2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

Prepared for

Utica Holding Company c/o Danaher Corporation 1500 Mittel Boulevard Wood Dale, IL 60191

Prepared by

Synapse Risk Management, LLC. Historic Bennett Warehouse 325 East Water Street Syracuse, New York 13202

April 2009

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

CERTIFICATION

I, Paul M. Fisher, P.E., as a New York State licensed Professional Engineer, certify that the 2007 Annual Operation, Maintenance and Monitoring Report, Sections 1 through 5, for the property located at 2200 Bleecker Street, Utica, New York, pursuant to the Draft DER-10, December 2002, Section 1.5(a)9, has been prepared in accordance with good engineering practices and under my direct review. I further certify that the inspections and evaluations, for said sections, were implemented and that all activities were completed in accordance with the NYSDEC-approved Operation, Maintenance and Monitoring Manual and/or NYSDEC-approved changes.

Paul M. Fisher, P.E.

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

CERTIFICATION

I, Mark Corey, P.E., as a licensed Professional Engineer in the State of New York, certify that Sections 6.2.1, 6.3.1, 6.4.1 and 6.5.1 of the 2008 Annual Operation, Maintenance and Monitoring Report and respective tables, charts and figures, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a)8 and has been prepared in accordance with good engineering practices.

AECOM

Mark Corey, P.E.

i

CERTIFICATION

I, John P. Sobiech , P.E., as a licensed Professional Engineer in the State of New York, certify that Section 6.0, 6.1, 6.2.2, 6.3.2, 6.4.2 and 6.5.2 of the 2008 Annual Operation, Maintenance and Monitoring Report and respective tables, charts and figures, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the Draft DER-10, December 2002, Section 1.5(a)8 and has been prepared in accordance with good engineering produces.

Clough Harbour & Associates LLP

ii

TABLE OF CONTENTS

Section

<u>Page</u>

Table	of Conte	nts	iv		
Acron	yms and	Abbreviations	v		
Assoc	iated Do	cuments	vi		
1.0 INTRODUCTION					
	1.1	REGULATORY HISTORY	.1-1		
	1.2	PURPOSE	.1-1		
	1.3	REPORT ORGANIZATION	.1-2		
	1.4	PROPERTY MANAGEMENT	.1-2		
2.0 PROPERTY INSPECTION AND MAINTENANCE		RTY INSPECTION AND MAINTENANCE	.2-1		
	2.1	PROPERTY HISTORY	.2-1		
	2.2	PROPERTY GEOLOGY AND HYDROGEOLOGY	.2-2		
	2.3	PROPERTY ACTIVITIES	.2-2		
	2.4	INSPECTION			
	2.5	PROPERTY DRAINAGE AND OUTFALLS	.2-3		
	2.6	SUMMARY	.2-3		
	2.7	FIGURES	.2-4		
3.0	REMED	DIAL ACTION FACILITY	.3-1		
	3.1	CONSTRUCTION	.3-1		
	3.2	OPERATIONS AND INSPECTIONS	.3-2		
	3.3	MAINTENANCE	. 3-3		
	3.4	LEACHATE COLLECTION	.3-3		
	3.5	LEACHATE DISPOSAL	.3-4		
	3.6	SUMMARY	.3-5		
	3.7	TABLES	3-6		
	3.8	CHARTS	3-7		
	3.9	FIGURES	.3-8		
4.0	GROU	NDWATER MONITORING	.4-1		
	4.1	MONITORING WELL CONSTRUCTION			
	4.2	GROUNDWATER ELEVATION MEASUREMENT	.4-1		
	4.3	GROUNDWATER SAMPLING	.4-2		
	4.4	GROUNDWATER ANALYTICAL RESULTS	.4-3		
	4.5	SUMMARY	.4-4		
	4.6	TABLES	4-5		
	4.7	FIGURES	4-6		
5.0	PROPE	RTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM	.5-1		
••••	5.1	OUTFALL CONTRIBUTIONS			
	5.2	OUTFALL CONSTRUCTION			
	5.3	MONITORING			
		5.3.1 Routine Monitoring			
		5.3.2 EPA Method 1668A PCB Study	.5-4		
		5.3.3 Acute Toxicity Testing			
	5.4	SUMMARY			
	5.5	TABLES			
	5.5	TABLES			
	5.6	FIGURES	5-10		

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

6.0	GRO	UNDWATER TREATMENT SYSTEM	6-1
	6.1.	SYSTEM CONSTRUCTION	6-1
	6.2.	OPERATION	6-2
		6.2.1. January - September 2008, AECOM	
		6.2.2. October – December 2008, CHA	
	6.3.	MAINTENANCE AND TROUBLESHOOTING	
		6.3.1. January - September 2008, AECOM	
		6.3.2. October – December 2008, CHA	
	6.4.	SPDES OUTFALL 03A	
		6.4.1. January - September 2008, AECOM	
		6.4.2. October – December 2008, CHA	
	6.5.	SECTION 6 – SUMMARY	6-7
		6.5.1. January - September 2008, AECOM	
		6.5.2. October – December 2008, CHA	
	6.6	TABLES	
	6.7	FIGURES	6-9

LIST OF APPENDICES

Site Inspection Reports - Form A & Form A1
Auto Dialer Alarm Incident and Testing Report - Form F
Leachate Disposal Correspondence and Analytical Data
Water Level Field Logs - Form D
Groundwater Sampling Logs- Form E
Groundwater Analytical Data
Groundwater Treatment System Inspection Logs

ACRONYMS AND ABBREVIATIONS

ABBREVIATION	NAME
BBL	Blasland, Bouck & Lee
bgs	below ground surface
cfm	cubic feet per minute
cis-1,2-DCE	cis-1,2-dichloroethene
CMP	corrugated metal pipe
Coolidge	Coolidge Utica Properties, LLC
CPTC	Chicago Pneumatic Tool Company
Danaher	Danaher Corporation
DER-10	NYSDEC's Draft DER-10, Technical Guidance for Site Investigation and Remediation dated December 25, 2002
DMRs	Discharge Monitoring Reports
Fathead Minnow	Pimephales promelas (vertebrate)
FER	Final Engineering Report
gpd	gallons per day
gpm	gallons per minute
GTS	groundwater treatment system
HDPE IRM	high-density polyethylene Surface Water Interim Remedial Measures
ISACC	Intelligent System for Automatic Control & Communication (Auto Dialer System)
Main Building	former main manufacturing building
MH	Manhole
mg/l	Milligrams/liter
NCT	northern collection trench
ng/l	nanograms/liter
NYSDEC	New York State Department of Environmental Conservation
OBG	O'Brien and Gere Engineers, Inc.
OCDWC	Oneida County Department of Water Quality and Water Pollution Control
OM&M	Operation, Maintenance and Monitoring
PCB	polychlorinated biphenyl
PVC	polyvinyl chloride
QA/QC	Quality assurance/quality control
RA	Remedial Action
RAF	Remedial Action Facility
RD	Remedial Design
RI	Remedial Investigation
ROD	Record of Decision
SCT	southern collection trench
SECOR	SECOR International Incorporated
SPDES	State Pollutant Discharge Elimination System
SVOC	semi-volatile organic compound
TCE	Trichloroethylene
the Property	2200 Bleecker Street in Utica, New York
TOGS 1.1.1	NYSDEC Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality and Guidance Values
	and Groundwater Effluent Limitations dated June 1998
trans-1,2-DCE	trans-1,2-dichloroethene
TSS	total suspended solids
ug/l	micrograms/liter
UHC	Utica Holding Company
VC	vinyl chloride
VOC	volatile organic compound
Water Flea	Ceriodaphnia dubia (invertebrate)

ASSOCIATED DOCUMENTS

ABBREVIATION	TITLE	AUTHOR	DATE
Phase 1	Phase I Investigation	BBL	8/85
SIR	Site Investigation Report	BBL	7/90
PSA	Preliminary Site Assessment	NYSDEC	11/90
Order	Order on Consent for RI/FS Index No. A6-0279-920-04	NYSDEC	10/26/93
RI	Remedial Investigation Report	BBL	10/94
IRM	Surface Water Interim Remedial Measures (Design)	BBL	10/94
IRM-DWG	IRM Contract Drawing	BBL	04/95
IRM OM&M	IRM Operation & Maintenance Manual	BBL	04/95
RI/FS	Health and Safety Plan - Addendum #1 Remedial Investigation/Feasibility Study	BBL	10/95
SRI/FS	Supplemental Remedial Investigation Report/Feasibility Study	BBL	12/95
ROD	Record of Decision - Site No. 622003	NYSDEC	3/29/96
ORDER	Administrative Order on Consent Index No. B6-0491-96-04	NYSDEC	10/02/97
RD	Remedial Design Work Plan	BBL	11/97
RDS	Remedial Design Specifications	BBL	4/98
SPDES-SAP	SPDES Stormwater Action Plan	SECOR	6/00
FER	Final Engineering Report (Final)	SECOR	8/01
OMM	Operation, Maintenance & Monitoring Manual (Final)	SECOR	4/01
2000-RPT	2000 Annual Operation, Maintenance & Monitoring Report	SECOR	4/01
2001-RPT	2001 Annual Operation Maintenance & Monitoring Report	SECOR	8/02
UHC SPDES	Utica Holding Company SPDES Permit No. NY-0257087	NYSDEC	9/1/02
CPTC SPDES	Chicago Pneumatic SPDES Permit No. NY-0108537	NYSDEC	9/1/02
2002-RPT	2002 Annual Operation, Maintenance and Monitoring Report	SECOR	3/03
2003-RPT	2003 Annual Operation, Maintenance and Monitoring Report	Domani	3/04
2004-RPT	2004 Annual Operation, Maintenance and Monitoring Report	Synapse	3/05
2005-RPT	2005 Annual Operation, Maintenance and Monitoring Report	Synapse	2/06
2006-RPT	2006 Annual Operation, Maintenance and Monitoring Report	Synapse	4/07
2007-RPT	2007 Annual Operation, Maintenance and Monitoring Report	Synapse	4/08 revised 6/08

1.0 INTRODUCTION

This 2008 Operation, Maintenance and Monitoring Report (OM&M Report) provides an annual account of activities relative to the property located at 2200 Bleecker Street in Utica, New York (the Property). The Chicago Pneumatic Tool Company (CPTC) occupied the Property from 1948 through 1997 for manufacturing. Utica Holding Company (UHC), a subsidiary of Danaher Corporation (Danaher), presently owns the land surrounding the former CPTC main manufacturing building (Main Building) that is leased to Utica Land Equities, LLC (ULE). Coolidge Utica, LLC (Coolidge) presently owns the Main Building and the land beneath. Coolidge and ULE share members and offices.

1.1 Regulatory History

Environmental assessments and investigations conducted between 1985 and 1990 identified impacted soil, surface water, and groundwater at the Property, and prompted the New York State Department of Environmental Conservation (NYSDEC) to issue an Administrative Order on Consent in 1993, directing the investigation and remediation of impacted areas at the Property. In 1996, NYSDEC issued a Record of Decision (ROD) for the Property, and listed it in the Registry of Inactive Hazardous Waste Disposal Sites, followed by a second administrative Order on Consent. This set forth a Remedial Design (RD) and subsequent Remedial Action (RA) required for the Property. Following completion of the RA construction and reporting activities, NYSDEC issued a letter indicating that the RA had been approved. A chronological list entitled Associated Documents, Page v and Page vi, summarizes key documents.

1.2 Purpose

This OM&M Report has been prepared in conformance with the requirements set forth in NYSDEC's Draft DER-10, dated December 25, 2002, *Technical Guidance for Site Investigation and Remediation* (DER-10), and has been prepared in reference to the Final Engineering Report (FER), previously submitted and accepted by NYSDEC for the Property. Additionally, the April 2001 site specific OM&M Manual was approved by NYSDEC, along with subsequent annual reports. This OM&M Report, as directed by the OM&M Manual, has the following objectives:

- To provide an ongoing review and evaluation with regards to the compliance of the RA with the requirements of the ROD and subsequent Order on Consent;
- To provide an evaluation of the effectiveness of the ongoing remedial operations, engineering controls, and treatment systems in use at the Property, and identification of any needed repairs or modifications;
- To provide an assessment of the performance and effectiveness of the remedy;
- To document any necessary changes to the remedy and/or monitoring systems;
- To provide recommendations for changes and/or new conclusions regarding environmental impact at the Property based on this evaluation; and
- To provide information to the public.

1.3 Report Organization

This report has been organized into six sections, each addressing a specific physical area/feature and/or regulatory program/requirement pertaining to ongoing operations at the Property as follows:

Section 1.0 – Introduction - Discusses the regulatory history of the Property, the purpose of this annual report, the report's originations and an overview of party contributions and subsequent responsibilities;

Section 2.0 - Property Inspection and Maintenance - Discusses the current ownership and uses of the Property, and the ongoing inspection and maintenance requirements associated with the Property's general ongoing use;

Section 3.0 - Remedial Action Facility - Discusses the Remedial Action Facility (RAF) at the Property, primarily consisting of a containment cell, a leachate collection and storage system, and the inspection and maintenance requirements associated with the RAF's ongoing operation;

Section 4.0 - Groundwater Monitoring - Discusses the groundwater monitoring well network at the Property, the groundwater sampling and analytical requirements and subsequent results;

Section 5.0 - Property SPDES - Discusses the State Pollutant Discharge Elimination System (SPDES) permitted surface water discharges through three outfalls at the Property, and the routine and additional effluent sampling, including the analytical programs required by the permit; and

Section 6.0 - Groundwater Treatment System - Discusses CPTC's operation and maintenance of the groundwater treatment system (GTS) and SPDES Outfall 03A installed to monitor the GTS effluent, at the Property. This section was prepared by ENSR International Inc. (ENSR) and Clough Harbour Associates on behalf of CPTC.

Each section contains appropriate tables and figures, as they apply to that specific section. This OM&M Report also discusses, and presents as appendices, applicable data and information collected in compliance with satisfying the DER-10 requirements, such as site inspection forms, field monitoring logs, and laboratory analytical data.

1.4 Property Management

On behalf of UHC, Synapse Risk Management, LLC (Synapse), of Syracuse, New York, has managed the administrative and technical requirements pursuant to the RA during 2008, with the exception of the GTS, which has been operated by ENSR of East Syracuse, New York since May 2005, on behalf of CPTC. The operation of the GTS was transferred from ENSR to Clough Harbour Associates of Syracuse, New York in September 2008

2.0 PROPERTY INSPECTION AND MAINTENANCE

The overall Property consists of a 77-acre parcel (see Figure 2-1 – Aerial Property Map) located in an industrial setting, with approximately 35 acres of undeveloped woodland at the southern portion of the Property. UHC retains ownership of the Property, which includes the ancillary buildings and the land, excluding the Main Building and the land beneath (see Figure 2-2 – Facility Plan). The Main Building and the land beneath is presently owned by Coolidge, whom subsequently rents/leases portions/sections of the building to various tenants. The peripheral Property receives monthly inspection and maintenance in conjunction with the required inspections of the RAF and associated components. UHC does not have access to the Coolidge Main Building and therefore is not permitted by Coolidge to conduct inspections of the building interior. This section includes inspection and maintenance only of the portions of the Property that is owned and accessible by UHC, not the Main Building. The RAF, groundwater monitoring, Property SPDES, and GTS are discussed in Section 3, Section 4, Section 5, and Section 6, respectively.

2.1 **Property History**

CPTC occupied the Property from 1948 until 1997 for the manufacture of pneumatic tools. Danaher owned CPTC, but later transferred ownership to Atlas Copco. The Property, with the exception of the Main Building and the land beneath, is currently owned by UHC, a subsidiary of Danaher. The 458,000 square foot Main Building and the land beneath has been owned by Coolidge and the remaining land, owned by UHC, is leased by ULE since 1997.

Potential environmental conditions at the Property were first identified in a 1985 Phase I Site Assessment (see Associated Documents). A subsequent site investigation was conducted in July 1990, and NYSDEC conducted a Preliminary Site Assessment later that year. Based on the findings presented in these investigation reports, NYSDEC issued an Administrative Order on Consent in 1993 which mandated the further investigation and remediation of impacted areas at the Property. Pursuant to this Order on Consent, Blasland Bouck & Lee, Inc. (BBL) submitted a Remedial Investigation (RI) report and a Surface Water Interim Remedial Measures (IRM) design in 1994, and a Supplemental Remedial Investigation/Feasibility Study in 1995. In 1996, NYSDEC issued a Record of Decision for the Property, and listed the Property in the Registry of Inactive Hazardous Waste Sites (No. 622003 - Class 2), specifying the RA required for the Property. A second administrative Order on Consent was issued in 1997 followed by the RD.

The IRM, included an air stripper that has been in operation since 1995. The air stripper and pumping appurtenance were incorporated into the RA. The RA was implemented from May 1998 through December 1999. A June 2000 SPDES Stormwater Action Plan was prepared and transmitted to NYSDEC to document SPDES corrective actions performed at the Property and to set forth contingency measures. NYSDEC issued a letter dated December 11, 2001 indicating that the FER and accompanying drawings and OM&M Manual for the Property had been approved. Additionally, the NYSDEC issued an earlier letter dated March 7, 2000 reclassifying the Property as a Class 4 Inactive Hazardous Waste Disposal Site. CPTC and Danaher retain responsibility for implementing long term OM&M of the GTS and RAF, respectively, at the Property.

The RA included the following major components:

- Remediation involving soil and sediment removal at 14 identified source areas (see Figure 2-3 -Historical Remedial Action Areas);
- Construction of a containment cell to store a portion of impacted soil and sediment from the 12 identified source areas. The containment cell and associated leachate collection system and building are surrounded by a perimeter fence and access is limited to authorized individuals associated with UHC. This fenced area is referred to as the RAF; and

 Construction and connection of two trenches, northern collection trench (NCT) and southern collection trench (SCT), to the existing air stripper, creating the GTS.

UHC is the Permittee on the SPDES permit associated with three outfalls located on the Property, which is discussed in Section 5. CPTC maintains responsibility for the GTS and associated SPDES permit which is discussed in Section 6.

2.2 Property Geology and Hydrogeology

The Property is located on the southern side of the Mohawk Valley, which is a broad, east-west trending lowland, the floor of which consists of a uniform sequence of laminated, calcareous black shale known as the Utica Shale. South of the Property, the land surface rises abruptly off the valley floor, forming a bluff capped by limestone. The Mohawk River is located approximately 3,000 feet north of the Property. In general, regional dip of the bedrock unit is to the southwest. Regional estimates of depth to bedrock range from 21 to 75 feet.

Subsurface materials at the Property were described during installation of monitoring wells, soil borings, test pits, and excavations performed during investigative and remedial actions conducted primarily between 1988 and 1999. The unconsolidated subsurface materials are composed of varying consistencies of sand, silt, and clay. Some of the materials have been reworked to varying depths across the site by former facility activity and are classified as fill. The depth of the unconsolidated natural material across the Property ranges from three feet to 12 feet below grade. A till layer was encountered below the unconsolidated material and ranged in thickness from 12 to 24 feet. The till deposits are described as over-consolidated, dark gray silt and clay, that slopes gradually toward the north-northwest.

The regional groundwater flow is northeast, toward the Mohawk River. Two distinct hydrogeologic units, separated by a semi-confining till unit, are present at the Property. The first water-bearing unit is the unconsolidated overburden material (sand, silt, clay). Depth to first groundwater encountered in the overburden at the Property is generally within 5 feet of the ground surface. Weathered shale bedrock is the second water-bearing unit, and was reportedly encountered between 23 and 30 feet below ground surface.

2.3 **Property Activities**

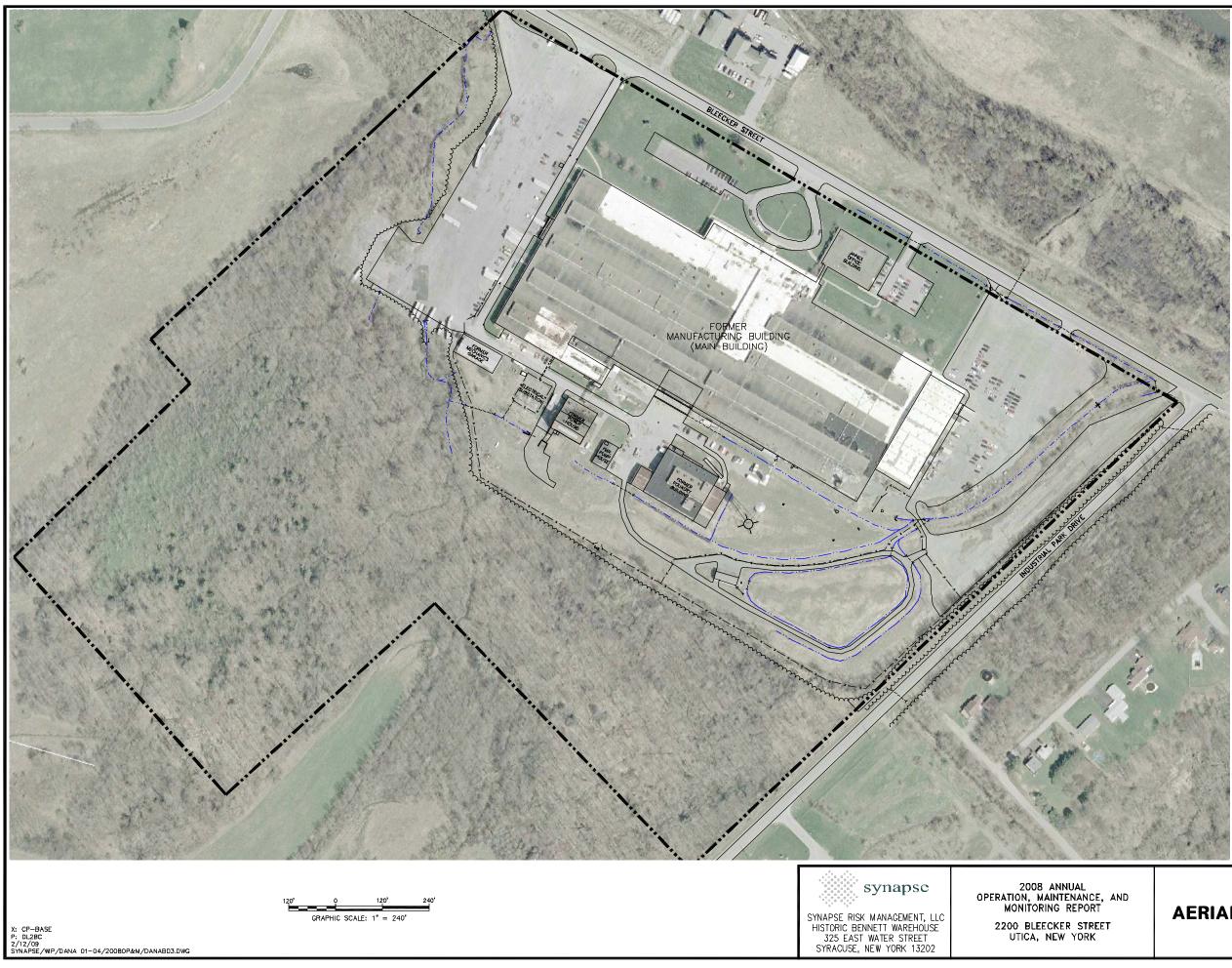
In 2008, the majority of the Property buildings were occupied by tenants that generally include trucking, cosmetic storage, food (dough) manufacturing, and printing businesses. The Main Building, 458,000 square feet, is surrounded by approximately 57,000 square feet of ancillary buildings. Paved access roads and parking areas that accounts for approximately 12 acres. An approximate 35-acre wooded tract, at the southern portion of the Property, remains undeveloped. No specific changes in the Property's makeup or unusual activities related to the operation and maintenance requirements were noted during the calendar year 2008.

2.4 Inspection

Scheduled Property visits and subsequent Site Inspection Reports – Form A and Form A1, (Appendix A) are performed and prepared to track Property activities and monitor Property drainage. These reports indicate required maintenance and provide a follow-up to ensure the subsequent maintenance effectiveness. Scheduled and unscheduled Property visits are documented on this and other forms, and are discussed in appropriate sections throughout this report. During 2008, the Property ditches were inspected and observed to be well vegetated, and overall, not generally prone to sedimentation and erosion. Additionally, the ditches are inspected for unusual staining and deposits, of which none were identified. The Property culverts are inspected as well, to ensure they are clear and functional.

2.5 Property Drainage and Outfalls

The Property is generally drained via existing drainage ditches located at the east and west portions of the Property. The west unnamed creek, (former Area 1) (See Figure 2-3), flows from the south through a wooded area and runs along the western extent of the Property, exiting at the northwest corner of the Property. The west unnamed creek drainage contribution primarily consists of roof leaders conveyed via the northern and southwestern stormwater systems emanating from of the Main Building. Surface water runoff from the western parking lot and surface water runoff from a southern agriculture area also contribute to the west unnamed creek. The southwestern and northern stormwater systems are monitored from manholes identified as SPDES Outfall 001 and Outfall 002, respectively. SPDES outfall monitoring for the Property is discussed in Section 5. The west unnamed creek floods occasionally in the spring and fall, primarily due to restrictions in an off-site stormwater piping system. A new culvert was installed in 2003 by the county across Bleecker Street, approximately 300 feet off-site to the west. This culvert was installed to limit flooding of Bleecker Street by water backing up the west unnamed creek.


Two east-west oriented surface water drainage ditches (Area 4 and Area 6), originate from the mid portion of the Property, south of the Main Building, and converge to form one north-south ditch, (Area 14), along the eastern portion of the Property. This east drainage ditch joins a road ditch located parallel to Bleecker Street. Treated effluent from the GTS, which is covered in Section 6, is discharged to the east drainage ditch via CPTC SPDES Outfall 03A. The east drainage ditch also receives stormwater from roof leaders connected to the southeastern stormwater system and the RAF surface drainage, as well as surface water from the eastern parking lots. The SPDES Outfall 003 is located near the northern end of the eastern drainage ditch; prior to joining a drainage ditch parallel to Bleecker Street, ultimately discharging off site via a culvert under Bleecker Street.

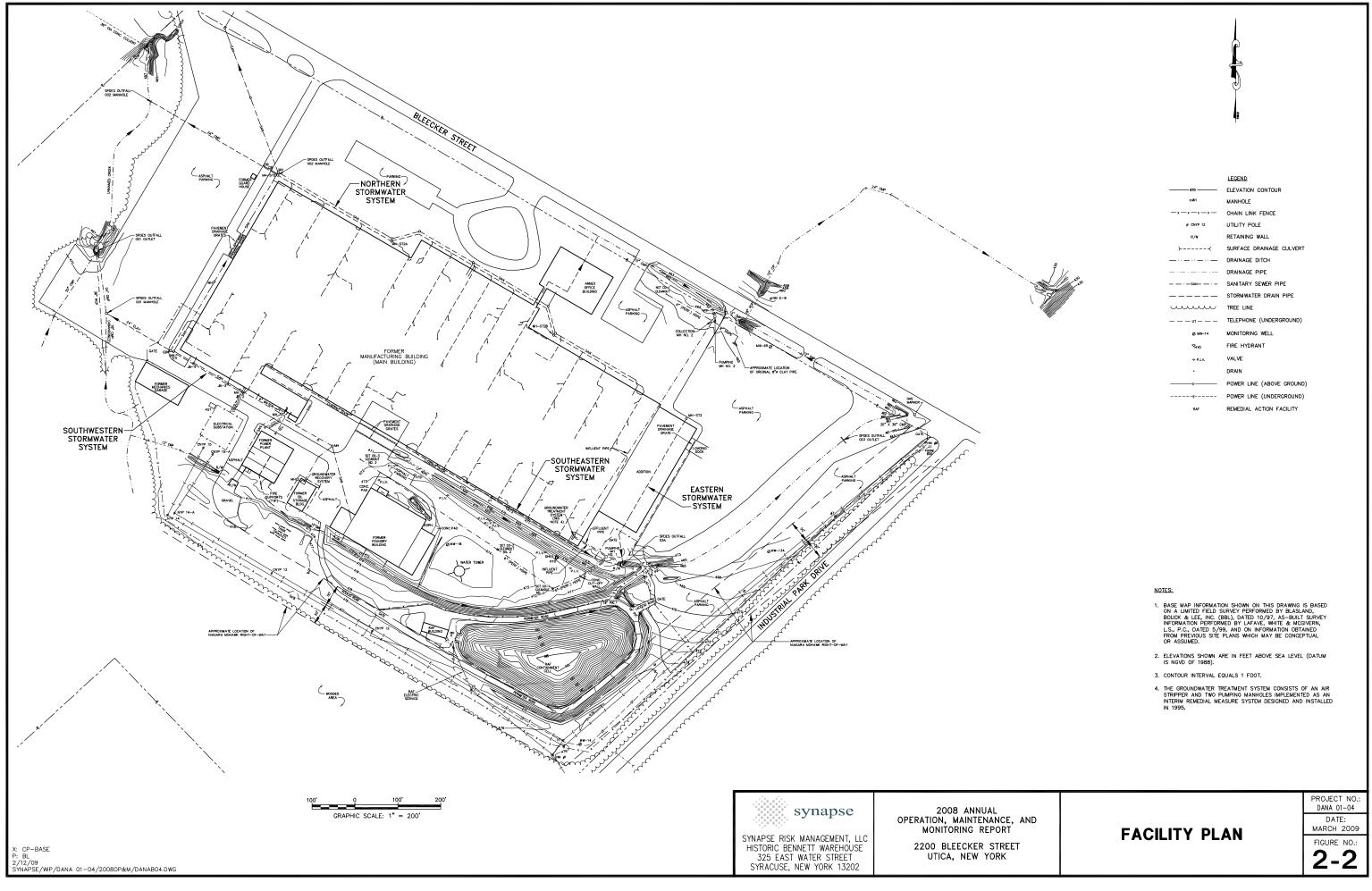
2.6 Summary

The northern portion of the Property continued to be active throughout 2008, with no notable changes to daily operations; the southern portion of the Property remains wooded and undeveloped. Tenants occupy approximately 80% of the Main Building and continue to use the surrounding access roads and parking lots. The Property is accessed a minimum of once per month allotting reviews of ongoing activities and inspection of the drainage system. No reportable issues of concern were noted with regard to property drainage or physical conditions, therefore, continuation of the scheduled inspection is recommended for this aspect of the Property.

2.7 Figures

- 2-1 Aerial Property Map
- 2-2 Facility Plan
- 2-3 Historical Remedial Action Areas

LEGEND APPROXIMATE PROPERTY LINE CHAIN LINK FENCE SURFACE DRAINAGE CULVERT DRAINAGE DITCH TREE LINE


NOTES:

- BASE MAP INFORMATION SHOWN ON THIS DRAWING IS BASED ON A LIMITED FIELD SURVEY PERFORMED BY BLASLAND, BOUCK & LEE, INC. (BBL), DATED 10/57, AS-BUILT SURVEY INFORMATION PERFORMED BY LAFAVE, WHITE & MCGVERN, L.S., P.C., DATED 5/98, AND CN INFORMATION OBTAINED FROM PREVIOUS SITE PLANS WHICH MAY BE CONCEPTUAL OR ASSUMED.
- 2. PROPERTY LINE INFORMATION TAKEN FROM HERKIMER COUNTY TAX MAPS AND IS APPROXIMATE.
- 3. 2003 AERIAL PHOTO FROM NYSGIS WEBSITE.

AERIAL PROPERTY MAP

DATE: MARCH 2009 FIGURE NO .: 2-1


PROJECT NO.: DANA 01-04

	LEGEND
	ELEVATION CONTOUR
OMH	MANHOLE
	CHAIN LINK FENCE
ø CNYP 12	UTILITY POLE
R/W	RETAINING WALL
)(SURFACE DRAINAGE CULVERT
	DRAINAGE DITCH
_ · _ · _ · _ · _ ·	DRAINAGE PIPE
· - SAN · -	SANITARY SEWER PIPE
	STORMWATER DRAIN PIPE
uuuu	TREE LINE
— — — uī — — —	TELEPHONE (UNDERGROUND)
@ MW-14	MONITORING WELL
°?́нто	FIRE HYDRANT
♦ P.LV.	VALVE
•	DRAIN
E	POWER LINE (ABOVE GROUND)
£	POWER LINE (UNDERGROUND)
RAF	REMEDIAL ACTION FACILITY

<u>LEGEND</u>

MANHOLE

OMH

UTILITY POLE Ø CNYP 12

RETAINING WALL R/W

DRAINAGE CULVERT

DRAINAGE DITCH _____

----- DRAINAGE PIPE

---- STORMWATER DRAIN

ABANDONED UNDERGROUND PIPE

TREE LINE

@ NW-14 MONITORING WELL

FIRE HYDRANT

VALVE ↔ P.LV.

> EXCAVATION AREA REQUIRING OFF-SITE DISPOSAL AS A TSCA-REGULATED MATERIAL PCB CONCENTRATION >50 ppm)

EXCAVATION AREA REQUIRING PLACEMENT INTO THE SVE PORTION OF THE ON-SITE CONTAINMENT_CELL_(VOC CONCENTRATION >10 ppm, PCBs <50ppm)

EXCAVATION AREA REQUIRING PLACEMENT INTO THE ON-SITE CONTAINMENT CELL (VOC CONCENTRATION <10 ppm, PCBs <50ppm)

SELECT WASTE (TOPSOIL)

EXCAVATION AREA REQUIRING OFF-SITE DISPOSAL (VOC CONCENTRATION >10 ppm)

- $\rightarrow -\frac{24^{\circ} \text{ CMP}}{(\text{CLEANED})} ($ CULVERT THAT WAS CLEANED
- NEW CULVERT
 - DRAIN
- REMEDIAL ACTION FACILITY RAF
- NOTES: 1. BASE MAP INFORMATION SHOWN ON THIS DRAWING IS BASED ON A LIMITED FIELD SURVEY PERFORMED BY BLASLAND, BOUCK & LEE, INC. (BBL), DATED 10/97, AS-BUILT SURVEY INFORMATION PERFORMED BY LAFAVE, WHITE & MCGIVERN, L.S., P.C., DATED 5/99, AND ON INFORMATION OBTAINED FROM PREVIOUS SITE PLANS WHICH MAY BE CONCEPTUAL OR ASSUMED.
 - 2. ELEVATIONS SHOWN ARE IN FEET ABOVE SEA LEVEL (DATUM IS NGVD OF 1988).
 - 3. CONTOUR INTERVAL EQUALS 1 FOOT.

HISTORICAL

4. ALL ORIGINAL DRAINS AND DRAIN PIPE LOCATIONS INSIDE AND OUTSIDE OF THE BUILDINGS WERE DIGITIZED FROM COPIES OF THE 1948 CONSTRUCTION DRAWINGS AND ARE APPROXIMATE.

DANA 01-04 DATE: MARCH 2009 **REMEDIAL ACTION AREAS** FIGURE NO .: 2 - 3

PROJECT NO .:

3.0 REMEDIAL ACTION FACILITY

The RAF is situated in the mid-eastern portion of the Property, within a fenced area encompassing approximately 3.8 acres, as presented on Figure 3-1 – Remedial Action Facility Plan. The OM&M of the RAF was conducted by Synapse, in accordance with the guidelines set forth in the NYSDEC-approved OM&M Manual dated April 2001. Field reports provide monthly documentation of the site inspection events and any adjustments made to components associated with the RAF. The results of these inspections generally sets forth any maintenance activities, if required.

Key components of the RAF are the fences, roads, drainage ditches, containment cell, leachate collection, and building systems, which constitute the engineering controls. The primary function of the RAF is collection and subsequent disposal of leachate generated from the containment cell.

The four groundwater monitoring wells (with the exception of MW-14), as well as, the GTS are located outside of the perimeter fence of the RAF, and are discussed in Section 4 and Section 6, respectively.

3.1 Construction

The RAF is surrounded by an 8-foot high barbed wire over chain link fence, with access gates to the north and west, with the primary access via the western gate. The RAF is generally comprised of the following components:

- Containment Cell In 1999, construction of a 1.4-acre containment cell was completed to store 16,117 cubic yards of impacted soil and sediment generated during the RA. The containment cell was lined with a single composite liner system and completed with a composite cap placed over the impacted soil and sediment. Two gas vents and a leachate collection pipe were also installed within the containment cell. A series of ditches were installed around the containment cell to collect surface water runoff and direct stormwater away from the containment cell. A gravel service road surrounds the perimeter of the containment cell allowing for vehicle access and subsequent inspection and maintenance.
- Leachate Collection System A leachate collection system, comprised of a collection pipe that extends the length of the containment cell and is connected to the collection manhole, which is installed adjacent to the western side of the containment cell. The collection manhole is equipped with two pumps to transfer leachate to a storage tank prior to disposal. All components of the leachate collection system are double contained with fail safe monitoring systems. The collection pipe surfaces at the east end of the containment cell providing access for cleaning, as needed. The leachate collection system components are noted on Figure 3-1.
- Leachate Storage System Leachate pumped from the collection manhole is stored in an aboveground 5,000-gallon steel storage tank within a steel secondary containment structure as shown on Figure 3-2 Building, Tank, and Piping Plan. A flow totalizer is used to track the quantity of leachate pumped to the tank from the collection manhole, and a level sensor installed in the tank is used to determine the instantaneous quantity of leachate in the tank. The level sensor is also electronically connected to an auto dialer system to notify personnel of alarm conditions via telephone and facsimile. The tank is also equipped with a sampling port, drain fitting, electric heating elements, and insulation, utilized to prevent freezing of the tank and piping during winter months. In addition, a concrete truck pad, with a grated sump is located adjacent to the tank to provide containment during pumping of leachate from the tank to a tanker truck, prior to disposal.
- RAF Building A 1,278-square foot building constructed of a steel frame and siding on a concrete slab foundation is used to house the leachate collection tank (tank area), and truck pad (truck loading area), noted above. Additionally, the building enclosure has an office area for maintaining

3.7 Tables

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation

TABLE 3-1 CUMULATIVE LEACHATE GENERATION

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)
5/19/1999	0	0	0	0
6/1/1999	13	4200	4200	323
6/22/1999	21	8200	4000	190
7/23/1999	31	12200	4000	129
9/27/1999	66	16200	4000	61
12/21/1999	85	20200	4000	47
1/21/2000	31	21400	1200	39
2/4/2000	14	22400	1000	71
3/14/2000	39	23800	1400	36
4/21/2000	38	24800	1000	26
5/11/2000	20	25700	900	45
6/6/2000	26	26700	1000	38
7/11/2000	35	27700	1000	29
8/18/2000	38	28800	1100	29
9/1/2000	14	29500	700	50
10/27/2000	56	31000	1500	27
11/14/2000	18	31600	600	33
12/15/2000	31	32700	1100	35
1/31/2001	47	33800	1100	23
2/28/2001	28	34400	600	21
3/29/2001	29	34800	400	14
4/26/2001	28	35400	600	21
5/23/2001	27	35900	500	19
6/21/2001	29	36500	600	21
7/17/2001	26	37100	600	23
8/15/2001	29	37600	500	17
9/14/2001	30	38400	800	27
10/23/2001	39	39200	800	21
12/3/2001	41	40000	800	20
12/18/2001	15	40400	400	27
1/11/2002	24	40800	400	17
2/6/2002	26	41400	600	23
3/5/2002	27	41800	400	15
4/16/2002	42	42300	500	12
5/9/2002	23	42700	400	17
6/5/2002	27	43100	400	15
7/23/2002	48	43900	800	17
8/9/2002	17	44100	200	12
9/19/2002	41	44900	800	20
10/16/2002	27	45400	500	19
11/27/2002	42	46200	800	19
12/13/2002	16	46400	200	13
1/31/2003	49	47200	800	16
2/18/2003	18	47400	200	10
3/19/2003	29	47800	400	14
4/16/2003	29	48200	400	14
5/15/2003	29	48400	200	7
6/5/2003	29	48600	200	10
7/9/2003	34	48600	600	10
8/1/2003	23	49200	400	17
9/23/2003	53	50400	800	17
10/2/2003	9	50400	0	0
11/21/2003	9 50	50400	1100	22
12/31/2003	40	52600	1100	22
1/13/2003	40	52600	0	28
			-	-
2/27/2004	45	54100	1500	33
3/10/2004	12	54100	0	0
4/7/0001				
4/7/2004 5/18/2004	28 41	54600 54800	500 200	18 5

TABLE 3-1 CUMULATIVE LEACHATE GENERATION

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)
7/29/2004	41	55800	600	15
8/26/2004	28	56200	400	14
9/23/2004	28	56500	300	11
10/20/2004	27	56700	200	7
11/30/2004	41	57100	400	10
12/17/2004	17	57300	200	12
1/12/2005	26	57700	400	15
2/10/2005	29	57900	200	7
3/7/2005	29	58100	400	14
4/6/2005	30	58300	200	7
6/2/2005	57	58700	400	7
7/27/2005	55	59300	600	11
8/10/2005	14	59500	200	14
9/14/2005	35	60000	500	14
10/11/2005	27	60300	300	11
11/15/2005	35	60600	300	9
12/28/2005	43	60900	300	7
1/25/2006	28	61200	300	11
2/20/2006	26	61400	200	8
3/24/2006	32	61800	400	13
4/12/2006	19	62000	200	10
5/17/2006	35	62200	200	6
6/2/2006	16	62400	200	-
	39			13 5
7/11/2006	43	62600	200	5 14
8/23/2006	-	63200	600	
9/20/2006	<u>28</u> 15	63400 63600	200	7 13
10/5/2006				
11/3/2006	29	63800	200	7
12/29/2006	56	64400	600	11
1/26/2007	28	64700	300	11
2/21/2007	26	64900	200	8
3/23/2007	30	65100	200	7
4/18/2007	26	65300	200	8
5/31/2007	43	65700	400	9
6/12/2007	12	65700	0	0
7/26/2007	44	66100	400	9
8/14/2007	19	66300	200	11
9/19/2007	36	66500	200	6
10/30/2007	41	66800	300	7
11/30/2007	31	67200	400	13
12/28/2007	28	67400	200	7
1/14/2008	17	67700	300	18
2/21/2008	38	68000	300	8
3/18/2008	26	68300	300	12
4/18/2008	31	68500	200	6
5/13/2008	25	68700	200	8
6/23/2008	41	69000	300	7
7/23/2008	30	69200	200	7
8/6/2008	14	69400	200	14
9/15/2008	40	69600	200	5
10/1/2008	16	69600	0	0
11/25/2008	55	69900	300	5
12/24/2008	29	70200	300	10

NOTES:

1. Monitoring Period = Days between totalizer readings.

2. Totalizer reading in gallons.

3. gpd = Gallons per day.

TABLE 3-2 ANNUAL LEACHATE GENERATION

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Year	Reading	Monitoring	Totalizer	Gallons	Flow	Flow
rour	Date	Period	Reading	Per Year	(gpd)	(gpm)
Begin	5/19/1999		0			
1999	12/21/1999	216	20200	20200	93.5	0.0649
2000	12/15/2000	360	32700	12500	34.7	0.0241
2001	12/18/2001	368	40400	7700	20.9	0.0145
2002	12/13/2002	360	46400	6000	16.7	0.0116
2003	12/31/2003	383	52600	6200	16.2	0.0112
2004	12/17/2004	352	57300	4700	13.4	0.0093
2005	12/28/2005	376	60900	3600	9.6	0.0066
2006	12/29/2006	366	64400	3500	9.6	0.0066
2007	12/29/2007	365	67400	3000	8.2	0.0057
2008	12/24/2008	361	70200	2800	7.8	0.0054

NOTES:

1. Monitoring Period = Days between totalizer readings.

2. Totalizer reading in gallons.

3. gpd = Gallons per day.

4. gpm = Gallons per minute.

OM&M records, the communication components, electrical service boxes and a storage area for tools, supplies, and equipment, known as the office/storage area. The building is located west of the containment cell and collection manhole.

3.2 **Operations and Inspections**

The leachate collection system operated continuously during 2008. The RAF and associated components are scheduled for monthly visual inspection and documentation as set forth in the OM&M Manual. Operation is also monitored via telecommunication with the RAF auto dialer system, Intelligent System for Automatic Control & Communication (ISACC). Scheduled site visits and subsequent Site Inspection Reports – Form A (Appendix A) consists of the following inspection components associated with the RAF:

- General Property Access and Drainage;
- Cell Perimeter Components;
- Containment Cell;
- Leachate Collection Manhole;
- Building Structure, Electrical, Telephone, and Auto Dialer Controls; and
- Leachate Storage System.

The cell perimeter road and facility access road were reviewed during the monthly inspections to ensure access for facility maintenance. The immediate surface drain ways were inspected to insure that ponding or erosion does not occur from runoff. All Property ditches and culverts were accessed and viewed during the inspection, for the same. The RAF perimeter fence was also inspected to ensure facility security, and the facility overhead utilities were viewed and tested, in the building, as well.

Inspection of the containment cell involved viewing the cell from the perimeter road and traversing its surface. Components viewed were the four perimeter drains, the two passive gas vents, and the cell cleanout pipe. These were checks for functionality, which also included periodic screening of the passive gas vents for volatile organic compounds (VOCs). The surface of the cell was inspected for stressed vegetation, burrows, erosion, and settlement.

Operation of the leachate collection manhole involves structural, electrical, pumping, and alarm components. Each inspection required checking the manhole control panel and recording running hours of the two pumps. Additionally, this included testing the operation of each pump, as well as opening the manhole and conducting visual inspection of its components. As this is a lead/lag pumping system, lead duties are periodically changed between Pump No. 1 and Pump No. 2 during inspections.

The RAF building was viewed during the inspection for inconsistencies in the structural, security, electrical, and telephone systems, as well as, assuring the heat and vent systems were functional. The ISACC, located in the RAF building, provides continuous monitoring information of the leachate collection manhole and leachate storage tank. The ISACC system is generally accessed remotely via modem semi-monthly for data collection and management. In the event of an alarm condition, the ISACC system alerts designated Synapse personnel based on the guidelines set forth in the OM&M Manual and the ISACC program logic. The Auto Dialer Alarm Incident and Testing Report, Form F, included in Appendix B, provides documentation of alarm conditions, if any, and testing during the 2008 calendar year. An annual total system check was performed on August 6, 2008, as required, and documented on Form F, included in Appendix B, one alarms was received during 2008.

The leachate storage system, which is housed in the center portion of the RAF Building, was inspected and total flow readings were recorded. The 5,000-gallon storage tank, containment system, and plumbing were viewed for leaks and any abnormalities. The tank was internally inspected, generally after leachate was removed, to assure the control of corrosion. The influent pipe is equipped with a flow totalizer, which was manually recorded during monthly inspections. The flow totalizer indicated that approximately 2,800 gallons were pumped and metered during 2008, totaling 70,200 gallons pumped and metered since leachate monitoring commenced in May 1999. The collected leachate sampling and disposal are reviewed in later subsections.

3.3 Maintenance

General maintenance requirements of the RAF are set forth in the OM&M Manual, which provides inspection criteria, forms, guidance, and procedures to perform scheduled maintenance requirements, as well as contingency plans for unscheduled matters. The OM&M procedures and protocols are generally cross-referenced with and supported by the August 2001 FER.

Scheduled Maintenance

The scheduled maintenance activities associated with the RAF and site components that occurred during the 2008 calendar year consisted of the following:

- RAF site access (snow removal, road maintenance, and fence maintenance);
- RAF building (ISACC program diagnostic/communication response);
- Containment cell (vegetation management, mowing, and erosion control);
- Drainage ditches (vegetation, riprap and culvert management); and
- Truck pad sump (pumping during leachate removal, Section 3.5).

Unscheduled Maintenance

Unscheduled maintenance activities associated with the RAF and site components that occurred during the 2008 calendar year consist of the following:

- Elimination of persistent and damaging vectors from the containment cell;
- Placement and grading of top soil followed by seeding and mulch;
- Spot restoration of vegetative cover on the containment cell;
- Removal of woody vegetation; and
- General cleaning to include power washing of the leachate storage tank and truck loading area of the building.

3.4 Leachate Collection

The leachate generated from the containment cell is collected, conveyed, and stored on-site. The leachate generated from the containment cell is drained, via gravity flow, to a perforated 6-inch, high-density polyethylene (HDPE) pipe located along the bottom of the containment cell, just above the liner. The leachate collection pipe passes through the western perimeter berm, and discharges into the leachate collection manhole. The portion of the leachate collection pipe between the containment cell and collection manhole is equipped with double-walled piping that provides secondary containment outside the containment cell. The leachate collected in the manhole is then transferred, via automatically controlled pumps, to the on-site leachate storage tank. As this is a lead/lag pumping system, the designated lag pump will act as a backup.

Leachate generation/collection is monitored by two methods; measuring the fill height in the tank and through a flow totalizer. The on-site ISACC system provides real time data and remote location monitoring of the leachate generation. The operation of this unit, associated with the leachate collection system, is discussed in the OM&M Manual. One of the eight programmed ISACC channels provides tracking of tank filling events (i.e., water level in the tank). The tank filling is monitored and is equipped with a shut down system, so as not to overfill.

The inline flow totalizer was read and the amount recorded during the monthly inspections as an additional method to monitor the leachate generation. Table 3-1 – Cumulative Leachate Generation provides a summary of the recorded flow from May 1999, inception, through December 2008. Chart 3-1 – Cumulative Leachate Generation graphically represents the data from Table 3-1. A total of 2,800 gallons was metered during 2008, comparable to an average flow of approximately 7.8 gallons per day (gpd). The overall trend of yearly leachate production has decreased as depicted in Table 3-2 – Leachate Generation Per Year, and Chart 3-2 – Leachate Generation Per Year.

3.5 Leachate Disposal

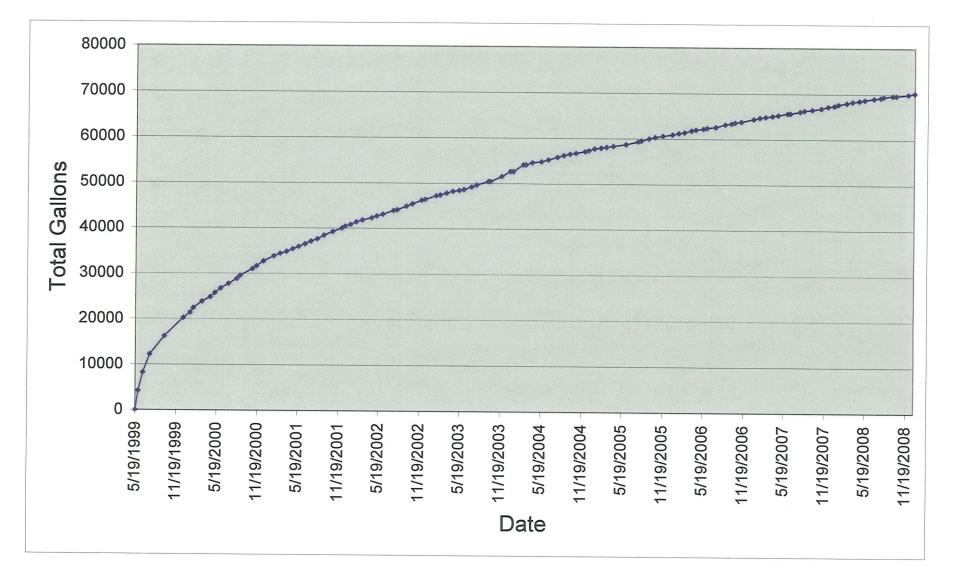
The leachate is temporarily stored in the on-site 5,000-gallon storage tank, which is within a steel secondary containment sized to contain 110% of the tank volume. The leachate requires analytical analysis prior to bulk batch disposal. Previous scheduling of the sampling events and subsequent disposal is based on tank level data monitored by the ISACC system. No disposal of the leachate was performed during 2008 under Permit No. GW-050 issued by the Oneida County Department of Water Quality and Water Pollution Control (OCDWPC). In March 2008 UHC submitted a SPDES Permit modification, requesting leachate generated from the containment cell to be allowed to accumulate in the leachate collection manhole, and no longer be directed to the 5,000-gallon aboveground storage tank. Based on volume of the leachate collection manhole and the current leachate generation rate of 7.8 gpd, it is estimated that 600 gallons will be discharge every 3 months. The collection manhole leachate level will be visually observed during scheduled monthly RAF inspections and maintained by the existing pump controls. Upon receipt of the SPDES Permit modification, the manhole controls will be switched to operate by hand to perform transfers of leachate from the collection manhole to Outfall 03b. Additionally, liquid levels will be monitored utilizing two of the existing eight programmed ISACC (autodialer system) channels. The ISACC channels are programmed to provide telephone notification to Synapse when 90% full conditions are identified in the leachate collection manhole. It is anticipated that the SPDES Permit modification will occur in the 2nd quarter 2009.

On August 14, 2007, leachate storage tank filling number LT-16 began and continued through December 31, 2008. As a method to evaluate the ISSAC systems functions accuracy, an instrument check was conducted by measuring the leachate level in the tank (64.75") with comparison to the ISSAC reading (64.20"). The ISSAC system continues to effectively monitor leachate generation as designed. It is anticipated that leachate disposal authorization for LT-16 will not be required or requested from OCDWPC. Upon receipt of the modified SPDES Permit leachate will be disposed via Outfall 03b located in Area 6 drainage ditch in accordance with the State Pollutant Discharge Elimination System Permit. The total leachate disposal for 2008 was zero gallons.

3.6 Summary

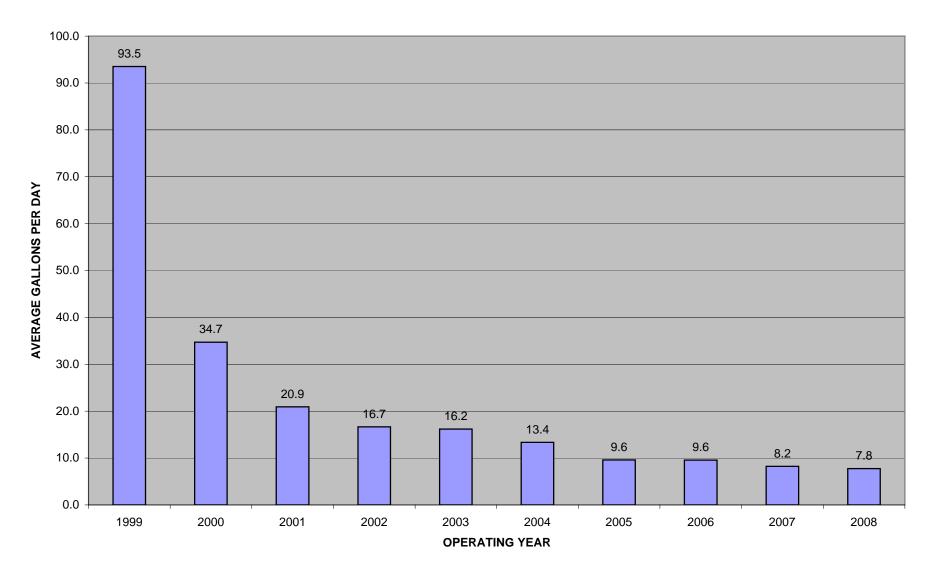
The RAF facility and associated components generally operated as planned through 2008. The monitoring and inspection continues, as necessary, to evaluate trends and the ongoing condition of the facility. The operation and maintenance performed during the 2008 calendar year were performed within the guidelines set forth in the OM&M Manual. In addition to scheduled maintenance, unscheduled maintenance conditions were recognized and corrected as follows:

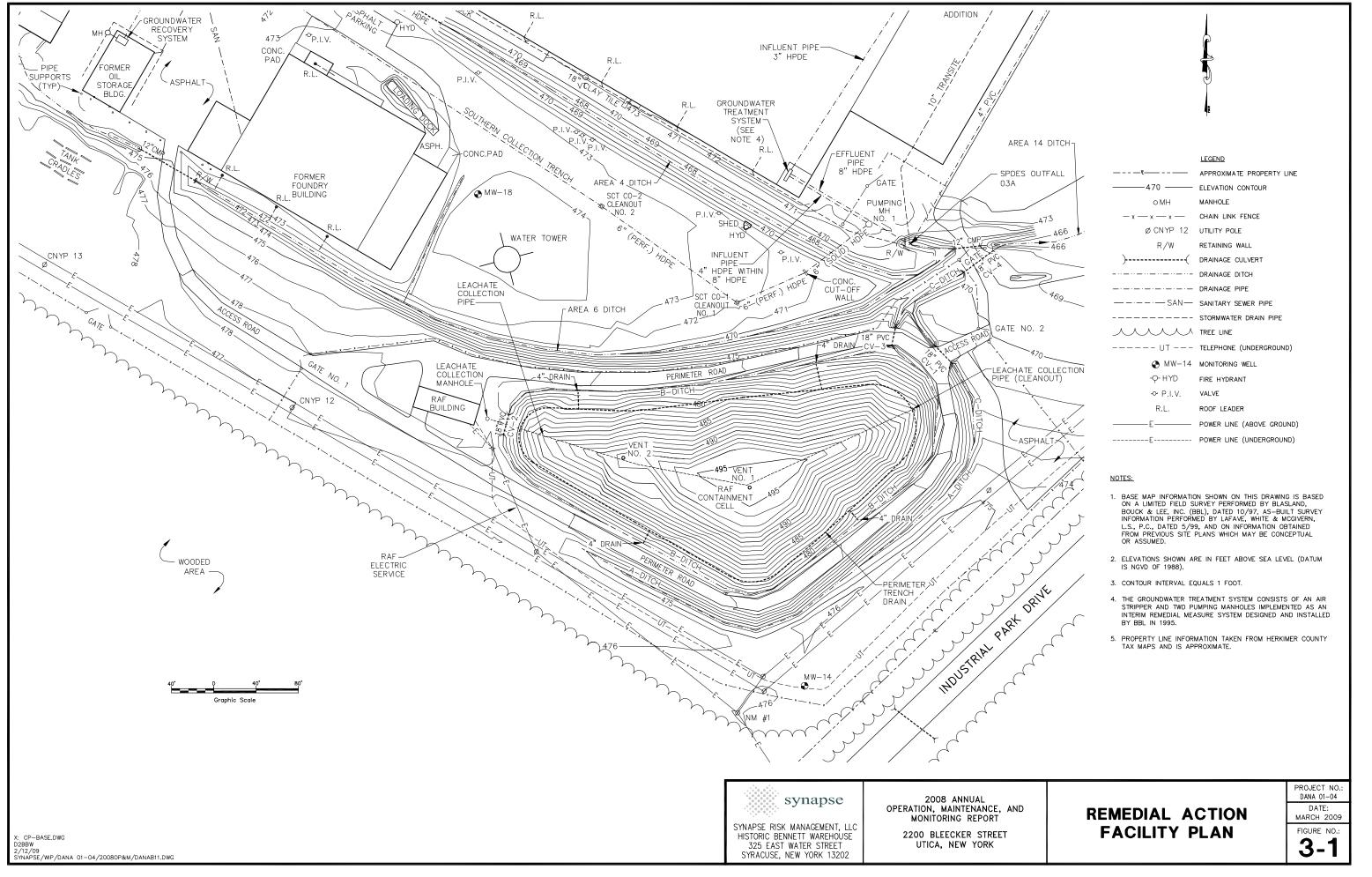
- Persistent and damaging vectors were eliminated from the containment cell; and
- Small areas of stressed vegetative cover, on the containment cell, were restored.


The evaluation of the data relating to the leachate generated and collected during 2008 (2,800 gallons), indicates an overall downward tend in leachate generated to date. The average production rate for 2008 was approximately 7.8 gpd. No leachate disposal was conducted in 2008. Synapse concludes that the RAF performed as designed during 2008.

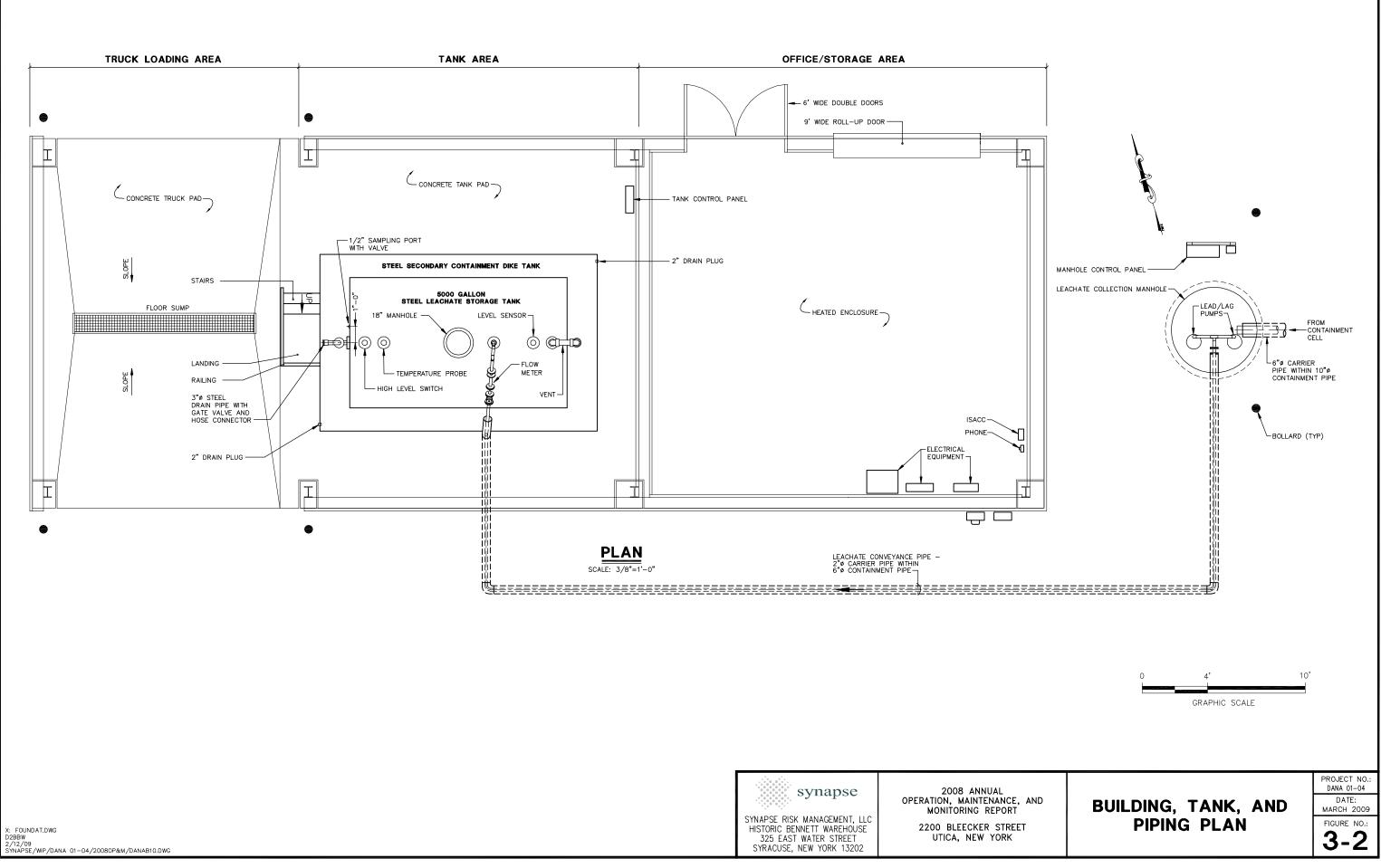
3.8 Charts

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation Per Year


CHART 3-1 LEACHATE PRODUCTION OVER TIME


CHART 3-2 LEACHATE GENERATION PER YEAR

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003


3.9 Figures

- 3-1 Remedial Action Facility Plan
- 3-2 Building, Tank, and Piping Plan

	LEGEND
t	APPROXIMATE PROPERTY LINE
470	ELEVATION CONTOUR
оMH	MANHOLE
— x — x — x —	CHAIN LINK FENCE
ØCNYP 12	UTILITY POLE
R/W	RETAINING WALL
)(DRAINAGE CULVERT
- · · – · · – · · – · · – · · –	DRAINAGE DITCH
	DRAINAGE PIPE
SAN	SANITARY SEWER PIPE
	STORMWATER DRAIN PIPE
	TREE LINE
UT	TELEPHONE (UNDERGROUND)
	MONITORING WELL
-Q- HYD	FIRE HYDRANT
↔ P.I.V.	VALVE
R.L.	ROOF LEADER
E	POWER LINE (ABOVE GROUND)
EE	POWER LINE (UNDERGROUND)

4.0 GROUNDWATER MONITORING

This section presents the results of the semi-annual groundwater monitoring events conducted at the Property in 2008. The Property OM&M Manual details the procedures that were followed during groundwater monitoring. The FER details the procedures followed during the implementation of the RA that adjusted the groundwater monitoring program, which included monitoring well decommissioning and new monitoring well installation. The sub-sections that follow review the construction, monitoring, sampling, and data evaluation as part of the groundwater monitoring program and include specific tables and figures. The summary section provides comments, conclusions, and recommendations.

4.1 Monitoring Well Construction

The monitoring well network currently consists of five monitoring wells designated as: MW-6R, MW-13A, MW-14, MW-17, and MW-18. A sixth monitoring well, MW-3 was properly abandoned on September 14, 2001. The monitoring wells are located to provide groundwater quality data for site-specific RA areas and verify the performance of the GTS, including hydraulic control and contaminate removal.

The monitoring wells consist of 2-inch diameter polyvinyl chloride (PVC) risers and 10-foot lengths of 0.010-inch slotted PVC screen. The well screens were installed to straddle the water table and intersect the overburden soils above the glacial till. Shallow groundwater flow is generally from the south to the north across the Property. The locations of the monitoring wells are shown on Figure 2-2. The detailed descriptions of the monitoring well locations, as well as hydraulic consideration, are as follows:

- MW-6R, located hydraulically downgradient of the eastern portion of the Property;
- MW-13A, located hydraulically crossgradient (east) of former RA Areas 5, 7, 8, 13, and 14 as well as the RAF;
- MW-14, located at the southeastern corner of the Property hydraulically upgradient of all former RA areas and the RAF;
- MW-17, located hydraulically downgradient of the NCT; and
- MW-18, located hydraulically downgradient of the former RA Areas 6, 7, 8, 9, and 10, as well as hydraulically upgradient of the SCT.

4.2 Groundwater Elevation Measurement

As part of the groundwater monitoring program, water level elevations were measured from the aforementioned monitoring wells on April 29, 2008 and October 14, 2008. Water levels in the cleanouts for the NCT and SCT were measured during the 2008 events, as well. Monitoring well water levels were measured from a designated reference point at the top of the PVC well riser using the procedures outlined in the OM&M Manual. The water levels were measured consecutively, on the same day, prior to sampling or other activities. Water level measurements were recorded on a dedicated field sheet, Water Level Field Logs – Form D and are provided in Appendix D. The water levels for the two groundwater sampling events conducted in 2008 are shown in Table 4-1 – 2008 Groundwater Elevation Summary. Note that MW-17 was found to have insufficient water to allow for sample collection, during both sampling events. This is attributed to the installation of Pumping Manhole No. 2, as part of the 2002 modifications to the GTS, which effectively lowered the water table to an elevation at or less than the total depth of MW-17. The potentiometric surface is depicted in Figure 4-1 – Overburden Groundwater Elevation Contour Map – October 14,

2008. A summary of water levels from 1999 to 2008 is provided in Table 4-2 – Cumulative Groundwater Elevations.

4.3 Groundwater Sampling

Groundwater samples were obtained during two groundwater monitoring events conducted on April 29 and 30, 2008 and October 14 and 15, 2008, as part of the OM&M program. Groundwater samples were collected from monitoring wells MW-6R, MW-13A, MW-14, and MW-18. As discussed in Section 4.1, MW-17 had insufficient water during both sampling events, and as such, a sample could not be collected.

Based on the guidance set forth in the OM&M Manual, the groundwater sampling events completed in 2008 were scheduled as semi-annual. The groundwater samples were submitted for laboratory analysis for VOCs of concern, polychlorinated biphenyls (PCBs), and select metals. Analytical results for VOCs, PCBs, and metals were compared to standards presented in the NYSDEC Division of Water *Technical and Operation Guidance Series* (1.1.1) (TOGS 1.1.1), June 1998.

To assure that the groundwater samples were representative of the shallow groundwater aquifer, a minimum of three static well volumes were purged from each monitoring well prior to sample collection. Groundwater field parameters were obtained from each monitoring well just prior to sampling, and included water levels, pH, conductivity, dissolved oxygen, turbidity, and temperature. The wells were observed to have moderate recharge capacity. Well purging was performed using a disposable Teflon® bailer. The purged groundwater was containerized and transferred to the on-site leachate collection manhole, part of the RAF, for subsequent disposal.

Groundwater samples were collected using a new disposable Teflon[®] bailer for each monitoring well. During the April and October 2008 groundwater sampling events, samples to be analyzed for VOCs and PCBs were collected on the first day of each sampling event. Samples to be analyzed for metals were collected on the second day, 24 hours after purging the well, to limit turbidity in the samples collected. Each grab sample was placed directly into laboratory-provided containers, labeled, logged in to a chain of custody document, and stored on ice in an insulated cooler pending delivery to the laboratory for analysis. Quality assurance/quality control (QA/QC) groundwater samples were collected at a frequency described below.

<u>Trip Blanks</u>

On events/days when aqueous samples were shipped/delivered to the laboratory for VOC analysis, a trip blank was included. A trip blank is an aliquot of analyte-free water, sealed in a 40 milliliter glass vial with a Teflon-lined septum cap prepared by the laboratory prior to initiation of fieldwork. The sealed vials were prepared by the laboratory and included with each shipment of sample bottles for aqueous media sampling at the Property. The trip blank may determine if contamination of the samples has occurred during shipment/delivery.

Duplicate Samples

Duplicate samples were collected and analyzed to evaluate the reproducibility of the analytical technique used. One duplicate sample (DUP-1) was collected for all parameters during each sampling event. Groundwater from a selected monitoring well was divided between the primary sample and the duplicate sample laboratory containers, logged on the chain of custody and submitted to the laboratory.

Matrix Spike / Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples were collected to measure the accuracy of organic analyte recovery from the sample matrices. For organic constituents and metals, one matrix spike and one matrix spike duplicate sample was analyzed for each sampling event.

The April and October 2008 samples were submitted to Life Science Laboratories of East Syracuse, New York. Table 4-3 – Groundwater Constituents, Methods, and Practical Quantification Limits, details the groundwater sample analytical requirements. The Groundwater Sampling Logs - Form E, used during well sampling to record the groundwater field parameters, are provided in Appendix E.

4.4 Groundwater Analytical Results

The analytical results from the semi-annual groundwater sampling events, as compared to the TOGS 1.1.1 are presented in the subsequent summary tables. Table 4-4 – 2008 Groundwater Analytical Results, summarizes the groundwater analytical data from the two semi-annual sampling events. Table 4-5 – Cumulative Groundwater Analytical Results, provides a historic summary of the groundwater analytical results from 1999 through 2008. The original laboratory analytical data for 2008 were provided under separate cover to NYSDEC upon receipt from the laboratory, and are provided in Appendix F – Groundwater Analytical Data. The analytical laboratory did not achieve the 0.05 micrograms per liter (ug/l) method detection limit (MDL) for PCBs, from any of the monitoring wells during the April 2008 or October 2008 sampling events.

The following summarizes analytical data from each monitoring well and long term trends.

<u>MW-6R</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2008 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2008 sampling events;
- Zinc was detected during the April 2008 sampling event at a concentration of 20 ug/l, however below TOGS 1.1.1 guidance value of 2,000 ug/l;
- Chromium, lead and zinc were detected during the October 2008 sampling event at 16 ug/l, 11 ug/l and 11 ug/l, however below TOGS 1.1.1 guidance values of 50 ug/l, 25 ug/l and 2000 ug/l, respectively; and
- Historically, VOCs and PCBs have not been detected at concentrations above there respective MDL.

<u>MW-13A</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2008 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2008 sampling events;
- Zinc was detected during the April 2008 and October 2008 sampling events at 19 ug/l and 12 ug/l, however below TOGS 1.1.1 guidance value of 2,000 ug/; and
- Historically, VOCs and PCBs have not been detected at concentrations above their respective MDL.

<u>MW-14</u>

- Analytical results for VOCs indicated no detectable concentrations for both 2008 sampling events;
- Analytical results for PCBs indicated no detectable concentrations for both 2008 sampling events;

- Zinc was detected during the April 2008 and October 2008 sampling events at 21 ug/l and 14 ug/l, however below TOGS 1.1.1 guidance value of 2,000 ug/; and
- Historically, VOCs and PCBs have not been detected at concentrations above there respective MDL.

<u>MW-17</u>

Monitoring well had insufficient water to allow sample collection during both 2008 events.

<u>MW-18</u>

- Vinyl chloride (VC) was detected at a concentration of 15 ug/l in the primary and duplicate samples, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the April 2008 sampling event. All other VOCs were not detected at concentrations above MDLs;
- VC was detected at a concentration of 34 ug/l and 31 ug/l, in the primary and duplicate sample, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the October 2008 sampling event. All other VOCs were not detected at concentrations above MDLs;
- Zinc was detected during the April 2008 and October 2008 sampling events at 24 ug/l and 26 ug/l, however below TOGS 1.1.1 guidance value of 2,000 ug/; and
- Analytical results for PCBs indicated no detectable concentrations for both 2007 sampling events; and
- Historically, PCBs have not been detected at concentrations above the MDL.

4.5 Summary

An interpretation of the groundwater elevation measurements obtained during the April and October 2008 sampling events indicated that the overburden groundwater flow was generally to the north. The groundwater flow direction was influenced in the vicinity of the NCT and the SCT, due to the operation of the GTS. Monitoring well MW-17 continues to have insufficient water to measure or sample, as a result of the NCT effectively lowering the groundwater table.

The groundwater quality from both the April and October 2008 groundwater sampling events are generally consistent with historic data. VC has been detected in monitoring well MW-18 above its analytical MDL for eight consecutive sampling events. The VC concentration at MW-18 demonstrates an overall increasing trend, however VC is a daughter product demonstrating the degradation of TCE. As MW-18 is upgradient of the groundwater depression created by the SCT, (see Figure 4-1 and 4-2), the groundwater monitored at MW-18 is directed, collected, and treated via the GTS, discussed in Section 6.

Concentration of select metals did not exceed TOGS 1.1.1 guidance values and have not demonstrated exceedances since the RA. Detectable concentrations of PCBs were not identified in groundwater from any of the current monitoring locations. It should be noted that the contract laboratory did not achieve the PCB MDL, of 0.05 ug/l, during the April or October 2008 sampling events.

4.6 Tables

- 4-1 2008 Groundwater Elevation Summary
- 4-2 Cumulative Groundwater Elevations
- 4-3 Groundwater Constituents, Methods, and Practical Quantification Limits
- 4-4 2008 Groundwater Analytical Results
- 4-5 Cumulative Groundwater Analytical Results

TABLE 4-12008 GROUNDWATER ELEVATION SUMMARY

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA NEW YORK NYSDEC SITE NO. 622003

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 4/29/08						
MW-6R	462.69	10.52	10.51	465.47	3.60	461.87
MW-13A	467.30	11.07	10.91	469.23	2.41	466.82
MW-14	475.71	12.94	12.99	478.45	2.95	475.50
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.73	11.70	475.96	5.12	470.84
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.72	465.70
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	NA	NA	465.31	11.94	453.37

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 10/14/08	3					
MW-6R	462.69	10.52	10.50	465.47	4.49	460.98
MW-13A	467.30	11.07	11.07	469.23	4.25	464.98
MW-14	475.71	12.86	12.80	478.37	5.43	472.94
MW-17	463.89	11.25	11.25	466.02	Dry	Note 5
MW-18	474.10	11.78	11.78	475.96	6.32	469.64
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.71	465.71
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	12.80	NA	465.31	11.96	453.35

Notes:

1. All values reported in feet.

2. TOR = Top of Riser.

3. Depth measurements are taken in hundredths of a foot from the TOR, which is a reference point at the highest part on the 2-inch riser pipe.

4. Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

5. MW-17 was found dry during both monitoring events, bottom elevation = 454.70 feet.

6. The top of riser elevation was adjusted during maintenance on May 15, 2003 for monitoring wells MW-6R and MW-14.

7. MW = Monitoring Well.

8. SCT = Southern Collection Trench.

9. NCT = Northern Collection Trench.

10. CO = Clean Out (Depths and Elevations are Approximate).

11. MH = Manhole.

12. NA = Not Applicable.

13. NM = Not measured. Installed well depths used to calculate well casing columns.

14. Groundwater elevations were inferred at the following locations: SCT CO-1, SCT CO-2, SCT CO-3, and NCT CO-1.

TABLE 4-2 CUMULATIVE GROUNDWATER ELEVATIONS

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

			Well ID			
Sample Date	MW-3	MW-6R	MW-13A	MW-14	MW-17	MW-18
3/26/1999	467.93	461.78	465.83	474.82	462.14	469.97
9/20/1999	467.60	461.14	464.36	470.78	460.70	467.83
3/14/2000	467.72	461.63	466.38	475.05	459.45	470.03
9/14/2000	467.42	461.15	464.98	473.72	457.37	468.83
3/29/2001	470.86	456.35	460.93	467.74	457.24	469.52
9/13/2001	Note 2	460.85	464.18	470.9	457.11	469.56
3/27/2002	Note 2	460.96	466.89	475.19	DRY	470.82
9/19/2002	Note 2	461.21	465.41	470.92	DRY	468.10
4/24/2003	Note 2	461.55	466.81	475.24	DRY	472.13
10/22/2003	Note 2	460.97	465.23	474.66	DRY	469.61
4/22/2004	Note 2	461.59	466.67	475.34	DRY	471.25
10/18/2004	Note 2	461.03	465.01	472.53	DRY	468.93
4/27/2005	Note 2	461.54	466.51	475.13	DRY	471.06
10/20/2005	Note 2	461.15	465.17	474.47	DRY	469.66
4/19/2006	Note 2	461.4	466.16	474.66	DRY	470.40
9/26/2006	Note 2	461.01	465.07	472.46	DRY	469.15
4/18/2007	Note 2	461.78	467.09	475.46	DRY	471.24
10/23/2007	Note 2	461.71	465.17	471.42	DRY	469.25
4/29/2008	Note 2	461.87	466.82	475.5	DRY	470.84
10/14/2008	Note 2	460.98	464.98	472.94	DRY	469.64

Notes:

1. All elevations reported in feet above mean sea level.

2. MW-3 was decommissioned in September 2001.

3. MW-17 has been "Dry" since the installation of Pumping MH-2 in March 2002.

TABLE 4-3

GROUNDWATER CONSTITUENTS, METHODS AND PRACTICAL QUANTIFICATION LIMITS

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Constituent	Practical Quantification Limits (PQLs)
VOCs of Concern - USEPA Method 8260	
cis-1,2-Dichloroethene	1
trans-1,2-Dichloroethene	1
Trichloroethylene	1
Vinyl Chloride	1
Metals of Concern - USEPA Method 200.7	
Chromium	10
Copper	10
Lead	10
Zinc	10
PCBs - USEPA Method 608	
Aroclor 1016	0.05
Aroclor 1221	0.05
Aroclor 1232	0.05
Aroclor 1242	0.05
Aroclor 1248	0.05
Aroclor 1254	0.05
Aroclor 1260	0.05

Notes:

- 1. All values reported in micrograms per liter (ug/l), approximately equivalent to parts per billion (ppb).
- 2. VOCs = Volatile Organic Compounds.
- 3. PCBs = Polychlorinated biphenyls.
- 4. VOCs of concern PQLs are based on USEPA SW-846 Method 8260 contract required quantification limits (CRQLs). Specific quantifications are highly matrix dependent. The quantification limits shown are provided for guidance and may not always be achievable.
- USEPA Method 200.7 will be used for analysis of metals of concern. PQLs presented are based on RCRA TCL CRQLs. CQRLs shown for metals of concern are provided for guidance and may not always be achievable.

TABLE 4-42008 GROUNDWATER ANALYTICAL RESULTS

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

April 2008 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	042808/042907
Date Sampled	Limit	and Guidance	4/28-29/2008	4/28-29/2008	4/28-29/2008	4/28-29/2008	4/28-29/2008	4/28-29/2008
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compound	ds							
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	15	15
Metals								
Chromium	10	50	<10	<10	<10	NS	<10	<10
Copper	10	200	<10	<10	<10	NS	<10	<10
Lead	10	25	<10	<10	<10	NS	<10	<10
Zinc	10	2,000	20	19	21	NS	24	24
Polychlorinated Biphenyls								
Aroclor 1016	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1221	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1232	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1242	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1248	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1254	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1260	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1

October 2008 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14	MW-17	MW-18	102307/102407
Date Sampled	Limit	and Guidance	10/14-15/2008	10/14-15/2008	10/14-15/2008	10/14-15/2008	10/14-15/2008	10/14-15/2008
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compound	ds							
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	34	31
Metals								
Chromium	10	50	16	<10	<10	NS	<10	<10
Copper	10	200	<10	<10	<10	NS	<10	<10
Lead	10	25	11	<10	<10	NS	<10	<10
Zinc	10	2,000	11	12	14	NS	26	24
Polychlorinated Biphenyls								
Aroclor 1016	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1221	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1232	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1242	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1248	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1254	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1
Aroclor 1260	0.05	0.09	<0.1	<0.1	<0.1	NS	<0.1	<0.1

Notes:

1. Sample results and NYSDEC Standards reported in ug/l; approximately equivalent to parts per billion (ppb).

2. Guidance Values are established by NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1).

3. NS = Not Sampled (Well Dry).

4. Bolded values exceed the constituent's established Standards and Guidance Values.

TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

Monitoring Well			NYSDEC	19	999	2	000	2	001	2	002	20	03	2	004	20	005	2	006	2	007	20	800
	Parameters	Units	Guidance	March	September	March	September	March	September	March	September	April	October	April	October	April	October	April	September	April	October	April	October
U			Guidance	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
MW-3	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	Trichloroethylene	ug/l	5	<5	<5	<5	<5	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	Chromium	ug/l	50	4.4	4.6B	<10	<10	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	Copper	ug/l	200	16.8	6.1B	<10	<10	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	Lead	ug/l	25	5.5	4	<5	<5	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
	Zinc	ug/l	2,000	15.1	16.1B	13	38	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
MW-3	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
_	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
_	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-6R	Chromium	ug/l	50	19.9	2.2B	<10	<10	<10	23	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	16
MW-6R	Copper	ug/l	200	45	6.7B	<10	<10	<10	58	11	<10	34	17	<10	<10	10	<10	<10	<10	<10	<10	<10	<10
MW-6R MW-6R	Lead Zinc	ug/l ug/l	25 2.000	7.4 49.5	3.6 26.5	<5 26.0	<5 47	<5 19	23 140	<10 64	<10 29	14 100	13 24	<10 <10	<10 19	<10 12	<10 13	<10 37	<10 <10	13 <10	<10 <10	<10 20	11 11
MW-6R	PCBs (Aroclor 1016)	ug/i ug/i	2,000	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1010) PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1242)	ug/l	0.00	<0.10	<0.10	<0.10	<0.00	<0.05	<0.10	<0.00	<0.05	<0.05	<0.05	<0.05	<0.00	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	< 0.10	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-6R	PCBs (Aroclor 1260)	ua/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	< 0.10	<0.10	<0.10
MW-13A	cis-1.2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	trans-1.2-Dichloroethene	ua/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A	Chromium	ug/l	50	7.8B	4.8E	19.0	<10	<10	<10	<10	200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-13A	Copper	ug/l	200	45	5.3B	<10	<10	<10	<10	14	20	<10	14	<10	<10	14	<10	<10	<10	<10	<10	<10	<10
MW-13A	Lead	ug/l	25	9.2	2.3	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	13	<10	<10	<10
MW-13A	Zinc	ug/l	2,000	38.1	10.7B	29.0	47	10	<10	18	92	<10	19	29	12	20	<10	14	11	24	<10	19	12
MW-13A	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-13A	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10

TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

			NYSDEC	1	999	2	000	2	001	2	002	20	03	20	004	20)05	2	006	2	007	20	008
Monitoring Well	Parameters	Units		March	September	March	September	March	September	March	September	April	October	April	October	April	October	April	September	April	October	April	October
ID			Guidance	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
MW-14	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Vinyl Chloride	ug/l	2	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Chromium	ug/l	50	20.4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
MW-14	Copper	ug/l	200	48	6B	<10	<10	<10	<10	<10	<10	<10	27	12	<10	16	<10	<10	<10	<10	<10	<10	<10
MW-14	Lead	ug/l	25	8	<5	<5	<5	<5	<10	<10	<10	<10	10	<10	<10	13	<10	<10	<10	<10	<10	<10	<10
MW-14	Zinc	ug/l	2,000	36	6.5B	28	42	15	<10	<10	20	29	100	17	<10	15	<10	<10	<10	<10	<10	21	14
MW-14	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-14	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10
MW-17	cis-1,2-Dichloroethene	ug/l	5	<5	7	<5	5.2	8.9	7.4	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Trichloroethylene	ug/l	5	<5	25	22	22	24	16	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Vinyl Chloride	ug/l	2	<2	<2	<5	<5	<2	<2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Chromium	ug/l	50	4	21B	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Copper	ug/l	200	16B	<10	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
	Lead	ug/l	25	2.4B	<5	<5	<5	<5	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Zinc	ug/l	2,000	14.6B	7.1B	13	57	32	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	< 0.10	<0.10	< 0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	< 0.10	< 0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	< 0.10	< 0.05	< 0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-18	cis-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1 3.9	<1	<1 3.5	<1 7	<1	<1	<1	<1	<1	<1	<1	<1
MW-18 MW-18	Vinyl Chloride Chromium	ug/l	2 50	<2 60.1	<2 19.4	<5	<5 <10	<2 <10	<5 <10	<2 <10	2.6 <10	3.9 <10	6.1 <10		<10	5.6 <10	7.1	9.9 <10	15 <10	7.5	17 <10	15	34 <10
MW-18		ug/l ua/l	200		7.6B	<10 <10	<10	-	<10			-	11	<10		-	<10			<10		<10	
MW-18	Copper Lead	ug/i ug/i	200	109 35.6	9.3	<10	<10	<10 <5	<10	<10 <10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10 <10	<10	<10 <10	<10 <10	<10 14	<10 <10	<10 <10	<10 <10
	Zinc	ug/i ug/i	2,000	172	9.3 51	16	<5 58	21	22	<10	<10	11	17	18	<10	13	<10	63	<10	<10	<10	24	26
	PCBs (Aroclor 1016)	ug/l	,	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	< 0.05		<0.05	<0.05	<0.05		< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1010) PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1221) PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1232) PCBs (Aroclor 1242)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1242) PCBs (Aroclor 1248)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1248) PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
	PCBs (Aroclor 1254) PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10
10110		uy/i	0.09	<u></u> \0.10	\U.IU	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	NO.00	~0.05	NO.10	<u>\0.05</u>	<u>\0.05</u>	~0.05	~0.05	<u>\0.05</u>	<u><u></u> </u>	<u><u></u> </u>	\0.10	<u>_0.05</u>	NO.10	NO.10	NO.10	<u></u>	<u></u>

Notes:

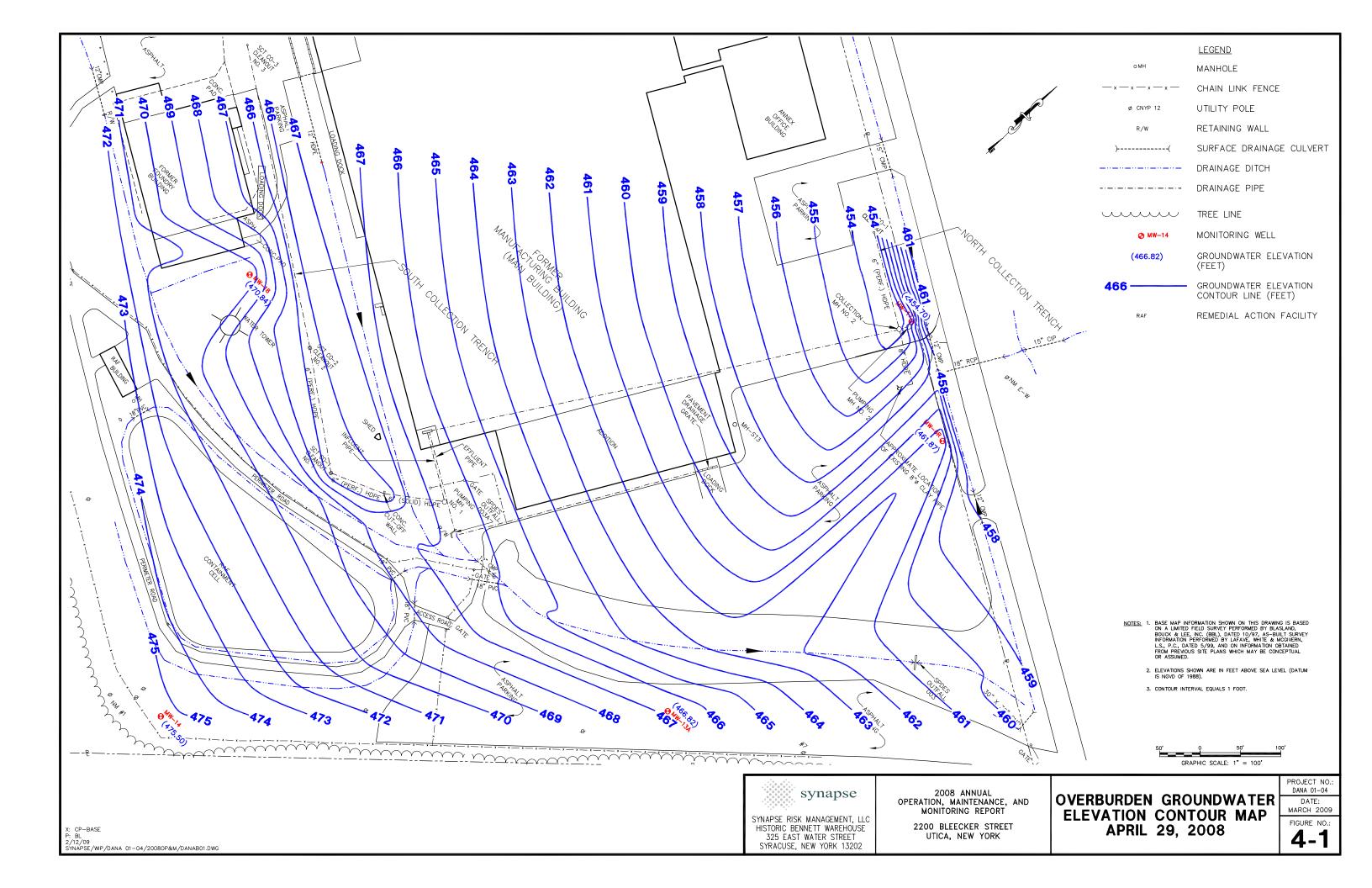
1. All results reported in micrograms per liter (ug/l) approximately equivalent to parts per billion (ppb).

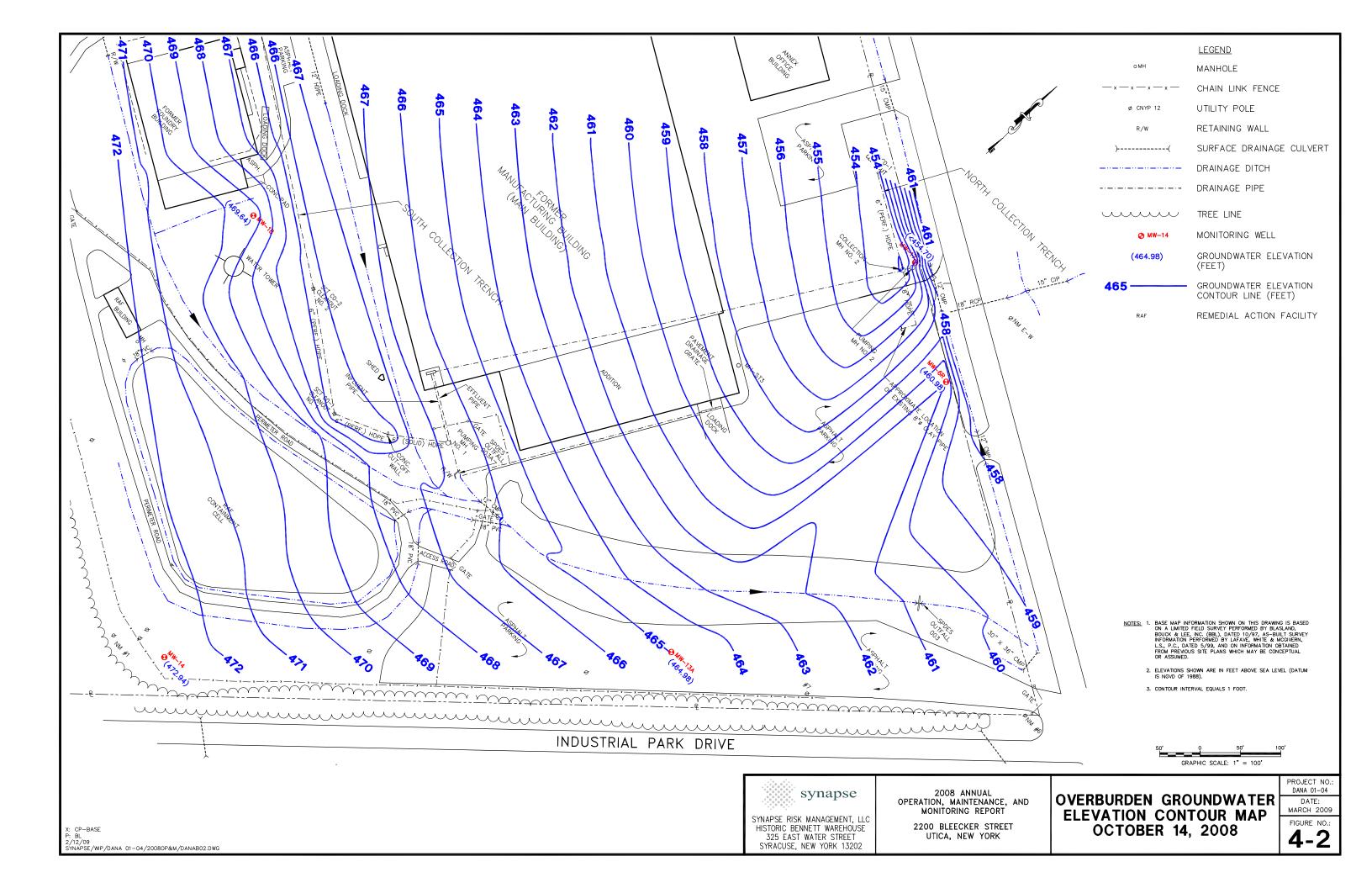
2. B = The reported value was obtained from a reading that was less than the Contract Required Detection Limit

(CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

3. C = Value was reported as a laboratory cross-contaminant.

4. E = The reported value is estimated due to the presence of interference(s).


5. NS-1 = No Sample - Well Decommissioned.


6. NS-2 = No Sample - Well Dry.

7. Bolded values exceed the constituent's established TOGS 1.1.1 guidance values.

4.7 Figures

- 4-1 Overburden Groundwater Elevation Contour Map April 28, 2008
- 4-2 Overburden Groundwater Elevation Contour Map October 14, 2008

5.0 PROPERTY STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM

UHC was issued a SPDES permit (No. NY0257087) for the Property on September 1, 2002, with two subsequent modifications issued by NYSDEC, dated August 1, 2003, and November 20, 2003. On behalf of UHC, Synapse has been tasked to administer the scheduled technical and reporting requirements set forth in the SPDES Permit. The SPDES Permit was administratively renewed on September 1, 2007.

In March 2008 UHC submitted a SPDES Permit modification, requesting leachate generated from the containment cell to be allowed to accumulate in the leachate collection manhole, and no longer be directed to the 5,000-gallon aboveground storage tank. Based on volume of the leachate collection manhole and the current leachate generation rate of 8.2 gpd, it is estimated that 600 gallons will be discharge every 3 months from the collection manhole to a new Outfall 03b in the bank of drainage ditch 6. The collection manhole leachate level will be visually observed during scheduled monthly RAF inspections and maintained by the existing automatic pump controls. The controls will operate by hand to transfer leachate from the collection manhole to Outfall 03b. Additionally, liquid levels will be monitored utilizing two of the existing eight programmed ISACC (autodialer system) channels. The ISACC channels are programmed to provide telephone notification to Synapse when 90% full conditions are identified in the leachate collection manhole.

The SPDES Permit is specific to activities conducted at the Property, including the Coolidge-owned Main Building, and permits the discharge water from three outfalls as depicted in Figure 5-1 – SPDES Outfall 001 Manhole Plan and Section, Figure 5-2 – SPDES Outfall 002 Manhole Plan and Section, and Figure 5-3 – SPDES Outfall 003 Plan and Section. UHC however has no control of Coolidge Utica's activities and those of its tenants. A significant portion (65%) of the total flow monitored by UHC at the permitted outfalls 001, 002 and 003 is from contribution associated with the operations of Coolidge Utica and its tenants, and CPTC's Outfall 03A, permitted under SPDES Permit No. NY0108537 (see Section 6.4). The following section reviews Outfall contributions and construction, routine monitoring and subsequent results, specialized studies and testing, as well as, unscheduled maintenance.

5.1 Outfall Contributions

Water contributions that discharge via the three permitted SPDES outfalls are as follows:

Outfall 001

UHC Contribution

Parking lot catch basin (overland flow).

Coolidge Contributions

- Building roof leaders;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 002

UHC Contribution

Parking lot catch basins (overland flow).

Coolidge Contributions

Building roof leaders;

- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

Outfall 003

UHC Contributions

- Stormwater from overland flow, including that from the RAF; and
- Parking lots.

Coolidge Contributions

- Building roof leaders;
- Boiler blowdown (periodic);
- Sprinkler system drains (periodic); and
- Air conditioning condensate (during warm weather).

CPTC Contribution

Post treated effluent from the GTS via Outfall 03A (SPDES Permit No. NY0108537).

Figure 5-4 – Stormwater System Partial Plan, depicts the numerous source points and areas, particularly from the Main Building, that contribute water to each outfall.

5.2 Outfall Construction

The three SPDES outfalls were located and constructed to facilitate collection of effluent samples and flow measurements representative of actual discharge conditions at the Property. The construction of each outfall is provided below.

Outfall 001

Construction activities for the Outfall 001 monitoring location were conducted between April 16 and April 26, 2002, and incorporated the following:

- Pavement and soil was excavated to install Outfall 001 Manhole at an area in the western parking lot where an existing drainage pipes, a 24-inch corrugated metal pipe (CMP) and a 24-inch vitrified clay pipe (VCP) intersected, approximately 5 feet below ground surface (bgs);
- A prefabricated 5-foot diameter cast concrete manhole base, with influent and effluent pipe penetrations, was placed in line with the existing subsurface drainage pipes and grouted;
- An 8-inch thick concrete cover, with a cast iron access cover, was installed to complete the manhole structure, followed by engineered fill and paving;
- A stainless steel, sharp edged, 120-degree, V-notch weir was installed at the effluent side of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and calibrated to allow measurements of effluent flow rates based on the water level flowing over the weir; and

• A NYSDEC-approved sign was posted at the outfall outlet.

A detailed drawing of SPDES Outfall 001 Manhole is presented on Figure 5-1. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek.

Outfall 002

The Outfall 002 monitoring location was constructed from an existing 10.5-foot deep, 4- foot diameter red brick manhole near the northwestern corner of the Main Building. A 24-inch VCP, that is the part of the northern stormwater system, is sectioned by this manhole. As such, effluent flowing through the manhole was accessible and measurable upon application of the following upgrades:

- A stainless steel sharp edge, 120-degree, V-notch weir was installed adjacent to the effluent 24inch VCP, at the bottom of the manhole. The weir was fastened to the floor and sidewalls of the manhole utilizing concrete fasteners and sealed with grout;
- A 2-inch diameter, schedule 80, PVC flow measurement port was affixed adjacent to the weir, and effluent flow rates were calibrated based on the water level flowing over the weir; and
- A NYSDEC-approved sign was posted on the bank, adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 002 Manhole is presented on Figure 5-2. Ultimately, the water is discharged further west of the monitoring point, into the unnamed creek.

Outfall 003

The Outfall 003 monitoring location was constructed in an existing unnamed tributary to the Mohawk River, at the northeastern extent of the Property as follows:

- A 12-inch HDPE pipe was installed within a concrete headwall spanning the width of the tributary allowing surface water to flow through the pipe. Samples are collected and parameters measured directly from the effluent end of the 12-inch HDPE pipe;
- A monitoring port was installed adjacent to the concrete headwall to facilitate flow measurement data collection representative of actual discharge conditions. The monitoring port was constructed by installing a horizontal 2-inch PVC pipe at a measured elevation adjacent to the influent side of the headwall. This horizontal pipe connects (via a 90 degree elbow) to a vertical riser extending several feet above grade adjacent to the tributary. The water level of the tributary, and thus the flow rate, can be measured from this monitoring port; and
- A NYSDEC-approved sign was posted on the bank adjacent to the outfall outlet.

A detailed drawing of SPDES Outfall 003 is presented on Figure 5-3.

5.3 Monitoring

A primary regulatory requirement of the Property SPDES permit is to monitor concentrations of select constituents and physical parameters in the outfall effluent. A schedule of routine monitoring of effluent from Outfalls 001, 002, and 003 has been prescribed by NYSDEC, as discussed in Section 5.3.1. In addition, two non-routine monitoring/sampling programs have been prescribed for by NYSDEC, to include, PCB Congeners and Acute Toxicity, as discussed in Sections 5.3.2 and 5.3.3, respectively.

5.3.1 Routine Monitoring

August and November 2003 modifications to the Permit have resulted in minor changes to the monitoring parameters and/or their scheduled monitoring frequencies. The current routine monitoring parameters and sampling frequencies, as prescribed for each outfall, are summarized in the following table:

Parameter	Units	Mo	onitoring Frequen	су
Farameter	Units	Outfall 001	Outfall 002	Outfall 003
рН	S.U.	Once/2 weeks	Once/2 weeks	Once/2 weeks
Flow (in-situ measurement)	gpd	Once/2 weeks	Once/2 weeks	Once/2 weeks
Temperature	۶	Once/2 weeks	Once/2 weeks	Once/2 weeks
Oil & Grease	mg/l	Monthly	Monthly	Monthly
Total Suspended Solids (TSS)	mg/l	Once/2 weeks	Once/2 weeks	Once/2 weeks
Total Residual Chloride	ug/l	NR	NR	Once/2 weeks
Phenolics	ug/l	Monthly	Monthly	Monthly
Antimony	ug/l	Quarterly	NR	NR
Chromium	ug/l	Semi-Annual	NR	NR
Copper	ug/l	Once/2 weeks	NR	NR
Fluoride	ug/l	Semi-Annual	Semi-Annual	NR
Lead	ug/l	Semi-Annual	NR	Semi-Annual
Zinc	ug/l	Semi-Annual	NR	Semi-Annual
Chloroform	ug/l	Once/2 weeks	NR	Once/2 weeks
cis 1,2-dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
trans 1,2- dichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Trichloroethylene	ug/l	Once/2 weeks	NR	Once/2 weeks
Vinyl chloride	ug/l	NR	NR	Once/2 weeks
PCBs	ng/l	NR	NR	Quarterly

Table notes:

S.U. = Standard Units

⁰F = Degrees Fahrenheit

mg/l = milligrams per liter ug/l = micrograms per liter

ng/l = nanograms per liter

NR = Not Required

Analytical data and real-time measurements obtained from the 2008 routine monitoring events are summarized in Table 5-1 – Cumulative Summary of SPDES Monitoring Results. This data was also reduced and reported in monthly DMRs for submittal to NYSDEC. Results from routine monitoring events were compared to effluent compliance levels set in the Permit. DMRs were submitted to the NYSDEC Region 6, Division of Water representative, Richard Coriale, P.E., on a monthly basis. There was one excursion of compliance levels for the above parameters in 2008 as follows.

Chlorine was detected at 330 ug/l at Outfall 003 during the June 2008 sampling event, which
exceeded the permitted compliance levels of 100 ug/l. This was attributed to potential expiration
of the reagent chemicals used in the chlorine measurement.

5.3.2 EPA Method 1668A PCB Study

Pursuant to the August 2003 SPDES Permit Modification, a three-year study of PCB congeners was required and previously completed at Outfall 003. Using USEPA Method 1668A, sampling and analysis of 209 PCB congeners was conducted at Outfall 003 on a quarterly basis between 2002 and 2005. There remains no current or proposed regulatory requirements associated with this study.

5.3.3 Acute Toxicity Testing

As a *Special Condition* of the Permit, a Tier 1 effluent toxicity monitoring program is required to identify acute toxicity of effluent from each of the outfalls utilizing fresh water vertebrate and invertebrate species as follows:

- Outfall 001 Effluent toxicity sampling of Outfall 001 is required quarterly during calendar years ending in [3] and [8];
- Outfall 002 Effluent toxicity sampling of Outfall 002 is required quarterly during calendar years ending in [3] and [8]; and
- Outfall 003 Effluent toxicity sampling of Outfall 003 is required quarterly during calendar years ending in [5] and [0].

According to the above Permit-specified schedule, effluent toxicity sampling was scheduled to be conducted during 2008 at Outfalls 001 and 002. Sampling events at both Outfalls involved collection of two grab samples over a two day period (one per day). The samples were delivered to AquaTox Research, Inc., a NYSDEC-approved laboratory, located in Syracuse, New York, for acute toxicity analysis.

2008 Acute Toxicity Sampling

The results of the 2008 sampling events are attached, and a tabular summary of the 48-hour median lethal concentration (LC_{50}) results for 2008 are presented herein. The SPDES Outfall 001 and Outfall 002 sampling locations are depicted on Figure 5-1 and 5-2, respectively. Attempts were made to conduct this sampling program during periods of stormwater runoff to best reflect actual effluent conditions, however high tail water conditions were encountered during the first, second and fourth 2008 sampling events. It should be noted that a significant portion (approximately 90%) of the total flow monitored at Outfall 001 and Outfall 002 are associated with the stormwater contributions from the main building (owned by Coolidge Utica, LLC) and its tenants.

First Quarter 2008 SPDES Outfall 001 Sample Results

The 2008 first quarter sampling program commenced on March 18, 2008 and included the collection of grab samples from Outfall 001 and Outfall 002, occurring on two consecutive days.

The 48-hour LC₅₀ test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 001, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 001	Ceriodaphnia dubia	40.6% Mortality in 100% Sample

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 001 during the 2008 1st quarter was below the Permit-specified survival rate of 95%.

SPDES Outfall 002 Sample Results - First Quarter 2008

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 002	Ceriodaphnia dubia	0% Mortality in 100% Sample

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 2008 1st quarter was above the Permit-specified survival rate of 95%.

Second Quarter 2008 Acute Toxicity Sampling

The 2008 second quarter sampling program commenced on June 24, 2008 and included the collection of grab samples from Outfall 001 and Outfall 002, occurring on two consecutive days.

SPDES Outfall 001 Sample Results – Second Quarter 2008

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 001, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 001	Ceriodaphnia dubia	25.9% Cumulative Mortality

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 001 during the 2008 1st quarter was below the Permit-specified survival rate of 95%.

SPDES Outfall 002 Sample Results – Second Quarter 2008

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 002	Ceriodaphnia dubia	57.4% Cumulative Mortality

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 2008 2nd quarter was below the Permit-specified survival rate of 95%.

Third Quarter 2008 Acute Toxicity Sampling

The 2008 third quarter sampling program commenced on September 15, 2008 and included the collection of grab samples from Outfall 001 and Outfall 002, occurring on two consecutive days. During the third quarter 2008 sampling event there was moderate flow at both Outfalls due to precipitation events on consecutive days.

SPDES Outfall 001 Sample Results - Third Quarter 2008

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 001, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 001	Ceriodaphnia dubia	3.4% Cumulative Mortality

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 001 during the 2008 3rd quarter was above the Permit-specified survival rate of 95%, with a survival rate of 96.6%.

SPDES Outfall 002 Sample Results – Third Quarter 2008

The 48-hour LC_{50} test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 002	Ceriodaphnia dubia	12.9% Cumulative Mortality

As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 2008 3rd quarter was below the Permit-specified survival rate of 95%, with a survival rate of 87.1%.

Fourth Quarter 2008 Acute Toxicity Sampling

The 2008 fourth quarter sampling program commenced on December 8, 2008 and included the collection of grab samples from Outfall 001 and Outfall 002, occurring on two consecutive days.

SPDES Outfall 001 Sample Results – Fourth Quarter 2008

The 48-hour LC₅₀ test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 001, are summarized below.

Sample Location	Test Organism	48-hour LC ₅₀
Outfall 001	Ceriodaphnia dubia	TUa = 100/LC50 = 100/0.3

TUa = Toxic Units Acute

The LC50 was not calculable for Outfall 001, however statistically significant toxicity (30% cumulative mortality) was identified at 100% effluent concentration. As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 001 during the 2008 4th quarter was reported as exceeding 0.3 Toxic Units Acute.

SPDES Outfall 002 Sample Results – Fourth Quarter 2008

The 48-hour LC₅₀ test results for the freshwater invertebrate (Ceriodaphnia dubia) exposed to the samples collected from Outfall 002, are summarized below.

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Location	Test Organism	48-hour LC ₅₀	
Outfall 002	Ceriodaphnia dubia	TUa = 100/LC50 = 100/<0.3	

TUa = Toxic Units Acute

The LC50 was not calculable for Outfall 002 and no toxicity was identified at 100% effluent concentration. As indicated in the above table, the 48-hr LC_{50} test result for Ceriodaphnia dubia at Outfall 002 during the 2008 4th quarter was reported as not exceeding 0.3 Toxic Units Acute.

Summarized in the table below are the 48-hr LC_{50} test results for each of the four quarterly sampling events conducted in 2006 and 2007.

Location	Test Organism	1 st Quarter 48-hr LC ₅₀	2 nd Quarter 48-hr LC ₅₀	3 rd Quarter 48-hr LC ₅₀	4 th Quarter 48-hr LC ₅₀
Outfall 001	Ceriodaphnia dubia	40.6%	25.9%	3.4%%	100/0.3
Outfall 002	Ceriodaphnia dubia	0%	57.4%	12.9%	100/<0.3

5.4 Summary

UHC was issued the SPDES permit for Outfalls 001, 002, and 003 on September 1, 2002. During 2003, NYSDEC issued two modifications to the SPDES Permit. On behalf of UHC, Synapse has been conducting the technical and reporting requirements set forth in the SPDES Permit.

Data collected from the 2008 routine monitoring and sampling events indicate target constituents and field parameters have not been consistently identified, at the outfalls, above their respective enforceable compliance levels. Anomalous exceptions and or excursions from the enforceable compliance levels have been evaluated and not believed to be a consistent threat to the environment. As such, it is recommended that routine monitoring be continued as scheduled.

Operations conducted at the property by Coolidge Utica and its tenants, which UHC has no control over, have the potential to directly impact the effluent water quality monitored by UHC at its permitted outfalls. Given the analytical results, the source of the toxicity appears to be related to contributions from the Coolidge Utica building. Specifically, based on the SPDES Stormwater Action Plan (June 2000), Outfalls 001 and 002 receive significant contributions from the Coolidge Utica Main Building.

5.5 Tables

 Table 5-1
 Cumulative Summary of SPDES Monitoring Results

Monitoring Period	EC	L		Septen	nber '02			Octob	er '02			No	ovember '	02			Decem	ber '02		l	Janua	ary '03			Febru	ary '03	
Monitoring Date	Daily		9/6/2002	9/11/2002	9/16/2002	9/23/2002	10/3/2002	10/10/2002	10/16/2002	10/25/2002	11/1/2002	11/6/2002	11/11/2002	11/22/2002	11/27/2002	12/5/2002	12/13/2003	12/20/2003	12/27/2003	12/30/2002	1/10/2003	1/17/2003	1/24/2003	1/29/2003	2/3/2003	2/10/2003	2/18/2003
Sampler ID	Max	Units	rsn	bhm	bhm	rrc	rsn	bhm	bhm	rsn	rrc	rsn	rrc/rsn	rsn	rsn	rrc	bhm	bhm	rrc	bhm	bhm	bhm	bhm	rsn	rsn/sjm	sjm	rrc/sjm
	Wax																										
SPDES Outfall 001																											
Flow Rate	Monitor	gpd	HTW	3505	15801	2314	7530	152	185634	<152	152	35901	HTW	HTW	13987	2314	30835	35901	21739	26116	HTW	152	No Flow	<152	6112	<152	<152
Temperature	90	٩F		67	71	2011	66	.02	57	1102	102	47		53		49	46	00001	21100	20110		41	35	1102	46	1102	40
pH	6.0-9.0	SU		7.6	7.3		7.1		7.0			6.7		7.0		6.6	7.9					7.0	7.2		7.0		7.1
Solids, Total Suspended	10 (dry)	mg/l		<4	<4		<4		15			<4		<4		14	15					10	51		<4		5
	50 (wet)																										-
cis-1,2-Dichloroethylene	10	ug/l		7.9	1		1		2.7			<1		3.6		<1	<1					1	<0.5		1		4
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1		<1		<1	<1					<1	<0.5		<1		<1
Trichloroethylene	10	ug/l		1.1	<1		<1		<1			<1		<1		<1	<1					<1	<0.5		<1		1
Chloroform	46	ug/l		<1	<1		<1		<1			<1		<1		<1	<1					<1	<0.5		<1		<1
Copper, Total	100	ug/l		73	34		55		50			20		25		11	24					22	<10		53		21
Oil & Grease	15	mg/l		<5			8.3					<5				<5						<5			<5		
Phenolics, Total Antimony, Total	28 300	ug/l		<20			<20					<20				<20 <10						<20			<20		
Antimony, Total Chromium, Total	300 51	ug/l ug/l		<10												<10											
Fluoride, Total	2500	-		22																							
Lead, Total	13	ug/l ug/l		340 <10																							
Zinc, Total	210	ug/l		72																							
	210	ug/i		12																							
SPDES Outfall 002																											
Flow Rate	Monitor	gpd	43871	47168	50610	43871	47168	47168	528383	29476	27001	166744	34824	HTW	HTW	27001	88412	133097	27001	22434	HTW	1582	No Flow	574	11643	HTW	10241
Temperature	90	٩		70	72		70		52			45	47			49	46					49	38		48		45
рН	6.0-9.0	SU		8.8	8.4		8.2		7.1			7.3	8.5			8.6	8.1					7.0	7.6		7.0		7.4
Solids, Total Suspended	10 (dry)			<4	<4		<4		<4			<4	<4			<4	<4					<4	7		<4		<4
Solids, Total Suspended	50 (wet)	mg/l		<4	<4		<4		<4			<4	<4			<4	<4					<4	'		×4		<4
Oil & Grease	15	mg/l		<5			11					<5				<5						<5			<5		
Phenolics, Total	24	ug/l		<20			<20					<20				<20						<20			<20		
Fluoride, Total	1500	ug/l		1000																							
SPDES Outfall 003	Monitor	gpd	6943	20829	83314	48600	36450	35345	198367	24300	18225	116640	36450	194400	48600	48600	42261	116640	29160	53018	53018	25357	7200 E	7200 E	14400 E	48600	2880 E
Temperature	90	°F	0943	64.2	70.3	40000	65.5	33343	51.3	24300	10225	44	58	134400	40000	35	42201	110040	23100	55010	40	20001	33	7200 L	40	40000	33
pH	6.0-9.0	SU		7.6	70.3		7.4		7.1			7.1	7.2			7.6	6.9				7.1		7.5		7.1		7.5
	10 (dry)																										
Solids, Total Suspended	50 (wet)	mg/l		6	<4		<4		<4			<4	<4			<4	<4				<4		5		<4		<4
Chlorine, Total Residual	100	ug/l		80	70		70		85			20	80			50	50				70		60		70		47
cis-1,2-Dichloroethylene	10	ug/l		<1	1.1		1.9		<1			4	<1			4.9	8.3				6		3		3		8
trans-1,2-Dichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1				<1		<0.5		<1		<1
Trichloroethylene	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1				6		<0.5		<1		2
Vinyl Chloride	10	ug/l		<1	<1		<1		<1			<1	<1			<1	<1				<1		<0.5		<1		<1
Chloroform	46	ug/l		<1	<1		<1		<1			<1	<1			<1	<1				<1		<0.5		<1		<1
Oil & Grease	15	mg/l		<5			6.6					<5				<5					<5				<5		
Phenolics, Total	44	ug/l		<20			<20					<20				<20					<20				<20		
PCBs, Aroclors (Compliance)	300	ng/l							<50												<50						
PCBs, Congeners (1668A Study)	NA	pg/l							7824												2641						
Lead, Total	10	ug/l		<10																							
Zinc, Total	120	ug/l		<10																							
									-						-				-	-		-					-

Monitoring Period	EC	L	1		March '03	3			Apri	1 '03				May '03				Jun	e '03		[July	v '03			Augu	st '03	
Monitoring Date	Daily		2/25/2003	3/7/2003	3/12/2003	3/19/2003	3/25/2003	4/4/2003	4/11/2003	4/16/2003	4/25/2003	5/2/2003	5/9/2003	5/15/2003	5/23/2003	5/29/2003	6/4/2003	6/11/2003	6/18/2003	6/25/2003	7/2/2003	7/9/2003	7/17/2003	7/23/2003	8/1/2003	8/6/2003	8/13/2003	8/29/2003
Sampler ID	Max	Units	sjm	rsn	bhm	rrc/pmf	rrc/bhm	rrc	pmf	rsn	rrc	rrc	sjm	bhm	sjm	bhm	sjm	sjm	sjm	pmf/bhm	sjm	pmf/bhm	sjm	rsn	sjm/bhm	bhm	rrc	sjm
																												<u> </u>
SPDES Outfall 001																												
Flow Rate	Monitor	gpd	HTW	HTW	2160	HTW	HTW	2880 E	HTW	<1440 E	<1440 E	41320	<1440 E	928	<1440 E	743	<1440 E	4770	<1440 E	<1440 E	<1440 E	11676	<1440 E	12253	64800	4713	<1440 E	<1440 E
Temperature	90	٩F			43		54			56	52				58	60	60		61			66		69	66		68	74
pН	6.0-9.0	SU			7.1		7.2			7.0	7.2				7.0	6.9	7.0		7.4			7.3		7.2	6.6		6.8	7.2
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			17		7			45	5				31	10	39		30			46		<4	<4		<4	30
cis-1,2-Dichloroethylene	10	ug/l			4		6			<1	<1				<1	<1	<1		1			1		<1	<1		4	<1
trans-1,2-Dichloroethylene	10	ug/l			<1		<1			<1	<1				<1	<1	<1		<1			<1		<1	<1		<1	<1
Trichloroethylene	10	ug/l			<1		2			<1	<1				<1	<1	<1		<1			<1		<1	<1		<1	<1
Chloroform	46	ug/l			<1		<1			<1	<1				<1	<1	<1		<1			<1		<1	<1		<1	<1
Copper, Total	100	ug/l			16		<10			17	16				22	19	<10		13			27		62	41		29	26
Oil & Grease	15	mg/l			<5					13						<5			22			<5			<5			
Phenolics, Total	28	ug/l			<20					<20						<2			<20			<20			<20			
Antimony, Total	300	ug/l								<10									<10									<10
Chromium, Total	51	ug/l								<10									<10									
Fluoride, Total	2500	ug/l								540									380									
Lead, Total	13	ug/l								<10									<10									
Zinc, Total	210	ug/l	-							99									44									
SPDES Outfall 002																	1	-										
Flow Rate	Monitor	gpd	HTW	208	3966	HTW	HTW	2880 E	HTW	844	37	47168	101	364	1582	<250 E	101	3247	1582	208	101	56	<1440 E	18366	126908	HTW	101	101
Temperature	90	٩F			48		53			54	51				58	60	61		66			68		70	66		68	74
pH	6.0-9.0	SU			6.7		7.3			7.3	7.2				7.7	7.1	7.3		7.2			6.5		7.0	6.6		6.8	7.8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			<4		11			7	11				5	10	<4		<4			<4		<4	<4		9	15
Oil & Grease	15	mg/l			8					12						<5			<5			<5			<5			
Phenolics, Total	24	ug/l			<20					<20						<2			<20			<20			<20			
Fluoride, Total	1500	ug/l								460									150									
SPDES Outfall 003																												
Flow Rate	Monitor	gpd	13886	23328	18225	83314	97200	7200 E	144000 E	24300 E	291600 E	172800 E	20000 E	64800	15247	28800	21600	18514	17280	15549	6480	18783	11782	74057	94255	47127	14811	28800
Temperature	90	۰F			38		58			59	51				61	66	64		64			67	-	70	65		72	73
pH	6.0-9.0	SU			7.4		7.2			7.3	7.4				7.5	7.4	7.5		7.6			7.2		7.1	7.3		7.4	7.7
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l			<4		<4			4	NA				<4	9	<4		<4			<4		<4	<4		<4	<4
Chloring, Total Desidual	. ,				50					10					00	10	50		50			50			70		50	50
Chlorine, Total Residual	100 10	ug/l ug/l			50 8		60			10	60 2				30	40	50		50			50		60	70		50	50
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	10	ug/i ug/l			8 <1		5 <1			<1 <1	2 <1				<1 <1	<1 <1	<1 <1		<1 <1			<1		2 <1	<1 <1		<1	<1 <1
Trichloroethylene	10	ug/l			<1 9		<1 3			<1 <1	<1 <1				<1 <1	<1 <1	<1		<1			<1		<1 <1	<1 <1		<1 <1	<1
Vinyl Chloride	10	ug/l			9 <1		3 <1			<1 <1	<1 <1				<1	<1 <1	<1		<1			<1		<1 <1	<1		<1	<1
Chloroform	46	ug/l			<1		<1			<1	<1 <1				<1	<1 <1	<1		<1			<1		<1	<1		<1	<1
Oil & Grease	15	mg/l			<5		~ 1			<5	~ 1				~ 1	<5			6			<5		~1	<5			
Phenolics, Total	44	ug/l			<2					<20						<2			<20			<20			<20			
PCBs, Aroclors (Compliance)	300	ng/l			~2					<50									<50			-20					<50	
PCBs, Congeners (1668A Study)	NA	pg/l								4268									6283								4546	
Lead, Total	10	ug/l								<10									<10								.0.0	
Zinc, Total	120	ug/l								<10									<10									
	.20	~g/1																										

Monitoring Period	EC	L	Septem	nber '03	Octob	oer '03	Novem	ber '03	Decem	ber '03		January '04	4	Febru	ary '04	Marc	ch '04	Apr	il '04	May	/ '04	June	e '04
Monitoring Date	Daily		9/8/2003	9/23/2003	10/8/2003	10/23/2003	11/5/2003	11/21/2003	12/5/2003	12/17/2003	12/31/2003	1/13/2004	1/30/2004	2/12/2004	2/27/2004	3/10/2004	3/24/2004	4/7/2004	4/22/2004	5/6/2004	5/18/2004	6/1/2004	6/18/2004
Sampler ID	Max	Units	bhm	5/20/2000 bhm	bhm	sjm	sim	bhm	rsn	rsn	sim	sim	rsn	sim	bhm	rsn	sim	rsn	rsn	rsn	rsn	rsn	rsn
	Max					,						,											
SPDES Outfall 001																							
Flow Rate	Monitor	gpd	<1440 E	32112	626	<4114E	<4114 E	HTW	<4114 E	<20736 E	3600 E	5760	4114	770 E	626	1775 E	2880E	2880E	5722E	3497E	1377E	3292E	4770E
Temperature	90	٥F	69	65	68	51	55	54	44	43	46	46	42	44	40	44	46	44	58	53	66	64	66
pH	6.0-9.0	SU	7.4	7.0	6.8	6.8	7.4	6.5	6.8	6.8	6.3	6.8	6.6	7.4	6.6	6.8	6.6	6.8	6.3	6.4	6.8	6.8	6.6
	10 (dry)															_		_					
Solids, Total Suspended	50 (wet)	mg/l	15	<4	<4	8	6	7	21	<4	5	5	<4	<4	9	7	6	9	<4	<4	7	<4	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	2	<1	<1	1	<1	<1	<1	2	2	4	1	<1	<1	<1	1	1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	14	15	26	17	14	<10	12	14	18	33	20	25	17	25	32	28	35	32	25	29	30
Oil & Grease	15	mg/l	<5		<5			<5		24	<5				<5	<5		<5			<5		<5
Phenolics, Total	28	ug/l	<20		<20			<20		<20	<20				<20	<20		<20			<20		<20
Antimony, Total	300	ug/l								<10						<10							
Chromium, Total	51	ug/l								<10													
Fluoride, Total	2500	ug/l								240													
Lead, Total	13	ug/l								<10													
Zinc, Total	210	ug/l								38													
SPDES Outfall 002					1					-	r			1	1			1	1	1		li -	
Flow Rate	Monitor	gpd	37	34824	208	208	11643	HTW	HTW	HTW	28800 E	43871	32084	5672	1178	3247	8947	8947	3966	2058	208	2058	3966E
Temperature	90	٩F	69	66	68	53	56	60	48	47	49	41	36	46	43	50	49	51	57	54	68	66	69
рН	6.0-9.0	SU	7.2	6.9	7.0	7.2	7.4	6.6	6.9	6.7	6.3	7.5	7.6	6.9	7.3	6.9	6.8	7.4	6.5	6.5	7.2	6.9	6.2
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	7	<4	4	<4	<4	<4	<4	<4	<4	<4	6	<4	8	<4	<4	<4	<4	<4
Oil & Grease	50 (wet) 15	ma/l	-					0			-					-5		-			<5		6
Phenolics, Total	24	mg/l ug/l	<5 <20		<5 <20			9 <20		16 <20	<5 <20				<5 <20	<5 <20		<5 <20			<20		<20
Fluoride, Total	1500	ug/l	<20		<20			<20		<20 200	<20				<20	<20		<20			<20		<20
Fidonao, Fotar	1000	ugn																					
SPDES Outfall 003																							
Flow Rate	Monitor	gpd	9969	103680	13642	15247	25920	43200	25920	37029	32400	47127	21600	8361	5400	51840	32400	25920	51840	39273	10327	33188	33010E
Temperature	90	°F	71	64	63	45	52	48	35	42	43	34	33	37	36	48	51	45	60	56	75	71	73
рН	6.0-9.0	SU	7.8	7.2	7.6	7.6	7.1	7.1	7.3	6.8	6.1	6.9	7.1	7.1	7.0	6.8	7.4	7.1	7.0	6.9	7.0	7.3	7.1
Solido Totol Supported	10 (dry)		<4			.4		4		.4	.4	.4	<4		17	5	<4			<4		.4	
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	4	4	<4	<4	<4	<4	4	17	5	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	50	80	50	30	50	90	30	50	50	30	20	30	40	50	50	30	60	30	10	30	20
cis-1,2-Dichloroethylene	10	ug/l	<1	1	<1	<1	2	3	10	6	4	11	2	5	2	3	3	2	1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	1	2	8	1	3	3	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5		<5			8		<5	<5				<5	<5		<5			<5		<5
Phenolics, Total	44	ug/l	<20		<20			<20		<20	<20				<20	<20		<20			<20		<20
PCBs, Aroclors (Compliance)	300	ng/l								<50						<50							
PCBs, Congeners (1668A Study)	NA	pg/l								3449													
Lead, Total	10	ug/l								<10													
Zinc, Total	120	ug/l								11													

Monitoring Period	EC	L		July '04		Augu	st '04	S	eptember 'l	04	Octob	oer '04	Novem	ber '04	Decem	ber '04		January '05	5	Febru	ary '05
Monitoring Date	Daily		6/30/2004	7/15/2004	7/29/2004	8/13/2004	8/26/2004	9/10/2004	9/22/2004	9/23/2004	10/6/2004	10/20/2004	11/3/2004	11/15/2004	11/30/2004	12/17/2004	12/28/2004	1/12-13/05	1/26 - 27/2005	2/9/2005	2/22/2005
Sampler ID	Max	Units	rrc	rrc	rrc	sjm	rrc	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm	sjm
		<u> </u>																			<u>. </u>
SPDES Outfall 001																					
Flow Rate	Monitor	gpd	4770E	2314E	1196E	26111	3505	2314	1196		0	1196	5200	1140	HTW	2880	626E	9026	4770	152	21739
Temperature	90	٩F	19	67	71	70	64	68	68		62	56	55	49	51	48	41	41	43	45	47
pН	6.0-9.0	SU	6.8	6.8	6.8	6.6	6.9	6.5	6.3		6.2	7.4	6.5	7.0	7.2	7.1	7.4	6.96	7.1	7.7	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	10	<4	6	<4	5	<4	<4		<4	<4	6	<4	<4	14	4	<4	<4	<4	5
cis-1,2-Dichloroethylene	10	ug/l	<1	1	4	<1	<1	2	<1		<1	<1	<1	1	2.2	1.4	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	50	34	43	29	17	41	38		<10	20	62	420	<10	<10	10	<10	20	29	78
Oil & Grease	15	mg/l	<5			<5	9	<5			<5	26	<5	<5		<5		<5		23	
Phenolics, Total	28	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20		<20		21	
Antimony, Total	300	ug/l		<10			<10	13				<10		<10						<10	
Chromium, Total	51	ug/l					42							<10							
Fluoride, Total	2500	ug/l					410							930							
Lead, Total	13	ug/l					<10							<10							
Zinc, Total	210	ug/l					58							<10							
SPDES Outfall 002																					
Flow Rate	Monitor	gpd	1178E	3247E	3966E	50610	1178	3247	37		208	2612	2058	208	HTW	2058	364	24654	6665	13153	24654
Temperature	90	٥F	19	68	69	72	64	67	71		66	57	57	55	54	49	46	47	45	45	48
pH	6.0-9.0	SU	7.2	7.1	6.8	6.6	7.3	6.9	6.9		6.9	7.9	5.8	7.3	7.8	7.0	6.5	7.2	7.1	7.1	7.5
	10 (dry)																				
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	9.0		4.0	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5			<5	10	<5			<5	45	6	<5		<5		<5		<5	
Phenolics, Total	24	ug/l	<20			<20	<20	<20			<20	<20	<20	<20		<20		<20		<20	
Fluoride, Total	1500	ug/l				-	380				-			490							
SPDES Outfall 003																					
Flow Rate	Monitor	gpd	20000E	21000	33200E	75000	25000	15549		10540	8934	8640	23542	10800	37008	21600	15247	32400	28800	32400	43200
Temperature	90	°F	25	75	71	70	70	66		69	61	50	51	42	48	37	35	37	36	38	35
рН	6.0-9.0	SU	7.6	7.5	7.8	7.1	7.7	6.6		6.4	6.7	7.5	6.4	7.6	7.7	7.1	6.5	7.6	6.8	7.3	7.4
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4		<4	<4	<4	12	8	<4	<4	<4	<4 (sampled 1/27)	<4	4.5	<4
Chlorine, Total Residual	100	ug/l	30	40	30	60	65	30		40	60	50	20	70	50	40	20	30	20	40	40
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	1	<1	<1		<1	<1	<1	<1	<1	2.1	3.8	<1	1.2	<1	2.2	7.5
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5			<5	<5	<5			<5	<5	5	<5		<5		<5		9	
Phenolics, Total	44	ug/l	<20			<20	79	<20			<20	<20	<20	<20		<20		<20		<20	
PCBs, Aroclors (Compliance)	300	ng/l		<50			<50					<50		<50		<50					<50
PCBs, Congeners (1668A Study)	NA	pg/l		4134								2137				2761					3765
Lead, Total	10	ug/l					<10							<10							
Zinc, Total	120	ug/l					<10							<10							

Monitoring Period	EC	L	Marc	h '05	Apri	il '05	Мау	/ '05	June	e '05		July '05		Augu	st '05	Septen	nber '05	Octob	ber '05	Novem	ber '05	D	ecember '0	5
Monitoring Date	Daily		3/7/2005	3/22/2005	4/6/2005	4/20/2005	5/4/2005	5/20/2005	6/2/2005	6/14/2005	6/30/2005	7/13/2005	7/27/2005	8/10/2005	8/23/05	9/6/2005	9/22/2005	10/6/2005	10/21/2005	10/31/2005	11/15/2005	11/29/2005	12/12/2005	12/28/2005
Sampler ID	Max	Units	sjm	sjm	sjm	sjm	rrc	rrc	rrc	rrc	rrc	sm	bhm	sjm	sjm	sjm	rrc	sjm	sjm	sjm	sjm	sjm	sjm	rrc
	man																							
SPDES Outfall 001																								
Flow Rate	Monitor	gpd	19677	HTW	HTW	152	1196	152	152	38566	3505	4770	40	80	80	152	152	HTW	HTW	50	28432	3505	HTW	125
Temperature	90	٩F	49	42	47	55	55	58	60	70	67	72	72	73	69	67	70	65	60	53	49	53	43	44
рН	6.0-9.0	SU	8.0	6.6	6.6	7.8	7.7	7.7	6.8	6.8	7.5	6.7	6.5	6.7	6.3	7.0	6.9	6.5	7.4	8.8	8.2	7.8	7.2	7.0
Solids, Total Suspended	10 (dry)		F	5.5	10		10	27	42	.1	27	.4	9	5	4	31	0.5	20	11	27	<4	0.5	.4	<4
Solids, Total Suspended	50 (wet)	mg/l	5	5.5	10	<4	10	21	42	<4	21	<4	9	5	4	31	6.5	29	11	21	<4	6.5	<4	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	31	<10	<10	83	25	<10	<10	69	<10	50	14	18	33	<10	35	<10	<10	<10	31	22	13	20
Oil & Grease	15	mg/l	<5		<5		<5		6.4		<5			<5		<5		<5		<5		5.8		
Phenolics, Total	28	ug/l	<20		<20		36		100		<20			<20		<20		<20		<2		4		
Antimony, Total	300	ug/l					<10							<10						<10				
Chromium, Total	51	ug/l					<10													<10				
Fluoride, Total	2500	ug/l					310													580				
Lead, Total	13	ug/l					<10 76													<10 29				
Zinc, Total	210	ug/l	-				/6													29				
SPDES Outfall 002																								
Flow Rate	Monitor	gpd	120894	HTW	HTW	364	1582	364	7	57935	37	2612	5672	37	37	574	HTW	HTW	HTW	364	13153	364	HTW	844
Temperature	90	°F	49	41	48	53	55	56	65	71	65	71	69	73	68	67	68	65	61	60	49	55	43	48
pH	6.0-9.0	SU	7.1	6.9	6.9	7.9	7.8	7.9	6.7	6.7	7.3	6.7	7.1	6.7	6.9	6.9	6.7	6.7	7.5	7.7	7.3	7.2	6.9	7.2
Solids, Total Suspended	10 (dry)	mg/l	<4	5	<4	<4	4.5	<4	8.5	<4	5	<4	4	<4	<4	<4	<4	13	<4	8	<4	<4	<4	<4
Solids, Total Suspended	50 (wet)	ing/i	<4	5	<4	<4	4.5	<4	0.0	<4	5	<4	4	<4	<4	<4	<4	15	<4	0	<4	<4	<4	<4
Oil & Grease	15	mg/l	6.8		<5		<5		5		<5			<5		<5		<5		<5		6.5		
Phenolics, Total	24	ug/l	<20		<20		29		76		<20			<20		<20		<20		<2		2.6		
Fluoride, Total	1500	ug/l					230													380				
SPDES Outfall 003																								
Flow Rate	Monitor	gpd	28880	172800	24300	6480	7783	3020	3744	64800	17280	2880	1100	2880	2520	6171	1728	9600	12342	17280	29950	21600	34560	21600
Temperature	90	9F	45	44	52	60	61	64	80	71	76	77	73	80	68	65	72	64	54	55	46	53	42	47
pH	6.0-9.0	SU	7.6	7.3	7.6	8.3	7.9	8.1	7.2	6.9	7.8	7.2	7.1	7.2	7.1	6.7	6.9	7.1	7.8	8.4	6.8	7.3	7.2	7.4
	10 (dry)															_								
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	4.5	<4	5	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	90	80	40	50	50	60	30	80	40	50	30	40	40	80	30	20	30	40	10	30	40	40
cis-1,2-Dichloroethylene	10	ug/l	5.2	6.4	<1	<1	<1	<1	<1	1.7	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.8	<1	1.4	2.5
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	1.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5		<5		<5		5		<5			<5		<5		5.5		<5		<5		
Phenolics, Total	44	ug/l	<20		<20		27		40		<20			<20		<20		<20		<2		2.6		
PCBs, Aroclors (Compliance)	300	ng/l												<0.1						<100				
PCBs, Congeners (1668A Study)	NA	pg/l																		na				
Lead, Total	10	ug/l					<10													<10				
Zinc, Total	120	ug/l					14													<10				

Monitoring Period	EC	L	Janua	ary '06	Februa	ary '06	Marc	h '06	Apri	il '06	Мау	/ '06		June '06		July	/ '06	Augus	st '06	Septer	nber '06
Monitoring Date	Daily		1/13/2006	1/25/2006	2/9/2006	2/20/2006	3/3/2006	3/24/2006	4/7/2006	4/20/2006	5/3/2006	5/17/2006	6/2/2006	6/16/2006	6/30/2006	7/11/2006	7/26/2006	8/10/2006	8/22/2006	9/7/2006	9/20/2006
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	bhm	rrc	rrc	BHM	RRC	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc
	INICA																				
SPDES Outfall 001																					
Flow Rate	Monitor	gpd	HTW	HTW	HTW	152	152	4770	47076	152	152	152	152	3505	10600	152	152	152	152	152	3505
Temperature	90	۰F	44	44	44	40	41	50	46	51	57	55	58	60	66	65	68	68	69	65	64
pH	6.0-9.0	SU	7.3	7.2	7.2	7.4	7.9	7.3	7.0	7.5	7.3	7.1	6.9	6.9	6.9	6.94	7.2	7.14	6.64	6.6	7.35
	10 (dry)																				
Solids, Total Suspended	50 (wet)	mg/l	12	5	24	26	48	6.5	21	33	25	7.4	45	40	<4	<4	31	38	4	21	<4
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	1.9	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1
Copper, Total	100	ug/l	15	28	10	11	11	18	18	<10	<10	45	<10	<10	23	59	<10	<10	<10	<10	<10
Oil & Grease	15	mg/l		<5	<5		<5		5.1		<5		<5			<5		<5		<5	
Phenolics, Total	28	ug/l		4.3	6.7		3.4		2.2		5.5		2.1			2.1		<2		<2	
Antimony, Total	300	ug/l							<10				<10			<10					
Chromium, Total	51	ug/l											<10								
Fluoride, Total	2500	ug/l											410								
Lead, Total	13	ug/l											12								
Zinc, Total	210	ug/l											25								
			-																		<u> </u>
SPDES Outfall 002			1)				1		0					0		1	
Flow Rate	Monitor	gpd	HTW	HTW	HTW	574	364	HTW	10221	364	37	364	101	364	HTW	101	101	844	208	7	3966
Temperature	90	٩F	43	42	44	44	45	49	50	52	57	54	58	60	66	65	67	68	69	67	64
рН	6.0-9.0	SU	7.5	7.6	6.8	7.2	7.2	7.7	7.9	7.6	7.7	7.1	6.8	6.9	7.3	7.07	6.98	6.97	7.24	6.98	7.93
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4	<4	4	5.5	<4	<4	13	<4	<4	<4	<4	<4	11	<4
	50 (wet)																				
Oil & Grease	15	mg/l		<5	<5		<5		<5		<5		<5			<5		<5		<5	
Phenolics, Total	24	ug/l		5.8	5.7		3.2		3.3		6.1		2.9			2.9		<2		<2	
Fluoride, Total	1500	ug/l											160								
SPDES Outfall 003																					
Flow Rate	Monitor	gpd	28800	43200	29394	24300	29494	41760	100800	25200	16070	5760	36400	25200	92100	43200	32400	33600	100800	25200	75600
Temperature	90	٩F	47	42	43	34	34	48	44	48	61	48	58	70	67	71	68	69	69	69	69
pH	6.0-9.0	SU	7	7.1	7.2	7.3	6.4	8.1	7.3	7.6	7.8	6.9	7.2	7.1	7.1	6.8	7.16	7.24	7.15	7.03	7.47
	10 (dry)																				
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	55	40	50	40	40	80	40	35	40	35	40	35	40	40	45	30	40	35	45
cis-1,2-Dichloroethylene	10	ug/l	3.4	2.9	2.2	1.9	<1	2.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l		<5	<5		<5		<5		<5		<5			<5		<5		<5	
Phenolics, Total	44	ug/l		3.9	4.4		2.2		2.7		4.4		3.9			3		<2		<2	
PCBs, Aroclors (Compliance)	300	ng/l							<50				<100			<100					
PCBs, Congeners (1668A Study)	NA	pg/l											na			na					
Lead, Total	10	ug/l											10								
Zinc, Total	120	ug/l											<10								

Monitoring Period	riod ECL		October '06		November '06		6	December '06		January '07		February '07		March '07		April '07		May '07			June '07			y '07
Monitoring Date	Daily	11-14-	10/5/2006	10/17/2006	11/3/2006	11/16/2006	11/30/2006	12/14/2006	12/29/2006	1/10/2007	1/26/2007	2/9/2007	22/21/07	3/9/2007	3/23/2007	4/3/2007	4/18/2007	5/1/2007	5/15/2007	5/31/2007	6/12/2007	6/26/2007	7/12/2007	7/26/2007
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc
<u>.</u>		u																						
SPDES Outfall 001				1	F									1	1	I		I	1	1	I	1	10	
Flow Rate	Monitor	gpd	152	19677	15801	HTW	152	152	HTW	HTW	70199	3505	21739	HTW	HTW	HTW	HTW	152	152	152	HTW	HTW	HTW	HTW
Temperature	90 6.0-9.0	۹F	62	55	54	54	50	49	45	46	41	41	43	38	40	45	44	50	53	57	60	64	66	66
pH		SU	7.8	8.3	7.4	7.3	7.4	7.4	7.3	7.7	7.8	7.9	7.9	7.5	7.7	7.7	7.6	7.6	7.6	7.6	7.9	7.8	7.3	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	7	<4	27	<4	30	6.5	18	7	27	28	<4	29	6	27	14	31	25	34	39	31	<4	31
cis-1,2-Dichloroethylene	10	ug/l	<2	<1	<1	2.1	<1	<1	1	<1	<1	<1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	25	37	27	15	<10	25	15	<10	14	<10	29	<10	12	<10	<10	<10	<10	<10	<10	<10	<10	<10
Oil & Grease	15	mg/l	<5		<5	<5		<5		<5		6		6		6		<5			<5		17	
Phenolics, Total	28	ug/l	2		<2	<2		<2		<2		2.6		<50		<20		<3			<3		<3	<3
Antimony, Total	300	ug/l			11											<10					14			<10
Chromium, Total	51	ug/l			12																11			
Fluoride, Total	2500	ug/l			460																365			
Lead, Total	13 210	ug/l			22 35																13 31			
Zinc, Total	210	ug/l			35																31			
SPDES Outfall 002																								
Flow Rate	Monitor	gpd	101	16512	4773	HTW	208	208	HTW	HTW	13153	16512	13153	HTW	HTW	HTW	HTW	208	37	208	208	HTW	574	3966
Temperature	90	٩F	65	52	60		58	55	53	52	42	46	46	38	47	49	48	51	53	56	59	65	76	73
pH	6.0-9.0	SU	7.3	8.2	7.6	7.6	7.6	7.6	7.9	7.4	7.4	7.8	7.9	8.7	7.7	7.5	7.6	7.9	8.0	7.7	7.4	7.6	7.7	7.0
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	6	14	7	<4	26
Oil & Grease	15	mg/l	<5		<5	<5		<5		<5		6		11		7.1		<6			<5		5	
Phenolics, Total	24	ug/l	2		<2	<2		<2		<2		4		<50		<20		<3			<3		<3	
Fluoride, Total	1500	ug/l			260																			
SPDES Outfall 003																								
Flow Rate	Monitor	gpd	35576	302400	60480	35576	50400	37800	58154	37800	47999	60480	33600	43199	151200	151200	151200	75600	4319	4319	86399	25620	30240	30240
Temperature	90	۰F	61	51	47	55	55	47	42	39	34	35	35	35	41	53	46	56	69	70	74	71	76	73
pH	6.0-9.0	SU	7.3	7.7	7.7	7.7	7.7	7.6	8	7.4	8.4	8	8.1	8.1	8	8	8	8	8.3	7.9	8	8	7.9	7.4
	10 (dry)								_			-			-	-	-	-			-	-		
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	17	27	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	40	45	35	45	40	40	45	40	50	45	40	40	45	40	45	50	40	45	40	40	40	40
cis-1,2-Dichloroethylene	10	ug/l	<1	1.2	<1	<1	<1	<1	<1	<1	2	<1	<1	1.8	4.2	<1	1.6	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<2	<1	<2	<1	<2	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	<5		<5	5.9		<5		<5		<6		<5		7.4		<5			<5		<5	
Phenolics, Total	44	ug/l	<2		<2	<2		3		<2		<2		<50		<20		<3			<3		<3	
PCBs, Aroclors (Compliance)	300	ng/l			<50											<35						<100		
PCBs, Congeners (1668A Study)	NA	pg/l																						
Lead, Total	10	ug/l			17																13			
Leau, Iotai																								

Monitoring Period	ECL Augu		August '07		September '07		October '07		November '07			December '07		January '08		ary '08	March '08		April '08			
Monitoring Date	Daily		8/10/2007	8/23/2007	9/6/2007	9/21/2007	10/5/2007	10/19/2007	11/2/2007	11/16/2007	11/30/2007	12/14/2007	12/28/2007	1/11/2008	1/25/2008	2/8/2008	2/21/2008	3/4/2008	3/17/2008	4/3/2008	4/18/2008	4/29/2008
Sampler ID	Max	Units	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	sm	rrc	sm - qtrly
														1								
SPDES Outfall 001																						
Flow Rate	Monitor	gpd	19677	152	HTW	152	152	3505	152	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	12253	2314
Temperature	90	٩F	69	69	69	70	67	64	58	53	63	48	45	46	43	43	42	45	42	47	49	53
рН	6.0-9.0	SU	6.7	7.7	7.3	7.2	7.3	7.3	7.4	7.4	7.3	7.4	7.9	7.3	7.8	7.6	7.6	6.6	7.2	7.2	7.3	7.2
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	11	5	<4	<4	20	15	<4	<4	<4	<4	<4	14	<4	10	14	4	<4	18	10
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	1.7	<1	5.2	<1	<1	<1	<1	<1	1	<1	2.4	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper, Total	100	ug/l	59	38	<10	54	18	<10	42	22	12	32	37	<10	<10	<10		29	<10	48	14	12
Oil & Grease	15	mg/l	6			<5	5.2		<5	<5			<5	<5		<5		<5		<5		<5
Phenolics, Total	28	ug/l	<2			<3	4.1		<3	<3			<3	<3		<3		<3		<3		<3
Antimony, Total	300	ug/l					<10			<10						<10						<10
Chromium, Total	51	ug/l								<10												
Fluoride, Total	2500	ug/l								220												
Lead, Total	13	ug/l								<10												
Zinc, Total	210	ug/l								29												
SPDES Outfall 002 Flow Rate	Monitor	gpd	844	208	101	101	208	364	7	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	HTW	7	HTW
Temperature	90	o₽	70	69	67	67	66	66	61	55	43	50	45	44	50	48	44	42	47	46	50	55
pH	6.0-9.0	SU	7.2	7.2	7.4	7.3	7.5	7.5	7.7	7.6	43	7.6	7.6	8.2	7.6	40 7.5	7.9	6.1	7.4	7.9	7.6	7.4
	10 (dry)	00				7.5			7.7			7.0	7.0					0.1	1.4			
Solids, Total Suspended	50 (wet)	mg/l	<4	<4	4	5	6.5	5	6	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Oil & Grease	15	mg/l	<5			<5	<5		<5	<5			5	<5		<5		<5		<5		<5
Phenolics, Total	24	ug/l	<2			<3	<3		<3	<3			<3	<3		<3		<3		<3		<3
Fluoride, Total	1500	ug/l								<100												
SPDES Outfall 003	-													1.								
Flow Rate	Monitor	gpd	100800	20160	5760	75600	33600	23261	37800	151200	60480	75600	302400	46523	13745	100800	46533	75600	37800	100800	50400	16800
Temperature	90	٩F	68	69	67	69	65	62	53	47	43	42	43	38	35	39	35	38	45	43	63	55
рН	6.0-9.0	SU	7.3	7.2	7.7	7.2	7.6	7.6	7.7	7.7	7.8	7.9	7.6	7.6	7.2	7.8	8	7.1	7.8	7.4	7.7	7.8
Solids, Total Suspended	10 (dry) 50 (wet)	mg/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Chlorine, Total Residual	100	ug/l	50	55	50	45	40	45	40	40	45	40	45	40	40	40	45	40	80	60	55	90
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.2	2.4	2.5	1.1	<1	3.8	1.1	1.7	<1	<1
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	<1	4.2	<1	<1	<1	<1
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Oil & Grease	15	mg/l	5.4			<5	<5		<5	<5			<5	7.2		<5		<5		<5		<5
Phenolics, Total	44	ug/l	<2			<3	<3		<3	<3			<3	<3		<3		<3		<3		<3
PCBs, Aroclors (Compliance)	300	ng/l								<100						<100						<100
PCBs, Congeners (1668A Study)	NA	pg/l																				
Lead, Total	10	ug/l								<10												
Zinc, Total	120	ug/l								<10												

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK SPDES NO. NY-0257087

Monitoring Period	EC	L	Мау	y '08	Jun	e '08	July	y '08	Augu	st '08	Septen	nber '08	October '08			Novem	ber '08	Decen	December '08	
Monitoring Date	Daily		5/13/2008	5/29/2008	6/11/2008	6/24/2008	7/10/2008	7/23/2008	8/6/2008	8/19/2008	9/5/2008	9/16/2008	10/1/2008	10/15/2008	10/29/2008	11/14/2008	11/25/2008	12/9/2008	12/24/200	
Sampler ID	Max	Units	rrc - montholy	sji - biweekly	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	rrc	
												-		-	-		-		-	
SPDES Outfall 001																				
Flow Rate	Monitor	gpd	152	152	152	12253	152	4770	2314	70199	1196	3505	152	1196	HTW	HTW	HTW	HTW	HTW	
Temperature	90	°F	53	55	64	62	65	71	68	69	68	69	66	62	50	49	53	46	43	
рН	6.0-9.0	SU	7.7	7.7	6.8	7.1	7.4	7.6	7.2	7.0	6.7	6.9	7.0	7.1	7.9	7.5	8.2	7.2	7.3	
Solids, Total Suspended	10 (dry)	mg/l	17	<4	<4	48	31	<4	6	<4	53	31	<4	9.5	<4	9	<4	10	<4	
	50 (wet)					10	01		Ũ		00	0.		0.0		0		10		
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.7	<1	<1	
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Copper, Total	100	ug/l	68	34	51	<10	<10	36	<10	30	<10	51	34	43	28	43	14	11	<10	
Oil & Grease	15	mg/l	<5		<5		<5		<5		<5		<5			<5	<5	6.6		
Phenolics, Total	28	ug/l	<3		<3		<3		<3		4.3		<3			<3		<3		
Antimony, Total	300	ug/l			<10				<10				<10							
Chromium, Total	51	ug/l			11				11											
Fluoride, Total Lead, Total	2500 13	ug/l			190				190											
Zinc, Total	210	ug/l ug/l			<10 49				<10 49											
	210	ug/i			45				45											
SPDES Outfall 002																				
Flow Rate	Monitor	gpd	37	37	HTW	7755	101	3966	3966	50610	574	1178	364	208	HTW	HTW	HTW	HTW	HTW	
Temperature	90	°F	53	55	66	62	64	71	67	69	67	68	66	64	46	48	55	43	53	
pH	6.0-9.0	SU	7.5	6.7	7.2	7.6	7.4	7.5	7.4	7.5	7.3	7.2	7.3	7.3	7.6	7.7	8.3	7.7	7.9	
-	10 (dry)																			
Solids, Total Suspended	50 (wet)	mg/l	6.5	<4	<4	7	6.5	<4	4.5	<4	<4	4.5	<4	<4	5	<4	<4	<4	<4	
Oil & Grease	15	mg/l	<5		<5		<5		<5		<5		<5			<5		<5		
Phenolics, Total	24	ug/l	<3		<3		<3		<3		5.6		<3			<3		<3		
Fluoride, Total	1500	ug/l			140				140											
																0				
SPDES Outfall 003			-																	
Flow Rate	Monitor	gpd	8640	10427	10080	50400	15915	100800	7033	20160	43200	30240	100800	75600	20160	75600	43200	201600	151200	
Temperature	90	٩F	66	69	73	75	75	71	73	69	73	66	65	58	62	41	47	34	35	
рН	6.0-9.0	SU	7	7	7.2	7.8	7.9	7.4	7.2	7.2	7.6	7.2	7.7	7.6	7.6	8.1	7.9	7.9	6.9	
Solids, Total Suspended	10 (dry)	mg/l	<4	<4	<4	<4	<4	<4	<4	83	<4	<4	<4	<4	<4	<4	<4	<4	<4	
	50 (wet)	5.																		
Chlorine, Total Residual	100	ug/l	80	96	330	95	80	60	50	55	60	55	55	40	45	45	40	45	45	
cis-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.2	<1	<1	<1	<1	
trans-1,2-Dichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Trichloroethylene	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Vinyl Chloride	10	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Chloroform	46	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Oil & Grease	15	mg/l	<5		<5		<5		<5		<5		<5			<5		<5		
Phenolics, Total	44	ug/l	<3		<3		<3		<3		<3		<3			<3		<3		
PCBs, Aroclors (Compliance)	300	ng/l			<50								<100			<50				
PCBs, Congeners (1668A Study)	NA 10	pg/l																		
Lead, Total	10	ug/l ug/l			<10 <10											<10 <10				
Zinc, Total	120																			

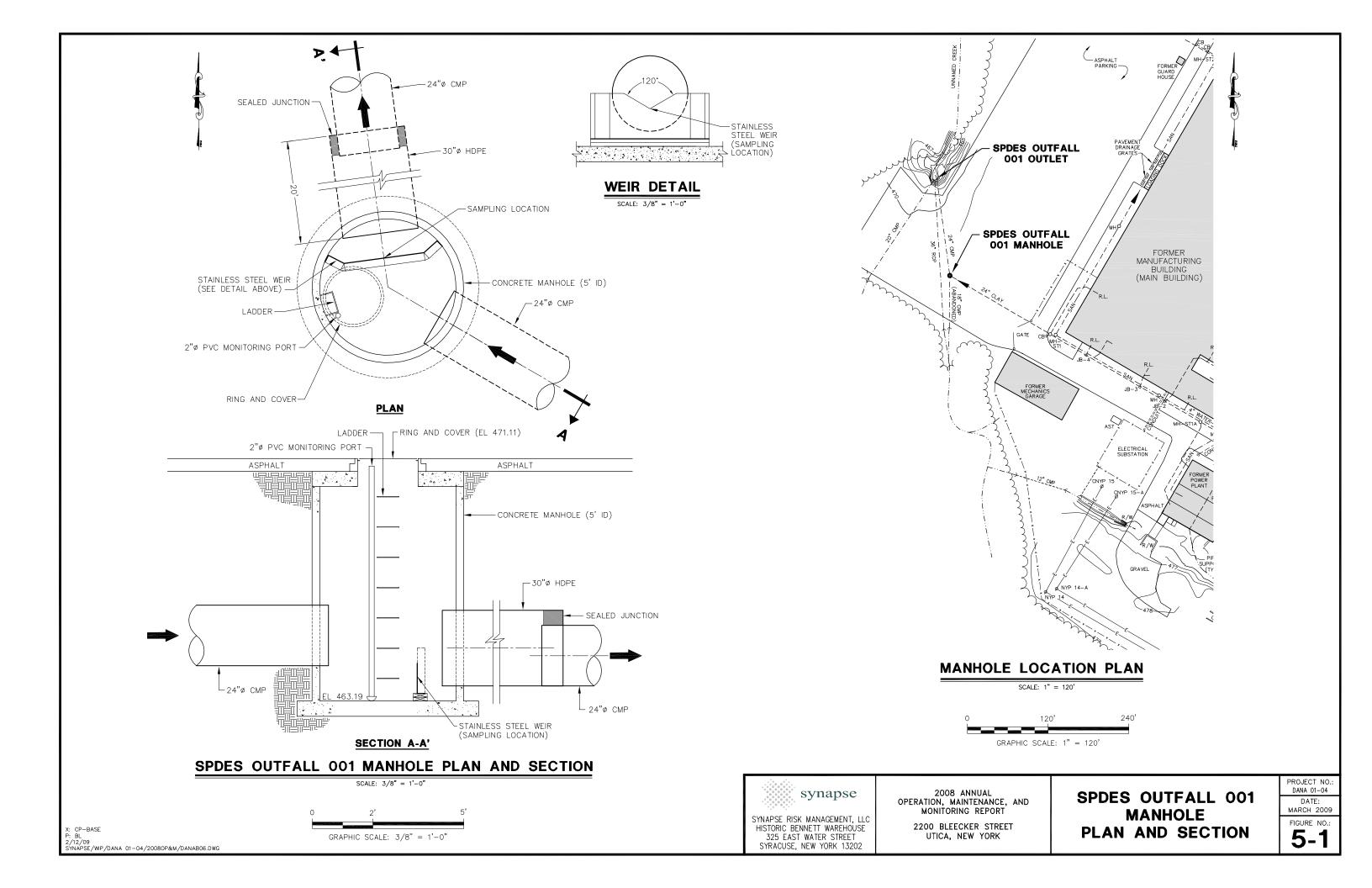
2. gpd = gallons per day.
 3. °F = Degrees Fahrenheit.

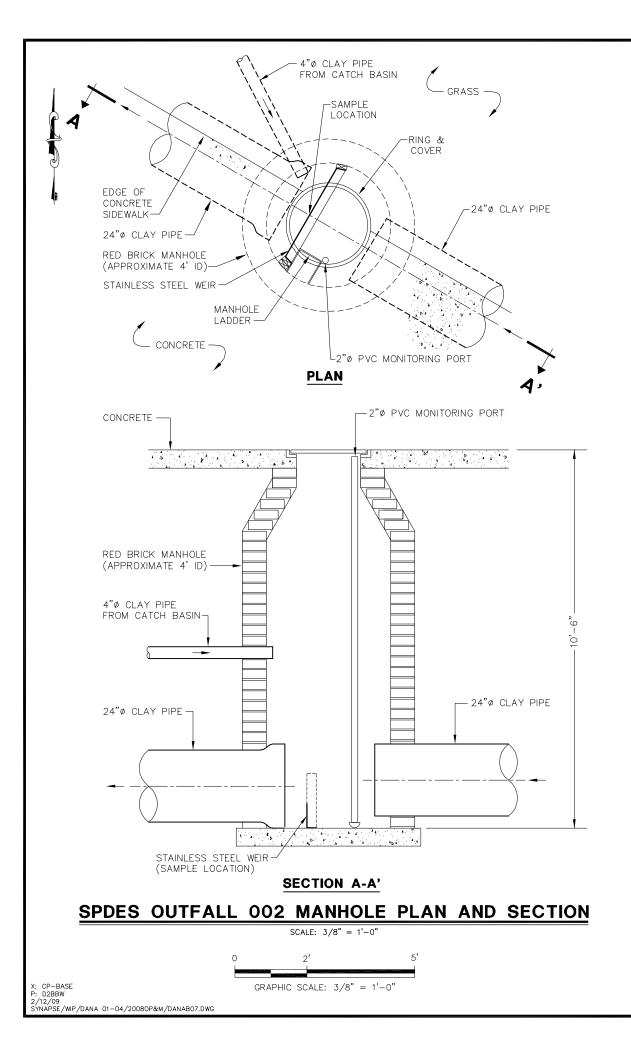
4. SU = Standard Units.

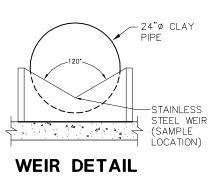
5. mg/l = milligrams per liter, approximately equivalent to ppm.

6. ug/l = micrograms per liter, approximately equivalent to ppb.

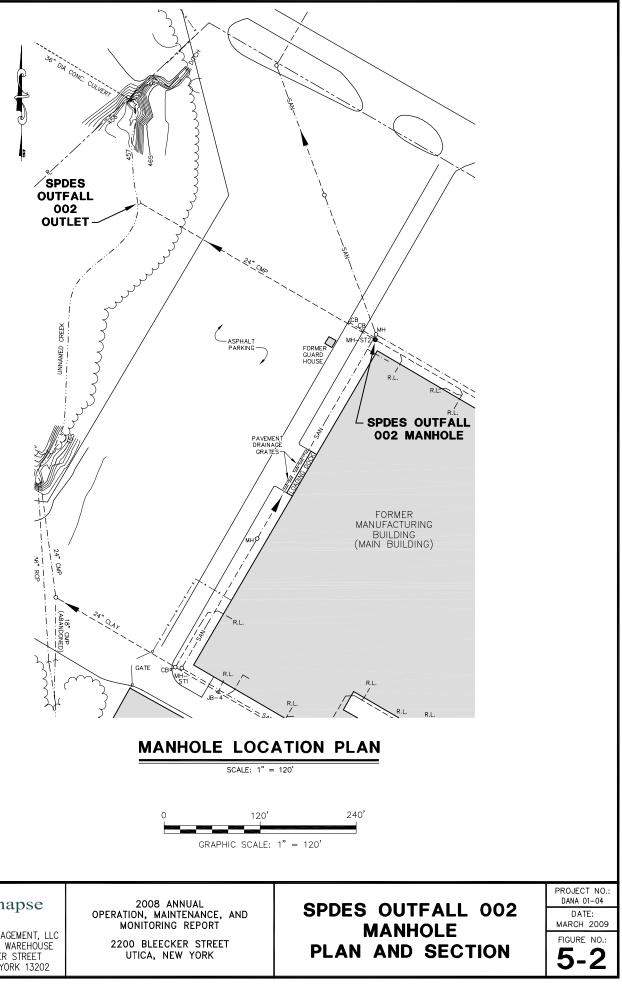
9. HTW = High Tail Water.
10. No Flow = No measurable discharge.

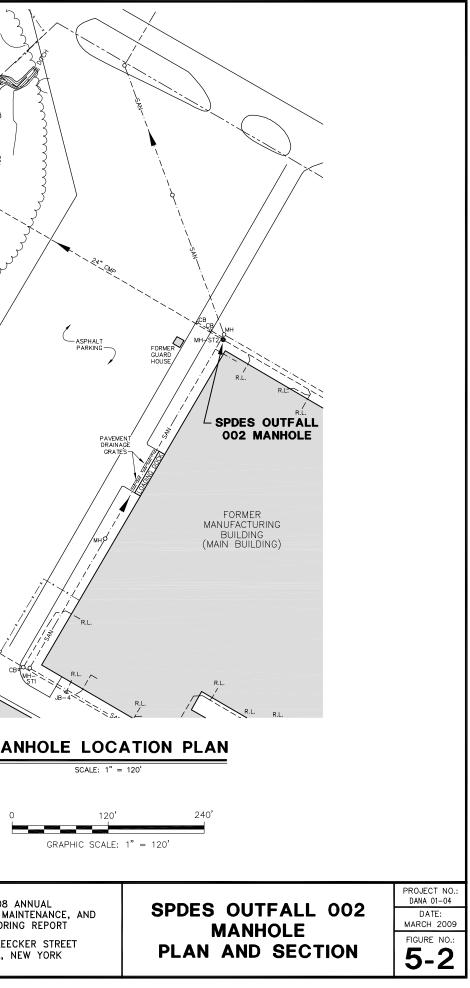

11. E = Estimated.

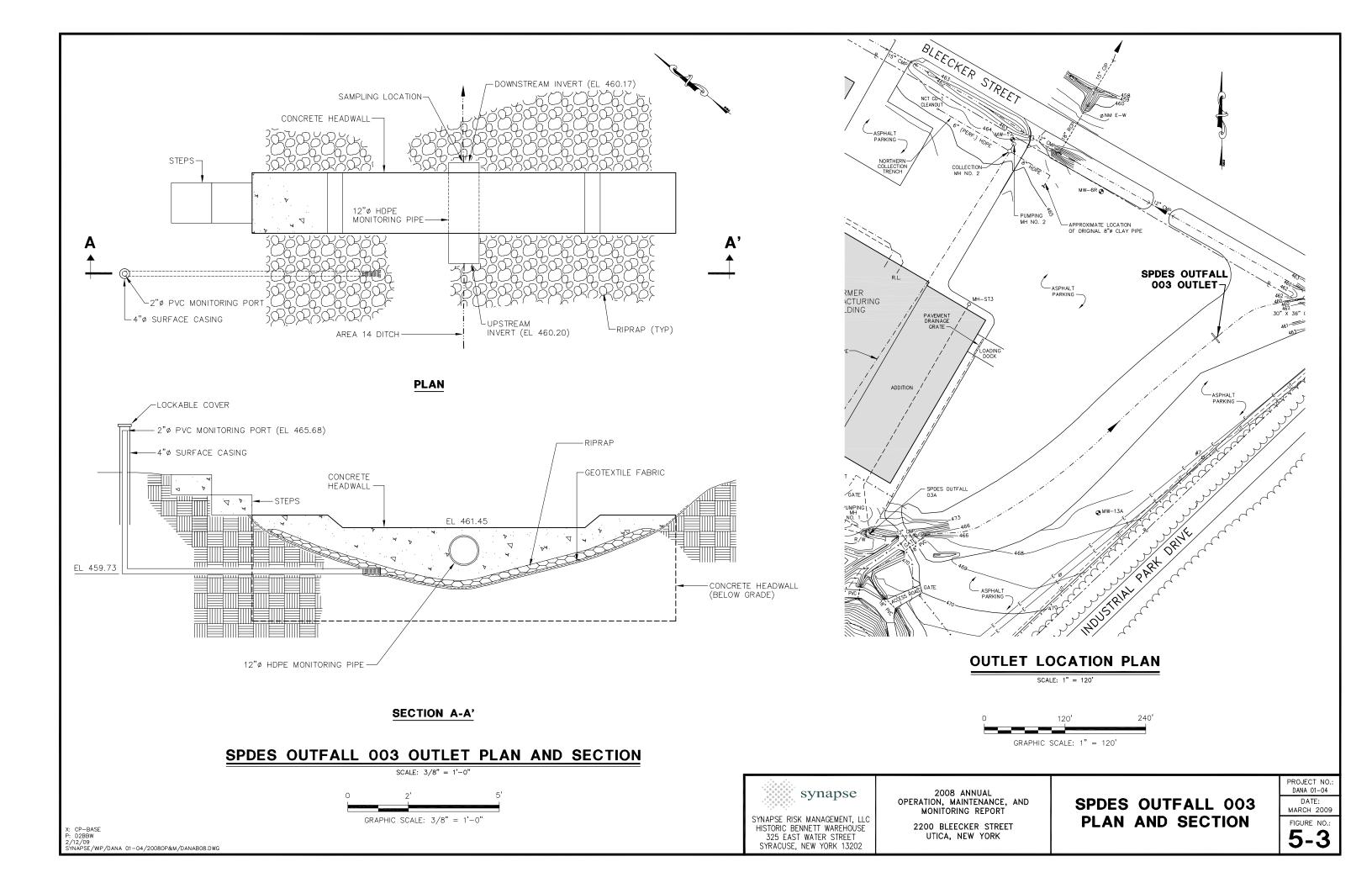

12. NA = Not analyzed.

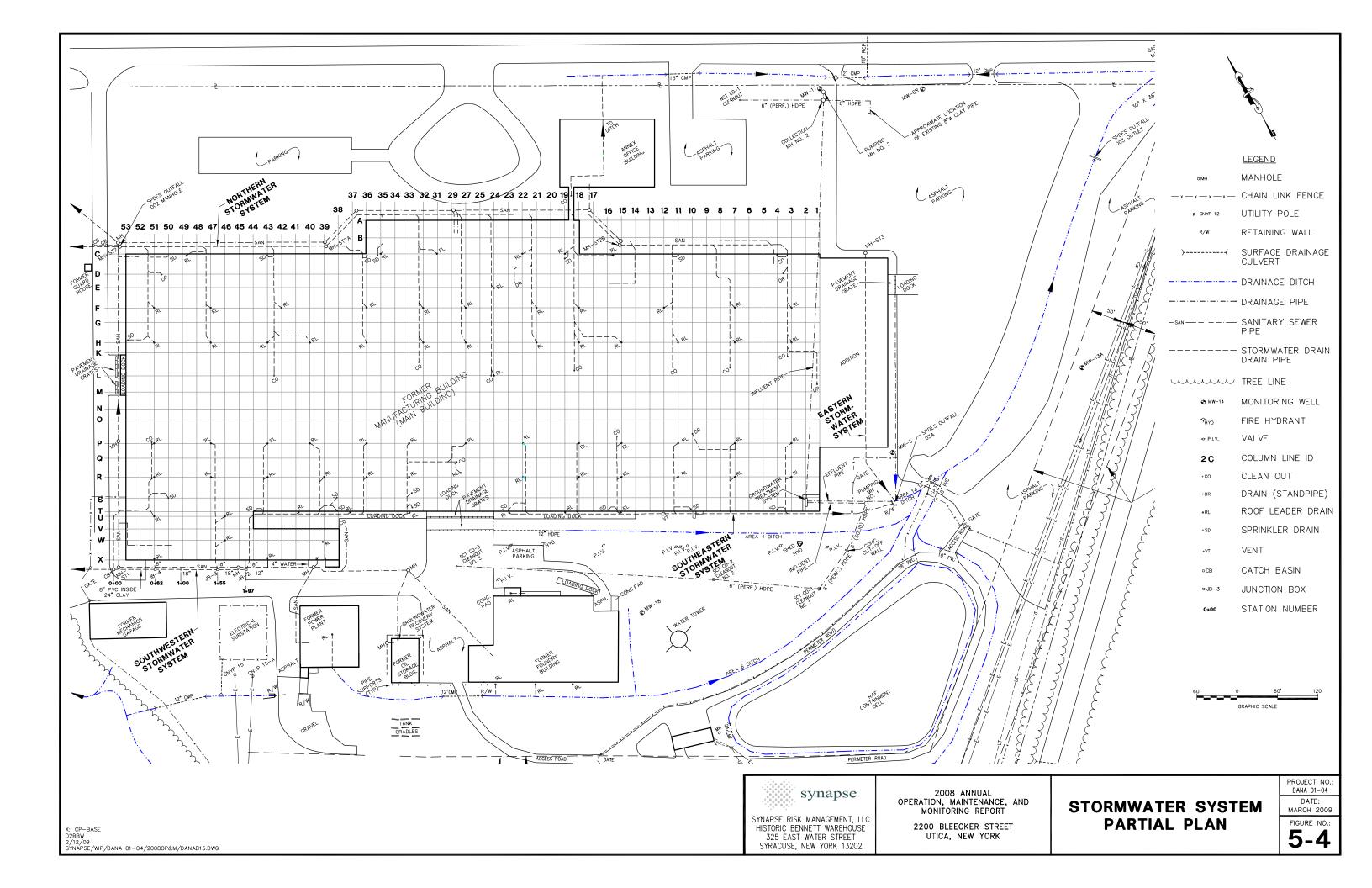

13. Bolded values exceed permit effluent compliance levels.

5.6 Figures


- 5-1 SPDES Outfall 001 Manhole Plan and Section
- 5-2 SPDES Outfall 002 Manhole Plan and Section
- 5-3 SPDES Outfall 003 Plan and Section
- 5-4 Stormwater System Partial Plan






SCALE: 3/8'' = 1'-0''

synapse SYNAPSE RISK MANAGEMENT, LLC HISTORIC BENNETT WAREHOUSE 325 EAST WATER STREET SYRACUSE, NEW YORK 13202

6.0 GROUNDWATER TREATMENT SYSTEM

Section 6.0 documents the operations, monitoring and maintenance (OM&M) of the groundwater treatment system (GTS), originally constructed as an interim remedial measure (IRM) to address volatile organic compounds (VOCs) present in surface water and groundwater. The system became fully operational in March 1995 and currently is in operation. As part of the selected Remedial Action (RA), the system was modified to collect and treat groundwater in 1999. System upgrades were completed in December 2006. Presently, the GTS consists of an air stripper unit located in the southeast corner of the Main Building, the northern collection trench (NCT), the southern collection trench (SCT), the piping system, an equalization tank, transfer pumps, a control system, and two pumping manholes designated Pumping Manhole No. 1 (MH-1) and Pumping Manhole No. 2 (MH-2). The Groundwater Treatment System Plan (Figure 6-1) provides the location of these components. AECOM (formerly ENSR Corporation), on behalf of CPTC, conducted the OM&M of the GTS from June 1, 2005 through September 30, 2008. Clough Harbor Associates (CHA), on behalf of CPTC, has been conducting OM&M of the GTS since October 1, 2008. The following sections have been structured to allow AECOM and CHA to provide certification to their respective sections, for which each had OM&M responsibilities during 2008.

6.1. SYSTEM CONSTRUCTION

The treatment process includes removal of VOCs from influent water utilizing a low-profile air stripper detailed in the Air Stripper Plan (Figure 6-2) and on the Treatment System As-Built Drawing (Figure 6-4). The low-profile air stripper treats influent groundwater pumped from MH-1 and MH-2. These manholes are detailed in Pumping Manhole Plans and Sections (Figure 6-3). MH-1 currently receives groundwater from the SCT. MH-2 was constructed at the northern (downgradient) extent of the property to collect effluent water from an existing clay pipe and groundwater from the NCT. The collection trenches were constructed as part of the RA at prescribed locations on the property to collect groundwater. Groundwater is directed, via gravity feed, to the respective manholes where it is then pumped to the air stripper.

Each pumping manhole contains two submersible pumps, arranged in lead/lag mode, and five bulb type control switches. MH-1 is equipped with 3/4 horsepower (hp), 65 gallons per minute (gpm) pumps and MH-2 has 1/2 hp, 10 gpm pumps. The pump controls are set, top to bottom in each manhole, as follows:

- High level alarm;
- Lag pump start;
- Lead pump start;
- Both pumps stop; and
- Low level alarm, second off.

The main control panel for all pumps is located in the Main Building, adjacent to the air stripper. Groundwater is conveyed to the groundwater treatment system area via a double containment piping system in all piping below grade, and single wall piping above grade. The groundwater treatment system components are located within a 6-foot high chain link fence, which is equipped with a locked security gate.

After entering the treatment system area, groundwater flows first to a 2,500-gallon equalization tank, which provides uniform flow into the air stripper and allows solids to settle out prior to treatment. The equalization tank is equipped with four float switches, which monitor and trigger events for the system.

Two Goulds pumps are utilized to transfer water from the equalization tank to the air stripper. These pumps are rated for greater than 120 gallons per minute at 40 feet of head. An in-line strainer is installed on the influent to each of these pumps to deter solids from entering them.

Groundwater is conveyed via the Goulds pumps from the equalization tank to two 50-micron bag filters on the effluent side of the pumps to capture smaller particles. The filter housing is a stainless steel construction, which is rated for a maximum pressure of 70 psi. The treatment system has a typical

operating range of 15 to 30 psi. When bag filter pressures exceed 35 psi, the air stripper feed pumps shut down and send an automated alarm call-out signaling that the bag filters need to be replaced before operation is able to resume. After passing through the bag filters, groundwater enters the air stripper unit. The low-profile air stripper is a four-tray ShallowTray® 31200 Series model, equipped with a 3-phase, 20 hp, 1,800-cubic feet per minute (CFM) blower and is reportedly capable of processing water at flow rates between 6 gpm to 425 gpm. The control panel system was constructed by Northeast Environmental Systems.

All data is remotely accessible via the existing phone line using EOS data management systems. Once per day, the EOS system transmitted a record of the GTS operating conditions via facsimile to AECOM's East Syracuse, New York and Albany, New York offices. The data was reviewed to determine whether the system was operating normally. In addition, the EOS system allows "real time" monitoring via computer, which is connected to the EOS system via a modem line. Real time monitoring of the GTS was generally conducted between once per week and several times per day. If the GTS was found to be in an alarm condition, an appropriate response was initiated.

The treated water from the low-profile air stripper discharges via gravity through an effluent pipe to SPDES Outfall 03A located at the upstream end of the eastern drainage ditch, formerly Area 14. The eastern drainage ditch is ultimately monitored as SPDES Outfall 003, prior to discharging off-site at the northern property boundary, as shown on Figure 6-1.

A FREIJE Electronic Descaling system was installed on a trial basis during the overall system upgrade that was completed in December 2006 in an effort to decrease the frequency of maintenance by reducing the amount of sediment build-up in the groundwater treatment system. In December 2007, the FREIJE system was shut down to evaluate its effectiveness. Based on the results of that testing, it was determined that the FREIJE system was not contributing significantly to the operation of the groundwater treatment system, and upon approval from the NYSDEC, the FREIJE system was removed in January 2008.

The operation and maintenance of the IRM GTS is not provided in the RA OM&M Manual. A separate O&M Manual, dated April 1995, was prepared by Blasland, Bouck and Lee (BBL) to address the GTS components.

6.2. OPERATION

6.2.1. January - September 2008, AECOM

The GTS is designed to operate continuously. The manhole and equalization tank pumps operate, as needed, to control water flow into the air stripper. Control bulbs normally activate pumps. If the pump systems fail to control the water level, an alarm is activated. If daily monitoring of the GTS status facsimile transmittals and/or real-time monitoring indicate that the GTS is in an alarm condition, an appropriate response is initiated. The inspection logs, included in Appendix J, provide documentation of weekly site visits, recorded alarm conditions, and modifications made to the system from January 1, 2008 through September 30, 2008. A summary of alarm conditions and maintenance from January 1, 2008 through September 30, 2008 are presented in the following table.

Alarm Conditions and Maintenance Summary January 1, 2008 – September 30, 2008, AECOM

Date	Incident/Resolution
1/31/2008	Remove FREIJE system and change in-line strainers.
2/18/2008 -	Air stripper cleaning completed. Bag filters changed several times following cleaning.
2/20/2008	
3/3/2008	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; AECOM
	responded and pumped system down by hand, after which the system operated
	normally.
3/21/2008	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; AECOM
	responded and pumped system down by hand and changed bag filters, after which
	the system operated normally.
5/12/2008	MH-2 High Level alarm on; MH-2 pump operation to be reviewed due to no flow.
5/19/2008	MH-2 High Level alarm on; MH-2 pump operation to be reviewed due to no flow.
5/29/2008	MH-2 pumped out. AECOM changed bag filters several times. Electrical junction box
0/20/2000	in MH-2 discovered to be waterlogged; work stopped per AECOM Health and Safety
	Manager. System shut down until an electrical subcontractor could repair the box at a
	later date. Pumps and floats removed from MH-2; debris discovered in impeller of
	one of the pumps, which may have contributed to failure. Both MH-2 pumps removed
	from site for cleaning, inspection and testing.
6/24/2008 -	MH-2 and EQ Tank are emptied into a frac tank and cleaned. Electrical subcontractor
6/27/2008	performs repairs on wiring and replaces damaged MH-2 electrical junction box with a
0/21/2000	waterproof box, and inspects electrical systems in MH-1 and MH-2 for additional
	issues. Water is pumped from frac tank to EQ Tank for treatment by the system.
	New liquid level controls are also installed in MH-2. Sludge/solids remaining in frac
	tank are pumped out and drummed for analysis and disposal at a later date. AECOM
	pumped system down by hand and changed bag filters several times, after which the
	system operated normally.
7/2/2008	Bag Filter High Pressure alarm caused system shut down; AECOM responded and
172/2000	changed bag filters. In addition, MH-1 flow meter was cleaned due to not registering
	flow despite operation of pumps. Pumped system down by hand and changed bag
	filters again, after which the system operated normally.
7/7/2008	Bag Filter High Pressure alarm caused system shut down; AECOM changed bag
1/1/2000	filters. Pumped system down by hand and changed bag filters again, after which the
	system operated normally.
7/10/2008	AECOM shuts system down remotely after determining that EQ Tank pumps are not
1/10/2000	operating correctly (low flow rate) and will become damaged if left to operate as they
	were. Variable Frequency Drive (VFD) was possibly not operating properly as well.
	Troubleshooting of the system to take place on a later date.
8/7/2008	AECOM inspects EQ Tank and EQ Tank pumps for operational issues. Air released
0/1/2000	from EQ Tank pumps. VFD flow rate is adjusted to an appropriate value. Air stripper
	is inspected. AECOM pumped system down by hand, changed bag filters several
	times and ran through several cycles, after which the system operated normally.
8/13/2008	During remote monitoring of system, production of EQ Tank pumps decreases.
0/10/2000	AECOM responded and changed bag filters, adjusted VFD flow rate and modified the
	angle of the pipe within the EQ Tank so that air does not enter the treatment system.
	Pipe may have inadvertently been moved during EQ Tank cleaning activities in June
	2008. AECOM pumped system down by hand and changed bag filters several times,
	after which the system operated normally.
8/29/2008	Bag Filter High Pressure alarm caused system shut down; AECOM responded and
0/29/2000	
	changed bag filters. In addition, MH-1 flow meter was cleaned due to not registering flow despite operation of pumps. Pumped system down by hand for several minutes;
	however, MH-1 pumps registered minimal flow, perhaps due to drier weather.

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

9/5/2008	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; AECOM responded and pumped system down by hand, after which the system operated normally, although with low flow rates from both manholes.
9/25/2008	During weekly sampling event, AECOM opens MH-1 manhole cover; water level within MH-1 is low, which may have been the cause of reduced production. Changed bag filters.
10/1/2008	MH-1, MH-2, EQ Tank High Level alarms caused system shut down; AECOM responded and pumped system down by hand and changed bag filters several times, after which the system operated normally.
NOTES:	

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump as shown in Figure 6-1. Between January 1, 2008 and September 30, 2008, approximately 1,005,276 gallons of water were pumped, treated, and discharged to Outfall 03A. The 2008 Manhole Flow Summary (Table 6-1) indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for the same period of 2008. Between January 1, 2008 and September 30, 2008, for MH-1, the recorded low, recorded average, and recorded high flow rates per monitoring event were 0 gallons per day (gpd), 3,434 gpd, and 9,504 gpd, respectively. For MH-2, during this period the recorded low, recorded average and recorded high flow rates per monitoring event were 0 galdons per day (gpd), 3,434 gpd, and 9,504 gpd, respectively. For MH-2, during this period the recorded low, recorded average and recorded high flow rates per monitoring event were 0 gpd, 917 gpd, and 6,825 gpd, respectively. The GTS processed an average of 3,765 gpd during the 9-month period between January 1, 2008 and September 30, 2008.

Air stripper influent and effluent samples are collected and analyzed on a weekly basis for the required VOC parameters. Effluent analytical data is collected to satisfy the required conditions of Chicago Pneumatic's SPDES Permit (No. NY-0108537), and is discussed in Section 6.4.1. The January 1, 2008 through September 30, 2008 Influent and Effluent Analytical Summary (Table 6-2) provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3, the January 1, 2008 through September 30, 2008 Air Stripper Flow Summary, provides weekly and monthly average flowrates measured during sampling events, and is inclusive of the flow to the stripper from MH-1 and MH-2.

The information presented in Table 6-2 and Table 6-3 was developed to assist in evaluating mass removal of VOCs by the GTS. Table 6-4, the January 1, 2008 through September 30, 2008 Air Stripper Mass Removal Summary, provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed during the 9-month period from January 1, 2008 to September 30, 2008. As indicated, the total average annual removal efficiency was 92.1%, resulting in the removal of approximately 5.0 pounds of VOCs during the first three quarters of 2008.

6.2.2. October – December 2008, CHA

The GTS is designed to operate continuously, 24 hours per day, 7 days a week. The manhole and equalization tank pumps operate, as needed, to control water flow into the air stripper. Control bulbs normally activate the pumps in both manholes and the equalization tank. If the pump systems fail to control the water level, due to an extremely high volume entering the manhole, an alarm is activated. If daily monitoring of the GTS status facsimile transmittals and/or daily real-time monitoring note that the GTS is in an alarm condition, an appropriate response is initiated. Copies of the field logs, included in Appendix J, provide documentation of weekly site visits, recorded alarm conditions, and modifications made to the system from October 1, 2008 through December 31, 2008 are presented in the following table.

Alarm Conditions and Maintenance Summary

October 1, 2008 – December 31, 2008

Date	Incident/Resolution
10/24/2008	MH-1 and MH-2 High Alarms caused system shutdown; CHA responded and pumped
	manholes down manually and changed bag filters until system was operating
	normally.
11/04/2008	CHA on site to clean area and secure waste that was left by previous consultants.
11/12/2008	CHA on site with sub consultant Paragon Environmental. Paragon cleaned air stripper
	trays and system was operating normally by the end of the day.
11/25/2008	CHA on site to turn over 3 drums of non-hazardous bag filter waste to Clean Harbors
	waste disposal service.
12/04/2008	EQ Tank Low Level Alarm, and MH-1, MH-2 High Level Alarms caused system
	shutdown. CHA responded, pumped MH-1 and MH-2 by hand, operated system, and
	changed bag filters until system continued to operate normally.
NOTES:	

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump as shown in Figure 6-1. Between October 1, 2008 and December 31, 2008 approximately 588,012 gallons of water was pumped, treated, and discharged to Outfall 03A. The 2008 Manhole Flow Summary (Table 6-1), indicates the manhole flow meter readings recorded during weekly inspections and provides average monthly flows for both manholes, as well as total flow for the same period of 2008. Between October 1, 2008 and December 31, 2008, for MH-1, the recorded low, recorded average, and recorded high flow rates per monitoring event are 38 gpd, 699 gpd, and 1,627 gpd, respectively. For MH-2, during this period the recorded low, recorded average and recorded high flow rates per monitoring event are 999 gpd, 5,473 gpd, and 8,043 gpd, respectively. The GTS processed an average of 6,128 gpd during the 3-month period between October 1, 2008 and December 31, 2008.

Air stripper influent and effluent samples are collected and analyzed for the required VOCs. Effluent analytical data is collected to satisfy required conditions of Chicago Pneumatics' SPDES Permit (No. NY-0108537), and is discussed in Section 6.4. The October 1, 2008 through December 31, 2008 Influent and Effluent Analytical Summary (Table 6-2) provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 6-3, the 2008 Air Stripper Flow Summary, provides weekly and monthly average flows measured during sampling events.

The information presented in Table 6-2 and Table 6-3 was developed to assist in evaluating mass removal of VOCs by the GTS. Table 6-4, the 2008 Air Stripper Mass Removal Summary, provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs removed during the 3-month period from October 1, 2008 to December 31, 2008. As indicated, the total average annual removal efficiency was 99.9%, resulting in the removal of approximately 0.6 pounds of VOCs between the dates October 1, 2008 and December 31, 2008.

6.3. MAINTENANCE AND TROUBLESHOOTING

6.3.1. January - September 2008, AECOM

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS between January 1, 2008 and September 30, 2008:

• As summarized in Section 6.2.1, several system shut-downs were recorded which resulted in the GTS being shut down for a relatively short amount of time (one to two days).

- May 29, 2008 through June 26, 2008: During an inspection of MH-2 on May 29, an electrical junction box within manhole MH-2 was discovered to be waterlogged. As a result, the GTS was shut down as an emergency health and safety precaution, and was restarted on June 26 following repair/replacement activities by an electrical contractor.
- July 10, 2008 through August 7, 2008: The GTS was shut down due to poor production by the Equalization Tank pumps. The Variable Frequency Drive (VFD) was adjusted on August 7 to the proper setting, the EQ Tank pumps were cleaned and the angle of the pipe within the Equalization Tank was adjusted (on August 13) to allow for better pumping of liquids from the Equalization Tank to the bag filters and air stripper.

6.3.2. October – December 2008, CHA

The following scheduled and unscheduled maintenance events resulted in the temporary shutdown of the GTS between October 1, 2008 and December 31, 2008:

- As summarized in Section 6.2, few system shut-downs were recorded which resulted in the GTS being shut down for a relatively short amount of time (one day maximum).
- November 12, 2008: GTS shut down for one day to complete cleaning.

6.4. SPDES OUTFALL 03A

6.4.1. January - September 2008, AECOM

The effluent from the air stripper, SPDES Outfall 03A, requires sampling and analysis, as well as flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
 - Trichloroethylene (TCE);
 - Cis-1,2-dichloroethene (cis-1,2-DCE);
 - Trans-1,2-dichloroethene (trans-1,2-DCE); and
 - Vinyl chloride (VC).

On behalf of Chicago Pneumatic, between January 1, 2008 and September 30, 2008, GTS samples were collected by AECOM personnel, placed in appropriately labeled laboratory glassware, packed on ice, and delivered or shipped via Federal Express to Life Science Laboratories, Inc. in East Syracuse, New York. These samples were collected from the SPDES Outfall 03A sampling port located in the effluent pipe prior to discharge to the eastern drainage ditch. Results from weekly sampling events conducted between January 1, 2008 and September 30, 2008 are provided in Table 6-5, the Summary of Outfall 03A Analytical Results. The analytical results were submitted by AECOM to the NYSDEC in the form of monthly discharge monitoring reports (DMRs). The nine (9) monthly DMRs AECOM prepared are presented in Appendix K. Between January 1, 2008 and September 30, 2008 and September 30, 2008, there were two excursions of the SPDES Permit effluent limits. Per the Report of Noncompliance Event submitted with the January 2008 DMR (Appendix K), an excursion on January 31, 2008 may have been due to the transfer of encrusted scale from the sampling port to the sample container. An excursion on May 29, 2008 may have been due to bag filter breakthrough by iron sludge following the transfer of liquids from MH-2 to MH-1 during MH-2 cleaning and repair activities.

6.4.2. October – December 2008, CHA

The effluent from the air stripper, SPDES Outfall 03A, requires sampling and analysis, as well as flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
 - o trichloroethylene (TCE);
 - o cis-1,2-dichloroethene (cis-1,2-DCE);
 - o trans-1,2-dichloroethene (trans-1,2-DCE); and
 - o vinyl chloride (VC).

Between October 1, 2008 and December 31, 2008, GTS samples were collected by CHA personnel, placed in appropriately labeled laboratory glassware, packed on ice, and delivered by the CHA sampling personnel to Life Sciences Laboratory in East Syracuse, New York. These samples are collected from the SPDES Outfall 03A sampling port located in the effluent pipe prior to discharge to the eastern drainage ditch. Results from weekly sampling events conducted between October 1, 2008 and December 31, 2008 are provided in Table 6-5, the Summary of Outfall 03A Analytical Results. The analytical results are submitted by CHA to the NYSDEC in the form of monthly DMRs. The 3 monthly DMRs are presented in Appendix K. Between October 1, 2008 and December 31, 2008, there were no excursions to the SPDES Permit effluent limits.

6.5. SECTION 6 – SUMMARY

6.5.1. January - September 2008, AECOM

The GTS has been in operation for over 10 years. Operation of the air stripper, pumps, and appurtenances has been consistent and continuous with only a few exceptions. System maintenance and emergency responses are summarized in Section 6.2.1; in general, emergency call outs were resolved quickly, and resulted in the GTS being shut down for only one to two days. However, longer shutdown periods also occurred in 2008. The GTS was shut down on May 29, 2008 as an emergency health and safety precaution due to the presence of water in an electrical junction box in MH-2, and was restarted on June 26, 2008. The GTS was also shut down between July 10, 2008 and August 7, 2008 due to poor production by the EQ Tank pumps. The treatment system flow totalizers, as recorded on inspection reports, indicate that approximately 1,005,276 gallons of water were pumped, treated, and released to Outfall 03A between January 1, 2008 and September 30, 2008, removing approximately 5.0 pounds of VOCs.

6.5.2. October – December 2008, CHA

The GTS has been in operation for over 10 years. Between October 1, 2008 and December 31, 2008 operation of the air stripper, pumps, and appurtenances has been consistent and continuous with only a few exceptions. System maintenance and emergency responses are summarized in Section 6.2; in general, emergency call outs were resolved quickly, and resulted in the GTS being shut down for one day maximum, for each event. The GTS was shut down on November 12, 2008 for system cleaning. The treatment system flow totalizers, as recorded on inspection reports, indicate that approximately 588,284 gallons of water was pumped, treated, and released to Outfall 03A between October 1, 2008 and December 31, 2008, removing approximately 0.6 pounds of VOCs.

6.6 Tables

- 6-1 Manhole Flow Summary
 - January September 2008, AECOM
 - October December 2008, CHA
- 6-2 Influent and Effluent Analytical Summary
 - January September 2008, AECOM
 - October December 2008, CHA
- 6-3 Air Stripper Flow Summary
 - January September 2008, AECOM
 - October December 2008, CHA
- 6-4 Air Stripper Mass Removal Summary
 - January September 2008, AECOM
 - October December 2008, CHA
- 6-5 Cumulative Summary of Outfall 03A Analytical Results
 - January September 2008, AECOM
 - October December 2008, CHA

JANUARY 1, 2008 THROUGH SEPTEMBER 30, 2008 MANHOLE FLOW SUMMARY

2008 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Totalizer Reading		Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
6/27/2008	1996328	352072	0	40	40
6/30/2008	1996328	352596	0	175	175
Average Monthly Flow			0	52	52

	Flow Totalizer Reading		Flow per	Monitoring P	eriod (gpd)
Monitoring Date MH-1 MH-2		MH-1	MH-2	Total	
7/7/2008	2013433	356356	2444	537	2981
Average Monthly Flow			2444	537	2981

	Flow Totali	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
8/7/2008	2039733	358596	848	72	921
8/13/2008	2072463	361452	5455	476	5931
8/22/2008	2072463	422875	0	6825	6825
8/29/2008	2072463	455289	0	4631	4631
Ave	Average Monthly Flow			1867	2980

	Flow Totalizer Reading		Flow per Monitoring Period (g		Period (gpd)
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
9/5/2008	2074038	484533	225	4178	4403
9/12/2008	2075294	511470	179	3848	4028
9/18/2008	2077156	538957	310	4581	4892
9/25/2008	2078386	565950	176	3856	4032
Average Monthly Flow			219	4099	4318

Summary of Manhole Flow for January 1, 2008 through September 30, 2008					
Total Flow gal gpd					
MH-1	789,299	2956			
MH-2	215,977	809			
Total Q1-Q3 2008 Flow:	1,005,276	3765			

Notes:

Average monthly manhole flow is based on daily average

JANUARY 1, 2008 THROUGH SEPTEMBER 30, 2008 MANHOLE FLOW SUMMARY

2008 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Total	Flow per	Monitoring F	Period (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
1/9/2008	1332047	350096	6137	18	6155
1/16/2008	1382804	350227	7251	19	7270
1/23/2008	1410608	350273	3972	7	3979
1/31/2008	1431759	350293	2644	3	2646
Average Monthly Flow			4920	11	4931

	Flow Total	Flow per	Monitoring P	eriod (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
2/7/2008	1480490	350341	6962	7	6968
2/14/2008	1523118	350388	6090	7	6096
2/20/2008	1548517	350417	4233	5	4238
2/29/2008	1582322	350465	3756	5	3761
Average Monthly Flow			5192	6	5198

	Flow Totaliz	Flow per Monitoring Period (gpd)			
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
3/4/2008	1594163	350487	2960	6	2966
3/12/2008	1670198	350605	9504	15	9519
3/19/2008	1707971	350662	5396	8	5404
3/26/2008	1754186	350728	6602	9	6612
Average Monthly Flow			6610	10	6620

	Flow Totali	Flow per Monitoring Period (gp		Period (gpd)	
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
4/2/2008	1797535	350794	6193	9	6202
4/10/2008	1839911	350858	5297	8	5305
4/14/2008	1861027	350889	5279	8	5287
4/24/2008	1896789	350919	3576	3	3579
4/28/2008	1908158	350919	2842	0	2842
Average Monthly Flow			4666	6	4672

	Flow Totali	zer Reading Flow per Monitoring Period (gpd)			Period (gpd)
Monitoring Date	MH-1	MH-2	MH-1	MH-2	Total
5/6/2008	1939046	350920	3861	0	3861
5/12/2008	1957653	350920	3101	0	3101
5/19/2008	1974630	350920	2425	0	2425
5/29/2008	1996327	350920	2170	0	2170
Ave	Average Monthly Flow			0	2844

October 1, 2008 through December 31, 2008 Manhole Flow Summary

2008 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

Monitoring Date	Flow Totalize	Flow Totalizer Reading		Flow per Me	Flow per Monitoring Period (gpd)				
	MH-1	MH-2	events	MH-1	MH-2	Total			
10/1/2008	2062939	618454	6	38	999	1037			
10/9/2008	2064841	659683	8	238	5154	5391			
10/15/2008	2066492	686968	6	275	4548	4823			
10/23/2008	2069535	726031	8	380	4883	5263			
10/29/2008	2076466	763692	6	1155	6277	7432			
Average Monthly Flow		34	405	4448	4853				

Monitoring Date	Flow Totalizer Reading		Days between sampling	Flow per M	Flow per Monitoring Period (gpd)			
	MH-1	MH-2	events	MH-1	MH-2	Total		
11/4/2008	2081453	803147	6	831	6576	7407		
11/12/2008	2084979	845321	8	441	5272	5713		
11/19/2008	2089202	883681	7	603	5480	6083		
11/25/2008	2091856	912899	6	442	4870	5312		
Average Monthly Flow			27	570	5526	6096		

Monitoring Date	Flow Totalize	r Reading	Days between sampling	Flow per M	onitoring Period (g	pd)
	MH-1	MH-2	events	MH-1	MH-2	Total
12/3/2008	2097861	962356	8	751	6182	6933
12/10/2008	2103199	999540	7	763	5312	6075
12/17/2008	2111629	1044934	7	1204	6485	7689
12/23/2008	2117822	1084168	6	1032	6539	7571
12/30/2008	2129211	1140466	7	1627	8043	9670
Average Monthly Flow		35	6502	6502	13004	

Notes:

Average monthly manhole flow is based on daily average

TABLE 6-2JANUARY 1, 2008 THROUGH SEPTEMBER 30, 2008 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

		Influe	ent from	MH-1				Influe	ent from	MH-2			Air Stri	pper Eff	luent		
		" 'YI Chloride		Trine	Totol,	Vin	" 'Y Chloride ^{cls-1} ,	'.<-DichlorOethen _e tran.	Tric.	Tot	Vin	"W Chloride	trans , the set of the	Trichlorocci	Total VOC	5	muy Average VOC'S
Sample Date	Ľ.	cis		Tris			cis-1	tran.	7.12			Cis. 1	trans	Tric	Ĩo,	Mon.	
Permit Limit											10	10	10	10			
1/9/2008		6.7	<1	<1	8	<20	410	<20	2200	2610			<1	1	1		
1/16/2008				ļ							<1			<1	0		
1/23/2008											<1		<1	1	1		
1/31/2008		40			44.4	400	000	100	00000	4.400	<1		<1	16	24.1	6.5	
2/7/2008		10	<1	<1	14.1	<100	800	<100	3600	4400	<1		<1	<1	0		
2/14/2008											<1		<1	1.1	2.2		
2/20/2008 2/29/2008											<1 <1		<1 <1	<1 <1	0	0.6	
3/4/2008	5.6	17	<1	<1	22.6	<100	1700	<100	5300	7000			<1	<1	0	0.0	
3/12/2008		17	<1	<1	22.0	<100	1700	<100	5300	7000	<1			2.1	3.3		
3/12/2008											<1			3.5	5.1		
3/26/2008											<1			1.8	3.3	2.9	
4/2/2008		15	<1	<1	17.5	<50	1500	<50	5100	6600	<1	_	<1	1.0	1.1		
4/10/2008		10				.00	1000	200	0100		<1			3	4.8		
4/14/2008				1							<1			6.2	9.7		
4/24/2008											<1		<1	<1	0		
4/28/2008											<1		<1	<1	0	3.1	
5/6/2008	<5	190	<5	540	730	N/A	N/A	N/A	N/A	0	<1	<1	<1	<1	0		
5/12/2008											<1		<1	<1	0		
5/19/2008											<1		<1	<1	0		
5/29/2008											<1		<1	11	16.7	4.2	
6/27/2008		42	<1	66	112.9	<20	290	<20	1200	1490			<1	<1	0		
6/30/2008											<1		<1	<1	0	0.0	
7/7/2008	10	-						<20		1600	<1		<1	<1	0	0.0	
8/7/2008	2.9	20	<1	8	30.9	<20	840	<20	3000	3840	<1		<1	<1	0		
8/13/2008				ļ							<1		<1	<1	0		
8/22/2008											<1		<1	<1	0	0.0	
8/29/2008	0.5		· · · · ·	0.5			0.10			4000	<1		<1	<1	0	0.0	
9/5/2008		27	<1	2.5	39	<20	310	<20	890	1200	<1		<1	<1	0		
9/12/2008											<1 <1		<1	<1 <1	0		
9/18/2008 9/25/2008											<1		<1 <1	<1	0	0.0	
9/25/2006 Notes:				L							<1	<1	<1	< I	0	0.0	l

Notes:

1) All values reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).

2) VOCs = Volatile Organic Compounds.

Table 6-2 OCTOBER 1, 2008 through DECEMBER 31, 2008 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	Influent from MH-1					Influent from MH-2				Air Stripper Effluent							
Sample Date 🏼	, in the second s	VI Chloride	s-1,2-Dichloroethene	^{ans, 1} , 2, Di _{chlor} oeth _{ene}	Trichloroethene	Total VOC's	Z	us.1,2-Dichloroethene	ans-1,2Dichloroethene	richloroethene Tr.	Vi.	uny Chloride dis		^{-ans,1,2,Dichloroethene} Trichlor-	^{Total} Voci ⁶		Vocs
Permit Limit		G	5	4	~	<u>~ -</u>	<u> </u>	<u>ن</u> کر	, ~ 		10				~	~~~	
10/1/2008	10	24		<1	2.8 36	.8 <1	0 230) <10	760	990			<1	+	0		
10/9/2008											<1	<1	<1	<1	0		
10/15/2008											<1		<1	<1	0		
10/23/2008											<1			10	16.8		
10/29/2008											<1	<1	<1	<1	0	3.4	
11/4/2008	25	30)	<1	2.2 57	.2 <	2 230) <2	830	1060	<1	<1	<1	<1	0		
11/12/2008											<1	<1	<1	<1	0		
11/19/2008											<1	<1	<1	<1	0		
11/25/2008											<1		<1	<1	0	0.0	
12/3/2008	10	22	2	<1	1.2 33	.2 <	5 280) <5	5 1000	1280	<1		<1	<1	0		
12/10/2008											<1	<1	<1	<1	0		
12/17/2008											<1	<1	<1	1.1	1.1		
12/23/2008											<1	<1	<1		0		
12/30/2008											<1	<1	<1	<1	0	0.2	

Notes:

1) All values reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).

2) VOCs = Volatile Organic Compounds.

3) No exceedances of SPDES permit during this monitoring period.

JANUARY 1, 2008 - SEPTEMBER 30, 2008 AIR STRIPPER FLOW SUMMARY

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date	Average Flow During Monitoring Period (gpd)	
1/9/2008	6155	
1/16/2008	7270	
1/23/2008	3979	
1/31/2008	2646	
Average Monthly Flow (gp	d) 4931	
2/7/2008	6968	
2/14/2008	6096	
2/20/2008	4238	
2/29/2008	3761	
Average Monthly Flow (gp	d) 5198	
3/4/2008	2966	
3/12/2008	9519	
3/19/2008	5404	
3/26/2008	6612	
Average Monthly Flow (gp	d) 6620	
4/2/2008	6202	
4/10/2008	5305	
4/14/2008	5287	
4/24/2008	3579	
4/28/2008	2842	
Average Monthly Flow (gp	d) 4672	
5/6/2008	3861	
5/12/2008	3101	
5/19/2008	2425	
5/29/2008	2170	
Average Monthly Flow (gp	d) 2844	
6/27/2008	40	
6/30/2008	175	
Average Monthly Flow (gp	d) 52	
7/7/2008	2981	
Average Monthly Flow (gp	d) 2981	
8/7/2008	921	
8/13/2008	5931	
8/22/2008	6825	
8/29/2008	4631	
Average Monthly Flow (gp	d) 2980	
9/5/2008	4403	
9/12/2008	4028	
9/18/2008	4892	
9/25/2008	4032	
Average Monthly Flow (gp	d) 4318	

Note:

1) gpd = gallons per day.

2) Average flow data is calculated from data collected during site visits.

3) Total Air Stripper flow includes total flows of MH-1 and MH-2.

October 1, 2008 through December 31, 2008 AIR STRIPPER FLOW SUMMARY 2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date	Average Flow During Monitoring Period (gpd)	
10/1/2008	1037	
10/9/2008	5391	
10/15/2008	4823	
10/23/2008	5263	
10/29/2008	7432	
Average Monthly	y Flow (gpd)	684
11/4/2008	7407	
11/12/2008	5713	
11/19/2008	6083	
11/25/2008	5312	
Average Monthly	y Flow (gpd)	876
12/3/2008	6933	
12/10/2008	6075	
12/17/2008	7689	
12/23/2008	7571	
12/30/2008	9670	
Average Monthl	y Flow (gpd)	1054

Note:

1) gpd = gallons per day.

2) Average flow data is calculated from data collected during site visits.

3) Total Air Stripper flow includes total flows of MH-1 and MH-2.

TABLE 6-4JANUARY 1, 2008 - SEPTEMBER 30, 2008 AIR STRIPPER MASS REMOVAL SUMMARY

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Month	Air Stripper Influent - Average Monthly VOC ¹ Concentration (μg/l) ²	Air Stripper Effluent - Average Monthly VOC Concentration ⁵ (μg/l)	VOC's Removed (μg/l)	% VOC's Removed	Air Stripper Effluent - Average Monthly Flow (gpd) ³	VOC's Removed (lbs) ⁴
Jan	14	6.53	7	53.4	4931	0.0
Feb	19	0.55	18	97.1	5198	0.0
Mar	33	2.93	30	91.1	6620	0.0
Apr	26	3.12	23	88.0	4672	0.0
May	730	4.18	726	99.4	2844	0.5
Jun	1489	0.00	1489	100.0	52	0.0
Jul	318	0.00	318	100.0	2981	0.1
Aug	2417	0.00	2417	100.0	2980	3.2
Sep	1141	0.00	1141	100.0	4318	1.1
		2008 A	verage (%) ⁶ :	92.1	2008 Total (lbs):	5.0

Notes:

1) VOCs = volatile organic compounds

2) ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)

3) gpd = gallons per day

4) lbs = pounds

5) Life Science Laboratories detection limit equals 1.0 ug/L. Therefore, mass removal calculations are based

on an estimated value of less than 1.0 ug/L, i.e. 0.99 ug/L.

6) 2008 Average of % VOCs removed value obtained by averaging monthly values

TABLE 6-4 October 1, 2008 - December 31, 2008 Air Stripper Mass Removal Summary

2008 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Month	Air Stripper Influent - Average Monthly VOC1 Concentration (µg/l)2	Air Stripper Effluent - Average Monthly VOC Concentration₅ (µg/l)	VOC's Removed (µg/l)	% VOC's Removed	Air Stripper Effluent - Average Monthly Flow (gpd)₃	VOC's Removed (lbs)₄
Oct	911	3.36	908	99.6	684	0.2
Nov	966	0.00	966	100.0	876	0.2
Dec	657	0.22	657	100.0	1054	0.2
		Three Month Average	ge (%)6:	99.9	2008 Three Month Total (lbs):	0.6

Notes:

1) VOCs = volatile organic compounds

2) ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)

3) gpd = gallons per day

4) lbs = pounds

5) Life Sciences Laboratories detection limit equals 1.0 ug/L. Therefore, mass removal calculations are based on an estimated value of less than 1.0 ug/L, i.e. 0.99 ug/L.

6) 2008 Average of % VOCs removed value obtained by averaging monthly values

JANUARY 1, 2008 THROUGH SEPTEMBER 30, 2008 SUMMARY OF SPDES OUTFALL- 03A ANALYTICAL RESULTS

2008 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	TCE (µg/L)	VC (µg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
1/9/2008	<1	<1	1	<1	6155	7.5
1/16/2008	<1	<1	<1	<1	7270	8.2
1/23/2008	<1	<1	1	<1	3979	8.3
1/31/2008	8.1	<1	16	<1	2646	8.2
2/7/2008	<1	<1	<1	<1	6968	8.2
2/14/2008	1.1	<1	1.1	<1	6096	8.2
2/20/2008	<1	<1	<1	<1	4238	8.2
2/29/2008	<1	<1	<1	<1	3761	8.3
3/4/2008	<1	<1	<1	<1	2966	8.2
3/12/2008	1.2	<1	2.1	<1	9519	8.2
3/19/2008	1.6	<1	3.5	<1	5404	8.15
3/26/2008	1.5	<1	1.8	<1	6612	8
4/2/2008	<1	<1	1.1	<1	6202	8.2
4/10/2008	1.8	<1	3	<1	5305	8.1
4/14/2008	3.5	<1	6.2	<1	5287	7.9
4/24/2008	<1	<1	<1	<1	3579	8
4/28/2008	<1	<1	<1	<1	2842	7.9
5/6/2008	<1	<1	<1	<1	3861	8.2
5/12/2008	<1	<1	<1	<1	3101	8
5/19/2008	<1	<1	<1	<1	2425	7.9
5/29/2008	5.7	<1	11	<1	2170	8.1
6/27/2008	<1	<1	<1	<1	40	7.9
6/30/2008	<1	<1	<1	<1	175	7.9
7/7/2008	<1	<1	<1	<1	2981	8.1

JANUARY 1, 2008 THROUGH SEPTEMBER 30, 2008 SUMMARY OF SPDES OUTFALL- 03A ANALYTICAL RESULTS

2008 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (µg/L)	trans-1,2-DCE (μg/L)	TCE (µg/L)	VC (μg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
8/7/2008	<1	<1	<1	<1	921	7.5
8/13/2008	<1	<1	<1	<1	5931	8.1
8/22/2008	<1	<1	<1	<1	6825	8.1
8/29/2008	<1	<1	<1	<1	4631	8.1
9/5/2008	<1	<1	<1	<1	4403	7
9/12/2008	<1	<1	<1	<1	4028	7
9/18/2008	<1	<1	<1	<1	4892	6.5
9/25/2008	<1	<1	<1	<1	4032	6.3

Notes:

1) cis-1,2-DCE = cis-1,2-Dichloroethene

2) trans-1,2-DCE = trans-1,2-Dichloroethene

3) TCE = Trichloroethylene

4) VC = Vinyl Chloride

5) ug/L = micrograms per liter

6) gpd = gallons per day.

TABLE 6-5 October 1, 2008 through December 31, 2008 Summary of SPDES Outfall- 03A Analytical Results

2008 ANNUAL OM REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (µg/L)	trans-1,2-DCE (µg/L)	TCE (µg/L)	VC (µg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
10/1/2008	<1	<1	<1	<1	1037	7.9
10/9/2008	<1	<1	<1	<1	5391	8.22
10/15/2008	<1	<1	<1	<1	4823	8.1
10/23/2008	6.8	<1	10	<1	5263	8.1
10/29/2008	<1	<1	<1	<1	7432	8.3
11/4/2008	<1	<1	<1	<1	7407	7.4
11/12/2008	<1	<1	<1	<1	5713	7.6
11/19/2008	<1	<1	<1	<1	6083	7.5
11/25/2008	<1	<1	<1	<1	5312	8.1
12/3/2008	<1	<1	<1	<1	6933	8.3
12/10/2008	<1	<1	<1	<1	6075	8.1
12/17/2008	<1	<1	1.1	<1	7689	8.7
12/23/2008	<1	<1	<1	<1	7571	8.75
12/30/2008	<1	<1	<1	<1	9670	8.79

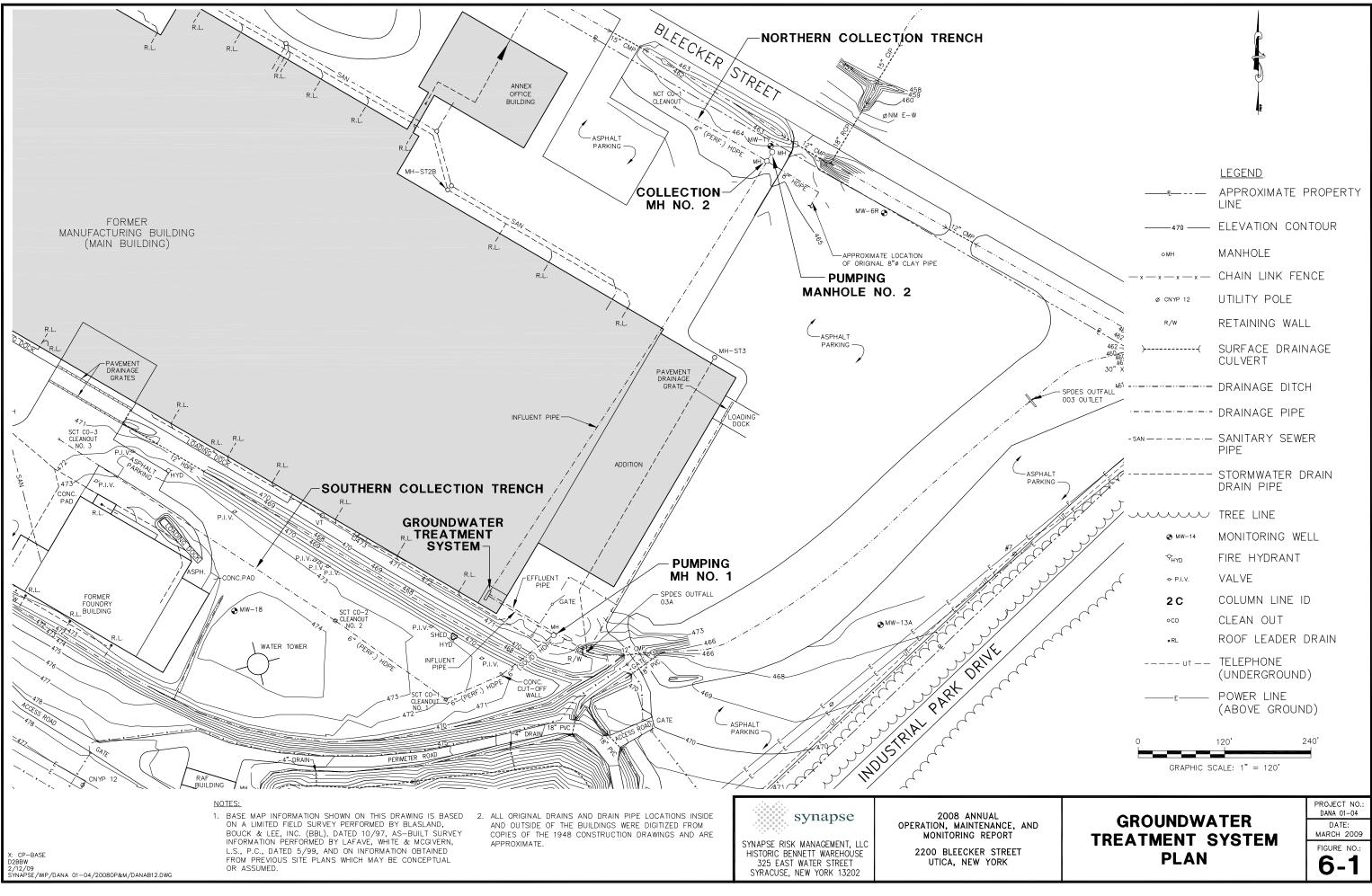
Notes:

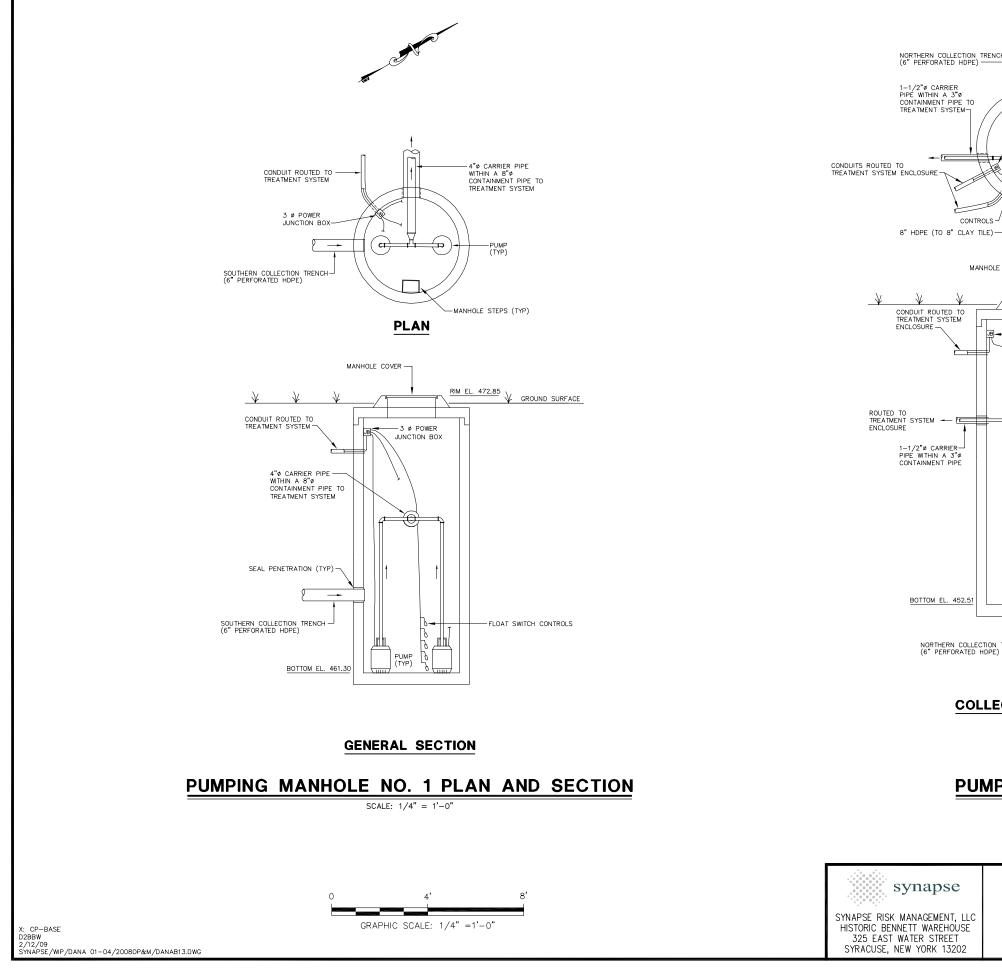
1) cis-1,2-DCE = cis-1,2-Dichloroethene

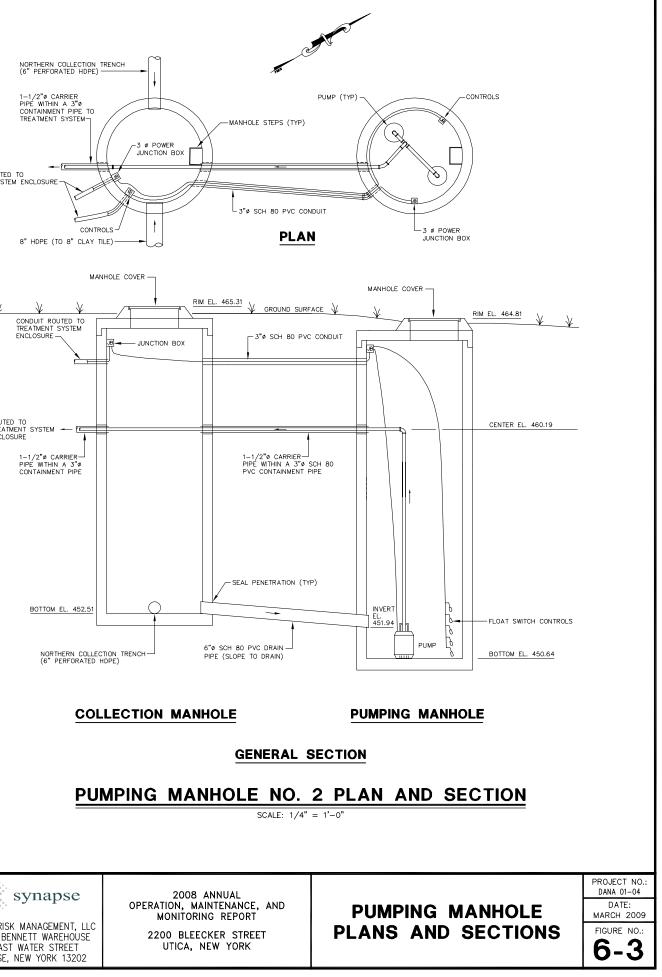
2) trans-1,2-DCE = trans-1,2-Dichloroethene

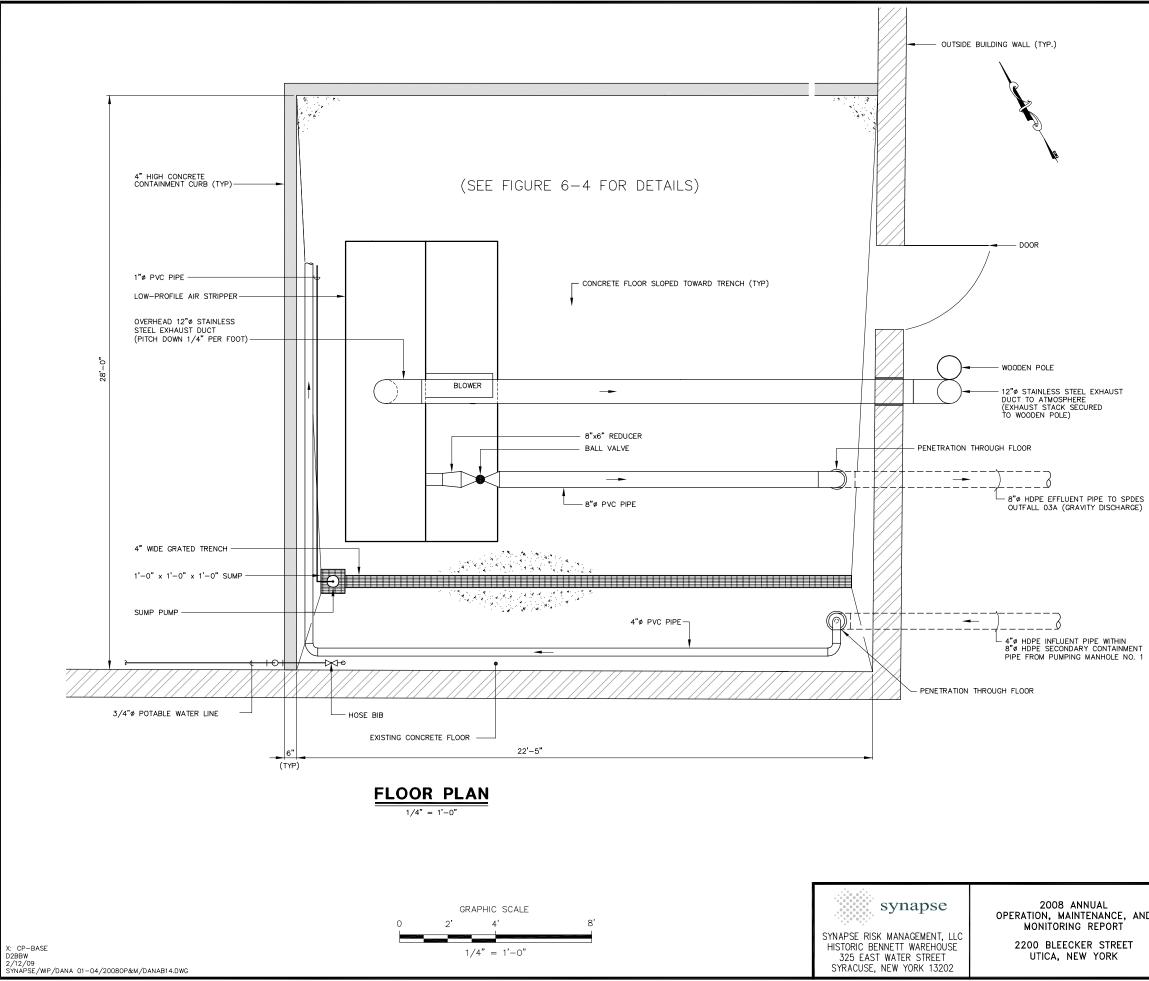
3) TCE = Trichloroethylene

4) VC = Vinyl Chloride

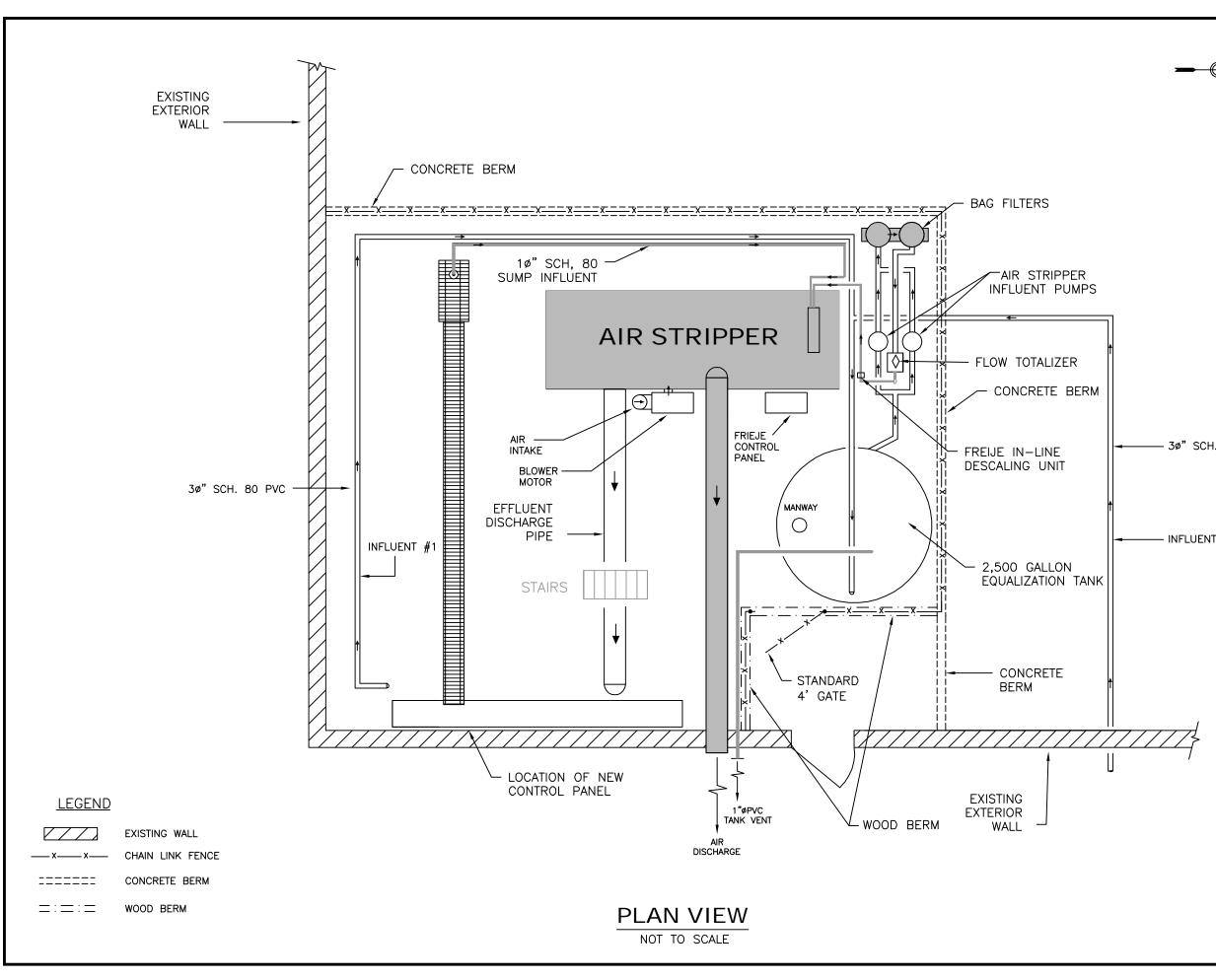

5) ug/L = micrograms per liter


6) gpd = gallons per day


7) There were no permit exceedances at outfall 03A between October 1, 2008 and December 31, 2008


6.7 Figures

- 6-1 Groundwater Treatment System Plan
- 6-2 Air Stripper Plan
- 6-3 Pumping Manhole Plans and Sections
- 6-4 Treatment System Upgrade As-Built Drawing



, AND	AIR STRIPPER PLAN	PROJECT NO.: DANA 01-04 DATE: MARCH 2009 FIGURE NO.:
ET	AIR STRIPPER PLAN	FIGURE NO.: 6-2

Image: constraint of the second of the se		_	1	_			_		
Herein TREATMENT SYSTEM TREATMENT SYSTEM Errent System AS-BUILT DRAWING Errent System AS-BUILT DRAWING Errent System CHICAGO PNEUMATIC Errent System UTICA, NEW YORK Errent System Solar Introvine Road Introvine Brit Errent System AS-BUILT DRAWING Errent System AS-BUILT DRAWING Errent System Introvine Road Introvine Road			ä						
Interview Inter	→ N	SI	DATE:						
TREATMENT SYSTEM TREATMENT SYSTEM P-9 BEER COPONATION CHICAGO PNEUMATIC BEER COPONATION CHICAGO PNEUMATIC BEER COPONATION UTICA, NEW YORK BEER COPONATION Sole BEER COPONATION INS 3/18/08		REVISION	DESCRIPTION:						
TREATMENT SYSTEM TREATMENT SYSTEM AS-BUILT DRAWING CHICAGO PNEUMATIC CHICAGO PNEUMATIC Elser corporation			NO.:						
TREATMENT SYSTEM TREATMENT SYSTEM AS-BUILT DRAWING AS-BUILT DRAWING CHICAGO PNEUMATIC UTICA, NEW YORK OTICA, NEW YORK AS-014 10783-014		DESIGNED BY:	M	DRAWN BY:	ILLM/DM	CHECKED BY:	DMS	APPROVED BY:	LPM
TREATMENT SYS AS-BUILT DRAWI AS-BUILT DRAWI UTICA, NEW YORK UTICA, NEW YORK NTS 3/18/08	PVC				ENCE CORPORATION	6601 KIRKVILLE ROAD	E. SYRACUSE, NEW YORK 13057	FAX: (315) 437-0509	WEB: HTTP://WWW.ENSR.AECOM.COM
FIGURE NUMBER: 6-4 SHEET NUMBER:			SYSTEM	RAWING		EUMATIC	YORK	PROJECT NUMBER:	10783-014
FIGURE NUMBER: 6-4 SHEET NUMBER:			REATMENT	AS-BUILT DI		HICAGO PNI	UTICA, NEW	DATE:	3/18/08
6-4 Sheet Number:			⊢ '	4		С С		SCALE:	NTS
SHEET NUMBER:		Ē		FIG	URE	NU	MBEF	R:	
					6	- 4	4		
		F						:	=

APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

· _ ~

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

		NYSDEC SITE NO. 622003	
Synapse	Representative: <u><u><u>R</u>. <u>Cre.</u></u></u>	ghton Date:	
Category	/ Inspected	Observation/Condition	J
1 Gene	ral Property		
A	General Property Access	Good / / /	
В	General Property Drainage	SPDES Outfall (001 V 002 V 003 V)	
2 Cell F	Perimeter Components		
A	Perimeter and Access Roads	Snow Covered	
В	Ditches	SAA	
С	Culverts	SAA	
D	Perimeter Fence	Gates /	
E	Utilities	Elec. / Phone /	
3 Cont	ainment Cell		
А	Surface Cover System	Burrows Vegetation	
В	Gas Vents (2)		
B'	PID Readings	(Y o(N) Background ppm, @ 20' ppm, @ Vent ppm	
С	Collection Pipe / Cleanout		
D	Perimeter Drains (4)		
4 Leac	hate Collection Manhole	1	
A	Structure	External Internal Internal not inspected	
В	Pumps and Plumbing	Pump 1 Hours <u>128.3</u> Pump 2 Hours <u>215.0</u>	
B'	Pump Changeover	(Y o(N) Lead Pump Lag Pump 2	
B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
С	Electrical Components	Test Pumps (Y or (N), Light Bulbs	
D	Manhole Interstitial Space		
E	Conveyance Pipe		
F	Influent Pipe		
G	Confined Space Entry	(Y o(N) (see Form B)	

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

R. Creighton Date:

C	Category Inspected		Category Inspected Observation/Condition		Observation/Condition	J
5	Build	ling				
	Α	Struc	cture	Lock, Vent, Heater	/	
	В	Elect	trical and Telephone	Elec Phone	1	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	,	
6	Leac	hate S	Storage System			
	Α	Tank	(External)	Internal (Y or N)	i d	
	Α'	Flow	Totalizer	Reading = $\frac{677}{00}$ gal.	1	
	В	Seco	ondary Containment	Liquid (Y or N)	/	
	С	Pipir	ng Components		1	
	D	Elec	trical Components	Lock Light Bulbs 1		
	E	Lead	chate Sampling	(Y or (N) (see Form C)	1	

Additional Comments:

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date:

2/21/08

Synapse Representative: Treighton

Cate	egory	Inspected	Observation/Condition	
1 (Gene	ral Property		
	Α	General Property Access		
	В	General Property Drainage	SPDES Outfall (001 002 003)	\square
2 (Cell F	Perimeter Components		
	A	Perimeter and Access Roads		\square
	В	Ditches		\square
	С	Culverts		
	D	Perimeter Fence	Gates	\square
	Ε	Utilities	Elec. / Phone /	\square
3 (Cont	ainment Cell		
	Α	Surface Cover System	Burrows <u></u> Vegetation	
	В	Gas Vents (2)		
	B '	PID Readings	(Y of N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		
	D	Perimeter Drains (4)		
4	Leac	hate Collection Manhole		
	Α	Structure	External Internal	
	В	Pumps and Plumbing	Pump 1 Hours 28,5 Pump 2 Hours 2/5,0	
	B'	Pump Changeover	(Y or Ŵ) Lead Pump _ Lag Pump <u><</u>	
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	С	Electrical Components	Test Pumps (Y or N, Light Bulbs	
	D	Manhole Interstitial Space		17
	E	Conveyance Pipe		1
	F	Influent Pipe		11
	G	Confined Space Entry	(Y or N) (see Form B)	1

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

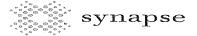
Additional Comments:

N. Creighton

2/2/1 Date:

Category		Inspected Observation/Condition		J
5 Bu	ilding	1 <u></u>		
A	Stru	cture	Lock, Vent, Heater	
В	Elec	trical and Telephone	Elec Phone	
С	Auto	Dialer and Controls	Test Functions (Y or (N))(see Form F)	
6 Lea	achate	Storage System		
A	Tan	< (External)	Internal (Y or N)	
A	' Flow	/ Totalizer	Reading = $\bigcirc 8 \bigcirc 00$ gal.	
В	Seco	ondary Containment		/
С	Pipir	ng Components		
D	Elec	trical Components	Lock Light Bulbs	
E	Lead	chate Sampling	(Y or N) (see Form C)	1

Leachate Montale = 4, P.MP


synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: S. Mothews

Date: 3.18.08

Ca	tegory	Inspected	Observation/Condition	J
1	Gene	ral Property		
	A	General Property Access		
	В	General Property Drainage	SPDES Outfall (001 / 002 / 003 /) IFTW 001 4002	
2	Cell F	erimeter Components		A
	A	Perimeter and Access Roads		\Box
	В	Ditches		V.
	С	Culverts	1	1 J
	D	Perimeter Fence	Gates_	$\overline{\mathbf{n}}$
	E	Utilities	Elec Phone Phone has loved hum	$\overline{\mathbf{V}}$
3	Conta	inment Cell		LV
	Α	Surface Cover System	Burrows None Vegetation None	\checkmark
	В	Gas Vents (2)		$\overline{\mathbf{A}}$
	B'	PID Readings NA	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
	С	Collection Pipe / Cleanout		\square
	D	Perimeter Drains (4)		
4	Leach	ate Collection Manhole		1
	Α	Structure	External 🗸 Internal 🗸	
	В	Pumps and Plumbing	Pump 1 Hours $\underline{128,5}$ Pump 2 Hours $\underline{-215}$, 1	Ú
	Β'	Pump Changeover	((Yor N) Lead Pump Lag Pump	V
	B "	Test Automatic Pump Controls		$\overline{\mathbf{V}}$
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs	V.
	D	Manhole Interstitial Space		V
	Ε	Conveyance Pipe		$\overline{\mathbf{V}}$
	F	Influent Pipe		$\overline{\checkmark}$
	G	Confined Space Entry	(Y or N) (see Form B)	V

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: 5. Muttlew? Date: 3.12.63

	Categ	ory	Inspected	Observation/Condition	
5	Buil	ding			
	A	Struc	sture	Lock, Vent, Heater_/	$\overline{\mathbf{V}}$
	В	Elect	rical and Telephone	Elec_V_Phone_S	17-
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Lead	hate S	torage System		
	Α	Tank	(External)	Internal (Y or N)	17
	Α'	Flow	Totalizer	Reading = (52300 gal.)	$\pm $
	В	Seco	ndary Containment	Liquid (Y or N)	
	С	Pipin	g Components		$\frac{1}{2}$
	D	Elect	rical Components	Lock Light Bulbs	<u> </u>
	Ε	Leac	nate Sampling	(Y or N) (see Form C)	-

Additional Comments:

٠

.

synapse

G:\Clients\DANA\01 CP\02 RAF O&M\Forms\OMM Form A.doc

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

		NYSDEC SITE NO. 622003				
Synaps	e Representative: <u>R, Cre</u>	ighton Date: 7/18/08				
Catego		0 Observation/Condition				
	eral Property					
		0				
A	General Property Access	(300P				
В	General Property Drainage	SPDES Outfall (001 002 003)	V			
2 Cell	Perimeter Components					
А	Perimeter and Access Roads	GOOP	V			
В	Ditches	Good	V			
С	Culverts	GOD	V			
D	Perimeter Fence	Gates/	·V			
Ε	Utilities	Elec. V Phone V	V			
3 Con	3 Containment Cell					
А	Surface Cover System	Burrows Vegetation	\Box			
В	Gas Vents (2)		V			
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm				
С	Collection Pipe / Cleanout		V			
D	Perimeter Drains (4)	No Flow	V			
4 Lea	chate Collection Manhole					
A	Structure	ExternalInternal	TV			
В	Pumps and Plumbing	Pump 1 Hours (28.6) Pump 2 Hours 2(5.)	TV			
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	V			
В"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL				
С	Electrical Components	Test Pumps (Y or (N)) Light Bulbs				
D	Manhole Interstitial Space					
E	Conveyance Pipe		V			
F	Influent Pipe		V			
G	Confined Space Entry	(Y or (N) (see Form B)	TV			

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

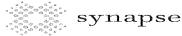
Synapse Representative:___

Rr Crerylton Date:____

4

	Category		y Inspected Observation/Condition	Observation/Condition	J
5					
	A	Struc	ture	Lock, Vent, Heater	
	В	Elect	rical and Telephone	Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	1
6	Leac	hate S	torage System		
	Α	Tank	(External)	Internal (Y or N)	
	Α'	Flow	Totalizer	Reading = 68500 gal.	
	В	Seco	ndary Containment		
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Light Bulbs	
	Ε	Leac	hate Sampling	(Y or (N) (see Form C)	

Additional Comments:


synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 MFX RRC Date: <u>5-13-08</u>

Synapse Representative:

11

egory	/ Inspected	Observation/Condition	1
Gene	ral Property		
A	General Property Access		
B	General Property Drainage	SPDES Outfall (001002003)	~
Cell F	Perimeter Components	L	
A	Perimeter and Access Roads		
В	Ditches	DRY	~
С	Culverts		~
D	Perimeter Fence	Gates	V
E	Utilities	Elec. Phone V	V
Conta	ainment Cell		_!
A	Surface Cover System	Burrows 4 Vegetation Cari	V
В	Gas Vents (2)		
B '	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	~
С	Collection Pipe / Cleanout		\checkmark
D	Perimeter Drains (4)	OPEN	
Leacl	nate Collection Manhole		
A	Structure	External Internal	
В	Pumps and Plumbing	Pump 1 Hours /2%. 6 Pump 2 Hours <u>2/5</u> . /	V
Β'	Pump Changeover	(Y or N) Lead Pump _ L Lag Pump _ Z	V
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL No	~
С	Electrical Components	Test Pumps (Y or N), Light Bulbs	-
D	Manhole Interstitial Space		
Ε	Conveyance Pipe		1
F	Influent Pipe		
G	Confined Space Entry	(Y or N) see Form B)	
	Gene A B Cell F A B C D E Conta A B' C D E D Leacl A B' C D Leacl A B' C D E D E F	General PropertyAGeneral Property AccessBGeneral Property DrainageCell Perimeter ComponentsAPerimeter ComponentsAPerimeter and Access RoadsBDitchesCCulvertsDPerimeter FenceEUtilitiesContainment CellAASurface Cover SystemBGas Vents (2)B'PID ReadingsCCollection Pipe / CleanoutDPerimeter Drains (4)Leachate Collection ManholeAStructureBPumps and PlumbingB'Pump ChangeoverB''Test Automatic Pump ControlsCElectrical ComponentsDManhole Interstitial SpaceEConveyance PipeFInfluent Pipe	Seneral Property A General Property Access B General Property Drainage SPDES Outfall (001002003

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:_

PMF+ BRC I

Date: 5-13-08

	Category		egory Inspected Observation/Condition		J
5	Build	ling		/	
	A	Struc	ture	Lock_1, Vent	
	В	Elect	rical and Telephone	Elec_V Phone_V	V
	С	Auto Dialer and Controls		Test Functions (Y or N) (see Form F)	
6	Leac	hate S	torage System		
	A	Tank	(External)	Internal (Y or N)	\checkmark
	Α'	Flow	Totalizer	Reading = 68700 gal.	V
	В	Seco	ndary Containment	Liquid (Y or NT)	
	С	Pipin	g Components	BEMOVE INSULATION & VIEW FLOW METER	-
	D	Elect	rical Components	LockLight Bulbs	V
	Ε	Leach	nate Sampling	(Y of N) (see Form C)	v

Additional Comments: OP-TECH ON SITE TO REVIEW PROPOSED 035 OUTFALL TOOR PHOTOS OF MANHOLE

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

	NYSDEC SITE NO. 622003						
S	ynapse	e Representative: <u>R. Creig</u>	Date: 6/2.3/08				
Са	ategory	y Inspected	Observation/Condition	1			
1	Gene	aral Property					
	Α	General Property Access	Good				
	В	General Property Drainage	SPDES Outfall (001 002 003)	V			
2	Cell I	Perimeter Components					
	Α	Perimeter and Access Roads	Need to be Mowed	∇			
	В	Ditches	Good				
	С	Culverts	6000	$\overline{\Lambda}$			
	D	Perimeter Fence	Gates_/				
	E	Utilities	Elec. V Phone V				
3	Containment Cell						
	Α	Surface Cover System	Burrows Vegetation Good Vegetation	\square			
	В	Gas Vents (2)		∇			
	B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	Ń			
	С	Collection Pipe / Cleanout					
	D	Perimeter Drains (4)	Mow				
4	Leac	hate Collection Manhole					
	A	Structure	External V Internal V	V			
	В	Pumps and Plumbing	Pump 1 Hours 128.8 Pump 2 Hours 215,1				
	B'	Pump Changeover	(Y of N) Lead Pump <u>Lag Pump 2</u>	17			
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	T.			
	С	Electrical Components	Test Pumps (Y or), Light Bulbs				
	D	Manhole Interstitial Space					
	E	Conveyance Pipe		Ń			
-	F	Influent Pipe		\Box			
	G	Confined Space Entry	(Y or N) (see Form B)				
1			1				

Synaps	e Rep	resentative: <u>RCre'r</u> g	REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 Date: 6/23/08	
Category		Inspected	Observation/Condition	 ,
5 Build	ding			
Α	Struc	cture	Lock_V, Vent_V, Heater_V	
В	Electrical and Telephone		Elec Phone	
С	Auto	Dialer and Controls	Test Functions (Y or (N) (see Form F)	
6 Leac	hate S	Storage System		
Α	Tank	(External)	Internal (Y or (N)	
Α'	Flow	Totalizer	Reading = $\sqrt{900}$ gal.	

Additional Comments: Evergreen lawn regarding the Cont Mor nmo.l

Light Bulbs 1

Liquid (Y or N)

(Y o(N)) (see Form C)

Lock V

В

С

D

E

Secondary Containment

Piping Components

Leachate Sampling

Electrical Components

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET										
UTICA, NEW YORK										
NYSDEC SITE NO. 622003										
Synapse Representative: <u>Norenality</u> Date: <u>1/23</u> 00										
Category Inspected			Observation/Condition	1						
1	General Property									
	A	General Property Access								
	В	General Property Drainage	SPDES Outfall (001 002 003)	+						
2	Cell Perimeter Components									
	A	Perimeter and Access Roads	Needs to be Mowed	\top						
	В	Ditches	GOOD	+						
	С	Culverts	Goop	+						
	D	Perimeter Fence	Gates_	17						
	Ε	Utilities	Elec. V Phone V							
3	Cont	ainment Cell	/							
	Α	Surface Cover System	Burrows Vegetation	TX						
	В	Gas Vents (2)								
	B'	PID Readings	(Y or N)Background ppm, @ 20' ppm, @ Vent ppm							
	С	Collection Pipe / Cleanout		\top						
	D	Perimeter Drains (4)								
4	Leac	hate Collection Manhole								
	Α	Structure	External V Internal V	\top						
	В	Pumps and Plumbing	Pump 1 Hours 28.9 Pump 2 Hours 218.2							
	B'	Pump Changeover	(Y or N) Lead Pump Lag Pump							
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL							
	С	Electrical Components	Test Pumps (Y or (N)) Light Bulbs Need replacement							
	D	Manhole Interstitial Space		\top						
	Ε	Conveyance Pipe								
	F	Influent Pipe								
	G	Confined Space Entry	(Y o(N) (see Form B)	\top						

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date:

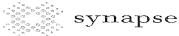
not

23/08

R, Creigh

Synapse Representative:

Category		ory	Inspected	Observation/Condition	1	
5	5 Building					/
	A	Struc	ture	Lock_V, Vent_V, Heater_V		
	В	Elect	rical and Telephone	Elec Phone		
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)		
6	Leac	hate S	torage System	<u> </u>		
	Α	Tank	(External)	Internal (Y of N)		
	A'	Flow	Totalizer	Reading = 692.00 gal.		
	В	Seco	ndary Containment	Liquid (Y or(N))		
	С	Pipin	g Components			
	D	Elect	rical Components	Lock V Light Bulbs 900		/
	E	Leac	hate Sampling	(Y dr N) (see Form C)		


Additional Comments:

Containment Cell Needs Mowing - Contact - Evergreen

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Categor	y Inspected	Inspected Observation/Condition	
1 Gene	eral Property		
Α	General Property Access		
В	General Property Drainage	SPDES Outfall (001 002 003)	
2 Cell	Perimeter Components		
A	Perimeter and Access Roads	Same Vecarment	t
В	Ditches	Some Vescontion Véclonomo	
С	Culverts	Open/ Gates	v
D	Perimeter Fence		loonesee
E	Utilities	Elec. Phone STATIC	~
Cont	ainment Cell	1	
Α	Surface Cover System	Burrows <u>4</u> Vegetation <u>Coo</u> op	
В	Gas Vents (2)		land
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	Luna
С	Collection Pipe / Cleanout		James
D	Perimeter Drains (4)		
Leac	hate Collection Manhole		I
Α	Structure	External	L
В	Pumps and Plumbing	Pump 1 Hours <u>129.0</u> Pump 2 Hours <u>215</u> , 1	V
B'	Pump Changeover	(Y of N) Lead Pump Lag Pump	V
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	L
С	Electrical Components	Test Pumps (Y or N), Light Bulbs_/	V
D	Manhole Interstitial Space		V
E	Conveyance Pipe		~
F	Influent Pipe	DRIP	
G	Confined Space Entry	(Y or N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

C/FMF

Date: <u>3-6-08</u>

Category		Inspected	Observation/Condition	1
5 B	uilding			
-	4 Stru	cture	Lock, Vent_OP#, Heater_Or	\checkmark
E	B Elec	trical and Telephone	Elec_ V Phone_ V STATIC	
0	C Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	V
6 Le	eachate	Storage System		
4	4 Tanł	< (External)	Internal (Y or N)	V
4	4' Flow	r Totalizer	Reading = $(-9, 4-00)$ gal.	~
E	B Seco	ondary Containment		V
C	C Pipir	ng Components	INSULATION OFF TOTALIZE FOR VIEWING	/
L	D Elec	trical Components	Lock Light Bulbs	e
E	E Lead	chate Sampling	(Y or N) (see Form C)	

Additional Comments:

synapse

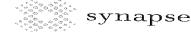
G:\Clients\DANA\01 CP\02 RAF O&M\Forms\OMM Form A.doc

INCIDENTAL INSPECTION REPORT (FORM A - 1) OPERATION, MAINTENANCE AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

CC/PMF


15

Date: 8-6-08

Category		y Inspected	Observation/Condition	J
1	Inspe	ection Overview		
	A	Reason for Inspection	RAF GW SPDES	town and
	В	Regulatory Inspection	DER DOW	Lauran
	С	Photos Taken	35mm Digital	
2	Grou	ndwater Monitoring Wells		
	A	Condition	MW-6R, MW-13A, MW-14, MW-17, MW-18	
	В	Water Levels	(Y of N) (see Form C)	
	С	Groundwater Sampling	(Y or N) (see Form D)	
3	Colle	ction Trenches		
	A	MH-1	DTW Total: <u>11.55</u>	7
	В	MH-2C (Collection)	DTW Total: <u>12.80</u>	
	С	MH-2P (Pumping)	DTW Total: <u>14.17</u>	/
4	Air St	ripper NO		1
	A	MH-1 - Flow Totalizer	Reading =0 gal. Rate:gpm	7
	B	MH-2 - Flow Totalizer	Reading =0 gal. Rate:gpm	-
	С	Sump - Flow Totalizer	Reading =0 gal. Rate:gpm	
	D	Blower Hours	Reading = Hours.	
Ad	dditiona	I Comments: AIR STRIPP	ER - BLOWER RUNING /Nor RIMPING	

Contacts:

Synapse Syracuse Office	475.3700	NYSDEC, DOW, Richard Coriale	793,2796
RAF	733.6230	Evergreen, Tom Gehig (cell)	725.3200
Coolidge Equities, Jessie Bailey	866.7403	Dodge Graphics, Don Zimbler	735.9226
Coolidge Maintenance, Charles Dovi	534.3490 (cell)	Deiorio's, Richard Viti	724.2401
NYSDEC, DER, Phil Waite	785.2605		7 27,2701
ENSR – Luke McKenney	315.432.0506		

S	ynaps	F e Representative: <u>R, Cre</u>	REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 Jate:7/15/08				
Ca	ategoi	Jory Inspected Observation/Condition					
1	Gen	eral Property					
	A	General Property Access	G000 ((
	В	General Property Drainage	SPDES Outfall (001002003)				
2	Cell	Perimeter Components					
	A	Perimeter and Access Roads	Good				
	В	Ditches	Good	+			
	С	Culverts	GOOD				
	D	Perimeter Fence	Gates	± 7			
	E	Utilities	Elec Phone				
3	Cont	ainment Cell					
	A	Surface Cover System	Burrows <u>2</u> Vegetation <u>600</u>				
	В	Gas Vents (2)		+	//		
	B'	PID Readings	(Y or (N))Background ppm, @ 20' ppm, @ Vent ppm				
	С	Collection Pipe / Cleanout					
	D	Perimeter Drains (4)					
4	Leac	hate Collection Manhole					
	Α	Structure	External / Internal				
	В	Pumps and Plumbing	Pump 1 Hours 13.1 Pump 2 Hours 215,	+			
	B'	Pump Changeover	(Y or N)Lead Pump Lag Pump	$+ \wedge$			
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL				
	С	Electrical Components	Test Pumps (Y or N) Light Bulbs				
	D	Manhole Interstitial Space		† - A			
	E	Conveyance Pipe					
	F	Influent Pipe		+			
	G	Confined Space Entry	(Y or N) (see Form B)				
					1		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

é rahton

1

Date:____

08

Synapse Representative:

R.

Category		Inspected	Observation/Condition	J
5 Bui	Building			
A	Struc	ture	Lock, Vent, Heater	
В	Elect	rical and Telephone	Eleo Phone	
С	Auto	Dialer and Controls	Test Functions (Y o(N) (see Form F)	-+/-
6 Lea	chate S	torage System		
A	Tank	(External)	Internal (Y of N)	
Α'	Flow	Totalizer	Reading = 6900 gal.	
В	Seco	ndary Containment		
С	Piping	g Components		
D	Electr	ical Components	Lock Light Bulbs	
E	Leach	nate Sampling	(Y or (N) (see Form C)	

Additional Comments:

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003						
Sy	Synapse Representative: K. Creighton Date: 10/1/08					
Ca	atego	ry Inspected	Observation/Condition	J		
1	Gene	neral Property				
	Α	General Property Access	GOOD			
	В	General Property Drainage	SPDES Outfall (001 / 002 / 003 /)			
2	Cell	Perimeter Components				
	Α	Perimeter and Access Roads	6000		1	
	В	Ditches				
	С	Culverts				
	D	Perimeter Fence	Gates			
	E	Utilities	Elec. Phone V	\square		
3	Cont	ainment Cell			1	
	Α	Surface Cover System	Burrows Vegetation Caro			
	В	Gas Vents (2)				
	B'	PID Readings	(Y or (N))Background ppm, @ 20' ppm, @ Vent ppm			
	С	Collection Pipe / Cleanout				
	D	Perimeter Drains (4)				
4	Leac	hate Collection Manhole				
	Α	Structure	External V Internal V			
	В	Pumps and Plumbing	Pump 1 Hours 129,4 Pump 2 Hours 215.1			
	B'	Pump Changeover	(Y of N) Lead Pump Lag Pump			
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL			
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs			
	D	Manhole Interstitial Space			/	
	E	Conveyance Pipe		$ \land $	1	
	F	Influent Pipe		$ \uparrow \land$	0	
	G	Confined Space Entry	(Y or N) (see Form B)		\$	

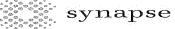
REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

10V

10/1

Date:

09


R. Creigh

Synapse Representative:_

Category		ory Inspected	Observation/Condition	
5	Buildi	ng		
	A	Structure	Lock V, Vent V, Heater V Heat On	
	В	Electrical and Telephone	Elec Phone Heat On	
	C	Auto Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leach	ate Storage System		
	A	Tank (External)	Internal (Y or)	
	A'	Flow Totalizer	Reading = <u>696 00</u> gal.	
	B	Secondary Containment		
	CI	Piping Components		
	DI	Electrical Components	Lock Light Bulbs	
	E l	_eachate Sampling	(Y or N) (see Form C)	

Additional Comments: Belly eaters on Temp below 35°F lank

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 Synapse Representative: R, Crerghon Date: 11/25/08					
Cate	gory Inspected	Observation/Condition			
1 G	eneral Property				
4	General Property Access	Good			
E	General Property Drainage	SPDES Outfall (001 V 002 V 003 V) GOOD			
2 C	ell Perimeter Components				
-	Perimeter and Access Roads	Good			
E	3 Ditches	Goop			
(Culverts	GODID			
L	D Perimeter Fence	Gates_V			
L	Utilities	Elec. V Phone V			
3 C	ontainment Cell	L			
	A Surface Cover System	Burrows Vegetation			
1	Gas Vents (2)				
1	B' PID Readings	(Y or N Background ppm, @ 20' ppm, @ Vent ppm			
	C Collection Pipe / Cleanout				
	D Perimeter Drains (4)				
4 L	eachate Collection Manhole				
	4 Structure	ExternalNotNot	\Box		
	B Pumps and Plumbing	Pump 1 Hours 278 Pump 2 Hours 215,1			
	B' Pump Changeover	(Y o(N) Lead Pump Lag Pump Z	\top		
	B" Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	T.		
	C Electrical Components	Test Pumps (Y of N), Light Bulbs			
	D Manhole Interstitial Space	Not Inspected	$\top \lambda$		
	E Conveyance Pipe	The second secon	1		
	F Influent Pipe				
	G Confined Space Entry	(Y o(N) (see Form B)			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

rto

lo ral

25/08

and the second

Date:

Synapse Representative:

R.

Category		ry	Inspected	Observation/Condition	1
5	Building		· · · · · · · · · · · · · · · · · · ·		
	A	Structu	Ire	Lock, Vent, Heater V Hoat Off	\top
	B	Electric	cal and Telephone		
	С	Auto Dialer and Controls		Test Functions (Y of N) (see Form F)	\top
6 I	6 Leachate Storage System				
	A	Tank ((External)	Internal (Y or N	
	A'	Flow T	otalizer	Reading = 69900 gal.	
	B	Secon	dary Containment	Liquid (Y or N)	
	С	Piping	Components		
	D	Electric	cal Components	Lock V Light Bulbs Changed Bulb	
	E	Leacha	ate Sampling	(Y or N) (see Form C)	

Additional Comments: Turned off the electrical Heater

synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003					
Syna	ose Representative: <u>R</u> , <u>Crei</u>	ghton			
Categ	Category Inspected Observation/Condition				
1 Ge	neral Property				
A	General Property Access	GOOD			
В	General Property Drainage	SPDES Outfall (001 002 003)			
2 Ce	Il Perimeter Components				
A	Perimeter and Access Roads	Capp			
В	Ditches	Snow Covered			
С	Culverts				
D	Perimeter Fence	Gates_/			
E	Utilities	Elec. Phone 1/			
3 Co	ntainment Cell				
A	Surface Cover System	Burrows Vegetation Snow Covered			
В	Gas Vents (2)		\Box		
В	' PID Readings	(Y o(N))Background ppm, @ 20' ppm, @ Vent ppm			
С	Collection Pipe / Cleanout	Not Inspected			
D	Perimeter Drains (4)	Snow Covered			
4 Le	achate Collection Manhole				
A	Structure	ExternalNot Inspected			
В	Pumps and Plumbing	Pump 1 Hours 279 Pump 2 Hours 25.			
В	' Pump Changeover	(Y or N) Lead Pump 129.9 Lag Pump 215.1			
В	" Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL			
С	Electrical Components	Test Pumps (Y or N), Light Bulbs			
D	Manhole Interstitial Space	Not Inspected			
E	Conveyance Pipe				
F	Influent Pipe				
G	Confined Space Entry	(Y o(N) (see Form B)			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 12/24/08 R. Creig

Date:

ton .

Synapse Representative:

	Catego	ory	Inspected	Observation/Condition	7	
5	Build	ling				
	Α	Struc	sture	Lock_V, Vent_V, Heater_V Heat off	\square	
	В	Elect	rical and Telephone	Elec_/ Phone_/		
	С	Auto	Dialer and Controls	Test Functions (Y or N) see Form F)		
6	Leac	hate S	Storage System	2		
	Α	Tank	(External)	Internal (Y o(N)		
	Α'	Flow	Totalizer	Reading = gal.		
	В	Seco	ndary Containment			
	С	Pipin	g Components			
	D	Elect	rical Components	Lock Light Bulbs		
	Ε	Leac	hate Sampling	(Y or N) (see Form C)		

Additional Comments:

Snow Removal Issues

APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) **OPERATION, MAINTENANCE, AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

	Received Alarm: <u>Y_or_N</u>
Tested Alarm. <u>Y or N</u>	Date Received:
Date Tested: 7 - (0 - 0 %	Time Received:

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured: 6.4 3/4
			Reading: 64.20
2	Tank High Level (100%)		-OK
3	Tank Leak		
4	Tank 90% Full		Nor TESTED
5	High Manhole Level		OK
6	Manhole Leak		- 0K
7	Pipe Leak		
8	Tank Low Temperature		NOT-TESTED Not-TRESTED
9	Inside Temperature		76° F
10	Outside Temperature		84°E
11-15	Not In Use		
16	Power Off		- NO- POSSIBLE DEAD BATTERIE

Reason for Alarm:

hyperbares/delays-

Nuevertigescripts

Action Taken: _____

Comments: Some CHANNELS NOT TESTED AS THE SYSTEM IS SCHEDULE TO BE CHANGED WITHIN THE UP COMING MONTHS

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>R. Creighton</u>	Received Alarm
	Date Received: 12/22/08
Date Tested:	Time Received: 11:20 AM

Channel No.	Function	Alarm Rec'd	Testing Results
1	Tank Level (@ 80%)		Measured: Reading:
2	Tank High Level (100%)		
3	Tank Leak		
4	Tank 90% Full		
5	High Manhole Level		
6	Manhole Leak		
7	Pipe Leak		
8	Tank Low Temperature		
9	Inside Temperature		
10	Outside Temperature		
11-15	Not In Use		
16	Power Off		

Reason for Alarm: TANK Level 80%

"555" code via telephone Action Taken: Entered

"555" Acknowladgement code Failed Via Telephone. Loggei Comments: INTO Function on Alarm. ISACC via Computer and disabled the callout Alarm will be verified During Bi-Welly SPDES Simpling.

APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

•

WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighton

Date:

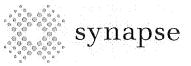
Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10,51	465.47	3.60	461.87	6.91		
MW-13A	10.92	10.91	469.23	2.41	466.82	8.50		
MW-14	13.00	12.99	478.37	2.95	475.50	10.04		
MW-17	11.25	11.25	466.02	11.z4	454.78	0.01		
MW-18	11.73	11.70	475.96	5.12	470.84	6.58		
SCT CO-1	NA	NA	472.30	DRY	465.20	NĄ		
SCT CO-2	NA	NA	473.42	7.72	465.70	NĄ		
SCT CO-3	NA	NA	471.21	DRY	465.61	NĄ		
NCT CO-1	NA	AN	464.70	DRY	453.42	NA		
MH-2 (Collection)	12.80	NĄ	465.31	11.94	453.37	NĄ		

Notes:

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

3) MW = Monitoring Well


4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations are Approximate)

7) MH = Manhole

General Comments:

WATER LEVEL FIELD LOG (FORM D) **OPERATION, MAINTENANCE, AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

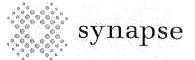
	ynapse Representative: <u>R. Creighton</u> Date: <u>10/14/08</u>							
Location	Depth (ft.)	Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.50	465.47	4.49	461.87	6.01		
MW-13A	10.92	11.07	469.23	4.25	466.82	6.8Z		
MW-14	13.00	12.80	478.37	5.43	475.50	7.37		
MW-17	11.25	11.25	466.02	11.25	DRY	0.0		
MW-18	11.73	11.73	475.96	6.32	470.84	5.41		
SCT CO-1	AN	NA	472.30	DRY	465.20	NA		
SCT CO-2	AN	AN	473.42	7.71	465.71	NA		
SCT CO-3	NA	AN	471.21	DRY	465.61	AN		
NCT CO-1	AN	AN	464.70	ORY	453.42	AN		
MH-2 (Collection)	12.80	12.80	465.31	11.96	453.35	NA-		

Notes:

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

3) MW = Monitoring Well

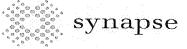

4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations are Approximate)

7) MH = Manhole

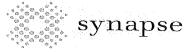
General Comments:


APPENDIX E GROUNDWATER SAMPLING LOGS – FORM E

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**


				REMEDIAL 2200 BLE UTIC	ENANCE, AN . ACTION FAC EECKER STR A, NEW YORK SITE NO. 622	CILITY EET (JRING	
Synapse	Repres	sentative	R. Creigh		Date: <u>4/20</u>	1	v	Vell Number: <u>MW- 6</u> R
	•				MONITORING			
PID Moc	lel:		Ba	ackground:	Construction of the local division of the lo	opm		At Well ppm
				WEL	L PURGING			
Purge V	<u>'olume</u>				Purge Me	<u>thod</u>		
		h of Wel	(from Form C)	Bailer	Type: Re	eusable	
						_		
		• •	rom Form C) plumes to Be Pu	(2.0)	Actual Vol		<u>ated</u>	
		alculation		• • •	 .163	Gallons	_ <i>3</i> ,	4 Gallons
	" diamet		TD (ft.)	WL (ft.)	Vol/ft.	#VOLS	Purge	
			FIE	LD PARAM	ETER MEASU	REMENT		
Time	Vol. No.	Temp (℃)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
13:30)	12.3	0.684	4.26	12.1	1000	6.68	Oranage Color
13:20	2	11.9	0.682	6.84	6.1	1000	6.59	Orange Color
13:30	3	12.5	0.631	7-61	2.4	1000	6.49	
					•			
			•					
				WEL	L SAMPLING			
	• 4 4	. / ^	(a la c	\				1 0 1
Sample	ID: <u>///</u>	w-6K	(MS/MSD] Recei	ving Lab (Cha	in of Cust	ody):	LOL
General	Notes:	Ц;	at that	1% n	1.11-	ŧ	٠ ۲	
			JU Idion	and the	Testal II	on for	IPT ros	•

					SAMPLING L ENANCE, AN	•	,	
				2200 BLE UTICA	ACTION FAC EECKER STR A, NEW YORI SITE NO. 622	EET <		
Synapse	e Repres	sentative	R. Creig		Date: <u>4/</u> 2	80/19	v	Vell Number: <u>MW-13</u> A
		-	, ,		MONITORING			
			Ba		L PURGING	ppm		At Well ppm
Purge V	/olume			VVEL	L PORGING	athod		
		h of Well	(from Form C)			Type: Re	eusable	Disposable
Dedicate	-		(201101	1960, 10		
WL = Wa	ater Leve	l Depth (fi	rom Form C)		Actual Vol	ume Genera	ated	
# VOL =	Number	of Well Vo	plumes to Be Pu	rged (3-9)	- ** · · · · · · · · · · · · · · · · · ·	Gallons		•
	olume Ca ?" diamete	alculation	$\frac{10.91}{TD (ft.)}$	<u>Z.41</u>) × WL (ft.)		× <u> </u>	$=\frac{4}{2}$	
(101 2	. uiamett	er wen)	10 (11.)	VVL (10.)	ETER MEASU	#VOL3	Purge	Vol. (Vol/ft = 0.163 for 2" OD)
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
11:50		13, 1	0.564	2.41	8,76	50	6.35	
12',00	2	11.8	0,561	3-68	9.55	230	6.55	
12:08	3	10,9	0,589	5.16	9.95	699	6.72	
				WEL	L SAMPLING			
Sample	יחו	MW1-1	3A	Recei	iving Lab (Ch	ain of Cust	odv).	LSL
			<u> </u>				.ouy)	
Genera	Notes:							

			GROU OPERAT	NDWATER ION, MAINT	SAMPLING L ENANCE, AN	.OG (FORI ID MONITO	M E) ORING	
				2200 BLI UTIC	L ACTION FA EECKER STF A, NEW YOR SITE NO. 62	REET K		
Synaps	e Repre	sentative	R. Creight					Well Number: <u>MW- 18</u>
		and the second secon	×		MONITORING			
	del:		B			ppm		At Well ppm
Purgo	Johnson			WEI				
	<u>Volume</u> stal Dept		l (from Form C	۰ ۱	Purge Me			
Dedicate			i (iiom Form C)	Baller	Type: R	eusable	Disposable
		l Depth (f	rom Form C)		Actual Vo	lume Gener	ated	
# VOL =	Number	of Well Vo	olumes to Be Pu	urged (3-9)	and the second	Gallons	1	
		alculation	<u>n: (11.70</u>	- <u>5,12</u>)×	(163 Vol/ft.	_x3	_=3	<u>, 2</u> Gallons
(101)	2" diamet	er well)			Vol/ft. ETER MEASL		Purge	e Vol. (Vol/ft = 0.163 for 2" OD)
		1						
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
14:00	1	8,2	0.712	5.12	11.88	65	6.78	
14:15	Ż	7.6	0.728	6.60	12.10	121	6.76	
14:20	3	1.2	0.713	7.45	12,31	485	6.74	
				WELI	L SAMPLING			
Sample	ID:	NW-18	(Dyp)	Recei	ving Lab (Ch	ain of Cust	odv).	LSL
General	Notes:				0		·····	
						·		

					SAMPLING LO ENANCE, AN			
				2200 BLE UTICA	ACTION FAC ECKER STR A, NEW YORK SITE NO. 622	EET		
Synaps	e Repres	entative	R, Creigh			801	v	Vell Number: <u>MW-14-</u>
			_		MONITORING			
	del:		B			opm		At Well ppm
Dunna	/ - 1			WEL	L PURGING			
Purge \		6\\/-		、	<u>Purge Me</u>			
Dedicate		1 OF VVEI	l (from Form C)	Bailer	Type: Re	eusable	
		Depth (f	rom Form C)		Actual Volu	ume Gener	ated	
		of Well V	olumes to Be Pu	irged (3-9)	3.5	Gallons		
Purge V	olume Ca	lculation		<u>Z,95</u>)x	.163	x_3	<u> </u>	Gallons
(for 2	2" diamete	er well)			Vol/ft. ETER MEASU		Purge	Vol. (Vol/ft = 0.163 for 2" OD)
		T						
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
11:03)	8.2	0.427	3.4Z	10.49	41	5.76	
11:12	2	7.1	0.327	4.61	11.32	193	5.90	
D	<u> </u>							
	<i>l</i>							
				WELL	SAMPLING			
	٨٨٦	. 11/						1
Sample	id: <u>M</u>	V-14	·····	_ Receiv	ving Lab (Cha	in of Cust	ody):	LSL
General	Notes:	1)Ry after	2.5 99	logs			

			GROU OPERAT	INDWATER ION, MAINI	SAMPLING I	LOG (FORI ND MONIT(VIE) Oring	
				2200 BL UTIC	L ACTION FA EECKER STF A, NEW YOR SITE NO. 62	REET		
Synaps	e Repre	sentative	R. Crei		Date: _10/	14/08		Well Number: <u>MW-6R</u>
PID Mo	del:		B					At Well ppm
					LL PURGING			At Well ppm
<u>ourge \</u>	/olume				<u>Purge Me</u>	ethod		Contraction and the second descent and the second descent desc
TD = To Dedicate		th of Wel	l (from Form C	;)	Bailer	Type: Re	eusable	Disposable
			rom Form C)		<u>Actual Vo</u>	lume Genera	ated	
			olumes to Be Pu	urged (3-9)	_3_	Gallons		0
for 2	olume C ?" diamet	alculation er well)	<u>n: (10,50</u> <i>TD (ft.)</i>	- <u>+, + i</u>) × WL (ft.)	<163 Vol/ft.	-× <u>-</u> #VOLS		Gallons <i>→ Vol.</i> (<i>Vol/ft = 0.163 for 2" OD</i>)
			FIE	LD PARAM	ETER MEASU		<u>r urgo</u>	(VOIN (VOIN - 0.1031012 OD)
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
3:10		18.1	0.553	4,49	10,77	008	7,60	
3:16	2	18.1	0.586	6:20	10,74	7/000	7.72	
3:22	3	17.9	0,562	7.16	10.45	7/000	7,65	
					SAMPLING			
			/ I		- SAMPLING			
ample l	D: <u>M</u>	W-6R	(MS/MS)	Receiv	ving Lab (Cha	in of Custo	ody):	LSL
	Notes:			1				
	-							
<u> </u>								
	• <u></u>							

					SAMPLING L ENANCE, AN	•		
				2200 BLE UTICA	ACTION FAC ECKER STR A, NEW YORI SITE NO. 622	EET <		
Synapse	e Repres	entative	R. Creigl		Date:10/14	••• •	\	Vell Number: <u>MW-JS A</u>
			_		MONITORING			
	del:		Ba			ppm		At Well ppm
	/olumo			WEL	L PURGING	thed		
			(from Form C)	Purge Me		unabla	Dianaaabla
Dedicate	•)	Daller	Type: Re	eusable	Disposable
		Depth (fr	om Form C)		Actual Vol	ume Genera	ated	
			olumes to Be Pu		3	Gallons		
	olume Ca		<u>n: (11.07</u> .	<u>4,25</u>)x	. <u></u>	x_ <u>3</u>	_=_ <u>3</u> ,	<u>3</u> Gallons
(for 2	2" diamete	er well)			Vol/ft. ETER MEASU		Purge	e Vol. (Vol/ft = 0.163 for 2" OD)
		1 10.00.0000	• • • • •					
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
12:05	ĺ	18.2	0.515	4.25	11.07	38	7.51	
12:16	2	18,2	0.521	5.61	11-08		7.8T	
12:24	Ś	18.2	0.516	6.24	10.99	185	7.65	
			•	•	5 			
				WEL	L SAMPLING			
		AA). A	> A					1<1
Sample	ID:	-W/W-1	3A	_ Recei	iving Lab (Ch	ain of Cust	:ody):	LSL
Genera	I Notes:							

			GROU OPERATI	NDWATER : ON, MAINT	SAMPLING L ENANCE, AN	.OG (FORM ID MONITO	ME) DRING	
				2200 BLE UTIC/	. ACTION FA EECKER STR A, NEW YORI SITE NO. 62	REET K		
Synaps	e Repre	sentative	R. Creigh	too [Date:/0/	4/08	\	Well Number: <u>MW-14</u>
				AIR	MONITORING			
PID Mo	del:		Ba	ackground:	a and a second second	ppm		At Well ppm
				WEL	L PURGING			
Purge \					<u>Purge Me</u>			
ID = To Dedicate	•	th of Wel	l (from Form C)	Bailer	Type: R	eusable	Disposable
WL = Wa	ater Leve	• •	rom Form C) olumes to Be Ρι	irged (3-9)		l <mark>ume Gener</mark> Gallons	ated	
Purge V	<u>olume C</u>	alculation					= 3	6 Gallons
(for 2	2" diamet	ter well)	TD (ft.)	WL (ft.)	Vol/ft.	#VOLS	Purge	Gallons Vol. (Vol/ft = 0.163 for 2" OD)
r			F15		ETER MEASU	REMENI		
Time	Vol. No.	Temp (ºC)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
11:30	1	17, 1	0,346	5.43	12.12	135	8,49	
4:40	2	14,1	0,366	6.26	13.70	200	7-11	
11849	3	15.2	0.359	7.12	13.90	115	7.49	
			·····					
	Maria 12 an an							
				38/1-1 1	04400			
				VVELL	SAMPLING			
Sample	ID:	MW-	4	_ Recei	ving Lab (Cha	ain of Cust	ody):	LSL
General	l Notes:							
<u></u>								
								4 b

			GROU OPERAT	NDWATER ION, MAINT	SAMPLING I ENANCE, AN	OG (FOR	M E) ORING	
				2200 BLI UTIC	- ACTION FA EECKER STF A, NEW YOR SITE NO. 62	REET K		
Synaps	se Repre	sentative	R. Creig		Date: 10/1			Well Number: <u>MW-18</u>
PID Mc	del:	at 1000000000000000000000000000000000000	B					
ř					L PURGING			At Well ppm
Purge '	Volume			***	<u>Purge Me</u>	athod		
TD = To Dedicate		th of Wel	l (from Form C)		Type: R	eusable	Disposable
WL = W # VOL = <u>Purge V</u>	ater Leve Number	of Well Ve alculation	rom Form C) olumes to Be Pu <u>n</u> : (<u>11.73</u> <u>TD (ft.)</u>	ırged (3-9) - <u>(G, 3 Z_)</u> x <u>WL (ft.)</u>	2.5	ume Gener Gallons X <u></u> #VOLS		<u>65</u> Gallons e Vol. (Vol/ft = 0.163 for 2" OD)
			FIE	LD PARAMI	ETER MEASU	REMENT		(Voline 0.1001012 0D)
Time	Vol. No.	Temp (°C)	Conductivity (mS/cm)	Water Depth (ft.)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	pH (NA)	Observations
13:55		15.0	0.671	6.32	12.56	226	7.22	
14:06	2	14.6	0.675	7.62	12.51	250	7,18	
1416	3	145	0.675	8.16	12.39	151	7,35	
	<u> </u>							
Sample General		w-18	(Oyp-1)		. SAMPLING /ing Lab (Cha	in of Custe	ody):	LSL

APPENDIX F GROUNDWATER ANALYTICAL DATA

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

LSL)
	F

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO #DANA 01-07 T02

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0818774

Receive Date/Time: 10/14/08 14:58

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. By the client by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

(1) LSL Central Lab, East Syracuse, NY
 (2) LSL North Lab, Waddington, NY
 (3) LSL Finger Lakes Lab, Wayland, NY
 (4) LSL Southern Tier Lab, Cuba, NY
 (5) LSL MidLakes Lab, Canandaigua, NY
 (6) LSL Brittonfield Lab, East Syracuse, NY

(315) 445-1105 (315) 388-4476 (585) 728-3320 (585) 968-2640 (585) 396-0270 (315) 437-0200 NYS DOH ELAP #10248 PA DEP #68-2556 NYS DOH ELAP #10900 NYS DOH ELAP #11667 NYS DOH ELAP #10760 NYS DOH ELAP #11369 NYS DOH ELAP #10155

This report was reviewed by:

	<u></u>		
y: Beauly	Conceence	, Date:	_1012710P
Life Science Laboratories, Inc.			1011

-- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC Syracuse, NY

LSL Sample ID:

0818774-001

Location: Sampled:

Sample ID:

10/14/08 13:20 Sampled By: RC

Sample Matrix: NPW

MW-6R

Analytical Method		T T •/	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
PA 8021B Volatiles(Partial List)by 8260					
cis-1,2-Dichloroethene	<1	ug/l		10/17/08	BD
trans-1,2-Dichloroethene	<1	ug/l		10/17/08	BD
Trichloroethene	<1	ug/l		10/17/08	BD
Vinyl chloride	<1	ug/l		10/17/08	BD
Surrogate (1,2-DCA-d4)	104	%R		10/17/08	BD
Surrogate (Tol-d8)	95	%R		10/17/08	BD
Surrogate (4-BFB)	100	%R		10/17/08	BD
) EPA 8082 PCB's					
Aroclor-1016	<0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1221	<0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1232	< 0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1242	< 0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1248	< 0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1254	<0.1	ug/l	10/15/08	10/18/08	KIW
Aroclor-1260	<0.1	ug/l	10/15/08	10/18/08	KIW
Surrogate (DCB)	121	%R	10/15/08	10/18/08	KIW
Sample ID: MW-13A			LSL Sample ID:	0818774-0	002
Location: Sampled: 10/14/08 12:30 Sampled By:	: RC				
Sampled:10/14/08 12:30Sampled By:Sample Matrix:NPW	: RC				1
Sampled:10/14/08 12:30Sampled By:Sample Matrix:NPWAnalytical Method		Unite	Prep	Analysis Date & Time	
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte	: RC Result	Units	Prep Date	Analysis Date & Time	
Sampled:10/14/08 12:30Sampled By:Sample Matrix:NPWAnalytical Method Analyte0EPA 8021B Volatiles(Partial List)by 8260	Result		-	Date & Time	Initials
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte D EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene	Result	ug/l	-	Date & Time	Initials BD
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method <u>Analyte</u> <i>i)</i> EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene	Result <1 <1 <1	ug/l ug/l	-	Date & Time 10/17/08 10/17/08	Initials BD BD
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method <u>Analyte</u> 2) EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene	Result <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ug/l ug/l ug/l	-	Date & Time 10/17/08 10/17/08 10/17/08	Initials BD BD BD
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method	Result <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	ug/l ug/l ug/l ug/l	-	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD
Sampled: 10/14/08 12:30 Sample By: Sample Matrix: NPW Analytical Method Analytical Method Analyte V EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (1,2-DCA-d4)	Result <1	ug/l ug/l ug/l ug/l %R	-	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD
Sampled: 10/14/08 12:30 Sample By: Sample Matrix: NPW Analytical Method Analytical Method Analyte 20 EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (Tol-d8)	Result <1	ug/l ug/l ug/l ug/l %R %R	-	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD BD BD
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method	Result <1	ug/l ug/l ug/l ug/l %R	-	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD BD BD
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analytical Method Analyte Sample Matrix: NPW D EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Surrogate (1,2-DCA-d4) Surrogate (1,2-DCA-d4) Surrogate (4-BFB) Surrogate (4-BFB)	<1 <1	ug/l ug/l ug/l vg/l %R %R %R	Date	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD BD BD BD
Sampled: 10/14/08 12:30 Sample By: Sample Matrix: NPW Analytical Method Analyte D EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (4-BFB) D EPA 8082 PCB's Aroclor-1016 Aroclor-1016	Result <1	ug/l ug/l ug/l %R %R %R wR	Date 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD BD BD BD
Sampled: 10/14/08 12:30 Sample Bay: Sample Matrix: NPW Analytical Method Analyte Ø EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (4-BFB) Ø EPA 8082 PCB's Aroclor-1016 Aroclor-1221	Result <1	ug/l ug/l ug/l %R %R %R ug/l ug/l	Date 10/15/08 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08	Initials BD BD BD BD BD BD KIW KIW
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte Ø EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (1-d8) Surrogate (4-BFB) V) EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232	Result <1	ug/l ug/l ug/l %R %R %R ug/l ug/l ug/l	Date 10/15/08 10/15/08 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/18/08 10/18/08 10/18/08	Initials BD BD BD BD BD BD KIW KIW KIW
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte Analytical Method Analyte D EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (4-BFB) D EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1232 Aroclor-1242	Result <1	ug/l ug/l ug/l %R %R %R ug/l ug/l ug/l ug/l ug/l	Date 10/15/08 10/15/08 10/15/08 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/18/08 10/18/08 10/18/08 10/18/08 10/18/08	Initials BD BD BD BD BD BD BD KIW KIW KIW
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte Analytical Method 20 Analyte 20 D EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene 20 Trichloroethene 20 Vinyl chloride 20 Surrogate (1,2-DCA-d4) 20 Surrogate (4-BFB) 20 EPA 8082 PCB's 20 Aroclor-1211 21 Aroclor-1232 21 Aroclor-1248 20	Result <1	ug/l ug/l ug/l %R %R %R ug/l ug/l ug/l ug/l ug/l ug/l	Date 10/15/08 10/15/08 10/15/08 10/15/08 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/18/08 10/18/08 10/18/08 10/18/08 10/18/08	Initials BD BD BD BD BD BD BD KIW KIW KIW KIW KIW
Sampled: 10/14/08 12:30 Sampled By: Sample Matrix: NPW Analytical Method Analyte Ø EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4) Surrogate (4-BFB) Ø EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1242	Result <1	ug/l ug/l ug/l %R %R %R ug/l ug/l ug/l ug/l ug/l	Date 10/15/08 10/15/08 10/15/08 10/15/08	Date & Time 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/17/08 10/18/08 10/18/08 10/18/08 10/18/08 10/18/08	Analyst Initials BD BD BD BD BD BD BD BD BD KIW KIW KIW KIW KIW KIW

- - LABORATORY ANALYSIS REPORT - -

Synapse Risk Management, LLC Syracuse, NY

Sampled By: RC

LSL Sample ID:

0818774-003

Sample ID: Location:

Sampled:

MW-14

10/14/08 11:50

Sample Matrix: NPW **Analytical Method** Prep Analysis Analyst Date Date & Time Initials Result Units Analyte (1) EPA 8021B Volatiles(Partial List)by 8260 cis-1,2-Dichloroethene <1 ug/l 10/17/08 BD 10/17/08 BD trans-1,2-Dichloroethene <1 ug/l ug/l 10/17/08 BD Trichloroethene <1 BD 10/17/08 <1 ug/l Vinvl chloride BD 104 10/17/08 %R Surrogate (1,2-DCA-d4) 10/17/08 BD Surrogate (Tol-d8) 94 %R 10/17/08 BD Surrogate (4-BFB) 98 %R (1) EPA 8082 PCB's 10/15/08 10/18/08 KIW < 0.1 Aroclor-1016 ug/l Aroclor-1221 < 0.1 ug/l 10/15/08 10/18/08 KIW 10/15/08 10/18/08 KIW < 0.1Aroclor-1232 ug/l < 0.1ug/l 10/15/08 10/18/08 KIW Aroclor-1242 10/15/08 10/18/08 KIW Aroclor-1248 < 0.1 ug/l 10/18/08 KIW < 0.1 10/15/08 Aroclor-1254 ug/l KIW Aroclor-1260 < 0.1 ug/l 10/15/08 10/18/08 100 %R 10/15/08 10/18/08 KIW Surrogate (DCB) LSL Sample ID: 0818774-004 Sample ID: **MW-18** Location: Sampled By: RC Sampled: 10/14/08 14:10 Sample Matrix: NPW Prep Analysis Analyst **Analytical Method** Initials Date Date & Time Result Units Analyte (1) EPA 8021B Volatiles(Partial List)by 8260 BD 10/17/08 cis-1,2-Dichloroethene <1 ug/l 10/17/08 BD <1 ug/l trans-1,2-Dichloroethene BD 10/17/08 Trichloroethene <1 ug/l ug/l BD Vinyl chloride 34 10/17/08 BD 10/17/08 Surrogate (1,2-DCA-d4) 108 %R BD 95 %R 10/17/08 Surrogate (Tol-d8) BD 97 %R 10/17/08 Surrogate (4-BFB) (1) EPA 8082 PCB's 10/15/08 10/18/08 KIW Aroclor-1016 < 0.1 ug/l 10/15/08 10/18/08 KIW <0.1 Aroclor-1221 ug/l 10/15/08 10/18/08 KIW < 0.1 ug/l Aroclor-1232 KIW 10/15/08 10/18/08 Aroclor-1242 < 0.1ug/l 10/18/08 KIW < 0.1 ug/l 10/15/08 Aroclor-1248 10/15/08 10/18/08 KIW Aroclor-1254 < 0.1ug/l KIW < 0.1 10/15/08 10/18/08 Aroclor-1260 ug/l 10/18/08 KIW 103 %R 10/15/08 Surrogate (DCB)

-- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC Syracuse, NY

Sampled By: RC

LSL Sample ID:

0818774-005

Location:

Sample ID:

Sampled:

Sample Matrix: QC, NPW

101408-DUP-1

10/14/08 0:00

Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
<1	ug/l		10/17/08	BD
<1	ug/l		10/17/08	BD
<1	ug/l		10/17/08	BD
31	ug/l		10/17/08	BD
108	%R		10/17/08	BD
94	%R		10/17/08	BD
96	%R		10/17/08	BD
<0.1	ug/l	10/15/08	10/18/08	KIW
< 0.1	ug/l	10/15/08	10/18/08	KIW
<0.1	ug/l	10/15/08	10/18/08	KIW
<0.1	ug/l	10/15/08	10/18/08	KIW
	ug/l	10/15/08		KIW
<0.1	ug/l	10/15/08	10/18/08	KIW
				KIW
107	%R	. 10/15/08	10/18/08	KIW
		LSL Sample ID:	0818774-0	006
By: RC				
		Prep	Analysis	Analyst
Result	Units	Date	Date & Time	Initials
				BD
				BD BD
95	70K		10/17/08	עם
		10/17/00	10/10/00	
				KIW
				KIW
				KIW
104	9/D			KIW
104	70K			KIW
				KIW
		10/12/00	10/10/00	1/111/
123	%R	10/15/08 10/15/08	10/18/08 10/18/08	KIW KIW
	$<1 \\<1 \\<1 \\31 \\108 \\94 \\96 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\<0.1 \\107 \\$	41 ug/l 41 ug/l 41 ug/l 31 ug/l 108 %R 94 %R 96 %R 40.1 ug/l 40.1	Result Units Date <1 ug/l <1 <1 <108 %R <1 $<10/15/08$ <0.1 ug/l $<10/15/08$ <0.1 <0.1 ug/l $<10/15/08$ <0.1 <0.1 ug/l $<10/15/08$ <0.1 $<10/15/08$ <0.1 ug/l $<10/15/08$ <0.1 $<0.1 <0.1 <0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 $	Result Units Date Date & Time <1

-- LABORATORY ANALYSIS REPORT --

Synapse Risk Management, LLC Syracuse, NY

Sampled By: RC

MW-6R (Matrix Spike Duplicate)

10/14/08 13:20

LSL Sample ID:

0818774-007

Sample ID: Location:

Sampled:

Sample Matrix: QC, NPW

Analytical Method Analyte			Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8021B Volati	les(Partial List)by 8260	Itosult	Chits			
cis-1,2-Dichloroe	· · ·	<i>JUJ 0200</i>	1	RPD		10/17/08	BD
trans-1,2-Dichlor			1	RPD		10/17/08	BD
Trichloroethene	sectione		2	RPD		10/17/08	BD
Vinyl chloride			2	RPD		10/17/08	BD
Surrogate (1,2-D	CA-d4)		99	%R		10/17/08	BD
Surrogate (Tol-d			94	%R		10/17/08	BD
Surrogate (4-BFI			97	%R		10/17/08	BD
(1) EPA 8082 PCB's							
Aroclor-1016					10/15/08	10/18/08	KIW
Aroclor-1221					10/15/08	10/18/08	KIW
Aroclor-1232					10/15/08	10/18/08	KIW
Aroclor-1242					10/15/08	10/18/08	KIW
Aroclor-1248			4	RPD	10/15/08	10/18/08	KIW
Aroclor-1254					10/15/08	10/18/08	KIW
Aroclor-1260					10/15/08	10/18/08	KIW
Surrogate (DCB)			97	%R	10/15/08	10/18/08	KIW
Sample ID: Trip	Blank				LSL Sample ID:	0818774-0	008
Location:					_		
Sampled: 10/1	4/08 0:00	Sampled By:					
Sample Matrix: TB							
Analytical Method		· · · ·			Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
(1) EPA 8021B Volati	les(Partial List))by 8260					
cis-1,2-Dichloroe	thene		<1	ug/l		10/17/08	BD
trans-1,2-Dichlor	oethene		<1	ug/l		10/17/08	BD
Trichloroethene			<1	ug/l		10/17/08	BD
Vinyl chloride			<1	ug/l		10/17/08	BD
Surrogate (1,2-D	CA-d4)		106	%R		10/17/08	BD
Surrogate (Tol-d	8)		96	%R		10/17/08	BD
Surrogate (4-BFI	3)		99	%R		10/17/08	BD

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

LSL

<u>Method</u>	<u>Surrogate(s)</u>	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	ТСМХ	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

0ct.13.20	2008 10:31AM Synar	pse Risk	k Management		Scie	ence	Labo	ratori	Life Science Laboratories, Inc.		No. 1831	٩.
				J		JF CUS		CHAIN OF CUSTODY RECORD				
)	LSL NOTIN LAD. 131 St. Lawron	Lot North Lab. 131 St. Lawrence Ave.		LSL Fing 16 N. Ma	LSĽ Finger Lekes Lab. 16 N. Main St., PO Box 424	1. X 424	LSL Southern Tier 30 Fast Main St	10	0218774		
	LSL Central Lab.	Wadding	waddington, NY 13694		Wayland	Wayland, NY 14572		Cuba, NY 14727		-01: -1. A.F.		
	5854 Buttemut Drive E. Syracusø, NY 13057	Phone: 3 Fax: 3	Phone: 315-388-4476 Fax: 315-388-4061		Phone; 5 Fav: 6	Phone: 585-728-3320 Fax: 585-728-3744				ofene martine for the former of the former o		
	Рћопе: 315-445-1105 Езуст 315-445-1304							Turnaround Time	ound Time			
	E								Pre-Authorized			
	Name:	Roger C	Roger Creighton					14 DAY	Next Day* 3-Day*	-Ad	*Additional Charges	arges
	Company:	Synapse						Date Neod	Date Neodod or Shootal Instants	may	įmay apply	
	Street:	Historic	Historic Bennett Warehouse	63	325 East Water Street	street						
	City/State:	Syracuse, NY	e, NY		13202							
	Phone:	475-3700	0	Fax	c 475-3780	780		Authoriza	Authorization or P.O. #			T
	Client Dynamic Edition (0) Synapsenskmanagement, com	ICreighto	n(a)synapse	eriskmanagemer	it.com				DANA 01-07 T02	T02		
			SPDES / S	SPDES / 2200 Bleecker St				LSL Project Number	t Number:			T
	Client's Sample	Samole			Unca, NT	Drenon	100 100					
	Identifications	Date		grab/comp	- Matrix	Added	БО #	containers size/tvne	Analyses	Pre Dre		1
	MAN 2D	inhited	12.2					40 ml	Select VOCs by EPA Method 8260 (cit-		Check LSI	LSL D#
				Grab	≥	РG	2	507	trans-1,2-DCE: TCE; and vinyl chloride)		8	AB
	MW-6R		13:20	Grab	N	I	~	1-Liter Amber	PCBs by EPA Method 8082		4	0
	MW-13A		12,30	Grah	M	IJН	,	40 ml/	Select VOCs by EPA Method 8260 (cis-	S- &	•	
	MW-13A		12:30	4	101	2	4	1-Liter	עמוא- ו, ב-טטבי, ו טבי, מומ אווואו מווואו מוווואם	(a)	8-	£
							-	Amper	PCBs by EPA Method 8082	_	>	ა
	MW-14		11:50	Grab	3	HCI	2	40 mir voa	Select VOCs by EPA Method 8260 (cis- & Irans-1,2-DCE; TCE; and vinyl chloride)	2 - 2 (1)	ŝ	4.B
	MW-14		U;50	Grab	≥	I	1	1-Liter Amber	PCBs by EPA Method 8082		` → 	•
	MW-18		143C	Grab	Š	HCI	2	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- trans-1,2-DCE; TCE: and vinvl chloride)	8-8 (0	604 604	AS
	MW18	-4	2. <u>+</u>]	Grab	X	I	- -	1-Liter Arnber	PCBs by EPA Method 8082		ar (ugunatir	
	101408-24F-1)	Grab	≥	HCI	2	40 mľ/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE; TCE; and vinyl chloride)	8-6 (1)	co, <	Å
	101408-Dup-1		1	Grab	ž	1		1-Liter Amber	PCBs by EPA Method 8082		~>	2 0
	NSMAB MW-GR		13:20	Grab	M	HCI	4	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1,2-DCE: TCE: and vinvi chloride)	5- 8 9_ A	ž	A A
-	MS/WN DSW/SW		13:20	Grab	×	1	5	1-Liter Arnber	PCBs by EPA Method 8082	V	2 2 2	A C
	Trip Blank	-72	00:11		>	下し	2	402Cot			. × §	
	LSL use only:		-	ĥ		Cus	Custody Transfers	nsfers		Date		Pe
			Sampled By: Pelinguished	K Distrikt	Coff			Received By:	٨:	30/H/DI	-	E
	Temp. of samples;		Relinquished By.	ed By:	₽			Received By: Rec'd for Lab By:	M. XXX			
		1	VI DEPENDENT OF THE CHARTER OF THE					Received Intact:	act: Y N / C			-
Sem	Semi-AnnualGW-VOCs&PCBs				IUST be f	illed out in LSL C	order to OC	process sa	record MUST be filled out in order to process samples in a timely manner IN PEN ONLY*** LSL COC	I ONLY***	34.0	

,		
/	LSL	

Brian Macrae Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202 Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: DANA 001-07 TO2

Laboratory Analysis Report For

Synapse Risk Management, LLC

Client Project ID:

2200 Bleeker St. Utica

LSL Project ID: 0818917

Receive Date/Time: 10/15/08 16:10

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab, East Syracuse, NY
 LSL North Lab, Waddington, NY
 LSL Finger Lakes Lab, Wayland, NY
 LSL Southern Tier Lab, Cuba, NY
 LSL MidLakes Lab, Canandaigua, NY
 LSL Brittonfield Lab, East Syracuse, NY

(315) 445-1105 (315) 388-4476 (585) 728-3320 (585) 968-2640 (585) 396-0270 (315) 437-0200 NYS DOH ELAP #10248 PA DEP #68-2556 NYS DOH ELAP #10900 NYS DOH ELAP #11667 NYS DOH ELAP #10760 NYS DOH ELAP #11369 NYS DOH ELAP #10155

This report was reviewed by:

Dauceeue, QA Date: Life Science Laboratories. In

Synapse Risk Management, LLC Syracuse, NY

Sample ID:	Grab				LSL Sample ID:	0818917-0)01
Location:	MW-6R						
Sampled:	10/15/08 14:20	Sampled By: RC					
Sample Matrix:							
Analytical Meth					Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
<i>I)</i> EPA 200.7 Pr	iority Pollutant Metals						
Chromium	•		0.016	mg/l	10/17/08	10/24/08	DP
Copper			< 0.01	mg/l	10/17/08	10/24/08	DF
Lead			0.011	mg/l	10/17/08	10/24/08	DP
Zinc			0.11	mg/l	10/17/08	10/24/08	DP
Sample ID:	Grab				LSL Sample ID:	0818917-0	002
Location:	MW-13A						
Sampled:	10/15/08 14:10	Sampled By: RC					
Sample Matrix:	NPW						
Analytical Meth					Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
<i>I)</i> EPA 200.7 Pr	iority Pollutant Metals						
Chromium	-		< 0.01	mg/l	10/17/08	10/24/08	DF
Copper			< 0.01	mg/l	10/17/08	10/24/08	DF
Lead			< 0.01	mg/l	10/17/08	10/24/08	DF
Zine			0.012	mg/l	10/17/08	10/24/08	DF
Sample ID:	Grab				LSL Sample ID:	0818917-0	003
Location:	MW-14						
Sampled:	10/15/08 14:05	Sampled By: RC					
Sample Matrix:	NPW						
Analytical Meth		·····			Prep	Analysis	Analys
Analyte			Result	Units	Date	Date & Time	Initial
1) EDA 200 7 D.							
1) EPA 200.7 PI	iority Pollutant Metals						
1) EPA 200.7 Pl Chromiun			<0.01	mg/l	10/17/08	10/24/08	
Chromiun Copper			< 0.01	mg/l	10/17/08	10/24/08	DI
Chromiun Copper Lead			<0.01 <0.01	mg/l mg/l	10/17/08 10/17/08	10/24/08 10/24/08	DF DF
Chromiun Copper			< 0.01	mg/l	10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08	DF DF DF
Chromiun Copper Lead Zinc			<0.01 <0.01	mg/l mg/l	10/17/08 10/17/08	10/24/08 10/24/08	DF DF DF
Chromiun Copper Lead Zinc Sample ID:	1		<0.01 <0.01	mg/l mg/l	10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08	DF DF DF
Chromiun Copper Lead Zinc Sample ID: Location:	Grab	Sampled By: RC	<0.01 <0.01 0.014	mg/l mg/l	10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08	DF DF DF
Chromiun Copper Lead Zinc Sample ID: Location: Sampled:	Grab MW-18 10/15/08 14:35	Sampled By: RC	<0.01 <0.01 0.014	mg/l mg/l	10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08	DF DF DF
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix:	Grab MW-18 10/15/08 14:35 NPW	Sampled By: RC	<0.01 <0.01 0.014	mg/l mg/l	10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis	DF DF DF 004 Analys
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix:	Grab MW-18 10/15/08 14:35 NPW	Sampled By: RC	<0.01 <0.01 0.014	mg/l mg/l mg/l -	10/17/08 10/17/08 10/17/08 LSL Sample ID:	10/24/08 10/24/08 10/24/08 0818917- 0	DF DF DF 004 Analys
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth Analyte	Grab MW-18 10/15/08 14:35 NPW	Sampled By: RC	<0.01 <0.01 0.014	mg/l mg/l mg/l -	10/17/08 10/17/08 10/17/08 LSL Sample ID: Prep	10/24/08 10/24/08 10/24/08 0818917-0 Analysis	DI DI 004 Analys Initial
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth Analyte	Grab MW-18 10/15/08 14:35 NPW od	Sampled By: RC	<0.01 <0.01 0.014 Result <0.01	mg/l mg/l - - - - - - - - - - - - - - - - - - -	10/17/08 10/17/08 LSL Sample ID: Prep Date 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis Date & Time 10/24/08	DI DI 004 Analys Initial
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth <u>Analyte</u>	Grab MW-18 10/15/08 14:35 NPW od	Sampled By: RC	<0.01 <0.01 0.014 Result <0.01 <0.01	mg/l mg/l - - - - - - - - - - - - - - - - - - -	10/17/08 10/17/08 LSL Sample ID: Prep Date 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis Date & Time 10/24/08 10/24/08	DI DI 004 Analys Initial DI
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth Analyte 1) EPA 200.7 Pr Chromiun	Grab MW-18 10/15/08 14:35 NPW od	Sampled By: RC	<0.01 <0.01 0.014 Result <0.01 <0.01 <0.01	mg/l mg/l - - - - - - - - - - - - - - - - - - -	10/17/08 10/17/08 LSL Sample ID: Prep Date 10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis Date & Time 10/24/08 10/24/08 10/24/08	DI DI 004 Analys Initial DI DI DI
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth <u>Analyte</u> 1) EPA 200.7 Pr Chromiun Copper	Grab MW-18 10/15/08 14:35 NPW od	Sampled By: RC	<0.01 <0.01 0.014 Result <0.01 <0.01	mg/l mg/l - - - - - - - - - - - - - - - - - - -	10/17/08 10/17/08 LSL Sample ID: Prep Date 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis Date & Time 10/24/08 10/24/08	DF DF DF 004 004 004 0F DF DF DF
Chromiun Copper Lead Zinc Sample ID: Location: Sampled: Sample Matrix: Analytical Meth <u>Analyte</u> (7) EPA 200.7 P: Chromiun Copper Lead	Grab MW-18 10/15/08 14:35 NPW od	Sampled By: RC	<0.01 <0.01 0.014 Result <0.01 <0.01 <0.01	mg/l mg/l - - - - - - - - - - - - - - - - - - -	10/17/08 10/17/08 LSL Sample ID: Prep Date 10/17/08 10/17/08 10/17/08	10/24/08 10/24/08 10/24/08 0818917-0 Analysis Date & Time 10/24/08 10/24/08 10/24/08	DF DF 004 Analys Initial DF DF DF

Life Science Laboratories, Inc.

Page 2 of 3 Date Printed: 10/30/08

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes, (6) LSL Brittonfield

DP

DP

DP

DP

DP

DP

DP

DP

Synapse Risk Management, LLC Syracuse, NY Sample ID: Grab LSL Sample ID: 0818917-005 Location: 101508-Dup-2 Sampled: 10/15/08 0:00 Sampled By: RC Sample Matrix: NPW **Analytical Method** Prep Analysis Analyst Analyte Result Units Date Date & Time Initials (1)EPA 200.7 Priority Pollutant Metals Chromium < 0.01 mg/l 10/17/08 10/24/08 Copper < 0.01 mg/l 10/17/08 10/24/08 Lead < 0.01 mg/l 10/17/08 10/24/08 Zinc 0.024 mg/l 10/17/08 10/24/08 Sample ID: Grab/MS LSL Sample ID: 0818917-006 Location: MW-6R MS Sampled: 10/15/08 14:20 Sampled By: RC Sample Matrix: QC, NPW MS **Analytical Method** Prep Analysis Analyst Analyte <u>Units</u> Result Date & Time Date Initials (1) EPA 200.7 Priority Pollutant Metals Chromium 72 % R 10/17/08 10/24/08 Copper 71 % R 10/17/08 10/24/08 Lead 74 %R 10/17/08 10/24/08 Zinc 70 % R 10/17/08 10/24/08 Sample ID: Grab/MSD LSL Sample ID: 0818917-007 Location: MW-6R MSD Sampled: 10/15/08 14:20 Sampled By: RC Sample Matrix: QC, NPW MSD

Analytical Method <u>Analyte</u>	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 200.7 Priority Pollutant Metals					
Chromium	17	RPD	10/17/08	10/24/08	DP
Copper	18	RPD	10/17/08	10/24/08	DP
Lead	19	RPD	10/17/08	10/24/08	DP
Zinc	16	RPD	10/17/08	10/24/08	DP

				SCIE	ence	Labo	-ITE SCIENCE Laboratorie	<u>le</u>			ţ
		-	5	CHAIN (DF CUS	TODY	OF CUSTODY RECORD	۵	0818917		r s
	131 St. Lav	Lak Norun Lab. 131 St. Lawrence Ave.		LSL Fing	LSL Finger Lakes Lab. 16 N Main St DO Days 202		LSL Southerr		SynapseRiskManage		
LSL Central Lab.	Waddingto	Waddington, NY 13694		Wavland.	Wavland, NY 14572	X 424	30 East Main		ρ I		
5854 Butternut Drive E. Svracuse NV 13057	Phone: 31	Phone: 315-388-4476		Phone: 5	Phone: 585-728-3320		Cuba, NT 14/2/ Phone: 585-968-2640	4/2/ -968-2640	Dhonor For Fri For	1	
Phone: 315-445 1105	rax: 31	J15-388-4061		Fax: 5	585-728-2711		Fax: 585	585-968-2640	FILUTE: 363-354/ Fax: 585-554-6743		
Fax: 315-445-1301							Turnaround Time	nd Time			
Report Address:							Normal	Pre-Authorized			
Name:	Roger Creighton	eighton						Next Day*	☐ 3-Day * □	*Addition	*Additional Charges
Company:	Synapse	Risk Mana	Synapse Risk Management 11 C					:2-Day *	7-Day*	may apply	~
Street:	Historic B	ennett Wa	Historic Bennett Warehouse 325 East Water Street	st Water S	traat		Uate Need	Date Needed or Special Instructions:	structions:		
City/State:	Syracuse, NY	, NY	Zip:	or 13202	תכנו						
Phone:	475-3700		Fax:	c 475-3780	80		Authoriza	Authorization or P.O. #			
Client Project ID/Client Site ID		rcreighton(rcreighton@synapseriskmanagement.com	inagement	com				DANA 001-07 T02		
		SPDES / 2	SPDES / 2200 Bleecker St 11tica	Litica NV			LSL Projec	LSL Project Number:			
Client's Sample	Sample	Sample	Tvne		Drocort	Ċ					
Identifications	Date	Time	grab/comp	Matrix	Added	# Con	Containers size/type		Analyses	Preserv	
MW-6R	20/21/01	14:20				ŧ	500-ml	Metals by EPA I	Metals by EPA Method 200 Series	Check	TSL ID#
		2	Grab	≥	HNO ₃		plastic	(Cr, Cu, Pb, Zn)			Ŕ
MW-13A		0:41	Grab	≥	HNO ₃	1	500-ml plastic	(Cr, Cu, Pb, Zn)	Metals by EPA Method 200 Series (Cr, Cu, Pb, Zn)		6
MW-14		14:05 205	Grab	×	HNO ₃		500-ml plasfic	Metals by EPA N (Cr, Cu, Pb, Zn)	Metals by EPA Method 200 Series (Cr, Cu, Pb. Zn)		8~
MW-18		itizs	Grab	M	HNO3	-	500-ml	Metals by EPA N	Vietals by EPA Method 200 Series		
Dup-1-107508-040-2		1	Grah	3	CNH		500-ml	Metals by EPA N	Wetals by EPA Method 200 Series		51
Act of the second se					5	-	plastic	(Cr, Cu, Pb, Zn)			~
MS/MSD MW-OK	-2	225	Grab	≥	HNO ₃	2	500-ml plastic	(Cr, Cu, Pb, Zn)	Metals by EPA Method 200 Series (Cr, Cu, Pb, Zn)		<u> </u>
											(Jul 1 d
LSL use only:					Cust	Custody Transfers	sfers				
	<u>in n</u>	Sampled By:	erst is	here			Received Bv:			Date	Time
Temp. of samples:	20	Relinquished By:		Ŧ			Received By:		(22/21/01	1612
പ്	<u>」</u> の	Shipment Method:	ethod:	۲V			Rec'd for Lab By:	ab By:	X	and the second s	
Somi Aminication areas	of this Ch	ain of Cu	stody Record M	UST be fil	led out in	order to p	process sample	act: Y N mnles in a time!	*** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely monoce M BEN CAN Your	****	
oerni-AnnuaiGVV-IMetais	tais				LSL COC	2			y manner in PEN ONL	Y 2.0 2	2.0 Ents

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202 RECEIVED MAY 1 6 2008

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO #DANA 01-07 T02

Laboratory Analysis Report

For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0806652

Receive Date/Time: 04/29/08 16:00

Project Received by: KV

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. Expectally for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sample(s) used to the performed.

Life Science Laboratories, Inc.

LSL Central Lab, East Syracuse, NY
 LSL North Lab, Waddington, NY
 LSL Finger Lakes Lab, Wayland, NY
 LSL Southern Tier Lab, Cuba, NY
 LSL MidLakes Lab, Canandaigua, NY
 LSL Brittonfield Lab, East Syracuse, NY

(315) 445-1105 (315) 388-4476 (585) 728-3320 (585) 968-2640 (585) 396-0270 (315) 437-0200 NYS DOH ELAP #10248 PA DEP #68-2556 NYS DOH ELAP #10900 NYS DOH ELAP #11667 NYS DOH ELAP #10760 NYS DOH ELAP #11369 NYS DOH ELAP #10155

This report was reviewed by:

Life Science Laboratories, Inc.

A copy of this report was sent to:

LSL Sample ID:

0806652-001

5/1/08

BD

Synapse Risk Management, LLC Syracuse, NY

Sample ID: MW-6R

Location:

Sampled: 04/29/08 13:35

Sampled By: RC

Sample Matrix: NPW

Surrogate (4-BFB)

Analytical		n v	T T •/		Prep	Analysis	Analyst
	nalyte	Result	Units		Date	Date & Time	Initials
(1) EPA 8	082 PCB's						
Ar	oclor-1016	<0.1	ug/l		5/1/08	5/2/08	KIS
Ar	oclor-1221	<0.1	ug/l		5/1/08	5/2/08	KIS
	oclor-1232	<0.1	ug/l		5/1/08	5/2/08	KIS
	oclor-1242	<0.1	ug/l		5/1/08	5/2/08	KIS
	oclor-1248	<0.1	ug/l		5/1/08	5/2/08	KIS
	oclor-1254	<0.1	ug/l		5/1/08	5/2/08	KIS
	oclor-1260	<0.1	ug/l		5/1/08	5/2/08	KIS
	rrogate (DCB)	97	%R		5/1/08	5/2/08	KIS
(1) EPA 8.	260B TCL Volatiles						
tra	ns-1,2-Dichloroethene	<1	ug/l			5/1/08	BD
cis	-1,2-Dichloroethene	<1	ug/l			5/1/08	BD
	ichloroethene	<1	ug/l			5/1/08	BD
	nyl chloride	<1	ug/l			5/1/08	BD
	rrogate (1,2-DCA-d4)	94	%R			5/1/08	BD
	rrogate (Tol-d8)	96	%R			5/1/08	BD
Su	rrogate (4-BFB)	97	%R			5/1/08	BD
				LOLO	1 10	000/// 20 /	100
Sample ID): MW-13A			LSL Sar	nple ID:	0806652-0	J02
Sample ID Location:): MW-13A			LSL Sai	nple ID:	0806652-0	J02
Sample ID Location: Sampled:	04/29/08 12:25	Sampled By: RC		LSL Sai	nple ID:	0806652-0	JU2
Location: Sampled:		Sampled By: RC		LSL Sai	nple ID:	0806652-(JU2
Location: Sampled:	04/29/08 12:25 atrix: NPW			LSL Sai	Prep	Analysis	Analyst
Location: Sampled: Sample M Analytical	04/29/08 12:25 atrix: NPW	Sampled By: RC Result	Units	LSL Sai	-		
Location: Sampled: Sample M Analytical	04/29/08 12:25 (atrix: NPW		Units		Prep	Analysis	Analyst
Location: Sampled: Sample M Analytical Ar (1) EPA 80	04/29/08 12:25 Tatrix: NPW I Method nalyte		<u>Units</u> ug/l		Prep	Analysis	Analyst
Location: Sampled: Sample M Analytical Ar (1) EPA 80 Ar	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's	Result			Prep Date	Analysis Date & Time	Analyst Initials
Location: Sampled: Sample M Analytical (1) EPA 80 Arc Arc	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016	<0.1	ug/l		Prep Date 5/1/08	Analysis Date & Time 5/2/08	Analyst Initials KIS
Location: Sampled: Sample M Analytical Art (1) EPA 80 Art Art	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221	Contemporation (1997) Contemporatio	ug/l ug/l		Prep Date 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08	Analyst Initials KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 80 Arc Arc Arc	04/29/08 12:25 Tatrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232	<0.1 <0.1 <0.1 <0.1	ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS
Location: Sampled: Sample M Analytical Art Art Art Art Art	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 80 Art Art Art Art Art	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248	Contemporaria (0.1) <0.1	ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 80 Are Are Are Are Are Are	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248 oclor-1254	Contemporation (1997) <0.1	ug/l ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 80 Are Are Are Are Are Sur	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248 oclor-1254 oclor-1260	Result <0.1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 80 Art Art Art Art (1) EPA 82 (1) EPA 82	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248 oclor-1254 oclor-1254 oclor-1254 oclor-1260 rrogate (DCB) 260B TCL Volatiles	Result <0.1	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS KIS
Location: Sampled: Sample M Analytical (1) EPA 8(Art Art Art Art (1) EPA 82 (1) EPA 82 tra	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1232 oclor-1248 oclor-1254 oclor-1254 oclor-1260 rrogate (DCB)	Contemporation of the second secon	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS KIS BD
Location: Sampled: Sample M Analytical (1) EPA 80 Are Are Are Are Are Construction (1) EPA 82 tra ciso	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248 oclor-1254 oclor-1254 oclor-1260 rrogate (DCB) 260B TCL Volatiles ins-1,2-Dichloroethene	Contemporation of the second secon	ug/l ug/l ug/l ug/l ug/l ug/l %R ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD
Location: Sampled: Sample M Analytical Art (1) EPA 80 Art Art Art (1) EPA 82 tra cis- Tri	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1232 oclor-1248 oclor-1254 oclor-1255 oclor-1256 oc	Result <0.1	ug/l ug/l ug/l ug/l ug/l ug/l %R ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS
Location: Sampled: Sample M Analytical Art (1) EPA 80 Art Art Art (1) EPA 82 Sun (1) EPA 82 tra cis- Tri Vin	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1242 oclor-1248 oclor-1254 oclor-1254 oclor-1254 oclor-1260 rrogate (DCB) 260B TCL Volatiles ins-1,2-Dichloroethene -1,2-Dichloroethene ichloroethene nyl chloride	Result <0.1	ug/l ug/l ug/l ug/l ug/l ug/l vg/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD BD BD BD
Location: Sampled: Sample M Analytical (1) EPA 80 Are Are Are Are Sum (1) EPA 82 tra cis- Tri Vin Sum	04/29/08 12:25 (atrix: NPW I Method nalyte 082 PCB's oclor-1016 oclor-1221 oclor-1232 oclor-1232 oclor-1248 oclor-1254 oclor-1255 oclor-1256 oc	Contemporation of the second secon	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		Prep Date 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08 5/1/08	Analysis Date & Time 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08 5/2/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD BD

98 %R

Synapse Risk Management, LLC Syracuse, NY

Sample ID:

Location:

Sampled: 04/29/08 11:30

Sampled By: RC

Sample Matrix: NPW

MW-14

Analytical Method			Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082 PCB's					
Aroclor-1016	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1221	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1232	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1242	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1248	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1254	<0.1	ug/l	5/1/08	5/2/08	KIS
Aroclor-1260	<0.1	ug/l	5/1/08	5/2/08	KIS
Surrogate (DCB)	102	%R	5/1/08	5/2/08	KIS
D EPA 8260B TCL Volatiles					
trans-1,2-Dichloroethene	<1	ug/l		5/1/08	BD
cis-1,2-Dichloroethene	<1	ug/l		5/1/08	BD
Trichloroethene	<1	ug/l		5/1/08	BD
Vinyl chloride	<1	ug/l		5/1/08	BD
Surrogate (1,2-DCA-d4)	94	%R		5/1/08	BD
Surrogate (Tol-d8)	95	%R		5/1/08	BD
Surrogate (4-BFB)	95	%R		5/1/08	BD
Sample ID: MW-18			LSL Sample ID:	0806652-0)04
Location:			-		

RC

Sampled: 04/29/08 14:25	Sampled By:
-------------------------	-------------

Sample Matrix: NPW

Analytical Method			Prep	Analysis	Analys
Analyte	Result	Units	Date	Date & Time	Initial
1) EPA 8082 PCB's			· · · · · · · · · · · · · · · · · · ·		
Aroclor-1016	<0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1221	<0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1232	<0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1242	<0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1248	< 0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1254	<0.1	ug/l	5/5/08	5/6/08	KIS
Aroclor-1260	<0.1	ug/l	5/5/08	5/6/08	KI
Surrogate (DCB)	114	%R	5/5/08	5/6/08	KI
EPA 8260B TCL Volatiles					
trans-1,2-Dichloroethene	<1	ug/l		5/4/08	BL
cis-1,2-Dichloroethene	<1	ug/l		5/4/08	BI
Trichloroethene	<1	ug/l		5/4/08	BI
Vinyl chloride	15	ug/l		5/4/08	BI
Surrogate (1,2-DCA-d4)	98	%R		5/4/08	BI
Surrogate (Tol-d8)	98	%R		5/4/08	BI
Surrogate (4-BFB)	100	%R		5/4/08	BI

LSL Sample ID:

0806652-003

LSL Sample ID:

Synapse Risk Management, LLC Syracuse, NY

Sample ID: 042908-Duplicate

04/29/08 0:00

Location:

Sampled:

Sampled By: RC

Sample Matrix: QC, NPW

Analytical Method <u>Analyte</u>	Result	Units		Prep Date	Analysis Date & Time	Analys Initial
(1) EPA 8082 PCB's						<u>Antida</u>
Aroclor-1016	<0.1	ug/l		5/5/08	5/6/08	710
Aroclor-1221	<0.1	ug/l		5/5/08	5/6/08	KIS KIS
Aroclor-1232	<0.1	ug/l		5/5/08	5/6/08	KIS
Aroclor-1242	<0.1	ug/l		5/5/08	5/6/08	KI
Aroclor-1248	<0.1	ug/l		5/5/08	5/6/08	KI
Aroclor-1254	< 0.1	ug/l		5/5/08	5/6/08	KI
Aroclor-1260	<0.1	ug/l		5/5/08	5/6/08	KIS
Surrogate (DCB)	111	%R		5/5/08	5/6/08	KIS
(1) EPA 8260B TCL Volatiles				ĸ		
trans-1,2-Dichloroethene	<1	ug/l			5/4/08	BD
cis-1,2-Dichloroethene	<1	ug/l			5/4/08	BE
Trichloroethene	<1	ug/l			5/4/08	BE
Vinyl chloride	15	ug/l			5/4/08	BD
Surrogate (1,2-DCA-d4)	98	%R			5/4/08	BD
Surrogate (Tol-d8)	98	%R			5/4/08	BD
Surrogate (4-BFB)	101	%R			5/4/08	BD
Sample ID: MW-6R Matrix Spike			LSL Sample	ID.	0806652-0)06
Sample ID. MIN-OK Matrix Spike			Lou Sample	11.	0000034-0	<i></i>
Location:			LSL Sample	1.	0000032-0	/00
-	v: RC		LSL Sample	12.		00
Location:	v: RC					
Location: Sampled: 04/29/08 13:35 Sampled By	v: RC		-			
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW	7: RC Result	Units	P	rep Date	Analysis Date & Time	Analyst
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method		Units	P	rep	Analysis	Analyst
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u>		Units	P	rep Date	Analysis Date & Time	Analyst Initials
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's		Units	P	7rep Date 5/5/08	Analysis Date & Time 5/6/08	Analyst Initials KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> D EPA 8082 PCB's Aroclor-1016		Units	P	rep Date	Analysis Date & Time 5/6/08 5/6/08	Analyst Initials KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> D EPA 8082 PCB's Aroclor-1016 Aroclor-1221		Units	P	2 rep Date 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232		Units %R	P	5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	Result		P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1248	Result		P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	Result		P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> () EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	Result 136	%R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Surrogate (DCB)	Result 136 124	%R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Surrogate (DCB)	Result 136 124 99	%R %R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS KIS BD
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> () EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Surrogate (DCB)) EPA 8260B TCL Volatiles trans-1,2-Dichloroethene	Result 136 124 99 102	%R %R %R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1222 Aroclor-1242 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Surrogate (DCB)) EPA 8260B TCL Volatiles trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Vinyl chloride	Result 136 124 99 102 98	%R %R %R %R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08	Analyst Initials KIS KIS KIS KIS KIS KIS BD BD BD
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Surrogate (DCB) EPA 8260B TCL Volatiles trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Vinyl chloride Surrogate (1,2-DCA-d4)	Result 136 124 99 102 98 75	%R %R %R %R %R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/4/08 5/4/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD BD BD
Location: Sampled: 04/29/08 13:35 Sampled By Sample Matrix: QC, NPW Analytical Method <u>Analyte</u> U EPA 8082 PCB's Aroclor-1016 Aroclor-1221 Aroclor-1222 Aroclor-1242 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Surrogate (DCB)) EPA 8260B TCL Volatiles trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Vinyl chloride	Result 136 124 99 102 98 75 102	%R %R %R %R %R %R	P	5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08 5/5/08	Analysis Date & Time 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/6/08 5/4/08 5/4/08 5/4/08	Analyst Initials KIS KIS KIS KIS KIS KIS KIS BD BD BD

Life Science Laboratories, Inc.

0806652-005

Page 4 of 5

Synapse Risk Management, LLC Syracuse, NY

Sampled By: RC

MW-6R Matrix Spike Duplicate

04/29/08 13:35

LSL Sample ID:

Sample ID: Location:

Sampled:

Sample Matrix: QC, NPW

Analytical Method Prep Analysis Analyst Analyte Result Units Date Date & Time Initials (1) EPA 8082 PCB's Aroclor-1016 5/5/08 5/6/08 KIS Aroclor-1221 5/5/08 5/6/08 KIS Aroclor-1232 5/5/08 5/6/08 KIS Aroclor-1242 5/5/08 5/6/08 KIS Aroclor-1248 9 RPD 5/5/08 5/6/08 KIS Aroclor-1254 5/5/08 5/6/08 KIS Aroclor-1260 5/5/08 5/6/08 KIS Surrogate (DCB) 102 %R 5/5/08 5/6/08 KIS (1) EPA 8260B TCL Volatiles trans-1,2-Dichloroethene RPD 2 5/4/08 BD cis-1,2-Dichloroethene <1 RPD 5/4/08 BD Trichloroethene 1 RPD 5/4/08 BD Vinyl chloride 3 RPD 5/4/08 BD Surrogate (1,2-DCA-d4) 103 %R 5/4/08 BD Surrogate (Tol-d8) 99 %R 5/4/08 BD Surrogate (4-BFB) 97 %R 5/4/08 BD Sample ID: **Trip Blank** LSL Sample ID: 0806652-008 Location: Sampled: 04/29/08 0:00 Sampled By: Sample Matrix: TB **Analytical Method** Prep Analysis Analyst Analyte Result Units Date Date & Time Initials EPA 8260B TCL Volatiles (1) trans-1,2-Dichloroethene <1 ug/l 5/1/08 BD cis-1.2-Dichloroethene <1 ug/l 5/1/08 BD Trichloroethene <1 ug/l 5/1/08 BD Vinyl chloride <1 ug/l 5/1/08 BD Surrogate (1,2-DCA-d4) 94 %R 5/1/08 BD Surrogate (Tol-d8) 95 %R 5/1/08 BD Surrogate (4-BFB) 96 %R 5/1/08 BD

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

Method	<u>Surrogate(s)</u>	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	ТСМХ	80.400	
EPA 508	DCB	80-120	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4, 4-BFB	70-130	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	80-120	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	70-130	NA
EPA 552.2	2,3-DBPA	80-120	NA
		70-130	NA
EPA 601	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	
EPA 602	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol		NA
EPA 625, BN	Nitrobenzene-d5	10-123 35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
		33-141	NA
EPA 8010	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70 400
EPA 8020	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX, DCB	30-150	70-130
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-150
EPA 8260	1,2-DCA-d4, Tol-d8, 4-BFB	70-130	30-120
EPA 8270, AE	2-Fluorophenol	21-110	70-130
EPA 8270, AE	Phenol-d5	10-110	25-121
EPA 8270, AE	2,4,6-Tribromophenol	10-123	24-113
EPA 8270, BN	Nitrobenzene-d5	35-114	19-122
EPA 8270, BN	2-Fluorobiphenyl	43-116	23-120
EPA 8270, BN	Terphenyl-d14	33-141	30-115
		00-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40 440
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	40-110
DOH 313-4	DCB	NA	50-150 20.150
8015M_GRO	4-BFB	50-150	30-150
8015M_DRO	Terphenyl-d14	50-150	50-150
			50-150

ug/l = microgram per liter
ug/kg = microgram per kilogram
mg/l = milligram per liter
mg/kg = milligram per kilogram
%R = Percent Recovery

$\left(\left(\right) \right)$		LST	1
	1		

Life Science Laboratories, Inc.

				J	CHAIN (DF CUS	ТОРУ	CHAIN OF CUSTODY RECORD			N0909000	i[]vd]
)	LSL North Lab.	LSL North Lab.		LSL Fing	LSL Finger Lakes Lab.		LSL South	LSL Southern Tier Lah		Sunansen jelehrane.	
-	LSL Central Lab.	Wadding	131 St. Lawrence Ave. Waddington NV 13504	-	16 N. Ma	16 N. Main St., PO Box 424	x 424	30 East Main St	in St.	e oner d'a sur	TATMONTAL A	
17	5854 Butternut Drive	Phone: 3	Phone: 315-388-4476	_	Wayland	Wayland, NY 14572		Cuba, NY 14727	4727	Middlesex. NY 145n7	21	
ш	E. Syracuse, NY 13057	Fax: 3	315-388-4061		Phone: {	Phone: 585-728-3320 Eav: 585-720 3344		ä	5-968-2640	Phone: 585-554-5347	47	
ц	8					1117-07 1-000		Fax: 58	585-968-2640	Fax: 585-554-6743	43	
- <u>L</u>	Fax: 315-445-1301							I urnaround Time	nd Time			ſ
<u> </u>	Report Address;								Pre-Authorized			
<u> </u>	Name:	Roger (Roger Creighton						Next Day*	3-Day *	*Additional	Charges
	Company:	Synapse	Ø							7-Day*	imay apply)
	Street:	Historic	Bennett Wa	Historic Bennett Warehouse 325 East Water Street	ist Water S	Street			Date Needed of Special Instructions:	uctions:		
	Ulty/State:	Syracuse, NY	ie, NΥ	Z.	Zip: 13202	5						
	Frione:	475-3700	9		x: 475-3780	80		Authoriza	Authorization or D O #			
10	Client Project ID/Client Site ID	ito ID	rcreignton@synapserisk	eriskmanagement.com	<u>nt.com</u>				* 'O' - I O 100	DANA 01-07 TO2		
			SPDES / 2200	200 Blaackar Ct	I Hipo NV			LSL Proje	-SL Project Number:	701 10 10 30 10	a kantakan dan sana sana sana sana sana	The second second second
	Client's Sample	Sample		Tyne	, Ullca, N	- 1		A PART STATISTICS				
	Identifications	Date		arah/comp	Matrix	Preserv.	Ū C	Containers	Ana	Analyses	Preserv	
, an los	4	691	-	dunation	INIGUIX	Added	#	size/type			Check	LSL ID#
	MW-6R ASHADD	1124/08		Grab	M	HCI	2	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- trans-1 2-DCF: TCE: and vind othered	Method 8260 (cis- &		
<u>≥</u> ⊘	MW-GR AS AS		13,35	Grab	N	ł	·	1-Liter Amber				Τ
002 A B M	MW-13A		12:25	4 1 (40 ml/	Process by EFA Method 8082 Select VOCs by FPA Method 8260 /cia	8082 Mathod 8260 /ain _e		
ـــــــــــــــــــــــــــــــــــــ			}	Grab	≥	Ę	2	voa	trans-1,2-DCE; TCE; and vinyl chloride)	ind vinyl chloride)		
7	MW-13A		52:71	Grab	≥	1	1	I-Liter Amber	PCBs bv EPA Method 8082	8082		
O azAB M	MW-14		11:30	Grab	8	ЮН	ć	40 ml/ voa	Select VOCs by EPA Method 8260 (cis-	Aethod 8260 (cis- &		
A C IM	MM/_1 M	attan attan	11- 25				1	1-Liter	trans-1,2-DCE; TCE; and vinyl chloride)	nd vinyl chloride)		
)	N- 14		0, , , ,	Grab	≥	ł	-	Amber	PCBs by EPA Method 8082	8082		
COTAB MW-18	N-18		22:41	Grab	V	ЧĊ	7	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1 2 DCE: TCE.	1ethod 8260 (cis- &		
€ C MV	MW-18	un training	14.20					1-Liter		nd vinyl chloride)		
			3	Grab	≥	,	, -	Amber	PCBs by EPA Method 8082	3082		
£	Jul-601-70	_		Grab	M	HCI	2	40 ml/ voa	Select VOCs by EPA Method 8260 (cis- & trans-1 2-DCE- TCE- 2.	lethod 8260 (cis- &		
い う テ	042908-Dup			Grah	Ŵ		,					
	MUER me				3		-	Amber 40 ml/	PCBs by EPA Method 8082	3082		
- Leven	· •	tenne time		Grab	≥	Ę	4		Select VOCs by EPA Method 8260 (cis- trans-1,2-DCE; TCE: and vinvl chloride)	ethod 8260 (cis- & id vinvl chloride)		
007ABUMS	DDTABLANSAM MUN 6R M2			Grab	8	!	2	1-Liter Amber				
COR AB Trip Blank	Blank	-}								082		7
TSL TSL	LSL use only:											
		101	Sampled Bv-		4	Cust	Custody Transfers	sfers			Date .	Time
		<u> </u>	Relinquished By					Received By:				NC S
Tem	Temp. of samples:		Relinquished By					Received By: Rec'd for I ob Bui				
lion			Shipment Method	thod: V				Received Intact	D DY: EMD / /	04-29-0	8 15:00	1138
Semi-Ani	Semi-AnnualGW-VOC & DOB	of this C	hain of Cus	tody Record M	UST be fil	led out in c	order to p	rocess sar	y Record MUST be filled out in order to process samples in a timely more the process samples in a timely more the process		6 0C	
						LSL COC	د		upres m a unicity me	AUNEL IN PEN UNL	8	ie.

Roger Creighton Synapse Risk Management, LLC 325 East Water Street Syracuse, NY 13202 RECEIVED MAY 2 1 2008

Phone: (315) 475-3700 FAX: (315) 475-3780 Authorization: PO #DANA 001-07 T02

Laboratory Analysis Report

For

Synapse Risk Management, LLC

Client Project ID:

SPDES / 2200 Bleecker St., Utica, NY

LSL Project ID: 0806747

Receive Date/Time: 04/30/08 16:18

Project Received by: KV

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if

Life Science Laboratories, Inc.

(1) LSL Central Lab, East Syracuse, NY
 (2) LSL North Lab, Waddington, NY
 (3) LSL Finger Lakes Lab, Wayland, NY
 (4) LSL Southern Tier Lab, Cuba, NY
 (5) LSL MidLakes Lab, Canandaigua, NY
 (6) LSL Brittonfield Lab, East Syracuse, NY

(315) 445-1105 (315) 388-4476 (585) 728-3320 (585) 968-2640 (585) 396-0270 (315) 437-0200

NYS DOH ELAP #10248 PA DEP #68-2556 NYS DOH ELAP #10900 NYS DOH ELAP #11667 NYS DOH ELAP #10760 NYS DOH ELAP #11369 NYS DOH ELAP #10155

This r	eport w	vas rev	iewed	by:
--------	---------	---------	-------	-----

Life Science Laboratories, Inc.

Pallelle , OT Date:

A copy of this report was sent to:

Synapse Risk Management, LLC Syracuse, NY

Sample ID: Location:	MW-6R				LSL Sample ID:	0806747-	001
Sampled: Sample Matrix:	04/30/08 13:45 NPW	Sampled By: SM					
Analytical Meth Analyte	od		Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 6010 Par	rtial List of Metals						
Zinc Lead			0.020 <0.01	mg/l mg/l	5/1/08 5/1/08	5/8/08 5/8/08	DP DP
Copper Chromium			<0.01 <0.01	mg/l mg/l	5/1/08 5/1/08	5/8/08 5/8/08	DP DP DP

Synapse Risk Management, LLC Syracuse, NY

Sample ID:	MW-13A				LSL Sample ID:	0806747-	002
Location:							
Sampled:	04/30/08 12:45	Sampled By: SM					
Sample Matrix:	NPW						
Analytical Meth	od		D 1/	TT • /	Prep	Analysis	Analyst
Analyte			Result	Units	Date	Date & Time	Initials
(1) EPA 6010 Pa	rtial List of Metals						
Zinc			0.019	mg/l	5/1/08	5/8/08	DP
Lead			< 0.01	mg/l	5/1/08	5/8/08	DP
Copper			< 0.01	mg/l	5/1/08	5/8/08	DP
Chromium	I		< 0.01	mg/l	5/1/08	5/8/08	DP

Synapse Risk Management, LLC Syracuse, NY

Sample ID: Location:	MW-14			LSL Sample ID:	0806747-	003
Sampled: Sample Matrix:	04/30/08 13:00 NPW	Sampled By: SM				
Analytical Metho Analyte		Result	Units	Prep Date	Analysis Date & Time	Analys Initials
 <i>I</i>) EPA 6010 Par Zinc Lead Copper Chromium 	tial List of Metals	0.021 <0.01 <0.01 <0.01	mg/l mg/l mg/l mg/l	5/1/08 5/1/08 5/1/08 5/1/08	5/8/08 5/8/08 5/8/08 5/8/08	DP DP DP DP

Synapse Risk Management, LLC Syracuse, NY

 Sample ID:
 MW-18
 LSL Sample ID:
 0806747-004

 Location:
 Sampled:
 04/30/08 13:15
 Sampled By: SM

 Sample Matrix:
 NPW
 Prep
 Analysis

 Analytical Method
 Prep
 Analysis
 Analysis

Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 6010 Partial List of Metals Zinc Lead Copper Chromium	0.024 <0.01 <0.01 <0.01	mg/l mg/l mg/l mg/l	5/1/08 5/1/08 5/1/08 5/1/08	5/8/08 5/8/08 5/8/08 5/8/08	DP DP DP DP

Synapse Risk Management, LLC Syracuse, NY

0806747-005 LSL Sample ID: Dup-1 Sample ID: Location: Sampled By: SM 04/30/08 0:00 Sampled: Sample Matrix: QC, NPW Analyst Analysis Prep Analytical Method Initials Date & Time Date Result Units Analyte

Analyte				
(1) EPA 6010 Partial List of Metals Zinc Lead Copper Chromium	0.024 mg/l <0.01 mg/l <0.01 mg/l <0.01 mg/l	5/1/08 5/1/08 5/1/08 5/1/08	5/8/08 5/8/08 5/8/08 5/8/08	DP DP DP DP

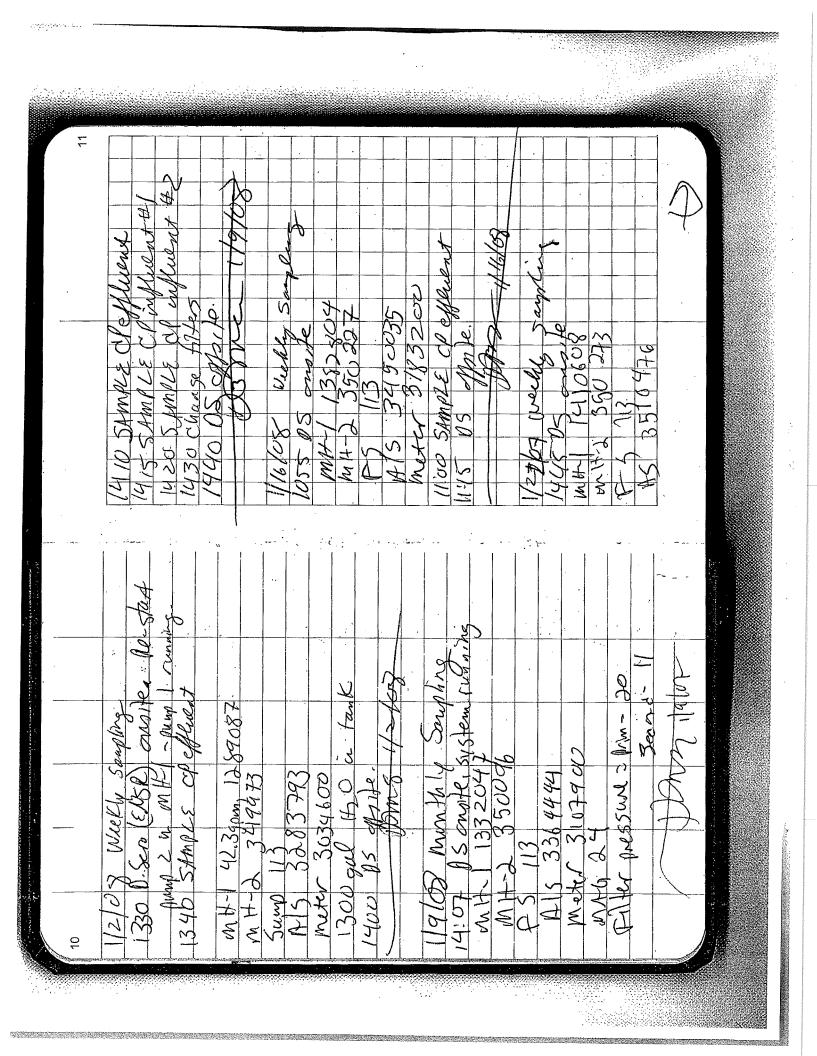
Syracuse, NY Synapse Risk Management, LLC

0806747-006 LSL Sample ID: **MW-6R Matrix Spike** Sample ID: Location: Sampled By: SM 04/30/08 13:45 Sampled: Sample Matrix: QC, NPW Analyst Analysis Prep **Analytical Method** Date & Time Initials Date Units Result Analyte EPA 6010 Partial List of Metals $\overline{(1)}$ DP 5/8/08 5/1/08 100 %R DP Zinc 5/8/08 5/1/08 %R 110 DP Lead 5/8/08 5/1/08 100 %R DP Copper 5/8/08 5/1/08 %R 120 Chromium

Synapse Risk Management, LLC Syracuse, NY

0806747-007

Sample ID:	MW-6R Matrix Spi	ke Duplicate			LSL Sample ID:		0800747-0	07
Location: Sampled:	04/30/08 13:45	Sampled By: SM						
Sample Matrix: Analytical Metho Analyte			Result	Units	Prep Date		Analysis Date & Time	Analyst Initials
	rtial List of Metals		<1 <1 <1 <1	RPD RPD RPD RPD	5/1 5/1	1/08 1/08 1/08 1/08	5/8/08 5/8/08 5/8/08 5/8/08	DP DP DP DP


minomeses, nv 1450 v minomeses, nv 1450 v pay 585-554-5743 fax: 585-554-5743 fax: 585-554-5743 muthorized 3-Day * bay* 3-Day * pay* 7-Day* pay* 0 pay* 0 pay* 0 part 0 part 0 cu, pb, zn) 0 sis by EPA Method 5000 Series 0 cu, pb, zn) 0 sis by EPA Method 5000 Series 0 cu, pb, zn) 0 sis by EPA Method 5000 Series 0 cu, pb, zn) 0 sis by EPA Method 5000 Series 0 cu, pb, zn) 0 sis by EPA Method 5000 Series 0				Life Sci chain		custo	abor: DY RE	E Science Laboratories, CHAIN OF CUSTODY RECORD	s, Inc.	090 SyntyseR	0806747 SynapseRiskManage	
Lumenter Ane Waymaru, M. 1472 Cuina. 1472 Cuina. 1472 Pione: 854-733 T Pione: 854-847 T <		LSL North La	ab.		SL Finger L	akes Lab. + PO Box 42	44 1 6	SL Southern 0 East Main 9	Tier Lab. St.	ં	Ĭ)	
Hour 1984 For a stand of the set of the se		131 St. Lawr	ence Ave.	- >	V N Duelvel	14572		uba, NY 147	27	WIDDIESEX, NY 14-DU		
Instruction Fax. 585-728-7714 Fax. 572-7714 Fax. 572-7729 Fax. 572-7714 Fax. 572-7729 Fax. 77-729		Waddington	, NY 13694		hone: 585-7	728-3320		hone: 585-9	58-2640	ë	. 6	
Image in the second limit is the subtroff and interaction in the subtroff and interaction interactine interaction		Phone: 315-	388-4470 388-4061		ax: 585-7	728-2711	Ψ.[ax: 585-9	68-2640			
er Creighton er C								Turnaroun	1 Time Pre-Authorized	[, Portor
IX ::2.Day* IX IX IX </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ì</td> <td>14 DAY</td> <td>Next Day*</td> <td>3-Day *</td> <td>*Additional</td> <td>Ullalyes</td>							Ì	14 DAY	Next Day*	3-Day *	*Additional	Ullalyes
Person Date Needed of Special Instructions. Present Warehouse 325 East Water Street. Date Needed of Special Instructions. Present Warehouse 325 East Water Street. Authorization of P.O.# Date Needed of Special Instruction. ZFO. Authorization of P.O.# Authorization of P.O.# Date Needed of Special Instruction. East. <u>475-3780</u> Authorization of P.O.# Authorization of P.O.# Date Needed of Special Instruction. Est. <u>475-3780</u> Authorization of P.O.# Date Needed of Special Instruction. SpDEs / 2200 Bleecker St, Utica, NY Est. <u>475-3780</u> Date Needed of Special Instruction. Date Needed of Special Instruction. SpDEs / 2200 Bleecker St, Utica, NY Analyses Reading and the special Instruction of DOU Series Check List Dout of Time Time Jappe Sample Size (Cr. Cu, Pb, Zn) Authorization of DOU Series Check List Down W HNOs 1 Bastic Cr. Cu, Pb, Zn) Down W HNOs 1 Bastic Cr. Cu, Pb, Zn) Down W HNOs 1 Bastic Cr. Cu, Pb, Zn) Down W HNOs 1 Bastic Cr. Cu, Pb, Zn) Down W HNOs 1 Bastin Cr. Cu, Pb, Zn) <t< td=""><td></td><td></td><td>inhton</td><td></td><td></td><td></td><td></td><td>X</td><td>2-Day *</td><td></td><td></td><td></td></t<>			inhton					X	2-Day *			
Procession Authorization or P.O. # DANA 001-0/TO2 200 210 232 2300 200 210 232 2300 200 1300 1300 1300 200 1345 61ab W 210 1345 61ab W 220 1345 61ab W 220 1345 61ab W 220-30 1345 61ab W 24ab W 100.3 500-40 <			Dick Manad	ement LLC				Date Need	ed or Special Inst	ructions.		
Couldse, NV Znb Call Data		Historic Bt	ennett War	ehouse 325 East V	Vater Stre	set						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Syracuse,	۲Ň	'	132U2 475-3780			Authorizat	ion or P.O. #		ç	
International and the server interval and the server in		475-3700	9	Lav.		L MO				DANA 001-07 10	7	and the second
SPDES / 2200 Blecker St, Uitca, NY Time Type Preserv Time Grab W HNO3 Total M Ratic Time Grab W HNO3 1 Bjastic Cit, Pb, Zn) Row 134/5 Grab W HNO3 1 Bjastic Cit, Pb, Zn) Row 124/5 Grab W HNO3 1 Bjastic Cit, Pb, Zn) Row 134/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 1 Bjastic Cit, Db, Zn) Row 13/5 Grab W HNO3 2 Bjastic Cit, Db, Zn) Row HN			rcreighton(o	02Vnapseiisviilaila	1001101100			LSL Projec	: Number:			
e Sample Type Preserv. Containers Analyses Transmission	lent		SPINES / 23	on Bleecker St. U	Itica, NY						1 Precent	
Date Time grab/comp Matrix Added # size/bye means by EPA Method BOUU Series ∞ $\frac{1}{2}$ -30 \times $\frac{1}{3}$ +30 \times $\frac{1}{3}$ $\frac{1}{3}$ -30 $-$ mi (C_1, C_1, P_0, Z_1) ∞ ∞ $\frac{1}{1}$ -30 \times $\frac{1}{3}$			Sample	Type	┝	Preserv.	Cont	ainers	A	nalyses	Check	LSL ID#
4-300% i 345 Grab W HNOs 1 Douting (Cr, Cu, Pb, Zn) Co Co 4-300% i 345 Grab W HNOs 1 plastic (Cr, Cu, Pb, Zn) Co	e "	Date		grab/comp	Matrix	Added	#	size/type	Metals by EPA M	ethod 6000 Series		
H-30-06 1372-3 - 50-ml Metals by ErA Method 6000 Series 0 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -			2110.	u Lab	~	HNO3	-	plastic	(Cr, Cu, Pb, Zn)			601
ψ -30-06		4-20-02	1.1			- ONH	-	500-ml	INITION DI EPA M (Cr, Cu, Pb, Zn)	lethod buuu Series		200
$4\cdot 3 \circ 0$ $(7 \circ 0)$ <td></td> <td>4-30-63</td> <td>1245</td> <td>Grab</td> <td>^</td> <td>2</td> <td>-</td> <td>500-ml</td> <td>Metals by EPA M</td> <td>lethod 6000 Series</td> <td></td> <td>603</td>		4-30-63	1245	Grab	^	2	-	500-ml	Metals by EPA M	lethod 6000 Series		603
$ \psi - \mathcal{P} \circ \mathcal{O}_{0}$ $ z_{1} - \mathcal{O} \circ \mathcal{O}_{0}$ $ $		\$0-0E-H	1300	Grab	M	HNO ³	-	plastic	(Ur, Uu, Pu, Zii) Matais hv FPA IV	lethod 6000 Series		
$ \begin{array}{c ccccc} 7.7.5 & 0.100 & \text{Metals by EPA Method 6000 Series} & 0 & 0 \\ \hline 4.30\% & - & Grab & W & HNO_3 & 1 & plastic & (Cr, Cu, Pb, Zn) & 0 & 0 \\ \hline 4.30\% & - & Grab & W & HNO_3 & 2 & plastic & (Cr, Cu, Pb, Zn) & 0 & 0 \\ \hline 4.30\% & - & - & - & - & - & - & - & - & - & $		2200		4020	8	[©] ONH	~	500-ml plastic	(Cr, Cu, Pb, Zn)			604
4-30:00 - Grab W HNU3 1 plastic (or, ou, ou, ou, ou, ou, ou, ou, ou, ou, ou		and -h		Gian	\$			500-ml	Interals by EPA N	rethod 6000 Series		005
ψ -3 ψ -0 1345 Grab W HNOs 2 Dubtic (Cr, Cu, Pb, Zn) 0 ψ -3 ψ -0 1345 Grab W HNOs 2 plastic (Cr, Cu, Pb, Zn) 0 Relination Custody Transfers Custody Transfers Date Date Date Relinquished By: \mathcal{F} -0 Mathieu Received By: $04-50-b$ $04-50-b$ $04-50-b$ $04-50-b$ Subpment Method: Received By: Received By: $04-50-b$ $04-$		30-02- h		Grab	≥	HINO3	-	plastic	Metals by EPA N	llethod 6000 Series		006
4.2.2010 1010 1010 1010 1010 1010 1010 10		120 001		Grah	×	HNO3	2	plastic	(Cr, Cu, Pb, Zn)			100
		222-2	_									
2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
2 3 3												
10-1-1- 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						, CII	l Istodv Tr	ansfers			Date	Time
2 6 3				Ì	- NN -	1 10 × 10		Received	Bv:			
700			Sampled		1 march	Carlos A		Received	By:		ιx.	8 45 ¥D
N.			Relinquis	shed By: A t)		Rec'd foi	Lab By / W	100 04-2	2	
Displication methods in a timely manner in PEN ONE in the filled out in order to process samples in a timely manner in PEN ONE in the second manner in the s			Chinment	Method ⁻				Received	Intact:/Y 🕅			~
	ł	- 5 F F F		Merica.	MUST be	filled out i	in order t	o process	samples in a tim	iely manner in rciv	ONLI	

APPENDIX G GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2008 ANNUAL OPERATION, MAINTENANCE AND MONITORING REPORT

> 2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

> > **APRIL 2009**

ന 6 9 Leve hin S Strippe then of N 5 CPin Map area. 67 3 SQL Svarin Ž 50 Shinn 9034 3 50388 (Molk SAMPLE 1 573113 JAMAJ Į. E Ś (B:45 05 07 SAM 3 Maparelino Sturz 3 2 (22) R H M WH~1 Ś 1305 50 2 20 1 Char of Xox 3 / M 11 d'hang inspect Stripper trays. lizg. On site. į, ¹ cr Sit 6 -712good - no lods Sediment muterate soc 27 trant real t System they a (and Samp AT45. reusr 1-M-VOW+ SUS C0 291 3,282,700 Strainers 3,560,980 NH1 = 1,431, 759 KH2# = 350, 293 LENTE es v 7 SAWPLE (FS : 13 at the Werk **Jos** (vel) SYSTEN = an Jar METERS みよ c hange saug Parise int lin Ser 5 08 Lowove 390 00 10 Dania 5 SZC ころと QOD 5 900 945 3 2

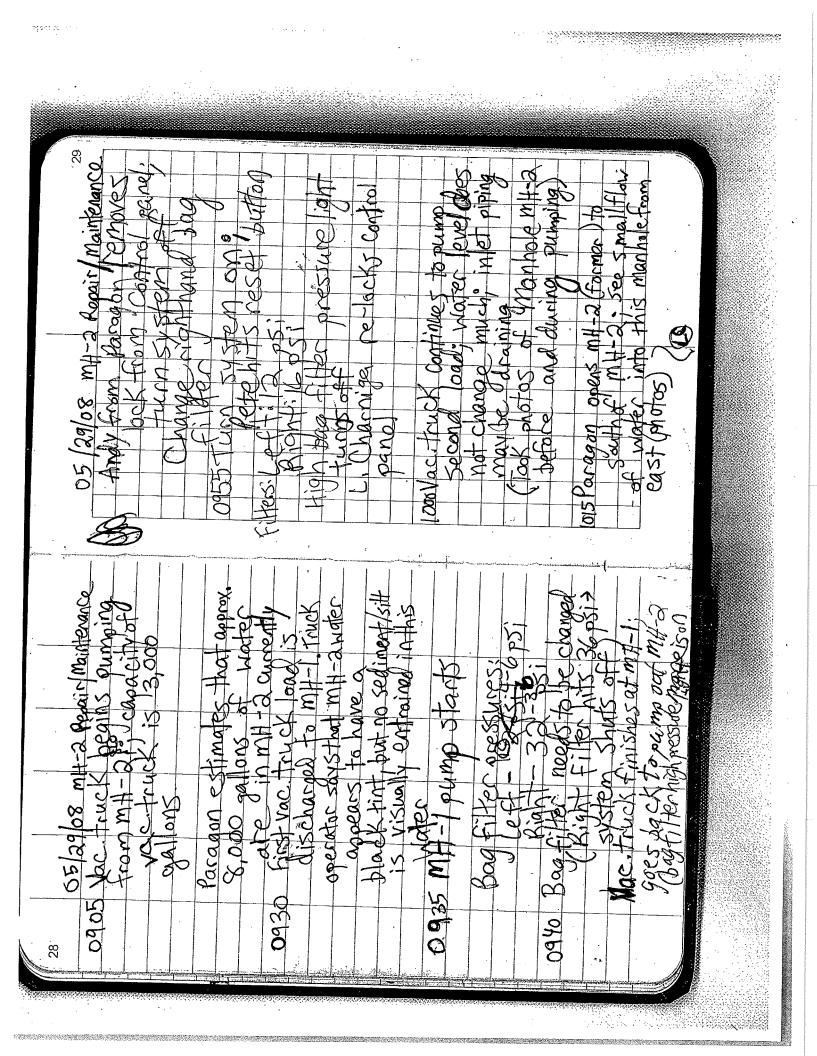
915<u>5</u>763376 15 went and continues 202 3 0.0 б worter ret staction 5:70. 1000 \mathbf{w} - STr: PPer Llening S 130 aragen on site with (Wilkinson on lite. bragnizes es Ø it cleaned and L V Nor Ker いい О clearing of Unch 124.5 36 1 102 101 401 13:00 ALL She -0 843 DS neview MH.2 clean out loration over us lit. diðsassembledl. Wil Porogon Eur Construction trous on-site Reiter safety, Carch procedure to clearing Luke mark - plaked up silicane plan with crew. uke (EUSA) anone. Denise See (trusa) maile. Ar Stiger Cleaning Spruy Whicant for daskers 5 6 uke of site bite. let thurs Clean w. Cleaning Strille Br al 10% genera A K 755 F 5 1045 8:45-1 8 IST 930 0:11 1015 4

₽. ser ser G Į 1 am Real 5 5 4 m/ 105 ž ti leve いまし 1545 La tank Alling namal lucin 7 464 1-HW Charge tar R 645420 pro 25m 250 350417 Ś 2927 c han 5 N. 54851 3 P Ч О Law Stran PLE es taci 5 13 to lat want 5 Shut 3 j¢ 25 520 - M (U.V.111 ١ 140 2-H H 535 15 A W t Z Ь ; SIL 10 8:20 - Paragon arrives on sile and organizes S. on site To re-slart system. Ś Mckenny. He says to pring NOL Mall Eshavist vertig hooked up. Workers · Alltrays + Lover are back in place . Puc FITTING 7 26 run EQ tark pump Severa wate 7:50 AM-T.W.IK: NEON OKC. URS ON STO CLARE WIEUSO PM LUKO 1230- Law dir pressure ellorin apripriet To contras & Contra 2 ンメ J V र to prime 1404 the 6050 who lear 4 Parayon workins 1*i*Ke areting a baken runing. Somela. F170 5 walocks area 5 2 S CARW by hand 2 M BY opple. H Church Sviten toller] SVOLEN then cons. t reg. A:15 - Dense 16 21 26/09 A CONTRACTOR OF S 50 1340 1:30 355

6	1070 alles CP EFRINENT JAMPLE.	1045 BFF 3/76 3/4/00	3/2/08 11/1/1/ 5 2.	42 Den	1		1145 SAMPLE CP idflucat #7	J Sturple of effluent	1205 0 5 04 5 4.	1 Same	Denise Serd		, ,	[U]		XIT P	leatent prana
	L OV	FS : 113	84576M: 3.790001 METEL = 3487362	Call 601	1120 CHMGE BAG FUTERS	1 KS 2/29/09	3/3/08	1200 R. SMITH ON JITE TO TROUBLE SHOOT	FULL RUN 5424-MANHOLES	10 AMTO SYSYEM R	- 00/6/K 92	1000 RSMITH ON SITE	MH : 1,594,63	NH 2A = 350,487	R	5427E7 - 3, 804, 503	

CONTRACTOR NO

المراجع والمستجامتين

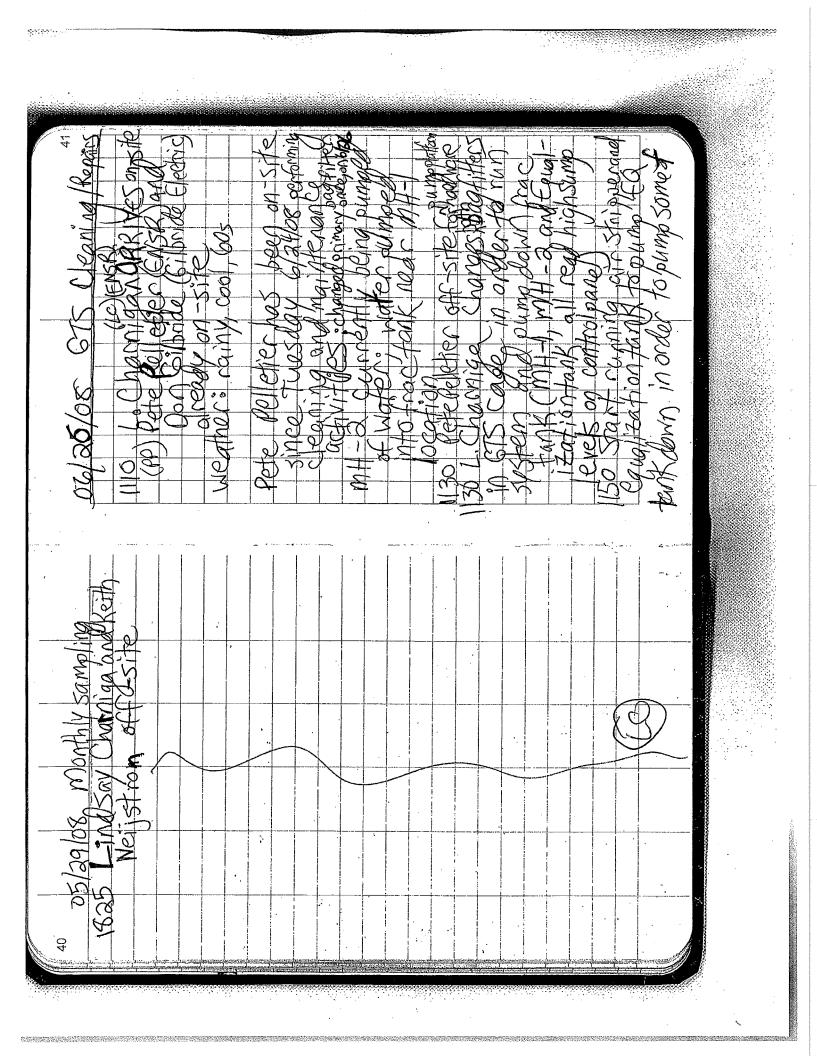

STATISTICS IN THE PARTY OF

3 1 (vaut OUMNES え きょう テチチ ump 200 3 3 50 56 teuk 2 en ous h Ø 6 3 2 2 3 W 8 E S Ê えて 3 3170. Bird working く、うた ž Snuttecry SUStean (chr.) tonk N Cicon. E mon 235 2025 £ R LEWING t hibure THE OCI د د cont'd B/dwe Ś イマンク Sum <u>(1</u>) arrs here F 2011 3 z たろう 140 145 1.1 / Junk auto" Koli z Deum. alarm & change 33 aute 0 down 1 H K 4.000 Pung tour 9 an site migh 2 terx Elar 45 lay Smith lun aller in 2000 MH / vet. s/b 1 · HW *S* 0 メキー pundo Paventy n'n Z 0 mm 3/21/08 alain coll -out. etter -Se (EUS2) 04140 punnel Ś NFU CHM July 6 cleared. runne furn SUSPEN high celain gallond tank R - down Pun 0 CHIM 2409 white own ENSP. 14 par int 5471 to 200 M(+ Dumps. 245 lestant Ell Fangle Kur Eq 500 035 Jaiso Cleaned dum 6 ters 4-m/5 MH-1 blower 600 town (ر کر ち 1 1 JAN 3 Þ 1053 550 DS 20

য় ম 33 Evena 2000 ecres reat 422 FUSP an sik - chalsen Sulley 4 101 CX crep Sbare **V** # Perma 1 4 1 5140 No. 7 influe ne ci een Seculote 199 133500 Keri-en C/hort 8807 Q Q <u>d</u> 3 Aur RE R. Hes hen no a collect Sang Sewale ģ d b 14/08 12 7 Charge Acte А А С Г 124 ζ 120 945 M H J 070 WH 1 80 29. J J TWOD 22 F. \$ NON 6 J, Samphics 3/26 Dur (DA Juler 200 3748,300 ίÌ 3 405200 an site Veeley Pot 09 7-54186 3 797535 350858 ()euise Sed 350 738 Vcele rec C Month 4019719 305 SAMPLE CI Files ENSP OF SAMP 196 126/08 112/08 3 C · HW 6 Muter Navra 1258 to / 07 CMH. 6-HW 4 100 134 M H-1 F 15 MF-315 100 v ₩ v Wet \widehat{m} £ 22

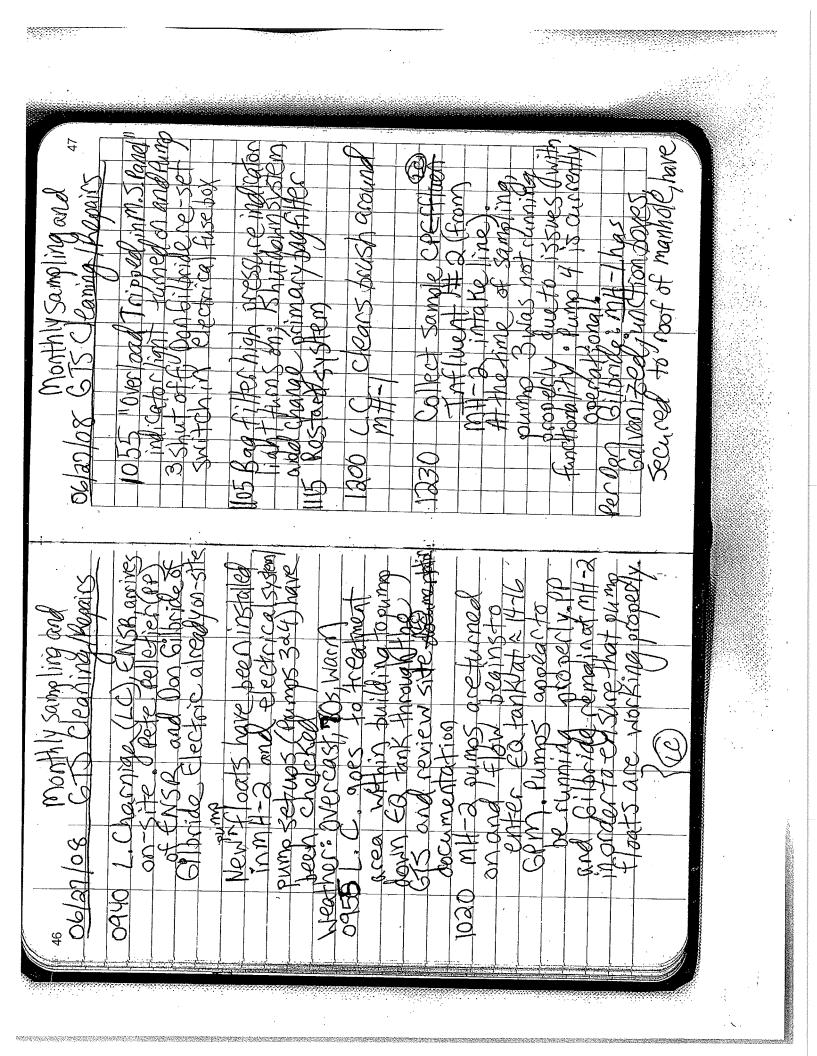
25 - Charmer custric ۶ 1214 1354 11 0. Alther Sampleday 3926500 957653 Ballin Scinplin 145 350920 Tursday martinetically istable Achak - 21 th preparises すいです Sample CP EEG went Collasted 9:20 Weinhele 2 Nigh lived Sung Collected weekly simplifing 516/08 Weekly Simply For Verse offste A A REALY Filles readed y was # charrele Alters /2 -Cac Determine Alters Sto Parkussel m Title 39/25/600 9:20 EUSK Ron Russe 1957539 350920 filter Reduct mon aniral)136 MH-1 : 1939046 39/0500 MH- 23 350920 when the red 5/12/28 Nanden 10:00 EUBR HASH 138 12-HW MH-/ With with: <u>ب</u> 9:30 S.S 1 dollocted Fitter prossures 112h005 4235123 (Lakutate 09:20 ENSE ON SILE LINDER CLARIN TIG + OR RUSSO Ì below '20 psi CP etting the conterve 0 a O b CS ett luem realing when no () Jour righthanglag (c) 4/28/08 ð Q (10) 4134108 VIJAV (24-51 pressurg wa പ്പ 4/28/08 Weekly Samplifia 4500 Hatuc somele. 4-2:350919 6 Sample (b ysten: we ather: Checkel Mapor ther NBO A Changed 10.95 NOO EN ₩\0+ 045 ξ 24

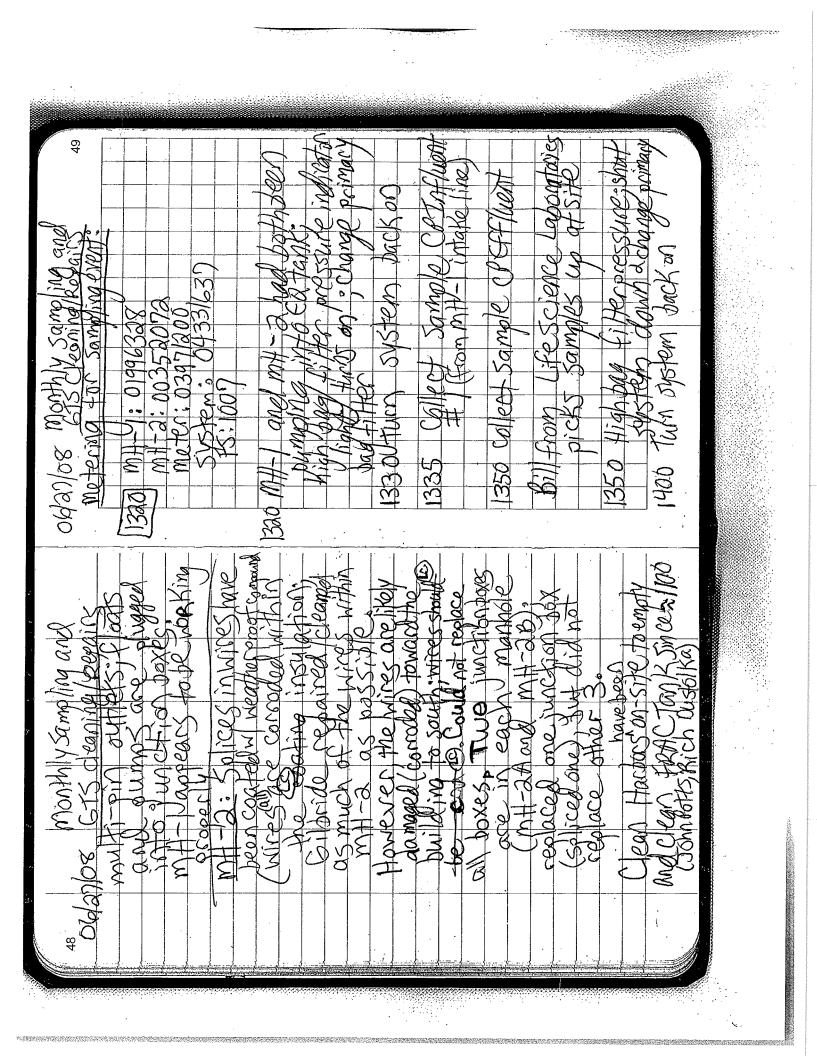
27 Etick (ENSR 0- Maria (Varigon Vac anniga (ENSR) on site 1/2/20401)alrein igg: nto bold his MH-2 Repair/maintence PUP US HO 2 SKOLF **NDNYCF** Nindy Warm Clear thewnis PANU 343 on -ST DZIONZICAN Q enoto: E P tarador aya Pickark Panel との 0 الح S 10 Ś Nor the 2 00 HANU RAK Weather 2 Lindsay えやちる A OCT on SHO Dote RMOR revien Ċ Vendi Pete Srucle Vac. + CHC! 2 20 How WASH **D** 2 05/29/08 108254 - Servin 08555 5815 0830 0850 Allows وبتقر didt > stillen STO Poor weekly , e weater Sampling. Thisweek T.W. Twens system on manual Left fittle guegers 10 pr Manhele #2 high samp Level D.X. Right E.) The guage 16 7 Wars 3 P.15 - T. Willinger on 10:15- T. w. aft 5707 MK.1:01974630. MH 2: 00350920 Me Ter :03940200 5 liglo 8 Monday Sample. F5: 145


3 200 meter - Antic Cartined Space -000364 OSPERT SARES inspection is June 30 py pe set ween MH 2 and Inform Relian Macroe Hat DEC iust inside 05/29/08 MH-2 Repair/MainPrance PPS Andr & Paragon: Clean - but and Staff From Sunado Errive Vac. truck finishes with third Roian Macrae Roger p D P discharges load into mittock ' at Water trom MH-a. Ś Closed (awdo) dxy = 20,9 angents ormer manhele, 2, neeting with DEC Synepsie Sugarst conflicts au 2 ا در گ DAUNDING on-site Creighton. Check Other Q lade B systems 80 <u>D</u> aint pumping in to MH-1 to dixchange water Scott Matthews From Synapse on-site; to bottom measuring take to estimate, water Pete - take stopsed aft; if mater LTL oney ()thus tar, discuss system and on-site to day (SPOES sampling) Opened Monitoring Well adjacent Frontoc mater available, use a plastic MISSEL Water level is; no water level 1030 Second Vacitryck loadfraids litely not be Statesthat Milhite is meeting willyngge 05/29/08 MH-2 Repart/maintenance to MH-2 to sele what the activities that have accured NSA + Paragon review Site abled to be lused due to influentine fump details with him Keith 315-481 -4119 them m'H-J × 2010 × anger plump will May Stop in SWOP load mh. matthews! Vac. truck of dec POWER thick o No 1035 1020 ő

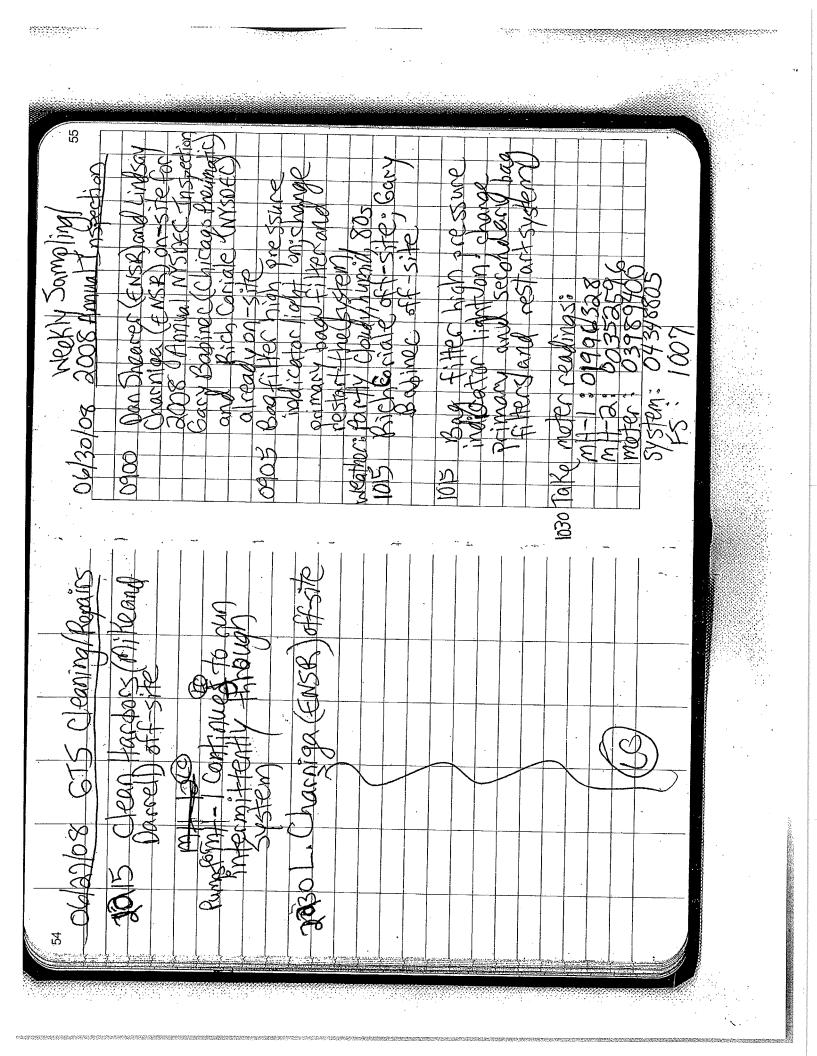
33 ian + there psionel mping MH-2) instruct Lindson Uramiga (0 0 PCI Mary - Cin M Acrea on lot Dan Shoarer and lete Vollotion soog KS W NON indication 05/29/08 my-2 Meintenance : THOL: NS 07 ctast of the system 201 System: AT 1-20 phessing aus Pete Pellerer and N CU Speak with Dave Mechanic A alisyster 0 4 Z Primary Kigh Keel Pri mary 9 UNCK Stav S (Secoluly 1 and wipesdawn t ilteration Realers minition ater - LCL: 10; cd: 0; 0xy: 30.9, 105:0 reviews l photos Paragon wired down upper wining ins the cliens Andy enters wit - 2' easterning Bruce. Sets vec truck have into former milting Vac. truck continues to remove matter From mH-2 High titles pressure a lange 05/29/08 mtt-2 Repair/maintemnce isn't much potton of in water **Phòtos** あ-14 シオー -Change by truct -riakt need 5 bac front 404 Paradon Pulls Floats trom Silt/Sédimentat wices in junction bas - Jas-Per Andy, Hare primare Paragon cempre, some at papel Vete Pelletier function box 1150 5top shiction not water aninol-Contral From 2135 155 32

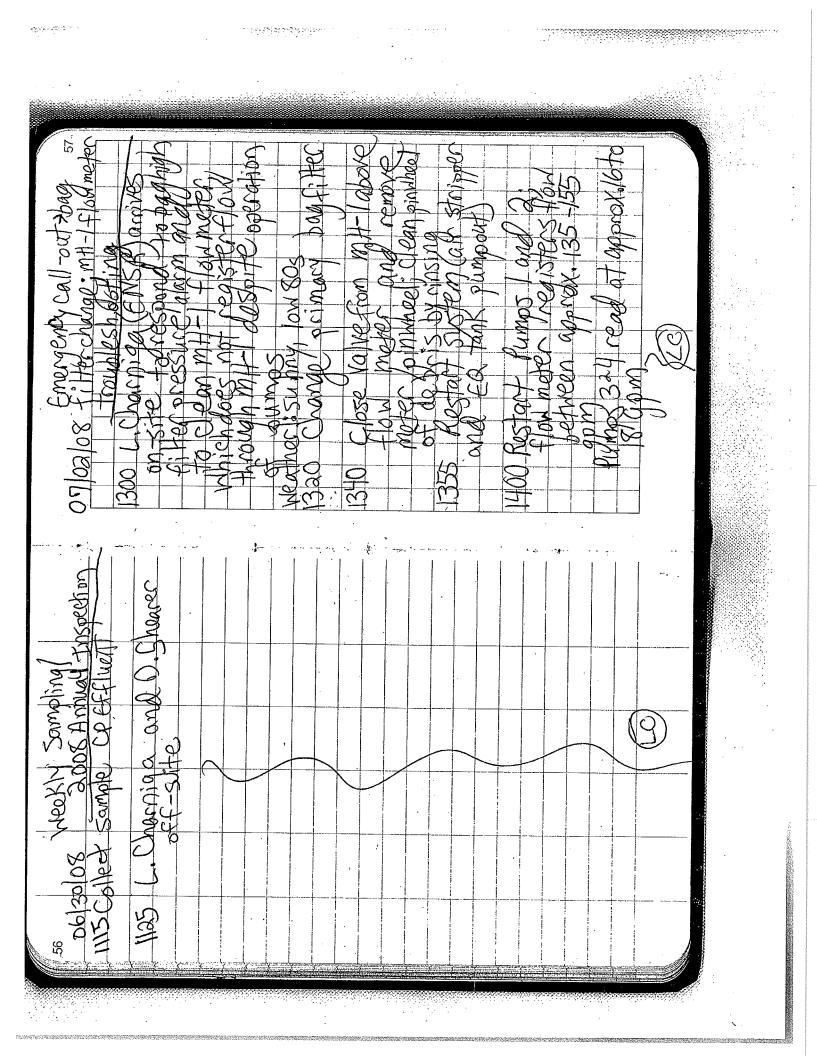
an Sik debnis in pump re markave edgeldilm 35 A Hud Abchdue Will (C) Spoke with SUES 1 2 Dely Hotes hearer 000 05/39/08 My - 2. Ropair/Maintonan Petro nambala show by Hell Lete W (propeller) <u>ملا</u>ك:40 0 V DUM Dave Macone Spark should be hund Andiona in 5 Pete Pelletie CHN0 prino into 25 10 00 PCG While Plin Nipectom rcagion 1 JXU: JK O: SEH regard お Coll all other Spear <u> 0</u> CDib (Rum 2?) [-2 Zir-1 Samp ~1315 月4日 21 日 poto p the his 50 Œ 340 1400 Repair Maintenna R from Karagol, 3 days not work (gungles), - by Perep r level 500 : Petroleum -like ador of water within Yarag a (control Norkis temporaril Ka Ker Saw 1 Hers ushter. X C C Packgon and cated along inside at Fil 30 lo cane due to entrained material andse provin materia ak de bad breaker will 20 oc Kee photos of Duetto prasence Abd appled to be 200 pane ц Ч og hol unicfidn box. Land From MH-1 05/29/08 mH QND with belo settinas Stopped un reg --ENSR Sec. Managor Pump (PU V Per-Andy Control palle at Control Sped't ate *Yod* (B): Mand Sa 1300 34

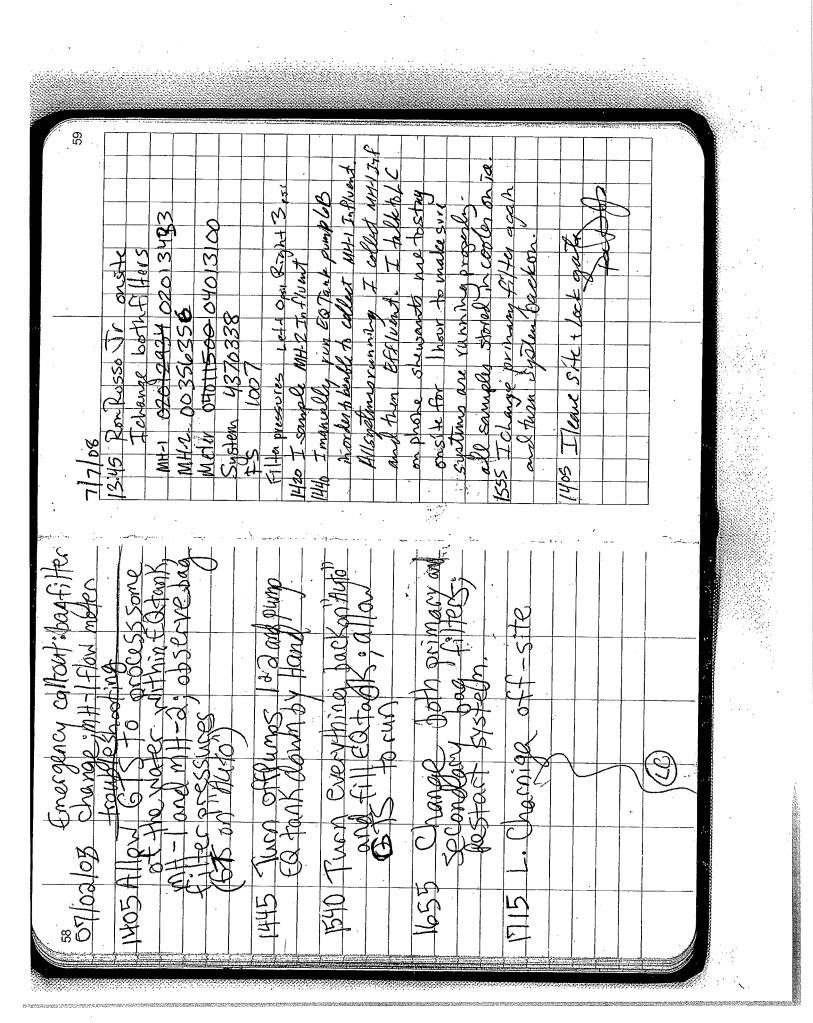

37 SA ance Herby-Ya Ya 2 のちちょ 0 0 Ż ART PVPNPA 200 PVP Ropair MARY n manhole MH-2 Hold Prant AJO A 2 S てい C'Hange H Cool \a 9 0 1 S u mm 0 20160 J PX6 Primary 10 habo 1528 50 540 1<u>1</u>08 \mathcal{M} о Л C Z 1012 - 2 and former mys Paragon MH-3 Repair Maintenance Fourth Nac Fruckley placed nin separate totes and 1435. Pete P. back on -site ; sump are Pull vac. truck hoge = 2300 gal い な そ す よ Dapipe Dack. placed -Nhown Ped PC XX Sug 20 on Judich on bay and intotal oipida and Sas 75 de de O Litt O Z abeled Per Andr (KGN) Paragon 05/29/08 #10.ab K m $\overline{\mathcal{Q}}$ K AND # V 90


System 39 Э́ re-sample affund. ÷. atSVSTGN 1 and Wallor bagkilters again 222 牟 PCKC al hoiter | モーゴ toto to 104004 あらう Col 22 000000 orange in cal or CO HAILURY Ž 073961301 043305 Monthy COHO NOT Sample SXSFOM when it is off Turn System Vill Sunnin 1++emor 10 Maring both OKON/ sample to 000 Sample Sample 00145 011.30 being - Qight 2 Jotte Meter 3 05/20 Not Not D D Ê 1053 1755 820 1740 7367 /800 1280 5 Right Left Dellare primary " -Janpal-ANESAR OS/29/05 |mH-3 Repairs/maintenance w molth Jet of a fac 000 51205 Charge Primary with Oan Sheares tefore Herberessure reached tranged primary titler ğ Ê harpor ha c't 04 pressure oxe Idon system bac Pla Cespent, dried iston a MON brmh HURN SYSTEM OF SUStem B PCIMOLY Tulon Systen VINOR hea Cho WIRCH perform id to thi pper 311後で Ling and 2 TUCA S POBIC 27 $\overline{\overline{d}}$ $\overline{\mathcal{O}}$ 1620 7 weshow! -LOQ COO 1630 J WHD 1617 Cal 38

UMG 43 1, and <u>and</u> 0 HAND N@X Revelit floor sump drops rlear +rath +rom PR DAPD appears to Stop LWZ pumont DPD nrolud reating 1 ac the nar 2 N N Ž *DOC* to move t llanina **CINDOMACY** Rear KOMNUGEN LANING Σ γ (MM) 20m RONNIC **COND** GPN NOB PLUNIconder cyeared A0560 06/26/08 by hand 042640 AOC≸ Ž Id HQ 2 C 1495 0E M 00 (Job) +100r5umplet men 10P P Mary Marchuall 6 , tran たちを running. Rolnai Ğ POPCSA Nerph F04 T J D D I 0UnW 12Cg ر م 8 DIAMO MA Pelletien dac SN1 Cleant AUMOS SAMUP pressures eve 0 avert lov HA COU arela-cantaryme hour - HON hose tram CrN 050 1000 DUNNA いと ONINO A A A SKEM and ğ Mane ر م tankay COMPOS NAAC Cimme þ SistenJ (Ea)tad FRAC tank Lemporal FLAC CLAA NO 06/06/08 Vere rclash Å Å 2 and Ł 4004 230 Ø 300 ŀ ZZ 22 42 Ç

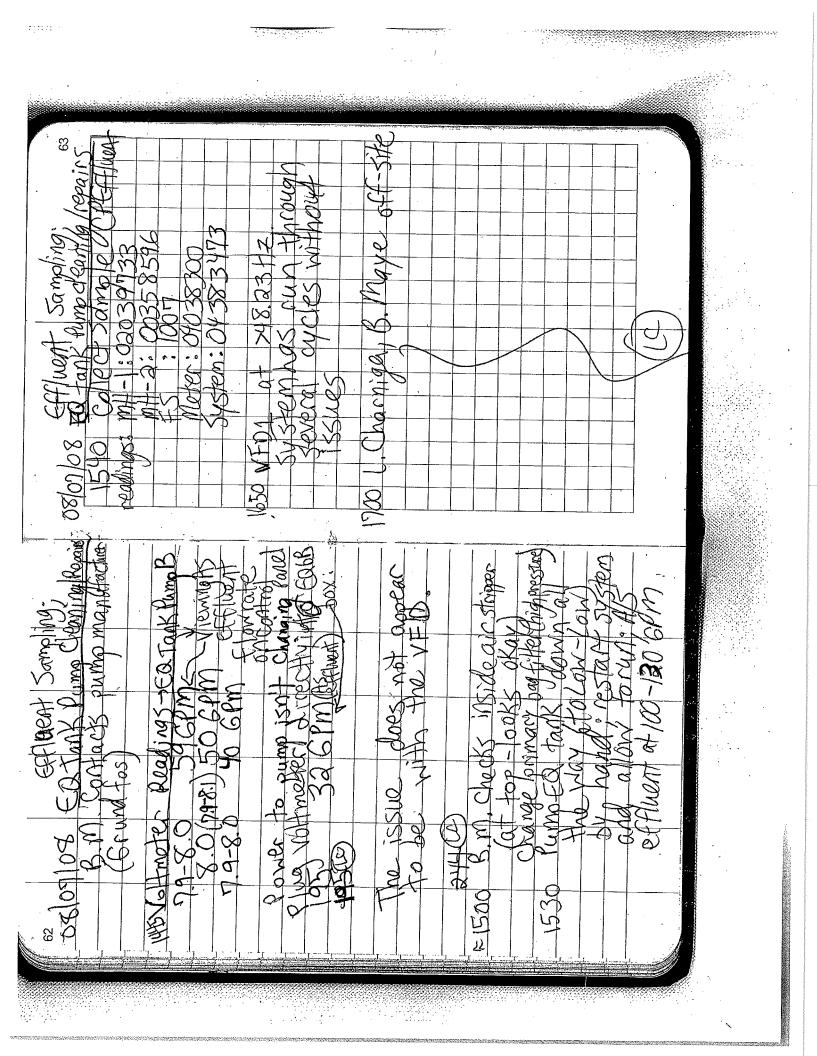

45 bonid Ì me / Ran ð GTS C $\frac{2}{3}$ 5 06/26/08. a. Pa * Note : Oleg. Q Panal - ant Shuttdann WSlem, DOJ QO primery Stivero LC contin Les running 00 **No.No.O** Par Cleaning r back or Arac tark, C St a 2 GTS Cleaning MH+1 and build fry đ puts equipment tred mentioned Shutsdown sy Gilbridle near Park 1 DUBAC emptying C discov pressure Z them Jaush Ashio 8 4-10021 j.j স্ণা -Juch and VVA DRC 100 8 Ž FUSK: \overline{Q} × 2150 1700 1650 1730 699 1730 215 ł, 4

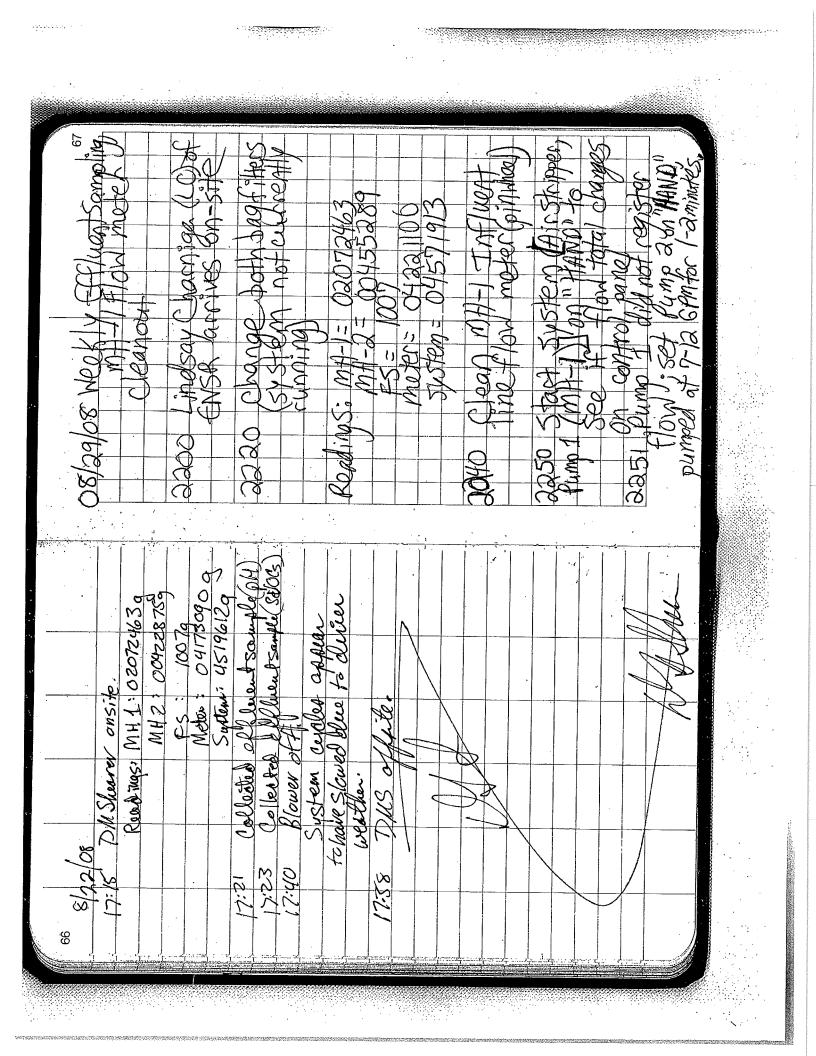


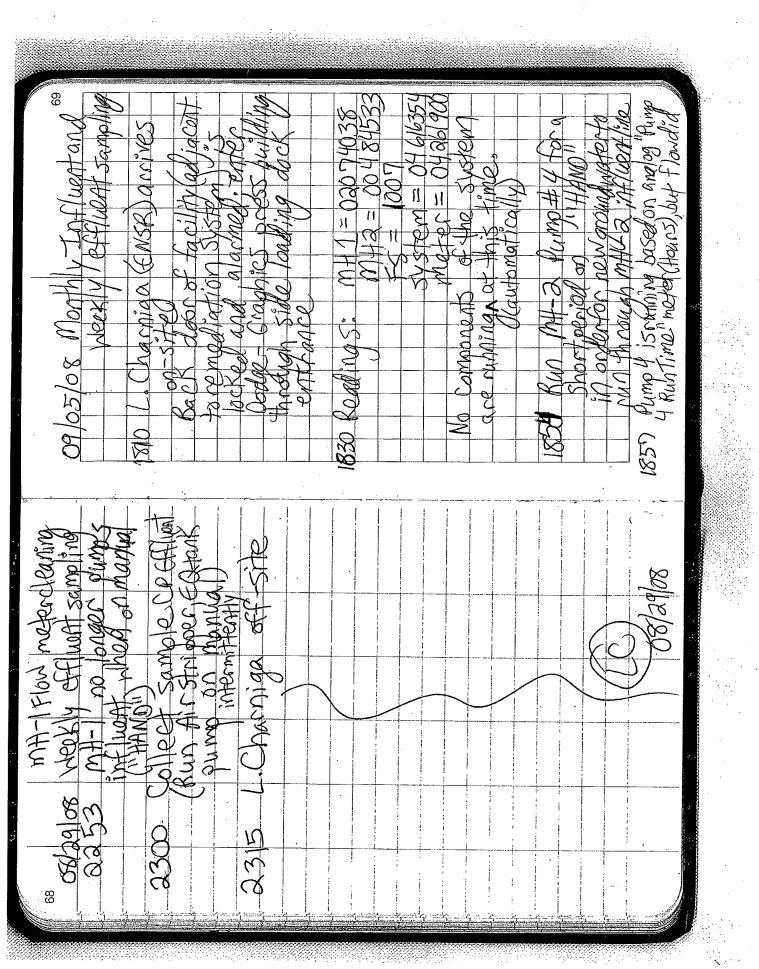


KIR Charge and and 5 9 MONTHIN Sampling an anac 5 JANG ò Ĺ 01 7. 06/20/08 8 Ja CP N NN 1700 1535 b) 550 Ø a ଞ୍ଚି up a UMO, 8 I Monthily Sampling and おたい and arting ACQUINS ち いっち andz GTS OPAN 1/4/ Harbers Š of I trac tar 20 10 HUI 2901 es phillips ଧି **NAMAS** 0 17 Þ Z JEIMBR Kostab ¢ ¢ degn 5 ں پر 53 2 20108 م و المكل Peart B FQ1 Ċ G 53 14 3G 1430 5 <u>j</u> N 9 ß

UNShearer Daverylacere CTS Stre Cleaning/Repairs 53 Matec Dottor *XNRC* हु S U DUMON OF 500-aaC TWAL OUNDO CONPRCT4 UD TON at the man BC 9 そ日 W V 8 Cleanin 4 Coller Peak 12 Minus CA MY 2an 20/1/18/00 202 8 V OE OPE ≈ $\overline{\mathbf{n}}$ ð Ć Certor Clenting Thereases 2 plymosite Vardunn off-tunkmemly Jac h Monthly Sampling and How Hampurg lievel 1 5 way Ę W Setsin Ster dign Symp 122(mp my out remaind trailer mountain IT - & CULTER 1 AHSOMlean Hachars Continue to -HORDD GRACTONK Shi Mo 1 A Fa STS. CAN Pmpty 101/ set Alumps Doft-and Manhole " Auto FRAC 1001 should-FOtank hight of 4J-044 Aank Julanol E C 10-01 r \$1900 -200C (spit 1930 23

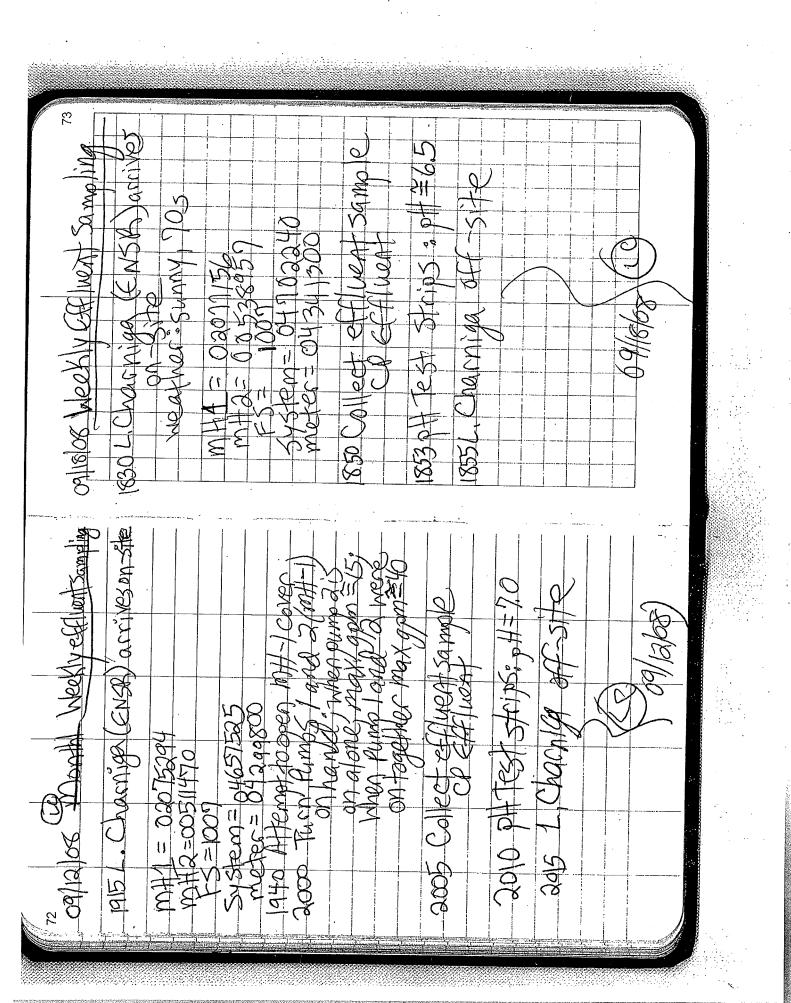





and the second sec

JE) 6 地 Ň tory Effluent Sampling 0630 Nado VAIC VAIC Č 604PM PUXMUS $\overline{\alpha}$ JUP JUF 1000 Ś たス SC/SC FR-to JODORO Ca M 00/10/20 400 \mathcal{M} terning N N day i £ & yave of -humes 300 N N MOD! 060 ď OKIN ATTO Panin Inlegther: Mostly Cloud É NS pd mplina Š 2 50+AM A A V00V \$10C heen EQTab KSCH Beenler 045- VO Brea puttan Md S v dito 38 20/10/20 Ę 142 S 20 Z 215 £ DM 5701 784 00

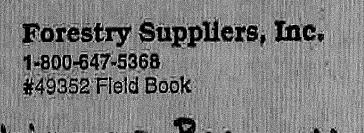
65 radual ustens Avinsbuden operating HIRN SUMP LEVER H in L 220 12 True leaver al - ANSA Wood Blones once 17 raid 24 PUMP 142 1.1 NOUD AN えてする Itstad monthlysamon 200 t 00361452 4070200 4407920 SWITCHES THANTO POST Ş Aunos donus 4 ALSULUD Ş 2 de Reden 1345 I Ledue Site. Dropst 2:00 Sanddar Complete Fat it seame - S vinos v Sree 0207 MZ 8 ANN 6 Shatten Nauholo Mainhold' Tylesd オードラ 114 PC Jan witen or open MH' ala-J J SUWL 54:11 1230 S:bb 3 Ile prindry 12 secondary he Shipperblanes 1.2.4 Shut da 152.9, 10 pumps 200 Startig Pumphy Low - Ityles sung Planets while pumping down eg tome TChange ×, 900 gallon 5. t-two weighting - Jack fills up and Switch VFD +60 HZ Tampes bottvier loggen + 12 Wow at 45° 00360590 V1398532 02064760 Flowrate 152. plumps 4061600 1001 145,9apm 9:00 Flow pumples = 147.8 opm eackondits + releving and america h Bayfilter's #1 16 , #2 12 Tamle pungos dopum to the last Eatart pumping down System (nut go spraght up down) EQTEME Reaches HIGH LAND I-HM MH 2 Meter 1<u>5</u> pumpsall 1 plasding 3/13/08 R. Russo merile Both bound for Heals Fress Danel purpflows wen 31, 9 Pipe at betom of 57111 Rundthinng. Floro 143.5 ALL R pad CA + 6B-fuinon Won win Wal 939 10:15 1130 11:10 11:00 25



.

Stid ア Pllowish -• 0 20123 SUSTEM Cartinuas 9 1000 3 é d math ¢ ŧ £ Ţ 120 õ g B Ħ す ç Q MMR đ, Canado, Cer Monthily #14/1 2 B B C c 0 MW D Semed attol <u>E</u> CH CH CH SIC (U chíc NPO. Dolard Ę. Nab Chl Z Q d d Ta run 60 1284 1 3 ç 9 3 V 354 950 956 1000 194 ð Public di kon 3 d de la ŝ pressure 626 0 Color DDCC JNa (N Q <u>í</u>ð 200 ধ 8 2011: NIGC YOVOV Neo 0 d g Q Con'llary = <u>a di</u> PON/ Primary = out si Jano q 3 <u>Suzais</u> 3 Jourop Ĺ register Koruchato S. ためい <u>S</u> # tood Ball N. San 0.00 1 $\frac{1}{2}$ P S 3 05/08 6 1910 1937 438 00 2

د به ما به او در او د در به ما به ما و در و در ماه در او می و در می مرکز می و در او در

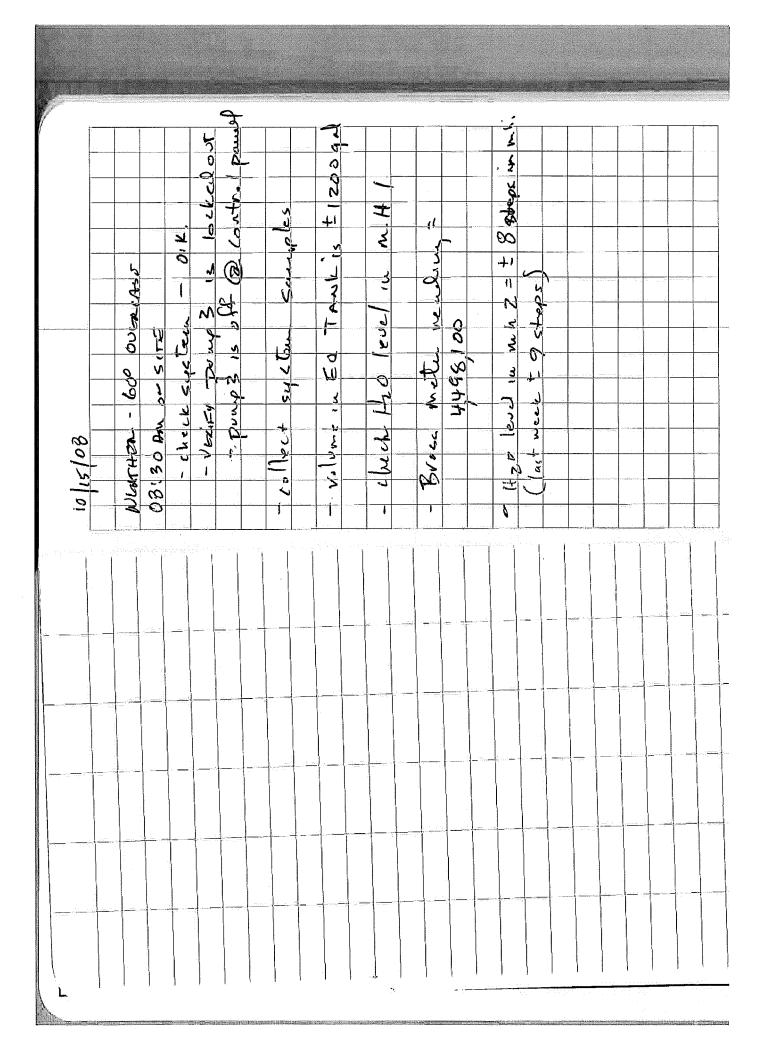

a strategic and

(PVGI 21 2 2 Ř С (B 09/25/08 Werkly 6 Marvilla the mail 5 1 1 1 ğ (Pal Ŧ 2 1430 of MH-1 in online to determine A INSIL uent Sampling CR HH HIMM L. Charniga (ENSR) arrives Maphde Nook and multiple photos DUMBS 1345 Collect at tot Strip Samp le (a strips that GE 5457em= 0474265 10 0 PCM = ~ 6 0-65 bab mbze= 04378306 $M_{H}a = 0.565950$ 09/205/08/ Neckly f = 020 R386 Change, both Secondary MADI 01-SHE 1335 Collect AH2 MPT QKO N.H. MH1 alo 1305 K 8

1201001 ż D Va 00000 A ROLL $\overline{\bigcirc}$ ノ中 110.4 ICHUK Same Sample Pump 571946 ĝ, 547.5009B 3 14385200 020781 2 20) clurk Ţ ODIOS WERKIN (VV) 5 =11007 ES) Õ 뉨 N SP M 15350 δl <u>[]</u> Ś ۷ MAM CHW SU1 5 140 2 Tank MH-2 ind with R. रिटे R 11DM 0 are Panot weig tan au Solwind 13 at 1 at 5 mmp level reatment Dry d SUMP PUR 40V 1 ard Ś wind ENSK 51912 20110 PWEN P.V.D 5 DCMM tactor CUNTRENT (V FUMM J S S Scoundmarter. an àdí to olim TAC 1 hannich NECKIN harn' da and the adings 3 Clean C FOU atahi **U** D HOWEVER XTRAI VSCA Ajah 2 Q V Ĉ Ę 2 0 100N08 1040 1050 030 76

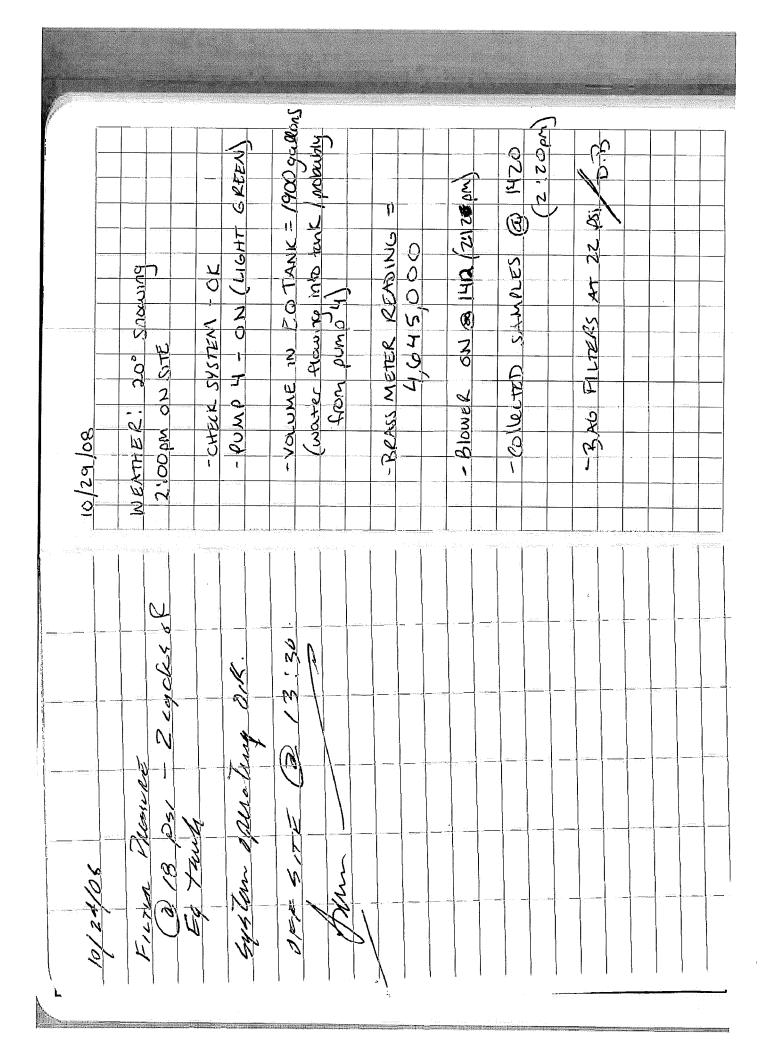
이 가슴 동생 성장 여기가 있는 동

0 12 10C rica Thiar MUNA start date a vhol 300X Sampling nand & run NOIOR ADIOR C 22/01 <u>ک</u> ت 50 2 へたちたん 4 ていい \$ Palch EDC 200 200 <u>ल</u> of drifed 9 S MOON 1530 L. Charniga Contraction of the second 200 No Set o ()clum #1 Summit-PMANP S 600 12008 90 م ک ک #90/00 10/10/08 1420 HVC. SUA Fund j. V MURCHINGO GITUR Can Peimacy hald for indiction (10 SMANT-Iank down by hand High bag, filter pressure Son Litte Sampling any Vanot PERSINCES: N PICKING THAP !! 0 Of J 1001 25 5 legar Aicatlor i Catro Weekin Maniab - all Second Primas NC1MC SPEAK WITH rar OPPP DC ogecation Chelpyle PNeral posa PLAMP EQ Bag Filter Vot Ma toribit 10<01 es e Uhanal E O 10/01/08 1333 24 1927 1201 342 2 78

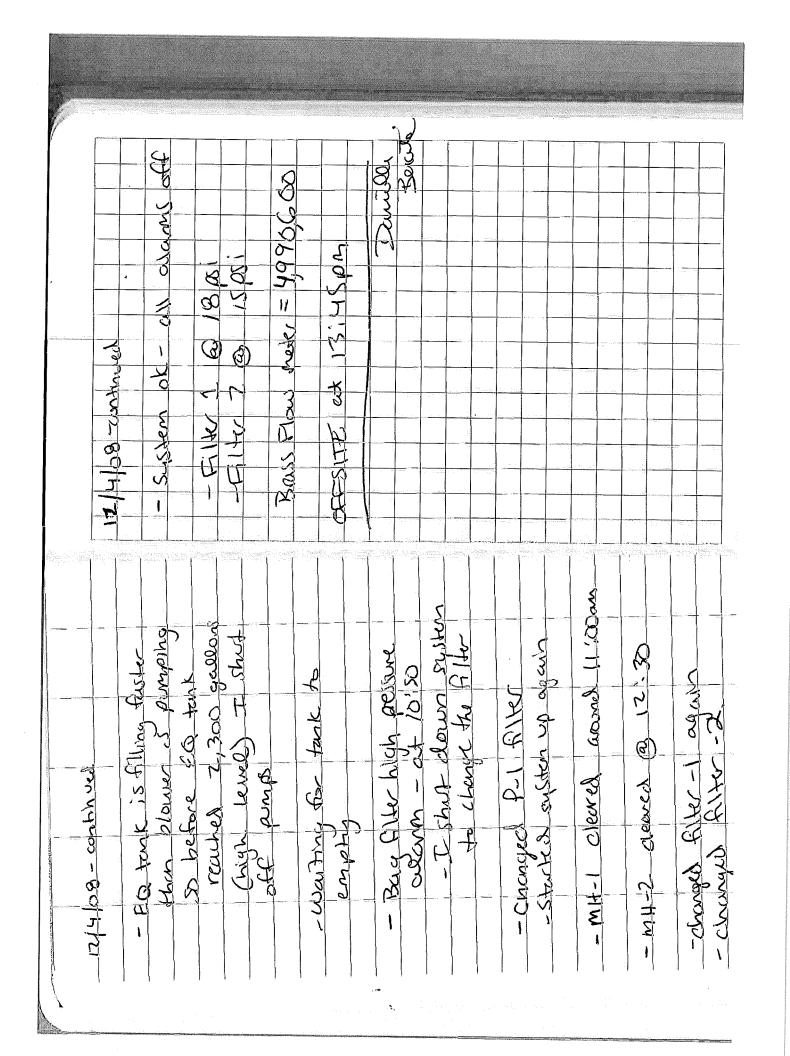


Chicago Preumatic CHA Project # 19247 Start Date = 10/01/08 END Date =

10/04/08		00 5000x	6900 ONSITE	-check system	- pun 3 is off reason whown		LOWERS XHANNING		- Efficent @ 11:05am	72.8 = H.d -	-MH-1 @ 11-25	14 = 6.0	Meter received It	1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	jal lichs	
	DATE						L (1914) March				in the second			• • • • • • • • • • • • • • • • • • • •		
CONTENTS	REFERENCE															
	PAGE NO.															


3

A.


308 3108 41468: 500 500 AM - C.4466 - C.4666 - C.4	GLUME IN EQ TANK = 1400 grueons BRASS METER READING = 445 61300 gallons COLLECT SYSTEM SAMPLES FROM EFFLUENT - 09:23 AN CHAD TO PUMP BY HAND D.B.	
0 9 9 9	THE COLOR STREET	

12,45 And 000 <u>V</u>. 1 H るよう くしょうしつ T MUMAU A ALIN 515 200 Ar And LLAN @ 7, = 10 2 MN4 Z BAO FULTER H Andrew N EG TANK 5 5457 000 Þ Q 11.45 B Az Anun b SYSTAM 1 & ALAMM H2 An al 5 TANE LOW PUN SUNN HW N 0N 5176: These Dat Š NHZ R = 22 Ed TANE LOW BA44 METER R + + Man. you 55 9 21 \vec{V} ーナマ MARTIN EL 21/2 - Canpure - PUMA M. H - 150 21520 H17412 CHANDE Marchan W 124/08 Fiction 08:40 ľ -2 Ŧ

L'LEAN HAR STRIMER And She Part Michandred - J.HA CLED DE -TRANEAU ENU 1 tort ちょんとっしてもんしてみ R 550 Theologoures 0 Quall Breek ١ Lovert Martine Showles 2 16:0 10:15 Acrects All Strandia Duratication いというため 9 1 And the serve 3 Ø tettestedusty 154 5 Jord cleart 73~ Sug. Review LOTO Ditsheckergez Rentes 11-5 0 k/2 6 11 62 : (F) 00:21 してい 2 Distances TT A star allow int 0 WENTER 54477000 Chee 07:34 11-30 600 m AL N COASUCT. いっちょう - Secure where Tritit why Lows JE when berthing By Pleusons. F12 723 4.717,900 20 バーキャント Weeker 3 Dhore Bartines 50° ceduary 16:40 - CLEARN AREN JO PARen Dessers Q' MATTER Zursono 05.8-OGJERT de-11: 510 (2) Cocce + SUMMES BARES - NOATHER 11/4/03 ١ 1 i

II HS am EQ pump 64 @ 11.43 (by hand operating H Alled w loid 4896300 cheen Herbor picted when avaste Blower (3) 11:35 Efficient sample taten @ 50 Scurpling + arrived - meens it =~1800 gullons 9 V 2ny-vau - Sump ound great Meter = 30° cloudy 3 druins 11 onsite - Cherked sustem Brass Flow Strpper system Ś 5 -111:00 am Ela Tent 10:45 am 11 25 08 Websther - Turned Turned 90 もく Stor warden 13.1-L TCK Red in Ferton 5 P SY STEEL 1) 0-5-1-4-04 507 0 1700 00 the querel \mathcal{O}_{ψ} W JE W CC 05 2 50 k C) B 50000 SUFFUS $\left[\delta \right]$ £ N/ Stor S all sire Courters CHANGE WEATHER SHEW 18:30 Cherk READIE 40 4-2-1-2 N B 2115

sturred gran high sund level EQ tark law surge level > blower 1-715 3-1 2- HW/ 1-HW Brass Plaw make = 496 4400 P12:01 @ Cleared EQ 10 w alar ICUNALLA G prideron - traink @ 2,000 quillers I annad γ Q 10:0000 alcr n EQ ITUR rdi Ny man al 1-Hw 274 Kept hand - Sump Pump oun red (7- MM Kept Jugter. Wew the 300 2 - MHI 119 of Stopes System SUS ration ONSITE 12/4/08 Hend ţ 4 1) 1 at 10:35cm 12 ds 9 1,55 cm - Emples taken from Efferrent and MHI @ 10:00 am T lool 9 de Wons ١١ EQ tank = 1800gullan 4983000 gallons Checked System = OK Filler I and Filler 2 9;40 AM OASIH W KATIE reter -Arsinger thread on 5 Made 4 9 84400 25° SUNY -SUMP QUMP -changed Alter 1 Brings Flow Hew BCarls Weather: 12/3/08 Ì n A ١

2/17/08 Weether ~ 200 DUNIES	Cher Consile	· 2 4	- ZQ Junk C. 700 Milons	- Air Shipper on (2) 11:26 - Epowert own on (2) 11:26	to va	tion ett	- Brass Flow Meder = 5, 32,000 gentlears	- FILL 2 22 psi	
12/io/08 (Weather ~ 30° round	DASIJE @ 9'BOOM - Check System : 0K	(Jund) Minner Church	- EQ Jank @ 1600 guillens	- Changed P-1511Er	- Bass Plan Meder = 5044,800 geners	8	- Filer Drechmer 1	40	- System unning when I left

Paris. 10:40cm -ITOOK PERHJEAT SCIMINE 拐 M gellons DI = 16 AS いって 6-7 Shoper ちゃ 5304000 a 10:40am 40 Ó 15,00 Flow Nebry 1 CUD 20° Snowing (15 2) 2 10 100 dry Pumped by hand -pH= 8.79 Cherk System = GLACK (Now 3:10 00 11-00 0M - SUMP PUMD TUCNED ON and Chelogech P-1 Eà tant a 10:32 cm 627 よう 12/30/2008 and water ODSILE Bass offe Ĵ Rumped by hand (EG tent simp 6AY at 9550 am 48 at 9:45am (to callect TPOK effluent scorpt at -EQ turk & 1800 gellens -changed PI + PZ GIters running at (2) 16 31 Ř 5/97 600 40 Harls - Turned on al stiller Brass Flaw Meter 7 0 No onno duns-١ 91,52dm Warder ~ 35° swing - 0H = 8.75 DASite a 91:40 AN - check system Simple S 12 23 08 ſ

1 mailer								
	· · · · · · · · · · · · · · · · · · ·		a					
· · · · · · · · · · · · · · · · · · ·								
		x / x / x / x / x / x / x / x / x / x /				· · · · · · · · · · · · · · · · · · ·		
						·		
				E			0:40 am	2 Misi B Bi Gallens
			Juon	0:156	and here	2600	+ 0	~ 22 ~ 18 300 ad
	BUI		- S	by hend	- Arc Stripper on at 10'15 - Pumped Eatonk pump	1 10		
(1) ⁽¹⁾	stowing	101	140V	Hol 1-H	to the	Hole Curr	Schrole F = H =	P-1 FILL
	~ 70°C 300	L System = C	tent	- MH-1	aper o Eat	- took scindle cut 101 - took scindle cut 101 - crewent off = 81	× 14-2	y to
00	I Y I	-Check System = OK		- PUMARD MH-1 - FOCK Sam	Arc Stripper on at Pumped to tonk pu	t at 1	Took MH-Z	- Pressure Bruss Flo
1/6/09	Werthos	U U	. 20	1	40			Dr. Dr

Å.