2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

Prepared for

Utica Holding Company c/o Danaher Corporation 1500 Mittel Boulevard Wood Dale, IL 60191

Prepared by

Synapse Risk Management, LLC. 400 University Building 120 East Washington Street Syracuse, New York 13202

April 2005

CERTIFICATION

I, Paul M. Fisher, P.E., as a New York State licensed Professional Engineer, certify that the 2005 Annual Operation, Maintenance and Monitoring Report, Sections 1 through 5, for the property located at 2200 Bleecker Street, Utica, New York, pursuant to the Draft DER-10, December 2002, Section 1.5(a)9, has been prepared in accordance with good engineering practices and under my direct review. I further certify that the inspections and evaluations, for said sections, were implemented and that all activities were completed in accordance with the NYSDEC-approved Operation, Maintenance and Monitoring Manual and/or NYSDEC-approved changes.

Synapse Engineering, PLLC

CERTIFICATION

I, Daniel M. Shearer, P.E., as a licensed Professional Engineer in the State of New York, certify that Section 6.0, 6.1, 6.2.2, 6.3.2, 6.4.2 and 6.5.2 of the 2005 Annual Operation, Maintenance and Monitoring Report and respective tables, charts and figures, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a)8 and has been prepared in accordance with good engineering practices.

ENSR | AECOM

Daniel M. Shearer, P.E.

CERTIFICATION

I, James R. Heckathorne, P.E., as a licensed Professional Engineer in the State of New York, certify that Section 6.2.1, 6.3.1, 6.4.1 and 6.5.1 of the 2005 Annual Operation, Maintenance and Monitoring Report and respective tables, charts and figures, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a)8 and has been prepared in accordance with good engineering practices.

O'BRIEN & GERE

JAMES R. HECKATHORNE, P.E.

TABLE OF CONTENTS

<u>Secti</u>	on		Page Page
Table	e of Cor	ntents	iv
Acro	nyms a	nd Abbreviations	v
Asso	ciated I	Documents	vi
10		ODUCTION	1_1
1.0	1 1		1-1 1_1
	1.1		
	1.2		
	1.3 1.4	PROPERTY MANAGEMENT	
~ ~			
2.0	PRO	PERTY INSPECTION AND MAINTENANCE	2-1
	2.1		2-1
	2.2	PROPERTY GEOLOGY AND HYDROGEOLOGY	
	2.3	PROPERTY ACTIVITIES	
	2.4		2-2
	2.5	PROPERTY DRAINAGE AND OUTFALLS	2-3
3.0	2.6	SUMMARY	2-3
	2.7	FIGURES	2-4
3.0	REM	EDIAL ACTION FACILITY	3-1
	3.1	CONSTRUCTION	
	3.2	OPERATIONS AND INSPECTIONS	
	3.3	MAINTENANCE	
	3.4	LEACHATE COLLECTION	
	3.5	LEACHATE DISPOSAL	
	3.6	SUMMARY	
	3.7	TABLES	
	3.8	CHARTS	
	3.9	FIGURES	3-7
40	GRO	UNDWATER MONITORING	4-1
	41	MONITORING WELL CONSTRUCTION	4-1
	42	GROUNDWATER ELEVATION MEASUREMENT	4-1
	43	GROUNDWATER SAMPLING	4-2
	4.0	GROUNDWATER ANALYTICAL RESULTS	4-3
	45	SIIMMARY	A_A
	4.6	TABIES	<i>4-5</i>
	4.7	FIGURES	
50		DEDTY STATE DOLUTIONT DISCHADGE ELIMINATION SYSTEM	5.1
5.0	F 4		
	5.1		
	5.2		
	5.5	5.2.1 Douting Monitoring	ນ-ນ ຂາງ
		5.2.1 ROULINE WOILLOTHY	
		J.J.Z EFA MELIIUU 1000A FUD JLUUY	
	E 4	J.J.J ACULE I UXICILY LESUILY	
	5.4 5 F	Ουινινίας Ι Τλρί ες	
	5.5		
	J. 0	FIGURE3	

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

6.0	GROU	UNDWATER TREATMENT SYSTEM	6-1
	6.1	SYSTEM CONSTRUCTION	6-1
	6.2	OPERATION	6-2
	6.2	.1 JANUARY – MAY 2005, OBG	6-2
	6.2	.2 JUNE – DECEMBER 2005, ENSR	6-3
	6.3	MAINTENANCE	6-4
	6.3	.1 JANUARY – MAY 2005, OBG	6-4
	6.3	.2 JUNE – DECEMBER 2005, ENSR	6-4
	6.4	SPDES OUTFALL 03A	6-5
	6.4	.1 JANUARY – MAY 2005, OBG	6-5
	6.4	.2 JUNE – DECEMBER 2005, ENSR	6-5
	6.5	SUMMARY	6-6
	6.5	.1 JANUARY – MAY 2005, OBG	6-6
	6.5	.2 JUNE – DECEMBER 2005, ENSR	6-6
	6.6	TABLES	6-7
	6.7	FIGURES	6-8

LIST OF APPENDICES

APPENDIX A	Site Inspection Reports - Form A & Form A1
APPENDIX B	Auto Dialer Alarm Incident and Testing Report - Form F
APPENDIX C	Leachate Disposal Correspondence and Analytical Data
APPENDIX D	Water Level Field Logs - Form D
APPENDIX E	Groundwater Sampling Logs- Form E
APPENDIX F	Groundwater Analytical Data
APPENDIX G	Groundwater Treatment System Inspection Logs

ACRONYMS AND ABBREVIATIONS

ABBREVIATION	NAME
BBL	Blasland, Bouck & Lee
bgs	below ground surface
cfm	cubic feet per minute
cis-1,2-DCE	cis-1,2-dichloroethene
CMP	corrugated metal pipe
Coolidge	Coolidge Utica Properties, LLC
CPTC	Chicago Pneumatic Tool Company
Danaher	Danaher Corporation
DER-10	NYSDEC's Draft DER-10, Technical Guidance for Site Investigation and Remediation dated December 25, 2002
DMRs	Discharge Monitoring Reports
Fathead Minnow	Pimephales promelas (vertebrate)
FER	Final Engineering Report
gpd	gallons per day
gpm	gallons per minute
GTS	groundwater treatment system
HDPE IRM	high-density polyethylene Surface Water Interim Remedial Measures
ISACC	Intelligent System for Automatic Control & Communication (Auto Dialer System)
Main Building	former main manufacturing building
MH	Manhole
NCT	northern collection trench
ng/l	nanograms/liter
NYSDEC	New York State Department of Environmental Conservation
OBG	O'Brien and Gere Engineers, Inc.
OCDWC	Oneida County Department of Water Quality and Water Pollution Control
OM&M	Operation, Maintenance and Monitoring
PCB	polychlorinated biphenyl
ppb	parts per billion
ppm	parts per million
ppt	parts per trillion
PVC	polyvinyl chloride
QA/QC	Quality assurance/quality control
RA	Remedial Action
RAF	Remedial Action Facility
RD	Remedial Design
RI	Remedial Investigation
ROD	Record of Decision
SCT	southern collection trench
SECOR	SECOR International Incorporated
SPDES	State Pollutant Discharge Elimination System
TCE	Trichloroethylene
the Property	2200 Bleecker Street in Utica, New York
TOGS 1.1.1	NYSDEC Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality and Guidance Values
	and Groundwater Effluent Limitations dated June 1998
trans-1,2-DCE	trans-1,2-dichloroethene
TSS	total suspended solids
UHC	Utica Holding Company
VC	vinyl chloride
VOC	volatile organic compound
Water Flea	Ceriodaphnia dubia (invertebrate)

ASSOCIATED DOCUMENTS

ABBREVIATION	TITLE	AUTHOR	DATE
Phase 1	Phase I Investigation	BBL	8/85
SIR	Site Investigation Report	BBL	7/90
PSA	Preliminary Site Assessment	NYSDEC	11/90
Order	Order on Consent for RI/FS	NYSDEC	10/26/93
וח		DDI	10/04
RI	Remedial Investigation Report	DDL	10/94
IRM	Surface Water Interim Remedial Measures (Design)	BBL	10/94
IRM-DWG	IRM Contract Drawing	BBL	04/95
IRM OM&M	IRM Operation & Maintenance Manual	BBL	04/95
RI/FS	Health and Safety Plan - Addendum #1 Remedial Investigation/Feasibility Study	BBL	10/95
SRI/FS	Supplemental Remedial Investigation Report/Feasibility Study	BBL	12/95
ROD	Record of Decision - Site No. 622003	NYSDEC	3/29/96
ORDER	Administrative Order on Consent Index No. B6-0491-96-04	NYSDEC	10/02/97
RD	Remedial Design Work Plan	BBL	11/97
RDS	Remedial Design Specifications	BBL	4/98
SPDES-SAP	SPDES Stormwater Action Plan	SECOR	6/00
FER	Final Engineering Report (Final)	SECOR	8/01
ОММ	Operation, Maintenance & Monitoring Manual (Final)	SECOR	4/01
2000-RPT	2000 Annual Operation, Maintenance & Monitoring Report	SECOR	4/01
2001-RPT	2001 Annual Operation Maintenance & Monitoring Report	SECOR	8/02
UHC SPDES	Utica Holding Company SPDES Permit No. NY-0257087	NYSDEC	9/1/02
CPTC SPDES	Chicago Pneumatic SPDES Permit No. NY-0108537	NYSDEC	9/1/02
2002-RPT	2002 Annual Operation, Maintenance and Monitoring Report	SECOR	3/03
2003-RPT	2003 Annual Operation, Maintenance and Monitoring Report	Domani	3/04
2004-RPT	2003 Annual Operation, Maintenance and Monitoring Report	Synapse	3/05

1.0 INTRODUCTION

This 2005 Operation, Maintenance and Monitoring Report (OM&M Report) provides an annual account of activities relative to the property located at 2200 Bleecker Street in Utica, New York (the Property). The Chicago Pneumatic Tool Company (CPTC) occupied the Property from 1948 through 1997 for manufacturing. The Property is currently owned by Utica Holding Company (UHC), a subsidiary of Danaher Corporation (Danaher), with the exception of the former main manufacturing building (Main Building) structure and the land beneath that structure, which is presently owned by Coolidge Utica, LLC (Coolidge). The surrounding property, owned by UHC, is leased to Utica Land Equities, LLC (ULE).

1.1 Regulatory History

Environmental assessments and investigations conducted between 1985 and 1990 identified impacted soil, surface water, and groundwater at the Property, and prompted the New York State Department of Environmental Conservation (NYSDEC) to issue an Administrative Order on Consent in 1993, directing the investigation and remediation of impacted areas at the Property. In 1996, NYSDEC issued a Record of Decision (ROD) for the Property, and listed it in the Registry of Inactive Hazardous Waste Disposal Sites, followed by a second administrative Order on Consent. This set forth a Remedial Design (RD) and subsequent Remedial Action (RA) required for the Property. Following completion of the RA construction and reporting activities, NYSDEC issued a letter indicating that the RA had been approved. A chronological list entitled Associated Documents, Page vi, summarizes key documents.

1.2 Purpose

This OM&M Report has been prepared in conformance with the requirements set forth in NYSDEC's Draft DER-10, dated December 25, 2002, *Technical Guidance for Site Investigation and Remediation* (DER-10), and has been prepared in reference to the Final Engineering Report (FER), previously submitted and accepted by NYSDEC for the Property. Additionally, the April 2001 site specific OM&M Manual was approved by NYSDEC, along with subsequent annual reports. This OM&M Report, as directed by the OM&M Manual, has the following objectives:

- To provide an evaluation of the compliance of the RA with the requirements of the ROD and subsequent Order on Consent;
- To provide an evaluation of the operation and the effectiveness of the ongoing remedial operations, engineering controls and treatment systems in use at the Property, and identification of any needed repairs or modifications;
- To provide an evaluation of the performance and effectiveness of the remedy;
- To document any necessary changes to the remedy and/or monitoring systems;
- To provide recommendations for changes and/or new conclusions regarding environmental impact at the Property based on this evaluation; and
- To provide information to the public.

1.3 Report Organization

This report has been organized into six sections, each addressing a specific physical area/feature and/or regulatory program/requirement pertaining to ongoing operations at the Property as follows:

Section 1.0 – Introduction - Discusses the regulatory history of the Property, the purpose of this annual report, the report's originations and an overview of party contributions and subsequent responsibilities;

Section 2.0 - Property Inspection and Maintenance - Discusses the current ownership and uses of the Property, and the ongoing inspection and maintenance requirements associated with the Property's general ongoing use;

Section 3.0 - Remedial Action Facility - Discusses the Remedial Action Facility (RAF) at the Property, primarily consisting of a containment cell, a leachate collection and storage system, and the inspection and maintenance requirements associated with the RAF's ongoing operation;

Section 4.0 - Groundwater Monitoring - Discusses the groundwater monitoring well network at the Property, the groundwater sampling and analytical requirements and subsequent results;

Section 5.0 - Property SPDES - Discusses the State Pollutant Discharge Elimination System (SPDES) permitted surface water discharges through three outfalls at the Property, and the routine and additional effluent sampling, including the analytical programs required by the permit; and

Section 6.0 - Groundwater Treatment System - Discusses the operation and maintenance of the groundwater treatment system (GTS) installed and currently operating at the Property.

This OM&M Report also discusses, and presents as appendices, applicable data and information collected in compliance with satisfying the DER-10 requirements, such as site inspection forms, field monitoring logs, and laboratory analytical data.

1.4 **Property Management**

On behalf of UHC, Synapse Risk Management, LLC (Synapse), of Syracuse, New York, has been managed the administrative and technical requirements pursuant to the RA during 2005, with the exception of the GTS, which has been operated by O'Brien and Gere Engineers, Inc. (OBG), of East Syracuse, New York. The operation of the GTS was transferred from OBG to ENSR International Inc. (ENSR) of East Syracuse, New York in May 2005.

2.0 PROPERTY INSPECTION AND MAINTENANCE

The overall Property consists of a 77-acre parcel (see Figure 2-1 – Aerial Property Map) located in an industrial setting, with approximately 35 acres of undeveloped woodland at the southern portion of the Property. UHC retains ownership of the Property, which includes the ancillary buildings and the land, excluding the Main Building (see Figure 2-2 – Facility Plan). The Main Building is presently owned by Coolidge, whom subsequently rents/leases portions/sections of the building to various tenants. The peripheral Property receives monthly inspection and maintenance in conjunction with the required inspections of the RAF and associated components. This section includes inspection and maintenance of the peripheral Property only. The RAF, groundwater monitoring, Property SPDES, and GTS are discussed in Section 3, Section 4, Section 5, and Section 6, respectively.

2.1 **Property History**

CPTC occupied the Property from 1948 until 1997 for the manufacture of pneumatic tools. Danaher owned CPTC, but later transferred ownership to Atlas Copco. The Property, with the exception of the Main Building, is currently owned by UHC, a subsidiary of Danaher. The 458,000 square foot Main Building has been owned by Coolidge and the remaining land, owned by UHC, is leased by ULE since 1997.

Potential environmental conditions at the Property were first identified in a 1985 Phase I Site Assessment (see Associated Documents). A subsequent site investigation was conducted in July 1990, and NYSDEC conducted a Preliminary Site Assessment later that year. Based on the findings presented in these investigation reports, NYSDEC issued an Administrative Order on Consent in 1993 which mandated the further investigation and remediation of impacted areas at the Property. Pursuant to this Order on Consent, Blasland Bouck & Lee, Inc. (BBL) submitted a Remedial Investigation (RI) report and a Surface Water Interim Remedial Measures (IRM) design in 1994, and a Supplemental Remedial Investigation/Feasibility Study in 1995. In 1996, NYSDEC issued a Record of Decision for the Property, and listed the Property in the Registry of Inactive Hazardous Waste Sites (No. 622003 - Class 2), specifying the RA required for the Property. A second administrative Order on Consent was issued in 1997 followed by the RD.

The IRM, which included an air stripper, has been in operation since 1995. The air stripper and pumping appurtenance were incorporated into the RA. The RA was implemented from May 1998 through December 1999. A June 2000 SPDES Stormwater Action Plan was prepared and transmitted to NYSDEC to document SPDES corrective actions performed at the Property and to set forth contingency measures. NYSDEC issued a letter dated December 11, 2001 indicating that the FER and accompanying drawings and OM&M Manual for the Property had been approved. Additionally, the NYSDEC issued an earlier letter dated March 7, 2000 reclassifying the Property as a Class 4 Inactive Hazardous Waste Disposal Site. CPTC and Danaher retain responsibility for implementing long term OM&M of the GTS and RAF, respectively, at the Property.

The RA included the following major components:

- Remediation involving soil and sediment removal at 14 identified source areas (see Figure 2-3 -Historical Remedial Action Areas);
- Construction of a containment cell to store impacted soil and sediment from the 14 identified source areas. The containment cell and associated leachate collection system and building are surrounded by a perimeter fence and access is limited to authorized individuals associated with UHC. This fenced area is referred to as the RAF; and
- Construction and connection of two trenches, northern collection trench (NCT) and southern collection trench (SCT), to the existing air stripper creating the GTS.

UHC is the Permittee on the SPDES permit associated with three outfalls located on the Property, which is discussed in Section 5. CPTC maintains responsibility for the GTS and associated SPDES permit which is discussed in Section 6.

2.2 Property Geology and Hydrogeology

The Property is located on the southern side of the Mohawk Valley, which is a broad, east-west trending lowland, the floor of which consists of a uniform sequence of laminated, calcareous black shale known as the Utica Shale. South of the Property, the land surface rises abruptly off the valley floor, forming a bluff capped by limestone. The Mohawk River is located approximately 3,000 feet north of the Property. In general, regional dip of the bedrock units is to the southwest. Regional estimates of depth to bedrock range from 21 to 75 feet.

Subsurface materials at the Property were described during installation of monitoring wells, soil borings, test pits, and excavations performed during investigative and remedial actions conducted primarily between 1988 and 1999. The unconsolidated subsurface materials are composed of varying consistencies of sand, silt, and clay. Some of the materials have been reworked to varying depths across the site by former facility activity and are classified as fill. The depth of the unconsolidated natural material across the Property ranges from three feet to 12 feet below grade. A till layer was encountered below the unconsolidated material and ranged in thickness from 12 to 24 feet. The till deposits are described as over-consolidated, dark gray silt and clay, that slopes gradually toward the north-northwest.

The regional groundwater flow is northeast, toward the Mohawk River. Two distinct hydrogeologic units, separated by a semi-confining till unit, are present at the Property. The first water-bearing unit is the unconsolidated overburden material (sand, silt, clay). Depth to first groundwater encountered in the overburden at the Property is generally within 5 feet of the ground surface. Weathered shale bedrock is the second water-bearing unit, and was reportedly encountered between 23 and 30 feet below ground surface.

2.3 **Property Activities**

The majority of the Property buildings are currently occupied by tenants that generally include trucking, cosmetic storage, food (dough) manufacturing, and printing businesses. The Main Building, 458,000 square feet, is surrounded by approximately 57,000 square feet of ancillary buildings. Paved access roads and parking areas cover approximately 12 acres. An approximate 35-acre wooded tract, at the southern portion of the Property, remains inactive. No specific changes in the Property's makeup or unusual activities related to the operation and maintenance requirements were noted during the calendar year 2005.

2.4 Inspection

Scheduled Property visits and subsequent Site Inspection Reports – Form A and Form A1, (Appendix A) are performed and prepared to track Property activities and monitor Property drainage. These reports indicate required maintenance and provide a follow-up to ensure the subsequent maintenance effectiveness. Scheduled and unscheduled Property visits are documented on this and other forms, and are discussed in appropriate sections throughout this report. During 2005, the Property ditches were inspected and observed to be well vegetated, and overall, not generally prone to sedimentation. Additionally, the ditches are inspected for unusual staining and deposits, of which none were identified. The Property culverts are inspected as well, to insure they are clear and functional.

2.5 Property Drainage and Outfalls

The Property is generally drained via existing drainage ditches located at the east and west portions of the Property. The west unnamed creek, Area 1 (See Figure 2-3), flows from the south through a wooded area and runs along the western extent of the Property, exiting at the northwest corner of the Property. The unnamed creek drainage contribution primarily consists of roof leaders conveyed via the northern and southwestern stormwater systems emanating from of the Main Building. Surface water runoff from the western parking lot and surface water runoff from a southern agriculture area also contribute to the unnamed creek. The southwestern and northern stormwater systems are monitored from manholes identified as SPDES Outfall 001 and Outfall 002, respectively. SPDES outfall monitoring for the Property is discussed in Section 5. The unnamed creek floods occasionally in the spring and fall, primarily due to restrictions in an off-site stormwater piping system. A new culvert was installed in 2003 by the county across Bleecker Street, approximately 300 feet off-site to the west. This culvert was installed to limit flooding of Bleecker Street by water backing up the unnamed creek, Area 1.

Two east-west oriented surface water drainage ditches, Area 4 and Area 6, originate from the mid portion of the Property, south of the Main Building, and converge to form one north-south ditch, Area 14, along the eastern portion of the Property. This east drainage ditch joins a road ditch located parallel to Bleecker Street. Treated effluent from the GTS, which is covered in Section 6, is discharged to the east drainage ditch via CPTC SPDES Outfall 03A. The east drainage ditch also receives stormwater from roof leaders connected to the southeastern stormwater system and the RAF surface drainage, as well as surface water from the eastern parking lots. The SPDES Outfall 003 is located near the northern end of the eastern drainage ditch; prior to joining a drainage ditch parallel to Bleecker Street.

2.6 Summary

The northern portion of the Property continued to be active throughout 2005, however, the southern portion remains wooded and inactive. Tenants occupy approximately 80% of the Main Building and continue to use the surrounding access roads and parking lots. The Property is accessed a minimum of once per month allotting reviews of ongoing activities and inspection of the drainage system. No reportable issues of concern were noted with regard the property drainage or makeup, therefore, continuation of the scheduled inspection is recommended for this aspect of the Property.

2.7 Figures

- 2-1 Aerial Property Map
- 2-2 Facility Plan
- 2-3 Historical Remedial Action Areas

	LEGEND
470	ELEVATION CONTOUR
OMH	MANHOLE
-x-x-x-x-	CHAIN LINK FENCE
Ø CNYP 12	UTILITY POLE
R/W	RETAINING WALL
)(SURFACE DRAINAGE CULVERT
	DRAINAGE DITCH
_ · _ · _ · _ · _	DRAINAGE PIPE
— — · — SAN— — · —	SANITARY SEWER PIPE
	STORMWATER DRAIN PIPE
uuuu	TREE LINE
T	TELEPHONE (UNDERGROUND)
@ MW-14	MONITORING WELL
↔ HYD	FIRE HYDRANT
♦ P.L.V.	VALVE
•	DRAIN
E	POWER LINE (ABOVE GROUND)
	POWER LINE (UNDERGROUND)
RAF	REMEDIAL ACTION FACILITY

3.0 REMEDIAL ACTION FACILITY

The RAF is situated in the mid-eastern portion of the Property, as presented on Figure 3-1 – Remedial Action Facility Plan, and contained within a fenced area encompassing approximately 3.8 acres; providing security for the, generally unmanned, facility. The OM&M of the RAF was conducted by Synapse, in accordance with the guidelines set forth in the NYSDEC-approved OM&M Manual dated April 2001. Field reports provide documentation of the site inspection events and any adjustments made. The results of these inspections generally set forth maintenance, if required.

Key components of the RAF are the fences, roads, drainage, containment cell, leachate collection, and building systems, which constitute the engineering controls. The primary function of the RAF is collection and subsequent disposal of leachate generated from the containment cell.

The groundwater monitoring wells, with the exception of MW-14, and the GTS are located outside of the perimeter fence of the RAF and are reviewed in Section 4 and Section 6, respectively.

3.1 Construction

The RAF is surrounded by an 8-foot high barbed wire over chain link fence, with access gates to the north and west, with the primary access via the western gate. The RAF is generally comprised of the following components:

- Containment Cell In 1999, construction of a 1.4-acre containment cell was completed to store 16,117 cubic yards of impacted soil and sediment generated during the RA. The containment cell was lined with a single composite liner system and completed with a composite cap placed over the impacted soil and sediment. Two gas vents and a leachate collection pipe were also installed within the containment cell. A series of ditches were installed around the containment cell to collect surface water runoff and direct stormwater offsite. A gravel service/perimeter road surrounds the containment cell providing for vehicle access and subsequent inspection and maintenance.
- Leachate Collection System A leachate collection system, comprised of a collection pipe that extends the length of the containment cell and is connected to the collection manhole, which is installed adjacent to the western side of the containment cell. The collection manhole is equipped with two pumps to transfer leachate to a storage tank prior to disposal. All components of the leachate collection system are double contained with fail safe monitoring systems. The collection pipe surfaces at the east end of the containment cell providing access for cleaning, as needed. The leachate collection system components are noted on Figure 3-1.
- Leachate Storage System Leachate pumped from the collection manhole is stored in an aboveground 5,000-gallon steel storage tank within a steel secondary containment structure as shown on Figure 3-2 Building, Tank, and Piping Plan. A flow totalizer is used to track the quantity of leachate pumped to the tank from the collection manhole, and a level sensor installed in the tank is used to determine the instantaneous quantity of leachate in the tank. The level sensor is also electronically connected to an auto dialer system to notify Synapse personnel of alarm conditions via telephone and facsimile. The tank is also equipped with a sampling port, drain fitting, electric heating elements, and insulation utilized to prevent freezing of the tank and piping during winter months. In addition, a concrete truck pad with grated sump is located adjacent to the tank to provide containment during pumping of leachate from the tank to a tanker truck prior to disposal.
- RAF Building A 1,278-square foot building constructed of a steel frame and siding on a concrete slab foundation is used to house the leachate collection tank (tank area), and truck pad (truck loading area), noted above. Additionally, the building enclosure has an office area for maintaining

OM&M records, the communication components, electrical service boxes and a storage area for tools, supplies, and equipment, known as the office/storage area. The building is located west of the containment cell and collection manhole.

3.2 **Operations and Inspections**

The leachate collection system operated continuously during 2005. The RAF and associated components are scheduled for monthly visual inspection and documentation as set forth in the OM&M Manual. Operation is also monitored via telecommunication with the RAF auto dialer system, Intelligent System for Automatic Control & Communication (ISACC). Scheduled site visits and subsequent Site Inspection Reports – Form A (Appendix A) consists of the following inspection components associated with the RAF:

- General Property Access and Drainage;
- Cell Perimeter Components;
- Containment Cell;
- Leachate Collection Manhole;
- Building Structure, Electrical, Telephone, and Auto Dialer Controls; and
- Leachate Storage System.

The cell perimeter road and facility access road were reviewed during the monthly inspections to ensure access for facility maintenance. The immediate surface drainways were inspected to insure that ponding or erosion does not occur from runoff. All Property ditches and culverts were accessed and viewed during the inspection, for the same. The RAF perimeter fence was also inspected to insure facility security, and the facility overhead utilities were viewed and tested, in the building, as well.

Inspection of the containment cell involved viewing the cell from the perimeter road and traversing its surface. Components viewed were the four perimeter drains, the two passive gas vents, and the cell cleanout pipe. These were checks for functionality, which also included periodic screening of the passive gas vents for volatile organic compounds (VOCs). The surface of the cell was inspected for stressed vegetation, burrows, erosion, and movement.

Operation of the leachate collection manhole involves structural, electrical, pumping, and alarm components. Each inspection required checking the manhole control panel and recording running hours of the two pumps. Additionally, this included testing the operation of each pump, as well as opening the manhole and conducting visual inspection of its components. As this is a lead/lag pumping system, lead duties are periodically changed between Pump No. 1 and Pump No. 2 during inspections.

The RAF building was viewed during the inspection for inconsistencies in the structural, security, electrical, and telephone systems, as well as assuring the heat and vent systems were functional. The ISACC, located in the RAF building, provides continuous monitoring information of the leachate collection manhole and leachate storage tank. The ISACC system is generally accessed remotely semi-monthly for data collection and management. ISACC was accessed from the Synapse office by modem to download specific information. In the event of an alarm condition, the ISACC system alerts designated Synapse personnel based on the guidelines set forth in the OM&M Manual and the ISACC program logic. The Auto Dialer Alarm Incident and Testing Report, Form F, included in Appendix B, provides documentation of alarm conditions, if any, and testing during the 2005 calendar year. An annual total system check was performed, as required, and reportedly, no alarm was received during 2005.

The leachate storage system, which is housed in the center portion of the RAF Building, was inspected and total flow readings were recorded. The 5,000-gallon storage tank, containment system, and plumbing were viewed for leaks and any abnormalities. The tank was internally inspected, generally after leachate was removed, to assure the control of corrosion. The influent pipe is equipped with a flow totalizer, which was manually recorded during monthly inspections. The flow totalizer indicated that approximately 3,600 gallons were pumped during 2005, totaling 60,900 gallons pumped since monitoring commenced in May 1999. The collected leachate sampling and disposal are reviewed in later subsections.

3.3 Maintenance

General maintenance requirements of the RAF are set forth in the OM&M Manual, which provides inspection criteria, forms, guidance, and procedures to perform scheduled maintenance requirements, as well as contingency plans for unscheduled matters. The OM&M procedures and protocols are generally cross-referenced with and supported by the August 2001 FER.

Scheduled Maintenance

The scheduled maintenance activities associated with the RAF and site components that occurred during the 2005 calendar year consisted of the following:

- RAF site access (snow removal, road maintenance, and fence maintenance);
- RAF building (ISACC program diagnostic/communication response);
- Containment cell (vegetation management, mowing, and erosion control);
- Drainage ditches (vegetation, riprap and culvert management); and
- Truck pad sump (pumping during leachate removal, Section 3.5).

Unscheduled Maintenance

Unscheduled maintenance activities associated with the RAF and site components that occurred during the 2005 calendar year consist of the following:

- Adjustment of the tank liquid level sensor;
- Elimination of persistent and damaging vectors from the containment cell;
- Placement and grading of top soil followed by seeding and mulch;
- Spot restoration of vegetative cover on the containment cell;
- Adjustment and replacement of sheet metal barrier panels and bird netting to continue to prevent pigeon roosting in the open portion of the RAF building; and
- General cleaning to include pressure washing the tank and truck loading area of the building.

3.4 Leachate Collection

The leachate generated from the containment cell is collected, conveyed, and stored on-site. The leachate generated from the containment cell is drained, via gravity flow, to a perforated 6-inch, high-density polyethylene (HDPE) pipe located along the bottom of the containment cell, just above the liner. The leachate collection pipe passes through the western perimeter berm, and discharges into the leachate collection manhole. The portion of the leachate collection pipe between the containment cell and collection manhole is equipped with secondary containment, double-walled piping. The leachate

collected in the manhole is then transferred, via redundant, automatically controlled pumps, to the on-site leachate storage tank.

Leachate generation/collection is monitored by two means; measuring the fill height in the tank and through a flow totalizer. The on-site ISACC system provides real time data and remote location communication with the RAF. The operation of this unit, associated with the leachate collection system, is discussed in the OM&M Manual. One of the eight programmed ISACC channels provides tracking of tank filling events (i.e., water level in the tank). The tank filling is monitored and is equipped with a shut down system, so as not to overfill.

The inline flow totalizer was read and recorded during the monthly inspections and accounts for the leachate generation. Table 3-1 – Cumulative Leachate Generation provides a summary of the recorded flow from May 1999, inception, through December 2005. Chart 3-1 – Cumulative Leachate Generation graphically represents the data in Table 3-1. A total of 3,600 gallons was metered during 2005, indicative of an average flow of approximately 9.6 gallons per day (gpd). The overall trend of yearly leachate production has decreased as evaluated in Table 3-2 – Leachate Generation Per Year, and Chart 3-2 – Leachate Generation Per Year.

3.5 Leachate Disposal

The leachate is temporarily stored in the on-site 5,000-gallon storage tank within a steel secondary containment sized to contain 110% of the tank volume. The leachate requires analytical analysis prior to bulk batch disposal. The scheduling of the sampling events and subsequent disposal is based on tank level data monitored by the ISACC system. The sampling and disposal of the leachate were performed during 2005 in accordance with the guidance set forth in the OM&M Manual. One sample of the leachate from storage tank filling number 13 (LT-13), was collected and analyzed as set forth in Permit No. GW-050 issued by the Oneida County Department of Water Quality and Water Pollution Control (OCDWPC).

The analytical results of the leachate sample collected, LT-13, indicated compliance with the permit limits set forth by the OCDWPC. On September 14, 2005, leachate for LT-13 was disposed of to the OCDWPC sanitary sewer system and leachate storage tank filling number 14 began. The leachate disposal authorization for LT-13 from OCDWPC and analytical data packages are provided in Appendix C - Leachate Disposal Correspondences and Analytical Data. The total leachate disposal for 2005 was approximately 2,810 gallons.

3.6 Summary

The RAF facility and associated components generally operated as planned through 2005. The monitoring and inspection continues, as necessary, to evaluate trends and the ongoing condition of the facility. The operation and maintenance performed during the 2005 calendar year were performed within the guidelines set forth in the OM&M Manual. In addition to scheduled maintenance, unscheduled maintenance conditions were recognized and corrected as follows:

- Persistent and damaging vectors were eliminated from the containment cell; and
- The vegetative cover on the containment cell was restored.

The evaluation of the data relating to the leachate generated and collected during 2005 (3,600 gallons), indicates an overall downward tend in leachate generated to date. The average production rate for 2005 was approximately 10 gpd. The leachate generated and batch discharged from the containment cell continues to meet the requirements set forth in the OCDWPC permit. Only one bulk disposal event was required in 2005 totaling approximately 2,810 gallons and is considered as the 13th tank filling and disposal event. Synapse concludes that the RAF performed as designed during 2005, and recommends continuing OM&M as prescribed and scheduled.

3.7 Tables

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation Per Year

3.8 Charts

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation Per Year

CHART 3-1 CUMULATIVE LEACHATE GENERATION

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

CHART 3-2 LEACHATE GENERATION PER YEAR

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Table&Chart 3-2

Synapse Risk Management, LLC.

3.9 Figures

- 3-1 Remedial Action Facility Plan
- 3-2 Building, Tank, and Piping Plan

X: FOUNDAT.DWG

4.0 GROUNDWATER MONITORING

This section presents the results of the semi-annual groundwater monitoring events conducted at the Property in 2005. The Property OM&M Manual details the procedures that were followed during groundwater monitoring. The FER details the procedures followed during the implementation of the RA that adjusted the groundwater monitoring program, which included monitoring well decommissioning and new monitoring well installation. The sub-sections that follow review the construction, monitoring, sampling, and data evaluation as part of the groundwater monitoring program and include specific tables and figures. The summary section provides comments, conclusions, and recommendations.

4.1 Monitoring Well Construction

The monitoring well network currently consists of five monitoring wells designated as: MW-6R, MW-13A, MW-14, MW-17, and MW-18. A sixth monitoring well, MW-3 was properly abandoned on September 14, 2001. The monitoring wells are located to provide groundwater quality data for site-specific RA areas and verify the influence of the GTS.

The monitoring wells consist of 2-inch diameter polyvinyl chloride (PVC) risers and 10-foot lengths of 0.010-inch slotted PVC screen. The well screens were installed to straddle the water table and intersect the overburden soils above the glacial till. Shallow groundwater flow is generally from the south to the north across the Property. The locations of the monitoring wells are shown on Figure 2-2. The detailed descriptions of the monitoring well locations, as well as hydraulic consideration, are as follows:

- MW-6R, located hydraulically downgradient of the eastern portion of the Property;
- MW-13A, located hydraulically crossgradient (east) of RA Areas 5, 7, 8, 13, and 14 as well as the RAF;
- MW-14, located at the southeastern corner of the Property hydraulically upgradient of all RA areas and the RAF;
- MW-17, located hydraulically downgradient of the NCT; and
- MW-18, located hydraulically downgradient of RA Areas 6, 7, 8, 9, and 10, as well as hydraulically upgradient of the SCT.

4.2 Groundwater Elevation Measurement

As part of the groundwater monitoring program, water level elevations were measured from the aforementioned monitoring wells on April 27, 2005 and October 20, 2005. Water levels in the cleanouts for the NCT and SCT were measured during the 2005 events, as well. Monitoring well water levels were measured from a designated reference point at the top of the PVC well riser using the procedures outlined in the OM&M Manual. The water levels were measured consecutively, on the same day, prior to sampling or other activities. Water level measurements were recorded on a dedicated field sheet, Water Level Field Logs – Form D and are provided in Appendix D. The water level measurements were converted to elevations based on as-built survey information. The water levels for the two groundwater sampling events conducted in 2005 are shown in Table 4-1 – 2005 Groundwater Elevation Summary. Note that MW-17 was found to have insufficient water to sample, during both sampling events. This is attributed to the installation of Pumping Manhole No. 2, as part of the GTS, which effectively lowered the water table to an elevation at or less than the total depth of MW-17. The potentiometric surface is depicted in Figure 4-1 – Overburden Groundwater Elevation Contour Map - April 27, 2005, and Figure 4-2 – Overburden Groundwater Elevation Contour Map - October 20, 2005. A summary of water levels from 1999 to 2005 is provided in Table 4-2 – Cumulative Groundwater Elevations.

4.3 Groundwater Sampling

Groundwater samples were obtained during two groundwater sampling events conducted on April 27 and 28, 2005 and October 20 and 21, 2005, as part of the OM&M program. Groundwater samples were collected from monitoring wells MW-6R, MW-13A, MW-14, and MW-18. As discussed in Section 4.1, MW-17 had insufficient water during both sampling events, and as such, a sample could not be collected.

Based on the guidance set forth in the OM&M Manual, the groundwater sampling events completed in 2005 were scheduled as semi-annual. The groundwater samples were submitted for laboratory analysis for VOCs of concern, polychlorinated biphenyls (PCBs), and select metals. Analytical results for VOCs, PCBs, and metals were compared to standards presented in the NYSDEC Division of Water *Technical and Operation Guidance Series* (1.1.1) (TOGS 1.1.1), June 1998.

To assure that the groundwater samples were representative of the shallow groundwater aquifer, a minimum of three static well volumes were purged from each monitoring well prior to sample collection. Groundwater field parameters were obtained from each monitoring well just prior to sampling, and included water levels, pH, conductivity, dissolved oxygen, turbidity, and temperature. The wells were observed to have moderate recharge capacity. Well purging was performed using a disposable Teflon® bailer. The purged groundwater was containerized and transferred to the on-site leachate collection manhole, part of the RAF, for subsequent disposal.

Groundwater samples were collected using a new disposable Teflon[®] bailer for each well. During the April and October 2005 groundwater sampling events, samples to be analyzed for VOCs and PCBs were collected on the first day of each sampling event. Samples to be analyzed for metals were collected on the second day, 24 hours after purging the well, to limit turbidity in the samples collected. Each grab sample was placed directly into laboratory-provided containers, labeled, logged in to a chain of custody document, and stored on ice in an insulated cooler pending delivery to the laboratory for analysis. Quality assurance/quality control (QA/QC) groundwater samples were collected at a frequency described below.

<u>Trip Blanks</u>

On events/days when aqueous samples were shipped/delivered to the laboratory for VOC analysis, a trip blank was included. A trip blank is an aliquot of analyte-free water, sealed in a 40 milliliter glass vial with a Teflon-lined septum cap prepared prior to initiation of fieldwork. The sealed vials were prepared by the laboratory and included with each shipment of sample bottles for aqueous media sampling at the Property. The trip blank may determine if any contamination of the samples has occurred during shipment/delivery.

Duplicate Samples

Duplicate samples were collected and analyzed to evaluate the reproducibility of the analytical technique used. One duplicate sample (DUP-1) was collected for all parameters during each sampling event. Groundwater from a selected monitoring well was divided between the primary sample and the duplicate sample laboratory containers, logged on the chain of custody and submitted to the laboratory.

Matrix Spikes / Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples were collected to measure the accuracy of organic analyte recovery from the sample matrices. For organic constituents and metals, one matrix spike and one matrix spike duplicate sample was analyzed for each sampling event.

The April and October 2005 samples were submitted to Life Science Laboratories of East Syracuse, New York. Table 4-3 – Groundwater Constituents, Methods, and Practical Quantification Limits, details the

2005 Annual Report

groundwater sample analytical requirements. The Groundwater Sampling Logs - Form E, used during well sampling to record the groundwater field parameters, are provided in Appendix E.

4.4 Groundwater Analytical Results

The analytical results from the semi-annual groundwater sampling events, as compared to the TOGS 1.1.1 are presented in the subsequent summary tables. Table 4-4 – 2005 Groundwater Analytical Results, summarizes the groundwater analytical data from the two semi-annual sampling events. Table 4-5 – Cumulative Groundwater Analytical Results, provides a historic summary of the groundwater analytical results from 1999 through 2005. The original laboratory analytical data for 2005 were provided under separate cover to NYSDEC upon receipt from the laboratory, and are provided in Appendix F – Groundwater Analytical Data. The analytical laboratory did not achieve the 0.05 ug/l method detection limit (MDL) for PCBs, from any of the monitoring wells during the October 2005 sampling event. The following summarizes analytical data from each monitoring well.

<u>MW-6R</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2005 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for the April 2005 sampling event. Analytical results for PCBs, specifically Aroclor 1242 was detected at a concentration of 0.13 micrograms per liter (ug/l). The detection is most likely laboratory contamination as Aroclors 1254 and 1260 were the focus during the RA. Further, the analytical results from the duplicate sample collected from MW-6R indicated a result less than the MDL. This groundwater condition will be reviewed during the April 2006 sampling event;
- The metal concentrations from both 2005 groundwater sampling events were below TOGS 1.1.1 guidance values and are comparable with historically identified concentrations; and
- Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

<u>MW-13A</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2005 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2005 sampling events;
- The metal concentrations from both 2005 groundwater sampling events were below TOGS 1.1.1 guidance values and are comparable with historically identified concentrations; and
- Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

<u>MW-14</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2005 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2005 sampling events;
- The metal concentrations from both 2005 groundwater sampling events were below TOGS 1.1.1 guidance values, and are comparable with historically identified concentrations; and

 Historically, VOCs and PCBs have never been detected at concentrations above method detection limits.

<u>MW-17</u>

Monitoring well had insufficient water to allow sample collection during both 2005 events.

<u>MW-18</u>

- VC was detected at a concentration of 5.6 ug/l and 5.7 ug/l, respectively from the primary and duplicate sample, which exceeded the TOGS 1.1.1 guidance value of 2 ppb, during the April 2005 sampling event. All other VOCs were not detected at concentrations above method detection limits;
- Vinyl chloride (VC) was detected at a concentration of 7.1 ug/l, which exceeded the TOGS 1.1.1 guidance value of 2 ppb, during the October 2005 sampling event. All other VOCs were not detected at concentrations above method detection limits;
- Concentrations of metals were detected below TOGS 1.1.1 guidance values during both 2005 groundwater sampling events and are comparable with historically identified concentrations;
- Analytical results for PCBs indicated no detectable concentrations for both 2005 sampling events; and
- Historically, PCBs have never been detected at concentrations above method detection limits.

4.5 Summary

An interpretation of the groundwater elevation measurements obtained during the April and October 2005 sampling events indicated that the overburden groundwater flow was generally to the north. The groundwater flow direction was influenced in the vicinity of the NCT and the SCT, where depressed groundwater levels were observed during the operation of the GTS. Monitoring well MW-17 continues to have insufficient water to measure or sample, as a result of the depressed groundwater.

The groundwater quality from both the April and October 2005 groundwater sampling events are generally consistent with historical data, with the exception of concentrations of VC detected in monitoring well MW-18, VC has been identified above its analytical MDL for five consecutive sampling events. The VC concentration at MW-18 demonstrates an overall increasing trend, however as VC is a daughter product and generally demonstrates the degradation of TCE. As MW-18 is upgradient of the groundwater depression created by the SCT, (see Figure 4-1 and 4-2), the groundwater monitored at MW-18 is directed, collected, and treated via the GTS, discussed in Section 6.

Concentration of select metals did not exceed TOGS 1.1.1 guidance values and have not demonstrated exceedances since the RA. Detectable concentrations of PCBs were not and have never been identified in groundwater from any of the current monitoring locations. The detection of Aroclor 1242 in the primary sample collected at MW-6R is apparently attributable to laboratory contamination, as the duplicate sample for MW-6R was less than the MDL.

4.6 Tables

- 4-1 2005 Groundwater Elevation Summary
- 4-2 Cumulative Groundwater Elevations
- 4-3 Groundwater Constituents, Methods, and Practical Quantification Limits
- 4-4 2005 Groundwater Analytical Results
- 4-5 Cumulative Groundwater Analytical Results

TABLE 4-2 CUMULATIVE GROUNDWATER ELEVATIONS

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	Well ID							
Sample Date	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18		
3/26/1999	467.93	461.78	465.83	474.82	462.14	469.97		
9/20/1999	467.60	461.14	464.36	470.78	460.70	467.83		
3/14/2000	467.72	461.63	466.38	475.05	459.45	470.03		
9/14/2000	467.42	461.15	464.98	473.72	457.37	468.83		
3/29/2001	470.86	456.35	460.93	467.74	457.24	469.52		
9/13/2001	Note 2	460.85	464.18	470.9	457.11	469.56		
3/27/2002	Note 2	460.96	466.89	475.19	DRY	470.82		
9/19/2002	Note 2	461.21	465.41	470.92	DRY	468.10		
4/24/2003	Note 2	461.55	466.81	475.24	DRY	472.13		
10/22/2003	Note 2	460.97	465.23	474.66	DRY	469.61		
4/22/2004	Note 2	461.59	466.67	475.34	DRY	471.25		
10/18/2004	Note 2	461.03	465.01	472.53	DRY	468.93		
4/27/2005	Note 2	461.54	466.51	475.13	DRY	471.06		
10/20/2005	Note 2	461.15	465.17	474.47	DRY	469.66		

Notes:

1. All elevations reported in feet above mean sea level.

2. MW-3 was decommissioned in September 2001.

3. MW-17 has been dry since the installation of Pumping MH-2 in March 2002.

TABLE 4-3

GROUNDWATER CONSTITUENTS, METHODS AND PRACTICAL QUANTIFICATION LIMITS

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Constituent	Practical Quantification Limits (PQLs)			
VOCs of Concern - USEPA Me	ethod 8260			
cis-1,2-Dichloroethene	1			
trans-1,2-Dichloroethene	1			
Trichloroethylene	1			
Vinyl Chloride	1			
Metals of Concern - USEPA N	lethod 200.7			
Chromium	10			
Copper	10			
Lead	10			
Zinc	10			
PCBs - USEPA Method 608				
Aroclor 1016	0.05			
Aroclor 1221	0.05			
Aroclor 1232	0.05			
Aroclor 1242	0.05			
Aroclor 1248	0.05			
Aroclor 1254	0.05			
Aroclor 1260	0.05			

Notes:

1. All values reported in micrograms per liter (ug/l), approximately equivalent to parts per billion (ppb).

- 2. VOCs = Volatile Organic Componds.
- 3. PCBs = Polychlorinated biphenyls.
- 4. VOCs of concern PQLs are based on USEPA SW-846 Method 8260 contract requirred quantification limits (CRQLs). Specific quantifications are highly matrix dependent. The quantification limits shown are provided for guidance and may not always be achievable.

5. USEPA Method 200.7 will be used for analysis of metals of

concern. PQLs presented are based on RCRA TCL CRQLs. CQRLs shown

for metals of concern are provided for guidance and may not always be achievable.

TABLE 4-42005 GROUNDWATER ANALYTICAL RESULTS

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

April 2005 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	042705/042805	
Date Sampled	Limit	and Guidance	4/27-28/2005	4/27-28/2005	4/27-28/2005	4/27-28/2005	4/27-28/2005	4/27-28/2005	
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18	
Volatile Organic Compounds									
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1	
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1	
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1	
Vinyl Chloride	1	2	<1	<1	<1	NS	5.6	5.7	
Metals									
Chromium	10	50	<10	<10	<10	NS	<10	<10	
Copper	10	200	10	14	16	NS	<10	15	
Lead	10	25	<10	<10	13	NS	<10	<10	
Zinc	10	2,000	12	20	15	NS	13	13	
Polychlorinted Biphenyls									
Aroclor 1016	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1221	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1232	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1242	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1248	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1254	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05	
Aroclor 1260	0.05	0.09	< 0.05	<0.05	<0.05	NS	<0.05	<0.05	

October 2005 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	102005/102105	
Date Sampled	Limit	and Guidance	10/20-21/2005	10/20-21/2005	10/20-21/2005	10/20-21/2005	10/20-21/2005	10/20-21/2005	
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-6R	
Volatile Organic Compounds									
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1	
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1	
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1	
Vinyl Chloride	1	2	<1	<1	<1	NS	7.1	<1	
Metals									
Chromium	10	50	<10	<10	<10	NS	<10	<10	
Copper	10	200	<10	<10	<10	NS	<10	<10	
Lead	10	25	<10	<10	<10	NS	<10	<10	
Zinc	10	2,000	13	<10	<10	NS	<10	<10	
Polychlorinted Biphenyls									
Aroclor 1016	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1221	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1232	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1242	0.05	0.09	0.13	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1248	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1254	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	
Aroclor 1260	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1	

Notes:

1. Sample results and NYSDEC Standards reported in ug/l; approximately equivalent to parts per billion (ppb).

2. Guidance Values are established by NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1).

3. NS = Not Sampled (Well Dry).

4. Bolded values exceed the constituent's established Standards and Guidance Values.

TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Analytes	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18	DUP-1	DUP Well	
Volatile Organic Compounds									
cis-1,2-Dichloroethen	Э								
Feb/March 1999	<5	<5	<5	<5	<5	<5	<5	MW-18	
Sep-99	<5	<5	<5	<5	7	<5	<5	MW-13A	
Mar-00	<5	<5	<5	<5	<5	<5	<5	MW-13A	
Sep-00	<5	<5	<5	<5	5.2	<5	5	MW-17	
Mar-01	NS-1	<5	<5	<5	8.9	<5	9.2	MW-17	
Sep-01	NS-1	<5	<5	<5	7.4	<5	7.4	MW-17	
Mar-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Sep-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-6R	
Apr-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Oct-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Apr-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-14	
Oct-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Apr-05	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Oct-05	NS-1	<1	<1	<1	NS-2	<1	<1	MW-6R	
trans-1,2-Dichloroethe	ene								
Feb/March 1999	<5	<5	<5	<5	<5	<5	<5	MW-18	
Sep-99	<5	<5	<5	<5	<5	<5	<5	MW-13A	
Mar-00	<5	<5	<5	<5	<5	<5	<5	MW-13A	
Sep-00	<5	<5	<5	<5	<5	<5	<5	MW-17	
Mar-01	NS-1	<5	<5	<5	<5	<5	<5	MW-17	
Sep-01	NS-1	<5	<5	<5	<5	<5	<5	MW-17	
Mar-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Sep-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-6R	
Apr-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Oct-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Apr-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-14	
Oct-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Apr-05	NS-1	<1	<1	<1	<1	<1	<1	MW-18	
Oct-05	NS-1	<1	<1	<1	<1	<1	<1	MW-6R	
Trichloroethylene				1	1		r.		
Feb/March 1999	<5	<5	<5	<5	<5	<5	<5	MW-18	
Sep-99	<5	<5	<5	<5	25	<5	<5	MW-13A	
Mar-00	<5	<5	<5	<5	22	<5	<5	MW-13A	
Sep-00	<5	<5	<5	<5	22	<5	25	MW-17	
Mar-01	NS-1	<5	<5	<5	24	<5	25	MW-17	
Sep-01	NS-1	<5	<5	<5	16	<5	16	MW-17	
Mar-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Sep-02	NS-1	<1	<1	<1	NS-2	<1	<1	MW-6R	
Apr-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Oct-03	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Apr-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-14	
Oct-04	NS-1	<1	<1	<1	NS-2	<1	<1	MW-13A	
Apr-05	NS-1	<1	<1	<1	NS-2	<1	<1	MW-18	
Oct-05	NS-1	<1	<1	<1	NS-2	<1	<1	MW-6R	
2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Ana	llytes	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18	DUP-1	DUP Well
Vin	/I Chloride								
	Feb/March 1999	<2	<2	<2	<2	<2	<2	<2	MW-18
	Sep-99	<2	<2	<2	<2	<2	<2	<2	MW-13A
	Mar-00	<5	<5	<5	<5	<5	<5	<5	MW-13A
	Sep-00	<5	<5	<5	<5	<5	<5	<5	MW-17
	Mar-01	NS-1	<2	<2	<2	<2	<2	<2	MW-17
	Sep-01	NS-1	<5	<5	<5	<5	<5	<5	MW-17
	Mar-02	NS-1	<1	<1	<1	NS-2	<2	<1	MW-13A
	Sep-02	NS-1	<1	<1	<1	NS-2	2.6	<1	MW-6R
	Apr-03	NS-1	<1	<1	<1	NS-2	3.9	3.8	MW-18
	Oct-03	NS-1	<1	<1	<1	NS-2	6.1	6.1	MW-18
	Apr-04	NS-1	<1	<1	<1	NS-2	3.5	<1	MW-14
	Oct-04	NS-1	<1	<1	<1	NS-2	7.0	<1	MW-13A
	Apr-05	NS-1	<1	<1	<1	NS-2	5.6	5.7	MW-18
	Oct-05	NS-1	<1	<1	<1	NS-2	7.1	<1	MW-6R
Met	als								
Chr	omium								
	Feb/March 1999	4.4	19.9	7.8 B	20.4	4	60.1	15	MW-18
	Sep-99	4.6 B	2.2 B	4.8 E	<10	21 B	19.4	6 B	MW-13A
	Mar-00	<10	<10	19	<10	<10	<10	<10	MW-13A
	Sep-00	<10	<10	<10	<10	<10	<10	<10	MW-17
	Mar-01	NS-1	<10	<10	<10	<10	<10	<10	MW-17
	Sep-01	NS-1	23	<10	<10	<10	<10	NS	MW-17
	Mar-02	NS-1	<10	<10	<10	NS-2	<10	<10	MW-13A
	Sep-02	NS-1	<10	200	<10	NS-2	<10	<10	MW-6R
	Apr-03	NS-1	<10	<10	<10	NS-2	<10	<10	MW-18
	Oct-03	NS-1	<10	<10	<10	NS-2	<10	<10	MW-18
	Apr-04	NS-1	<10	<10	<10	NS-2	<10	<10	MW-14
	Oct-04	NS-1	<10	<10	<10	NS-2	<10	<10	MW-13A
	Apr-05	NS-1	<10	<10	<10	NS-2	<10	<10	MW-18
	Oct-05	NS-1	<10	<10	<10	NS-2	<10	<10	MW-6R
Cop	per			1				1	
	Feb/March 1999	16.8	45	47.8	47.9	16 B	109	41.6	MW-18
	Sep-99	6.1 B	6.7 B	5.3 B	6 B	ND	29.1	7.6 B	MW-13A
	Mar-00	<10	<10	<10	<10	<10	<10	<10	MW-13A
	Sep-00	<10	<10	<10	<10	<10	<10	<10	MW-17
	Mar-01	NS-1	<10	<10	<10	<10	<10	<10	MW-17
	Sep-01	NS-1	58	<10	<10	<10	<10	NS	MW-17
	Mar-02	NS-1	11	14	<10	NS-2	<10	<10	MW-13A
	Sep-02	NS-1	<10	20	<10	NS-2	<10	<10	MW-6R
	Apr-03	NS-1	34	<10	<10	NS-2	<10	<10	MW-18
	Oct-03	NS-1	17	14	27	NS-2	11	14	MW-18
	Apr-04	NS-1	<10	<10	12	NS-2	<10	<10	MW-14
	Oct-04	NS-1	<10	<10	<10	NS-2	<10	<10	MW-13A
	Apr-05	NS-1	10	14	16	NS-2	<10	15	MW-18
	Oct-05	NS-1	<10	<10	<10	NS-2	<10	<10	MW-6R

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Ana	lytes	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18	DUP-1	DUP Well
Lea	d								
	Feb/March 1999	5.5	7.4	9.2	7.9	2.4 B	35.6	5.4	MW-18
	Sep-99	4	3.6	2.28	<5	<5	9.3	4.3	MW-13A
	Mar-00	<5	<5	<5	<5	<5	<5	<5	MW-13A
	Sep-00	<5	<5	<5	<5	<5	<5	<5	MW-17
	Mar-01	NS-1	<5	<5	<5	<5	<5	<5	MW-17
	Sep-01	NS-1	23	<10	<10	<10	<10	NS	MW-17
	Mar-02	NS-1	<10	<10	<10	NS-2	<10	<10	MW-13A
	Sep-02	NS-1	<10	<10	<10	NS-2	<10	<10	MW-6R
	Apr-03	NS-1	14	<10	<10	NS-2	<10	<10	MW-18
	Oct-03	NS-1	13	<10	10	NS-2	<10	10	MW-18
	Apr-04	NS-1	<10	<10	<10	NS-2	<10	<10	MW-14
	Oct-04	NS-1	<10	<10	<10	NS-2	<10	<10	MW-13A
	Apr-05	NS-1	<10	<10	13	NS-2	<10	<10	MW-18
	Oct-05	NS-1	<10	<10	<10	NS-2	<10	<10	MW-6R
Zino)								
	Feb/March 1999	15.1	49.5	38.1	36	14.6 B	172	36.6	MW-18
	Sep-99	16.1 B	26.5	10.7 B	6.5 B	7.1 B	51.2	13.8 B	MW-13A
	Mar-00	13	26	29	28	13	16	24	MW-13A
	Sep-00	38	47	47	42	57	58	58	MW-17
	Mar-01	NS-1	19	10	15	32	21	18	MW-17
	Sep-01	NS-1	140	<10	<10	<10	22	NS	MW-17
	Mar-02	NS-1	64	18	<10	NS-2	<10	<10	MW-13A
	Sep-02	NS-1	29	92	20	NS-2	<10	35	MW-6R
	Apr-03	NS-1	100	<10	29	NS-2	11	14	MW-18
	Oct-03	NS-1	24	19	100	NS-2	17	31	MW-18
	Apr-04	NS-1	<10	29	17	NS-2	18	20	MW-14
	Oct-04	NS-1	19	12	<10	NS-2	<10	17	MW-13A
	Apr-05	NS-1	12	20	15	NS-2	13	13	MW-18
	Oct-05	NS-1	13	<10	<10	NS-2	<10	<10	MW-6R
Poly	chlorinated Bipher	nyls							
/ 10	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Mar-01	NS-1	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	MW-17
	Sep-01	NS-1	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	MW-17
	Mar-02	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	<0.05	MW-13A
	Sep-02	NS-1	< 0.05	< 0.05	< 0.05	NS-2	< 0.05	< 0.05	MW-6R
	Apr-03	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	< 0.05	MW-18
	Oct-03	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	< 0.05	MW-18
	Apr-04	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	< 0.05	MW-14
	Oct-04	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Apr-05	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-05	NS-1	<0.1	<0.1	<0.1	NS-2	<0.1	<0.1	MW-6R

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Ana	llytes	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18	DUP-1	DUP Well
Aro	clor 1221							1	
	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Mar-01	NS-1	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	MW-17
	Sep-01	NS-1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-17
	Mar-02	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Sep-02	NS-1	< 0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-6R
	Apr-03	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-03	NS-1	< 0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Apr-04	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-14
	Oct-04	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Apr-05	NS-1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	MW-18
	Oct-05	NS-1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	MW-6R
Aro	clor 1232								
	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Mar-01	NS-1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Sep-01	NS-1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-17
	Mar-02	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	<0.05	MW-13A
	Sep-02	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-6R
	Apr-03	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-03	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Apr-04	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-14
	Oct-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Apr-05	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-05	NS-1	<0.1	<0.1	<0.1	NS-2	<0.1	<0.1	MW-6R
Aro	clor 1242								
	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Mar-01	NS-1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Sep-01	NS-1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-17
	Mar-02	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Sep-02	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-6R
	Apr-03	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-03	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Apr-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-14
	Oct-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Apr-05	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-05	NS-1	0.13	<0.1	<0.1	NS-2	<0.1	<0.1	MW-6R

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Ana	lytes	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18	DUP-1	DUP Well
Aro	clor 1248								
_	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	0.46 C	1.2 C	<0.05	0.62 C	<0.05	0.15 C	0.19 C	MW-17
	Mar-01	NS-1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	MW-17
	Sep-01	NS-1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-17
	Mar-02	NS-1	<0.05	< 0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Sep-02	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-6R
	Apr-03	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-03	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Apr-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-14
	Oct-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Apr-05	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
	Oct-05	NS-1	<0.1	<0.1	<0.1	NS-2	<0.1	<0.1	MW-6R
Aroo	clor 1254		1	1				1	
	Feb/March 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Mar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-13A
	Sep-00	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	MW-17
	Mar-01	NS-1	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	MW-17
	Sep-01	NS-1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	MW-17
	Mar-02	NS-1	< 0.05	< 0.05	<0.05	NS-2	<0.05	< 0.05	MW-13A
	Sep-02	NS-1	< 0.05	< 0.05	< 0.05	NS-2	<0.05	< 0.05	MW-6R
	Apr-03	NS-1	<0.05	< 0.05	<0.05	NS-2	< 0.05	<0.05	MW-18
	Oct-03	NS-1	< 0.05	< 0.05	< 0.05	NS-2	< 0.05	< 0.05	MW-18
	Apr-04	NS-1	<0.05	< 0.05	<0.05	NS-2	< 0.05	<0.05	MW-14
	Oct-04	NS-1	< 0.05	< 0.05	< 0.05	NS-2	< 0.05	< 0.05	MW-13A
	Apr-05	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-18
A	Oct-05	NS-1	<0.1	<0.1	<0.1	NS-2	<0.1	<0.1	MW-6R
Aroo	CIOF 1260	0.40	0.40	0.40	0.40	0.40	0.40	0.40	N/14/ 40
	Feb/Iviarch 1999	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	IVIV-18
	Sep-99	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	IVIVV-13A
	Iviar-00	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	IVIVV-13A
	Sep-00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Iviar-01	NS 1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	Mar 02	NG 1	<0.10	<0.10	<0.10	<0.10 NG 2	<0.10	<0.10	
	1viai-02 Son-02	NG_1	<0.05	<0.05	<0.05	NG-2	<0.05	<0.05	MW-6P
	02-02		<0.05	<0.05	<0.05	NG-2	<0.05	<0.05	
	Api-03		<0.05	<0.05		NG-2	<0.05	<0.03	
	000-03 Apr-04		<0.05	<0.05	<0.05	NG-2	<0.05	<0.05	M\\\-14
	Apr-04	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	M\\/_13A
	Δητ-05	NS-1	<0.05	<0.05	<0.05	NS-2	<0.05	<0.05	MW-13A
	Oct-05	NS-1	<0.03	<0.00	<0.00	NS-2	<0.00	<0.03	MW-6P
	001-05	1-0/1	<٥.١	<٥.1	<٥.١	110-2	<٥.1	<٥.١	

Notes:

1. All results reported in micrograms per liter (ug/l) approximately equivalent to parts per billion (ppb).

2. B = The reported value was obtained from a reading that was less than the Contract Required Detection Limit

(CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

3. C = Value was reported as a laboratory cross-contaminant.

4. E = The reported value is estimated due to the presence of interference(s).

5. NS-1 = No Sample - Well Decommissioned.

6. NS-2 = No Sample - Well Dry.

7. Bolded values exceed the constituent's established TOGS 1.1.1 guidance values.

4.7 Figures

- 4-1 Overburden Groundwater Elevation Contour Map April 27, 2005
- 4-2 Overburden Groundwater Elevation Contour Map October 20, 2005

5.0 PROPERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM

UHC was issued a SPDES permit (No. NY0257087) for the Property on September 1, 2002, with two subsequent modifications issued by NYSDEC, dated August 1, 2003, and November 20, 2003. On behalf of UHC, Synapse has been tasked to administer the scheduled technical and reporting requirements set forth in the SPDES Permit.

The SPDES Permit is specific to activities conducted at the Property, including the Coolidge owned Main Building, and permits water discharge from three outfalls as depicted in Figure 5-1 – SPDES Outfall 001 Manhole Plan and Section, Figure 5-2 – SPDES Outfall 002 Manhole Plan and Section, and Figure 5-3 – SPDES Outfall 003 Plan and Section. Approximately 92% of the water discharged at these outfalls is stormwater from overland flow and building roof leaders. A portion of the remaining contribution is from CPTC's Outfall 03A, permitted under SPDES Permit No. NY0108537 (see Section 6.4). The following section reviews Outfall contributions and construction, routine monitoring and subsequent results, specialized studies and testing, as well as, unscheduled maintenance.

5.1 Outfall Contributions

Water contributions that discharge via the three permitted SPDES outfalls are as follows:

Outfall 001

- Building roof leaders;
- Parking lot catch basin;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 002

- Building roof leaders;
- Parking lot catch basins,
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 003

- Building roof leaders;
- Stormwater from overland flow, including that from the RAF;
- Parking lots;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic);
- Air conditioning condensate (during warm weather); and
- Post treated effluent from the GTS via Outfall 03A (SPDES Permit No. NY0108537).

Figure 5-4 – Stormwater System Partial Plan, depicts the numerous source points and areas, particularly from the Main Building, that contribute water to each outfall.

5.2 Outfall Construction

The three SPDES outfalls were located and constructed to facilitate collection of effluent samples and flow measurements representative of actual discharge conditions at the Property. The construction of each outfall is provided below.

Outfall 001

Construction activities for the Outfall 001 monitoring location were conducted between April 16 and April 26, 2002, and incorporated the following:

- Pavement and soil was excavated to install Outfall 001 at an area in the western parking lot where an existing drainage pipes, a 24-inch corrugated metal pipe (CMP) and a 24-inch vitrified clay pipe (VCP) intersected, approximately 5 feet below ground surface (bgs);
- A prefabricated 5-foot diameter cast concrete manhole base, with influent and effluent pipe penetrations, was placed in line with the existing subsurface drainage pipes and grouted;
- An 8-inch thick concrete cover, with a cast iron access cover, was installed to complete the manhole structure, followed by engineered fill and paving;
- A stainless steel, sharp edged, 120-degree, V-notch weir was installed at the effluent side of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and calibrated to allow measurements of effluent flow rates based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted at the outfall outlet.

A detailed drawing of SPDES Outfall 001 Manhole is presented on Figure 5-1. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek, Area 1.

Outfall 002

The Outfall 002 monitoring location was constructed from an existing 10.5-foot deep, 4- foot diameter red brick manhole near the northwestern corner of the Main Building. A 24-inch VCP, that is the part of the northern stormwater system, is sectioned by this manhole. As such, effluent flowing through the manhole was accessible and measurable upon application of the following upgrades:

- A stainless steel sharp edge, 120-degree, V-notch weir was installed adjacent to the effluent 24inch VCP, at the bottom of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and effluent flow rates were calibrated based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted on the bank, adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 002 Manhole is presented on Figure 5-2. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek, Area 1.

Outfall 003

The Outfall 003 monitoring location was constructed in an existing unnamed tributary to the Mohawk River, Area 14, at the northeastern extent of the Property as follows:

 A 12-inch HDPE pipe was installed within a concrete headwall spanning the width of the tributary forcing 100% of the normal flow through the pipe. Samples are collected and parameters measured directly from the effluent end of the 12-inch HDPE pipe;

- A monitoring port was installed adjacent to the concrete headwall to facilitate flow measurement data collection representative of actual discharge conditions. The monitoring port was constructed by installing a horizontal 2-inch PVC pipe at a measured elevation adjacent to the influent side of the headwall. This horizontal pipe connects (via a 90 degree elbow) to a vertical riser extending several feet above grade adjacent to the tributary. The water level of the tributary, and thus the flow rate, can be measured from this monitoring port; and
- A NYSDEC-approved sign was posted on the bank adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 003 is presented on Figure 5-3.

5.3 Monitoring

A primary regulatory requirement of the Property SPDES permit is to monitor concentrations of select constituents and physical parameters in the outfall effluent. A schedule of routine monitoring of effluent from Outfalls 001, 002, and 003 has been prescribed by NYSDEC, as discussed in Section 5.3.1. In addition, two non-routine monitoring/sampling programs have been prescribed for by NYSDEC, to include, PCB Congeners and Acute Toxicity, as discussed in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Routine Monitoring

August and November 2003 modifications to the Permit have resulted in minor changes to the monitoring parameters and/or their scheduled monitoring frequencies. The current routine monitoring parameters and sampling frequencies, as prescribed for each outfall, are summarized in the following table:

Parameter	Unite	Mc	onitoring Frequen	су
Falailletei	Units	Outfall 001	Outfall 002	Outfall 003
pH	S.U.	Once/2 weeks	Once/2 weeks	Once/2 weeks
Flow (in-situ measurement)	gpd	Once/2 weeks	Once/2 weeks	Once/2 weeks
Temperature	٥F	Once/2 weeks	Once/2 weeks	Once/2 weeks
Oil & Grease	mg/l	Monthly	Monthly	Monthly
Total Suspended Solids (TSS)	mg/l	Once/2 weeks	Once/2 weeks	Once/2 weeks
Total Residual Chloride	ug/l	NR	NR	Once/2 weeks
Phenolics	ug/l	Monthly	Monthly	Monthly
Antimony	ug/l	Quarterly	NR	NR
Chromium	ug/l	Semi-Annual	NR	NR
Copper	ug/l	Once/2 weeks	NR	NR
Fluoride	ug/l	Semi-Annual	Semi-Annual	NR
Lead	ug/l	Semi-Annual	NR	Semi-Annual
Zinc	ug/l	Semi-Annual	NR	Semi-Annual
Chloroform	ug/l	Once/2 weeks	NR	Once/2 weeks
cis 1,2-dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Trans 1,2- dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Trichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Vinyl chloride	ug/l	NR	NR	Once/2 weeks
PCBs	ng/l	NR	NR	Quarterly

Notes:

S.U. = Standard Units

^oF = Degrees Fahrenheit

mg/l = milligrams per liter, approximately equal to parts per million (ppm) ug/l = micrograms per liter, approximately equal to parts per billion (ppb)

ng/l = nanograms per liter, approximately equal to parts per trillion (ppt)

NR = Not Required

Analytical data and real-time measurements obtained from the 2005 routine monitoring events are summarized in Table 5-1 – Cumulative Summary of SPDES Monitoring Results. This data was also reduced and reported in monthly DMRs for submittal to NYSDEC.

Results from routine monitoring events were compared to effluent compliance levels set in the Permit. There were no excursions of compliance levels for the above parameters in 2005, with the exception of detected oil and grease, and total phenolics concentrations in certain samples. These excursions were reported to the NYSDEC Region 6, Division of Water representative, Steven Botsford or Richard Coriale, P.E., by telephone followed by written notification, with an accompanying evaluation and recommendations. Details of the excursions that were reported during the 2005 monitoring period are provided below:

- Oil & grease was detected at a concentration of 23 mg/l in the monthly effluent sample collected from Outfall 001 on February 9, 2005. This value exceeded the Permit compliance level of 15 mg/l. Upon receipt of the laboratory analytical report, Synapse verbally notified NYSDEC Region 6, of this concentration. Given the historic oil & grease analytical data gathered since the effective date of the Permit, this result is sporadic, possibly attributable to the Main Building and/or the parking lot catch basins connected to the outfall.
- The total recoverable phenolics daily maximum allowable level of 28 ug/l at the Outfall 001 and Outfall 002 were exceeded during one monthly monitoring event. Concentrations of 100 ug/l and 76 ug/l were detected in samples collected on June 2, 2005 from Outfalls 001 and Outfalls 002, respectively. Upon receipt of the laboratory analytical report, Synapse verbally notified NYSDEC Region 6 of this concentration. Given the historic analytical data since the effective date of the Permit, this result appears to be an anomaly and cannot be attributed to any known conditions or activities conducted at the site. Subsequent phenolic exceedances have not been detected in Outfall 002.

5.3.2 EPA Method 1668A PCB Study

Pursuant to the August 2003 SPDES Permit Modification, a three-year study of PCB congeners was required at Outfall 003. Using USEPA Method 1668A, sampling and analysis of 209 PCB congeners was conducted at Outfall 003 on a quarterly basis. The final two quarterly sampling events were conducted in 2005. The PCB congeners study obligation, under the August 2003 SPDES Permit modification, began October 2002 and was concluded in May 2005.

One grab sample was collected from Outfall 003 during the monitoring events listed below and was split for the purpose of collecting parallel PCB congener/aroclor data. One sample was submitted to Alta Analytical Perspectives in Wilmington, North Carolina for analysis of PCB Congeners in accordance with USEPA Method 1668A and the other sample was submitted to LSL for analysis of PCB aroclors in accordance with USEPA Method 608. As indicated in the August 2003 Permit modification, PCB compliance is determined using the SUEPA Method 608 analytical results as there are no compliance levels set in the Permit for PCB congeners. Analytical results for USEPA Method 1668A are transmitted to NYSDEC in both digital and printed formats for internal review.

The submittal of the May 2005 results for PCB congeners analyzed in accordance with USEPA Method 1668A constituted the final sampling and reporting event for the three-year study as per the SPDES Permit. During the three year study, PCB congeners analyzed by USEPA Method 1668A were consistently detected in the picograms per liter (pg/l) (parts per quadrillion) range, as outlined below.

Sample Date	Total Detected PCB Congeners (pg/L)
Oct-02	7824
Jan-03	2641
Apr-03	6504
Jun-03	4546
Aug-03	5028
Dec-03	3449
Mar-04	3009
Jul-04	4134
Oct-04	2137
Dec-04	2631
Feb-04	3562
May-05	3765

Summary of Detected Congeners Three-Year Quarterly PCB Congeners Study

Notes: 1) Reported concentrations represent sample results minus concentration detected in the method blank.

Concentrations of PCB aroclors were never detected above EPA Method 608 detection/reporting limits of 50 ng/l (parts per trillion) during any of the study's 12 quarterly sampling events.

5.3.3 Acute Toxicity Testing

Pursuant to the original September 2002 SPDES Permit and the August 2003 SPDES Permit Modification, a Tier 1 acute toxicity testing program is required at Outfalls 001, 002, and 003. The Tier 1 toxicity testing program is intended to identify acute toxicity of the effluent from the outfalls.

Using analytical method EPA/600/4-90/027F, sampling and analysis of acute toxicity of effluent utilizing the vertebrate, Fathead Minnow (*Pimephales promelas*) and invertebrate, Water Flea (*Ceriodaphnia dubia*) test species, respectively, is required on a quarterly basis at Outfalls 001 and 002 during calendar years ending in 3 and 8, and at Outfall 003 on a quarterly basis during calendar years ending in 0 and 5.

The toxicity testing programs for Outfalls 001 and 002 were initiated during the first quarter of 2003, and as such, four sampling events were conducted at each outfall for the year. NYSDEC's evaluation of 2003 Tier 1 Acute toxicity test data, documented in a letter dated January 27, 2004, concluded:

For Outfall 001, all tests indicated that no toxicity was present with LC50 values > 100%, however, the September 2003 report did indicate 25% mortality in 100% effluent, although this was not considered to be statistically significant. For Outfall 002, half the tests indicated that unacceptable toxicity was present, with LC50 values ranging from 73.20% to >100%.

Given 2003 analytical results, NYSDEC required that toxicity testing continue through 2004. Each acute toxicity sampling event involved two days (48 hours) in which an automated sampling device was used to collect two composite samples, one for each day. The automatic sampling device was programmed to collect a specific volume of water hourly during each 24-hour sampling period. The samples were delivered to AquaTox Research, Inc., a NYSDEC-approved laboratory, located in Syracuse, New York, for acute toxicity analysis. Analytical results were provided to NYSDEC upon receipt.

Based on the 2004 Tier 1 acute toxicity testing results at Outfall 001, which identified a mortality rate of 0%, additional Tier 1 acute toxicity testing at Outfall 001 is not required by NYSDEC until calendar year 2008. Given that half of the 2004 tests indicated unacceptable toxicity for *Ceriodaphnia dubia* for Outfall 002, NYSDEC required that Tier 1 acute toxicity testing be conducted at Outfall 002 for an additional year (2005) for *Ceriodaphnia dubia*, and reevaluated accordingly.

Summary of 2005 Quarterly Results

Pursuant to the aforementioned NYSDEC Tier 1 acute toxicity testing requirements for Outfall 002, and SPDES Permit requirements for Outfall 003, quarterly Tier 1 acute toxicity testing was conducted in 2005 at Outfalls 002 and 003 as follows:

- Outfall 002 Ceriodaphnia dubia; and
- Outfall 003 Ceriodaphnia dubia and Pimephales promelas.

Summarized in the table below are the 48-hr LC_{50} test results each of the four quarterly sampling events conducted in 2005 at Outfalls 002 and 003.

Outfall	Test Organism	1 st Quarter 48-hr LC ₅₀	2 nd Quarter 48-hr LC ₅₀	3 rd Quarter 48-hr LC ₅₀	4 th Quarter 48-hr LC ₅₀
002	Ceriodaphnia dubia	70.7%	>100%	>100%	>100%
003	Ceriodaphnia dubia	>100%	>100%	>100%	>100%
003	Pimephales promelas	>100%	>100%	>100%	>100%

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 1st quarter was below the Permit-specified survival rate of 95%. The three subsequent quarterly 48-hr LC_{50} test results for Ceriodaphnia dubia at Outfall 002 were greater than 100%, providing data indicating the Ceriodaphnia dubia survival rate has attained a sustainable level.

Based on these 2005 test results, additional Tier 1 acute toxicity testing at Outfalls 002 and 003 is not required by NYSDEC until calendar years 2008 and 2010, respectively. These testing events would be scheduled for years that follow renewal of the existing SPDES Permit, which expires in September 2007.

5.4 Summary

UHC was issued a SPDES permit for Outfalls 001, 002, and 003 on September 1, 2002. During 2003, NYSDEC issued two modifications to the SPDES Permit, as discussed earlier. On behalf of UHC, Synapse has been conducting the technical and reporting requirements set forth in the SPDES Permit.

Data collected from the 2005 routine monitoring and sampling events indicate target constituents and field parameters have not been consistently identified, at any of the outfalls, above their respective enforceable compliance levels. Anomalous exceptions and or excursions from the enforceable compliance levels have been evaluated and not believed to be a consistent threat to the environment. As such, it is recommended that routine monitoring be continued as scheduled.

Acute toxicity testing of Outfalls 002 and 003 was performed quarterly in 2005 as required by NYSDEC. The final three quarterly results indicate 100% survival rates for Outfall 002 and all four quarterly results indicate 100% survival rates for Outfall 003. These results indicate acceptable survival rates and as such conclude the toxicity testing program through the term of the current SPDES Permit.

5.5 Tables

 Table 5-1
 Cumulative Summary of SPDES Monitoring Results

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		Septem	per 2002			Octobe	er 2002			No	vember 20	002	_		Decemb	oer 2002	
Monitoring Date	Daily		9/6/2002	9/11/2002	9/16/2002	9/23/2002	10/3/2002	10/10/2002	10/16/2002	10/25/2002	11/1/2002	11/6/2002	11/11/2002	11/22/2002	11/27/2002	12/5/2002	12/13/2003	12/20/2003	12/27/2003
Sampler ID	Мах	Units	rsn	bhm	bhm	rrc	rsn	bhm	bhm	rsn	rrc	rsn	rrc/rsn	rsn	rsn	rrc	bhm	bhm	rrc
li																			
SPDES Outfall 001																			
Flow Rate	Monitor	gpd	HTW	3505	15801	2314	7530	152	185634	<152	152	35901	HTW	HTW	13987	2314	30835	35901	21739
Temperature	90	٩F		67	71		66		57			47		53		49	46		
рН	6.0-9.0	SU		7.6	7.3		7.1		7.0			6.7		7.0		6.6	7.9		
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l		<4	<4		<4		15			<4		<4		14	15		
cis-1,2-Dichloroethylene	10	ug/l		7.9	1		1		2.7			<1		3.6		<1	<1		
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1		<1		<1	<1		
Trichloroethylene	10	ug/l		1.1	<1		<1		<1			<1		<1		<1	<1		
Chloroform	46	ug/l		<1	<1		<1		<1			<1		<1		<1	<1		
Copper, Total	100	ug/l		73	34		55		50			20		25		11	24		
Oil & Grease	15	mg/l		<5			8.3					<5				<5			
Phenolics, Total	28	ug/l		<20			<20					<20				<20			
Antimony, Total	300	ug/l		<10												<10			
Chromium, Total	51	ug/l		22															
Fluoride, Total	2500	ug/l		340															
Lead, Total	13	ug/l		<10															
Zinc, Total	210	ug/l		72															
SPDES Outfall 002							12				F						-	-	
Flow Rate	Monitor	gpd	43871	47168	50610	43871	47168	47168	528383	29476	27001	166744	34824	HTW	HTW	27001	88412	133097	27001
Temperature	90	٩		70	72		70		52			45	47			49	46		
pH	6.0-9.0	SU		8.8	8.4		8.2		7.1			7.3	8.5			8.6	8.1		
Solids, Total Suspended	10 (dry)	mg/l		<4	<4		<4		<4			<4	<4			<4	<4		
Oil & Grease	50 (wet)	ma/l		.5			11					.5				.5			
Bhanalian Total	10	ing/i		<5			11					<5				<5			
Eluorido Total	1500	ug/i		<20			<20					<20				<20			
	1500	ug/i		1000															
SPDES Outfall 003																			
Flow Rate	Monitor	gpd	6943	20829	83314	48600	36450	35345	198367	24300	18225	116640	36450	194400	48600	48600	42261	116640	29160
Temperature	90	٩F		64.2	70.3		65.5		51.3			44	58			35	44		
рН	6.0-9.0	SU		7.6	7.7		7.4		7.1			7.1	7.2			7.6	6.9		
	10 (dry)																		
Solids, Total Suspended	50 (wet)	mg/i		6	<4		<4		<4			<4	<4			<4	<4		
Chlorine, Total Residual	100	ug/l		80	70		70		85			20	80			50	50		
cis-1,2-Dichloroethylene	10	ug/l		<1	1.1		1.9		<1			4	<1			4.9	8.3		
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Trichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Vinyl Chloride	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Chloroform	46	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Oil & Grease	15	mg/l		<5			6.6					<5				<5			
Phenolics, Total	44	ug/l		<20			<20					<20				<20			
PCBs, Aroclors (Compliance)	300	ng/l							<50										
PCBs, Congeners (1668A Study)	NA	pg/l							7824										
Lead, Total	10	ug/l		<10															
Zinc, Total	120	ug/l		<10															
			Notes:								7. ng/l = na	anograms pe	er liter, appro	oximately ec	uivalent to	parts per tri	llion (ppt).		

1. ECL = Effluent Compliance Level.

2. gpd = gallons per day.
 3. °F = Degrees Farenheit.

4. SU = Standard Units.

5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).

6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).

8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).

9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	_		Januar	ry 2003			Februa	ry 2003			Ν	larch 200	3			April	2003				May 2003		
Monitoring Date	Daily		12/30/2002	1/10/2003	1/17/2003	1/24/2003	1/29/2003	2/3/2003	2/10/2003	2/18/2003	2/25/2003	3/7/2003	3/12/2003	3/19/2003	3/25/2003	4/4/2003	4/11/2003	4/16/2003	4/25/2003	5/2/2003	5/9/2003	5/15/2003	5/23/2003	5/29/2003
Sampler ID	Max	Units	bhm	bhm	bhm	bhm	rsn	rsn/sim	sim	rrc/sim	sim	rsn	bhm	rrc/pmf	rrc/bhm	rrc	pmf	rsn	rrc	rrc	sim	bhm	sim	bhm
																	•	-					.,	
SPDES Outrail 001	Monitor	and	26116		150	No Flow	.450	6110	.150	.450		11734/	2460	117.4/		2000 5	11714/	-1440 E	-1440 E	44220	-1140 E	028	-1140 E	740
Temperature	90	gpu ₀⊏	20110	піvv	152	IND FIOW	<152	0112	<152	< 152			2160	HIW		2000 E	HIW	<1440 E	<1440 E	41320	<1440 E	920	<1440 E	743
pH	6.0-9.0	SU			7.0	35		40 7.0		40 7 1			43 7 1		54 7.2			50 7.0	52 7.2				50 7.0	69
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			10	51		<4		5			17		7			45	5				31	10
cis-1,2-Dichloroethylene	10	ug/l			1	<0.5		1		4			4		6			<1	<1				<1	<1
trans-1,2-Dichloroethylene	10	ug/l			<1	<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Trichloroethylene	10	ug/l			<1	<0.5		<1		1			<1		2			<1	<1				<1	<1
Chloroform	46	ug/l			<1	<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Copper, Total	100	ug/l			22	<10		53		21			16		<10			17	16				22	19
Oil & Grease	15	mg/l			<5			<5					<5					13						<5
Phenolics, Total	28	ug/l			<20			<20					<20					<20						<2
Antimony, Total	300	ug/l																<10						
Chromium, Total	51	ug/l																<10						
Fluoride, Total	2500	ug/l																540						
Lead, Total	13	ug/l																<10						
Zinc, Total	210	ug/l																99						
SPDES Outfall 002																								
Flow Rate	Monitor	gpd	22434	HTW	1582	No Flow	574	11643	HTW	10241	HTW	208	3966	HTW	HTW	2880 E	HTW	844	37	47168	101	364	1582	<250 E
Temperature	90	٩F			49	38		48		45			48		53			54	51				58	60
рН	6.0-9.0	SU			7.0	7.6		7.0		7.4			6.7		7.3			7.3	7.2				7.7	7.1
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			<4	7		<4		<4			<4		11			7	11				5	10
Oil & Grease	15	mg/l			<5			<5					8					12						<5
Phenolics, Total	24	ug/l			<20			<20					<20					<20						<2
Fluoride, Total	1500	ug/l																460						
SPDES Outfall 003																								
Flow Rate	Monitor	gpd	53018	53018	25357	7200 E	7200 E	14400 E	48600	2880 E	13886	23328	18225	83314	97200	7200 E	144000 E	24300 E	291600 E	172800 E	20000 E	64800	15247	28800
Temperature	90	٩F		40		33		40		33			38		58			59	51				61	66
рН	6.0-9.0	SU		7.1		7.5		7.1		7.5			7.4		7.2			7.3	7.4				7.5	7.4
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l		<4		5		<4		<4			<4		<4			4	NA				<4	9
Chlorine, Total Residual	100	ug/l		70		60		70		47			50		60			10	60				30	40
cis-1,2-Dichloroethylene	10	ug/l		6		3		3		8			8		5			<1	2				<1	<1
trans-1,2-Dichloroethylene	10	ug/l		<1		<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Trichloroethylene	10	ug/l		6		<0.5		<1		2			9		3			<1	<1				<1	<1
Vinyl Chloride	10	ug/l		<1		<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Chloroform	46	ug/l		<1		<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Oil & Grease	15	mg/l		<5				<5					<5					<5						<5
Phenolics, Total	44	ug/l		<20				<20					<2					<20						<2
PCBs, Aroclors (Compliance)	300	ng/l		<50														<50						
PCBs, Congeners (1668A Study)	NA	pg/l		2641														4268						
Lead, Total	10	ug/l																<10						
Zinc, Total	120	ug/l																<10						
			Notes:								7. $ng/l = na$	nograms pe	er liter, appro	oximately ec	uivalent to	parts per tril	lion (ppt).							

1. ECL = Effluent Compliance Level.

2. gpd = gallons per day.
 3. °F = Degrees Farenheit.

4. SU = Standard Units.

5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).

6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).

8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).

9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		June	2003			July	2003			Augus	t 2003		Septem	per 2003	Octobe	er 2003	Novemb	er 2003	Decemb	er 2003
Monitoring Date	Daily	Unite	6/4/2003	6/11/2003	6/18/2003	6/25/2003	7/2/2003	7/9/2003	7/17/2003	7/23/2003	8/1/2003	8/6/2003	8/13/2003	8/29/2003	9/8/2003	9/23/2003	10/8/2003	10/23/2003	11/5/2003	11/21/2003	12/5/2003	12/17/2003
Sampler ID	Мах	Units	sjm	sjm	sjm	pmf/bhm	sjm	pmf/bhm	sjm	rsn	sjm/bhm	bhm	rrc	sjm	bhm	bhm	bhm	sjm	sjm	bhm	rsn	rsn

Flow Rate	Monitor	gpd	<1440 E	4770	<1440 E	<1440 E	<1440 E	11676	<1440 E	12253	64800	4713	<1440 E	<1440 E	<1440 E	32112	626	<4114E	<4114 E	HTW	<4114 E	<20736 E
Temperature	90	۴	60		61			66		69	66		68	74	69	65	68	51	55	54	44	43
pH	6.0-9.0	SU	7.0		7.4			7.3		7.2	6.6		6.8	7.2	7.4	7.0	6.8	6.8	7.4	6.5	6.8	6.8
Solids Total Suspended	10 (dry)	ma/l	30		30			46		-1	-1		-1	30	15	-1	-1	8	6	7	21	-1
	50 (wet)	ing/i	55		50			40		1	1		~4	50	15	1 4	1	0	0	1	21	1
cis-1,2-Dichloroethylene	10	ug/l	<1		1			1		<1	<1		4	<1	<1	<1	<1	<1	<1	2	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	<10		13			27		62	41		29	26	14	15	26	17	14	<10	12	14
Oil & Grease	15	mg/l			22			<5			<5				<5		<5			<5		24
Phenolics, Total	28	ug/l			<20			<20			<20				<20		<20			<20		<20
Antimony, Total	300	ug/l			<10									<10								<10
Chromium, Total	51	ug/l			<10																	<10
Fluoride, Total	2500	ug/l			380																	240
Lead, Total	13	ug/l			<10																	<10
Zinc, Total	210	ug/l			44																	38

SPDES Outfall 002

0. 210 04.14.1 001																						
Flow Rate	Monitor	gpd	101	3247	1582	208	101	56	<1440 E	18366	126908	HTW	101	101	37	34824	208	208	11643	HTW	HTW	HTW
Temperature	90	٩F	61		66			68		70	66		68	74	69	66	68	53	56	60	48	47
рН	6.0-9.0	SU	7.3		7.2			6.5		7.0	6.6		6.8	7.8	7.2	6.9	7.0	7.2	7.4	6.6	6.9	6.7
Solids Total Suspended	10 (dry)	ma/l	-1		-1			-1		-1	-1		٥	15	-1	-1	-1	7	-1	4	-1	-1
Solids, Total Suspended	50 (wet)	mg/i	~*		1 4			~4		\ 4	\ 7		3	15	~4	~4	1	'	~ 4	7	\ #	N 4
Oil & Grease	15	mg/l			<5			<5			<5				<5		<5			9		16
Phenolics, Total	24	ug/l			<20			<20			<20				<20		<20			<20		<20
Fluoride, Total	1500	ug/l			150																	200

SPDES Outfall 003

of BEC outland Coo																						
Flow Rate	Monitor	gpd	21600	18514	17280	15549	6480	18783	11782	74057	94255	47127	14811	28800	9969	103680	13642	15247	25920	43200	25920	37029
Temperature	90	٩F	64		64			67		70	65		72	73	71	64	63	45	52	48	35	42
рН	6.0-9.0	SU	7.5		7.6			7.2		7.1	7.3		7.4	7.7	7.8	7.2	7.6	7.6	7.1	7.1	7.3	6.8
Solids Total Suspended	10 (dry)	ma/l	-4		-4			-4		-4	-4		-4	-4	-4	-4	-4	-4	-4	4	4	-4
	50 (wet)	ing/i	~*					~ ~		~7	~*		~*	~ 7	~*	~*	~1	~*	~ 7	7	-	~*
Chlorine, Total Residual	100	ug/l	50		50			50		60	70		50	50	50	80	50	30	50	90	30	50
cis-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		2	<1		<1	<1	<1	1	<1	<1	2	3	10	6
trans-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	1	2	8	1
Vinyl Chloride	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l			6			<5			<5				<5		<5			8		<5
Phenolics, Total	44	ug/l			<20			<20			<20				<20		<20			<20		<20
PCBs, Aroclors (Compliance)	300	ng/l			<50								<50									<50
PCBs, Congeners (1668A Study)	NA	pg/l			6283								4546									3449
Lead, Total	10	ug/l			<10																	<10
Zinc, Total	120	ug/l			<10																	11

Notes:

1. ECL = Effluent Compliance Level.

2. gpd = gallons per day.

3. °F = Degrees Farenheit.

4. SU = Standard Units.

5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).

6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).

7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).

8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).

9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		January '04		Febru	ary '04	Marc	ch '04	Apr	il '04	Ma	y '04	J
Monitoring Date	Daily	Unite	12/31/2003	1/13/2004	1/30/2004	2/12/2004	2/27/2004	3/10/2004	3/24/2004	4/7/2004	4/22/2004	5/6/2004	5/18/2004	6/1/2004
Sampler ID	Max	Units	sjm	sjm	rsn	sjm	bhm	rsn	sjm	rsn	rsn	rsn	rsn	rsn
			B		•		-						-	
SPDES Outfall 001			1											
Flow Rate	Monitor	gpd	3600 E	5760	4114	770 E	626	1775 E	2880E	2880E	5722E	3497E	1377E	3292E
Temperature	90	٩F	46	46	42	44	40	44	46	44	58	53	66	64
рН	6.0-9.0	SU	6.3	6.8	6.6	7.4	6.6	6.8	6.6	6.8	6.3	6.4	6.8	6.8
Solids, Total Suspended	10 (dry)	mg/l	5	5	<4	<4	9	7	6	9	<4	<4	7	<4
	50 (wet)	_												
cis-1,2-Dichloroethylene	10	ug/l	1	<1	<1	<1	2	2	4	1	<1	<1	<1	1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	18	33	20	25	17	25	32	28	35	32	25	29
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5	
Phenolics, Total	28	ug/l	<20				<20	<20		<20			<20	
Antimony, Total	300	ug/l						<10						
Chromium, Total	51	ug/l												
Fluoride, Total	2500	ug/l												
Lead, Total	13	ug/l												
Zinc, Total	210	ug/l												ļ
SPDES Outfall 002														
Flow Rate	Monitor	gpd	28800 E	43871	32084	5672	1178	3247	8947	8947	3966	2058	208	2058
Temperature	90	۰F	49	41	36	46	43	50	49	51	57	54	68	66
pH	6.0-9.0	SU	6.3	7.5	7.6	6.9	7.3	6.9	6.8	7.4	6.5	6.5	7.2	6.9
	10 (dry)		0.0	1.0	110	0.0	1.0				0.0	0.0		0.0
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	6	<4	8	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5	
Phenolics, Total	24	ug/l	<20				<20	<20		<20			<20	
Fluoride, Total	1500	ug/l												
					-		-							
SPDES Outfall 003						1		1		1	T	1		1
Flow Rate	Monitor	gpd	32400	47127	21600	8361	5400	51840	32400	25920	51840	39273	10327	33188
Temperature	90	٩F	43	34	33	37	36	48	51	45	60	56	75	71
рН	6.0-9.0	SU	6.1	6.9	7.1	7.1	7.0	6.8	7.4	7.1	7.0	6.9	7.0	7.3
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	4	17	5	<4	<4	<4	<4	<4	<4
	50 (wet)													
Chlorine, Total Residual	100	ug/l	50	30	20	30	40	50	50	30	60	30	10	30
cis-1,2-Dichloroethylene	10	ug/l	4	11	2	5	2	3	3	2	1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	3	3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5	
Phenolics, Total	44	ug/l	<20				<20	<20		<20			<20	
PCBs, Aroclors (Compliance)	300	ng/l						<50						
PCBs, Congeners (1668A Study)	NA	pg/l												
Lead, Total	10	ug/l												
Zinc, Total	120	ug/l												
			Notes:						7. ng/l = nanc	ograms per liter	, approximately	y equivalent to	parts per trillion	n (ppt).
			1 ECL = Efflu	ent Complianc	e l evel				8. $pa/l = picod$	arams per liter.	approximately	equivalent to r	parts per quadr	illion (ppa).

1. ECL = Effluent Compliance Level. 2. gpd = gallons per day.
 3. °F = Degrees Farenheit.

4. SU = Standard Units.

9. HTW = High Tail Water. 10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

13. Bolded values exceed permit effluent compliance levels.

5. mg/l = milligrams per liter, approximately equivalent to ppm. 6. ug/l = micrograms per liter, approximately equivalent to ppb.

June	e '04
6/1/2004	6/18/2004
rsn	rsn

3292E	4770E
64	66
6.8	6.6
<4	<4
1	1
<1	<1
<1	<1
<1	<1
29	30
	<5
	<20

2058	3966E
66	69
6.9	6.2
<4	<4
	6
	<20

33188	33010E
71	73
7.3	7.1
<4	<4
30	20
<1	<1
<1	<1
<1	<1
<1	<1
<1	<1
	<5
	<20

illion (ppt).

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		July 2004		Augus	st 2004	S	epember 20	04	Octob	er 2004	Novemb	per 2004	Decemb	per 2004
Monitoring Date	Daily		6/30/2004	7/15/2004	7/29/2004	8/13/2004	8/26/2004	9/10/2004	9/22/2004	9/23/2004	10/6/2004	10/20/2004	11/3/2004	11/15/2004	11/30/2004	12/17/2004
Sampler ID	Max	Units	rrc	rrc	rrc	sim	rrc	sim	sim	sim	sim	sim	sim	sim	sim	sim
										.,	.,					
SPDES Outfall 001																
Flow Rate	Monitor	gpd	4770E	2314E	1196E	26111	3505	2314	1196		0	1196	5200	1140	HTW	2880
Temperature	90	٩F	19	67	71	70	64	68	68		62	56	55	49	51	48
pH	6.0-9.0	SU	6.8	6.8	6.8	6.6	6.9	6.5	6.3		6.2	7.4	6.5	7.0	7.2	7.1
Solida Tatal Supponded	10 (dry)	ma/l	10	-1	6	-1	Б	-1	-1		-1	-1	6	-1	-1	14
Solids, Total Suspended	50 (wet)	mg/i	10	<4	0	<4	5	<4	<4		<4	<4	0	<4	<4	14
cis-1,2-Dichloroethylene	10	ug/l	<1	1	4	<1	<1	2	<1		<1	<1	<1	1	2.2	1.4
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	50	34	43	29	17	41	38		<10	20	62	420	<10	<10
Oil & Grease	15	mg/l	<5			<5	9	<5			<5	26	<5	<5		<5
Phenolics, Total	28	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20
Antimony, Total	300	ug/l		<10			<10	13				<10		<10		
Chromium, Total	51	ug/l					42							<10		
Fluoride, Total	2500	ug/l					410							930		
Lead, Total	13	ug/l					<10							<10		
Zinc, Total	210	ug/l					58							<10		
SPDES Outfall 002																
Flow Rate	Monitor	gpd	1178E	3247E	3966E	50610	1178	3247	37		208	2612	2058	208	HTW	2058
Temperature	90	٩F	19	68	69	72	64	67	71		66	57	57	55	54	49
рН	6.0-9.0	SU	7.2	7.1	6.8	6.6	7.3	6.9	6.9		6.9	7.9	5.8	7.3	7.8	7.0
Solide Total Suspended	10 (dry)	mg/l	-1	-1	-1	-1	-1	-1	9.0		4.0	-1	-1	-1	-1	-1
	50 (wet)	ilig/i	~ ~	~ ~	~ ~	~ ~	~	~ ~	5.0		4.0	~ ~	~	~*	~	
Oil & Grease	15	mg/l	<5			<5	10	<5			<5	45	6	<5		<5
Phenolics, Total	24	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20
Fluoride, Total	1500	ug/l					380				_			490		
SPDES Outfall 003	-		n									1		1		1
Flow Rate	Monitor	gpd	20000E	21000	33200E	75000	25000	15549		10540	8934	8640	23542	10800	37008	21600
Temperature	90	٥F	25	75	71	70	70	66		69	61	50	51	42	48	37
рН	6.0-9.0	SU	7.6	7.5	7.8	7.1	7.7	6.6		6.4	6.7	7.5	6.4	7.6	7.7	7.1
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4		<4	<4	<4	12	8	<4	<4
	50 (wet)															
Chlorine, Total Residual	100	ug/l	30	40	30	60	65	30		40	60	50	20	70	50	40
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	1	<1	<1		<1	<1	<1	<1	<1	2.1	3.8
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5			<5	<5	<5			<5	<5	5	<5		<5
Phenolics, Total	44	ug/l	<20			<20	79	<20			<20	<20	<20	<20		<20
PCBs, Aroclors (Compliance)	300	ng/l		<50			<50					<50		<50		<50
PCBs, Congeners (1668A Study)	NA	pg/l		4134								2137				2761
Lead, Total	10	ug/l					<10							<10		
Zinc, Total	120	ug/l					<10							<10		
			Notes:							7. ng/l = nano	grams per liter	, approximately	equivalent to	parts per trillion	n (ppt).	

5 of 7

1. ECL = Effluent Compliance Level.

2. gpd = gallons per day.

3. °F = Degrees Farenheit.

4. SU = Standard Units.

5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).

6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).

8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).

9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		January '05		Febru	ary '05	Marc	ch '05	Apr	il '05	Ma	y '05	J
Monitoring Date	Daily	Unite	12/28/2004	1/12-13/05	1/26 - 27/2005	2/9/2005	2/22/2005	3/7/2005	3/22/2005	4/6/2005	4/20/2005	5/4/2005	5/20/2005	6/2/2005
Sampler ID	Max	Units	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	rrc	rrc	rrc
	-11		•	•			•					4		
SPDES Outfall 001														
Flow Rate	Monitor	gpd	626E	9026	4770	152	21739	19677	HTW	HTW	152	1196	152	152
Temperature	90	٩F	41	41	43	45	47	49	42	47	55	55	58	60
рН	6.0-9.0	SU	7.4	6.96	7.1	7.7	7.0	8.0	6.6	6.6	7.8	7.7	7.7	6.8
Solids Total Suspended	10 (dry)	ma/l	4	<4	<4	<4	5	5	5.5	10	<4	10	27	42
	50 (wet)						Ũ	Ū	0.0					
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	10	<10	20	29	78	31	<10	<10	83	25	<10	<10
Oil & Grease	15	mg/l		<5		23		<5		<5		<5		6.4
Phenolics, Total	28	ug/l		<20		21		<20		<20		36		100
Antimony, Total	300	ug/l				<10						<10		
Chromium, Total	51	ug/l										<10		
Fluoride, Total	2500	ug/l										310		
Lead, Total	13	ug/l										<10		
Zinc, Total	210	ug/l										76		
SPDES Outfall 002	T			-		-			-					1
Flow Rate	Monitor	gpd	364	24654	6665	13153	24654	120894	HTW	HTW	364	1582	364	7
Temperature	90	٩F	46	47	45	45	48	49	41	48	53	55	56	65
рН	6.0-9.0	SU	6.5	7.2	7.1	7.1	7.5	7.1	6.9	6.9	7.9	7.8	7.9	6.7
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4	5	<4	<4	4.5	<4	8.5
	50 (wet)													
Oil & Grease	15	mg/l		<5		<5		6.8		<5		<5		5
Phenolics, Total	24	ug/l		<20		<20		<20		<20		29		76
Fluoride, Total	1500	ug/l	_									230		
SPDES Outfall 003														
Flow Bate	Monitor	apd	152/7	32400	28800	32400	43200	28880	172800	24300	6480	7783	3020	3744
	90	%F	35	32400	28800	32400	43200	28880	172800	24300	60	61	5020 64	80
pH	6.0-9.0	SU	55	76	6.9	7.2	7.4	45	7.2	76	00	7.0	04	7.2
b	10 (drv)		0.5	7.0	0.8	1.5	7.4	7.0	1.5	7.0	0.3	7.9	0.1	1.2
Solids, Total Suspended	50 (wet)	mg/l	<4	1/27)	<4	4.5	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	20	30	20	40	40	90	80	40	50	50	60	30
cis-1.2-Dichloroethylene	10	ug/l	<1	1.2	<1	22	7.5	5.2	64	-1	50	-1	-1	-1
trans-1.2-Dichloroethylene	10	ug/l	<1	<1	<1	~1	-1	-1	-1	-1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	-1	11	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	-1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	±g. ma/l		-5		9		<5	~ 1	<5		<5		5
Phenolics, Total	44	ua/l		<20		<20		<20		<20		27		40
PCBs, Aroclors (Compliance)	300	na/l		-20			<50			~20		<50		
PCBs, Congeners (1668A Study)	NA	pa/l					3765					~00		
Lead, Total	10	ua/l					6766					<10		
Zinc, Total	120	ug/l										14		
			Notes:						7 ng/l = nano	orams per liter	approximatel	v equivalent to	parts per trillion	n (ppt)
			10100.							J. S 0 POI 1101	,	,		

1. ECL = Effluent Compliance Level. 2. gpd = gallons per day.
 3. °F = Degrees Farenheit.

4. SU = Standard Units.

9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

13. Bolded values exceed permit effluent compliance levels.

5. mg/l = milligrams per liter, approximately equivalent to ppm.

6. ug/l = micrograms per liter, approximately equivalent to ppb.

	June	e '05
	6/2/2005	6/14/2005
	rrc	rrc
1		
	460	00500
I	152	38566
I	152 60	38566 70
	152 60 6.8	38566 70 6.8
	152 60 6.8 42	38566 70 6.8 <4

<1

<1

<1

69

7	57935
65	71
6.7	6.7
8.5	<4
5	
76	

3744	64800
80	71
7.2	6.9
<4	<4
30	80
<1	1.7
<1	<1
<1	<1
<1	<1
<1	<1
5	
40	

illion (ppt).

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Member bandsMember bands<	Monitoring Period	EC	L		July '05		Augu	st '05	Septen	nber '05	Octob	oer '05	Novem	ber '05	D	ecember 20	05
Sample DimNot <th>Monitoring Date</th> <th>Daily</th> <th></th> <th>6/30/2005</th> <th>7/13/2005</th> <th>7/27/2005</th> <th>8/10/2005</th> <th>8/23/05</th> <th>9/6/2005</th> <th>9/22/2005</th> <th>10/6/2005</th> <th>10/21/2005</th> <th>10/31/2005</th> <th>11/15/2005</th> <th>11/29/2005</th> <th>12/12/2005</th> <th>12/28/2005</th>	Monitoring Date	Daily		6/30/2005	7/13/2005	7/27/2005	8/10/2005	8/23/05	9/6/2005	9/22/2005	10/6/2005	10/21/2005	10/31/2005	11/15/2005	11/29/2005	12/12/2005	12/28/2005
Set Set Curition Set Set Curition New	Sampler ID	Мах	Units	rrc	sm	bhm	sjm	sjm	sjm	rrc	sjm	sjm	sjm	sjm	sjm	sjm	rrc
sector decision dec	L	4	·		•	1	<u> </u>	1	<u> </u>		I				<u> </u>		
indequenceind <td>SPDES Outfall 001</td> <td></td>	SPDES Outfall 001																
Tangend60676768	Flow Rate	Monitor	gpd	3505	4770	40	80	80	152	152	0	0	50	28432	3505	0	125
in <td>Temperature</td> <td>90</td> <td>٩F</td> <td>67</td> <td>72</td> <td>72</td> <td>73</td> <td>69</td> <td>67</td> <td>70</td> <td>65</td> <td>60</td> <td>53</td> <td>49</td> <td>53</td> <td>43</td> <td>44</td>	Temperature	90	٩F	67	72	72	73	69	67	70	65	60	53	49	53	43	44
Image: state	pH	6.0-9.0	SU	7.5	6.7	6.5	6.7	6.3	7.0	6.9	6.5	7.4	8.8	8.2	7.8	7.2	7.0
initial contractinitial contractinit	Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	27	<4	9	5	4	31	6.5	29	11	27	<4	6.5	<4	<4
InterfaceInt <td>cis-1,2-Dichloroethylene</td> <td>10</td> <td>ug/l</td> <td><1</td> <td>2</td>	cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
indexindindindindindindindindindindindindindindindindindexind	trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
origination444 <th< td=""><td>Trichloroethylene</td><td>10</td><td>ug/l</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></th<>	Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
original integrationint int int 	Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Indication of the sector of	Copper, Total	100	ug/l	<10	50	14	18	33	<10	35	<10	<10	<10	31	22	13	20
Immery10303040Ammery40 <td< td=""><td>Oil & Grease</td><td>15</td><td>mg/l</td><td><5</td><td></td><td></td><td><5</td><td></td><td><5</td><td></td><td><5</td><td></td><td><5</td><td></td><td>5.8</td><td></td><td></td></td<>	Oil & Grease	15	mg/l	<5			<5		<5		<5		<5		5.8		
intervant tervant, 104 (104)104<	Phenolics, Total	28	ug/l	<20			<20		<20		<20		<2		4		
image: problem in the section of the secting of the secting of the sectin	Antimony, Total	300	ug/l				<10						<10				
Index train tank to tank to <b< td=""><td>Chromium, Total</td><td>51</td><td>ug/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><10</td><td></td><td></td><td></td><td></td></b<>	Chromium, Total	51	ug/l										<10				
and and a bit of a bit	Fluoride. Total	2500	ua/l										580				
initial<	Lead, Total	13	ug/l										<10				
Source Source<	Zinc, Total	210	ug/l										29				
Shore where we are subserved			, j	<u>j</u>			8		8				Į.		8		
impart impar	SPDES Outfall 002																
ImpairImpa	Flow Rate	Monitor	gpd	37	2612	5672	37	37	574	0	0	0	364	13153	364	0	844
Image: prime base of the sector of the se	Temperature	90	٩F	65	71	69	73	68	67	68	65	61	60	49	55	43	48
Set of a constraint of a cons	рН	6.0-9.0	SU	7.3	6.7	7.1	6.7	6.9	6.9	6.7	6.7	7.5	7.7	7.3	7.2	6.9	7.2
016 or one information of informat	Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	5	<4	4	<4	<4	<4	<4	13	<4	8	<4	<4	<4	<4
Principal Prior Prior Prior 	Oil & Grease	15	mg/l	<5			<5		<5		<5		<5		6.5		
Funda 150 01 01 01 01 01 01 010<	Phenolics, Total	24	ug/l	<20			<20		<20		<20		<2		2.6		
Spece outfail 003	Fluoride, Total	1500	ug/l										380				
Shore and a set of the set																	
Image: space	SPDES Outfall 003			-													
Important90 <t< td=""><td>Flow Rate</td><td>Monitor</td><td>gpd</td><td>17280</td><td>2880</td><td>1100</td><td>2880</td><td>2520</td><td>6171</td><td>1728</td><td>9600</td><td>12342</td><td>17280</td><td>29950</td><td>21600</td><td>34560</td><td>21600</td></t<>	Flow Rate	Monitor	gpd	17280	2880	1100	2880	2520	6171	1728	9600	12342	17280	29950	21600	34560	21600
pH6.095.097.007.007.007.0<	Temperature	90	٩F	76	77	73	80	68	65	72	64	54	55	46	53	42	47
Indicidant stateIndicidant stateIndi	рН	6.0-9.0	SU	7.8	7.2	7.1	7.2	7.1	6.7	6.9	7.1	7.8	8.4	6.8	7.3	7.2	7.4
characterization forma	Solids Total Suspended	10 (dry)	ma/l	4.5	-4	5	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
Index of the sector of the		50 (wet)				°,											
circle2Dedivorement100101<	Chlorine, Total Residual	100	ug/l	40	50	30	40	40	80	30	20	30	40	10	30	40	40
Image 1.0 and	cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.8	<1	1.4	2.5
Tichlorodylone10ug/dvd/d </td <td>trans-1,2-Dichloroethylene</td> <td>10</td> <td>ug/l</td> <td><1</td>	trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
VinyChoinde10uga41 <td>Trichloroethylene</td> <td>10</td> <td>ug/l</td> <td><1</td> <td>1</td> <td><1</td> <td><1</td> <td><1</td>	Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1
Chicotion46uga41<	Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grase Ind Ind <th< td=""><td>Chloroform</td><td>46</td><td>ug/l</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></th<>	Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Phenolics, Total 44 ug/ vd/	Oil & Grease	15	mg/l	<5			<5		<5		5.5		<5		<5		
PCBs, Aroclors (Compliance) 300 ng/l PCBs, Congeners (1668A Study) NA pg/l Lead, Total 10 ug/l Total 120 ug/l Notes:	Phenolics, Total	44	ug/l	<20			<20		<20		<20		<2		2.6		
PCBs, Congeners (1668A Study) NA pg/l Lead, Total 10 ug/l Zinc, Total 120 ug/l Note::: The set of the s	PCBs, Aroclors (Compliance)	300	ng/l				<0.1						<100				
Lead, Total 10 ug/l Image: second seco	PCBs, Congeners (1668A Study)	NA	pg/l										na				
Zinc, Total 120 ug/l Image: Constraint of the state of the st	Lead, Total	10	ug/l										<10				
Notes: 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).	Zinc, Total	120	ug/l										<10				
				Notes:						7. ng/l = nano	grams per liter	, approximately	equivalent to	parts per trillion	n (ppt).		

1. ECL = Effluent Compliance Level.

2. gpd = gallons per day.

3. °F = Degrees Farenheit.

4. SU = Standard Units.

5. mg/l = milligrams per liter, approximately equivalent to ppm.

6. ug/l = micrograms per liter, approximately equivalent to ppb.

8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq). 9. HTW = High Tail Water.

10. No Flow = No measurable discharge.

11. E = Estimated.

12. NA = Not analyzed.

5.6 Figures

- 5-1 SPDES Outfall 001 Manhole Plan and Selection
- 5-2 SPDES Outfall 002 Manhole Plan and Selection
- 5-3 SPDES Outfall 003 Plan and Selection
- 5-4 Stormwater System Partial Plan

5-8

SCALE: 3/8'' = 1'-0''

SYNAPSE RISK MANAGEMENT, LLC 400 UNIVERSITY BUILDING 120 EAST WASHINGTON STREET SYRACUSE, NEW YORK 13202

6.0 GROUNDWATER TREATMENT SYSTEM

This section documents the OM&M of the GTS, originally constructed as an IRM to address VOCs present in surface water and groundwater. The system became fully operational in March 1995 and is currently in operation. As part of the selected RA, the system was modified to only collect and treat groundwater in 1999. Presently, the GTS consists of an air stripper unit, located in the southeast corner of the Main Building, the NCT, the SCT, and two pumping manholes designated Pumping Manhole No. 1 (MH-1) and Pumping Manhole No. 2 (MH-2). Figure 6-1 – Groundwater Treatment System Plan provides the location of these components. OBG, on behalf of CPTC, conducted the OM&M of the GTS from January through May 2005. ENSR conducted the OM&M of the GTS from June through December 2005. The following sections have been structured to allow OBG and ENSR to provide certification to their respective sections, for which each had OM&M responsibilities during 2005.

6.1 System Construction

The treatment process involves removal of VOCs from influent water using a low-profile air stripper shown in Figure 6-2 - Air Stripper Plan. The low-profile air stripper treats influent groundwater pumped from MH-1 and MH-2 detailed on Figure 6-3 - Pumping Manhole Plans and Sections. MH-1 currently receives groundwater from the SCT. MH-2 was constructed at the northern (downgradient) extent of the Property to collect effluent water from an existing clay pipe and groundwater from the NCT. Groundwater is directed, via gravity feed, to the manholes where it is then pumped to the air stripper. The collection trenches were constructed as part of the RA at prescribed locations on the Property to collect groundwater.

Each pumping manhole contains two submersible pumps, arranged in lead/lag mode, and five bulb type control switches. MH-1 is equipped with two 3/4 horsepower (hp), 65 gallons per minute (gpm) pumps and MH-2 has two 1/2 hp, 10 gpm pumps. The pump controls are set, top to bottom, as follows:

- High level alarm;
- Lag pump start;
- Lead pump start;
- Both pumps stop; and
- Low level alarm, second off.

The main control panel for each pump is located in the Main Building, adjacent to the air stripper. Pumped water is conveyed to the air stripper via a double containment system. The low-profile air stripper is a four tray ShallowTray® 31200 Series model, equipped with a 3 phase, 20 hp, 1,800 cubic feet per minute (CFM) blower and is reportedly capable of processing 6 to 425 gpm. Certain aspects of the GTS are continuously monitored by an auto dialer system, a Sensaphone Model 4100, which includes a battery backup. The autodialer is programmed to monitor the following conditions:

- MH-1 High/low water level;
- MH-2 High/low water level; and
- Air stripper high water level/low air pressure.

Should an alarm condition occur, the auto dialer places a call to an CPTC consultant. This initiates a system status evaluation and appropriate response to the alarm associated with the GTS.

The treated water from the low-profile air stripper discharges by gravity through an effluent pipe to SPDES Outfall 03A located at the upstream end of the eastern drainage ditch, formerly Area 14. The eastern drainage ditch is ultimately monitored as SPDES Outfall 003, prior to discharging off-site at the northern Property boundary, as shown on Figure 6-1.

The operation and maintenance for the IRM GTS is provided in a separate O&M Manual, dated April 1995, prepared by BBL to address the GTS components. The RA OM&M Manual reviews the IRM GTS in general and provides specific information for inspection and cleanout procedures for the NCT and SCT.

6.2 Operation

6.2.1 January – May 2005, OBG

The GTS is designed to operate continuously. The manhole lead and lag pumps operate, as needed, controlling the level of water. Control bulbs normally activate the lead pump. Should the lead pump fail to control the water level in the manhole, the lag pump is set to be automatically activated. If the lead and lag pump system fail to control the water level, an alarm is triggered and the auto dialer is activated, notifying OBG. The inspection logs, included in Appendix G - Groundwater Treatment System Inspection Logs, provide documentation of recorded alarm conditions and maintenance during 2005. A summary of alarm conditions and maintenance for January 1, 2005 through May 31, 2005 is presented in the following table:

DATE	INCIDENT /RESOLUTION
1/4/05	Stripper was shut down and dismantled for tray cleaning. There were new tray gaskets installed at this time. Stripper was restarted on 1/7/05. MH-2 was still in
	high alarm.
1/10/05	Replaced the demister pad on stripper discharge duct.
2/2/05	Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service.
3/1/05	Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service.
3/11/05	Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service.
3/18/05	Both pumps in MH-2 running but no flow indication on flowmeter. Flowmeter on MH-2 plugged with deposits Removed deposits and put back in service. MH-2 surcharged. Also performed bucket flow measurement indicated 12 gpm at stripper.
3/23/05	MH-2 surcharged. Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service.
3/30/05	MH-2 surcharged. Cleaned piping at MH-2 with air. Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service. Bucket test for flow indicated 25gpm at the stripper.
4/5/05	MH-2 surcharged. Cleaned piping at MH-2 by reverse flushing with plant water. Flowmeter on MH-2 plugged with deposits. Removed deposits and put back in service. System running at 18 gpm at the stripper.
4/26/05	System in alarm. Both manholes are surcharged, apparent power outage.
5/4/05	System shut down for dismantling and cleaning. Restart system at 5/5/05.
5/25/05	Stripper running normally. Turned system OM&M over to ENSR.

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump. A total of approximately 1,103,730 gallons of water was pumped, treated, and released to Outfall 03A from January to May 2005. Table 6-1 2005 Manhole Flow Summary, indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for 2005 from January to May 2005. For MH-1, the weekly-recorded low, average, and high flow rates are 2,026, 3,933 and 9,450 gpd, respectively. For MH-2, the weekly recorded low, average and high flow rates are 11, 3,817 and 14,160 gpd, respectively. The GTS pumped an average of 7,759 gpd from January to May 2005.

Air stripper influent and effluent samples are collected and analyzed for required VOCs. Effluent analytical data is collected to satisfy required conditions of CPTC's SPDES Permit (No. NY-0108537), discussed in Section 6.4.1. Table 6-2, 2005 Influent and Effluent Analytical Summary provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3, 2005 Air Stripper Flow Summary provides weekly and average monthly flows measured during sampling events.

Information presented in Tables 6-2 and 6-3 was used to evaluate mass removal. Table 6-4, 2005 Air Stripper Mass Removal Summary provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed from January to May 2005. As shown, the total average annual removal efficiency was 98%, resulting in 6.4 pounds of VOCs removed. Due to problems with the air stripper performance in May 2005, the effluent VOC concentration was greater than the calculated influent VOC concentration, therefore, the mass removal value could not be calculated.

6.2.2 June – December 2005, ENSR

The GTS is designed to operate continuously. The manhole lead and lag pumps operate, as needed, to control the water level. Control bulbs normally activate the lead pump. Should the lead pump fail to control the water level in the manhole, the lag pump is set to be automatically activated. If the lead and lag pump system fail to control the water level, an alarm is activated, the autodialer is then notified, and the appropriate call-outs are initiated. The inspection logs, included in Appendix G, provide documentation of weekly site visits, recorded alarm conditions, system cleaning events, and modifications made to the system during June 1, 2005 through December 31, 2005. A summary of alarm conditions and subsequent maintenance during June 1, 2005 through December 31, 2005 are presented in the following table.

Date	INCIDENT/RESOLUTION		
6/24/05	System is on, alarms are not functioning, system reset, ENSR contacts CP		
6/25/05	Determine that high level float in MH-1 not working		
6/30/05	High level float switch replaced in MH-1, system is operating		
7/06/05	MH-1 high level alarm on, system reset, system is operating		
08/04/05	System off, no alarm, system reset, and operating		
09/(06-08)/05	System shut-down for cleaning and will not immediately restart after re-assembly.		
	Further troubleshooting allows system to be re-set and restarted.		
9/26/05	MH-1 is operational, MW-2 is not operational, proposed solution is pump and float		
	replacement in MH-1 and MH-2.		
10/04/05	Replaced float switches in MH-1 and MH-2		
11/10/05	During weekly sample collection, noted that MH-2 was not pumping sufficiently		
11/18/05	Electrical problems identified regarding control of MH-2, troubleshooting clears		
	electrical issues and MH-2 is operational		
12/01/05	MH-2 is determined not to be operational, due to low discharge (flow) from the pump		
12/10/05	Pump replaced in MH-2, pump is operating correctly, however flow totalizer is not		
	recording, no alarms recorded		
12/(19-21)/05	System shut down for cleaning and restarted		
12/22/05	System operating, however, no effluent from air stripper, no weekly sample collected		
12/29/05	System operating, however, no effluent from air stripper, no weekly sample collected		
NOTES:			
Chicago Pneumatic has requested that ENSR design (and manage the construction of) a pre-treatment water system which will			
improve the operating efficiency of the existing groundwater treatment system.			

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump as shown in Figure 6-1. Between May 25, 2005 and December 31, 2005 approximately 1,575,320 gallons of water was pumped, treated, and discharged to Outfall 03A. The 2005 Manhole Flow Summary (Table 6-1), indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for the same period of 2005. Between May 25, 2005 and December 31, 2005, for MH-1, the recorded low, recorded average, and recorded high flow rates per monitoring event are 0 gpd, 3,923 gpd, and 14,329 gpd, respectively. For MH-2, during this period the recorded low, recorded average and recorded high flow rates per monitoring event are 0 gpd, 3,299 gpd, and 10,485 gpd, respectively. The GTS processed an average of 7,222 gpd during the approximate 7-month period between May 25 and December 31, 2005.

Air stripper influent and effluent samples are collected and analyzed for the required VOCs. Effluent analytical data is collected to satisfy required conditions of CPTC's SPDES Permit (No. NY-0108537), and is discussed in Section 6.4.2. The June 1, 2005 through December 31, 2005 Influent and Effluent Analytical Summary (Table 6-2) provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3, the 2005 Air Stripper Flow Summary, provides weekly and average monthly flows measured during sampling events, and is inclusive of the flow to the stripper from MH-1 and MH-2.

The information presented in Table 6-2 and Table 6-3 was developed to assist in evaluating mass removal of VOCs by the GTS. Table 6-4, the 2005 Air Stripper Mass Removal Summary, provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed during the approximate 7-month period from May 25, 2005 to December 31, 2005. As indicated, the total average annual removal efficiency was 96% resulting in approximately 8.8 pounds of VOCs removed during this period of 2005.

6.3 Maintenance

6.3.1 January – May 2005, OBG

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS:

- The GTS was shut down and the air stripper internally inspected and cleaned on January 4 and May 4, 2005;
- The GTS shut down due to apparent power outages on April 26, 2005. The system alarms were reset and the air stripper restarted; and
- The GTS was shut down and the pipes from MH-2 were cleaned with air and water on March 30 and April 5, 2005. The system was restarted and the pumps operated normally.

6.3.2 June – December 2005, ENSR

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS between June 1, 2005 and December 31, 2005:

- The GTS was inactivated due to operational problems on August 4 and restarted same day;
- The GTS was inactivated and the air stripper internally inspected and cleaned from September 6th through September 9, 2005; and the system was restarted;
- The GTS was inactivated from September 9 through 26 due to pump and float malfunctions in the manholes;

TABLE 4-12005 GROUNDWATER ELEVATION SUMMARY

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 4/27/05						
MW-6R	462.69	10.52	10.51	465.47	3.93	461.54
MW-13A	467.30	11.07	10.91	469.23	2.72	466.51
MW-14	475.71	12.94	12.99	478.45	3.24	475.21
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.73	11.70	475.96	4.90	471.06
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.70	465.72
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	NA	NA	465.31	12.15	453.16

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 10/20/05	5					
MW-6R	462.69	10.52	10.50	465.47	4.32	461.15
MW-13A	467.30	11.07	11.07	469.23	4.06	465.17
MW-14	475.71	12.86	12.80	478.37	3.90	474.47
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.78	11.78	475.96	6.30	469.66
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.70	465.72
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	12.80	NA	465.31	12.67	452.64

Notes:

1. All values reported in feet.

2. TOR = Top of Riser.

3. Depth measurements are taken in hundreths of a foot from the TOR, which is a reference point

at the highest part on the 2-inch riser pipe.

4. Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

5. MW-17 was found dry during both monitoring events, bottom elevation = 454.70 feet.

6. The top of riser elevation was adjusted during maintenance on May 15, 2003 for monitoring wells MW-6R and MW-14.

7. MW = Monitoring Well.

8. SCT = Southern Collection Trench.

9. NCT = Northern Collection Trench.

10. CO = Clean Out (Depths and Elevations are Approximate).

11. MH = Manhole.

12. NA = Not Applicable.

13. NM = Not measured. Installed well depths used to calculate well casing columes.

14. Groundwater elevations were inferred at the following locations: SCT CO-1, SCT CO-2, SCT CO-3, and NCT CO-1.

- On September 26, the pump floats were replaced and the system restarted;
- MH-2 was not operational on November 10;
- MH-2 was not operational on November 18;
- MH-2 was not operational on December 1; and
- The GTS was inactivated and the pump in MH-2 was replaced on December 10th, 2005. The system was restarted.

6.4 SPDES Outfall 03A

6.4.1 January – May 2005, OBG

The effluent from the air stripper, SPDES Outfall 03A, requires sampling, analytical analysis, and flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
 - trichloroethylene (TCE);
 - cis-1,2-dichloroethene (cis-1,2-DCE);
 - trans-1,2-dichloroethene (trans-1,2-DCE); and
 - vinyl chloride (VC).

Samples are collected by Upstate Laboratories, Inc. (ULI) personnel and analyzed at ULI on behalf of CPTC. These samples are collected from the SPDES Outfall 03A sampling port located in the effluent pipe prior to discharge to the eastern drainage ditch. Results from weekly sampling from 2000 to 2005 are provided in Table 6-5, Cumulative Summary of Outfall 03A Analytical Results. The analytical results are submitted by the OM&M contractor to the NYSDEC in the form of monthly DMRs. Excursions of SPDES Permit effluent limits were recognized in May 2005, as noted on the DMRs.

6.4.2 June – December 2005, ENSR

The effluent from the air stripper, SPDES Outfall 03A, requires sampling, analytical analysis, and flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

Weekly monitoring of flow and pH.

Weekly effluent sampling and analysis for:

trichloroethylene (TCE); cis-1,2-dichloroethene (cis-1,2-DCE); trans-1,2-dichloroethene (trans-1,2-DCE); and vinyl chloride (VC).

On behalf of CPTC, between June 1 and December 31, 2005, GTS samples were collected by ENSR personnel, placed in appropriately labeled laboratory glassware, packed on ice, and shipped with chain of custody forms via overnight courier to Columbia Analytical Laboratories, located in Rochester, New York. These samples are collected from the SPDES Outfall 03A sampling port located in the effluent pipe prior to discharge to the eastern drainage ditch. Results from weekly sampling events conducted between

June 1 and December 31, 2005, are provided in Table 6-5, the Summary of Outfall 03A Analytical Results. The analytical results are submitted by ENSR to the NYSDEC in the form of monthly DMRs. Between June 1 and December 31, 2005, there were no excursions to the SPDES Permit effluent limits.

6.5 Summary

6.5.1 January – May 2005, OBG

The GTS has been in operation for approximately 10 years. Operation of the air stripper, pumps, and appurtenances has been consistent and continuous with only a few exceptions. The GTS was shut down for short durations for maintenance, which included system checks and acid cleaning of the internal air stripper components. The treatment system flow totalizers, as recorded on inspection reports, indicate that approximately 1,114,070 gallons (7,579 gpd) of groundwater were processed from January to May 2005, removing 6.4 pounds of VOCs.

6.5.2 June – December 2005, ENSR

The GTS has been in operation for approximately 10 years. Operation of the air stripper, pumps, and appurtenances has been consistent and continuous with only a few exceptions. The GTS was shut down for short durations for maintenance, and operational problems which included system checks and cleaning of the internal air stripper components. The treatment system flow totalizers, as recorded on inspection reports, indicate that approximately 1,575,320 gallons of water was pumped, treated, and released to Outfall 03A between May 25 and December 31, 2005, removing approximately 8.8 pounds of VOCs.

6.6 Tables

- 6-1 2005 Manhole Flow Summary
- 6-2 2005 Influent and Effluent Analytical Summary
- 6-3 2005 Air Stripper Flow Summary
- 6-4 2005 Air Stripper Mass Removal Summary
- 6-5 Cumulative Summary of SPDES Outfall 03A Analytical Results

TABLE 6-4 2005 AIR STRIPPER MASS REMOVAL SUMMARY

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Month	Air Stripper Influent - Average Monthly VOC Concentration (ug/l)	Air Stripper Effluent - Average Monthly VOC Concentration ⁶ (ug/l)	VOC's Removed (ug/l)	% VOC's Removed	Air Stripper Effluent Average Monthly Flow (gpd)	VOC's Removed (lbs)
Jan	68.6	1	67.6	98.5	6280	0.1
Feb	24.9	1.1	23.8	95.6	4174	0.01
Mar	51.1	1.1	50.0	97.8	3742	0.04
Apr	2206.8	0.3	2206.5	100.0	12192	6.3
May	222.0	350	*	*	*	*
		Subtot	al (Jan-May)	98.0	Subtotal (Jan-May)	6.4
Jun	923	4.99	918	99.5	2199	0.5
Jul	817	4.99	812	99.4	19212	4.0
Aug	868	4.99	863	99.4	9097	2.0
Sep ⁵						
Oct	641	4.99	636	99.2	12119	2.0
Nov	175	4.99	170	97.1	6212	0.3
Dec	27	4.99	22	81.5	3551	0.02
		Subtot	al (Jun-Dec)	96.0	Subtotal (Jun-Dec)	8.8
		Annı	ual Average:	97.0	Annual Total:	15.3

Notes:

1. VOCs = Volatile Organic Compounds

2. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)

3. gpd = gallons per day

4. lbs = pounds

* Due to problems with MH-2 during January, February, and March, mass removal values could not be calculated.

5) Influent collected from MH-1 only, MH-2 not operational on day of sample collection.

Effluent results were non-detect (<5.0 ug/L) in September. Due to significant system downtime, it is not possible to calculate system performance for September.

6) Columbia Analytical Laboratories detection limit equals 5.0 ug/L. Therefore, mass removal calculations are based on a value of less than 5.0 ug/L, i.e. 4.99 ug/L.

TABLE 6-1 2005 MANHOLE FLOW SUMMARY

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

OBG (January - May 2005)					
Monitoring	Flow Totalizer	Reading (gal)	Flow per	r Monitoring Peri	od (gpd)
Date	MH-1	MH-2	MH-1	MH-2	Total
12/29/2004	29867240	11418150			
1/4/2005	29869430	11426300	365	1358	1723
1/12/2005	29921860	11478090	6554	6474	13028
1/19/2005	29967760	11493770	6557	2240	8797
1/26/2005	29987800	11497890	2863	589	3452
A۱	erage Monthly I	low	4306	2848	7154
2/2/2005	30003660	11497970	2266	11	2277
2/9/2005	30017840	11529950	2026	4569	6595
2/15/2005	30035100	11539290	2877	1557	4434
2/24/2005	30064470	11540390	3263	122	3385
A۱	erage Monthly I	low	2644	1466	4110
3/1/2005	30077000	11540480	2506	18	2524
3/11/2005	30106410	11540600	2941	12	2953
3/18/2005	30127890	11540710	3069	16	3085
3/23/2005	30153970	11540810	5216	20	5236
3/30/2005	30205080	11541010	7301	29	7330
A۱	erage Monthly	low	4136	18	4154
4/8/2005	30281820	11584200	8527	4799	13326
4/13/2005	30302250	11630180	4086	9196	13282
4/22/2005	30328560	11700160	2923	7776	10699
4/26/2005	30347390	11732590	4708	8108	12816
4/27/2005	30356840	11746750	9450	14160	23610
Average Monthly Flow		5420	7348	12768	
5/5/2005	30389990	11812480	4144	8216	12360
5/11/2005	30411290	11860440	3550	7993	11543
5/20/2005	30433580	11920570	2477	6681	9158
5/25/2005	30445430	11954030	2370	6692	9062
A	verage Monthly I	Flow	3164	7403	10567

147 Days

Total Flow	gal	gpd
MH-1	578,190	3933
MH-2	535,880	3645
Total	1,114,070	7579
TABLE 6-1 2005 MANHOLE FLOW SUMMARY

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

ENSR (June - December 2005)

Monitoring	Flow Totalizer	Reading (gal)	Flow per	Monitoring Peri	od (gpd)
Date	MH-1	MH-2	MH-1	MH-2	Total
6/7/2005	30469970	12028990	1888	5766	7654
6/9/2005	30473260	12039720	1645	5365	7010
6/16/2005	30475100	12045890	263	881	1144
6/22/2005	30475100	12045920	0	5	5
6/24/2005	30475280	12045940	90	10	100
6/30/2005	30478020	12046410	457	78	535
A۱	erage Monthly F	low	905	2566	3471
7/14/2005	30678630	12128740	14329	5881	20210
7/21/2005	30759340	12175520	11530	6683	18213
A۱	erage Monthly F	low	13396	6148	19544
8/4/2005	30880180	12240510	8631	4642	13273
8/11/2005	30904960	12285040	3540	6361	9901
8/18/2005	30913880	12321960	1274	5274	6548
8/25/2005	30923030	12359470	1307	5359	6666
A۱	erage Monthly F	low	4677	5256	9933
9/1/2005	30935110	12400790	1726	5903	7629
9/8/2005	30943970	12431870	1266	4440	5706
9/13/2005	30944370	12431920	80	10	90
9/19/2005	30944430	12431980	10	10	20
9/23/2005	30944710	12432400	70	105	175
9/26/2005	30949630	12432490	1640	30	1670
9/27/2005	30953080	12432760	3450	270	3720
A۱	erage Monthly F	low	911	2221	3132
10/4/2005	30964220	12433270	743	34	777
10/6/2005	30967200	12454240	1490	10485	11975
10/13/2005	30984470	12505280	2467	7291	9758
10/20/2005	31014080	12568050	4230	8967	13197
10/27/2005	31054790	12622160	5816	7730	13546
A	erage Monthly F	low	2677	4984	7661
11/3/2005	31082950	12667240	4023	6440	10463
11/10/2005	31108740	12667240	3684	0	3684
11/16/2005	31135540	12667240	4467	0	4467
11/22/2005	31168150	12672020	5435	797	6232
A	erage Monthly F	low	4360	1918	6278
12/1/2005	31203030	12672020	3876	0	3876
12/8/2005	31232280	12672020	4179	0	4179
12/15/2005	31253950	12672430	3096	59	3155
12/21/2005	31268520	12672770	2428	57	2485
12/29/2005	31300660	12673120	4018	44	4062
A	verage Monthly F	low	3581	30	3611

218 Days	Total Flow	gal	gpd
	MH-1	855,230	3923
	MH-2	719,090	3299
	Total	1,574,320	7222
	Annual	2,688,390	14800

Notes:

All data based on flow meter readings taken during inspections.
 gal = gallons
 gpd = gallons per day

TABLE 6-2 2005 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

	Influent from MH-1					Influent from MH-2			Air Stripper Effluent								
Sample Date	Viny/Chloride	Cis-1,2.D.	Dichloroethene trac.	Triss 1.2.Dichloroethene	Totori	Vin.,	II Chloride	1:2.Dichloroethene Lan-	Trice.	Torri	Ni	Chloride	12-Dichloroethene	Tricht.	Topethene	50 10 10 10 10	Contribut Average VOC's
Permit Limit											10	10	10	10			
1/14/2005											<1	<1	<1	<1	0		_
1/21/2005 2	.4	<1	<1	<1	2.4	<5	58	<5	120	178	<1	<1	<1	1.2	1.2		_
1/28/2005											<1	<1	<1	1.8	1.8	1.0)
2/4/2005 2	.5	<1	<1	<1	2.5	<5	19	<5	38	57	<1	<1	<1	1.3	1.3		_
2/11/2005											<1	<1	<1	1.8	1.8		_
2/18/2005											<1	<1	<1	<1	0		_
2/25/2005					10.0			100			<1	<1	<1	1.1	1.1	1.1	_
3/4/2005 4	.4	7.8	<2	31	43.2	<100	340	<100	1500	1840	<1	<1	<1	<1	0		_
3/11/2005											<1	<1	<1	2.4	2.4		_
3/18/2005											<1	<1	<1	<1	0		_
3/24/2005	.4	2.4	.4	2.0	<u> </u>	.10	000	.10	2000	2020	1>	<	<1	1.9	1.9	1.1	-
4/1/2005	51	3.4	<1	2.9	0.3	<10	830	<10	3000	3830	[`>	<	[> •	1.3	1.3		-
4/8/2005											<1	<1	<1	<1	0		-
4/13/2003	-										<1	<1	<1	<1	0		-
4/22/2005	-										<1	<1 _1	<1 _1	<1	0	0.3	2
5/13/2005 3	8	1.8	-1	35	9.1	<10	93	<10	220	313	<pre><1</pre>		<1	<1	0	0.0	,
5/20/2005		1.5		0.0	3.1	<10	30	<10	220	515	<50	230	<50	820	1050		-1
5/27/2005		-+									<1	<1	<1	<1	0	350.0)

TABLE 6-2 2005 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	Influ	ent from	MH-1				Influe	ent from	MH-2		Air Stripper Effluent					
Sample Date	Invi Chloride	us-1.2.Dichloroethene	Trice	Totori	Vinus -	1. Chloride dis + _	1:2.Dichloroethene tran-	Trice	Tot	Vin.,	Chloride	trans.	Trice.	anoroethene *	¹⁰¹ 10Cs	Monthly Average VOC's
6/3/2005 8.5	5 <	5 <5	i <5	8.5	<20	340	<50	1200	1540	<2	<5	i <5	<5	()	T
6/9/2005	<	5 <5	i <5	7	<10	220	<25	750	970	<2	<5	i <5	<5	(D	
6/30/2005										<2	<5	i <5	<5	(0.0	C
7/6/2005										<2	<5	<5	<5	()	
7/14/2005										<2	<5	<5	<5	()	
7/21/2005 <25	5 92	2 <25	210	302	<50	440	<50	1500	1940	<2	<5	i <5	<5	()	
7/28/2005										<2	<5	i <5	<5	(0.0	C
8/4/2005 4.6	6 12	2 <5	6	22.6	<30	320	<100	1300	1620	<2	<5	i <5	<5	()	
8/11/2005										No effluen	t discharge,	no sample co	llected.	(D	
8/18/2005										No effluen	t discharge,	no sample co	llected.	()	
8/25/2005										No effluen	t discharge,	no sample co	llected.	(0.0	C
9/1/2005										<2	<5	<5	<5	(D	
9/8/2005										Treatmen	it system n	ot operating		(D	
9/13/2005										Treatmen	it system n	ot operating		()	
9/27/2005 2.5	5 <	5 <5	i <5	2.5						No effluen	t discharge,	no sample co	llected.	(0.0	D
10/6/2005 2.9	9 20	0 <5	60	82.9	<10	230	<25	710	940	<2	<5	i <5	<5	()	
10/13/2005										<2	<5	i <5	<5	()	
10/20/2005										<2	<5	i <5	<5	()	
10/27/2005										<2	<5	i <5	<5	(0.0	0
11/3/2005 5.7	7 <t< td=""><td>5 <5</td><td>i <5</td><td>5.7</td><td><5</td><td>190</td><td><13</td><td>370</td><td>560</td><td><2</td><td><5</td><td>i <5</td><td><5</td><td>(</td><td>0</td><td></td></t<>	5 <5	i <5	5.7	<5	190	<13	370	560	<2	<5	i <5	<5	(0	
11/10/2005										<2	<5	i <5	<5	()	
11/16/2005										<2	<5	i <5	<5	()	
11/22/2005										<2	<5	i <5	<5	(0.0	D
12/1/2005 5.1	<	5 <5	i <5	5.1	<40	500	<100	2100	2600	<2	<5	i <5	<5	(D	
12/8/2005										<2	<5	i <5	<5	()	
12/15/2005										No effluen	t discharge,	no sample co	llected.	(D	
12/29/2005										No effluen	t discharge,	no sample co	llected.	(0.	D

Notes:

1. All concentrations reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).

2. VOCs = Volatile Organic Compounds.

3. Bolded numbers exceed consitituent's TOGS 1.1.1 guidance values.

TABLE 6-3 2005 AIR STRIPPER FLOW SUMMARY

Sample Date	Average Flow During Monitoring Period (gpd)	
1/14/2005	8.905	
1/21/2005	6,971	
1/28/2005	2,963	
	Average Monthly Flow (gpd):	6280
2/4/2005	3379	
2/11/2005	6500	
2/18/2005	3849	
2/25/2005	2969	
	Average Monthly Flow (gpd):	4174
3/4/2005	3241	
3/11/2005	3056	
3/18/2005	3056	
3/24/2005	5615	
	Average Monthly Flow (gpd):	3742
4/1/2005	7289	
4/8/2005	15204	
4/15/2005	12577	
4/22/2005	10360	
4/29/2005	15531	
	Average Monthly Flow (gpd):	12192
5/13/2005	11029	
5/20/2005	8919	
5/27/2005	8489	
	Average Monthly Flow (gpd):	9479
6/9/2005	7010	
6/16/2005	1144	
6/24/2005	100	
6/30/2005	535	
	Average Monthly Flow (gpd):	2197

TABLE 6-3 2005 AIR STRIPPER FLOW SUMMARY

2005 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	Average Flow During Monitoring Period (gpd)	
7/14/2005	20210	
7/21/2005	18213	
	Average Monthly Flow (gpd):	19212
8/4/2005	13273	
8/11/2005	9901	
8/18/2005	6548	
8/25/2005	6666	
	Average Monthly Flow (gpd):	9097
9/1/2005	7629	
9/8/2005	5706	
9/13/2005	90	
9/23/2005	175	
9/27/2005	3720	
	Average Monthly Flow (gpd):	3464
10/6/2005	11975	
10/13/2005	9759	
10/20/2005	13197	
10/27/2005	13546	
	Average Monthly Flow (gpd):	12119
11/3/2005	10463	
11/10/2005	3684	
11/16/2005	4467	
11/22/2005	6232	
	Average Monthly Flow (gpd):	6212
12/1/2005	3876	
12/8/2005	4179	
12/15/2005	3155	
12/21/2005	2485	
12/29/2005	4062	
	Average Monthly Flow (gpd):	3551

Note:

172

1. gpd = gallons per day.

2. Average flow data is from laboratory analytical data sheets recorded during sampling.

Data	Parameter						
Date	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН	
Permit Limits	10	10	10	10			
1/14/00	<1	<1	2	<1	6,326		
1/21/00	<1	<1	3	<1	8,002		
1/28/00	<1	<1	4	<1	6,334		
2/4/00	<1	<1	3	<1	11,974		
2/11/00		Data n	ot available, pos	ssibly no flow	,	1	
2/18/00	<1	<1	4	<1	4,007		
2/25/00	<1	<1	<1	<1	7,548		
3/3/00	<1	<1	2	<1	12.811		
3/10/00	<1	<1	1	<1	9,617		
3/17/00	<1	<1	<1	<1	9,103		
3/24/00	<1	<1	2	<1	9,637		
3/31/00	<1	<1	<1	<1	8.373		
4/7/00	<1	<1	1	<1	1.975		
4/14/00	<1	<1	2	<1	14,689		
4/21/00		Data n	ot available, pos	ssibly no flow	,		
4/28/00		Data n	ot available, po	ssibly no flow			
5/1/00				, 	no flow		
5/12/00					no flow		
5/15/00	2	<1	7	<1	4,922		
5/22/00	<1	<1	<1	<1	5.120		
5/26/00	<1	<1	<1	<1	10.300		
6/2/00	<1	<1	<1	<1	18.686		
6/9/00	<1	<1	<1	<1	10.123		
6/16/00	<1	<1	<1	<1	10.269		
6/23/00	<1	<1	<1	<1	9,873		
6/30/00	<1	<1	<1	<1	7,627		
7/13/00	<1	<1	<1	<1	6,060		
7/14/00	<1	<1	<1	<1	6,060		
7/21/00	<1	<1	<1	<1	4,936		
7/28/00	<1	<1	<1	<1	14,750		
8/4/00	<1	<1	<1	<1	2,092		
8/11/00	<1	<1	<1	<1	1,771		
8/18/00	<1	<1	<1	<1	7,820		
8/25/00	<1	<1	<1	<1	6,169		
9/7/00	<1	<1	<1	<1	5,683		
9/8/00	<1	<1	<1	<1	5,683		
9/15/00	<1	<1	<1	<1	6,023		
9/22/00	<1	<1	<1	<1	7,481		
10/6/00	<1	<1	<1	<1	3,359		
10/13/00	<1	<1	<1	<1	7,188		
10/20/00	<1	<1	6	<1	3,171		
10/27/00	<1	<1	2	<1	9,261		
11/2/00	<1	<1	<1	<1	7,300		
11/3/00	<1	<1	<1	<1	7,300		
11/9/00		Air s	tripper cleaning	no sample			
11/17/00	<1	<1	<1	<1	10,361		
11/22/00	<1	<1	3	<1	4,818		
12/1/00	<1	<1	1	<1	9,057		
12/8/00	<1	<1	3	<1	7,230		
12/15/00	<1	<1	3	<1	5,397		
12/22/00	<1	<1	4	<1	7,013		

Data	Parameter						
Date	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН	
Permit Limits	10	10	10	10		-	
1/3/01	<1	<1	5	<1	7.109		
1/12/01	<1	<1	<1	<1	5.775		
1/19/01	<1	<1	3	<1	6.435		
1/26/01	<1	<1	2	<1	6,151		
2/7/01	<1	<1	<1	<1	6,170		
2/9/01	8	<1	21	<1	6.355		
2/20/01	<1	<1	3	<1	7,278		
2/23/01	<1	<1	4	<1	6,460		
3/2/01	<1	<1	2	<1	7,923		
3/9/01	<1	<1	2	<1	6.801		
3/16/01	29	<1	20	<1	7,100		
3/23/01	<1	<1	2	<1	10 539		
3/30/01	5	<1	14	<1	12 270		
4/3/01	<1	<1	1	<1	16,000		
4/11/01	<1	<1	<1	<1	15,820		
4/20/01	<1	<1	<1	<1	9 996		
4/27/01	3	<1	8	<1	6 790		
5/5/01	Ū		f service electr	ical problem	0,750		
5/11/01	<	<pre>Curo </pre>	1 301 1100, 01001		6 217		
5/18/01	<1	<1	-1	<1	4 177		
5/25/01	<1	<1	<1	<1	3,822		
6/1/01	3	<1	13	<1	5 320		
6/8/01	-1	<1	-1	<1	10.420		
6/15/01	<1	<1	<1	<1	26 778		
6/22/01	7	<1	2	<1	20,770		
6/20/01	-1	<1		<1	2,094		
7/6/01	<1	<1	<1	<1	0,097		
7/12/01	<1	<1	<1	<1	4,304		
7/13/01	<1	<1	<1	<1	4,290		
7/27/01	<1	<1	<1	<1	6.017		
9/2/01	1	<1	<1 4	<1	5.079		
8/10/01		<1	4	<1	3,078		
0/10/01	2	<1	4	<1	4,747		
9/24/01	1	<1	- 4	<1	4,757		
0/24/01	<1	<1	<1	<1	4,044		
0/31/01	<1	<1	<1	<1	1,107		
9/1//01	-1	~1	2		1 850		
Q/21/01	-1	~1			1 151		
3/∠1/U1 Q/28/01	~1			<1 _1	1,101		
10/5/01					4,194		
10/3/01		~1	~1	~1	4,400		
10/12/01	<1 _1	<1	<1	<1	4,230		
10/19/01	<1	<1 -1	<1	1	4,441		
11/20/01	1		~1	~1	4,401	8.2	
11/2/01		~1	~1	~1	5 101	0.0 Q 1	
11/3/01	<1	<1	<1	<1	0,101	7.0	
11/10/01	<1	<1	<1	<1	4,000	1.0	
11/21/01	<1	<1	<1	<1	4,022	7.6	
12/7/01	<1	<1	<1	<1	4,942	1.0	
12/1/01	<1	<1	<1	<1	0,049 5 701	0.1	
12/14/01	۱>	<1	<1	<1	0.121	0.2	
12/21/01	<1	<1	<1	<1	0,104 7 515	7.1	
12/28/01	<1	<1	3	<1	1,515	1.Z	

Parameter						
Dale	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН
Permit Limits	10	10	10	10		
1/4/02	<1	<1	3	<1	5,721	
1/11/02	<1	<1	1	<1	5,020	
1/18/02	<1	<1	<1	<1	6,455	
1/25/02	<1	<1	<1	<1	6,380	
2/1/02	<1	<1	4	<1	7,925	8.1
2/13/02	11	<2	33	<2	10.570	8.0
2/15/02	<1	<1	2	<1	10,041	7.8
2/22/02	<1	<1	<1	<1	8,651	8.0
3/1/02	<1	<1	<1	<1	8,928	7.8
3/8/02	<1	<1	2	<1	6,687	7.9
3/15/02	6	<1	11	<1	7.048	7.9
3/22/02	5	<1	11	<1	11.341	7.7
3/29/02	2	<1	6	<1	6.348	7.8
4/5/02	79	<10	230	<10	5,741	7.5
4/12/02	4	<1	10	<1	10.452	7.7
4/19/02	3	<1	17	<1	12,160	7.9
4/26/02	2	<1	6	<1	7.711	7.8
5/3/02	1	<1	5	<1	11,707	7.9
5/10/02	<1	<1	<1	<1	9,758	7.6
5/17/02	<1	<1	<1	<1	12,755	7.8
5/24/02	<1	<1	<1	1	2,360	7.3
5/31/02	<1	<1	<1	1	7,725	7.6
6/7/02	<1	<1	<1	<1	9 408	7.4
6/14/02	<1	<1	<1	<1	10.371	7.7
6/20/02	<1	<1	<1	<1	8 717	7.6
6/27/02	<1	<1	<1	<1	7 690	7.8
7/3/02	<1	<1	<1	<1	10,938	7.6
7/11/02	<1	<1	2	<1	9 475	7.7
7/18/02	1	<1	3	<1	6 841	7.6
7/25/02	<1	<1	<1	<1	6,005	7.4
8/1/02	<1	<1	<1	<1	5 867	77
8/9/02	<1	<1	<1	<1	5,932	7.2
8/16/02	<1	<1	<1	<1	3,951	7.3
8/23/02	<1	<1	<1	<1	5.285	7.3
8/30/03	<1	<1	<1	<1	7,774	7.9
9/5/02	<1	<1	<1	<1	5 180	7.2
9/13/02	<1	<1	<1	<1	6.027	7.3
9/20/02	1	<1	2	<1	6.008	7.8
9/27/02	<1	<1	<1	<1	6,745	8.2
10/4/02	<1	<1	2	<1	8.864	8.0
10/11/02	<1	<1	<1	<1	6,698	7.7
10/21/02	<1	<1	<1	<1	10.371	7.9
10/25/02	<1	<1	<1	<1	8,178	7.8
11/1/02	<1	<1	1	<1	10.244	7.6
11/8/02	<1	<1	2	<1	8.274	7.7
11/15/02	<1	<1	<1	<1	7.975	7.9
11/22/02	6	<1	11	<1	3,597	7.7
11/27/02	<1	<1	3	<1	18,722	7.8
12/6/02	7	<2	19	<2	11,440	7.6
12/13/02	7	<1	16	<1	5,595	7.6
12/20/02	<1	<1	4	<1	6,027	7.9
12/27/02	<1	<1	<1	<1	4,277	7.9

Parameter						
Date	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН
Permit Limits	10	10	10	10		
1/3/03	1	<1	3	<1	7,475	7.8
1/10/03	3	<1	13	<1	7,830	7.9
1/16/03	1	<1	4	<1	5.976	7.8
1/24/03	<1	<1	4	<1	2.968	7.9
1/31/03	3	<1	10	<1	5.874	7.6
2/7/03	<1	<1	3	<1	3.234	7.8
2/14/03	1	<1	3	<1	7.585	7.8
2/20/03	<1	<1	2	<1	4.705	8.1
2/28/03	8	<1	20	<1	4.912	8.0
3/7/03	220	<20	470	<20	3.785	7.8
3/14/03	7	<1	15	<1	3.881	7.9
3/20/03	12	<2	28	<2	6,746	7.7
3/28/03	21	<2	42	<2	9.658	7.7
4/4/03	8	<1	20	<1	6,748	7.9
4/11/03	25	<5	72	<5	6.442	7.4
4/18/03	<1	<1	<1	<1	9,922	7.7
4/25/03	<1	<1	<1	<1	13.811	7.6
5/1/03	<1	<1	<1	<1	10,060	8.0
5/9/03	<1	<1	<1	<1	12.273	8.3
5/16/03	<1	<1	<1	<1	12,995	7.8
5/23/03	<1	<1	<1	<1	11 427	8.2
5/30/03	<1	<1	<1	<1	11,432	7.6
6/6/03	<1	<1	<1	<1	12,687	7.8
6/13/03	<1	<1	<1	<1	9.532	8.0
6/20/03	<1	<1	<1	<1	9,820	7.7
6/27/03	<1	<1	<1	<1	11.562	8.1
7/7/03	<1	<1	<1	<1	7.104	7.9
7/11/03	<1	<1	<1	<1	7.090	7.8
7/18/03	<1	<1	<1	<1	7.861	7.1
7/25/03	<1	<1	<1	<1	5.090	7.5
8/1/03	<1	<1	<1	<1	6.548	7.9
8/8/03	15	<2	38	<2	3.011	7.3
8/18/03	<1	<1	<1	<1	11.376	7.8
8/22/03	15	<5	56	<5	9.385	8.1
8/29/03	8	<1	11	<1	8.387	8.2
9/5/03	3	<1	6	<1	9,115	8.4
9/12/03	4	<1	5	<1	8.095	7.8
9/19/03	27	<5	77	<5	8.285	7.8
9/26/03	<1	<1	1	<1	8.334	8.3
10/3/03	<1	<1	<1	<1	3.837	7.9
10/10/03	5	<1	6	<1	12.301	8.3
10/17/03	<1	<1	<1	<1	10,700	8.5
10/24/03	<1	<1	<1	<1	10,488	8.2
11/7/03	14	<1	20	<1	7,150	8.1
11/14/03	11	<2	36	<2	3,960	7.8
11/21/03	42	<5	74	<5	10,938	8.1
11/28/03	13	<1	20	<1	10,925	8.4
12/5/03	15	<1	26	<1	8,643	7.9
12/12/03	43	<5	100	<5	5,151	7.7
12/19/03	19	<2	31	<2	4,908	8.2
12/23/03	<100	630	2000	<100	872	8.3
12/30/03	2	<1	4	<1	942	8.0

Parameter						
Dale	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН
Permit Limits	10	10	10	10		
1/9/04	56	<5	89	<5	4.012	7.8
1/16/04	84	<5	120	<5	2,930	7.4
1/23/04	39	<5	66	<5	2.460	8.1
1/30/04	14	<1	19	<1	1.773	7.8
2/6/04	9	<1	17	<1	1.761	8.1
2/13/04	<1	<1	1	<1	2.514	8.3
2/20/04	<1	<1	1	<1	2.038	7.9
2/27/04	<1	<1	<1	<1	2,244	8.1
3/5/04	<1	<1	2	<1	5.382	8.1
3/12/04	<1	<1	1	<1	6,797	8.1
3/19/04	<1	<1	<1	<1	3,859	7.9
3/26/04	<1	<1	1	<1	33.050	8.3
4/2/04	<1	<1	<1	<1	12,260	7.6
4/8/04	<1	<1	1	<1	5.450	7.9
4/16/04	<1	<1	<1	<1	28.328	8.5
4/23/04	<1	<1	<1	<1	19 227	8.2
4/30/04	<1	<1	<1	<1	3,166	8.4
5/7/04	<1	<1	<1	<1	13,920	7.9
5/14/04	<1	<1	<1	<1	1.502	8.4
5/21/04	<1	<1	<1	<1	11.334	8.3
5/28/04	<1	<1	<1	<1	19 895	8.3
6/4/04	<1	<1	<1	<1	8.957	8.2
6/11/04	<1	<1	<1	<1	7 831	8.2
6/18/04	<1	<1	<1	<1	11,211	8.2
6/25/04	<1	<1	<1	<1	7 803	8.2
7/2/04	22	<1	72	<1	5,830	8.1
7/9/04	<1	<1	<1	<1	29.578	8.1
7/16/04	<1	<1	<1	<1	12 695	8.3
7/23/04	<1	<1	<1	<1	12,877	8.2
7/30/04	<1	<1	<1	<1	13,050	8.0
8/6/04	<1	<1	<1	<1	12,664	8.2
8/13/04	<1	<1	<1	<1	10.340	8.3
8/20/04	<1	<1	<1	<1	12,288	8.2
8/27/04	<1	<1	<1	<1	14.011	8.0
9/3/04	<1	<1	<1	<1	12,702	8.3
9/10/04	<1	<1	<1	<1	10.428	8.4
9/17/04	<1	<1	<1	<1	9,747	8.1
9/24/04	<1	<1	<1	<1	10,880	8.2
10/1/04	<1	<1	<1	<1	11,220	8.2
10/8/04	<1	<1	<1	<1	8,264	8.1
10/15/04	<1	<1	<1	<1	13,872	8.2
10/22/04	<1	<1	<1	<1	12,625	8.1
10/29/04	<1	<1	<1	<1	14,145	8.1
11/5/04	<1	<1	<1	<1	13,675	8.1
11/12/04	<1	<1	1.2	<1	12,620	8.4
11/19/04	<1	<1	<1	<1	12,605	8.2
11/24/04	<1	<1	1.4	<1	13,504	8.3
12/3/04	<1	<1	2.2	<1	12,419	8.1
12/10/04	<1	<1	1.8	<1	12,716	8.0
12/17/04	<1	<1	1	<1	3,698	8.3
12/23/04	<1	<1	3.9	<1	8,767	8.3

TABLE 6-5 CUMULATIVE SUMMARY OF SPDES OUTFALL 03A ANALYTICAL RESULTS

2005 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date		Parameter						
Date	cis-1,2-DCE	trans-1,2-DCE	TCE	VC	Flow	рН		
Permit Limits	10	10	10	10				
1/14/05	<1	<1	<1	<1	8,905	8.1		
1/21/05	<1	<1	1.2	<1	6,971	8.1		
1/23/05	<1	<1	1.8	<1	2,963	8.0		
2/4/05	<1	<1	1.3	<1	3,379	8.1		
2/11/05	<1	<1	1.8	<1	6,500	8.7		
2/18/05	<1	<1	<1	<1	3,849	8.4		
2/25/05	<1	<1	1.1	<1	2,969	8.2		
3/4/05	<1	<1	<1	<1	3,241	8.0		
3/11/05	<1	<1	2.4	<1	3,056	8.1		
3/18/05	<1	<1	<1	<1	3,056	8.2		
3/24/05	<1	<1	1.9	<1	5,615	8.1		
4/1/05	<1	<1	1.3	<1	7,289	8.3		
4/8/05	<1	<1	<1	<1	15,204	8.0		
4/15/05	<1	<1	<1	<1	12,577	8.0		
4/22/05	<1	<1	<1	<1	10,360	8.1		
4/23/05	<1	<1	<1	<1	15,531	8.0		
5/13/05	<1	<1	<1	<1	11,029	8.0		
5/20/05	230	<50	820	<50	8,919	8.1		
5/27/05	<1	<1	<1	<1	8,489	8.2		
6/3/2005	5 U	5 U	5 U	2 U	7723	8.07		
6/9/2005	5 U	5 U	5 U	2 U	7010	8.1		
6/30/2005	5 U	5 U	5 U	2 U	535	7.91		
7/6/2005	5 U	5 U	5 U	2 U	ND	8		
7/14/2005	5 U	5 U	5 U	2 U	20210	8.25		
7/21/2005	5 U	5 U	5 U	2 U	18213	8.05		
7/28/2005	5 U	5 U	5 U	2 U	ND	8.04		
8/4/2005	5 U	5 U	5 U	2 U	12941	7.81		
8/11/2005	No effluent disch	arge, no sample o	collected		10567			
8/18/2005	No effluent disch	arge, no sample o	collected		6549			
8/25/2005	No effluent disch	arge, no sample o	collected		6666			
9/1/2005	5 U	5 U	5 U	2 U	7629	8.17		
9/8/2005	Treatment syster	n not operating no	o sample collect	ted.	5706			
9/13/2005	Treatment syster	m not operating no	o sample collect	ted.	90			
9/19/2005	Treatment syster	m not operating no	o sample collect	ted.	20			
9/27/2005	5 U	5 U	5 U	2 U	3720	8.14		
10/6/2005	5 U	5 U	5 U	2 U	11975	8		
10/13/2005	5 U	5 U	5 U	2 U	9759	8.07		
10/20/2005	5 U	5 U	5 U	2 U	13197	8.26		
10/27/2005	5 U	5 U	5 U	2 U	26743	8.1		
11/3/2005	5 U	5 U	5 U	2 U	18193	7.99		
11/10/2005	5 U	5 U	5 U	2 U	3684	8.14		
11/16/2005	5 U	5 U	5 U	2 U	4467	8.13		
11/22/2005	5 U	5 U	5 U	2 U	6232	8.26		
12/1/2005	5 U	5 U	5 U	5.1	3876	7.9		
12/8/2005	5 U	5 U	5 U	2 U	3947	8.15		
12/15/2005	No effluent disch	arge, no sample o	collected		2677			
12/29/2005	No effluent disch	arge, no sample o	collected		8849			

Notes:

1) cis-1,2-DCE = cis-1,2-Dichloroethene

2) trans-1,2-DCE = trans-1,2-Dichloroethene

3) TCE = Trichloroethylene

4) VC = Vinyl Chloride

5) ug/L = micrograms per liter 6) gpd = gallons per day.

7) u = Not detected above the method detection limit.

6.7 Figures

- 6-1 Groundwater Treatment System Plan
- 6-2 Air Stripper Plan
- 6-3 Pumping Manhole Plans and Sections

	BALL VALVE (TYP) PRESSURE INDICATOR FILOW METER FILOW METER CHECK VALVE CHECK VALVE CHECK VALVE PIPING DETAIL NOT TO SCALE	
SPDES NRGE)		
N MENT NO. 1		
, AND ET	AIR STRIPPER PLAN	PROJECT NO.: DANA 01-04 DATE: APRIL 2006 FIGURE NO.: 6-2

APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Mathews

Date: 1-12-05

Ca	tegory	Inspected	Observation/Condition	J
1	Gene	ral Property		n
	A	General Property Access		V.
	В	General Property Drainage	SPDES Outfall (001 002/_ 0031_/)	V
2	Cell F	erimeter Components	I	-
	A	Perimeter and Access Roads		
	В	Ditches		T.
-	С	Culverts	<u>^</u>	
-	D	Perimeter Fence	Gates /	J
}	Е	Utilities	Elec Phone	
3	Conta	ainment Cell		1
	A	Surface Cover System	Burrows Vegetation	Va
	В	Gas Vents (2)	\sim	V
	В'	PID Readings	(Y of N) Background ppm, @ 20' ppm, @ Vent ppm	Va
1	С	Collection Pipe / Cleanout		
	D	Perimeter Drains (4)		
4	Leac	nate Collection Manhole	Γ (
	A	Structure	External / Internal	
	В	Pumps and Plumbing	Pump 1 Hours 124.3 Pump 2 Hours 214.	V
	B'	Pump Changeover	(Y or (N) Lead Pump Lag Pump	1
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	1
-	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	1
	D	Manhole Interstitial Space		V
	E	Conveyance Pipe		V,
	F	Influent Pipe	<u>^</u>	\checkmark
	G	Confined Space Entry	(Y or N) (see Form B)	1

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>SINAHAUS</u>

Date: - 2-05

Category		ry Inspected	Observation/Condition	J
5	5 Building			1
[A	Structure	Lock, Vent, Heater	Vi
	В	Electrical and Telephone	Elec Phone	V.
	С	Auto Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leach	nate Storage System		1
	A	Tank (External)	Internal (Y or N) /	\checkmark
	A'	Flow Totalizer	Reading = 57700 gal.	\bigvee
	В	Secondary Containment		\vee
	С	Piping Components		\checkmark
	D	Electrical Components	Lock (/_ Light Bulbs	V
	E	Leachate Sampling	(Y or N) (see Form C)	

Additional Comments:

Snow & ice Covering area

S	ynapse	Representative: Representative:	EMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 Date: 2/10/05	
Ca	tegor	/ Inspected	Observation/Condition	J
1	Gene	ral Property		1
	A	General Property Access	SAND Coulor of C	
	В	General Property Drainage	SPDES Outfall (001002003)	
2	Cell	Perimeter Components		
-	А	Perimeter and Access Roads	Show Calor	
	В	Ditches	Sance) Couler	
	С	Culverts	Show Cover	
	D	Perimeter Fence	Gates Good	
	Е	Utilities	Elec Phone	
3	Cont	ainment Cell		
	A	Surface Cover System	Burrows NO Vegetation NO	
	В	Gas Vents (2)		
	B'	PID Readings	(Y or N)Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout	Not Viewood	
	D	Perimeter Drains (4)		U
4	Leac	hate Collection Manhole		
	Α	Structure	External Internal	L
	В	Pumps and Plumbing	Pump 1 Hours <u>124,4</u> Pump 2 Hours <u>214,1</u>	
	Β'	Pump Changeover	(Y or (V) Lead Pump Lag Pump	
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	С	Electrical Components	Test Pumps (() or N), Light Bulbs	
	D	Manhole Interstitial Space		V
	Ε	Conveyance Pipe		
	F	Influent Pipe		
	G	Confined Space Entry	(Y of N) (see Form B)	
	10			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 1. Creighton

100.022003	s /
Date:	2/10/05

Category		ory Inspected	Observation/Condition	J
5	Build	ding		••••••••••••••••
	A	Structure	Lock, Vent, Heater	
	В	Electrical and Telephone	Elec_V Phone_V	1
	С	Auto Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Lead	chate Storage System		
	A	Tank (External)	Internal (Y or N)	1
	A'	Flow Totalizer	Reading = $57,9$ 00 gal.	1
	В	Secondary Containment	Liquid (Y or N)	1/
	С	Piping Components		V
	D	Electrical Components	Lock / Light Bulbs / Need Light Bulls	V
	E	Leachate Sampling	(Y or N) (see Form C)	Ú

Additional Comments:

synapse

REMEDIAL ACTION FACILITY
2200 BLEECKER STREET
UTICA, NEW YORK
NYSDEC SITE NO. 622003

Synap	pse	Representative: R. Crais	Wha Date: 3/7/0.5	
Categ	ory	Inspected	Observation/Condition	1
1 Ge	enei	ral Property		
A		General Property Access		2
В	3	General Property Drainage	SPDES Outfall (001 002 003)	1
2 Ce	ell P	erimeter Components		
A		Perimeter and Access Roads		1
В	3	Ditches	· · ·	1/
С	;	Culverts		1
D)	Perimeter Fence	Gates	
E		Utilities	Elec Phone	
3 Co	onta	ainment Cell		1
A		Surface Cover System	Burrows Vegetation	V
В	3	Gas Vents (2)		
В	3'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
С	;	Collection Pipe / Cleanout		V
D	>	Perimeter Drains (4)		
4 Le	each	nate Collection Manhole		
A	4	Structure	ExternalInternal	TV
В	3	Pumps and Plumbing	Pump 1 Hours 124 Pump 2 Hours CI.L	1
В	3'	Pump Changeover	(Y or N) Lead Pump 2/- Lag Pump 12	N
В	3"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	17
C		Electrical Components	Test Pumps (Y or N), Light Bulbs	1
D	>	Manhole Interstitial Space		
E	Ξ	Conveyance Pipe		11/
F	=	Influent Pipe		1
G	3	Confined Space Entry	(Y or N) (see Form B)	V

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

5

Date:

Synapse Representative: K. Creighton

Category		Inspected	Observation/Condition	J
5 Build	ding		111	
A	Struc	oture	Lock V, Vent V, Heater	1/
В	Elect	trical and Telephone	Elec_V Phone_	1/
C	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	1/
6 Lead	chate \$	Storage System	<u> </u>	
A	Tank	(External)	Internal (Y or N)	V
A'	Flow	Totalizer	Reading = 50 00 gal.	V
В	Seco	ondary Containment		V
С	Pipir	ng Components		V
D	Elec	trical Components	Lock V Light Bulbs New	V
E	Lead	hate Sampling	(Y or ℕ) (see Form C)	V

Additional Comments:

,	
·····	

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synaps	e Representative: <u>5. MoHhei</u>	Date: 4-6-0-5	
Categor	y Inspected	Observation/Condition	1
1 Gene	eral Property		
A	General Property Access		1
В	General Property Drainage	SPDES Outfall (001 002 003)	17
2 Cell	Perimeter Components	L	<u> </u>
A	Perimeter and Access Roads		
В	Ditches		1
С	Culverts		1
D	Perimeter Fence	Gates_V	1
E	Utilities	Elec. Phone	/
3 Cont	ainment Cell	A	
A	Surface Cover System	Burrows Vegetation 11/1/1	
В	Gas Vents (2)		
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
С	Collection Pipe / Cleanout		
D	Perimeter Drains (4)		
4 Lead	hate Collection Manhole	A /	
A	Structure	External Internal	
В	Pumps and Plumbing	Pump 1 Hours 124.2 Pump 2 Hours 214.1	
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	
B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	V
C	Electrical Components	Test Pumps((Y or N), Light Bulbs	
D	Manhole Interstitial Space		
E	Conveyance Pipe		
F	Influent Pipe		
G	Confined Space Entry	(Y or N)/(see Form B)	
1	hanness and have been a second as a second	D	y v

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5, MAHNUS

Date: 4-6-05

Category		ory	Inspected	Observation/Condition	1
5	5 Building			r 1 1	
	A	Struc	oture	Lock/, Vent, Heater	
	В	Elect	trical and Telephone	Elec / Phone	1
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	6 Leachate Storage System		Storage System		
	A	Tank	(External)	Internal (Y or N)	1
	A'	Flow	Totalizer	Reading = 52300 gal.	
	В	Seco	ondary Containment	Liquid (Y or (N) (where in drive way trench)	
	С	Pipir	ng Components		1
	D	Elec	trical Components	Lock / Light Bulbs /	
	Ë	Lead	chate Sampling	(Y or N)/(see Form C)	

Additional Comments:

	•
the second secon	
······································	

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative	5. Matthews
Tested Alarm: Y or ()	<u>v</u>)
Date Tested:	

Received Alarm: Y or N	
Date Received: 4-12-05	
Time Received: _/0;00	

synapse

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured: Reading:
2	Tank High Level (100%)		
3	Tank Leak		
4	Tank 90% Full		
5	High Manhole Level		
6	Manhole Leak		
7	Pipe Leak	\times	
8	Tank Low Temperature		
9	Inside Temperature		
10	Outside Temperature		
11-15	Not In Use		
16	Power Off		

Reason for Alarm: <u>- False Alarm</u> Reviewed Issac on-line (4.12.05) - No Indication of alarm condition. Action Taken: <u>Visted</u> Site on <u>4.13.05</u>. Opened Value from <u>2</u>° Containment pipe. pressure and a few drops of H20 came out. No significant lank noted in system Comments: Alarm condition most due to likely ensation CON M SEASOR

Page 1 of 1

INCIDENTAL INSPECTION REPORT (FORM A- 1) OPERATION, MAINTENANCE AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synaps	Synapse Representative: 4-6.63 Date: S. Matthews						
Categor	y Inspected	Observation/Condition	1				
1 Inspe	ection Overview						
A	Reason for Inspection	RAF GW SPDES					
В	Regulatory Inspection	DER DOW					
С	Photos Taken	35mm Digital					
2 Grou	ndwater Monitoring Wells						
A	Condition	MW-6R, MW-13A, MW-14, MW-17, MW-18					
В	Water Levels	(Y or N) (see Form C)					
С	Groundwater Sampling	(Y or N) (see Form D)					
3 Colle	ection Trenches						
A	MH-1	DTW Total: <u>11.55</u>					
B	MH-2C (Collection)	DTW_ <u>137</u> Total: <u>12.80</u>					
С	MH-2P (Pumping)	DTW <u>129</u> Total: <u>14.17</u>					
4 Air S	tripper						
A	MH-1 - Flow Totalizer	Reading =0 gal. Rate:gpm					
В	MH-2 - Flow Totalizer	Reading =0 gal. Rate:gpm					
С	Sump - Flow Totalizer	Reading =0 gal. Rate:gpm					
D	Blower Hours	Reading = Hours.					

Additional Comments:

Manhalel MH-ZC Water CATO 1 allection Dia)(14 $\overline{\mathbb{V}}$ FIRE WARM 60 in

Contacts:

Synapse Syracuse Office	475.3700	NYSDEC, DOW, Chad Kehoe	793.2554
RAF	733.6230	Evergreen, Tom Gehig (cell)	725.3200
Coolidge Equities, Jessie Bailey	866.7403	Dodge Graphics, Don Zimbler	735.9226
Coolidge Maintenance, Charles Dovi	534.3490 (cell)	Utica Converters, Al Born	733.8974
NYSDEC, DER, Phil Waite	785.2605	Deiorio's, Richard Viti	724.2401
O'Brien and Gere - Martin Kovely	729-1300 (cell)		and a second

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5, Matthews

Date: 6-2-05

Ca	tegory	Inspected	Observation/Condition	1
1	Gene	ral Property		
-	A	General Property Access	_	
-	В	General Property Drainage	SPDES Outfall (001/002/003)	$\frac{1}{7}$
2	Cell F	Perimeter Components		V
-	A	Perimeter and Access Roads		
-	В	Ditches		
	С	Culverts	1	
	D	Perimeter Fence	Gates_/	
	E	Utilities	Elec. Phone	5
3	Conta	ainment Cell		
	A	Surface Cover System	Burrows Vegetation Both closed	\square
	В	Gas Vents (2)	B	
	B'	PID Readings	(Y or/N) Background ppm, @ 20' ppm, @ Vent ppm	$\overline{\mathbf{A}}$
	С	Collection Pipe / Cleanout		
-	D	Perimeter Drains (4)		$\overline{\mathbf{V}}$
4	Leac	hate Collection Manhole	1 1	
1	A	Structure	External V Internal	
	В	Pumps and Plumbing	Pump 1 Hours / 24, 9 ump 2 Hours 2/14 + 1	
	Β'	Pump Changeover	(Y or N) Lead Pump Lag Pump	
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	b/
	С	Electrical Components	Test Pumps (Y) or N), Light Bulbs	1
	D	Manhole Interstitial Space		1
1	Е	Conveyance Pipe		
	F	Influent Pipe	\sim	$\overline{\mathbf{V}}$
	G	Confined Space Entry	(Y or N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Matheous

6.2.05 Date:

Category		Inspected	Observation/Condition	1
5 Buil	5 Building		1 1 1	
A	Strue	cture	Lock /, Vent /, Heater	
В	Elec	trical and Telephone	Elec Phone	
С	Auto	Dialer and Controls	Test Functions (Y or X) (see Form F)	
6 Lea	6 Leachate Storage System		6	Y
A	Tanl	(External)	Internal (Y or N	
A'	Flow	/ Totalizer	Reading = 59700 gal.	7
В	Seco	ondary Containment	Liquid (Y or A)	$\overline{\mathbf{A}}$
С	Pipir	ng Components		Κ/,
D	Elec	trical Components	Lock / Light Bulbs	
E	Lead	chate Sampling	(Y or N) (see Form C)	

Additional Comments:

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: BRIAN MACRAE

Date: 7/27/05

Category		Inspected	Observation/Condition	J
1 G	ener	al Property		
ŀ	4	General Property Access		
E	3	General Property Drainage	SPDES Outfall (001 002 003)	;
2 C	ell P	erimeter Components		
ŀ	4	Perimeter and Access Roads		i
E	в	Ditches		1
(c	Culverts		/
L	D	Perimeter Fence	Gates	
E	E	Utilities	Elec. Phone Phone	1
3 C	onta	inment Cell		
	4	Surface Cover System	Burrows Vegetation	1
E	в	Gas Vents (2)		1
E	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	~
0	С	Collection Pipe / Cleanout		
L	D	Perimeter Drains (4)		
4 L	each	ate Collection Manhole		
	A	Structure	External Internal	-
L	в	Pumps and Plumbing	Pump 1 Hours 125.1 Pump 2 Hours 214.1	0
E	B'	Pump Changeover	(Y oFN) Lead Pump _ i _ Lag Pump _ Z_	6
I	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
0	c	Electrical Components	Test Pumps (Y or N), Light Bulbs	V
	D	Manhole Interstitial Space		7
I	E	Conveyance Pipe		
1	F	Influent Pipe		
(G	Confined Space Entry	(Y of N) (see Form B)	1

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date:

synapse

Category		ry	Inspected	Observation/Condition	J
5	5 Building				
	A	Struc	sture	Lock, Vent, Heater	200
	В	Elect	rical and Telephone	Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	irra
6 Leachate Storage System			Storage System		
	A	Tank	(External)	Internal (Y or M)	
	Α'	Flow	Totalizer	Reading = <u>중입3 00</u> gal.	~
	В	Seco	ondary Containment	Liquid (Y or N)	
	С	Pipin	g Components		~
	D	Elect	trical Components	Lock Light Bulbs NRESS light the Bropkicement	·
	E	Leac	hate Sampling	(Y or N) (see Form C)	

Additional Comments:

Burrows: I an NE, SE al SW. Backfilled and graded. Will get moth balls a reserved # P. Waiter Onsite Meeting 200 \sim 1e (ć

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

S	Synapse Representative: <u>S. Matthews</u> Date: <u>8-10-05</u>						
Ca	ategor	y Inspected	Observation/Condition	1			
1	Gene	eral Property					
	A	General Property Access		V			
	В	General Property Drainage	SPDES Outfall (001 002 003)	1./			
2	Cell	Perimeter Components					
-	Å	Perimeter and Access Roads					
	В	Ditches					
	С	Culverts	0	1			
	D	Perimeter Fence	Gates				
	E	Utilities	Elec Phone	1			
3	Cont	ainment Cell	ſ				
	A	Surface Cover System	Burrows V Vegetation V Holes smaked and filled P WE PSE Camers)				
	В	Gas Vents (2)					
	B'	PID Readings	(Y or N/Background ppm, @ 20' ppm, @ Vent ppm				
	С	Collection Pipe / Cleanout					
	D	Perimeter Drains (4)		∇			
4	Leac	hate Collection Manhole					
	A	Structure	External V Internal V				
	В	Pumps and Plumbing	Pump 1 Hours 25 Pump 2 Hours 217				
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	V			
	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLŁ				
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	V			
	D	Manhole Interstitial Space					
	E	Conveyance Pipe					
	F	Influent Pipe	<u>()</u>	V			
-	G	Confined Space Entry	(Y or N) (see Form B)	K			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date: 5, Mathews Synapse Representative: 8:10-05

Category		ory	Inspected	Observation/Condition	1
5 Building					
	A	Struc	cture	Lock /, Vent //, Heater	∇
	В	Elect	rical and Telephone	Elec / Phone	∇
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	6 Leachate Storage System		Storage System	\sim	2
	A	Tank	(External)	Internal (Y or N)	$\mathbf{\nabla}$
	A'	Flow	Totalizer	Reading = 59500 gal.	V
	В	Seco	ondary Containment	Liquid (Y or N)	
	С	Pipin	ig Components		
	D	Elect	trical Components	Lock / Light Bulbs //	
	E	Lead	hate Sampling	(Y or N) (see Form C)	

Additional Comments:

sample 2.2.1 an

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 506

Doc + Run Date: 9-14-05

Category		Inspected	Observation/Condition			
1 (1 General Property					
	A	General Property Access	/ /	\square		
	В	General Property Drainage	SPDES Outfall (001002003)	1.		
2 (Ceil P	erimeter Components				
	A	Perimeter and Access Roads		-		
	В	Ditches	DRY + VEG	/		
	С	Culverts		1		
	D	Perimeter Fence	Gates/	~		
2	E	Utilities	Elec. Phone jam	~		
3 (Conta	inment Cell				
	A	Surface Cover System	Burrows Z Vegetation V. LODG JUST MOWED	/		
	B Gas Vents (2)		/			
	B' PID Readings (Y or N) Background ppm, @ 20' ppm, @ Vent ppm		(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	~		
	С	Collection Pipe / Cleanout	on Pipe / Cleanout			
	D	Perimeter Drains (4)	ter Drains (4)			
4	Leach	nate Collection Manhole				
	A	Structure	External 🗸 Internal			
	В	Pumps and Plumbing	Pump 1 Hours 1255 Pump 2 Hours 214.1			
	<i>B'</i>	Pump Changeover	(Y or N) Lead Pump Lag Pump			
	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL			
	C Electrical Components Test Pumps (Y or N), Light Bulbs MH Forse Our		:			
	D Manhole Interstitial Space					
	E Conveyance Pipe DRAIM-NO WATER - Liow AIR PERE		1			
	F Influent Pipe $F_{2,0W} = \mathcal{D}_{RIP}$					
	G Confined Space Entry (Y or N) (see Form B)					
				1		

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

Pac +- PAUL Date: 9-14-05

Category		ory	Inspected	Observation/Condition	
5 Building					
	А	Struc	ture	Lock V, Vent , Heater NO GLEW GUTTERS	L
	В	Elect	rical and Telephone	Elec_r Phone_	2
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	6 Leachate Storage System				
	A	A Tank (External) Internal (Yor N) AFTER POOTE Dawn!			
	A' Flow Totalizer		Totalizer	Reading = $\underline{\bigcirc \bigcirc \bigcirc 00}$ gal.	
	B Secondary Containment		ondary Containment	Liquid (Y or N)	1
C Piping Components		g Components	TARE labutations	4	
	D Electrical Components Lock / Light Bulbs / Particle Our		Lock / Light Bulbs / Power Our	(
E Leachate Sampling		hate Sampling	(Yor N) (see Form C) SAMPLED 8-24-05	-	

Additional Comments:

- PUMPER MH DOWN TANK JOWE PUMPED - FINALIZED Toy TECOT 00% + 00% G:\Clients\DANA\01 CP\02 RAF O&M/Forms\OMM Form A.dac Page 2 of 2 synapse

INCIDENTAL INSPECTION REPORT (FORM A- 1) OPERATION, MAINTENANCE AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANTRepresentative: Rog & TRuc Date: 9-14-05					
Catego	ry Inspected	Observation/Condition	1		
1 Insp	pection Overview				
A	Reason for Inspection	RAF GW SPDES (Tox)			
В	Regulatory Inspection	DER DOW	V		
С	Photos Taken	35mm Digital	6		
2 Gro	undwater Monitoring Wells				
A Condition MW-6R, MW-13A, MW-14		MW-6R, MW-13A, MW-14, MW-17, MW-18			
В	Water Levels	(Y or N) (see Form C)			
С	Groundwater Sampling	(Y or N) (see Form D)			
3 Collection Trenches					
A	MH-1	DTW Total: <u>11.55</u>	-		
В	MH-2C (Collection)	DTW Total: <u>12.80</u>	-		
С	MH-2P (Pumping)	DTW Total: <u>14.17</u>	-/		
4 Air	4 Air Stripper				
A	MH-1 - Flow Totalizer	Reading = <u>309473 70</u> gal. Rate: <u></u> gpm			
В	MH-2 - Flow Totalizer	Reading = <u>/ 24.3/ 72_0</u> gal. Rate: gpm			
С	Sump - Flow Totalizer	Reading = Image: Orginal system Image:			
D	Blower Hours	Reading = 22 Hours.			

Additional Comments:

STRIPPER - Ph ALARMS ON

Contacts:

DOMANI Syracuse Office	475.3700	NYSDEC, DOW, Chad Kehoe	793.2554
RAF	733.6230	Evergreen, Tom Gehig (cell)	725.3200
Coolidge Equities, Jessie Bailey	866.7403	Dodge Graphics, Don Zimbler	735.9226
Coolidge Maintenance, Charles Dovi	534.3490 (cell)	Utica Converters, Al Born	733.8974
NYSDEC, DER, Phil Waite	785.2605	Deiorio's, Richard Viti	724.2401
O'Brien and Gere – Martin Kovely	729-1300 (cell)		

0

N

I

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative:	Rac	+ PAUL
Tested Alarm: Y or N		
Date Tested: 9-10	1-0	5

Received Alarm: Y	or N
Date Received:	
Time Received:	Name and the spectrum participant parts

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured: 71, 5" 3, 7"
	14104		Reading: 72.56"/29.92"
2	Tank High Level (100%)		OK
3	Tank Leak		OK
4	Tank 90% Full		OK
5	High Manhole Level		OK
6	Manhole Leak		OK
7	Pipe Leak		OK
8	Tank Low Temperature		OK (USED ICE)
9	Inside Temperature		30
10	Outside Temperature		82
11-15	Not In Use		×
16	Power Off		OK

Reason for Alarm:

Action Taken:

Comments: FOMAGES TRAIN DOULI AND DISCHARE TO SANTARY

D

I
CONFINED SPACE EN OPERATION, MAINTENA	TRY PERMIT (FORM B) NCE, AND MONITORING
REMEDIAL AC 2200 BLEECH UTICA, NE NYSDEC SITE Synapse Representative: <u>Recomplete</u>	TION FACILITY KER STREET EW YORK E NO. 622003 Date: 9/14/05
TO BE COMPLETED BY PROJECT MANAGEI	R POST OUTSIDE SPACE
LOCATION OF WORK (Manhole):	te Collection Manhole
HAZARDS IN THIS CONFINED SPACE: Non	<u>\</u>
DESCRIPTION OF WORK: AMUAL Ins	pection
HAZARDS CREATED BY WORK TO BE DONE:_	None.
OBSERVER: P. Tisher	ENTRY LEADER: R. Crowhton
EMPLOYEES ASSIGNED: P. Faler, R.	Creighton, S. Matthews
ENTRY DATE: <u>117/05</u> ENTRY TIME: 1	:00 EXITTIME: 11:25
OUTSIDE CONTRACTORS WORKING IN AREAS	:
 Have all employees who will enter this space or act a (CIRCLE ANSWER) <i>Ves No</i> a. Medical clearance within the part of the space entry of the space of the space	as standby received the following approvals and training: ast year. y. e been reviewed with all employees involved. type of confined space.
2. Equipment identified by checks (\checkmark) in boxes will be a	available at entrance for emergencies.
Image: Construction of the construc	 personnel in space. 16. Fresh Air Blower and Hose 17. LEL-O₂ Monitor-Alarm 18. Toxic Gas Colorimetric Tubes 19. Toxic Gas Air Monitor 20. Hard Hats 21. Safety Shoes 22. Safety Glasses 23. Full Face Shields 24. Chemical Protective Arm Covers 25. Full Chemical Protective Suit 26. Chemical Protective Boots 27. Chemical Protective Boots 28. Emergency Lights/Flashlights 29. Fire Extinguisher 30. Pre-Entry H&S Briefing 31. Stand-By Employee(s)

All lines that could discharge contaminants into the space have been/will be blanked off or line disconnected and pumping means locked out and tagged. No _____ No _____ N/A

synaps

CONFINED SPACE ENTRY PERMIT (FORM B) OPERATION, MAINTENANCE, AND MONITORING				
REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003				
Synapse Representative. <u>The orong state</u> Date. <u>The construction</u>				
 Space has been/will be cleaned of any toxic residue or atmosphere by	: ,			
5. Moving machinery has been/will be locked out and immobilized. Yes No N/A				
6. Entry and exit to the space are provided by Yes No N/A				
7. Will work to be done in the space introduce contaminants to the space? Yes No N/A				
8. What is the capacity of blowers to be used in cubic feet per minute?	·			
9. Have all affected departments been notified of service interruption? Yes No N/A				
10. Atmospheric gas tests will be conducted by: <u>P. FrSher</u> Readings: <u>195</u> Oxygen <u>195</u> (Not <20% or >22%) Flammability % <u>O%</u> (LEL <10%) Toxic Gas <u>O PPM</u> (< ppr	 n)			
11. Will a continuous monitoring device be used? Yes No Type:				
12. Calibration date of meters used in Items 10 and 11: a				
13. Emergency communications means: 2-Way 🗌 Telephone 🗌 Other 🖾				
14. Additional Comments:				

I have inspected the space to enter and the safety equipment that will be used, and approve employees' entry into the confined space.

Signed Project Manager Site Health and Safety Officer (Approved: 20 Corporate Health and Safety

Page 2 of 2

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 3, Matthews Date: 10-11-05

Ca	tegory	Inspected	Observation/Condition	1		
1	1 General Property					
	A	General Property Access	A A 5			
	B	General Property Drainage	SPDES Outfall (001 002/ 003_/)	ſ		
2	Cell F	Perimeter Components				
	A	Perimeter and Access Roads		\int		
	В	Ditches		h		
-	С	Culverts	1	1		
	D	Perimeter Fence	Gates	1		
-	E	Utilities	Elec. Phone /	1		
3	Cont	ainment Cell				
	A	Surface Cover System	Burrows 100 Vegetation 014			
	В	Gas Vents (2)		1		
	Β'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm			
	С	Collection Pipe / Cleanout		V.		
	D	Perimeter Drains (4)		1		
4	Leac	hate Collection Manhole	A /			
-	A	Structure	External 🧹 Internal 🖉	1		
	В	Pumps and Plumbing	Pump 1 Hours <u>125, 4</u> Pump 2 Hours <u>219</u>			
	B'	Pump Changeover	(Y of M) Lead Pump Lag Pump	1		
	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	i p		
-	С	Electrical Components	Test Pumps' (Y or N), Light Bulbs/	1		
	D	Manhole Interstitial Space		1		
	E	Conveyance Pipe		1		
	F	Influent Pipe		V		
	G	Confined Space Entry	(Y or N) (see Form B)	1		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Mathews

Date: 10-11-05

synapse

Category		ory Inspec	ted	Observation/Condition	1
5	Build	ling			
	Α	Structure		Lock, Vent, Heater	1
1	В	Electrical and Telepl	none	Elec Phone	1
[]	С	Auto Dialer and Con	trols	Test Functions (Y or N) (see Form F)	V
6	6 Leachate Storage System		î	(1)	- <u>-</u>
	Α	A Tank (External)		Internal (Y or N)	1
	A'	Flow Totalizer		Reading = 6000 gal.	
	В	B Secondary Containment		Liquid (Y or N)	
	C Piping Components			1 0	h
	D	D Electrical Components		Lock 1/ Light Bulbs V See note	N.
	Е	Leachate Sampling		(Y or N) (see Form C)	

Additional Comments:

eveling N.E. CARRER Selection Prom 1000 C2 LEENS D Paser

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

S	vnapse	Representative: S. Mutt	Lewis Date: 11-15-05	
Ca	ategory	Inspected	Observation/Condition	1
1	Gene	ral Property		1
	A	General Property Access		1
	В	General Property Drainage	SPDES Outfall (001 002 003)	1
2	Cell F	Perimeter Components		Y
-	A	Perimeter and Access Roads		1./
	В	Ditches		~/
	С	Culverts		V I
	D	Perimeter Fence	Gates_	1
	E	Utilities	Elec Phone	
3	Conta	ainment Cell		3'
	A	Surface Cover System	Burrows	1
	В	Gas Vents (2)		17
	B'	PID Readings	(Y or, N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		
	D	Perimeter Drains (4)		
4	Leac	hate Collection Manhole	P (
-	A	Structure	External V Internal V	
-	В	Pumps and Plumbing	Pump 1 Hours (25.) Pump 2 Hours 214.	\pm
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	1
-	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	./
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	1
	D	Manhole Interstitial Space		./
	E	Conveyance Pipe		
-	F	Influent Pipe		1
	G	Confined Space Entry	(Y or N) (see Form B)	× /

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Ma-

latthee s

Date: 10-11-05

synapse

	Category		ry Inspected Observation/Condit		Inspected Observation/Condition		J
5	Build	ding					
	A	Struc	cture	Lock, Vent, Heater	1		
	В	Elect	trical and Telephone	Elec Phone	1 p		
	С	Auto	Dialer and Controls	Test Functions (Y or:N) (see Form F)	. V		
6	6 Leachate Storage System		Storage System	0			
-	A	Tank	(External)	Internal (Y or N)	1		
-	Α'	Flow	Totalizer	Reading = (200) 00 gal.			
-	В	Seco	ondary Containment	Liquid (Y or N)	Ĺ		
-	С	Pipir	ng Components	1 0	1		
F	D	Elec	trical Components	Lock 1/ Light Bulbs See Note	V.		
1	E	Lead	chate Sampling	(Y or N)/ (see Form C)	V		

Additional Comments:

5 M.E. Corner frey Pin exterior Dung -and horal SEARCH 355 G. Power Phine Thele ain in

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

S	ynapse	Representative: <u>6</u> , Mat	hews Date: 11-15-05	
Ca	ategory	Inspected	Observation/Condition	J
1	Gene	ral Property		
-	A	General Property Access		1
	В	General Property Drainage	SPDES Outfall (001 002 003)	1
2	Cell F	Perimeter Components		
	A	Perimeter and Access Roads		
	В	Ditches		~
	С	Culverts		
	D	Perimeter Fence	Gates	1
	Е	Utilities	Elec Phone	1
3	Conta	ainment Cell		
	A	Surface Cover System	Burrows <u>/U</u> Vegetation <u>/>/<</u>	Ĵ.
	В	Gas Vents (2)		1
-	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		1
	D	Perimeter Drains (4)		\top
4	Leac	hate Collection Manhole	ſ /	
	A	Structure	External V Internal V	\Box
	В	Pumps and Plumbing	Pump 1 Hours [25.] Pump 2 Hours 214.	1
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	/
	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	1
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	V
	D	Manhole Interstitial Space		V.
	E	Conveyance Pipe		1
	F	Influent Pipe		
-	G	Confined Space Entry	(Y or N) (see Form B)	1

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Mathews

Date:_____/-15-05

synapse

Category		ory Inspected	Observation/Condition	J
5	Build	ing		
	A	Structure	Lock V, Vent V, Heater V	
	В	Electrical and Telephone	ElecPhone	\sim
	С	Auto Dialer and Controls	Test Functions (Y or N) (see Form F)	V
6	Leac	hate Storage System		
	A	Tank (External)	Internal (Y or N)	
	A'	Flow Totalizer	Reading = (2200) gal.	
	В	Secondary Containment		$\overline{\mathbf{A}}$
	C Piping Components			T
	D	Electrical Components	Lock // Light Bulbs	3/
	E	Leachate Sampling	(Y or N) (see Form C)	

Additional Comments:

from outerior of trail @ N.E.C. Seperator ZANE on tank panel. 19ht PANER 10

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

12/28/05

	D	C In
Synapse Representative:_	No	Se

S	Synapse Representative: <u>R. Charghton</u> Date: <u>12/28/05</u>							
Ca	tegory	/ Inspected	Observation/Condition					
1	1 General Property							
	A	General Property Access		TV.				
	В	General Property Drainage	SPDES Outfall (001 002 003)					
2	Cell F	Perimeter Components						
	A	Perimeter and Access Roads						
	В	Ditches						
-	С	Culverts						
	D	Perimeter Fence	Gates					
	E	Utilities	Elec Phone	V				
3	Conta	ainment Cell						
	A	Surface Cover System	Burrows Vegetation	∇				
	В	Gas Vents (2)						
	Β'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	V				
	С	Collection Pipe / Cleanout		V				
	D	Perimeter Drains (4)						
4	Leacl	hate Collection Manhole						
	A	Structure	External Internal	T				
	В	Pumps and Plumbing	Pump 1 Hours 214.	V				
	Β'	Pump Changeover	(Y or N) Lead Pump N Lag Pump N					
	B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL					
-	С	C Electrical Components Test Pumps (Y or N), Light Bulbs						
	D	Manhole Interstitial Space		V				
	Е	Conveyance Pipe		1				
	F	Influent Pipe						
	G	Confined Space Entry	ed Space Entry (Y or N) (see Form B)					

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 R. Creighton 2/22

Date:

05

Synapse Representative:

Category		ory	Inspected	Observation/Condition	1
5	Build	ling			
	А	Struc	sture	Lock, Vent, Heater	
	В	Electrical and Telephone		Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	L
6	6 Leachate Storage System				
	A	Tank	(External)	Internal (Y or N)	
	A'	Flow	Totalizer	Reading = 40.90 gal.	
	В	Seco	ndary Containment		
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Y Light Bulbs Need Light Balbs on Tanke Pan	
	E	Leac	hate Sampling	(Y or N) (see Form C)	V

Additional Comments: Stops need replacement 40 rimeter

APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

DOMANI Representative:	Ras + Paul
Tested Alarm: Y or N	
Date Tested: 9-14	1-05

Received Alarm: Y	or N
Date Received:	(
Time Received:	

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured: 71, 5 / 30, 7 "
	41044		Reading: <u>72.56"/29</u> .92"
2	Tank High Level (100%)		ØK
3	Tank Leak		OK
4	Tank 90% Full		OK
5	High Manhole Level		OK
6	Manhole Leak		OK
7	Pipe Leak		OK
8	Tank Low Temperature		OF (USED lee)
9	Inside Temperature		80
10	Outside Temperature		82
11-15	Not in Use		· · · · · · · · · · · · · · · · · · ·
16	Power Off		ŐΚ

Reason for Alarm:

Action Taken:

Comments: Foresto Tare Down Ann Discharge To Service

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5, M aff hows Tested Alarm: <u>Y or N</u> Date Tested:

Received Alarm: Y or N Date Received: 4-12-05

Time Received: <u>(0;00</u>

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured:
			Reading:
2	Tank High Level (100%)		
3	Tank Leak		
4	Tank 90% Full		
5	High Manhole Level		
6	Manhole Leak		
7	Pipe Leak	\prec	
8	Tank Low Temperature		
9	Inside Temperature		
10	Outside Temperature		
11-15	Not In Use		
16	Power Off		

- False Alarm-Reason for Alarm: Reviewed I SATE ON-line (4:12.05) - No Indication of alarm condition. Site on 4,13.05. Opened value from 2° vent pipe. pressure and a few drops of H20 came out. Action Taken: Confisinment pipe. pressure and a NO -leak noted SUSTem Γ'n Comments: Flarm Cond han likdi ensation NP. CO N On SEASOR

Page 1 of 1

APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

synapse

December 15, 2005

Mr. R.D. Hoffman Industrial Wastes Chemist Oneida County Department of Water Quality and Water Pollution Control 51 Leland Avenue, PO Box 442 Utica, New York 13503-0442

RE: Semi-Annual Report Utica Holding Company 2200 Bleecker Street, Utica, New York Permit No. GW-050

Dear Mr. Hoffman:

On behalf of Utica Holding Company (UHC), Synapse submits this letter in response to your October 10, 2005 letter request for submittal of a Semi-Annual Report for the Groundwater Discharge Permit No. GW-050 for the above referenced property.

This correspondence provides the volumes for the following discharge event that occurred during the May 31st through November 30th 2005 reporting period:

• 2,810 gallons were discharged on September 14, 2005.

If you require further information, please contact me directly at 315.475.3700.

Regards,

Synapse Risk Management, LLC

Roger Cre ighton Senior Associate

Enclosures

cc: Carl S. Grabinski, Esq., Utica Holding Company

SYNAPSE RISK MANAGEMENT LLC

400 University Building | 120 East Washington Street | Syracuse, NY 13202 | (315) 475-3700T | (315) 475-3780F | www.synapseriskmanagement.com

ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

Joseph A. Griffo County Executive

Steven P. Devan, P.E. Commissioner

51 Le (315) 798-5656

51 Leland Ave, PO Box 442, Utica, NY 13503-0442 -5656 wpc@ocgov.net FAX

September 13, 2005

MR. ROGER CREIGHTON SYNAPSE RISK MANAGEMENT LLC 400 UNIVERSITY BUILDING 120 EAST WASHINGTON STREET SYRACUSE NY 13202

4 20ng

FAX 724-9812

Re: Utica Holding Company Storm Sewer, Permit No.GW-050

Dear Mr. Creighton:

Analyses for sample LT-13 faxed on 09/13/05, representing 2,810 gallons of effluent water, show compliance with discharge limits specified in Permit No. GW-050 for the Utica Holding Company Storm Sewer Project. The wastewater is acceptable for discharge.

Sincerely,

THE ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

R.D. Hoffman Industrial Wastes Chemist

cc: Synapse FAX (315)-475-3780

	The information contained in this communication is CONFIDENTIAL, may be attorney-client privileged, may constitute inside information and is intended for the use of the addressee. Unauthorized use, disclosure or						
S FOR REVIEW	copying is strictly prof immediately notify us a	nibited and may be unlawful. If you at 315.475.3700.	have\ received this co	ommunication in error, please			
D PLEASE COMMENT	To:	R.D. Hoffman	From:	Roger Creighton			
PLEASE REPLY	Company:	OCDWQ&WPC	Date:	September 13, 2005			
ORIGINAL TO FOLLOW	Fax Number:	(315) 724-9812	Total Pages:	7			
VIA US POSTAL SERVICE	Phone Number:	(315) 798-5656	Reference No:				
□ YES □ NO	Subject:		cc:				
	Mr. R.D. Hoffman,						
	Please find attached an Bleecker Street, Utica, request your review and Thank You.	alytical results for the effluen New York, former site of the d faxed acceptance to releas	t water sample (L Chicago Pneumat e 2,810 gallons or	T-13) collected at, 2200 ic Tool Company. We n September 14, 2004.			
	Regards,						
	Roger Creighton						

RECEPT22 AUG 2 2 2005

Roger Creighton Synapse Risk Management, LLC 120 East Washington Street Suite 400 Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO# 001-05-02

Laboratory Analysis Report

For

Synapse Risk Management, LLC

Client Project ID:

Leachate Sampling / 2200 Bleecker St., Utica, NY

LSL Project ID: 0513460

Receive Date/Time: 08/10/05 14:18

Project Received by: RD

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirey. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

Date:

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

Life Science Laboratories, Inc

-- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC Syracuse, NY

Sam	ple ID:	LT-13	- God A I we approved the second			LSL Sample ID:	0513460-	001
Loca	tion:	2200 Bleecker St., Uti	ica					
Sam	nled:	08/10/05 11:30	Sampled By: S	М				
Sam	nla Matrix.	NIDW						
Sam		141 YY		<u></u>		n		A
Anal	ytical Meth	100		Decult	Tinita	Prep	Analysis Data & Timo	Analyst
	Analyte			Result	Units	Date	Date & Time	
(I) E	PA 160.2 1	otal Suspended Solids						
	Total Sus	pended Solids @ 103-105 C		<4	mg/l		8/11/05	MM
(5) E	PA 1664 O	il + Grease by LLE						
	Oil & Gre	ease		<5	mg/l		8/16/05	MLL
<i>(1)</i> E	EPA 200.7 P	riority Pollutant Metals						
	Cadmium			< 0.01	mg/l	8/15/05	8/15/05	DP
	Chromiu	n		< 0.01	mg/l	8/15/05	8/15/05	DP
	Copper			0.037	mg/l	8/15/05	8/15/05	DP
	Lead			< 0.01	mg/l	8/15/05	8/15/05	DP
	Nickel			< 0.01	mg/l	8/15/05	8/15/05	DP
	Zinc			0.073	mg/l	8/15/05	8/15/05	DP
(1) F	PA 608 PC	R's						
	Aroclor-1	016		<01	119/1	8/16/05	8/24/05	BW
	Aroclor-1	221		<0.1	ug/1	8/16/05	8/24/05	BW
	Aroclor-1	232		<0.1	ug/l	8/16/05	8/24/05	BW
	Aroclor-1	242		< 0.1	ug/l	8/16/05	8/24/05	BW
	Aroclor-1	248		< 0.1	ug/l	8/16/05	8/24/05	BW
	Aroclor-1	254		<0.1	ug/l	8/16/05	8/24/05	BW
	Aroclor-1	260		<0.1	ug/l	8/16/05	8/24/05	BW
	Surrogate	(DCB)		108	%R	8/16/05	8/24/05	BW
(1) F	DA 608 Des	ticides						
(1) L	Alduin	Sucides		<0.02	ug/1	8/16/05	8/24/05	BW
	alaha BH	C		<0.02	ug/1	8/16/05	8/24/05	BW
	hora-BHC			<0.02	110/1	8/16/05	8/24/05	BW
	dolta-BHC	r ***		<0.02	119/3	8/16/05	8/24/05	BW
	ganuna_R	HC (Lindone)		< 0.02	119/1	8/16/05	8/24/05	BW
	Chlordan	e Total		<0.02	119/1	8/16/05	8/24/05	BW
	4.4'-DDD	c, xotai		< 0.04	ug/l	8/16/05	8/24/05	BW
	4.4'-DDF			< 0.04	ug/1	8/16/05	8/24/05	BW
	4.4'-DDT			< 0.04	ug/l	8/16/05	8/24/05	BW
	Dieldrin			< 0.04	ug/1	8/16/05	8/24/05	BW
	Endosulfa	in I		< 0.02	ug/l	8/16/05	8/24/05	BW
	Endosulfa	ın II		< 0.04	ug/l	8/16/05	8/24/05	BW
	Endosulfa	in sulfate		<0.04	ug/l	8/16/05	8/24/05	BW
	Endrin			< 0.04	ug/l	8/16/05	8/24/05	BW
	Endrin al-	dehyde		< 0.04	ug/l	8/16/05	8/24/05	BW
	Heptachlo)r		< 0.02	ug/l	8/16/05	8/24/05	BW
	Heptachlo	or epoxide		< 0.02	ug/l	8/16/05	8/24/05	BW
	Methoxyc	hlor		121	ug/l	8/16/05	8/24/05	BW
	Toxaphen	ie		< 0.02	ug/l	8/16/05	8/24/05	BW
	Surrogate	e (DCB)		81	%R	8/16/05	8/24/05	BW
(1) F	PA 624 Vo	latiles						
/ L	Renzene	******		<1	ug/l		8/17/05	BD
	Bromodia	hloromethanc		<1	ug/1		8/17/05	BD
	Bromofor	Th		<1	ug/l		8/17/05	BD
	Bromome	ethane		<1	ug/l		8/17/05	BD
		e a cara any any any any any any any any any an						D

Life Science Laboratories, Inc.

Page 2 of 4 8/24/05

Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

LABORATORY ANALYSIS REPORT --...

Synapse Risk Management, LLC Syracuse, NY

Sampled By: SM

LSL Sample ID:

0513460-001

Sample ID: LT-13 Location: 2200 Bleecker St., Utica

08/10/05 11:30

Sampled:

Sample Matrix: NPW

Ar	nalytical Method			Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 624 Volatiles					
	Carbon tetrachloride	<1	ug/l		8/17/05	BD
	Chlorobenzene	<1	ug/l		8/17/05	BD
	Chloroethane	<1	ug/l		8/17/05	BD
	2-Chloroethylvinyl ether	<10	ug/l		8/17/05	BD
	Chloroform	<1	ug/l		8/17/05	BD
	Chloromethane	<1	ug/l		8/17/05	BD
	Dibromochloromethane	<1	ug/l		8/17/05	BD
	1,2-Dichlorobenzene	<1	ug/l		8/17/05	BD
	1,3-Dichlorobenzen e	<1	ug/l		8/17/05	BD
	1,4-Dichlorobenzene	<1	ug/l		8/17/05	BD
	1,1-Dichloroethane	<1	ug/l		8/17/05	BD
	1,2-Dichloroethane	<1	ug/l		8/17/05	BD
	1,1-Dichloroethene	<1	ug/l		8/17/05	BD
	trans-1,2-Dichloroethene	<1	ug/l		8/17/05	BD
	1,2-Dichloropropane	<1	ug/l		8/17/05	BD
	cis-1,3-Dichloropropene	<1	ug/l		8/17/05	BD
	trans-1,3-Dichloropropene	<1	ug/l		8/17/05	BD
	Ethyl benzene	<1	ug/l		8/17/05	BD
	Methylene chloride	<1	ug/l		8/17/05	BD
	1,1,2,2-Tetrachloroethane	<1	ug/l		8/17/05	BD
	Tetrachloroethene	<1	ug/l		8/17/05	BD
	Toluene	<1	ug/l		8/17/05	BD
	1,1,1-Trichloroethane	<1	ug/l		8/17/05	BD
	1,1,2-Trichloroethane	<1	ug/l		8/17/05	BD
	Trichloroethene	<1	ug/l		8/17/05	BD
	Trichlorofluoromethane (Freon 11)	<]	ug/l		8/17/05	BD
	Vinyl chloride	<1	ug/l		8/17/05	BD
	Xylenes (Total)	<1	ug/l		8/17/05	BD
	Surrogate (1,2-DCA-d4)	86	%R		8/17/05	BD
	Surrogate (Tol-d8)	111	%R		8/17/05	BD
	Surrogate (4-BFB)	101	%R		8/17/05	BD
(1)	TDA 625 Sami Volutilar					
(1)	LFA 025 Senii- Volatikes	-5		8/12/05	8/15/05	CRT
	Acenaphthelec	<5	ug/i	8/12/05	8/15/05	CRT
	Acenaphinyteae	<5	ug/l	8/12/05	8/15/05	CRT
	Anthracene	~20	ug/1	8/12/05	8/15/05	CRT
	Benziaine	<20	ug/l	8/12/05	8/15/05	CRT
	Benzo(a)antiracene	<5	ug/i	8/12/05	8/15/05	CRT
	Benzo(b)thtoranthene	<5	ug/l	8/12/05	8/15/05	CRT
	Benzo(k)tiuorantnene	<2	ug/l	8/12/05	8/15/05	CRT
	Benzo(ghi)perviene	<5	ug/i	8/12/05	8/15/05	CRT
	Benzo(a)pyrene	<5	ug/i	8/12/05	8/15/05	CRT
	4-Bromophenyl-phenylether	<>>	ug/i	8/12/05	8/15/05	CRT
	Butyibenzyipathalate	<>	ug/1	8/12/05	8/15/05	CRT
	bis(2-Chlomethell) the	<>>	ug/l	8/12/05	8/15/05	CRT
	bis(2-Chloroethyi)ether	<>>	ug/i	8/12/05	8/15/05	CRT
	Dis(2-Chlorolsopropyl)ether	<>	ug/i	8/12/05	8/15/05	CRT
	4-Unioro-5-metayipnensi	~>	ug/1	0/12/02		Page 3 of 4

Life Science Laboratories, Inc.

8/24/05 Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

-- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC Syracuse, NY

LSL Sample ID:

0513460-001

Sample ID:LT-13Location:2200 Bleecker St., UticaSampled:08/10/05 11:30Sampled:Sampled By: SM

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 625 Semi-Volatiles					
2-Chloronaphthalene	<5	ug/l	8/12/05	8/15/05	CRT
2-Chlorophenol	<5	ug/l	8/12/05	8/15/05	CRT
4-Chlorophenyl-phenylether	<5	ug/l	8/12/05	8/15/05	CRT
Chrysene	<5	ug/l	8/12/05	8/15/05	CRT
Dibenz(a,h)anthracenc	<5	ug/l	8/12/05	8/15/05	CRT
Di-n-butylphthalate	<5	ug/l	8/12/05	8/15/05	CRT
1,2-Dichlorobenzene	<5	ug/l	8/12/05	8/15/05	CRT
1,3-Dichlorobenzene	<5	ug/l	8/12/05	8/15/05	CRT
1,4-Dichlorobenzene	<5	ug/l	8/12/05	8/15/05	CRT
3,3'-Dichlorobenzidine	<10	ug/l	8/12/05	8/15/05	CRT
2,4-Dichlorophenol	<5	ug/l	- 8/12/05	8/15/05	CRT
2,4-Dimethylphenol	<5	ug/l	8/12/05	8/15/05	CRT
Diethylphthalate	<5	ug/l	8/12/05	8/15/05	CRT
Dimethylphthalate	<5	ug/l	8/12/05	8/15/05	CRT
2,4-Dinitrophenol	<10	ug/l	8/12/05	8/15/05	CRT
2,4-Dinitrotoluene	<5	ug/l	. 8/12/05	8/15/05	CRT
2,6-Dinitrotoluene	<5	ug/l	8/12/05	8/15/05	CRT
Di-n-octylphthalate	<5	ug/l	8/12/05	8/15/05	CRT
bis(2-Ethylhexyl)phthalate	10	ug/!	8/12/05	8/15/05	CRT
Fluoranthene	<5	ug/l	8/12/05	8/15/05	CRT
Fluorene	<5	ug/l	8/12/05	8/15/05	CRT
Hexachlorobenzene	<5	ug/l	8/12/05	8/15/05	CRT
Hexachlorobutadiene	<5	ug/l	8/12/05	8/15/05	CRT
Hexachlorocyclopentadien 2	<10	ug/i	8/12/05	8/15/05	CRT
Hexachloroethane	<5	ug/l	8/12/05	8/15/05	CRT
Indeno(1,2,3-c,d)pyrene	<5	ug/l	8/12/05	8/15/05	CRT
Isophorone	<5	ug/l	8/12/05	8/15/05	CRT
2-Methyl-4,6-dinitrophenol	<10	ug/l	8/12/05	8/15/05	CRT
Naphthalene	<5	ug/l	8/12/05	8/15/05	CRT
Nitrobenzene	<5	ug/l	8/12/05	8/15/05	CRT
2-Nitrophenol (o-Nitrophenol)	<5	ug/l	8/12/05	8/15/05	CRT
4-Nitrophenoi	<5	ug/l	8/12/05	8/15/05	CRT
N-Nitrosodimethylamine	<5	ug/l	8/12/05	8/15/05	CRT
N-Nitrosodiphenylamine	<5	ug/l	8/12/05	8/15/05	CRT
N-Nitroso-di-n-propylamine	<5	ug/l	8/12/05	8/15/05	CRT
Pentachlorophenol	<10	ug/l	8/12/05	8/15/05	CRT
Phenanthrene	<5	ug/l	8/12/05	8/15/05	CRT
Phenol	<5	ug/l	8/12/05	8/15/05	CRT
Pyrene	<5	ug/l	8/12/05	8/15/05	CRT
1,2,4-Trichlorobenzene	<5	ug/l	8/12/05	8/15/05	CRT
2,4,6-Trichlorophenol	<5	ug/l	8/12/05	8/15/05	CRT

Analysis performed a: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

LSL

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

Method	Surrogate(s)	Water Limits, %R	SHW <u>Limits, %R</u>
EPA 504	ТСМХ	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA:
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	80-120	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,E-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Dodecane	40-110	40-110
DOH 310-14	Dodecane	40-110	40-110
DOH 310-15	Dodecane	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/I = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

	0
\mathcal{C}	2
Ċ)

×	Y***	s samples in a timely manner IN PEN ONL	to proces	n order t	filled out i	AUST be	istody Record N	Shain of Cu	s of this (*** All area	
т	0.12	ed Intact: Y N verteer	Receiv				lethod:	Shipment N		C-O-C:	Containers this
		or Lab By: Killing and the second s	Rec'd 1				ed By:	Relinquish	r	les:	Temp. of samp
		ed By:	Receiv		T.	NINDO	ed By:	Relinquish	T=-		
		ed By:	Receiv		Provent and a second se	the state	N: J. Kala	Sampled B			
Time	Date		ransfers	istody Ti	, CL	11/					LSL use only:
									4		Trip Blank
nt Cr		nll ic TSS by EPA Method 160.2	250-r		-	R	Grab	1130			LT-4-1 MM
21 160	- Mr	er Oil and Grease by EPA Method 1664	Amb		HCI	X	Grab	961		Same and my	1-J-4-4- MM
a. 1 . C		er PCBs/Pesticides by EPA Method 608	1-Lit Amb	<u> </u>		Ś	Grab	1130		U-13	1-71-1-1M
6 10 -		in Select Metals by EPA Method 200.7 (Cd, Cr, Cu, Pb, Ni, Zn)	plas		HNO3	Ň	Grab	(136		1-1-5	1-1-1-4- MN
- 154		er SVOCs by EPA Method 625	1-Lit Amb		-	Ś	Grab	1170		5-3	
sat N(:		WOCs by EPA Method 624	40 n voa	2	HCI	Ś	Grab	1130	8-10-2	Jun 13	H-++- /0
LSL ID#	Preserv Check	Analyses	size/t	# 0	Added	Matrix	grab/comp	Time	Date	ifications	Ident
		App. 200	ntainara		Drocory		Type	Sample	Sample	's Sampla	Client
		oject Number:	LSL Pr	\prec	St. Utica. N	Bleecker S	ampling / 2200 E	Leachate S	e ID	ect ID/Client Sit	Client Proj
		DANA 001-05-02				com	riskmanagemen	l@synapse	rcreightor		Email:
		ization or P.O. #	Autho		08/	: 475-37	Fax		475-3700		Phone:
D						: 13202	diz Ziponio Loo	, NY	Syracuse		City/State:
		eeded or Special Instructions:					Street Suite 400	ashinaton S	120 F W		Street
	may apply	2-Day* [7-Day* []					5	eignton	Roger Cr		Name.
I Charges	*Additiona	/ Next Day* 3-Day *	14 DA							tress:	Report Add
2014 C 1017 1		Pre-Authorized	Norma				anna a anna a chuir anna anna ann ann ann an tarthachta ann ann ann ann ann ann ann ann ann a	Andreas Look and an of the Works of Marine - W	AND A RECEIPTION OF THE PARTY O	45-1301	Fax: 315-4
		ound Time	Turna							45-1105	Phone: 315-4
		585-968-2640	Fax:		85-728-2711	Fax: 5		-388-4061	Fax: 315	NY 13057	E. Syracuse,
		585-968-2640	Phone:		85-728-3320	Phone: 5		-388-4476	Phone: 315	ıt Drive	5854 Butternu
		Y 14727	Cuba. N		NY 14572	Wayland,		n, NY 13694	Waddingto	ab.	LSL Central L
		ithern Tier Lab.	LSL Sol 30 East	x 424	er Lakes Lab In St., PO Boy	LSL Fing 16 N. Mai		Lab. /rence Ave.	LSL North 131 St. Law		
		RD	RECO	TODY	OF CUS	HAINC	C				LSL
		mes, mc.	Jiarc	Lab							
			ノミンナン	2	5))	0					

APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Repr	esentative	Ricre	ulton.		_ Date:	4/27/	05	
Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.51	465.47	3.93	461.54	6.58	8:50	
MW-13A	10.92	10.71	469.23	2.72	466.51	8. 19	7:00	
MW-14	13.00	12:17	478.37	3.24	475,13	9,75	7:10	
MW-17	11.25	11.25	466.02	i , zo	454.82	0.05	9:15	
MW-18	11.73	11.70	475.96	4,90	471.06	08.2	9:20	
SCT CO-1		6.31	472.30	5.95	466,45		9:22	
SCT CO-2		8:51	473.42	7,70	465.72		9:25	
SCT CO-3		4.46	471.21	3.61	463.60		9:28	
NCT CO-1			464.70	DRY			9:17	
MH-2 (Collection)	12.80		465.31	5.11	454,16		9:18	

Notes:

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

MW = Monitoring Well
 SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations are Approximate)

7) MH = Manhole

General Comments:

WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>5. Matthews</u> Date: 10-20-05

Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.50	465.47	4.32 4766	461.15	6.18	9:00	
MW-13A	10.92	11,07	469.23	4,06	465.17	7.01	9:10	
MW-14	13.00	12,80	478.37	3,90	474,47	8.90	1:15	
MW-17	11.25	HZS	466.02	li.Ze	455.00	:05	05.19	
MW-18	11.73	11.79	475.96	6.30	469.66	5.49	9:25	
SCT CO-1		630t	472.30	Dry			9:27	Day
SCT CO-2		8,50 -	473.42	1.10			9-29	
SCT CO-3		4,45	471.21	Dry			9:30	Day
NCT CO-1			464.70	Dry			9:22	
MH-2 (Collection)	12.80		465.31	12.67	452.64	0.13	9:23	

Notes:

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point

at the highest part on the inner 2-inch PVC riser pipe.

2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

3) MW = Monitoring Well

4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations areApproximate)

7) MH = Manhole

General Comments:

VOCS /PEBS colleded 10-20-05 Is collected 10-21-05

synapse

APPENDIX E GROUNDWATER SAMPLING LOGS -- FORM E

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

			OPERATI	ON, MAINT	ENANCE, AN	OG (FORM ID MONIT(ME) DRING	
				REMEDIAL 2200 BLE UTIC/ NYSDEC	ACTION FA EECKER STR A, NEW YORI SITE NO. 622	CILITY EET K 2003		
Synaps	e Repres	entative	E. Charght	<u>or.</u> [Date: <u>427</u>	105	V	Vell Number: <u>MW- BA</u>
				AIR I	MONITORING			
PID Mo	del:	J.J.F.	Ba	ackground:	NA	ppm		At Well <u>MA</u> ppm
,				WEI	L PURGING			
Purge V	Volume				Purge Me	thod		
TD = To	otal Depti	n of Well	(from Form C))	Bailer Typ	e: Reusable	e (Disposable Dedicated
WL = W	ater Level	Depth (fr	om Form C)		Actual Vol	ume Genera	ated	
#VOL =	Number o	of Well Vo	olumes to Be Pu	rged (3-9)		Gallons		
Purge V	luma Ca		den ide	לי דיי דיי		202	21 7	
10	olume Go	lculation	1: (10131	- <u>dim ((dim</u>) X		X	= 17	Gallons
(for	2" diamete	lculatior er well)	$\frac{1}{TD (ft.)}$	- <u>2 / / 2</u>) × WL (ft.)	(<u>.163</u> Vol/ft	× <u> </u>	Purge	<u> </u>
(for	2" diamete	alculation er well)	n: (<u>1071)</u> <i>TD (ft.)</i> FIE	<i>WL (ft.)</i> WL (ft.)	C <u>163</u> Vol/ft. ETER MEASU	X JANA #VOLS	Purge	✓ Gallons Vol. (Vol/ft = 0.163 for 2"OD)
(for	2" diamete Vol. No.	Temp (°C)	1: (<u>TD (ft.)</u> FIE Conductivity (mS/cm)	Water Water (ft.)	Line Contract Contrac	X UNCLS	Purge	J Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time	Vol. No.	Temp: (°C)	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D, L0	Water Depth (ff.) JLD PARAM	C Vol/ft. ETER MEASU Dissolved Oxygen (mg/L) VO, ()	X UREMENT Turbidity (NTU)	Purge	J Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time	Vol. No.	Temp: (°C) 10.2	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D. 60	$\frac{2472}{WL (ft.)}$ LD PARAM Water Depth (ft.) 3.440 5.29	C Vol/ft. ETER MEASU Dissolved Oxygen (mg/L) VO, 0 10 - 0,5	X UREMENT Turbidity (NTU) 60 67	Purge	J Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time 11:19 11:14	Vol. No.	Temp: (°C) 10.9	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D. 60 0. 629 0. 672	$\frac{2472}{WL (ft.)}$ LD PARAM $\frac{Water}{Depth}$ (ft.) 3.445 5.29 8.47	(x <u>3.13</u> #VOLS IREMENT Turbidity (NTU) 60 67 336	Purge	J Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time 11:14 11:21	Vol. No.	Temp: (°C) 10.5	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D. 60 0: 629 0: 642	- <u>2472</u>) × <u>WL (ft.)</u> LD PARAM Water Depth. (ft.) <u>3,46</u> <u>5,729</u> 8,47	(x <u>3.13</u> #VOLS IREMENT Turbidity (NTU) 60 67 336	Purge	Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time 11:19 11:14 11:21	Vol. No.	Temp: (°C) 10.9 10.5	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D. 60 0. 629 0. 648	- <u>2472</u>)× <u>WL (ft.)</u> LD PARAM Depth (ft.) <u>3,46</u> <u>5,29</u> <u>8,47</u>	C ETER MEASU Dissolved Oxygen (mg/L) PD, 0 10, 05 11, 46 10, 54	$\frac{331}{400}$	Purge PH (NA)* 6.8 6.7 6.7 1.3	Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations
(for Time 11:14 11:24 01:25 12:35	Vol. No.	Temp: (°C) 10.9 10.5	1: (<u>1074</u> <u>TD (ft.)</u> FIE Conductivity (mS/cm) D, 60 0, 629 0, 648	- <u>2472</u>)× <u>WL (ft.)</u> LD PARAM Water Depth (ft.) <u>3</u> ;46, <u>5</u> ;29 <u>8</u> :47	(x <u>JAN</u> #VOLS IREMENT Turbidity (NTU) 60 67 336 49	Purge	Gallons Vol. (Vol/ft = 0.163 for 2"OD) Observations

WELL SAMPLING

Sample ID: MW-L3A (11:20)

Receiving Lab (Chain of Custody):_____

General Notes:

			GROU OPERATI	NDWATER ON, MAINT	SAMPLING L ENANCE, AN	OG (FORM D MONITO	1 E) DRING	
				REMEDIAL 2200 BLE UTICA NYSDEC	ACTION FAC EECKER STR A, NEW YORK SITE NO. 622	CILITY EET (2003		
-	e Repres	entative	f. Creight	<u>on [</u>	Date: 4/21	10.5	V	Nell Number: <u>MW- 🕌</u>
Ma		NA	D	AIR				ALLAN MA
10100	Jei	3 7 7	D					At Well ppm
urge \	luma			AAET	L PURGING	thod		
TD = Tc	tal Deoth	n of Well	(from Form C	.)	Bailer Type	e: Reusable	\times	Disposable Dedicated
WL = Wa	ater Level	Depth (fr	om Form C)	/	Actual Vol	ume Genera	ited	
# VOL =	Number o	of Weil Vo	lumes to Be Pu	urged (3-9)		Gallons		
Purge V	olume Ca	Iculation	$\frac{12.99}{TD(#)}$	- <u>3.47</u>) x	. <u></u>	x 4-68	= 5	$\frac{10}{100}$ Gallons
(101 2	<u>ulanie</u> te	<u>ven</u>	FIE	LD PARAM	ETER MEASU	REMENT	ye	(VOI) (VOI) $(VOI$
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
NO	1	@1)	0,57	4.25	13.20	14	6.2	
10:05	2	$\mathcal{T}_{\cdot}G$	0.55	£83	14.8	33	67	
10:15	(10	7.1	0.56	10.67	14,90	65	6.8	
04-28	35							and a star part of the design of the star and a star part of the star and a star of the star a star and the
1045		5.2	0,49	- B. Z.	13.11	23	7.2	
) ,				WEI	LSAMPLING			
			1 1	44 L L	L OAME LING			
Sample	D: <u>PN</u>	1-1+	(10:35)	Rece	iving Lab (Cha	ain of Cust	ody):	
Genera	al Notes:	OV€	rest hal	it have				
Some	Juni Po	w.K. n	e hottom	of Ba	4.5			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Deres Velues			WEL	L PURGING			
TD - Total De	eth of Well	(from Form C)	١	Bailer Typ	<u>atnoa</u> e: Rousabla	X	Disposable Dedic
WL = Water Lev	el Depth (fr	om Form C))	Actual Vol	ume Genera	ted	
# VOL = Numbe	er of Well Vo	olumes to Be Pu	rged (3-9)		Gallons		
Purge Volume	Calculation	1: (10.5) -	- <u>393</u>)×		x <u>3.15</u>	=	Gallons
(for 2" diam	eter well)	<i>TD (ft.)</i> FIE	LD PARAM	ETER MEASU	IREMENT	Purge	Vol. $(Vol/ft = 0.163 \text{ for } 2^{\prime\prime})$
			a madala a si a ta		The second second second	ann Mengelee	
Time Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
13:30 1	10.6	,244	4.22	11.23	71000 .	6.6	
13:42 2	10.5	,611	6.91	H,Zð	>1000	6.5	
13:57 3	9,9	+635	9.94	11.60	834	65	
1100	10.6	.561		10.80	221	6.8	
			WEL	L SAMPLING			
Ą	NWZ C.D.	melmen (10	Land				
Sample ID: <u>I</u>	111-51	10/10/11	Rece	iving Lab (Ch	ain of Cust	ody):	

Synapse	e Repres	sentative	E. Creat	<u>bon</u> [Date: 427	105	\	Well Number: <u>MW- 🖏</u>
		A 1		AIR	MONITORING			
PID Mod	del:	N#	Ba	ackground:	N/AF	opm		At Well <u>JJA</u> p
				WEL	L PURGING			
Purge V	/olume				Purge Me	thod	1.1	
TD = To	otal Dept	h of Well	(from Form C)	Bailer Typ	e: Reusable		Disposable Dedic
₩L = ₩a	Number (Depth (Tr of Well Vc	om Form C) olumes to Re Pu	irded (3-9)	<u>Actual Vol</u>	Gallons	ated	
Purge V	olume Ca	alculation	n: (<u>]].70</u>	- <u>+,9≤</u>) ×	.163	x24	= 3.	🗄 Gallons
(for 2	2" diamete	er well)	TD (ft.)	WL (ft.)	Vol/ft.	#VOLS	Purge	Vol. (Vol/ft = 0.163 for 2'
again with the first	Sum prover and	- Berner March				Low set to a		
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ff.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
11:53	1	2.5	. 7i7	.5.71	12.92	51	6.7	
12:01	2	7,7	1233	8.73	13.10]]]	6,8	
	200	7.4	,734	7.21	12.89	188	0.8	
12:13		1 4 1	,737		12.68	27	7.2	
12:13		18.4				1	A 1	
12:13 all 15		8.4						
12:13		8.4						

· •

synapse

GROUNDWATER SAMPLING LOG (FORM E) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synaps	e Repres	entative	S. Matthew	ا خر	Date: <u>76-2</u> 2	0-05	V	Vell N	umber: <u>MW-</u>	GR
		an a		AIR M	MONITORING					
PID Mo	del:		Ва	ackground:	ppm			А	t Well	ppm
<u> </u>			0	WEL	L PURGING				·····	
Purge \	<u>/olume</u>				Purge Me	thod				
TD = Tc	otal Depth	n of Well	(from Form C)	Bailer Type	e: Reusable		Dispos	sable De	edicated
WL = Wa	ater Level	Depth (fr	om Form C)		Actual Volu	ume Genera	ated			
# VOL =	Number o	of Well Vo	olumes to Be Pu	irged (3-9)	3	Gallons				
Purge V	olume Ca	lculation	1: (<u>10.50</u>	- <u>4.32</u>) x	.163 = 1.00	x <u>3</u>	=		Gallons	
(for)	2" diamete	er well)	<i>ΤD (π.)</i> FIE	LD PARAM	ETER MEASU	REMENT	Purge	VOI.	(VOI/ft = 0.163 fc	r 2" ()
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)		Observations	
1015	Inst-al	17.2	:355		7.97	512	6,60			
1070	1	17.9	394	6.35	8.08	320	6.70			
1045	Z-	17.4	3952	6.85	9,27	233	10.72	,		
1100	3	11.7	379	6.75	8.16	350	61.09			
<u>, , , , , , , , , , , , , , , , , , , </u>				<u> </u>	- 11 h.d	4				
L	1	<u> </u>					<u></u>			
				WEL	L SAMPLING	• <u>_</u>	· <u>····</u>			
Sample	ID: 1	10-61	2	Rece	iving Lab (Cha	ain of Cust	ody):			
0							d I			
Genera	ii Notes:					<u> </u>				
	10	5/17/5/) & Dun	(nun 1020	05 1 D-000	#1) #05) CI	locket	$\mathcal{D}_{r,r}$	m Mon-GR	
	n	stals	collected	10-21-0	5			-;-,-		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synaps	e Repres	entative:	5 Matthe	<u></u> [Date: <u>10-20</u>	0-05	V	Vell Ni	umber: <u>N</u>	1W-13A
		reall.Cort.County rate anticipa i de		AIR	ONITORING					
PID Mo	del:		Ba	ackground:	ppm			At	Well	ppm
	ang pang banda ang pang bang bang bang bang bang bang bang b			WEL	L PURGING					
Purge	<u>/olume</u>				Purge Me	thod			a particular and the second second second	
TD = To	otal Depth	n of Well	(from Form C)	Bailer Type	Bailer Type: Reusable Disposable				
WL = Wa	ater Level	Depth (fr	om Form C)		Actual Vol	ume Genera	ated	The second second		
#VOL=	Number c	of Well Vo	lumes to Be Pu	ırged (3-9). 7, 2	3.42	Gallons				
Purge V	olume Ca	Iculation	(11.07	- <u>4.06</u>) x	.163 = 1,14	x <u>3</u>	= <u>3.4</u>	<u></u>	Gallons	
(for	2" diamete	r well)	TD (ft.)	WL (ft.)	Vol/ft.	#VOLS	Purge	Vol.	Vol/ft = 0.1	63 for 2" OD)
						17 TALE 14 1				
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)		Observat	ions
1115	Instal	17.4	.405		8.70	- 8	7.14			
1130		18,4	.384		776	169	7.27			
1145	2	18.6	,381	7.5	7.63	126	7.32			
1200	3	189	,381	7.9	7. 1.1	123	7.35			
		1								
<u></u>										
<u></u>	a antipine destructions at some of subsystems of the		and any free sub-stance of the second log. Suppose 1995 whereas	WEL	L SAMPLING					
Sample	D:	mu	-13A	Rece	iving Lab (Cha	ain of Cust	ody):			
Genera	al Notes:									
			metals	collected	1021-0	5				

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synaps	e Repres	entative	5. Matth	<i>ę</i> ws	Date: <u>70-2</u>	<u>0-05</u>		Vell Nu	mber: <u>N</u>	ИW- (2-(
	ni ang kang kang kang kang kang kang kang	ويتري ويواف الموافق التك ومراد والر	na 4994) (a 1994) a 1994) a 1994) a 1994) a 1994) a 1994) a 1994)	AIR I	MONITORING					
PID Mo	del:		В	ackground:	F		At	Well	ppm	
1 <u></u>		Name Catalor Stationers and Group		WEI	L PURGING					
Purge	Volume				Purge Me	thod	نر	and the second		
TD = To	otal Deptl	n of Well	(from Form C)	Bailer Type: Reusable Disposable Dedicate					Dedicated
WL = Water Level Depth (from Form C) <u>Actual Volume Generated</u>										
#VOL = Number of Well Volumes to Be Purged (3-9), $a \times 1.5 = 4.5$ Gallons										
Purge Volume Calculation: $(12.9 - 3.9)^{\circ} \times 163 \pm 1.95 \times 3 = 4.35$ Gallons										
(for	2" diamete	er well)	<i>ID (π.)</i> FIF	UD PARAM	Vol/tt.	#VOLS	Purge	Vol. (\	/ol/ft = 0.1	63 for 2"OD)
,			1.16							
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)		Observat	tions
1210	LASIN	13.4	,226		10.59	6	7,24			-
1220		1211		24.2	1.02	1	1 1 in	A	JM.	
1220	Mai	135	, 222	4.9	10.20	14	7,29			
1230	A	135	234	11.5	in 14	6-62	720)		
1300	3	12.3	.232	10.1	10.07	252	7.24			
	3									
							. <u></u>			<u> </u>
5				WEL	L SAMPLING					
Sample	e ID:	MW-1	14	Rece	iving Lab (Cha	ain of Cust	ody):			
Genera	al Notes:		411 . ()			- 11.		4.3 -	2	
			<u>n Howers</u> H	3 (echa	42 DEFWY	an vo	1 4 2	Vol	5	
			Metais C	dleater	10-21-0	5				

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

AIR MONITORING PID Model: Background: ppm At Well WELL PURGING Purge Volume Purge Method TD = Total Depth of Well (from Form C) Bailer Type: Reusable Disposable Image: Colored Co	<u>v- 18</u>
PID Model: Background: ppm At Well WELL PURGING Purge Volume Purge Method TD = Total Depth of Well (from Form C) Bailer Type: Reusable Disposable I WL = Water Level Depth (from Form C) Actual Volume Generated # VOL = Number of Well Volumes to Be Purged (3-9)	
WELL PURGING Purge Volume Purge Method TD = Total Depth of Well (from Form C) Bailer Type: Reusable Disposable I WL = Water Level Depth (from Form C) Actual Volume Generated # VOL = Number of Well Volumes to Be Purged (3-9)	ppm
Purge Volume Purge Method TD = Total Depth of Well (from Form C) Bailer Type: Reusable Disposable I WL = Water Level Depth (from Form C) Actual Volume Generated # VOL = Number of Well Volumes to Be Purged (3-9)	
TD = Total Depth of Well (from Form C) Bailer Type: Reusable Disposable I WL = Water Level Depth (from Form C) Actual Volume Generated # VOL = Number of Well Volumes to Be Purged (3-9)	
WL = Water Level Depth (from Form C) Actual Volume Generated # VOL = Number of Well Volumes to Be Purged (3-9)	Dedicated
# VOL = Number of Well Volumes to Be Purged (3-9)	
Purge Volume Calculation: (1.19 - (0.36)) x 1.63 - x81 x 2.68 =	
(Tor 2 diameter well) TD (π.) VVL (π.) Vol/π. #VOLS Purge Vol. (Vol/ft = 0.163 FIELD PARAMETER MEASUREMENT	
	for 2" OD)
TimeVol. No.Temp (°C)Conductivity (mS/cm)Water 	าร
1315 Initial 18,2,487 10.05 2.8 6.96	
1330 1 12.0 510 8.0 10.00 17 6.95	
1345 7 50 1407 9.25 10 84 73 78	
1400 3 102 413 10.15 10.00 799 714	
WELL SAMPLING	
Sample ID:/(UZ-19) Receiving Lab (Chain of Custody):	
General Notes:	
· · · · · · · · · · · · · · · · · · ·	
Metals collected 10-21-05	
· · · · · · · · · · · · · · · · · · ·	

APPENDIX F GROUNDWATER ANALYTICAL DATA

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**
| LSL | |
|--------------------|--|
| THE REAL PROPERTY. | |

and the second sec	Date
	Project #:
	PM Approval:
and the second se	QB
THE REAL PROPERTY AND A DESCRIPTION OF A	Check #:
	Date:
Roger Creighton	Account:
120 East Washington Street	Approval
Ch	

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO# DANA 01-05 T02

Suite 400 Syracuse, NY 13202

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0506122

Receive Date/Time: 04/27/05 15:24

Project Received by: LMG

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 30 East Main Street Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #10248 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Southern Tier Lab Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #10760 NYS DOH ELAP #11369

This report was reviewed by:

Sers Alto Life Seience Laboratories, Inc.

Date: 5-11-05

A copy of this report was sent to:

Synapse Risk Management, LLC Syracuse, NY

LSL Sample ID:

0506122-001

Sample ID:MW-6RLocation:2200 Bleecker St., Utica, NYSampled:04/27/05 14:10Sampled:04/27/05 14:10

Analytical Method Prep Analysis Anal Analvte Result Units Date Date & Time Initi (1) EPA 608 PCB's Aroclor-1016 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1221 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1232 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1242 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1242 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1248 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1254 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1260 <0.05 ug/l 5/4/05 5/5/05 AN Surrogate (DCB) 105 %R 5/4/05 5/5/05 AN (J) EPA 8021B Volatiles(Partial List)by 8260 5/4/05 1	Sample	e Matrix: NPW					
(1) EPA 608 PCB's Aroclor-1016 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1221 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1232 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1242 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1242 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1248 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1254 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1260 <0.05 ug/l 5/4/05 5/5/05 AN Surrogate (DCB) 105 %R 5/4/05 5/5/05 AN (1) EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene <1 ug/l 5/4/05 I trans-1,2-Dichloroethene <1 ug/l 5/4/05 I trans-1,2-Dichloroethene <1 ug/l <td< th=""><th>Analyti</th><th>ical Method Analvte</th><th>Result</th><th>Units</th><th>Prep Date</th><th>Analysis Date & Time</th><th>Analyst Initials</th></td<>	Analyti	ical Method Analvte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Aroclor-1016 <0.05	(1) EPA	A 608 PCB's					
Aroclor-1221 <0.05		Aroclor-1016	<0.05	ug/l	5/4/05	5/5/05	AMW
Aroclor-1232 <0.05		Aroclor-1221	<0.05	ug/l	5/4/05	5/5/05	AMW
Aroclor-1242 <0.05		Aroclor-1232	<0.05	ug/l	5/4/05	5/5/05	AMW
Aroclor-1248 <0.05		Aroclor-1242	<0.05	ug/l	5/4/05	5/5/05	AMW
Aroclor-1254 <0.05 ug/l 5/4/05 5/5/05 AN Aroclor-1260 <0.05		Aroclor-1248	<0.05	ug/l	5/4/05	5/5/05	AMŴ
Aroclor-1260 <0.05 ug/l 5/4/05 5/5/05 AN Surrogate (DCB) 105 %R 5/4/05 5/5/05 AN (1) EPA 8021B Volatiles(Partial List)by 8260 5/4/05 I cis-1,2-Dichloroethene <1		Aroclor-1254	<0.05	ug/l	5/4/05	5/5/05	AMW
Surrogate (DCB) 105 %R 5/4/05 5/5/05 AN (1) EPA 8021B Volatiles(Partial List)by 8260		Aroclor-1260	<0.05	ug/l	5/4/05	5/5/05	AMW
(1) EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene <1 ug/l		Surrogate (DCB)	105	%R	5/4/05	5/5/05	AMW
cis-1,2-Dichloroethene <1	(1) EPA	A 8021B Volatiles(Partial List)by 8260					
trans-1,2-Dichloroethene <1		cis-1,2-Dichloroethene	< 1	ug/l		5/4/05	LEF
Trichloroethene <1 ug/l 5/4/05 I Vinyl chloride <1		trans-1,2-Dichloroethene	<1	ug/l		5/4/05	LEF
Vinyl chloride <1 ug/l 5/4/05 I		Trichloroethene	<1	ug/l		5/4/05	LEF
		Vinyl chloride	<1	ug/l		5/4/05	LEF
Surrogate (1,2-DCA-d4) 103 %R 5/4/05 1		Surrogate (1,2-DCA-d4)	103	%R		5/4/05	LEF
Surrogate (Tol-d8) 107 %R 5/4/05 I		Surrogate (Tol-d8)	107	%R	1	5/4/05	LEF
Surrogate (4-BFB) 112 %R 5/4/05 1		Surrogate (4-BFB)	112	%R		5/4/05	LEF

Sample ID: MW-13A

LSL Sample ID:

0506122-002

Location: 2200 Bleecker St., Utica, NY

04/27/05 11:30 Sampled By: RC

Sample Matrix: NPW

Sampled:

Analytical Method				Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016	<0.05	ug/l	5/4/05	5/6/05	AMŴ
	Aroclor-1221	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1232	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1242	<0.0.5	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1248	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1254	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1260	<0.05	ug/l	5/4/05	5/6/05	AMW
	Surrogate (DCB)	102	%R	5/4/05	5/6/05	AMW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	<1	ug/l		5/5/05	LEF
	trans-1,2-Dichloroethene	<]	ug/l		5/5/05	LEF
	Trichloroethene	<1	ug/l		5/5/05	LEF
	Viny! chloride	<1	ug/l		5/5/05	LEF
	Surrogate (1,2-DCA-d4)	101	%R		5/5/05	LEF
	Surrogate (Tol-d8)	98	%R		5/5/05	LEF
	Surrogate (4-BFB)	102	%R		5/5/05	LEF

Synapse Risk Management, LLC Syracuse, NY

Sampled By: RC

LSL Sample ID:

0506122-003

Sample ID:MW-14Location:2200 Bleecker St., Utica, NY

Sampled: 04/27/05 10:35

Sample Matrix: NPW

Analyti	cal Meth	od				Prep	Analysis	Analyst
	Analvte			Result	Units	Date	Date & Time	Initials
(1) EPA	4 608 PCE	B's						
	Aroclor-10	16		<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	21		<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	32		<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	42		<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	48		<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	54		< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-12	60		<0.05	ug/l	5/4/05	5/6/05	AMW
	Surrogate	(DCB)		109	%R	5/4/05	5/6/05	AMW
(1) EPA	8021B V	olatiles(Partial List)by	¥ 8260					
	cis-1,2-Dic	hloroethene		<]	ug/l		5/4/05	LEF
	trans-1,2-D	Dichloroethene		<1	ug/l		5/4/05	LEF
	Trichloroe	thene		<)	นฐ/1		5/4/05	LEF
	Vinyl chlor	ride		<1	ug/l		5/4/05	LEF
	Surrogate	(1,2-DCA-d4)		107	%R		5/4/05	LEF
	Surrogate	(Tol-d8)		106	%R		5/4/05	LEF
	Surrogate	(4-BFB)		113	%R		5/4/05	LEF
Sample	ID:	MW-18		etti *		LSL Sample ID:	0506122-	004
Locatio	n:	2200 Bleecker St., Ut	tica, NY					
Sample	d:	04/27/05 12:15	Sampled By: RC					
Sample	Matrix:	NPW						
Analyti	cal Meth	od				Prep	Analysis	Analyst
	Analyte			Result	Units	Date	Date & Time	Initials

	in the second and the second as the second a			F -		
	Analvte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016	<0.05	ug/I	5/4/05	5/6/05	AMW
	Aroclor-1221	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1232	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1242	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1248	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1254	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1260	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Surrogate (DCB)	118	%R	5/4/05	5/6/05	AMW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	</td <td>ug/l</td> <td></td> <td>5/4/05</td> <td>LEF</td>	ug/l		5/4/05	LEF
	trans-1,2-Dichloroethene	<]	ug/l		5/4/05	LEF
	Trichloroethene	<]	ug/l		5/4/05	LEF
	Vinyl chloride	5.6	ug/l		5/4/05	LEF
	Surrogate (1,2-DCA-d4)	106	%R		5/4/05	LEF
	Surrogate (Tol-d8)	109	%R		5/4/05	LEF
	Surrogate (4-BFB)	111	%R		5/4/05	LEF

Page 3 of 5 Life Science Laboratories, Inc. Date Printed: 5/10/05

Synapse Risk Management, LLC Syracuse, NY

LSL Sample ID:

0506122-005

LEF

5/4/05

Sample ID:042705Location:2200 Bleecker St., Utica, NYSampled:04/27/05 0:00Sample Matrix:NPW

Surrogate (4-BFB)

Ar	nalytical Method			Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1221	<0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1232	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1242	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1248	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1254	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Aroclor-1260	< 0.05	ug/l	5/4/05	5/6/05	AMW
	Surrogate (DCB)	116	%R	5/4/05	5/6/05	AMW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	<1	ug/l		5/4/05	LEF
	trans-1,2-Dichloroethene	<1	ug/l		5/4/05	LEF
	Trichloroethene	<1	ug/l		5/4/05	LEF
	Vinyl chloride	5.7	ug/l		5/4/05	LEF
	Surrogate (1,2-DCA-d4)	111	%R		5/4/05	LEF
	Surrogate (Tol-d8)	109	%R		5/4/05	LEF
	Surrogate (4-BFB)	108	%R		5/4/05	LEF
Sa	mple ID: MW-6R Matrix Spike		· · ·	LSL Sample ID:	0506122-	006
Lo	cation: 2200 Bleecker St., Utica, NY					
Sai	mpled: 04/27/05 14:10 Sampled By:	RC				
Sa	mple Matrix: QC					
An	alvtical Method	,,		Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016			5/4/05	5/6/05	AMW
	Aroclor-1221			5/4/05	5/6/05	AMW
	Aroclor-1232			5/4/05	5/6/05	AMW
	Aroclor-1242	96	%R	5/4/05	5/6/05	AMW
	Aroclor-1248			5/4/05	5/6/05	AMW
	Aroclor-1254			5/4/05	5/6/05	AMW
	Aroclor-1260			5/4/05	5/6/05	AMW
	Surrogate (DCB)	III	%R	5/4/05	5/6/05	AMW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	105	%R		5/4/05	LEF
	trans-1,2-Dichloroethene	103	%R		5/4/05	LEF
	Trichloroethene	122	%R		5/4/05	LEF
	Vinyl chloride	96	%R		5/4/05	LEF
	Surrogate (1,2-DCA-d4)	110	%R		5/4/05	LEF
	Surrogate (Tol-d8)	106	%R		5/4/05	LEF

101

%R

Synapse Risk Management, LLC Syracuse, NY

LSL Sample ID:

0506122-007

Sample ID:MW-6R Matrix Spike DuplicateLocation:2200 Bleecker St., Utica, NYSampled:04/27/05 14:10Sampled:04/27/05 14:10

Sample Matrix: QC

Analytical M	lethod				Prep	Analysis	Analyst
Anal	vte		Result	Units	Date	Date & Time	Initials
(1) EPA 608	PCB's			-			
Aroclo	pr-1016				5/4/05	5/6/05	AMW
Arocio	or-1221				5/4/05	5/6/05	AMW
Arocio	or-1232				5/4/05	5/6/05	AMW
Arocio	or-1242		0.62	RPD	5/4/05	5/6/05	AMW
Aroclo	pr-1248				5/4/05	5/6/05	AMW
Aroclo	or-1254				5/4/05	5/6/05	AMW
Aroclo	or-1260				5/4/05	5/6/05	AMW
Surrog	gate (DCB)		119	%R	5/4/05	5/6/05	AMW
(I) EPA 8021	B Volatiles(Partial List)b	y 8260					
cis-1,2-	-Dichloroethene		</th <th>RPD</th> <th></th> <th>5/4/05</th> <th>LEF</th>	RPD		5/4/05	LEF
trans-1	1,2-Dichloroethene		3	RPD		5/4/05	LEF
Trichle	oroethene		2	RPD		5/4/05	LEF
Vinyl o	chloride		<1	RPD		5/4/05	LEF
Surrog	gate (1,2-DCA-d4)		116	%R		5/4/05	LEF
Surrog	gate (Tol-d8)		104	%R		5/4/05	LEF
Surrog	gate (4-BFB)		102	%R		5/4/05	LEF
Sample ID:	Trip Blank				LSL Sample ID:	0506122-	008
Location:	2200 Bleecker St., L	Itica, NY					
Sampled:	04/27/05 0:00	Sampled By: RC					

Sample Matrix: TB

Analytical Method				Prep	Analysis	Analyst
Analvte		Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partia	al List)by 8260	,				
cis-1,2-Dichloroethene		<1	ug/l		5/4/05	LEF
trans-1,2-Dichloroethene		<]	ug/l		5/4/05	LEF
Trichloroethene		<1	ug/l		5/4/05	LEF
Vinyl chloride		<1	ug/!		5/4/05	LEF
Surrogate (1,2-DCA-d4)		108	%R		5/4/05	LEF
Surrogate (Tol-d8)		105	%R		5/4/05	LEF
Surrogate (4-BFB)		107	%R		5/4/05	LEF

LSL

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

Method	Surrogate(s)	Water	SHW
method	Ourrogate(3)	Linnis, 70K	Linns, 70K
EPA 504	ТСМХ	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	80-120	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Dodecane	40-110	40-110
DOH 310-14	Dodecane	40-110	40-110
DOH 310-15	Dodecane	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery
	- La como e que sinte a contra contra contra contra contra de la contra d de la contra de la de la contra de la contra de la contra de la cont de la contra de la contra

TST

Phone: 315-3 Fax: 315-3 Waddington E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 5854 Butternut Drive Report Address: LSL Central Lab.

131 St. Lawrence Ave. LSL North Lab.

ratories, Inc. RECORD	LSL Southern Tier Lab. 30 East Main St.	Cuba, NY 14727 Phone: 585-968-2640	Fax: 585-968-2640	Turnaround Time Normal Pre-Authorized	14 DAY Next Day*	Date Needed or Special Instru	
Life Science Labo CHAIN OF CUSTODY F	LSL Finger Lakes Lab. 16 N. Main St., PO Box 424	Wayland, NY 14572 Phone: 585-728-3320	Fax: 585-728-2711				

SynapseR ishManage

0506122

15-388-4476 Phone: 585-728-3320 15-388-4061 Fax: 585-728-2711 n n Suite 40€ Zip: 13202 Y Fax: 475-3780	15-388-4476 Phone: 585-728-3320 15-388-4061 Fax: 585-728-321 15-388-4061 Fax: 585-728-2711 1 Eax: 585-728-371 1 Eax: 585-728-721 1 Eax: 585-728-721 1 Eax: 7530 1 Eax: 775-3780 1 Eax: 775-3780 1 Eax: 775-3780 1 Eax: 775-37780 1 Eax: 775-3780	15-388-4476 Phone: 585-728-3320 15-388-4061 Fax: 585-728-2711 n Fax: 585-728-2711 n Suite 400 Suite 400 Zip: 13202 V Fax: 13202 0 Fax: 475-3780 0 Fax: 13202 0 Fax: 475-3780 0 Omegement.com 0 SPDES / 2200 Bleecker St, Utica, NY SPDES / 2200 Bleecker St, Utica, NY	15-388-4176 Phone: 585-728-3320 15-388-4061 Fax: 585-728-3711 15-388-4061 Fax: 585-728-2711 15-388-4061 Fax: 476-3780 16 Fax: 476-3780 17 SPDES / 2200 Bleecker St, Utitca, NY 17 Time 17 Time 17 Matrix	15-388-4476 Phone: 585-728-3320 15-388-4061 Fax: 585-728-2711 15-388-4061 Fax: 585-728-2711 15-388-4061 Eax: 585-728-2711 15 Suite 40K 1 13202 1 1320	15-388-4476 Fax: 585-728-3320 15-388-4061 Fax: 585-728-2711 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 2711$ $= 385 - 728 - 2711$ 1 $= 385 - 728 - 28 - 2711$ $= 385 - 728 - 28 - 2711$ 1 $= 385 - 728 - 28 - 2711$ $= 385 - 728 - 28 - 28 - 28 - 28 - 28 - 28 - 2$	15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15-388-4476 Phone: 585-728-3320 15-388-4061 Fax: 585-728-3711 15-388-4061 Fax: 585-728-2711 14	15-388-4476 Fax: 585-728-3320 Phone: 585-728-3711 Fax: 70 Fax: 585-728-3711 Fax: 70 Fax:	15-388-4061 Fax: 585-728-2711 Fax: 585-728-2711 Fax: 585-728-2711 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>15-388-4476 Fax: 585-728-2711 Fax: 585-728-2711 Fax: 585-728-2711 Fax: <</th> <th>15-388-4476 Fax: 585-728-3320 15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 \overline{S} \overline{F} \overline{F} 1 \overline{S} \overline{F} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{T} \overline{F} \overline{S} \overline{F} \overline{T} \overline{F} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} <</th> <th>15-388-4061 Fax: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 Suite 40(Zip: $\sqrt{-10}$ Fax:: 745-3780 $\sqrt{-10}$ Grab W HCI 2 $\sqrt{-10}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-12}$ Grab W HCI 2 $\sqrt{-12}$ Grab W HCI 2 $\sqrt{-12}$ Grab W HCI 2 $\sqrt{-12}$</th> <th>15-388-4061 Fax: 585-728-2711 15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 Suite 40C Zip: 13202 \sim Suite 40C Zip: 475-3780 \sim Suite 40C Zip: 475-3780 \sim Suite 40C Zip: 475-3780 \sim SPDES / 2200 Bleecker St, Utica, NY Added # \sim Time grab/comp W HCI 2 \sim Time W HCI 2 1 \sim Time W HCI 2 1 \sim Time W HCI 2 2 <math>1 + 3/C Grab W HCI 2 2 $1 + 3/C Grab W HCI 2 2 <$</math></th> <th>15-388-4061 Fax: 585-728-3320 15-388-4061 Fax: 585-728-3320 6 Suite 40C Zip: $Suite 40C$ Zip: 13202 $Suite 40C$ Zip: 475-3780 $Suite 40C$ Zip: 13202 $Suite 40C$ Zip: 475-3780 $Suite 40C$ Sample V HCI $Suite 40C$ Grab W HCI 2 $1/7$ Grab W HCI 2 $1/7$ Grab W HCI<th>15-388-4061 15-388-4476 Fax: 585-728-3711 Fa 15-388-4061 Fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-320 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780</th></th>	15-388-4476 Fax: 585-728-2711 Fax: 585-728-2711 Fax: 585-728-2711 Fax: <	15-388-4476 Fax: 585-728-3320 15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 \overline{S} \overline{F} \overline{F} 1 \overline{S} \overline{F} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{Z} \overline{F} \overline{S} \overline{F} \overline{T} \overline{F} \overline{S} \overline{F} \overline{T} \overline{F} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{T} \overline{S} \overline{T} \overline{T} \overline{T} \overline{T} <	15-388-4061 Fax: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 Suite 40(Zip: $\sqrt{-10}$ Fax:: 745-3780 $\sqrt{-10}$ Grab W HCI 2 $\sqrt{-10}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-11}$ Grab W HCI 2 $\sqrt{-12}$	15-388-4061 Fax: 585-728-2711 15-388-4061 Fax:: 585-728-2711 15-388-4061 Fax:: 585-728-2711 1 Suite 40C Zip: 13202 \sim Suite 40C Zip: 475-3780 \sim Suite 40C Zip: 475-3780 \sim Suite 40C Zip: 475-3780 \sim SPDES / 2200 Bleecker St, Utica, NY Added # \sim Time grab/comp W HCI 2 \sim Time W HCI 2 1 \sim Time W HCI 2 1 \sim Time W HCI 2 2 $1 + 3/C Grab W HCI 2 2 1 + 3/C Grab W HCI 2 2 <$	15-388-4061 Fax: 585-728-3320 15-388-4061 Fax: 585-728-3320 6 Suite 40C Zip: $Suite 40C$ Zip: 13202 $Suite 40C$ Zip: 475-3780 $Suite 40C$ Zip: 13202 $Suite 40C$ Zip: 475-3780 $Suite 40C$ Sample V HCI $Suite 40C$ Grab W HCI 2 $1/7$ Grab W HCI 2 $1/7$ Grab W HCI <th>15-388-4061 15-388-4476 Fax: 585-728-3711 Fa 15-388-4061 Fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-320 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780</th>	15-388-4061 15-388-4476 Fax: 585-728-3711 Fa 15-388-4061 Fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-3711 Fa 5 minute fax: 585-728-320 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 5 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780 Fa 6 minute fax: 7475-3780 Fa 1 minute fax: 7475-3780				
Zip: 13202 Fax: 475-3780	Zip: 13202 Fax: 475-3780 imanagement.com	Zip: 13202 Fax: 475-3780 management.com Bleecker St, Utica, NY Tvoe	Zip: 13202 Fax: 13202 Imanagement.corr Bleecker St, Utica, NY Type Matrix Added #	Zip: 13202 Fax: 475-3780 management.corr Bleecker St, Utica, NY Type Matrix Added # o/comp Matrix Added #	Zip: 13202 Fax: 175-3780 imanagement.corr Type Type Matrix Added # Grab W HCI 2 Grab W 1	Zip: 13202 Fax: 13202 Fax: 475-3780 Bleecker St, Utica, NY Type Matrix Added # Grab W HCI 2 Grab W HCI 2 Grab W HCI 2	Zip: 13202 14 Zip: 13202 Da Fax: 475-3780 Au Imanagement.cour LS Au Bleecker St, Utica, NY Matrix Added Vicomp Matrix Added # Vicomp W HCI 2 Grab W HCI 2	Zip: 13202 14 Zip: 13202 Da Fax: 475-3780 Au Ipace 475-3780 Au Ipace Matrix Added # Ipace Matrix Added # Ipace W HCI 2	Zip: 13202 Fax: 13202 Fax: 13202 Fax: 13202 Fax: 13202 Grab W HCI 2 Grab W 1 Grab W 1 Grab W 1 Conta 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Zip: <u>Zip: 13202</u> Fax: <u>73202</u> Fax: <u>13202</u> Fax: <u>13202</u> Bleecker St, Utica, NY Type Grab W HCI 2 Grab W HCI	Zip: Zip: 13202 Fax: 2780 Fax: 475-3780 Bleecker St, Utica, NY Bleecker St, Utica, NY Type Matrix Added Ycomp Matrix Added Matrix	Zip: 13202 Fax: 13202 Fax: 475-3780 Management.corr Type Grab W HCI 2 Grab W HCI 2	Zip: 13202 Fax: 475-3780 management.corr Type Grab W HCI 2 Grab W HCI 2	Zip: 13202 Fax: 475-3780 management.con 475-3780 Bleecker St, Utica, NY Added Jype W Jype Matrix Added # Grab W HCI 2 HCI 2 <td>Zip: 13202 A Zip: 13202 A management.con A Bleecker St, Utica, NY A Type W Type W Antrix Added Matrix Added Crab W Matrix Added Matrix Added Crab W Grab W HCI 2 Grab W</td>	Zip: 13202 A Zip: 13202 A management.con A Bleecker St, Utica, NY A Type W Type W Antrix Added Matrix Added Crab W Matrix Added Matrix Added Crab W Grab W HCI 2 Grab W				
Street, Suite 40(use, NY 75-370	e ID septimized 20(75-3700 creighton@synapseriskmanageme e ID sences 22000 Blooker S	Street, Suite 40(Street, Suite 40(75-3700 Fa 75-3700 Fa 75-3700 Fa Fa 75-3700 Fa Fa 700 Samole Samole Tyoe	Street, Suite 40(Street, Suite 40(75-3700 Fa 75-3700 Fa Fa Sample Sample Sample Sample Time grab/comp	Street, Suite 40K Zil use, NY Zil 75-3700 Fa reighton@synapseriskmanageme e ID SPDES / 2200 Bleecker S Sample Sample Time grab/comp	Street, Suite 40(<u>75-3700</u> <u>75-3700</u> <u>75-3700</u> Fa <u>75-3700</u> Fa <u>7100</u> SPDES / 2200 Bleecker S Sample Sample Type Date Time grab/comp	Street, Suite 40(Zirest, NY 75-3700 Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa 79 70 70 70 70 70 70 70 70 70 70	Street, Suite 40(Zli use, NY Zli 15-3700 Fa 25-3700 Fa 275-3700 Fa 275-3700 Fa 275-3700 Fa 275-3700 Fa 275-3700 Fa 275-3700 Fa 28 Sample 28 Sample 29 Time 21 1/-31C 20 Grab 1 1/-31C 31 230 31 230 31 330 31 330 31 330 31 330	Street, Suite 40(Zli use, NY Zli 15-3700 Fa 75-3700 Fa creighton@synapseriskmanageme Fa creighton@synapseriskmanageme Fa creighton@synapseriskmanageme Fa creighton@synapseriskmanageme Fa creighton@synapseriskmanageme Fa creighton@synapseriskmanageme Fa bate Time grab/comp fit J4-31O Grab fit J3 Grab fit J3 Grab fit J0 Grab fit J0 Grab fit J0 Grab	Street, Suite 40(Zl use, NY Zl 15-3700 Fa 75-3700 Fa 275-3700 Fa 28 Sample 28 Sample 29 Time 9 14-31C 14-31C Grab 11/520 Grab 11/520 Grab 10/525 Grab 10/525 Grab	Synthesis Street, Suite 40K use, NY 75-3700 resighton@synapseriskmanageme e ID SPDES / 2200 Bleecker S Sample Sample <	Street, Suite 40K Zil use, NY Zil vise, NY Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa 8 Sample Sample Sample Sample Sample Sample Sample Time grab/comp 11/530 Grab 11/530 Grab 11/530 Grab 11/530 Grab 11/530 Grab 11/530 Grab 12/15 Grab 12/15 Grab 12/15 Grab 12/15 Grab	Synthesis Street, Suite 40K use, NY 75-3700 rese, NY 75-3700 Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa 75-3700 Fa Sample Sample <td< td=""><td>Street, Suite 40K Zil use, NY Zil 75-3700 Fa 75-3700 Grab 11 530 11 530 11 530 11 530 11 530 11 530 11 530 11 530 11 530 12 12 13 530 13 530 14 10 15 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5</td><td>Synthet JOK Street, Suite 40K use, NY 75-3700 regiption@synapseriskmanageme e ID Sample It-Solo</td><td>Street, Suite 40K Street, Suite 40K vase, NY 75-3700 regiption@synapseriskmanageme e ID Sample It-1/5 <</td></td<>	Street, Suite 40K Zil use, NY Zil 75-3700 Fa 75-3700 Grab 11 530 11 530 11 530 11 530 11 530 11 530 11 530 11 530 11 530 12 12 13 530 13 530 14 10 15 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5	Synthet JOK Street, Suite 40K use, NY 75-3700 regiption@synapseriskmanageme e ID Sample It-Solo	Street, Suite 40K Street, Suite 40K vase, NY 75-3700 regiption@synapseriskmanageme e ID Sample It-1/5 <				
Syracuse, NY 475-3700	Syracuse, NY 475-3700 rcreighton@synapseriskmar it Site ID sones / 2200 Blo.	yracuse, NY 475-3700 rcreighton@synapseriskmar t Site ID SPDES / 2200 Blee Samole Samole TV	yracuse, NY 475-3700 rcreighton@synapseriskmar t Site ID SPDES / 2200 Blei Sample Sample Date Time grab/coi	Yracuse, NY 475-3700 rcreighton@synapseriskmar t Site ID SPDES / 2200 Blet Sample Sample Tme Date Time grab/col	3yracuse, NY 475-3700 rcreighton@synapseriskmar rt Site ID SPDES / 2200 Blet Sample Sample Sample Time grab/co H 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 14/2 15/2 6	Syracuse, NY 475-3700 rcreighton@synapseriskmar nt Site ID Sample Sample 15 Date Time grab/col ht./vs 1/-310 Gr	Syracuse, NY 475-3700 rcreighton@synapseriskmar nt Site ID Sample Sample Ty Date Time grab/col II = 30 II = 30 II = 30 Gr	NY 475-3700 It Site ID SPDES / 2200 Blee Sample Sample Sample Sample Date Time It > 10 0 It > 30 0	Syracuse, NY 475-3700 rcreighton@synapseriskmar nt Site ID Sample Sample Ty Date Time grab/cor It/31C Gr It/31C Gr It/32C Gr It/32C Gr It/32C Gr It/32C Gr	Syracuse, NY 475-3700 rcreighton@synapseriskman rcreighton@synapseriskman semple Sample Ty Sample Sample Ty Date Time grab/cor HF31C Gr 1431C Gr 1431C Gr 1431C Gr 1431C Gr 11330 Gr 11330 Gr 11335 Gr 10325 Gr	Syracuse, NY 475-3700 rcreighton@synapseriskman nt Site ID Sample Sample Ty Date Time grab/cor it 230 G G 1230 G G 1230 G G 1230 G G 12315 G G	Syracuse, NY 475-3700 rcreighton@synapseriskman nt Site ID Sample Sample Ty Date Time grab/cor HF310 Gr 11230 Gr 11230 Gr 11230 Gr 12315 Gr 12315 Gr 12315 Gr	Syracuse, NY 475-3700 rcreighton@synapseriskman nt Site ID Sample Sample Sample Sample Sample Sample Sample Sample Time Gradie It It <tr< td=""><td>Syracuse, NY 475-3700 rcreighton@synapseriskman nt Site ID Sample It It <t< td=""><td>Syracuse, NY A75-3700 rcreighton@synapseriskman ent Site ID SPDES / 2200 Blee Sample Sample Sample Sample It 330 It 340 It 340</td></t<></td></tr<>	Syracuse, NY 475-3700 rcreighton@synapseriskman nt Site ID Sample It It <t< td=""><td>Syracuse, NY A75-3700 rcreighton@synapseriskman ent Site ID SPDES / 2200 Blee Sample Sample Sample Sample It 330 It 340 It 340</td></t<>	Syracuse, NY A75-3700 rcreighton@synapseriskman ent Site ID SPDES / 2200 Blee Sample Sample Sample Sample It 330 It 340 It 340				
475-3700 Fax: 47	475-3700 Fax: 47 rcreighton@synapseriskmanagement.cor nt Site ID SEDES / 2000 Blooker St Titio	475-3700 Fax: 47 rcreighton@synapseriskmanagement.cor t Site ID SPDES / 2200 Bleecker St, Utic Sample Sample Type	475-3700 Fax: 47 rcreighton@synapseriskmanagement.cor t Site ID SPDES / 2200 Bleecker St, Utic Sample Type Date Time	475-3700 Fax: 47 rcreighton@synapseriskmanagement.cor t Site ID SPDES / 2200 Bleecker St, Utic Sample Sample Type Mc Date Time grab/comp Mc	475-3700 Fax: 47 trreighton@synapseriskmanagement.cor trsite ID Sample Sample Sample Time Brab/comp Ma It 31 It 31 It 31 It 31 Sample Time Brab/comp Ma It 31	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con nt Site ID Sample	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con nt Site ID Sample	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con it Site ID Sample Sample Sample Sample Sample Sample Time grab/comp Ma H-1 H-1 Grab V 1 <	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con nt Site ID Sample	475-3700Fax: 47rcreighton@synapseriskmanagement.conant Site IDSPDES / 2200 Bleecker St, UticSPDES / 2200 Bleecker St, UticSampleMaTimegrab/compMaTimeGrabV1 1^{+}	475-3700rcreighton@synapseriskmanagement.connt Site IDSPDES / 2200 Bleecker St, UticSampleSampleTypeSampleSampleTypeSampleSampleTypeSampleSampleTypeDateTimegrab/comp W_{V} W_{1} W_{2} W_{V} W_{2} W_{2} W_{V} W_{2} W_{2} W_{V} W_{2} $Grab$ W_{V} W_{1} W_{V} W_{V} W_{1} W_{V} W_{V} W_{1} W_{V} W_{V} W_{1} W_{V}	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con nt Site ID SPDES / 2200 Bleecker St, Utic SPDES / 2200 Bleecker St, Utic Sample Fax: 47 Date Time grab/comp Ma Utic Sample Sample Time grab/comp Ma Utic Clab V IL/3/C Grab V IL/3/C Grab V IL/3/C Grab IL/3/C Grab IL/3/C Grab IL/3/C Grab V IL/3/C Grab IL/3/C Grab IL/3/C Grab IL/3/C Grab IL/3/C Grab IL/3/C Grab IL	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con nt Site ID SPDES / 2200 Bleecker St, Utic Sample Sample Type Ma Time grab/comp Ma Ma Time grab/comp V Ma Time grab/comp V Ma 11530 Grab V N N Grab V N 105335 Grab V 1251L5 Grab V 1251L5 Grab V 1251L5 Grab V	475-3700 Fax: 47 rcreighton@synapseriskmanagement.con art Simple SPDES / 2200 Bleecker St, Utic SPDES / 2200 Bleecker St, Utic Sample Fax: 47 SPDES / 2200 Bleecker St, Utic Sample Sample Time grab/comp Ma IL 300 Grab IL 300 IL 300 <th <<="" colspan="2" td=""><td>475-3700Fax: 47trreighton@synapseriskmanagement.conent Site IDSPDES / 2200 Bleecker St, UticSample<th <="" colspan="2" td=""></th></td></th>	<td>475-3700Fax: 47trreighton@synapseriskmanagement.conent Site IDSPDES / 2200 Bleecker St, UticSample<th <="" colspan="2" td=""></th></td>		475-3700Fax: 47trreighton@synapseriskmanagement.conent Site IDSPDES / 2200 Bleecker St, UticSample <th <="" colspan="2" td=""></th>		
	transproutes yuges is no and an and a filter of state ID SIDES / 2200 Blocchor St. Hite: NV	t Site ID SPDES / 2200 Bleecker St, Utica, NY Samole I Samole I Tvoe I Pre-	t Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Type Ad	t Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Type Matrix Ad	SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Type Matrix Add	Int Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Sample Time grab/comp Matrix Add Matrix	Intercention Intercention Int Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Sample Sample Sample Time grab/comp Matrix Add Matrix Add <	It Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Type Sample Sample Type Date Time grab/comp III III Grab W III Grab W He III Grab W He III Grab W He	Int Site ID SPDES / 2200 Bleecker St. Utica, NY Sample Sample Sample Sample Sample Sample Time grab/comp Matrix Add Mat	Int Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Sample Sample Sample Sample Sample Time grab/comp Matrix Add	Int Site ID SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Sample Sample Sample Time grab/comp Matrix Add H-3/C Grab U-3/C Grab U-3/C Grab U-3/C Grab N N 11/53/C Grab N N	Int Site ID SPDES / 2200 Bleecker St. Utica, NY Sample Sample Sample Sample Sample Sample Date Time Unica, NY Add Date Time Unica, NY Add Natrix Add Nat	It Stell SPDES / 2200 Bleecker St. Utica, NY Sample Sample Sample Sample Sample Sample Date Time II Jf-31C Grab W H-31C Grab II Jf-31C Grab W H N II Solution I	It Stel ID SPDES / 2200 Bleecker St. Utica, NY Sample Sample Type Sample Sample Type Date Time grab/comp Wit/Ads 14-31C Grab W H-31C Grab W H 11/3C Grab W H	International and an international section in SPDES / 2200 Bleecker St, Utica, NY Sample Sample Sample Sample Sample Sample Sample Grab Sample Sample Time Grab/comp Matrix Add N-310 Grab W II-30 Grab W H II-310 Grab W H				

Semi-AnnualGW-VOCs&PCBs

Containers this C-O-C:

Temp. of samples:

 D-C:
 Shipment Method:

 LSL COC

200

12. Ç

3

た

0-44-0

N-J-V

Rec'd for Lab By: Received By: Received By:

Custody Transfers

Sreal the 14

KO C

Trip Blank LSL use only:

Relinquished By: Relinquished By: Sampled By:

lime 15:25

HR US Date

MAY 2009

Roger Creighton Synapse Risk Management, LLC **120** East Washington Street Suite 400 Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO# DANA 001-05-T02

Laboratory Analysis Report

For

Synapse Risk Manageme	nt. LLC
Client Project ID:	PM Approval:
SPDES / 2200 Bleecker St., Utic:	-NY
LSL Project ID: 0506184	Date:
Receive Date/Time: 04/28/05 13:35	Account
Project Received by: MW	Approval

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

2. <u>Galamar Jolen</u>, Othe D. MAO LifeScience Laboratories, Inc. Date: 5/12/05

Synapse Risk Management, LLC Syracuse, NY Sample ID: MW-6R LSL Sample ID: 0506184-001 Location: 2200 Bleecker St., Utica, NY Sampled: 04/28/05 11:00 Sampled By: Client Sample Matrix: NPW Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials (1) EPA 200.7 Priority Pollutant Metals Chromium < 0.01 mg/l 4/29/05 5/2/05 DP 0.010.0 Copper mg/l 4/29/05 5/2/05 DP Lead 4/29/05 < 0.01 mg/l 5/2/05 DP Zinc 0.012 4/29/05 5/2/05 mg/l DP Sample ID: **MW-13A** LSL Sample ID: 0506184-002 Location: 2200 Bleecker St., Utica, NY Sampled: 04/28/05 10:30 Sampled By: Client Sample Matrix: NPW Analytical Method Analysis Prep Analyst Date Date & Time Initials Analyte Result Units EPA 200.7 Priority Pollutant Metals (I)Chromium < 0.01 4/29/05 5/2/05 DP mg/l 4/29/05 Copper 0.014 5/2/05 DP mg/l Lead < 0.01 4/29/05 5/2/05 DP mg/l Zinc 4/29/05 5/2/05 0.020 DP mg/l Sample ID: **MW-14** LSL Sample ID: 0506184-003 Location: 2200 Bleecker St., Utica, NY Sampled: 04/28/05 10:45 Sampled By: Client Sample Matrix: NPW Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials (1) EPA 200.7 Priority Pollutant Metals 4/29/05 Chromium < 0.01 mg/l 5/2/05 DP Copper 0.016 mg/l 4/29/05 5/2/05 DP 4/29/05 5/2/05 DP Lead 0.013 mg/l 4/29/05 5/2/05 DP Zinc 0.015 mg/l 0506184-004 LSL Sample ID: Sample ID: MW-18 Location: 2200 Bleecker St., Utica, NY Sampled: Sampled By: Client 04/28/05 11:15 Sample Matrix: NPW Analytical Method Prep Analysis Analyst Date Date & Time Initials Result Units Analyte (1) EPA 200.7 Priority Pollutant Metals DP 4/29/05 5/2/05 Chromium < 0.01 mg/l 4/29/05 5/2/05 Copper < 0.01 mg/l DP Lead < 0.01 mg/l 4/29/05 5/2/05 DP 4/29/05 5/2/05 DP 0.013 Zinc mg/l

Life Science Laboratories, Inc.

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

	-Synapse R	isk Managemen	t, LLC Sy	racuse, I	ΥY		
Sample ID:	042705				LSL Sample ID:	0506184-	005
Location:	2200 Bleecker St., Ut	tica, NY					
Sampled:	04/28/05 0:00	Sampled By:	Client				
Sample Matrix:	NPW						
Analytical Meth	od				Prep	Analysis	Analyst
Analvte			Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Pr	iority Pollutant Metals						
Chromium	1		<0.01	mg/l	4/29/05	5/2/05	DP
Copper			0.015	mg/l	4/29/05	5/2/05	DP
Lead			< 0.01	mg/l	4/29/05	5/2/05	DP
Zine			0.013	mg/l	4/29/05	5/2/05	DP
Sample ID:	MW-6R Matrix Spi	ke			LSL Sample ID:	0506184-	006
Location:	2200 Bleecker St., Ut	tica, NY					
Sampled:	04/28/05 11:00	Sampled By:	Client				
Sample Matrix:	QC						•
Analytical Meth	od				Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Pr	iority Pollutant Metals						
Chromium			102	%R	4/29/05	5/2/05	DP
Copper			107	%R	4/29/05	5/2/05	DP
Lead			101	%R	4/29/05	5/2/05	DP
Zinc			101	%R	4/29/05	5/2/05	DP
Sample ID:	MW-6R Matrix Spil	ke Duplicate			LSL Sample ID:	0506184-	007
Location:	2200 Bleecker St., Ut	tica, NY					
Sampled:	04/28/05 11:00	Sampled By:	Client				
Sample Matrix:	QC						
Analytical Meth	od	·····			Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Pr	iority Pollutant Metals						
Chromium			5.3	RPD	4/29/05	5/2/05	DP
Copper			<1	RPD	4/29/05	5/2/05	DP

<1

5.5

RPD

RPD

5/2/05

5/2/05

4/29/05

4/29/05

DP

DP

Analysis performed at: (1) LSL Centrul, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

Copper

Lead

Zinc

th Lab.
n manadan atau atau atau atau atau atau atau at
k Management, L
Zip:
Fax: Fax:
00 Bleecker St, I
Type rab/comp
Grab
1: A Phil
d By:
-thod.

LSL COC

Semi-AnnualGW-Metals

Roger Creighton Synapse Risk Management, LLC 120 East Washington Street Suite 400 Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO# DANA 01-05 T02

Laboratory Analysis Report

For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0518331

Receive Date/Time: 10/20/05 16:12

Project Received by: LMG

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760 NYS DOH ELAP #11369

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377

This report was reviewed by:

Whatame	rides Qu	DOAD	Date:	10/31/05	
Life Science Laboratori	ies, Inc.	<i>,,,,,,,,,,,,,</i>			

Synapse Risk Management, LLC Syracuse, NY

Sampled By: SM

LSL Sample ID:

0518331-001

Sample ID: MW-6R Location: 2200 Bleecker St., Utica

Sampled: 10/20/05 11:00

Analytical Method			Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 608 PCB's					
Aroclor-1016	<0.1	ug/l	10/24/05	10/25/05	ВW
Aroclor-1221	<0.1	ug/ł	10/24/05	10/25/05	BW
Aroclor-1232	<0.1	ug/!	10/24/05	10/25/05	BW
Aroclor-1242	0.13	ug/l	10/24/05	10/25/05	BW
Aroclor-1248	<0,1	ug/l	10/24/05	10/25/05	BW
Aroclor-1254	<0.1	ug/l	10/24/05	10/25/05	BW
Aroclor-1260	<0.1	ug/l	10/24/05	10/25/05	BW
Surrogate (DCB)	90	%R	10/24/05	10/25/05	BW
I) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/I		10/25/05	LEF
trans-1,2-Dichloroethene	<1	ug/l		10/25/05	LEF
Trichloroethene	</td <td>ug/l</td> <td></td> <td>10/25/05</td> <td>LEF</td>	ug/l		10/25/05	LEF
Vinyl chloride	<1	ug/l		10/25/05	LEF
Surrogate (1,2-DCA-d4)	118	%R		10/25/05	LEH
Surrogate (Tol-d8)	101	%R		10/25/05	LEF
Surrogate (4-BFB)	103	%R		10/25/05	LEF
Sample ID: MW-13A			LSL Sample ID:	0518331-	002

Location: 2200 Bleecker St., Utica

10/20/05 12:00 Sampled By: SM

Sample Matrix: NPW

Sampled:

AI	nalytical Method			Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1221	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1232	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1242	<0.1	ug/I	10/24/05	10/25/05	ΒW
	Aroclor-1248	<0.1	ug/i	10/24/05	10/25/05	BW
	Aroclor-1254	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1260	<0.1	ug/l	10/24/05	10/25/05	ΒW
	Surrogate (DCB)	107	%R	10/24/05	10/25/05	BW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	<]	ug/l		10/25/05	LEF
	trans-1,2-Dichloroethene	</td <td>ug/l</td> <td></td> <td>10/25/05</td> <td>LEF</td>	ug/l		10/25/05	LEF
	Trichloroethene	</td <td>ug/l</td> <td></td> <td>10/25/05</td> <td>LEF</td>	ug/l		10/25/05	LEF
	Vinyl chloride	<1	ug/[10/25/05	LEF
	Surrogate (1,2-DCA-d4)	118	%R		10/25/05	LEF
	Surrogate (Tol-d8)	100	%R		10/25/05	LEF
	Surrogate (4-BFB)	104	%R		10/25/05	LEF

Synapse Risk Management, LLC Syracuse, NY

Sampled By: SM

LSL Sample ID:

0518331-003

4				
Location:	2200	Bleecker	St.,	Utica

MW-14

Sample ID:

Sampled: Sampled By: SM 10/20/05 13:00

Analytical M Anal	lethod vte	Result		Prep	A moleccia	A 1 4
Anal	vte	Result		x.ep	Analysis	Analyst
		Ittsuit	Units	Date	Date & Time	Initials
(1) EPA 608	PCB's					
Arocle	or-1016	<0.1	ug/i	10/24/05	10/25/05	BW
Arock	pr-1221	<0.1	ug/l	10/24/05	10/25/05	BW
Arocle	or-1232	<0.1	ug/l	10/24/05	10/25/05	ВW
Arocie	or-1242	<0.1	ug/l	10/24/05	10/25/05	BW
Arocle	pr-1248	<0.1	ug/l	10/24/05	10/25/05	BW
Arocle	or-1254	<0.1	ug/l	10/24/05	10/25/05	BW
Arocle	or-1260	<0.1	ug/l	10/24/05	10/25/05	BW
Surro	gate (DCB)	113	%R	10/24/05	10/25/05	BW
(1) EPA 8021	B Volatiles(Partial List)by 8260					
cis-1,2	-Dichloroethene	<1	ug/l		10/25/05	LEF
trans-	1,2-Dichloroethene	<]	ug/I		10/25/05	LEF
Trichl	oroethene	<]	ug/l		10/25/05	LEF
Vinyl	chloride	<	ug/l		10/25/05	LEF
Surroy	gate (1,2-DCA-d4)	118	%R		10/25/05	LEF
Surro	gate (Tol-d8)	102	%R		10/25/05	LEF
Surro	gate (4-BFB)	109	%R		10/25/05	LEF

Sample ID: MW-18 LSL Sample ID:

0518331-004

Location: 2200 Bleecker St., Utica

Sampled: 10/20/05 14:00

Sample Matrix: NPW

Ar	alytical Method			Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PCB's					
	Aroclor-1016	<0.1	ug/i	10/24/05	10/25/05	BW'
	Aroclor-1221	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1232	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1242	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1248	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1254	<0.1	ug/l	10/24/05	10/25/05	BW
	Aroclor-1260	<0.1	ug/l	10/24/05	10/25/05	BW
	Surrogate (DCB)	88	%R	10/24/05	10/25/05	BW
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	<]	ug/l		10/25/05	LEF
	trans-1,2-Diehloroethene	<1	ug/l		10/25/05	LEF
	Trichloroethene	<1	ug/l		10/25/05	LEF
	Vinyl chloride	7.1	ug/l		10/25/05	LEF
	Surrogate (1.2-DCA-d4)	109	%R		10/25/05	LEF
	Surrogate (Tol-d8)	100	%R		10/25/05	LEF
	Surrogate (4-BFB)	108	%R		10/25/05	LEF

Synapse Risk Management, LLC Syracuse, NY

yracuse, iv i

LSL Sample ID:

0518331-005

Sample ID:Dup 102005Location:2200 Bleecker St., Utica

Sampled:

10/20/05 0:00 Sampled By: SM

Sample Matrix: QC

Analytical Method			Prep	Analysis	Analyst
Analvte	Result	Units_	Date	Date & Time	Initials
(1) EPA 608 PCB's				· · · · · · · · · · · · · · · · · · ·	
Aroclor-1016	<0.1	ug/!	10/24/05	10/25/05	BW
Aroclor-1221	<0.1	ug/I	10/24/05	10/25/05	BW
Aroclor-1232	<0.1	ug/l	10/24/05	10/25/05	ВW
Aroclor-1242	<0.1	ug/l	10/24/05	10/25/05	BW
Aroclor-1248	<0.1	ug/l	10/24/05	10/25/05	BW
Aroclor-1254	<0.1	ug/l	10/24/05	10/25/05	BW
Aroclor-1260	<0.1	ug/l	10/24/05	10/25/05	BW
Surrogate (DCB)	118	%R	10/24/05	10/25/05	BW
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	-< 1	ug/l		10/25/05	LEF
trans-1,2-Dichloroethene	<1	ug/l		10/25/05	LÉF
Trichloroethene	<1	ug/!		10/25/05	LEF
Vinyl chloride	<1	ug/l		10/25/05	LEF
Surrogate (1,2-DCA-d4)	106	%R		10/25/05	LEF
Surrogate (Tol-d8)	99	%R		10/25/05	LEF
Surrogate (4-BFB)	100	%R		10/25/05	LEF
Sample ID: MW-6R Matrix Spike			LSL Sample ID:	0518331-	006
Location: 2200 Bleecker St. Litica			• .		
Control to 10/20/05 11:00 Complet Per	C				
Sampled: 10/20/05 11:00 Sampled By:	SM				
Sample Matrix: QC					
Analytical Method		~	Prep	Analysis	Analyst
Analvte	Result	Units	Date	Date & Time	Initials
(1) EPA 608 PCB's					
Aroclor-1016			10/24/05	10/25/05	BW
Aroclor-1221			10/24/05	10/25/05	BW
Aroclor-1232			10/24/05	10/25/05	BW
Aroclor-1242	80	%R	10/24/05	10/25/05	BW
Aroclor-1248			10/24/05	10/25/05	BW
Aroclor-1254			10/24/05	10/25/05	BW
Aroclor-1260			10/24/05	10/25/05	ВW
Surrogate (DCB)	118	%R	10/24/05	10/25/05	BW
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	102	%R		10/25/05	LEF
trans-1,2-Dichloroethene	100	%R		10/25/05	LEF
Trichloroethene	103	%R		10/25/05	LEF
Vinvl chloride	79	%R		10/25/05	LEF
Surrogate (1.2-DCA-d4)	106	%R		10/25/05	LEF
Surrogate (Tol-d8)	99	%R		10/25/05	LEF

Analysis performed at: (1) LS1. Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

Synapse Risk Management, LLC Syracuse, NY

Sampled By: SM

LSL Sample ID:

0518331-007

Sample ID: MW-6R Matrix Spike Duplicate Location: 2200 Bleecker St., Utica

Sampled: 10/20/05 11:00

Sample Matrix: QC

Ana	lytical Met	hod				Prep	Analysis	Analyst
	Analyte	2		Result	Units	Date	Date & Time	Initials
(1)	EPA 608 PC	CB's						
	Aroclor-1	1016				10/24/05	10/25/05	BW
	Aroclor-1	1221				10/24/05	10/25/05	BW
	Aroclor-1	1232				10/24/05	10/25/05	BW
	Aroclor-1	1242		30	RPD	10/24/05	10/25/05	BW
	Aroclor-1	1248				10/24/05	10/25/05	BW
	Aroclor-1	1254				10/24/05	10/25/05	BW
	Aroclor-	1260				10/24/05	10/25/05	BW
	Surrogat	e (DCB)		121	%R	10/24/05	10/25/05	BW
(1)	EPA 8021B	Volatiles(Partial List)	by 8260					
	cis-1,2-Di	ichloroethene		2	RPD		10/25/05	LEF
	trans-1,2-	-Dichloroethene		2	RPD		10/25/05	LEF
	Trichloro	octhenc		6	RPD		10/25/05	LEF
	Vinyl chl	oride		4	RPD		10/25/05	LEF
	Surrogat	e (1,2-DCA-d4)		100	%R		10/25/05	LEF
	Surrogat	e (Tol-d8)		100	%R		10/25/05	LEF
	Surrogat	e (4-BFB)		100	%R		10/25/05	LEF
San	ple ID:	Trip Blank	<u></u>			LSL Sample ID:	0518331-	008
Loc	ation:	2200 Bleecker St., U	Utica					
San	pled:	10/20/05 0:00	Sampled By: SM	1				
Sam	ple Matrix	: TB						
Ana	lytical Met	hod				Prep	Analysis	Analyst
	Analyte	3	·	Result	Units	Date	Date & Time	Initials
(1)	EPA 8021B	Volatiles(Partial List)	by 8260					

)	EPA 8021B Volatiles(Partial List)by 8260				
	cis-1,2-Dichloroethene	<1	ug/l	10/25/05	LEF
	trans-1,2-Dichloroethene	<1	ug/l	10/25/05	LEF
	Trichloroethene	<1	ug/l	10/25/05	LEF
	Vinyl chloride	</td <td>ug/l</td> <td>10/2.5/05</td> <td>LEF</td>	ug/l	10/2.5/05	LEF
	Surrogate (1,2-DCA-d4)	115	%R	10/25/05	LEF
	Surrogate (Tol-d8)	101	%R	10/25/05	LEF
	Surrogate (4-BFB)	105	%R	10/25/05	LEF

Analysis performed at: (1) LS. Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

		Life	Scie	ence L	abo	ratori	es, Inc			
(TST)		Ū	HAIN C	DF CUST	ODY F	RECOR			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	LSL North Lab.		LSL Fing	er Lakes Lab.		LSL Souther	Tier Lab.			
1 SL Central Lab.	131 St. Lawrence Ave Waddington, NY 1369	. 4	16 N. Mai Wavland	n St., PO Box 4 NY 14572	124	30 East Main Cuba NY 14	St. 777	Synaps	eRiskM:	anage
5854 Butternut Drive	Phone: 315-388-4476		Phone: 5	35-728-3320		Phone: 585-	968-2640	1		
E. Syracuse, NY 13057	Fax: 315-388-4061		Fax: 5	85-728-2711		Fax: 585-	968-2640 Fax: 5	85-554-6743		
Phone: 315-445-1105						Turnarour	d Time			
1200041 Address						14 DAV	Pre-Authorized			č
Name:	Roger Creighton						2-Dav* 7-Dav*		*Additiona mav annlv	Charges
Company:	Synapse					Date Need	ed or Special Instructions:			
Street:	120 E. Washingtor	n Street, Suite 400								idia erama
City/State:	Syracuse, NY	Zip	: 13202							
Phone:	475-3700	Fax	: 475-37	80		Authorizat	ion or P.O. #			
Cliant Projact ID/Cliant			1.0011			I CL Droioo	Number	1-05 1 02		
	SPDES /	2200 Bleecker St.	Utica, N)			Lat Flojec	LINUITIDET.		•	
Client's Sample	Sample Sample	Type		Preserv.	Con	tainers	Analvses		Preserv	
Identifications	Date Time	grab/comp	Matrix	Added	#	size/type		4 W	Check	LSL ID#
MW-6R	10-2045 1/100) Grab	×	HCI	2	40 ml/ voa	Select VOCs by EPA Method 82 trans-1,2-DCE; TCE; and vinyl cl	60 (cis- & Noride)		10.1 A.K.
	11 22.0	-	:			1-Liter				
MW-6K	1100	Grab	3		-	Amber	PCBs by EPA Method 8082			:) *
MW-13A	1200	Grab	8	HCI	5	40 mi/ voa	Select VOCs by EPA Method 82 Itrans-1.2-DCF: TCF: and vinvt of	60 (cis- &	<u> </u>	16 20 10
MW-13A	12.00	Grab	3		-	1-Liter Amber	PCRs hv EDA Method 8082			
M/N/-12		P Lap	141	C I		40 ml/	Select VOCs by EPA Method 82	50 (cis- &		
				5	7	1-1 iter		lioride)		512 633
MW-14	300	Grab	Z	2	-	Amber	PCBs by EPA Method 8082			ن ج
MW-18	1400	Grab	3	HCI	0	40 ml/ voa	Select VOCs by EPA Method 82 trans-1.2-DCE: TCE: and vinvl ct	30 (cis- & Moride)		20 1 A.A.
MW-18	001-1	Grab	3		-	1-Liter Amber	PCBs by FPA Method 8082			<u>, 1 ()</u>
500201 CrC		Grab	3	HCI	2	40 ml/ voa	Select VOCs by EPA Method 826 trans-1.2-DCE: TCE: and vinvl ct	50 (cis- &		Ger Y A Å
TUP102405		Grab	×		-	1-Liter Amber	PCBs by EPA Method 8082			6 C
WS/WSD MWSW	8	Grab	S	HCI	4	40 ml/ voa	Select VOCs by EPA Method 826 trans-1,2-DCE; TCE; and vinyl ch	30 (cis- & Ioride)		266 250
NJUW - USW/SW	1, 100	Grab	3	1	5	1-Liter Amber	PCBs by EPA Method 8082			107.76C
Trip Blank	>								<u></u>	10 3 J K
LSL use only:				Cust	tody Tra	nsfers			Date	Time
	Sampled	By: 5. 14aH	12005	-		Received E	× X			
Temp. of samples:	Relinquis	shed By: A -	W.ZTCT	4		Received E	Y: XX IV IV	1 6 37 3		
Containers this C-O-C:	Shipment	Method:				Received In	tact: Y N	10101		- 15 P.
*** All ar	eas of this Chain of	Custody Record N	UST be	illed out in	order to	process sa	mples in a timely manner IN	PEN ONLY	***	
Semi-AnnualGW-VOCs&PCBs	-			LSL CC	C	-			_	

Roger Creighton Synapse Risk Management, LLC 120 East Washington Street Suite 400 Svracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO# DANA 001-05 T02

Laboratory Analysis Report

For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0518397

Receive Date/Time: 10/21/05 15:57

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories. Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10248 NYS DOH ELAP #10900 NYS DOH ELAP #11667

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #10760 NYS DOH ELAP #11369

This report was reviewed by:

Date: 11/04/05 KRD, DAD a maridan Life Science Laboratories, Inc.

Synapse Risk Management, LLC Syracuse, NY Sample ID: MW-6R LSL Sample ID: 0518397-001 Location: 2200 Bleecker St. Sampled: 10/21/05 12:00 Sampled By: SM Sample Matrix: NPW Analytical Method Prep Analysis Analyst Date & Time Analvte Date Initials Result Units (1) EPA 200.7 Priority Pollutant Metals Chromium < 0.01 10/24/05 10/25/05 DP mg/l Copper < 0.01 10/24/05 10/25/05 D٩ mg/l Lead < 0.01 10/24/05 DP mg/l 10/25/05 Zinc 0.013 10/24/05 10/25/05 DP mg/l Sample ID: **MW-13A** LSL Sample ID: 0518397-002 Location: 2200 Bleecker St. Sampled: 10/21/05 11:00 Sampled By: SM Sample Matrix: NPW Analytical Method Prep Analysis Analyst Date Date & Time Initials Analvte Result Units (1) EPA 200.7 Priority Pollutant Metals Chromium <0.01 10/24/05 10/25/05 DP mg/l < 0.01 10/24/05 10/25/05 DP Copper mg/l Lead < 0.01 10/24/05 10/25/05 DP mg/} Zinc <0.01 10/24/05 10/25/05 DP mg/l Sample ID: MW-14 LSL Sample ID: 0518397-003 Location: 2200 Bleecker St. Sampled: 10/21/05 11:20 Sampled By: SM Sample Matrix: NPW Analytical Method Prep Analysis Analyst Date Date & Time Initials Analyte Result Units EPA 200.7 Priority Pollutant Metals (1)Chromium <0.01 mg/l 10/24/05 10/25/05 DP DP < 0.01 10/24/05 10/25/05 Copper mg/l 10/24/05 10/25/05 DP Lead < 0.01 mg/1 10/24/05 10/25/05 DP Zinc < 0.01 mg/l Sample ID: MW-18 LSL Sample ID: 0518397-004 Location: 2200 Bleecker St. Sampled: 10/21/05 11:40 Sampled By: SM Sample Matrix: NPW Analyst Analytical Method Prep Analysis Date & Time Initials Date Analvte Result Units (1) EPA 200.7 Priority Pollutant Metals 10/24/05 10/25/05 DP Chromium < 0.01 mg/l <0.01 10/24/05 10/25/05 DP Copper mg/l 10/24/05 10/25/05 DP Lead 10.0> mg/1 DP < 0.01 mg/l 10/24/05 10/25/05 Zinc

Life Science Laboratories, Inc.

Page 2 of 3

Analysis performed at: (1) LSI Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

	- LAB	URATURY	ANA	TT2	13 KEPU	KI		
	Synapse Ri	sk Management, LL	.C Sy	racuse, I	VY			
Sample ID:	Dup-1 (DUP102005)	ու ինչին, չյուցնում օգելուցիալու է է է՝ չես մելու է։ Հայ			LSL Sample	ID:	0518397-0	005
Location:	2200 Bleecker St.							
Sampled:	10/21/05 0:00	Sampled By: SM						
Sample Matrix:	QC							
Analytical Meth	od				Pi	rep	Analysis	Analyst
Analyte			Result	Units	D	ate	Date & Time	Initials
(1) EPA 200.7 Pr	riority Pollutant Metals							
Chromium	1		<0.01	mg/l	10)/24/05	10/25/05	DP
Copper			<0.01	mg/l	10)/24/05	10/25/05	DP
Lead			<0.01	mg/l	10)/24/05	10/25/05	DP
Zine			<0.01	mg/l	10)/24/05	10/25/05	DP
Sample ID:	MW-6R MS	- Bally and - Carl	••		LSL Sample	ID:	0518397-0	006
Location:	2200 Bleecker St.							
Sampled:	10/21/05 12:00	Sampled By: SM						
Sample Matrix:	QC							
Analytical Meth	od				Pr	·ep	Analysis	Analyst
Analyte			Result	Units	D:	ate	Date & Time	Initials
(1) EPA 200.7 Pr	iority Pollutant Metals							
Chromium	I		67	%R	IC	/24/05	10/25/05	DP
Copper			75	%R	10	/24/05	10/25/05	DP
Lead			68	%R	10	/24/05	10/25/05	DP
Zinc			/1	%R	10	/24/05	10/25/05	DP
Sample ID:	MW-6R MSD				LSL Sample	D:	0518397-0)07
Location:	2200 Bleecker St.							
Sampled:	10/21/05 0:00	Sampled By: SM						
Sample Matrix:	QC							
Analytical Meth	od .				Pr	ep	Analysis	Analyst
Analyte			Result	Units	Da	nte	Date & Time	Initials
(1) EPA 200.7 Pr	iority Pollutant Metals							
Chromium	I		</td <td>RPD</td> <td>10</td> <td>/24/05</td> <td>10/25/05</td> <td>DP</td>	RPD	10	/24/05	10/25/05	DP
Copper			<1	RPD	10	/24/05	10/25/05	DP
Lead			<1	RPD	1 C	/24/05	10/25/05	DP
Zinc			42	RPD	10	/24/05	10/25/05	DP

707 A DOD A TODY ANIAT VOIC DEDODT

			Life	Scie	nce L	abol	ratorio	es, Inc.			
TST)			Ū	HAIN O	F CUST	ODY F	RECORD	, ,	0518397	iter	
	LSL North 131 St. Lav	Lab. vrence Ave.		LSL Finge 16 N. Mair	er Lakes Lab. 1 St., PO Box	424	LSL Souther 30 East Main	n Tier Lat St.	SynapseRiskM	anage	
LSL Central Lab.	Waddingtc	on, NY 13694		Wayland,	NY 14572		Cuba, NY 14	727			
5854 Butternut Drive E. Syracuse, NY 13057	Phone: 31 Fax: 31	5-388-4476 5-388-4061		Phone: 58 Fax: 58	15-728-3320 35-728-2711		Phone: 585- Fax: 585-	968-2640 968-2640	гичие, рор-ро4-р347 Fax: 585-554-6743		
Phone: 315-445-1105							Turnaroun	d Time			
Fax: 315-445-1301			والمستعم والمالي المالية المالية المالية والمحموطية والمحموطية والمحموط المحموط المحمول والمحمول			And	Normal	Pre-Authorized			
Report Address: Name:	Roger Cr	eighton					14 DAY X	Next Day*	3-Day * 7-Day*	*Additional may apply	Charges
Company:	Synapse	Risk Mana	gement, LLC				Date Need	ed or Special Instr	uctions:		
Street:	120 E. W	lashington	Street, Suite 400	13202							1988-1990-1994
Phone:	475-3700		Fax	c 475-37	80		Authorizat	ion or P.O.#			
Email:		rcreighton(@synapseriskma	nagement	com				DANA 001-05 T02		
Client Project ID/Client S	ite ID	SPDES / 2	200 Bleecker St,	Utica, NY	ورايين ورزين ويدخر بالم وترايين والم		LSL Projec	t Number:			
Client's Sample	Sample	Sample	Type		Preserv.	Con	tainers	An	alyses	Preserv	
Identifications	Date	Time	grab/comp	Matrix	Added	#	size/type			Check	LSL ID#
MW-6R	10-21-65	1200	Grab	\geq	HNO ₃	1	500-ml plastic	(Cr, Cu, Pb, Zn)	hod 6000 Series		1.000
WW-13A		100	Grab	3	HNO ₃	4	500-ml plastic	(Cr, Cu, Pb, Zn)	.hod 6000 Series		
MW-14		1120	Grab	3	HNO ₃	-	500-ml plastic	Metals by EPA Me (Cr, Cu, Pb, Zn)	nod 6000 Series		ás .)
MW~18		140	Grab	3	HNO ₃	-	500-ml plastic	(Cr, Cu, Pb, Zn)	nod 6000 Series		
Dup-1 (Dupteese)		And the state	Grab	3	HNO ₃		500-ml plastic	(Cr, Cu, Pb, Zn)	nod 6000 Series		14 - 14 14 - 14 14 - 14
JUN W.W. JE USW/SW	. /	1200	Grab	3	HNO ₃	2	500-ml plastic	IVIetals by EPA Me (Cr, Cu, Pb, Zn)	nod 6000 Series		se (.
for contros	e.										
	pre-lates		N Second I are an a second at the Could be a second at the								
LSL use only:			والمالي المعرفي والمحرك والمحالية المحركية والمحركين المحافظة والمحركين والمحافظة والمحركين والمحافظة والمحافظ	and the second sec	Cu	stody Tra	insfers			Date	Time
		Sampled I	By: \leq , pl_{Q}	Hhenris ;			Received I	зу:			
		Relinquis	hed By:	RECTOR			Received	3y:			
Temp. of samples:		Relinquis	hed By:				Rec'd for I	ab By: V N	5		
Containers this C-O-C:		Supment	Method.	NUICT PO	1 9 P 13	and a to	Veceived II	naci. T N	MODINE IN DEN ONI	V/***	
Comi Annualovi h	Motolo Motolo		usiouy ivecoru			I OI UEL IN	pioress s	allipies III a uniciy			

ONTR 0,70

-ועוכנמוס vem------

APPENDIX G GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2005 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEEKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2006**

i-9-05	1-7-0	6							
ST	RIPDER .	SHUT I	DOWN		1-	19-05			
for cl	e Aning						ur pre	issung 1	4"we
TAKEN	A DART	AN	CLEANE	2		Suns -	- 21.33	4	
New a	Askets f	OR TRA	15		M	Arhole #1	- 299	67760	
IN STATION) AND	RestART	ED 1-7	-05	MA	chole #2	- 114 9	3770	
AIR	12"4	c						14	rK
SUMA	212	10							
manhol	12 1- 0	29869	430		1-21	0-05	air	presance	16"wc
MANhol	4#2-	11426	300			Sur	no - al	334	
			M	hik		MANHO	1e#1 - 7	998780	0
				·.		manhale	#2 - 11	497891	0
1-10-05	Re	DACED			ADTI	STED AIR T	14 wc	1-1.0.1.	15%
STEND	er Do	in istere	0.83	:			0		
+ are a	it lat	Disch	HARG P						
	U Lei	DISCI	INTK		2-2-0	5	air Orea	16	"WC
						SUM	- 213	24	
1-12-05	AIR	ORPSSL	p.p - 17	"wt		n sub about	1- 30	003660	¥
	AUNT T	Repatur	water			while #	- 1140	2hann	T
	Sumo	2712	2 LI		1.00	A FIO	<u> </u>	M	The second se
			69718	1.0		and to	La #2	14	
///	HUNOTE	1 d	5900	20	<u>0N</u>	MADNO	The of	Metek	PLUggED
parts	mhole d	- 117	1001		Ly, Th	LRON 1	<u>peposits</u>	ASU	
				K				115	
				· · · · ·					
]					l	
						1.1.000			
		295 S S S S S					T NAR IV. O		
			an see a						an in the state
	The second second	an in the st	and the second			. Aga			
			1. S.						
						1995 - 1945 -		se inclusio	
					e gan ann				
		No. Alex	$Q_{i}^{(1)} = \sum_{i=1}^{N} (Q_{i}^{(1)} - \sum_{i=$	1987 - H		1. 2. 15		1946 - 1948 1947 - 1948	Sec. Sec.

1.512.53

8/18/25 10:45 5. Delan onsite to catter weekly and months hipsomples feedings: Have Song 0021783 8-25 Att 388 KAT+2 1232196

roadings from 5B. 92° HUNID 8-4-05 SERSDUCK RUN & TETEM IN MANUAL (AT R STR PARE) LURG MCKENNOM -> coa fait Bland At the day of the de RUN MH/ PUMPS IN MANUAL Ubjective - RESPOND TO SYSTEM UAKA LEVER THE KINSS OFE - YET NO ALALM. CH M. H. C. - WENC OFFICE @ 10:00 Am ALARN CLEAPS IN M. H. I Andry on SITE @ 11 40 Arts 54/2 TAL FURNING FINING - LOW AND PRESSURE ALARM 12:10 Per M.H. J. 3087876 1 - 60 TO LUNCA F.S. - No. Ac Ann in Nort / pr 11 4: * Air Prossure - 30 pri-- RETURN TO SITE @ 12:50 Rest System 515THAN PURNING THE - TEUN ALLSTRICATEL IN MARINAL SET ACARIN AGAIN TO VIAIFY CALLOUT TROLUDURE * HIGH WATER ALARM MUL 15 WEEKNE. TRIGERON AT 11/20 Au CALL TO LELL PHUNC CALL GUT IS WORKING FINE 263 CONT CONFERENCE HND ALYNOWLEED The PM Jem Lantiture

8-11-05 COLLECT EFELVENT SAMPLE Sarah Burke (SKB) 79°F Humid - REVIEW STSTEM - MI & LUCATION 0915 SKB ON-site, take readings Mostly Cloudy MSD. Floor Sump: 21744 P. Flow MH1: 30904960 Ø Flow NOTE DEPALS NEAP MILLINGUNT MIT2: 1228504 Ø Ø Flow UNE AGAIN. 0920 For Collect effluent sample READINGS (B) 13:45 0925 Cotteer influent scompte SKB 0930 SKB OFF-Site. 12240510 9gm M HJ. 308 8018 0 FLOW MNZ 2:358 O FLOW 45 KAP. 19-20 PSI Sande Burker. LOLE UP STATE - DEF SITE @ 14:00 April to

\$/18/05 10:45 5. DUAN ONSITE Falke 8/25/05 70-750 0910 & Burke on-site 68° F Floor Sung 2021783 Taxe readings Synny SUMMY Floor Sump 0021985 Flow & gpm MH1 309/388 Manhole V 30923030 Fbw Øgpm Manhole 2 12359470 Flow Øgpm Collect ogla Fake efficient sample MHZ 1232196 1.08 Collacted EAliert Somple 0916 S. Burke leave site. 11:15 Collect CP influent 11:20 Collect souple CP in fluit 2 11:38 S. Dolan leave site, note Air press. " 30 ps 8/18/05 borgh Bruter

916/05 An stripper cleaning 9/1/05 0770 Denise Sero (EUSZ)@ 0905 Sarah Burke (SKB), arrive 66°F Hide to pick up supple Overcast on-site. 0800 05 mained. Take Readings 0900 DS on-site, meet fare Floor Symp: @ Flow 0021485 gal and. Construction CPEC. MH1: Ø Flow 30935110 gal MH2: 0.7 (x 10 gal) Flow 12400790 gal Mr. PEC perimnel: andy Dicketel, Wayne anderson. Review 2 0907: SKB collect effluent sample for activities. A. Shuts of 0915 AD + WA begin disassen: pH \$.8260 0913: SKB off-site ail stripper. 1010 Reten MinCousti of PEC on site. Dec reviews logistics continues dissassembly 130 thay #4 removed. Material inside is rus brown & sandy. there are several malium-o pieces of rounded grau present begin cleaning 1st 1140 Fridig Break for linch. A) + WA off- 11-e. DS +/M eat on 1200

9/7 130 AD + WA maite. 40 Lesune cleaning thay 0600 15 m road 0715 DS morte. Meet PEC #4 4 200 Finished cleaning than begin cleaning thay to 3. PEC is some people as 7/6. AD of PEC M-site as he's Hemine F4. PEC decides to Hay #3 50 & can dry 0745 overnight. Scalin easier needed at another jds. 2 other DEC people on to remove when dry 530 all Minite. their way. Justin Bailey Mille Fages I pe c m-site- Review 0900 activities withen. 05+MF will Finish 0920 Julling out holes on thay 5 while ofbers removed begin Clancing than # 2 Tacey 1 is noticed to have 0930 standing water + >1" of wet sedement. WA will bail out water + 5000p out some of wet sed. so at can dry for pasien cleaning. Finished ul may 3. Break for linch. all stay 1130 200 MSite,

9/7/05 1/5/09 91240 Resume cleaning Andiz 600 AS on road 1430 MF + AB M Site PM + WA Record + 68 Hidy up. Dave ul toay 710 05 on offer meet PER IEC: And y bearran, Eddle Bear Wayne anderson. Begin cleaning they, 745 930 WA Begins replacing ubben gaskets. 1040 Bottom of thay I have inneh hander deposito. 1943all of site. Can't arape off. DS, con Luke Mchenney, who advises that as long a inside + holes are clo. Anippen will femedian 1045 Begin re-assemblus. 1220 Andy Dichend of PEC on to re-start air stail 245 Re-stantal air stripper talke readings: Magnehelic 6"1+20 MET 2 OGPMX'Ó 1243187 MET 1 OGPM 309-1397 Samp O 0021986 AD andorms US pamps haven tunned on.

9/13/05 9/8/05 Cent d leave for site +AD consult ul 230 KOR/LPM 1300 DS huke nic hennen + chei Gaub JENSR. W.I. Thy to the block 1020 onsile trable shoot Syste have initial success out syste thy suts down 1600 Panps of 1230, What KOR collects readings l not 1330 - onsite wa CG+LM advise to Reardings + we will My quit Blover hrs 20350.5 1605 will leave blower n Man H #1 309 44370 Julion un case pumps start all of site. #2 12431920 Jallons 00 21991 Floor Sup Gallos 3" Hyo pressure Stipper To of the

og/15/5 //19/05 EUDS@ Mice. - 530 DS an road. - 930 05 an onte Paragon KOR leaves for onte 6051 1300 1030 PEC not vere ret. D consite. Neil Collins prosite 1305 trable shoot te spote antert langan + leave determine that it is determine that it is measure 1035 Parager and te alon this preventing poper andy Dickerol. Start to operating in syste is blower & check alcanne. AD review Ot M. munua not operational. - hop-INGJC recharge all Readings: trays I Stripper (tray 2nd for Blowed hrs 20350.5 to se almost MH1-8 39944413 MH2-8 12613198 top3 apperd. epty) - nanged to get pressure gauge ES. & 6021997 4 for 3pri a-stipper to Magnehelic - 711 Hzo. to ~ 9.5h MH = panel shows with love eventuality drapped dain. - Dut pressure 5" @ the we 1055 Have gotten blower & rings back to municy ! However, the Hoi meters are still vacking . Shot: abun. - KOR contrato CG : devide 1700 to shut syster down. I over though visual - pups do sun a- monal confiamation in manhalp 67 pros (... no controller/ - that pump au unices. (Floats) 2 10 out fall.

11/22/05 14:10 SEAN DOLAN ONSITE for Weakly Some also checked flow weter in MH1 3116815 pipe clar. 1040 Of tech off site. DS MH2 (267202 take pictures of influent É 2022679 MAGNEhelic II IN. 1017bilittes. 14:30 Glast CP EAthert 100 MH. J is now conning. MH-10gpm 31149910 14:40 5. Dolar offste. 21/95 M17-2 50-pm 12667290 ES & 00225630. 110 DS 077-012 1410 Deniso Sello (E.USIR) on sit Citum up handles of ain 1125 Lukenterkinnen talle te inform DS of sife oursesting 1415 DS collect waste ci Mary day Field beck means to be and ste is cuil what 1 20 15 label crim ROODS on site they yo tipe cashings MH-100 311502100 6 55- gallon drums of 2druns missing rings 1445 talke endings 1417-2 & 12667660 FS & 00225640 Margueheliz 161 1720 MH-10 31203036 MH-20 12172020 124005 dA-site. FERRI Dann Den 11/18/05 Pen F50 0072 Y037 magnetic 12" 1+20

12/2/05 Trank leduct , 1/H-2 1450 Sample CP Albert 7 1500 DS on site, ask Dad 1455 Sample CP influent 2 1500 Sample CP effluent anafluss to open door. 1570 Tike warding 10 DS makes a lignet to start mH-1: # 31208600 MH-ZE 12(77020 pumps in Bit-2 by hand. 511 Kegs sell not aliged to TS: @ 0022850@ Magnielielie 13" 17-0 Telit book. US checkow Sica illiam & Lathe Merkenney 515 DS atlempts to sta (CUSR) - roberty Finders There WIH-Z fump in "hand." 23 MH 2 not working digit over the is extice 20% 15 Tomic incoments incy when the steart Mathing else la try 95 1513 05 00 site. 12/8/05 Remove drums, Sample, tidy up 800 05 recience call fo the state clean Harbors -th. and last. \$70 CH on sife. 220 CH + Arving M-oit Os tivy up area. ran MH-1 08 312322 80 MH-20 12672020 FS & 0023099

12/10/05 Thoubleshoot (155 CP. tech cp. 5, H. B. 955 SANILE Pettluent. Schipsen & Typon Stary Dan to clear out out 2/10/05 Replace pump m/17)2 There is much bedines 74505 DS in nord. there, upon closer ing 345 Denise Sero + Dan Shearin DS malke were of an ste bet cull from on H-2 hours. OP-lock-they are late Denies Pump 1 Pamp 2 201949 207365 shows Dan, MH-2+IF 915 No answer from 0 6 - inimned order entry. or che intrif. regennel Louiding drik : plint pump Dem doon unlared. Jenese + 1005 BS injours DS the no need to devictor Dan inpect pila, talke MH-12 12677020 111 H-2. 1130 Kin 12-3 to get showe FS 9 0023231 1200 Kund windred Pijk Magnebelin 14" H20: 930 Locate Jim Stevens Pering film planp 12 E panp, Dansy vale of DGP+a prom p5 +PS Jan + 20 Cup nin to Mi HNY UP. 05705 notice myperting cuttall motion pipe is plassed. I an will 1245 Dan more with todo Marine place for me Mx When OP-tech anives PVC Clament + Fifting. SAF A ~ Spitem. The stolos

2/10/05 Treubleshert BS informs 05+05 shout in MHZ isgoing down pimp 2 4 met on chain -Dan's cyces AM Duke Matin Check flow meter - working 4. I 4 sitting on buttom, Oneplace laiter will require but even with no place, c Swateries of hele. 1250 Decim installing new fund - Goulds Effluenting Notel WE CT3214 still reading +3ASi MIL-1 jauge also stell reads @-8 1455-CM says let un in un Even if see if it with Marx Amps 5.4 HP 3/4 better. Stait pupps in 2PM 3450 duto + clocen up: 1510 all off site. 1014 230 1402 New pump in, will try Final reading) MH-1-0 31239790 MH-2-0 12672050 FS & Co232618 te resterit system after a short break 1440 MH-2 not samping even though elect pund indicates though be DS, DS+TS -Note - MH-Z coppeans to votaligen not mer ing whech MHZ- looks like water is going down Denis, hh but no flow Dating Dam chacles out flow wil MH-1 turned off. He say theres and spattering out but no H2U; TG Day water herd DMB 12/10/05
10:10:05 monte ally sugary 12/19/05-MH-2-6 12677630 CESO L' Mickeyiney, CN'rom Casit. Paragov - Andy Kieth + li FS-0 0623456 ou site. 1015 SAMPLE Criffline 107 15 minute H+ + 5 Meetricy -Mappehille - BIM (450) Discuss-Slips pinching Alline Falling From Lift: NO effluent. DS will suite Mchefunes He pays try; Equipment. () remicro - no z yle thom rige + ensign there is no 0910 PECCHEW has Durined PPE log, Starting Dismanflementus @ him pump in MH-1 in Ave stripper having to trug to rence 1025 Quick Break Top & 44h+ 3rd efficient. 05 a tempts Neither works OFF. 10418 Juli Mallinney adde 202 1040 - Crew Back to work - Takin action if no eitheant, then 2nd section. there is not enorgh HZC 1200 - PEC CREW Taking Limin havin 1054 DS off Oite. Decement for 1230 ALL CYEWS Back on Side -Taking CFF 1St Section. in MHA. H have fine getting Section: - 1245 list Section off - Wayne Cleaning Base unit Hhdy i K Cleaning unit # 4.

12-19-05 12/20/05 1435 - CRIW Still SCRaping - + DRumming 0700 - C. IV: XO. (ENSR) + Kirthup Scale - Andy wants to Check' when to Charge out Screen owhite. 0720 - Andy & wayne outsite for Vent/Exhaust-14+5 meeting - Eye Protee + Lifting Safety Discussed 1530 - CREW has Pat all Equipment Hazards - Hearing Protectoo within Containment Areen 0730-Crews starting Debris R ALL LOOSE Material has 1100 - Czews. Nearly Complete u been DRunned - The Game Plan For 12/20/05 is to Hole Qreating + Scraping a DRill all holes Knock off Individual Sections, The Las Rest OF Scale + DRam. Base Clout is nearly any Crew is going to Pump ant Day to morrow to Chean out or Water. 1200 - PEC Taking hunch , C.A Still Drilling holes 1300-C. Nixon has Completed in afternoon of 15t thing Wednesday norsing ALL OFF Site or the DRilled boles. (wew) PEC Back From high 2 Starting to Remove Scule From Base Unor - 1400 treth & Andy have finish Severping the Cast of the Simple Small Units. Wayn 13 Still working on Bus Unit _____

12/21/05 12/20/05. Contd. 0700 - C. N. xon ON Site -1430 - Wayne has completed the Base and + 13 PEC Crew on site. now Putting the Waters Beref HAS meeting-Removed Back in; White Pinching hazards + Ciftin Andy + Lieth are saleeping Citew Starting to Put up Dust + Cleaning Flool. Levels 1-4 Back on Bus No Duct Tape used to - PEC CREW hus Completed the 1530 hold on New Gaske Drilling & Scrapping OF GACH unit- the water has 0940 - Unit Back Legether been put Back into the The Top + ALC Piping + Base anit, The Old baskis Duct Exhaust Being have been Removed. Tightened down! Cred OFFSITE. ALL Connects have been CNixon OFF Site Wen Checked. - Needs Me Clamps at next clea. 1015 - Blower Started. 1030 - Pumps are Kunning MANhole No-1 100% Munhole No - 2 40 ggy 1033 - Manhole No. 2- @ Ogal/ min. Manhole No. 1 @ 100 gral/mi Air pressure gange & Unit 5 gin/wite;

12/21/05 cont'd 12/21/05-1130-Locked up Panels + R. Lock out/TAGGOT COCK. 1635 - Spoke W/ L. McKenney he asked that Andy + I Watch For about 1 an hour-PECCREW + C Nixon off hour and a Vi to Make sure Unit is charged + No Wer ALAKMS/ 13548 avise trom Kistart. 1040 - ALL EXCESS Scale ON Floor has been Cleaned up + Put in DRum. DRum has been Labeled + Closed. Signet Accum-16 - Flo-(mH # 23126852 mt # 1) 23617 (Floor Sump.) Blower Hours - 20350. SJ Mouling. 1100 - Water in Manola #24 is e 42" from Top of Manhole.

DanSlephen 12/22/05 10° - DMS ansite for bid walk - NOTED NO DYSCHARGE AT EFFLUENTO Reading MH-1 312 71960 MH-2: 12672800 FS: 0023617 Alarm was offe 115- Bill Simpson of Optech Reset 1140-Systeme Ck repetivity of pump in MH-Z 1230- Pressure an air Stupper after system was restarted was 9 psig, A 30 minutes pressure is 4 psig 242 Op-tech thinks heaters on MW-2 May be bad -1255- Water Level at MH-Z~48ª. 300- DMS& Bill Simpson (op-tech) offsite.

2/21/2005 Tursday 1215 John Imhoff, ENSR on site for weekly sampling. - No effluent discharge/ no Sample collected. MA1 31300660 MH2 12673120 FS 0023617 Magnehelic = 5"Hzo 1230 Off-sita ALT T