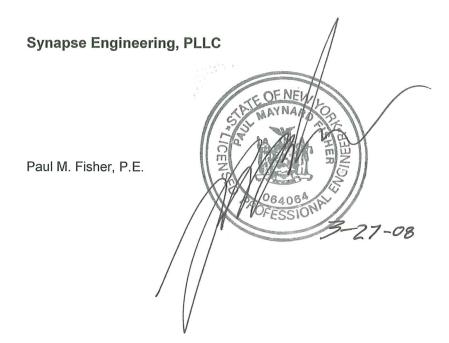
2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

Prepared for

Utica Holding Company c/o Danaher Corporation 1500 Mittel Boulevard Wood Dale, IL 60191

Prepared by


Synapse Risk Management, LLC Historic Bennett Warehouse 325 East Water Street Syracuse, New York 13202

March 2008

Revised June 2008

CERTIFICATION

I, Paul M. Fisher, P.E., as a New York State licensed Professional Engineer, certify that the 2007 Annual Operation, Maintenance and Monitoring Report, Sections 1 through 5, for the property located at 2200 Bleecker Street, Utica, New York, pursuant to the Draft DER-10, December 2002, Section 1.5(a)9, has been prepared in accordance with good engineering practices and under my direct review. I further certify that the inspections and evaluations, for said sections, were implemented and that all activities were completed in accordance with the NYSDEC-approved Operation, Maintenance and Monitoring Manual and/or NYSDEC-approved changes.

ENSR

5015 Campuswood Drive, East Syracuse, New York, 13057-4232 T 315.432.0506 $\,$ F 315.437.0509 $\,$ www.ensr.aecom.com

CERTIFICATION

I, Daniel M. Shearer, P.E., as a licensed Professional Engineer in the State of New York, certify that Section 6 of the 2007 Annual Operation, Maintenance and Monitoring Report, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a) 8 and has been prepared in accordance with good engineering practices.

ENSR | AECOM

Daniel M. Shearer, P.E.

TABLE OF CONTENTS

Secti	<u>ion</u>		<u>Page</u>	
Table	e of Con	ntents	iv	
Acro	nyms a	nd Abbreviations	v	
Asso	ciated I	Documents	vi	
1.0	INTR	ODUCTION		
	1.1	REGULATORY HISTORY		
	1.2	PURPOSE		
	1.3	REPORT ORGANIZATION		
	1.4	PROPERTY MANAGEMENT	1-2	
2.0		PERTY INSPECTION AND MAINTENANCE	2-1	
	2.1	PROPERTY HISTORY		
	2.2	PROPERTY GEOLOGY AND HYDROGEOLOGY		
	2.3	PROPERTY ACTIVITIES		
	2.4	INSPECTION		
	2.5	PROPERTY DRAINAGE AND OUTFALLS		
	2.6	SUMMARY		
	2.7	FIGURES	2-4	
3.0	REMEDIAL ACTION FACILITY			
	3.1	CONSTRUCTION		
	3.2	OPERATIONS AND INSPECTIONS		
	3.3	MAINTENANCE		
	3.4	LEACHATE COLLECTION		
	3.5	LEACHATE DISPOSAL		
	3.6	SUMMARY		
	3.7	TABLES		
	3.8	CHARTS		
	3.9	FIGURES	3-8	
4.0		UNDWATER MONITORING		
	4.1	MONITORING WELL CONSTRUCTION		
	4.2	GROUNDWATER ELEVATION MEASUREMENT		
	4.3	GROUNDWATER SAMPLING		
	4.4	GROUNDWATER ANALYTICAL RESULTS		
	4.5	SUMMARY		
	4.6	TABLES		
	4.7	FIGURES	4-6	
5.0		PERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM		
	5.1	OUTFALL CONTRIBUTIONS		
	5.2	OUTFALL CONSTRUCTION		
	5.3	MONITORING		
		5.3.1 Routine Monitoring		
		5.3.2 EPA Method 1668A PCB Study		
	E 4	5.3.3 Acute Toxicity Testing		
	5.4	SUMMARY		
	5.5	TABLES		
	5.5 5.6	TABLESFIGURES		
	J. 0	FIGURES		

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

6.0	GRO	UNDWATER TREATMENT SYSTEM	6-1
	6.1	SYSTEM CONSTRUCTION	
	6.2	OPERATION	6-2
		6.2.1 2006 MH-1 Flow Data and VOC Concentrations	6-4
	6.3	MAINTENANCE AND TROUBLESHOOTING	6-4
	6.4	SPDES OUTFALL 03A	
	6.5	SUMMARY	6-5
	6.6	TABLES	6-6
	6.7	FIGURES	6-7

LIST OF APPENDICES

APPENDIX A	Site Inspection Reports - Form A & Form A1
APPENDIX B	Auto Dialer Alarm Incident and Testing Report - Form F
APPENDIX C	Leachate Disposal Correspondence and Analytical Data
APPENDIX D	Water Level Field Logs - Form D
APPENDIX E	Groundwater Sampling Logs- Form E
APPENDIX F	Groundwater Analytical Data
APPENDIX G	Groundwater Treatment System Inspection Logs

ACRONYMS AND ABBREVIATIONS

ABBREVIATION NAME

BBL Blasland, Bouck & Lee

bgs below ground surface

cfm cubic feet per minute

cis-1,2-DCE cis-1,2-dichloroethene

CMP corrugated metal pipe

Coolidge Coolidge Utica Properties, LLC
CPTC Chicago Pneumatic Tool Company

Danaher Corporation

DER-10 NYSDEC's Draft DER-10, Technical Guidance for Site Investigation and Remediation dated December 25, 2002

DMRs Discharge Monitoring Reports
Fathead Minnow Pimephales promelas (vertebrate)

FER Final Engineering Report

gpd gallons per day gpm gallons per minute

GTS groundwater treatment system HDPE high-density polyethylene

IRM Surface Water Interim Remedial Measures

ISACC Intelligent System for Automatic Control & Communication (Auto Dialer System)

Main Building former main manufacturing building

MH Manhole mg/l Milligrams/liter

NCT northern collection trench

ng/l nanograms/liter

NYSDEC New York State Department of Environmental Conservation

OBG O'Brien and Gere Engineers, Inc.

OCDWC Oneida County Department of Water Quality and Water Pollution Control

OM&M Operation, Maintenance and Monitoring

PCB polychlorinated biphenyl PVC polyvinyl chloride

QA/QC Quality assurance/quality control

RA Remedial Action

RAF Remedial Action Facility
RD Remedial Design
RI Remedial Investigation
ROD Record of Decision

SECOR SECOR International Incorporated

SPDES State Pollutant Discharge Elimination System

southern collection trench

SVOC semi-volatile organic compound

TCE Trichloroethylene

SCT

the Property 2200 Bleecker Street in Utica, New York

TOGS 1.1.1 NYSDEC Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality and Guidance Values

and Groundwater Effluent Limitations dated June 1998

trans-1,2-DCE trans-1,2-dichloroethene
TSS total suspended solids
ug/l micrograms/liter
UHC Utica Holding Company

VC vinyl chloride

VOC volatile organic compound
Water Flea Ceriodaphnia dubia (invertebrate)

ASSOCIATED DOCUMENTS

ABBREVIATION	TITLE	AUTHOR	DATE
Phase 1	Phase I Investigation	BBL	8/85
SIR	Site Investigation Report	BBL	7/90
PSA	Preliminary Site Assessment	NYSDEC	11/90
Order	Order on Consent for RI/FS Index No. A6-0279-920-04	NYSDEC	10/26/93
RI	Remedial Investigation Report	BBL	10/94
IRM	Surface Water Interim Remedial Measures (Design)	BBL	10/94
IRM-DWG	IRM Contract Drawing	BBL	04/95
IRM OM&M	IRM Operation & Maintenance Manual	BBL	04/95
RI/FS	Health and Safety Plan - Addendum #1 Remedial Investigation/Feasibility Study	BBL	10/95
SRI/FS	Supplemental Remedial Investigation Report/Feasibility Study	BBL	12/95
ROD	Record of Decision - Site No. 622003	NYSDEC	3/29/96
ORDER	Administrative Order on Consent Index No. B6-0491-96-04	NYSDEC	10/02/97
RD	Remedial Design Work Plan	BBL	11/97
RDS	Remedial Design Specifications	BBL	4/98
SPDES-SAP	SPDES Stormwater Action Plan	SECOR	6/00
FER	Final Engineering Report (Final)	SECOR	8/01
OMM	Operation, Maintenance & Monitoring Manual (Final)	SECOR	4/01
2000-RPT	2000 Annual Operation, Maintenance & Monitoring Report	SECOR	4/01
2001-RPT	2001 Annual Operation Maintenance & Monitoring Report	SECOR	8/02
UHC SPDES	Utica Holding Company SPDES Permit No. NY-0257087	NYSDEC	9/1/02
CPTC SPDES	Chicago Pneumatic SPDES Permit No. NY-0108537	NYSDEC	9/1/02
2002-RPT	2002 Annual Operation, Maintenance and Monitoring Report	SECOR	3/03
2003-RPT	2003 Annual Operation, Maintenance and Monitoring Report	Domani	3/04
2004-RPT	2004 Annual Operation, Maintenance and Monitoring Report	Synapse	3/05
2005-RPT	2005 Annual Operation, Maintenance and Monitoring Report	Synapse	2/06
2006-RPT	2006 Annual Operation, Maintenance and Monitoring Report	Synapse	4/07

1.0 INTRODUCTION

This 2007 Operation, Maintenance and Monitoring Report (OM&M Report) provides an annual account of activities relative to the property located at 2200 Bleecker Street in Utica, New York (the Property). The Chicago Pneumatic Tool Company (CPTC) occupied the Property from 1948 through 1997 for manufacturing. Utica Holding Company (UHC), a subsidiary of Danaher Corporation (Danaher), presently owns the land surrounding the former CPTC main manufacturing building (Main Building) that is leased to Utica Land Equities, LLC (ULE). Coolidge Utica, LLC (Coolidge) presently owns the Main Building and the land beneath.. Coolidge and ULE share members and offices.

1.1 Regulatory History

Environmental assessments and investigations conducted between 1985 and 1990 identified impacted soil, surface water, and groundwater at the Property, and prompted the New York State Department of Environmental Conservation (NYSDEC) to issue an Administrative Order on Consent in 1993, directing the investigation and remediation of impacted areas at the Property. In 1996, NYSDEC issued a Record of Decision (ROD) for the Property, and listed it in the Registry of Inactive Hazardous Waste Disposal Sites, followed by a second administrative Order on Consent. This set forth a Remedial Design (RD) and subsequent Remedial Action (RA) required for the Property. Following completion of the RA construction and reporting activities, NYSDEC issued a letter indicating that the RA had been approved. A chronological list entitled Associated Documents, Page v and Page vi, summarizes key documents.

1.2 Purpose

This OM&M Report has been prepared in conformance with the requirements set forth in NYSDEC's Draft DER-10, dated December 25, 2002, *Technical Guidance for Site Investigation and Remediation* (DER-10), and has been prepared in reference to the Final Engineering Report (FER), previously submitted and accepted by NYSDEC for the Property. Additionally, the April 2001 site specific OM&M Manual was approved by NYSDEC, along with subsequent annual reports. This OM&M Report, as directed by the OM&M Manual, has the following objectives:

- To provide an ongoing review and evaluation with regards to the compliance of the RA with the requirements of the ROD and subsequent Order on Consent;
- To provide an evaluation of the effectiveness of the ongoing remedial operations, engineering controls, and treatment systems in use at the Property, and identification of any needed repairs or modifications;
- To provide an assessment of the performance and effectiveness of the remedy;
- To document any necessary changes to the remedy and/or monitoring systems;
- To provide recommendations for changes and/or new conclusions regarding environmental impact at the Property based on this evaluation; and
- To provide information to the public.

1.3 Report Organization

This report has been organized into six sections, each addressing a specific physical area/feature and/or regulatory program/requirement pertaining to ongoing operations at the Property as follows:

Section 1.0 – Introduction - Discusses the regulatory history of the Property, the purpose of this annual report, the report's originations and an overview of party contributions and subsequent responsibilities;

Section 2.0 - Property Inspection and Maintenance - Discusses the current ownership and uses of the Property, and the ongoing inspection and maintenance requirements associated with the Property's general ongoing use;

Section 3.0 - Remedial Action Facility - Discusses the Remedial Action Facility (RAF) at the Property, primarily consisting of a containment cell, a leachate collection and storage system, and the inspection and maintenance requirements associated with the RAF's ongoing operation;

Section 4.0 - Groundwater Monitoring - Discusses the groundwater monitoring well network at the Property, the groundwater sampling and analytical requirements and subsequent results;

Section 5.0 - Property SPDES - Discusses the State Pollutant Discharge Elimination System (SPDES) permitted surface water discharges through three outfalls at the Property, and the routine and additional effluent sampling, including the analytical programs required by the permit; and

Section 6.0 - Groundwater Treatment System - Discusses CPTC's operation and maintenance of the groundwater treatment system (GTS) and SPDES Outfall 03A installed to monitor the GTS effluent, at the Property.

Each section contains appropriate tables and figures, as they apply to that specific section. This OM&M Report also discusses, and presents as appendices, applicable data and information collected in compliance with satisfying the DER-10 requirements, such as site inspection forms, field monitoring logs, and laboratory analytical data.

1.4 Property Management

On behalf of UHC, Synapse Risk Management, LLC (Synapse), of Syracuse, New York, has managed the administrative and technical requirements pursuant to the RA during 2007, with the exception of the GTS, which has been operated by ENSR International Inc. (ENSR) of East Syracuse, New York since May 2005, on behalf of CPTC.

1-2

2.0 PROPERTY INSPECTION AND MAINTENANCE

The overall Property consists of a 77-acre parcel (see Figure 2-1 – Aerial Property Map) located in an industrial setting, with approximately 35 acres of undeveloped woodland at the southern portion of the Property. UHC retains ownership of the Property, which includes the ancillary buildings and the land, excluding the Main Building and the land beneath (see Figure 2-2 – Facility Plan). The Main Building and the land beneath is presently owned by Coolidge, whom subsequently rents/leases portions/sections of the building to various tenants. The peripheral Property receives monthly inspection and maintenance in conjunction with the required inspections of the RAF and associated components. UHC does not have access to the Coolidge Main Building and therefore is not permitted by Coolidge to conduct inspections of the building interior. This section includes inspection and maintenance only of the portions of the Property that is owned and accessible by UHC, not the Main Building. The RAF, groundwater monitoring, Property SPDES, and GTS are discussed in Section 3, Section 4, Section 5, and Section 6, respectively.

2.1 Property History

CPTC occupied the Property from 1948 until 1997 for the manufacture of pneumatic tools. Danaher owned CPTC, but later transferred ownership to Atlas Copco. The Property, with the exception of the Main Building and the land beneath, is currently owned by UHC, a subsidiary of Danaher. The 458,000 square foot Main Building and the land beneath has been owned by Coolidge and the remaining land, owned by UHC, is leased by ULE since 1997.

Potential environmental conditions at the Property were first identified in a 1985 Phase I Site Assessment (see Associated Documents). A subsequent site investigation was conducted in July 1990, and NYSDEC conducted a Preliminary Site Assessment later that year. Based on the findings presented in these investigation reports, NYSDEC issued an Administrative Order on Consent in 1993 which mandated the further investigation and remediation of impacted areas at the Property. Pursuant to this Order on Consent, Blasland Bouck & Lee, Inc. (BBL) submitted a Remedial Investigation (RI) report and a Surface Water Interim Remedial Measures (IRM) design in 1994, and a Supplemental Remedial Investigation/Feasibility Study in 1995. In 1996, NYSDEC issued a Record of Decision for the Property, and listed the Property in the Registry of Inactive Hazardous Waste Sites (No. 622003 - Class 2), specifying the RA required for the Property. A second administrative Order on Consent was issued in 1997 followed by the RD.

The IRM, included an air stripper that has been in operation since 1995. The air stripper and pumping appurtenance were incorporated into the RA. The RA was implemented from May 1998 through December 1999. A June 2000 SPDES Stormwater Action Plan was prepared and transmitted to NYSDEC to document SPDES corrective actions performed at the Property and to set forth contingency measures. NYSDEC issued a letter dated December 11, 2001 indicating that the FER and accompanying drawings and OM&M Manual for the Property had been approved. Additionally, the NYSDEC issued an earlier letter dated March 7, 2000 reclassifying the Property as a Class 4 Inactive Hazardous Waste Disposal Site. CPTC and Danaher retain responsibility for implementing long term OM&M of the GTS and RAF, respectively, at the Property.

The RA included the following major components:

- Remediation involving soil and sediment removal at 14 identified source areas (see Figure 2-3 -Historical Remedial Action Areas);
- Construction of a containment cell to store a portion of impacted soil and sediment from the 12 identified source areas. The containment cell and associated leachate collection system and building are surrounded by a perimeter fence and access is limited to authorized individuals associated with UHC. This fenced area is referred to as the RAF; and

 Construction and connection of two trenches, northern collection trench (NCT) and southern collection trench (SCT), to the existing air stripper, creating the GTS.

UHC is the Permittee on the SPDES permit associated with three outfalls located on the Property, which is discussed in Section 5. CPTC maintains responsibility for the GTS and associated SPDES permit which is discussed in Section 6.

2.2 Property Geology and Hydrogeology

The Property is located on the southern side of the Mohawk Valley, which is a broad, east-west trending lowland, the floor of which consists of a uniform sequence of laminated, calcareous black shale known as the Utica Shale. South of the Property, the land surface rises abruptly off the valley floor, forming a bluff capped by limestone. The Mohawk River is located approximately 3,000 feet north of the Property. In general, regional dip of the bedrock unit is to the southwest. Regional estimates of depth to bedrock range from 21 to 75 feet.

Subsurface materials at the Property were described during installation of monitoring wells, soil borings, test pits, and excavations performed during investigative and remedial actions conducted primarily between 1988 and 1999. The unconsolidated subsurface materials are composed of varying consistencies of sand, silt, and clay. Some of the materials have been reworked to varying depths across the site by former facility activity and are classified as fill. The depth of the unconsolidated natural material across the Property ranges from three feet to 12 feet below grade. A till layer was encountered below the unconsolidated material and ranged in thickness from 12 to 24 feet. The till deposits are described as over-consolidated, dark gray silt and clay, that slopes gradually toward the north-northwest.

The regional groundwater flow is northeast, toward the Mohawk River. Two distinct hydrogeologic units, separated by a semi-confining till unit, are present at the Property. The first water-bearing unit is the unconsolidated overburden material (sand, silt, clay). Depth to first groundwater encountered in the overburden at the Property is generally within 5 feet of the ground surface. Weathered shale bedrock is the second water-bearing unit, and was reportedly encountered between 23 and 30 feet below ground surface.

2.3 Property Activities

The majority of the Property buildings are currently occupied by tenants that generally include trucking, cosmetic storage, food (dough) manufacturing, and printing businesses. The Main Building, 458,000 square feet, is surrounded by approximately 57,000 square feet of ancillary buildings. Paved access roads and parking areas that accounts for approximately 12 acres. An approximate 35-acre wooded tract, at the southern portion of the Property, remains undeveloped. No specific changes in the Property's makeup or unusual activities related to the operation and maintenance requirements were noted during the calendar year 2007 with the exception of the unscheduled asbestos abatement activities. During a scheduled monthly RAF inspection, Thermal System Insulation (TSI) was identified on the pavement of rear access road between the former power house and Coolidge's Main Building. Upon further inspection the source of the TSI was from former steam lines from the former power house to the main building. The abatement project undertaken by UHC involved the removal of a portion of damaged TSI that connects the boiler house to the main building. Coolidge's abatement project consisted of removal of TSI from the pipes overlying its Main Building.

2.4 Inspection

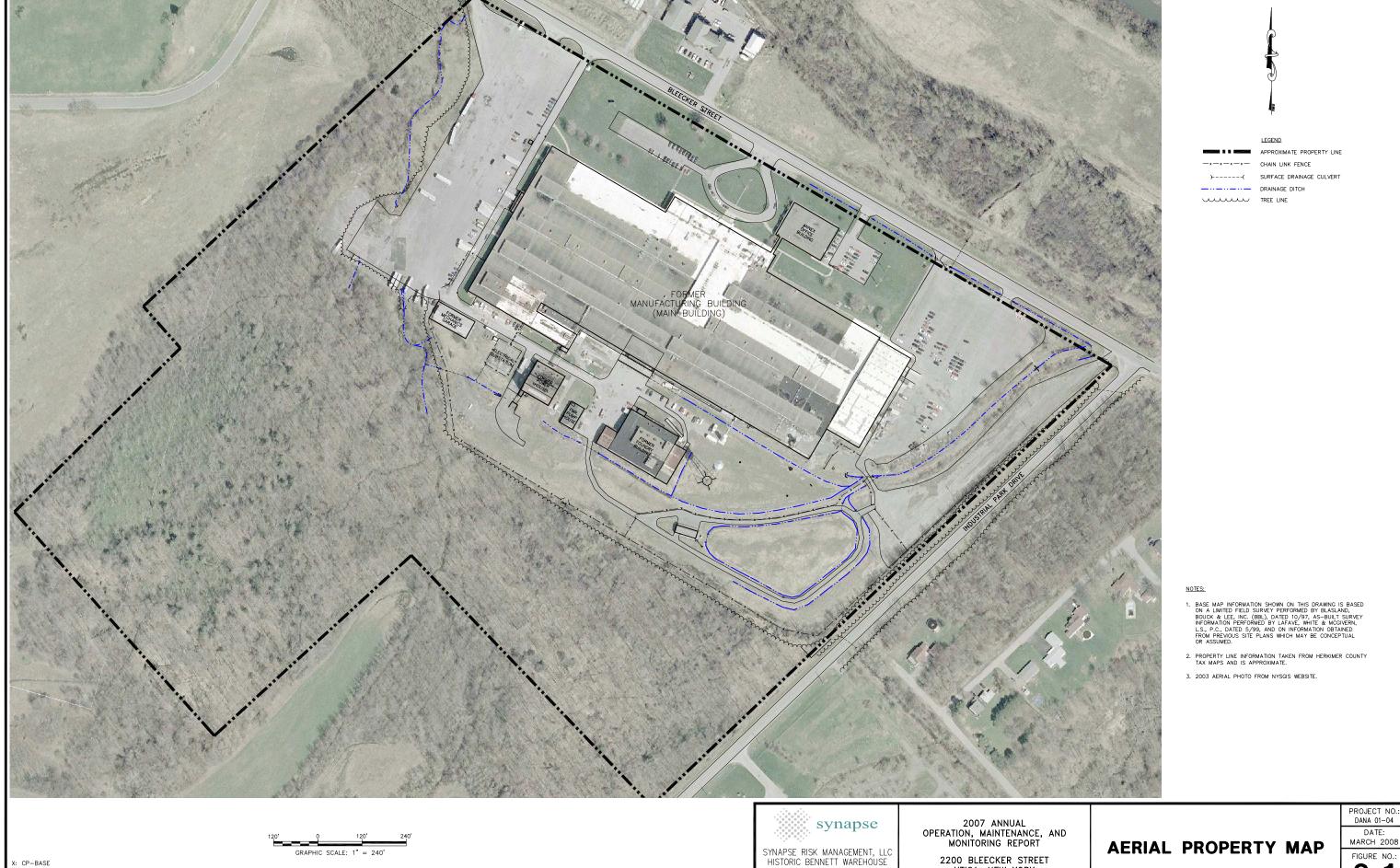
Scheduled Property visits and subsequent Site Inspection Reports – Form A and Form A1, (Appendix A) are performed and prepared to track Property activities and monitor Property drainage. These reports indicate required maintenance and provide a follow-up to ensure the subsequent maintenance effectiveness. Scheduled and unscheduled Property visits are documented on this and other forms, and

are discussed in appropriate sections throughout this report. During 2007, the Property ditches were inspected and observed to be well vegetated, and overall, not generally prone to sedimentation and erosion. Additionally, the ditches are inspected for unusual staining and deposits, of which none were identified. The Property culverts are inspected as well, to ensure they are clear and functional.

2.5 Property Drainage and Outfalls

The Property is generally drained via existing drainage ditches located at the east and west portions of the Property. The west unnamed creek, (former Area 1) (See Figure 2-3), flows from the south through a wooded area and runs along the western extent of the Property, exiting at the northwest corner of the Property. The west unnamed creek drainage contribution primarily consists of roof leaders conveyed via the northern and southwestern stormwater systems emanating from of the Main Building. Surface water runoff from the western parking lot and surface water runoff from a southern agriculture area also contribute to the west unnamed creek. The southwestern and northern stormwater systems are monitored from manholes identified as SPDES Outfall 001 and Outfall 002, respectively. SPDES outfall monitoring for the Property is discussed in Section 5. The west unnamed creek floods occasionally in the spring and fall, primarily due to restrictions in an off-site stormwater piping system. A new culvert was installed in 2003 by the county across Bleecker Street, approximately 300 feet off-site to the west. This culvert was installed to limit flooding of Bleecker Street by water backing up the west unnamed creek.

Two east-west oriented surface water drainage ditches (Area 4 and Area 6), originate from the mid portion of the Property, south of the Main Building, and converge to form one north-south ditch, (Area 14), along the eastern portion of the Property. This east drainage ditch joins a road ditch located parallel to Bleecker Street. Treated effluent from the GTS, which is covered in Section 6, is discharged to the east drainage ditch via CPTC SPDES Outfall 03A. The east drainage ditch also receives stormwater from roof leaders connected to the southeastern stormwater system and the RAF surface drainage, as well as surface water from the eastern parking lots. The SPDES Outfall 003 is located near the northern end of the eastern drainage ditch; prior to joining a drainage ditch parallel to Bleecker Street, ultimately discharging off site via a culvert under Bleecker Street.

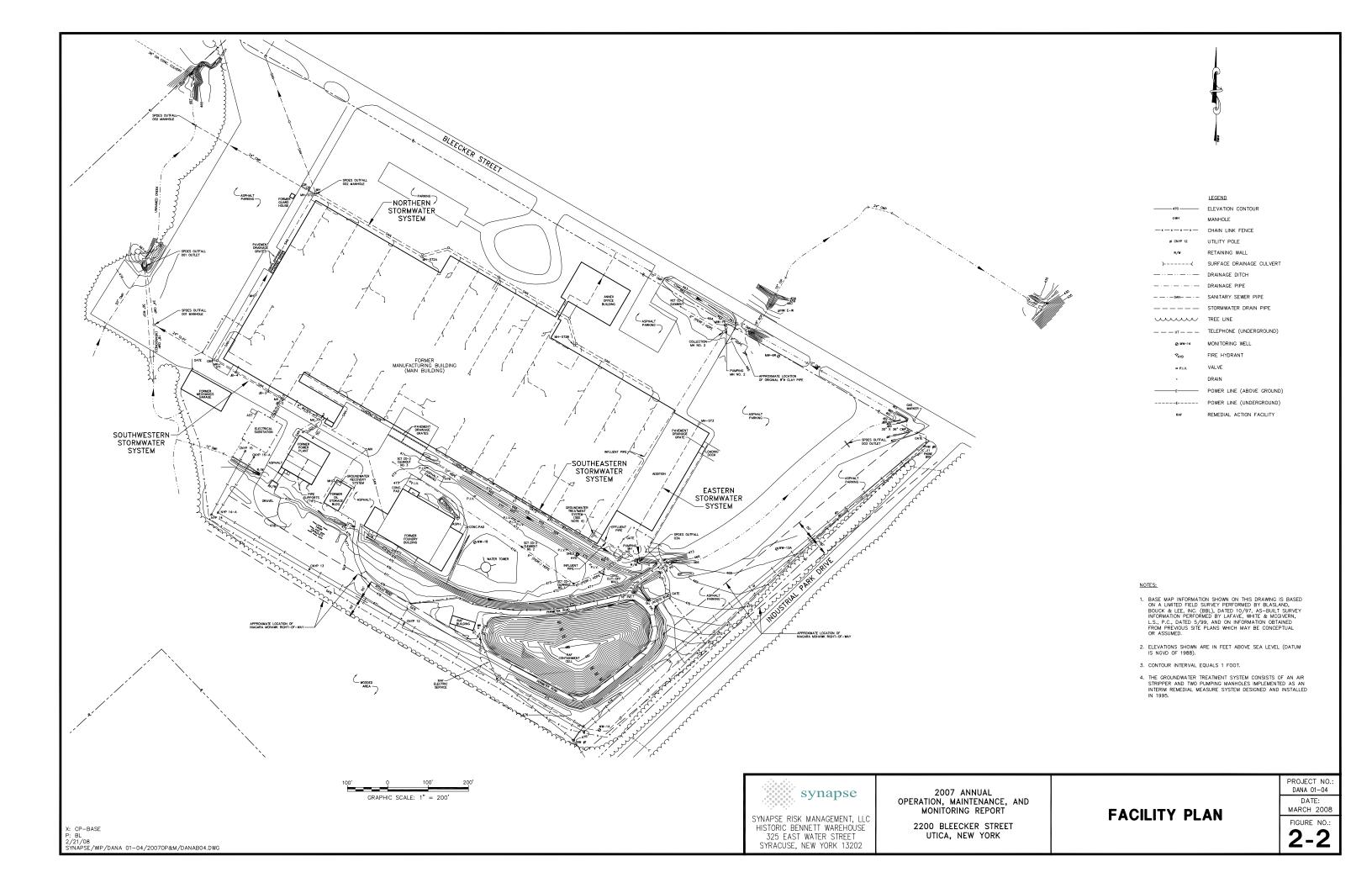

2.6 Summary

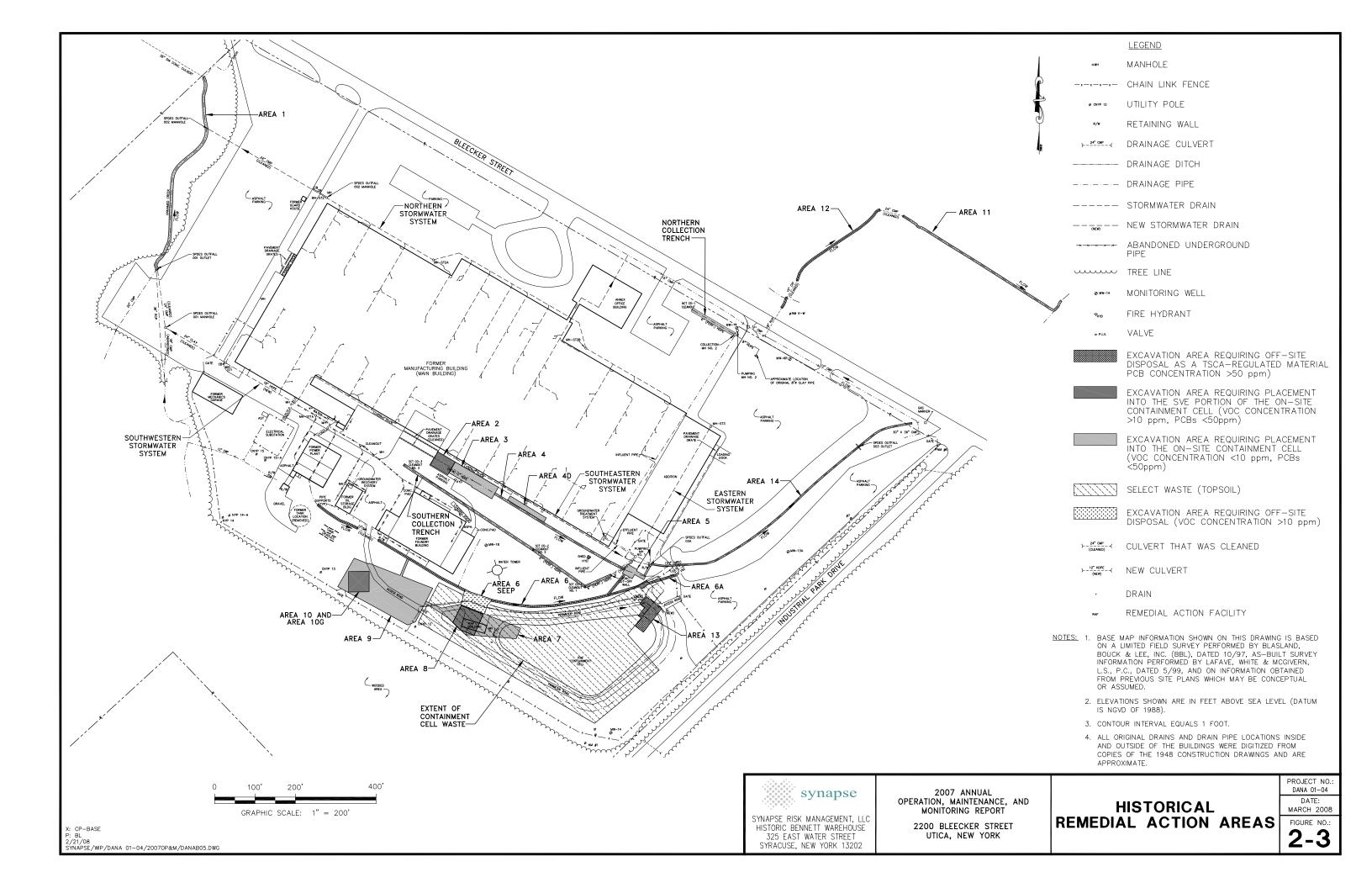
The northern portion of the Property continued to be active throughout 2007, with no notable changes to daily operations; the southern portion of the Property remains wooded and undeveloped. Tenants occupy approximately 80% of the Main Building and continue to use the surrounding access roads and parking lots. The Property is accessed a minimum of once per month allotting reviews of ongoing activities and inspection of the drainage system. No reportable issues of concern were noted with regard to property drainage or physical conditions, therefore, continuation of the scheduled inspection is recommended for this aspect of the Property.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

2.7 Figures

- 2-1 Aerial Property Map
- 2-2 Facility Plan
- 2-3 Historical Remedial Action Areas


X: CP-BASE P: DL2BC 2/21/08 SYMAPSE/WIP/DANA 01-04/20070P&M/DANAB03.DWG


SYNAPSE RISK MANAGEMENT, LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE, NEW YORK 13202

2200 BLEECKER STREET UTICA, NEW YORK

PROJECT NO.: DANA 01-04

FIGURE NO.:

3.0 REMEDIAL ACTION FACILITY

The RAF is situated in the mid-eastern portion of the Property, within a fenced area encompassing approximately 3.8 acres, as presented on Figure 3-1 – Remedial Action Facility Plan. The OM&M of the RAF was conducted by Synapse, in accordance with the guidelines set forth in the NYSDEC-approved OM&M Manual dated April 2001. Field reports provide monthly documentation of the site inspection events and any adjustments made to components associated with the RAF. The results of these inspections generally sets forth any maintenance activities, if required.

Key components of the RAF are the fences, roads, drainage ditches, containment cell, leachate collection, and building systems, which constitute the engineering controls. The primary function of the RAF is collection and subsequent disposal of leachate generated from the containment cell.

The four groundwater monitoring wells (with the exception of MW-14), as well as, the GTS are located outside of the perimeter fence of the RAF, and are discussed in Section 4 and Section 6, respectively.

3.1 Construction

The RAF is surrounded by an 8-foot high barbed wire over chain link fence, with access gates to the north and west, with the primary access via the western gate. The RAF is generally comprised of the following components:

- Containment Cell In 1999, construction of a 1.4-acre containment cell was completed to store 16,117 cubic yards of impacted soil and sediment generated during the RA. The containment cell was lined with a single composite liner system and completed with a composite cap placed over the impacted soil and sediment. Two gas vents and a leachate collection pipe were also installed within the containment cell. A series of ditches were installed around the containment cell to collect surface water runoff and direct stormwater away from the containment cell. A gravel service road surrounds the perimeter of the containment cell allowing for vehicle access and subsequent inspection and maintenance.
- Leachate Collection System A leachate collection system, comprised of a collection pipe that extends the length of the containment cell and is connected to the collection manhole, which is installed adjacent to the western side of the containment cell. The collection manhole is equipped with two pumps to transfer leachate to a storage tank prior to disposal. All components of the leachate collection system are double contained with fail safe monitoring systems. The collection pipe surfaces at the east end of the containment cell providing access for cleaning, as needed. The leachate collection system components are noted on Figure 3-1.
- Leachate Storage System Leachate pumped from the collection manhole is stored in an aboveground 5,000-gallon steel storage tank within a steel secondary containment structure as shown on Figure 3-2 Building, Tank, and Piping Plan. A flow totalizer is used to track the quantity of leachate pumped to the tank from the collection manhole, and a level sensor installed in the tank is used to determine the instantaneous quantity of leachate in the tank. The level sensor is also electronically connected to an auto dialer system to notify personnel of alarm conditions via telephone and facsimile. The tank is also equipped with a sampling port, drain fitting, electric heating elements, and insulation, utilized to prevent freezing of the tank and piping during winter months. In addition, a concrete truck pad, with a grated sump is located adjacent to the tank to provide containment during pumping of leachate from the tank to a tanker truck, prior to disposal.
- RAF Building A 1,278-square foot building constructed of a steel frame and siding on a concrete slab foundation is used to house the leachate collection tank (tank area), and truck pad (truck loading area), noted above. Additionally, the building enclosure has an office area for maintaining

OM&M records, the communication components, electrical service boxes and a storage area for tools, supplies, and equipment, known as the office/storage area. The building is located west of the containment cell and collection manhole.

3.2 Operations and Inspections

The leachate collection system operated continuously during 2007. The RAF and associated components are scheduled for monthly visual inspection and documentation as set forth in the OM&M Manual. Operation is also monitored via telecommunication with the RAF auto dialer system, Intelligent System for Automatic Control & Communication (ISACC). Scheduled site visits and subsequent Site Inspection Reports – Form A (Appendix A) consists of the following inspection components associated with the RAF:

- General Property Access and Drainage;
- Cell Perimeter Components;
- Containment Cell:
- Leachate Collection Manhole;
- Building Structure, Electrical, Telephone, and Auto Dialer Controls; and
- Leachate Storage System.

The cell perimeter road and facility access road were reviewed during the monthly inspections to ensure access for facility maintenance. The immediate surface drain ways were inspected to insure that ponding or erosion does not occur from runoff. All Property ditches and culverts were accessed and viewed during the inspection, for the same. The RAF perimeter fence was also inspected to ensure facility security, and the facility overhead utilities were viewed and tested, in the building, as well.

Inspection of the containment cell involved viewing the cell from the perimeter road and traversing its surface. Components viewed were the four perimeter drains, the two passive gas vents, and the cell cleanout pipe. These were checks for functionality, which also included periodic screening of the passive gas vents for volatile organic compounds (VOCs). The surface of the cell was inspected for stressed vegetation, burrows, erosion, and settlement.

Operation of the leachate collection manhole involves structural, electrical, pumping, and alarm components. Each inspection required checking the manhole control panel and recording running hours of the two pumps. Additionally, this included testing the operation of each pump, as well as opening the manhole and conducting visual inspection of its components. As this is a lead/lag pumping system, lead duties are periodically changed between Pump No. 1 and Pump No. 2 during inspections.

The RAF building was viewed during the inspection for inconsistencies in the structural, security, electrical, and telephone systems, as well as, assuring the heat and vent systems were functional. The ISACC, located in the RAF building, provides continuous monitoring information of the leachate collection manhole and leachate storage tank. The ISACC system is generally accessed remotely via modem semi-monthly for data collection and management. In the event of an alarm condition, the ISACC system alerts designated Synapse personnel based on the guidelines set forth in the OM&M Manual and the ISACC program logic. The Auto Dialer Alarm Incident and Testing Report, Form F, included in Appendix B, provides documentation of alarm conditions, if any, and testing during the 2007 calendar year. An annual total system check was performed on August 14, 2007, as required, and documented on Form F, included in Appendix B, no alarms were received during 2007.

The leachate storage system, which is housed in the center portion of the RAF Building, was inspected and total flow readings were recorded. The 5,000-gallon storage tank, containment system, and plumbing were viewed for leaks and any abnormalities. The tank was internally inspected, generally after leachate was removed, to assure the control of corrosion. The influent pipe is equipped with a flow totalizer, which was manually recorded during monthly inspections. The flow totalizer indicated that

3-2

approximately 3,000 gallons were pumped and metered during 2007, totaling 67,400 gallons pumped and metered since leachate monitoring commenced in May 1999. The collected leachate sampling and disposal are reviewed in later subsections.

3.3 Maintenance

General maintenance requirements of the RAF are set forth in the OM&M Manual, which provides inspection criteria, forms, guidance, and procedures to perform scheduled maintenance requirements, as well as contingency plans for unscheduled matters. The OM&M procedures and protocols are generally cross-referenced with and supported by the August 2001 FER.

Scheduled Maintenance

The scheduled maintenance activities associated with the RAF and site components that occurred during the 2007 calendar year consisted of the following:

- RAF site access (snow removal, road maintenance, and fence maintenance);
- RAF building (ISACC program diagnostic/communication response);
- Containment cell (vegetation management, mowing, and erosion control);
- Drainage ditches (vegetation, riprap and culvert management); and
- Truck pad sump (pumping during leachate removal, Section 3.5).

Unscheduled Maintenance

Unscheduled maintenance activities associated with the RAF and site components that occurred during the 2007 calendar year consist of the following:

- Elimination of persistent and damaging vectors from the containment cell;
- Placement and grading of top soil followed by seeding and mulch;
- Spot restoration of vegetative cover on the containment cell;
- Removal of woody vegetation;
- Adjustment and replacement of sheet metal barrier panels and bird netting to continue to prevent pigeon roosting in the open portion of the RAF building; and
- General cleaning to include power washing of the leachate storage tank and truck loading area of the building.

3.4 Leachate Collection

The leachate generated from the containment cell is collected, conveyed, and stored on-site. The leachate generated from the containment cell is drained, via gravity flow, to a perforated 6-inch, high-density polyethylene (HDPE) pipe located along the bottom of the containment cell, just above the liner. The leachate collection pipe passes through the western perimeter berm, and discharges into the leachate collection manhole. The portion of the leachate collection pipe between the containment cell and collection manhole is equipped with double-walled piping that provides secondary containment

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

outside the containment cell. The leachate collected in the manhole is then transferred, via automatically controlled pumps, to the on-site leachate storage tank. As this is a lead/lag pumping system, the lag pump acts as a backup.

Leachate generation/collection is monitored by two methods; measuring the fill height in the tank and through a flow totalizer. The on-site ISACC system provides real time data and remote location monitoring of the leachate generation. The operation of this unit, associated with the leachate collection system, is discussed in the OM&M Manual. One of the eight programmed ISACC channels provides tracking of tank filling events (i.e., water level in the tank). The tank filling is monitored and is equipped with a shut down system, so as not to overfill.

The inline flow totalizer was read and the amount recorded during the monthly inspections as an additional method to monitor the leachate generation. Table 3-1 – Cumulative Leachate Generation provides a summary of the recorded flow from May 1999, inception, through December 2007. Chart 3-1 – Cumulative Leachate Generation graphically represents the data from Table 3-1. A total of 3,000 gallons was metered during 2007, comparable to an average flow of approximately 8.2 gallons per day (gpd). The overall trend of yearly leachate production has decreased as depicted in Table 3-2 – Leachate Generation Per Year, and Chart 3-2 – Leachate Generation Per Year.

3.5 Leachate Disposal

The leachate is temporarily stored in the on-site 5,000-gallon storage tank, which is within a steel secondary containment sized to contain 110% of the tank volume. The leachate requires analytical analysis prior to bulk batch disposal. The scheduling of the sampling events and subsequent disposal is based on tank level data monitored by the ISACC system. The sampling and disposal of the leachate were performed during 2007 in accordance with the guidance set forth in the OM&M Manual. One sample of the leachate from storage tank filling number 15 (LT-15), was collected and analyzed as set forth in Permit No. GW-050 issued by the Oneida County Department of Water Quality and Water Pollution Control (OCDWPC).

The analytical results of the leachate sample collected, LT-15, indicated compliance with the permit limits set forth by the OCDWPC. On August 14, 2007, leachate for LT-15 was disposed of to the OCDWPC sanitary sewer system and leachate storage tank filling number LT-16 began. Prior to pumping the leachate from the tank, an internal inspection of the tank was conducted. In order to evaluate the ISSAC systems functions accuracy, an instrument check was conducted by measuring the leachate level in the tank (70.5") with comparison to the ISSAC reading (70.67"). The ISSAC system continues to effective monitor leachate generation as designed. The leachate disposal authorization for LT-15 from OCDWPC and analytical data packages are provided in Appendix C - Leachate Disposal Correspondences and Analytical Data. The total leachate disposal for 2007 was approximately 2,800 gallons.

3.6 Summary

2007 Annual Report

The RAF facility and associated components generally operated as planned through 2007. The monitoring and inspection continues, as necessary, to evaluate trends and the ongoing condition of the facility. The operation and maintenance performed during the 2007 calendar year were performed within the guidelines set forth in the OM&M Manual. In addition to scheduled maintenance, unscheduled maintenance conditions were recognized and corrected as follows:

- Persistent and damaging vectors were eliminated from the containment cell; and
- Small areas of stressed vegetative cover, on the containment cell, were restored.

The evaluation of the data relating to the leachate generated and collected during 2007 (3,000 gallons), indicates an overall downward tend in leachate generated to date. The average production rate for 2007

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

was approximately 8.2 gpd. The leachate generated and batch discharged from the containment cell continues to meet the requirements set forth in the OCDWPC permit. Only one bulk disposal event was required in 2007 totaling approximately 2,800 gallons and is considered as the 15th tank filling and disposal event. Synapse concludes that the RAF performed as designed during 2007.

3.7 Tables

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation

TABLE 3-1 CUMULATIVE LEACHATE GENERATION

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)
5/19/1999	0	0	0	0
6/1/1999	13	4200	4200	323
6/22/1999	21	8200	4000	190
7/23/1999	31	12200	4000	129
9/27/1999	66	16200	4000	61
12/21/1999	85	20200	4000	47
1/21/2000	31	21400	1200	39
2/4/2000	14	22400	1000	71
3/14/2000	39	23800	1400	36
4/21/2000	38	24800	1000	26
5/11/2000	20	25700	900	45
6/6/2000	26	26700	1000	38
7/11/2000	35	27700	1000	29
8/18/2000	38	28800	1100	29
9/1/2000	14	29500	700	50
10/27/2000	56	31000	1500	27
11/14/2000	18	31600	600	33
12/15/2000	31	32700	1100	35
1/31/2001	47	33800	1100	23
2/28/2001	28	34400	600	21
3/29/2001	29	34800	400	14
4/26/2001	28	35400	600	21
5/23/2001	27	35900	500	19
6/21/2001	29	36500	600	21
7/17/2001	26	37100	600	23
8/15/2001	29	37600	500	17
9/14/2001	30	38400	800	27
10/23/2001	39	39200	800	21
12/3/2001	41	40000	800	20
12/18/2001	15	40400	400	27
1/11/2002	24	40800	400	17
2/6/2002	26	41400	600	23
3/5/2002	27	41800	400	15
4/16/2002	42	42300	500	12
5/9/2002	23	42700	400	17
6/5/2002	27	43100	400	15
7/23/2002	48	43900	800	17
8/9/2002	17	44100	200	12
9/19/2002	41	44900	800	20
10/16/2002	27	45400	500	19
11/27/2002	42	46200	800	19
12/13/2002	16	46400	200	13
1/31/2003	49	47200	800	16
2/18/2003	18	47400	200	11
3/19/2003	29	47800	400	14
4/16/2003	28	48200	400	14
5/15/2003	29	48400	200	7
6/5/2003	21	48600	200	10
7/9/2003	34	49200	600	18
8/1/2003	23	49600	400	17
9/23/2003	53	50400	800	15
10/2/2003	9	50400	0	0
11/21/2003	50	51500	1100	22
12/31/2003	40	52600	1100	28
1/13/2004	13	52600	0	0

TABLE 3-1 CUMULATIVE LEACHATE GENERATION

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)
2/27/2004	45	54100	1500	33
3/10/2004	12	54100	0	0
4/7/2004	28	54600	500	18
5/18/2004	41	54800	200	5
6/18/2004	31	55200	400	13
7/29/2004	41	55800	600	15
8/26/2004	28	56200	400	14
9/23/2004	28	56500	300	11
10/20/2004	27	56700	200	7
11/30/2004	41	57100	400	10
12/17/2004	17	57300	200	12
1/12/2005	26	57700	400	15
2/10/2005	29	57900	200	7
3/7/2005	29	58100	400	14
4/6/2005	30	58300	200	7
6/2/2005	57	58700	400	7
7/27/2005	55	59300	600	11
8/10/2005	14	59500	200	14
9/14/2005	35	60000	500	14
10/11/2005	27	60300	300	11
11/15/2005	35	60600	300	9
12/28/2005	43	60900	300	7
1/25/2006	28	61200	300	11
2/20/2006	26	61400	200	8
3/24/2006	32	61800	400	13
4/12/2006	19	62000	200	11
5/17/2006	35	62200	200	6
6/2/2006	16	62400	200	13
7/11/2006	39	62600	200	5
8/23/2006	43	63200	600	14
9/20/2006	28	63400	200	7
10/5/2006	15	63600	200	13
11/3/2006	29	63800	200	7
12/29/2006	56	64400	600	11
1/26/2007	28	64700	300	11
2/21/2007	26	64900	200	8
3/23/2007	30	65100	200	7
4/18/2007	26	65300	200	8
5/31/2007	43	65700	400	9
6/12/2007	12	65700	0	0
7/26/2007	44	66100	400	9
8/14/2007	19	66300	200	11
9/19/2007	36	66500	200	6
10/30/2007	41	66800	300	7
11/30/2007	31	67200	400	13
12/28/2007	28	67400	200	7

NOTES:

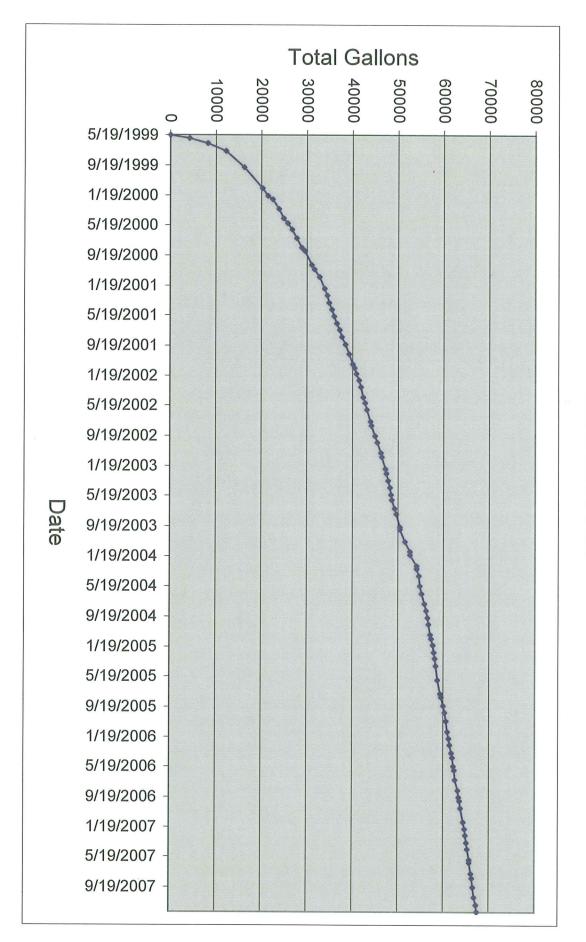
- 1. Monitoring Period = Days between totalizer readings.
- 2. Totalizer reading in gallons.
- 3. gpd = Gallons per day.

TABLE 3-2 ANNUAL LEACHATE GENERATION

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK **NYSDEC SITE NO. 622003**

Year	Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Year	Flow (gpd)	Flow (gpm)
Begin	5/19/1999		0			
1999	12/21/1999	216	20200	20200	93.5	0.0649
2000	12/15/2000	360	32700	12500	34.7	0.0241
2001	12/18/2001	368	40400	7700	20.9	0.0145
2002	12/13/2002	360	46400	6000	16.7	0.0116
2003	12/31/2003	383	52600	6200	16.2	0.0112
2004	12/17/2004	352	57300	4700	13.4	0.0093
2005	12/28/2005	376	60900	3600	9.6	0.0066
2006	12/29/2006	366	64400	3500	9.6	0.0066
2007	12/29/2007	365	67400	3000	8.2	0.0057

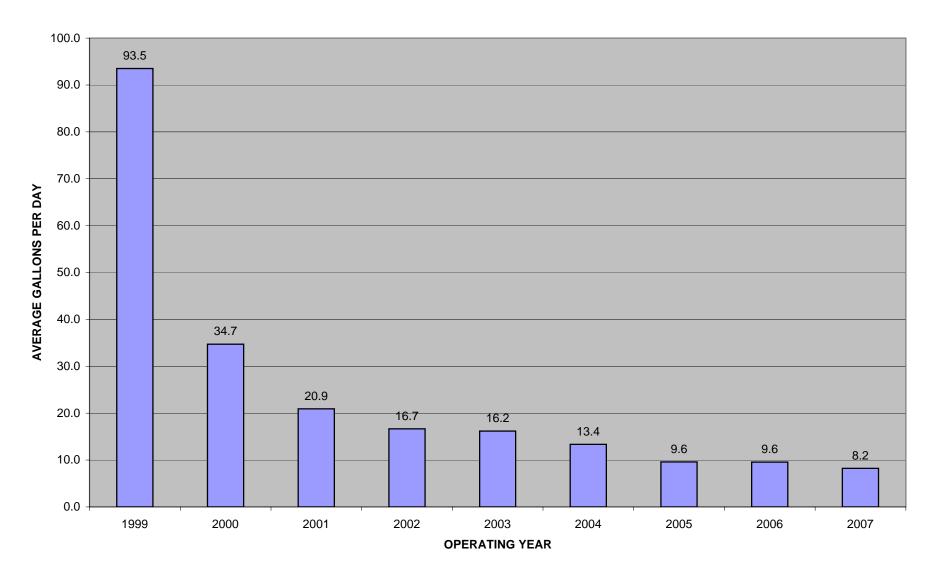
1 of 1


NOTES:

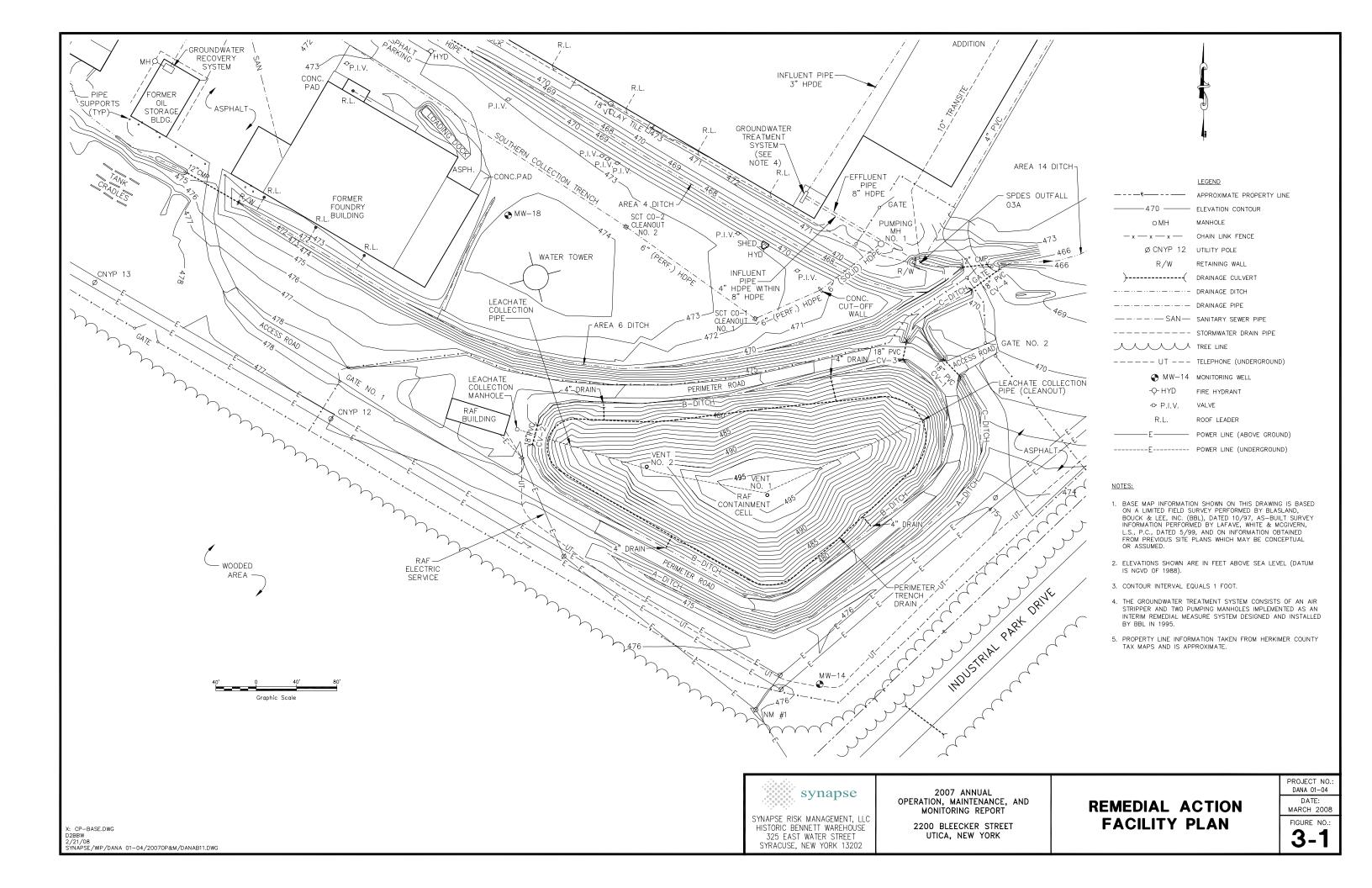
- 1. Monitoring Period = Days between totalizer readings.
- 2. Totalizer reading in gallons.
- 3. gpd = Gallons per day.
- 4. gpm = Gallons per minute.

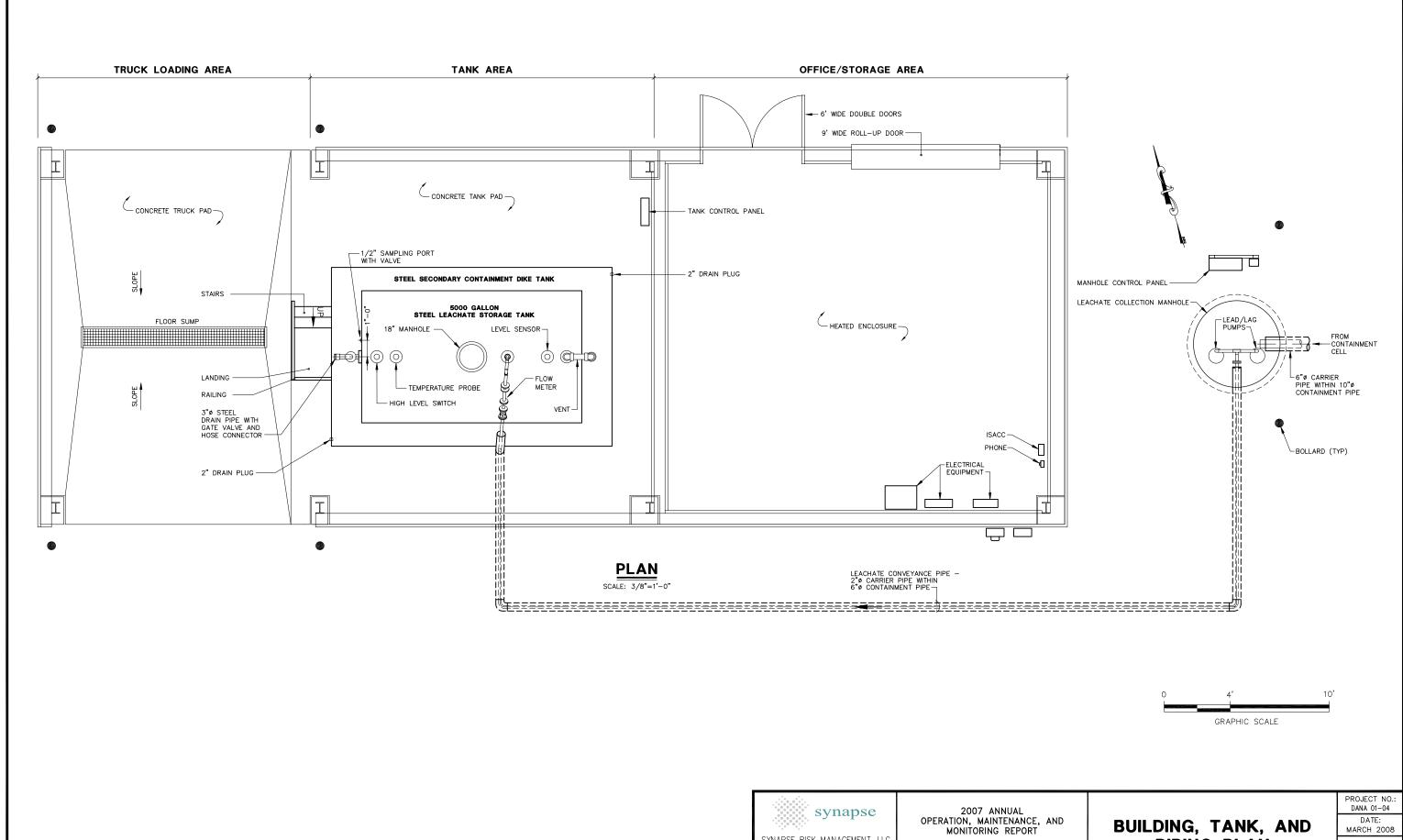
3.8 Charts

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation Per Year


2007 ANNUAL OM&M REPORT 2200 BLEEKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

1 of 1


CHART 3-2 LEACHATE GENERATION PER YEAR


2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

3.9 Figures

- 3-1 Remedial Action Facility Plan
- 3-2 Building, Tank, and Piping Plan

SYNAPSE RISK MANAGEMENT, LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE, NEW YORK 13202

2200 BLEECKER STREET UTICA, NEW YORK

PIPING PLAN

FIGURE NO.:

4.0 GROUNDWATER MONITORING

This section presents the results of the semi-annual groundwater monitoring events conducted at the Property in 2007. The Property OM&M Manual details the procedures that were followed during groundwater monitoring. The FER details the procedures followed during the implementation of the RA that adjusted the groundwater monitoring program, which included monitoring well decommissioning and new monitoring well installation. The sub-sections that follow review the construction, monitoring, sampling, and data evaluation as part of the groundwater monitoring program and include specific tables and figures. The summary section provides comments, conclusions, and recommendations.

4.1 Monitoring Well Construction

The monitoring well network currently consists of five monitoring wells designated as: MW-6R, MW-13A, MW-14, MW-17, and MW-18. A sixth monitoring well, MW-3 was properly abandoned on September 14, 2001. The monitoring wells are located to provide groundwater quality data for site-specific RA areas and verify the performance of the GTS, including hydraulic control and contaminate removal.

The monitoring wells consist of 2-inch diameter polyvinyl chloride (PVC) risers and 10-foot lengths of 0.010-inch slotted PVC screen. The well screens were installed to straddle the water table and intersect the overburden soils above the glacial till. Shallow groundwater flow is generally from the south to the north across the Property. The locations of the monitoring wells are shown on Figure 2-2. The detailed descriptions of the monitoring well locations, as well as hydraulic consideration, are as follows:

- MW-6R, located hydraulically downgradient of the eastern portion of the Property;
- MW-13A, located hydraulically crossgradient (east) of former RA Areas 5, 7, 8, 13, and 14 as well as the RAF;
- MW-14, located at the southeastern corner of the Property hydraulically upgradient of all former RA areas and the RAF;
- MW-17, located hydraulically downgradient of the NCT; and
- MW-18, located hydraulically downgradient of the former RA Areas 6, 7, 8, 9, and 10, as well as hydraulically upgradient of the SCT.

4.2 Groundwater Elevation Measurement

As part of the groundwater monitoring program, water level elevations were measured from the aforementioned monitoring wells on April 18, 2007 and October 23, 2007. Water levels in the cleanouts for the NCT and SCT were measured during the 2007 events, as well. Monitoring well water levels were measured from a designated reference point at the top of the PVC well riser using the procedures outlined in the OM&M Manual. The water levels were measured consecutively, on the same day, prior to sampling or other activities. Water level measurements were recorded on a dedicated field sheet, Water Level Field Logs – Form D and are provided in Appendix D. The water level measurements were converted to elevations based on as-built survey information. The water levels for the two groundwater sampling events conducted in 2007 are shown in Table 4-1 – 2007 Groundwater Elevation Summary. Note that MW-17 was found to have insufficient water to allow for sample collection, during both sampling events. This is attributed to the installation of Pumping Manhole No. 2, as part of the 2002 modifications to the GTS, which effectively lowered the water table to an elevation at or less than the total depth of MW-17. The potentiometric surface is depicted in Figure 4-1 – Overburden Groundwater Elevation Contour Map - April 18, 2007, and Figure 4-2 – Overburden Groundwater Elevation Contour Map – October 23,

2007. A summary of water levels from 1999 to 2007 is provided in Table 4-2 – Cumulative Groundwater Elevations.

4.3 Groundwater Sampling

Groundwater samples were obtained during two groundwater sampling events conducted on April 18 and 19, 2007 and October 23 and 24, 2007, as part of the OM&M program. Groundwater samples were collected from monitoring wells MW-6R, MW-13A, MW-14, and MW-18. As discussed in Section 4.1, MW-17 had insufficient water during both sampling events, and as such, a sample could not be collected.

Based on the guidance set forth in the OM&M Manual, the groundwater sampling events completed in 2007 were scheduled as semi-annual. The groundwater samples were submitted for laboratory analysis for VOCs of concern, polychlorinated biphenyls (PCBs), and select metals. Analytical results for VOCs, PCBs, and metals were compared to standards presented in the NYSDEC Division of Water *Technical and Operation Guidance Series* (1.1.1) (TOGS 1.1.1), June 1998.

To assure that the groundwater samples were representative of the shallow groundwater aquifer, a minimum of three static well volumes were purged from each monitoring well prior to sample collection. Groundwater field parameters were obtained from each monitoring well just prior to sampling, and included water levels, pH, conductivity, dissolved oxygen, turbidity, and temperature. The wells were observed to have moderate recharge capacity. Well purging was performed using a disposable Teflon® bailer. The purged groundwater was containerized and transferred to the on-site leachate collection manhole, part of the RAF, for subsequent disposal.

Groundwater samples were collected using a new disposable Teflon® bailer for each monitoring well. During the April and September 2007 groundwater sampling events, samples to be analyzed for VOCs and PCBs were collected on the first day of each sampling event. Samples to be analyzed for metals were collected on the second day, 24 hours after purging the well, to limit turbidity in the samples collected. Each grab sample was placed directly into laboratory-provided containers, labeled, logged in to a chain of custody document, and stored on ice in an insulated cooler pending delivery to the laboratory for analysis. Quality assurance/quality control (QA/QC) groundwater samples were collected at a frequency described below.

Trip Blanks

On events/days when aqueous samples were shipped/delivered to the laboratory for VOC analysis, a trip blank was included. A trip blank is an aliquot of analyte-free water, sealed in a 40 milliliter glass vial with a Teflon-lined septum cap prepared by the laboratory prior to initiation of fieldwork. The sealed vials were prepared by the laboratory and included with each shipment of sample bottles for aqueous media sampling at the Property. The trip blank may determine if any contamination of the samples has occurred during shipment/delivery.

Duplicate Samples

Duplicate samples were collected and analyzed to evaluate the reproducibility of the analytical technique used. One duplicate sample (DUP-1) was collected for all parameters during each sampling event. Groundwater from a selected monitoring well was divided between the primary sample and the duplicate sample laboratory containers, logged on the chain of custody and submitted to the laboratory.

Matrix Spike / Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples were collected to measure the accuracy of organic analyte recovery from the sample matrices. For organic constituents and metals, one matrix spike and one matrix spike duplicate sample was analyzed for each sampling event.

The April and October 2007 samples were submitted to Life Science Laboratories of East Syracuse, New York. Table 4-3 – Groundwater Constituents, Methods, and Practical Quantification Limits, details the groundwater sample analytical requirements. The Groundwater Sampling Logs - Form E, used during well sampling to record the groundwater field parameters, are provided in Appendix E.

4.4 Groundwater Analytical Results

The analytical results from the semi-annual groundwater sampling events, as compared to the TOGS 1.1.1 are presented in the subsequent summary tables. Table 4-4 – 2007 Groundwater Analytical Results, summarizes the groundwater analytical data from the two semi-annual sampling events. Table 4-5 – Cumulative Groundwater Analytical Results, provides a historic summary of the groundwater analytical results from 1999 through 2007. The original laboratory analytical data for 2007 were provided under separate cover to NYSDEC upon receipt from the laboratory, and are provided in Appendix F – Groundwater Analytical Data. The analytical laboratory did not achieve the 0.05 micrograms per liter (ug/l) method detection limit (MDL) for PCBs, from any of the monitoring wells during the April 2007 or October 2007 sampling events.

The following summarizes analytical data from each monitoring well and long term trends.

MW-6R

- Analytical results for VOCs indicated no detectable concentrations for both 2007 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2007 sampling events;
- Chromium was detected during the April 2007 sampling event at a concentration of 13 ug/l, however below TOGS 1.1.1 guidance value of 25 ug/l; and
- Historically, VOCs and PCBs have never been detected at concentrations above there respective MDL.

MW-13A

- Analytical results for VOCs indicated no detectable concentrations for both 2007 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2007 sampling events;
- Lead and zinc were detected during the April sampling event at 13 ug/l and 24 ug/l, however below TOGS 1.1.1 guidance values of 25 ug/l and 2000 ug/l, respectively; and
- Historically, VOCs and PCBs have never been detected at concentrations above their respective MDL.

MW-14

- Analytical results for VOCs indicated no detectable concentrations for both 2007 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2007 sampling events;
- The metal concentrations from both 2007 groundwater sampling events were below TOGS 1.1.1 guidance values, and are comparable with historically identified concentrations; and

 Historically, VOCs and PCBs have never been detected at concentrations above there respective MDL.

MW-17

Monitoring well had insufficient water to allow sample collection during both 2007 events.

MW-18

- Vinyl chloride (VC) was detected at a concentration of 7.5 ug/l and 7.4 ug/l in the primary and duplicate samples, respectively, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the April 2007 sampling event. All other VOCs were not detected at concentrations above MDLs;
- VC was detected at a concentration of 17 ug/l and 17 ug/l, in the primary and duplicate sample, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the October 2007 sampling event. All other VOCs were not detected at concentrations above MDLs;
- Lead was detected during the April 2007 sampling event at a concentration of 14 ug/l, however below TOGS 1.1.1 guidance value of 25 ug/l;
- Concentrations of metals were detected below TOGS 1.1.1 guidance values during October 2007 groundwater sampling events and are comparable with historically identified concentrations;
- Analytical results for PCBs indicated no detectable concentrations for both 2007 sampling events;
 and
- Historically, PCBs have never been detected at concentrations above the MDL.

4.5 Summary

An interpretation of the groundwater elevation measurements obtained during the April and October 2007 sampling events indicated that the overburden groundwater flow was generally to the north. The groundwater flow direction was influenced in the vicinity of the NCT and the SCT, due to the operation of the GTS. Monitoring well MW-17 continues to have insufficient water to measure or sample, as a result of the NCT effectively lowering the groundwater table.

The groundwater quality from both the April and October 2007 groundwater sampling events are generally consistent with historic data. VC has been detected in monitoring well MW-18 above its analytical MDL for eight consecutive sampling events. The VC concentration at MW-18 demonstrates an overall increasing trend, however VC is a daughter product demonstrating the degradation of TCE. As MW-18 is upgradient of the groundwater depression created by the SCT, (see Figure 4-1 and 4-2), the groundwater monitored at MW-18 is directed, collected, and treated via the GTS, discussed in Section 6.

Concentration of select metals did not exceed TOGS 1.1.1 guidance values and have not demonstrated exceedances since the RA. Detectable concentrations of PCBs were not identified in groundwater from any of the current monitoring locations. It should be noted that the contract laboratory did not achieve the MDL, of 0.05 ug/l, during the April or October 2007 sampling events.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

4.6 Tables

- 4-1 2007 Groundwater Elevation Summary
- 4-2 Cumulative Groundwater Elevations
- 4-3 Groundwater Constituents, Methods, and Practical Quantification Limits
- 4-4 2007 Groundwater Analytical Results
- 4-5 Cumulative Groundwater Analytical Results

TABLE 4-1 2007 GROUNDWATER ELEVATION SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA NEW YORK NYSDEC SITE NO. 622003

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 4/18/07						
MW-6R	462.69	10.52	10.51	465.47	3.69	461.78
MW-13A	467.30	11.07	10.91	469.23	2.14	467.09
MW-14	475.71	12.94	12.99	478.45	2.99	475.46
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.73	11.70	475.96	4.72	471.24
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.73	465.69
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	NA	NA	465.31	11.95	453.36

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 10/23/07	,					
MW-6R	462.69	10.52	10.50	465.47	3.76	461.71
MW-13A	467.30	11.07	11.07	469.23	4.06	465.17
MW-14	475.71	12.86	12.80	478.37	6.95	471.42
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.78	11.78	475.96	6.71	469.25
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.72	465.70
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	12.80	NA	465.31	11.98	453.33

- 1. All values reported in feet.
- 2. TOR = Top of Riser.
- 3. Depth measurements are taken in hundredths of a foot from the TOR, which is a reference point at the highest part on the 2-inch riser pipe.
- 4. Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.
- 5. MW-17 was found dry during both monitoring events, bottom elevation = 454.70 feet.
- 6. The top of riser elevation was adjusted during maintenance on May 15, 2003 for monitoring wells MW-6R and MW-14.
- 7. MW = Monitoring Well.
- 8. SCT = Southern Collection Trench.
- 9. NCT = Northern Collection Trench.
- 10. CO = Clean Out (Depths and Elevations are Approximate).
- 11. MH = Manhole.
- 12. NA = Not Applicable.
- 13. NM = Not measured. Installed well depths used to calculate well casing columns.
- 14. Groundwater elevations were inferred at the following locations: SCT CO-1, SCT CO-2, SCT CO-3, and NCT CO-1.

TABLE 4-2 CUMULATIVE GROUNDWATER ELEVATIONS

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

		I	Well ID			I
Sample Date	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18
Campic Date						
3/26/1999	467.93	461.78	465.83	474.82	462.14	469.97
9/20/1999	467.60	461.14	464.36	470.78	460.70	467.83
3/14/2000	467.72	461.63	466.38	475.05	459.45	470.03
9/14/2000	467.42	461.15	464.98	473.72	457.37	468.83
3/29/2001	470.86	456.35	460.93	467.74	457.24	469.52
9/13/2001	Note 2	460.85	464.18	470.9	457.11	469.56
3/27/2002	Note 2	460.96	466.89	475.19	DRY	470.82
9/19/2002	Note 2	461.21	465.41	470.92	DRY	468.10
4/24/2003	Note 2	461.55	466.81	475.24	DRY	472.13
10/22/2003	Note 2	460.97	465.23	474.66	DRY	469.61
4/22/2004	Note 2	461.59	466.67	475.34	DRY	471.25
10/18/2004	Note 2	461.03	465.01	472.53	DRY	468.93
4/27/2005	Note 2	461.54	466.51	475.13	DRY	471.06
10/20/2005	Note 2	461.15	465.17	474.47	DRY	469.66
4/19/2006	Note 2	461.4	466.16	474.66	DRY	470.40
9/26/2006	Note 2	461.01	465.07	472.46	DRY	469.15
4/18/2007	Note 2	461.78	467.09	475.46	DRY	471.24
10/23/2007	Note 2	461.71	465.17	471.42	DRY	469.25

- 1. All elevations reported in feet above mean sea level.
- 2. MW-3 was decommissioned in September 2001.
- 3. MW-17 has been "Dry" since the installation of Pumping MH-2 in March 2002.

TABLE 4-3 GROUNDWATER CONSTITUENTS, METHODS AND PRACTICAL QUANTIFICATION LIMITS

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Constituent	Practical Quantification Limits (PQLs)
VOCs of Concern - USEPA Method 8260	
cis-1,2-Dichloroethene	1
trans-1,2-Dichloroethene	1
Trichloroethylene	1
Vinyl Chloride	1
Metals of Concern - USEPA Method 200.7	
Chromium	10
Copper	10
Lead	10
Zinc	10
PCBs - USEPA Method 608	
Aroclor 1016	0.05
Aroclor 1221	0.05
Aroclor 1232	0.05
Aroclor 1242	0.05
Aroclor 1248	0.05
Aroclor 1254	0.05
Aroclor 1260	0.05

- 1. All values reported in micrograms per liter (ug/l), approximately equivalent to parts per billion (ppb).
- 2. VOCs = Volatile Organic Compounds.
- 3. PCBs = Polychlorinated biphenyls.
- 4. VOCs of concern PQLs are based on USEPA SW-846 Method 8260 contract required quantification limits (CRQLs). Specific quantifications are highly matrix dependent. The quantification limits shown are provided for guidance and may not always be achievable.
- 5. USEPA Method 200.7 will be used for analysis of metals of concern. PQLs presented are based on RCRA TCL CRQLs. CQRLs shown for metals of concern are provided for guidance and may not always be achievable.

TABLE 4-4 2007 GROUNDWATER ANALYTICAL RESULTS

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

April 2007 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	041807/041907
Date Sampled	Limit	and Guidance	4/18-19/2007	4/18-19/2007	4/18-19/2007	4/18-19/2007	4/18-19/2007	4/18-19/2007
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compound	ds							
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	7.5	7.4
Metals		-						
Chromium	10	50	<10	<10	<10	NS	<10	<10
Copper	10	200	<10	<10	<10	NS	<10	<10
Lead	10	25	13	13	<10	NS	14	14
Zinc	10	2,000	<10	24	<10	NS	<10	<10
Polychlorinated Biphenyls		-						
Aroclor 1016	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1221	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1232	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1242	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1248	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1254	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1260	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1

October 2007 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	102307/102407
Date Sampled	Limit	and Guidance	10/23-24/2007	10/23-24/2007	10/23-24/2007	10/23-24/2007	10/23-24/2007	10/23-24/2007
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compound	ds			11		11	11	
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	17	17
Metals		•						
Chromium	10	50	<10	<10	<10	NS	<10	<10
Copper	10	200	<10	<10	<10	NS	<10	<10
Lead	10	25	<10	<10	<10	NS	<10	<10
Zinc	10	2,000	<10	<10	<10	NS	<10	<10
Polychlorinated Biphenyls		•						
Aroclor 1016	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1221	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1232	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1242	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1248	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1254	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1260	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1

- 1. Sample results and NYSDEC Standards reported in ug/l; approximately equivalent to parts per billion (ppb).
- 2. Guidance Values are established by NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1).
- 3. NS = Not Sampled (Well Dry).
- 4. Bolded values exceed the constituent's established Standards and Guidance Values.

TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

			111/02770	1:	999	20	000	2	001	2	2002	20	003	20	004	20	005	2	006	2	2007
Monitoring Well	Parameters	Units	NYSDEC	March	September	March	September	March	September	March	September	April	October	April	October	April	October	April	September	April	October
ID		5 15	Guidance	Primary																	
MW-3	cis-1,2-Dichloroethene	ug/l	5	<5	< 5	<5	< 5	NS-1													
MW-3	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	NS-1													
MW-3	Trichloroethylene	ug/l	5	<5	<5	<5	<5	NS-1													
MW-3	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	NS-1													
MW-3	Chromium	ug/l	50	4.4	4.6B	<10	<10	NS-1													
MW-3	Copper	ug/l	200	16.8	6.1B	<10	<10	NS-1													
MW-3	Lead	ug/l	25	5.5	4	<5	<5	NS-1													
MW-3	Zinc	ug/l	2,000	15.1	16.1B	13	38	NS-1													
MW-3	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-3	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1													
MW-3	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-3	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-3	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-3	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-3	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1													
MW-6R	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	Chromium	ug/l	50	19.9	2.2B	<10	<10	<10	23	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-6R	Copper	ug/l	200	45	6.7B	<10	<10	<10	58	11	<10	34	17	<10	<10	10	<10	<10	<10	<10	<10
MW-6R	Lead	ug/l	25	7.4	3.6	<5	<5	<5	23	<10	<10	14	13	<10	<10	<10	<10	<10	<10	13	<10
MW-6R	Zinc	ug/l	2,000	49.5	26.5	26.0	47	19	140	64	29	100	24	<10	19	12	13	37	<10	<10	<10
MW-6R	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-6R MW-6R	PCBs (Aroclor 1221) PCBs (Aroclor 1232)	ug/l	0.09	<0.10 <0.10	<0.10 <0.10	<0.10	<0.05 <0.05	<0.05 <0.05	<0.10 <0.10	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	< 0.05	<0.05	<0.05	<0.05 <0.05	<0.10	< 0.05	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10
MW-6R	PCBs (Aroclor 1242)	ug/l ug/l	0.09	<0.10	<0.10	<0.10 <0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.10 <0.10	<0.05 <0.05	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1242)	ug/i ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-13A	cis-1.2-Dichloroethene		5	<5															<u> </u>		†
MW-13A	trans-1,2-Dichloroethene	ug/l ug/l	5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<1 <1											
MW-13A	Trichloroethylene	ug/I	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	Chromium	ug/I	50	7.8B	4.8E	19.0	<10	<10	<10	<10	200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-13A	Copper	ug/l	200	45	5.3B	<10	<10	<10	<10	14	200	<10	14	<10	<10	14	<10	<10	<10	<10	<10
MW-13A	Lead	ug/I	25	9.2	2.3	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	13	<10
MW-13A	Zinc	ug/l	2.000	38.1	10.7B	29.0	47	10	<10	18	92	<10	19	29	12	20	<10	14	11	24	<10
	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10

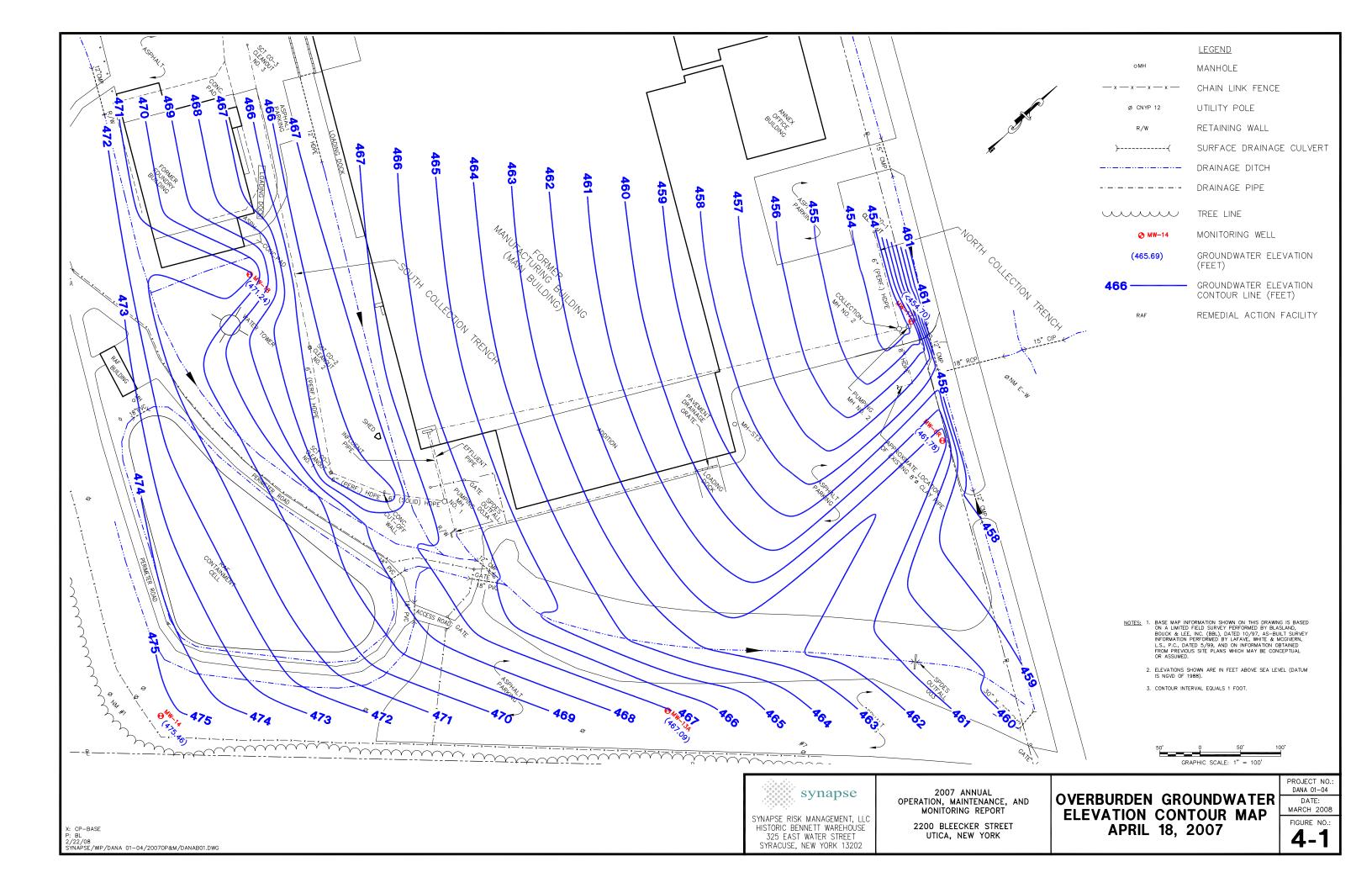
Table 4-5 Synapse Risk Management, LLC

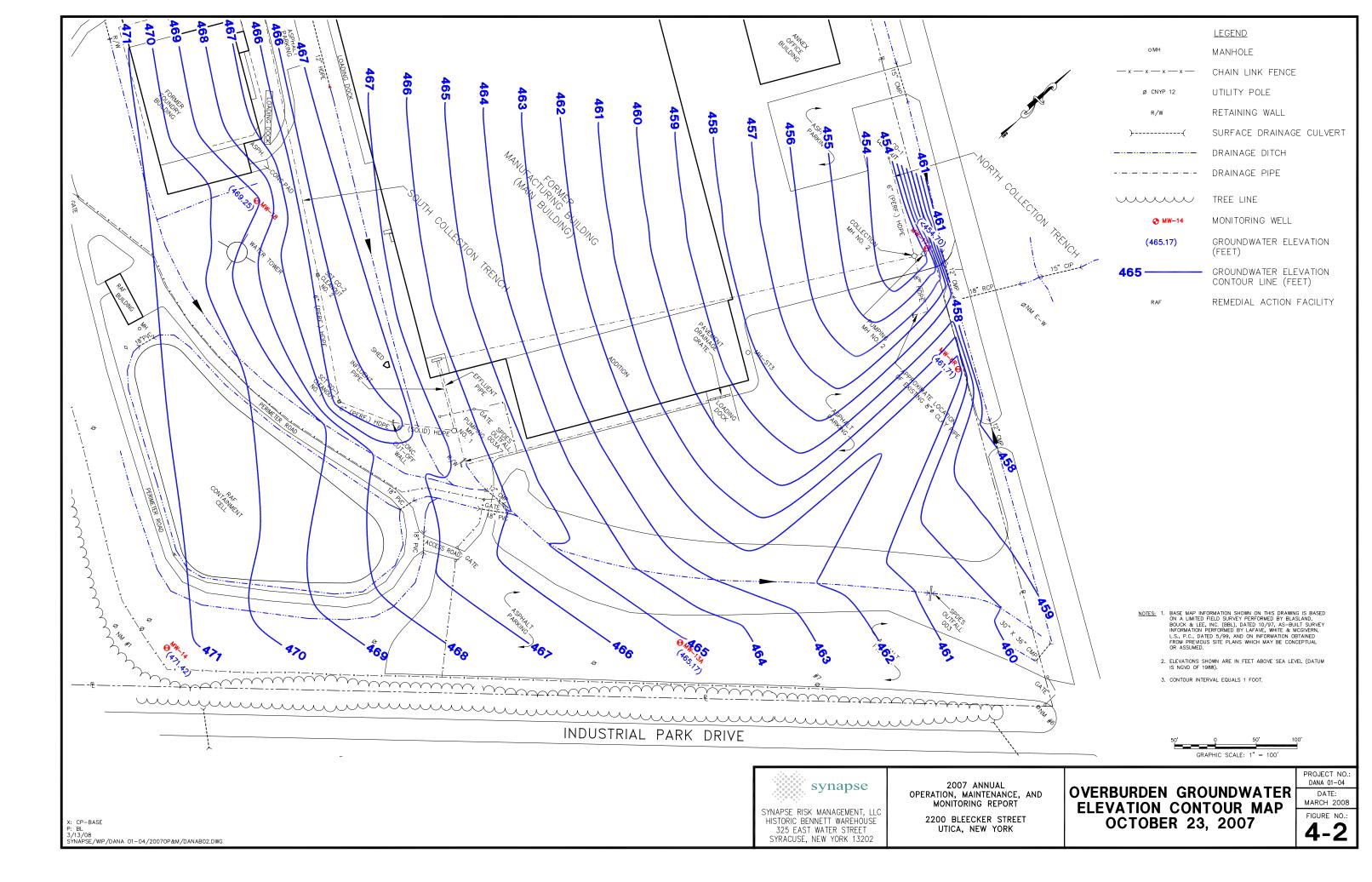
TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

				1:	999	20	000	2	001	2	002	20	003	2	004	20	005	2	006	2	007
Monitoring Well	Parameters	Units	NYSDEC	March	September	March	September	March	September	March	September	April	October	April	October	April	October	April	September	April	October
ID			Guidance	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
MW-14	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Chromium	ug/l	50	20.4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-14	Copper	ug/l	200	48	6B	<10	<10	<10	<10	<10	<10	<10	27	12	<10	16	<10	<10	<10	<10	<10
MW-14	Lead	ug/l	25	8	<5	<5	<5	<5	<10	<10	<10	<10	10	<10	<10	13	<10	<10	<10	<10	<10
MW-14	Zinc	ug/l	2,000	36	6.5B	28	42	15	<10	<10	20	29	100	17	<10	15	<10	<10	<10	<10	<10
MW-14	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10
MW-17	cis-1,2-Dichloroethene	ug/l	5	<5	7	<5	5.2	8.9	7.4	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Trichloroethylene	ug/l	5	<5	25	22	22	24	16	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Vinyl Chloride	ug/l	2	<2	<2	<5	<5	<2	<2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Chromium	ug/l	50	4	21B	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Copper	ug/l	200	16B	<10	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Lead	ug/l	25	2.4B	<5	<5	<5	<5	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Zinc	ug/l	2,000	14.6B	7.1B	13	57	32	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-18	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	Vinyl Chloride	ug/l	2	<2	<2	<5	<5	<2	<5	<2	2.6	3.9	6.1	3.5	7	5.6	7.1	9.9	15	7.5	17
MW-18	Chromium	ug/l	50	60.1	19.4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-18	Copper	ug/l	200	109	7.6B	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	<10	<10	<10	<10	<10	<10
MW-18	Lead	ug/l	25	35.6	9.3	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14	<10
MW-18	Zinc	ug/l	2,000	172	51	16	58	21	22	<10	<10	11	17	18	<10	13	<10	63	<10	<10	<10
MW-18	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-18	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10
MW-18	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10

Notes


- 1. All results reported in micrograms per liter (ug/l) approximately equivalent to parts per billion (ppb).
- 2. B = The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- 3. C = Value was reported as a laboratory cross-contaminant.
- 4. E = The reported value is estimated due to the presence of interference(s).
- 5. NS-1 = No Sample Well Decommissioned.
- 6. NS-2 = No Sample Well Dry.
- 7. Bolded values exceed the constituent's established TOGS 1.1.1 guidance values.


Table 4-5
Synapse Risk Management, LLC

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

4.7 Figures

- 4-1 Overburden Groundwater Elevation Contour Map April 18, 2007
- 4-2 Overburden Groundwater Elevation Contour Map October 23, 2007

5.0 PROPERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM

UHC was issued a SPDES permit (No. NY0257087) for the Property on September 1, 2002, with two subsequent modifications issued by NYSDEC, dated August 1, 2003, and November 20, 2003. On behalf of UHC, Synapse has been tasked to administer the scheduled technical and reporting requirements set forth in the SPDES Permit. The SPDES Permit was scheduled and submitted for renewal on March 15, 2007, include with the renewal were proposed modifications.

The SPDES Permit is specific to activities conducted at the Property, including the Coolidge-owned Main Building, and permits water discharge from three outfalls as depicted in Figure 5-1 – SPDES Outfall 001 Manhole Plan and Section, Figure 5-2 – SPDES Outfall 002 Manhole Plan and Section, and Figure 5-3 – SPDES Outfall 003 Plan and Section. A significant portion (65%) of the total flow monitored by UHC at the permitted outfalls 001, 002 and 003 is from contribution associated with the operations of Coolidge Utica and its tenants, and CPTC's Outfall 03A, permitted under SPDES Permit No. NY0108537 (see Section 6.4). The following section reviews Outfall contributions and construction, routine monitoring and subsequent results, specialized studies and testing, as well as, unscheduled maintenance.

5.1 Outfall Contributions

Water contributions that discharge via the three permitted SPDES outfalls are as follows:

Outfall 001

UHC Contribution

Parking lot catch basin (overland flow).

Coolidge Contributions

- Building roof leaders;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 002

UHC Contribution

Parking lot catch basins (overland flow).

Coolidge Contributions

- Building roof leaders:
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 003

UHC Contributions

Stormwater from overland flow, including that from the RAF; and

5-1

Parking lots.

Coolidge Contributions

- Building roof leaders:
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

CPTC Contribution

Post treated effluent from the GTS via Outfall 03A (SPDES Permit No. NY0108537).

Figure 5-4 – Stormwater System Partial Plan, depicts the numerous source points and areas, particularly from the Main Building, that contribute water to each outfall.

5.2 Outfall Construction

The three SPDES outfalls were located and constructed to facilitate collection of effluent samples and flow measurements representative of actual discharge conditions at the Property. The construction of each outfall is provided below.

Outfall 001

Construction activities for the Outfall 001 monitoring location were conducted between April 16 and April 26, 2002, and incorporated the following:

- Pavement and soil was excavated to install Outfall 001 Manhole at an area in the western parking lot where an existing drainage pipes, a 24-inch corrugated metal pipe (CMP) and a 24-inch vitrified clay pipe (VCP) intersected, approximately 5 feet below ground surface (bgs);
- A prefabricated 5-foot diameter cast concrete manhole base, with influent and effluent pipe penetrations, was placed in line with the existing subsurface drainage pipes and grouted;
- An 8-inch thick concrete cover, with a cast iron access cover, was installed to complete the manhole structure, followed by engineered fill and paving;
- A stainless steel, sharp edged, 120-degree, V-notch weir was installed at the effluent side of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and calibrated to allow measurements of effluent flow rates based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted at the outfall outlet.

A detailed drawing of SPDES Outfall 001 Manhole is presented on Figure 5-1. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek.

Outfall 002

The Outfall 002 monitoring location was constructed from an existing 10.5-foot deep, 4- foot diameter red brick manhole near the northwestern corner of the Main Building. A 24-inch VCP, that is the part of the northern stormwater system, is sectioned by this manhole. As such, effluent flowing through the manhole was accessible and measurable upon application of the following upgrades:

- A stainless steel sharp edge, 120-degree, V-notch weir was installed adjacent to the effluent 24-inch VCP, at the bottom of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and effluent flow rates were calibrated based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted on the bank, adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 002 Manhole is presented on Figure 5-2. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek.

Outfall 003

The Outfall 003 monitoring location was constructed in an existing unnamed tributary to the Mohawk River, at the northeastern extent of the Property as follows:

- A 12-inch HDPE pipe was installed within a concrete headwall spanning the width of the tributary allowing surface water to flow through the pipe. Samples are collected and parameters measured directly from the effluent end of the 12-inch HDPE pipe;
- A monitoring port was installed adjacent to the concrete headwall to facilitate flow measurement data collection representative of actual discharge conditions. The monitoring port was constructed by installing a horizontal 2-inch PVC pipe at a measured elevation adjacent to the influent side of the headwall. This horizontal pipe connects (via a 90 degree elbow) to a vertical riser extending several feet above grade adjacent to the tributary. The water level of the tributary, and thus the flow rate, can be measured from this monitoring port; and
- A NYSDEC-approved sign was posted on the bank adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 003 is presented on Figure 5-3.

5.3 Monitoring

A primary regulatory requirement of the Property SPDES permit is to monitor concentrations of select constituents and physical parameters in the outfall effluent. A schedule of routine monitoring of effluent from Outfalls 001, 002, and 003 has been prescribed by NYSDEC, as discussed in Section 5.3.1. In addition, two non-routine monitoring/sampling programs have been prescribed for by NYSDEC, to include, PCB Congeners and Acute Toxicity, as discussed in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Routine Monitoring

August and November 2003 modifications to the Permit have resulted in minor changes to the monitoring parameters and/or their scheduled monitoring frequencies. The current routine monitoring parameters and sampling frequencies, as prescribed for each outfall, are summarized in the following table:

5-3

Parameter	Units	Mo	onitoring Frequen	су
Parameter	Ullits	Outfall 001	Outfall 002	Outfall 003
рН	S.U.	Once/2 weeks	Once/2 weeks	Once/2 weeks
Flow (in-situ measurement)	gpd ⁰ F	Once/2 weeks	Once/2 weeks	Once/2 weeks
Temperature	°F	Once/2 weeks	Once/2 weeks	Once/2 weeks
Oil & Grease	mg/l	Monthly	Monthly	Monthly
Total Suspended Solids (TSS)	mg/l	Once/2 weeks	Once/2 weeks	Once/2 weeks
Total Residual Chloride	ug/l	NR	NR	Once/2 weeks
Phenolics	ug/l	Monthly	Monthly	Monthly
Antimony	ug/l	Quarterly	NR	NR
Chromium	ug/l	Semi-Annual	NR	NR
Copper	ug/l	Once/2 weeks	NR	NR
Fluoride	ug/l	Semi-Annual	Semi-Annual	NR
Lead	ug/l	Semi-Annual	NR	Semi-Annual
Zinc	ug/l	Semi-Annual	NR	Semi-Annual
Chloroform	ug/l	Once/2 weeks	NR	Once/2 weeks
cis 1,2-dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Trans 1,2- dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Trichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Vinyl chloride	ug/l	NR	NR	Once/2 weeks
PCBs	ng/l	NR	NR	Quarterly

Table notes:

S.U. = Standard Units

⁰F = Degrees Fahrenheit

mg/l = milligrams per liter

ug/l = micrograms per liter

ng/l = nanograms per liter

NR = Not Required

Analytical data and real-time measurements obtained from the 2007 routine monitoring events are summarized in Table 5-1 - Cumulative Summary of SPDES Monitoring Results. This data was also reduced and reported in monthly DMRs for submittal to NYSDEC. Results from routine monitoring events were compared to effluent compliance levels set in the Permit. DMRs were submitted to the NYSDEC Region 6, Division of Water representative, Richard Coriale, P.E., on. a monthly basis. There was one excursion of compliance levels for the above parameters in 2007 as follows.

Oil and Grease was detected at 17ug/l at Outfall 001 during the July 2007 sampling event, which exceeded the permitted compliance levels of 15 ug/l. This was attributed to the access road and parking lot drainage to the catch basin, as part of the operation at the main building.

5.3.2 EPA Method 1668A PCB Study

Pursuant to the August 2003 SPDES Permit Modification, a three-year study of PCB congeners was required and previously conducted at Outfall 003. Using USEPA Method 1668A, sampling and analysis of 209 PCB congeners was conducted at Outfall 003 on a quarterly basis between 2002 and 2005.

5.3.3 Acute Toxicity Testing

As a *Special Condition* of the Permit, a Tier 1 effluent toxicity monitoring program is required to identify acute toxicity of effluent from each of the outfalls utilizing fresh water vertebrate and invertebrate species as follows:

- Outfall 001 Effluent toxicity sampling of Outfall 001 is required quarterly during calendar years ending in [3] and [8];
- Outfall 002 Effluent toxicity sampling of Outfall 002 is required quarterly during calendar years ending in [3] and [8]; and
- Outfall 003 Effluent toxicity sampling of Outfall 003 is required quarterly during calendar years ending in [5] and [0].

According to the above Permit-specified schedule, effluent toxicity sampling was not scheduled to be conducted during 2006. However, given a 2005 failure rate of 25% for Outfall 002, the NYSDEC issued a June 6, 2006 letter requiring an additional year (four quarters) of Tier 1 acute toxicity sampling at Outfall 002.

The first effluent toxicity sampling event pursuant to the June 6, 2006 letter was conducted during the third quarter of 2006, and the second effluent toxicity sampling event was conducted during the fourth quarter of 2006. Both sampling events involved collection of two grab samples over a two day period (one per day). The samples were delivered to AquaTox Research, Inc., a NYSDEC-approved laboratory, located in Syracuse, New York, for acute toxicity analysis.

Based on the acute toxicity observed during the second quarter 2006 sampling event, the program was expanded in the first quarter 2007 to include collection of grab samples from manhole locations upstream from SPDES Outfall 002 as depicted on Figure 1 – Acute Effluent Toxicity Test Results 1st Quarter 2007. The 2007 first quarter sampling program commenced on March 26, 2007 and included the collection of grab samples from Outfall 002 and two upstream manhole locations, occurring on two consecutive days.

The results of the 2007 first quarter sampling event are attached, and a tabular summary of the 48-hour median lethal concentration (LC_{50}) results for the first quarter of 2007 are presented herein. It should be noted that significant portion, (90%) of the total flow monitored by UHC at permitted Outfall 002 and the immediate upstream manholes (MH-ST2A and MH-ST2B) are associated with the stormwater contributions from Coolidge Utica main building and its tenants.

First Quarter 2007 SPDES Outfall 002 Sample Results

The 48-hour LC₅₀ test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002, are summarized below and shown on Figure 1.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 002	Ceriodaphnia dubia	25% Mortality in 100% Sample

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 2007 1st quarter was below the Permit-specified survival rate of 95%.

1ST Upstream Manhole Results MH-ST2A (032607-1)

Sample Location	Test Organism	48-hour LC ₅₀
032607-1	Ceriodaphnia dubia	100% Mortality in 6.25% Sample

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at the first upstream manhole location during the 2007 1^{st} quarter was below the Permit-specified survival rate of 95%. The 100% cumulative mortality rate was observed at 6.25% dilution.

2nd Upstream Manhole Results MH-ST2B (032607-2)

Sample Location	Test Organism	48-hour LC ₅₀
032607-2	Ceriodaphnia dubia	46.7% (38.4 – 56.6) in 100% Sample

As indicated in the above table, the 48-hr LC₅₀ test result for Ceriodaphnia dubia at the second upstream manhole location during the 2007 1st quarter was below the Permit-specified survival rate of 95%.

Based on the above results, varying levels of toxicity were observed at Outfall 002 and the upstream manhole locations of the Northern Stormwater system, with the most toxic sample being identified upstream at MH-ST2A – sample location 032607-1.

The results of the 2007 second quarter sampling event are attached, and a tabular summary of the 48-hour median lethal concentration (LC_{50}) results for the second guarter of 2007 are presented herein.

Second Quarter 2007 SPDES Outfall 002 Sample Results

Based on the acute toxicity observed during the first quarter 2007 sampling event, the program was expanded for the second quarter 2007 to include collection of grab samples from manhole locations upstream of the SPDES Outfall 002 sampling location as depicted on Figure 1 – Acute Effluent Toxicity Test Results 2nd Quarter 2007. The 2007 second quarter sampling program commenced on June 25, 2007 and included the collection of grab samples from Outfall 002 and two upstream manhole locations, occurring on two consecutive days. Attempts were made to conduct this sampling program during periods of stormwater runoff to best reflect actual effluent conditions.

It should be noted that a significant portion (90%) of the total flow monitored at Outfall 002 and the immediate upstream manholes (MH-ST2A and MH-ST2B) are associated with the stormwater contributions from the main building (owned by Coolidge Utica, LLC) and its tenants.

SPDES Outfall 002 Sample Results - Second Quarter 2007

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002 and the upstream manhole locations, are summarized below and shown on Figure 5-2.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 002	Ceriodaphnia dubia	60% Mortality in 100% Sample

Sample Location	Test Organism	48-hour LC ₅₀
062507-1	Ceriodaphnia dubia	60% Mortality in 100% Sample
Sample Location	Test Organism	48-hour LC ₅₀

As indicated in the above table, the 48-hr LC₅₀ test result for Ceriodaphnia dubia at Outfall 002 and the upstream manhole locations during the 2007 2nd quarter was below the Permit-specified survival rate of 95%.

Summarized in the table below are the 48-hr LC_{50} test results for each of the four quarterly sampling events conducted in 2006 and 2007.

Location	Test Organism	1 st Quarter 48-hr LC ₅₀	2 nd Quarter 48-hr LC ₅₀	3 rd Quarter 48-hr LC ₅₀	4 th Quarter 48-hr LC ₅₀
002	Ceriodaphnia dubia	42%	0%	25%	60%
MH-ST2A	Ceriodaphnia dubia	Not Sampled	Not Sampled	100%	60%
MH-ST2B	Ceriodaphnia dubia	Not Sampled	Not Sampled	46.7%	15%

5.4 Summary

UHC was issued the SPDES permit for Outfalls 001, 002, and 003 on September 1, 2002. During 2003, NYSDEC issued two modifications to the SPDES Permit. On behalf of UHC, Synapse has been conducting the technical and reporting requirements set forth in the SPDES Permit.

Data collected from the 2007 routine monitoring and sampling events indicate target constituents and field parameters have not been consistently identified, at any of the outfalls, above their respective enforceable compliance levels. Anomalous exceptions and or excursions from the enforceable compliance levels have been evaluated and not believed to be a consistent threat to the environment. As such, it is recommended that routine monitoring be continued as scheduled.

Operations conducted at the property by Coolidge Utica and its tenants, which UHC has no control over, have the potential to directly impact the effluent water quality monitored by UHC at its permitted outfalls. The toxicity sampling program was expanded in 2007 to sample two upstream locations to isolate and identify potential sources of toxicity associated with the Coolidge Utica building contribution to the northwestern stormwater system. Given the analytical results, the source of the toxicity appears to be related to contributions from the Coolidge Utica building. Specifically, based on the SPDES Stormwater Action Plan (June 2000), MH-ST2A and MH-ST2B receive contributions from the Coolidge Utica Main Building.

5.5 Tables

Table 5-1 Cumulative Summary of SPDES Monitoring Results

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		Septem	ber '02			Octob	er '02			No	ovember '	02			Decem	ber '02	
Monitoring Date	Daily	Units	9/6/2002	9/11/2002	9/16/2002	9/23/2002	10/3/2002	10/10/2002	10/16/2002	10/25/2002	11/1/2002	11/6/2002	11/11/2002	11/22/2002	11/27/2002	12/5/2002	12/13/2003	12/20/2003	12/27/2003
Sampler ID	Max	Units	rsn	bhm	bhm	rrc	rsn	bhm	bhm	rsn	rrc	rsn	rrc/rsn	rsn	rsn	rrc	bhm	bhm	rrc

SPDES Outfall 001

SPDES Outlan 00 i																			
Flow Rate	Monitor	gpd	HTW	3505	15801	2314	7530	152	185634	<152	152	35901	HTW	HTW	13987	2314	30835	35901	21739
Temperature	90	٥F		67	71		66		57			47		53		49	46		
pH	6.0-9.0	SU		7.6	7.3		7.1		7.0			6.7		7.0		6.6	7.9		
Solids, Total Suspended	10 (dry)	mg/l		<4	<4		<4		15			<4		<4		14	15		
Solids, Total Suspended	50 (wet)	ilig/i		ζ4	~~		\ 4		13			\ *		.,		14	15		
cis-1,2-Dichloroethylene	10	ug/l		7.9	1		1		2.7			<1		3.6		<1	<1		
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1		<1		<1	<1		
Trichloroethylene	10	ug/l		1.1	<1		<1		<1			<1		<1		<1	<1		
Chloroform	46	ug/l		<1	<1		<1		<1			<1		<1		<1	<1		
Copper, Total	100	ug/l		73	34		55		50			20		25		11	24		
Oil & Grease	15	mg/l		<5			8.3					<5				<5			
Phenolics, Total	28	ug/l		<20			<20					<20				<20			
Antimony, Total	300	ug/l		<10												<10			
Chromium, Total	51	ug/l		22															
Fluoride, Total	2500	ug/l		340															
Lead, Total	13	ug/l		<10															
Zinc, Total	210	ug/l		72															

SPDES Outfall 002

JI DES Outlail 002																			
Flow Rate	Monitor	gpd	43871	47168	50610	43871	47168	47168	528383	29476	27001	166744	34824	HTW	HTW	27001	88412	133097	27001
Temperature	90	٩F		70	72		70		52			45	47			49	46		
рН	6.0-9.0	SU		8.8	8.4		8.2		7.1			7.3	8.5			8.6	8.1		
Solids, Total Suspended	10 (dry)	mg/l		<4	<4		<4		<4			<4	<4			<4	<4		
Solids, Total Suspended	50 (wet)	mg/i		<4	<4		<4		<4			<4	<4			<4	<4		
Oil & Grease	15	mg/l		<5			11					<5				<5			
Phenolics, Total	24	ug/l		<20			<20					<20				<20			
Fluoride, Total	1500	ug/l		1000															

SPDES Outfall 003

SPDES Outlan 003			_		_		_	_				_					,		_
Flow Rate	Monitor	gpd	6943	20829	83314	48600	36450	35345	198367	24300	18225	116640	36450	194400	48600	48600	42261	116640	29160
Temperature	90	٥F		64.2	70.3		65.5		51.3			44	58			35	44		
рН	6.0-9.0	SU		7.6	7.7		7.4		7.1			7.1	7.2			7.6	6.9		
Solids, Total Suspended	10 (dry)	mg/l		6	<4		<4		<4			<4	<4			<4	<4		
Jolius, Total Suspended	50 (wet)	ilig/i			.4		.4		V4			.4	.,			\4	\4		
Chlorine, Total Residual	100	ug/l		80	70		70		85			20	80			50	50		
cis-1,2-Dichloroethylene	10	ug/l		<1	1.1		1.9		<1			4	<1			4.9	8.3		
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Trichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Vinyl Chloride	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Chloroform	46	ug/l		<1	<1		<1		<1			<1	<1			<1	<1		
Oil & Grease	15	mg/l		<5			6.6					<5				<5			
Phenolics, Total	44	ug/l		<20			<20					<20				<20			
PCBs, Aroclors (Compliance)	300	ng/l							<50										
PCBs, Congeners (1668A Study)	NA	pg/l							7824										
Lead, Total	10	ug/l		<10															
Zinc, Total	120	ug/l		<10															

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.3. °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	ECL	. 1		Janua	ary '03			Febru	ary '03				March '03	 			Apri	I '03				May '03		
Monitoring Date	Daily		12/30/2002	1/10/2003	1/17/2003	1/24/2003	1/29/2003	2/3/2003	2/10/2003	2/18/2003	2/25/2003	3/7/2003	3/12/2003	3/19/2003	3/25/2003	4/4/2003	4/11/2003	4/16/2003	4/25/2003	5/2/2003	5/9/2003	5/15/2003	5/23/2003	5/29/2003
Sampler ID	Max	Units	bhm	bhm	bhm	bhm							5/12/2003 bhm				4/11/2003 pmf				sjm	5/15/2003 bhm		
Sampler 15	IVIAX	Щ	DIIII	DIIII	DIIII	DIIII	rsn	rsn/sjm	sjm	rrc/sjm	sjm	rsn	DIIII	rrc/pmf	rrc/bhm	rrc	pini	rsn	rrc	rrc	SJIII	DIIII	sjm	bhm
SPDES Outfall 001																								
Flow Rate	Monitor	gpd	26116	HTW	152	No Flow	<152	6112	<152	<152	HTW	HTW	2160	HTW	HTW	2880 E	HTW	<1440 E	<1440 E	41320	<1440 E	928	<1440 E	743
Temperature	90	٥F			41	35		46		40			43		54			56	52				58	60
pН	6.0-9.0	SU			7.0	7.2		7.0		7.1			7.1		7.2			7.0	7.2				7.0	6.9
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			10	51		<4		5			17		7			45	5				31	10
cis-1,2-Dichloroethylene	10	ug/l			1	<0.5		1		4			4		6			<1	<1				<1	<1
trans-1,2-Dichloroethylene	10	ug/l			<1	<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Trichloroethylene	10	ug/l			<1	<0.5		<1		1			<1		2			<1	<1				<1	<1
Chloroform	46	ug/l			<1	<0.5		<1		<1			<1		<1			<1	<1				<1	<1
Copper, Total	100	ug/l			22	<10		53		21			16		<10			17	16				22	19
Oil & Grease	15	mg/l			<5			<5					<5					13						<5
Phenolics, Total	28	ug/l			<20			<20					<20					<20						<2
Antimony, Total	300	ug/l																<10						
Chromium, Total	51	ug/l																<10						
Fluoride, Total	2500	ug/l																540						
Lead, Total	13	ug/l																<10						
Zinc, Total	210	ug/l																99						
							·													·				
SPDES Outfall 002																								
Flow Rate	Monitor	gpd	22434	HTW	1582	No Flow	574	11643	HTW	10241	HTW	208	3966	HTW	HTW	2880 E	HTW	844	37	47168	101	364	1582	<250 E
Temperature	90	°F			49	38		48		45			48		53			54	51				58	60
pH	6.0-9.0	SU			7.0	7.6		7.0		7.4			6.7		7.3			7.3	7.2				7.7	7.1
Solids, Total Suspended	10 (dry)	mg/l			<4	7		<4		<4			<4		11			7	11				5	10
011.0	50 (wet)							_																
Oil & Grease	15	mg/l			<5			<5					8					12						<5
Phenolics, Total	24 1500	ug/l			<20			<20					<20					<20 460						<2
Fluoride, Total		//																					4	
	1500	ug/l																400						
SPDES Outfall 003	1500	ug/l																400						
SPDES Outfall 003 Flow Rate	Monitor	ug/l gpd	53018	53018	25357	7200 E	7200 E	14400 E	48600	2880 E	13886	23328	18225	83314	97200	7200 E	144000 E	24300 E	291600 E	172800 E	20000 E	64800	15247	28800
-			53018	53018 40	25357	7200 E 33	7200 E	14400 E 40	48600	2880 E 33	13886	23328	18225 38	83314	97200 58	7200 E	144000 E		291600 E 51	172800 E	20000 E	64800	15247 61	28800 66
Flow Rate	Monitor	gpd	53018		25357		7200 E		48600		13886	23328		83314		7200 E	144000 E	24300 E		172800 E	20000 E	64800		
Flow Rate Temperature pH	Monitor 90	gpd ºF SU	53018	40 7.1	25357	33 7.5	7200 E	40 7.1	48600	33 7.5	13886	23328	38 7.4	83314	58 7.2	7200 E	144000 E	24300 E 59 7.3	51 7.4	172800 E	20000 E	64800	61 7.5	66 7.4
Flow Rate Temperature	Monitor 90 6.0-9.0	gpd ºF	53018	40	25357	33	7200 E	40	48600	33	13886	23328	38	83314	58	7200 E	144000 E	24300 E 59	51	172800 E	20000 E	64800	61	66
Flow Rate Temperature pH	Monitor 90 6.0-9.0 10 (dry)	gpd ºF SU	53018	40 7.1	25357	33 7.5	7200 E	40 7.1	48600	33 7.5	13886	23328	38 7.4	83314	58 7.2	7200 E	144000 E	24300 E 59 7.3	51 7.4	172800 E	20000 E	64800	61 7.5	66 7.4
Flow Rate Temperature pH Solids, Total Suspended	Monitor 90 6.0-9.0 10 (dry) 50 (wet)	gpd °F SU mg/l	53018	40 7.1 <4	25357	33 7.5 5	7200 E	40 7.1 <4	48600	33 7.5 <4	13886	23328	38 7.4 <4	83314	58 7.2 <4	7200 E	144000 E	24300 E 59 7.3 4	51 7.4 NA	172800 E	20000 E	64800	61 7.5 <4	66 7.4 9
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual	Monitor 90 6.0-9.0 10 (dry) 50 (wet)	gpd °F SU mg/l	53018	40 7.1 <4 70	25357	33 7.5 5	7200 E	40 7.1 <4 70	48600	33 7.5 <4 47	13886	23328	38 7.4 <4	83314	58 7.2 <4	7200 E	144000 E	24300 E 59 7.3 4	51 7.4 NA 60	172800 E	20000 E	64800	61 7.5 <4 30	66 7.4 9 40
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10	gpd °F SU mg/l ug/l ug/l ug/l ug/l	53018	40 7.1 <4 70 6	25357	33 7.5 5 60 3	7200 E	40 7.1 <4 70 3	48600	33 7.5 <4 47 8	13886	23328	38 7.4 <4 50 8	83314	58 7.2 <4 60 5	7200 E	144000 E	24300 E 59 7.3 4 10 <1	51 7.4 NA 60 2	172800 E	20000 E	64800	61 7.5 <4 30 <1	66 7.4 9 40 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10	gpd °F SU mg/l ug/l ug/l	53018	40 7.1 <4 70 6 <1	25357	33 7.5 5 60 3 <0.5	7200 E	40 7.1 <4 70 3 <1	48600	33 7.5 <4 47 8 <1	13886	23328	38 7.4 <4 50 8	83314	58 7.2 <4 60 5 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1	51 7.4 NA 60 2 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1	66 7.4 9 40 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 46	gpd °F SU mg/l ug/l ug/l ug/l ug/l	53018	40 7.1 <4 70 6 <1 6	25357	33 7.5 5 60 3 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8	83314	58 7.2 <4 60 5 <1 3	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1	51 7.4 NA 60 2 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1	66 7.4 9 40 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform Oil & Grease	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 15	gpd oF SU mg/l ug/l	53018	40 7.1 <4 70 6 <1 6 <1	25357	33 7.5 5 60 3 <0.5 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1 <1 <1 <5	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8 <1 9	83314	58 7.2 <4 60 5 <1 3 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1 <1 <1 <1 <5	51 7.4 NA 60 2 <1 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1 <1	66 7.4 9 40 <1 <1 <1 <1 <1 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform Oil & Grease Phenolics, Total	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 15 46 15	gpd oF SU mg/l ug/l	53018	40 7.1 <4 70 6 <1 6 <1 6	25357	33 7.5 5 60 3 <0.5 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1 <1 <1	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8 <1 9 <1	83314	58 7.2 <4 60 5 <1 3 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	51 7.4 NA 60 2 <1 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1 <1	66 7.4 9 40 <1 <1 <1 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform Oil & Grease Phenolics, Total PCBs, Aroclors (Compliance)	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 46 15 44 300	gpd oF SU mg/l ug/l	53018	40 7.1 <4 70 6 <1 6 <1 <1 <1 <5	25357	33 7.5 5 60 3 <0.5 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1 <1 <1 <5	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8 <1 9 <1 <1 <5	83314	58 7.2 <4 60 5 <1 3 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1 <1 <1 <1 <5	51 7.4 NA 60 2 <1 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1 <1	66 7.4 9 40 <1 <1 <1 <1 <1 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform Oil & Grease Phenolics, Total PCBs, Aroclors (Compliance) PCBs, Congeners (1668A Study)	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 46 15 44 300 NA	gpd oF SU mg/I ug/I pg/I pg/I	53018	40 7.1 <4 70 6 <1 6 <1 <1 <1 <5 <20	25357	33 7.5 5 60 3 <0.5 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1 <1 <1 <5	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8 <1 9 <1 <1 <5	83314	58 7.2 <4 60 5 <1 3 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1 <1 <1 <1 <5 <20	51 7.4 NA 60 2 <1 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1 <1	66 7.4 9 40 <1 <1 <1 <1 <1 <1 <1
Flow Rate Temperature pH Solids, Total Suspended Chlorine, Total Residual cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Trichloroethylene Vinyl Chloride Chloroform Oil & Grease Phenolics, Total PCBs, Aroclors (Compliance)	Monitor 90 6.0-9.0 10 (dry) 50 (wet) 100 10 10 10 10 10 10 10 46 15 44 300	gpd oF SU mg/l ug/l ug/l	53018	40 7.1 <4 70 6 <1 6 <1 <1 <5 <20 <50	25357	33 7.5 5 60 3 <0.5 <0.5 <0.5	7200 E	40 7.1 <4 70 3 <1 <1 <1 <1 <5	48600	33 7.5 <4 47 8 <1 2	13886	23328	38 7.4 <4 50 8 <1 9 <1 <1 <5	83314	58 7.2 <4 60 5 <1 3 <1	7200 E	144000 E	24300 E 59 7.3 4 10 <1 <1 <1 <1 <1 <1 <5 <220 <50	51 7.4 NA 60 2 <1 <1 <1	172800 E	20000 E	64800	61 7.5 <4 30 <1 <1 <1 <1	66 7.4 9 40 <1 <1 <1 <1 <1 <1 <1

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.3. °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	ECI			lun	e '03			lists	y '03			Augu	st '03		Senten	nber '03	Octob	per '03	Novem	ber '03	Decem	ber '03
_		_		ı	ı								ı			1		1				
Monitoring Date	Daily	Units	6/4/2003	6/11/2003	6/18/2003	6/25/2003	7/2/2003	7/9/2003	7/17/2003	7/23/2003	8/1/2003	8/6/2003	8/13/2003	8/29/2003	9/8/2003	9/23/2003	10/8/2003	10/23/2003	11/5/2003	11/21/2003	12/5/2003	12/17/2003
Sampler ID	Max		sjm	sjm	sjm	pmf/bhm	sjm	pmf/bhm	sjm	rsn	sjm/bhm	bhm	rrc	sjm	bhm	bhm	bhm	sjm	sjm	bhm	rsn	rsn
SPDES Outfall 001																						
Flow Rate	Monitor	gpd	<1440 E	4770	<1440 E	<1440 E	<1440 E	11676	<1440 E	12253	64800	4713	<1440 E	<1440 E	<1440 E	32112	626	<4114E	<4114 E	HTW	<4114 E	<20736 E
Temperature	90	٩F	60		61			66		69	66		68	74	69	65	68	51	55	54	44	43
рН	6.0-9.0	SU	7.0		7.4			7.3		7.2	6.6		6.8	7.2	7.4	7.0	6.8	6.8	7.4	6.5	6.8	6.8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	39		30			46		<4	<4		<4	30	15	<4	<4	8	6	7	21	<4
cis-1,2-Dichloroethylene	10	ug/l	<1		1			1		<1	<1		4	<1	<1	<1	<1	<1	<1	2	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	<10		13			27		62	41		29	26	14	15	26	17	14	<10	12	14
Oil & Grease	15	mg/l			22			<5			<5				<5		<5			<5		24
Phenolics, Total	28	ug/l			<20			<20			<20				<20		<20			<20		<20
Antimony, Total	300	ug/l			<10									<10								<10
Chromium, Total	51	ug/l			<10																	<10
Fluoride, Total	2500	ug/l			380																	240
Lead, Total	13	ug/l			<10																	<10
Zinc, Total	210	ug/l			44																	38
SPDES Outfall 002																						
Flow Rate	Monitor	gpd	101	3247	1582	208	101	56	<1440 E	18366	126908	HTW	101	101	37	34824	208	208	11643	HTW	HTW	HTW
Temperature	90	٩F	61		66			68		70	66		68	74	69	66	68	53	56	60	48	47
рН	6.0-9.0	SU	7.3		7.2			6.5		7.0	6.6		6.8	7.8	7.2	6.9	7.0	7.2	7.4	6.6	6.9	6.7
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4		<4			<4		<4	<4		9	15	<4	<4	<4	7	<4	4	<4	<4
Oil & Grease	15	mg/l			<5			<5			<5				<5		<5			9		16
Phenolics, Total	24	ug/l			<20			<20			<20				<20		<20			<20		<20
Fluoride, Total	1500	ug/l			150																	200
SPDES Outfall 003																						
Flow Rate	Monitor	gpd	21600	18514	17280	15549	6480	18783	11782	74057	94255	47127	14811	28800	9969	103680	13642	15247	25920	43200	25920	37029
Temperature	90	۰F	64		64			67		70	65		72	73	71	64	63	45	52	48	35	42
pН	6.0-9.0	SU	7.5		7.6			7.2		7.1	7.3		7.4	7.7	7.8	7.2	7.6	7.6	7.1	7.1	7.3	6.8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4		<4			<4		<4	<4		<4	<4	<4	<4	<4	<4	<4	4	4	<4
Chlorine, Total Residual	100	ug/l	50		50			50		60	70		50	50	50	80	50	30	50	90	30	50
cis-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		2	<1		<1	<1	<1	1	<1	<1	2	3	10	6
trans-1,2-Dichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	1	2	8	1
Vinyl Chloride	10	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1		<1			<1		<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l			6			<5			<5				<5		<5			8		<5
Phenolics, Total	44	ug/l			<20			<20			<20				<20		<20			<20		<20
PCBs, Aroclors (Compliance)	300	ng/l			<50								<50									<50
PCBs, Congeners (1668A Study)	NA	pg/l			6283								4546									3449
Lead, Total	10	ug/l			<10																	<10
Zinc, Total	120	ug/l			<10																	11
			Notes:								7. ng/l = na	nograms p	er liter, appr	roximately e	equivalent to	parts per ti	rillion (ppt).					
			1. ECL = E	ffluent Com	nliance I ev	اما					8 ng/l - nic	oarame no	r liter appre	ovimataly of	auivalent to	parts per qu	adrillion (n	oa)				

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	EC	L		January '04		Februa	ary '04	Marc	:h '04	Apri	I '04	May	y '04	Jun	e '04
Monitoring Date	Daily		12/31/2003	1/13/2004	1/30/2004	2/12/2004	2/27/2004	3/10/2004	3/24/2004	4/7/2004	4/22/2004	5/6/2004	5/18/2004	6/1/2004	6/18/2004
Sampler ID	Max	Units	sjm	sjm	rsn	sjm	bhm	rsn	sjm	rsn	rsn	rsn	rsn	rsn	rsn
odinpier 12	IVIAX	l l	Sjiii	Sjiii	1311	Sjiii	Dillii	1311	Sjiii	1311	1311	1311	1311	1311	1311
SPDES Outfall 001															
Flow Rate	Monitor	gpd	3600 E	5760	4114	770 E	626	1775 E	2880E	2880E	5722E	3497E	1377E	3292E	4770E
Temperature	90	۰F	46	46	42	44	40	44	46	44	58	53	66	64	66
рН	6.0-9.0	SU	6.3	6.8	6.6	7.4	6.6	6.8	6.6	6.8	6.3	6.4	6.8	6.8	6.6
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	5	5	<4	<4	9	7	6	9	<4	<4	7	<4	<4
cis-1,2-Dichloroethylene	10	ug/l	1	<1	<1	<1	2	2	4	1	<1	<1	<1	1	1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	18	33	20	25	17	25	32	28	35	32	25	29	30
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5		<5
Phenolics, Total	28	ug/l	<20				<20	<20		<20			<20		<20
Antimony, Total	300	ug/l						<10							
Chromium, Total	51	ug/l													
Fluoride, Total	2500	ug/l													
Lead, Total	13	ug/l													
Zinc, Total	210	ug/l													
SPDES Outfall 002															
Flow Rate	Monitor	gpd	28800 E	43871	32084	5672	1178	3247	8947	8947	3966	2058	208	2058	3966E
Temperature	90	۰F	49	41	36	46	43	50	49	51	57	54	68	66	69
pH	6.0-9.0	SU	6.3	7.5	7.6	6.9	7.3	6.9	6.8	7.4	6.5	6.5	7.2	6.9	6.2
	10 (dry)														
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	6	<4	8	<4	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5		6
Phenolics, Total	24	ug/l	<20				<20	<20		<20			<20		<20
Fluoride, Total	1500	ug/l													
SPDES Outfall 003															
Flow Rate	Monitor	gpd	32400	47127	21600	8361	5400	51840	32400	25920	51840	39273	10327	33188	33010E
Temperature	90	۰F	43	34	33	37	36	48	51	45	60	56	75	71	73
pН	6.0-9.0	SU	6.1	6.9	7.1	7.1	7.0	6.8	7.4	7.1	7.0	6.9	7.0	7.3	7.1
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	4	17	5	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	50	30	20	30	40	50	50	30	60	30	10	30	20
cis-1,2-Dichloroethylene	10	ug/l	4	11	2	5	2	3	3	2	1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	3	3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5				<5	<5		<5			<5		<5
Phenolics, Total	44	ug/l	<20				<20	<20		<20			<20		<20
PCBs, Aroclors (Compliance)	300	ng/l						<50							
PCBs, Congeners (1668A Study)	NA	pg/l													
Lead, Total	10	ug/l													
Zinc, Total	120	ug/l													
	•		Notes:						7. ng/l = nano						

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	EC	L		July '04		Augu	ıst '04	S	eptember 'C)4	Octob	oer '04	Novem	ber '04	Decem	ber '04
Monitoring Date	Daily		6/30/2004	7/15/2004	7/29/2004	8/13/2004	8/26/2004	9/10/2004	9/22/2004	9/23/2004	10/6/2004	10/20/2004	11/3/2004	11/15/2004	11/30/2004	12/17/2004
Sampler ID	Max	Units	rrc	rrc	rrc	sjm	rrc	sjm	sjm	9/23/2004 sjm	sjm	sjm	sjm	sjm	sjm	sjm
Sampler 15	IVIAX		li C	110	110	ajiii	iic	Sjiii	Sjiii	əjiii	ajiii	ajiii	Sjiii	ajiii	ajiii	Sjiii
SPDES Outfall 001																
Flow Rate	Monitor	gpd	4770E	2314E	1196E	26111	3505	2314	1196		0	1196	5200	1140	HTW	2880
Temperature	90	٥F	19	67	71	70	64	68	68		62	56	55	49	51	48
pH	6.0-9.0	SU	6.8	6.8	6.8	6.6	6.9	6.5	6.3		6.2	7.4	6.5	7.0	7.2	7.1
Out to Tarret Ourse a feet	10 (dry)		40					,					•			
Solids, Total Suspended	50 (wet)	mg/l	10	<4	6	<4	5	<4	<4		<4	<4	6	<4	<4	14
cis-1,2-Dichloroethylene	10	ug/l	<1	1	4	<1	<1	2	<1		<1	<1	<1	1	2.2	1.4
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	50	34	43	29	17	41	38		<10	20	62	420	<10	<10
Oil & Grease	15	mg/l	<5			<5	9	<5			<5	26	<5	<5		<5
Phenolics, Total	28	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20
Antimony, Total	300	ug/l		<10			<10	13				<10		<10		
Chromium, Total	51	ug/l					42							<10		
Fluoride, Total	2500	ug/l					410							930		
Lead, Total	13	ug/l					<10							<10		
Zinc, Total	210	ug/l					58							<10		
SPDES Outfall 002																
Flow Rate	Monitor	gpd	1178E	3247E	3966E	50610	1178	3247	37		208	2612	2059	209	HTW	2058
Temperature	90	°F	19	68	69	72	64	67	71		208 66	2612 57	2058 57	208 55	54	49
pH	6.0-9.0	SU.	7.2	7.1	6.8	6.6	7.3	6.9	6.9		6.9	7.9	5.8	7.3	7.8	7.0
•	10 (dry)		7.2	***	0.0	0.0	7.5	0.5	0.5		0.5	7.5	0.0	7.5	7.0	7.0
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	9.0		4.0	<4	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5			<5	10	<5			<5	45	6	<5		<5
Phenolics, Total	24	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20
Fluoride, Total	1500	ug/l					380							490		
			-					,					,		.,	
SPDES Outfall 003			1													
Flow Rate	Monitor	gpd	20000E	21000	33200E	75000	25000	15549		10540	8934	8640	23542	10800	37008	21600
Temperature	90	٥F	25	75	71	70	70	66		69	61	50	51	42	48	37
pH	6.0-9.0	SU	7.6	7.5	7.8	7.1	7.7	6.6		6.4	6.7	7.5	6.4	7.6	7.7	7.1
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4		<4	<4	<4	12	8	<4	<4
Chlorine, Total Residual	50 (wet)	ug/l	20	40	20	60	GE.	20		40	60	50	20	70	50	40
cis-1,2-Dichloroethylene	100	ug/l	30	40	30	60 1	65	30 <1		40 <1	60	50 <1	20	70 <1	50	40
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1		<1				<1		<1	<1 <1	2.1 <1	3.8
Trichloroethylene	10	ug/l ug/l	<1	<1	<1	<1	<1	<1		<1	<1 <1	<1	<1 <1	<1	<1	<1 <1
Vinyl Chloride	10	ug/l	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1		<1 <1	<1	<1 <1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5	1	,1	<5	<5	<5		\$1	<5	<5	5	<5	,,,	<5
Phenolics, Total	44	ug/l	<20			<20	79	<20			<20	<20	<20	<20		<20
PCBs, Aroclors (Compliance)	300	ng/l	120	<50		-20	<50	420			-20	<50	120	<50		<50
PCBs, Congeners (1668A Study)	NA	pg/l		4134								2137				2761
Lead, Total	10	ug/l					<10							<10		
Zinc, Total	120	ug/l					<10							<10		
	•		Notes:							7//	grams per liter				/ 1)	

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to parts per million (ppm).
- 6. ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb).
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	EC	L		January '05		Febru	ary '05	Marc	:h '05	Apr	il '05	May	y '05	Jun	e '05
Monitoring Date	Daily		12/28/2004	1/12-13/05	1/26 - 27/2005	2/9/2005	2/22/2005	3/7/2005	3/22/2005	4/6/2005	4/20/2005	5/4/2005	5/20/2005	6/2/2005	6/14/2005
Sampler ID	Max	Units	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	rrc	rrc	rrc	rrc
Sampler 15	IVIAX		Sjiii	SJIII	SJIII	əjiii	Sjiii	ajiii	Sjiii	Sjiii	Sjiii	iic .	iic	IIC	110
SPDES Outfall 001															
Flow Rate	Monitor	gpd	626E	9026	4770	152	21739	19677	HTW	HTW	152	1196	152	152	38566
Temperature	90	٥F	41	41	43	45	47	49	42	47	55	55	58	60	70
pH	6.0-9.0	SU	7.4	6.96	7.1	7.7	7.0	8.0	6.6	6.6	7.8	7.7	7.7	6.8	6.8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	4	<4	<4	<4	5	5	5.5	10	<4	10	27	42	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	10	<10	20	29	78	31	<10	<10	83	25	<10	<10	69
Oil & Grease	15	mg/l		<5		23		<5		<5		<5		6.4	
Phenolics, Total	28	ug/l		<20		21		<20		<20		36		100	
Antimony, Total	300	ug/l				<10						<10			
Chromium, Total	51	ug/l										<10			
Fluoride, Total	2500	ug/l										310			
Lead, Total	13	ug/l										<10			
Zinc, Total	210	ug/l										76			
SDDES Outfall 002					·										
SPDES Outfall 002 Flow Rate	Monitor	and	004	04054	2025	10150	04054	100001	LITIA	LITA	004	4500	004		57005
		gpd ∘F	364	24654	6665	13153	24654	120894	HTW	HTW	364	1582	364	7	57935
Temperature	90		46	47	45	45	48	49	41	48	53	55	56	65	71
pH		SU	6.5	7.2	7.1	7.1	7.5	7.1	6.9	6.9	7.9	7.8	7.9	6.7	6.7
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	5	<4	<4	4.5	<4	8.5	<4
Oil & Grease	15	mg/l		<5		<5		6.8		<5		<5		5	
Phenolics, Total	24	ug/l		<20		<20		<20		<20		29		76	
Fluoride, Total	1500	ug/l										230			
SPDES Outfall 003															
Flow Rate	Monitor	gpd	15247	32400	28800	32400	43200	28880	172800	24300	6480	7783	3020	3744	64800
Temperature	90	٥F	35	37	36	38	35	45	44	52	60	61	64	80	71
pН	6.0-9.0	SU	6.5	7.6	6.8	7.3	7.4	7.6	7.3	7.6	8.3	7.9	8.1	7.2	6.9
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4 (sampled 1/27)	<4	4.5	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	20	30	20	40	40	90	80	40	50	50	60	30	80
cis-1,2-Dichloroethylene	10	ug/l	<1	1.2	<1	2.2	7.5	5.2	6.4	<1	<1	<1	<1	<1	1.7
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	1.1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l		<5		9		<5		<5		<5		5	
Phenolics, Total	44	ug/l		<20		<20		<20		<20		27		40	
PCBs, Aroclors (Compliance)	300	ng/l					<50								
PCBs, Congeners (1668A Study)	NA	pg/l					3765								
Lead, Total	10	ug/l					5.55					<10			
Zinc, Total	120	ug/l										14			
	120	ug/i							7 ng/l = nano						

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L		July '05		Augu	st '05	Septem	nber '05 October '05			Novem	ber '05	December '05		
Monitoring Date	Daily		6/30/2005	7/13/2005	7/27/2005	8/10/2005	8/23/05	9/6/2005	9/22/2005	10/6/2005	10/21/2005	10/31/2005	11/15/2005	11/29/2005	12/12/2005	12/28/2005
Sampler ID	Max	Units	rrc	sm	bhm	sjm	sjm	sjm	rrc	sjm	sjm	sjm	sjm	sjm	sjm	rrc
-	ax					2,	-,	2,		2,	-,	-,	-,	2,	2,	
SPDES Outfall 001																
Flow Rate	Monitor	gpd	3505	4770	40	80	80	152	152	0	0	50	28432	3505	0	125
Temperature	90	٥F	67	72	72	73	69	67	70	65	60	53	49	53	43	44
рН	6.0-9.0	SU	7.5	6.7	6.5	6.7	6.3	7.0	6.9	6.5	7.4	8.8	8.2	7.8	7.2	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	27	<4	9	5	4	31	6.5	29	11	27	<4	6.5	<4	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	<10	50	14	18	33	<10	35	<10	<10	<10	31	22	13	20
Oil & Grease	15	mg/l	<5			<5		<5		<5		<5		5.8		
Phenolics, Total	28	ug/l	<20			<20		<20		<20		<2		4		
Antimony, Total	300	ug/l				<10						<10				
Chromium, Total	51	ug/l										<10				
Fluoride, Total	2500	ug/l										580				
Lead, Total	13	ug/l										<10				
Zinc, Total	210	ug/l										29				
		-5.														
SPDES Outfall 002																
Flow Rate	Monitor	gpd	37	2612	5672	37	37	574	0	0	0	364	13153	364	0	844
Temperature	90	٥F	65	71	69	73	68	67	68	65	61	60	49	55	43	48
pH	6.0-9.0	SU	7.3	6.7	7.1	6.7	6.9	6.9	6.7	6.7	7.5	7.7	7.3	7.2	6.9	7.2
Solids, Total Suspended	10 (dry)	mg/l	5	<4	4	<4	<4	<4	<4	13	<4	8	<4	<4	<4	<4
Contas, Total Casponaca	50 (wet)	mg/i	J	<u> </u>	-				\ -		\	Ü	\-T		\ -	
Oil & Grease	15	mg/l	<5			<5		<5		<5		<5		6.5		
Phenolics, Total	24	ug/l	<20			<20		<20		<20		<2		2.6		
Fluoride, Total	1500	ug/l										380				
CDDEC Outfull 000																
SPDES Outfall 003 Flow Rate	Monitor	gpd	17280	2880	1100	2880	2520	6171	1728	9600	12342	17280	29950	21600	34560	21600
Temperature	90	°F	76	77	73	80	68	65	72	64	54	55	46	53	42	47
pH	6.0-9.0	SU	7.8	7.2	7.1	7.2	7.1	6.7	6.9	7.1	7.8	8.4	6.8	7.3	7.2	7.4
	10 (dry)															
Solids, Total Suspended	50 (wet)	mg/l	4.5	<4	5	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	40	50	30	40	40	80	30	20	30	40	10	30	40	40
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.8	<1	1.4	2.5
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.0 <1	<1	<1	2.5 <1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5	,1		<5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<5	\1	5.5	51	<5	1	<5	,1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Phenolics, Total	44	ug/l	<20			<20		<20		<20		<2		2.6		
PCBs, Aroclors (Compliance)	300	ng/l	-20			<0.1		\2U		\20		<100		0		
PCBs, Arociors (Compilance) PCBs, Congeners (1668A Study)	NA	pg/l				<u.1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.1<>										
Lead, Total	10	ug/l										na <10				
Zinc, Total	120	ug/l										<10 <10				
ZITIC, TOTAL	120	ug/I								grame per liter						

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day. 3. °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

Monitoring Period	EC	L	Janua	ry '06	February '06		Marc	:h '06	Apri	I '06	May	y '06	June '06		
Monitoring Date	Daily		1/13/2006	1/25/2006	2/9/2006	2/20/2006	3/3/2006	3/24/2006	4/7/2006	4/20/2006	5/3/2006	5/17/2006	6/2/2006	6/16/2006	6/30/2006
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	bhm	rrc	rrc	BHM	RRC	rrc	rrc	rrc
P-0 1-	max			.10				J.IIII	0	.10	5, 1141	0			
SPDES Outfall 001															
Flow Rate	Monitor	gpd	0	0	0	152	152	4770	47076	152	152	152	152	3505	10600
Temperature	90	٥F	44	44	44	40	41	50	46	51	57	55	58	60	66
pH	6.0-9.0	SU	7.3	7.2	7.2	7.4	7.9	7.3	7.0	7.5	7.3	7.1	6.9	6.9	6.9
0.11. 7.110	10 (dry)														
Solids, Total Suspended	50 (wet)	mg/l	12	5	24	26	48	6.5	21	33	25	7.4	45	40	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	1.9	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	15	28	10	11	11	18	18	<10	<10	45	<10	<10	23
Oil & Grease	15	mg/l		<5	<5		<5		5.1		<5		<5		
Phenolics, Total	28	ug/l		4.3	6.7		3.4		2.2		5.5		2.1		
Antimony, Total	300	ug/l							<10				<10		
Chromium, Total	51	ug/l											<10		
Fluoride, Total	2500	ug/l											410		
Lead, Total	13	ug/l											12		
Zinc, Total	210	ug/l											25		
SPDES Outfall 002											ı		I i	1	<u> </u>
Flow Rate	Monitor	gpd	0	0	0	574	364	0	10221	364	37	364	101	364	0
Temperature	90	٥F	43	42	44	44	45	49	50	52	57	54	58	60	66
pH	6.0-9.0	SU	7.5	7.6	6.8	7.2	7.2	7.7	7.9	7.6	7.7	7.1	6.8	6.9	7.3
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4	<4	4	5.5	<4	<4	13	<4
011000000	50 (wet)			_	_		_				_		_		
Oil & Grease Phenolics, Total	15 24	mg/l		<5	<5 5.7		<5		<5		<5		<5		
Fluoride, Total	1500	ug/l		5.8	5.7		3.2		3.3		6.1		2.9 160		
Fluoride, Total	1300	ug/l											100		
SPDES Outfall 003															
Flow Rate	Monitor	gpd	28800	43200	29394	24300	29494	41760	100800	25200	16070	5760	36400	25200	92100
Temperature	90	٥F	47	42	43	34	34	48	44	48	61	48	58	70	67
pН	6.0-9.0	SU	7	7.1	7.2	7.3	6.4	8.1	7.3	7.6	7.8	6.9	7.2	7.1	7.1
Solido Total Supponded	10 (dry)	ma/l	-4				-4								
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	55	40	50	40	40	80	40	35	40	35	40	35	40
cis-1,2-Dichloroethylene	10	ug/l	3.4	2.9	2.2	1.9	<1	2.1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l		<5	<5		<5		<5		<5		<5		
	44	ug/l		3.9	4.4		2.2		2.7		4.4		3.9		
Phenolics, Total									<50				<100		
Phenolics, Total PCBs, Aroclors (Compliance)	300	ng/l											1		
	300 NA	ng/l pg/l											na		
PCBs, Aroclors (Compliance)		-											na 10		

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L	July '06		August '06		Septer	nber '06	Octob	oer '06	1	November '0	16	Decem	ber '06
Monitoring Date	Daily		7/11/2006	7/26/2006	8/10/2006	8/22/2006	9/7/2006	9/20/2006	10/5/2006	10/17/2006	11/3/2006	11/16/2006	11/30/2006	12/14/2006	12/29/2006
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc
SPDES Outfall 001													•		
Flow Rate	Monitor	gpd	152	152	152	152	152	3505	152	19677	15801	0	152	152	0
Temperature	90	٥F	65	68	68	69	65	64	62	55	54	54	50	49	45
рН	6.0-9.0	SU	6.94	7.2	7.14	6.64	6.6	7.35	7.8	8.3	7.4	7.3	7.4	7.4	7.3
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	31	38	4	21	<4	7	<4	27	<4	30	6.5	18
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<2	<1	<1	2.1	<1	<1	1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	1.2	<1	<1	<2	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	59	<10	<10	<10	<10	<10	25	37	27	15	<10	25	15
Oil & Grease	15	mg/l	<5		<5		<5		<5		<5	<5		<5	
Phenolics, Total	28	ug/l	2.1		<2		<2		2		<2	<2		<2	
Antimony, Total	300	ug/l	<10								11				
Chromium, Total	51	ug/l									12				
Fluoride, Total	2500	ug/l									460				
Lead, Total	13	ug/l									22				
Zinc, Total	210	ug/l									35				
SPDES Outfall 002															
Flow Rate	Monitor	gpd	101	101	844	208	7	3966	101	16512	4773	0	208	208	0
Temperature	90	٥F	65	67	68	69	67	64	65	52	60		58	55	53
рН	6.0-9.0	SU	7.07	6.98	6.97	7.24	6.98	7.93	7.3	8.2	7.6	7.6	7.6	7.6	7.9
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	11	<4	<4	<4	<4	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5		<5		<5		<5		<5	<5		<5	
Phenolics, Total	24	ug/l	2.9		<2		<2		2		<2	<2		<2	
Fluoride, Total	1500	ug/l									260				
SPDES Outfall 003															
Flow Rate	Monitor	gpd	43200	32400	33600	100800	25200	75600	35576	302400	60480	35576	50400	37800	58154
Temperature	90	٥F	71	68	69	69	69	69	61	51	47	55	55	47	42
pH	6.0-9.0	SU	6.8	7.16	7.24	7.15	7.03	7.47	7.3	7.7	7.7	7.7	7.7	7.6	8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	40	45	30	40	35	45	40	45	35	45	40	40	45
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5	31	<5	31	<5	*1	<5	*1	<5	5.9	*1	<5	×1
Phenolics, Total	44	ug/l	3		<2		<2		<2		<2	<2		3	
PCBs, Aroclors (Compliance)	300	ng/l	<100		74		~~		~_		<50	~~		,	
PCBs, Congeners (1668A Study)	NA NA										<50				
Lead, Total	10	pg/l	na								47				
	_	ug/l									17				
Zinc, Total	120	ug/l									14				

- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day. 3. °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

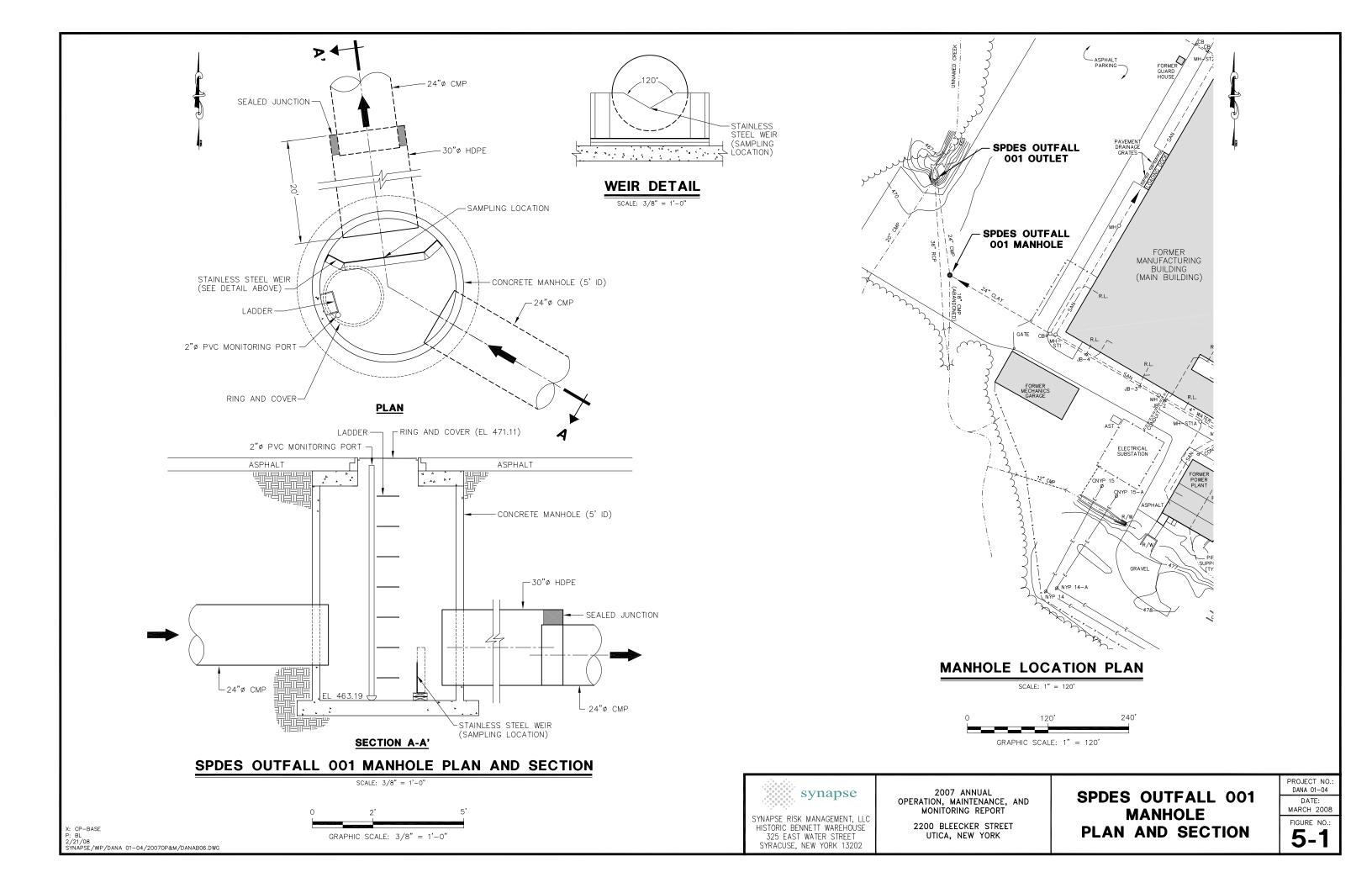
Monitoring Period	ECI	L	Janua	ry '07	February '07 March '07				April '07			May '07			e '07	Jul	y '07
Monitoring Date	Daily		1/10/2007	1/26/2007	2/9/2007	22/21/07	3/9/2007	3/23/2007	4/3/2007	4/18/2007	5/1/2007	5/15/2007	5/31/2007	6/12/2007	6/26/2007	7/12/2007	7/26/2007
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc
Campier is	IVIGA		110	110	110	110	110	110	110	110	110	110	110	110	110	110	110
SPDES Outfall 001																	
Flow Rate	Monitor	gpd	0	70199	3505	21739	0	0	0	0	152	152	152	0	0	0	0
Temperature	90	٥F	46	41	41	43	38	40	45	44	50	53	57	60	64	66	66
pH	6.0-9.0	SU	7.7	7.8	7.9	7.9	7.5	7.7	7.7	7.6	7.6	7.6	7.6	7.9	7.8	7.3	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	7	27	28	<4	29	6	27	14	31	25	34	39	31	<4	31
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	<10	14	<10	29	<10	12	<10	<10	<10	<10	<10	<10	<10	<10	<10
Oil & Grease	15	mg/l	<5		6		6		6		<5			<5		17	
Phenolics, Total	28	ug/l	<2		2.6		<50		<20		<3			<3		<3	<3
Antimony, Total	300	ug/l							<10					14			<10
Chromium, Total	51	ug/l												11			
Fluoride, Total	2500	ug/l												365			
Lead, Total	13	ug/l												13			
Zinc, Total	210	ug/l												31			
SPDES Outfall 002							1							1		l'i	
Flow Rate	Monitor	gpd	0	13153	16512	13153	0	0	0	0	208	37	208	208	0	574	3966
Temperature	90	٥F	52	42	46	46	38	47	49	48	51	53	56	59	65	76	73
pH	6.0-9.0	SU	7.4	7.4	7.8	7.9	8.7	7.7	7.5	7.6	7.9	8.0	7.7	7.4	7.6	7.7	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	6	14	7	<4	26
Oil & Grease	15	mg/l	<5		6		11		7.1		<6			<5		5	
Phenolics, Total	24	ug/l	<2		4		<50		<20		<3			<3		<3	
Fluoride, Total	1500	ug/l															
SPDES Outfall 003																	
Flow Rate	Monitor	gpd	37800	47999	60480	33600	43199	151200	151200	151200	75600	4319	4319	86399	25620	30240	30240
Temperature	90	°F	39	34	35	35	35	41	53	46	56	69	70	74	71	76	73
рН	6.0-9.0	SU	7.4	8.4	8	8.1	8.1	8	8	8	8	8.3	7.9	8	8	7.9	7.4
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	17	27	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	40	50	45	40	40	45	40	45	50	40	45	40	40	40	40
cis-1,2-Dichloroethylene	100	ug/l															
trans-1,2-Dichloroethylene	10	ug/l	<1 <1	2 <1	<1 <1	<1 <1	1.8 <1	4.2 <1	<1 <1	1.6 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1
Trichloroethylene	10	ug/l	<1							<1		<1			<1		<1
Vinyl Chloride	10	ug/l	<2	<1 <1	<1 <2	<1 <2	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<1 <1	<1 <1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5	<1	<6	<1	<1 <5	<1	7.4	<1	<1 <5	<u> </u>	< I	<5	ζ1	<5	<1
Phenolics, Total	44	ug/l	<5 <2				<5 <50				<5 <3			<5 <3		<5 <3	
PCBs, Aroclors (Compliance)	300	ng/l	<2		<2		VC>		<20 <35		<3			<3	<100	<3	
PCBs, Arociors (Compilance) PCBs, Congeners (1668A Study)	NA								<35						<100		
Lead, Total	10	pg/l												40			
	10	ug/l												13 11			
Zinc, Total	120	ug/l	Notes:								. approximatel						

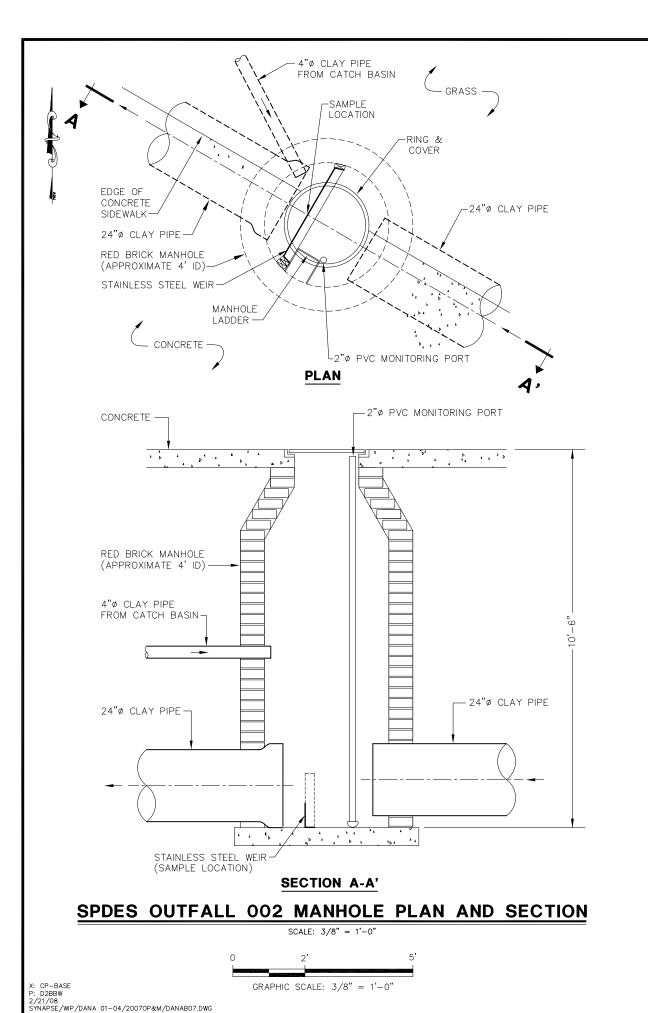
- 1. ECL = Effluent Compliance Level.
- 2. gpd = gallons per day.3. °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.

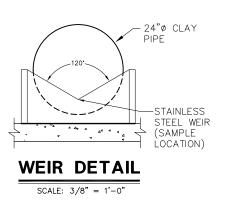
- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
- 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.

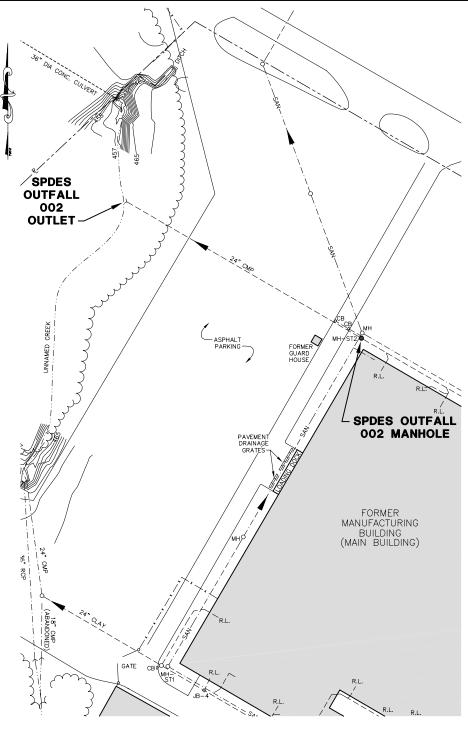
Monitoring Period	EC	:L	Augu	st '07	Septen	nber '07	Octob	er '07	ľ	November '0)7	December '07		
Monitoring Date	Daily	I	8/10/2007	8/23/2007	9/6/2007	9/21/2007	10/5/2007	10/19/2007	11/2/2007	11/16/2007	11/30/2007	12/14/2007	12/28/2007	
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	
•	-!				IL		II.		·			<u> </u>		
SPDES Outfall 001														
Flow Rate	Monitor	gpd	19677	152	0	152	152	3505	152	0	0	0	0	
Temperature	90	٥F	69	69	69	70	67	64	58	53	63	48	45	
pH	6.0-9.0	SU	6.7	7.7	7.3	7.2	7.3	7.3	7.4	7.4	7.3	7.4	7.9	
Calida Tatal Commanded	10 (dry)		.4	44	-	.4	.4	20	45			.4		
Solids, Total Suspended	50 (wet)	mg/l	<4	11	5	<4	<4	20	15	<4	<4	<4	<4	
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	1.7	<1	5.2	<1	
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.8	<1	
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Copper, Total	100	ug/l	59	38	<10	54	18	<10	42	22	12	32	37	
Oil & Grease	15	mg/l	6			<5	5.2		<5	<5			<5	
Phenolics, Total	28	ug/l	<2			<3	4.1		<3	<3			<3	
Antimony, Total	300	ug/l					<10			<10				
Chromium, Total	51	ug/l								<10				
Fluoride, Total	2500	ug/l								220				
Lead, Total	13	ug/l								<10				
Zinc, Total	210	ug/l								29				
				-		-				•	•			
PDES Outfall 002														
Flow Rate	Monitor	gpd	844	208	101	101	208	364	7	0	0	0	0	
Temperature	90	٥F	70	69	67	67	66	66	61	55	43	50	45	
pH	6.0-9.0	SU	7.2	7.2	7.4	7.3	7.5	7.5	7.7	7.6	7.7	7.6	7.6	
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	4	5	6.5	5	6	<4	<4	<4	<4	
Collas, Total Gasperlaca	50 (wet)	mg/i	<u> </u>		•	J	0.5	3			.,,	\ -		
Oil & Grease	15	mg/l	<5			<5	<5		<5	<5			5	
Phenolics, Total	24	ug/l	<2			<3	<3		<3	<3			<3	
Fluoride, Total	1500	ug/l								<100				
SPDES Outfall 003		- 1	-	ı	<u> </u>	ı	i	1	ı		•	ı r	ī	
Flow Rate	Monitor	gpd	100800	20160	5760	75600	33600	23261	37800	151200	60480	75600	302400	
Temperature	90	٥F	68	69	67	69	65	62	53	47	43	42	43	
pH	6.0-9.0	SU	7.3	7.2	7.7	7.2	7.6	7.6	7.7	7.7	7.8	7.9	7.6	
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	
	50 (wet)										[
Chlorine, Total Residual	100	ug/l	50	55	50	45	40	45	40	40	45	40	45	
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.2	
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Oil & Grease	15	mg/l	5.4			<5	<5		<5	<5			<5	
Phenolics, Total	44	ug/l	<2			<3	<3		<3	<3			<3	
PCBs, Aroclors (Compliance)	300	ng/l								<100				
PCBs, Congeners (1668A Study)	NA	pg/l												
Lead, Total	10	ug/l								<10				
Zinc, Total	120	ug/l								<10				

- 1. ECL = Effluent Compliance Level.
- gpd = gallons per day.
 °F = Degrees Fahrenheit.
- 4. SU = Standard Units.
- 5. mg/l = milligrams per liter, approximately equivalent to ppm.
- 6. ug/l = micrograms per liter, approximately equivalent to ppb.


- 7. ng/l = nanograms per liter, approximately equivalent to parts per trillion (ppt).
- 8. pg/l = picograms per liter, approximately equivalent to parts per quadrillion (ppq).
- 9. HTW = High Tail Water.
 10. No Flow = No measurable discharge.
- 11. E = Estimated.
- 12. NA = Not analyzed.
- 13. Bolded values exceed permit effluent compliance levels.


2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003


5.6 Figures

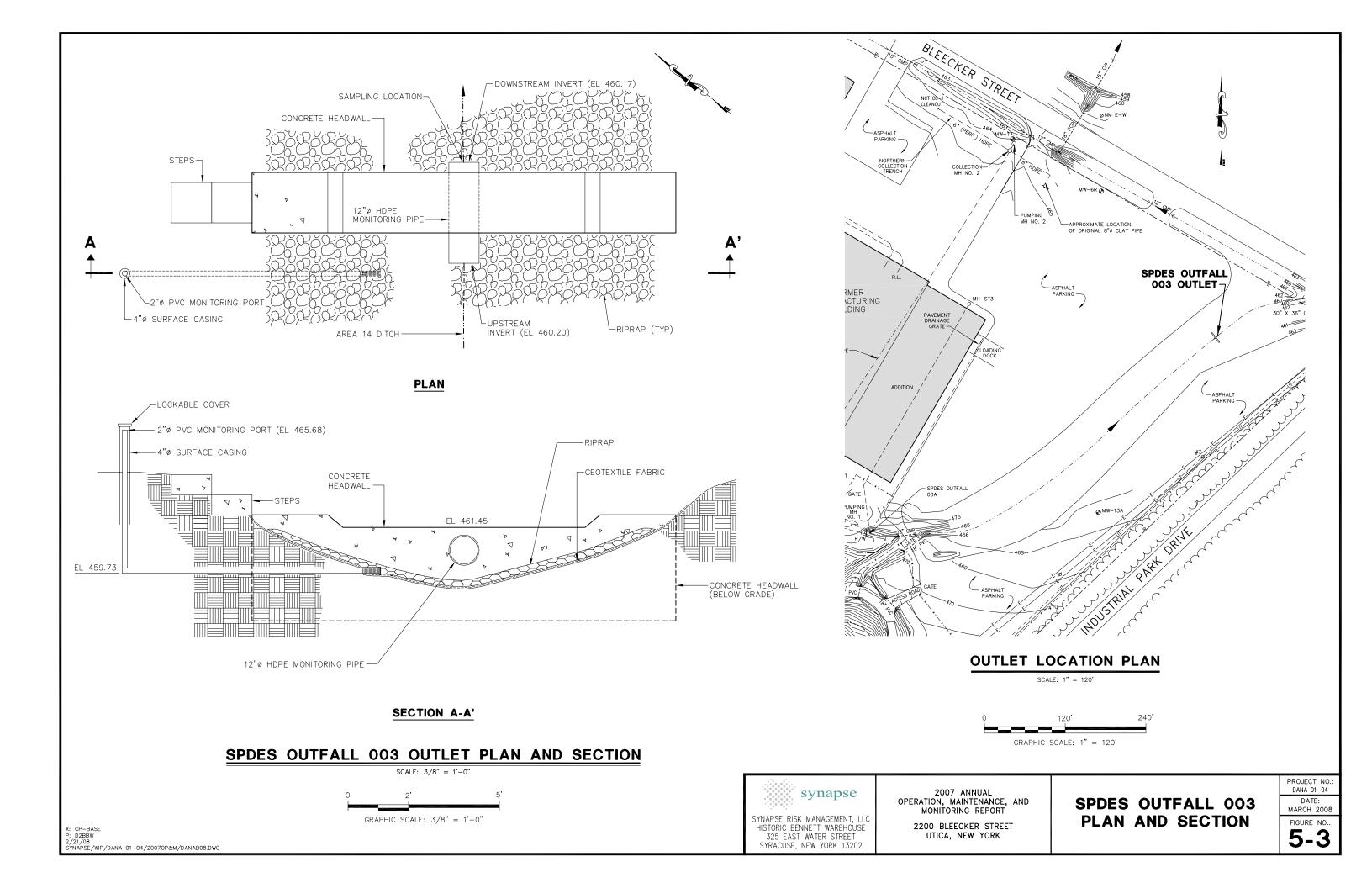

- 5-1 SPDES Outfall 001 Manhole Plan and Section
- 5-2 SPDES Outfall 002 Manhole Plan and Section
- 5-3 SPDES Outfall 003 Plan and Section
- 5-4 Stormwater System Partial Plan

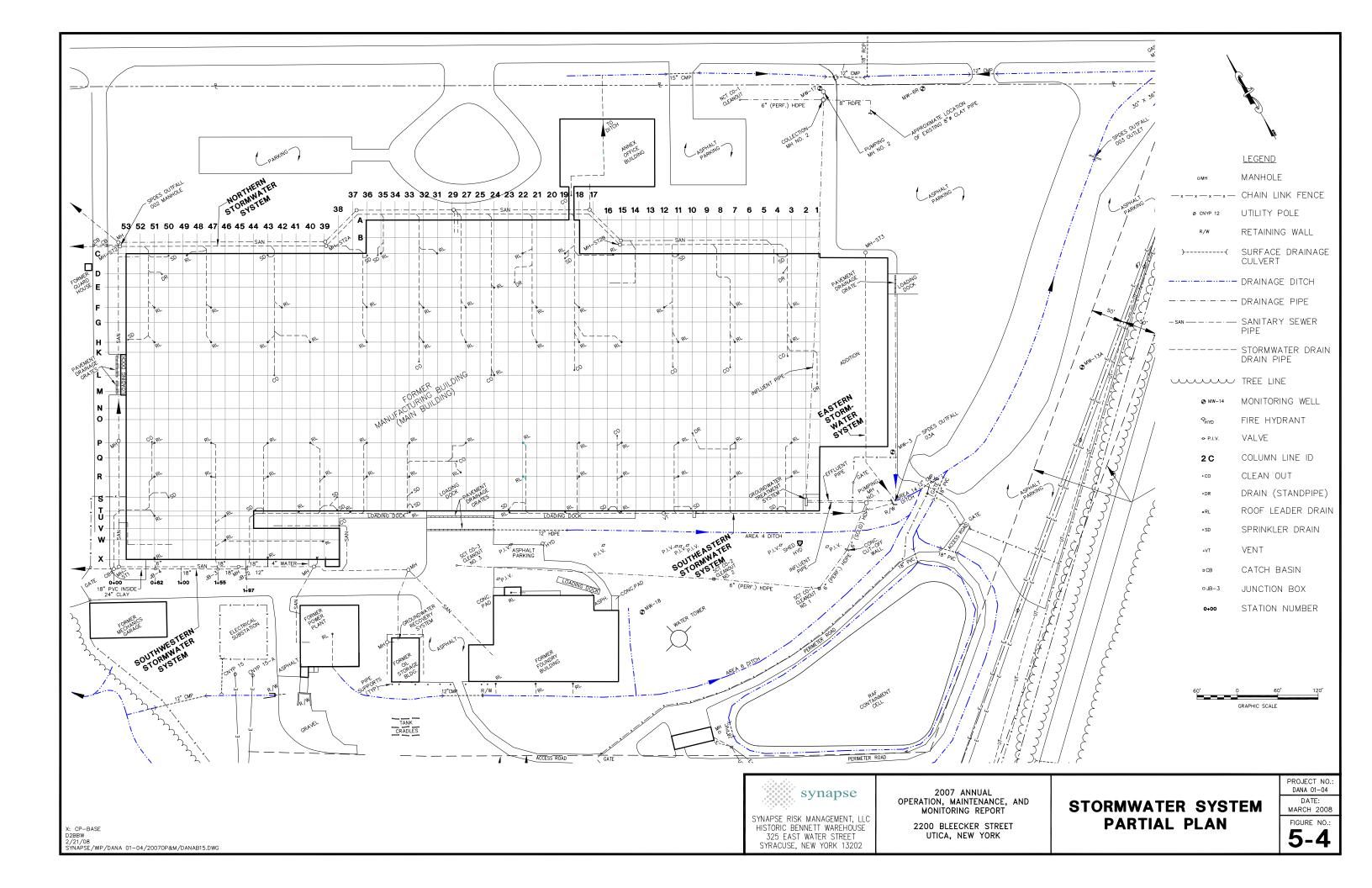
5-9

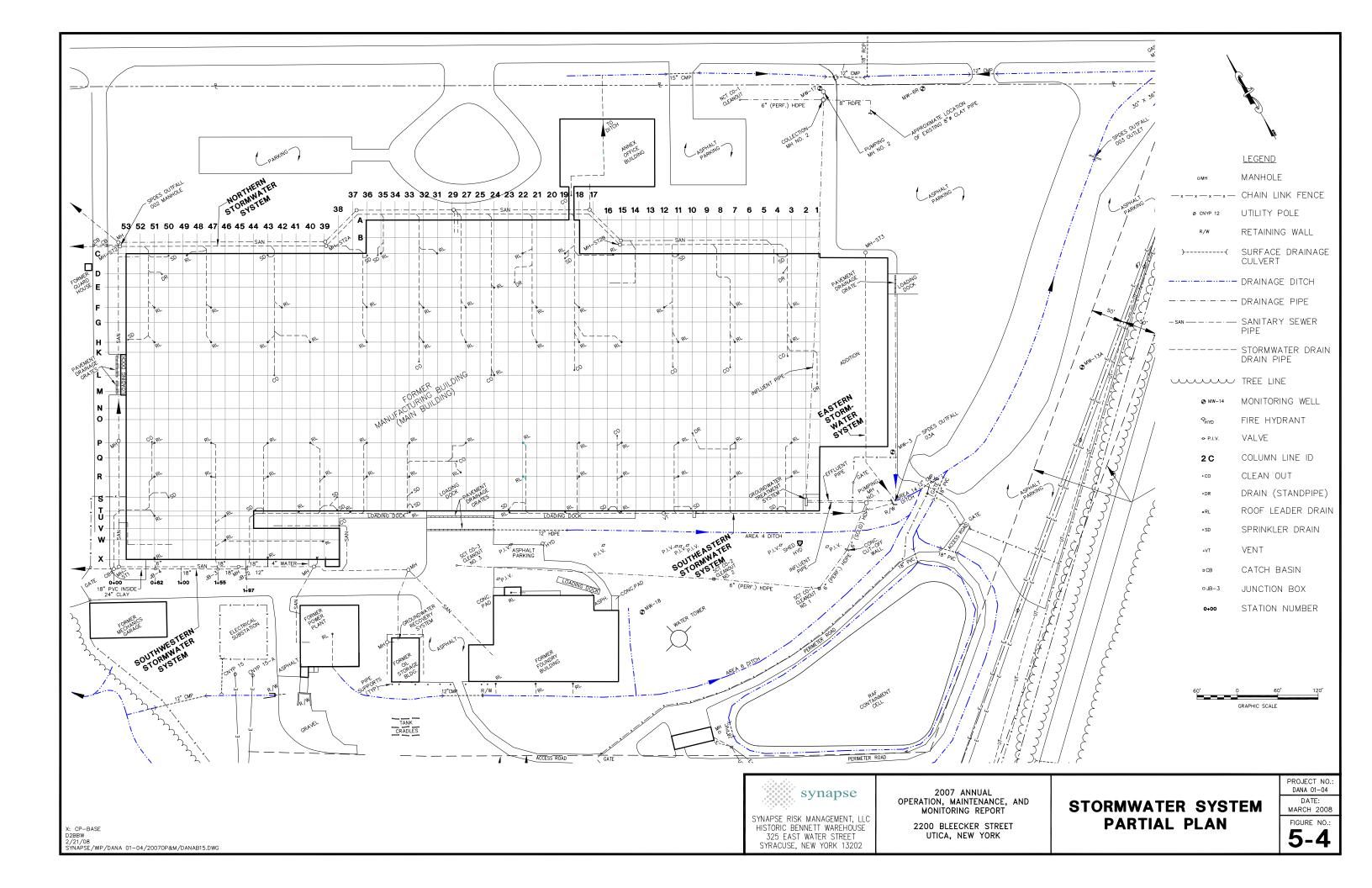
MANHOLE LOCATION PLAN SCALE: 1" = 120'

GRAPHIC SCALE: 1" = 120'

SYNAPSE RISK MANAGEMENT, LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE, NEW YORK 13202


2007 ANNUAL OPERATION, MAINTENANCE, AND MONITORING REPORT


2200 BLEECKER STREET UTICA, NEW YORK


SPDES OUTFALL 002 MANHOLE PLAN AND SECTION

PROJECT NO .: DANA 01-04 DATE:

MARCH 2008 FIGURE NO.: 5-2

6.0 GROUNDWATER TREATMENT SYSTEM

Section 6.0 documents the operations, monitoring and maintenance (OM&M) of the groundwater treatment system (GTS), originally constructed as an interim remedial measure (IRM) to address volatile organic compounds (VOCs) present in surface water and groundwater. The system became fully operational in March 1995 and currently is in operation. As part of the selected Remedial Action (RA), the system was modified to collect and treat groundwater in 1999. System upgrades were completed in December, 2006. Presently, the GTS consists of an air stripper unit located in the southeast corner of the Main Building, the northern collection trench (NCT), the southern collection trench (SCT), and two pumping manholes designated Pumping Manhole No. 1 (MH-1) and Pumping Manhole No. 2 (MH-2). The Groundwater Treatment System Plan (Figure 6-1) provides the location of these components. ENSR, on behalf of CPTC, has been conducting the OM&M of the GTS since June 1, 2005.

6.1 System Construction

The treatment process includes removal of VOCs from influent water utilizing a low-profile air stripper detailed in the Air Stripper Plan (Figure 6-2) and on the Treatment System As-Built Drawing (Figure 6-4). The low-profile air stripper treats influent groundwater pumped from MH-1 and MH-2. These manholes are detailed in Pumping Manhole Plans and Sections (Figure 6-3). MH-1 currently receives groundwater from the SCT. MH-2 was constructed at the northern (downgradient) extent of the property to collect effluent water from an existing clay pipe and groundwater from the NCT. The collection trenches were constructed as part of the RA at prescribed locations on the property to collect groundwater. Groundwater is directed, via gravity feed, to the respective manholes where it is then pumped to the air stripper.

Each pumping manhole contains two submersible pumps, arranged in lead/lag mode, and five bulb type control switches. MH-1 is equipped with 3/4 horsepower (hp), 65 gallons per minute (gpm) pumps and MH-2 has 1/2 hp, 10 gpm pumps. The pump controls are set, top to bottom in each manhole, as follows:

High level alarm; Lag pump start; Lead pump start; Both pumps stop; and Low level alarm, second off.

The main control panel for all pumps is located in the Main Building, adjacent to the air stripper. Groundwater is conveyed to the groundwater treatment system area via a double containment piping system in all piping below grade, and single wall piping above grade. The groundwater treatment system components are located within a 6-foot high chain link fence, which is equipped with a locked security gate.

After entering the treatment system area, groundwater flows first to a 2,500-gallon equalization tank, which provides uniform flow into the air stripper and allows solids to settle out prior to treatment. The equalization tank is equipped with four float switches, which monitor and trigger events for the system.

Two Gould's pumps are utilized to transfer water from the equalization tank to the air stripper. These pumps are rated for greater than 120 gallons per minute at 40 feet of head. An in-line strainer is installed on the influent to each of these pumps to deter solids from entering these pumps.

Groundwater is conveyed via the Goulds pumps from the equalization tank to two 50-micron bag filters on the effluent side of the pumps to capture smaller particles. The filter housing is a stainless steel construction, which is rated for a maximum pressure of 70 psi. The treatment system has a typical operating range of 15 to 30 psi. When bag filter pressures exceed 35 psi the air stripper feed pumps shut down and sends an automated alarm call-out signaling that the bag filters need to be replaced before operation is able to resume. After passing through the bag filters, groundwater enters the air stripper unit.

The low-profile air stripper is a four-tray ShallowTray® 31200 Series model, equipped with a 3-phase, 20 hp, 1,800 cubic feet per minute (CFM) blower and is reportedly capable of processing water from 6 gpm to 425 gpm. The control panel system was constructed by Northeast Environmental Systems.

All data is remotely accessible via the existing phone line using EOS data management systems. Once per day, the EOS system transmits a record of the GTS operating conditions via facsimile to ENSR's East Syracuse office. The data is reviewed to determine whether the system is operating normally. In addition, the EOS system allows "real time" monitoring via computer, which is connected to the EOS system via a modem line. Real time monitoring of the GTS is generally conducted one to several times per day. If the GTS is found to be in an alarm condition, an appropriate response is initiated.

The treated water from the low-profile air stripper discharges via gravity through an effluent pipe to SPDES Outfall 03A located at the upstream end of the eastern drainage ditch, formerly Area 14. The eastern drainage ditch is ultimately monitored as SPDES Outfall 003, prior to discharging off-site at the northern property boundary, as shown on Figure 6-1.

A FREIJE Electronic Descaling system was installed on a trial basis during the overall system upgrade that was completed in December 2006 in an effort to decrease the frequency of maintenance by reducing the amount of sediment build-up in the groundwater treatment system. The FREIJE was installed on a trial basis, and in December 2007 the FREIJE system was shut down to evaluate its effectiveness. Based on the results of that testing, it was determined that the FREIJE system was not contributing significantly to the operation of the groundwater treatment system, and upon approval from the NYSDEC, the FREIJE system was removed.

The operation and maintenance of the IRM GTS is not provided in the RA OM&M Manual. A separate O&M Manual, dated April 1995, was prepared by Blasland Bouck and Lee (BBL) to address the GTS components.

6.2 Operation

The GTS is designed to operate continuously. The manhole and equalization tank pumps operate, as needed, to control water flow into the air stripper. Control bulbs normally activate pumps. If the pump systems fail to control the water level, an alarm is activated. If daily monitoring of the GTS status facsimile transmittals and/or daily real-time monitoring note that the GTS is in an alarm condition, an appropriate response is initiated. The inspection logs, included in Appendix J, provide documentation of weekly site visits, recorded alarm conditions, and modifications made to the system from January 1, 2007 through December 31, 2007. A summary of alarm conditions and maintenance from January 1, 2007 through December 31, 2007 are presented in the following table.

Alarm Conditions and Maintenance Summary

January 1, 2007 - December 31, 2007

Date	Incident/Resolution
1/5/2007	Maintenance: drilled holes in EQ tank drop tube, install strainer in pump 3B
1/17/2007	Maintenance: cleaned MH-2 line from cleanout inside building to manhole
1/29/2007 – 2/1/2007	ENSR on-site to address filter pressure issues on 1/29 and 1/30; filter pressure would not stabilize. On 1/31/07, filters were removed temporarily until 2/1/07, when MH-2 and MH-2 line were cleaned of sediment. Check valve was installed in MH-2 line and sampling ports for MH-1 and MH-2 were installed on 2/1/07 as well.
2/2/2007	Bag filters removed temporarily due to continued high filter pressure alarms.
2/9/2007 – 2/14/2007	Air stripper cleaning completed.
3/6/2007 – 3/7/2007	High pressure alarm caused system shut-down, ENSR responded, changed bag filters regularly until sediment cleared from system and system was operating normally.
3/15/2007-	MH-1, MH-2, floor sump, and EQ Tank High Level alarms caused system shut down;

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

3/16/2007	ENSR responded, changed bag filters and pumped EQ tank down by hand until system operated normally.
4/23/2007	EQ Tank High Level alarm caused system shut down; ENSR responded, pumped EQ tank down by hand and changed bag filters, after which the system operated normally.
4/27/2007	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; ENSR responded, pumped EQ tank down by hand and re-set system, after which system operated normally.
5/22/2007	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; ENSR responded, changed bag filters and pumped EQ tank down by hand, then re-set system, after which system operated normally.
6/15/2007	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; ENSR responded, pumped MH-1 and EQ tank down by hand several times, after which system operated normally. It was noted that MH-2 flow appeared low, possibly indicating that a line flush was required.
6/18/2007	System shut down, reason not noted. ENSR responded, changed bag filters, and pumped EQ tank down by hand and re-started system, after which system operated normally.
9/13/2007	Area maintenance – steps and platform constructed for bag filter area.
10/8/2007	MH-1, MW-2, EQ Tank High Level alarms cause system shut down. ENSR responded; EQ tank and MH-1 pumped down by hand, bag filters changed, and system is re-set, after which system operated normally.
10/9/2007	MH-1 and MH-2 High Level alarm and Bag Filter High Pressure alarm cause system shut down. ENSR responded; changed bag filters, re-started system, after which system operated normally. It was noted that MH-2 did not appear to be pumping normally.
10/30/2007	MH-1 and MH-2 High Level alarm and Bag Filter High Pressure alarm cause system shut down. ENSR responded; changed bag filters, re-started system, after which system operated normally.
12/3/2007	MH-1, MH-2, and EQ Tank High Level Alarm caused system shut down. ENSR responded, changed bag filters several times while pumped down EQ tank by hand, after which system operated normally.
12/18/2007	ENSR on-site to troubleshoot modem.
12/27/2007	MH-1, MH-2, and EQ Tank High Level alarm on. ENSR responded; changed bag filters several times.
NOTES:	

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump as shown in Figure 6-1. Between January 1, 2007 and December 31, 2007 approximately 1,577,721 gallons of water was pumped, treated, and discharged to Outfall 03A. The 2007 Manhole Flow Summary (Table 6-1), indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for the same period of 2007. Between January 1, 2007 and December 31, 2007, for MH-1, the recorded low, recorded average, and recorded high flow rates per monitoring event are 623 gpd, 3,331 gpd, and 13,585 gpd, respectively. For MH-2, during this period the recorded low, recorded average and recorded high flow rates per monitoring event are 7 gpd, 945 gpd, and 7,044 gpd, respectively. The GTS processed an average of 4,276 gpd during the 12-month period between January 1, 2007 and December 31, 2007.

Air stripper influent and effluent samples are collected and analyzed for the required VOCs. Effluent analytical data is collected to satisfy required conditions of Chicago Pneumatic's SPDES Permit (No. NY-0108537), and is discussed in Section 6.4. The January 1, 2007 through December 31, 2007 Influent and Effluent Analytical Summary (Table 6-2) provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3, the 2007 Air Stripper Flow Summary, provides weekly and monthly average flows measured during sampling events, and is inclusive of the flow to the stripper from MH-1 and MH-2.

The information presented in Table 6-2 and Table 6-3 was developed to assist in evaluating mass removal of VOCs by the GTS. Table 6-4, the 2007 Air Stripper Mass Removal Summary, provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed during the 12-month period from January 1, 2007 to December 31, 2007. As indicated, the total average annual removal efficiency was 99.0%, resulting in the removal of approximately 7.4 pounds of VOCs during 2007.

6.2.1 2006 MH-1 Flow Data and VOC Concentrations

During 2006, an increase occurred in total flow at Manhole #1 (MH-1); approximately 4.2 million gallons entered the manhole in 2006, compared to approximately 1.4 million gallons during each of the previous three years. In addition, VOC concentrations in MH-1 significantly increased in the time period between February and June 2006. In May 2007, ENSR verified the volume information presented in the 2006 Annual OM&M Report and compared it to the 2006 field logs, laboratory analytical reports, and 2006 Precipitation Data. ENSR also reviewed the reported VOC data provided in Section 6 of the 2006 Annual OM&M Report with analytical data provided in the laboratory reports for accuracy, and determined that the data was correctly reported.

Based on all available information, ENSR determined that the increased volume of water that entered MH-1 and MH-2 in 2006 was most likely a result of significant increased precipitation in June and July, 2006. Chicago Pneumatic determined that the influent samples were collected from the proper locations and such samples were analyzed in accordance with laboratory protocols.

As displayed in Table 6.1, approximately 1,229,047 gallons of water passed through MH-1 during 2007. In addition, MH-1 influent VOC concentrations had returned to levels consistent with pre-2006 data; no exceedances of the SPDES Permit effluent limits took place in 2007. Based on this information, ENSR believes the increases in MH-1 flow and VOC concentrations were an anomaly likely caused by increased precipitation during the majority of 2006.

6.3 Maintenance and Troubleshooting

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS between January 1, 2007 and December 31, 2007:

- As summarized in Section 6.2, several system shut-downs were recorded which resulted in the GTS being shut down for a relatively short amount of time (one to two days).
- February 9, 2007 through February 14, 2007: GTS shut down to complete cleaning.

6.4 SPDES Outfall 03A

The effluent from the air stripper, SPDES Outfall 03A, requires sampling and analysis, as well as flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
 - trichloroethylene (TCE);
 - o cis-1,2-dichloroethene (cis-1,2-DCE);
 - o trans-1,2-dichloroethene (trans-1,2-DCE); and
 - o vinyl chloride (VC).

On behalf of Chicago Pneumatic, between January 1, 2007 and December 31, 2007, GTS samples were collected by ENSR personnel, placed in appropriately labeled laboratory glassware, packed on ice, and delivered by the ENSR sampling personnel to Life Sciences Laboratory in East Syracuse, New York.

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

6.6 Tables

6-5

6-1	Manhole Flow Summary
6-2	Influent and Effluent Analytical Summary
6-3	Air Stripper Flow Summary
6-4	Air Stripper Mass Removal Summary

Cumulative Summary of Outfall 03A Analytical Results

TABLE 6-1 JANUARY 1, 2007 THROUGH DECEMBER 31, 2007 MANHOLE FLOW SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Total	Flow pe	r Monitoring I	Period (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
1/5/2007	89445	2442	4201	163	4364
1/11/2007	123638	2966	5699	87	5786
1/17/2007	167554	3093	7319	21	7341
1/22/2007	191206	8560	4730	1093	5824
1/29/2007	206256	8706	2150	21	2171
Average Monthly Flow			4717	239	4956

	Flow Total	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
2/8/2007	235863	32938	2961	2423	5384
2/15/2007	248284	44043	1774	1586	3361
2/20/2007	257969	48346	1937	861	2798
2/27/2007	271758	52627	1970	612	2581
Average Monthly Flow			2259	1515	3773

	Flow Totalizer Reading Flow per Monitoring Period (gpd)			Period (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
3/6/2007	278028	53885	896	180	1075
3/15/2007	309643	67507	3513	1514	5026
3/19/2007	363984	95681	13585	7044	20629
3/27/2007	432284	141758	8538	5760	14297
Average Monthly Flow			5733	3183	8916

	Flow Total	Flow per Monitoring Period (gp			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
4/5/2007	496161	189447	7097	5299	12396
4/9/2007	518483	203523	5581	3519	9100
4/17/2007	575614	236085	7141	4070	11212
4/23/2007	606666	264455	5175	4728	9904
5/4/2007	664535	303928	5261	3588	8849
Average Monthly Flow			6112	4268	10380

TABLE 6-1 JANUARY 1, 2007 THROUGH DECEMBER 31, 2007 MANHOLE FLOW SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Totalizer Reading Flow per Monitoring Period (gp			Period (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
5/8/2007	676292	305929	2939	500	3440
5/15/2007	695321	308701	2718	396	3114
5/22/2007	713322	310779	2572	297	2868
5/31/2007	731722	314591	2044	424	2468
Average Monthly Flow			2488	395	2883

	Flow Total	eading Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
6/4/2007	738935	315001	1803	103	1906
6/13/2007	753068	315930	1570	103	1674
6/18/2007	758687	319550	1124	724	1848
6/26/2007	774331	328771	1956	1153	3108
Average Monthly Flow			1639	545	2184

	Flow Total	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
7/2/2007	784922	329959	1765	198	1963
7/12/2007	799468	330461	1455	50	1505
7/18/2007	809055	331081	1598	103	1701
7/23/2007	821080	331788	2405	141	2546
8/1/2007	834685	332665	1512	97	1609
Av	Average Monthly Flow			108	1785

	Flow Total	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
8/8/2007	845291	333394	1515	104	1619
8/15/2007	855719	334127	1490	105	1594
8/21/2007	863942	334886	1371	127	1497
8/24/2007	874265	335787	3441	300	3741
Average Monthly Flow			1721	136	1857

Flow Totalizer Reading Flow per Monitoring			Period (gpd)		
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
9/5/2007	881742	336604	623	68	691
9/13/2007	891556	337565	1227	120	1347
9/19/2007	899317	338511	1294	158	1451
9/26/2007	907312	339449	1142	134	1276
Average Monthly Flow			1001	111	1112

TABLE 6-1 JANUARY 1, 2007 THROUGH DECEMBER 31, 2007 MANHOLE FLOW SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Total	izer Reading	Flow per	r Monitoring I	Period (gpd)
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
10/2/2007	914833	340315	1254	144	1398
10/11/2007	929644	342008	1646	188	1834
10/17/2007	946892	343397	2875	232	3106
10/24/2007	967480	344407	2941	144	3085
10/29/2007	980482	344973	2600	113	2714
Average Monthly Flow			2217	167	2385

	Flow Total	izer Reading	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total	
11/7/2007	1023326	347174	4760	245	5005	
11/13/2007	1038534	347845	2535	112	2647	
11/21/2007	1070830	348721	4037	110	4147	
11/29/2007	1116250	349136	5678	52	5729	
Ave	erage Monthly Flow	4380	134	4514		

	Flow Total	izer Reading	Flow per Monitoring Period (gpd)				
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total		
12/6/2007	1156256	349458	5715	46	5761		
12/13/2007	1184167	349772	3987	45	4032		
12/18/2007	1209503	349863	5067	18	5085		
12/27/2007	1236320	349929	2980	7	2987		
1/2/2008	1289087	349973	8795	7	8802		
Ave	erage Monthly Flow	5083	25	5108			

Summary of Manhole Flow for December 29, 2006 through January 2, 2008						
Total Flow	gal	gpd				
MH-1	1,229,047	3331				
MH-2	348,674	945				
Total 2007 Flow: 1,577,721 4276						

Notes:

Average monthly manhole flow is based on daily average

Table 6-2 JANUARY 1, 2007 through DECEMBER 31, 2007 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Influent from MH-1				Influent from MH-2				Air Stripper Effluent									
Sample Date 1		"y Chloride oe.	7.2-Dichloroethene	"ans-1,2-Dichloroethene	Total		"M Chloride	',-¿·Dichloroethene trans	78-7, 2-Dichloroethene Trick	Torsi	Vinyl Chlorics	0/s-7,2,5	** Dichloroethene trans.1,2.Di.,	Trichloroethene	70tal VO.	Nome.	WAVERAGE VOC'S
Permit Limit											10	10	10	10			i
1/5/2007	<1	5	<1	<1	5	<40	590	<20	1900	2490	<1	<1	<1	1	1		i
1/11/2007											<2	1.6	<1	1.4	3		i
1/17/2007											<2	<1	<1	1.1	1.1		i
1/22/2007											<2	<1	<1	1.7	1.7		i
1/29/2007											<2	<1	<1	<1	0	1.4	i
2/8/2007	<2	3.3	<1	1.7	5	<2	51	<1	100	151	<2	<1	<1	1.7	1.7		i
2/15/2007											<2	<1	<1	1.5	1.5		1
2/20/2007											<2	<1	<1	1.9	1.9		i
2/27/2007											<1	<1	<1	1.6	1.6	1.7	i
3/6/2007	12	3.5	<1	<1	15.5	<20	600	<20	2100	2700		4	<1	1.2	5.2		1
3/15/2007											<1	<1	<1	<1	0		1
3/19/2007											<2	<1	<1	1.4	1.4		i
3/27/2007											<1	<1	<1	1.2	1.2	2.0	1
4/5/2007	1.4	6.4	<1	<1	7.8	<10	670	<10	2800	3470	<1	<1	<1	<1	0		i
4/9/2007											<1	<1	<1	<1	0		i
4/17/2007											<1	<1	<1	<1	0		i
4/23/2007											<1	2.9	<1	4.4	7.3		i
5/4/2007											<1	<1	<1	1	1	1.7	i
5/8/2007	1.6	7.5	<1	1.1	10.2	<20	510	<20	1700	2210	<1	<1	<1	1.4	1.4		1
5/15/2007											<1	<1	<1	<1	0		i
5/22/2007											<1	1.2	<1	2	3.2		1
5/31/2007											<1	<1	<1	<1	0	1.2	1
6/4/2007	1.5	4.5	<1	<1	6	<20	150	<20	670	820		<1	<1	<1	0		i
6/13/2007											<1	<1	<1	<1	0		i
6/18/2007											<1	<1	<1	<1	0		i
6/26/2007											<1	<1	<1	<1	0	0.0	i
7/2/2007	2.5	3.8	<1	<1	6.3	<20	220	<20	730	950		<1	<1	<1	0		i
7/12/2007											<1	<1	<1	<1	0		i
7/18/2007											<1	<1	<1	<1	0		•
7/23/2007											<1	<1	<1	<1	0		i
8/1/2007											<1	<1	<1	<1	0	0.0	•
8/8/2007	3.5	8.8	<1	<1	12.3	<20	270	<20	1100	1370		<1	<1	<1	0		•
8/15/2007											<1	<1	<1	<1	0		•
8/21/2007											<1	1.3	<1	1.4	2.7		•
8/24/2007											<1	<1	<1	<1	0	0.7	•

1

3/28/2008

Table 6-2 JANUARY 1, 2007 through DECEMBER 31, 2007 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

		Influ	ent from	n MH-1				Influe	nt from	MH-2			Air Str	ipper E	ffluent		
Sample Date		.y.Chloride	Jost, 2-Dichloroethene	^{ans,1} ,2-Dichloroethene	^L richloroethene Total	SS 00/	'yı Chloride	ĺΛ	or, 2-Dichloroethene Tri	. Moroethene	/ofa 1/OC/s	J. Chloride Os. 1	Λ	us, 1,2.Dichloroethene Trice.	-moroethene To.	.50 	Wonthy Average Voc's
9/5/2007	/ <u> </u>	3.3		<1 <					120	170		<1		<1	0		Ĭ
9/13/2007	7	0.0	,	`	1 0.0	\"	30	\	120	17,	<1	<1	<1	<1	0		-
9/19/2007											<1	<1	<1	<1	0		_
9/26/2007											<1	<1		<1	0	0.	0
10/2/2007	<1	2.8	3 -	<1 <	1 2.8	<5	39	<5	78	11		<1	<1	<1	0		_
10/11/2007						,,,		10			<1	<1	<1	<1	0		
10/17/2007											<1	<1	<1	<1	0		
10/24/2007											<1	<1	<1	<1	0		
10/29/2007											<1	<1	<1	<1	0	0.	D
11/7/2007	1.8	8	3	<1 <	1 9.8	<20	120	<20	450	570	0 <1	<1	<1	<1	0		
11/13/2007											<1	<1	<1	<1	0		
11/21/2007											<1	<1	<1	<1	0		
11/29/2007									•		<1	<1	<1	<1	0	0.	0
12/6/2007	1.4	5.5	5	<1 <	1 6.9	<20	190	<20	610	800	0 <1	<1	<1	<1	0		
12/13/2007											<1	<1	<1	1.3	1.3		
12/18/2007									<u> </u>		<1	<1	<1	<1	0		
12/27/2007									<u> </u>		<1	<1	<1	2.5	2.5		
1/2/2008											<1	<1	<1	<1	0	0.	В

2

Notes:

3/28/2008

¹⁾ All values reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).

²⁾ VOCs = Volatile Organic Compounds.

TABLE 6-3 2007 AIR STRIPPER FLOW SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date	Average Flow During Monitoring Period (gpd)
1/5/2007	4364
1/11/2007	5786
1/17/2007	7341
1/22/2007	5824
1/29/2007	2171
Average Monthly Flow (gp	od) 4956
2/8/2007	5384
2/15/2007	3361
2/20/2007	2798
2/27/2007	2581
Average Monthly Flow (gp	od) 3773
3/6/2007	1075
3/15/2007	5026
3/19/2007	20629
3/27/2007	14297
Average Monthly Flow (gp	od) 8916
4/5/2007	12396
4/9/2007	9100
4/17/2007	11212
4/23/2007	9904
5/4/2007	8849
Average Monthly Flow (gp	od) 10380
5/8/2007	3440
5/15/2007	3114
5/22/2007	2868
5/31/2007	2468
Average Monthly Flow (gp	od) 2883
6/4/2007	1906
6/13/2007	1674
6/18/2007	1848
6/26/2007	3108
Average Monthly Flow (gp	od) 2184
7/2/2007	1963
7/12/2007	1505
7/18/2007	1701
7/23/2007	2546
8/1/2007	1609
Average Monthly Flow (gp	od) 1785

TABLE 6-3 2007 AIR STRIPPER FLOW SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Note:

- 1) gpd = gallons per day.
- 2) Average flow data is calculated from data collected during site visits.
- 3) Total Air Stripper flow includes total flows of MH-1 and MH-2.

TABLE 6-4 January 1, 2007 - December 31, 2007 AIR STRIPPER MASS REMOVAL SUMMARY

2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Month	Air Stripper Influent - Average Monthly VOC ¹ Concentration (µg/I) ²	Air Stripper Effluent - Average Monthly VOC Concentration ⁵ (μg/l)	VOC's Removed (μg/l)	% VOC's Removed	Air Stripper Effluent - Average Monthly Flow (gpd) ³	VOC's Removed (lbs) ⁴
Jan	125	1.36	124	98.9	4956	0.2
Feb	64	1.68	62	97.4	3773	0.1
Mar	974	1.95	972	99.8	8916	2.0
Apr	1431	1.66	1429	99.9	10380	4.7
May	312	1.15	311	99.6	2883	0.2
Jun	209	0.00	209	100.0	2184	0.1
Jul	63	0.00	63	100.0	1785	0.0
Aug	112	0.68	111	99.4	1857	0.0
Sep	20	0.00	20	100.0	1112	0.0
Oct	11	0.00	11	100.0	2385	0.0
Nov	26	0.00	26	100.0	4514	0.0
Dec	11	0.76	10	93.1	5108	0.0
		2007 A	verage (%) ⁶ :	99.0	2007 Total (lbs):	7.4

Notes:

- 1) VOCs = volatile organic compounds
- 2) ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)
- 3) gpd = gallons per day
- 4) lbs = pounds
- 5) Life Sciences Laboratories detection limit equals 1.0 ug/L. Therefore, mass removal calculations are based on an estimated value of less than 1.0 ug/L, i.e. 0.99 ug/L.
- 6) 2007 Average of % VOCs removed value obtained by averaging monthly values

TABLE 6-5 JANUARY 1, 2007 through DECEMBER 31 2007 SUMMARY of SPDES OUTFALL- 03A ANALYTICAL RESULTS

2007 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	TCE (μg/L)	VC (μg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
1/5/2007	<1	<1	1	<1	4364	7.9
1/11/2007	1.6	<1	1.4	<2	5786	7.8
1/17/2007	<1	<1	1.1	<2	7341	7.8
1/22/2007	<1	<1	1.7	<2	5824	7.6
1/29/2007	<1	<1	<1	<2	2171	7.8
2/8/2007	<1	<1	1.7	<2	5384	7.7
2/15/2007	<1	<1	1.5	<2	3361	7.8
2/20/2007	<1	<1	1.9	<2	2798	7.7
2/27/2007	<1	<1	1.6	<1	2581	8
3/6/2007	4	<1	1.2	<2	1075	8
3/15/2007	<1	<1	<1	<1	5026	7.8
3/19/2007	<1	<1	1.4	<2	20629	7.7
3/27/2007	<1	<1	1.2	<1	14297	7.5
4/5/2007	<1	<1	<1	<1	12396	7.6
4/9/2007	<1	<1	<1	<1	9100	7.8
4/17/2007	<1	<1	<1	<1	11212	7.7
4/23/2007	2.9	<1	4.4	<1	9904	7.6
5/4/2007	<1	<1	1	<1	8849	8.4
5/8/2007	<1	<1	1.4	<1	3440	7.6
5/15/2007	<1	<1	<1	<1	3114	7.7
5/22/2007	1.2	<1	2	<1	2868	7.4
5/31/2007	<1	<1	<1	<1	2468	7.6
6/4/2007	<1	<1	<1	<1	1906	7.7
6/13/2007	<1	<1	<1	<1	1674	7.6
6/18/2007	<1	<1	<1	<1	1848	7.6
6/26/2007	<1	<1	<1	<1	3108	7.7
7/2/2007	<1	<1	<1	<1	1963	7.7
7/12/2007	<1	<1	<1	<1	1505	7.6
7/18/2007	<1	<1	<1	<1	1701	7.7
7/23/2007	<1	<1	<1	<1	2546	7.9
8/1/2007	<1	<1	<1	<1	1609	8
8/8/2007	<1	<1	<1	<1	1619	8.1
8/15/2007	<1	<1	<1	<1	1594	8
8/21/2007	1.3	<1	1.4	<1	1497	7.9
8/24/2007	<1	<1	<1	<1	3741	8.2

TABLE 6-5 JANUARY 1, 2007 through DECEMBER 31 2007 SUMMARY of SPDES OUTFALL- 03A ANALYTICAL RESULTS

2007 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	TCE (μg/L)	VC (μg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
9/5/2007	<1	<1	<1	<1	691	8.3
9/13/2007	<1	<1	<1	<1	1347	7.9
9/19/2007	<1	<1	<1	<1	1451	8.3
9/26/2007	<1	<1	<1	<1	1276	7.9
10/2/2007	<1	<1	<1	<1	1398	8
10/11/2007	<1	<1	<1	<1	1834	8.2
10/17/2007	<1	<1	<1	<1	3106	8
10/24/2007	<1	<1	<1	<1	3085	8.2
10/29/2007	<1	<1	<1	<1	2714	7.8
11/7/2007	<1	<1	<1	<1	5005	8
11/13/2007	<1	<1	<1	<1	2647	7.7
11/21/2007	<1	<1	<1	<1	4147	8.1
11/29/2007	<1	<1	<1	<1	5729	7.9
12/6/2007	<1	<1	<1	<1	5761	8.1
12/13/2007	<1	<1	1.3	<1	4032	7.7
12/18/2007	<1	<1	<1	<1	5085	7.5
12/27/2007	<1	<1	2.5	<1	2987	7.5
1/2/2008	<1	<1	<1	<1	8802	7.7

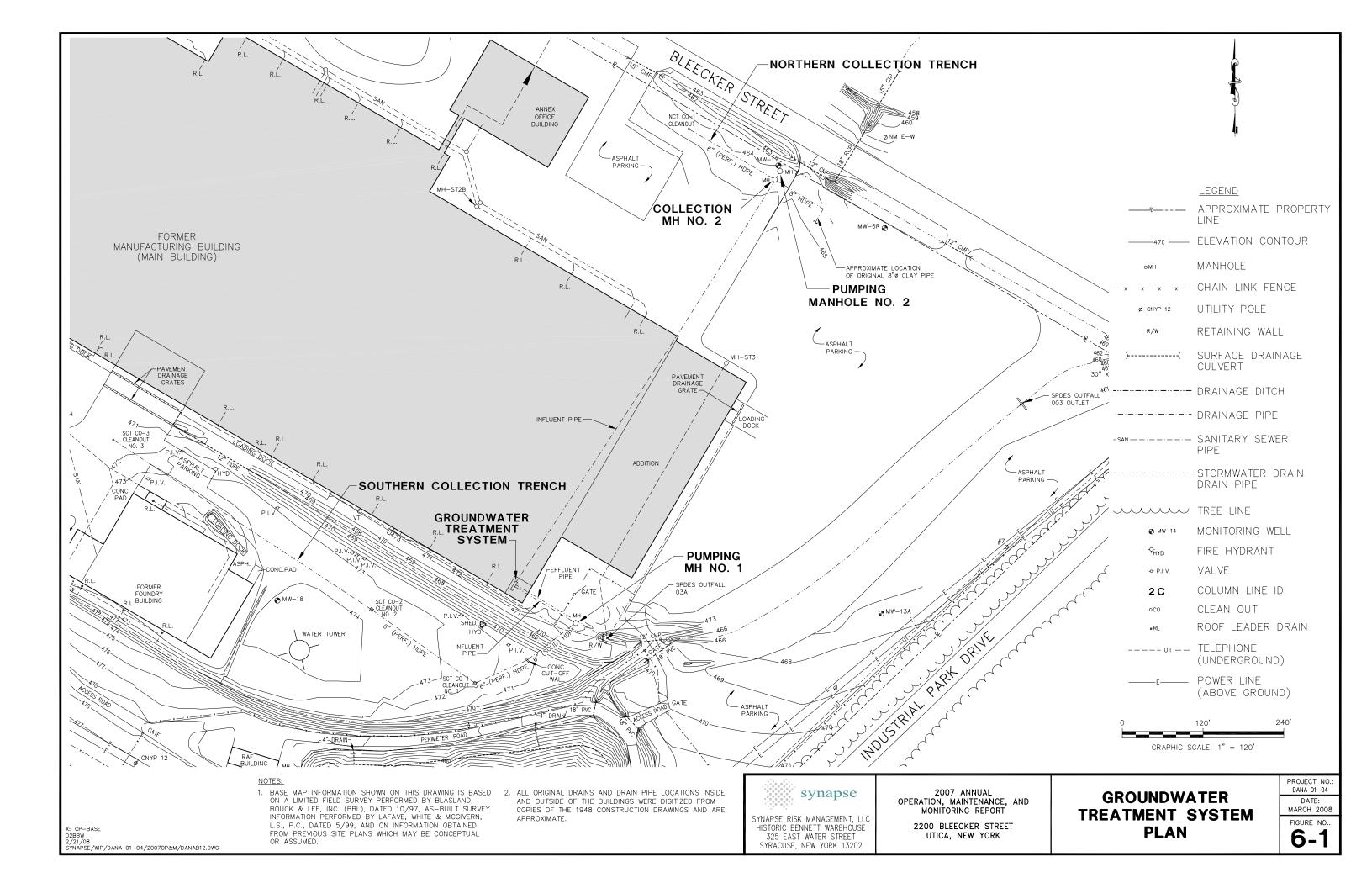
Notes:

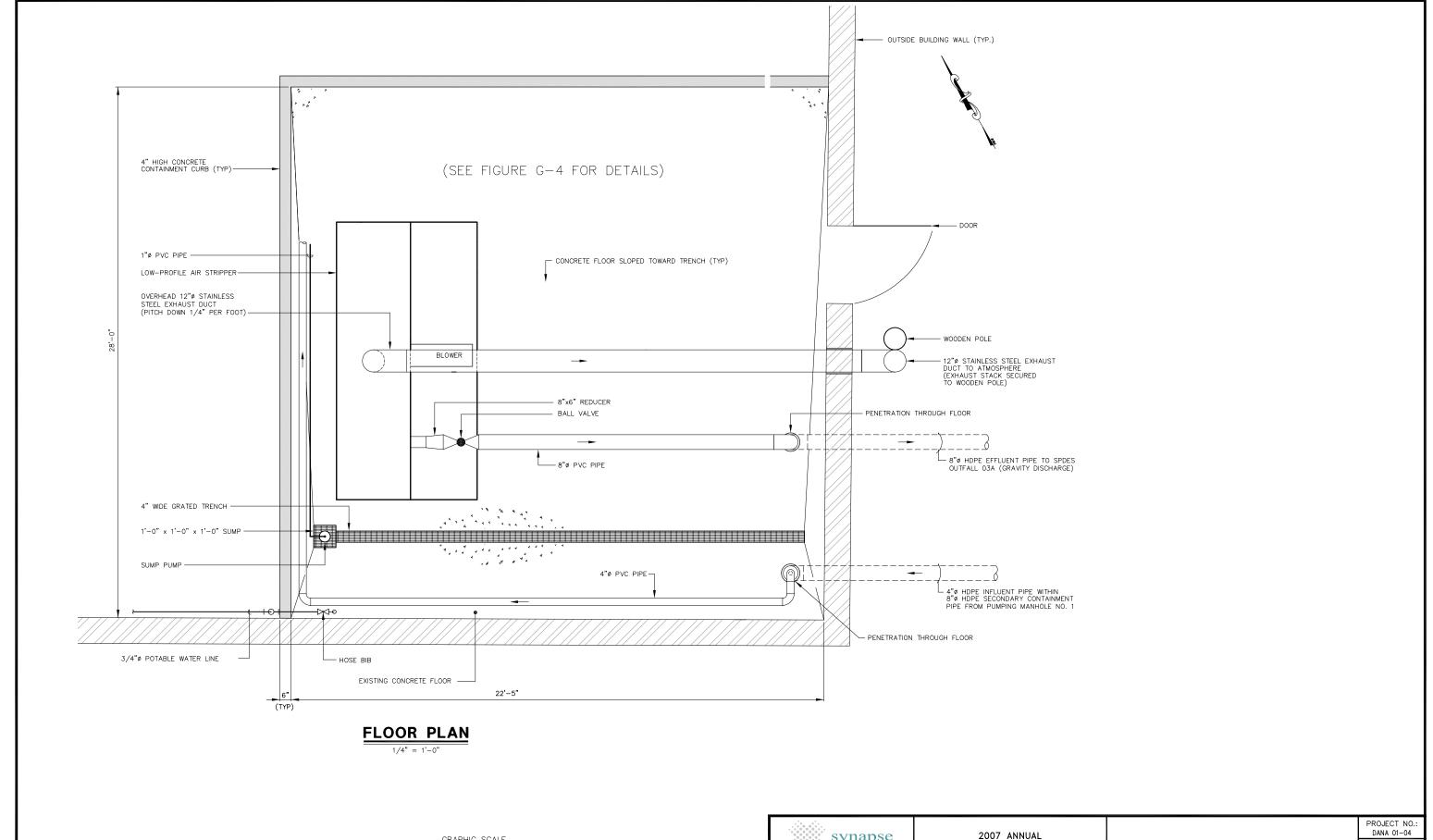
1) cis-1,2-DCE = cis-1,2-Dichloroethene

2) trans-1,2-DCE = trans-1,2-Dichloroethene

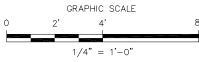
3) TCE = Trichloroethylene

4) VC = Vinyl Chloride


5) ug/L = micrograms per liter 6) gpd = gallons per day.


2007 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Figures 6.7


- 6-1 Groundwater Treatment System Plan
- 6-2 Air Stripper Plan
- Pumping Manhole Plans and Sections 6-3
- 6-4 Treatment System Upgrade – As-Built Drawing

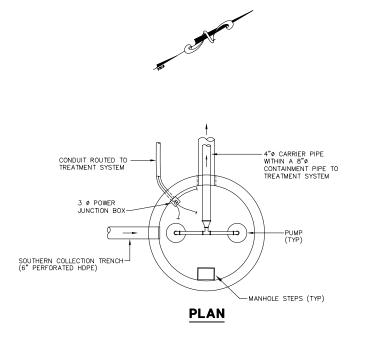
6-6

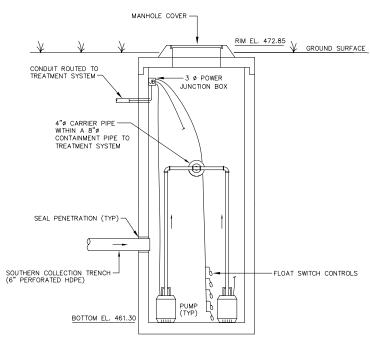
X: CP-BASE D2BBW 2/25/08 SYNAPSE/WIP/DANA 01-04/20070P&M/DANAB14.DWG

synapse

SYNAPSE RISK MANAGEMENT, LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE, NEW YORK 13202

2007 ANNUAL OPERATION, MAINTENANCE, AND MONITORING REPORT

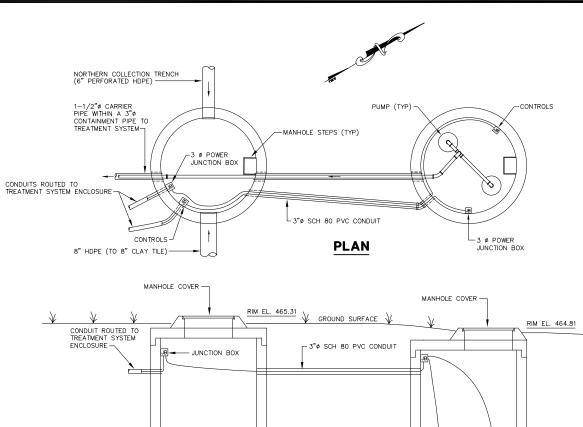

2200 BLEECKER STREET UTICA, NEW YORK

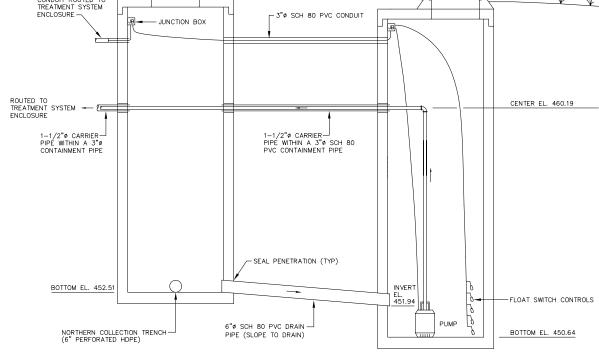

AIR STRIPPER PLAN

DATE:

MARCH 2008 FIGURE NO.:

6-2




GENERAL SECTION

PUMPING MANHOLE NO. 1 PLAN AND SECTION

SCALE: 1/4" = 1'-0"

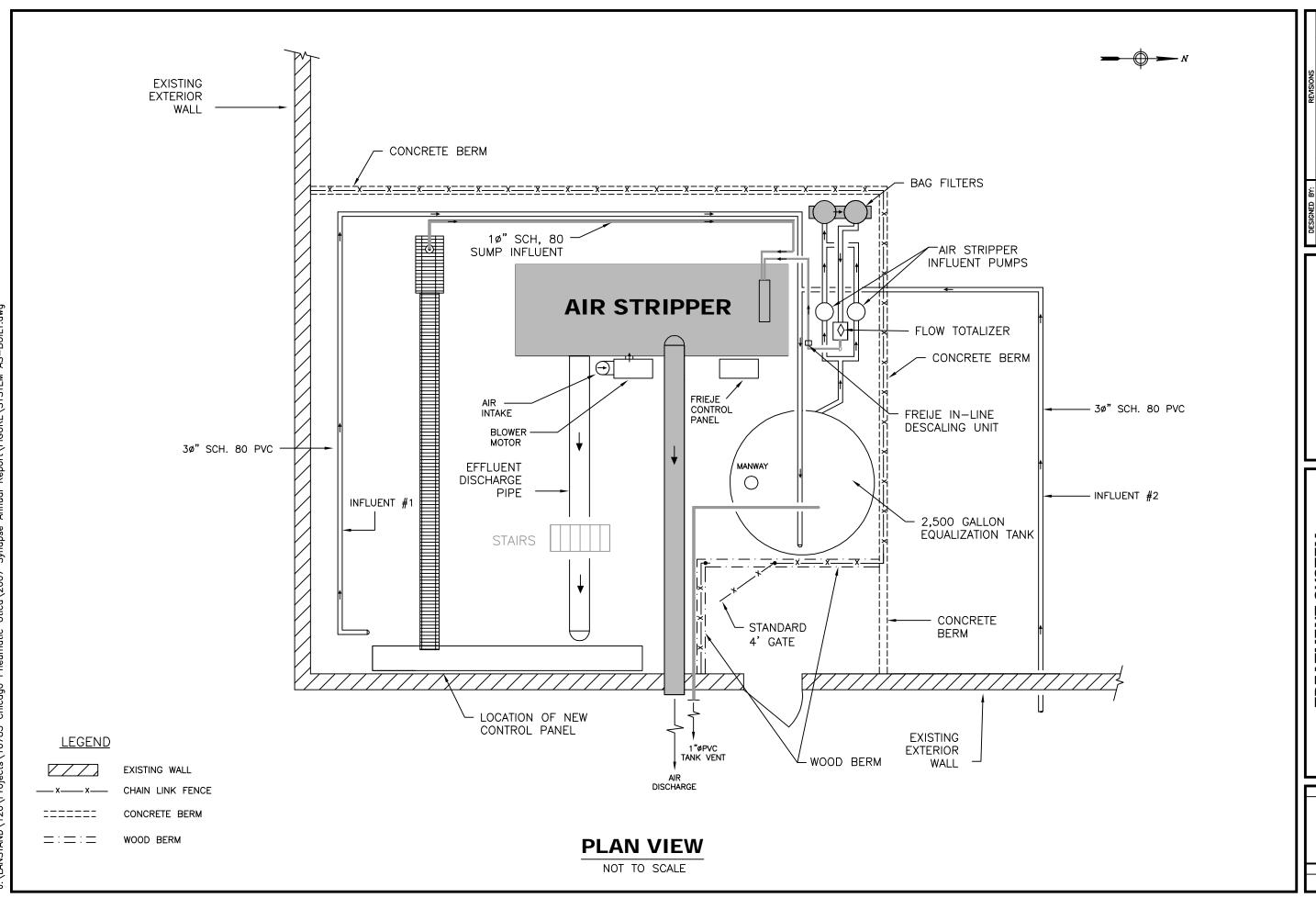
COLLECTION MANHOLE

PUMPING MANHOLE

GENERAL SECTION

PUMPING MANHOLE NO. 2 PLAN AND SECTION

SCALE: 1/4" = 1'-0"



2007 ANNUAL
OPERATION, MAINTENANCE, AND
MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK PUMPING MANHOLE PLANS AND SECTIONS

PROJECT NO.: DANA 01-04 DATE: MARCH 2008

FIGURE NO.:

DESCRIPTION: DATE: BY:

DRAWN BY:

LLM/DM

CHECKED BY:

DMS

APPROVED BY:

LPM

ENSR CORPORATION
6601 KIRKVILLE ROAD
E. SYRACUSE, NEW YORK 13057
PHONE: (315) 432—0506
FAX: (315) 437—0509
WEB: HTTP://WWW.ENSR.AECOM.COA

AS-BUILT DRAWING
CHICAGO PNEUMATIC
UTICA, NEW YORK
SOME: DATE: PROJECT NUMBER
NTS 3/18/08 10783-014

FIGURE NUMBER:

6-4

SHEET NUMBER:

1 OF 1

APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

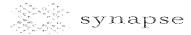
2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Cronto, Date: 1/26/07


Category		Inspected	Observation/Condition	√
1	Gener	al Property		
	A	General Property Access	Paar, Shu, 1 Cauprad	V
	В	General Property Drainage	SPDES Outfall (001 1/002 1/003 1/1) High Tail Water	$\overline{}$
2	Cell P	erimeter Components		
	Α	Perimeter and Access Roads	Snow Course	
	В	Ditches	Snow Covered	V
	С	Culverts		V
	D	Perimeter Fence	Gates_V	V
	E	Utilities	Elec. Phone V	V
3	Conta	inment Cell		
	Α	Surface Cover System	Burrows Vegetation V	
	В	Gas Vents (2)		
	B'	PID Readings	(Y of N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		V
	D	Perimeter Drains (4)		
4	Leach	nate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours (27.7 Pump 2 Hours 214,7	V
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
.	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	
	D	Manhole Interstitial Space		
-	E	Conveyance Pipe		
	F	Influent Pipe		
	G	Confined Space Entry	(Y or N) (see Form B)	V

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Observation/Condition

	. INTODEO OILE IV	O. UZZUUJ	1 1
Synapse Representative: K	Craighton	Date:	1/26/07
	g		0

5 Buil	ding		
A	Structure	Lock_V, Vent_V, Heater_V	
В	Electrical and Telephone	Elec_ Phone V	
С	Auto Dialer and Controls	Test Functions (Y or N) (see Form F)	
6 Lea	chate Storage System		1
Α	Tank (External)	Internal (Y or (N)	
A'	Flow Totalizer	Reading = <u>647</u> , 00 gal.	
В	Secondary Containment	Liquid (Y or N)	
С	Piping Components		1
D	Electrical Components	Lock Light Bulbs	
Е	Leachate Sampling	(Y or (N))(see Form C)	L
		·	
	•		

Category

Inspected

NYSDEC SITE		1	1
Synapse Representative: R. Creighton	Date:	2/21	07
()		1	,

Category		y Inspected	Observation/Condition	
1	1 General Property			
	A	General Property Access	Show Covered	
	В	General Property Drainage	Show Covered SPDES Outfall (001 X 002 X 003) High Tollwater	11
2	Cell F	Perimeter Components	"Ju tourogien	
	Α	Perimeter and Access Roads	Snow Covered	1/
	В	Ditches	Show Covered	<u></u> را
	С	Culverts	/ Con Gred	
	D	Perimeter Fence	Gates	1/
	E	Utilities	Elec. Phone	
3	Conta	ainment Cell		
	A	Surface Cover System	Burrows Vegetation Snow Covered	
	В	Gas Vents (2)		1/
	B'	PID Readings	(Y or N)Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout	Manhole not accesable.	V
	D	Perimeter Drains (4)	Snow covered	
4	Leach	nate Collection Manhole		
	A	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours 127.8 Pump 2 Hours 214.2	
	B'	Pump Changeover	(Y o(N))Lead Pump Lag Pump	
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	
	D	Manhole Interstitial Space		
	E	Conveyance Pipe		
	F	Influent Pipe		
	G	Confined Space Entry	(Y or (N) (see Form B)	

		1 1	i	
Synapse Representative: R. Cranton	Date: 2	21/	07	
()				

Car	egory	gory Inspected Observation/Condition		J
5 B	uilding			
A	4 Stru	cture	Lock, Vent, Heater	
E	B Elec	trical and Telephone	Elec Phone	1
C	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6 Le	eachate	Storage System		
A	Tanl	(External)	Internal (Y or N)	1
A	' Flow	<i>i</i> Totalizer	Reading = 649 00 gal.	1
	3 Sec	ondary Containment	Liquid (Y or N)	
E	- 1			
C	Pipir	ng Components		1
	<u>'</u>	ng Components trical Components	Lock Light Bulbs	l l

National Carid ansite to remove snow to access damaged telephone fole. R. Creighton on site roview Has aspects of how.
telephone Pole. R. Creighton on site roviow Has aspects of
work.

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: X, Creighton Date: 3/23/07

Ca	ategory	/ Inspected	Observation/Condition	
1	Gene	ral Property		
	A	General Property Access	(con)	i
	В	General Property Drainage	SPDES Outfall (001 002 003 1) High Tail water	1
2	Cell F	Perimeter Components	righ (a) way	
	A	Perimeter and Access Roads	Snow Covered	
	В	Ditches	Snow Covered (003)	
	С	Culverts	Goo D	
	D	Perimeter Fence	Gates	
	E	Utilities	Elec. Phone _	
3	Conta	inment Cell	,	
	A	Surface Cover System	Burrows Coan	
	В	Gas Vents (2)	0000	
	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		
	D	Perimeter Drains (4)	Snow Covered	
4	Leach	ate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours 127.0 Pump 2 Hours 214, Z	
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	C Electrical Components		Test Pumps (Y or N) Light Bulbs	
	D	Manhole Interstitial Space		
	E	Conveyance Pipe		
	F	Influent Pipe		
	G	Confined Space Entry	(Y o(N)) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creryton Date: 3/23/07

Category		ry	Inspected	Observation/Condition	J
5	Build	ing			
	Α	Struc	cture	Lock, Vent/, Heater/	
	В	Elect	rical and Telephone	Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leach	ate S	Storage System		
	Α	Tank	(External)	Internal (Y or N)	
	A'	Flow	Totalizer	Reading = gal.	
	В	Seco	ndary Containment	Liquid (Y of N)	
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Light Bulbs	
	E	Leac	hate Sampling	(Y of N) (see Form C)	
		3			
_	 				

NYSDEC SITE NO.	622003 / /
Synapse Representative: K. Crerotto	Pate: 4/18/07

Catego	ory Inspected	Observation/Condition		
1 Ge	neral Property			
A	General Property Access	(200X)		
В	General Property Drainage	SPDES Outfall (001 002 003)		
2 Cel	l Perimeter Components			
A	Perimeter and Access Roads	(3000)	TV	
В	Ditches	C2001D	1	
С	Culverts	COM		
D	Perimeter Fence	Gates/_		
E	Utilities	Elec. Phone		
3 Coi	ntainment Cell			
A	Surface Cover System	Burrows Vegetation Coop		
В	Gas Vents (2)	900	+ ; }	
B'	PID Readings	(Y or N Background ppm, @ 20' ppm, @ Vent ppm	+ 1	
С	Collection Pipe / Cleanout		+	
D	Perimeter Drains (4)		+	
4 Lea	chate Collection Manhole			
A	Structure	External Internal		
В	Pumps and Plumbing	Pump 1 Hours <u>128.9</u> Pump 2 Hours <u>Z14.</u> 2		
B'	Pump Changeover	(Y or N) Lead Pump L Lag Pump 2		
В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	$+\mathcal{M}$	
С	Electrical Components	Test Pumps (Y or N), Light Bulbs	11/	
D	Manhole Interstitial Space			
E	Conveyance Pipe		+2/	
F	Influent Pipe		+4/	
G	Confined Space Entry	(Y or N) (see Form B)	+	

	(MISDEC SHE	NO. 622003	. / /
(**	("b- 11		1/18/27
Synapse Representative: 110	heighton	Date:	7/10/07

Category Inspected		Inspected	Observation/Condition	/	
5 Buil	ding				
A	Stru	cture	Lock, Vent, Heater	1	
В	Elec	trical and Telephone	Elec Phone		
С	Auto	Dialer and Controls	Test Functions (Y or (See Form F)		
6 Lead	chate \$	Storage System	-		
Α	Tank	(External)	Internal (Y oku)		
A'	Flow	[,] Totalizer	Reading = <u>653 00</u> gal.		
В	Seco	ondary Containment	Liquid (Y or(N)	<i>l</i>	
С	Pipir	g Components			
D	Elect	trical Components	Lock Light Bulbs		
E	Lead	hate Sampling	(Y or N) (see Form C)		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK NYSDEC SITE NO. 622003**

Synapse Representative:

J	Observation/Condition	Inspected	Category	
		al Property	1 Genera	
	6000	General Property Access	A	
	SPDES Outfall (001 002 003)	General Property Drainage	В	
		rimeter Components	2 Cell Pe	
	(-00D)	Perimeter and Access Roads	A F	
	6000	Ditches	В	
	600,0	Culverts	C	
V	Gates_ 🗸	Perimeter Fence	D F	
	Elec. Phone V	Jtilities	E	
		nment Cell	3 Contai	
	Burrows O Vegetation Code	Surface Cover System	A S	
Ti		Gas Vents (2)	В	
Ti	(Y or N Background ppm, @ 20' ppm, @ Vent ppm	PID Readings	<i>B'</i> F	
1		Collection Pipe / Cleanout	C	
U		Perimeter Drains (4)	D F	
		ate Collection Manhole	4 Leacha	
T	External V Internal V	Structure	A 8	
	Pump 1 Hours <u>18.5</u> Pump 2 Hours <u>214.2</u>	Pumps and Plumbing	B F	
	(Y or N) Lead Pump Lag Pump 2	Pump Changeover	<i>B'</i> F	
	LSHH_V_, LSH, LSLL	Test Automatic Pump Controls	В"	
	Test Pumps (Y or N), Light Bulbs	Electrical Components	C	
		Manhole Interstitial Space	D N	
		Conveyance Pipe	E	
		Influent Pipe	F	
1	(Y o(N)) (see Form B)	Confined Space Entry	G	
	(Y o(N)) (see Form B)	Conveyance Pipe Influent Pipe	E C	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: K. Crerghton Date: 5/31/07

Categ	ory	Inspected	Observation/Condition	J
5 Buil	ding			
A	Struc	oture	Lock, Vent, Heater	Δ
В	Elect	trical and Telephone	Elec/ Phone/	1
С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	1
6 Lead	hate S	Storage System		
Α	Tank	(External)	Internal (Y or 🛈	1
A'	Flow	Totalizer	Reading = <u>657 00</u> gal.	L C
В	Seco	ondary Containment	Liquid (Y or 🕦	
С	Pipin	g Components		
D	Elect	rical Components	Lock Light Bulbs	
E	Leac	hate Sampling	(Y or (N) (see Form C)	L
		The state of the s		
		4,000		
· · · · · · · · · · · · · · · · · · ·				Y
				Al
				
*				
		P. C.		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Receptor Date: 6/12/07

Category		Inspected	Observation/Condition	1
1	Gene	ral Property		
	Α	General Property Access	GODA	
	В	General Property Drainage	SPDES Outfall (001 002 003)	
2	Cell F	erimeter Components		
	Α	Perimeter and Access Roads	600B	V
	В	Ditches	6000	V
	С	Culverts	G00P	
	D	Perimeter Fence	Gates/_	
	E	Utilities	Elec. Phone Phone	V
3	Conta	inment Cell		
	Α	Surface Cover System	Burrows Vegetation	
	В	Gas Vents (2)		
	B'	PID Readings	(Y o(N)Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		V
	D	Perimeter Drains (4)		
4	Leach	nate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours 128,1 Pump 2 Hours 24,2	V
	B'	Pump Changeover	(Y o(N) Lead Pump Lag Pump	V
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	V
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	
	D	Manhole Interstitial Space		V
	E	Conveyance Pipe		V
J.	F	Influent Pipe		
	G	Confined Space Entry	(Y or N) (see Form B)	ľV

		NASDEC	SHE NO. 622003	_	/	1	
Synapse Representative:	<u>`</u> K.	Creighton	Date:	_6	/12	107	
		()		- V			

Category		Inspected	Observation/Condition	
5 Bu	5 Building			
A	Struc	cture	Lock, Vent, Heater	1/
В	Elect	rical and Telephone	Elec Phone	
С	Auto	Dialer and Controls	Test Functions (Y o (N) (see Form F)	
6 Le	achate S	torage System		
A	Tank	(External)	Internal (Y or N)	
A	' Flow	Totalizer	Reading = <u>657 00</u> gal.	
В	Seco	ndary Containment	Liquid (Y or N)	1/
С	Pipin	g Components		
D	Electi	rical Components	Lock Light Bulbs	V
E	Leach	nate Sampling	(Y or N) (see Form C)	1/

Additional Comments:	Abatement	frefaction @	Main Building
		•	J_
	<u> </u>		
	<u> </u>		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creinton Date: 7/26/07

Category		y Inspected	Observation/Condition	1
1	Gene	eral Property		
	Α	General Property Access	6000	TV
	В	General Property Drainage	SPDES Outfall (001 002 003)	
2	Cell	Perimeter Components		
	Α	Perimeter and Access Roads	Good	TV
	В	Ditches	Good	TV
	С	Culverts	6009	1
	D	Perimeter Fence	Gates	
	E	Utilities	Elec. Phone	
3	Cont	ainment Cell		
	Α	Surface Cover System	Burrows Vegetation COOP	TV
	В	Gas Vents (2)		
	B'	PID Readings	(Y or N Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		
	D	Perimeter Drains (4)		
4	Leac	hate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours 128.2 Pump 2 Hours 21%5	
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump Z	
	В"	Test Automatic Pump Controls	LSHH	
	С	Electrical Components	Test Pumps (Y or N) Light Bulbs	
	D	Manhole Interstitial Space		
	Ε	Conveyance Pipe		Ti
	F	Influent Pipe	ORIP	
	G	Confined Space Entry	(Y or (V) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK NYSDEC SITE NO. 622003**

Synapse Representative:_	R. Creighton	Date:	7/26/0	7
	.)			•

Category Inspected Observation/Condition		/		
5 Buile	ding			
A	Struc	oture	Lock V, Vent_V, Heater_V	- L
В	Elect	rical and Telephone	Elec Phone	· ·
С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6 Lead	hate S	Storage System		
Α	Tank	(External)	Internal (Y or N)	Ì
A'	Flow	Totalizer	Reading = 60 ogal.	4
В	Seco	ondary Containment	Liquid (Y or(N)	
С	Pipin	g Components		
D	Elect	rical Components	Lock Light Bulbs 1	(
E	Leac	hate Sampling	(Y or(N)) (see Form C)	

Category

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: PF, CR, SM Date: 8-14-07

Category		Inspected	Observation/Condition			
1	Gene	ral Property				
	A	General Property Access	DAY (6000 SPDES Outfall (001_1/002_1/003_1)			
	В	General Property Drainage	SPDES Outfall (001 1 002 003 1) UT Ubsay KOTH			
2	Cell F	Perimeter Components				
	Α	Perimeter and Access Roads	GOOD W/SOME VEGETATION	/		
	В	Ditches	VECATEO / DRY	la de la constante de la const		
	С	Culverts				
	D	Perimeter Fence	Gates / Some Woody GROTH/CUT	lasamar		
	E	Utilities	Elec. Phone V 2 STATIC	Louise		
3	Conta	ainment Cell				
	A	Surface Cover System	Burrows 7 Vegetation 98 % REMOVE WOODY GROTH			
	B Gas Vents (2)		SCREENS OK			
	B'	PID Readings	((Yør N) Background <u>o.o</u> ppm, @ 20' <u>o.o</u> ppm, @ Vent <u>o.o</u> ppm	1		
	С	Collection Pipe / Cleanout				
	D	Perimeter Drains (4)		1		
4	Leacl	nate Collection Manhole	/ /			
	Α	Structure	External I Internal LABORAL PROPERTY CARRAL PROPERTY CARRAN PROPERTY CARRA PROPERTY CARRA PROPERTY CARRA PROPERTY CARRAN PROPERTY CARRAN PROPE	W		
	В	Pumps and Plumbing	Pump 1 Hours /Z 8.5 Pump 2 Hours Z 14. Z			
	B'	Pump Changeover	(Yor N) Lead Pump Z Lag Pump /	-		
	В"	Test Automatic Pump Controls	LSHH, LSH, LSLL	1		
	С	Electrical Components	Test Pumps (Y) or N), Light Bulbs OF			
	D	Manhole Interstitial Space		L-1		
	E	Conveyance Pipe				
	F	Influent Pipe	FLOW = DKIP	e /		
	G	Confined Space Entry	(Y or N) (see Form B)			

Synapse Representative:	PERC,	SM	Date:	8 -	14-	07

Categ	ory	Inspected	Observation/Condition	J
5 Build	ding			
A	Struc	oture	Lock, Vent, Heater	London
В	Elect	trical and Telephone	ElecPhoneSTATIC	
С	Auto Dialer and Controls		Test Functions (Yor N) (see Form F)	1 Species
6 Leac	hate S	Storage System		
A	Tank	(External)	Internal (Y or N) BAPED TRANS OUT	L
A'	Flow	Totalizer	Reading = <u>(6 6 3 00</u> gal.	
В	Seco	ondary Containment	Liquid (Y or N)	2 contract
С	Pipin	g Components		le de
D	Elect	trical Components	LockLight Bulbs	
E	Leac	hate Sampling	(Y or N) (see Form C)	

CONFINED SPACE ENTRY PERMIT (FORM B) OPERATION, MAINTENANCE, AND MONITORING

Synapse Representative: PFRC, SM Date: 8-14-09
TO BE COMPLETED BY PROJECT MANAGER POST OUTSIDE SPACE
LOCATION OF WORK (Manhole): COLLECTION MANAGER POST OUTSIDE SPACE
HAZARDS IN THIS CONFINED SPACE: 1/0 C
DESCRIPTION OF WORK.
HAZARDS CREATED BY WORK TO BE DONE: ENTERING MIGH
ODGEDY TOP
EMDI OVERGA GGIOVED
ENITOW DATE.
OUTSIDE CONTRACTORS WORKING IN AREA:
(CIRCLE ANSWER) Yes No a. Medical clearance within the past year. Yes No b. Training in confined space entry. Yes No c. Job emergency procedures have been reviewed with all employees involved.
2. Equipment identified by checks (✓) in boxes will be available at entrance for emergencies. Equipment identified by (X) in boxes will be used by personnel in space. □ □ 1. 30-min. SCBA □ □ 16. Fresh Air Blower and Hose □ □ 2. 15-min. SCBA □ □ 17. LEL-O₂ Monitor-Alarm □ □ 3. Other Respirator □ □ 18. Toxic Gas Colorimetric Tubes □ □ 4. 2-Way Radios □ □ 19. Toxic Gas Air Monitor □ □ 5. Tether - Life Lines □ □ 20. Hard Hats □ □ 7. Wristlets □ □ 21. Safety Shoes □ □ 17. Wristlets □ □ 22. Safety Glasses □ □ 18. Fall Device for Tether □ □ 23. Full Face Shields □ □ 19. Rolling Body Board (Creeper) □ □ 24. Chemical Protective Arm Covers □ □ 10. Ladder □ □ 25. Full Chemical Protective Suit □ □ 11. Ladder Extensions □ □ 26. Chemical Protective Gloves □ □ 12. Barricades for All Openings □ 27. Chemical Protective Boots □ □ 13. Tripod or Other Lifting Device □ 28. Emergency Lights/Flashlights □ □ 15. Device to Lock Covers Open □ 30. Pre-Entry H&S Briefing □ □ 31. Stand-By Employee(s)
All lines that could discharge contaminants into the space have been/will be blanked off or line disconnected and pumping means locked out and tagged. Yes No N/4

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighton Date: 91907

Category		Inspected	Observation/Condition		
1 (Gene	ral Property			
	Α	General Property Access	GOOD		
	В	General Property Drainage	SPDES Outfall (001 002 003)	1/1/	
2 (Cell F	Perimeter Components			
·	Α	Perimeter and Access Roads	GOOD		
	В	Ditches	GOOD		
	С	Culverts	GOOD		
	D	Perimeter Fence	Gates_ 🗸		
	E	Utilities	Elec. Phone J		
3 (Conta	inment Cell			
	Α	Surface Cover System	Burrows O Vegetation		
	В	Gas Vents (2)		V	
	B'	PID Readings	(Y or N)Background ppm, @ 20' ppm, @ Vent ppm		
	С	Collection Pipe / Cleanout			
	D	Perimeter Drains (4)			
4 l	Leach	nate Collection Manhole			
20.5	Α	Structure	External Internal		
	В	Pumps and Plumbing	Pump 1 Hours 128.5 Pump 2 Hours 214.7		
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump 2		
	В"	Test Automatic Pump Controls	LSHH, LSL, LSLL		
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs		
	D	Manhole Interstitial Space			
	E	Conveyance Pipe			
	F	Influent Pipe			
	G	Confined Space Entry	(Y or N (see Form B)		
			<u> </u>		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighton Date: 9/19/07

Category		ory	Inspected	Observation/Condition	J
5	Build	ing			
	A	Struc	ture	Lock	
	В	Elect	rical and Telephone	Elec_ \(\sqrt{Phone} \)	
	С	Auto	Dialer and Controls	Test Functions (Y or (N) (see Form F)	<i>\</i>
6	Leacl	hate S	torage System		
	A	Tank	(External)	Internal (Y or N)	ì
	A'	Flow	Totalizer	Reading = <u>663 00</u> gal.	
	В	Seco	ndary Containment	Liquid (Y or N)	
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Light Bulbs	
	E	Leac	hate Sampling	(Y or N) (see Form C)	

	MIODEO OILE	140. 022003	, ,	1	
Synapse Representative:	Creighton	Date:	10/3	0/07	
	$\int_{0}^{\infty} V(s) ds$		•	V	

Category		Inspected	Observation/Condition	1				
1	1 General Property							
	Α	General Property Access	Goon					
	В	General Property Drainage	SPDES Outfall (001 1/ 002 1/ 003 1/)					
2	Cell F	Perimeter Components						
	Α	Perimeter and Access Roads	CODYD	TV				
	В	Ditches	Coon					
	С	Culverts	GOOD					
	D	Perimeter Fence	Gates_ V					
	E	Utilities	Elec. Phone V					
3	Conta	ainment Cell						
	Α	Surface Cover System	Burrows Vegetation Cont	TU				
	В	Gas Vents (2)						
	В'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm					
	С	Collection Pipe / Cleanout						
	D	Perimeter Drains (4)						
4	Leach	nate Collection Manhole						
	Α	Structure	External Internal	T				
	В	Pumps and Plumbing	Pump 1 Hours 128.5 Pump 2 Hours 214,7					
	B'	Pump Changeover	(Y or(N) Lead Pump Lag Pump					
	В"	Test Automatic Pump Controls	LSHH, LSH, LSLL					
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs Replaced Bulb					
	D	Manhole Interstitial Space	THE STATE OF THE S					
	E	Conveyance Pipe	ORIP					
	F	Influent Pipe						
	G	Confined Space Entry	(Y or N) (see Form B)					

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighton Date: 10/30/07

Cate	gory	Inspected	Observation/Condition	1	
5 Bui	ilding		•		
A	A Structure		Lock, Vent, Heater		
В	Elec	trical and Telephone	ElecPhone		
С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)		
6 Lea	chate S	Storage System			
A	Tank	(External)	Internal (Y or 🕠		
A'	Flow	[,] Totalizer	Reading = <u>Go 8</u> 00 gal.		
В	Seco	ondary Containment	Liquid (Y or (V)		
С	Pipir	ng Components			
D	Elec	trical Components	LockV Light BulbsI		
E	Lead	hate Sampling	(Y or(N) (see Form C)		

Synapse Representative:	Notember	Date:	30/07	
- 7 1				

Category		Inspected	Observation/Condition						
1									
	Α	General Property Access	(4000)	a de de la companya della companya d					
	В	General Property Drainage	SPDES Outfall (001/_ 002/_ 003/_)	and the second					
2	Cell F	erimeter Components							
	Α	Perimeter and Access Roads	Clear						
	В	Ditches	Flows						
	С	Culverts	(900)						
	D	Perimeter Fence	Gates	1					
	E	Utilities	Elec Phone	1					
3	Conta	inment Cell	/						
	Α	Surface Cover System	Burrows Vegetation/_						
	В	Gas Vents (2)							
	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm						
	С	Collection Pipe / Cleanout	Dr.P						
	D	Perimeter Drains (4)							
4	Leacl	nate Collection Manhole							
	Α	Structure	External Internal						
	В	Pumps and Plumbing	Pump 1 Hours 29.5 Pump 2 Hours 214.7	1					
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	1					
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL						
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs						
	D	Manhole Interstitial Space		3 de					
	E	Conveyance Pipe							
	F	Influent Pipe	2						
	G	Confined Space Entry	(Y or N) (see Form B)						

Synapse Representative: 1 - Ke ruho	Date:	11/30/07	
-------------------------------------	-------	----------	--

(Categ	ory	Inspected	Observation/Condition	J
5	Buile	ding			
	Α	Structure		Lock, Vent, Heater	
	В	Elect	trical and Telephone	Elec Phone	, s
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leac	hate S	Storage System		
	Α	Tank	(External)	Internal (Y or N)	
	A'	Flow	Totalizer	Reading = <u> </u>	
	В	Seco	ndary Containment	Liquid (Y or N)	
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Light Bulbs	
	E	Leacl	hate Sampling	(Y or N) (see Form C)	
Ac	ddition	al Con	nments:		
		·			
_	_				
	, <u></u>	- 100			

-	-				
-		- A			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK

Synapse Representative: R. Crero Date: 12/28/07

Category		Inspected	Observation/Condition	1
1	Gene	ral Property		
	Α	General Property Access	(man)	
	В	General Property Drainage	SPDES Outfall (001 / 002 / 003 /) High Tail water	
2	Cell F	Perimeter Components	J John Wood Car	
	Α	Perimeter and Access Roads	Clear	
	В	Ditches	Low Flow	
·	С	Culverts		
	D	Perimeter Fence	Gates	i
	E	Utilities	Elec Phone	
3	Conta	inment Cell		
	A	Surface Cover System	Burrows <u>ර</u> Vegetation <u>C</u> ගහ	1/
	В	Gas Vents (2)		1/
	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout	Onp	T
	D	Perimeter Drains (4)	No Flow	V
4	Leach	ate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours [28.5] Pump 2 Hours 2/4.7	
	B'	Pump Changeover	(Y o(N))Lead Pump Lag Pump	i
	В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	
	D	Manhole Interstitial Space		
	E	Conveyance Pipe		
	F	Influent Pipe		
	G	Confined Space Entry	(Y or N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK NYSDEC SITE NO. 622003**

Synapse Representative:	R. (Creighton	Date:	28	07	
		. 1		· ·	,	

Cate	gory	Inspected	Observation/Condition	1
5 Bui	lding			
Α	Stru	cture	Lock, Vent, Heater	V
В	Elec	trical and Telephone	Elec_ Phone_	į
С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	i
6 Lea	chate S	Storage System		
A	Tank	(External)	Internal (Y or(N))	V
A'	Flow	Totalizer	Reading = <u>674 00</u> gal.	
В	Seco	ondary Containment	Liquid (Y or(N))	V
С	Pipin	g Components		V
D	Elect	trical Components	Lock Light Bulbs Need Replacement Bulb	V
E	Lead	hate Sampling	(Y or N) (see Form C)	
		Evergn	Plawing contract subnitted to een Tree of Lawn	
			to rect ruon	
-				
		-		
	 			
12-10-10-10-10-1				

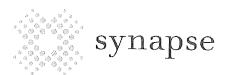
APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING


Synapse Repre	esentative: MF, RC	<u>S</u> Red	Received Alarm: <u>Y or (N</u>)				
Tested Alarm:	Y or N,		Date Received:				
Date Tested: _	8/14/07	Tim	e Received:				
Channel No.	Function	Alarm Rec'd	Testing Results				
1	Tank Level (@ 80%)		Measured: 70.5 13.5 Reading: 70.67 13.66				
2	Tank High Level (100%)		V				
3	Tank Leak		V-DRY				
4	Tank 90% Full		/				
5	High Manhole Level						
6	Manhole Leak		V				
7	Pipe Leak		V				
8	Tank Low Temperature		w/Ice Bucket				
9	Inside Temperature		72°F				
10	Outside Temperature		75°F				
11-15	Not In Use						
16	Power Off		9 Volts (Off) Byzzer 11 volts W/fower				
Reason for Ala	rm: <u>N/A</u>						
Action Taken: _							
Comments:	Amual System Tea Pump Tank Out	8					

APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

URGENT	constitute inside infor	mation and is intended for t	he use of the addressee. Una	ttorney-client privileged, may authorized use, disclosure or
⊠ FOR REVIEW	copying is strictly prol immediately notify us		I. If you have\ received this c	ommunication in error, please
☐ PLEASE COMMENT	То:	R.D. Hoffman	From:	Roger Creighton
☐ PLEASE REPLY	Company:	OCDWQ&WPC	Date:	August 8, 2007
ORIGINAL TO FOLLOW	Fax Number:	(315) 724-9812	Total Pages:	8
VIA US POSTAL SERVICE OR FEDERAL EXPRESS	Phone Number:	(315) 798-5656	Reference No:	
☐ YES	Subject:		CC:	

Mr. R.D. Hoffman,

Please find attached analytical results for the effluent water sample (LT-15) collected at, 2200 Bleecker Street, Utica, New York, former site of the Chicago Pneumatic Tool Company. We request your review and faxed acceptance to release 2,800 gallons on August 16, 2007. Thank You.

AUG 0 7 2007

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO #DANA 001-07-02

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

Leachate Sampling - 2200 Bleecker St., Uitca, NY

LSL Project ID: **0711449**

Receive Date/Time: 07/13/07 8:32

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

(315) 445-1105 NYS DOH ELAP #10248 PA DEP #68-2556 (1) LSL Central Lab, East Syracuse, NY (2) LSL North Lab, Waddington, NY (315) 388-4476 NYS DOH ELAP #10900 (3) LSL Finger Lakes Lab, Wayland, NY (585) 728-3320 NYS DOH ELAP #11667 (4) LSL Southern Tier Lab, Cuba, NY (585) 968-2640 NYS DOH ELAP #10760 (5) LSL MidLakes Lab, Canandaigua, NY (585) 396-0270 NYS DOH ELAP #11369 (6) LSL Brittonfield Lab, East Syracuse, NY (315) 437-0200 NYS DOH ELAP #10155

This report was reviewed by:

Life Science Laboratories, Inc.

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

LT-15

LSL Sample ID:

0711449-001

Location:

2200 Bleecker St., Uitca, NY

Sampled:

07/12/07 13:15

Sampled By: RC

Sample Matrix: NPW

Aı	nalytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
<u>=</u> (1)	EPA 160.2 Total Suspended Solids					
	Total Suspended Solids @ 103-105 C	<4	mg/l		7/17/07	MM
5)	•					
5)	EPA 1664 Oil + Grease by LLE	٠,٠			#/O.C.IO.F	A CIT
	Oil & Grease	<5	mg/l		7/26/07	ASL
1)	EPA 200.7 Priority Pollutant Metals					
	Cadmium	< 0.01	mg/l	7/16/07	7/18/07	DJP
	Chromium	< 0.01	mg/l	7/16/07	7/18/07	DJP
	Copper	0.059*	mg/l	7/16/07	7/18/07	DJP
	Lead	< 0.01	mg/l	7/16/07	7/18/07	DJF
	Nickel	0.059	mg/l	7/16/07	7/18/07	DJP
	Žine	0.20*	mg/l	7/16/07	7/18/07	DJP
	*As per NELAC regulation disclosure of t The result of a calibration check sample o			than the established c	ontrol limit.	
1)	EPA 608 PCB's					
	Aroclor-1016	<0.1	ug/l	7/17/07	7/22/07	KIS
	Aroclor-1221	< 0.1	ug/l	7/17/07	7/22/07	KIS
	Aroclor-1232	< 0.1	ug/l	7/17/07	7/22/07	KIS
	Aroclor-1242	< 0.1	ug/l	7/17/07	7/22/07	KIS
	Aroclor-1248	< 0.1	ug/l	7/17/07	7/22/07	KIS
	Aroclor-1254	< 0.1	ug/l	7/17/07	7/22/07	KI
	Aroclor-1260	< 0.1	ug/l	7/17/07	7/22/07	KIS
	Surrogate (DCB)	70	%R	7/17/07	7/22/07	KIS
()	EPA 608 Pesticides					
	Aldrin	< 0.02	ug/l	7/17/07	7/27/07	KIS
	alpha-BHC	< 0.02	ug/l	7/17/07	7/27/07	KIS
	beta-BHC	< 0.02	ug/l	7/17/07	7/27/07	KIS
	delta-BHC	< 0.02	ug/l	7/17/07	7/27/07	KIS
	gamma-BHC (Lindane)	< 0.02	ug/l	7/17/07	7/27/07	KIS
	Chlordane, Total	< 0.02	ug/l	7/17/07	7/27/07	KIS
	4,4'-DDD	< 0.04	ug/l	7/17/07	7/27/07	KIS
	4,4'-DDE	< 0.04	ug/l	7/17/07	7/27/07	KIS
	4,4'-DDT	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Dieldrin	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Endosulfan I	< 0.02	ug/l	7/17/07	7/27/07	KIS
	Endosulfan II	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Endosulfan sulfate	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Endrin	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Endrin aldehyde	< 0.04	ug/l	7/17/07	7/27/07	KIS
	Heptachlor	< 0.02	ug/l	7/17/07	7/27/07	KIS
	Heptachlor epoxide	< 0.02	ug/l	7/17/07	7/27/07	KIS
	Methoxychlor	< 0.2	ug/l	7/17/07	7/27/07	KIS
	Toxaphene	<5	ug/l	7/17/07	7/27/07	KI
	Surrogate (DCB)	47	%R	7/17/07	7/27/07	KI
)	EPA 624 Volatiles					
	Benzene	<1	ug/l		7/16/07	ВЕ
		<1	ug/l		7/16/07	ВΓ

Life Science Laboratories, Inc.

Date Printed:

Page 2 of 5

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

LT-15

LSL Sample ID:

0711449-001

Location:

2200 Bleecker St., Uitca, NY

Sampled:

07/12/07 13:15

Sampled By: RC

Sample Matrix: NPW

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 624 Volatiles					
Bromoform	<1	ug/l		7/16/07	BD
Bromomethane	<2	ug/l		7/16/07	BD
Carbon tetrachloride	<1	ug/l		7/16/07	BD
Chlorobenzene	<1	ug/l		7/16/07	BD
Chloroethane	<1	ug/l		7/16/07	BD
2-Chloroethylvinyl ether	<10	ug/l		7/16/07	BD
Chloroform	<1	ug/l		7/16/07	BD
Chloromethane	<1	ug/l		7/16/07	BD
Dibromochloromethane	<1	ug/l		7/16/07	BD
1,2-Dichlorobenzene	<1	ug/l		7/16/07	BD
1 ₅ 3-Dichlorobenzene	<1	ug/l		7/16/07	BD
1,4-Dichlorobenzene	<1	ug/l		7/16/07	BD
1,1-Dichloroethane	<1	ug/l		7/16/07	BD
1,2-Dichloroethane	<1	ug/l		7/16/07	BD
1,1-Dichloroethene	<1	ug/l		7/16/07	BD
trans-1,2-Dichloroethene	<1	ug/l		7/16/07	BD
1,2-Dichloropropane	<1	ug/l		7/16/07	BD
cis-1,3-Dichloropropene	<1	ug/l		7/16/07	BD
trans-1,3-Dichloropropene	<1	ug/l		7/16/07	BD
Ethyl benzene	<1	ug/I		7/16/07	BD
Methylene chloride	<1	ug/l		7/16/07	BD
1,1,2,2-Tetrachloroethane	<1	ug/l		7/16/07	BD
Tetrachloroethene	<1	ug/l		7/16/07	BD
Toluene	<1	ug/l		7/16/07	BD
1,1,1-Trichloroethane	<1	ug/l		7/16/07	BD
1,1,2-Trichloroethane	<1	ug/l		7/16/07	BD
Trichloroethene	<1	ug/l		7/16/07	BD
	<1	ug/l		7/16/07	BD
Trichlorofluoromethane (Freon 11)	<1.	ug/l		7/16/07	BD
Vinyl chloride	<1.	ug/l		7/16/07	BD
Xylenes (Total)	106	%R		7/16/07	BD
Surrogate (1,2-DCA-d4)	111	%R		7/16/07	BD
Surrogate (Tol-d8)	113	%R		7/16/07	BD
Surrogate (4-BFB)	113	/0IX		7/10/07	טט
Modified EPA 625 Semi-Volatiles					
Acenaphthene	<5	ug/l	7/17/07	7/18/07	CRT
Acenaphthylene	<5	ug/l	7/17/07	7/18/07	CRT
Anthracene	<5	ug/l	7/17/07	7/18/07	CRT
Benzidine	<20	ug/l	7/17/07	7/18/07	CRT
Benzo(a)anthracene	<5	ug/l	7/17/07	7/18/07	CRT
Benzo(b)fluoranthene	<5	ug/l	7/17/07	7/18/07	CRT
Benzo(k)fluoranthene	<5	ug/l	7/17/07	7/18/07	CRT
Benzo(ghi)perylene	<5	ug/l	7/17/07	7/18/07	CRT
Benzo(a)pyrene	<5	ug/l	7/17/07	7/18/07	CRT
4-Bromophenyl-phenylether	<5	ug/l	7/17/07	7/18/07	CRT
Butylbenzylphthalate	<5	ug/l	7/17/07	7/18/07	CRT
bis(2-Chloroethoxy)methane	<5	ug/l	7/17/07	7/18/07	CRT

Life Science Laboratories, Inc.

Page 3 of 5

Date Printed:

8/2/07

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

LT-15

LSL Sample ID:

0711449-001

Location:

2200 Bleecker St., Uitca, NY

Sampled:

07/12/07 13:15

Sampled By: RC

Sample Matrix: NPW

nalytical Method	Result	Unito	Prep	Analysis	Analys
Analyte	Result	Units	<u>Date</u>	Date & Time	Initia
Modified EPA 625 Semi-Volatiles					
bis(2-Chloroethyl)ether	<5	ug/l	7/17/07	7/18/07	CR
bis(2-Chloroisopropyl)ether	<5	ug/l	7/17/07	7/18/07	CR
4-Chloro-3-methylphenol	<5	ug/l	7/17/07	7/18/07	CR
2-Chloronaphthalene	<5	ug/l	7/17/07	7/18/07	CR
2-Chlorophenol	<5	ug/l	7/17/07	7/18/07	CR
4-Chlorophenyl-phenylether	<5	ug/l	7/17/07	7/18/07	CR
Chrysene	<5	ug/l	7/17/07	7/18/07	CF
Dibenz(a,h)anthracene	<5	ug/l	7/17/07	7/18/07	CF
Di-n-butylphthalate	<5	ug/l	7/17/07	7/18/07	CF
1,2-Dichlorobenzene	<5	ug/l	7/17/07	7/18/07	CF
1,3-Dichlorobenzene	<5	ug/l	7/17/07	7/18/07	CF
1,4-Dichlorobenzene	<5	ug/l	7/17/07	7/18/07	CF
3,3'-Dichlorobenzidine	<10	ug/l	7/17/07	7/18/07	CI
2,4-Dichlorophenol	<5	ug/l	7/17/07	7/18/07	CI
2,4-Dimethylphenol	<5	ug/l	7/17/07	7/18/07	CI
Diethylphthalate	<5	ug/l	7/17/07	7/18/07	CI
Dimethylphthalate	<5	ug/l	7/17/07	7/18/07	CI
2,4-Dinitrophenol	<10	ug/l	7/17/07	7/18/07	CI
2,4-Dinitrotoluene	<5	ug/l	7/17/07	7/18/07	CI
2,6-Dinitrotoluene	<5	ug/l	7/17/07	7/18/07	CI
Di-n-octylphthalate	<5	ug/I	7/17/07	7/18/07	CI
bis(2-Ethylhexyl)phthalate	5.4	ug/l	7/17/07	7/18/07	CI
Fluoranthene	<5	ug/l	7/17/07	7/18/07	CI
Fluorene	<5	ug/l	7/17/07	7/18/07	CI
Hexachlorobenzene	<5	ug/l	7/17/07	7/18/07	CF
Hexachlorobutadiene	<5	ug/l	7/17/07	7/18/07	CI
Hexachlorocyclopentadiene	<10	ug/l	7/17/07	7/18/07	CH
Hexachloroethane	<5	ug/l	7/17/07	7/18/07	CF
Indeno(1,2,3-c,d)pyrene	<5	ug/l	7/17/07	7/18/07	CI
Isophorone	<5	ug/l	7/17/07	7/18/07	CF
2-Methyl-4,6-dinitrophenol	<10	ug/l	7/17/07	7/18/07	CF
Naphthalene	<5	ug/l	7/17/07	7/18/07	CF
Nitrobenzene	<5	ug/l	7/17/07	7/18/07	CF
2-Nitrophenol (o-Nitrophenol)	<5	ug/l	7/17/07	7/18/07	CF
4-Nitrophenol	<5	ug/l	7/17/07	7/18/07	CF
N-Nitrosodimethylamine	<5	ug/l	7/17/07	7/18/07	CF
N-Nitrosodiphenylamine	<5	ug/l	7/17/07	7/18/07	CF
N-Nitroso-di-n-propylamine	<5	ug/l	7/17/07	7/18/07	CR
Pentachlorophenol	<10	ug/l	7/17/07	7/18/07	CR
Phenanthrene	<5	ug/l	7/17/07	7/18/07	CR
Phenol	<5	ug/l	7/17/07	7/18/07	CR
Pyrene	<5	ug/l	7/17/07	7/18/07	CR
1,2,4-Trichlorobenzene	<5	ug/l	7/17/07	7/18/07	CR
2,4,6-Trichlorophenol	<5	ug/l	7/17/07	7/18/07	CR

Page 4 of 5

Synapse Risk Management, LLC Syra

Syracuse, NY

Sample ID:

Trip Blank

LSL Sample ID:

0711449-002

Location:

Sampled:

07/12/07 0:00

Sampled By:

Sample Matrix: TB

Manayte Result Units Date Date & Time Initials	Analytical Method		<u>, , ,</u>	Prep	Analysis	Analyst
Benzence <1	Analyte	Result	Units			
Bromotichloromethane	(1) EPA 624 Volatiles			. 11		
Bromoferm	Benzene	<1	ug/l		7/16/07	BD
Bromomethane	Bromodichloromethane	<1	ug/l		7/16/07	BD
Carbon tetrachloride <1 ug/l 7/16/07 BD Chlorochenzene <1	Bromoform	<1	ug/l		7/16/07	BD
Chlorobenzene <1 ug/l 7/16/07 BD Chloroethane <1 ug/l 7/16/07 BD 2-Chloroethylvinyl ether <10 ug/l 7/16/07 BD Chloroform <1 ug/l 7/16/07 BD Chloromethane <1 ug/l 7/16/07 BD Dibromochloromethane <1 ug/l 7/16/07 BD 1,2-Dichlorobenzene <1 ug/l 7/16/07 BD 1,3-Dichlorobenzene <1 ug/l 7/16/07 BD 1,1-Dichloroethane <1 ug/l 7/16/07 BD 1,1-Dichloropropane <1 ug/l 7/16/07 BD trans-1,2-Dichloropropene <1 ug/l 7/16/07 BD trans-1,2-Dichloropropene	Bromomethane	<2	ug/l		7/16/07	BD
Chlorothane	Carbon tetrachloride	<1	ug/l		7/16/07	BD
2-Chloroethylvinyl ether	Chlorobenzene	<1	ug/l		7/16/07	BD
Chloroform <1 ug/l 7/16/07 BD Chloromethane <1 ug/l 7/16/07 BD Dibromochloromethane <1 ug/l 7/16/07 BD 1,2-Dichlorobenzene <1 ug/l 7/16/07 BD 1,4-Dichlorobenzene <1 ug/l 7/16/07 BD 1,1-Dichloroethane <1 ug/l 7/16/07 BD 1,1-Dichloropropane <1 ug/l 7/16/07 BD cis-1,3-Dichloropropane <1 ug/l 7/16/07 BD Ethyl benzene <1 ug/l 7/16/07 BD Mchylene chloride <1 ug/l 7/16/07 BD Tetrachloroethane <1 ug/l 7/16/07 BD Toluene <1 <th< td=""><td>Chloroethane</td><td><1</td><td>ug/l</td><td></td><td>7/16/07</td><td>BD</td></th<>	Chloroethane	<1	ug/l		7/16/07	BD
Chloromethane <1	2-Chloroethylvinyl ether	<10	ug/l		7/16/07	BD
Dibromochloromethane <1 ug/l 7/16/07 BD 1,2-Dichlorobenzene <1 ug/l 7/16/07 BD 1,3-Dichlorobenzene <1 ug/l 7/16/07 BD 1,4-Dichlorobenzene <1 ug/l 7/16/07 BD 1,1-Dichlorobenzene <1 ug/l 7/16/07 BD 1,2-Dichloroethane <1 ug/l 7/16/07 BD 1,1-Dichloroethane <1 ug/l 7/16/07 BD trans-1,2-Dichloroethene <1 ug/l 7/16/07 BD trans-1,3-Dichloropropane <1 ug/l 7/16/07 BD cis-1,3-Dichloropropane <1 ug/l 7/16/07 BD trans-1,3-Dichloropropane <1 ug/l 7/16/07 BD Ethyl benzene <1 ug/l 7/16/07 BD Ethyl benzene <1 ug/l 7/16/07 BD Tetrachloroethane <1 ug/l 7/16/07 BD Tolucne	Chloroform	<1	ug/l		7/16/07	BD
1,2-Dichlorobenzene	Chloromethane	<1	ug/l		7/16/07	BD
1,4-Dichlorobenzene	Dibromochloromethane	<1	ug/l		7/16/07	BD
1,4-Dichlorobenzene	1,2-Dichlorobenzene	<1	ug/l		7/16/07	BD
1,1-Dichloroethane	1,3-Dichlorobenzene	<1	ug/l		7/16/07	BD
1,2-Dichloroethane	1,4-Dichlorobenzene	<1	ug/l		7/16/07	BD
1,1-Dichloroethene <1	1,1-Dichloroethane	<1	ug/l		7/16/07	BD
trans-1,2-Dichloroethene <1 ug/l 7/16/07 BD 1,2-Dichloropropane <1 ug/l 7/16/07 BD cis-1,3-Dichloropropene <1 ug/l 7/16/07 BD trans-1,3-Dichloropropene <1 ug/l 7/16/07 BD Ethyl benzene <1 ug/l 7/16/07 BD Methylene chloride <1 ug/l 7/16/07 BD Methylene chloride <1 ug/l 7/16/07 BD I,1,2,2-Tetrachloroethane <1 ug/l 7/16/07 BD Tetrachloroethene <1 ug/l 7/16/07 BD I,1,1-Trichloroethane <1 ug/l 7/16/07 BD I,1,2-Trichloroethane <1 ug/l 7/16/07 BD Trichloroethane <1 ug/l 7/16/07 BD Trichlorofluoromethane (Freon II) <1 ug/l 7/16/07 BD Vinyl chloride <1 ug/l 7/16/07 BD W	1,2-Dichloroethane	<1	ug/l		7/16/07	BD
1,2-Dichloropropane	1,1-Dichloroethene	<1	ug/l		7/16/07	BD
cis-1,3-Dichloropropene <1	trans-1,2-Dichloroethene	<1	ug/l		7/16/07	BD
trans-1,3-Dichloropropene <1 ug/l 7/16/07 BD Ethyl benzene <1 ug/l 7/16/07 BD Methylene chloride <1 ug/l 7/16/07 BD 1,1,2,2-Tetrachloroethane <1 ug/l 7/16/07 BD Tetrachloroethene <1 ug/l 7/16/07 BD Toluene <1 ug/l 7/16/07 BD 1,1,1-Trichloroethane <1 ug/l 7/16/07 BD 1,1,2-Trichloroethane <1 ug/l 7/16/07 BD Trichloroethane <1 ug/l 7/16/07 BD Trichlorofluoromethane (Freon 11) <1 ug/l 7/16/07 BD Vinyl chloride <1 ug/l 7/16/07 BD Xylenes (Total) <1 ug/l 7/16/07 BD Surrogate (1,2-DCA-d4) 106 %R 7/16/07 BD Surrogate (Tol-d8) 109 %R 7/16/07 BD	1,2-Dichloropropane	<1	ug/l		7/16/07	BD
Ethyl benzene <1	cis-1,3-Dichloropropene	<1	ug/l		7/16/07	BD
Methylene chloride <1	trans-1,3-Dichloropropene	<1	ug/l		7/16/07	BD
1,1,2,2-Tetrachloroethane <1	Ethyl benzene	<1	ug/l		7/16/07	BD
Tetrachloroethene <1	Methylene chloride	<1	ug/l		7/16/07	BD
Toluene <1 ug/l 7/16/07 BD 1,1,1-Trichloroethane <1 ug/l 7/16/07 BD 1,1,2-Trichloroethane <1 ug/l 7/16/07 BD Trichloroethene <1 ug/l 7/16/07 BD Trichlorofluoromethane (Freon 11) <1 ug/l 7/16/07 BD Vinyl chloride <1 ug/l 7/16/07 BD Xylenes (Total) <1 ug/l 7/16/07 BD Surrogate (1,2-DCA-d4) 106 %R 7/16/07 BD Surrogate (Tol-d8) 109 %R 7/16/07 BD	1,1,2,2-Tetrachloroethane	<1	ug/l		7/16/07	BD
1,1,1-Trichloroethane <1	Tetrachloroethene	<1	ug/l		7/16/07	BD
1,1,2-Trichloroethane <1	Toluene	<1	ug/l		7/16/07	BD
Trichloroethene <1	1,1,1-Trichloroethane	<1	ug/l		7/16/07	BD
Trichlorofluoromethane (Freon 11) <1 ug/l 7/16/07 BD Vinyl chloride <1 ug/l 7/16/07 BD Xylenes (Total) <1 ug/l 7/16/07 BD Surrogate (1,2-DCA-d4) 106 %R 7/16/07 BD Surrogate (Tol-d8) 109 %R 7/16/07 BD	1,1,2-Trichloroethane	<1	ug/l		7/16/07	BD
Vinyl chloride <1	Trichloroethene	<1	ug/l		7/16/07	BD
Xylenes (Total) <1 ug/l 7/16/07 BD Surrogate (1,2-DCA-d4) 106 %R 7/16/07 BD Surrogate (Tol-d8) 109 %R 7/16/07 BD	Trichlorofluoromethane (Freon 11)	<1	ug/l		7/16/07	BD
Surrogate (1,2-DCA-d4) 106 %R 7/16/07 BD Surrogate (Tol-d8) 109 %R 7/16/07 BD	Vinyl chloride	<1	ug/l		7/16/07	BD
Surrogate (Tol-d8) 109 %R 7/16/07 BD	Xylenes (Total)	<1	ug/l		7/16/07	BD
	Surrogate (1,2-DCA-d4)	106	%R		7/16/07	BD
Surrogate (4-BFB) 113 %R 7/16/07 BD	Surrogate (Tol-d8)	109			7/16/07	BD
	Surrogate (4-BFB)	113	%R		7/16/07	BD

Page 5 of 5

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

<u>Method</u>	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	TCMX	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA 50.450	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

TST

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

*Additional Charges LSL ID# 11 00 O may apply Preserv Check 0410-400-000 DANA 001-07-02 PCBs/Pesticides by EPA Method 608 Oil and Grease by EPA Method 1664 Select Metals by EPA Method 200.7 3-Day * 7-Day* SVOCs by EPA Method 625 Date Needed or Special Instructions: TSS by EPA Method 160.2 VOCs by EPA Method 624 Analyses (Cd, Cr, Cu, Pb, Ni, Zn) Pre-Authorized Authorization or P.O. # Y Y Y Next Day* SL Project Number: 2-Day * LSL Southern Tier Lab. **Turnaround Time** 585-968-2640 Phone: 585-968-2640 Cuba, NY 14727 30 East Main St. ton! size/type Amber plastic plastic 1-Liter Amber 250-mil 1-Liter 1-Liter Amber 14 DAY |X 40 ml/ Normal Voa Containers Fax: N # N 16 N. Main St., PO Box 424 Leachate Sampling / 2200 Bleecker St, Utica, NY LSL Finger Lakes Lab. Phone: 585-728-3320 585-728-2711 Preserv. 天 Added Wayland, NY 14572 HNO3 모 ᄗ Historic Bennett Warehouse 325 East Water Street Zip: 13202 Fax: 475-3780 Matrix Fax: 3 ≥ ≥ ≥ ≥ ≥ ≥ rcreighton@synapseriskmanagement.com Grab Grab Grab grab/comp Grab Grab Grab Synapse Risk Management Waddington, NY 13694 131 St. Lawrence Ave. Sample Time 13115 Phone: 315-388-4476 Fax: 315-388-4061 Roger Creighton LSL North Lab. Syracuse, NY 475-3700 Sample 1/12/07 Date Client Project ID/Client Site ID Client's Sample Identifications E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 5854 Butternut Drive Report Address: LSL Central Lab. Company: City/State: Trip Blank Phone: Street: Name: LT-15 _T-15 LT-15 LT-15 LT-15 LT-15 Fax:

d C

S

0

aca)

Time

20/*8]/*2 Date

C *** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY***

Rec'd for Lab By: Received Intact:

Relinquished By: Shipment Method:

Relinquished By Sampled By:

Received By: Received By

Custody Transfers

LSL COC

Leachate Tank

Containers this C-O-C:

Temp. of samples:

.SL use only:

ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

51 Leland Ave, PO Box 442, Utica, NY 13503-0442

(315) 798-5656 wpc@ocgov.net

FAX 724-9812

Anthony J. Picente, Jr. County Executive

Steven P. Devan, P.E. Commissioner

August 8, 2007

RECEIVED
AUG 1 3 2007

MR. ROGER CREIGHTON SYNAPSE RISK MANAGEMENT LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE NY 13202

Re: Utica Holding Company Storm Sewer, Permit No.GW-050

Dear Mr. Creighton:

Analyses for sample LT-15 faxed on 08/08/07, representing 2,800 gallons of effluent water, show compliance with discharge limits specified in Permit No. GW-050 for the Utica Holding Company Storm Sewer Project. The wastewater is acceptable for discharge.

Sincerely,

THE ONEIDA COUNTY DEPARTMENT OF WATER QUALITY & WATER POLLUTION CONTROL

R.D. Hoffman

Industrial Wastes Chemist

cc: Synapse FAX (315)-475-3780

APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

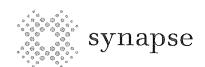
WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighto Date: 4/18/07

Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	16.51	465.47	3.69	461.78	6.82	14:00	
MVV-13A	10.92	10,93	469.23	2.14	467.09	8.79	11:05	
MVV-14	13.00	12.87	478.37	2,99	475.38	9.88	10.06	
MW-17	11.25	11.25	466.02		454,87	QÎ	12:05	
MW-18	11.73	11.72	475.96	4,72	471,24	7,00	13:20	
SCT CO-1	NA	NA	472.30		465,20		H: 15	
SCT CO-2	NA	NA	473.42	7.73	45,69	7 options to the Control of the Cont	1425	
SCT CO-3	NA	NA	471.21	- Land Strong years (State Strong)	465.71	Contraction of the Contraction o	14:30	
NCT CO-1	NA	NA	464.70		453,42	e-villanaus/fields	1435	
MH-2 (Collection)	12.80	NA	465.31	11.15	453.33	ingganeralizador	4:40	

Notes:


2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

3) MW = Monitoring Well

5) NCT = Northern Collection Trench

7) MH = Manhole

General Comments:			

¹⁾ Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

⁴⁾ SCT = Southern Collection Trench

⁶⁾ CO = Clean Out (Depths and Elevations are Approximate)

WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 1. Creighton Date: 10/23/07

Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.51	465.47	3.76	467.71	6.75	14:25	
MW-13A	10.92	10.93	469.23	4,06	465.17	6.87	11:29	
MW-14	13.00	12.96	478.37	6.95	471.42	6.01	10.05	
MW-17	11.25	11. Z5	466.02	11.24	f-57. 78	0.01	13.08	
MW-18	11.73	11.72	475.96	6.71	469.25	5.01	13:50	
SCT CO-1	NA	AN	472.30	Agreement to the same of the s	465.20	-	14:45	
SCT CO-2	AN	NA	473.42	7.72	465,70		14:50	
SCT CO-3	AN	NA	471.21		465.71		14:55	
NCT CO-1	NA	NA	464.70		453.42		14:59	
MH-2 (Collection)	12.80	AN	465.31	11.98	453.33		15:10	

Notes:

2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

3) MW = Monitoring Well

5) NCT = Northern Collection Trench

7) MH = Manhole

General Comments:					
	 	 		 	

¹⁾ Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

⁴⁾ SCT = Southern Collection Trench

⁶⁾ CO = Clean Out (Depths and Elevations are Approximate)

APPENDIX E GROUNDWATER SAMPLING LOGS – FORM E

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse	e Repres	sentative	K. Cre	ghton 1	Date:	3/07	v	Vell Number:	MW-6R
			_		MONITORING				
PID Mod	del:		B	and continued invaluational districts and the content of the content	parting and a second	ppm		At Well _	ppm
				WEI	LL PURGING				
Purge \					<u>Purge Me</u>				
	•	h of Well	(from Form C)	Bailer	Type: Re	eusable		Disposable
Dedicate									
			rom Form C)	1 (0.0)		ume Genera	ated		
			olumes to Be Ρι	- , .	400	Gallons	~7	310 - "	
	2" diamete	<mark>alculatio</mark> r e <i>r well)</i>	TD (ft.)	- <u> </u>	< <u>.163</u> Vol/ft.	X #VOLS	_ = <u> \$ </u>	<u> </u>).163 for 2" OD)
			FIE	LD PARAM	ETER MEASU	REMENT			
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observ	ations
13:20		50.0	0.655	6.24	11,18	7500	6,58		
13:25	2	6,03	0,635	7,91	io. 47	7500	6,50		
13:,35	3	5.69	0.629	9,46	6.04	447	6,51		
					•				
				-					
Sample	ID:	W-6	R (14:20		L SAMPLING	ain of Cust	ody):		
Genera	l Notes:								
		-							
	·								

Page 1 of 1

Synaps	e Repres	sentative	R. Creic	phton 1	Date: 4/18	3/07	\	/Vell I	Number:	MW- [_	<u>3A</u>
				AIR I	MONITORING						
PID Mo	del:		B	ackground:		opm		,	At Well _		ppm
		ordini elitika semit heta jaga kilata		WEI	L PURGING		azi ele alda alda ala anteriore de la come no anteriore della come no anterior				
Purge \	<u>/olume</u>				Purge Me	thod	Į.				
TD = To	otal Dept	h of Wel	l (from Form C	;)	Bailer	Type: Re	eusable			Dispos	sable
Dedicate	ed										
WL = Wa	ater Leve	l Depth (f	rom Form C)		<u>Actual Vol</u>	ume Gener	ated				
# VOL =	Number	of Well V	olumes to Be P	urged (3-9)		Gallons		~ ~			
Purge V	olume Ca 2" diamet	<mark>alculatio</mark> i er well)	<u>n</u> : (11.09 TD (#)	- 2. (4) x	x163 Vol/ft.	x <u>3</u>	_= <u>ti</u>	<u> 3 </u>	_Gallons	160 for 0	"
		or won,	FIE	ELD PARAM	ETER MEASU	REMENT	Furge	VOI.	(VOI/IL – U.	1031012	<i>(UD)</i>
		10000				r s s kapas s		1000110			
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)		Observa	ations	
12:30	Congania	7.39	0,557	8.75	4,80	ZOT	6.91				
12:41	2	6,70	0. 554	10.12	10,20	77.1	6.98				
12:52	3	611	0.548	10.98	5.04	172	7.01				
	2.40								,,,,,,,		
				<u> </u>							
	ID:/	\W-13	3A(14:00) MS/MSC	L SAMPLING) iving Lab (Cha	in of Cust	ody):				

Synapse Representative:	Creighton D	Date: 4/18	07	We	ll Number: <u>M</u>	w-14
	AIR N	ONITORING				
PID Model:	Background: _	F	opm		At Well	ppm
	WEL	L PURGING				
Purge Volume		Purge Me	<u>thod</u>			
TD = Total Depth of Well (from	m Form C)	Bailer	Type: Re	eusable	(Disposable
Dedicated			•			The second secon
WL = Water Level Depth (from F	Form C)	Actual Vol	ume Genera	ated_		
# VOL = Number of Well Volume	es to Be Purged (3-9)		Gallons			
Purge Volume Calculation: (for 2" diameter well)	(12.87 - 2.99)x	163	x_3	_=4.83	Gallons	
(for 2" diameter well)	TD (ft.) WL (ft.)	Vol/ft.	#VOLS	Purge Vo	$V_{0} = 0.16$	3 for 2" OD)
	FIELD PARAME	ETER MEASU	REMENI			
	nductivity Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observatio	ons
11:30 1 4.78 0,	266 6.42	7:15	10.5	630		
	275 8.92	1,52	10.0	6.59		
	272 10.96	0.87	8.1	6.86		
	2/0 10.16	0,01	0:1	0.00		
Sample ID:MW - General Notes:	(12.2)	SAMPLING	in of Cust	ody):		

Synaps	e Repres	entative	R. Crew	htos 1	Date: <u>4/8</u>	07	V	Vell Number: <u>MW- </u> [_
		۸ ، ۸		AIR	MONITORING				
PID Mo	del:	<u>VA</u>	В	ackground:		opm		At Well <u>NA</u>	ppm
				WEI	LL PURGING	**			
Purge \	/olume				Purge Me	thod			
TD = To	otal Deptl	n of Well	(from Form C	·)	Bailer	Type: Re	usable	Dispos	able
Dedicate	ed								
WL = W	ater Level	Depth (f	rom Form C)		Actual Vol	ume Genera	<u>ited</u>		Secretary Secret
# VOL =	Number o	of Well Vo	olumes to Be Pi	urged (3-9)		Gallons	<u>.</u>		
<u>Purge V</u>	olume Ca	lculation	<u>ı: (il.25</u>	- 11.15)	< <u>.163</u> <i>Vol/ft.</i>	х <u>З</u>	_ =	5 Gallons	
(for I	2" diamete	er well)					Purge	Vol. (Vol/ft = 0.163 for 2	'OD)
			r it	LU PARAIVI	ETER MEASU	KEWENI			
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations	
					100				
			1, 174 24 20						
				WEL	L SAMPLING				(Andrewson street, Str
Sample	ID:			_ Rece	iving Lab (Cha	ain of Cust	ody):	-	
Genera	l Notes:								
		*							
			THE WEST CO.						

Synaps	e Repres	sentative	R. Creig	iton 1	Date:	18/07	v	Vell Number: <u>MW-/</u> 8
		A 1 A	Ü		MONITORING			./^
PID Mo	del:	NH	B	ackground:	NA	ppm		At Wellppm
				WEI	L PURGING			
Purge \	<u>/olume</u>				<u>Purge Me</u>	thod		part .
TD = Tc	otal Depti	h of Well	(from Form C)	Bailer	Type: Re	eusable	Disposable
Dedicate	ed							
WL = Wa	ater Level	Depth (fr	om Form C)			ume Genera	<u>ated</u>	
# VOL =	Number	of Well Vo	olumes to Be Pu			Gallons		ž
Purge V	olume Ca 2" diamete	alculation	$\underline{1}: (\underline{11.72})$	- <u>'+ / Z</u>) x W/ (#)	c <u>.163</u> Vol/ft.	x 3	_ = <u></u>	Gallons Vol. (Vol/ft = 0.163 for 2" OD)
(101.2	<u>uanno</u>	or won,			ETER MEASU		ruige	VOI. (VOI/IL = 0.1031012 OD)
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
14:10	**************************************	7.10	0.655	7.14	4,60	440	6.92	Orange Color
14:06	Ż	6,03	0.642	8.96	1.67	53,1	6.94	Clear
14.22	3	667	0.637	9,23	5,45	185	7.00	Orange
							1100	
								V
						<u> </u>		
Sample Genera	A	NW-1	14:40 B(Dup-1	104190	•	ain of Cust	:ody):	

Synaps	e Repres	sentative	K. Creigh	nton	Date: 10 2	3/07	V	Vell Number:	MW-	6R
				AIR	MONITORING					Marie Samuel Control of the Control
PID Mo	del:	NA	В	ackground:	_ NA	ppm		At Well	NA	ppm
				WE	LL PURGING				are Stands Marine Con	
Purge \	<u>Volume</u>				Purge Me	thod				
TD = To	otal Depti	h of Wel	l (from Form C	;)	Bailer	Type: Re	eusable		Disp	osable
Dedicate	ed									
WL = W	ater Level	Depth (f	rom Form C)		<u>Actual Vol</u>	ume Genera	ated			
# VOL =	Number	of Well V	olumes to Be Pu		3					
	olume Ca 2" diamete		<u>n</u> : (<u>10.51</u> TD (ft.)	- <u>3.76</u>)	x <u>.163</u>	.× <u>3</u>	_= <u>3.3</u>			
(101.2	z ulaniet	er well)	CONTRACTOR STATE OF S	WL (ft.)	Vol/ft. IETER MEASU	#VOLS	Purge	Vol. (Vol/ft =	0.163 foi	r2" OD)
	, ···		· · ·			1 / 12 1 / 1 / 1				
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Obser	vations	
14:00)	18.8	0.557	3.76	9.81	244	7.03			
14:15	2	18.Z	0.559	6.71	10.06	110	7.09		-	
14:20	3	17.4	0.610	7.24	10.10	109	7.12			
				•		•				
				WEI	L SAMPLING					dayaga 225 yakan lala
Sample Genera			(14:25) -GR (MS/1	_ Rece	iving Lab (Cha		ody):	-ife Science	Lak	<u>S</u>

Synaps	se Repre	sentative	: K. Creigh	to	Date: 10/23	3/07		Well Number:	MW-	13 A
PID Mo	odel:	AN	B	AIR ackground:	MONITORING NA	ppm		At Well	AN	ppm
				WE	LL PURGING					SENSON NO S
<u>Purge '</u>	<u>Volume</u>				Purge Me	thod				
TD = To	otal Dept	h of Wel	l (from Form C	;)	Bailer	Type: Re	eusable		Disp	osable
Dedicate	ed									
WL = W	ater Leve	l Depth (f	rom Form C)		<u>Actual Vol</u>	ume Genera	ated			
# VOL =	Number	of Well V	olumes to Be P	urged (3-9)	3_	Gallons				
Purge V	<mark>'olume Ca</mark> 2" diamete	alculatio	n: (10.93	- <u>4.06</u>)	x <u>.163</u> Vol/ft.	x_ 3	_=_ <u>3.</u>	H Gallons		
(101)	z ulamete	er weii)	ID (π.)	WL (tt.)	Vol/ft. IETER MEASU	#VOLS	Purge	Vol. (Vol/ft = 0	0.163 for	·2" OD)
			1 14	- LD I MIMIA	ILIEN WEASU	KEWENI				
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observ	/ations	
11:10	1	18.5	0.541	4.06	10.20	46	7.42			
11215	2	18.8	0.549	6.72	10.41	172	7.05		-	
11329	3	18.3	0.551	7.12	10.46	196	7-01		,	
	angalan filologiji por como en filologija se r			30/2-1			Control of the second second		io nata in Carlo de la car	- Programme and a more
	M	h/_12	A (11:29)		L SAMPLING			1 6.		
Sample	ID: <u>/ \</u>	W-131	7 (11.21)	_ Recei	iving Lab (Cha	in of Cust	ody):	<u> </u>		
General	l Notes:	M۱	V-LJA MO							

Synaps	se Repr	esentative	: Ki Crei	ghtos	Date: 10	23/07		Well Number:	MW-	14
		.10		AIR	MONITORING	3			ne l'emples en successipazionesses	
PID Mo	odel:	AN	B	ackground:	AW	_ ppm		At Well _	NA	_ ppm
				WE	LL PURGING		<u> Tayasa Aray</u> ganasana <u>n y</u> ya			
<u>Purge</u>	<u>Volume</u>	2			Purge N	<u>lethod</u>			-	_
TD = T	otal De	oth of Wel	l (from Form C	;)	Baile	r Type: R	eusable		Disn	osable
Dedicat	ed								- /	
WL = W	/ater Lev	/el Depth (f	rom Form C)		Actual Vo	olume Gener	ated			
# VOL =	· Numbe	r of Well V	olumes to Be Pi	urged (3-9)	10.5	Callona				
Purge V	olume (<u>Calculatio</u>	n: (<u>iz.96</u> TD (ft.)	- 6.95	x <u>.163</u>	_x <u>_</u>	_= <i>2</i> .	Gallons		
(101	z ulanie	eter well)	1D (ft.)	WL (ft.)	Vol/ft. IETER MEAS	#VOLS	Purge	Vol. (Vol/ft = ().163 for	2" OD)
			1 1 1	LDIANAN	ILIEN MEAS	UKEWEN I				
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observ	ations	
10:06		14.9	0,512	6.95	12.20	209	7.04			
10:15	Z	14.0	0.438	11.70	11,79	9	7.12			
D	RY-									
								•		
Sample Genera			(11:30) -14- Meta	_ Rece	L SAMPLING		ody):	LSL		
									<u></u>	

Synaps	e Repre	sentative	: K. Creig	btos	Date:	23/07	\	Well Number:	MW-	18
		110		AIR	MONITORING				4	
PID Mo	del:	NA_	В	ackground:	_NA	ppm		At Well _	NA	ppm
				WE	LL PURGING	al agram the magainst all the second and the second				general integrations
Purge \	<u>Volume</u>				Purge Me	thod				
TD = To	otal Dept	th of Wel	l (from Form C	;)	Bailer	Type: Re	eusable		Disp	osable
Dedicate	ed									
WL = W	ater Leve	l Depth (f	rom Form C)		<u>Actual Vol</u>	ume Genera	ated			
# VOL =	Number	of Well V	olumes to Be Pu	urged (3-9)	_3_	Gallons				
Purge V	<mark>olume C</mark> 2" diamet	alculation	$\underline{n}: (11.72)$	- <u>6.71</u>);	x <u>.163</u> Vol/ft.	x_3	_ = <u>Z</u> .	┴ Gallons		
(101.2	z diamet	er wen,	FIE	LD PARAM	VOI/IT. IETER MEASU	#VOLS	Purge	Vol. (Vol/ft = 0).163 for	·2" OD)
						I VEIRICIAL				
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observ	ations	
13:30		163	0.684	6.71	11.30	177	6.88			
13:40	2	15.4	0,676	6.93	11.42	41	6-91			
13:47	3	15.2	0671	10.44	11.46	28	6.96			
					, <u>v</u>		0,10			
	· · · · · · · · · · · · · · · · · · ·									
and the second s				\A/P1	I CARRELINA					The stands are the contractions
			18 (Metal	Rece	L SAMPLING iving Lab (Cha			LSL		

APPENDIX F GROUNDWATER ANALYTICAL DATA

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO #DANA 01-07 T02

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0705819

Receive Date/Time: 04/19/07 16:08

Project Received by: LMG

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

(1) LSL Central Lab, East Syracuse, NY	(315) 445-1105	NYS DOH ELAP #10248 PA DEP #68-2556
• • • • • • • • • • • • • • • • • • • •	,	
(2) LSL North Lab, Waddington, NY	(315) 388-4476	NYS DOH ELAP #10900
(3) LSL Finger Lakes Lab, Wayland, NY	(585) 728-3320	NYS DOH ELAP #11667
(4) LSL Southern Tier Lab, Cuba, NY	(585) 968-2640	NYS DOH ELAP #10760
(5) LSL MidLakes Lab, Canandaigua, NY	(585) 396-0270	NYS DOH ELAP #11369
(6) LSL Brittonfield Lab, East Syracuse, NY	(315) 437-0200	NYS DOH ELAP #10155

This report was reviewed by:

Life Science Laboratories, Inc.

Date: 5/8/07

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0705819-001

Location: Sampled:

2

2200 Bleecker St., Utica

04/19/07 14:20

Sampled By: RC

Sample Matrix: NPW

\mathbf{A}	nalytical Method			Prep	Analysis	Analyst
_	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 200.7 Priority Pollutant Metals					
	Chromium	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Copper	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Lead	0.013	mg/l	4/20/07	5/1/07	DJP
	Zinc	< 0.01	mg/l	4/20/07	5/1/07	DJP
(1)	EPA 8082 PCB's					
	Aroclor-1016	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1221	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1232	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1242	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1248	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1254	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1260	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Surrogate (DCB)	92	%R	4/26/07	4/26/07	CRT
(1)	EPA 8260B Volatiles (Partial List)					
	Vinyl chloride	<1	ug/l		4/21/07	BD
	Trichloroethene	<1	ug/l		4/21/07	BD
	trans-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	cis-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	Surrogate (1,2-DCA-d4)	101	%R		4/21/07	BD
	Surrogate (Tol-d8)	108	%R		4/21/07	BD
	Surrogate (4-BFB)	94	%R		4/21/07	BD

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-13A

LSL Sample ID:

0705819-002

Location: Sampled: 2200 Bleecker St., Utica

04/19/07 14:00

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Priority Pollutant Metals					
Chromium	< 0.01	mg/l	4/20/07	5/1/07	DJP
Copper	< 0.01	mg/l	4/20/07	5/1/07	DJP
Lead	0.013	mg/l	4/20/07	5/1/07	DJP
Zinc	0.024	mg/l	4/20/07	5/1/07	DJP
(1) EPA 8082 PCB's					
Aroclor-1016	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1221	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1232	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1242	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1248	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1254	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1260	< 0.1	ug/l	4/26/07	4/26/07	CRT
Surrogate (DCB)	79	%R	4/26/07	4/26/07	CRT
(1) EPA 8260B Volatiles (Partial List)					
Vinyl chloride	<1	ug/l		4/20/07	BD
Trichloroethene	<1	ug/l		4/20/07	BD
trans-1,2-Dichloroethene	<1	ug/l		4/20/07	BD
cis-1,2-Dichloroethene	<1	ug/l		4/20/07	BD
Surrogate (1,2-DCA-d4)	103	%R		4/20/07	BD
Surrogate (Tol-d8)	107	%R		4/20/07	BD
Surrogate (4-BFB)	94	%R		4/20/07	BD
Surrogate (4-BFB)	94	%R		4/20/07	

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

0705819-003

Location:

2200 Bleecker St., Utica

Sampled:

04/19/07 13:20

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Priority Pollutant Metals					
Chromium	< 0.01	mg/l	4/20/07	5/1/07	DJP
Copper	< 0.01	mg/l	4/20/07	5/1/07	DJP
Lead	< 0.01	mg/l	4/20/07	5/1/07	DJP
Zinc	< 0.01	mg/l	4/20/07	5/1/07	DJP
(1) EPA 8082 PCB's					
Aroclor-1016	<0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1221	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1232	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1242	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1248	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1254	< 0.1	ug/l	4/26/07	4/26/07	CRT
Aroclor-1260	< 0.1	ug/l	4/26/07	4/26/07	CRT
Surrogate (DCB)	80	%R	4/26/07	4/26/07	CRT
(1) EPA 8260B Volatiles (Partial List)					
Vinyl chloride	<1	ug/l		4/21/07	BD
Trichloroethene	<1	ug/l		4/21/07	BD
trans-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
cis-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
Surrogate (1,2-DCA-d4)	100	%R		4/21/07	BD
Surrogate (Tol-d8)	107	%R		4/21/07	BD
Surrogate (4-BFB)	94	%R		4/21/07	BD

Page 4 of 8

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

MW-18

LSL Sample ID:

0705819-004

Location: Sampled:

IAT AA - 10

2200 Bleecker St., Utica

04/19/07 14:40

Sampled By: RC

Sample Matrix: NPW

Aı	nalytical Method			Prep	Analysis	Analyst
_	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 200.7 Priority Pollutant Metals					
	Chromium	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Copper	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Lead	0.014	mg/l	4/20/07	5/1/07	DJP
	Zine	< 0.01	mg/l	4/20/07	5/1/07	DJP
(1)	EPA 8082 PCB's					
	Aroclor-1016	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1221	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1232	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1242	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1248	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1254	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1260	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Surrogate (DCB)	106	%R	4/26/07	4/26/07	CRT
(1)	EPA 8260B Volatiles (Partial List)					
	Vinyl chloride	7.5	ug/l		4/21/07	BD
	Trichloroethene	<1	ug/l		4/21/07	BD
	trans-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	cis-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	Surrogate (1,2-DCA-d4)	99	%R		4/21/07	BD
	Surrogate (Tol-d8)	107	%R		4/21/07	BD
	Surrogate (4-BFB)	94	%R		4/21/07	BD

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

Dup-1 041907

LSL Sample ID:

0705819-005

Location: Sampled:

2200 Bleecker St., Utica

04/19/07 0:00

Sampled By: RC

Sample Matrix: QC, NPW

Ar	nalytical Method			Prep	Analysis	Analyst
_	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 200.7 Priority Pollutant Metals					
	Chromium	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Copper	< 0.01	mg/l	4/20/07	5/1/07	DJP
	Lead	0.014	mg/l	4/20/07	5/1/07	DJP
	Zinc	< 0.01	mg/l	4/20/07	5/1/07	DJP
(1)	EPA 8082 PCB's					
	Aroclor-1016	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1221	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1232	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1242	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1248	<0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1254	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Aroclor-1260	< 0.1	ug/l	4/26/07	4/26/07	CRT
	Surrogate (DCB)	72	%R	4/26/07	4/26/07	CRT
(1)	EPA 8260B Volatiles (Partial List)					
	Vinyl chloride	7.4	ug/l		4/21/07	BD
	Trichloroethene	<1	ug/l		4/21/07	BD
	trans-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	cis-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
	Surrogate (1,2-DCA-d4)	99	%R		4/21/07	BD
	Surrogate (Tol-d8)	107	%R		4/21/07	BD
	Surrogate (4-BFB)	96	%R		4/21/07	BD

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-13A Matrix Spike

LSL Sample ID:

0705819-006

Location: Sampled:

2200 Bleecker St., Utica

04/19/07 0:00

Sampled By: RC

Sample Matrix: QC, NPW

9/0 / 0:00 Sampled By: F

Ar	nalytical Method			Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 200.7 Priority Pollutant Metals					
	Chromium	105	%R	4/20/07	5/1/07	DJP
	Copper	98	%R	4/20/07	5/1/07	DJP
	Lead	96	%R	4/20/07	5/1/07	DJP
	Zinc	97	%R	4/20/07	5/1/07	DJP
(1)	EPA 8082 PCB's					
	Aroclor-1016			4/26/07	4/26/07	CRT
	Aroclor-1221			4/26/07	4/26/07	CRT
	Aroclor-1232			4/26/07	4/26/07	CRT
	Aroclor-1242	114	%R	4/26/07	4/26/07	CRT
	Aroclor-1248			4/26/07	4/26/07	CRT
	Aroclor-1254			4/26/07	4/26/07	CRT
	Aroclor-1260			4/26/07	4/26/07	CRT
	Surrogate (DCB)	95	%R	4/26/07	4/26/07	CRT
<i>(1)</i>	EPA 8260B Volatiles (Partial List)					
	Vinyl chloride	96	%R		4/20/07	BD
	Trichloroethene	97	%R		4/20/07	BD
	trans-1,2-Dichloroethene	90	%R		4/20/07	BD
	cis-1,2-Dichloroethene	89	%R		4/20/07	BD
	Surrogate (1,2-DCA-d4)	102	%R		4/20/07	BD
	Surrogate (Tol-d8)	102	%R		4/20/07	BD
	Surrogate (4-BFB)	90	%R		4/20/07	BD

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-13A Matrix Spike Duplicate

LSL Sample ID:

0705819-007

Location:

2200 Bleecker St., Utica

Sampled:

04/19/07 0:00

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 200.7 Priority Pollutant Metals					
Chromium	24	RPD	4/20/07	5/1/07	DJP
Copper	26	RPD	4/20/07	5/1/07	DJP
Lead	5.4	RPD	4/20/07	5/1/07	DJP
Zinc	38	RPD	4/20/07	5/1/07	DJP
(1) EPA 8082 PCB's					
Aroclor-1016			4/26/07	4/26/07	CRT
Aroclor-1221			4/26/07	4/26/07	CRT
Aroclor-1232			4/26/07	4/26/07	CRT
Aroclor-1242	<1	RPD	4/26/07	4/26/07	CRT
Aroclor-1248			4/26/07	4/26/07	CRT
Aroclor-1254			4/26/07	4/26/07	CRT
Aroclor-1260			4/26/07	4/26/07	CRT
Surrogate (DCB)	71	%R	4/26/07	4/26/07	CRT
(1) EPA 8260B Volatiles (Partial List)					
Vinyl chloride	6	RPD		4/20/07	BD
Trichloroethene	2	RPD		4/20/07	BD
trans-1,2-Dichloroethene	2	RPD		4/20/07	BD
cis-1,2-Dichloroethene	2	RPD		4/20/07	BD
Surrogate (1,2-DCA-d4)	101	%R		4/20/07	BD
Surrogate (Tol-d8)	103	%R		4/20/07	BD
Surrogate (4-BFB)	91	%R		4/20/07	BD
Comple ID: Trip Blank		TOT	C	0.70.70.40	german and the second

Sample ID:

Trip Blank

LSL Sample ID:

0705819-008

Location:

Sampled:

04/19/07 0:00

Sampled By:

Sample Matrix: TB

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst
	Kesuit	Units	Date	Date & Time	Initials
(I) EPA 8260B Volatiles (Partial List)					
Vinyl chloride	<1	ug/l		4/21/07	BD
Trichloroethene	<1	ug/l		4/21/07	BD
trans-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
cis-1,2-Dichloroethene	<1	ug/l		4/21/07	BD
Surrogate (1,2-DCA-d4)	101	%R		4/21/07	BD
Surrogate (Tol-d8)	107	%R		4/21/07	BD
Surrogate (4-BFB)	94	%R		4/21/07	BD

Page 8 of 8

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

<u>Method</u>	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	TCMX	80-120	NA
EPA 508	DCB	70-130	NA NA
EPA 515.4	DCAA	70-130	NA NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA NA
EPA 551.1	Decafluorobiphenyl	80-120	NA NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA.
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA.
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260 EPA 8270, AE	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE EPA 8270, BN	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
LFA 0270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

	Units Key:	ug/l = microgram per liter
	}	ug/kg = microgram per kilogram
İ		mg/l = milligram per liter
		mg/kg = milligram per kilogram
		%R = Percent Recovery

Life Science Laboratories, Inc

CHAIN OF CUSTODY RECORD 16 N. Main St., PO Box 424 LSL Finger Lakes Lab. Phone: 585-728-3320 585-728-2711 Wayland, NY 14572

LSL Southern Tier Lab. Cuba, NY 14727 30 East Main St.

Phone: 585-968-2640

585-968-2640

Fax:

Turnaround Time

Next Day* 2-Day * 14 DAY Normal

Date Needed or Special Instructions:

Authorization or P.O. # -SL Project Number:

 Syracuse, NY
 Zip: 13202

 475-3700
 Fax: 475-3780

 rcreighton@synapseriskmanagement.com

Historic Bennett Warehouse 325 East Water Street

Roger Creighton

Synapse

City/State:

Phone:

Company:

Name:

Fax:

Street:

SPDES / 2200 Bleecker St, Utica, NY

Preserv.

Containers

size/type

Added

Matrix

l ype

Sample

Sample Date

Client's Sample Identifications

Client Project ID/Client Site ID

grab/comp

Time

Select VOCs by EPA Method 8260 (cis- &

trans-1,2-DCE; TCE; and vinyl chloride)

voa

N

오

≥

Grab

7.20 5.20

生での

\$ P

#U 1S1

Preserv Check 000

102

Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)

PCBs by EPA Method 8082

Amber

≥

Grab

17:20

40 ml/

Voa

 α

ᄗ

≥

Grab

から上

MW-13A

MW-6R

MW-6R

WW-13A

MW-14

MW-14

WW-18

≥

Grab

でいた

2

せたら

Select VOCs by EPA Method 8260 (cis- &

PCBs by EPA Method 8082

Amber 40 ml/

≥

Grab

3:20

Voa

N

ᄗ

≥

Grab

3:20

trans-1,2-DCE; TCE; and vinyl chloride)

SSA SSA

Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)

PCBs by EPA Method 8082

Amber

≥

Grab

工工

1-Liter

Voa

ᄗ

≥

Grab

无子

200 のなった

25.37

Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)

PCBs by EPA Method 8082

Amber

Analyses

DANA 01-07 T02

*Additional Charges

may apply

3-Day* 7-Day*

Pre-Authorized

202-224-0743

SynapseRiskManage

0705819

E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 Report Address:

5854 Butternut Drive

-SL Central Lab.

Waddington, NY 13694 131 St. Lawrence Ave. Phone: 315-388-4476 315-388-4061 Fax:

LSL North Lab.

TST

Semi-AnnualGW-VOCs&PCBs

C: Shipment Method: "
**** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY***

LSL COC Rec'd for Lab By: Received By: Relinquished By: Relinquished By Containers this C-O-C: emp. of samples:

1250

Sampled By

ころ

O 0874

Time

Date

... Q

1000

5

Select VOCs by EPA Method 8260 (cis- &

PCBs by EPA Method 8082

I-Liter Amber 40 ml/

Voa

N

모

≥

Grab

300

1001 1001 1001

MW-18

trans-1,2-DCE; TCE; and vinyl chloride)

PCBs by EPA Method 8082

Amber

N N

≥

Grab

MS/MSD MW-13A

.SL use only:

rip Blank

MS/MSD MW-13A

706140

I-Liter

Voa

꼬

≥

Grab

≥

Grab

100X

28

なり

7

3

Received By:

Custody Transfers

TST)

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

SynapseRiskManage

0705819

LSL Southern Tier Lab.

LSL Finger Lakes Lab. 16 N. Main St., PO Box 424

Phone: 585-728-3320

Wayland, NY 14572

Waddington, NY 13694

Phone: 315-388-4476

5854 Butternut Drive

-SL Central Lab.

131 St. Lawrence Ave.

LSL North Lab.

Phone: 585-968-2640

30 East Main St. Cuba, NY 14727

*Additional Charges 212 TSL ID# A 2 8 0020 003 L 13 Time され may apply Check Preserv Date 6:08 *** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY*** 585-554-6743 DANA 001-07 T02 04-10-00 nod 6000 Series Metals by EPA Method 6000 Series Vietals by EPA Method 6000 Series Wetals by EPA Method 6000 Series Metals by EPA Method 6000 Series Vietals by EPA Method 6000 Series 3-Day * Date Needed or Special Instructions: Fax: Analyses **Metals by EPA Met** Pre-Authorized (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) Authorization or P.O. # Next Day* LSL Project Number: 2-Day * **Turnaround Time** 585-968-2640 Rec'd for Lab By: Received Intact: Received By: Received By: size/type 500-ml 500-ml 500-ml plastic 500-ml Normal plastic 500-ml plastic plastic 500-ml plastic plastic 14 DAY Containers **Custody Transfers** Fax: N Fax: 585-728-2711 Preserv. HNO3 HNO3 Added HNO3 HNO3 HNO3 HNO3 rcreighton@synapseriskmanagement.com Historic Bennett Warehouse 325 East Water Street Zip: 13202 Fax: 475-3780 SPDES / 2200 Bleecker St, Utica, NY Matrix ≥ ≥ ≥ ≥ ≥ ≥ No ca. Synapse Risk Management, LLC Grab Grab grab/comp Grab Grab Grab Grab Relinquished By: Relinquished By: Shipment Method Sampled By: 🌾 Sample 元的 3:20 という 315-388-4061 Time 子:00 Roger Creighton Syracuse, NY 475-3700 F Sample Date Fax: Client Project ID/Client Site ID Client's Sample MS/MSD MW/-(34 Identifications の子でって E. Syracuse, NY 13057 Phone: 315-445-1105 315-445-1301 Report Address: Containers this C-O-C: Temp. of samples: Company: -SL use only: City/State: **WW-13A** Phone: MW-6R Name: Street: MW-14 MW-18 Dup-1 Fax:

Semi-AnnualGW-Metals

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202

Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO #DANA 01-07 T02

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: **0718825**

Receive Date/Time: 10/23/07 15:55

Project Received by: RD

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

NYS DOH ELAP #10248 PA DEP #68-2556 (1) LSL Central Lab, East Syracuse, NY (315) 445-1105 (2) LSL North Lab, Waddington, NY (315) 388-4476 NYS DOH ELAP #10900 (3) LSL Finger Lakes Lab, Wayland, NY (585) 728-3320 NYS DOH ELAP #11667 (4) LSL Southern Tier Lab, Cuba, NY (585) 968-2640 NYS DOH ELAP #10760 (585) 396-0270 (5) LSL MidLakes Lab, Canandaigua, NY NYS DOH ELAP #11369 (6) LSL Brittonfield Lab, East Syracuse, NY (315) 437-0200 NYS DOH ELAP #10155

This report was reviewed by:

Mellere, QA Date: 11/06

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0718825-001

Location: Sampled:

.

2200 Bleecker St., Utica, NY

10/23/07 14:25

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
Trichloroethene	<1	ug/l		10/24/07	BD
Vinyl chloride	<1	ug/l		10/24/07	BD
Surrogate (1,2-DCA-d4)	103	%R		10/24/07	BD
Surrogate (Tol-d8)	103	%R		10/24/07	BD
Surrogate (4-BFB)	98	%R		10/24/07	BD
(1) EPA 8082 PCB's					
Aroclor-1016	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1221	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1232	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1242	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1248	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1254	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1260	< 0.1	ug/l	10/30/07	11/2/07	KIS
Surrogate (DCB)	112	%R	10/30/07	11/2/07	KIS

Sample ID:

MW-13A

LSL Sample ID:

0718825-002

Location:

2200 Bleecker St., Utica, NY

Sampled:

10/23/07 12:30

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/i		10/24/07	BD
trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
Trichloroethene	<1	ug/l		10/24/07	BD
Vinyl chloride	<1	ug/l		10/24/07	BD
Surrogate (1,2-DCA-d4)	101	%R		10/24/07	BD
Surrogate (Tol-d8)	101	%R		10/24/07	BD
Surrogate (4-BFB)	96	%R		10/24/07	BD
U EPA 8082 PCB's					
Aroclor-1016	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1221	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1232	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1242	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1248	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1254	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1260	< 0.1	ug/l	10/30/07	11/2/07	KIS
Surrogate (DCB)	105	%R	10/30/07	11/2/07	KIS

Page 2 of 5

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-14

LSL Sample ID:

0718825-003

Location: Sampled:

2200 Bleecker St., Utica, NY

10/23/07 11:30

Sampled By: RC

Sample Matrix: NPW

Analytical Method				Prep	Analysis	Analyst
	Analyte	Result	Units	Date	Date & Time	Initials
(1)	EPA 8021B Volatiles(Partial List)by 8260					
	cis-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
	trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
	Trichloroethene	<1	ug/l		10/24/07	BD
	Vinyl chloride	<1	ug/l		10/24/07	BD
	Surrogate (1,2-DCA-d4)	105	%R		10/24/07	BD
	Surrogate (Tol-d8)	101	%R		10/24/07	BD
	Surrogate (4-BFB)	96	%R		10/24/07	BD
(1)	EPA 8082 PCB's					
	Aroclor-1016	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1221	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1232	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1242	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1248	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1254	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Aroclor-1260	< 0.1	ug/l	10/30/07	11/2/07	KIS
	Surrogate (DCB)	86	%R	10/30/07	11/2/07	KIS

Sample ID:

MW-18

LSL Sample ID:

0718825-004

Location:

2200 Bleecker St., Utica, NY

Sampled:

10/23/07 13:50

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partial List)by 8260)				
cis-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
Trichloroethene	<1	ug/l		10/24/07	BD
Vinyl chloride	17	ug/l		10/24/07	BD
Surrogate (1,2-DCA-d4)	103	%R		10/24/07	BD
Surrogate (Tol-d8)	103	%R		10/24/07	BD
Surrogate (4-BFB)	98	%R		10/24/07	BD
(1) EPA 8082 PCB's					
Aroclor-1016	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1221	<0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1232	<0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1242	<0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1248	<0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1254	<0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1260	<0.1	ug/l	10/30/07	11/2/07	KIS
Surrogate (DCB)	101	%R	10/30/07	11/2/07	KIS

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

102307 - **Duplicate**

LSL Sample ID:

0718825-005

Location:

2200 Bleecker St., Utica, NY

Sampled: 10/23/07 0:00

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
Trichloroethene	<1	ug/l		10/24/07	BD
Vinyl chloride	17	ug/l		10/24/07	BD
Surrogate (1,2-DCA-d4)	103	%R		10/24/07	BD
Surrogate (Tol-d8)	100	%R		10/24/07	BD
Surrogate (4-BFB)	95	%R		10/24/07	BD
(1) EPA 8082 PCB's					
Aroclor-1016	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1221	< 0.1	ug/i	10/30/07	11/2/07	KIS
Aroclor-1232	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1242	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1248	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1254	< 0.1	ug/l	10/30/07	11/2/07	KIS
Aroclor-1260	< 0.1	ug/l	10/30/07	11/2/07	KIS
Surrogate (DCB)	97	%R	10/30/07	11/2/07	KIS

Sample ID:

MW-6R Matrix Spike

LSL Sample ID:

0718825-006

Location: Sampled:

2200 Bleecker St., Utica, NY 10/23/07 14:25 Samp

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	92	%R		10/24/07	BD
trans-1,2-Dichloroethene	95	%R		10/24/07	BD
Trichloroethene	101	%R		10/24/07	BD
Vinyl chloride	102	%R		10/24/07	BD
Surrogate (1,2-DCA-d4)	100	%R		10/24/07	BD
Surrogate (Tol-d8)	102	%R		10/24/07	BD
Surrogate (4-BFB)	91	%R		10/24/07	BD
(1) EPA 8082 PCB's					
Aroclor-1016			10/30/07	11/2/07	KIS
Aroclor-1221			10/30/07	11/2/07	KIS
Aroclor-1232			10/30/07	11/2/07	KIS
Aroclor-1242			10/30/07	11/2/07	KIS
Aroclor-1248			10/30/07	11/2/07	KIS
Aroclor-1254	66	%R	10/30/07	11/2/07	KIS
Aroclor-1260			10/30/07	11/2/07	KIS
Surrogate (DCB)	92	%R	10/30/07	11/2/07	KIS

Page 4 of 5

Life Science Laboratories, Inc.

Date Printed:

11/6/07

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

Trip Blank

LSL Sample ID:

0718825-007

Location:

Sampled:

10/23/07 0:00

Sampled By:

Sample Matrix: TB

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
D EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
trans-1,2-Dichloroethene	<1	ug/l		10/24/07	BD
Trichloroethene	<1	ug/l		10/24/07	BD
Vinyl chloride	<1	ug/l		10/24/07	BD
Surrogate (1,2-DCA-d4)	105	%R		10/24/07	BD
Surrogate (Tol-d8)	101	%R		10/24/07	BD
Surrogate (4-BFB)	97	%R		10/24/07	BD

Sample ID:

MW-6R Matrix Spike Duplicate

LSL Sample ID:

0718825-008

Location: Sampled:

2200 Bleecker St., Utica, NY 10/23/07 14:25 Samp

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method	SEC. 20100-17		Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	1	RPD		10/24/07	BD
trans-1,2-Dichloroethene	3	RPD		10/24/07	BD
Trichloroethene	<1	RPD		10/24/07	BD
Vinyl chloride	5	RPD		10/24/07	BD
Surrogate (1,2-DCA-d4)	92	%R		10/24/07	BD
Surrogate (Tol-d8)	102	%R		10/24/07	BD
Surrogate (4-BFB)	92	%R		10/24/07	BD
(1) EPA 8082 PCB's					
Aroclor-1016			10/30/07	11/2/07	KIS
Aroclor-1221			10/30/07	11/2/07	KIS
Aroclor-1232			10/30/07	11/2/07	KIS
Aroclor-1242			10/30/07	11/2/07	KIS
Aroclor-1248			10/30/07	11/2/07	KIS
Aroclor-1254	11	RPD	10/30/07	11/2/07	KIS
Aroclor-1260			10/30/07	11/2/07	KIS
Surrogate (DCB)	94	%R	10/30/07	11/2/07	KIS

Page 5 of 5

TST

Life Science Laboratories, Inc CHAIN OF CUSTODY RECORD

LSL Southern Tier L

Fax: 585-968-264. Phone; 585-968-264 30 East Main St. Cuba, NY 14727 LSL Finger Lakes Lab. 16 N. Main St., PO Box 424 Phone: 585-728-3320 Fax: 585-728-2711 Wayland, NY 14572

> Waddington, NY 13594 131 St. Lawrence Ave.

LSL North Lab.

Phone: 315-388-4476 Fax: 315-388-4061

> E. Syracuse, NY 13057 Phone: 315-445-1105

5854 Butternut Drive LSL Central Lab.

SynapsekiskNanage

								A. A	-		
Phone: 315-445-1105 Fex: 315-445-1301							Turnaround Time	d Time	ŗ		
15							Normal	Orized	13 41) b 1		
Name:	Roger	Roger Creighton	-				7 [×	Next Day*	Addition	*Additional Charges	
Сотрапу:	Synapse	1 0					Date Need	ocial Instru	imay app	Á	
Street:	Historic	Bennett Wa	Historic Bennett Warehouse 325 East W	t Water !	ater Street						
City/State:	Syracuse, NY	se, NY	Zip: 1	13202						**************************************	
Phone:	475-3700	00	Fax	: 475-3780	780		Authorizat	Authorization or P.O. #			
Email:	rcreight	on@synaps	rcreighton@synapseriskmanagement.com	L.COTT				DANA 01-07 T02	~		
Client Project ID/Client Site ID	is D	ייי טבונוני		341			LSL Project Number:				
	1		ZUU DIEECKEI SI,	Z (2)							
	Sample	,	1 ype	-	Preserv.	ပ်	Confainers	Analyses	Preserv		
dentifications	Date	Time	дгаь/сотр	Matrix	Added	#	size/type		Check	LSL ID#	
MW-6R	10/23/07	14:25	Grab	. 3	HCI	ď	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1.2-DCE: TCE: and vinyl chloride)		4,00	
MW-6R		14:25	delf	3			1-Lifer Amber				
	1							ress by ErA Memod 6082)	
MW-13A		12:30	Grab	8	HCI	2	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)	eX	002 AB	
MW-13A		12:30	Grab	≥	l	-	1-Liter Amber	PCBs by EPA Method 8082		0	
MW-14		05:11	Grah	. 3	Į.	·	40 ml/	Select VOCs by EPA Method 8260 (cis- &		20.20	
	-						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Valisti, 2*DOE, 10E, and Vinyi Chlonde)		\$ 0.00 0.00	
MW-14		11.30	Grab	×	ľ		I-Liter Amber	CBs by EPA Method 8082		J	
MW-18		13:50	Grab	3	HCI	. 2	. 40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1.7-DCF- TCF- and vinyl chloride)	. att	1 2 P. 1 S. 1	· ·
MW-18	-cj	5.50	, der	×		*	1-Liter			2 0	
			Gran	}		-	Jagin	PCBs by EPA Method 8082		J	
102307-049			Grab	≥	HCI	2	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)	n. I	8000 B	
102307-Dup			Grab	W		1	1-Liter Amber	PCBs by EPA Method 8082		· ·	
MS/MSD MW-COR		17.75	Grab	8	HCI	4	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)		** 000 4 000	008 A BOW
MS/MSD MW-6R		14:25	Grab	W	1	2	1-Lifter Amber	PCBs by EPA Method 8082		0	08 C
Trip Blank	Þ	11:30)	3	を	4)	Agy wot	VOCI		2007 Ag	
LSL use only:					Sn'S	Custody Transfers	nsfers		Date	Time	
		Sampled By:	y: Ky Chord	Coch			Received By:	· · · · · · · · · · · · · · · · · · ·	10/22/01	יאין עט	
1		Relinquished By:	ned By: (De				Received By:	ly:		}	
Temp, of samples:		Relinquished By:	led By:)			Rec'd for Lab By:	ab By: R. Dundon			
Condiners this C-O-C;	e of this	Chain of Custody	C: Snipment Method; Snipment Method; Snipment Method	1	6115 J. A. 1. A. 1.		Received Intact	tact: Y N	0.0	ce outed	
33 18 17	215 50	うちこぎら	ustoay Kecoru IIA	から 風 ひつ	Willied out in order to process samples in	order to	process sa	moles in the second selection in the sel	*****		1

Set Junal 1,280 of Range of this Chain of Custody Record MUST be filled out in order to process samples in the filled out in order to process samples in order to process samples in order to process and the filled out in or

Oct. 22. 2007 10:53AM

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780

Authorization: PO # DANA 001-07 T02

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: **0718918**

Receive Date/Time: 10/24/07 15:22

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

(315) 445-1105 NYS DOH ELAP #10248 PA DEP #68-2556 (1) LSL Central Lab, East Syracuse, NY (2) LSL North Lab, Waddington, NY (315) 388-4476 NYS DOH ELAP #10900 (3) LSL Finger Lakes Lab, Wayland, NY (585) 728-3320 NYS DOH ELAP #11667 (4) LSL Southern Tier Lab, Cuba, NY (585) 968-2640 NYS DOH ELAP #10760 (585) 396-0270 (5) LSL MidLakes Lab, Canandaigua, NY NYS DOH ELAP #11369 (6) LSL Brittonfield Lab, East Syracuse, NY (315) 437-0200 NYS DOH ELAP #10155

This report was reviewed by:

General Mallelle, Of Date:

11/04/07

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

MW-6R

LSL Sample ID:

0718918-001

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:45

Sampled By: RC

Sample Matrix: NPW

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Resuit	Units	Date	Date & Time	Illitials
D EPA 6010 Total Metals					•
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	< 0.01	mg/l	10/25/07	10/29/07	DJP

Sample ID:

MW-13A

LSL Sample ID:

0718918-002

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:20

Sampled By: RC

Sample Matrix: NPW

Analytical Method Analyte	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
EPA 6010 Total Metals	ROSuit	Office		Date et Time	
ETA 0010 Total Metals					
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	< 0.01	mg/l	10/25/07	10/29/07	DJP

Sample ID:

MW-14

LSL Sample ID:

0718918-003

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:00

Sampled By: RC

Sample Matrix: NPW

		Prep	Analysis	Analyst
Result	Units	Date	Date & Time	Initials
< 0.01	mg/l	10/25/07	10/29/07	DJP
< 0.01	mg/l	10/25/07	10/29/07	DJP
< 0.01	mg/l	10/25/07	10/29/07	DJP
< 0.01	mg/l	10/25/07	10/29/07	DJP
	<0.01 <0.01 <0.01	<0.01 mg/l <0.01 mg/l <0.01 mg/l	Result Units Date <0.01	Result Units Date Date & Time <0.01

Sample ID:

MW-18

LSL Sample ID:

0718918-004

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:35

Sampled By: RC

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 6010 Total Metals					
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	< 0.01	mg/l	10/25/07	10/29/07	DJP

Page 2 of 3

Life Science Laboratories, Inc.

Synapse Risk Management, LLC

Syracuse, NY

Sample ID:

Duplicate - 1

LSL Sample ID:

0718918-005

Location: Sampled:

2200 Bleecker St., Utica

10/24/07 0:00

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
EPA 6010 Total Metals					
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	< 0.01	mg/l	10/25/07	10/29/07	DJP

Sample ID:

MW-6R Matrix Spike

LSL Sample ID:

0718918-006

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:45

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	<u>Initials</u>
(1) EPA 6010 Total Metals					
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	0.047	mg/l	10/25/07	10/29/07	DJP

Sample ID:

MW-6R Matrix Spike Duplicate

LSL Sample ID:

0718918-007

Location:

2200 Bleecker St., Utica

Sampled:

10/24/07 13:45

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 6010 Total Metals					
Chromium	< 0.01	mg/l	10/25/07	10/29/07	DJP
Copper	< 0.01	mg/l	10/25/07	10/29/07	DJP
Lead	< 0.01	mg/l	10/25/07	10/29/07	DJP
Zinc	0.040	mg/l	10/25/07	10/29/07	DJP

Life Science Laboratories, Inc.

SynapseRiskManage 0718910 585-554-6743 Phone: 585-554-5347 Middlesex, NY 14507 SOTT WELLER 3-Day * FaX; Pre-Authorized Life Science Laboratories, Inc. Next Day* LSL Southern Tier Lab. 585-968-2640 Phone: 585-968-2640 **Turnaround Time** Cuba, NY 14727 30 East Main St. CHAIN OF CUSTODY RECORD 14 DAY Normal Fax: 16 N. Main St., PO Box 424 LSL Finger Lakes Lab. Phone: 585-728-3320 585-728-2711 Wayland, NY 14572 Fax: Waddington, NY 13694 131 St. Lawrence Ave. Phone: 315-388-4476 315-388-4061 LSL North Lab. Fax: E. Syracuse, NY 13057 Phone; 315-445-1105 5854 Butternut Drive -SL Central Lab.

"Additional Charges #CI TST 000 may apply Preserv Check DANA 001-07 T02 Vietals by EPA Wethod 6000 Series Vietals by EPA Method 6000 Series Date Needed or Special Instructions: Analyses (Cr, Cu, Pb, Zn) Authorization or P.O. # -SL Project Number. 2-Day * size/type 500-mi 500-mi plastic Containers # Preserv. Added HNO3 rcreighton@synapseriskmanagement.com Historic Bennett Warehouse 325 East Water Street Zip: 13202 Fax: 475-3780 SPDES / 2200 Bleecker St, Utica, NY Matrix ≥ Synapse Risk Management, LLC grab/comp Grab Sample Time 五江 Roger Creighton 13:20 Syracuse, NY 475-3700 10/4/07 Sample Date Client Project ID/Client Site ID Client's Sample Identifications 315-445-1301 Report Address: Company: City/State: Phone: MW-6R Name: Street: Fax:

000

Metals by EPA Method 6000 Series

500-ml

plastic

HNO3

⋛

Grab

B:00

plastic

HNO3

≥

Grab

MW-13A

MW-14

MW-18

(Cr, Çu, Pb, Zn)

(Cr, Cu, Pb, Zn)

Metals by EPA Method 6000 Series

500-ml

plastic

HNO3

≥

Grab

13:35

(Cr, Cu, Pb, Zn)

50

てつつ

Time 15,22 000% 900 8 24KZ/10 Date Metals by EPA Method 6000 Series Metals by EPA Method 6000 Series Cr, Cu, Pb, Zn) (Cr, Cu, Pb, Zn) Rec'd for Lab By: Received Intact: Received By: Received By: 500-ml 500-ml plastic plastic **Custody Transfers** 2 HNO HNO ≥ ≥ Grab Grab Relinquished By: Shipment Method: Relinquished By Sampled By: 3.45 MS/MSD MW-6R Containers this C-O-C; Temp, of samples: .SL use only: Dup-1

Oct. 22. 2007 10:53AM Orstody Record MUST be filled out in order to process sample in give see Risk Management

sletiNo. 0827inuuP. 335

APPENDIX G GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2007 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

MARCH 2008

tpo2/2 - 9002/

ALL-WEATHER FIELD BOOK No. 350 NF

080 418 123A

clady 55°				200	-20 Bi -14 Bi	Sign	MIZ & ORBUPT	no back	
1/2/17 11:00 Mussica & Lamphore on 5/26	is .	TS 2442961	System 17135524.	Tunk Inventory: 150agar	Primay Filter pressure - Secretary Filter pressure -	17.30 changed both Sillers	Sympled & MHI : MHZ	Detroc Row MILL 1	1887e 0 14.45

	1
0930 ON-SITE JEGG LANGER/MIKE MICHORA	1-3
CHECK SYSTEM OPERATED AND PERFORM	7
WEEKLY EFFLUENT SAMPLANG	٠
FUM J MHZ 122128	1842 - 55 154 - 55
(Pean2) MYZ 2966	System: 307841
PELM 7 SYJTEM 236,003	J. C.
	Tank MUNTERY: 16
FANK INVENTARY. 1900 CAC	10to Replaced prima
GIMARY FILTER REGILLE. 18 BL	1100 Specified MHZ
SECONIANY FLITH PRESSUAL: 14 pc	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MH2-68" FROM MH RIM	Seamed D Make
- DRILLED HOLES IN EQ TANK DROP TUBE	1735 Chocked level In

		Crass Christe to meet Paragan to Clan at MHZ Ins (Breth, Amby)	11 167584 11 167584	ن تقد	Tank InWinter : 1650 grad		Smithed MHZ I'me Sam Luked from Dand a 101 of soft	Bled art from the @ Clash out	Plus 1216- yelling Carassent (refine at of
--	--	---	------------------------	-------	---------------------------	--	---	-------------------------------	--

00:00

}	:		2
	- 1		
1	9		
	7		
}			
ŧ			
		Alegon A.	
	*		
	1		
4	6		
. ~	to manufacture.		
	200		
	-		
	and the		
	Carried States	120a .	
: *	7	E@ :	
. '			
-	1		
4	1		
. ~	0		
	Ç.	C.,	
		13.	
*	~>	0	
:	100		
		- X.	
1	1	MK CO	<u> </u>
		Cine	•
		~~~~	
*	***	62	
	-		de Santrian
į	4	-	
	25 S		
:	-	3	
	V!	17	
	VA.	$\sim$	
	Section		*
	1		
	(		
1	1 40	· ····	
	244	5	
		منيد دن نود دند	
	1 Grange		
	, L		
	mere.		
(market	-	10	
. '		-	
	2	-	
è.		200	
	-	Comments.	
:	:		
*			
:			
:	1		

Twhen forming pumpted off, there is no change in flow. Turning pump 3 off reduces flow

0551e e 1400

1/22/cncy

OYIS ON SITE: JEFF LAMBHERE

CHECK SYSTEM OPERATION & PERFORM WEEKLY EFF LUENT SAMPLING

MH2 (frem 1), 191206 MH2 (frem 2), 8566 FS (frem 2), 43 S 75TEM (frem 3), 371606 MTR: 357,466

TANK INVENTURY. 1300 CA	MHZ: 118" FRON MH REN	CHANGED PREMARY BAC FELS	BLED ATH IN PIPENG UTA SECKET ROOM CREANOUT		2,0	6910 OU SETE: JEEF LUMLHEXE	CHECK IYOVEN OPEKATION	MH2 (1824 D) 264, 600	m 2 43
1ANK	80 U8	- CHANGE	- Brep Az	1140 OFF SETE	1/11/67	Calle ay SETE:	CHECK I	MAZILE	Sylven / Per

15,000

SO" ELON PINA  SO" ELON PINA  TO CREE UP ANY  ON CHAIN IN COOK TO COM TO COME OF THE WILL OF THE PUNDOS  ON CHAIN IN THE PUNDOS  ON CHAIN IN COOK TO COM TO COME OF THE PUNDOS  ON CHAIN IN COOK TO COME OF THE PUNDOS  ON CHAIN IN COOK TO COME OF THE PUNDOS  ON CHAIN IN COOK TO COME OF THE PUNDOS  ON CHAIN IN COOK TO COME OF THE PUNDOS  ON CHAIN IN COOK TO CO	2 0 2			Sall sailors		(600/24)	796.	(Del gal)	6 5 Leve (28		HW. C. C. C. HW.	<b></b>		11/16/22
150" 660M (37m) 150" 660M (37m) 17R 610M 1 MELLENT 100M 100M 100M 100M 100M 100M 100M 100	5	E CE	ā	and the Rilling	- Mosule, 'many' sil	stack By Mes	4/8/8/		: 1	5	v. g	120 A		% S/E
TNVENTORY: 1900 GALLOW  THE ATR FROM INFLUENT  LEAMONT  CLEANONT  THE YOUR TO  SITE	1 Ja ans		2.50	88		9 02 01		alternation	-	Total				2
TNVENTORY: 1900  TNE NTA "SELLE UP AN  TNE NTA "SELE UP AN  ENTMENT I IN THE PUR  STE  STE  STE  ENTMENT I IN THE PUR  ENTMENT I IN	GALLERS	Z	LUENT S				gananaga dagaganaga dagaganaga dagaganaga dagaganaga dagaganaga dagaganaga dagaganaga dagaganaga dagaganaga dag	energy transfer to the second	nterior of the second			e elegan, vez		
TWENT TO STEE STEE STEE STEE STEE STEE STEE	0061 : 1400	)" EKON R	FROM INF		1 :	CREE UP AN							· de la companion de la compan	
	TANK INVENT			~	200	70 ENTS								

\$ ' <b>9</b>	1/31/67 20 Claus	1135 JEFF LAMPHENE ON-SITE	CHECK SYSTEM AND CHANCE	MH2 (PERM2) 16,401  FS (PERM2) 68  FS (PERM2) 68  MTX, 413,600	1 ANK INV: 1800 GALLONS	140. REMOVED PRIMARY AND SECONDARY BAG FILTERS AND RAN SYSTEM FICTERLESS	1322 MMZ : 101" FROM MH RIM
	70 6000	1600 JEFF LANDHONE ON-SITE	CHECK SYSTEM AND CHANGE BAG FZLTER.	MH 2 (PERM 1) 215041 MH 2 (PERM 2) 8272 FS (PERM 2) 43 SYSTEM (PERM 2) 43 MTR : 4/10990	FANT INVENTORY 2400 GALLONS	1615 CHANGE PRIMARY BAG FILTER HGAZN	1632 CHANGE PRESMARY BAG FELTER (3KD TEME)

ISSO CIE SITE - NO FILTERS IN STITEM

1535 MHR - - 126" FROM MA REM

1710 CHANGE PREMARY PAG FELTER (4TH TEME)

200 OFF 5-1-6

WILL RETURN TOMORROW W/ PARAGON.

2/1/67 2/1/67 3) PARAGON REPRETENTATIVES. (3) PARAGON REPRETENTATIVES. (3) PARAGON REPRETENTATIVES. (4) PACTAUCK.  MHZ: 21520 FS. MHZ: 21520 FS. MHZ: 21520 AHZ: 2152	0937 OFF 127E TO	(2) Saulle Ports	1026 62 1276 AM	10 SB INTACHATEON OF	236 INCALLATEON OF	1250 CHECK PUMP 3 + 1	985
	<b>6</b> 'T	(3) PARAGON REPRESENTATIVES.		MHZ: 219763 MHZ: 21520	5"STEM 448 554 MTR 420, 960	77	WAS APROXIMATELY 3" OF SUDGE IN THE BETTON GE THE MANHOLE. ALSO, THEAK WAS WATER LEAKING FROM THE FLENG UNJONS IN THE MANHOLE. AND TIGHTENED THESE UNIONS WETH A PEDE WRENCH AND REMOVED THE REMAINING SLUBGE FROM THE BASE OF THE MANHOLE

	<i>†</i> ,						77.7.				44.74	(E)					death or a final
くり	٠,১				5		Ĩ			7		0 0 F					
なる	7);	4	3		)~1	***************************************	\Z			[.	クフ	93 K	ر 5	ì			
2 ご	3	Ä	46		2		L			77	2	4		<i>y</i>			· du sique
J. A.	1	द	23		A		₹	5		5	31	12	Š				
1 - C	9	_	MHZ (INE AND INSTALLED	1	مرد		2	7		210	C	2 4	Š				
0 8	4	4			123		Z	٧		5	7	DEQ	C-3	5			
3	こ	4	3		ػ			*		*	۳	4	π, \$3	B			
4	Pak	A			4		9	4		٨٠٠	2	5	1-				
		لي	บ ว		7	7	3	Ź		0	4	~	رآ	2			
77 H2	77	<i>k</i>	Y,		S	0 9	4	4		É		3 1		1		7	
΄, ξ	Ĩ	C		2	\$	a .		15	•		14	Electronic	- S	ξ		C)	
S.F.B	٠,	7	7	マ マ ド ス フ	374	E.	J.	~		XX	-	AR		STE	1	<i>U</i> -	
0935 OFF JITE TO PUNCHUSE UNTON	(2) SAMPLE PORTS FOR INFLUENT.	10 26 6 M CZ 76 - AUDY SNAKEN	Ξ.	כ [	H	"SECKET KOOM"	130 TATILATED OF TAFTUEAT (XAMILY)	Part For MH2 + MH2		1250 CHECK PUMP 3 + PUMP 4 FLOOD	ATT	APPEAR EQUAL AND ADEQUATE . PARMEDW OFF LIN	1405 Rut SAG FILT ERS BACK TO	SYSTEM AND RAN		1506 OFF 527E	1
$\bowtie$		Ó			ေ	*	Ö			S	Ord	A.	١			~ c>	
03		Ç			Š		ţ-,	,		52)			3			2/	

OC
Č
300

	Sinterpresent day
/coopy	
1.	is de
20.	The state of the s
	्र
	1601
	A A O LIER
	2
	1
5	
N	7
6	and the same of th

MHZ. 272458 8456, 453, 418 5456, 425 8756, 418

LANK INVENTORY: 2358 GALLONS

FILTER BAFLYOUR ALARM - REMOVED BAS FELTERS AND
RAN STITEM. 5221.

WILL BE RUN WITHOUT BAG FALTERS BUT CONTENDED TO TRIE ALARM.
FOR HIGH PRESSURE, DUE TO THE
CURRENT STATE OF THE BUTSYTTEM ATTEMPTED TO RUN CYSTEM 120

LALOSSA FAR DEFKEND DFF- SETE

2/8/03 0800 0800 10 7/0 10 7/0 00 / 00 / 00 / 00 / 00 / 00 / 00 /	1/20 00 10/8/2	OBOD JEFF LAMPHENT ON SITE TO MEET USIN MIKELENTATIVE) 1 RECARDING AIR STRINER CLEANING.	AND TO PERFORM MONTHLY SHANKEME	MH 2: 235, 863 MH 2: 32,936 FS: 102	METER: 480100 1 ANK INV: 1700 GALLOWS	35 Off-5276	
----------------------------------------------------------------------------------	----------------	------------------------------------------------------------------------------------------	---------------------------------	-------------------------------------------	------------------------------------------	-------------	--

3/13/07 0° Claudy Command H+S 700 Denise Sero 11/12/07 SITE SECURED. ALL PERSONNEL OFF. SITE ROOR TO DAY. BUTTOM TRAY BRILED UP SNOT PICKERD OF PARAGON WITH 5 NORKERS 20° 5MUM PARAGON BEGIN REMOVING ALS PIPME MEET PURKEON FOR DIR STRIPPER TUPEE TRAYS ZEMOVED AND PLACED ON TO DRAIN ER TANK FROM 1800 GAL. A/S & EQ PUMP RUN IN WAND MODE TO 900 GAL. PANKLS DE-ENERGIZED, ON SITE. SAFETY HEETING CONDUCTED FROM BOTTOM UNIT TO DRY. DISMANTING & CLEANING RWY SMITH ONSITE TO 400 1330 1135 972/

Anti-laked Survicinst of Briefing Court Rid and blank HTS briefing Sign-in Sheets Doid and worked - 8

WASP iftingthough sooth, weather Mathematical South Storm PARAGON ON- SETE W/ 3 KEPRENTATORS was ning-10090 chance of snow t"blosend Nike and homs" structing @~1500. 1520 all Months of my read by 1520) 0800 JEPF LMMPHERE ON SITE FOR AIR STRIPPER CLEANING. 0400 JEFF LAMMERE OFF STE

N13/07

36 /00007

20° 5000 2/14/07

ON SITE W/PARNEW, COMPLETING CLEADING AND REASSEARLY OF A/S UNIT. CONDINCTION であるるのでしてい 0830

FARICUL COMPLETED RELISEMBLY + FIXED MINDE LEAKS, SYSTEM RUN IN HOND MODE TO TEST FOR LEUKS. AMON 300

TO FIX AS OW AR PRESSURE GUDITION. PICKERD ADJUSTED BOWD INTINENT

BAG DLTERS PUT IN PLEAR UNITS. SYSTEM NOW IN FULL PUTO MODE.

FRCHOW OFF SITE. PURKON 1250

CLEUNED BYS TRENCH DRUN + SUMP.

FILTER PRESSURE 1: 16 41, 2=12 M. 0111

LIGHTS ON, EQ PUMPLE ON, 61 TO OFF. MANADLE I & MAZ HIGH SUMP LEVEL

LO TANK WOST SUMPLESTED, CIGHTON, MA PANPS SLUT SET. BY PLING 63 AND 1300

BAG FILTER 1 = 21 ps., 2 = 10 ps. EG TANK LEVEL PUMPED DOWN TO 1000 GAL. MH PUMPS TURN ON. 4/5 ON.

HIGH SUMP CEVEL LIGHT STILL ON. EW PUMP GB TURNS OFF. EQ TUNK

114 5 SPUNG WILLAKE MILLIANING RESETSBER 1/2 07.

Mai WICH SUMP CEVEL LIGHT OFF EQ. TONK HIGH SUMP LEVEL LIGHT OFF MH PUMPS 1, 34 4 ON. EQ TONK FILLING

EQ TONK AT 2000 GRL. GQ PUMPER THON EW FUND ON EMPTY. BLE FIELD ON GO THUN STUC BLUING FASTER 1 = 22 ps, 2=9 ps. 150

OFF. MY PUMPS 1+2 OFF. NAZ WEA PUMPS 3 + 4 ON. GU PUMPS OFF ALS SUMPLEVEL LIGHT ON, ALL OTHER ED TANK FILLING, 1900 GAL. MA JESTS OFF.

ON. MUZ HICH SUNPLEVE LIGHTON BF1 = 23 ps, BF2 = 8 ps, EQ TANK PUMP GB ON. MA PUMPS 344 1242 EQ TANKA 1980 GAL, D/5 > EQ LEVEL DROPPING.

1256 BF1 = 30 psi, BF2= 1 psi 60 TOWK NO 00/1 14

1345 AL LOOKS GOOD CLOSE PANTS + LUGKLY 1338 AS ON. EO BA ON. MA FUMPS 1,344 ON. 305 CHONGED BAB FILTERS, EQ TANK FILLING BF1 = 14 psi, BF 2= 12 psi. ED DROPPING

115 M	10000/9/	SGIS JERF LAMPHEKF ON SITE FOR WEEKLY SAMMETING EVENT AND SYSTEM CHECK-UP.	201:53 201:53 102:01	SYSTEM: 564,969 METER: 541,200	0955 SAMPLING ON AZA STRICNER EFFLUENT PELSORMED	1025 PITEMITED TO TICHTEN LEARING CHECK VALUE IN "SECRET ROSM" AMERAL TO STILL BE LEAKING - WILL CONTACT	MOS CHANGED BAR FRUTERS-NO ALARMS- PREVENTATIVE MAZINENMOCE 1210 OFF-SITE
114 15 (0) 2 (Leony	S PRAGTEMS			Olio Francisco del Color de Politico <del>const</del> entivo	CONFIDENT APPEARS TO BE		MHZ: 44, 643  \$1516M: 532,945  METER: 511, 100

	3600	300 JEER LAMMENT OW- 5TR FOR	MONTHLY SAMPLING AND TO CLEME	ALMENI AND RE-WALL DYTHEM. BLES.	CHECK HIGH KESSIKE MAKMON!	STITEM (KIMAN FILERONLY CHAUKED)		5	M 42 53 80 1					[ANK: 1200 GALUENS		1941 HIGH PRELIVER BOOK PENTER PENTER -	CHANGED FELTER	1414 HILM PREMORE PAG ETTER FREEZING A	Crayleto Fauter	S. Hick recision Al Filica Al Market	CHANGED FELTER
911	2/27/67	OGOS JEFF LAMPHERE ON- SETE FOR	WEERLY EFFLUENT SAMPLING EVENT	AND STIEM CHEEK-UP.	0934 WEEKLY SAMPLING PERFIRMEN		108T FAB FELTER" CHANGED (REMARY)		11°5 MM 2 - 21 758	71,52 S2,627	201 37	SYSTEM: 609, 233	METER: 583, 100		11.0. OFF SETE						

19 DELTER 24 DET			3/15/07 0800 RAY SMITH ON SITE, A/6 BLOWER	FLOOK SUMPHICH WARWING LIGHTS ON.	CHANGED PRIMARY BAS OLITED THRWED	MH-1: 309 643 MU-2: 67, 507	5457EM: 699,681	ļļ	FLOOR SUMP 2 NOHES FROM TOP. EQ	PHUK FULL TO TOP. RUN ES TANK	UNTIL LEVELS DROP. RESET	MH-1 + MH-2 HIGH LEVELS STILL OW.
118 12 40 art 5276	3-7-07	HO TEFF LAMPHERE ON - STTE TO ADDRESS ALMED BALL FILTER	AND RE-IGALIED STITCH	1200 ALMAN COND - HIGH BAG FILTER PRESS.	1785 ALMAKM COND-D HIGH BAG FILTER PRETS.	CHANGED PREMARY FAUTER	1340 RESET HIGH SUMPLEVEL ALARM FOR	MH1: 290.897	142:55.346	( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( 1	METEL : 614, 500	

AT 35ps: B.F. HIGH PRESSUDE NUERS. 0930 HIGH BF. PRESSURE, CHANGE PRIMARY B.F. HIGH ED TINDS LEVEL. PRIMABY B.F. 1030 HIGH B.F. PRESSURE, CHANGE PRIMIRY HIGH B.F. PRESSURE CHANGE PRIMARY B.F. RESET SYSTEM. CALLED LUKE MAKENNEY + SECONDARY B.F. RESET SYSTEM. COLLECT EFFLUENT SAMPLES FIR CHANGE PRIMARY B.F. & RESET. SYSTEM = 706, 908 GALLONS. PRIMARY BE. = 15 psi SECONDARY B.F. - 12 psi. 0900 PRIMARY BF = 26 psi SEED NOARY 8F = 21 25; PRIMARY B.F. = 19 psi 56-coudARY BF, = 11 ps, SYSTEM = 710400 GALL TCE, DCE, * VC. RESET SUPPER OFFSITE 3/15/107 0/69 328

MIN PUMPS IT & SULT OFF. MI PUMB EQ TANK FILLED + LIICH ED LEVEL ON. 3+4 SHUT OFF BUT SWITCHES FLASH CREEN + CAU HEAR RELAYS CLICKINS BF + RESET, 81 SYSTEM = 726, 615 CAL 080 HIGH B.F. PRESSURE CHANGE PRIMARY 0900 MM-1 +MH-2 HIGH SUMP ALERTS ON. P.B.F. = 16 ps; S.B.F. = 13 ps; IN LEFT PAWEL BOX.

0905 EQ TAUK PUMPED DOWN TO 10066AL ANSWING) EQ PUMP OFF. EQ TANK MH PUMPS 1-4 TURN ON (3+456P LEVEL HICH STILL ON, RESET + EQ HICH LOVEL TO TURKS OFF.

PUMP 68 ON. P.B.F = 17ps 58F= 13ps; 545TEM = 729,300. GO TANK STILL EW TANKAT APPROX 2,000 SAL. EQ

EG TANK PUMANE DOWN, DBF-18ps, SBF-11 MA PUMPS 3+ 4 FLASH + TRIPING SWITCH FILL WED PLAP GB ON. AL PUMPS OFF. S48767 = 731, 500 606.

EQPUMPOFF. EQ TANK HIGH LEVEL ON. EQ TANK - 1,000 CAL. MY PLIMPSI-4 ON.

1050

317/07

123 Mad already Wulling about that.
MH-1 363984
MH-2 95681
P-5 104
System 798909 several alarm lights on but OS UNDOUTE LUTA ME KONNEY CENSOL 500 Mule to Boiler house to sayle 505 Obn Re house inadous isho-3-5 -Orans 1+2 labeled on top. 400 Dlower off - 05 contres 347 Denize Sed CEUSZ Suntr - be soung their

he says we will have to lonce it

1350 ON SITE, WIDAN SHEARED

MH! : 432,284 GAL

1505 cont'd. LM says de not submy bace 19th sample to 196 yet. Eus R will hold unt) avolyses are decided. 05 leturn Reld book to 5th procarees amplete Cold.

1530 05 Moite.

- Nate - System Nut Purping Wile 05

On 5, to Nut enough effect to Escaled from

Skilled pit bottle: 15-celled from

Skilled pit bottle: 15-celled from

Skilled pit bottle: 15-celled from

MHZA = 141758 GAL.

FS = 104 GAL

SYSTEM = 944,599 GAL

ROOF DRAIN DRY.

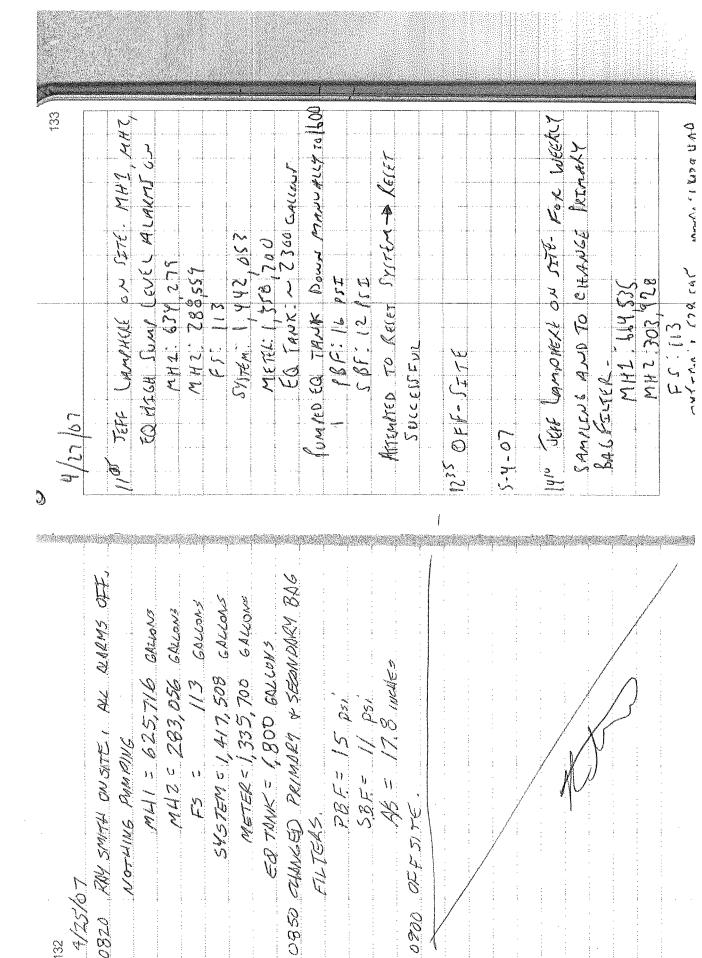
P.B.F = 13 ps.

S.B.F = 6 ps.

1600 CHEKED MANHOLES 14 24

1645 OFF STFE

127	Co.6.	Ogts TEFF LAMINFUL ON STIF	Ext However Dangers Event	MHZ: 578483	525,505 . 5H H	i		MENEK: 1.102,800	, ,						
126	4-5-07	0900 JEFF LAMPHERE ON-157E FOR	MONTHIY SMING EUENT	191965 -7 HW	LAS 581 : ZAW	, 50/ · 5 d	System: 1,103,557	METER: 1,017, 400	1 OPT 2376						


	1-1-0	OGNO JEFF LAMPHORE	WEEKLY SAMPLIA	7/20 // ""	MH4. 55 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	57FW. 630	MEEL: 1,2275	10 10 0 PF ST-1	- 1	7-23-9	1205 TAF LAMINEUE OF	HIGH SOM! LEVEL A	MITEMPTED TO MANO	GW LEVEL IN EG	MH1: 664, 6	5, 192:2HW	, 101 : 54	SYSTEM: 1,372,	METER: 1,294	Pumpes FO LANK	600 CALLOWS AND	AUTOMATICALLY.
128	4-9.07		1120 JEFF LAMPHERE ON SITE TO	CHANGE MIMMY BAG FILTER.	733 OFF C-7E																	

ALAKA IN FOTME. Y-SETE TO HOWRET Down To APROX-EQ TANK EL TANK Y FS 001

4/24/07	0200 0021FC	MIGH 16V	RUMME	72	2	2	345TEM	METER	U. 100	20 B	1/2	OB30 PRIMA	DROWND	0930 CHUNG	TN 7025.	AND O-R	UN) T. L	OFORN	OASO EO PUMS	FWTER S.	PBF	n M	1015 SMSTEM.	- 1	
	J	WAS	FLTER							<u> </u>				7.00	2 - 1	*	V.(v.s.), p	7452							
	ハロインコン	5016 FC	- CHANGED PREMAKY BAG FELTER	to the second state and state and second								a balan a sa s	See all Control of the Control of th	TOTAL DESIGNATION AND ADDRESS ASSESSMENT ASS		Control of the second s	· · ·			And the second second				TO THE PROPERTY OF THE PROPERT	
	01 420	TEK PRE	ED PREMI							Andrew m. market de la contraction de la contrac					and the second	seement to the seement of the seemen	mere en				**************************************	, -			
()	17576M	126H FE	-CHAD6	225-230		100 100 100 100 100 100 100 100 100 100			The state of the s	many or a construction of the construction of	To the control of the		and the second s		enement of the state of the sta						To take the second seco				
		1 550 F		55 44				and the second	A COLOR	The state of the s				The second secon					1000					-	

NEL BLARM, MY PUMPS 23:44 124 BAG FILTER WAIT LEAKING ED PRIMARY & SERVIDARY BAG Elo TONK = 1800 GALLONS SYSTEM RUNNING. MAZA CLEANED O-RINKS, LIDS, SING GROOVE IN TOP OF THICK UG. REASSEMBLED UNITS LIDS HAD SCALING IN MESA NO LEAKS ATT BAS OF FUNCTIONING 1,402,535 2 = 1,321,800 278,000 620,900 22000 14,050 150 11 == 17.10 10 OU. J 21D.

3,



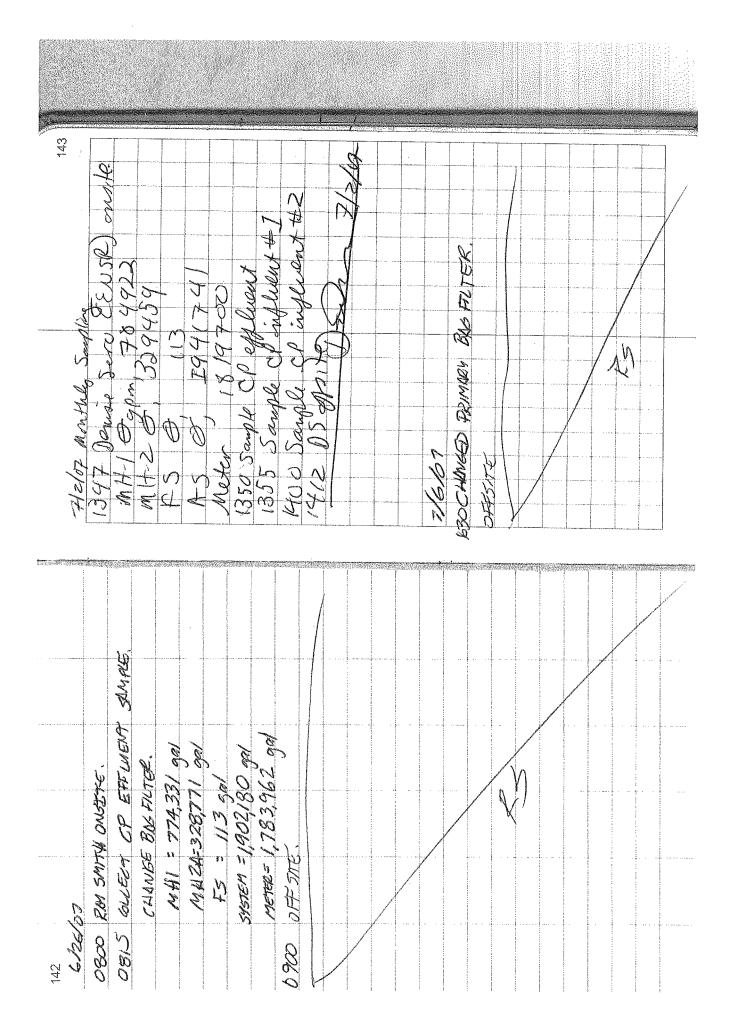
SHANGE PRIMAKY 900% LANGLERE シノワい FOR JOSELY CYTON: SPTER. ジナン .、 い OFF. 9,00 to 7935 36FF 200 Contract 1330 Stanple CP offluent 1340 Straple CP influent 1355 Sample CP influent 1400 DS 100K for Key Brown 147820 ous , ky mosing. 4018 567,5130 cradity ours 5/8/07 MONTHULA かって、 TOWN. 5 28 graphing 100 tann かり 025 134

PO (EUSR)

1745962

120,05

	27.5	B	Chan 72		RES	encontraction or one of the contraction of the cont		g ta staby p d quantity d p q		Andrew Market
	400 ON SITE, SNSTEM DOWN MIKI, MAZ	440 CHANGED BOTH BAS FLITCKS, FRU ED	PUMP IN LAND MODE UNTIL RESET WOULD		1445 GLIECTED CP-EFFLUENT SAMPLES	100	106		100	100
	EM DO	FRIANK HIGH LEVELS ON.	MODE in	WORK TO RUN IN ARTO.	P. EFFLIN	MA 1 = 713640 301	MH245 310779 991	399	SUSTEM = 1681512 nol	MEYED = 1581435 201
	E. SWS7	K Ellett B ECTA	/ KLAND A	TO 8WW 1	780 C	1 = 1	240	FS = 113 ag1	11 = M.	1 3 00
5/22/07	ON 517	CKIEVER OKE	M dwnd	WORK	OLLEO	The same	A	<b>L</b> i,	54576	S. J. S. J.
6	400	4 0	•		1445					


1455 MH 1 KICH LEVEL OFFATTER RESET, MHZA HIGHLEUEL STILL ON P3 & P4 RUNNING, FLOW BATE = P1 ON DT BO. 53pm, P1 OFF, P3 + P4 = 119pm, P1 OFF, P3 + P4 = 119pm, SBF = 12 p51, SBF = 12 p51, SBF = 12 p51, SBF = 17F
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

139 N 5/07	1115 contact EUSR I'M Cule Mellancy	hand to turn of alorn. This	1 1 E	Says to remain on 5th with	5 w/E	that Ed pumps are not	Eddown by hand then	to start sugh	4 CNS 2	pung Eco to	310 EQ Bamps Still not on. Attent	BMS 61
	6/13/07 Weelale Sampling 1510 05 mo. PC	MH2 315930	8	1530 05 Mile.	1. M. Dr.S. 6/13/87	6 15/07 Emergency call-out 1055 Janis Ser (FNSP) onothe	M+- Waleum- M+-2 Waleum	Egtul Walarm 14-1-09pm, 754130	MH-2-09pm, 316000 FS+0, (13	7300 CC	in Cistant down	THE

6/15/69
1335 MH-2 pumping <109 pm,
68 tank & 1800 gcl, no pumps
in tonk have turned ny et.
05 discuss wf Ray Smith gense,
who says hi is weating for a
plum could from Dave Macmi,
ESR enginer who worked in
Juto while 05 leaves for
lunch. 05 Apost.
14 (0 05 most te-Cl pumps to blower
(unning, but we flow is essite
turning, but we flow is essite
flux may be zerecte issue
could indicate a line flushing
event is sopvind. 05 closed
filte prosure
filter prosure
linary - 32 ps;
Senduy - 10 ps;
1430 15 call book - syster is of 05 synthe

Harry 6 Heter

141
0800 EM SMITH ON SITE. SUSTEM BOW IL
0800 GWN E BASTUTES.
0900 GWN ES PWNPS IN HAND MODE. PWNE
0910 RESTURY & SMANCE PRIMARY BAS DUTE
1130 OPF STE.



145	7123107 was Cly Suntes 1430 DS on to 1435 StmMS Craffled 1145 StmMS Craffled	75 2 13 73 8 515th 2070 573 210th 1937 400 1450 05 20 20 He.	BILLOT WEEKLY SAMPLING / FLETER CHONGE	M41 = 834,685 M424= 332,665	FS = 1/3 SYSTEM = 2,124,738	0840 CHANGE PBF 4 S. BF. TAKE	0900 OLECT CP EFFLUENT SAMPLE	S VX
7/12/07		ORZO CHUYSE PRIMARY SECONDARY BAG FUTERS OBSO COLLECT WEEKLY EFFLYENT SAMMES OBJO OFFSITE		7/18/07 0820 CWS/TE	MAZA = 331,081 GW	FS = 113 GW SYSTEN = 2,035, 196 GAL MORDS 1903965 CAL	OSAO COLLET CO EFELUENT SAMPLE.	

9 5107 model 5	1345 Denies Sec	MH-2 3366	AN 2175	Metre 2156 90	(3)0 SAMPLE	1410 SAM 126	# 500 \ # 500 \		6/13/07	0900 RAW SAFETH ON S.	MA15 891556	MHZA: 337,565	FS=113	345TEM 3 2, 358, 3	METER = 2, 193.35	भुक्त व्यटन ८२ ६५	100 CHANGE PRIMAGIA
7/29/07 Wall W Surley	945 Done 20 (215 P.) on site.	MH-2035787	TS 113	Mutor 02/26000	130 SKING CF GROWN.	Concrete management of the contract of the con	0730 RAY SAITH ON SITE,	MHI = 880,462	MH2A = 336,470	FS = 113	585E4 = 2,311,982	METER = 2,151, 410	1,700 GAL. IN EQ TANK. CHANGE	PRIMARY & SECONDARY BAG FLTERS	CHECK SUSTEM. OPERATING NORMALLY.	0845 OFF 517E.	

MUI-HIGH/MIZA-HIGH/EOFMNK-HIGH SYSTEM DOWN B RESEP. RUN ESPUMPINHOND MODE わなべん 119 250 work the Herray 4 1700 GAL. Syster 130 Strupes coeffeent 1100 RW SMITH ONSITE. aparenty leaking. 34 55674 208/800 UNTIL ED TONKS 914833 SHANG ALS ZUNNING 10/2/07- Mart AND DAMPLE STMAS 0/8/01 Denize Sero (EDSIC) on site for 745 Lay Smith CLBL on site Sampling + to review shanging procedure Metr 23 32 600 945 SAMPLE SPHULA 1015 05 Mr. H. 2254 400 107 Weekly Say 742569 339449 8-906EC 336511 Aspertion. 9/114/04 120 B の土の W ST 90% 126/ 三 子 子 子 子 子 子 多千

$\Lambda$
0/8/0

52

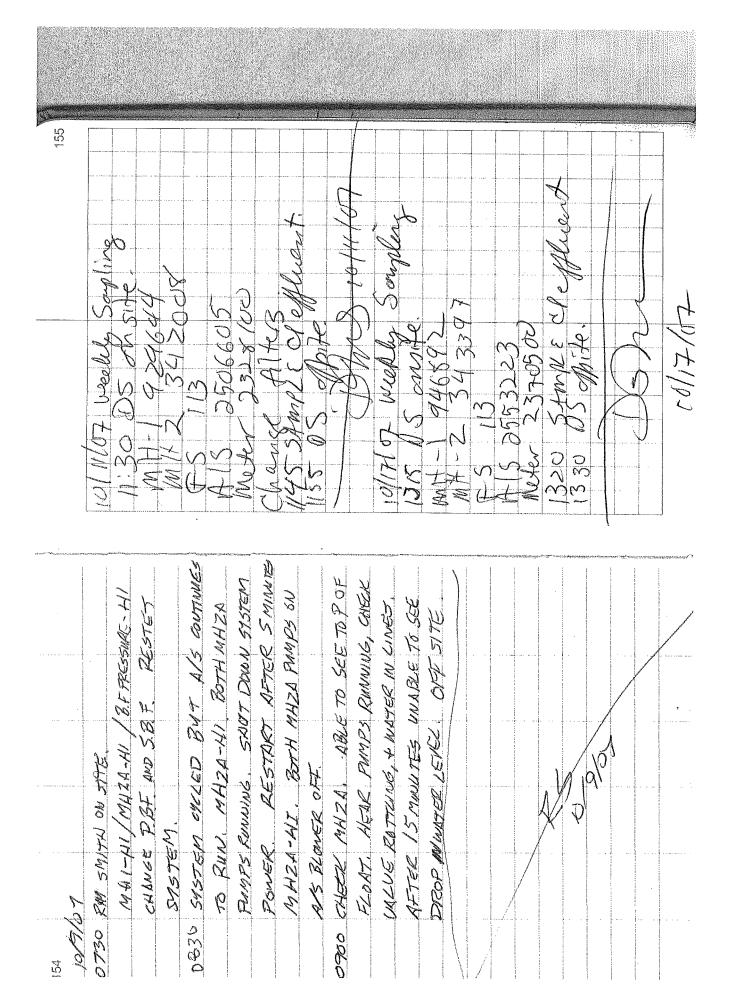
MH I PUMPS AND MHZH PUMPS ON LALL 4). NO ES PUMPON, MS ON. NO LICHTS ON EREIJE UNIT ALS PRESSURE WITH ED PUMPON = 72". ES TANK FILLING - NO ES PUMPON. SYSTEM SUMP IN HUND MODE. PRINKEY BUL FUTER = 23 PS. SEBNOWEN BUS FUTER = 25 PS. SEBNOWEN BUS FUTER = 4 PS. FLOW WAS AS BO SAND 1900 MEO.

# 1100 616 EFF = 40 COM

PRIMARY B.F. = 35 ps.,

EQ TOWN WATER U. TURBIO.,

BAS FUTCR PRESSURE WICH


CHUSED PBE * 5. BF.
COUTINGE EP PUMP EFF - 141 6PM
PBE = 14 ps;
SBE = 11 ps;

5,6,F = 11 ps; Pully GO TOUNK TO 600

PUMP EQ TOUK TO 600 GAL.
RESET 5"STEM. MHI-HI/MUZZ-HI
EQ TANK-LO A/S 5TILL ON.

SHUT SYSTEM GUTBL DUBER OFF

1210 MHI PUMPS OFF RESET - MHI-411 OF RUM MAI DUMPS IN HOND TO 1,000 GAL 1250 EQ PUNPOFF. A/S ON MAZA PUNPS MUZA-41. BOTH MHZA PUMPS ON 245 A/S ON. EQ PUMPON, MAZA PUMPS ED LOW-OFF. MA PUMPS ON (4) MAZA = 0.0 GPM, FLOW METER BAD ORUNE PLASSED. EQ = 1500 SAL ON. MH2-41. EFF= 1456PM 1125 TURN OLL SYSTEM CAMPONETTS ON POWER 6W, RESET. NOTHING ON. WAIT 5 MINNES, TURN GIVEROL OFF 5/TE RESET MHI-HI /MH2A-HA SBF MWZ4= 0.0 GPM OU. MNZ4-42 FOO TOWN FILLING MH1 = 150 spm 015=2333 PBF



## 10783 - 014/043 Area Conco CP - Onca 6/07 - management

ALL-WEATHER FIELD BOOK No. 350 NF

Principle of States (Control of States)	page on S-4 mass		ed (11 (12 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	i i i i i i i i i i i i i i i i i i i	Appendig Color Color		<b>)</b>
							4
N.						* 「	24/2
appropria			:			Z	18
200 J	O.	<b>}</b> .		11990	Sol	, C C	N N
Seell S	967-180	0740	200	241199	である	36	77
ファウン	26	35		ر ک ک	: 1	イグス	)
40/hZ/07	3 1	ナーン	AS 2502	はるもろ	hang e	(070) (070)	3
32	5	Z (	TF	<b>1</b> §	25	5 5	

13:18 leute Sen+Bill (toush of E3SR on 5:te m 5:te m H-1 a 50482 m H-1 a 50482 m H-1 a 50482 m H-1 a 5449 m H-1 a 54492 m H-1 a 54492 m H-2 a 4447300 m H-2 a 4447300 m H-2 a 447300 chunge filth of 6560 1340 5 ample cp effluent 1340 5 ample cp effluent 1340 5 ample cp effluent 1350 5 ample cp effluent 1350 5 ample cp effluent 1500 Filth pross con courses shurt 
(90 65 Says might have to change hillers several times since Sys was shut down dwer to be the estart system after 2nd hilter change but only 5 with change but only 5 with change but only 5 with the change but only 5 with the change him the billed list shut down the himse tend.

(150 6.5 Says try I more time to be sain was try I more time tends.

(150 6.5 Says try I more time to be says try I more time to be so in that could recover the start system ase in the change of similar to the tends of the pressure caused system show down (25 Says Strogetor the day. 105 + 8 H Aprite)

13/2/

DEM SMITH ON SITE. TRUBLE SHOTING SASTEM MAIL + MAZA HIGHLEVEL ALARMS ON, BERESSACE 46H.

CHANGE BAS DITTERS.

1100 MAIL BUMPED FOUND. MAZA STUL AICH.

CHECKED EQ TONK TOR SEDIMENT.

DID NOT FEEL SEDIMENT WIPWE.

4/7/07 Month by Sayling 10.00 Dense Sara (EUS/R) on 5. to.
MH-1 1033336
MH-2 34/7/74 th Alarm
RS 270995
Meter 2531700

Charge filters
10:20 Stanfle CP: Ment #1
10:30 Stanfle CP: Muent #3
10:40 50 mole CP chuest
10:45 DS ADTR.

0800 RAY SMINTH ON SITE TO CHANGE BAG FILTERS
AND OCCULECT WEEKLY EFFLUENT SAMPLE,
MAZA = 347845
FS = 113
SYSTEM = 2772834
METER = 2570788
0815 OLLECT CP EFFLUENT
0830 GAMVE PRIMARY + SECONDARY BLE FUTERS,
0850 GAMVE PRIMARY + SECONDARY BLE FUTERS,
0550 GAMVE PRIMARY + SECONDARY BLE FUTERS,

1 (G) Weells Sames C) Demo Suc on 18 + 1 (070836 950 cultect sound Orghus

										,
11 29/07 Wietler Samline	10.11 Penise Sera (EUSR) In site	mH-1 1116250	MH 2 3/9/36	277 8 4	14/5 3947124	Wester 2730300	でする。	1025 SAMPLE CP effluent	4	The water

EQ tank down is younged Born, re-sext with purps All MHs purping

306 Raturt system + pang

ow the	111-1 W.	Fur of	je syskm-			
7 Eure gonoy cull	Blower 1411 MH-1 Wi dam, MH-2 Walling FO	K Walain.	1236839A FALE	849203	963193	weter 2744 300
12/3/07	N See	75	1 K3 X	2- Hw	子して	MEAN

i 33 5 Ecs pumps turned can filter pressure is good will stay on site for I now 1332 Innavy filter pressure rising After Colors, will change of Alter once none 13 to change finan filte, restent of my 25 g 20 tank full, turn off mit prays 1410 Change Drinary ATher.
1418 MH pumps running 1925 80 tank pumping.
1925 80 tank pumping. two all 153005 A

12/18/07

16/07 Monthly Suplay	14-1 1150256 14-2 349458	A 5 30.10720	(0 C)		1000 collect wifuered #2 5 anglo	1012 SMB
945 26	TIT	74	25 S	622	(000)	

213/9 Weeky Suyez 955 05 own to MH-3 34972 PS 3689507 Myth 2859507 (000 SAMPLE CP gluent Church Alters