    | Reading = <u>2924732</u> 0 gal. Rate: gpm |   |
|    | В       | MH-2 - Flow Totalizer    | Reading = <u>69965 89 0</u> gal. Rate:gpm | ~ |
|    | С       | Sump - Flow Totalizer    | Reading = / Ko 6 / Agal. Rate:gpm         | - |
|    | D       | Blower Hours             | Reading = 2035 Hours. 6-23/24-04 ADART    |   |

Additional Comments: - 4 GH Holes

MET Pain AT RAF, REVENUES; BUILDING, CELL (NOTE GROWNEHOG HOLES,

AREA 6 DITEN, OUTFALL 03A, AIR STRIPPER (RUNNING-MHZ HIGHLEVEL),

OUTFALL 003, MH-Z.

#### Contacts:

| DOMANI Syracuse Office             | 475.3700        | NYSDEC, DOW, Chad Kehoe     | 793.2554 |
|------------------------------------|-----------------|-----------------------------|----------|
| RAF                                | 733.6230        | Evergreen, Tom Gehig (cell) | 725.3200 |
| Coolidge Equities, Jessie Bailey   | 866.7403        | Dodge Graphics, Don Zimbler | 735.9226 |
| Coolidge Maintenance, Charles Dovi | 534.3490 (cell) | Utica Converters, Al Born   | 733.8974 |
| NYSDEC, DER, Phil Waite            | 785.2605        | Deiorio's, Richard Viti     | 724.2401 |
| O'Brien and Gere – Martin Kovely   | 729-1300 (cell) |                             |          |

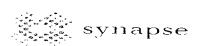
#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

| D(                                                                                                                                                                                                    | DOMANI Representative: 3, Maffhew3 Date: 7.16.04 Friday |                                                   |                             |                             |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------------|----------|--|--|
| Category                                                                                                                                                                                              |                                                         | y Inspected                                       |                             | Observation/Condition       |          |  |  |
| 1                                                                                                                                                                                                     | Insp                                                    | ection Overview                                   |                             | No.                         |          |  |  |
| Α                                                                                                                                                                                                     |                                                         | Reason for Inspection                             | RAFG                        | W SPDES                     |          |  |  |
|                                                                                                                                                                                                       | В                                                       | Regulatory Inspection                             | DERDC                       | DW                          |          |  |  |
|                                                                                                                                                                                                       | С                                                       | Photos Taken                                      | 35mm Dig                    | gital                       |          |  |  |
| 2                                                                                                                                                                                                     | Grou                                                    | ndwater Monitoring Wells                          | <u></u>                     |                             |          |  |  |
|                                                                                                                                                                                                       | Α                                                       | Condition                                         | MW-6R, MW                   | /-13A, MW-14, MW-17, MW-18  |          |  |  |
|                                                                                                                                                                                                       | В                                                       | Water Levels                                      | (Y or N) (see For           | m C)                        |          |  |  |
|                                                                                                                                                                                                       | С                                                       | Groundwater Sampling                              | (Y or N) (see For           | m D)                        |          |  |  |
| 3                                                                                                                                                                                                     | Colle                                                   | ction Trenches                                    |                             |                             |          |  |  |
|                                                                                                                                                                                                       | Α                                                       | MH-1                                              | DTW                         | Total: <u>11.55</u>         |          |  |  |
|                                                                                                                                                                                                       | В                                                       | MH-2C (Collection)                                | DTW                         | Total: <u>12.80</u>         |          |  |  |
|                                                                                                                                                                                                       | С                                                       | MH-2P (Pumping)                                   | DTW_                        | Total: 14,17                |          |  |  |
| 4                                                                                                                                                                                                     | Air S                                                   | tripper                                           |                             |                             |          |  |  |
|                                                                                                                                                                                                       | Α                                                       | MH-1 - Flow Totalizer                             | Reading = <b>Z 9</b>        | <b>28918</b> 0 gal. Rate:   | gpm      |  |  |
|                                                                                                                                                                                                       | В                                                       | MH-2 - Flow Totalizer                             | Reading = 10                | 2.657 0 gal. Rate: 2.2      | gpm      |  |  |
|                                                                                                                                                                                                       | С                                                       | Sump - Flow Totalizer                             | Reading = 00                | 2014                        | gpm      |  |  |
|                                                                                                                                                                                                       | D                                                       | Blower Hours                                      | Reading = <b>Z</b> 0        | So.S Hours.                 |          |  |  |
| Ac                                                                                                                                                                                                    | ldition                                                 | al Comments:                                      |                             |                             |          |  |  |
| Manhole 2 Pumping@ ZZ Gpm  This burger holse backsilled of enterin (s) side of RAF.  Several Piles (~ 10 cy) of material (soil) appears to have been dumped  at western side of site, near outfall on |                                                         |                                                   |                             |                             |          |  |  |
|                                                                                                                                                                                                       |                                                         | Syracuse Office                                   | 475.3700                    | NYSDEC, DOW, Chad Kehoe     | 793.2554 |  |  |
| RA                                                                                                                                                                                                    | ··                                                      | Eaution Insula Dall                               | 733.6230                    | Evergreen, Tom Gehig (cell) | 725.3200 |  |  |
|                                                                                                                                                                                                       |                                                         | Equities, Jessie Bailey                           | 866.7403                    | Dodge Graphics, Don Zimbler | 735.9226 |  |  |
|                                                                                                                                                                                                       |                                                         | e Maintenance, Charles Dovi<br>C, DER, Phil Waite | 534.3490 (cell)             | Utica Converters, Al Born   | 733.8974 |  |  |
|                                                                                                                                                                                                       |                                                         | and Gere – Martin Kovely                          | 785.2605<br>729-1300 (cell) | Deiorio's, Richard Viti     | 724.2401 |  |  |
|                                                                                                                                                                                                       | O Brieff and Gere – Martin Rovery   725-1300 (Cen)      |                                                   |                             |                             |          |  |  |

N

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: AUL TROC Date: 7-29-04


| Category           |       | Inspected                   | Observation/Condition                                |         |              |
|--------------------|-------|-----------------------------|------------------------------------------------------|---------|--------------|
| 1 General Property |       | al Property                 |                                                      | <u></u> | _            |
| A                  | 1     | General Property Access     |                                                      |         | +            |
| В                  | 3     | General Property Drainage   | SPDES Outfall (001002003)                            | -       |              |
| 2 Ce               | ell P | erimeter Components         | J. 643                                               |         | -            |
| A                  |       | Perimeter and Access Roads  |                                                      | 1./     | +            |
| В                  | 3     | Ditches                     |                                                      |         | 4            |
| С                  | •     | Culverts                    |                                                      | +       | $\downarrow$ |
| D                  |       | Perimeter Fence             | Gates                                                |         |              |
| Ε                  |       | Utilities                   | Elec. Phone                                          | 1       | +            |
| 3 Co               | ontai | nment Cell                  |                                                      |         | 1            |
| Α                  |       | Surface Cover System        | Burrows Vegetation V6 - 12"                          |         | $\downarrow$ |
| В                  | (     | Gas Vents (2)               |                                                      |         |              |
| В                  | , l   | PID Readings                | (Y of N) Background ppm, @ 20' ppm, @ Vent ppm       |         | -            |
| С                  | (     | Collection Pipe / Cleanout  |                                                      | 1       |              |
| D                  | F     | Perimeter Drains (4)        |                                                      | 1       | 1            |
| 4 Le               | acha  | ate Collection Manhole      |                                                      |         | 1            |
| A                  | 3     | Structure                   | External_/ Internal_/                                |         | +            |
| В                  | F     | Pumps and Plumbing          | Pump 1 Hours <u>123.4</u> Pump 2 Hours <u>2.14.0</u> | 1/      | +            |
| B'                 | F     | Pump Changeover             | (Y or N) Lead Pump Lag Pump                          | 1/      |              |
| B'                 | " 7   | est Automatic Pump Controls | LSHH, LSH, LSL, LSLL                                 | 1       | 1            |
| С                  | E     | lectrical Components        | Test Pumps (Y) or N), Light Bulbs                    | +       |              |
| D                  | N     | Manhole Interstitial Space  |                                                      | +       | -            |
| E                  | C     | Conveyance Pipe             |                                                      |         |              |
| F                  | Ir    | nfluent Pipe                |                                                      |         |              |
| G                  | C     | Confined Space Entry        | (Y or N) (see Form B)                                |         | -            |
|                    |       |                             |                                                      | 1 1     | 1            |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: An + Ros Date: 7-29

| Category   |         | Inspected           | Observation/Condition                |                                       |
|------------|---------|---------------------|--------------------------------------|---------------------------------------|
| 5 Building |         |                     |                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Α          | Struc   | oture               | Lock/_, HeaterOFF                    | <del></del>                           |
| В          | Elect   | rical and Telephone | Elec_Phone_                          | - V                                   |
| С          | Auto    | Dialer and Controls | Test Functions (Y or N) (see Form F) |                                       |
| 6 Lea      | chate S | Storage System      |                                      | - L                                   |
| Α          | Tank    | (External)          | Internal (Y of N)                    |                                       |
| A'         | Flow    | Totalizer           | Reading = <u>558</u> 00 gal.         |                                       |
| В          | Seco    | ndary Containment   | Liquid (Y op N)                      |                                       |
| С          | Pipin   | g Components        |                                      |                                       |
| D          | Electi  | rical Components    | LockLight Bulbs                      |                                       |
|            |         |                     |                                      | /                                     |

| Additional Comments:                    |          |
|-----------------------------------------|----------|
| HREA-1, HIGHTAIL WATER DUE TO PARTHELUY | Runs     |
|                                         | <u> </u> |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         |          |
|                                         | ·        |
|                                         |          |

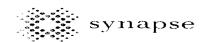


#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: HAUL + ROG Date: 7-29-04

| Categor               | <u> </u>                  | Observation/Condition                              | J        |
|-----------------------|---------------------------|----------------------------------------------------|----------|
| 1 Inspection Overview |                           |                                                    |          |
| Α                     | Reason for Inspection     | RAFGWSPDES                                         |          |
| В                     | Regulatory Inspection     | DER DOW                                            |          |
| С                     | Photos Taken              | 35mm Digital                                       |          |
| 2 Grou                | ndwater Monitoring Wells  |                                                    |          |
| Α                     | Condition                 | MW-6R, MW-13A, MW-14, MW-17, MW-18                 |          |
| В                     | Water Levels              | (Y or N) (see Form C)                              |          |
| С                     | Groundwater Sampling      | (Y or N) (see Form D)                              |          |
| 3 Colle               | ction Trenches            | <u>'</u>                                           |          |
| Α                     | MH-1                      | DTW Total: 11.55                                   |          |
| В                     | MH-2C (Collection)        | DTW Total: <u>12.80</u>                            |          |
| С                     | MH-2P (Pumping)           | DTW Total: 14.17                                   |          |
| Air St                | ripper                    |                                                    |          |
| Α                     | MH-1 - Flow Totalizer     | Reading = 2934475 0 gal. Rate: O gpm               |          |
| В                     | MH-2 - Flow Totalizer     | Reading = 1024443 0 gal. Rate: 0 gpm               |          |
| С                     | Sump - Flow Totalizer     | Reading = 007 1179                                 | -        |
| D                     | Blower Hours              | Reading = <b>Z0350.5</b> Hours.                    | <u> </u> |
| <br>Additiona         | l Comments: Cuch S        |                                                    |          |
|                       | JYSTEM                    | Rynning, No Alarms                                 |          |
|                       |                           |                                                    |          |
|                       |                           |                                                    |          |
| Contacts:             |                           |                                                    |          |
| Synapse S<br>RAF      | Syracuse Office           | 475.3700 NYSDEC, DOW, Chad Kehoe 793.2554          | ļ 1      |
|                       | Equities, Jessie Bailey   | 733.6230 Evergreen, Tom Gehig (cell) 725.3200      | - ,      |
| Coolidae I            | Maintenance, Charles Dovi | 866.7403 Dodge Graphics, Don Zimbler 735.9226      |          |
| NYSDEC                | DER, Phil Waite           | 534.3490 (cell) Utica Converters, Al Born 733.8974 | .        |
| O'Brien ar            | nd Gere – Martin Kovely   | 785.2605 Deiorio's, Richard Viti 724.2401          |          |
| o brien ar            | ia Gere – Martin Kovely   | 729-1300 (cell)                                    |          |

| Synapse Representative: Scott Mathews | Date: 8-/3-04 |
|---------------------------------------|---------------|
|---------------------------------------|---------------|


| jory                             | Inspected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                               | Observation/Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| spec                             | ction Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
|                                  | Reason for Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RAF G                                                                                                                                                                                                                                                                                                                                                                                                           | W SPDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                       |
| ,                                | Regulatory Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DER. DC                                                                                                                                                                                                                                                                                                                                                                                                         | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 711                   |                       |
| ; ,                              | Photos Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35mm Dig                                                                                                                                                                                                                                                                                                                                                                                                        | gital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |
| roun                             | dwater Monitoring Well's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - I-                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ]                     |
|                                  | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-6R, MW                                                                                                                                                                                                                                                                                                                                                                                                       | /-13A, MW-14, MW-17, MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>I</i> -18          |                       |
| ,                                | Water Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Y or N) (see For                                                                                                                                                                                                                                                                                                                                                                                               | m C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>**</del> -       |                       |
| :                                | Groundwater Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Y or N) (see For                                                                                                                                                                                                                                                                                                                                                                                               | m D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · <del>-</del>        |                       |
| ollec                            | tion Trenches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1                     |
|                                  | MH-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DTW                                                                                                                                                                                                                                                                                                                                                                                                             | Total: <u>11.55</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>               |                       |
| -                                | MH-2C (Collection)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DTW                                                                                                                                                                                                                                                                                                                                                                                                             | Total: <u>12.80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                       |
| :                                | MH-2P (Pumping)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DTW                                                                                                                                                                                                                                                                                                                                                                                                             | Total: <u>14.17</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                       |
| r Str                            | ripper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
|                                  | MH-1 - Flow Totalizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reading = <u>Z9</u>                                                                                                                                                                                                                                                                                                                                                                                             | 39893 0 gal. Rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gpm                   |                       |
| ;                                | MH-2 - Flow Totalizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reading = 103                                                                                                                                                                                                                                                                                                                                                                                                   | 36 <u>922 0</u> gal. Rate: <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gpm gpm               |                       |
| ;                                | Sump - Flow Totalizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reading = 2                                                                                                                                                                                                                                                                                                                                                                                                     | .//7 <u>8</u> 0 gal. Rate: <i>0</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gpm                   |                       |
| ,                                | Blower Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reading = 20350 Hours.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
| iona                             | l Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -122                  |                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
| acts.                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |
| pse :                            | Syracuse Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 475.3700                                                                                                                                                                                                                                                                                                                                                                                                        | NYSDEC, DOW, Chad Kehoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 793.2554              |                       |
| RAF                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 725.3200              |                       |
| Coolidge Equities, Jessie Bailey |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · -                   |                       |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ,                                                                                                                                                                                                                                                                                                                                                                                                             | ( · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                     |                       |
|                                  | nd Gere – Martin Kovely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 729-1300 (cell)                                                                                                                                                                                                                                                                                                                                                                                                 | L DEIOHO 2º VICHARA ARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>I 2</i> 4.24U1     | -                     |
|                                  | iona de la companya d | Reason for Inspection Regulatory Inspection Photos Taken Coundwater Monitoring Wells Condition Water Levels Groundwater Sampling Collection Trenches MH-1 MH-2C (Collection) MH-2P (Pumping) Trestripper MH-1 - Flow Totalizer MH-2 - Flow Totalizer Sump - Flow Totalizer Blower Hours  ional Comments:  Disc Syracuse Office dige Equities, Jessie Bailey dige Maintenance, Charles Dovi DEC, DER, Phil Waite | Reason for Inspection Regulatory Inspection Photos Taken  Condition Water Levels Groundwater Sampling WH-1 MH-2C (Collection) MH-2P (Pumping)  TStripper  MH-1 - Flow Totalizer MH-2 - Flow Totalizer Sump - Flow Totalizer Reading = 29 Blower Hours  Reading = 29 Blower Hours  Reading = 20 Read | Reason for Inspection | Reason for Inspection |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: YAUL BRIAW Date:

Date: 8-26-04

| Category |                             | Inspected                    | Observation/Condition                               | J |  |  |  |
|----------|-----------------------------|------------------------------|-----------------------------------------------------|---|--|--|--|
| 1        | 1 General Property          |                              |                                                     |   |  |  |  |
|          | Α                           | General Property Access      |                                                     |   |  |  |  |
|          | B General Property Drainage |                              | SPDES Outfall (001/ 002/ 003/) Rocs                 |   |  |  |  |
| 2        | Cell F                      | Perimeter Components         |                                                     |   |  |  |  |
|          | Α                           | Perimeter and Access Roads   |                                                     |   |  |  |  |
|          | В                           | Ditches                      | DAY                                                 |   |  |  |  |
|          | С                           | Culverts                     | 7 - 17                                              |   |  |  |  |
|          | D                           | Perimeter Fence              | Gates_                                              |   |  |  |  |
|          | E                           | Utilities                    | Elec. Phone                                         | - |  |  |  |
| 3        | Conta                       | inment Cell                  |                                                     | 1 |  |  |  |
|          | Α                           | Surface Cover System         | Burrows/_ Vegetation Barra Fax                      |   |  |  |  |
|          | В                           | Gas Vents (2)                | 2401,702                                            | 1 |  |  |  |
|          | B'                          | PID Readings                 | ❤ or N) Background O ppm, @ 20' O ppm, @ Vent O ppm |   |  |  |  |
|          | С                           | Collection Pipe / Cleanout   |                                                     |   |  |  |  |
|          | D                           | Perimeter Drains (4)         |                                                     |   |  |  |  |
| 4        | Leach                       | nate Collection Manhole      |                                                     |   |  |  |  |
|          | Α                           | Structure                    | External Internal                                   |   |  |  |  |
|          | В                           | Pumps and Plumbing           | Pump 1 Hours /23, & Pump 2 Hours 2/4,0              |   |  |  |  |
|          | B'                          | Pump Changeover              | (Y or N) Lead Pump Lag Pump                         | - |  |  |  |
|          | В"                          | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                                |   |  |  |  |
|          | С                           | Electrical Components        | Test Pumps (Y or N), Light Bulbs                    |   |  |  |  |
|          | D                           | Manhole Interstitial Space   |                                                     |   |  |  |  |
|          | E                           | Conveyance Pipe              |                                                     |   |  |  |  |
|          | F                           | Influent Pipe                |                                                     |   |  |  |  |
|          | G                           | Confined Space Entry         | (Y or N) (see Form B)                               |   |  |  |  |
|          |                             | <del></del>                  | I                                                   |   |  |  |  |



#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Pau Bairv Date: 8-26-04

| Category |            | Inspected Observation/Condition |                                        | J        |
|----------|------------|---------------------------------|----------------------------------------|----------|
| 5 Bui    | 5 Building |                                 |                                        |          |
| Α        | Struc      | ture                            | Lock/, Vent, Heater_OFF                |          |
| В        | Elect      | rical and Telephone             | Elec_Phone_                            |          |
| С        | Auto       | Dialer and Controls             | Test Functions (Yor N) (see Form F)    | <i>\</i> |
| 6 Lea    | chate S    | torage System                   |                                        |          |
| Α        | Tank       | (External)                      | Internal (y or N)                      |          |
| A'       | Flow       | Totalizer                       | Reading = 562 00 gal> 56300 AFTER TEST |          |
| В        | Seco       | ndary Containment               | Liquid (Y or N)                        | سسه      |
| С        | Pipin      | g Components                    |                                        | سيد      |
| D        | Elect      | rical Components                | Lock Light Bulbs                       | ~        |
| Ε        | Leac       | hate Sampling                   | (Y or N) (see Form C)                  |          |

| ditional Comments: | - LEACHATE 2780 GAL           |             |
|--------------------|-------------------------------|-------------|
|                    |                               |             |
| PRESSURE           | WASH TANK + LOADING AREA      |             |
| CALL TO            | TOM RE MOWING                 |             |
| Day M              | ASTERS PUMP OUT LEACHATE TANK |             |
|                    | ROTERS PUMP DUT LEACHATE TANK | <del></del> |
|                    |                               |             |
|                    |                               |             |
|                    |                               | <u> </u>    |
|                    |                               | -           |
|                    |                               |             |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:\_



Date: 8/26/04

| Category Inspected |                           |                      | Observation/Condition                                   |                      |
|--------------------|---------------------------|----------------------|---------------------------------------------------------|----------------------|
| 1 Insp             | ection Overview           |                      |                                                         |                      |
| A                  | Reason for Inspection     | RAF                  | GW SPDES_                                               |                      |
| В                  | Regulatory Inspection     | DER_V                | 00W                                                     |                      |
| С                  | Photos Taken              | 35mm                 | Digital                                                 |                      |
| 2 Grou             | ndwater Monitoring Wells  |                      |                                                         |                      |
| Α                  | Condition                 | MW-6R, M             | W-13A, MW-14, MW-17, MV                                 | V-18                 |
| В                  | Water Levels              | (Y or N) (see Fo     |                                                         |                      |
| С                  | Groundwater Sampling      | (Y or N) (see Fo     | orm D)                                                  |                      |
| 3 Colle            | ction Trenches            |                      |                                                         |                      |
| Α                  | MH-1                      | DTW                  | Total: <u>11.55</u>                                     |                      |
| В                  | MH-2C (Collection)        | DTW                  | ·· <del>··</del>                                        |                      |
| С                  | MH-2P (Pumping)           | DTW                  | Total: 14.17                                            |                      |
| 4 Air St           | ripper                    |                      |                                                         |                      |
| Α                  | MH-1 - Flow Totalizer     | Reading = 24         | <b>4</b> 500 3 0 gal. Rate:                             | gam                  |
| В                  | MH-2 - Flow Totalizer     | Reading = 10°        |                                                         |                      |
| С                  | Sump - Flow Totalizer     | Reading = 00         |                                                         |                      |
|                    | Blower Hours              | Reading = Z03        |                                                         | gpm                  |
| Additiona          | al Comments:              |                      | 20.5 Flours.                                            |                      |
|                    | Continuonia.              |                      |                                                         |                      |
|                    |                           |                      |                                                         |                      |
|                    |                           |                      | ,                                                       |                      |
| Contacts:          |                           |                      |                                                         |                      |
|                    | Syracuse Office           | 475 2700             |                                                         |                      |
| RAF                | · ·                       | 475.3700<br>733.6230 | NYSDEC, DOW, Chad Kehoe                                 | 793.2554             |
| Coolidge           | Equities, Jessie Bailey   | 866.7403             | Evergreen, Tom Gehig (cell) Dodge Graphics, Don Zimbler | 725.3200             |
| Coolidge           | Maintenance, Charles Dovi | 534.3490 (cell)      | Utica Converters, Al Born                               | 735.9226<br>733.8974 |
| NYSDEC,            | DER, Phil Waite           | 785.2605             | Deiorio's, Richard Viti                                 | 733.8974<br>724.2401 |
| O'Brien ar         | nd Gere – Martin Kovely   | 729-1300 (cell)      | -,                                                      | 124.2401             |

| Synap           | se Representative: S, Maff | hens                        | Date: 9-10-04                                        |          |
|-----------------|----------------------------|-----------------------------|------------------------------------------------------|----------|
| Catego          | ry Inspected               |                             | Observation/Condition                                |          |
| 1 Insp          | ection Overview            |                             |                                                      | <b>V</b> |
| A               | Reason for Inspection      | RAF                         | GW SPDES                                             |          |
| В               | Regulatory Inspection      | DER                         | DOW                                                  |          |
| С               | Photos Taken               | 35mm                        | Digital                                              |          |
| 2 Gro           | undwater Monitoring Wells  |                             |                                                      |          |
| Α               | Condition                  | MW-6R, M                    | W-13A, MW-14, MW-17, MW                              | -18      |
| В               | Water Levels               | (Y or N) (see Fo            |                                                      |          |
| С               | Groundwater Sampling       | (Y or N) (see Fo            | orm D)                                               |          |
| 3 Colle         | ection Trenches            |                             |                                                      |          |
| A               | MH-1                       | DTW                         | Total: <u>11.55</u>                                  |          |
| В               | MH-2C (Collection)         | DTW                         | Total: <u>12.80</u>                                  |          |
| С               | MH-2P (Pumping)            | DTW                         | Total: <u>14.17</u>                                  |          |
| 4 Air S         | tripper                    |                             |                                                      |          |
| Α               | MH-1 - Flow Totalizer      | Reading = 2º                |                                                      | gpm      |
| В               | MH-2 - Flow Totalizer      | Reading = 10                | 60977 0 gal. Rate: 0                                 | gpm gpm  |
| С               | Sump - Flow Totalizer      | Reading = 00                | 21[78 0 gal. Rate: 0                                 | gpm      |
| D               | Blower Hours               | Reading = 203               | 50.5 Hours.                                          |          |
| Addition        | al Comments:               |                             |                                                      |          |
|                 |                            |                             |                                                      |          |
|                 |                            |                             |                                                      |          |
| Contacts        | S.:                        |                             |                                                      |          |
| Synapse         | Syracuse Office            | 475.3700                    | NYSDEC, DOW, Chad Kehoe                              | 793.2554 |
| RAF<br>Coolidge | Equities, Jessie Bailey    | 733.6230                    | Evergreen, Tom Gehig (cell)                          | 725.3200 |
| Coolidge        | Maintenance, Charles Dovi  | 866.7403<br>534.3490 (cell) | Dodge Graphics, Don Zimbler                          | 735.9226 |
| NYSDEC          | , DER, Phil Waite          | 785.2605                    | Utica Converters, Al Born<br>Deiorio's, Richard Viti | 733.8974 |
| O'Brien a       | and Gere – Martin Kovely   | 729-1300 (001)              | - Siorio S, Michard VIII                             | 724.2401 |

| Synapse Representative: 5. Matthews | Date: 9-22-04 |
|-------------------------------------|---------------|
|-------------------------------------|---------------|

| Cate        | egory  | Inspected                 | Observation/Condition |                                                            |                      |
|-------------|--------|---------------------------|-----------------------|------------------------------------------------------------|----------------------|
| 1 1         | nspe   | ection Overview           |                       |                                                            | V                    |
|             | A      | Reason for Inspection     | RAF(                  | GW SPDES                                                   |                      |
|             | В      | Regulatory Inspection     | DERD                  | OW                                                         |                      |
|             | С      | Photos Taken              | 35mm                  | igital                                                     |                      |
| 2 (         | 3roui  | ndwater Monitoring Wells  | J                     |                                                            |                      |
|             | A      | Condition                 | MW-6R, M\             | V-13A, MW-14, MW-17, MW-                                   | -18                  |
|             | В      | Water Levels              | (Y or N) (see Fo      |                                                            |                      |
| (           | С      | Groundwater Sampling      | (Y or N) (see Fo      | rm D)                                                      |                      |
| 3 C         | olled  | ction Trenches            |                       |                                                            |                      |
|             | A      | MH-1                      | DTW                   | Total: <u>11.55</u>                                        |                      |
| 1           | В      | MH-2C (Collection)        | DTW                   | . Total: <u>12.80</u>                                      |                      |
| (           | C      | MH-2P (Pumping)           | DTW                   | Total: <u>14.17</u>                                        |                      |
| 4 A         | ir St  | ripper                    |                       |                                                            |                      |
| -           | 4      | MH-1 - Flow Totalizer     | Reading = 29          | 5 3 7 3 2 0 gal. Rate: 0                                   | gpm                  |
| E           | 3      | MH-2 - Flow Totalizer     | Reading = //          | 2700870 gal. Rate: 0                                       | gpm .                |
| (           |        | Sump - Flow Totalizer     | Reading = 2           | 1179 0 gal. Rate:                                          | gpm                  |
| L           | )      | Blower Hours              | Reading = 26          | 350 SHours.                                                |                      |
| Addi        | tiona  | l Comments:               |                       |                                                            |                      |
|             |        |                           |                       |                                                            |                      |
|             |        |                           |                       |                                                            |                      |
| <u>Cont</u> | acts:  |                           |                       |                                                            |                      |
| Syna<br>RAF | pse S  | Syracuse Office           | 475.3700              | NYSDEC, DOW, Chad Kehoe                                    | 793.2554             |
| Cooli       | idge l | Equities, Jessie Bailey   | 733.6230<br>866.7403  | Evergreen, Tom Gehig (cell)<br>Dodge Graphics, Don Zimbler | 725.3200             |
| Cooli       | idge l | Maintenance, Charles Dovi | 534.3490 (cell)       | Utica Converters, Al Born                                  | 735.9226<br>733.8974 |
| NYSE        | DEC,   | DER, Phil Waite           | 785.2605              | Deiorio's, Richard Viti                                    | 724.2401             |
| OBI         | en ar  | nd Gere – Martin Kovely   | 729-1300 (cell)       |                                                            |                      |

| Synapse Representative: <u>S. Mathrews</u> | Date: | 9-23-04 |  |
|--------------------------------------------|-------|---------|--|
| Synapos representative.                    |       |         |  |

| Category |        | Inspected                    | Observation/Condition                              | <b>J</b> |  |  |  |
|----------|--------|------------------------------|----------------------------------------------------|----------|--|--|--|
| 1        | Gene   | General Property             |                                                    |          |  |  |  |
|          | Α      | General Property Access      |                                                    |          |  |  |  |
|          | В      | General Property Drainage    | SPDES Outfall (001 002 003)                        |          |  |  |  |
| 2        | Cell P | erimeter Components          |                                                    | 7        |  |  |  |
|          | Α      | Perimeter and Access Roads   |                                                    |          |  |  |  |
|          | В      | Ditches                      |                                                    |          |  |  |  |
|          | С      | Culverts                     |                                                    | 1/       |  |  |  |
|          | D      | Perimeter Fence              | Gates/_                                            |          |  |  |  |
|          | E      | Utilities                    | Elec Phone                                         | 1        |  |  |  |
| 3        | Conta  | inment Cell                  |                                                    | _1       |  |  |  |
|          | Α      | Surface Cover System         | Burrows / Vegetation / Needs to be moved           | 1/2      |  |  |  |
|          | В      | Gas Vents (2)                |                                                    | 1/2      |  |  |  |
|          | B'     | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm     | 1        |  |  |  |
|          | С      | Collection Pipe / Cleanout   |                                                    | 1/2      |  |  |  |
|          | D      | Perimeter Drains (4)         |                                                    |          |  |  |  |
| 4        | Leacl  | nate Collection Manhole      | <i>1 1</i>                                         |          |  |  |  |
|          | Α      | Structure                    | External/ Internal/                                |          |  |  |  |
|          | В      | Pumps and Plumbing           | Pump 1 Hours <u>/237</u> Pump 2 Hours <u>021</u> 4 |          |  |  |  |
|          | B'     | Pump Changeover              | (Y or N) Lead Pump Lag Pump                        | 1/       |  |  |  |
|          | В"     | Test Automatic Pump Controls | LSHH                                               |          |  |  |  |
|          | С      | Electrical Components        | Test Pumps (Y) or N), Light Bulbs                  |          |  |  |  |
|          | D      | Manhole Interstitial Space   |                                                    | 1        |  |  |  |
|          | E      | Conveyance Pipe              |                                                    | //       |  |  |  |
|          | F      | Influent Pipe                |                                                    |          |  |  |  |
|          | G      | Confined Space Entry         | (Y of N) (see Form B)                              |          |  |  |  |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Phone

Observation/Condition

Heater

Synapse Representative: <u>G. Matthus</u> Date: <u>9-23-04</u>

Elec /

| B   | Liectifical and Telephone | 2.00                                 | γ   |
|-----|---------------------------|--------------------------------------|-----|
| С   | Auto Dialer and Controls  | Test Functions (Y or N) (see Form F) |     |
| Lea | chate Storage System      | 3                                    | - V |
| A   | Tank (External)           | Internal (Y or N)                    |     |
| A'  | Flow Totalizer            | Reading = <u>5 65 00</u> gal.        |     |
| В   | Secondary Containment     | Liquid (Y or N)                      |     |
| С   | Piping Components         | 1 1                                  |     |
| D   | Electrical Components     | Lock Light Bulbs                     |     |
| E   | Leachate Sampling         | (Y or N) (see Form C)                |     |
|     |                           |                                      |     |
|     |                           |                                      |     |
|     |                           |                                      |     |
| _   |                           |                                      |     |
|     |                           |                                      |     |
|     |                           |                                      |     |
|     |                           |                                      |     |
|     |                           |                                      |     |

Category

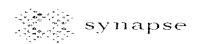
A

Building

Structure

Electrical and Telephone

Inspected


#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Prisuer B Market Date: 9-30-04

| Categor                                          | y Inspected                                                               | Observation/Condition       |                             | 7           |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|-----------------------------|-------------|--|--|--|
| 1 Inspe                                          | ection Overview                                                           |                             |                             |             |  |  |  |
| Α                                                | Reason for Inspection                                                     | RAF GW S                    | PDES                        |             |  |  |  |
| В                                                | Regulatory Inspection                                                     | DERDOW                      | CHAD KAHOK 830-1015         |             |  |  |  |
| С                                                | Photos Taken                                                              | 35mmDigital                 | CAMO 1/RHOR 830°1013        | 1           |  |  |  |
| 2 Grou                                           | indwater Monitoring Wells                                                 |                             |                             |             |  |  |  |
| Α                                                | Condition                                                                 | MW-6R, MW-13A, MV           | W-14, MW-17, MW-18          |             |  |  |  |
| В                                                | Water Levels                                                              | (Y or N) (see Form C)       |                             | -           |  |  |  |
| С                                                | Groundwater Sampling                                                      | (Y or N) (see Form D)       |                             |             |  |  |  |
| 3 Colle                                          | ction Trenches                                                            |                             |                             |             |  |  |  |
| Α                                                | MH-1                                                                      | DTWTotal:                   | 11.55                       | <del></del> |  |  |  |
| В                                                | MH-2C (Collection)                                                        | DTWTotal:                   | 12.80                       |             |  |  |  |
| С                                                | MH-2P (Pumping)                                                           | DTWTotal:                   | 14.17                       |             |  |  |  |
| 4 Air St                                         | tripper Locks                                                             |                             |                             |             |  |  |  |
| A                                                | MH-1 - Flow Totalizer                                                     |                             | 0 gal. Rate: gpm            |             |  |  |  |
| В                                                | MH-2 - Flow Totalizer                                                     | Reading =                   | 0 gal. Rate: gpm            |             |  |  |  |
| С                                                | Sump - Flow Totalizer                                                     | Reading =                   |                             |             |  |  |  |
| D                                                | Blower Hours                                                              | Reading = Hours.            |                             |             |  |  |  |
| Addition                                         | al Comments:                                                              | 101.10                      |                             | <del></del> |  |  |  |
| - RA                                             | E MONEO EARLY                                                             | THIS WIRE                   | IHIS ARRIVAL, REVEIN        | EEK         |  |  |  |
| - ME                                             | T WITH CHAD NHO                                                           | NOTED DUMPING OR            | IHIS ARRIVAL REVEIN         | 80          |  |  |  |
|                                                  |                                                                           | ENTS, EPENED AN             | O WEINER ALL 3 OUTHALL      | 5 (01       |  |  |  |
| Contacts                                         | E From                                                                    |                             |                             |             |  |  |  |
|                                                  | Syracuse Office                                                           | 475.3700 NYSDEC, D          | OW, Chad Kehoe 793.2554     |             |  |  |  |
| RAF                                              |                                                                           | 733.6230 Evergreen,         | Tom Gehig (cell) 725.3200   |             |  |  |  |
| Coolidge                                         | Equities, Jessie Bailey                                                   | 866.7403 Dodge Grap         | phics, Don Zimbler 735.9226 | -           |  |  |  |
| Looliage                                         | Maintenance, Charles Dovi                                                 | 534.3490 (cell) Utica Conve | erters, Al Born 733.8974    | i           |  |  |  |
|                                                  | Property Dec., Der., Phil Waite 785.2605 Deiorio's, Richard Viti 724.2401 |                             |                             |             |  |  |  |
| O'Brien and Gere - Martin Kovely 729-1300 (cell) |                                                                           |                             |                             |             |  |  |  |

| Synapse Representative: | BRIANMACRAE | _ Date: | 10/20/04 | 1 |
|-------------------------|-------------|---------|----------|---|
|                         | 1           |         | 1 (      |   |

| Category |        | / Inspected                  | Observation/Condition                          | 1        |
|----------|--------|------------------------------|------------------------------------------------|----------|
| 1        | Gene   | ral Property                 |                                                |          |
|          | Α      | General Property Access      |                                                |          |
|          | В      | General Property Drainage    | SPDES Outfall (001 002 003)                    | 1        |
| 2        | Cell F | Perimeter Components         |                                                |          |
|          | Α      | Perimeter and Access Roads   |                                                |          |
|          | В      | Ditches                      |                                                |          |
|          | С      | Culverts                     |                                                |          |
|          | D      | Perimeter Fence              | Gates                                          |          |
|          | E      | Utilities                    | Elec Phone                                     |          |
| 3        | Conta  | ninment Cell                 |                                                | <u> </u> |
|          | Α      | Surface Cover System         | Burrows Vegetation                             | Ţ        |
|          | В      | Gas Vents (2)                |                                                |          |
|          | B'     | PID Readings                 | (Y or N) Background ppm, @ 20' ppm, @ Vent ppm |          |
|          | С      | Collection Pipe / Cleanout   |                                                |          |
|          | D      | Perimeter Drains (4)         |                                                |          |
| 4        | Leach  | nate Collection Manhole      |                                                |          |
|          | Α      | Structure                    | External Internal                              |          |
|          | В      | Pumps and Plumbing           | Pump 1 Hours 173.8 Pump 2 Hours 214.1          |          |
|          | B'     | Pump Changeover              | (Y or N) Lead Pump Lag Pump Z.                 | 1        |
|          | В"     | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                           |          |
|          | С      | Electrical Components        | Test Pumps (Y) or N), Light Bulbs              |          |
|          | D      | Manhole Interstitial Space   |                                                |          |
|          | E      | Conveyance Pipe              |                                                |          |
|          | F      | Influent Pipe                | _                                              |          |
|          | G      | Confined Space Entry         | (Y or (see Form B)                             |          |
|          |        |                              |                                                | ı •      |



| Synapse Representative: RZIANN ACRAE Date: | www |
|--------------------------------------------|-----|
|--------------------------------------------|-----|

| Cate  | gory    | Inspected            | Observation/Condition               |   |
|-------|---------|----------------------|-------------------------------------|---|
| 5 Bui | ilding  |                      |                                     |   |
| Α     | Struc   | cture                | Lock, Vent, Heater                  |   |
| В     | Elect   | trical and Telephone | Elec Phone                          |   |
| С     | Auto    | Dialer and Controls  | Test Functions (Y or N) see Form F) |   |
| 6 Lea | chate S | Storage System       |                                     |   |
| Α     | Tank    | (External)           | Internal (Y or(N))                  | V |
| A'    | Flow    | Totalizer            | Reading = <u>567</u> 00 gal.        | V |
| В     | Seco    | ndary Containment    | Liquid (Y or(N))                    |   |
| С     | Pipin   | g Components         |                                     |   |
| D     | Elect   | rical Components     | Lock Light Bulbs                    |   |
| E     | Leac    | hate Sampling        | (Y or N) (see Form C)               |   |

| Additional Comments:                                                                     |
|------------------------------------------------------------------------------------------|
| Closed vents 4 turned on heater (set @ 50°F).                                            |
| J. J. J. J. J. J. J. J.                                                                  |
| MILL MEDICAL A                                                                           |
| - MHI - 2959282Q                                                                         |
| MHZ- 10867170                                                                            |
| Sump- 21200 x10                                                                          |
|                                                                                          |
| - OBGO Onsite, Metw Martin. OBGO Shut Down Are Stripper                                  |
| yesterday for cleaning. Martin said totally                                              |
| yesterday for cleaning. Martin said totally clagged (3 = "). Will trun back on tomorrow. |
| Martin also to shut down o/w separatorthis                                               |
| Deek.                                                                                    |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |

| Synapse Representative: | 5.       | Mathrews | Date: | 11-30-04 |
|-------------------------|----------|----------|-------|----------|
| Oynapoo noprosemano.    | <u> </u> |          |       |          |

| Catego | y Inspected                  | Observation/Condition                                   | J              |
|--------|------------------------------|---------------------------------------------------------|----------------|
| 1 Gen  | eral Property                |                                                         |                |
| A      | General Property Access      | ,                                                       |                |
| В      | General Property Drainage    | SPDES Outfall (001 <u>√</u> 002 <u>J</u> 003 <u>√</u> ) | 7              |
| 2 Cell | Perimeter Components         |                                                         |                |
| A      | Perimeter and Access Roads   |                                                         |                |
| В      | Ditches                      |                                                         |                |
| С      | Culverts                     |                                                         | V.             |
| D      | Perimeter Fence              | Gates_√  Elec√ Phone_V_                                 | V.             |
| Ε      | Utilities                    | Elec. $\gamma'$ Phone $V$                               | V              |
| 3 Con  | tainment Cell                |                                                         |                |
| A      | Surface Cover System         | Burrows Vegetation                                      | V              |
| В      | Gas Vents (2)                | A                                                       | $ \sqrt{\ } $  |
| B'     | PID Readings                 | (Y or/N)/Background ppm, @ 20' ppm, @ Vent ppm          | 1              |
| С      | Collection Pipe / Cleanout   |                                                         | 1              |
| D      | Perimeter Drains (4)         |                                                         | $\checkmark$   |
| 4 Lead | chate Collection Manhole     | 1 1                                                     |                |
| Α      | Structure                    | External \( \square \) Internal \( \square \)           | V              |
| В      | Pumps and Plumbing           | Pump 1 Hours /24.0Pump 2 Hours Z14.1                    | <b>\</b>       |
| B'     | Pump Changeover              | (Y or(N)) Lead Pumpi Lag Pump Z                         | $\overline{V}$ |
| В"     | Test Automatic Pump Controls | LSHH, LSH, LSL, LSLL                                    |                |
| С      | Electrical Components        | Test Pumps (Y or N), Light Bulbs                        |                |
| D      | Manhole Interstitial Space   |                                                         |                |
| E      | Conveyance Pipe              |                                                         |                |
| F      | Influent Pipe                | A                                                       | <b>V</b>       |
| G      | Confined Space Entry         | (Y or/N) (see Form B)                                   |                |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Observation/Condition

| Surana Parragantativa: S # 4H & 15 Date: 1/-30-04 |                         |            |       | 1         |
|---------------------------------------------------|-------------------------|------------|-------|-----------|
|                                                   |                         | ي لاا مد   | Date: | 1121.04   |
| Synapse Representative: S. Mathews Date: 11-30.04 | Synanse Representative: | S. Mathews | Date: | 11. 70.07 |

| Α   | Structure                | Lock /, Vent /, Heater/              |   |
|-----|--------------------------|--------------------------------------|---|
| В   | Electrical and Telephone | Elec                                 |   |
| С   | Auto Dialer and Controls | Test Functions (Y or N) (see Form F) |   |
| Lea | chate Storage System     |                                      |   |
| Α   | Tank (External)          | Internal (Y or (N))                  |   |
| A'  | Flow Totalizer           | Reading =                            |   |
| В   | Secondary Containment    | Liquid (Y of N)                      | , |
| С   | Piping Components        |                                      |   |
| D   | Electrical Components    | Lock Light Bulbs                     |   |
| Ε   | Leachate Sampling        | (Y or(N)/(see Form C)                |   |
|     | onal Comments:           |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |
|     |                          |                                      |   |

Category

Inspected

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5, Mathows Date: 12-17-04

| 1 General Property A General Property Access B General Property Drainage SPDES Outfall (001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| B General Property Drainage SPDES Outfall (001 002 003)  2 Cell Perimeter Components  A Perimeter and Access Roads  B Ditches  C Culverts  D Perimeter Fence Gates  E Utilities Elec. Phone  3 Containment Cell  A Surface Cover System Burrows Vegetation  B Gas Vents (2)  B' PID Readings (Y of b) Background ppm, @ 20' ppm, @ Vent ppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External Internal  B Pumps and Plumbing Pump 1 Hours [24,] Pump 2 Hours 14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| 2 Cell Perimeter Components  A Perimeter and Access Roads  B Ditches  C Culverts  D Perimeter Fence Gates  E Utilities Elec. Phone  3 Containment Cell  A Surface Cover System Burrows Vegetation  B Gas Vents (2)  B' PID Readings (Y of N) Background ppm, @ 20' ppm, @ Vent ppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External Internal Pump 2 Hours 2.14. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| ## A Perimeter and Access Roads  ## Ditches  ## C Culverts  ## Ditches  ## Utilities  ## Elec. Phone  ## Primeter Fence  ## Burrows Vegetation  ## PID Readings  ## C Collection Pipe / Cleanout  ## D Perimeter Drains (4)  ## Leachate Collection Manhole  ## A Structure  ## B Pumps and Plumbing  ## Pump 1 Hours 2.14.   Pump 2 Hours 2.14.    ## Pump 3 Hours 2.14.    ## Pump 4 Hours 2.14.    ## Pump 5 Hours 2.14.    ## Pump 6 Hours 2.14.    ## Pump 7 Hours 2.14.    ## Pump 8 Hours 2.14.    ## Pum | <i>J</i> <sub>1</sub> |
| B Ditches  C Culverts  D Perimeter Fence  E Utilities  Surface Cover System  B Gas Vents (2)  B' PID Readings  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure  External Internal  Pump 1 Hours 2.14.   Pump 2 Hours 2.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>              |
| C Culverts  D Perimeter Fence Gates  E Utilities Elec. Phone  3 Containment Cell  A Surface Cover System Burrows Vegetation  B Gas Vents (2)  B' PID Readings (Y of M) Background ppm, @ 20' ppm, @ Vent ppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External Internal  B Pumps and Plumbing Pump 1 Hours 24, Pump 2 Hours 214, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| ## Description of Perimeter Fence  ## Burrows Phone  ## Containment Cell  ## A Surface Cover System  ## Burrows Vegetation  ## PID Readings  ## Collection Pipe / Cleanout  ## Description of Perimeter Drains (4)  ## Leachate Collection Manhole  ## A Structure External Verification in Internal Verification  ## Pumps and Plumbing  ## Pump 1 Hours 124.1 Pump 2 Hours 12.14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| E Utilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /                     |
| 3 Containment Cell  A Surface Cover System  Burrows Vegetation  B Gas Vents (2)  B' PID Readings (Y of M) Background ppm, @ 20' ppm, @ Vent ppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External Internal  B Pumps and Plumbing Pump 1 Hours 2.14.   Pump 2 Hours 2.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | √,                    |
| ## A Surface Cover System Burrows Vegetation  ## B Gas Vents (2)  ## PID Readings (Y of N) Background ppm, @ 20' ppm, @ Vent ppm  ## C Collection Pipe / Cleanout  ## D Perimeter Drains (4)  ## Leachate Collection Manhole  ## A Structure External Internal  ## B Pumps and Plumbing Pump 1 Hours [24,1] Pump 2 Hours [214,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sqrt{}$             |
| B Gas Vents (2)  B' PID Readings (Y of M) Backgroundppm, @ 20'ppm, @ Ventppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External Internal  B Pumps and Plumbing Pump 1 Hours [24,1] Pump 2 Hours [214,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |
| B' PID Readings (Y of M) Background ppm, @ 20' ppm, @ Vent ppm  C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External V Internal Pump 2 Hours 214. I  Pumps and Plumbing Pump 1 Hours 214. I Pump 2 Hours 214. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\int_{I}$            |
| C Collection Pipe / Cleanout  D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External V Internal Pump 2 Hours 214. I  Pumps and Plumbing Pump 1 Hours 24. Pump 2 Hours 214. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                     |
| D Perimeter Drains (4)  4 Leachate Collection Manhole  A Structure External V Internal Pump 2 Hours 214. I  Pumps and Plumbing Pump 1 Hours 24. Pump 2 Hours 214. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\int_{\Delta}$       |
| 4 Leachate Collection Manhole  A Structure External V Internal Pump 1 Hours 24. Pump 2 Hours 214. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     |
| A Structure External V Internal B Pumps and Plumbing Pump 1 Hours 24.1 Pump 2 Hours 214.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\checkmark$          |
| B Pumps and Plumbing Pump 1 Hours 129.1 Pump 2 Hours 214.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |
| D' Dump Changaguer (YarM) Lead Pump Lag Pump 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| B' Pump Changeover (Y or N) Lead Pump Lag Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| B" Test Automatic Pump Controls LSHH, LSH, LSL, LSLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| C Electrical Components Test Pumps (Y or N), Light Bulbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| D Manhole Interstitial Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ī,                    |
| E Conveyance Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{a}$            |
| F Influent Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |
| G Confined Space Entry (Y or N) (see Form B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

**Observation/Condition** 

| Synapse Representative: | 17 - | 17.04 | Date: S. Mathews |
|-------------------------|------|-------|------------------|
|                         |      |       | , ,              |

|       | ding                     |                                      |  |
|-------|--------------------------|--------------------------------------|--|
| Α     | Structure                | Lock, Vent                           |  |
| В     | Electrical and Telephone | Elec/_ Phone_/                       |  |
| С     | Auto Dialer and Controls | Test Functions (Y or N) (see Form F) |  |
| Lead  | chate Storage System     |                                      |  |
| A     | Tank (External)          | Internal (Y or 19)                   |  |
| A'    | Flow Totalizer           | Reading = <u>5 73 00</u> gal.        |  |
| В     | Secondary Containment    | Liquid (Y or N)                      |  |
| С     | Piping Components        |                                      |  |
| D     | Electrical Components    | Lock/_ Light Bulbs/_                 |  |
| E     | Leachate Sampling        | (Y or N) (see Form C)                |  |
| ditio | nal Comments:            |                                      |  |

Category

Inspected

#### APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 

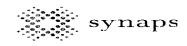
### AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

#### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

|                | esentative: Faux, Boja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n, Roc   |      | eived Alarm: Y or N                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|--------------------------------------------------------|
| Tested Alarm:  | 9 - 26-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      | e Received:                                            |
| Date Tested: _ | 8-26-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Time | e Received: <u>NA</u>                                  |
|                | - Annual Control of the Control of t | <u> </u> |      |                                                        |
| Channel No.    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alarm Re | c'd  | Testing Results                                        |
| 1              | Tank Level (@ 80%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | /    | Measured: 4 1 34 To Top OF WATER<br>Reading: 53.6 54.3 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      | Reading: 57.6 54.3                                     |
| 2              | Tank High Level (100%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      | OK                                                     |
| 3              | Tank Leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      | OK                                                     |
| 4              | Tank 90% Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |                                                        |
| 5              | High Manhole Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      | OK                                                     |
| 6              | Manhole Leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      | OK                                                     |
| 7              | Pipe Leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - /      |      | OK                                                     |
| 8              | Tank Low Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |      | OK                                                     |
| 9              | Inside Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |                                                        |
| 10             | Outside Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |      |                                                        |

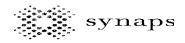
| Reason for Alarm:                                  |   |
|----------------------------------------------------|---|
| Action Taken: ANNA- TESTING                        |   |
| Comments: AFTER PUMPING: READING 10.9, MEASURED 11 | " |
|                                                    |   |

11-15


16

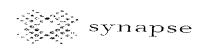
Not In Use

**Power Off** 


# CONFINED SPACE ENTRY PERMIT (FORM B) OPERATION, MAINTENANCE, AND MONITORING

| Synapse Representative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| TO BE COMPLETED BY PROJECT MANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GER POST OUTSIDE SPACE                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | te Collection Manhole                                                                                                             |
| HAZARDS IN THIS CONFINED SPACE: Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |
| HAZARDS CREATED BY WORK TO BE DON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inspection                                                                                                                        |
| HAZARDS CREATED BY WORK TO BE DON<br>OBSERVER: Paul Fisher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
| OBSERVER: TAULTISHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ ENTRY LEADER: Noger Creighton                                                                                                   |
| EMPLOYEES ASSIGNED: P. Fishor B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Macroe, R. Creightus                                                                                                              |
| ENTRY DATE: \$\frac{1}{26} \ofrac{1}{9} ENTRY TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13°35 EXITTIME: 13:55                                                                                                             |
| OUTSIDE CONTRACTORS WORKING IN AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ŒA:                                                                                                                               |
| (CIRCLE ANSWER)  Yes No a. Medical clearance within the Yes No b. Training in confined space Yes No c. Job emergency procedures No d. Completed rescue drill for  2. Equipment identified by checks (✓) in boxes will Equipment identified by (X) in boxes will be used □ □ 1. 30-min. SCBA □ □ 2. 15-min. SCBA □ □ 3. Other Respirator □ □ 4. 2-Way Radios □ □ 4. 2-Way Radios □ □ 5. Tether - Life Lines □ □ 6. Harness - Safety Belt □ □ 7. Wristlets □ □ 7. Wristlets □ □ 9. Rolling Body Board (Creeper) □ □ 10. Ladder □ □ 11. Ladder Extensions □ □ 12. Barricades for All Openings | entry. have been reviewed with all employees involved. this type of confined space. be available at entrance for emergencies.     |
| 3. All lines that could discharge contaminants into the pumping means locked out and tagged. Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\[ \nabla P \] \]$ 31. Stand-By Employee(s) he space have been/will be blanked off or line disconnected and $\[ N_O \] \]$ $N/A$ |

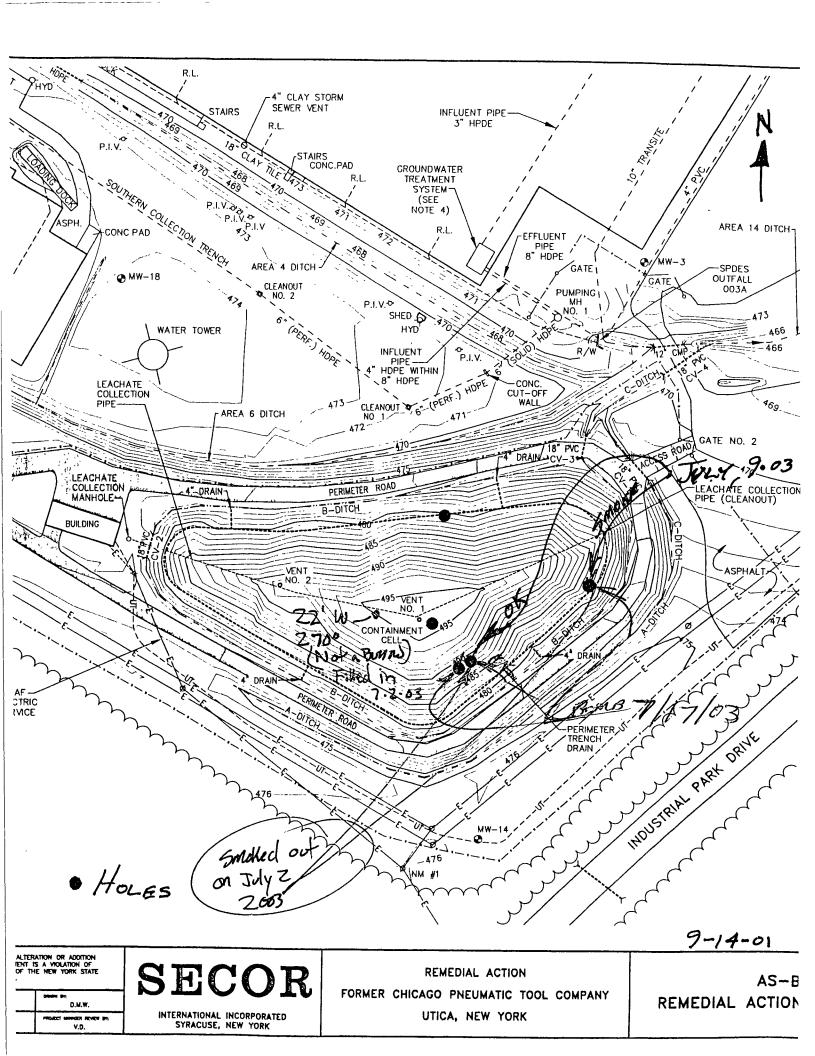



# CONFINED SPACE ENTRY PERMIT (FORM B) OPERATION, MAINTENANCE, AND MONITORING

| Syı | napse Representative: Date: 8/26/64                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 4.  | Space has been/will be cleaned of any toxic residue or atmosphere by  Yes No N/A                                              |
| 5.  | Moving machinery has been/will be locked out and immobilized. Yes No N/A                                                      |
| 6.  | Entry and exit to the space are provided by Ladder  Yes No N/A                                                                |
| 7.  | Will work to be done in the space introduce contaminants to the space? Yes No N/A                                             |
| 8.  | What is the capacity of blowers to be used in cubic feet per minute?                                                          |
| 9.  | Have all affected departments been notified of service interruption? Yes No N/A                                               |
| 10. | Atmospheric gas tests will be conducted by: f. Fisher  Readings: Oxygen                                                       |
| 11. | Will a continuous monitoring device be used? Yes No Type: LEL                                                                 |
| 12. | Calibration date of meters used in Items 10 and 11: a                                                                         |
| 13. | Emergency communications means: 2-Way $\square$ Telephone $\square$ Other $\square$                                           |
| 14. | Additional Comments:                                                                                                          |
|     | ave inspected the space to enter and the safety equipment that will be used, and approve employees' entry the confined space. |
|     | Signed: Project Manager                                                                                                       |
|     | Approved:  Corporate Health and Safety Officer  Corporate Health and Safety                                                   |



# LEACHATE BULK SAMPLING AND TRANSFER (FORM C) OPERATION, MAINTENANCE, AND MONITORING


| Synaps       | e Representa        | etive: RRC     | Date:/                                                    | 29/04            | Batch:                      |                 |
|--------------|---------------------|----------------|-----------------------------------------------------------|------------------|-----------------------------|-----------------|
|              |                     |                | TANK VOLUM                                                | E                |                             |                 |
| Tank Li      | quid Level fro      | m Auto Dialer: | inches                                                    | Leacha           | te Volume:                  | gallons         |
| Flow To      | talizer Readir      | ng: gallons    | Previous Batch:                                           | gall             | ons Difference:             | gallons         |
|              |                     | ANA            | LYTICAL PARAMETER                                         | REFEREN          | NCE                         |                 |
| Sample<br>ID | Parameter           | Reference      | Sample Container                                          | Sample<br>Volume | Preservation                | Holding<br>Time |
| LT-1Z        | VOCs                | USEPA 624      | Two 40-mil glass<br>vials with Teflon-lined<br>septum cap | 80 mil           | HCL, No headspace; cool 4°C | 7 Days          |
| T-12         | SVOCs               | USEPA 625      | 1-Liter amber glass                                       | 1-Liter          | No headspace; cool          | 7 Days          |
| I-12         | Selected<br>Metals  | USEPA200.7     | 1-Liter plastic                                           | 1-Liter          | HNO₃ to pH <3               | 180 Days        |
| LT-12        | PCBs/<br>Pesticides | USEPA 608      | 1-Liter amber glass<br>with Teflon cap                    | 1-Liter          | Cool 4°C                    | 1 Day           |
| Lt-12        | Oil &<br>Grease     | USEPA 1664     | 1-Liter amber glass                                       | 1-Liter          | HCL; cool 4°C               | 26 Days         |
|              | TSS                 | USEPA 160.2    | One 250-mil plastic                                       | 250-mil          | None                        | NA              |
|              |                     |                |                                                           |                  |                             |                 |
|              |                     |                | TRANSFER INFORM                                           | ATION            |                             |                 |
| Disposal     | Facility:           |                | A                                                         | cceptance [      | Date:                       |                 |
| Transpor     | t Method:           |                |                                                           | Hauler:          |                             |                 |
| Date Trar    | nsferred:           |                |                                                           | Amount:          |                             | gallons         |



# LEACHATE BULK SAMPLING AND TRANSFER (FORM C) OPERATION, MAINTENANCE, AND MONITORING

| Synapse Representative: Date: 8/26/04 Batch: LT-12 |                     |                       |                                                           |                  |                                |                 |
|----------------------------------------------------|---------------------|-----------------------|-----------------------------------------------------------|------------------|--------------------------------|-----------------|
|                                                    |                     | ,                     | TANK VOLUMI                                               | E                |                                |                 |
| Tank Lic                                           | quid Level fron     | n Auto Dialer:        | 53.6 inches                                               | Leachat          | e Volume: <u>2760</u>          | gallons         |
| Flow To                                            | talizer Readin      | g: <u>558_gallons</u> | Previous Batch:                                           | gallo            | ons Difference:                | gallons         |
| ANALYTICAL PARAMETER REFERENCE                     |                     |                       |                                                           |                  |                                |                 |
| Sample<br>ID                                       | Parameter           | Reference             | Sample Container                                          | Sample<br>Volume | Preservation                   | Holding<br>Time |
|                                                    | VOCs                | USEPA 624             | Two 40-mil glass<br>vials with Teflon-lined<br>septum cap | 80 mil           | HCL, No headspace;<br>cool 4°C | 7 Days          |
|                                                    | SVOCs               | USEPA 625             | 1-Liter amber glass                                       | 1-Liter          | No headspace; cool<br>4°C      | 7 Days          |
|                                                    | Selected<br>Metals  | USEPA200.7            | 1-Liter plastic                                           | 1-Liter          | HNO <sub>3</sub> to pH <3      | 180 Days        |
|                                                    | PCBs/<br>Pesticides | USEPA 608             | 1-Liter amber glass<br>with Teflon cap                    | 1-Liter          | Cool 4°C                       | 1 Day           |
|                                                    | Oil &<br>Grease     | USEPA 1664            | 1-Liter amber glass                                       | 1-Liter          | HCL; cool 4°C                  | 26 Days         |
|                                                    | TSS                 | USEPA 160.2           | One 250-mil plastic                                       | 250-mil          | None                           | NA              |
|                                                    |                     |                       |                                                           |                  |                                |                 |
| TRANSFER INFORMATION                               |                     |                       |                                                           |                  |                                |                 |
| Disposa                                            | l Facility:         | COWQEW                | PC A                                                      | Acceptance       | Date: 8/25/04                  |                 |
| Transpo                                            | ort Method:         | lac Truck             |                                                           | Hauler:          | Drain Musters,                 | LLC             |
| Date Tra                                           | ansferred:          | 8/26/04               |                                                           | Amount:          | 2750                           | gallons         |







| JOB NAME       | CP   |
|----------------|------|
| JOB NO         |      |
| CALCULATED BY_ | DATE |
| CHECKED BY     | DATE |
| SHEET          | OF   |

8-26-09

SURVEY 5.02 FF BACK SHOT ON CONC 478,54

INFLUENT INVEST

5.56

10.01

GRACE @ MH

11.95

BOTTOM AREA 6 DITCH NORTH DE MH

### APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 



| URGENT                                      |                                                  | ined in this communication is mation and is intended for the | •                            | , , ,                        |
|---------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------|------------------------------|
| ⊠ FOR REVIEW                                | copying is strictly pro<br>immediately notify us | hibited and may be unlawful.<br>at 315.475.3700.             | If you have∖ received this c | ommunication in error, pleas |
| ☐ PLEASE COMMENT                            | То:                                              | R.D. Hoffman                                                 | From:                        | Paul Fisher                  |
| ☐ PLEASE REPLY                              | Company:                                         | OCDWQ&WPC                                                    | Date:                        | August 25, 2004              |
| ORIGINAL TO FOLLOW                          | Fax Number:                                      | (315) 724-9812                                               | Total Pages:                 | 9                            |
| VIA US POSTAL SERVICE<br>OR FEDERAL EXPRESS | Phone Number:                                    | (315) 798-5656                                               | Reference No:                |                              |

### Mr. R.D. Hoffman,

Subject:

☐ YES ☐ NO

Please find attached analytical results for the effluent water sample (LT-12) collected at, 2200 Bleecker Street, Utica, New York, former site of the Chicago Pneumatic Tool Company. We request your review and faxed acceptance to release 2,760 gallons on August 26, 2004. Thank You.

cc:

Regards,

Paul M. Fisher, P.E.



### ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

Joseph A. Griffo **County Executive** 

Steven P. Devan, P.E. Commissioner

51 Leland Ave, PO Box 442, Utica, NY 13503-0442 FAX 724-9812

(315) 798-5656

wpc@ocgov.net

August 25, 2004

MR. PAUL M. FISHER, P.E. SYNAPSE RISK MANAGEMENT LLC 120 EAST WASHINGTON STREET 400 UNIVERSITY BUILDING **SYRACUSE NY 13202** 

Re: Utica Holding Company Storm Sewer, Permit No.GW-050

Dear Mr. Fisher:

Analyses for sample LT-12 faxed on 08/25/04, representing 2,760 gallons of effluent water, show compliance with discharge limits specified in Permit No. GW-050 for the Utica Holding Company Storm Sewer Project. The wastewater is acceptable for discharge.

Sincerely,

THE ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

R.D. Hoffman

Industrial Wastes Chemist

cc: Synapse FAX (315)-475-3780



RECEIVED

AUG 2 7 2004

Brian Macrae Synapse Risk Management, LLC 120 East Washington Street Suite 400 Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: DANA-01-04 TO2

# **Laboratory Analysis Report For**

## Synapse Risk Management, LLC

Client Project ID:

2200 Bleecker St. Utica

LSL Project ID: 0412680

Receive Date/Time: 07/30/04 9:13

Project Received by: MW

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

# Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760 LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

| This report was reviewed by: | This | report | was | reviewed | by: |
|------------------------------|------|--------|-----|----------|-----|
|------------------------------|------|--------|-----|----------|-----|

galegoutton OAC

Date:

8-24-04

Life Science Laboratories

### -- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

LT-12

LSL Sample ID:

0412680-001

Location:

Sampled:

07/29/04 11:00

Sampled By: RC

Sample Matrix: NPW

| Aı  | nalytical Method Analyte                                                             | Result | Units             | Prep<br>Date           | Analysi<br>Date & T |           | Analyst<br>Initials |
|-----|--------------------------------------------------------------------------------------|--------|-------------------|------------------------|---------------------|-----------|---------------------|
| (5) | EPA 1664 Oil + Grease by LLE                                                         |        |                   |                        |                     |           |                     |
|     | Oil & Grease                                                                         | <5     | mg/l              |                        | 8/20/04             | 09:30     | DSW                 |
| 1)  | EPA 200.7 Priority Pollutant Metals                                                  |        |                   |                        |                     |           |                     |
|     | Cadmium                                                                              | < 0.01 | mg/l              |                        | 8/2/04              |           | TER                 |
|     | Chromium                                                                             | <0.01  | mg/l              |                        | 8/2/04              |           | TER                 |
|     | Copper                                                                               | 0.14   | mg/l              |                        | 8/2/04              |           | TER                 |
|     | Lead                                                                                 | 0.011  | mg/l              |                        | 8/2/04              |           | TER                 |
|     | Nickel                                                                               | 0.027  | mg/l              |                        | 8/2/04              |           | TEI                 |
|     | Zinc                                                                                 | 0.55   | mg/l              |                        | 8/2/04              |           | TEI                 |
|     | The result of the calibration check sample analytical result reported above may be b |        | alysis was greate | r than the established | l control limit.    | Therefore | e, the              |
| 1)  | EPA 608 PCB's                                                                        |        |                   |                        |                     |           |                     |
|     | Aroclor-1016                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMW                 |
|     | Aroclor-1221                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Aroclor-1232                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Aroclor-1242                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Aroclor-1248                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Aroclor-1254                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Aroclor-1260                                                                         | <0.1   | ug/l              | 8/3/04                 | 8/5/04              |           | AMV                 |
|     | Surrogate (DCB)                                                                      | 107    | %R                | 8/3/04                 | 8/5/04              |           | AMV                 |
| 1)  | EPA 608 Pesticides                                                                   |        |                   |                        |                     |           |                     |
|     | Aldrin                                                                               | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | alpha-BHC                                                                            | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | beta-BHC                                                                             | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | delta-BHC                                                                            | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | gamma-BHC (Lindane)                                                                  | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Chlordane, Total                                                                     | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | 4,4'-DDD                                                                             | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | 4,4'-DDE                                                                             | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | 4,4'-DDT                                                                             | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Dieldrin                                                                             | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Endosulfan I                                                                         | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Endosulfan II                                                                        | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Endosulfan sulfate                                                                   | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Endrin                                                                               | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Endrin aldehyde                                                                      | < 0.04 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Heptachlor                                                                           | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Heptachlor epoxide                                                                   | < 0.02 | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Methoxychlor                                                                         | <0.2   | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Toxaphene                                                                            | <0.4   | ug/l              | 8/3/04                 | 8/12/04             |           | AMV                 |
|     | Surrogate (DCB)                                                                      | 92     | %R                | 8/3/04                 | 8/12/04             |           | AMV                 |
| 1)  | EPA 624 Volatiles                                                                    |        |                   |                        |                     |           |                     |
|     | Benzene                                                                              | <1     | ug/l              |                        | 8/8/04              |           | LE                  |
|     | Bromodichloromethane                                                                 | <1     | ug/l              |                        | 8/8/04              |           | LE                  |
|     | Bromoform                                                                            | <1     | ug/l              |                        | 8/8/04              |           | LE                  |
|     | Bromomethane                                                                         | <1     | ug/l              |                        | 8/8/04              |           | LE                  |
|     | Carbon tetrachloride                                                                 | <1     | ug/l              |                        | 8/8/04              |           | LE                  |

Page 2 of 4

Life Science Laboratories, Inc.

Date Printed:

8/24/04

### -- LABORATORY ANALYSIS REPORT --

Syracuse, NY

Synapse Risk Management, LLC

Sample ID:

LT-12

LSL Sample ID:

0412680-001

Location:

Sampled:

07/29/04 11:00

Sampled By: RC

Sample Matrix: NPW

| Analytical Method                 |        |       | Prep   | Analysis    | Analyst   |
|-----------------------------------|--------|-------|--------|-------------|-----------|
| Analyte                           | Result | Units | Date   | Date & Time | Initials  |
| (1) EPA 624 Volatiles             |        |       |        |             |           |
| Chlorobenzene                     | <1     | ug/l  |        | 8/8/04      | LEF       |
| Chloroethane                      | <1     | ug/l  |        | 8/8/04      | LEF       |
| 2-Chloroethylvinyl ether          | <10    | ug/l  |        | 8/8/04      | LEF       |
| Chloroform                        | <1     | ug/l  |        | 8/8/04      | LEF       |
| Chloromethane                     | <1     | ug/l  |        | 8/8/04      | LEF       |
| Dibromochloromethane              | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,2-Dichlorobenzene               | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,3-Dichlorobenzene               | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,4-Dichlorobenzene               | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,1-Dichloroethane                | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,2-Dichloroethane                | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,1-Dichloroethene                | <1     | ug/l  |        | 8/8/04      | LEF       |
| trans-1,2-Dichloroethene          | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,2-Dichloropropane               | <1     | ug/l  |        | 8/8/04      | LEF       |
| cis-1,3-Dichloropropene           | <1     | ug/l  |        | 8/8/04      | LEF       |
| trans-1,3-Dichloropropene         | <1     | ug/l  |        | 8/8/04      | LEF       |
| Ethyl benzene                     | <1     | ug/l  |        | 8/8/04      | LEF       |
| Methylene chloride                | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,1,2,2-Tetrachloroethane         | <1     | ug/l  |        | 8/8/04      | LEF       |
| Tetrachloroethene                 | <1     | ug/l  |        | 8/8/04      | LEF       |
| Toluene                           | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,1,1-Trichloroethane             | <1     | ug/l  |        | 8/8/04      | LEF       |
| 1,1,2-Trichloroethane             | <1     | ug/l  |        | 8/8/04      | LEF       |
| Trichloroethene                   | <1     | ug/l  |        | 8/8/04      | LEF       |
| Trichlorofluoromethane (Freon 11) | <1     | ug/l  |        | 8/8/04      | LEF       |
| Vinyl chloride                    | <1     | ug/l  |        | 8/8/04      | LEF       |
| Xylenes (Total)                   | <1     | ug/l  |        | 8/8/04      | LEF       |
| Surrogate (1,2-DCA-d4)            | 96     | %R    |        | 8/8/04      | LEF       |
| Surrogate (Tol-d8)                | 95     | %R    |        | 8/8/04      | LEF       |
| Surrogate (4-BFB)                 | 99     | %R    |        | 8/8/04      | LEF       |
| (1) EPA 625 Semi-Volatiles        |        |       |        |             |           |
| Acenaphthene                      | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Acenaphthylene                    |        | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Anthracene                        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzidine                         | <20    | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzo(a)anthracene                | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzo(b)fluoranthene              | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzo(k)fluoranthene              | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| • •                               | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzo(ghi)perylene                | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| Benzo(a)pyrene                    | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| 4-Bromophenyl-phenylether         | <5     |       | 8/4/04 | 8/7/04      | CRT       |
| Butylbenzylphthalate              | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| bis(2-Chloroethoxy)methane        |        | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| bis(2-Chloroethyl)ether           | <5     | ug/l  |        |             | CRT       |
| bis(2-Chloroisopropyl)ether       | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| 4-Chloro-3-methylphenol           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT       |
| 2-Chloronaphthalene               | <5     | ug/l  | 8/4/04 | 8/7/04      | Page 3 of |

### -- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

LT-12

LSL Sample ID:

0412680-001

Location:

Sampled:

07/29/04 11:00

Sampled By: RC

Sample Matrix: NPW

| Ar  | nalytical Method              |        | TT:4  | Prep   | Analysis    | Analyst  |
|-----|-------------------------------|--------|-------|--------|-------------|----------|
| =   | Analyte                       | Result | Units | Date   | Date & Time | Initials |
| (1) | EPA 625 Semi-Volatiles        |        |       |        |             |          |
|     | 2-Chlorophenol                | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 4-Chlorophenyl-phenylether    | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Chrysene                      | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Dibenz(a,h)anthracene         | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Di-n-butylphthalate           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 1,2-Dichlorobenzene           | <5     | ug/i  | 8/4/04 | 8/7/04      | CRT      |
|     | 1,3-Dichlorobenzene           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 1,4-Dichlorobenzene           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 3,3'-Dichlorobenzidine        | <10    | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,4-Dichlorophenol            | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,4-Dimethylphenol            | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Diethylphthalate              | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Dimethylphthalate             | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,4-Dinitrophenol             | <10    | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,4-Dinitrotoluene            | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,6-Dinitrotoluene            | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Di-n-octylphthalate           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | bis(2-Ethylhexyl)phthalate    | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Fluoranthene                  | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Fluorene                      | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Hexachlorobenzene             | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Hexachlorobutadiene           | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Hexachlorocyclopentadiene     | <10    | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Hexachloroethane              | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Indeno(1,2,3-c,d)pyrene       | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Isophorone                    | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2-Methyl-4,6-dinitrophenol    | <10    | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Naphthalene                   | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Nitrobenzene                  | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2-Nitrophenol (o-Nitrophenol) | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 4-Nitrophenol                 | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | N-Nitrosodimethylamine        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | N-Nitrosodiphenylamine        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | N-Nitroso-di-n-propylamine    | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Pentachiorophenoi             | <10    | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Phenanthrene                  | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Phenol                        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | Pyrene                        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 1,2,4-Trichlorobenzene        | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |
|     | 2,4,6-Trichlorophenol         | <5     | ug/l  | 8/4/04 | 8/7/04      | CRT      |

Page 4 of 4



### SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

| Method       | Surrogate(s)               | Water<br><u>Limits, %R</u> | SHW<br>Limits, %R |
|--------------|----------------------------|----------------------------|-------------------|
| EPA 504      | TCMX                       | 80-120                     | NA                |
| EPA 508      | DCB                        | 70-130                     | NA                |
| EPA 515.4    | DCAA                       | 70-130                     | NA                |
| EPA 524.2    | 1,2-DCA-d4, 4-BFB          | 80-120                     | NA                |
| EPA 525.2    | 1,3-DM-2-NB, TPP, Per-d12  | 70-130                     | NA                |
| EPA 526      | 1.3-DM-2-NB, TPP           | 70-130                     | NA                |
| EPA 528      | 2-CP-3,4,5,6-d4, 2,4,6-TBP | 70-130                     | NA                |
| EPA 551.1    | Decafluorobiphenyl         | 80-120                     | NA                |
| EPA 552.2    | 2,3-DBPA                   | 80-120                     | NA                |
| EPA 601      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | NA                |
| EPA 602      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | NA                |
| EPA 608      | DCB                        | 30-150                     | NA                |
| EPA 624      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | NA                |
| EPA 625, AE  | 2-Fluorophenol             | 21-110                     | NA                |
| EPA 625, AE  | Phenol-d5                  | 10-110                     | NA                |
| EPA 625, AE  | 2,4,6-Tribromophenol       | 10-123                     | NA                |
| EPA 625, BN  | Nitrobenzene-d5            | 35-114                     | NA                |
| EPA 625, BN  | 2-Fluorobiphenyl           | 43-116                     | NA                |
| EPA 625, BN  | Terphenyl-d14              | 33-141                     | NA                |
| EPA 8010     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | 70-130            |
| EPA 8020     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | 70-130            |
| EPA 8021     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | 70-130            |
| EPA 8081     | TCMX, DCB                  | 30-150                     | 30-150            |
| EPA 8082     | DCB                        | 30-150                     | 30-150            |
| EPA 8151     | DCAA                       | 30-130                     | 30-120            |
| EPA 8260     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130                     | 70-130            |
| EPA 8270, AE | 2-Fluorophenol             | 21-110                     | 25-121            |
| EPA 8270, AE | Phenol-d5                  | 10-110                     | 24-113            |
| EPA 8270, AE | 2,4,6-Tribromophenol       | 10-123                     | 19-122            |
| EPA 8270, BN | Nitrobenzene-d5            | 35-114                     | 23-120            |
| EPA 8270, BN | 2-Fluorobiphenyl           | 43-116                     | 30-115            |
| EPA 8270, BN | Terphenyl-d14              | 33-141                     | 18-137            |
| DOH 310-13   | Dodecane                   | 40-110                     | 40-110            |
| DOH 310-14   | Dodecane                   | 40-110                     | 40-110            |
| DOH 310-15   | Dodecane                   | 40-110                     | 40-110            |
| DOH 310-34*  | 4-BFB                      | 50-150                     | 50-150            |
| 8015M_GRO*   | 4-BFB                      | 50-150                     | 50-150            |
| 8015M_DRO    | Terphenyi-d14              | 50-150                     | 50-150            |

\*Run by GC/MS.

| Units Key: | ug/l = microgram per liter     |
|------------|--------------------------------|
|            | ug/kg = microgram per kilogram |
| ĺ          | mg/i = milligram per liter     |
|            | mg/kg = milligram per kilogram |
|            | %R = Percent Recovery          |
|            |                                |

| _ |
|---|
|   |
|   |
| 5 |
|   |
|   |

# Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

LSL Finger Lakes Lab.

16 N. Main St., PO Box 424

Phone: 585-728-3320 585-728-2711 Wayland, NY 14572 Fax:

Waddington, NY 13694

Phone: 315-388-4476

Fax: 315-388-4061

E. Syracuse, NY 13057

5854 Butternut Drive

LSL Central Lab.

Phone: 315-445-1105 315-445-1301

Report Address:

Fax:

131 St. Lawrence Ave.

LSL North Lab.

LSL Southern Tier Lab. 30 East Main St.

Cuba, NY 14727

585-968-2640

Phone: 585-968-2640

Fax:

Pre-Authorized **Turnaround Time** Normal \*Additional Charges

3-Day \*

Next Day\*

2-Day \*

14 DAY

7-Day\*

Date Needed or Special Instructions

may apply

TSL ID#

Check

Preserv

Analyses

size/type

#

Added

Matrix

Containers

Preserv.

SPDES / 2200 Bleecker St, Utica, NY

rcreighton@synapseriskmanagement.com

Client Project ID/Client Site ID

475-3700

Synaspe Risk Management, LLC

Roger Creighton

120 E. Washington Street, Suite 400

Syracuse, NY

City/State:

Phone: Email:

Company: Street:

Name:

Type

Sample

Sample

Client's Sample

Identifications

grab/comp

Time

Date

40 m/

**DANA 01-04 T02** 

Authorization or P.O. #

Fax: 475-3780

13202

Zib:

LSL Project Number:

DOI A D

0 100

J

ğ

W

õ

PCBs/Pesticides by EPA Method 608

Amber/Tefl

ŀ

≥

Grab

1-Liter

Select Metals by EPA Method 200.7

1-500 ml

Amber

≥

Grab

1-Liter

voa

S

덛

≥

Grab

90:11

1/53/04

LT-12

LT-12

LT-12

LT-12

LT-12

plastic

HNO3

≥

Grab

(Cd, Cr, Cu, Pb, Ni, Zn)

SVOCs by EPA Method 625

VOCs by EPA Method 624

Oil and Grease by EPA Method 1664

Amber

ᄗ

≥

Grab

250-mil

1-Liter

TSS by EPA Method 160.2

plastic

≱

**Prat** 

Trip Blank

44

77

٥٥

585-554-6743 7450-4-0----

Fax:

SynapseRiskManage 0412680

16.8°21

Lime

Date

13:064

Received By: Received By:

- really har

Relinquished By:

Sampled By:

-SL use only:

**Custody Transfers** 

\*\*\* All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY\*\*\* 77 187 Rec'd for Lab By: [ Received Intact: Shipment Method: V Relinquished By: Containers this C-O-C: Temp. of samples:

LSL COC-Leachate

LeachateTank

# APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 

### WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK NYSDEC SITE NO. 622003**

\_\_\_\_\_ Date: 4 22/04 DOMANI Representative: RSD / 57M

|                      |                             | (                                             |                                              |                                      |                                          | ,                        |      |          |
|----------------------|-----------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------|--------------------------|------|----------|
| Location             | Installed<br>Depth<br>(ft.) | Measured<br>Depth<br>(ft.) <sup>1</sup> (TOR) | Top<br>Elevation<br>(ft.) <sup>1</sup> (TOR) | Water<br>Depth<br>(ft.) <sup>1</sup> | Water<br>Elevation<br>(ft.) <sup>2</sup> | Water<br>Column<br>(ft.) | Time | Comments |
| MW-6R                | 10.52                       | 10.52                                         | 465.47                                       | 3.88                                 | 461.59                                   | 6.64                     | 1330 |          |
| MW-1/3A              | 10.92                       | 11.05                                         | 469.23                                       | 256                                  | 466.67                                   | 8.49                     |      |          |
| MW-14                | 13.00                       | 12.90                                         | 478.37                                       | 3.03                                 | 475.34                                   | 9.87                     | 1044 |          |
| MW-17                | 11.25                       | 11,30                                         | 466.02                                       | DRY                                  |                                          |                          | 1310 |          |
| MW-18                | 11.73                       | 11.79                                         | 475.96                                       | 4.71                                 | 471.25                                   | 7.08                     | 1115 |          |
| SCT CO-1             |                             | 6.12                                          | 472.30                                       | DRY                                  | _                                        | _                        |      |          |
| SCT CO-2             | _                           | _                                             | 473.42                                       | 7.80                                 |                                          | _                        |      |          |
| SCT CO-3             | _                           | 4.55                                          | 471.21                                       | DRY                                  |                                          | )                        | ,    |          |
| NCT CO-1             | _                           | 10.5                                          | 464.70                                       | DRY                                  | _                                        |                          |      |          |
| MH-2<br>(Collection) | 12.80                       |                                               | 465.31                                       | 12.21                                | 453.10                                   | 0.39                     |      |          |

### Notes:

| 1) | Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point |
|----|--------------------------------------------------------------------------------------------------------------|
|    | at the highest part on the inner 2 inch PVC riser nine                                                       |

2) Elevations are referenced to sea level, as set bythe National Geodetic Vertical Datum (NGVD) of 1988

3) MW = Monitoring Well

4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

| <ul> <li>5) NCT = Northern Collection Trenct</li> <li>6) CO = Clean Out (Depths and Elev</li> <li>7) MH = Manhole</li> </ul> |                 |         | 44 Sees        |
|------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|----------------|
| General Comments:                                                                                                            | 001-14 16       | pH 6.27 | Temp 14.2°C 47 |
|                                                                                                                              | 002.71/6        | 6.47    | 14.00          |
|                                                                                                                              | 003 - 7 1/2 18" | 7.0     | 15.3 5.5 Secs  |
|                                                                                                                              |                 |         |                |

# WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

| Synapse Representative:_ | 5 | Matthews | Date: | 10-18-04 |
|--------------------------|---|----------|-------|----------|
| - )                      |   |          |       |          |

| Location             | Installed<br>Depth<br>(ft.) | Measured<br>Depth<br>(ft.) <sup>1</sup> (TOR) | Top<br>Elevation<br>(ft.) <sup>1</sup> (TOR) | Water<br>Depth<br>(ft.) <sup>1</sup> | Water<br>Elevation<br>(ft.) <sup>2</sup> | Water<br>Column<br>(ft.) | Time | Comments |
|----------------------|-----------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------|--------------------------|------|----------|
| MW-6R                | 10.52                       | 10.52 (NM)                                    | 465.47                                       | 4,44                                 | 461.03                                   | 608                      | 1210 |          |
| MW-13A               | 10.92                       | 10.92                                         | 469.23                                       | 422                                  | 465.01                                   | 6.48                     | 1220 |          |
| MW-14                | 13.00                       | 13.00                                         | 478.37                                       | 5.84                                 | 477.53                                   | 7.16                     | 1230 |          |
| MW-17                | 11.25                       | 11.25                                         | 466.02                                       | DRY                                  | _                                        | _                        | 1145 | PRY      |
| MW-18                | 11.73                       | 11.73                                         | 475.96                                       | 7.03                                 | 468.93                                   | 4.70                     | 1115 | /        |
| SCT CO-1             | _                           | NM                                            | 472.30                                       | DRY                                  | _                                        |                          | (140 | DRY      |
| SCT CO-2             | _                           | 8.53                                          | 473.42                                       | 7.80                                 | 465.62                                   | _                        | 1130 | /        |
| SCT CO-3             |                             | 4.55                                          | 471.21                                       | PRY                                  | NM                                       | _                        | 1145 | TRY      |
| NCT CO-1             | _                           | NM                                            | 464.70                                       | DRY                                  | NM                                       | _                        | 1155 | DRY      |
| MH-2<br>(Collection) | 12.80                       | 12.8                                          | 465.31                                       | 12.3                                 | 45301                                    | 0.5                      | 1200 | <b>/</b> |

### Notes:

- 1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.
- 2) Elevations are referenced to sea level, as set bythe National Geodetic Vertical Datum (NGVD) of1988.
- 3) MW = Monitoring Well
- 4) SCT = Southern Collection Trench
- 5) NCT = Northern Collection Trench
- 6) CO = Clean Out (Depths and Elevations areApproximate)
- 7) MH = Manhole

| General Comments:                                    |  |
|------------------------------------------------------|--|
| MHZ Mensurement taken from top of skel casing xing   |  |
| Installed well depths used to calculate well volumes |  |
| N/M= N) of Measured                                  |  |
|                                                      |  |

# APPENDIX E GROUNDWATER SAMPLING LOGS – FORM E

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 

### REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

| DOMAN       | II Repres                                                                | entative:    | RSN/S                           | ím c                             | Date: <u> </u>                | 2-04               | V                       | Vell Number: MW-6R                                              |  |  |
|-------------|--------------------------------------------------------------------------|--------------|---------------------------------|----------------------------------|-------------------------------|--------------------|-------------------------|-----------------------------------------------------------------|--|--|
|             | AIR MONITORING                                                           |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| PID Mo      | del: <b>/</b>                                                            | ) <u> </u>   | Ва                              | ckground: _                      | NA_F                          | opm                |                         | At Wellppm                                                      |  |  |
|             | WELL PURGING                                                             |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| Purge \     | Purge Volume Purge Method                                                |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| TD = To     | TD = Total Depth of Well (from Form C)  Bailer Type: Reusable Disposable |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| Dedicate    | Dedicated                                                                |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| WL = W      | ater Level                                                               | Depth (fr    | om Form C)                      |                                  | Actual Vol                    | ume Genera         | <u>ted</u>              |                                                                 |  |  |
| # VOL =     | Number                                                                   | of Well Vo   | olumes to Be Pu                 | [0.60]                           | ,                             | Gallons            | 2 7                     |                                                                 |  |  |
| Purge V     | <mark>/olume Ca</mark><br>2" diamete                                     | alculation   | ı: ( <u>lø:52</u> -<br>TD (ft.) | · <u>3. 06 °</u> ) x<br>WL (ft.) | 1                             | ×_><br>#VOLS       | _ = <u>3.Z</u><br>Purge | <b>5</b> Gallons <i>Vol.</i> ( <i>Vol/ft</i> = 0.163 for 2" OD) |  |  |
| (101        | Z diamete                                                                | er weny      | (,                              | ١/                               | ETER MEASU                    |                    | 9                       |                                                                 |  |  |
|             | <del></del>                                                              | 1.           |                                 |                                  |                               | T                  | <u> </u>                |                                                                 |  |  |
| Time        | Vol.<br>No.                                                              | Temp<br>(°C) | Conductivity<br>(mS/cm)         | Water<br>Depth<br>(ft.)          | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA)              | Observations                                                    |  |  |
| 1:30        | Inital                                                                   | 11.5         | 0.406                           | 3.88                             | 15.97                         | 487                | 6.9/                    | orange/brown                                                    |  |  |
| 1:33        | 1                                                                        | 11.0         | 0.406                           | _                                | 16.12                         | 7999               | 6.63                    | of anye/brown                                                   |  |  |
| 1:35        | 2                                                                        | 10.6         | 0.417                           | -                                | 16.44                         | 5-16               | 658                     | Lt. Brown                                                       |  |  |
| 1:40        | 3                                                                        | 10.3         | 0.414                           | -                                | 16.47                         | 628                | 65%                     | cloudy                                                          |  |  |
|             |                                                                          |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
|             |                                                                          |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
|             | <u> </u>                                                                 | <u></u>      | <u> </u>                        |                                  |                               | <u></u>            |                         |                                                                 |  |  |
|             |                                                                          |              |                                 | WEL                              | L SAMPLING                    |                    | - 11 - 1                |                                                                 |  |  |
|             |                                                                          |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
| Sampl       | e ID:                                                                    |              |                                 | Rece                             | iving Lab (Ch                 | ain of Cus         | tody):                  |                                                                 |  |  |
|             |                                                                          |              |                                 | <del></del>                      | •                             |                    | • • •                   |                                                                 |  |  |
| Gener       | al Notes                                                                 | <u></u>      |                                 |                                  |                               |                    |                         |                                                                 |  |  |
|             |                                                                          |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
|             |                                                                          |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |
|             |                                                                          |              |                                 |                                  | ·                             |                    |                         |                                                                 |  |  |
| <del></del> | ···                                                                      |              |                                 |                                  |                               |                    |                         |                                                                 |  |  |

Page 1 of 1

G \X domani\Clients\DANA\001-03 CP\02 RAF O&M\Forms\OMM Form E doc

| DOMAN                                                                              | NI Repres                                                     | entative                              | : KSN S                 | JM                      | Date: <u>4</u> /2                      | 2/04               | \                | Well Numbe   | er: <u>MW-137</u>       |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|-------------------------|-------------------------|----------------------------------------|--------------------|------------------|--------------|-------------------------|--|--|
|                                                                                    | · ·                                                           |                                       |                         | AIR                     | MONITORING                             |                    | "                |              |                         |  |  |
| PID Mo                                                                             | del:                                                          | NA                                    | В                       | ackground:              | NA                                     | ppm                |                  | At Well      | NA ppm                  |  |  |
|                                                                                    | WELL PURGING                                                  |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
| Purge \                                                                            | Purge Volume Purge Method                                     |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
| TD = Total Depth of Well (from Form C)  Bailer Type: Reusable Disposable Dedicated |                                                               |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
| WL = W                                                                             | WL = Water Level Depth (from Form C)  Actual Volume Generated |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
|                                                                                    |                                                               |                                       |                         |                         | 5                                      |                    |                  |              |                         |  |  |
| Purge V                                                                            | olume Ca                                                      | lculation                             | n: ( <u>//.05</u>       | - <u>2.56</u> ),        | k <u>.163</u>                          | _x <u>3</u>        | = <u>4</u> .     | 7 Gallor     | ns<br>= 0.163 for 2"OD) |  |  |
| (for                                                                               | 2" diamete                                                    | er well)                              |                         |                         | Vol/tt.<br>ETER MEASU                  |                    | Purge            | Vol. (Vol/tt | = 0.163 for 2"OD)       |  |  |
|                                                                                    |                                                               |                                       | FIC                     | LU PARAW                | ETER MEASO                             | REMENI             |                  |              | <i>J</i>                |  |  |
| Time                                                                               | Vol.<br>No.                                                   | Temp<br>(°C)                          | Conductivity<br>(mS/cm) | Water<br>Depth<br>(ft.) | Dissolved<br>Oxygen<br>(mg/L)          | Turbidity<br>(NTU) | pH<br>(NA)       | Obse         | ervations               |  |  |
| 1:50                                                                               | STATT                                                         | 12.5                                  | 0.362                   | 2.56                    | 15.63                                  | 312                | 6.78             | Lt. Brow     | ) \                     |  |  |
| 2:00                                                                               | 1                                                             | 10.4                                  | 0.421                   |                         | 17.33                                  |                    | 6.85             | GrAY /B      | rown                    |  |  |
| 2:05                                                                               | 2                                                             | 1                                     | 0.414                   |                         | 17.17                                  | 416                |                  | Cloud        |                         |  |  |
| 2:15                                                                               | 3                                                             | 9.9                                   | 0.418                   |                         | 17.38                                  | 7 999              | 6.86             | Lt. Bro      | MM                      |  |  |
|                                                                                    |                                                               |                                       |                         |                         |                                        |                    | - <del>-</del> - |              |                         |  |  |
|                                                                                    |                                                               |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
| <u> </u>                                                                           | <u> </u>                                                      |                                       |                         | <u> </u>                | ·                                      | •                  | <u> </u>         | <u> </u>     |                         |  |  |
|                                                                                    |                                                               |                                       | <u> </u>                | WEL                     | L SAMPLING                             |                    |                  |              | <u></u>                 |  |  |
|                                                                                    |                                                               |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
| Sample                                                                             | e ID:                                                         | h W-                                  | 13 A                    | Rece                    | iving Lab (Ch                          | ain of Cust        | :ody):           |              |                         |  |  |
| Genera                                                                             | General Notes: MS   MSD SAMPLES TAKEN                         |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
|                                                                                    |                                                               |                                       |                         |                         | ······································ |                    |                  |              |                         |  |  |
|                                                                                    |                                                               | · · · · · · · · · · · · · · · · · · · |                         |                         |                                        |                    |                  |              |                         |  |  |
|                                                                                    |                                                               |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |
|                                                                                    |                                                               |                                       |                         |                         |                                        |                    |                  |              |                         |  |  |


| DOMAN    | I Repres                  | entative:    | RSN 5                   | <u> </u>                | Date: 4 1                     | 2/04               | v            | ℓ <i>Ч</i><br>Vell Number: <u>MW-</u>    |  |  |
|----------|---------------------------|--------------|-------------------------|-------------------------|-------------------------------|--------------------|--------------|------------------------------------------|--|--|
|          | AIR MONITORING            |              |                         |                         |                               |                    |              |                                          |  |  |
| PID Mod  | PID Model:                |              |                         |                         |                               |                    |              |                                          |  |  |
|          | WELL PURGING              |              |                         |                         |                               |                    |              |                                          |  |  |
| Purge V  | Purge Volume Purge Method |              |                         |                         |                               |                    |              |                                          |  |  |
| TD = To  | tal Depth                 | of Well      | (from Form C)           |                         | Bailer Typ                    | e: Reusable        | · <u>*</u> [ | Disposable Dedicated                     |  |  |
|          |                           |              | om Form C)              |                         | Actual Vol                    |                    | <u>ated</u>  |                                          |  |  |
| # VOL =  | Number o                  | of Well Vo   | lumes to Be Pur         | ged (3-9)               | 5.1                           | Gallons            |              |                                          |  |  |
| Purge V  | olume Ca                  | lculation    | : (12.90 -              | 3,05 ) x                | 163                           | x <u>.3</u>        | = 5.1        | Gallons  Vol. (Vol/ft = 0.163 for 2" OD) |  |  |
| (for 2   | ?" diamete                | r well)      |                         |                         | ETER MEASU                    |                    |              | Voi. (Voi/II = 0.1031012 OD)             |  |  |
|          |                           |              |                         |                         |                               |                    | <del> </del> |                                          |  |  |
| Time     | Vol.<br>No.               | Temp<br>(°C) | Conductivity<br>(mS/cm) | Water<br>Depth<br>(ft.) | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA)   | Observations                             |  |  |
| 10:39    | START                     | 10.4         | 0.269                   |                         | 17.83                         | 178                | 6.35         | Clear                                    |  |  |
| 10:44    | 1                         | 8.4          | 0.234                   |                         | 19.12                         | 295                | 6.62         | Lt. Brown                                |  |  |
| 10:5     |                           | 8.5          |                         |                         | 18.49                         | 406                | 6.54         | Lt, Brown                                |  |  |
| 2:40     | 3                         | 8.8          | 0.258                   | <u>-</u>                | 19.13                         | 684                | 1.33         | Cloupy                                   |  |  |
|          | <del></del>               |              |                         |                         |                               |                    |              |                                          |  |  |
|          |                           |              |                         |                         |                               |                    |              |                                          |  |  |
| L        |                           | <u> </u>     |                         |                         | <u> </u>                      | <u> </u>           |              |                                          |  |  |
| <u> </u> |                           |              |                         | WEL                     | LSAMPLING                     |                    |              |                                          |  |  |
| Sample   | : ID:                     |              |                         | _ Rece                  | iving Lab (Ch                 | ain of Cus         | tody):       |                                          |  |  |
| Genera   | l Notes:                  | Sil          | ICA SAND                | (PACK)                  | j æn Weil                     | Botto              | m            |                                          |  |  |
| D        | uplic                     | ATE          | SAMPLO                  | ల                       |                               |                    |              |                                          |  |  |
|          |                           |              |                         |                         |                               |                    |              |                                          |  |  |
|          |                           |              |                         |                         |                               |                    | · ·          |                                          |  |  |
|          |                           |              |                         |                         |                               |                    |              |                                          |  |  |

| DOMAN                                                      | II Repres                                                                                                                                                                       | entative      | : RSN (S)                             | m                       | Date: 4 2                     | 104                | \            | Well Number: MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|-------------------------|-------------------------------|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                            | 4                                                                                                                                                                               | ( . <b>A</b>  |                                       |                         | MONITORING                    |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| PID Mo                                                     | del:                                                                                                                                                                            | 1 Pt          | Ba                                    | ackground:              | NA                            | ppm                |              | At Well NA ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| ·-                                                         |                                                                                                                                                                                 |               |                                       | WEI                     | L PURGING                     |                    |              | , and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Purge \                                                    | /olume                                                                                                                                                                          |               |                                       |                         | Purge Me                      | ethod              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| TD = Tc                                                    | otal Depth                                                                                                                                                                      | of Well       | (from Form C                          | )                       | Bailer Typ                    | e: Reusable        | • <u>X</u>   | DisposableDedicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                            |                                                                                                                                                                                 |               | om Form C)                            |                         |                               | lume Genera        | <u>ated</u>  | the state of the s |  |  |  |
| # VOL = Number of Well Volumes to Be Purged (3-9)  Gallons |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Purge V                                                    | Purge Volume Calculation: $(11.79 - 4.71) \times 1.63 \times 3 = 3.59$ Gallons (for 2" diameter well) TD (ft.) WL (ft.) Vol/ft. $*$ #VOLS Purge Vol. (Vol/ft = 0.163 for 2" OD) |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| (101 1                                                     | z diamete                                                                                                                                                                       | 1 11011)      |                                       |                         | ETER MEASU                    |                    | ruigo        | 4- 13 (3.7° )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                            | T*****                                                                                                                                                                          | T             | <del></del>                           |                         | 1                             | <del></del>        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Time                                                       | Vol.<br>No.                                                                                                                                                                     | Temp<br>(°C)  | Conductivity<br>(mS/cm)               | Water<br>Depth<br>(ft.) | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA)   | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 11:15                                                      | STATI                                                                                                                                                                           | 9.9           | 0.438                                 |                         | 17.11                         | 265                | 6.6          | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 11:20                                                      | ı                                                                                                                                                                               | 8.8           | 0.439                                 |                         | 18.13                         | 654                | 6.63         | Lt. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 11:25                                                      | 2                                                                                                                                                                               | 8.8           | 0.444                                 |                         | 18,14                         | 7999               | 6.63         | Lt. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 11:30                                                      | 3                                                                                                                                                                               | 8.8           | 0.463                                 |                         | 17.89                         | >999               | 6.80         | Ct. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            | <u>!</u>                                                                                                                                                                        |               |                                       |                         | <u> </u>                      | <u> </u>           | <u></u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       | WEL                     | L SAMPLING                    |                    | - i.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Sample                                                     | ID:                                                                                                                                                                             |               |                                       | Rece                    | iving Lab (Ch                 | ain of Cust        | tody):       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            | ıl Notes:                                                                                                                                                                       |               | , , , , , , , , , , , , , , , , , , , |                         |                               |                    |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Genera                                                     | ii Notes:                                                                                                                                                                       |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            | <del></del>                                                                                                                                                                     |               |                                       |                         |                               |                    | <del> </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         |                               | 1                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               | •                                     |                         |                               | ,                  | • '\         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                            |                                                                                                                                                                                 |               |                                       |                         | )                             |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| G:\Clients\DAN                                             | A\001-03 CP\02 R                                                                                                                                                                | AF O&M\Forms\ | OMM Form E doc                        | ,                       | Page 1 of 1                   | D سے               | O            | M A N I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

| Synaps                                                 | Synapse Representative: 5, Mathews Date: 10.18.04 Well Number: MW-6/ |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|--------------------------------------------------------|----------------------------------------------------------------------|--------------|--------------------------------------|-------------------------------------------|-------------------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| AIR MONITORING                                         |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| PID Mo                                                 | del:                                                                 |              | Ba                                   | ackground: _                              | F                             | opm                |                          | At Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppm            |  |
| WELL PURGING                                           |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Purge Volume Purge Method                              |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| TD = To                                                | otal Depth                                                           | of Well      | (from Form C                         | )                                         | Bailer                        | Type: Re           | usable                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disposable     |  |
| Dedicate                                               | Dedicated                                                            |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                                                        |                                                                      |              | om Form C)                           |                                           | <u>Actual Vol</u>             |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| # VOL =                                                | Number o                                                             | f Well Vo    | olumes to Be Pu                      | irged (3-9)                               |                               | Gallons            | 1 a                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |
| Purge V                                                | <b>olume Ca</b><br>2" diamete                                        | lculation    | <u>i</u> : ( <u>10.52</u><br>TD (ft) | - <u>4.44      )</u> ×<br><i>WL (ft.)</i> | 163 = .99<br>Vol/ft.          | .× <u> </u>        | _ = <u> ` 1</u><br>Purae | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 163 for 2" OD) |  |
| (101                                                   | <u> </u>                                                             | , wony       |                                      |                                           | ETER MEASU                    |                    |                          | Transcription of the second of | <u> </u>       |  |
|                                                        | T                                                                    | <u> </u>     |                                      |                                           | <u> </u>                      |                    | i I                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Time                                                   | Vol.<br>No.                                                          | Temp<br>(°C) | Conductivity<br>(mS/cm)              | Water<br>Depth<br>(ft.)                   | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA)               | Observa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | itions         |  |
| 1550                                                   | InHeal                                                               | 16.0         | .562                                 | 4.44                                      | 8.81                          | 55                 | 7.03                     | 10.19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04             |  |
| 1555                                                   | 1                                                                    | 16.3         | . 593                                | 6.73                                      | 8-61                          | 18                 | 6.97                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| 1558                                                   | 2                                                                    | 16.5         | -610                                 | 7.85                                      | 8.50                          | 426                | 6.97                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| 1605                                                   | 3                                                                    | 16.3         | -585                                 | 8.45                                      | 8.68                          | 308                | 6.93                     | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |
| 1400                                                   |                                                                      | 14.6         | .581                                 | 4.39                                      | 8.67                          | 270                | 6.80                     | 10.19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04             |  |
|                                                        |                                                                      | , <u> </u>   |                                      | , , ,                                     |                               |                    |                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |
| <u> </u>                                               | <u>'</u>                                                             |              |                                      | <u> </u>                                  |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                                                        |                                                                      | <u> </u>     |                                      | WEL                                       | L SAMPLING                    |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Sample ID: MW·6R Receiving Lab (Chain of Custody): LSL |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Genera                                                 | General Notes:   gallon priged per volume; total 3 gallons           |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                                                        |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                                                        |                                                                      |              |                                      |                                           | <u></u>                       |                    | •                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                                                        |                                                                      |              |                                      |                                           |                               |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |

| Synapse                                                                                                                       | e Represe              | entative:            | S. Matthew              | ا                                    | Date: 10.18                   | 1.04                                   | V            | Vell Number: | MW-13A          |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------------------|--------------------------------------|-------------------------------|----------------------------------------|--------------|--------------|-----------------|
|                                                                                                                               |                        |                      |                         | AIR N                                | MONITORING                    |                                        |              |              |                 |
| PID Mod                                                                                                                       | del:                   |                      | Ba                      | ackground: .                         | F                             | opm                                    |              | At Well      | ppm             |
|                                                                                                                               |                        |                      |                         | WEL                                  | L PURGING                     | ······································ |              |              |                 |
| Purge \                                                                                                                       | /olume                 |                      |                         |                                      | Purge Me                      | thod                                   |              |              |                 |
| TD = To                                                                                                                       | otal Depth             | of Well              | (from Form C            | )                                    | Bailer Typ                    | e: Reusable                            | (            | Disposable   | Dedicated       |
| WL = Water Level Depth (from Form C)  # VOL = Number of Well Volumes to Be Purged (2-9)  Actual Volume Generated  LIS Gallons |                        |                      |                         |                                      |                               |                                        |              |              |                 |
| Purge V<br>(for 2                                                                                                             | olume Ca<br>2" diamete | lculatior<br>r well) |                         |                                      | 16 <b>% : 1.03</b><br>Vol/ft. |                                        | = 3<br>Purge |              | .163 for 2" OD) |
|                                                                                                                               |                        |                      | FIE                     | LD PARAM                             | ETER MEASU                    | REMENT                                 |              |              |                 |
| Time                                                                                                                          | Vol.<br>No.            | Temp<br>(°C)         | Conductivity<br>(mS/cm) | Water<br>Depth<br>ひ <sup>(ft.)</sup> | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU)                     | pH<br>(NA)   | Observ       | ations          |
| 1308                                                                                                                          | Initial                | 16.1                 | : 697                   | 4:44                                 | 8.42                          | -10                                    | <b>3</b> .48 | 10.18.       | 04              |
| 1315                                                                                                                          | 1                      | 17.2                 | ,669                    | 7.0                                  | 8.34                          | -10                                    | 7.19         |              |                 |
| 1319                                                                                                                          | 2                      | 17.5                 | :669                    | 7.75                                 | 7.93                          | -10                                    | 7.33         |              |                 |
| 1326                                                                                                                          | 3                      | 17.4                 | 1661                    | 8.10                                 | 8.17                          | 26                                     | 7.37         | <b>↓</b>     |                 |
| 1310                                                                                                                          |                        | 15.2                 | ,672                    | 4.17                                 | 8.85                          | -10                                    | 7.29         | 10.19.       | 04              |
|                                                                                                                               |                        |                      |                         |                                      |                               |                                        |              |              |                 |
|                                                                                                                               |                        |                      |                         |                                      |                               |                                        |              |              |                 |
|                                                                                                                               |                        |                      |                         | WEL                                  | L SAMPLING                    |                                        |              |              |                 |
| Sample                                                                                                                        | e ID:                  | W 13                 | A                       | Rece                                 | iving Lab (Ch                 | ain of Cust                            | :ody):       | L5L          |                 |
| General Notes: 1.5 gallons purged per volume; total 4.5 gallons  MS/MSD and Deplicate samples collected.                      |                        |                      |                         |                                      |                               |                                        |              |              |                 |
|                                                                                                                               |                        |                      | מכייין כויין            | and Wh                               | DII CAPT JAM                  | DES CONE                               | 4401.        |              |                 |
|                                                                                                                               |                        |                      |                         |                                      |                               |                                        |              | •            |                 |

| Synapse                                                                                                                                                                                | e Repres                                               | entative:    | S. Matthe               | 22U3                    | Date: 10 . 19                 | 3.04               | W          | ell Number: MW-14  | _   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|-------------------------|-------------------------|-------------------------------|--------------------|------------|--------------------|-----|
|                                                                                                                                                                                        |                                                        |              |                         |                         | ONITORING                     |                    |            | -                  |     |
| PID Mod                                                                                                                                                                                | del:                                                   |              | Ba                      | ackground: _            | F                             | opm                |            | At Wellpr          | m   |
|                                                                                                                                                                                        |                                                        |              |                         | WEL                     | L PURGING                     |                    |            |                    |     |
| Purge Volume Purge Method                                                                                                                                                              |                                                        |              |                         |                         |                               |                    |            |                    |     |
| TD = To                                                                                                                                                                                | tal Depth                                              | of Well      | (from Form C)           | )                       | Bailer Typ                    | e: Reusable        | [          | Disposable Dedicat | ted |
| WL = Wa                                                                                                                                                                                | ater Level                                             | Depth (fro   | om Form C)              |                         |                               | <u>ume Genera</u>  | ted        |                    |     |
| # VOL =                                                                                                                                                                                | Number o                                               | of Well Vo   | lumes to Be Pu          | rged (3-9)              | 4,5                           | Gallons            | 2 11       | 7                  |     |
| Purge Volume Calculation: $(13.00 - 5.34) \times .169 \cdot 1.14 \times 3 = 3.42$ Gallons (for 2" diameter well) TD (ft.) WL (ft.) Vol/ft. #VOLS Purge Vol. (Vol/ft = 0.163 for 2" OD) |                                                        |              |                         |                         |                               |                    |            | )D)                |     |
|                                                                                                                                                                                        |                                                        |              | FIE                     | LD PARAM                | ETER MEASU                    | IREMENT            |            |                    |     |
| Time                                                                                                                                                                                   | Vol.<br>No.                                            | Temp<br>(°C) | Conductivity<br>(mS/cm) | Water<br>Depth<br>(ft.) | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA) | Observations       |     |
| 1355                                                                                                                                                                                   | Instal                                                 | 12.8         | .578                    | 7.16                    | 10.98                         | 25                 | 7.34       | 10.18.04           |     |
| 1400                                                                                                                                                                                   | 1                                                      | 12.8         | . 556                   | 10.5                    | 10.91                         | io                 | 7.27       |                    |     |
| 1410                                                                                                                                                                                   | 2                                                      | 12.6         | 7/                      | 11.30                   | 10.99                         | 60                 | 7.25       |                    |     |
| 1520                                                                                                                                                                                   | 3                                                      | 12.6         | .510                    | 11.31                   | 11.13                         | -10                | 7.33       | <u> </u>           |     |
| 1325                                                                                                                                                                                   |                                                        | 12,8         |                         | 5.70                    | 10.8                          | - 10               | 7.42       | 10.19.04           |     |
| · ·                                                                                                                                                                                    |                                                        |              |                         |                         |                               |                    | <u> </u>   |                    |     |
| <u> </u>                                                                                                                                                                               | <del></del>                                            |              | <u> </u>                | ·                       |                               |                    |            | . A                |     |
|                                                                                                                                                                                        |                                                        |              |                         | WEL                     | L SAMPLING                    | 1                  |            |                    |     |
| Sampl                                                                                                                                                                                  | e ID:                                                  | MW           | .14                     | Rece                    | eiving Lab (Cl                | nain of Cus        | tody):_    | LSL                |     |
| Gener                                                                                                                                                                                  | al Notes                                               | ( (          | 5 gallons               | purged                  | per Volum                     | e-, 4.5            | gal.       | total              |     |
|                                                                                                                                                                                        | well allowed to recharge for I he Letween Vols, 2 & 3. |              |                         |                         |                               |                    |            |                    |     |
|                                                                                                                                                                                        |                                                        |              |                         |                         |                               |                    |            |                    |     |
|                                                                                                                                                                                        |                                                        |              |                         |                         |                               |                    |            |                    |     |



| Synapse  | e Repres                                                                                                                                                                                                                                                                   | entative:    | S. MAHL                 | <u>e23</u> [            | Date:                         | 8.04               | V          | Vell Number: | MW- 18     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|-------------------------|-------------------------------|--------------------|------------|--------------|------------|
|          |                                                                                                                                                                                                                                                                            |              |                         | AIR I                   | MONITORING                    |                    |            | -            |            |
| PID Mo   | del:                                                                                                                                                                                                                                                                       |              | Ba                      | ackground:              | F                             | opm                |            | At Well      | ppm        |
|          | ·                                                                                                                                                                                                                                                                          |              |                         | WEI                     | L PURGING                     |                    |            |              |            |
| Purge \  | /olume                                                                                                                                                                                                                                                                     |              |                         |                         | Purge Me                      | thod               |            |              |            |
| TD = To  | otal Depth                                                                                                                                                                                                                                                                 | of Well      | (from Form C            | 3)                      | Bailer                        | Type: Re           | usable     |              | Disposable |
| Dedicate | ed                                                                                                                                                                                                                                                                         |              |                         |                         |                               |                    |            |              |            |
|          |                                                                                                                                                                                                                                                                            | , ,          | om Form C)              |                         |                               | ume Genera         |            |              |            |
| # VOL =  | # VOL = Number of Well Volumes to Be Purged (3-9)                                                                                                                                                                                                                          |              |                         |                         |                               |                    |            |              |            |
| Purge V  | FVOL = Number of Well Volumes to Be Purged $(3-9)$ Gallons  Purge Volume Calculation: $(11.73 - 7.03) \times 165 - 0.75 \times 3 = 2.25$ Gallons  (for 2" diameter well) $(7.73 - 7.03) \times 1.05 = 0.75 \times 3 = 2.25$ Gallons  Purge Vol. (Vol/ft = 0.163 for 2" OD) |              |                         |                         |                               |                    |            |              |            |
|          |                                                                                                                                                                                                                                                                            |              |                         |                         | ETER MEASU                    |                    |            |              |            |
| Time     | Vol.<br>No.                                                                                                                                                                                                                                                                | Temp<br>(°C) | Conductivity<br>(mS/cm) | Water<br>Depth<br>(ft.) | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTU) | pH<br>(NA) | Observ       | ations     |
| 1530     | Initial                                                                                                                                                                                                                                                                    | 13.7         | . 686                   | 7.03                    | 10.21                         | -10                | 7.22       | 10.12        | 1.04       |
| 1535     | 1                                                                                                                                                                                                                                                                          | 13.6         | .709                    | 9.40                    | 10.07                         | 638                | 7.24       | 10.19        | ,          |
| 1546     | 2                                                                                                                                                                                                                                                                          | 13.5         | .701                    | 10.51                   | 10.20                         | 26                 | 7.3        | 1            |            |
| 1340     |                                                                                                                                                                                                                                                                            | 13.1         | , 691                   | 6.99                    | 9.56                          | -10                | 7.32       | 10.19.       | n4         |
|          |                                                                                                                                                                                                                                                                            |              |                         |                         |                               |                    |            |              |            |
|          |                                                                                                                                                                                                                                                                            |              |                         |                         |                               |                    |            |              |            |
|          |                                                                                                                                                                                                                                                                            |              | -                       |                         |                               | -                  |            |              |            |
|          |                                                                                                                                                                                                                                                                            |              | <u>.</u>                | WEL                     | L SAMPLING                    |                    |            |              | ····       |
| Sample   | e ID:                                                                                                                                                                                                                                                                      | MW.          | 18                      | Rece                    | eiving Lab (Ch                | ain of Cust        | tody):     | V5L          |            |
| Genera   | Sample ID:                                                                                                                                                                                                                                                                 |              |                         |                         |                               |                    |            |              |            |
|          |                                                                                                                                                                                                                                                                            |              | •                       | J                       | 1 8                           |                    |            |              |            |

# APPENDIX F GROUNDWATER ANALYTICAL DATA

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 



Rob Nigolian Domani, LLC 120 East Washington Street Syracuse, NY 13202

Phone: (315) 475-3700

FAX: (315) 475-3780

Authorization: DANA 001-03T02

# **Revised Laboratory Analysis Report** For

Domani, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: **0406014** 

Receive Date/Time: 04/22/04 17:19

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

# Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

Date:

Domani, LLC Syracuse, NY

Domani, LL

LSL Sample ID:

LSL Sample ID:

0406014-004

0406014-005

Location:

Sample ID:

2200 Bleeker St., Utica

Sampled:

04/22/04 13:30

MW-6R

Sampled By: SM

Sample Matrix: NPW

| Result | Units                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date & Time                  | Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <0.05  | -                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.05 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| < 0.05 | ug/l                                                 | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 102    | %R                                                   | 4/27/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/28/04                      | AMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <1     | ug/l                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <1     | ug/l                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <1     | ug/l                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <1     | ug/l                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 95     | %R                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 115    | %R                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 116    | %R                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/28/04                      | BD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | <0.05 <0.05 <0.05 <0.05 <0.05 102 <1 <1 <1 <1 95 115 | <0.05 ug/l <102 %R <pre> </pre> <pre> <pr< td=""><td><pre>&lt;0.05     ug/l</pre></td><td>&lt;0.05 ug/l 4/27/04 4/28/04 &lt;0.05 ug/l 4/27/04 4/28/04 &lt;102 %R 4/27/04 4/28/04 &lt;102 %R 4/27/04 4/28/04 &lt;1 ug/l &lt;1 ug/l</td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> | <pre>&lt;0.05     ug/l</pre> | <0.05 ug/l 4/27/04 4/28/04 <102 %R 4/27/04 4/28/04 <102 %R 4/27/04 4/28/04 <1 ug/l |

Sample ID: Location: **MW-13A** 

2200 Bleeker St., Utica

Sampled:

04/22/04 14:15

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                    |        |       | Prep    | Analysis    | Analyst  |
|--------------------------------------|--------|-------|---------|-------------|----------|
| Analyte                              | Result | Units | Date    | Date & Time | Initials |
| 1) EPA 8082 PCB's                    |        |       |         |             |          |
| Aroclor-1016                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1221                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1232                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1242                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1248                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1254                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMV      |
| Aroclor-1260                         | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMV      |
| Surrogate (DCB)                      | 79     | %R    | 4/27/04 | 4/28/04     | AMV      |
| D EPA 8260B Volatiles (Partial List) |        |       |         |             |          |
| trans-1,2-Dichloroethene             | <1     | ug/l  |         | 4/28/04     | BI       |
| cis-1,2-Dichloroethene               | <1     | ug/l  |         | 4/28/04     | ВГ       |
| Trichloroethene                      | <1     | ug/l  |         | 4/28/04     | ВГ       |
| Vinyl chloride                       | <1     | ug/l  |         | 4/28/04     | ВІ       |
| Surrogate (1,2-DCA-d4)               | 93     | %R    |         | 4/28/04     | ВІ       |
| Surrogate (Tol-d8)                   | 115    | %R    |         | 4/28/04     | BI       |
| Surrogate (4-BFB)                    | 117    | %R    |         | 4/28/04     | В        |

Page 2 of 6

Domani, LLC S

Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

LSL Sample ID:

0406014-006

0406014-007

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 14:30

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                      |        |       | Prep    | Analysis    | Analyst  |
|----------------------------------------|--------|-------|---------|-------------|----------|
| Analyte                                | Result | Units | Date    | Date & Time | Initials |
| (1) EPA 8082 PCB's                     |        |       |         | <del></del> |          |
| Aroclor-1016                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1221                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1232                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1242                           | <0.05  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1248                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1254                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1260                           | < 0.05 | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Surrogate (DCB)                        | 79     | %R    | 4/27/04 | 4/28/04     | AMW      |
| (1) EPA 8260B Volatiles (Partial List) |        |       |         |             |          |
| trans-1,2-Dichloroethene               | <1     | ug/l  |         | 4/28/04     | BD       |
| cis-1,2-Dichloroethene                 | <1     | ug/l  |         | 4/28/04     | BD       |
| Trichloroethene                        | <1     | ug/l  |         | 4/28/04     | BD       |
| Vinyl chloride                         | <1     | ug/l  |         | 4/28/04     | BD       |
| Surrogate (1,2-DCA-d4)                 | 96     | %R    |         | 4/28/04     | BD       |
| Surrogate (Tol-d8)                     | 117    | %R    |         | 4/28/04     | BD       |
| Surrogate (4-BFB)                      | 114    | %R    |         | 4/28/04     | BD       |

Sample ID: Location: MW-18

2200 Bleeker St., Utica

Sampled:

04/22/04 11:30

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                      | - · · · · · · · · · · · · · · · · · · · |       | Prep    | Analysis    | Analyst  |
|----------------------------------------|-----------------------------------------|-------|---------|-------------|----------|
| Analyte                                | Result                                  | Units | Date    | Date & Time | Initials |
| (1) EPA 8082 PCB's                     |                                         |       |         |             |          |
| Aroclor-1016                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1221                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1232                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1242                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1248                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1254                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1260                           | < 0.05                                  | ug/l  | 4/27/04 | 4/28/04     | AMW      |
| Surrogate (DCB)                        | 88                                      | %R    | 4/27/04 | 4/28/04     | AMW      |
| (1) EPA 8260B Volatiles (Partial List) |                                         |       |         |             |          |
| trans-1,2-Dichloroethene               | <1                                      | ug/l  |         | 4/28/04     | BD       |
| cis-1,2-Dichloroethene                 | <1                                      | ug/l  |         | 4/28/04     | BD       |
| Trichloroethene                        | <1                                      | ug/l  |         | 4/28/04     | BD       |
| Vinyl chloride                         | 3.5                                     | ug/l  |         | 4/28/04     | BD       |
| Surrogate (1,2-DCA-d4)                 | 92                                      | %R    |         | 4/28/04     | BD       |
| Surrogate (Tol-d8)                     | 115                                     | %R    |         | 4/28/04     | BD       |
| Surrogate (4-BFB)                      | 114                                     | %R    |         | 4/28/04     | BD       |

Syracuse, NY Domani, LLC

Sample ID:

042204

LSL Sample ID:

0406014-008

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 0:00

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                                             |                                |               | Prep          | Analysis    | Analyst  |
|---------------------------------------------------------------|--------------------------------|---------------|---------------|-------------|----------|
| Analyte                                                       | Result                         | Units         | Date          | Date & Time | Initials |
| (1) EPA 8082 PCB's                                            |                                |               | <del></del>   |             |          |
| Aroclor-1016                                                  | <0.05                          | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1221                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1232                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1242                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1248                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1254                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Aroclor-1260                                                  | < 0.05                         | ug/l          | 4/27/04       | 4/28/04     | AMW      |
| Surrogate (DCB)                                               | 7                              | %R            | 4/27/04       | 4/28/04     | AMW      |
| Surrogate recoveries for this analysis were below established | ished control limits. Sample r | esults may be | e biased low. |             |          |
| (1) EPA 8260B Volatiles (Partial List)                        |                                |               |               |             |          |
| trans-1,2-Dichloroethene                                      | <1                             | ug/l          |               | 4/29/04     | BD       |
| cis-1,2-Dichloroethene                                        | <1                             | ug/l          |               | 4/29/04     | BD       |
| Trichloroethene                                               | <1                             | ug/l          |               | 4/29/04     | BD       |
| Vinyl chloride                                                | <1                             | ug/l          |               | 4/29/04     | BD       |
| Surrogate (1,2-DCA-d4)                                        | 95                             | %R            |               | 4/29/04     | BD       |
| Surrogate (Tol-d8)                                            | 116                            | %R            |               | 4/29/04     | BD       |
| Surrogate (4-BFB)                                             | 119                            | %R            |               | 4/29/04     | BD       |

Sample ID:

MW-13A MS

LSL Sample ID:

0406014-009

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 14:15

Sampled By: SM

Sample Matrix: QC

| Analytical Method                      |        |       | Prep    | Analysis    | Analyst  |
|----------------------------------------|--------|-------|---------|-------------|----------|
| Analyte                                | Result | Units | Date    | Date & Time | Initials |
| (1) EPA 8082 PCB's                     |        | · ·   |         |             |          |
| Aroclor-1016                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1221                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1232                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1242                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1248                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1254                           | 94     | %R    | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1260                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Surrogate (DCB)                        | 110    | %R    | 4/27/04 | 4/28/04     | AMW      |
| (1) EPA 8260B Volatiles (Partial List) |        |       |         |             |          |
| trans-1,2-Dichloroethene               | 103    | %R    |         | 4/28/04     | BD       |
| cis-1,2-Dichloroethene                 | 102    | %R    |         | 4/28/04     | BD       |
| Trichloroethene                        | 101    | %R    |         | 4/28/04     | BD       |
| Vinyl chloride                         | 104    | %R    |         | 4/28/04     | BD       |
| Surrogate (1,2-DCA-d4)                 | 96     | %R    |         | 4/28/04     | BD       |
| Surrogate (Tol-d8)                     | 102    | %R    |         | 4/28/04     | BD       |
| Surrogate (4-BFB)                      | 105    | %R    |         | 4/28/04     | BD       |

Page 4 of 6

Domani, LLC Syracuse, NY

Sample ID:

MW-13A MSD

LSL Sample ID:

0406014-010

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 14:15

Sampled By: SM

Sample Matrix: QC

| Analytical Method                      | -      |       | Prep    | Analysis    | Analyst  |
|----------------------------------------|--------|-------|---------|-------------|----------|
| Analyte                                | Result | Units | Date    | Date & Time | Initials |
| (1) EPA 8082 PCB's                     |        |       |         |             |          |
| Aroclor-1016                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1221                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1232                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1242                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1248                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1254                           | 1.1    | RPD   | 4/27/04 | 4/28/04     | AMW      |
| Aroclor-1260                           |        |       | 4/27/04 | 4/28/04     | AMW      |
| Surrogate (DCB)                        | 115    | %R    | 4/27/04 | 4/28/04     | AMW      |
| (I) EPA 8260B Volatiles (Partial List) |        |       |         |             |          |
| trans-1,2-Dichloroethene               | 3      | RPD   |         | 4/28/04     | BD       |
| cis-1,2-Dichloroethene                 | 2      | RPD   |         | 4/28/04     | BD       |
| Trichloroethene                        | 2      | RPD   |         | 4/28/04     | BD       |
| Vinyl chloride                         | 7      | RPD   |         | 4/28/04     | BD       |
| Surrogate (1,2-DCA-d4)                 | 92     | %R    |         | 4/28/04     | BD       |
| Surrogate (Tol-d8)                     | 104    | %R    |         | 4/28/04     | BD       |
| Surrogate (4-BFB)                      | 108    | %R    |         | 4/28/04     | BD       |

Sample ID:

Trip Blank

r, •

LSL Sample ID:

0406014-011

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 14:15

Sampled By: SM

Sample Matrix: TB

Original Report Date: 04/30/04

| Analytical Method Analyte              | Result | Units | Prep<br>Date | Analysis<br>Date & Time | Analyst<br>Initials                     |
|----------------------------------------|--------|-------|--------------|-------------------------|-----------------------------------------|
| (1) EPA 8260B Volatiles (Partial List) | Itosur | CHILD |              |                         | *************************************** |
| trans-1,2-Dichloroethene               | <1     | ug/l  |              | 4/28/04                 | BD                                      |
| cis-1,2-Dichloroethene                 | <1     | ug/l  |              | 4/28/04                 | BD                                      |
| Trichloroethene                        | <1     | ug/l  |              | 4/28/04                 | BD                                      |
| Vinyl chloride                         | <1     | ug/l  |              | 4/28/04                 | BD                                      |
| Surrogate (1,2-DCA-d4)                 | 93     | %R    |              | 4/28/04                 | BD                                      |
| Surrogate (Tol-d8)                     | 116    | %R    |              | 4/28/04                 | BD                                      |
| Surrogate (4-BFB)                      | 115    | %R    |              | 4/28/04                 | BD                                      |

Page 5 of 6

Domani, LLC Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0406014-012

Location:

2200 Bleeker St., Utica

Sampled:

04/22/04 15:30

Sampled By: SM

Sample Matrix: QC

| Analytical Method  | D14      | Tīm!4n | Prep    | Analysis<br>Date & Time | Analyst  |
|--------------------|----------|--------|---------|-------------------------|----------|
| <u>Analyte</u>     | Result U | Units  | Date    |                         | Initials |
| (1) EPA 8082 PCB's |          |        |         |                         |          |
| Aroclor-1016       | < 0.05   | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1221       | < 0.05   | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1232       | < 0.05   | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1242       | <0.05    | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1248       | <0.05    | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1254       | < 0.05   | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Aroclor-1260       | <0.05    | ug/l   | 4/27/04 | 4/28/04                 | AMW      |
| Surrogate (DCB)    | 101      | %R     | 4/27/04 | 4/28/04                 | AMW      |



# SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS 8/14/02

| 5. V C         |                            | Water            | SHW              |
|----------------|----------------------------|------------------|------------------|
| Method         | Surrogate(s)               | Limits, %R       | Limits, %R       |
| <del></del>    |                            | <del></del>      |                  |
| EPA 504        | TCMX                       | 80-120           | NA               |
| EPA 508        | DCB                        | <b>70-13</b> 0   | NA               |
| EPA 515.4      | DCAA                       | <b>70-13</b> 0   | NA               |
| EPA 524.2      | 1,2-DCA-d4, 4-BFB          | 80-120           | NA               |
| EPA 525.2      | 1,3-DM-2-NB, TPP, Per-d12  | 70-130           | NA               |
| EPA 526        | 1,3-DM-2-NB, TPP           | 70-130           | NA               |
| EPA 528        | 2-CP-3,4,5,6-d4, 2,4,6-TBP | 70-130           | NA               |
| EPA 551.1      | Decafluoroblphenyl         | 80-120           | NA               |
| EPA 552.2      | 2,3-DBPA                   | 80-120           | NA               |
|                |                            |                  |                  |
| EPA 601        | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | NA               |
| EPA 602        | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | NA               |
| <b>EPA 608</b> | DCB                        | <b>30-150</b>    | NA               |
| EPA 624        | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | NA               |
| EPA 625, AE    | 2-Fluorophenol             | 21-110           | NA               |
| EPA 625, AE    | Phenol-d5                  | 10-110           | NA               |
| EPA 625, AE    | 2,4,6-Tribromophenol       | 10-123           | NA               |
| EPA 625, BN    | Nitrobenzene-d5            | 35-114           | NA               |
| EPA 625, BN    | 2-Fluoroblphenyl           | 43-116           | NA               |
| EPA 625, BN    | Terphenyl-d14              | 33-141           | NA               |
|                |                            |                  |                  |
| EPA 8010       | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | 70-130           |
| EPA 8020       | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | 70-130           |
| EPA 8021       | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | 70-130           |
| EPA 8081       | TCMX, DCB                  | <b>30-1</b> 50   | 30-150           |
| EPA 8082       | DCB                        | <b>30-15</b> 0   | 30-150           |
| EPA 8151       | DCAA                       | <b>30-13</b> 0   | 30-120           |
| EPA 8260       | 1,2-DCA-d4, Tol-d8, 4-BFB  | <b>70-13</b> 0   | 70-130           |
| EPA 8270, AE   | 2-Fluorophenol             | <b>21-11</b> 0   | 25-121           |
| EPA 8270, AE   | Phenol-d5                  | <b>10-11</b> 0   | 24-113           |
| EPA 8270, AE   | 2,4,6-Tribromophenol       | 10-123           | 19-122           |
| EPA 8270, BN   | Nitrobenzene-d5            | <b>3</b> 5-114   | 23-120           |
| EPA 8270, BN   | 2-Fluorobiphenyl           | 43-116           | 30-115           |
| EPA 8270, BN   | Terphenyl-d14              | 33-141           | 18-137           |
| DOH 310-13     | Dodecane                   | <b>40-110</b>    | 40 440           |
| DOH 310-13     | Dodecane                   | 40-110<br>40-110 | 40-110<br>40-110 |
| DOH 310-15     | Dodecane                   | 40-110<br>40-110 | 40-110<br>40-110 |
| DOH 310-34*    | 4-BFB                      | <b>50-1</b> 50   |                  |
| 8015M GRO*     | · -                        | <b>50-150</b>    | 50-150<br>50-150 |
| 8015M_DRO*     | Terphenyl-d14              | <b>50-150</b>    | 50-150<br>50-150 |
|                |                            | - ISO            | 50-10U           |

\*Run by GC/MS.

| Units Key: | ugil = microgram per liter     |
|------------|--------------------------------|
|            | ug/kg = microgram per kilogram |
|            | mg/l = milligram per liter     |
| ł          | mg/kg = milligram per kliogram |
| i          | %R = Percent Recovery          |

012二萬 3090 S 010/L 000 to 10 to Ö 71090h@ 8.8=conta 17:19 RCVD 008AB DOFAT. MOR! 0000 \*Additional Charges "SL ID# 050V Ime りなべ SE SE E may apply Check Date Preserv 2-04 Containers this C-O-C:

\*\*\* All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY. 04-2 **DANA 001-03 T02** Phone: 585-554-5347 585-554-6743 Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) Select VOCs by EPA Method 8260 (cis- & Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) Middlesex, NY 14507 Select VOCs by EPA Method 8260 (cis- & Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) ScICCT VOC'S 6, 8260 LSL Middle e. 1 12 rans-1,2-DCE; TCE; and vinyl chloride) trans-1,2-DCE; TCE; and vinyl chloride) 5611 Water 5™ 3-Day \* Date Needed or Special Instructions Fax: PCBs by EPA Method 8082 Analyses Pre-Authorized Life Science Laboratories, Inc. Authorization or P.O. # Next Day\* -SL Project Number. LSL Southern Tier Lab. 2-Day \* **Turnaround Time** Phone: 585-968-2640 Rec'd for Lab By 585-968-2640 Received By: Received By 30 East Main St. Cuba, NY 14727 **CHAIN OF CUSTODY RECORD** size/type Amber Amber Amber Amber Amber Amber 40 ml/ -Liter 1-Liter -Liter 40 ml/ 40 ml/ 14 DAY 40 ml/ I-Liter 40 ml/ Normal voa voa voa voa voa voa 40 7 Custody Transfers Containers **Fax**: 4 0 2 7 2 16 N. Main St., PO Box 424 LSL Finger Lakes Lab. Phone: 585-728-3320 HNO3 Wayland, NY 14572 585-728-2711 Preserv Added HCL 덮 덮 잎 닺 ᄗ 오 Fax: 475-3780 SPDES / 2200 Bleecker St, Utica, NY 13202 Matrix 3 ≥ ≥ ≷ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ Grab p/comp Relinquished By: Relinquished By: Shipment Me hod Sampled By: Sample 30 Waddington, NY 13694 11:30 3:30 131 St. Lawrence Ave. Phone: 315-388-4476 2:15 Time 2:15 1:30 315-388-4061 120 E. Washington Street, Suite 400 ı LSL North Lab. | ho/cz/h Sample 475-3700 rnigolian@domani-llc.com Rob Nigolian DOMAN Syracuse, NY Date  $\Rightarrow$ Client Project ID/Client Site ID MS/MSD + / YOR ence Client's Sample Identifications E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 5854 Butternut Drive Report Address: 04*2204* 0422*04* Temp of samples: LSL Central Lab. WW-134 NW-13A MAY W 6 2004 DOWALLSLC Trip Blank LSL use only. Company: City/State: MS/MSD MW-13A **MW-13A** Street: MW-6R MW-6R MW-14 MW-14 MW-18 MW-18 Name: Phone: Email: Fax: LSL 1D#

LSL COC-GW

**VOCS&PCBs** 



Rob Nigolian Domani, LLC 120 East Washington Street Syracuse, NY 13202

#### RECEIVED

APR 3 0 2004

DOMANI, LLC

Phone: (315) 475-3700

FAX: (315) 475-3780

# Laboratory Analysis Report For

### Domani, LLC

Client Project ID:

SPDES 2200 Bleeker St., Utica

LSL Project ID: **0406048** 

Receive Date/Time: 04/23/04 14:05

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

# Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

| This | renort | was | reviewed       | bv: |  |
|------|--------|-----|----------------|-----|--|
| 1113 | ιερυιι | was | I C FAC IV C W | υy. |  |

| hinda | Water | QC |
|-------|-------|----|
|       |       |    |

Date: 4/28/04

Life Science Laboratories, Inc.

Domani, LLC

Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0406048-001

Location:

2200 Bleeker St., Utica, NY

Sampled:

04/23/04 11:50

Sample Matrix: NPW

Sampled By: RN

| Analytical Method Analyte | Result | Units | Prep<br>Date | Analysis Date & Time | Analyst<br>Initials |
|---------------------------|--------|-------|--------------|----------------------|---------------------|
| (1) EPA 6010 Total Metals |        |       |              |                      |                     |
| Zinc                      | < 0.01 | mg/l  | 4/26/04      | 4/26/04              | PEF                 |
| Copper                    | < 0.01 | mg/l  | 4/26/04      | 4/26/04              | PEF                 |
| Chromium                  | < 0.01 | mg/l  | 4/26/04      | 4/26/04              | PEF                 |
| Lead                      | <0.01  | mg/l  | 4/26/04      | 4/26/04              | PEF                 |

Page 2 of 8

Domani, LLC

Sample ID:

MW-13A

Syracuse, NY LSL Sample ID:

0406048-002

Location: Sampled:

2200 Bleeker St., Utica, NY

04/23/04 11:35

Sample Matrix: NPW

Sampled By: RN

| Analytical Method Analyte | Result | Units | Prep<br>Date | Analysis<br>Date & Time | Analyst<br>Initials |
|---------------------------|--------|-------|--------------|-------------------------|---------------------|
| (1) EPA 6010 Total Metals |        |       |              |                         |                     |
| Zinc                      | 0.029  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Copper                    | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Chromium                  | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Lead                      | <0.01  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |

Domani, LLC Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

0406048-003

Location:

2200 Bleeker St., Utica, NY 04/23/04 11:20

Sampled: Sample Matrix: NPW

Sampled By: RN

| Analytical Method Analyte | Result | Units | Prep<br>Date | Analysis<br>Date & Time | Analyst<br>Initials |
|---------------------------|--------|-------|--------------|-------------------------|---------------------|
| (1) EPA 6010 Total Metals |        |       |              |                         |                     |
| Zinc                      | 0.017  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Copper                    | 0.012  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Chromium                  | < 0 01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Lead                      | <0.01  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |

Domani, LLC Syracuse, NY

LSL Sample ID:

0406048-004

Sample ID: Location:

2200 Bleeker St., Utica, NY

Sampled:

04/23/04 12:00

MW-18

Sampled By: RN

Sample Matrix: NPW

| Analytical Method<br>Analyte | Result | Units | Prep<br>Date | Analysis<br>Date & Time | Analyst<br>Initials |
|------------------------------|--------|-------|--------------|-------------------------|---------------------|
| (1) EPA 6010 Total Metals    |        |       |              |                         |                     |
| Zinc                         | 0.018  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Copper                       | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Chromium                     | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Lead                         | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |

Domani, LLC Syracuse, NY

Sample ID:

042304

LSL Sample ID:

0406048-005

Location:

2200 Bleeker St., Utica, NY

Sampled:

04/23/04 0:00

Sampled By: RN

Sample Matrix: NPW

| Analytical Method<br>Analyte | Result | Units | Prep<br>Date | Analysis<br>Date & Time | Analyst<br>Initials |
|------------------------------|--------|-------|--------------|-------------------------|---------------------|
| (1) EPA 6010 Total Metals    |        | -     |              |                         |                     |
| Zinc                         | 0 020  | mg/l  | 4/26/04      | 4/26/04                 | PLT.                |
| Copper                       | < 0 01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Chromium                     | < 0.01 | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |
| Lead                         | <0.01  | mg/l  | 4/26/04      | 4/26/04                 | PEF                 |

Domani, LLC Syracuse, NY

Sample ID:

MW-13A MS

LSL Sample ID:

0406048-006

**Location:** Sampled:

2200 Bleeker St., Utica, NY

04/23/04 11:35

;

Sampled By: RN

Sample Matrix: QC

| Analytical Method Analyte | Result | Units | Prep<br>Date | Analysis Date & Time | Analyst<br>Initials |
|---------------------------|--------|-------|--------------|----------------------|---------------------|
| (1) EPA 6010 Total Metals |        |       |              |                      |                     |
| Zinc                      | 95     | %R    | 4/26/04      | 4/26/04              | PEF                 |
| Copper                    | 97     | %R    | 4/26/04      | 4/26/04              | PEF                 |
| Chromium                  | 97     | %R    | 4/26/04      | 4/26/04              | PEF                 |
| Lead                      | 95     | %R    | 4/26/04      | 4/26/04              | PEF                 |

Domani, LLC Syracuse, NY

Sample ID:

MW-13A MSD

LSL Sample ID:

0406048-007

Location: Sampled:

2200 Bleeker St., Utica, NY

04/23/04 11:35

Sampled By: RN

Sample Matrix: QC

| Analytical Method         |    |       | Prep    | Analysis    | Analyst  |
|---------------------------|----|-------|---------|-------------|----------|
| Analyte                   |    | Units | Date    | Date & Time | Initials |
| (1) EPA 6010 Total Metals |    |       |         |             |          |
| Zinc                      | 39 | RPD   | 4/26/04 | 4/26/04     | PEF      |
| Copper                    | <1 | RPD   | 4/26/04 | 4/26/04     | PFF      |
| Chromium                  | <1 | RPD   | 4/26/04 | 4/26/04     | PLI      |
| Lead                      | <1 | RPD   | 4/26/04 | 4/26/04     | PEF      |

| 2 1 1000 |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |

# Life Science Laboratories, Inc. **CHAIN OF CUSTODY RECORD**

**0406048**DemaniLLC

Waddington, NY 13694 131 St. Lawrence Ave. Phone: 315-388-4476 Fax: 315-388-4061 LSL North Lab.

E. Syracuse, NY 13057

5854 Butternut Drive

LSL Central Lab.

Phone: 315-445-1105 315-445-1301

Report Address:

16 N. Main St., PO Box 424 LSL Finger Lakes Lab. Fax: 585-728-2711 Phone: 585-728-3320 Wayland, NY 14572

585-554-6743 Phone: 585-554-5347 Middlesex, NY 14507 5611 water Succe Fax: LSL Southern Tier Lab. Phone: 585-968-2640 585-968-2640 Cuba, NY 14727 30 East Main St.

**Turnaround Time** Fax:

Pre-Authorized

:Next Day\*

Normal 14 DAY

3-Day \* 7-Day\*

\*Additional Charges

may apply

Date Needed or Special Instructions:

2-Day \*

Authorization or P.O. #

Fax: 475-3780

X32

475-3700

Syracuse, NY

City/State:

Phone: Email:

Company:

Name:

rnigolian@domani-llc.com

Client Project ID/Client Site ID

Street: 120 E. Washington Street, Suite 400

Rob Nigolian

DOMANI

Zip: 13202

DANA 001-03 T02

A STATE OF THE STA

Analyses

LSL Project Number:

Containers

size/type #

Preserv.

SPDES / 2200 Bleecker St, Utica, NY

Added

Matrix

grab/comp

Time

Date

Sample

Sample

Client's Sample Identifications

#CI TST

Check

Metals by EPA Method 6000 Series

Preserv

HNO.

≥

Grab

11:50

4/23/64

Grab

11:35

√W-13A

MW-14

MW-18

MW-6R

500-ml 500-ml plastic 500-ml plastic

Vietals by EPA Method 6000 Series Vietals by EPA Method 6000 Series Metals by EPA Method 6000 Series (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) 500-ml plastic

HNO3 HNO3 HNO3 ≥

≥ ≥ Grab

Grab

11:20

15:00

542309

MS/MSD

11:35

 $\rightarrow$ 

DOLOA

2800

007 A

Time

Date

00SA

Metals by EPA Method 6000 Series

(Cr, Cu, Pb, Zn)

plastic

(Cr, Cu, Pb, Zn)

Metals by EPA Method 6000 Series

(Cr, Cu, Pb, Zn)

500-ml

plastic 500-ml

HNO3

≥

Grab

plastic

2

HNO3

≥

Grab

SOLA

A500

NI GOLIAN Sampled By:  $K_0b$ 

Relinquished By: Relinquished By

\*\*\* All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY\*\* Shipment Method:

LSL COC-GW

04-23-04 14:05 RCVD

Rec'd for Lab By:

Received By: Received By:

**Custody Transfers** 

Received Intact:

Containers this C-O-C:

Temp. of samples:

SL use only:



LSL North Lab.

# Life Science Laboratories, Inc. **CHAIN OF CUSTODY RECORD**

131 St. Lawrence Ave.

16 N. Main St., PO Box 424 LSL Finger Lakes Lab. 585-728-2711 Wayland, NY 14572

LSL Southern Tier Lab. 30 East Main St.

Phone: 585-968-2640 Cuba, NY 14727

Demanal LO Synapse 0418480

٠,

003 AB 005 AB \*Additional Charges Z 008 AB J TSL ID# 304 AB Doi AB Time \_₩900 1720 ں તુ જ 40/51/0. may apply Check Preserv Date DANA 001-03 T02 Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE, and vinyl chloride) Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride) trans-1,2-DCE, TCE, and vinyl chloride) rans-1,2-DCE; TCE, and vinyl chloride) trans-1,2-DCE; TCE; and vinyl chloride) Raver 3-Day \* 7-Day\* LST Project Number Date Needed or Special Instructions: PCBs by EPA Method 8082 Analyses Pre-Authorized Authorization or P.O. # Next Day\* 2-Day \* **Turnaround Time** 585-968-2640 Rec'd for Lab By: Received By: Received By size/type 40 ml/ Amber Amber Amber Amber Amber 14 DAY 40 ml/ Amber 1-Liter 40 ml/ Normal 40 ml/ Voa 1-Liter 40 ml/ voa Voa voa voa Voa **Custody Transfers** Containers Fax: # 2 ~ N N N Phone: 585-728-3320 Preserv Added 모 모 ᄗ 오 ᄗ 오 Mastra Fax. 475-3780 SPDES / 2200 Bleecker St, Utica, NY 13202 Matrix Sampled By: ろ, MaHlews ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ rcreighton@synapseriskmanagement com Zip: Grab Grab Grab Grab Grab Grab Grab Grab Grab Type Grab Grab Grab grab/comp Relinquished By: Relinquished By: 1326 1546 326 1326 326 1520 Waddington, NY 13694 Sample 1546 10-18-04 1605 1520 Phone: 315-388-4476 Time /88/ Fax: 315-388-4061 Street: 120 E. Washington Street, Suite 400 XX Z Synapse DOMANI-BM Sample Syracuse, NY 475-3700 Roger Creighton Date Client Project ID/Client Site ID MS/MSD . MW-134 Doglicate an F MS/MSD · MW 13/ Client's Sample Identifications E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 5854 Butternut Drive Report Address: Temp of samples 10.804 LSL Central Lab. 466101 Trip Blank LSL use only Company City/State: MW-13A MW-13A

MW-6R

Phone.

Name:

Fax:

MW-6R

MW-14

MW-14

MW-18

MW-18

Sixor From willow an I ce Sontainers this C-O-C
\*\*\* All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY\*\*\* SL COC Semi-AnnualGW-VOCs&PCBs

3

hsm Af Lool

Ö



Roger Creighton Synapse Risk Management, LLC 120 East Washington Street Suite 400 Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO# DANA 001-03 T02

# **Laboratory Analysis Report** For

### Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: **0418599** 

Receive Date/Time: 10/19/04 16:25

Project Received by: MW

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel

## Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

amounter Sh. DBAO cience Laboratories, Inc.

Date: 11 - 29 - 54

A copy of this report was sent to:

Originally Printed: 10/26/04

Page 1 of 8

Date Printed: 11/29/04

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0418599-001

Location: Sampled:

SPDES / 2200 Bleecker St., Utica, NY 10/19/04 14:00

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                       |        |       | Prep | Analysis    | Analyst  |
|-----------------------------------------|--------|-------|------|-------------|----------|
| Analyte                                 | Result | Units | Date | Date & Time | Initials |
| (1) EPA 200.7 Priority Pollutant Metals |        |       |      |             |          |
| Chromium                                | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Copper                                  | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Lead                                    | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Zinc                                    | 0 019  | mg/l  |      | 10/21/04    | TER      |

Page 2 of 8

Life Science Laboratories, Inc.

11/29/04

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

**MW-13A** 

LSL Sample ID:

0418599-002

SPDES / 2200 Bleecker St., Utica, NY

Location: Sampled:

10/19/04 13:10

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                       |        |       | Prep | Analysis    | Analyst  |
|-----------------------------------------|--------|-------|------|-------------|----------|
| Analyte                                 | Result | Units | Date | Date & Time | Initials |
| (1) EPA 200.7 Priority Pollutant Metals |        |       |      |             |          |
| Chromium                                | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Copper                                  | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Lead                                    | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Zinc                                    | 0.012  | mg/l  |      | 10/21/04    | TER      |

Page 3 of 8

Life Science Laboratories, Inc.

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

0418599-003

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/19/04 13:25

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                       |        |       | Prep | Analysis    | Analyst  |
|-----------------------------------------|--------|-------|------|-------------|----------|
| Analyte                                 | Result | Units | Date | Date & Time | Initials |
| (1) EPA 200 7 Priority Pollutant Metals |        |       |      |             |          |
| Chromium                                | < 0 01 | mg/l  |      | 10/21/04    | TER      |
| Copper                                  | < 0 01 | mg/l  |      | 10/21/04    | TER      |
| Lead                                    | < 0 01 | mg/l  |      | 10/21/04    | TER      |
| Zinc                                    | < 0.01 | mg/l  |      | 10/21/04    | TER      |

Page 4 of 8

Life Science Laboratories, Inc.

11/29/04

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-18

LSL Sample ID:

0418599-004

Location:

41 44 - 10

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/19/04 13:40

Sampled By: SM

Sample Matrix: NPW

| Analytical Method Analyte               | Result | Units | Prep<br>Date | Analysis Date & Time | Analyst<br>Initials |
|-----------------------------------------|--------|-------|--------------|----------------------|---------------------|
| (1) EPA 200.7 Priority Pollutant Metals |        |       |              |                      |                     |
| Chromium                                | < 0.01 | mg/l  |              | 10/21/04             | TER                 |
| Copper                                  | < 0.01 | mg/l  |              | 10/21/04             | TER                 |
| Lead                                    | < 0.01 | mg/l  |              | 10/21/04             | TER                 |
| Zinc                                    | < 0.01 | mg/l  |              | 10/21/04             | TER                 |

Page 5 of 8

Life Science Laboratories, Inc.

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

101904

LSL Sample ID:

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/19/04 0:00

Sample Matrix: NPW

Sampled By: SM

| Analytical Method                       |        |       | Prep | Analysis    | Analyst  |
|-----------------------------------------|--------|-------|------|-------------|----------|
| Analyte                                 | Result | Units | Date | Date & Time | Initials |
| (1) EPA 200.7 Priority Pollutant Metals |        |       |      |             |          |
| Chromium                                | < 0 01 | mg/l  |      | 10/21/04    | TER      |
| Copper                                  | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Lead                                    | < 0.01 | mg/l  |      | 10/21/04    | TER      |
| Zinc                                    | 0 017  | mg/l  |      | 10/21/04    | TER      |

Page 6 of 8

Life Science Laboratories, Inc.

0418599-005

Synapse Risk Management, LLC

Sample ID:

**MS 13A** 

Syracuse, NY

LSL Sample ID:

0418599-006

Location:

WIS 13A

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/19/04 13:10

Sampled By: SM

Sample Matrix: QC

| Analytical Method                       |        |       |      | Analysis    | Analyst         |
|-----------------------------------------|--------|-------|------|-------------|-----------------|
| Analyte                                 | Result | Units | Date | Date & Time | <u>Initials</u> |
| (1) EPA 200.7 Priority Pollutant Metals |        |       |      |             |                 |
| Chromium                                | 82     | % R   |      | 11/16/04    | TER             |
| Copper                                  | 85     | % R   |      | 11/16/04    | TER             |
| Lead                                    | 81     | % R   |      | 11/16/04    | TER             |
| Zinc                                    | 80     | % R   |      | 11/16/04    | TER             |

Page 7 of 8

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MSD 13A

LSL Sample ID:

0418599-007

Location:

111010 1571

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/19/04 13:10

Sampled By: SM

Sample Matrix: QC

| Analytical Method                       | <b>7</b> 0 1/ | <b>T</b> Y •4 | Prep | Analysis    | Analyst  |
|-----------------------------------------|---------------|---------------|------|-------------|----------|
| Analyte                                 | Result        | Units         | Date | Date & Time | Initials |
| (1) EPA 200.7 Priority Pollutant Metals |               |               |      |             |          |
| Chromium                                | <1            | RPD           |      | 11/16/04    | TER      |
| Copper                                  | <1            | RPD           |      | 11/16/04    | TER      |
| Lead                                    | <1            | RPD           |      | 11/16/04    | TER      |
| Zinc                                    | 8.3           | RPD           |      | 11/16/04    | TER      |

Page 8 of 8

Life Science Laboratories, Inc.



# Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

Waddington, NY 13694 131 St. Lawrence Ave. Phone: 315-388-4476 Fax: 315-388-4061 LSL North Lab.

Fax:

LSL Southern Tier Lab. 30 East Main St. Fax: 16 N. Main St., PO Box 424 LSL Finger Lakes Lab.

SyrapseRiskManage 0418599

\*Additional Charges may apply Preserv **DANA** 001-03 T02 3-Day \* 7-Day\* Date Needed or Special Instructions: Analyses Pre-Authorized Authorization or P.O. # Next Day\* LSL Project Number: 2-Day \* **Turnaround Time** Phone: 585-968-2640 585-968-2640 Cuba, NY 14727 Normal 14 DAY Containers Phone: 585-728-3320 585-728-2711 Preserv. Wayland, NY 14572 rcreighton@synapseriskmanagement.com Fax: 475-3780 SPDES / 2200 Bleecker St, Utica, NY Zip. 13202 Fax: Synapse Risk Management, LLC ype Sample 120 E. Washington Street, Suite 400 Sample Roger Creighton 475-3700 Syracuse, NY Client Project ID/Client Site ID Client's Sample E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 5854 Butternut Drive Report Address: -St. Central Lab. City/State: Company: Name: Street: Phone: Email:

TSL ID#

Check

 $\mathcal{E}_{\mathcal{S}}$ 

Vietals by EPA Method 6000 Series

500-ml

Metals by EPA Method 6000 Series

size/type

#

Added

Matrix

grab/comp

Time

Date

Identifications

500-ml plastic

HNO3

≥

Grab

1400

10.19.04

MW-6R

(Cr, Cu, Pb, Zn)

150 L.00 Š :25 RCV Time 800 GO 7 000 200 900 Date 1-0d Metals by EPA Method 6000 Series nod 6000 Series **Jetals by EPA Method 6000 Series Metals by EPA Method 6000 Series** Metals by EPA Mer Rec'd for Lab By: M⊾l 13≥ Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) Received By: Received By: 500-ml 500-m 500-ml plastic plastic plastic plastic plastic 500-ml **Custody Transfers** 2 HNO3 HNO3 HNO3 HNO3 HNO3 ≥ ≥ ≥ ≥ ≥ Grab Grab Grab Grab Grab Relinquished By: Sampled By: るであ 346 1318 330 A N MS/MSD . 13A .SL use only: **MW-13A** 9 **MW-14 MW-18** 

\*\*\* All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY\*\* LSL COC Semi-AnnualGW-Metals

Relinquished By:

Shipment Method:

Containers this C-O-C

Temp of samples:

Received Intact:

11.00 ort



Brian Macrae Synapse Risk Management, LLC 120 East Washington Street Suite 400 Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO# DANA 001-03 TO2

# **Laboratory Analysis Report For**

## Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: **0418480** 

**Receive Date/Time:** 10/18/04 17:20

Project Received by: JF

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

# Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760 LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

| Thic | ronart | was  | reviewed | hv: |
|------|--------|------|----------|-----|
| 1115 | revoii | wu s | ievieweu | Uy. |

Genela Waters QS

11/11/04

Life Science Laboratories, Inc

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0418480-001

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 16:05

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                            |        |       | Prep        | Analysis    | Analyst  |
|----------------------------------------------|--------|-------|-------------|-------------|----------|
| Analyte                                      | Result | Units | <u>Date</u> | Date & Time | Initials |
| (1) EPA 608 PCB's                            |        |       |             |             |          |
| Aroclor-1016                                 | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1221                                 | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1232                                 | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1242                                 | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1248                                 | <0.05  | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1254                                 | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
|                                              | < 0.05 | ug/l  | 10/19/04    | 10/20/04    | AMW      |
| Aroclor-1260<br>Surrogate (DCB)              | 96     | %R    | 10/19/04    | 10/20/04    | AMW      |
| (1) EPA 8021B Volatiles(Partial List)by 8260 |        |       |             |             |          |
| cis-1,2-Dichloroethene                       | <1     | ug/l  |             | 10/29/04    | BD       |
| trans-1,2-Dichloroethene                     | <1     | ug/l  |             | 10/29/04    | BD       |
|                                              | <1     | ug/l  |             | 10/29/04    | BD       |
| Trichloroethene                              | <1     | ug/l  |             | 10/29/04    | BD       |
| Vinyl chloride                               | 84     | %R    |             | 10/29/04    | BD       |
| Surrogate (1,2-DCA-d4)                       | 108    | %R    |             | 10/29/04    | BD       |
| Surrogate (Tol-d8) Surrogate (4-BFB)         | 96     | %R    |             | 10/29/04    | BD       |

Page 2 of 10

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-13A

LSL Sample ID:

0418480-002

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 13:26

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                            |        |       | Prep     | Analysis    | Analyst         |
|----------------------------------------------|--------|-------|----------|-------------|-----------------|
| Analyte                                      | Result | Units | Date     | Date & Time | <u>Initials</u> |
| (1) EPA 608 PCB's                            |        |       |          |             |                 |
| Aroclor-1016                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1221                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1232                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1242                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1248                                 | <0.05  | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1254                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Aroclor-1260                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW             |
| Surrogate (DCB)                              | 64     | %R    | 10/19/04 | 10/20/04    | AMW             |
| (1) EPA 8021B Volatiles(Partial List)by 8260 |        |       |          |             |                 |
| cis-1,2-Dichloroethene                       | <1     | ug/l  |          | 10/29/04    | BD              |
| trans-1,2-Dichloroethene                     | <1     | ug/l  |          | 10/29/04    | BD              |
| Trichloroethene                              | <1     | ug/l  |          | 10/29/04    | BD              |
| Vinyl chloride                               | <1     | ug/l  |          | 10/29/04    | BD              |
| Surrogate (1,2-DCA-d4)                       | 85     | %R    |          | 10/29/04    | BD              |
| Surrogate (Tol-d8)                           | 111    | %R    |          | 10/29/04    | BD              |
| Surrogate (4-BFB)                            | 96     | %R    |          | 10/29/04    | BD              |

Page 3 of 10

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 15:20

Sample Matrix: NPW

Sampled By: SM

| Analytical Method |                                          |        |       | Prep     | Analysis    | Analyst  |
|-------------------|------------------------------------------|--------|-------|----------|-------------|----------|
|                   | Analyte                                  | Result | Units | Date     | Date & Time | Initials |
| (1)               | EPA 608 PCB's                            |        |       |          |             |          |
|                   | Aroclor-1016                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1221                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1232                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1242                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1248                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1254                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Aroclor-1260                             | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
|                   | Surrogate (DCB)                          | 83     | %R    | 10/19/04 | 10/20/04    | AMW      |
| (1)               | EPA 8021B Volatiles(Partial List)by 8260 |        |       |          |             |          |
|                   | cis-1,2-Dichloroethene                   | <1     | ug/l  |          | 10/29/04    | BD       |
|                   | trans-1,2-Dichloroethene                 | <1     | ug/l  |          | 10/29/04    | BD       |
|                   | Trichloroethene                          | <1     | ug/l  |          | 10/29/04    | BD       |
|                   | Vinyl chloride                           | <1     | ug/l  |          | 10/29/04    | BD       |
|                   | Surrogate (1,2-DCA-d4)                   | 86     | %R    |          | 10/29/04    | BD       |
|                   | Surrogate (Tol-d8)                       | 111    | %R    |          | 10/29/04    | BD       |
|                   | Surrogate (4-BFB)                        | 94     | %R    |          | 10/29/04    | BD       |

Page 4 of 10

0418480-003

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

MW-18

LSL Sample ID:

0418480-004

Location:

CDD DG / 0000 I

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 15:46

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                            |        |       | Prep     | Analysis    | Analyst  |
|----------------------------------------------|--------|-------|----------|-------------|----------|
| Analyte                                      | Result | Units | Date     | Date & Time | Initials |
| (1) EPA 608 PCB's                            |        |       |          |             |          |
| Aroclor-1016                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1221                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1232                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1242                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1248                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1254                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW      |
| Aroclor-1260                                 | < 0.05 | ug/i  | 10/19/04 | 10/20/04    | AMW      |
| Surrogate (DCB)                              | 96     | %R    | 10/19/04 | 10/20/04    | AMW      |
| (1) EPA 8021B Volatiles(Partial List)by 8260 |        |       |          |             |          |
| cis-1,2-Dichloroethene                       | <1     | ug/l  |          | 10/29/04    | BD       |
| trans-1,2-Dichloroethene                     | <1     | ug/l  |          | 10/29/04    | BD       |
| Trichloroethene                              | <1     | ug/l  |          | 10/29/04    | BD       |
| Vinyl chloride                               | 7 0    | ug/l  |          | 10/29/04    | BD       |
| Surrogate (1,2-DCA-d4)                       | 87     | %R    |          | 10/29/04    | BD       |
| Surrogate (Tol-d8)                           | 110    | %R    |          | 10/29/04    | BD       |
| Surrogate (4-BFB)                            | 92     | %R    |          | 10/29/04    | BD       |

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

101804

LSL Sample ID:

0418480-005

Location:

101004

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 0:00

Sampled By: SM

Sample Matrix: NPW

| Analytical Method                            |        | •     | Prep     | Analysis    | Analyst          |
|----------------------------------------------|--------|-------|----------|-------------|------------------|
| Analyte                                      | Result | Units | Date     | Date & Time | <u> Initials</u> |
| (1) EPA 608 PCB's                            |        |       |          |             |                  |
| Aroclor-1016                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1221                                 | <0.05  | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1232                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1242                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1248                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1254                                 | < 0.05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Aroclor-1260                                 | < 0 05 | ug/l  | 10/19/04 | 10/20/04    | AMW              |
| Surrogate (DCB)                              | 107    | %R    | 10/19/04 | 10/20/04    | AMW              |
| (1) EPA 8021B Volatiles(Partial List)by 8260 |        |       |          |             |                  |
| cis-1,2-Dichloroethene                       | <1     | ug/l  |          | 10/29/04    | BD               |
| trans-1,2-Dichloroethene                     | <1     | ug/l  |          | 10/29/04    | BD               |
| Trichloroethene                              | <1     | ug/l  |          | 10/29/04    | BD               |
| Vinyl chloride                               | <1     | ug/l  |          | 10/29/04    | BD               |
| Surrogate (1,2-DCA-d4)                       | 90     | %R    |          | 10/29/04    | BD               |
| Surrogate (Tol-d8)                           | 109    | %R    |          | 10/29/04    | BD               |
| Surrogate (4-BFB)                            | 95     | %R    |          | 10/29/04    | BD               |

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MS - MW-13A

LSL Sample ID:

0418480-006

Location: Sampled:

SPDES / 2200 Bleecker St., Utica, NY

10/18/04 13:26

Sampled By: SM

Sample Matrix: NPW

| Analytical Method |                                          |        |       | Prep     | Analysis    | Analyst         |
|-------------------|------------------------------------------|--------|-------|----------|-------------|-----------------|
|                   | Analyte                                  | Result | Units | Date     | Date & Time | <u>Initials</u> |
| (1)               | EPA 608 PCB's                            |        |       |          |             |                 |
|                   | Aroclor-1016                             | 54     | %R    | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1221                             |        |       | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1232                             |        |       | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1242                             |        |       | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1248                             |        |       | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1254                             |        |       | 10/19/04 | 10/21/04    | AMW             |
|                   | Aroclor-1260                             | 54     | %R    | 10/19/04 | 10/21/04    | AMW             |
|                   | Surrogate (DCB)                          | 33     | %R    | 10/19/04 | 10/21/04    | AMW             |
| (1)               | EPA 8021B Volatiles(Partial List)by 8260 |        |       |          |             |                 |
|                   | cis-1,2-Dichloroethene                   | 108    | %R    |          | 10/28/04    | BD              |
|                   | trans-1,2-Dichloroethene                 | 112    | %R    |          | 10/28/04    | BD              |
|                   | Trichloroethene                          | 90     | %R    |          | 10/28/04    | BD              |
|                   | Vinyl chloride                           | 110    | %R    |          | 10/28/04    | BD              |
|                   | Surrogate (1,2-DCA-d4)                   | 88     | %R    |          | 10/28/04    | BD              |
|                   | Surrogate (Tol-d8)                       | 89     | %R    |          | 10/28/04    | BD              |
|                   | Surrogate (4-BFB)                        | 82     | %R    |          | 10/28/04    | BD              |

Page 7 of 10

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MSD

LSL Sample ID:

0418480-007

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 0:00

Sampled By: SM

Sample Matrix: NPW

| Analytica | al Method                            |        |       | Prep        | Analysis    | Analyst         |
|-----------|--------------------------------------|--------|-------|-------------|-------------|-----------------|
| -         | Analyte                              | Result | Units | <u>Date</u> | Date & Time | <u>Initials</u> |
| (1) EPA ( | 608 PCB's                            |        |       | ·           |             |                 |
|           | roclor-1016                          | 65     | RPD   | 10/19/04    | 10/21/04    | AMW             |
|           | roclor-1221                          |        |       | 10/19/04    | 10/21/04    | AMW             |
| A         | croclor-1232                         |        |       | 10/19/04    | 10/21/04    | AMW             |
|           | croclor-1242                         |        |       | 10/19/04    | 10/21/04    | AMW             |
|           | croclor-1248                         |        |       | 10/19/04    | 10/21/04    | AMW             |
|           | croclor-1254                         |        |       | 10/19/04    | 10/21/04    | AMW             |
|           | croclor-1260                         | 72     | RPD   | 10/19/04    | 10/21/04    | AMW             |
|           | urrogate (DCB)                       | 119    | %R    | 10/19/04    | 10/21/04    | AMW             |
| (1) EPA   | 8021B Volatiles(Partial List)by 8260 |        |       |             |             |                 |
|           | is-1,2-Dichloroethene                | <1     | RPD   |             | 10/28/04    | BD              |
|           | rans-1,2-Dichloroethene              | <1     | RPD   |             | 10/28/04    | BD              |
|           | richloroethene                       | <1     | RPD   |             | 10/28/04    | BD              |
|           | /inyl chloride                       | 4      | RPD   |             | 10/28/04    | BD              |
|           | Surrogate (1,2-DCA-d4)               | 87     | %R    |             | 10/28/04    | BD              |
|           | Surrogate (Tol-d8)                   | 90     | %R    |             | 10/28/04    | BD              |
|           | Surrogate (4-BFB)                    | 82     | %R    |             | 10/28/04    | BD              |

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

Trip Blank

LSL Sample ID:

0418480-008

Location:

SPDES / 2200 Bleecker St., Utica, NY

Sampled:

10/18/04 0:00

Sampled By: SM

Sample Matrix: TB

| Analytical Method                            |        |       | Prep | Analysis    | Analyst  |
|----------------------------------------------|--------|-------|------|-------------|----------|
| Analyte                                      | Result | Units | Date | Date & Time | Initials |
| (1) EPA 8021B Volatiles(Partial List)by 8260 |        |       |      |             |          |
| cis-1,2-Dichloroethene                       | <1     | ug/l  |      | 10/29/04    | BD       |
| trans-1,2-Dichloroethene                     | <1     | ug/l  |      | 10/29/04    | BD       |
| Trichloroethene                              | <1     | ug/l  |      | 10/29/04    | BD       |
| Vinyl chloride                               | <1     | ug/l  |      | 10/29/04    | BD       |
| Surrogate (1,2-DCA-d4)                       | 89     | %R    |      | 10/29/04    | BD       |
| Surrogate (Tol-d8)                           | 110    | %R    |      | 10/29/04    | BD       |
| Surrogate (4-BFB)                            | 95     | %R    |      | 10/29/04    | BD       |

Page 9 of 10

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

Method Blank

LSL Sample ID:

0418480-009

Location: Sampled:

SPDES / 2200 Bleecker St., Utica, NY

10/18/04 0:00

Sampled By:

Sample Matrix: QC

| Analytical Method Analyte               | Result | Units | Prep<br>Date | Analysis Date & Time | Analyst<br>Initials |
|-----------------------------------------|--------|-------|--------------|----------------------|---------------------|
| (1) EPA 608 PCB's                       |        |       |              |                      |                     |
| Aroclor-1016                            | < 0.05 | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1221                            | <0.05  | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1221                            | <0.05  | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1232                            | <0.05  | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| • • • • • • • • • • • • • • • • • • • • | <0.05  | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1248                            | < 0.05 | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1254                            | < 0.05 | ug/l  | 10/19/04     | 10/20/04             | AMW                 |
| Aroclor-1260<br>Surrogate (DCB)         | 80     | %R    | 10/19/04     | 10/20/04             | AMW                 |

Page 10 of 10



#### SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

| Method       | Surrogate(s)               | Water<br>Limits, %R | SHW<br><u>Limits, %R</u> |
|--------------|----------------------------|---------------------|--------------------------|
| EPA 504      | TCMX                       | 80-120              | NA                       |
| EPA 508      | DCB                        | 70-130              | NA                       |
| EPA 515.4    | DCAA                       | 70-130              | NA                       |
| EPA 524.2    | 1,2-DCA-d4, 4-BFB          | 80-120              | NA                       |
| EPA 525.2    | 1,3-DM-2-NB, TPP, Per-d12  | 70-130              | NA                       |
| EPA 526      | 1,3-DM-2-NB, TPP           | 70-130              | NA                       |
| EPA 528      | 2-CP-3,4,5,6-d4, 2,4,6-TBP | 70-130              | NA                       |
| EPA 551.1    | Decafluorobiphenyl         | 80-120              | NA                       |
| EPA 552.2    | 2,3-DBPA                   | 80-120              | NA                       |
| EPA 601      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | NA                       |
| EPA 602      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | NA                       |
| EPA 608      | DCB                        | <b>30-15</b> 0      | NA                       |
| EPA 624      | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | NA                       |
| EPA 625, AE  | 2-Fluorophenol             | 21-110              | NA                       |
| EPA 625, AE  | Phenol-d5                  | 10-110              | NA                       |
| EPA 625, AE  | 2,4,6-Tribromophenol       | 10-123              | NA                       |
| EPA 625, BN  | Nitrobenzene-d5            | 35-114              | NA                       |
| EPA 625, BN  | 2-Fluorobiphenyl           | 43-116              | NA                       |
| EPA 625, BN  | Terphenyl-d14              | 33-141              | NA                       |
| EPA 8010     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | 70-130                   |
| EPA 8020     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | 70-130                   |
| EPA 8021     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | 70-130                   |
| EPA 8081     | TCMX, DCB                  | 30-150              | 30-150                   |
| EPA 8082     | DCB                        | 30-150              | 30-150                   |
| EPA 8151     | DCAA                       | 30-130              | 30-120                   |
| EPA 8260     | 1,2-DCA-d4, Tol-d8, 4-BFB  | 70-130              | 70-130                   |
| EPA 8270, AE | 2-Fluorophenol             | 21-110              | 25-121                   |
| EPA 8270, AE | Phenol-d5                  | 10-110              | 24-113                   |
| EPA 8270, AE | 2,4,6-Tribromophenol       | 10-123              | 19-122                   |
| EPA 8270, BN | Nitrobenzene-d5            | 35-114              | 23-120                   |
| EPA 8270, BN | 2-Fluorobiphenyl           | 43-116              | 30-115                   |
| EPA 8270, BN | Terphenyl-d14              | 33-141              | 18-137                   |
| DOH 310-13   | Dodecane                   | 40-110              | 40-110                   |
| DOH 310-14   | Dodecane                   | 40-110              | 40-110                   |
| DOH 310-15   | Dodecane                   | 40-110              | 40-110                   |
| DOH 310-34*  | 4-BFB                      | 50-150              | 50-150                   |
| 8015M_GRO*   | 4-BFB                      | 50-150              | 50-150                   |
| 8015M_DRO    | Terphenyl-d14              | 50-150              | 50-150                   |

\*Run by GC/MS.

| ug/l = microgram per liter<br>ug/kg = microgram per kilogram                          |
|---------------------------------------------------------------------------------------|
| mg/l = milligram per liter<br>mg/kg = milligram per kilogram<br>%R = Percent Recowesy |
|                                                                                       |

# APPENDIX G GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2004 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

**MARCH 2005** 

| me 06:1 12 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WHO96                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar high 12 to punger Dams         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
| MAN holy #1-28540930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8st still in High Aldrein          |
| mphole#2= 9162100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
| Both pumps RUNNING MANHOR IN THIS ALSKN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7112 Prosuma 8 W.S.                |
| Bucket TesTED FLow = 6-8 gpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ms. b.(o #1 - 28574143             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| Son TRAN Clerkering 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 30-11-0-10-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                  |
| A/A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-47-04                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | air Pressure - 10 "We              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sump - 17856                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max holx#1-28589840                |
| 9 19 nu Restunt Stapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MANIE # 3 - 9/62 140 IN high ALMEN |
| a street of the | Both Pungs Rumming                 |
| 14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 1 - 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| montale #3- 9162110 Claral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| Z &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| won't RECORD Flow at State Live                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| 655 UR. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Die pressure 10 WC at 40 68m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| out fall looks mormed No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| air flow our type. MTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |

はない はない ないかい ないない ないない ないない

high Alakori MAWhole # Being VAC OUT そうした 2025 Pipe cleaned out from manholo Ha Marhole "O Down to 3 /2 5/195. martiole - 2 water Level 1744 hole #1 - 287 34160 1177 Manhole#11-28837990 9232910 MIK 15"xc MANNO1211-28776630 LAST week marholes 17856 0580819 - 6180850 17891 15" S. where It should 9:30 16841 4-6-64 Ti30 MAN holy Da 3 - Jump 4-1-0H 3-98-04 SUMP. By PAROGON 916 2 90 - pungs Runking RUMANUS IN HIGH ALARM May holy #1-28674520 + 30(59m AT It in STEP - High HLUEAR 11/9/ 4th Step in Runny manholy 14 ais present - 16" we MAWholt # 1-28618780 XIV CARWASH # 28698870 MAN 40 1 to 3 - 916 2200 nawhole #2 - 9162160 -17856 di produce - 16 lec alm 5 mms - 17866 17856 Both primos Manhole#3. markoly HA air pressure Sung w Frien nolo #3 4614 Sumo -3-4-44 gownos 00 ( 3--12-04 MANHOLY チンガルか B014 3-18.04

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120,000                                                                                                                                                                     | Reset Starter on Manholy #3 Rung #3 (was TRIPPED OUT) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 4/8/04 from Wister Site in response to dienter alarmi- 15m, 20, C. Metron one water 15m, 20, C. Metron on time of liver of liver of the one to the one of | Sum 1969<br>Sum 1969<br>Sum 1969<br>4-33.04 8:0000 persoure 10 Wc<br>MANHOLS PUNDED DOWN<br>MH-3-94 11380<br>Sum - 17898<br>Sum - 17898<br>Sum Steel DRUM TE Plastie Borsel | stepper 1  S - STARTING 1  I ment mit                 |

| 5-18-04 ai Stepped Off<br>Clan call out 5-17-04 2,30<br>Refat Sung-18012<br>23 CPM Mankol #1- 29165770<br>70 GPM Mankol #2-966 3830 | Alve CLOSED  M3K  And             | 5-25-04 Hidodu off alounds 200 pm<br>5-25-04 Skyper off 800 pm<br>500mp - 18012<br>MAN holy #1- 29193180                               | AIR Pross                  | Aug Air control Floor  Augh hevel Aldrin - OK  Manhole & 3 - 979920 Reset  Migh hevel Aldrin - OK  Manhole # 18012 |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|
| aug - 1                                                                                                                             | MH2 96244  mideo WC, E8"  Do. Max | 5-14-04 - STARTED OIL WATER SUPERITOR ATOSTED PROBRES - WOUND NOT RESULT START-TOTAL - 121667,0 11-100 AIR STRIDGER AIR DRESSURE 11 WC | 18012<br>- 2915<br>- 96351 | In stall sign of out fall                                                                                          |

Water Time

-

1

| 6-23.04 STRIPPER SHUT DOWN<br>for cleaving , cleared | - 1 | 3                        | Reset MANHOLY HALARIM MISK TRIMED WEDS AROUND OF FALL | 6-30-04 RESET MAICHDE TIS    | O CON                                                            | Sumo. 1200 20mp 10 AL-11500<br>manhole #1-29248250<br>man 40/ 42-10004280 | AIR DRESSURE - TWC NOT (RELATING) FLOW 1726 | 10.00 Am Will                                      |
|------------------------------------------------------|-----|--------------------------|-------------------------------------------------------|------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|
| S. Meexing a                                         | 7   | Sinches of water column. | 6-10-04 STRIPPOR OFF THUMBER STORMS                   | Algh ALARM-MANNOK#1-29207170 | High ALARA - MANNER OF 10000 10 M 130 GPM AIR DRESSURE - 28" MTK | -16-04<br>Sump - 18013                                                    |                                             | Reset High Level HLARMS ON MANHOLETS Nº ALARMS ONE |

4.

| mp 00101        | M-23.04 AIR PRESSURE 11 WC | SUMP - A1163 | Ħ | manholo #2-10187810 | Extra + 33gallong through sump | FLOOR IS DRY  | 1881    |      | 7-36-64 10:30 AIR PRESSURE - 14"WC | Twe 20 | - 21178                   | + | 1025416 | £,                  | 05:30                     | 8-6-04 AIR PRESSURY 15 NOC | Sund-21178 | 175 Malla 1 - 243711830 | march 1 3 - 103/4900 | Upstute signiplies on site | Sweep up AREA | M5/C |  |
|-----------------|----------------------------|--------------|---|---------------------|--------------------------------|---------------|---------|------|------------------------------------|--------|---------------------------|---|---------|---------------------|---------------------------|----------------------------|------------|-------------------------|----------------------|----------------------------|---------------|------|--|
| 7-9-04 10:00 AM | AIR PRESSURT 8 WC          | X            | # | -                   | FLOOR SUMD RAN 15 26 gallons   | Hose DRIPPING | 7 HIM K | THAT |                                    | -      | 4-16:04 9:30 PRESURE 9"WC |   | #       | nauho/2 42-10125040 | FLOOK SUMP RAN 293 galles | Flode 15 DRY, Don't Know   | ATER CAME  |                         | M3K                  |                            |               |      |  |

THE RESERVE OF THE PERSON OF T

|          | 8-31-04 12:00                | air present 14 W. | Sump- 21178                    | Manholo 21- 2946460 | Markolo#3 - 10533440 @ 23 6PM |      | XIM |                 |                              | $\alpha$ | SUMP. 21178 | MAWhall #11- 29501710 | MANhole #3 - 10608810 | 724 |                                          |            | હ | went off Acouple o             | TIMES IN MORNING, ROSTANTED Blowed | Pumpsite |                        | TREATING 20 CAM | 10 - amo | 15790 | Manholo #2-10646070 @ 2060 | 734 |  |
|----------|------------------------------|-------------------|--------------------------------|---------------------|-------------------------------|------|-----|-----------------|------------------------------|----------|-------------|-----------------------|-----------------------|-----|------------------------------------------|------------|---|--------------------------------|------------------------------------|----------|------------------------|-----------------|----------|-------|----------------------------|-----|--|
| 11:50 AM | 8-13-04 AIR PROSURE - 19"140 | 7                 | manholv #1 - 29398040 at 2068m |                     |                               | 11/1 |     | 8-20-04 - 11:00 | AIR MESSURE 10" NOT TREATING | 1        | 1 /#2/      |                       |                       |     | 0-23-04 H'00 0RESSUKY - 10" NOT TRENTING | ,,08 " " " |   | 1. bul. 1. \$1 - \$39 43 \$000 | 104 6098 O                         |          | Tal wandler AROUND (1) | The Soll Dive   | 74/10    | Mr.M. |                            |     |  |

| 11:00<br>10-12-04, Sump-21193<br>MANNOK# 2-1082620<br>AIR DRESSURE 34 WC NT            | 10-19-04 STRIPOCK SHOT DOWN  FOR CLEANING  DISMANDED AND CLEANED  10-19-04 - 10-23-64  SOMP - 21193  MANDOR 41- 29592830  10-30 SUMP- 212640  10-30 SUMP- 212640  MANDOR 41- 29599330  MANDOR 41- 3-10868310 TREATING  ALR PRESENT STAT 11 W.C.  8. 30690 AIR PRESENT 17 W.C. |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9-21-04 945 An 25"42<br>Dump - 21178<br>Marhole #1 - 29533810<br>Marhole #2 - 10691850 | 9-38.64 All PRESSURY 33 W. N.T.  Sump - 21178  MANHOLK #1 - 39551470  MANHOLK #1 - 39551470  MIN DESSURY - 24 W.  SUMD - 31178  MANHOLT - 29573730  MANHOLT - 29573730  MANHOLT - 10803330 166Pm                                                                                                                                                                                       |  |

775-1

| 13-3-04 AIR - 14"WC @ 136Pm           | 12-23-04<br>AIR - 14" TRONTING 106PM |
|---------------------------------------|--------------------------------------|
| MANNO - 21270                         | A16                                  |
| MAWholet 2 - 11186750 @ 13 Gem        | machole # 2- 1/37/350                |
| T.K Comples of STRIPPER               | 2                                    |
| w.45 6 3.2                            | TRANS<br>0-11-18-TEIDEN + DOWNER     |
| M3K                                   | q 81.18 y                            |
| 12.10.04 10:40 an Present 14"         | Hol                                  |
| 12 GPM                                | M3K                                  |
| Sump - 21290                          | 3h:// Po at (1)                      |
| Marhole #1- 2971/1900                 | 2                                    |
| 5                                     |                                      |
| M³K                                   | mawhole = 1 - 2486/240               |
| 7.04 AIR PRESSURY 14" TREATING 10 6PM | manhole 2- 114/8/50                  |
| 2/390                                 |                                      |
| 1- 29826590                           |                                      |
| MAN holoto - 11336420 @1068M          |                                      |
|                                       |                                      |
|                                       |                                      |
|                                       |                                      |
|                                       |                                      |
|                                       |                                      |
|                                       |                                      |
|                                       |                                      |

| Suns - 21334<br>Marhole#1 - 299 67760 |
|---------------------------------------|
| ~ ~ ~ ·                               |
| ,                                     |
|                                       |
| MAKHOLE #2 - 114 93770                |
|                                       |
|                                       |
| -210-05 air organi 16"00              |
| mo - 21334                            |
| May hole #1 - 29987800                |
| Manhole # 2 - 114 97890               |
| ADJUSTED AIR TO 14" WC                |
|                                       |
|                                       |
| 2-2-05 air presence 16"00             |
|                                       |
| manholit 1- 30003660                  |
| manhole #3- 11497970                  |
| Cleaned Flow motor met                |
| ž                                     |
| , v                                   |
| M2K.                                  |
|                                       |
|                                       |
|                                       |
|                                       |

4. ... ¥

----