2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

Prepared for

Utica Holding Company c/o Danaher Corporation 1500 Mittel Boulevard Wood Dale, IL 60191

Prepared by

Synapse Risk Management, LLC. 360 Erie Boulevard East Syracuse, New York 13202

February 2015

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

CERTIFICATION

I, Paul M. Fisher, P.E., as a New York State licensed Professional Engineer, certify that the 2014 Periodic Review Report, Sections 1 through 5, for the property located at 2200 Bleecker Street, Utica, New York, pursuant to the Draft DER-10, December 2002 (updated November 2010), Section 1.5(a)9, has been prepared in accordance with good engineering practices and under my direct review. I further certify that the inspections and evaluations, for said sections, were implemented and that all activities were completed in accordance with the NYSDEC-approved Operation, Maintenance and Monitoring Manual and/or NYSDEC-approved changes.

Synapse Engineering, PLLC

Paul M. Fisher, P.E.

CERTIFICATION

I, John P. Sobiech, as a licensed Professional Engineer in the State of New York, certify that Section 6 (January 1, 2014 – December 31, 2014) of the 2014 Periodic Review Report, for the property located at 2200 Bleecker Street, Utica, New York, is prepared pursuant to the DER-10 (May 3, 2010), Section 1.5(a) 8 and has been prepared in accordance with good engineering practices.

John P. Sobiech, P.E. Printed Name of Certifying Engineer INC. Signature of Certifying Engineer 02/18/15 Date of Certification

068973

Registration Number

NY

Registration State

CHA Consulting, Inc.

Company

Sr. VP of Engineering

Title

2014 Periodic Review Report

TABLE OF CONTENTS

Section

Table (of Conte	entsiv
Acrony	yms and	Abbreviationsv
Associ	iated Do	vi
A3300		
CERTI	FICATIO	DNII
1.0	INTRO	DUCTION1-1
	1.1	REGULATORY HISTORY1-1
	1.2	PURPOSE1-1
	1.3	REPORT ORGANIZATION1-2
	1.4	PROPERTY MANAGEMENT1-2
2.0	PROP	ERTY BACKGROUND2-1
	2.1	PROPERTY OWNERSHIP
	2.2	SUMMARY OF ENVIRONMENTAL INVESTIGATIONS
	2.3	SUMMARY OF REMEDIAL ACTIONS
	2.4	PROPERTY GEOLOGY AND HYDROGEOLOGY
	2.5	PROPERTY DRAINAGE AND OUTFALLS
	2.6	SUMMARY OF CURRENT OPERATIONS
	2.0	FIGURES
	2.1	1160KL3
3.0	SITE N	IANAGEMENT – REMEDIAL ACTION FACILITY
	3.1	CONSTRUCTION
	3.2	OPERATIONS AND INSPECTIONS
	3.3	MAINTENANCE
	3.4	LEACHATE COLLECTION
	3.5	LEACHATE DISPOSAL
	3.6	SUMMARY
	3.7	TABLES
	3.8	CHARTS
	3.9	FIGURES
4.0	-	ANAGEMENT - GROUNDWATER MONITORING
	4.1	MONITORING WELL CONSTRUCTION
	4.2	GROUNDWATER ELEVATION MEASUREMENT
	4.3	GROUNDWATER SAMPLING
	4.4	GROUNDWATER ANALYTICAL RESULTS4-3
	4.5	SUMMARY
	4.6	TABLES
	4.7	FIGURES
	4.8	CHARTS
5.0	SITE M	ANAGEMENT – SUB-SLAB DEPRESSURIZATION SYSTEM
5.0	5.1	FIGURES
6.0		EERING CONTROLS – OPERATION, MAINTENANCE AND MONITORING OF THE
		NDWATER TREATMENT SYSTEM6-1
	6.1	INTRODUCTION6-1
	6.2	SITE OVERVIEW6-1
	6.3	REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS
	6.4	MONITORING PLAN COMPLIANCE SITE

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	6.4.1 Conclusions and Recommendations for Improvement	6-3
6.5	OPERATION AND MAINTENANCE PLAN COMPLIANCE SITE	
	6.5.1 Conclusions and Recommendations for Improvement	
6.6	OVERALL CONCLUSIONS AND RECOMMENDATIONS	
6.7	TABLES	6-6
6.8	FIGURES	6-7

LIST OF APPENDICES

APPENDIX A	Site Inspection Reports - Form A & Form A1
APPENDIX B	Auto Dialer Alarm Incident and Testing Report - Form F
APPENDIX C	Leachate Disposal Correspondence and Analytical Data
APPENDIX D	Water Level Field Logs - Form D
APPENDIX E	Groundwater Sampling Logs- Form E
APPENDIX F	Groundwater Analytical Data
APPENDIX G	DMR's and Groundwater Treatment System Inspection Logs
APPENDIX H	Institutional and Engineering Controls Certification Form
APPENDIX I	Photographic Log
	- · -

ACRONYMS AND ABBREVIATIONS

ABBREVIATION	NAME
BBL	Blasland, Bouck & Lee
bgs	below ground surface
cfm	cubic feet per minute
cis-1,2-DCE	cis-1,2-dichloroethene
CMP	corrugated metal pipe
Coolidge	Coolidge Utica Properties, LLC
CPTC	Chicago Pneumatic Tool Company
Danaher	Danaher Corporation
DER-10	NYSDEC's Draft DER-10, Technical Guidance for Site Investigation and Remediation dated November 2010
DMRs	Discharge Monitoring Reports
Fathead Minnow	Pimephales promelas (vertebrate)
FER	Final Engineering Report
gpd	gallons per day
gpm	gallons per minute
GTS	groundwater treatment system
HDPE IRM	high-density polyethylene Surface Water Interim Remedial Measures
ISACC	Intelligent System for Automatic Control & Communication (Auto Dialer System)
Main Building	former main manufacturing building
MH	Manhole
mg/l	Milligrams/liter
NCT	northern collection trench
ng/l	nanograms/liter
NYSDEC	New York State Department of Environmental Conservation
OBG	O'Brien and Gere Engineers, Inc.
OCDWC	Oneida County Department of Water Quality and Water Pollution Control
OM&M	Operation, Maintenance and Monitoring
PCB	polychlorinated biphenyl
PVC	polyvinyl chloride
QA/QC	Quality assurance/quality control
RA	Remedial Action
RAF	Remedial Action Facility
RD	Remedial Design
RI	Remedial Investigation
ROD	Record of Decision
SCT	southern collection trench
SECOR	SECOR International Incorporated
SPDES	State Pollutant Discharge Elimination System
SVOC	semi-volatile organic compound
TCE	Trichloroethylene
the Property	2200 Bleecker Street in Utica, New York
TOGS 1.1.1	NYSDEC Division of Water Technical and Operation Guidance Series (1.1.1) Ambient Water Quality and Guidance Values
	and Groundwater Effluent Limitations dated June 1998
trans-1,2-DCE	trans-1,2-dichloroethene
TSS	total suspended solids
ug/l	micrograms/liter
UHC	Utica Holding Company
VC	vinyl chloride
VOC	volatile organic compound
Water Flea	Ceriodaphnia dubia (invertebrate)

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

ASSOCIATED DOCUMENTS

ABBREVIATION	TITLE	AUTHOR	DATE
Phase 1	Phase I Investigation	BBL	8/85
SIR	Site Investigation Report	BBL	7/90
PSA	Preliminary Site Assessment	NYSDEC	11/90
Order	Order on Consent for RI/FS Index No. A6-0279-920-04	NYSDEC	10/26/93
RI	Remedial Investigation Report	BBL	10/94
IRM	Surface Water Interim Remedial Measures (Design)	BBL	10/94
IRM-DWG	IRM Contract Drawing	BBL	04/95
IRM OM&M	IRM Operation & Maintenance Manual	BBL	04/95
RI/FS	Health and Safety Plan - Addendum #1 Remedial Investigation/Feasibility Study	BBL	10/95
SRI/FS	Supplemental Remedial Investigation Report/Feasibility Study	BBL	12/95
ROD	Record of Decision - Site No. 622003	NYSDEC	3/29/96
ORDER	Administrative Order on Consent Index No. B6-0491-96-04	NYSDEC	10/02/97
RD	Remedial Design Work Plan	BBL	11/97
RDS	Remedial Design Specifications	BBL	4/98
SPDES-SAP	SPDES Stormwater Action Plan	SECOR	6/00
FER	Final Engineering Report (Final)	SECOR	8/01
OMM	Operation, Maintenance & Monitoring Manual (Final)	SECOR	4/01
2000-RPT	2000 Annual Operation, Maintenance & Monitoring Report	SECOR	4/01
2001-RPT	2001 Annual Operation Maintenance & Monitoring Report	SECOR	8/02
UHC SPDES	Utica Holding Company SPDES Permit No. NY-0257087	NYSDEC	9/1/02
CPTC SPDES	Chicago Pneumatic SPDES Permit No. NY-0108537	NYSDEC	9/1/02
2002-RPT	2002 Annual Operation, Maintenance and Monitoring Report	SECOR	3/03
2003-RPT	2003 Annual Operation, Maintenance and Monitoring Report	Domani	3/04
2004-RPT	2004 Annual Operation, Maintenance and Monitoring Report	Synapse	3/05
2005-RPT	2005 Annual Operation, Maintenance and Monitoring Report	Synapse	2/06
2006-RPT	2006 Annual Operation, Maintenance and Monitoring Report	Synapse	4/07
2007-RPT	2007 Annual Operation, Maintenance and Monitoring Report	Synapse	4/08 revised 6/08
2008-RPT	2008 Annual Operation, Maintenance and Monitoring Report	Synapse	5/09
2009-RPT	2009 Annual Operation, Maintenance and Monitoring Report	Synapse	7/10
2010-PRR	2010 Periodic Review Report	Synapse	8/11
2011-PRR	2011 Periodic Review Report	Synapse	8/12
2012-213 PRR	2012-2013 Periodic Review Report	Synapse	1/14

1.0 INTRODUCTION

This 2014 Periodic Review Report (PRR) provides an annual account of activities relative to the property located at 2200 Bleecker Street in Utica, New York (the Property).

Chicago Pneumatic Tool Company (CPTC) owned and operated at the Property from 1948 through 1997 for manufacturing. In 1997, Coolidge Utica took title to the former main manufacturing building (Main Building), land beneath the Main Building, and other improvements. Utica Holding Company (UHC), a subsidiary of Danaher Corporation (Danaher), owns the land surrounding the Main Building and in 1997, leased the land surrounding the Main Building (Leased Premises) to Utica Land Equities, LLC (ULE).

In November 2009 2200 Bleecker Street Properties LLC (2200 BSP) acquired fee ownership in the buildings improvements and land beneath the Main Building from Coolidge Utica LLC. 2200 Bleecker also is presumed to represent the controlling interest in ULE as the tenant of the Leased Premises.

1.1 Regulatory History

Environmental assessments and investigations conducted between 1985 through 1990 identified impacted soil, surface water, and groundwater at the Property, and prompted the New York State Department of Environmental Conservation (NYSDEC) to issue an Administrative Order on Consent in 1993 directing the investigation and remediation of impacted areas at the Property. In 1996, NYSDEC issued a Record of Decision (ROD) for the Property, and listed it in the Registry of Inactive Hazardous Waste Disposal Sites, followed by a second Administrative Order on Consent. This set forth a Remedial Design (RD) and subsequent Remedial Action (RA) required for the Property. Following completion of the RA construction and reporting activities, NYSDEC issued a letter indicating that the RA had been approved.

1.2 Purpose

This PRR has been prepared in conformance with the requirements set forth in NYSDEC's DER-10, dated November 2010, *Technical Guidance for Site Investigation and Remediation* (DER-10), and has been prepared in reference to the Final Engineering Report (FER) for the Property, previously submitted and accepted by NYSDEC. Additionally, the April 2001 site specific Operation, Maintenance and Monitoring (OM&M) Manual was approved by NYSDEC, along with subsequent annual reports. This PRR, as guided by the OM&M Manual, has the following objectives:

- To provide an ongoing review and evaluation with regards to the compliance of the RA with the requirements of the ROD and subsequent Order on Consent;
- To provide an evaluation of the effectiveness of ongoing remedial operations, engineering controls, and treatment systems in use at the Property, and identification of any needed repairs or modifications;
- To provide an assessment of the performance and effectiveness of the remedy;
- To document any necessary changes to the remedy and/or monitoring systems;
- To provide recommendations for changes and/or new conclusions regarding environmental impact at the Property based on this evaluation;
- To provide information to the public; and
- Submit the PRR for the Property.

1.3 Report Organization

This report has been organized into six sections, each addressing a specific physical area/feature and/or regulatory program/requirement pertaining to ongoing OM&M at the Property as follows:

Section 1.0 – Introduction - Discusses the regulatory history of the Property, the purpose of this annual report, the report's originations and an overview of party contributions and subsequent responsibilities;

Section 2.0 - Property Background - Discusses the current ownership and uses of the Property, geology and hydrogeology and environmental investigations;

Section 3.0 – Site Management - Remedial Action Facility (RAF) - Discusses the management of the RAF and the associated Engineering Controls at the Property;

Section 4.0 – Site Management - Groundwater Monitoring – Discusses the semi-annual groundwater sampling events at the Property;

Section 5.0 – Site Management – Sub-Slab Depressurization System (SSDS) – A building wide SSDS was installed to mitigate vapor intrusion in the Main Building. The 2014 SSDS As-built report was submitted to NYSDEC and New York State Department of Health in January 2015 for review and approval. UHC has not received comments at the time of the preparation of this 2014 PRR, and therefore the findings of said report have not been included. Following the receipt of comments the 2001 OM&M Manual will be updated to include the SSDS.

Section 6.0 – Engineering Controls - Operation, Maintenance and Performance Monitoring - Discusses CPTC's operation and maintenance of the groundwater treatment system (GTS) and SPDES Outfall 03A installed to monitor the GTS effluent at the Property. This section was prepared by Clough Harbour Associates (CHA) on behalf of CPTC.

Each section contains appropriate tables and figures as they apply to that specific section. The PRR also discusses, and presents as appendices, applicable data and information collected in compliance with satisfying the DER-10 requirements, such as site inspection forms, field monitoring logs, and laboratory analytical data.

1.4 Property Management

On behalf of UHC, Synapse Risk Management LLC (Synapse) of Syracuse, New York, has managed the administrative and technical requirements pursuant to the RA during 2014, with the exception of the GTS, which has been operated by CHA of Syracuse, New York on behalf of CPTC since September 2008.

2.0 PROPERTY BACKGROUND

The overall Property consists of a 77-acre parcel (see Figure 2-1 – Aerial Property Map) located in an industrial setting, with approximately 35 acres of undeveloped woodland at the southern portion of the Property. 2200 BSP took title to the Main Building, land beneath the Main Building and other improvements in November 2009 and subsequently leases portions of the building to various tenants. UHC retains ownership of the Leased Premises (see Figure 2-2 – Facility Plan). The peripheral Property receives monthly inspection and maintenance in conjunction with the required inspections of the RAF and associated components. This section includes inspection and maintenance only of the portions of the Property that are owned and accessible by UHC, not the Main Building. The RAF, groundwater monitoring, SSDS, and GTS are discussed in Section 3, Section 4, Section 5, and Section 6, respectively.

2.1 **Property Ownership**

CPTC occupied the Property from 1948 until 1997 for the manufacture of pneumatic tools. Danaher Corporation owned CPTC, but later transferred ownership of CPTC to Atlas Copco.

In 1997, Coolidge Utica took title to the 458,000 square foot Main Building, land beneath the Main Building, and other improvements. UHC, a subsidiary of Danaher, owns the land with the exception of the land under the Main Building and other improvements and beginning in 1997, leased the Leased Premises to ULE. In November 2009, 2200 BSP acquired the fee ownership interests in the buildings and land beneath the Main Building from Coolidge Utica.

In 2014, the majority of the Main Building was occupied by tenants that generally include warehouse storage, food (dough) manufacturing, environmental composite manufacturing n and uniform production. The Main Building is surrounded by approximately 57,000 square feet of unoccupied ancillary buildings. Paved access roads and parking areas surrounding the improvements account for approximately 12 acres. An approximate 35-acre wooded tract, at the southern portion of the Property, remains undeveloped. No specific changes to the Property's makeup or unusual activities related to operation and maintenance requirements were noted during 2014, with exception of 2200 BSP's unauthorized excavation associated with the repair of a sink hole in the western parking lot.

2.2 Summary of Environmental Investigations

Remedial Investigation/Remedial Action

Potential environmental conditions at the Property were first identified in a 1985 Phase I Site Assessment (see Associated Documents). A subsequent site investigation was conducted in July 1990, and NYSDEC conducted a Preliminary Site Assessment later that year. Based on the findings presented in these investigation reports, NYSDEC issued an Administrative Order on Consent in 1993 which mandated the further investigation and remediation of impacted areas at the Property. Pursuant to this Order on Consent, Blasland Bouck & Lee, Inc. (BBL) submitted a Remedial Investigation (RI) report and a Surface Water Interim Remedial Measures (IRM) design in 1994, and a Supplemental Remedial Investigation/Feasibility Study in 1995. In 1996, NYSDEC issued a ROD for the Property, and listed the Property in the Registry of Inactive Hazardous Waste Sites (No. 622003 - Class 2), specifying the RA required for the Property. A second administrative Order on Consent was issued in 1997 followed by the RD. The IRM included the installation of an air groundwater treatment system (GTS) that has been in operation since 1995. The GTS was incorporated into the final RD, with the OM&M requirements conducted by CPTC.

Soil Vapor Intrusion

In October 2005, Synapse prepared a Soil Vapor Intrusion Work Plan on behalf of UHC in response to NYSDEC's July 18, 2005 letter requesting participation in a soil vapor intrusion evaluation.

On November 10, 2005, Coolidge Utica, LLC, owner of the Main Building at the time, denied UHC access into the building to undertake said evaluation. In response, the NYSDEC issued acknowledgment of the denial of access and indicated NYSDEC was postponing further review and approval subject to access to the building.

Upon the change of ownership to 2200 BSP (November 2009), UHC submitted a revised Vapor Intrusion Workplan to NYSDEC (March 2010) that was subsequently approved on April 26, 2010.

In June 2010, a total of twenty four (24) sub-slab soil vapor samples were collected concurrently with four soil vapor and seven ambient air samples. Volatile Organic Compounds (VOCs) were present in 19 of the 24 sub-slab soil vapor samples collected in the main building at concentrations above NYSDOH Soil Vapor/Indoor Air Matrix 1 and/or Matrix 2 mitigation guidance levels. The summary of sampling results is as follows:

- VOCs were present in 16 of the 24 sub-slab vapor samples at concentrations above NYSDOH Soil Vapor/Indoor Air Matrix 1 mitigation guidance levels.
- VOCs were present in 9 of the 24 sub-slab vapor samples at concentrations above NYSDOH Soil Vapor/Indoor Air Matrix 2 mitigation guidance levels.
- VOCs were not detected in outdoor air samples at concentrations above NYSDOH Air Guideline Values.
- VOCs were not detected in the indoor air samples at concentrations above NYSDOH Air Guideline Values, with one exception.
 - TCE was detected in 3 of the 7 samples at concentrations that exceed the NYSDEC Air Guideline Value of 5 ug/m³.

Based on the vapor intrusion investigation results and findings, it was recommended that a soil vapor mitigation system design for the main building be prepared and submitted to NYSDEC and NYSDOH for review and approval.

In December 2011, a sub-slab diagnostic communication testing program was conducted to determine whether a sub-slab depressurization system would be a viable mitigation strategy to reduce subsurface vapor identified beneath the main building sub-slab floor. The intent of the sub-slab diagnostic communication testing was to gain an understanding of the sub-slab flow conditions with the design goal of determining horizontal suction point distances, effective pipe diameter, blower horse power (hp) and anticipated radius of influence (ROI). The results of the sub-slab communication testing indicated that a sub-slab depressurization system is a feasible mitigation method with allowable horizontal distances for vacuum sumps ranging between 100 and 125 feet.

In August 2013, UHC's contractors installed a building wide SSDS. The SSDS consists of six individual fans connected to three to four vacuum sumps. As of January 2015, UHC has not received comments from NYSDEC or NYSDOH relative to the 2014 SSDS As-Built Report. Therefore, the installation summary, design results and indoor air sampling was not included in the 2014 PRR. Upon receipt of NYSDEC and NYSDOH approval of the 2014 SSDS As-Built Report the 2015 SSDS OM&M activities will be discussed in Section 5 of the PRR and the 2001 OM&M will be updated accordingly.

2.3 Summary of Remedial Actions

The RA was implemented from May 1998 through December 1999. A June 2000 SPDES Stormwater Action Plan was prepared and transmitted to NYSDEC to document SPDES corrective actions performed at the Property and to set forth contingency measures. NYSDEC issued a letter dated December 11, 2001 indicating that the FER and accompanying drawings and OM&M Manual for the Property had been approved. Additionally, the NYSDEC issued an earlier letter dated March 7, 2000 reclassifying the Property as a Class 4 Inactive Hazardous Waste Disposal Site. CPTC and UHC retain responsibility for implementing long term OM&M of the GTS and RAF, respectively, at the Property.

The RA included the following major components:

- Remediation involving soil and sediment removal at 14 identified source areas (see Figure 2-3 -Historical Remedial Action Areas);
- Construction of a containment cell to store a portion of impacted soil and sediment from 12 identified source areas. The containment cell and associated leachate collection system and building are surrounded by a perimeter fence and access is limited to authorized individuals associated with UHC. This fenced area is referred to as the RAF; and
- Construction and connection of two trenches, northern collection trench (NCT) and southern collection trench (SCT), to the existing air stripper, creating the GTS.

2.4 **Property Geology and Hydrogeology**

The Property is located on the southern side of the Mohawk Valley, which is a broad, east-west trending lowland, the floor of which consists of a uniform sequence of laminated, calcareous black shale known as the Utica Shale. South of the Property, the land surface rises abruptly off the valley floor, forming a bluff capped by limestone. The Mohawk River is located approximately 3,000 feet north of the Property. In general, regional dip of the bedrock unit is to the southwest. Regional estimates of depth to bedrock range from 21 to 75 feet.

Subsurface materials at the Property were described during installation of monitoring wells, soil borings, test pits, and excavations performed during investigations and remedial actions conducted primarily between 1988 and 1999. The unconsolidated subsurface materials are composed of varying consistencies of sand, silt, and clay. Some of the materials have been reworked to varying depths across the site by former facility activity and are classified as fill. The depth of the unconsolidated natural material across the Property ranges from three feet to 12 feet below grade. A till layer was encountered below the unconsolidated material and ranged in thickness from 12 to 24 feet. The till deposits are described as over-consolidated, dark gray silt and clay, that slopes gradually toward the north-northwest.

The regional groundwater flow is northeast, toward the Mohawk River. Two distinct hydrogeologic units, separated by a semi-confining till unit, are present at the Property. The first water-bearing unit is the unconsolidated overburden material (sand, silt, clay). Depth to first groundwater encountered in the overburden at the Property is generally within 5 feet of the ground surface. Weathered shale bedrock is the second water-bearing unit, and was reportedly encountered between 23 and 30 feet below ground surface.

2.5 **Property Drainage and Outfalls**

The Property is generally drained via existing drainage ditches located at the east and west portions of the Property. The west unnamed creek, (former Area 1) (See Figure 2-3), flows from the south through a wooded area and runs along the western extent of the Property, exiting at the northwest corner of the Property. The west unnamed creek drainage contribution primarily consists of roof leaders conveyed via

the northern and southwestern stormwater systems emanating from the Main Building and owned by 2200 BSP. Surface water runoff from the western parking lot and surface water runoff from a southern agriculture area also contribute to the west unnamed creek. The southwestern and northern stormwater systems where previously monitored from 2200 BSP's stormwater manholes identified as SPDES Outfall 001 and Outfall 002, respectively. The west unnamed creek floods occasionally in the spring and fall, primarily due to restrictions in an off-site stormwater piping system. A culvert was installed in 2003 by Herkimer County across Bleecker Street, approximately 300 feet off-site to the west. This culvert was installed to limit flooding of Bleecker Street by water backing up the west unnamed creek.

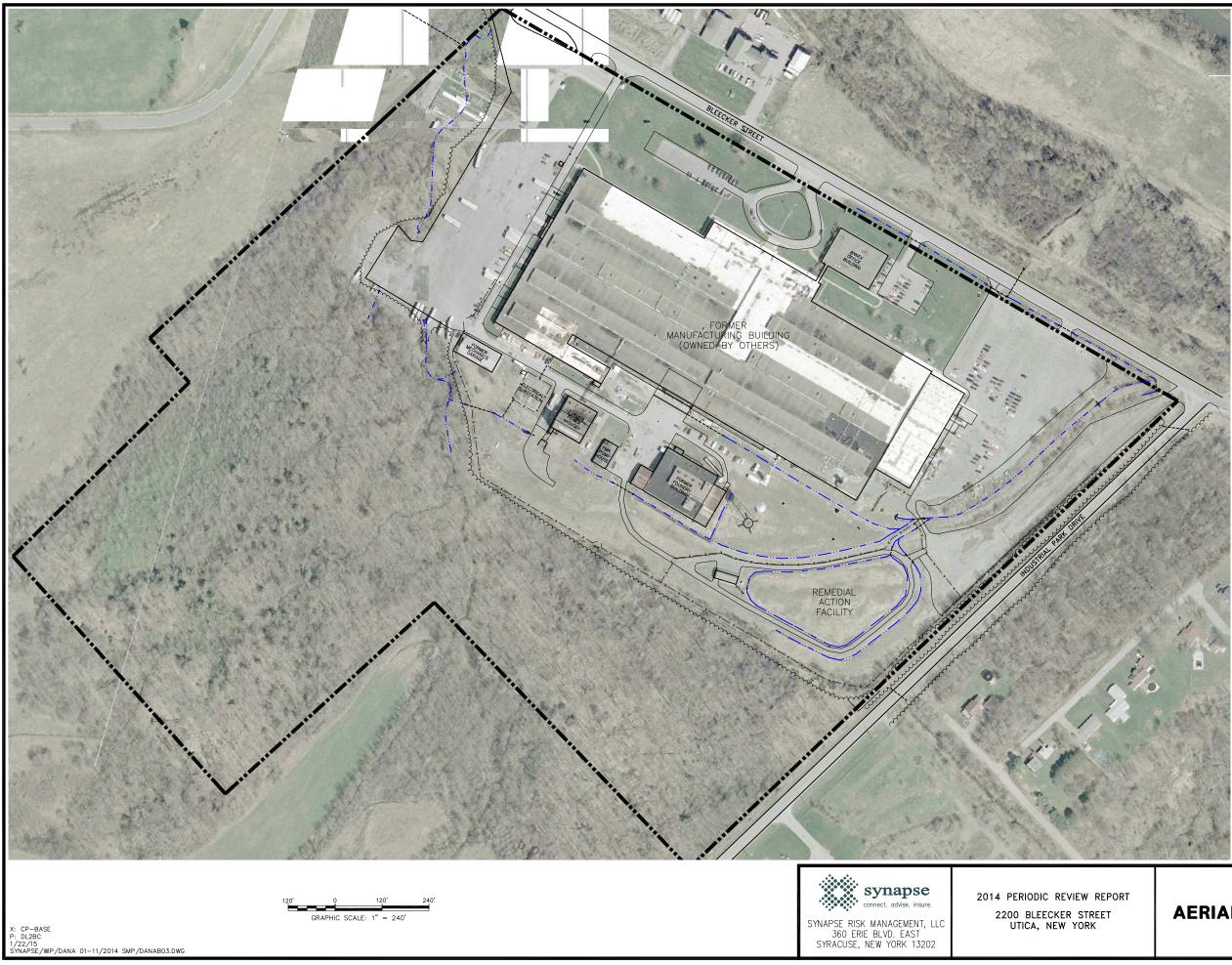
UHC was the Permittee on the SPDES permit associated with four outfalls located on the Property, which was previously discussed in Section 5 of prior PRR's, the outfalls are currently the responsibility 2200 BSP. UHC does not own, control or operate the GTS, as CPTC maintains responsibility for the GTS and associated SPDES permit for one outfall which is discussed in Section 6.

Two east-west oriented surface water drainage ditches (former Area 4 and Area 6), originate from the mid portion of the Property, south of the 2200 BSP's Main Building, and converge to form one south-north ditch, (Area 14), along the eastern portion of the Property. This east drainage ditch joins a road ditch located parallel to Bleecker Street. Treated effluent from the GTS, which is covered in Section 6, is discharged to the east drainage ditch via CPTC SPDES Outfall 03A. Former SPDES Outfall 03B was permitted and constructed in April 2010 and manually discharged on a quarterly basis to former Area 6 ditch, Outfall 03B was closed by UHC in April 2013, redirecting the leachate from the RAF containment cell to the 5,000 gallon storage tank. The east drainage ditch also receives stormwater from roof leaders connected to the southeastern stormwater system and the RAF surface drainage, as well as surface water from the eastern parking lots. The former SPDES Outfall 003 is located near the northern end of the eastern drainage ditch; prior to joining a drainage ditch parallel to Bleecker Street, ultimately discharging off site via a culvert under Bleecker Street. UHC has not been notified by NYSDEC or 2200 BSP regarding the status of 2200 BSP's SPDES permit application to obtain coverage from the discharges from 2200 BSP's Main Building.

2.6 Summary of Current Operations

The northern portion of the Property continued to be the most active during 2014; the southern portion of the Property remains wooded and undeveloped. Commercial tenants occupy approximately 65% of 2200 BSP's Main Building and continue to use the surrounding access roads and parking lots. The Property is inspected a minimum of once per month allotting for reviews of exterior building activities and review of the Property condition.

A condition of potential concern was brought to UHC's attention in January 2015 correspondence from 2200 BSP. 2200 BSP notified UHC of excavation activities presumed to have occurred in the fall of 2014 on the leased portion of the Property. The excavation activities were reportedly performed by contractors procured by 2200 BSP, which were not conducted under the guidance of a Site Management Plan.


The excavation was not authorized by UHC, nor was UHC made aware of the activities at the time and it is UHC's position that such excavation activities violate the terms of the ground lease. The excavated soil was placed directly adjacent to former SPDES Outfall 002 with no containment or erosion control measures to prevent surface runoff from entering the waters of the State.

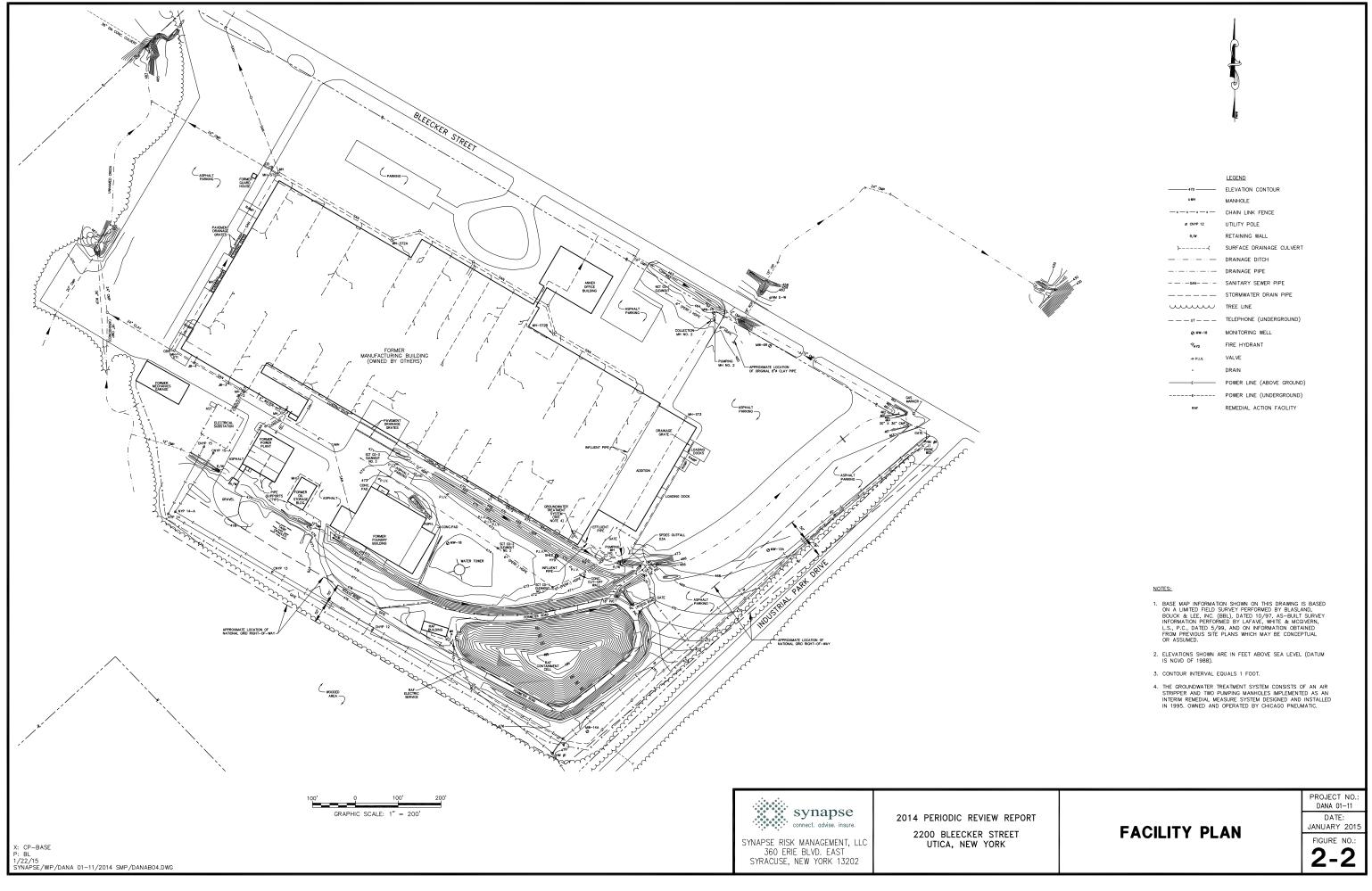
As with 2200 BSP's September 2012 unauthorized excavation activities, the excavated soils continue to remain as described above and to the best of UHC's knowledge, 2200 BSP has yet to issue a corrective measures plan to NYSDEC to address and remedy the exposed soil conditions. UHC issued correspondence dated September 5, 2012 to 2200 BSP demanding corrective action relative to the deposited soils.

2014 Periodic Review Report

2.7 Figures

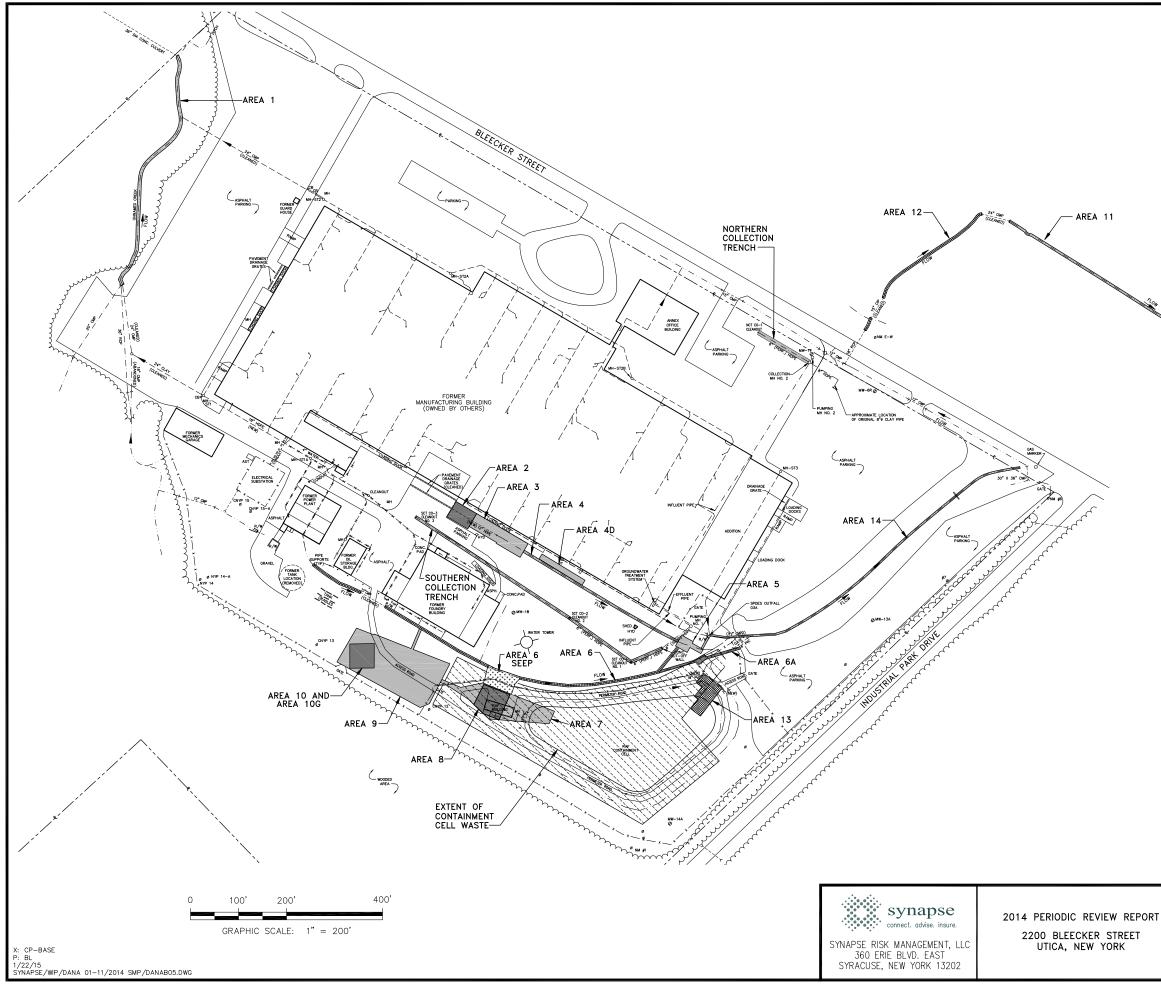
- 2-1 Aerial Property Map
- 2-2 Facility Plan
- 2-3 Historical Remedial Action Areas

TREE LINE


LEGEND APPROXIMATE PROPERTY LINE ----- SURFACE DRAINAGE CULVERT ---- DRAINAGE DITCH

NOTES:

- BASE MAP INFORMATION SHOWN ON THIS DRAWING IS BASED ON A LIMITED FIELD SURVEY PERFORMED BY BLASLAND, BOUCK & LEE, INC. (BBL), DATED 10/97, AS-BUILT SURVEY INFORMATION PERFORMED BY LAFAVE, WHITE & MCGIVERN, L.S., P.C., DATED 5/99, AND ON INFORMATION OBTAINED FROM PREVIOUS SITE PLANS WHICH MAY BE CONCEPTUAL OR ASSUMED.
- 2. PROPERTY LINE INFORMATION TAKEN FROM HERKIMER COUNTY TAX MAPS AND IS APPROXIMATE.
- 3. 2003 AERIAL PHOTO FROM NYSGIS WEBSITE.


AERIAL PROPERTY MAP

PROJECT NO.: DANA 01-11 DATE: JANUARY 2015 FIGURE NO .: 2-1

	LEGEND
470	ELEVATION CONTOUR
OMH	MANHOLE
_ x _ x _ x _ x x _	CHAIN LINK FENCE
Ø CNYP 12	UTILITY POLE
R/W	RETAINING WALL
)(SURFACE DRAINAGE CULVERT
	DRAINAGE DITCH
	DRAINAGE PIPE
SAN	SANITARY SEWER PIPE
	STORMWATER DRAIN PIPE
uuuu	TREE LINE
T	TELEPHONE (UNDERGROUND)
@ WW-18	MONITORING WELL
-9HYD	FIRE HYDRANT
♦ P.I.V.	VALVE
•	DRAIN
E	POWER LINE (ABOVE GROUND)
E	POWER LINE (UNDERGROUND)
RAF	REMEDIAL ACTION FACILITY

<u>LEGEND</u>

MANHOLE оMH

UTILITY POLE Ø CNYP 12

RETAINING WALL R/W

---- DRAINAGE DITCH

----- DRAINAGE PIPE

---- STORMWATER DRAIN

ABANDONED UNDERGROUND PIPE

TREE LINE

@ MW-18 MONITORING WELL

FIRE HYDRANT PHYD

VALVE ↔ P.I.V.

> EXCAVATION AREA REQUIRING OFF-SITE DISPOSAL AS A TSCA-REGULATED MATERIAL PCB CONCENTRATION >50 ppm)

EXCAVATION AREA REQUIRING PLACEMENT INTO THE SVE PORTION OF THE ON-SITE CONTAINMENT_CELL_(VOC CONCENTRATION >10 ppm, PCBs <50ppm)

EXCAVATION AREA REQUIRING PLACEMENT INTO THE ON-SITE CONTAINMENT CELL (VOC CONCENTRATION <10 ppm, PCBs <50ppm)

SELECT WASTE (TOPSOIL)

EXCAVATION AREA REQUIRING OFF-SITE DISPOSAL (VOC CONCENTRATION >10 ppm)

≻--^{12* HDPE}-- NEW CULVERT

DRAIN

REMEDIAL ACTION FACILITY RAF

NOTES: 1. BASE MAP INFORMATION SHOWN ON THIS DRAWING IS BASED ON A LIMITED FIELD SURVEY PERFORMED BY BLASLAND, BOUCK & LEE, INC. (BBL), DATED 10/97, AS-BUILT SURVEY INFORMATION PERFORMED BY LAFAVE, WHITE & MCGIVERN, L.S., P.C., DATED 5/99, AND ON INFORMATION OBTAINED FROM PREVIOUS SITE PLANS WHICH MAY BE CONCEPTUAL OR ASSUMED.

> 2. ELEVATIONS SHOWN ARE IN FEET ABOVE SEA LEVEL (DATUM IS NGVD OF 1988).

3. CONTOUR INTERVAL EQUALS 1 FOOT.

HISTORICAL

4. ALL ORIGINAL DRAINS AND DRAIN PIPE LOCATIONS INSIDE AND OUTSIDE OF THE BUILDINGS WERE DIGITIZED FROM COPIES OF THE 1948 CONSTRUCTION DRAWINGS AND ARE APPROXIMATE.

PROJECT NO.: DANA 01-11 DATE: JANUARY 2015 REMEDIAL ACTION AREAS FIGURE NO .: 2-3

3.0 SITE MANAGEMENT – REMEDIAL ACTION FACILITY

The RAF is situated on the eastern portion of the Property, within a fenced area encompassing approximately 3.8 acres, as presented on Figure 3-1 – Remedial Action Facility Plan. The OM&M of the RAF was conducted by Synapse in accordance with the guidelines set forth in the NYSDEC-approved OM&M Manual dated April 2001. Field reports provide monthly documentation of the site inspection events and any adjustments made to components associated with the RAF. The result of these inspections generally sets forth any maintenance activities, if required.

Key components of the RAF are the fences, roads, drainage ditches, containment cell, leachate collection, and building systems, which constitute the engineering controls. The primary function of the RAF is collection and subsequent disposal of leachate generated from the containment cell.

Four groundwater monitoring wells (with the exception of MW-14, reinstalled and now referenced as monitoring well MW-14A), are located outside of the perimeter fence of the RAF, and are discussed in Section 4. The GTS is located within the southeast corner of the 2200 BSP's Main Building and is discussed in Section 6.

3.1 Construction

The RAF is surrounded by an 8-foot high barbed wire over chain link fence, with access gates to the north and west, with the primary access via the western gate. The RAF is generally comprised of the following components:

- Containment Cell In 1999, construction of a 1.4-acre containment cell was completed to store 16,117 cubic yards of impacted soil and sediment generated during the RA. The containment cell was lined with a single composite liner system and completed with a composite cap placed over the impacted soil and sediment. Two gas vents and a leachate collection pipe were also installed within the containment cell. A series of ditches were installed around the containment cell to collect surface water runoff and direct stormwater away from the containment cell. A gravel service road surrounds the perimeter of the containment cell allowing for vehicle access to conduct inspection and maintenance.
- Leachate Collection System A leachate collection system is comprised of a collection pipe that extends the length of the containment cell and is connected to the collection manhole, which is installed adjacent to the western side of the containment cell. The collection manhole is equipped with two pumps to transfer leachate to a storage tank prior to disposal. All components of the leachate collection system are double containment cell provide access for cleaning, as needed. The leachate collection system components are noted on Figure 3-1.
- Leachate Storage System The leachate is managed by batch treatment and discharge to the publicly owned treatment works, following the receipt of analytical analysis and approval by the Oneida County Department of Water Quality and Water Pollution Control (OCDWPC) pursuant to Groundwater Remediation Discharge Permit No. GW-050.
- RAF Building A 1,278-square foot building constructed of a steel frame and siding on a concrete slab foundation is used to house the leachate collection tank (tank area), and truck pad (truck loading area), noted above. Additionally, the building enclosure has an office area for maintaining OM&M records, the communication components, electrical service boxes and a storage area for tools, supplies, and equipment, known as the office/storage area. The building is located west of the containment cell and collection manhole.

3.2 **Operations and Inspections**

The RAF and associated components are scheduled for monthly visual inspection and documentation as set forth in the OM&M Manual. Operation is also monitored via telecommunication with the RAF auto dialer system that has operated from November 1998 to December 2014. In November 2013 the communication system was upgraded from an Intelligent System for Automatic Control & Communication (ISACC) to a SCADA 3000 unit to monitor the RAF components as well as the SSDS components. Scheduled site visits and subsequent Site Inspection Reports – Form A (Appendix A) includes the following inspection components associated with the RAF:

- General Property Access and Drainage;
- Cell Perimeter Components;
- Containment Cell;
- Leachate Collection Manhole;
- Building Structure, Electrical, Telephone, and Auto Dialer Controls; and
- Leachate Storage System.

The cell perimeter road and facility access road were reviewed during the monthly inspections to ensure access for facility maintenance. The immediate surface drain ways were inspected to insure that ponding or erosion does not occur from runoff. Property ditches and culverts were accessed and viewed during the inspection, for the same purpose. The RAF perimeter fence was also inspected to ensure facility security, and the facility overhead utilities were viewed and tested, in the building.

Inspection of the containment cell involved viewing the cell from the perimeter road and traversing its surface. Components viewed were the four perimeter drains, the two passive gas vents, and the cell cleanout pipe. These were checks for functionality, which also included periodic screening of the passive gas vents for volatile organic compounds (VOCs). The surface of the cell was inspected for stressed vegetation, burrows, erosion, and settlement.

Operation of the leachate collection manhole involves structural, electrical, pumping, and alarm components. Each inspection required checking the manhole control panel and recording running hours of the two pumps. Additionally, this included testing the operation of each pump, opening the manhole and conducting visual inspection of its components. Prior to April 2013 the lead/lag pumping system remained in the "Off" position and was only operated to conduct discharges to Outfall 03B. Following the reconnection of the leachate collection/storage system and with the discontinued use of SPDES Outfall 03B, the pump controls were returned to operate in "Auto" mode.

The RAF building was viewed during the inspection for inconsistencies in the structural, security, electrical, and telephone systems, as well as assessing the condition of the heat and vent systems. The ISACC, and now SCADA, are located in the RAF building and provides continuous monitoring information of the leachate collection manhole and previously the leachate storage tank. This system is generally accessed remotely via modem semi-monthly for data collection and management. In the event of an alarm condition, the auto dialer system alerts designated Synapse personnel based on the guidelines set forth in the OM&M Manual and the auto dialer program logic. The Auto Dialer Alarm Incident and Testing Report, Form F, included in Appendix B, provides documentation of alarm conditions received, if any, and testing during the 2014 calendar years. An annual total system check was performed on December 19, 2014, as required, and documented on Form F, included in Appendix B. Two RAF alarms were triggered during the 2014 monitoring period, associated with Channel No. 5, triggered by surface water collecting in the manhole interstitial space; this condition was contributed to the manhole cover leak and a malfunctioning interstitial space probe.

3.3 Maintenance

General maintenance requirements of the RAF are set forth in the OM&M Manual, which provides inspection criteria, forms, guidance, and procedures to perform scheduled maintenance requirements, as well as contingency plans for unscheduled matters. The OM&M procedures and protocols are generally cross-referenced with and supported by the August 2001 FER.

Scheduled Maintenance

The scheduled maintenance activities associated with the RAF and site components that occurred during the 2014 calendar years consisted of the following:

- RAF site access (snow removal, road maintenance, and fence maintenance);
- RAF building (ISACC program diagnostic/communication response);
- Containment cell (vegetation management, mowing, and erosion control); and
- Drainage ditches (vegetation, riprap and culvert management).

Unscheduled Maintenance

Unscheduled maintenance activities associated with the RAF and site components that occurred during the 2014 calendar years consist of the following:

- Change out of the auto dialer system and update channels.
- Elimination of persistent and damaging vectors from the containment cell;
- Placement and grading of top soil followed by seeding and mulch;
- Spot restoration of vegetative cover on the containment cell;
- Removal of woody vegetation; and
- General cleaning of the building.

3.4 Leachate Collection

The leachate generated from the containment cell is collected, conveyed, and stored on-site. The leachate generated from the containment cell is drained, via gravity flow, to a perforated 6-inch, high-density polyethylene (HDPE) pipe located along the bottom of the containment cell, just above the liner. The leachate collection pipe passes through the western perimeter berm, and discharges into the double walled leachate collection manhole. The portion of the leachate collection pipe between the containment cell and collection manhole is equipped with double-walled piping that provides secondary containment outside the containment cell. As described in Section 3-1 the leachate collection system was restored to operate as designed and set forth in the RD. The automated lead/lag pumping system was also restored as the primary and backup system.

Leachate generation/collection is monitored by two methods; measuring the fill height in the collection manhole and through the flow totalizer. The operation of this unit, associated with the leachate collection system, is discussed in the OM&M Manual. Several of the eight programmed ISACC channels, were

2014 Periodic Review Report

connected and synced with the SCADA 3000 system including the continued tracking of tank filling events and other tank parameters (i.e., water level in the tank, temperature, etc.).

The leachate generation rate is tracked by the inline flow totalizer that is read and is recorded during the monthly inspections. Table 3-1 – Cumulative Leachate Generation provides a summary of the recorded flow from May 1999, inception, through December 22, 2014. Chart 3-1 – Cumulative Leachate Generation graphically represents the data from Table 3-1. A total of 2,900 gallons were metered during 2014, which equates to an average flow of approximately 7.7 gallons per day (gpd). The general overall trend of yearly leachate production is similar to the flow rate observed in recent years, as depicted in Table 3-2 – Leachate Generation Per Year, and Chart 3-2 – Leachate Generation Per Year.

3.5 Leachate Disposal

Leachate is currently stored in an on-site 5,000-gallon aboveground tank with a steel secondary containment sized to contain 110% of the tank volume. The leachate requires laboratory analysis prior to bulk batch disposal to the sanitary sewer system. Previous scheduling of the sampling events and subsequent disposal was based on tank level data monitored by the ISACC system. The disposal of the leachate was to the sanitary system under Permit No. GW-050 issued by the OCDWPC. The Oneida County permit remains active and current with the OCDWPC. From March 2009 to April 11, 2013 leachate generated was discharged to SPDES Outfall 03B. The collection manhole leachate level is visually observed during scheduled monthly RAF inspections. During the use of Outfall 03B, as a discharge point, the manhole controls were switched to operate by hand to perform transfers of leachate from the collection manhole to Outfall 03B. The liquid level in the collection manhole is monitored utilizing the programmed auto dialer system channels. When the SCADA 3000 system was installed in November 2013, the system was configured to monitor the leachate collection system and leachate generated, and provide telephone notification to Synapse.

3.6 Summary

The RAF facility and associated components continue to operate as designed with some monitoring updates during 2014. The monitoring and inspection continues, as necessary, to evaluate trends and the ongoing condition of the RAF. The operation and maintenance performed during the 2014 calendar year were performed within the guidelines set forth in the OM&M Manual. In addition to scheduled maintenance, unscheduled maintenance conditions were recognized and corrected as follows:

- Persistent and damaging vectors were eliminated from the containment cell;
- Small areas of stressed vegetative cover on the containment cell were restored; and
- Integration of the SSDS with the RAF OM&M manual.

The evaluation of the data relating to the leachate generated and metered during 2014 (2,900 gallons), indicates a similar flow rate of leachate generated in comparison to earlier years. The average production rate for 2014 was approximately 7.7 gpd. Synapse concludes that the engineering controls associated with the RAF performed as designed during 2014 and are in compliance with Section 4 of the OM&M requiring no modification or change at this time.

3.7 Tables

- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation

TABLE 3-1CUMULATIVE LEACHATE GENERATION

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)	
5/19/1999	0	0	0	0	
6/1/1999	13	4200	4200	323	
6/22/1999	21	8200	4000	190	
7/23/1999	31	12200	4000	<u>129</u> 61	
9/27/1999 12/21/1999	66 85	16200 20200	4000 4000	47	
1/21/2000	31	20200	1200	39	
2/4/2000	14	22400	1000	71	
3/14/2000	39	23800	1400	36	
4/21/2000	38	24800	1000	26	
5/11/2000	20	25700	900	45	
6/6/2000	26	26700	1000	38	
7/11/2000	35	27700	1000	29	
8/18/2000	38	28800	1100	29	
9/1/2000	14	29500	700	50	
10/27/2000	56	31000	1500	27	
11/14/2000	18	31600	600	33	
12/15/2000	31	32700	1100	35	
1/31/2001	47	33800	1100	23	
2/28/2001	28	34400	600	21	
3/29/2001	29	34800	400	14	
4/26/2001	28	35400	600	21	
5/23/2001	27	35900	500	19	
6/21/2001	29	36500	600	21	
7/17/2001	26	37100	600	23	
8/15/2001 9/14/2001	29 30	37600 38400	500 800	17 27	
10/23/2001	39	39200	800	21	
12/3/2001	41	40000	800	20	
12/18/2001	15	40400	400	27	
1/11/2002	24	40800	400	17	
2/6/2002	26	41400	600	23	
3/5/2002	27	41800	400	15	
4/16/2002	42	42300	500	12	
5/9/2002	23	42700	400	17	
6/5/2002	27	43100	400	15	
7/23/2002	48	43900	800	17	
8/9/2002	17	44100	200	12	
9/19/2002	41	44900	800	20	
10/16/2002	27	45400	500	19	
11/27/2002	42	46200	800	19	
12/13/2002	16	46400	200	13	
1/31/2003	49	47200	800	16	
2/18/2003	18	47400	200	11	
3/19/2003	29	47800	400	14	
4/16/2003 5/15/2003	28 29	48200 48400	400 200	<u>14</u> 7	
6/5/2003	29	48400	200	10	
7/9/2003	34	49200	600	18	
8/1/2003	23	49200	400	17	
9/23/2003	53	50400	800	15	
10/2/2003	9	50400	0	0	
11/21/2003	50	51500	1100	22	
12/31/2003	40	52600	1100	28	
1/13/2004	13	52600	0	0	
2/27/2004	45	54100	1500	33	
3/10/2004	12	54100	0	0	
4/7/2004	28	54600	500	18	
5/18/2004	41	54800	200	5	
6/18/2004	31	55200	400	13	
7/29/2004	41	55800	600	15	
8/26/2004	28	56200	400	14	
9/23/2004	28	56500	300	11	
10/20/2004	27	56700	200	7	
11/30/2004	41	57100	400	10	
12/17/2004	17	57300	200	12	
1/12/2005	26	57700	400	15	
2/10/2005	29	57900	200	7	

1 of 3

Synapse Risk Management, LLC.

TABLE 3-1CUMULATIVE LEACHATE GENERATION

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)	
3/7/2005	29	58100	400	14	
4/6/2005	30	58300	200	7	
6/2/2005	57	58700	400	7	
7/27/2005	55	59300	600	11	
8/10/2005	14	59500	200	14	
9/14/2005	35 27	60000	500	14	
10/11/2005 11/15/2005	35	60300 60600	300 300	<u>11</u> 9	
12/28/2005	43	60900	300	<u> </u>	
1/25/2005	28	61200	300	11	
2/20/2006	26	61400	200	8	
3/24/2006	32	61800	400	13	
4/12/2006	19	62000	200	11	
5/17/2006	35	62200	200	6	
6/2/2006	16	62400	200	13	
7/11/2006	39	62600	200	5	
8/23/2006	43	63200	600	14	
9/20/2006	28	63400	200	7	
10/5/2006	15	63600	200	13	
11/3/2006	29	63800	200	7	
12/29/2006	56	64400	600	11	
1/26/2007	28	64700	300	11	
2/21/2007	26	64900	200	8	
3/23/2007	30	65100	200	7	
4/18/2007	26	65300	200	8	
5/31/2007	43	65700	400	9	
6/12/2007	12 44	65700	0 400	0 9	
7/26/2007 8/14/2007	19	66100 66300	200	<u> </u>	
9/19/2007	36	66500	200	6	
10/30/2007	41	66800	300	7	
11/30/2007	31	67200	400	13	
12/28/2007	28	67400	200	7	
1/14/2008	17	67700	300	18	
2/21/2008	38	68000	300	8	
3/18/2008	26	68300	300	12	
4/18/2008	31	68500	200	6	
5/13/2008	25	68700	200	8	
6/23/2008	41	69000	300	7	
7/23/2008	30	69200	200	7	
8/6/2008	14	69400	200	14	
9/15/2008	40	69600	200	5	
10/1/2008	16	69600	0	0	
11/25/2008	55	69900	300	5	
12/24/2008 1/20/2009	29 27	70200 70500	300 300	10 11	
2/26/2009	37	70500	300	8	
3/11/2009	13	70800	300	23	
3/27/2009	16	71600	500	31	
4/8/2009	12	71600	0	0	
5/29/2009	51	71900	300	6	
6/11/2009	13	71900	0	0	
7/23/2009	42	72500	600	11	
8/5/2009	13	72500	0	0	
9/4/2009	30	73100	600	14	
10/16/2009	42	73100	0	0	
11/25/2009	40	73100	0	0	
12/24/2009	29	73600	500	5	
1/18/2010	25	73600	0	0	
2/4/2010	17	73600	0	0	
3/19/2010	43	73600	0	0	
4/16/2010	28	74300	700	8	
5/14/2010	28	74300	0	0	
6/11/2010	28	74300	0	0	
7/2/2010	21	74300	0	0	
8/6/2010 9/17/2010	35 42	75300 75300	1000 0	12 0	
3/17/2010	29	75300	0	0	

2 of 3

Synapse Risk Management, LLC.

TABLE 3-1CUMULATIVE LEACHATE GENERATION

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Reading Date	Monitoring Period	Totalizer Reading	Gallons Per Period	Flow (gpd)	
11/13/2010	28	75800	500	5	
12/22/2010	39	75800	0	0	
1/7/2011	16	75800	0	0	
2/4/2011	28	75800	0	0	
3/18/2011	42	76680	880	10	
4/1/2011	14	76680	0	0	
5/12/2011	41	76680	0	0	
6/24/2011	43	76680	0	0	
7/8/2011	14	76680	0	0	
8/19/2011	42	77500	820	8	
9/26/2011	38	77500	0	0	
10/20/2011	24	77500	0	0	
11/29/2011	40	78300	800	8	
12/21/2011	22	78300	0	0	
1/21/2012	31	79100	800	9	
2/4/2012	14	79100	0	0	
3/19/2012	44	79700	600	7	
4/13/2012	25	79700	0	0	
5/25/2012	42	79700	0	0	
6/22/2012	28	79700	0	0	
7/6/2012	14	80300	600	7	
8/17/2012	42	80300	0	0	
9/26/2012	40	80300	0	0	
10/24/2012	28	80900	600	5	
11/14/2012	21	80900	0	0	
12/22/2012	38	80900	0	0	
1/18/2013	27	81500	600	7	
2/15/2013	28	81500	0	0	
3/26/2013	39	81500	0	0	
4/11/2013	16	81900	400	5	
5/10/2013	29	82000	100	1	
6/20/2013	41	82100	100	1	
7/17/2013	27	82300	200	2	
8/14/2013	28	82600	300	3	
9/24/2013	41	82700	100	1	
10/25/2013	31	83200	500	5	
11/15/2013	21	83500	300	3	
12/6/2013	21	83600	100	1	
1/22/2014	47	83700	100	1	
2/24/2014	33	83700	0	0	
3/18/2014	22	83700	0	0	
4/27/2014	40	83700	0	0	
5/21/2014	24	83700	0	0	
6/4/2014	14	85200	1500	19	
7/15/2014	<u> </u>	85200	0	0	

7/15/2014	41	85200	0	0
8/25/2014	41	85900	700	7
9/19/2014	25	86200	300	3
10/15/2014	26	86500	300	3
11/14/2014	30	86500	0	0
12/19/2014	35	86500	0	0

NOTES:

1. Monitoring Period = Days between totalizer readings.

2. Totalizer reading in gallons.

3. gpd = Gallons per day.

4. Outfall 03B installed on April 8, 2009.

3 of 3

Synapse Risk Management, LLC.

TABLE 3-2 ANNUAL LEACHATE GENERATION

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

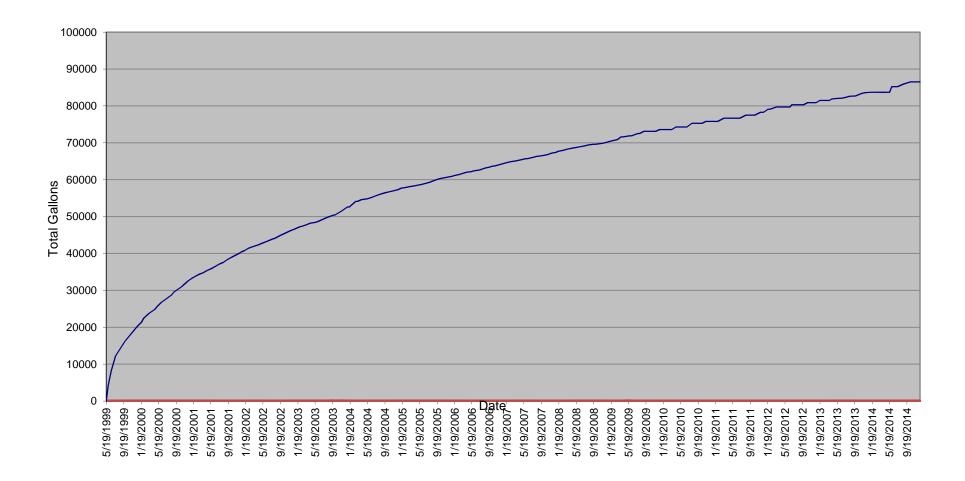
	Reading	Monitoring	Totalizer	Gallons	Flow	Flow
Year	Date	Period	Reading	Per Year	(gpd)	(gpm)
Begin	5/19/1999		0			
1999	12/21/1999	216	20200	20200	93.5	0.0649
2000	12/15/2000	360	32700	12500	34.7	0.0241
2001	12/18/2001	368	40400	7700	20.9	0.0145
2002	12/13/2002	360	46400	6000	16.7	0.0116
2003	12/31/2003	383	52600	6200	16.2	0.0112
2004	12/17/2004	352	57300	4700	13.4	0.0093
2005	12/28/2005	376	60900	3600	9.6	0.0066
2006	12/29/2006	366	64400	3500	9.6	0.0066
2007	12/29/2007	365	67400	3000	8.2	0.0057
2008	12/24/2008	361	70200	2800	7.8	0.0054
2009	12/20/2009	361	73600	3400	9.4	0.0065
2010	12/22/2010	367	75800	2200	6.0	0.0042
2011	12/21/2011	364	78300	2500	6.9	0.0048
2012	12/22/2012	367	80900	2600	7.1	0.0049
2013	12/6/2013	349	83600	2700	7.7	0.0054
2014	12/19/2014	378	86500	2900	7.7	0.0053

NOTES:

1. Monitoring Period = Days between totalizer readings.

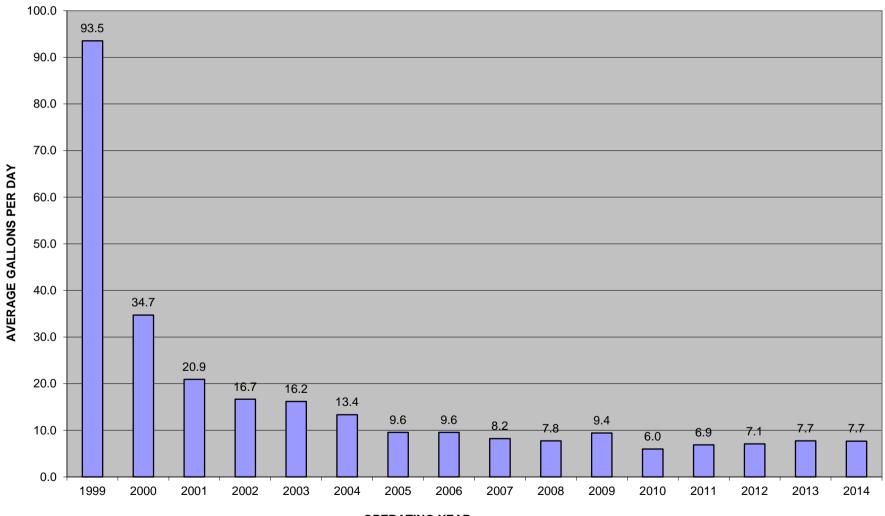
2. Totalizer reading in gallons.

3. gpd = Gallons per day.


4. gpm = Gallons per minute.

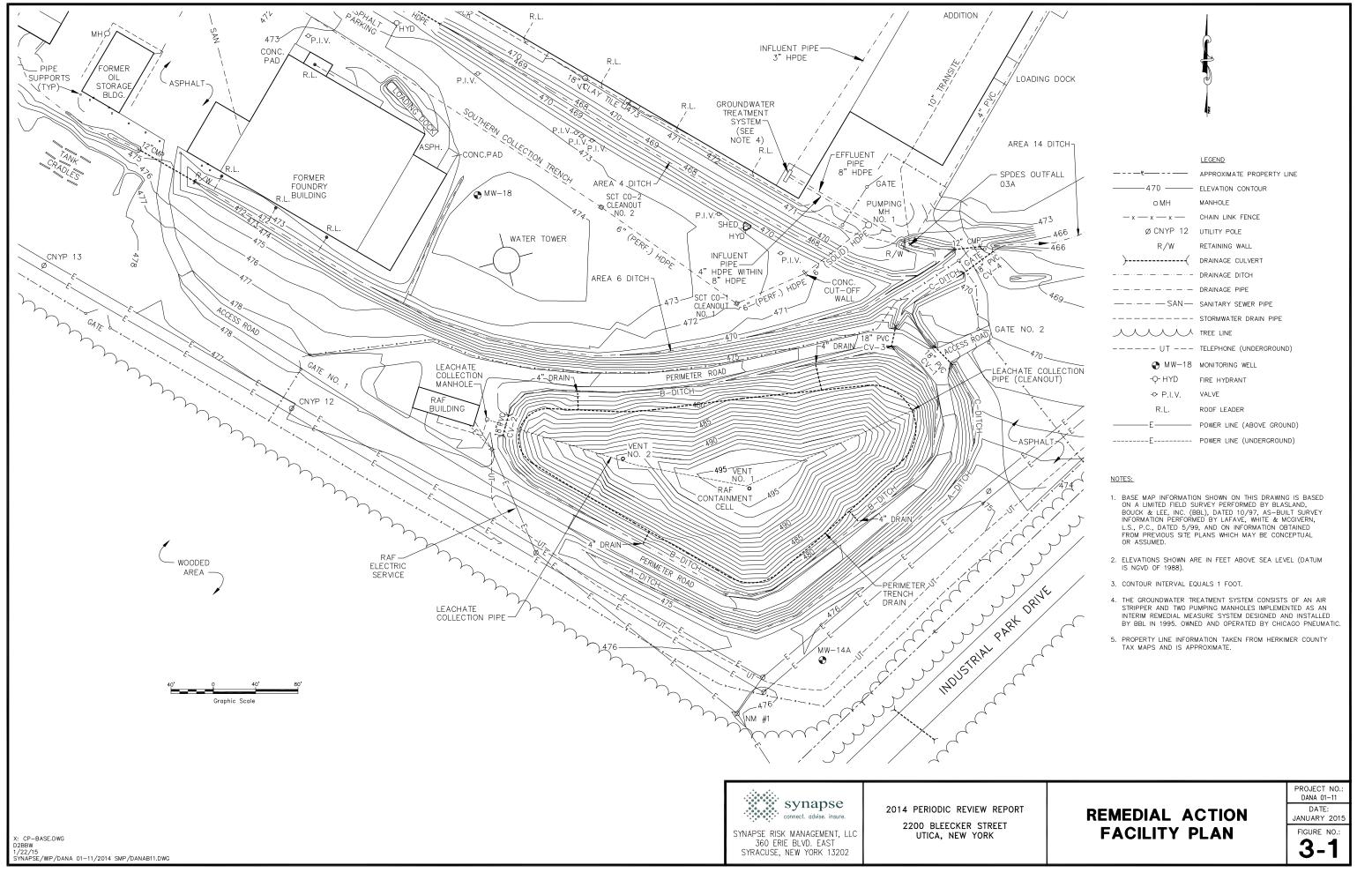
3.8 Charts

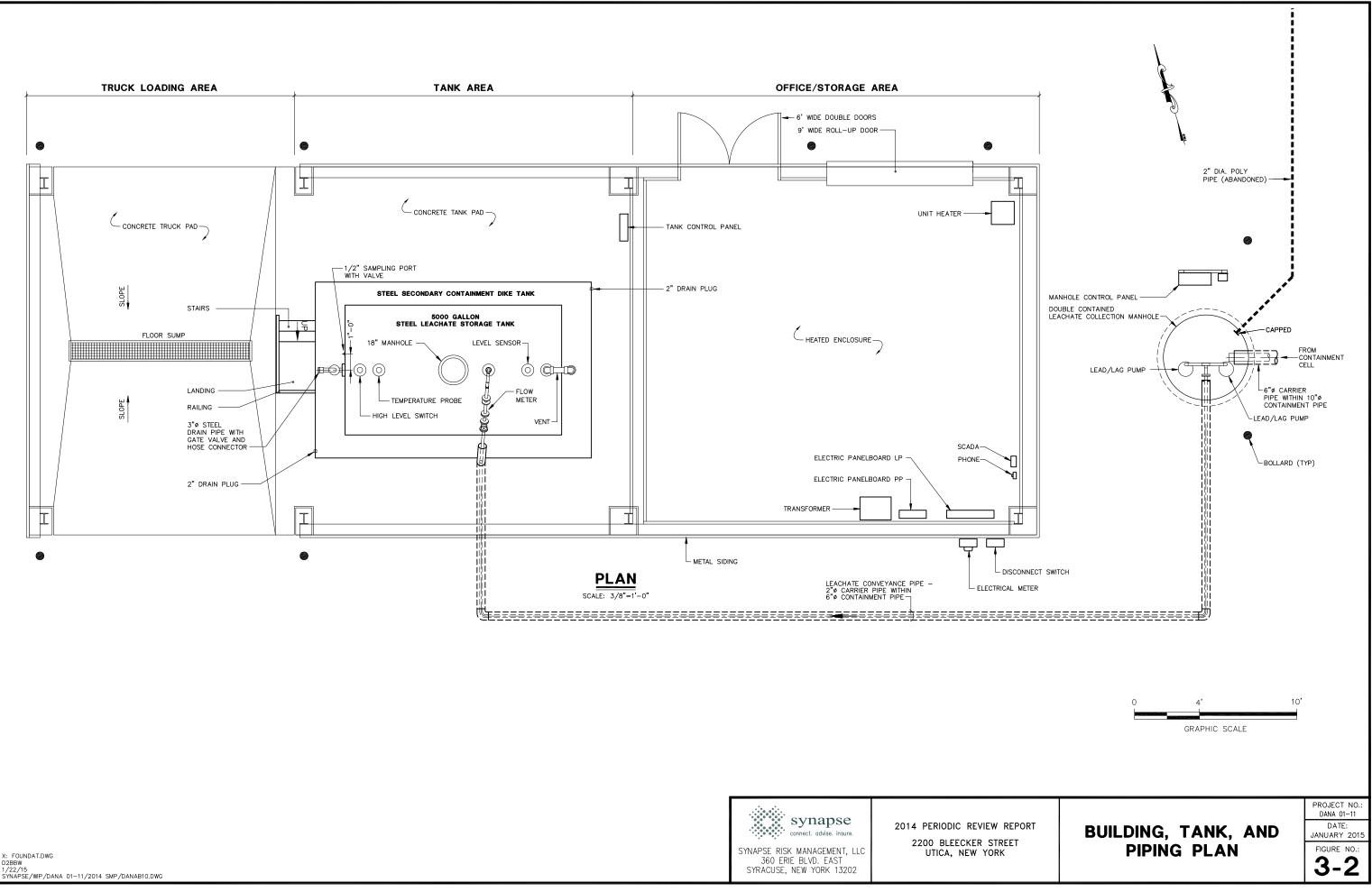
- 3-1 Cumulative Leachate Generation
- 3-2 Leachate Generation per Year


CHART 3-1 LEACHATE PRODUCTION OVER TIME

2014 PERIODIC REVIEW REPORT 2200 BLEEKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

CHART 3-2 LEACHATE GENERATION PER YEAR


2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003



OPERATING YEAR

3.9 Figures

- 3-1 Remedial Action Facility Plan
- 3-2 Building, Tank, and Piping Plan

D2BBW

4.0 SITE MANAGEMENT - GROUNDWATER MONITORING

This section presents the results of the semi-annual groundwater monitoring events conducted at the Property in 2014. The Property OM&M Manual details the procedures that were followed during groundwater monitoring. The FER provides the procedures followed during the implementation of the RA that adjusted the groundwater monitoring program, which included monitoring well decommissioning and new monitoring well installation. The sub-sections that follow review the construction, monitoring, sampling, and data evaluation as part of the groundwater monitoring program and include specific tables and figures. The summary section provides comments, conclusions, and recommendations.

4.1 Monitoring Well Construction

The monitoring well network currently consists of five monitoring wells designated as: MW-6R, MW-13A, MW-14A, MW-17, and MW-18. The monitoring wells are located to provide groundwater quality data for site-specific RA areas and monitor the performance of the GTS, including hydraulic control and contaminant removal.

The monitoring wells consist of 2-inch diameter polyvinyl chloride (PVC) risers and 10-foot lengths of 0.010-inch slotted PVC screen. The well screens were installed to straddle the groundwater table within the overburden soils above the glacial till. Shallow groundwater flow is generally from the south to the north across the Property. The locations of the monitoring wells are shown on Figure 2-2. The detailed descriptions of the monitoring well as hydraulic consideration, are as follows:

- MW-6R, located hydraulically downgradient of the eastern portion of the Property;
- MW-13A, located hydraulically crossgradient (east) of former RA Areas 5, 7, 8, 13, and 14 as well as the RAF;
- MW-14A, located at the southeastern corner of the Property hydraulically upgradient of all former RA areas and the RAF;
- MW-17, located hydraulically downgradient of the NCT; and
- MW-18, located hydraulically downgradient of the former RA Areas 6, 7, 8, 9, and 10, as well as hydraulically upgradient of the SCT.

4.2 Groundwater Elevation Measurement

As part of the semi-annual groundwater monitoring program, groundwater level elevations were measured from the aforementioned monitoring wells on April 22, 2014 and, October 28, 2014. Groundwater levels in the cleanouts for the NCT and SCT were also measured during the 2014 sampling events, in order to contour the cone of depression created by the NCT and SCT. Monitoring well groundwater levels were measured from a designated reference point at the top of the PVC well riser using the procedures outlined in the OM&M Manual. The groundwater levels were measured on the same day, prior to low-flow groundwater sampling activities. Groundwater level measurements were recorded in a dedicated field book and later transferred to the Water Level Field Logs – Form D, which are provided in Appendix D. The groundwater levels for the two groundwater sampling events conducted in 2014 are shown in Table 4-1 – 2014 Groundwater Elevation Summary. Monitoring well MW-17 was found to have insufficient groundwater to allow for sample collection, during both 2014 sampling events. This is attributed to the NCT and Pumping Manhole No. 2, which effectively lowered the water table to an elevation at or less than the total depth of MW-17. The potentiometric surface is depicted in Figure 4-1 – Overburden Groundwater Elevation Contour Map - April 22, 2014 and Figure 4-2

– Overburden Groundwater Elevation Contour Map - October 28, 2014. A summary of groundwater levels from 1999 to 2014 is provided in Table 4-2 – Cumulative Groundwater Elevations.

4.3 Groundwater Sampling

Groundwater samples were obtained during two semi-annual groundwater monitoring events, conducted on April 22, 2014 and October 28, 2014. Groundwater samples were collected from monitoring wells MW-6R, MW-13A, MW-14A, and MW-18. As discussed in Section 4.2, MW-17 had insufficient groundwater during both 2014 sampling events to allow for sample collection.

Based on the guidance set forth in the OM&M Manual, the groundwater sampling events completed in 2014 were scheduled as semi-annual. The groundwater samples were submitted for laboratory analysis for VOCs of concern, polychlorinated biphenyls (PCBs), and select metals. Analytical results for VOCs, PCBs, and metals were compared to standards presented in the NYSDEC Division of Water *Technical and Operation Guidance Series* (1.1.1) (TOGS 1.1.1), June 1998.

Beginning with the April 26, 2011, sampling event of the overburden monitoring wells was sampled via low flow sampling methods. In addition to reducing total dissolved solids (TDS) and turbidity levels, low flow sampling methods provide the following benefits:

- Improved sample quality, analytical accuracy and precision through reduced disturbance to the well and formation;
- Reduced purge water volume (90-95%);
- Improved detection and resolution of contaminants;
- Reduced time for purging and sampling; and
- Significant technical and cost benefits.

Groundwater samples were collected after the field indicator parameters stabilized to within the acceptable tolerances. Groundwater field parameters were obtained from each monitoring well just prior to sampling, and included groundwater levels, pH, conductivity, dissolved oxygen, turbidity, ORP and temperature. Following stabilization, the groundwater samples were collected prior to the inlet of the flow-through-cell. Groundwater samples were discharged directly from the sample tubing into appropriate sample containers, containing the appropriate sample preservative for each analysis, supplied by the analytical laboratory. The purged groundwater was containerized and transferred to the on-site leachate collection manhole, part of the RAF, for discharge as outlined in section 3.0.

Groundwater samples were collected and analyzed for VOCs, PCBs and total metals. Each grab sample was placed directly into laboratory-provided containers, labeled, logged in to a chain of custody document, and stored on ice in an insulated cooler pending delivery to the laboratory for analysis. Quality assurance/quality control (QA/QC) groundwater samples were collected at a frequency described below.

<u>Trip Blanks</u>

On events/days when aqueous samples were delivered to the laboratory for VOC analysis, a trip blank was included. A trip blank is an aliquot of analyte-free water, sealed in a 40 milliliter glass vial with a Teflon-lined septum cap prepared by the laboratory prior to initiation of fieldwork. The sealed vials were prepared by the laboratory and included with each shipment of sample bottles for aqueous media sampling at the Property. The trip blank may determine if contamination of the samples has occurred during shipment/delivery.

Duplicate Samples

Duplicate samples were collected and analyzed to evaluate the reproducibility of the analytical technique used. One duplicate sample (DUP-1) was collected from monitoring well MW-18 for the site specific

parameters during both sampling events during 2014. Groundwater from a selected monitoring well was divided between the primary sample and the duplicate sample laboratory containers, logged on the chain of custody and submitted to the laboratory.

Matrix Spike / Matrix Spike Duplicates

Matrix spike and matrix spike duplicate samples were collected to measure the accuracy of organic analyte recovery from the sample matrices. For organic constituents and metals, one matrix spike and one matrix spike duplicate sample was analyzed for each sampling event.

The April and October 2014 samples were submitted to Alpha Analytical of Westborough, Massachusetts. Table 4-3 – Groundwater Constituents, Methods, and Practical Quantification Limits, details the groundwater sample analytical requirements. The Groundwater Sampling Logs - Form E, used during monitoring well sampling to record the groundwater field parameters, are provided in Appendix E.

4.4 Groundwater Analytical Results

The analytical results from the semi-annual groundwater sampling events, as compared to the TOGS 1.1.1 are presented in the subsequent summary tables. Table 4-4 – 2014 Groundwater Analytical Results, summarizes the groundwater analytical data from the two semi-annual sampling events. Table 4-5 – Cumulative Groundwater Analytical Results, provides a historic summary of the groundwater analytical results from 1999 through 2014. The original laboratory analytical data for 2014 were provided under separate cover to NYSDEC upon receipt from the laboratory, and are provided in Appendix F – Groundwater Analytical Data. Beginning with this 2014 PRR and at the request of NYSDEC, a time trend analysis chart has been prepared for monitoring well MW-18 to monitor the vinyl chloride, as depicted on Chart 4-1 – Cumulative Time Trend Data MW-18. Review of Chart 4-1 demonstrates a seasonal variation of vinyl chloride concentrations between the spring and fall sampling events. The vinyl chloride roncentration of groundwater in this upgradient location of the property. Note that the SCT provide a hydraulic depression in this area and directs collected groundwater to the GTS.

The following summarizes analytical data from each monitoring well and long term trends for 2014.

<u>MW-6R</u>

- No VOCs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- No PCBs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- Chromium, copper, lead and zinc were detected during the April 2014 sampling event at concentrations of 0.1 ug/l, 2.5 ug/l, 0.8 ug/l and 15 ug/l, however these were below TOGS 1.1.1 guidance values of 50 ug/l, 200 ug/l, 25 ug/l and 2000 ug/l, respectively;
- Chromium, copper, lead and zinc were detected during the October 2014 sampling event at estimated concentrations of 0.1 ug/l, 0.5 ug/l, 0.2 ug/l and 3.6 ug/l, however these were below TOGS 1.1.1 guidance values of 50 ug/l, 200 ug/l, 25 ug/l and 2000 ug/l, respectively; and
- Historically, VOCs and PCBs have not been detected at concentrations above their respective MDLs.

<u>MW-13A</u>

- No VOCs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- No PCBs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- Chromium, copper and zinc were detected during the April 2014 sampling event at estimated concentrations of 0.3 ug/l, 0.3 ug/l and 8.5 ug/l, however these are below TOGS 1.1.1 guidance values of 50 ug/l, 200 ug/l and 2000 ug/l, respectively;
- Chromium, copper and zinc were detected during the October 2014 sampling event at estimated concentrations of 0.7 ug/l, 0.3 ug/l and 3.9 ug/l, however these are below TOGS 1.1.1 guidance values of 50 ug/l, 200 ug/l and 2000 ug/l, respectively;
- Historically, VOCs and PCBs have not been detected at concentrations above their respective MDL.

<u>MW-14A</u>

- No VOCs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- No PCBs were detected at concentrations above their respective MDLs during either of the 2014 sampling events;
- Chromium, copper, lead and zinc were detected during the April 2014 sampling event at estimated concentrations of 0.6 ug/l, 4.2 ug/l, 1.4 and 4.5 ug/l however these are below TOGS 1.1.1 guidance value of 50 ug/l, 200 ug/l, 25 ug/l and2,000 ug/l, respectively;
- Chromium, copper, lead and zinc were detected during the October 2014 sampling event at estimated concentrations of 1.6 ug/l, 4.3 ug/l, 0.8 and 14.4 ug/l however these are below TOGS 1.1.1 guidance value of 50 ug/l, 200 ug/l, 25 ug/l and2,000 ug/l, respectively; and
- Historically, VOCs and PCBs have not been detected at concentrations above their respective MDL.

<u>MW-17</u>

 Monitoring well MW-17 had insufficient water to allow sample collection during both 2014 sampling events, associated with the hydraulic control provided by the NCT.

<u>MW-18</u>

- Vinyl chloride (VC) was detected at a concentration of 19 ug/l in the primary and duplicate samples, respectively, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the April 2014 sampling event. No other VOCs were detected at concentrations above MDLs during April 2014 sampling event;
- VC was detected at a concentration of 20 ug/l and 18 ug/l, in the primary and duplicate sample, respectively, which exceeded the TOGS 1.1.1 guidance value of 2 ug/l, during the October 2014

2014 Periodic Review Report

sampling event. No other VOCs were detected at concentrations above MDLs during October 2014 sampling event;

- Chromium, and zinc were detected during the April 2014 sampling event at estimated concentrations of 0.7 ug/l and 4.5 ug/l however these are below TOGS 1.1.1 guidance value of 50 ug/l and 2,000 ug/l, respectively; and
- Chromium and copper were detected during the October 2014 sampling event at estimated concentrations of 0.7 ug/l and 0.9 ug/l however these are below TOGS 1.1.1 guidance value of 50 ug/l and 200 ug/l, respectively;
- No PCBs were detected at concentrations above their respective MDLs during either 2014 sampling events; and
- Historically, PCBs have not been detected at concentrations above the MDL.

4.5 Summary

An interpretation of the groundwater elevation measurements obtained during the 2014 sampling events indicated that the overburden groundwater flow was generally to the north. The groundwater flow direction was influenced in the vicinity of the NCT and the SCT, due to the operation of the GTS. Monitoring well MW-17 continues to have insufficient groundwater to measure or sample, as a result of the NCT effectively lowering the groundwater table.

The groundwater quality from both the 2014 groundwater sampling events is generally consistent with historic data. VC has been detected in monitoring well MW-18 above its analytical MDL for consistently during sampling events and continues to demonstrate the degradation of site specific groundwater constituents. As MW-18 is upgradient of the groundwater depression created by the SCT, (see Figure 4-1 and 4-2), the groundwater monitored at MW-18 is directed, collected, and treated via the GTS, discussed in Section 6. On June 17, 2013, MW-14 was decommissioned and reinstalled as MW-14A.

The April 26, 2011 sampling event represents the first sampling event conducted utilizing low flow sampling methods. Concentrations of certain metals did not exceed TOGS 1.1.1 guidance values and have not demonstrated exceedances since 2002. Detectable concentrations of PCBs were not identified in groundwater from any of the current monitoring locations during the 2014 sampling events.

Based on the successful integration of low-flow sampling into the groundwater monitoring program Synapse concludes that the OM&M Manual groundwater sampling procedures section will be modified to reflect the new sampling method.

4.6 Tables

- 4-1 2014 Groundwater Elevation Summary
- 4-2 Cumulative Groundwater Elevations
- 4-3 Groundwater Constituents, Methods, and Practical Quantification Limits
- 4-4 2014 Groundwater Analytical Results
- 4-5 Cumulative Groundwater Analytical Results

TABLE 4-1 2014 GROUNDWATER ELEVATION SUMMARY

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA NEW YORK NYSDEC SITE NO. 622003

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 4/22/14						
MW-6R	462.69	10.52	10.51	465.47	3.85	461.62
MW-13A	467.30	11.07	11.05	469.23	2.52	466.71
MW-14A	475.71	12.94	12.93	478.45	2.95	475.50
MW-17	463.89	11.25	11.25	466.02	10.05	Note 5
MW-18	474.10	11.73	11.72	475.96	4.58	471.38
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.72	465.70
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	NA	NA	465.31	11.94	453.37

Monitoring Well ID	Ground Surface Elevation	Installed Depth from TOR	Measured Depth from TOR	TOR Elevation	Water Depth from TOR	Water Elevation
Date Gauged: 10/28/14	1					
MW-6R	462.69	10.52	10.45	465.47	4.39	461.08
MW-13A	467.30	11.07	11.07	469.23	4.45	464.78
MW-14A	475.71	12.86	12.85	478.45	3.11	475.34
MW-17	463.89	11.25	11.25	466.02	10.95	Note 5
MW-18	474.10	11.73	11.72	475.96	5.18	470.78
SCT CO-1	NA	NA	NA	472.30	Dry	465.20
SCT CO-2	NA	NA	NA	473.42	7.71	465.71
SCT CO-3	NA	NA	NA	471.21	Dry	465.61
NCT CO-1	NA	NA	NA	464.70	Dry	453.42
MH-2	NA	12.80	NA	465.31	11.96	453.35

Notes:

1. All values reported in feet.

2. TOR = Top of Riser.

3. Depth measurements are taken in hundredths of a foot from the TOR, which is a reference point

at the highest part on the 2-inch riser pipe.

4. Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988.

5. MW-17 was found dry during both monitoring events, bottom elevation = 454.70 feet.

6. The top of riser elevation was adjusted during maintenance on May 15, 2003 for monitoring wells MW-6R and MW-14.

7. MW = Monitoring Well.

8. SCT = Southern Collection Trench.

9. NCT = Northern Collection Trench.

10. CO = Clean Out (Depths and Elevations are Approximate).

11. MH = Manhole.

12. NA = Not Applicable.

13. NM = Not measured. Installed well depths used to calculate well casing columns.

14. Groundwater elevations were inferred at the following locations: SCT CO-1, SCT CO-2, SCT CO-3, and NCT CO-1.

TABLE 4-2 CUMULATIVE GROUNDWATER ELEVATIONS

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

			Well ID			
Sample Date	MW-3	MW-6R	MW-13A	MW-14A	MW-17	MW-18
3/26/1999	467.93	461.78	465.83	474.82	462.14	469.97
9/20/1999	467.60	461.14	464.36	470.78	460.70	467.83
3/14/2000	467.72	461.63	466.38	475.05	459.45	470.03
9/14/2000	467.42	461.15	464.98	473.72	457.37	468.83
3/29/2001	470.86	456.35	460.93	467.74	457.24	469.52
9/13/2001	Note 2	460.85	464.18	470.9	457.11	469.56
3/27/2002	Note 2	460.96	466.89	475.19	DRY	470.82
9/19/2002	Note 2	461.21	465.41	470.92	DRY	468.10
4/24/2003	Note 2	461.55	466.81	475.24	DRY	472.13
10/22/2003	Note 2	460.97	465.23	474.66	DRY	469.61
4/22/2004	Note 2	461.59	466.67	475.34	DRY	471.25
10/18/2004	Note 2	461.03	465.01	472.53	DRY	468.93
4/27/2005	Note 2	461.54	466.51	475.13	DRY	471.06
10/20/2005	Note 2	461.15	465.17	474.47	DRY	469.66
4/19/2006	Note 2	461.4	466.16	474.66	DRY	470.40
9/26/2006	Note 2	461.01	465.07	472.46	DRY	469.15
4/18/2007	Note 2	461.78	467.09	475.46	DRY	471.24
10/23/2007	Note 2	461.71	465.17	471.42	DRY	469.25
4/29/2008	Note 2	461.87	466.82	475.5	DRY	470.84
10/14/2008	Note 2	460.98	464.98	472.94	DRY	469.64
4/13/2009	Note 2	461.44	466.67	474.89	DRY	470.84
10/15/2009	Note 2	461.2	465.58	473.8	DRY	470.14
4/29/2010	Note 2	461.12	466.38	474.2	DRY	470.15
10/28/2010	Note 2	461.44	466.04	475.62	DRY	471.51
4/26/2011	Note 2	461.22	466.01	475.3	DRY	470.27
10/25/2011	Note 2	461.32	466.12	475.28	DRY	470.65
4/30/2012	Note 2	461.42	466.05	475.14	DRY	470.8
10/29/2012	Note 2	461.02	465.15	473.51	DRY	469.9
3/26/2013	Note 2	461.61	466.48	472.63	DRY	47137
10/29/2013	Note 2	460.76	465.37	474.12	DRY	469.77
4/22/2014	Note 2	461.62	466.71	475.5	DRY	471.38
10/28/2014	Note 2	461.08	464.78	475.34	DRY	470.78

Notes:

1. All elevations reported in feet above mean sea level.

2. MW-3 was decommissioned in September 2001.

3. MW-17 has been "Dry" since the installation of Pumping MH-2 in March 2002.

4. MW-14/MW-14A decommissioned and reinstalled on June 17, 2013.

TABLE 4-3

GROUNDWATER CONSTITUENTS, METHODS AND PRACTICAL QUANTIFICATION LIMITS

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Constituent	Practical Quantification Limits (PQLs)
VOCs of Concern - USEPA Method 8260	
cis-1,2-Dichloroethene	1
trans-1,2-Dichloroethene	1
Trichloroethylene	1
Vinyl Chloride	1
Metals of Concern - USEPA Method 200.7	
Chromium	10
Copper	10
Lead	10
Zinc	10
PCBs - USEPA Method 608	
Aroclor 1016	0.05
Aroclor 1221	0.05
Aroclor 1232	0.05
Aroclor 1242	0.05
Aroclor 1248	0.05
Aroclor 1254	0.05
Aroclor 1260	0.05

Notes:

1. All values reported in micrograms per liter (ug/l), approximately equivalent to parts per billion (ppb).

2. VOCs = Volatile Organic Compounds.

3. PCBs = Polychlorinated biphenyls.

4. VOCs of concern PQLs are based on USEPA SW-846 Method 8260 contract required quantification limits (CRQLs). Specific quantifications are highly matrix dependent. The quantification limits shown are provided for guidance and may not always be achievable.

 USEPA Method 200.7 will be used for analysis of metals of concern. PQLs presented are based on RCRA TCL CRQLs. CQRLs shown for metals of concern are provided for guidance and may not always be achievable.

TABLE 4-4 2014 GROUNDWATER ANALYTICAL RESULTS

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

April 2014 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14A	MW-17	MW-18	042214-DUP
Date Sampled	Limit	and Guidance	4/22/2014	4/22/2014	4/22/2014	4/22/2014	4/22/2014	4/22/2014
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compoun	ds							
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	19	19
Metals								
Chromium	10	50	0.1	0.3 J	0.59 J	NS	<10	0.2 J
Copper	10	200	2.5	0.7 J	4.2	NS	0.7 J	0.9 J
Lead	10	25	0.8 J	<10	1.4	NS	<10	<10
Zinc	10	2,000	15	13.6	4.5 J	NS	4.5 J	15
Polychlorinated Biphenyls								
Aroclor 1016	0.05	0.09	<0.05	< 0.05	<0.05	NS	< 0.05	<0.05
Aroclor 1221	0.05	0.09	<0.05	< 0.05	< 0.05	NS	< 0.05	<0.05
Aroclor 1232	0.05	0.09	<0.05	< 0.05	< 0.05	NS	< 0.05	<0.05
Aroclor 1242	0.05	0.09	<0.05	<0.05	<0.05	NS	< 0.05	<0.05
Aroclor 1248	0.05	0.09	<0.05	< 0.05	<0.05	NS	< 0.05	<0.05
Aroclor 1254	0.05	0.09	<0.05	<0.05	<0.05	NS	< 0.05	<0.05
Aroclor 1260	0.05	0.09	<0.05	<0.05	<0.05	NS	< 0.05	<0.05

October 2014 Sampling Event

Well ID	Detection	Standards	MW-6R	MW-13A	MW-14A	MW-17	MW-18	102814-DUP
Date Sampled	Limit	and Guidance	10/28/2014	10/28/2014	10/28/2014	10/28/2014	10/28/2014	10/28/2014
Sample Type		Values	Primary	Primary	Primary	Primary	Primary	Duplicate of MW-18
Volatile Organic Compound	ds							
cis-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
trans-1,2-Dichloroethene	1	5	<1	<1	<1	NS	<1	<1
Trichloroethylene	1	5	<1	<1	<1	NS	<1	<1
Vinyl Chloride	1	2	<1	<1	<1	NS	20	18
Metals								
Chromium	10	50	0.9 J	0.7 J	1.6	NS	0.7 J	0.6 J
Copper	10	200	0.5 J	0.3 J	4.3	NS	0.9 J	0.6 J
Lead	10	25	0.2 J	<5	0.8 J	NS	<5	<5
Zinc	10	2,000	3.6 J	3.9 J	14.4	NS	<10	<10
Polychlorinated Biphenyls								
Aroclor 1016	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1221	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1232	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1242	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1248	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1254	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05
Aroclor 1260	0.05	0.09	<0.05	<0.05	<0.05	NS	<0.05	<0.05

Notes:

Sample results and NYSDEC Standards reported in ug/l; approximately equivalent to parts per billion (ppb).
 Guidance Values are established by NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1).

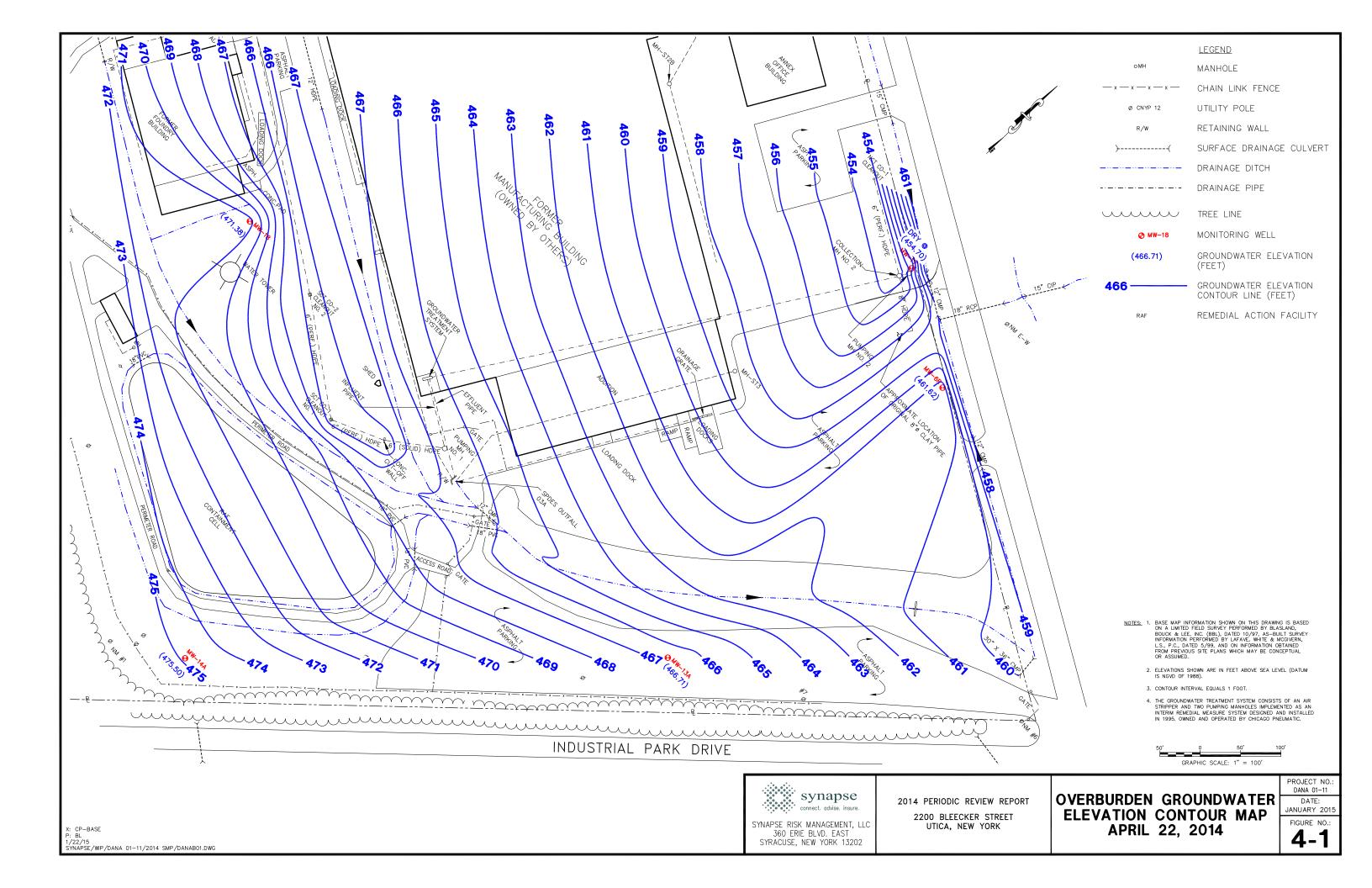
3. NS = Not Sampled (Well Dry).

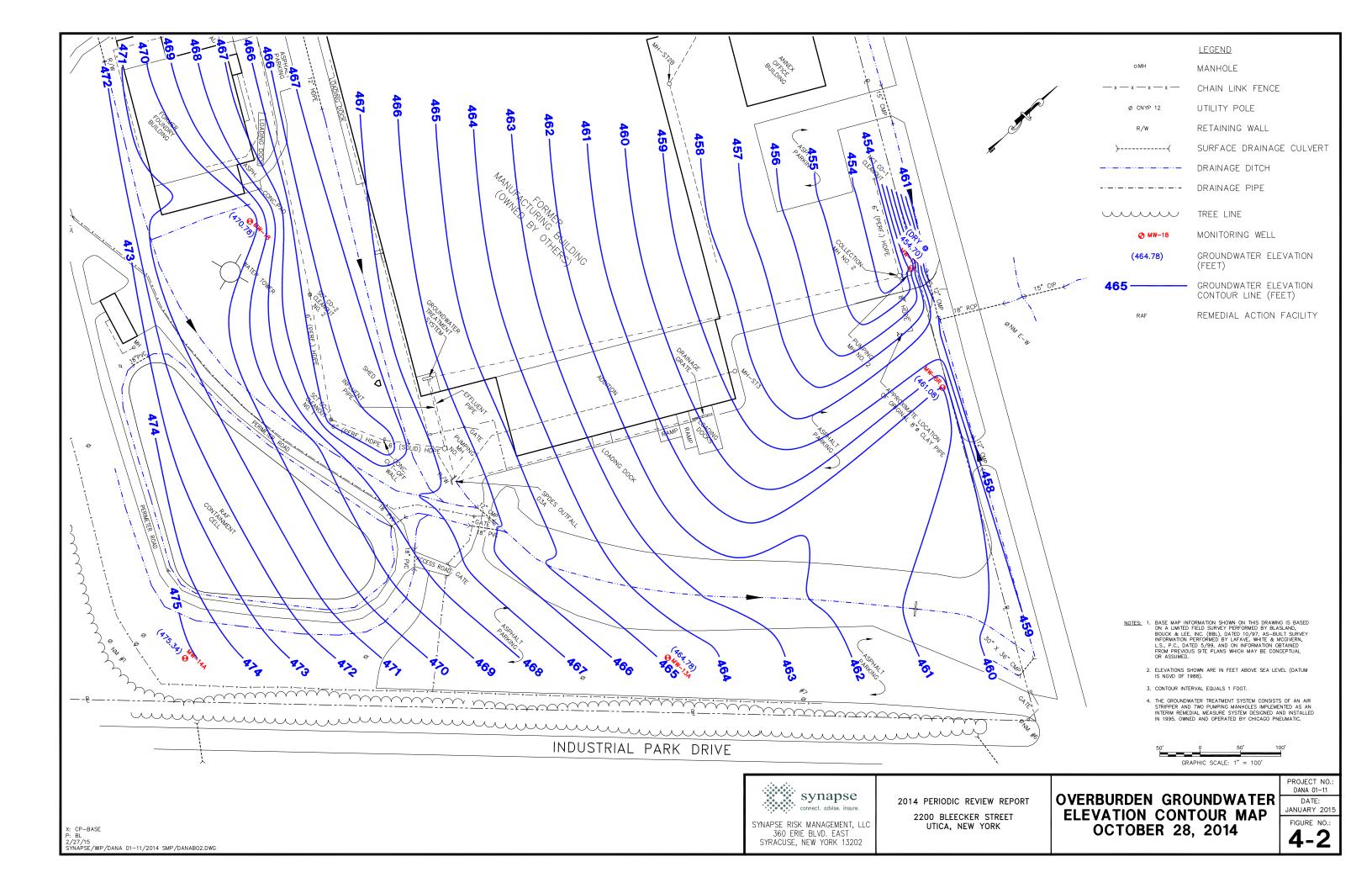
4. Bolded values exceed the constituent's established Standards and Guidance Values.

TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS

2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

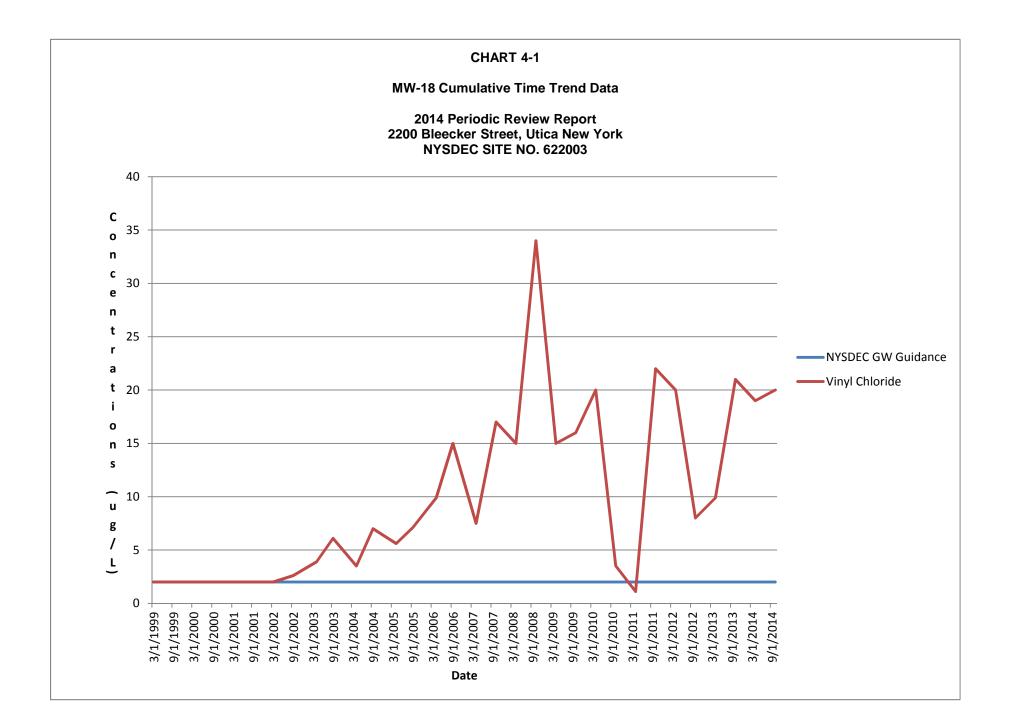
Number Parameter Number Securate/ Number Securate/ Number Securate/ Number Securate/ Number Securate/ Number Securate/ Number Number <th>is-1,2-Dichloroethene richloroethylene inyl Chloride copper</th> <th>Units Guid ug/l ug/l</th> <th>uidance</th> <th></th> <th></th> <th></th> <th></th> <th>Aarch Se</th> <th>September</th> <th>Marah</th> <th>O and a male and</th> <th>A 11</th> <th></th> <th>14</th>	is-1,2-Dichloroethene richloroethylene inyl Chloride copper	Units Guid ug/l ug/l	uidance					Aarch Se	September	Marah	O and a male and	A 11																							14
https://wireduction/participart primary primary <th< th=""><th>ans-1,2-Dichloroethene richloroethylene finyl Chloride chromium copper</th><th>ug/l ug/l</th><th></th><th>Primary</th><th>Primary Prin</th><th></th><th></th><th></th><th></th><th>IVIAICII</th><th>September</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April</th><th>September</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April (</th><th>October</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April</th><th>October</th><th>April</th><th>October</th></th<>	ans-1,2-Dichloroethene richloroethylene finyl Chloride chromium copper	ug/l ug/l		Primary	Primary Prin					IVIAICII	September	April	October	April	October	April	October	April	September	April	October	April	October	April	October	April (October	April	October	April	October	April	October	April	October
UMM3 Umms 12-Discription Uppl 5 -6. -6. -6. -0. NS1	ans-1,2-Dichloroethene richloroethylene finyl Chloride chromium copper	ug/l	5		i iiiiaiy i iii	mary Prir	mary Prin	rimary P	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
UNM3 Transcondurgence upple 2 dist dist NS-1	richloroethylene inyl Chloride Chromium Copper	. J.		<5	<5 <	<5 <	<5 NS	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
Wind Unif Chindre upic 2 c d d No.1 No.	/inyl Chloride Chromium Copper	ua/l	5	<5	<5 <	<5 <	<5 NS	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
bitM3 Chromium. up1 50 4.4 4.88 vol vol NS-1 NS-1 <th< th=""><th>Chromium Copper</th><th></th><th>5</th><th><5</th><th><5 <</th><th><5 <</th><th><5 NS</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th><th>NS-1</th></th<>	Chromium Copper		5	<5	<5 <	<5 <	<5 NS	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
WM3 Coper up1 200 16.8 0.16 up1 201 16.9 0.8-1 NS-1 NS	Copper	ug/l	2	<5	<5 <	<5 <	<5 NS	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
WM-3 Load ugl 200 15.5 4.4 ed ed NS1 NS1 <th></th> <th>ug/l</th> <th>50</th> <th>4.4</th> <th>4.6B <</th> <th>10 <</th> <th>10 NS</th> <th>NS-1</th>		ug/l	50	4.4	4.6B <	10 <	10 NS	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1
bit NA Crac ug1 Con 16.1 16.1 13 38 NS-1 NS-	ead	ug/l 2	200	16.8	6.1B <	10 <	10 NS	NS-1	NS-1	-	NS-1	-	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1		NS-1	NS-1	NS-1	-	NS-1	NS-1	NS-1	NS-1	NS-1	NS-1						
WW3 PCBs (Accods 1716) up1 0.00 ch10 ch10 ch10 ch10 ch10 ch10 w151 N81 N81 </th <th></th> <th>· J.</th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>_</th> <th>-</th> <th></th> <th>-</th> <th></th> <th>-</th> <th>NS-1</th> <th>NS-1</th> <th>NS-1</th> <th>NS-1</th> <th>NS-1</th>		· J.	-			-	-				-	-	-			-	-	-	-			-	-	-	_	-		-		-	NS-1	NS-1	NS-1	NS-1	NS-1
WH-3 PCBs (Anodor 1221) up1 0.01 d.0.10 d.		÷.g,: =,	_,																												NS-1	NS-1	NS-1	NS-1	NS-1
WH-3 PCBs (Accoder 1232) upl 0.09 NS-1		· J				-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NS-1	NS-1	NS-1	NS-1	NS-1
WH-3 PCBs (Ander 1742) ug1 0.00 4.010								-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	NS-1	NS-1	NS-1	NS-1	NS-1
WM-3 PCBs Avecadr 1249 Ug1 0.09 -0.10 -0.10 -0.10 -0.10 -0.10 NS-1	()	J									-	-	-			-		-	-					-	_	-		-		-	NS-1	NS-1	NS-1	NS-1	NS-1
WW-3 PCBs (Ancoro 12-4) ught 0.09 -0.10 -0.10 -0.05 NS-1	(,							-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NS-1	NS-1	NS-1	NS-1	NS-1
WW-9 PCBs (Ancolar 1260) upl 0.00 <0.10		· J				-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	NS-1	NS-1	NS-1	NS-1	NS-1
WW-RR losi 12-Dicklorosethenel ugil 5 c5	()	J						-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	NS-1 NS-1	NS-1 NS-1	NS-1 NS-1	NS-1 NS-1	NS-1 NS-1
WWeR trans.1.2.blichlorethylene upl 5 c5 <	, ,							-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NM-RR Tichloresthylene ug1 5 c5 c5 <th>. ,</th> <th>0</th> <th>5</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th><1</th> <th><1</th> <th><1</th> <th><1</th> <th><1</th>	. ,	0	5	-	-	-	-	-	-																						<1	<1	<1	<1	<1
MW-RR Viny/Chioride ug/l 2 c5 c5 c5 c5 c1			5	-																											<1 <1	<1 <1	<1 <1	<1 <1	<1 <1
MW-6R Chromium ugit 50 19.9 2.2.B <10		0	2	-	-	-	-																							-	<1	<1	<1	<1	<1
MW-6R Copper ug/l 200 45 6.7B <10	,		Z 50	-		-	-	-	-														3.			41					0.3 J	<1 0.4 J	0.1	0	<1 0.9 J
MW-6R Lead ug/l 25 7.4 3.6 4.5 4.5 2.3 4.0<									-		-				-	-	-		-	-	-	-	-				•	-	-	-	0.3 J	0.4 J	0.1	3	0.5 J
MW-6R Zinc ug/l 2,000 49.5 26.5 26.0 47 19 140 64 29 100 24 <10				-															-						-		-	-			<10	<1	0.3 J	0.8 J	0.3 J
MW-6R PCBs (Aroclor 1016) ug/l 0.09 <0.10		0											-		-	-			-		-				-			-			10.6	15	5 J	15	3.6 J
MW-6R PCBs (Aroclor 122) ug/l 0.09 <0.10		÷.g,: =,	_,					-	-	-	-			-				0.		-						-		-			< 0.05	<0.05	< 0.05	<0.05	<0.05
MW-6R PCBs (Aroclor 1232) ug/l 0.09 <0.10		0																													<0.05	<0.05	< 0.05	<0.05	<0.05
MW-6R PCBs (Aroclor 1242) ug/l 0.09 <0.10		- 3																	<0.10		<0.10	<0.10	<0.10	<0.10							< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-6R PCBs (Aroclor 1254) ug/l 0.09 <0.10	(/																		<0.10		<0.10			<0.10							< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-6R PCBs (Arcolar 1260) ug/l 0.09 <	CBs (Aroclor 1248)	ug/l 0	0.09	<0.10	<0.10 <0	0.10 <0	0.05 <0	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
WW-13A cis1,2-Dichloroethylene ug/l 5 c5 c5 c5 c5 c1 <	CBs (Aroclor 1254)	ug/l 0	0.09	<0.10	<0.10 <0	0.10 <0).05 <0	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-13A trans-1,2-Dichloroethner ug/l 5 <5	CBs (Aroclor 1260)	ug/l 0	0.09	<0.10	<0.10 <0	0.10 <0	0.05 <0	< 0.05	<0.10	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
MW-13A Trichloroethylene ug/l 5 <5	is-1,2-Dichloroethene	ug/l	5	<5	<5 <	<5 <	<5 <	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	ans-1,2-Dichloroethene	ug/l	5	<5	<5 <	<5 <	<5 <	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	richloroethylene	ug/l	5	<5	<5 <	<5 <	<5 <	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A Vinyl Chloride ug/l 2 <5 <5 <5 <5 <5 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	inyl Chloride	ug/l	2	<5	<5 <	<5 <	<5 <	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-13A Chromium ug/l 50 7.8B 4.8E 19.0 <10 <10 <10 <10 <10 200 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	Chromium	ug/l	50	7.8B	4.8E 1	9.0 <	10 <	<10	<10	<10	200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	11.8	<10	1.0 J	<4	0.3 J	0.2 J	0.3 J	0.3 J	0.7 J
MW-13A Copper ug/l 200 45 5.3B <10 <10 <10 <10 14 20 <10 14 <10 <10 <10 14 <10 <10 14 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Copper	~		-			-		-		-						-	<10	<10	-	-			-	-	-	-	-	<10	<10	0.3 J	0.5 J	0.3 J	0.7 J	0.5 J
MW-13A Lead ug/ 25 9.2 2.3 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ead	ug/l	25	9.2	-	-	-		<10	<10			<10	<10	<10	<10		<10	<10	13	<10	<10	<10	<10	<10		-	<10	-0	-	<10	<1	<10	0.8 J	<5
MW-13A Zinc ug/l 2,000 38.1 10.7B 29.0 47 10 <10 18 92 <10 19 29 12 20 <10 14 11 24 <10 19 12 26 <10 <20 20.7 <20 4.0J 0.2J		÷.g,: =,	_,		-								· .		. –											-	-	-			0.2 J	15	8.5 J	13.6	3.6 J
MW-13A PCBs (Aroclor 1016) ug/ 0.09 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10																															<0.05	<0.05	< 0.05	<0.05	<0.05
MW-13A PCBs (Aroclor 1221) ug/ 0.09 <0.10 <0.10 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10		- 3																													< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-13A PCBs (Aroclor 1232) ug/ 0.09 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	(· J																													<0.05	<0.05	< 0.05	< 0.05	< 0.05
MW-13A PCBs (Aroclor 1242) ug/ 0.09 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10		÷.g,: ‡																													< 0.05	< 0.05	< 0.05	< 0.05	<0.05
																															< 0.05	<0.05	< 0.05	< 0.05	<0.05
	CBs (Aroclor 1248)		0.09																												< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-13A PCBs (Aroclor 1260) ug/ 0.09 <0.10 <0.10 <0.10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.00 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	CBs (Aroclor 1248) CBs (Aroclor 1254)	· J · ·		<0.10	<0.10 <0	0> 01.	.05 <0	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05


TABLE 4-5 CUMULATIVE GROUNDWATER ANALYTICAL RESULTS


2014 PERIODIC REVIEW REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

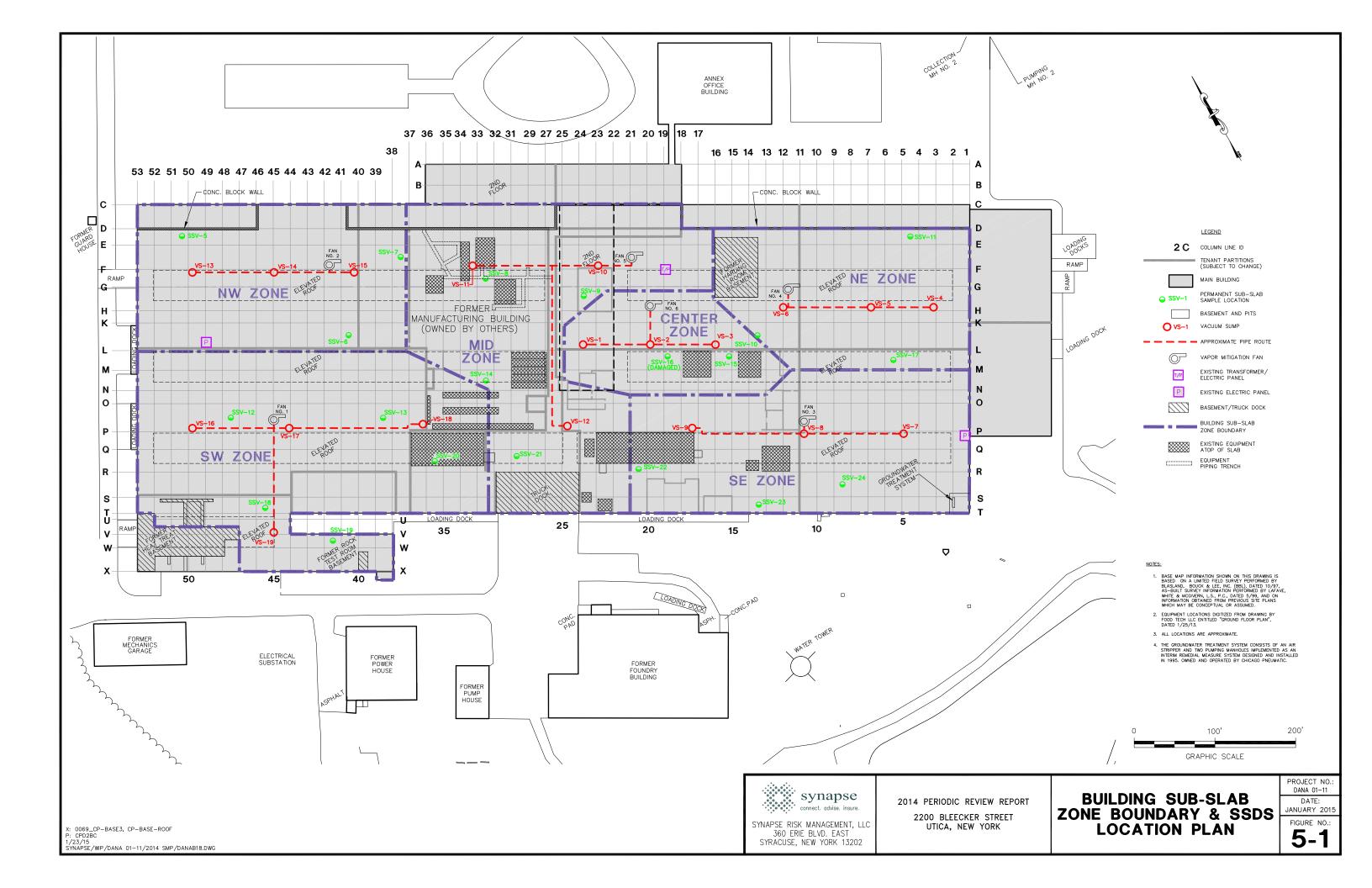
				10	999	21	000	21	001	2	002	20	03	2	004	2	005	20	06	21	007	20	08	20	09	201)	20	11	20	12	20	13	20-	14
Monitoring	Parameters	Units	NYSDEC		Septembe	_	September	_	September	March	September	April	October	April	October	April	October	April	September	April	October	April	October	April	October	April	, October	April	October	April	October	April	October	April	October
Well ID	1 diamotoro	OTING	Guidance	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary			Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
MW-14	sia 4.0 Dishlaraathana		F	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	cis-1,2-Dichloroethene		5																																
	trans-1,2-Dichloroethene	ug/l		<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Trichloroethylene	ug/l		<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.48 J	<1	<1	<1	<1	<1	<1	<1
MW-14	Vinyl Chloride	ug/l		<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-14	Chromium	ug/l		20.4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1.8	1.2 J	1.8	<4	0.3 J	1.2 J	14	0.59 J	2
MW-14	Copper	ug/l		48	6B	<10	<10	<10	<10	<10	<10	<10	27	12	<10	16	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	5.3	4.9 J	5.3	<10	9.8	4.9 J	19	4.2	4
MW-14	Lead	ug/l		8	<5	<5	<5	<5	<10	<10	<10	<10	10	<10	<10	13	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<5	<5	<5	<5	0.7 J	<5	13	1.4	0.8 J
MW-14	Zinc	ug/l		36	6.5B	28	42	15	<10	<10	20	29	100	17	<10	15	<10	<10	<10	<10	<10	21	14	16	<10	<20	5.8	9.1 J	5.8	0.2 J	45.9	9.1 J	51	4.5 J	14.4
MW-14	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1232)	ug/l		<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1242)	ug/l		<0.10	<0.10		< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1248)	ug/l		<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1254)	ug/l		<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-14	PCBs (Aroclor 1260)	ug/l		<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
MW-17	cis-1,2-Dichloroethene	ug/l		<5	7	<5	5.2	8.9	7.4	NS-2	NS-2	NS-2		-	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2		NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	trans-1,2-Dichloroethene	ug/l		<5	<5	<5	<5	<5	<5	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Trichloroethylene	ug/l		<5	25	22	22	24	16	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Vinyl Chloride	ug/l	2	<2	<2	<5	<5	<2	<2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Chromium	ug/l		4	21B	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Copper	ug/l		16B	<10	<10	<10	<10	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Lead	ug/l		2.4B	<5	<5	<5	<5	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	Zinc	ug/l		14.6B	7.1B	13	57	32	<10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1016)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1221)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1242)	ug/l		<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1248)	ug/l		<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-17	PCBs (Aroclor 1260)	ug/l		<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	NS-2	NS-2	NS-2		NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2	NS-2
MW-18	cis-1,2-Dichloroethene	ug/l		<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	trans-1,2-Dichloroethene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	Trichloroethylene	ug/l	5	<5	<5	<5	<5	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-18	Vinyl Chloride	ug/l		<2	<2	<5	<5	<2	<5	<2	2.6	3.9	6.1	3.5	7	5.6	7.1	9.9	15	7.5	17	15	34	15	16	20	3.5	1.1	22.0	20	8	9.9	21	19.0	20
MW-18	Chromium	ug/l		60.1	19.4	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	16	<10	<10	1.5	<10	<4	<4	0.2 J	<1	1	<10	0.7 J
MW-18	Copper	ug/l		109	7.6B	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	15	<10	<10	8.4	<10	<10	<10	0.5 J	0.7 J	2	0.7 J	0.9 J
MW-18	Lead	ug/l	25	35.6	9.3	<5	<5	<5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14	<10	<10	<10	15	<10	<10	<5	<10	<5	<5	<10	<1	0.3 J	<10	<5
MW-18	Zinc	ug/l		172	51	16	58	21	22	<10	<10	11	17	18	<10	13	<10	63	<10	<10	<10	24	26	42	<10	<20	2.4	<20	2.2 J	<10	9.2	16	11	4.5 J	<10
MW-18	PCBs (Aroclor 1016)	ug/l		<0.10	<0.10	<0.10	< 0.05	<0.05	<0.10	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
MW-18	PCBs (Aroclor 1221)	ug/l	1	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
MW-18	PCBs (Aroclor 1232)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.10	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
MW-18	PCBs (Aroclor 1242)	ug/l		<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
MW-18	PCBs (Aroclor 1248)	ug/l		<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW-18	PCBs (Aroclor 1254)	ug/l	0.09	<0.10	<0.10	<0.10	< 0.05	< 0.05	<0.10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.10	< 0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
MW-18	PCBs (Aroclor 1260)	ug/l	0.09	<0.10	<0.10	<0.10	<0.05	<0.05	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.10	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Notes:																																		
	1. All results reported in mid																																		
	B = The reported value w			-		Contract Requ	uired Detectio	n Limit																											
	(CRDL), but greater tha				n Limit (IDL).																														
	C = Value was reported a	as a labo	ratory cross-co	ontaminant.																															
	4. E = The reported value is			presence of inte	erference(s).																														
	5. NS-1 = No Sample - Wel		nissioned.																																
	6. NS-2 = No Sample - Wel	-																																	
	7. Bolded values exceed the	ie constitu	ent's establish	ned TOGS 1.1.	.1 guidance v	alues.																													

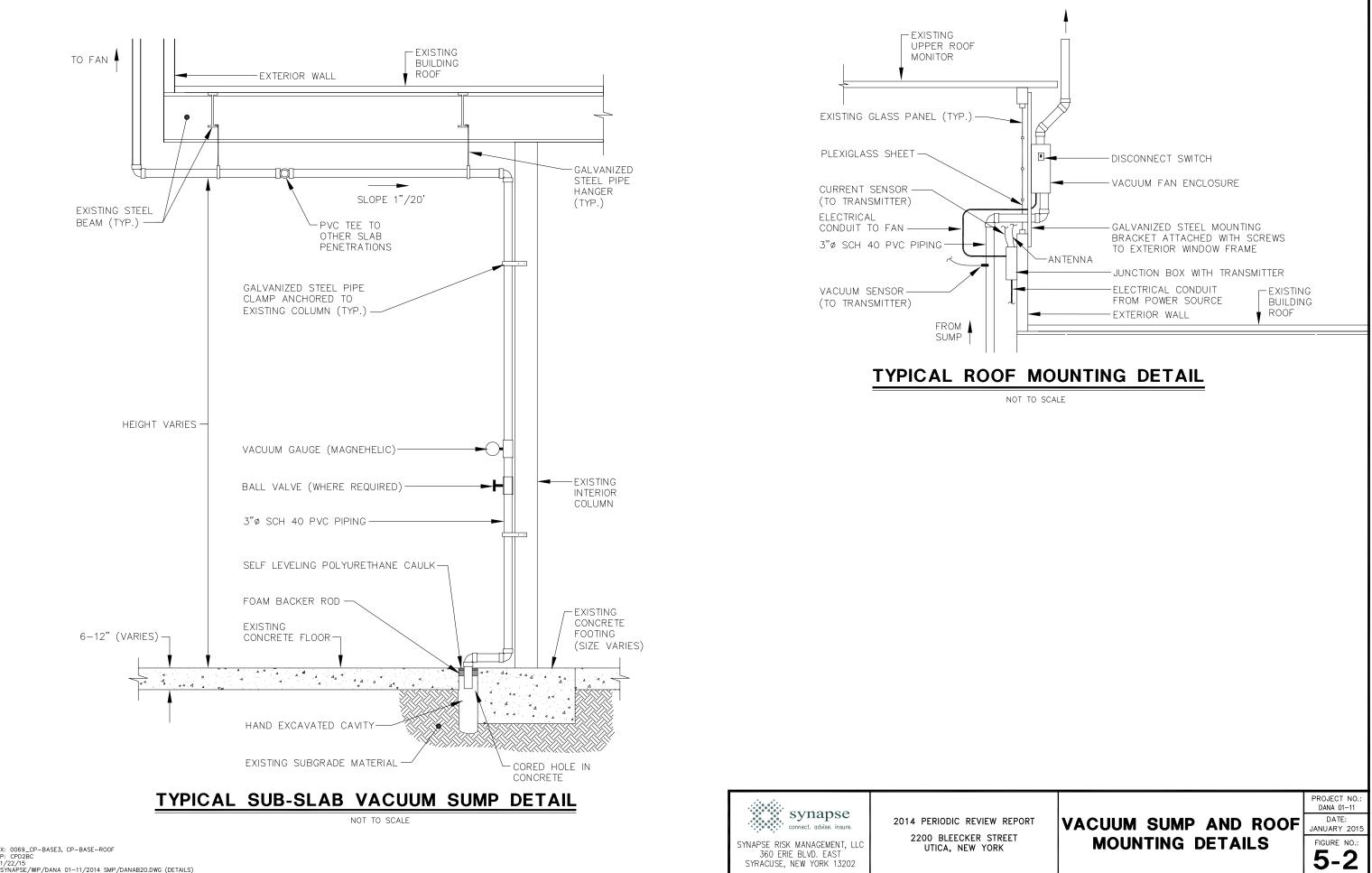
4.7 Figures


- 4-1 Overburden Groundwater Elevation Contour Map April 22, 2014
- 4-2 Overburden Groundwater Elevation Contour Map October 28, 2014

4.8 Charts

4-1 Cumulative Time Trend Data MW-18


5.0 SITE MANAGEMENT – SUB-SLAB DEPRESSURIZATION SYSTEM


This section has been prepared as a placeholder pending NYSDEC and NYSDOH's review of the SSDS As-Built Report. Upon receipt of approval from the applicable regulatory agencies, the 2001 OM&M Manual for the Property will be updated to detail the procedures that were followed associated with the SSDS. 2015 OM&M activities related to the SSDS will be discussed in this Section of the 2015 PRR upon said approval.

The attached Figure 5-1 – Building Sub-Slab Zone Boundary and SSDS Location Plan depicts the six (6) building sub-slab zone boundaries corresponding with tenant spaces as submitted with the As-Built Report. The typical construction layout for the SSDS is provided on Figure 5-2 – Vacuum Sump and Roof Mounting Details.

5.1 Figures

- 5-1 Building Sub-Slab Zone Boundary and SSDS Location Plan
- 5-2 Vacuum Sump and Roof Mounting Details

6.0 ENGINEERING CONTROLS – OPERATION, MAINTENANCE AND MONITORING OF THE GROUNDWATER TREATMENT SYSTEM

6.1 INTRODUCTION

The groundwater treatment system (GTS) was originally constructed as an interim remedial measure (IRM) to address volatile organic compounds (VOCs) present in surface water and groundwater. The system became fully operational in March 1995 and has been operational since, with the exception of items discussed in Sections 6.4 and 6.5. As part of the selected Remedial Action (RA), the system was modified to collect and treat shallow groundwater in 1999.

The system was significantly upgraded in December 2006 in an effort to minimize system shutdowns and improve overall efficiency. Presently, the GTS consists of the northern collection trench (NCT), the southern collection trench (SCT), pumping manhole number 1 (MH-1), pumping manhole number 2 (MH-2), the piping system, an equalization tank, transfer pumps, a control system and an air stripper. The GTS has been operating for 19 years. CHA, on behalf of Chicago Pneumatic Tool Company (CPTC), has been conducting Operation, Maintenance and Monitoring (OM&M) of the GTS since October 1, 2008.

Between January 1, 2014 and December 31, 2014 operation of the air stripper, pumps, and appurtenances has been consistent and continuous. System maintenance and emergency responses are summarized in Section 6.5; in general, emergency call outs were resolved quickly, and resulted in the GTS being shut down for minimal amount of time possible. The treatment system flow totalizers, as recorded on inspection reports, indicate that a total of approximately 3,136,308 gallons of water was pumped, treated, and released to Outfall 03A between January 1, 2014 and December 31, 2014, operating at 97.3% efficiency and removing approximately 18.7 pounds of VOCs.

At this time, no changes to the Site Management Plan are recommended. Since concentrations of representative water samples from both the SCT and the NCT are still above regulatory standards, the requirements for discontinuing site management have not been achieved and the GTS is required. Annual submissions of the Periodic Review Report (PRR) are recommended. Continued OM&M of this GTS is ongoing and also recommended.

6.2 SITE OVERVIEW

The treatment process includes removal of VOCs from influent water utilizing a low-profile air stripper detailed in the Air Stripper Plan Figure 6-2. The low-profile air stripper treats influent groundwater pumped from MH-1 and MH-2. The configuration at the manholes is detailed in Pumping Manhole Plans and Sections Figure 6-3. MH-1 currently receives groundwater from the SCT. MH-2 was constructed at the northern (down-gradient) extent of the property to collect effluent water from an existing clay pipe and groundwater from the NCT. The collection trenches were constructed as part of the RA at prescribed locations on the property to collect shallow groundwater. Groundwater is directed, via gravity feed, to the respective manholes where it is then pumped to the equalization tank and then through the air stripper.

MH-1 is equipped with two ½ horsepower (hp) pumps arranged in lead/lag mode and five bulb type control switches. MH-2 is equipped with two ¾ hp pumps arranged in lead/lag mode and five bulb type control switches. The pump controls are set, top to bottom in each manhole, as follows:

High level alarm; Lag pump start; Lead pump start; Both pumps stop; and Low level alarm, second off.

The main control panel for all pumps is located in the Main Building, adjacent to the air stripper. Groundwater is conveyed to the GTS area via a below grade containment piping system and single wall piping above grade. The GTS components inside the building are located within a designated room containing a locked separate entrance from the remaining portion of the Main Building.

After entering the treatment system area, groundwater flows to a 2,500-gallon equalization tank, which provides a more uniform flow into the air stripper and to a limited extent, allows solids to settle out prior to treatment. The equalization tank is equipped with four float switches, which monitor and initiate events for the system operation.

Two Gould's pumps are utilized to transfer water from the equalization tank to the air stripper. These pumps are rated for greater than 120 gallons per minute at 40 feet of head. An in-line strainer is installed on the influent to each of these pumps to deter solids from entering the pumps.

Groundwater is conveyed via the Gould's pumps from the equalization tank to one 100-micron bag filter followed by one 50-micron bag filter on the effluent side of the pumps to capture smaller particles. The filter housings are stainless steel construction, rated for a maximum pressure of 120 pounds per square inch (psi). The treatment system has a typical operating range of 15 to 35 psi. When bag filter pressures exceed 35 psi the air stripper feed pumps shut down and an automated alarm call-out is sent signaling that the bag filters need to be replaced before operation is able to resume. After passing through the primary and secondary bag filters, groundwater enters the air stripper unit.

The low-profile air stripper is a four-tray ShallowTray® 31200 Series model, equipped with a 3-phase, 20 hp, 1,800 cubic feet per minute (CFM) blower and is reportedly capable of processing water from 6 gpm to 425 gpm. The original control panel system was designed and constructed by Northeast Environmental Systems and the panel was further upgraded in 2006.

All data is remotely accessible using EOS data management systems. Once per day, the EOS system transmits a record of the GTS operating conditions via email to CHA's Syracuse office. The data is reviewed to determine whether the system is operating normally. In addition, the EOS system allows "real time" remote monitoring via computer, which is wirelessly connected to the EOS system. Real time monitoring of the GTS is generally conducted from one to multiple times per day depending on system demands and/or precipitation events. If the GTS is found to be in an alarm condition, an appropriate response is initiated.

The treated water from the low-profile air stripper discharges via gravity through an effluent pipe to SPDES Outfall 03A located at the upstream end of the eastern drainage ditch, formerly Area 14. The eastern drainage ditch is ultimately monitored as SPDES Outfall 003, prior to discharging off-site at the northern property boundary, as shown on Figure 6-1.

6.3 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

Air stripper influent and effluent samples are collected and analyzed for the required VOCs. The January 1, 2014 through December 31, 2014 Influent and Effluent Analytical Summary (Table 2) provides the analytical data for influent flow from MH-1 and MH-2 on a monthly basis, and the air stripper effluent on a weekly basis. Table 3, the 2014 Air Stripper Flow Summary, provides weekly and monthly average flows measured during sampling events.

The information presented in Tables 2 and 3 was developed to assist in evaluating mass removal of VOCs by the GTS. Table 4, the 2014 Air Stripper Mass Removal Summary, provides a monthly account of air stripper influent and effluent concentrations, VOCs removed, percent of VOCs removed, and total VOCs

removed during the 12-month period from January 1, 2014 to December 31, 2014. As indicated, the average removal efficiency for 2014 was 97.3%, resulting in the removal of approximately 18.7 pounds of VOCs.

6.4 MONITORING PLAN COMPLIANCE

The effluent from the air stripper, SPDES Outfall 03A, requires sampling and analysis, as well as flow measurements to document compliance with the NYSDEC SPDES Permit No. NY0108537. Monitoring activities are summarized below.

- Weekly monitoring of flow and pH.
- Weekly effluent sampling and analysis for:
 - o trichloroethylene (TCE);
 - o cis-1,2-dichloroethene (cis-1,2-DCE);
 - o trans-1,2-dichloroethene (trans-1,2-DCE); and
 - o vinyl chloride (VC).

Between January 1, 2014 and December 31, 2014, representative system and manhole samples were collected by CHA personnel, placed in appropriately labeled laboratory glassware, and delivered by the CHA sampling personnel to Test America Laboratories. Specifically these samples were collected from the SPDES Outfall 03A sampling port as well as MH1 influent and MH2 influent sampling ports. Results from weekly sampling events conducted between January 1, 2014 and December 31, 2014 are provided in Table 5, Summary of Outfall 03A Analytical Results. The analytical results are submitted by CHA, on behalf of Chicago Pneumatic, to the NYSDEC in the form of monthly Discharge Monitoring Reports (DMRs). Between January 1, 2014 and December 31, 2014, there were two excursions to the SPDES Permit effluent limits. These excursions occurred in 1) January 2014; and 2) May 2014. The NYSDEC was immediately notified in writing (via email) of the excursions. There were no other permit excursions during 2014. DMR's have been provided in Appendix G.

The system is also remotely monitored daily using the EOS data management systems. Once per day, the EOS system transmits a record of the GTS operating conditions via email to CHA's Syracuse office. The data is reviewed to determine whether the system is operating normally. In addition, the EOS system allows "real time" remote monitoring via computer, which is connected to the EOS system via a wireless data connection. The system monitoring program is currently in full compliance with the Monitoring Plan.

6.4.1 Conclusions and Recommendations for Improvement

With the exception of small disruptions in daily operations on specified dates as detailed in Section 6.5 (Operation and Maintenance Plan Compliance), the implemented monitoring fully complied with the system Monitoring Plan. Flow and pH were monitored on a weekly basis as well as effluent sampling and analysis for the listed VOCs. The monitoring plan is effective in meeting the objectives of the remedial program.

6.5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The GTS is designed to operate continuously, 24 hours per day, 7 days a week. The manhole and equalization tank pumps operate, as needed, to direct and control water flow into the air stripper. Control floats normally activate the pumps in both manholes and the equalization tank. If the pump systems fail to control the water level, due to an extremely high volume entering the manhole, an alarm is activated. If daily monitoring of the GTS status facsimile transmittals and/or daily real-time monitoring note that the GTS is in an alarm condition, an appropriate response is initiated. Copies of the field logs, included in Appendix H, provide documentation of weekly site visits, recorded alarm conditions, and modifications made to the system from January 1, 2014 through December 31, 2014. A summary of scheduled and unscheduled maintenance events including system alarms, shutdowns and responses from January 1, 2014 through December 31, 2014. A summary of scheduled in the GTS being shut down for a relatively short period of time (e.g., generally less than one (1) day).

Alarm Conditions and Maintenance Summary

January 1, 2014 – December 31, 2014

Date	Incident/Resolution
2/13/2014	EQ Tank Low Level Alarm caused system shutdown; CHA manually pumped water into EQ tank
	to clear alarm.
3/4/2014	MH-1 High Level Alarm; CHA reset system and attempted to manually turn MH-1 pump on to no
	avail. System operating in alarm condition.
3/6/2014	MH-1 High Level Alarm; system operating in alarm condition. CHA onsite with subcontractor
	Engler Electric to move an electrical conduit associated with the system. GTS shutdown for
	electrical work. When the GTS was restarted, MH-1 High Level Alarm was cleared.
3/12/2014	CHA onsite with subcontractors Paragon Environmental and Engler Electric to conduct system
	maintenance including moving a water line and raising a transformer in order to install a jib crane
	to allow for easier maintenance of the air stripper. GTS shutdown for system maintenance and
	restarted to MH-1 High Level Alarm. Manually pumped MH-1 until system operating out of alarm
	condition.
3/25/2014	MH-1 High Level Alarm; CHA manually pumped water into EQ Tank to clear alarm. EQ Tank
	pumped down to Low Level Alarm for upcoming EQ Tank cleaning and GTS maintenance. GTS
	shut down for maintenance. CHA onsite with subcontractor Paragon Environmental to remove
	and update ProControl unit, jib crane installation and conduct air stripper maintenance.
3/26/2014	GTS remains shut down for activities identified above (3/25/2014).
3/27/2014	GTS restarted. MH-1 and MH-2 High Level Alarms; CHA manually pumped MH-1. However,
	influent piping to Air Stripper is leaking and GTS was shut down.
3/31/2014	MH-1, MH-2 and Sump High Level Alarms. Air stripper inlet valves tightened and GTS restarted;
	alarms cleared. CHA onsite with subcontractor Paragon Environmental to conduct maintenance
	on the EQ Tank and flooring of the GTS area. CHA manually shutdown GTS for maintenance
	and restarted upon completion.
4/1/2014	MH-1 and MH-2 High Level Alarms; manually pumped MH-1 and alarms cleared. Maintenance
	of GTS flooring continued.
4/2/2014	MH-1 and MH-2 High Level Alarms; manually pumped MH-1 and MH-2 to clear alarms. Low flow

Date	Incident/Resolution
	rates observed from MH-1 and MH-2.
4/3/2014	MH-1, MH-2 and EQ Tank High Level Alarms and High bag Filter Pressure Alarm caused system
	shutdown; CHA changed out bag filters and alarms cleared.
4/9/2014	MH-1, MH-2 and Sump High Level Alarms; CHA pumped sump to clear alarms and changed out
	bag filters.
4/15/2014	MH-1, MH-2 and Sump High Level Alarms; CHA pumped sump to clear alarms. Low flow rates
	observed from MH-1 and MH-2.
4/17/2014	MH-1, MH-2 and EQ Tank High Level Alarms and High Bag Filter Pressure Alarm caused system
	shutdown; CHA changed out bag filters, manually pumped MH-1 and EQ Tank and alarms
	cleared.
4/22/2014	MH-1, MH-2 and Sump High Level Alarms and EQ Tank Low Level Alarm; CHA pumped sump to
	clear alarms and changed out a bag filter.
4/252014	MH-1, MH-2, EQ Tank and Sump High Level Alarms caused system shutdown; CHA pumped
	Sump down and reset the GTS.
5/8/2014	MH-1, MH-2 and Sump High Level Alarms and EQ Tank Low Level Alarm; CHA manually
	pumped MH-1, MH-2 and sump to clear alarms.
5/13/2014	MH-1, MH-2, EQ Tank and Sump High Level Alarms and EQ Tank Low Level Alarm; CHA
	manually pumped EQ Tank and sump to clear alarms. CHA onsite with subcontractor Paragon
	Environmental to install new MH-1 pump.
5/14/2014	MH-1 and MH-2 High Level Alarms; system operating in alarm condition.
5/21/2014	System shut down for replacement of ProControl unit and restarted. Low flow rates observed
	from MH-1 and MH-2. MH-2 flow meter not recording flow.
5/23/2014	MH-1, MH-2 and EQ Tank High Level Alarms and High Bag Filter Pressure Alarm caused system
	shutdown; CHA changed out bag filters and alarms cleared. Low flow rates observed from MH-1
	and MH-2.
5/27/2014	MH-1, MH-2, EQ Tank and Sump High Level Alarms caused system shutdown; CHA changed
	out bag filters, manually pumped sump and alarms cleared. Low flow rates observed from MH-1
E/00/004 4	and MH-2. MH-2 flow meter not recording flow.
5/28/2014	MH-1, MH-2 and Sump High Level Alarms; CHA pumped sump and changed out a bag filter to clear alarms.
5/30/2014	MH-1, MH-2 and EQ Tank High Level Alarms and High Bag Filter Pressure Alarm caused system
5/50/2014	shutdown; CHA changed out bag filters and alarms cleared.
6/6/2014	MH-1, MH-2 and Sump High Level Alarms; CHA noted sump pump inoperable. System
0/0/2014	operating in alarm condition.
6/9/2014	MH-1, MH-2, EQ Tank and Sump High Level Alarms caused system shutdown; CHA manually
0/3/2014	bailed Sump into 55-gallon drum and changed out bag filters for alarms to clear.
6/16/2014	MH-1, MH-2 and Sump High Level Alarms. CHA onsite with Paragon Environmental to repair
5,10,2017	sump pump. Sump pump repaired and alarms cleared.
6/18/2014	MH-1, MH-2 and EQ Tank High Level Alarms caused system shutdown; CHA changed out bag
5, . 6, 2011	filters and alarms cleared. MH-1 and MH-2 manually pumped down remotely.
6/25/2014	MH-1 MH-2 and EO Tank High Level Alarms caused system shutdown: CHA manually numbed

6/25/2014 MH-1, MH-2 and EQ Tank High Level Alarms caused system shutdown; CHA manually pumped down EQ Tank and changed out bag filters to clear alarms.

Date	Incident/Resolution
7/1/2014	Sump High Level Alarm and MH-1, MH-2 and EQ Tank High Level Alarms caused system
	shutdown; CHA manually pumped down Sump and EQ Tank and changed out bag filters to clear
	alarms.
7/9/2014	MH-1, MH-2 and EQ Tank High Level Alarms caused system shutdown; CHA manually pumped
	down EQ Tank and changed out bag filters to clear alarms. CHA noted that ProControl unit was
	not operating properly. CHA onsite with Paragon Environmental to replace EQ Tank float
	controls. EQ Tank floats were replaced but not operating properly. System was shutdown until
	replacement ProControl unit and floats can be obtained and installed.
7/11/2014	CHA onsite with subcontractor Paragon Environmental and Engler Electric to troubleshoot EQ
	Tank floats and install loaner ProControl unit. Replaced one EQ Tank float, installed loaner
	ProControl unit and restarted system.
8/7/2014	CHA onsite to remove loaner ProControl unit and install the system's refurbished and updated
	unit. CHA shutdown GTS to conduct activities and restarted GTS upon completion.
8/26/2014	MH-1 and MH-2 High Level Alarms. CHA changed out bag filters and system operating in alarm
	condition.
9/17/2014	MH-1 and MH-2 High Level Alarms. CHA changed out bag filters and system operating in alarm
	condition.
9/23/2014	MH-1, MH-2 and EQ Tank High Level Alarms; CHA manually pumped EQ Tank and changed out
	bag filters and alarms cleared.
10/28/2014	MH-1 and EQ Tank High Level Alarms; CHA manually pumped EQ Tank and changed out bag
	filters and alarms cleared. Low flow rates observed from MH-2.
12/22/2014	MH-1 and Sump High Level Alarms; CHA manually pumped EQ Tank and Sump to clear alarms.

The total volume of water pumped to the air stripper is measured by in-line flow meters that provide both instantaneous and total flow readings. These flow meters are located at the air stripper in the influent pipes from MH-1, MH-2, and the treatment area floor sump pump as shown in Figure 6-4. Between January 1, 2014 and December 31, 2014 approximately 3,136,308 gallons of water were pumped, treated, and discharged to Outfall 03A. The Manhole Flow Summary (Table 1) indicates the manhole flow meter readings obtained during weekly inspections and provides average monthly flows for both manholes, as well as total flow for the same period of 2014. The GTS processed an average of 8,499 gpd between January 1, 2014 and December 31, 2014.

6.5.1 Conclusions and Recommendations for Improvement

The GTS has been operating for 19 years. Between January 1, 2014 and December 31, 2014 operation of the air stripper, pumps, and appurtenances has been consistent and for the most part continuous. In general, emergency call outs were resolved quickly, and resulted in the GTS being shut down for the minimal amount of time possible. The O&M plan is effective in meeting the objectives of the remedial program.

6.6 OVERALL CONCLUSIONS AND RECOMMENDATIONS

At this time, no changes to the Site Management Plan are recommended. Requirements of the Monitoring Plan were met during the reporting period. Likewise, the requirements of the Operation and Maintenance Plan were also met during the reporting period.

Based upon evaluation of the GTS, the remedial objectives for the site are being met. As indicated above, the total average removal efficiency was 97.3%, resulting in the removal of approximately 18.7 pounds of VOCs between the dates January 1, 2014 and December 31, 2014. The GTS is operating and performing in accordance with the Monitoring Plan and Operation and Maintenance Plan.

Since concentrations of water from both the SCT and the NCT are still above regulatory standards, the requirements for discontinuing site management have not been met and the GTS is still needed. Annual submissions of the PRR are recommended. Continued operation, maintenance, and monitoring of this GTS is ongoing and recommended.

6.7 Tables

- 6-1 2014 Manhole Flow Summary
- 6-2 2014 Influent and Effluent Analytical Summary
- 6-3 2014 Air Stripper Flow Summary
- 6-4 2014 Air Stripper Mass Removal Summary
- 6-5 2014 Cumulative Summary of Outfall 03A Analytical Results

6.8 Figures

- 6-1 Groundwater Treatment System Plan
- 6-2 Air Stripper Plan
- 6-3 Pumping Manhole Plans and Sections
- 6-4 Groundwater Treatment System As-Built Drawing

TABLE 6-1JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 MANHOLE FLOW SUMMARY

2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Total	izer Reading		Flow per Monitoring Period (gpd)								
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total						
1/3/2014	7,797,728	10,902,873	8	4,396	6,539	10,935						
1/7/2014	7,813,085	10,927,601	4	3,839	6,182	10,021						
1/15/2014	7,854,322	10,982,648	8	5,155	6,881	12,036						
1/20/2014	7,883,503	11,021,834	5	5,836	7,837	13,673						
1/30/2014	7,914,587	11,075,846	10	3,108	5,401	8,510						
Ave	erage Monthly Flow		35	4,344	6,437	10,780						

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
2/6/2014	7,930,230	11,106,540	7	2,235	4,385	6,620
2/13/2014	7,944,062	11,134,905	7	1,976	4,052	6,028
2/19/2014	7,954,755	11,156,267	6	1,782	3,560	5,343
2/27/2014	7,983,535	11,204,012	8	3,598	5,968	9,566
Average Monthly Flow			28	2,462	4,577	7,040

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
3/4/2014	7,991,626	11,224,447	5	1,618	4,087	5,705
3/12/2014	8,017,732	11,256,625	8	3,263	4,022	7,286
3/20/2014	8,052,457	11,301,188	8	4,341	5,570	9,911
3/25/2014	8,053,774	11,328,519	5	263	5,466	5,730
Average Monthly Flow			26	2,702	4,789	7,490

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
4/2/2014	8,058,094	11,332,247	8	540	466	1,006
4/9/2014	8,118,017	11,365,484	7	8,560	4,748	13,309
4/15/2014	8,119,175	11,366,350	6	193	144	337
4/22/2014	8,189,259	11,420,190	7	10,012	7,691	17,703
4/30/2014	8,229,070	11,463,516	8	4,976	5,416	10,392
Ave	Average Monthly Flow			4,869	3,750	8,619

	Flow Totalizer Reading			Flow pe	r Monitoring I	Period (gpd)
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
5/8/2014	8,270,224	11,490,190	8	5,144	3,334	8,479
5/14/2014	8,279,212	11,517,529	6	1,498	4,557	6,055
5/21/2014	8,280,900	11,517,529	7	241	0	241
5/27/2014	8,301,676	11,517,529	6	3,463	0	3,463
Average Monthly Flow			27	2,689	2,000	4,690

	Flow Totalizer Reading			Flow pe	Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total	
6/4/2014	8,364,285	11,545,527	8	7,826	3,500	11,326	
6/10/2014	8,377,054	11,566,113	6	2,128	3,431	5,559	
6/16/2014	8,389,699	11,588,729	6	2,108	3,769	5,877	
6/25/2014	8,434,497	11,605,892	9	4,978	1,907	6,885	
Average Monthly Flow			29	4,580	3,047	7,627	

TABLE 6-1JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 MANHOLE FLOW SUMMARY

2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

	Flow Totalizer Reading			Flow pe	r Monitoring I	Period (gpd)
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
7/2/2014	8,453,311	11,634,586	7	2,688	4,099	6,787
7/9/2014	8,485,725	11,666,698	7	4,631	4,587	9,218
7/15/2014	8,502,336	11,689,685	6	2,769	3,831	6,600
7/23/2014	8,519,972	11,728,036	8	2,205	4,794	6,998
Average Monthly Flow			28	3,053	4,362	7,415

	Flow Totalizer Reading			Flow pe	^r Monitoring Period (gpd)	
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
8/1/2014	8,540,458	11,782,659	9	2,276	6,069	8,345
8/7/2014	8,560,589	11,826,478	6	3,355	7,303	10,658
8/13/2014	8,587,447	11,876,561	6	4,476	8,347	12,824
8/20/2014	8,621,587	11,917,697	7	4,877	5,877	10,754
8/26/2014	8,631,587	11,925,558	6	1,667	1,310	2,977
Average Monthly Flow			34	3,283	5,809	9,092

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
9/4/2014	8,662,170	11,987,915	9	3,398	6,929	10,327
9/10/2014	8,679,745	12,022,495	6	2,929	5,763	8,693
9/17/2014	8,696,736	12,042,481	7	2,427	2,855	5,282
9/23/2014	8,709,085	12,057,883	6	2,058	2,567	4,625
Average Monthly Flow			28	2,768	4,726	7,494

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
10/1/2014	8,723,124	12,101,568	8	1,755	5,461	7,216
10/8/2014	8,737,162	12,131,929	7	2,005	4,337	6,343
10/16/2014	8,756,049	12,171,823	8	2,361	4,987	7,348
10/22/2014	8,789,244	12,223,039	6	5,533	8,536	14,069
10/28/2014	8,809,205	12,226,619	6	3,327	597	3,924
Av	Average Monthly Flow			2,861	4,821	7,682

	Flow Totalizer Reading			Flow pe	r Monitoring F	Period (gpd)
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
11/6/2014	8,835,473	12,280,653	9	2,919	6,004	8,922
11/12/2014	8,850,041	12,310,545	6	2,428	4,982	7,410
11/20/2014	8,872,862	12,355,075	8	2,853	5,566	8,419
11/25/2014	8,890,504	12,386,068	5	3,528	6,199	9,727
Average Monthly Flow			28	2,904	5,695	8,598

	Flow Totalizer Reading			Flow per Monitoring Period (gpd)		
Monitoring Date	MH-1	MH-2	Days between	MH-1	MH-2	Total
12/3/2014	8,926,204	12,443,772	8	4,463	7,213	11,676
12/12/2014	8,978,342	12,517,040	9	5,793	8,141	13,934
12/17/2014	9,006,359	12,532,848	5	5,603	3,162	8,765
12/22/2014	9,037,057	12,596,383	5	6,140	12,707	18,847
12/30/2014	9,082,977	12,666,454	8	5,740	8,759	14,499
Average Monthly Flow			35	5,499	8,011	13,510

TABLE 6-1

JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 MANHOLE FLOW SUMMARY

2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NY NYSDEC SITE NO. 622003

Summary of Manhole Flow for January 1, 2014 through							
December 31, 2014							
Total Flow	Total Flow gal gpd						
MH-1	1,320,419	3,578					
MH-2 1,815,889 4,921							
Total 2014 Flow: 3,136,308 8,499							

Notes:

Average monthly manhole flow is based on daily average

Table 6-2 JANUARY 1, 2014 through DECEMBER 31, 2014 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2014 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	Influent from MH-1					Influent from MH-2				Air Stripper Effluent							
Sample Date	Vinue	'yı Chloride ola ,	tra-	Trice	Totsi,	Vin. J	'''Y Chloride ois '	r.2.Dichloroethene Itan.	Tris.	Tot.	Viny CL.	cnloride ^{ols-1,2-Dirt,}	trans-1,2-2,.	Trichloro-	Total VOC	Monu	miny Average VOC's
Permit Limit											10	10	10	10			I
1/3/2014	2.7	36	<5	i 1.1	44.8	<50	180	<5	620	855	<5	10	<5	12	32		
1/7/2014											<5	1.9	<5	1.5	13.4		
1/15/2014											<5	4.7	<5	4	18.7		
1/20/2014											<5	3.7	<5	2.9	16.6		
1/30/2014											<5	4	<5	3.6	17.6	19.7	
2/6/2014	7.4	54	<5	5 1.5	67.9	<50	250	<50	960	1310	<5	<5	<5	0.6	15.6		
2/13/2014											<5	2.4	<5	2	14.4		
2/19/2014											<5	1.6	<5	1.3	12.9		
2/27/2014											<5	1.3	<5	0.7	12	13.7	
3/4/2014	7.2	23	<5	i <5	40.2	<50	330	<50	730	1160	<5	3	<5	<5	18		
3/12/2014											<5	6.9	<5	6.1	23		
3/20/2014											<5	<5	<5	<5	20		
3/25/2014											<5	<5	<5	<5	20	20.3	
4/2/2014	<5	25	<5	5 1.2	36.2	<50	600	<50	970	1670	<5	<5	<5	0.73	15.73		
4/9/2014											<5	<5	<5	<5	20		
4/15/2014											<5	5	<5	0.87	15.87		
4/22/2014											<5	<5	<5	<5	20		
4/30/2014											<5	2.1	<5	1.2	13.3	17.0	
5/8/2014	7	28	<5	5 1.2	41.2	<200	910	<200	2400	3710	<5	<5	<5	<5	20		
5/14/2014											<5	13	<5	20	43		
5/21/2014											<5	<5	<5	<5	20		
5/27/2014											<5	0.76	<5	<5	15.76	24.7	
6/4/2014		44	<5	5 1.7	54.4	<200	590	<200	1700	2690		<5	<5	<5	20		
6/10/2014										1	<5	<5	<5	<5	20		
6/16/2014											<5	<5	<5	<5	20		
6/25/2014											<5	<5	<5	<5	20	20.0	
7/2/2014		35	<5	2	43.9	<100	450	22	1200	1772		<5	<5	<5	20		
7/9/2014				<u> </u>						1	<5	<5	<5	<5	20		
7/15/2014				1							<5	<5	<5	<5	20		
7/23/2014				1							<5	<5	<5	<5	20	20.0	
8/1/2014		37	<5	1.6	44.9	<50	210	<50	650	960		<5	<5	<5	20	_	
8/7/2014											<5	<5	<5	<5	20		
8/13/2014				1							<5	<5	<5	<5	20		
8/20/2014				1							<5	<5	<5	<5	20		
8/26/2014											<5	<5	<5	<5	20	20.0	
0,20,2011			I	1						1	10	10			20	2010	J

Table 6-2 JANUARY 1, 2014 through DECEMBER 31, 2014 INFLUENT AND EFFLUENT ANALYTICAL SUMMARY

2014 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

	Influent from MH-1					Influent from MH-2				Air Stripper Effluent							
Sample Date /	Vinus	o chloride	^{cis,} 1,2.Dichloroethene	^{trans,1,2,} Dichloroethene Tri:	^{ruchloroethene} Totsi,	Vinue -	or Chloride de J	', 2-Dichloroethene trans	Trine.	Tot.	Vinu c.	cis. 1 2 Chloride	V 1	^{,Dichloroethene} Trichlo-	Total I.	s coce	monthy Average VOC's
9/4/2014	1.2	52	2 <	5 2.1			200	<50				<5	<5	<5	20		Ĩ
9/10/2014											<5	<5	<5	<5	20		
9/17/2014											<5	<5	<5	<5	20		
9/23/2014											<5	<5	<5	<5	20	20.0	j
10/1/2014	1.3	62	2 <	:5 1.7	70	<100	290	<100	870	1360	<5	<5	<5	<5	20		
10/8/2014											<5	<5	<5	<5	20		
10/16/2014											<5	<5	<5	<5	20		
10/22/2014											<5	<5	<5	<5	20		
10/28/2014											<5	<5	<5	<5	20	20.0	/
11/6/2014	<5	40	6 1.	1 1.2	2 53.3	<50	210	<50	640	950	<5	<5	<5	<5	20		
11/12/2014											<5	<5	<5	<5	20		
11/20/2014											<5	<5	<5	<5	20		
11/25/2014											1	<5	<5	<5	16	19.0	/
12/3/2014	1.2	3	1 <	:5 0.8	3 38	25	150	<25	400	600	<5	0.61	<5	<5	15.61		
12/12/2014											<5	<5	<5	<5	20		
12/17/2014											<5	<5	<5	<5	20		
12/22/2014											<5	<5	<5	<5	20		
12/30/2014											<5	<5	<5	<5	20	19.1	

Notes:

1) All values reported in micrograms per liter (ug/L), approximately equivalent to parts per billion (ppb).

2) VOCs = Volatile Organic Compounds.

TABLE 6-32014 AIR STRIPPER FLOW SUMMARY

2014 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date	Average Flow During Monitoring Period (gpd)	
1/3/2014	10935	
1/7/2014	10021	
1/15/2014	12036	
1/20/2014	13673	
1/30/2014	8510	
Average Monthly Flow (gpo	d) 107	80
2/6/2014	6620	
2/13/2014	6028	
2/19/2014	5343	
2/27/2014	9566	
Average Monthly Flow (gpo	d) 704	10
3/4/2014	5705	
3/12/2014	7286	
3/20/2014	9911	
3/25/2014	5730	
Average Monthly Flow (gpo	d) 749	90
4/2/2014	1006	
4/9/2014	13309	
4/15/2014	337	
4/22/2014	17703	
4/30/2014	10392	
Average Monthly Flow (gpe	d) 861	9
5/8/2014	8479	
5/14/2014	6055	
5/21/2014	241	
5/27/2014	3463	
Average Monthly Flow (gpo	d) 469	90
6/4/2014	11326	
6/10/2014	5559	
6/16/2014	5877	
6/25/2014	6885	
Average Monthly Flow (gpo	d) 762	27
7/2/2014	6787	
7/9/2014	9218	
7/15/2014	6600	
7/23/2014	6998	
Average Monthly Flow (gpo	d) 741	15

TABLE 6-3 2014 AIR STRIPPER FLOW SUMMARY

2014 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Date	Average Flow During Monitoring Period (gpd)	
8/1/2014	8345	
8/7/2014	10658	
8/13/2014	12824	
8/20/2014	10754	
8/26/2014	2977	
Average Monthly	y Flow (gpd)	9092
9/4/2014	10327	
9/10/2014	8693	
9/17/2014	5282	
9/23/2014	4625	
Average Monthly	y Flow (gpd)	7494
10/1/2014	7216	
10/8/2014	6343	
10/16/2014	7348	
10/22/2014	14069	
10/28/2014	3924	
Average Monthly	y Flow (gpd)	7682
11/6/2014	8922	
11/12/2014	7410	
11/20/2014	8419	
11/25/2014	9727	
Average Monthly	y Flow (gpd)	8598
12/3/2014	11676	
12/12/2014	13934	
12/17/2014	8765	
12/22/2014	18847	
12/30/2014	14499	
Average Monthly	y Flow (gpd)	13510

Note:

gpd = gallons per day.
 Average flow data is calculated from data collected during site visits.

3) Total Air Stripper flow includes total flows of MH-1 and MH-2.

TABLE 6-4JANUARY 1, 2014 - DECEMBER 31, 2014 AIR STRIPPER MASS REMOVAL SUMMARY

2014 ANNUAL OM&M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Month	Air Stripper Influent - Average Monthly VOC ¹ Concentration (μg/l) ²	Air Stripper Effluent - Average Monthly VOC Concentration ⁵ (μg/l)	VOC's Removed (μg/l)	% VOC's Removed	Air Stripper Effluent - Average Monthly Flow (gpd) ³	VOC's Removed (lbs)⁴
Jan	529	19.66	509	96.3	10,780	1.6
Feb	876	13.73	862	98.4	7,040	1.4
Mar	756	20.25	736	97.3	7,490	1.2
Apr	747	16.98	730	97.7	8,619	1.9
May	1,606	24.69	1,581	98.5	4,690	1.7
Jun	1,107	20.00	1,087	98.2	7,627	2.0
Jul	1,061	20.00	1,041	98.1	7,415	1.8
Aug	630	20.00	610	96.8	9,092	1.6
Sep	565	20.00	545	96.5	7,494	1.0
Oct	880	20.00	860	97.7	7,682	1.9
Nov	647	19.00	628	97.1	8,598	1.3
Dec	371	19.12	352	94.8	13,510	1.4
		2014 A	Average (%) ⁶ :	97.3	2014 Total (lbs):	18.7

Notes:

1) VOCs = volatile organic compounds

2) ug/l = micrograms per liter, approximately equivalent to parts per billion (ppb)

3) gpd = gallons per day

4) lbs = pounds

5) Test America Laboratories typical reporting limit equals 5.0 ug/L or 1.0 ug/L. Therefore, mass removal calculations are based on an estimated value of 5.0 ug/L or 1.0 ug/L, respectively.

TABLE 6-5JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 SUMMARY OF SPDES OUTFALL- 03A ANALYTICAL RESULTS

2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (μg/L)	trans-1,2-DCE (µg/L)	TCE (μg/L)	VC (µg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
1/3/2014	10	<5	12	<5	10935	7.05
1/7/2014	1.9	<5	1.5	<5	10021	7.4
1/15/2014	4.7	<5	4	<5	12036	7.08
1/20/2014	3.7	<5	2.9	<5	13673	7.09
1/30/2014	4	<5	3.6	<5	8510	7
2/6/2014	<5	<5	0.6	<5	6620	6.88
2/13/2014	2.4	<5	2	<5	6028	7.26
2/19/2014	1.6	<5	1.3	<5	5343	7.08
2/27/2014	1.3	<5	0.7	<5	9566	7.09
3/4/2014	3	<5	<5	<5	5705	7
3/12/2014	6.9	<5	6.1	<5	7286	7.37
3/20/2014	<5	<5	<5	<5	9911	6.7
3/25/2014	<5	<5	<5	<5	5730	6.9
4/2/2014	<5	<5	0.73	<5	1006	7.17
4/9/2014	<5	<5	<5	<5	13309	6.96
4/15/2014	5	<5	0.87	<5	337	6.88
4/22/2014	<5	<5	<5	<5	17703	6.91
4/30/2014	2.1	<5	1.2	<5	10392	6.97
5/8/2014	<5	<5	<5	<5	8479	6.8
5/14/2014	13	<5	20	<5	6055	7.02
5/21/2014	<5	<5	<5	<5	241	6.87
5/27/2014	0.76	<5	<5	<5	3463	6.82
6/4/2014	<5	<5	<5	<5	11326	6.98
6/10/2014	<5	<5	<5	<5	5559	6.33
6/16/2014	<5	<5	<5	<5	5877	6.88

TABLE 6-5JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 SUMMARY OF SPDES OUTFALL- 03A ANALYTICAL RESULTS

2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

Sample Date	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	TCE (μg/L)	VC (µg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
6/25/2014	<5	<5	<5	<5	6885	6.76
7/2/2014	<5	<5	<5	<5	6787	6.58
7/9/2014	<5	<5	<5	<5	9218	6.62
7/15/2014	<5	<5	<5	<5	6600	6.72
7/23/2014	<5	<5	<5	<5	6998	6.65
8/1/2014	<5	<5	<5	<5	8345	6.68
8/7/2014	<5	<5	<5	<5	10658	7
8/13/2014	<5	<5	<5	<5	12824	6.73
8/20/2014	<5	<5	<5	<5	10754	6.88
8/26/2014	<5	<5	<5	<5	2977	7.2
9/4/2014	<5	<5	<5	<5	10327	6.9
9/10/2014	<5	<5	<5	<5	8693	7.18
9/17/2014	<5	<5	<5	<5	5282	6.99
9/23/2014	<5	<5	<5	<5	4625	7.24
10/1/2014	<5	<5	<5	<5	7216	7.05
10/8/2014	<5	<5	<5	<5	6343	7
10/16/2014	<5	<5	<5	<5	7348	7.25
10/22/2014	<5	<5	<5	<5	14069	7.09
10/28/2014	<5	<5	<5	<5	3924	6.74
11/6/2014	<5	<5	<5	<5	8922	6.66
11/12/2014	<5	<5	<5	<5	7410	7.83
11/20/2014	<5	<5	<5	<5	8419	7.86
11/25/2014	<5	<5	<5	1	9727	6.79
12/3/2014	0.61	<5	<5	<5	11676	7.06
12/12/2014	<5	<5	<5	<5	13934	7.05

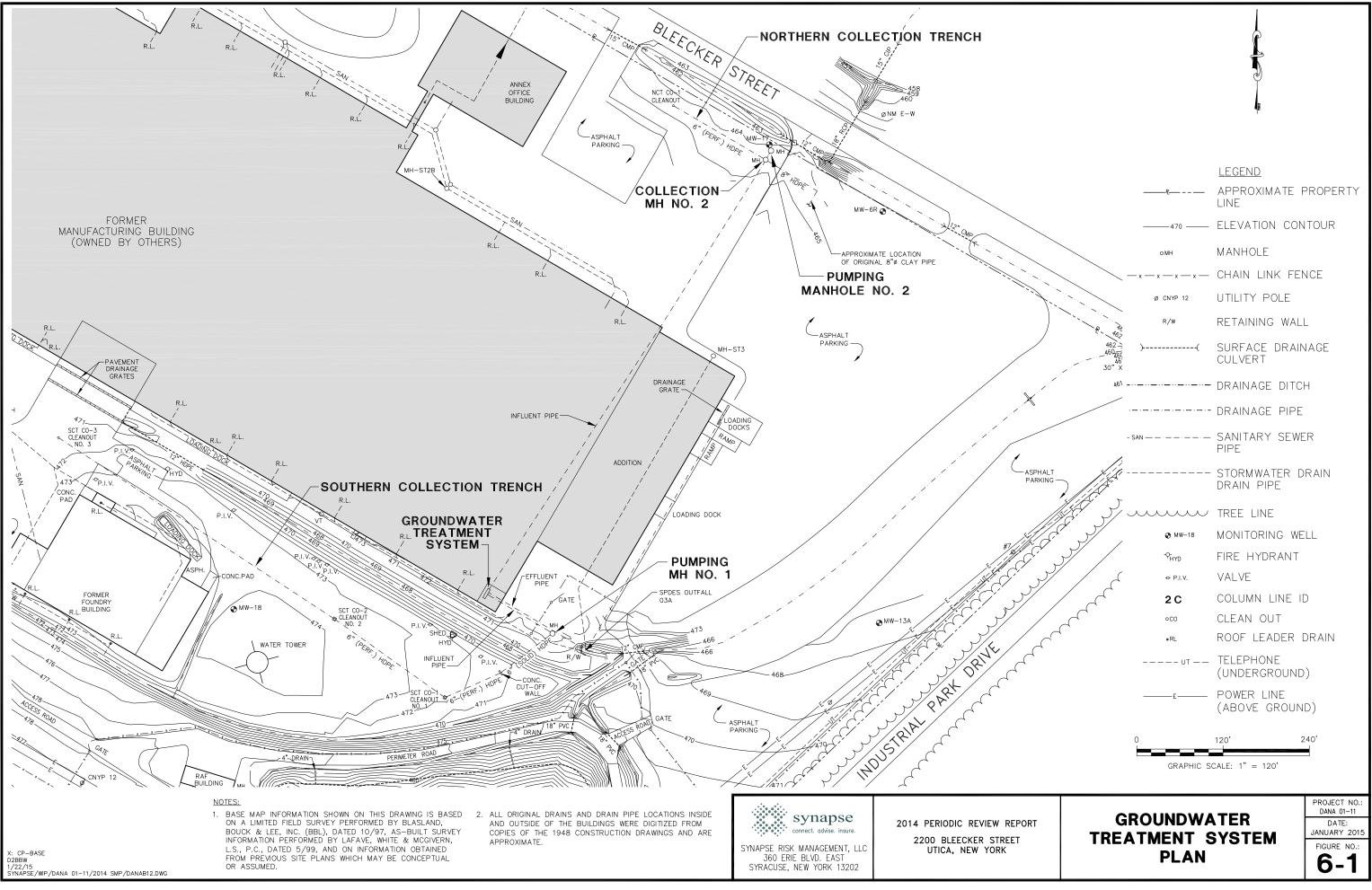
TABLE 6-5 JANUARY 1, 2014 THROUGH DECEMBER 31, 2014 SUMMARY OF SPDES OUTFALL- 03A ANALYTICAL RESULTS

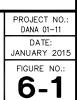
2014 ANNUAL OM+M REPORT 2200 BLEECKER STREET, UTICA, NEW YORK NYSDEC SITE NO. 622003

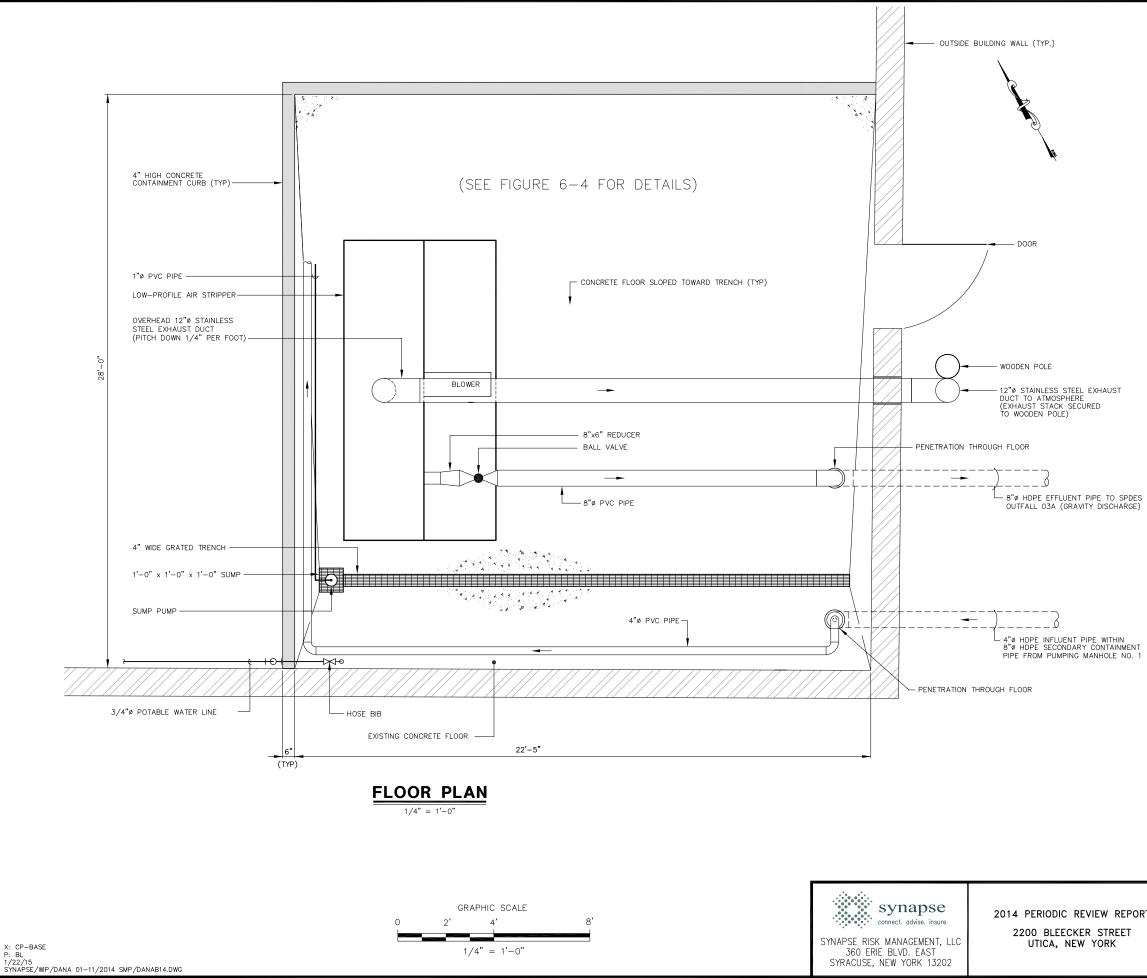
Sample Date	cis-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L)	TCE (μg/L)	VC (μg/L)	Flow (Avg. GPD)	pH (SU)
Permit Limits	10	10	10	10		
12/17/2014	<5	<5	<5	<5	8765	7.1
12/22/2014	<5	<5	<5	<5	18847	6.71
12/30/2014	<5	<5	<5	<5	14499	7.42

Notes:

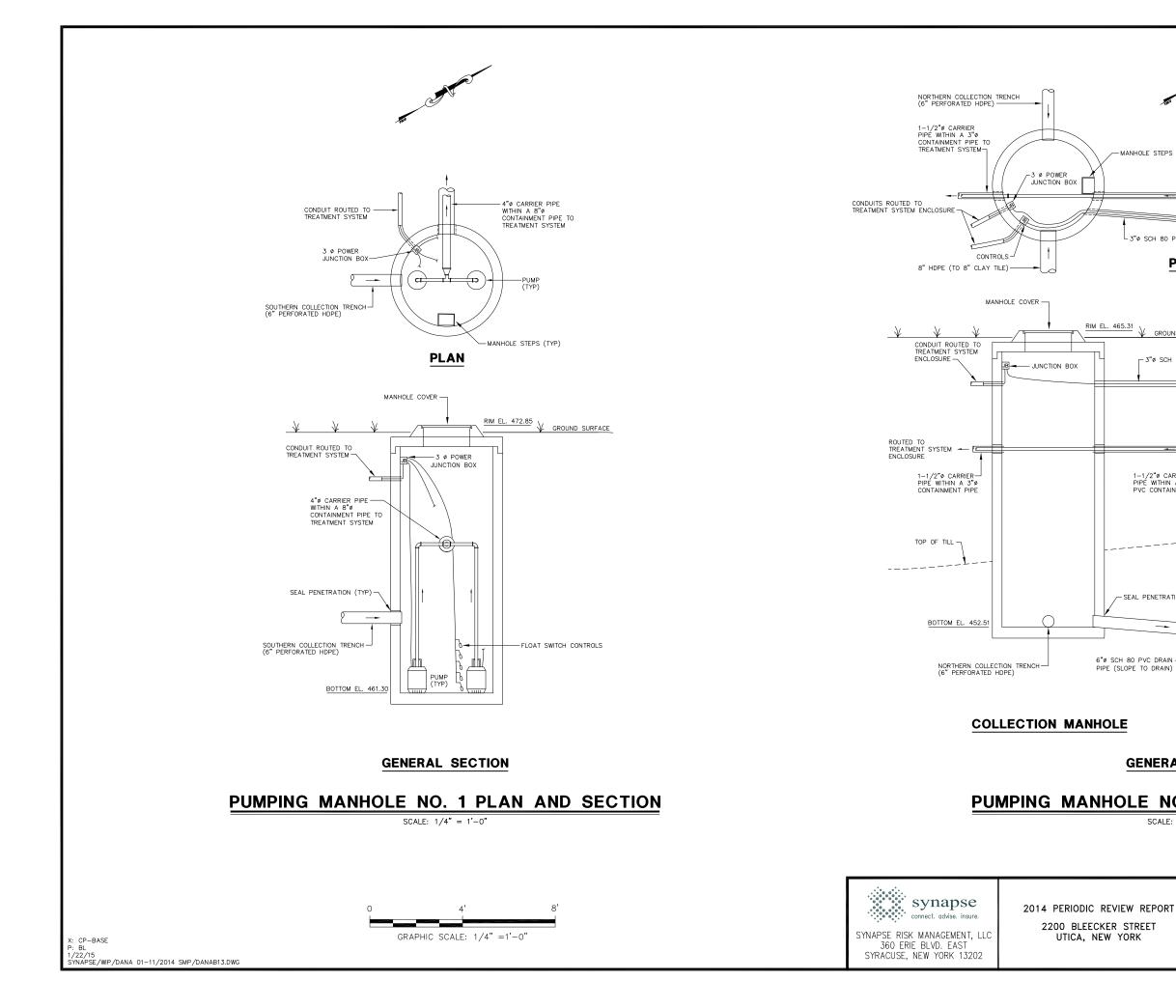
1) cis-1,2-DCE = cis-1,2-Dichloroethene

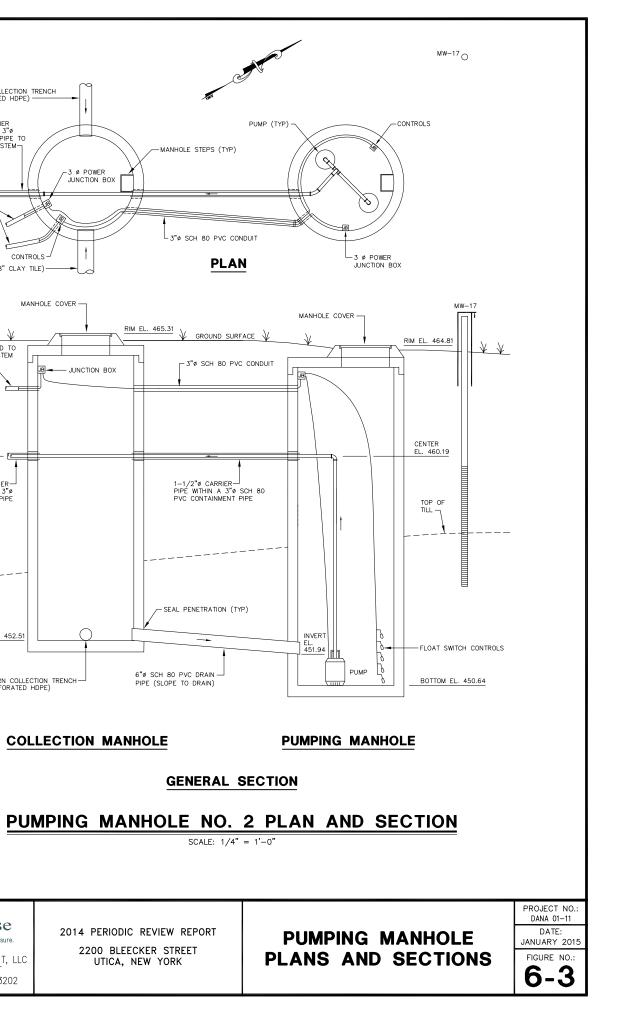

2) trans-1,2-DCE = trans-1,2-Dichloroethene

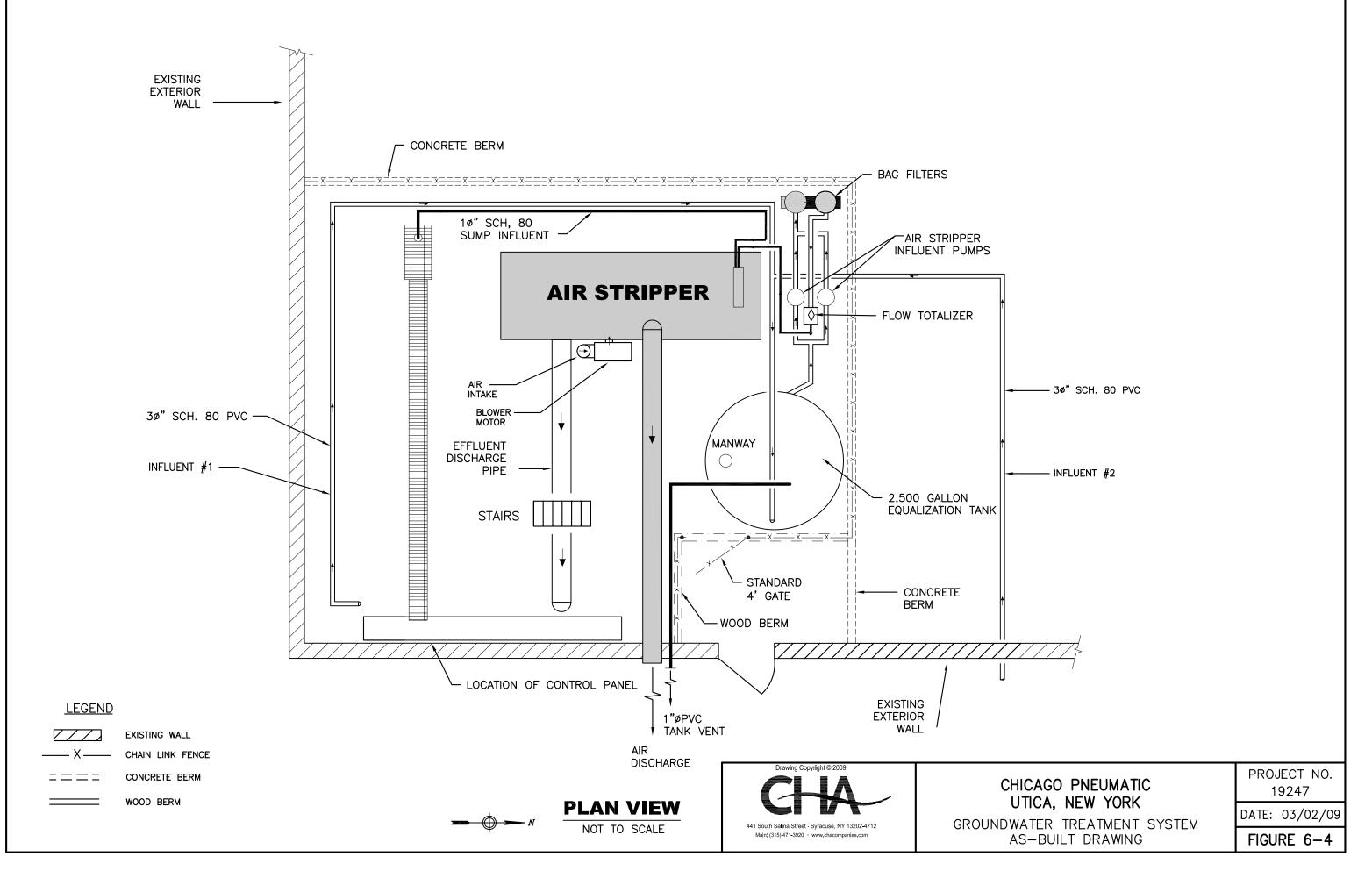

3) TCE = Trichloroethylene


4) VC = Vinyl Chloride

5) ug/L = micrograms per liter


6) gpd = gallons per day.

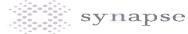




		PROJECT NO.: DANA 01-11
EPORT ET	AIR STRIPPER PLAN	DATE: JANUARY 2015
		FIGURE NO.: 6-2

APPENDIX A SITE INSPECTION REPORTS – FORM A & FORM A1

2014 PERIODIC REVIEW REPORT


2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003				
Syna	pse Representative: 11 VIC	Ighton Date: 122/2014		
Cate	jory Inspected	Observation/Condition	J	
1 G	eneral Property			
-	General Property Access	GOOD-Neer Plouling	\square	
E	General Property Drainage	SPDES Outfall (001 002 003)		
2 C	ell Perimeter Components			
	Perimeter and Access Roads	OK-Need Plowing		C
E	B Ditches	Snow Covered J		1
0	Culverts	Clear		
Ľ	Perimeter Fence	Gates		
E	Utilities	Elec Phone		
3 C	ontainment Cell		-	1
4	Surface Cover System	Burrows Vegetation Show Covered		1
E	Gas Vents (2)			
E	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm		
(Collection Pipe / Cleanout	Drip		1
	Perimeter Drains (4)	Show Coveres		
4 Le	achate Collection Manhole			1
A	Structure	External Internal Not Inspected		1
E	Pumps and Plumbing	Pump 1 Hours Pump 2 Hours		1
E	' Pump Changeover	(Y or N) Lead Pump Lag Pump		
E	" Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL		1
C	Electrical Components	Test Pumps (Y or N), Light Bulbs		1
Ľ	Manhole Interstitial Space	OK .		/
E	Conveyance Pipe	OK		/
F	Influent Pipe	QK		/
G	Confined Space Entry	(Y or N) (see Form B)		
			and the second s	2011

.

4

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

K

Date:

Category		ory	Inspected	Observation/Condition	J
5	Build	ling		/ / /	
	A	Struct	ure	Lock, Vent, Heater	
	В	Electri	cal and Telephone	Elec Phone	
	С	Auto E	Dialer and Controls	Test Functions (Y or N) (see Form F)	/
6	Leac	hate St	orage System		
	A	Tank	(External)	Internal (Y o(N)	
	Α'	Flow 7	Fotalizer	Reading = 3300 gal.	
	В	Secon	dary Containment		
	С	Piping	Components		
	D	Electri	cal Components	Lock Light Bulbs	
	Ε	Leach	ate Sampling	(Y or N) (see Form C)	

	·····	
G \Clients\DANA\01 CP\02 RAF O&M\Forms\OMM Form A.doc	Page 2 of 2	svnapse
GIGIERSIDAITAUT CEUZ HAF ORMEORDSIDMM FORM A.000	Lefter n 5	synapse

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 2/24/2014

rerubton

.

Catego	ry Inspected	Observation/Condition	J
I Gen	eral Property		V
A	General Property Access	GOOD-Snow Colleged	
B	General Property Drainage	SPDES Outfall (001002003	-
Cell	Perimeter Components		
A	Perimeter and Access Roads	GOOD - Snow Covered	
В	Ditches		
С	Culverts	TGZED	
D	Perimeter Fence	Gates Damage (
E	Utilities	Elec Phone /	
Cont	ainment Cell		"
A	Surface Cover System	Burrows Vegetation	- <u></u>
B	Gas Vents (2)		
B'	PID Readings	(V of N) Pookground	
	Collection Pipe / Cleanout	(Y of N) Background ppm, @ 20' ppm, @ Vent ppm	-
	Perimeter Drains (4)		
		Show Covered not inspected	
	hate Collection Manhole		- -
	Structure	External Internal	
	Pumps and Plumbing	Pump 1 Hours Pump 2 Hours 223.6	
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	
B"	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
C	Electrical Components	Test Pumps (Y or N) Light Bulbs	
D	Manhole Interstitial Space		
E	Conveyance Pipe		
F	Influent Pipe	MH 34 F. 11	
G	Confined Space Entry	(Y of N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

rerubba

Date: 2/24/2014

	Category		Inspected	Observation/Condition	
5	Build	ling			
	A	Struc	ture	Lock, Vent, Heater_O_	
	В	Elect	rical and Telephone	Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y of N) (see Form F)	
6	Leac	hate S	torage System		
	A	Tank	(External)	Internal (Y o(N)	
	Α'	Flow	Totalizer	Reading = 83700 gal.	
	В	Seco	ndary Containment	Liquid (Y or N)	
	С	Piping	g Components		/
	D	Electr	ical Components	Lock Light Bulbs	
	E	Leach	nate Sampling	(Y o(N) (see Form C)	

G:\Clients\DANA\01 CP\02 RAF O&M\Forms\OMM Form A doc	Page 2 of 2	S	vnanso
			ynapse

REMEDIAL ACTION FACILITY
2200 BLEECKER STREET
UTICA, NEW YORK
NYSDEC SITE NO 622002

NYSPEC SITE NO. 622003 Dugs: Cherghton Date: Synapse Representative:_

.

003	3	18	201	+
	1	•		

Catego	ry Inspected	Observation/Condition	
1 Gen	eral Property		
A	General Property Access	CON	T
В	General Property Drainage	SPDES Outfall (001 002 003 - SPDES STADE	
2 Cell	Perimeter Components	Kenoved	
A	Perimeter and Access Roads	Son Cubard	T
B	Ditches	Show Coverad Frazen	
C	Culverts		
D	Perimeter Fence	Gates_/ n	
E	Utilities	Gates Dahure	
Cont	ainment Cell		
A	Surface Cover System	Burrows Vegetation	
В	Gas Vents (2)		
B'	PID Readings	(Y or (N) Background ppm, @ 20' ppm, @ Vent ppm	
С	Collection Pipe / Cleanout	(* of the Lange of	/
D	Perimeter Drains (4)		
Leac	hate Collection Manhole	No flow	/
A	Structure		
		External_/ Internal_/	7
B	Pumps and Plumbing	Pump 1 Hours 34 Service Pump 2 Hours 23.	/
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	<u> </u>
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
C	Electrical Components	Test Pumps (Y or (N), Light Bulbs AREN LEY BALS	
D	Manhole Interstitial Space	Orderet	
E	Conveyance Pipe		
F	Influent Pipe	MIT 34 FILM VILLE	
G	Confined Space Entry	(Y of N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

ton

rerul

 N_{t}

Synapse Representative:

Date:

	Category		bry Inspected Observation/Condition		
5	Build	ing			
	A	Struc	ture	Lock_, Vent_, Heater_()	
	В	Elect	rical and Telephone	Elec Phone	
	C	Auto	Dialer and Controls	Test Functions (Y o(N))(see Form F)	
6	Leach	nate S	torage System		
	A	Tank	(External)	Internal (Y or N)	
	A'	Flow	Totalizer	Reading = <u>83700</u> gal.	
	В	Seco	ndary Containment	Liquid (Y or N)	
	C	Piping	g Components		
	D	Electr	ical Components	LockLight Bulbs	
	E	Leach	nate Sampling	(Y or(N)) (see Form C)	

Additional Comments: $\frac{1}{2}$ ADA 3000 Schedub 0 Needs updation Ym

REMEDIAL ACTION FACILITY					
2200 BLEECKER STREET UTICA, NEW YORK					
		NYSDEC SITE NO. 622003			
Synap	se Representative: <u>1, Cre</u>	219/101 Date: 4/27/2014			
Catego	ory Inspected	Observation/Condition	1		
1 Ger	neral Property		±		
A	General Property Access	GOOD-SNOW Melt			
В	General Property Drainage	3PDES Outfall (001 002 003)	+		
2 Cell	Perimeter Components				
A	Perimeter and Access Roads	Com - 100 t			
В	Ditches		+		
С	Culverts	Goon Moderate Flour Conditions	+ 1		
D	Perimeter Fence	Gates / Daniele tow Conditions			
E	Utilities	Elec Phone	+ //		
3 Con	tainment Cell				
A	Surface Cover System	Burrows O Vegetation			
В	Gas Vents (2)	Not Inspected			
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm			
С	Collection Pipe / Cleanout	Att Needs to be Pump Down			
D	Perimeter Drains (4)				
4 Leac	chate Collection Manhole				
A	Structure	ExternalInternal			
В	Pumps and Plumbing	Pump 1 Hours 134 Pump 2 Hours 223			
B'	Pump Changeover	(Y o(N) Lead Pump Lag Pump	Í.		
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL			
C	Electrical Components	Test Pumps (Y or N) Light Bulbs			
D	Manhole Interstitial Space	Need to be Pumped Dow offer Repair			
E	Conveyance Pipe	MH 74 full			
F	Influent Pipe				
G	Confined Space Entry	(Y or N) (see Form B)			
		_			

.

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

<u>feighton</u> Date: 41

4/27/2014

Category		ory	Inspected	Observation/Condition	J	
5	5 Building					
	A	Struc	sture	Lock, Vent, Heater_0		
	B	Elect	rical and Telephone	Elec_/ Phone_/		
	С	Auto Dialer and Controls		Test Functions (Y or (N) (see Form F) SCANA 3000 Trotal		/
6	Leac	hate S	storage System			
	A	Tank	(External)	Internal (Y or N)		
	A'	Flow	Totalizer	Reading = 83700 gal.	$ \rightarrow $	/
	В	Seco	ndary Containment		-7	7
	С	Pipin	g Components		1	_
	D	Electi	rical Components	Lock Light Bulbs New LEP Bulks INElle		,
	E	Leach	nate Sampling	(Y or (N)) (see Form C)		•

synapse

	REMEDIAL ACTION FACILITY						
2200 BLEECKER STREET UTICA, NEW YORK							
NYSDEC SITE NO. 622003							
s	ynap	se Representative: 1. Cre	Jate: 5/21/2014				
-							
	itego		Observation/Condition	1			
1		eral Property					
	A	General Property Access	Good				
	В	General Property Drainage	SPDES Outfall (001 002 003)				
2	Cell	Perimeter Components					
	A	Perimeter and Access Roads	Good				
	B	Ditches	Ned Mailins	+			
	С	Culverts	Clear				
_	D	Perimeter Fence	Gates				
	Ε	Utilities	Elec Phone				
3	Con	tainment Cell					
	A	Surface Cover System	Burrows Vegetation				
	B	Gas Vents (2)		+·/			
	B'	PID Readings	(Y o(N)Background ppm, @ 20' ppm, @ Vent ppm				
	С	Collection Pipe / Cleanout	Not Inspected				
	D	Perimeter Drains (4)	NoFland				
4	Leac	hate Collection Manhole					
	A	Structure	External Internal				
	В	Pumps and Plumbing	Pump 1 Hours 134% Pump 2 Hours 223,6				
	B '	Pump Changeover	(Y or N) Lead Pump Lag Pump				
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL				
	С	Electrical Components	Test Pumps (Y or N), Light Bulbs				
	D	Manhole Interstitial Space	Need to be Pump-ort				
	E	Conveyance Pipe	in a la l	-X			
	F	Influent Pipe	Othe Manble 34 full				
	G	Confined Space Entry	(Y o(N)) (see Form B)				
				1 1			

.

.

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

reightin

Κ.

Synapse Representative:

Date:___

2014

synapse

Category		Inspected Observation/Condition		
5	Buildi	ng		
	A	Structure	Lock_, Vent_, Heater_	
	B	Electrical and Telephone	Elec Phone	
	C	Auto Dialer and Controls	Test Functions (Y on) (see Form F)	/
6	Leach	ate Storage System		
	A	Tank (External)	Internal (Y or N)	
	A'	Flow Totalizer	Reading = <u>837 00</u> gal.	/
	B	Secondary Containment	Liquid (Y or N)	
	C	Piping Components		
	D	Electrical Components	Lock Light Bulbs	
	Εl	Leachate Sampling	(Y or N (see Form C)	

3	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 6/4/2014 PM K. Creighto

Date:

Synapse Representative:

,

Category	Inspected	Observation/Condition	J
1 Gene	ral Property		
A	General Property Access	Good	
В	General Property Drainage	SPDES Outfall (001002003)	
2 Cell F	Perimeter Components		
A	Perimeter and Access Roads	Good Gate Damage	
В	Ditches	See 1 Salt Salvage	
C	Culverts		
D	Perimeter Fence	Gates	
E	Utilities	Elec Phone	
B Conta	inment Cell		
A	Surface Cover System	Burrows O Vegetation	
В	Gas Vents (2)		
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
C	Collection Pipe / Cleanout	Not Inspected	
D	Perimeter Drains (4)	Flow	
Leach	ate Collection Manhole	1100	
A	Structure	External / Internal	
В	Pumps and Plumbing	Pump 1 Hours 34. Pump 2 Hours 223.	
	Pump Changeover	(Y or W) Lead Pump Lag Pump	
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
C	Electrical Components	Test Pumps (Y or N), Light Bulbs	
D	Manhole Interstitial Space		
	Conveyance Pipe	Need to be fumped-Down Replace	
	nfluent Pipe		
	Confined Space Entry	(Y or N) (see Form B)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date:

2014

synapse

Synapse Representative: , Creven

Category		ory	Inspected	Observation/Condition	J	
5	Build	Building				
	A	Struc	ture	Lock, Vent_O		
	В	Elect	rical and Telephone	Elec Phone	7	
	С	Auto Dialer and Controls		Test Functions (Y or N) (see Form F)		ſ
6	Leachate Storage System		torage System			
	A	Tank	(External)	Internal (Y or N)		
	A'	Flow Totalizer		Reading = 83700 gal. > Fina 85,200 = 1,500 Alling		1
	В	Seco	ndary Containment	Liquid (Y or N)		
	С	Pipin	g Components		/	
	D	Electi	rical Components	Lock Light Bulbs		/
	E	Leach	nate Sampling	(Y or (V)) (see Form C)	/	

Additional Comments: CURR Mon aler 6 000 an

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 R. Creighton

— •	
Date:	

7/15/2014

Category		Inspected	Observation/Condition	
1 Genera		al Property		
	A	General Property Access	6000	
	В	General Property Drainage	\$PDBS_Outfall (001 002 003	
2	Cell P	erimeter Components		
	A	Perimeter and Access Roads	Gao	
	B	Ditches	Need Mowing	
	С	Culverts	NO FOUL	
	D	Perimeter Fence	Gates	
E Utilities		Utilities	Elec Phone	
}	Contai	nment Cell		
	A	Surface Cover System	Burrows Vegetation	
	B	Gas Vents (2)		
	B'	PID Readings	(Y o(N) Background ppm, @ 20' ppm, @ Vent ppm	
	C	Collection Pipe / Cleanout	Not Inspected	
	D F	Perimeter Drains (4)	NO Flow	
4 Leachate Collection Manho		te Collection Manhole		_L
	AS	Structure	ExternalInternal	
	BF	Pumps and Plumbing	Pump 1 Hours 25,2Pump 2 Hours 223	
	B ' F	ump Changeover	(Y or Dead Pump Lag Pump	+
	<i>B"</i> T	est Automatic Pump Controls	LSHH, LSH, LSL, LSLL	
	CE	lectrical Components	Test Pumps (Y or N) Light Bulbs	$+ \wedge$
	DN	anhole Interstitial Space		
	E C	onveyance Pipe		
	F Ir	fluent Pipe	Dr.P	
	GC	onfined Space Entry	(Y o(N) (see Form B)	

Page 1 of 2

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

reighton Date:___

7/15/2014

synapse

Category		ory	Inspected	Observation/Condition	1
5 Building		ing			
	A	Structure		Lock_, Vent, Heater	
	В	Electrical an	d Telephone	Elec Phone	
	С	Auto Dialer a	and Controls	Test Functions (Y or N) (see Form F)	
6	6 Leachate Storage System		System		
	A	Tank (Exter	nal)	Internal (Y on N	
	Α'	Flow Totalizer		Reading = 35200 gal.	
	В	Secondary Containment			
	C	Piping Components			
	D	Electrical Components		Lock Light Bulbs	
	Ε	Leachate Sa	mpling	(Y o(N)) (see Form C)	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: R. Creighton Date: 8/25/2014						
Catego	ry Inspected Observation/Condition					
1 Gen	eral Property					
A	General Property Access	GODD				
В	General Property Drainage	SPDES Outfall (001_002_003_)	+			
2 Celi	Perimeter Components					
A	Perimeter and Access Roads	Gan				
В	Ditches	Gan				
С	Culverts	Clear	+			
D	Perimeter Fence	Gates	+			
Ε	Utilities	Elec Phone				
3 Con	tainment Cell					
A	Surface Cover System	Burrows Vegetation				
В	Gas Vents (2)		+			
<i>B'</i>	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	+			
C	Collection Pipe / Cleanout		+			
D	Perimeter Drains (4)	No Flor				
4 Lead	hate Collection Manhole					
A	Structure	External Internal				
В	Pumps and Plumbing	Pump 1 Hours 136, 2Pump 2 Hours 223.6	\top			
B'	Pump Changeover	(Y of N) Lead Pump Lag Pump	+			
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL				
С	Electrical Components	Test Pumps (Y or N), Light Bulbs				
D	Manhole Interstitial Space					
E	Conveyance Pipe		1/			
F	Influent Pipe	Drip				
G	Confined Space Entry	(Y or N) (see Form B)				
Contract Management						

.

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

R. Creig Date: Synapse Representative:

8/25 2014

Category		ory	y Inspected Observation/Condition		
5	5 Building				
	A	Struc	ture	Lock, Vent, Heater	
	В	Elect	rical and Telephone	Elec_/_ Phone_/	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leach	hate S	torage System		
ų.	A	Tank	(External)	Internal (Y or N)	
	A '	Flow	Totalizer	Reading = <u>85900</u> gal.	
	В	Seco	ndary Containment	Liquid (Y or N)	
	С	Piping	g Components		
	D	Electi	rical Components	Lock Light Bulbs	
	Ε	Leach	nate Sampling	(Y or N) (see Form C)	

3:\Clients\DANA\01 CP\02 RAF O&M\Forms\OMM Form A.doc	Page 2 of 2	syna	pse
		<u></u>	
· · · · · · · · · · · · · · · · · · ·			

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

reighte

Synapse Representative:

.

Categor	y Inspected	Observation/Condition	J
I Gene	eral Property		
A	General Property Access	Gan	
В	General Property Drainage	SPDES Outfail (001 002 003)	
2 Cell	Perimeter Components		
A	Perimeter and Access Roads	Good	
В	Ditches	Good	
С	Culverts	GORN	
D	Perimeter Fence	Gates	
Ε	Utilities	Elec Phone	
3 Containment Cell			
A	Surface Cover System	Burrows Vegetation	
В	Gas Vents (2)		
B'	PID Readings	(Y or N) Background ppm, @ 20' ppm, @ Vent ppm	
С	Collection Pipe / Cleanout	Dno	+
D	Perimeter Drains (4)	No Flor 1	
Leac	hate Collection Manhole		
A	Structure	External Internal	
В	Pumps and Plumbing	Pump 1 Hours 137, 3Pump 2 Hours 243. 6	
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	+ /
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	· ·
С	Electrical Components	Test Pumps (Y o(N) Light Bulbs	+
D	Manhole Interstitial Space		
E	Conveyance Pipe		
F	Influent Pipe		+-/
G	Confined Space Entry	(Y of N) (see Form B)	+

synapse

2014

0

C

Date:

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

reighto

Synapse Representative:

Date:

synapse

Category		ory	Inspected	Observation/Condition	1	
5	Build	ling				1
	A	Struc	cture	Lock, Vent, Heater	/	6
	В	Elect	trical and Telephone	Elec Phone	/	
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)		r
6	Leac	hate S	Storage System			
	A	Tank	(External)	Internal (Y or N)		
	A '	Flow	Totalizer	Reading = $\frac{86200}{200}$ gal. $wall = [2]$		r
	В	Seco	ondary Containment	Liquid (Y of N)		1
	С	Pipin	ig Components			1
	D	Elect	trical Components	Lock Light Bulbs	/	6
	Ε	Leac	hate Sampling	(Y or N) (see Form C)		

the second se	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:

 R.

an

_ Date:___

10/15/2014

C	ategor	y Inspected	Observation/Condition	1
1	Gen	eral Property		
	A	General Property Access	GOON	
	B	General Property Drainage	SPDES OUTAW (001 002 003)	
2	Cell	Perimeter Components		
	A	Perimeter and Access Roads	Gam	
	B	Ditches	CON	+
	C	Culverts	Paraport Goite	
	D	Perimeter Fence	Gates	
	E	Utilities	Elec Phone	
3	Cont	ainment Cell		
	A	Surface Cover System	Burrows Vegetation	
	В	Gas Vents (2)		
	B'	PID Readings	(Y of N)Background ppm, @ 20' ppm, @ Vent ppm	
•	C	Collection Pipe / Cleanout	Drip	+
	D	Perimeter Drains (4)	No Flord	+-4
1	Leach	nate Collection Manhole		
	A	Structure	External	
	В	Pumps and Plumbing	Pump 1 Hours 137. Pump 2 Hours 223.	+ -
	B '	Pump Changeover	(Y o(N) Lead Pump Lag Pump	+
	B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL	+ - /
	C	Electrical Components	Test Pumps (Y or W), Light Bulbs	+
	D	Manhole Interstitial Space		+
	E	Conveyance Pipe		$+\mathcal{X}$
	F	Influent Pipe		$+ \mathcal{A}$
	G	Confined Space Entry	(Y or N) (see Form B)	+
-				

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK** NYSDEC SITE NO. 622003

Date:

0

1

Synapse Representative:

Category		ory	Inspected	Observation/Condition	
5	Building				
	A	Struc	cture	Lock, Vent, Heater_O	/
	В	Elect	trical and Telephone	Elec Phone	
	С	Auto	Dialer and Controls	Test Functions (Y dr N) (see Form F)	
6	Leac	hate S	Storage System		1
	A	Tank	(External)	Internal (Y of N)	1
	A'	Flow	Totalizer	Reading = 1300 gal. Meter Covered	/
	B	Seco	ondary Containment	Liquid (Y or N)	 1
	С	Pipin	g Components	/	1
	D	Elect	trical Components	Lock Light Bulbs	1
	E	Leac	hate Sampling	(Y of N) (see Form C)	

synapse

Synapse Representative: REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003 Date: 11/14/2014					
Catego		Observation/Condition			
	eral Property	Observation/Condition			
	General Property Access		r/		
B	General Property Drainage	SPDES Outfall (001 002 003)	4		
	Perimeter Components				
A	Perimeter and Access Roads				
	Ditches	COOD Snow Covered			
	35	6000			
c	Culverts				
D	Perimeter Fence	Gates			
E	Utilities	Elec Phone			
3 Con	tainment Cell				
A	Surface Cover System	Burrows Vegetation			
В	Gas Vents (2)				
B'	PID Readings	(Y of N) Background ppm, @ 20' ppm, @ Vent ppm			
С	Collection Pipe / Cleanout				
D	Perimeter Drains (4)	No Flow			
4 Lead	hate Collection Manhole				
A	Structure	External Internal			
В	Pumps and Plumbing	Pump 1 Hours 37.5 Pump 2 Hours 223.6			
B'	Pump Changeover	(Y or N) Lead Pump Lag Pump	-//		
B "	Test Automatic Pump Controls	LSHH, LSH, LSL, LSLL			
С	Electrical Components	Test Pumps (Y or N) Light Bulbs			
D	Manhole Interstitial Space				
E	Conveyance Pipe		<u> </u>		
F	Influent Pipe		-/		
G	Confined Space Entry	(Y or N) (see Form B)	×		
		\sim			

· · · · · ·

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

to reltor

Synapse Representative:

· · · · ·

- 2014 Date:___))

Category		ory	Inspected	Observation/Condition	
5	Build	ding			
	A	Struc	ture	Lock, Vent, Heater	
	В	Elect	rical and Telephone	Elec_/_ Phone	+7
	С	Auto	Dialer and Controls	Test Functions (Y of N) (see Form F)	
6	Leac	hate S	storage System		
	A	Tank	(External)	Internal (Y o(N)) Turned Tank Heuters on	
	A'	Flow	Totalizer	Reading = 86500 gal.	
	B	Seco	ndary Containment	Liquid (Y o N)	
	С	Pipin	g Components		
	D	Elect	rical Components	Lock Light Bulbs	
	Ε	Leac	nate Sampling	(Y o N) (see Form C)	+

Additional Comments:

C

JON'

tor = 27

Page 2 of 2

synapse

FORM A - SITE INSPECTION REPORT **OPERATION, MAINTENANCE AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Company: <u>SRM+SE</u> Representative: <u>REIGHTON/FISHER</u> Date: 12/19/14

Catego	ry Inspected	Observation/Condition	√
1 Gen	eral Property		
A	General Property Access	OK; 1/2"SNON; SOME PILED SNOW	V
В	General Property Drainage	OK; 12 Salow; Some PLED SNOW OK; NOTED BUSHES	V
2 Cell	Perimeter Components		
A	Perimeter and Access Roads	V. GOOD,	-
В	Ditches	V. GOOD, OK; NOTED A FEW BUSHES	V
С	Culverts	OPEN	V
D	Perimeter Fence	OPEN West Gate; Northeast Gate OK Elec; Phone WIRES OK	
E	Utilities	Elec; Phone WIRES OK	-
3 Con	tainment Cell		
Α	Surface Cover System	Burrows; Vegetation; Mowing	
В	Gas Vents (2)	GOOD CONDITION	~
B'	PID Readings	(Y or N) Background ppm; @ 20' ppm; @ Vent ppm	
С	Collection Pipe / Cleanout	LOCK GOOD CONDITION Screens COVED CLEAN + RESTAKE	1
D	Perimeter Drains (4)	Screens COVLD CLEAN + RESTAKE	
4 Lead	hate Collection Manhole		0
А	Structure	External	
B	Pumps and Plumbing	Pump 1 Hours <u>/3 7,6;</u> Pump 2 Hours <u>223,6</u>	
B'	Pump Changeover	(Y o N) Lead Pump # Lag Pump #	
B "	Test Automatic Pump Controls	LSHH OK; LSH NG; LSL OK; LSLL OK	1
С	Electrical Components	Panel Board; Test Pumps (Y or N); Light Bulbs	7
D	Manhole Interstitial Space	NO WATER DETECTED	7
E	Conveyance Pipe	OK	
F	Influent Pipe	QK : TRACE SCALING	
G	Confined Space Entry	(Y OF N) (see Form B)	7

FORM A - SITE INSPECTION REPORT **OPERATION, MAINTENANCE AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Company: <u>SRM + SE</u> Representative: <u>CREMENTON FISHER</u> Date: 12/19/14

synapse

Category		ory	Inspected	Observation/Condition	√
5	Build	ling			
	Α	Struc	ture	Lock <u>OK</u> ; Vent <u>Luse</u> ; Heater <u>OIV</u>	
	B	Elect	rical and Telephone	Elec; Phone	V
	С	Auto	Dialer and Controls	Test Functions (Y or N) (see Form F)	
6	Leac	hate S	torage System		
	A	Tank	(External)	Internal (Y or N)	
	A'	Flow	Totalizer	Internal (Y or N) O_K Reading = <u>00</u> gal. Renov NG <u>5</u> 9 WATER Liquid (Y or N)	
	B	Seco	ndary Containment	Liquid (Y or N)	~
	С	Pipin	g Components	Insulation	
	D	Elect	rical Components	Lock; Light Bulbs	
	E	Leac	hate Sampling	(Y or N)) (see Form C)	/
7	Sub	Slab D	epressurization System		
	A	Fan N	lo. 1 System	Piping, Vac, Fan, Exhaust	
	B	Fan N	lo. 2 System	Piping, Vac, Fan, Exhaust	
6	С	Fan N	lo. 3 System	Piping, Vac, Fan, Exhaust	
0	D	Fan N	lo. 4 System	Piping, Vac, Fan, Exhaust	
	E	Fan N	lo. 5 System	Piping, Vac, Fan, Exhaust	
	F	Fan N	lo. 6 System	Piping, Vac, Fan, Exhaust	

C:\Users\Paul\Documents\Business PE\Clients\Carl - CP\OM&M\Forms\Final\OMM Form A.doc Page 2 of 2

APPENDIX B AUTO DIALER ALARM INCIDENT AND TESTING REPORT - FORM F

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F - 1) **OPERATION, MAINTENANCE, AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Reme	edial Action Facility	
Synapse Representative: Meryl Cors	<u> </u>	
Test Alarm: Yo(N) Date: 3/26/14	Date and Time: <u>3 26 14 ; 9:</u>	24-5:39 AM

Channel No.	Function	Alarm Rec'd	Testing Results and Comments	
0	Tank Level (Inches)		Measured:; Reading:	
1	Tank High Level (100%)			
2	Tank Leak			
3	Tank 90% Full			
4	High Manhole Level			
5	Manhole Leak			
6	Pipe Leak	Ŷ		
7	Tank Low Temperature			
8	Inside Temperature			
9	Outside Temperature			
10-21	SSDS		See Form F - 2	
22	Power Off			

Reason for Alarm: Interstitial space sensor broken Action Taken: Interstial space sensor to be replaced in April 2014.

Comments:

synapse

AUTO DIALER ALARM INCIDENT AND TESTING REPORT (FORM F - 1) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Remedial Actio	on Facility
Synapse Representative: Mary Carson	Received Alarm: Yor N
Test Alarm: Y or Date: 32114	Date and Time: _ 2 22 14 ; 1:07 AM

Channel No.	No. Function Alarm Rec'o		Testing Results and Comments		
0	Tank Level (Inches)		Measured:; Reading:		
1	Tank High Level (100%)				
2	Tank Leak				
3	Tank 90% Full				
4	High Manhole Level				
5	Manhole Leak				
6	Pipe Leak	yes			
7	Tank Low Temperature	0			
8	Inside Temperature				
9	Outside Temperature				
10-21	SSDS		See Form F - 2		
22	Power Off				

Reason for Alarm: Interstitial space sensor broken
Action Taken: Interstitial space sensor to be replaced in April 2014
Comments:

FORM F - AUTO DIALER ALARM INCIDENT AND TESTING REPORT OPERATION, MAINTENANCE, AND MONITORING

2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Company: <u>5</u>	RM + SE_ Represen	tative: <u>Arist</u>	TUN FISHER Date: 12/19/14				
Test Alarm: Y	or Neceive	d Alarm: <u>Y or N</u>	on Date:				
Remedial Action Facility							
Channel No.	Function	Alarm Rec'd	Testing Results and Comments				
0	Tank Level (Inches)		Measured: <u>59</u> "; Reading: <u>57.04</u> "				
1	Tank High Level (100%)		No Cr = 41.6				
2	Tank Leak		OK - 11.6				
3	Tank 90% Full		No CK				
4	High Manhole Level		OK				
5	Manhole Leak		FLOAT NOT ALTIVE				
6	Pipe Leak		No CK				
7	Tank Low Temperature		NAC				
8	Inside Temperature		65°E				
9	Outside Temperature		67.5°F 3230°				
10-21	SSDS (Page 2)		Alocr				
22	Power Off		·v·v				

Reason for Alarm: _____

Action Taken: _____

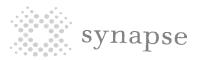
Comments:

FORM F - AUTO DIALER ALARM INCIDENT AND TESTING REPORT OPERATION, MAINTENANCE, AND MONITORING

2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Company: <u>SBM+5E</u>	Representative: Reserven H15 4/2K	Date: 12/19/14
	Received Alarm: Y or N on Date:	

Sub-Slab Depressurization System


Channel No.	Function	Alarm Rec'd	Testing Results and Comments
10	Fan #1 Off		
11	Fan #2 Off		
12	Fan #3 Off		
13	Fan #4 Off		FAN OFF
14	Fan #5 Off		
15	Fan #6 Off		
16	Vacuum #1 Low		
17	Vacuum #2 Low		
18	Vacuum #3 Low		
19	Vacuum #4 Low		
20	Vacuum #5 Low		
21	Vacuum #6 Low		

Note: #1 = SW Zone; #2 = NW Zone; #3 = SE Zone; #4 = NE Zone; #5 = W Center Zone; #6 = E Center Zone

Reason for Alarm: _____

Action Taken: _____

Comments: REPLACEMENT FAN ON DROER

APPENDIX C LEACHATE DISPOSAL CORRESPONDENCE AND ANALYTICAL DATA

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

APPENDIX D WATER LEVEL FIELD LOGS - FORM D

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

WATER LEVEL FIELD LOG (FORM D) **OPERATION, MAINTENANCE, AND MONITORING**

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET **UTICA, NEW YORK** NYSDEC SITE NO. 622003

Synapse Representative:

reighton

Date: 4/22/2014

٦

Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.51	465.47	3.85	461.62	6.66	13:00	
MW-13A	10.92	10,92	469.23	2,52	466.71	8,40	12:30)
MW-14A	13.00	12,95	478.3 7 47 8 .37	2,95	475.42	10.00	11:20	
MW-17	11.25	11,25	466.02	10.05	455.97	1.2	15:00	<u> </u>
MW-18	11.73	11-73	475.96	4,58	471.38	7115	14.40	
SCT CO-1			472.30		465.2			
SCT CO-2			473.42		465.7			
SCT CO-3			471.21		465.6			
NCT CO-1			464.70		453,4			
MH-2 (Collection) Notes:	12.80		465.31		453.7			

NOTES:

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988. 2)

MW = Monitoring Well

4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations are Approximate)

7) MH = Manhole

General Comments:

WATER LEVEL FIELD LOG (FORM D) OPERATION, MAINTENANCE, AND MONITORING

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

p.a

Synapse Representative:

Date:

2014 10

Location	Installed Depth (ft.)	Measured Depth (ft.) ¹ (TOR)	Top Elevation (ft.) ¹ (TOR)	Water Depth (ft.) ¹	Water Elevation (ft.) ²	Water Column (ft.)	Time	Comments
MW-6R	10.52	10.52	465.47	4,35		6.17	12:30	
MW-13A	10.92	11.06	469.23	4,45	464,78	6-61	12:15	
MW-14	13.00	12,99	478.37	3111	475.26	9.88	10:40	
MW-17	11.25	70,9511,2	466.02	10,95	455.07	0.3	12:50	
MW-18	11.73	11,74	475.96	5.18	470,78	6,56	14:00	
SCT CO-1			472.30		465.2			
SCT CO-2			473.42		465.71			
SCT CO-3			471.21		45,61			
NCT CO-1			464.70		453,42			
MH-2 (Collection)	12.80		465.31		453,25	_		

1) Depth measurements are taken in hundredths of a foot from the Top of Riser (TOR), which is a reference point at the highest part on the inner 2-inch PVC riser pipe.

 2) Elevations are referenced to sea level, as set by the National Geodetic Vertical Datum (NGVD) of 1988. MW = Monitoring Well

4) SCT = Southern Collection Trench

5) NCT = Northern Collection Trench

6) CO = Clean Out (Depths and Elevations are Approximate)

7) MH = Manhole

General Comments:

APPENDIX E GROUNDWATER SAMPLING LOGS – FORM E

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Roger Creis	hton Date: 4/22/14	Well Number: MW-6R
		Weil Number: <u>IVIV- D/</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
13:55				375	3.85					<u> </u>		
13:51				**	4.95	6.88	7,96	.427	7.74	-125	283	
<u>13:59</u>				- + t	5.15	6.85	7.74	. 399	6.25	- 125	240	
14:01				1.1	5.25	6.80	7.66	. 386	5.61	- 124	166	
14:05					5.41	6.70	7.47	.383	5.21	-125	239	
				100-400	Drawdown	± 0,1						
	Stabilizati			ml/min	<0.3	units	3%	3%	10%	±10 mv	10% (>1 NTU)	Total Purge
	Stabilization /	chieved (Y/N)										

Sampling/Purge Equipment							
Water Level Meter:	Salinst Model 101						
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model						
Pump:	QED Bladder Pump Model						
Intake Depth (feet below PVC):							
Tubing:	QED Bonded Poly Sample Tubing						

Total depth: 10.51 "

Container	Preservativ e		Analysis
8-OZ P	HNO3	1	Metals/Hardness
4-0Z P/G	None	1	Alk/Bicard/Card
32-0 <u>7</u> P	None	1	Br., Cl., SO4, TDS, SU, Turbidīty

Sample Collection	Start	End
Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>Ager Creighton</u> Date: <u>4/27/14</u> Well Number: <u>MW-13A</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TiME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
12:38					2.52							
12:40				375	3.41	7.06	8.9	. 493	6.44	24	18.7	
12:43					3.51	7.03	8.49	. 496	5.64	-11	16.3	
12:45					3.65	7.03	8.3	. 498	5.29	- 30	11.2	
12:49				- *	4-72	7.04	8.11	.500	4.98	-48	4.7	• • • • • • • • • • • • • • • • • • •
	·											
	Stabilizati	on Criteria		100-400 ml/min	Drawdown <0.3°	±0.1 units	3%	3%	10%	±10 mv	10% (>1 NTU)	Total Purge
	Stabilization A	chieved (Y/N)										

Sampling/Purge Equipment								
Water Level Meter:	Salinst Model 101							
pH/S.C./Dissolved Oxygen/OR P/Turbidity:	Horbia Model							
Pump:	QED Bladder Pump Model							
Intake Depth (feet below PVC):								
Tubing:	QED Bonded Poly Sample Tubing							

Total depth: 10.95

Container	Preservativ		~
CONTRATING	θ		Analysis
8-0Z P	HNO3	1	Metals/Hardness
4-OZ P/G	None	1	Alk/Bicard/Card
32-OZ P	None	1	Br, Cl, SO4, TDS, SU, Turbidity

Sample Collection	Start	End
Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative:________

Creighton Date: 4/22/14

Well Number: <u>MW-14 A</u>

	Stabilization A	on Criteria Achieved (Y/N)		100-400 ml/min	Drawdown <0.3	± 0.1 units	3%	3%	10%	±10 mv	10% (>1 NTU)	Total Purge
				100-400	Drougloum							
						<u>v v 1</u>	6.11	.512	6.01	- 63	33.7	
:50				6.4	5.0	6.64	6.97	. 573	6.01	-31	30	
1:48					5.15	6.62	7.08	.550	6.82 6.32	- 27	30.9	
1:46					<u>4.89</u> 5.05	6.64	7.15	.954	7.33	- 21	78.5	
1:42 1:44				300	4.70	6.67	7.71	.960	8.42	-10	405	
1:40					2.95							
TIME	SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters

Sampling/Purge Equipment								
Water Level Meter:	Solinst Model 101							
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model							
Pump:	QED Bladder Pump Model							
Intake Depth (feet below PVC):								
Tubing:	QED Bonded Poly Sample Tubing							

Total depth: 12.95 ft.

107.00	Analysis
4-OZ P/G None 1 Alik	als/Hardness
	Bicard/Card
TO	CI, SO4, 5. SU, Xidity

Sample	Start	End
Collection Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Moger Creightan	Date:	4/22/14	_ Well Number: <u>MW-) 7</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	turbidity (NTU)	PURGE VOLUME (liters)
15:10					10.05							
	Stabiliza	tion Criteria		100-400 ml/min	Drawdown <0.3*	± 0.1 units	3%	3%	10%	±10 mv	10% (>1 NTU)	Total Purge
	Stabilization	Achieved (Y/N)										

Sampling/Purge	Equipment
Water Level Meter:	Solinst Model 101
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model
Pump:	QED Bladder Pump Model
Intake Depth (feet below PVC):	
Tubing:	QED Bonded Poly Sample Tubing

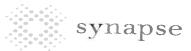
Total Depth: 11.25

Container	Preservativ e		Analysis
8-OZ P	HNO3	1	Metals/Hardness
4-0Z P/G	None	1	Alk/Bicard/Card
32-OZ P	None	1	Br, CI, SO4, TDS, SU, Turbidity

Sample	Start	End
Collection Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: Roger Creighton Date: 42214 Well Number: MW-18	Synapse Representative: Roge	Creighton Date	»: <u>4</u> 22/14	Well Number:	<u>MW-18</u>
--	------------------------------	----------------	-------------------	--------------	--------------


TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
14:40					4.58							
				375	5.65	6.87	6.49	.604	10.46	-71	7.4	
				~	6-35	6.95	6.98	.606	6.44	- 80	7.4	
					6.55	6.98	5.90	.603	5.91	-81	2.9	
	Stabilizat	ion Criteria		100-400 ml/min	Drawdown <0.3	±0.1 units	3%	3%	10%	±10 mv	10% (>1 NTU)	Total Purge
	Stabilization	Achieved (Y/N)								+		

Sampling/Purge	Equipment
Water Level Meter;	Solinst Model 101
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model
Pump:	QED Bladder Pump Model
Intake Depth (feet below PVC):	
Tubing:	QED Bonded Poly Sample Tubing

Total Pepth: 11.79'

Container	Aboratory Anal Preservativ e		Analysis
8-0Z P	HNO3	1	Metals/Hardness
4-0Z P/G	None	1	Alk/Bicard/Card
32-OZ P	None	1	Br, CI, SO4, TOS, SU, Turbidity

Sample Collection	Start	End
Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: $\underline{RC + MC}$ Date: $\underline{10/28/14}$ Well Number: $\underline{MW-6R}$

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
12:52	- 20	5	10		4.835							
309		1		350	5.51	5.75	16.5	1.79	2.01	- 41	71	.35
13:12	4	<i>s</i>	1		5.9	5.76	16.5	1.75	1.42	- 75	36.9	-*
13:15	~	• •	**		5.95	5.64	16.5	1.65	1.38	- 95	18.3	1.7°
13:17	-1		19 A.	.6	5.60	5.57	16.4	1.62	1.26	~ 101	12.6	
13:19		17 A.	17	17	5.65	5.46	16.4	1.59	1.20	- 99	9.2	
	Stabiliza	tion Criteria		100-400 mi/min	Drawdown <0.3'	±0.1 units	3%	3%	10%	± 10 mv	10% (>1 NTU)	Total Purge
	Stabilization	Achieved (Y/N)										

Sampling/Purge Equipment				
Water Level Meter:	Solinst Model 101			
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model			
Pump:	QED Bladder Pump Model			
intake Depth (feet below PVC):				
Tubing:	QED Bonded Poly Sample Tubing			
Total Depth: 10.	52'			

Container	Preservativ e		Analysis		
8-0Z P	HNO3	1	Metals/Hardness		
4-OZ P/G	None	1	Alk/Bicard/Card		
32-0 <u>7</u> P	None	1	Br, CI, SO4, TDS, SU, Turbidity		

Sample Collection	Start	End
Time	3:20	

G Clients DANA 01 CP 02 RAF O&M Forms OMM Form E Low Flow.doc

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>RC+MC</u> Date: <u>ID 28 14</u> Well Number: <u>MW- 134</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
12:15	20	5	10	300	4.45						_	.3
12:17	1	~	3	1	4.80	5.89	16.5	1.8	3.6	211	12.1	
12:19	1 A 1	*	.*		4.90	5.84	16.5	1.8	2.68	199	5.2	1
12:21	ي ا	-	4	•	4.99	5.88	16.6	1.79	1.84	111	1.7	-9 ⁴
12:23	ر مان			e.	5.05	5.82	16.6	1.80	1.47	22	0.6	
12:26		<u>v</u> *	a*	•*	9.10	5.82	16.6	1.80	1.22	- 26	0.2	
			-									
					-							
	Stabiliza	ition Criteria		100-400 ml/min	Drawdown <0.3'	±0.1 units	3%	3%	10%	± 10 m/	10% (>1 NTU)	Total Purge
	Stabilization	n Achieved (Y/N)								N		

Sampling/Purge Equipment				
Water Level Meter:	Solinst Model 101			
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model			
Pump:	QED Bladder Pump Model			
Intake Depth (feet below PVC):				
Tubing:	QED Bonded Poly Sample Tubing			

Total depth: 11.06' orp cartiauously dropping

Laboratory Analyses/Containers						
Container	Preservativ e	#	Analysis			
8-0Z P	HNO3	1	Metals/Hardness			
4-0Z P/G	None	1	Alk/Bicard/Card			
32-OZ P	None	1	Br, CI, SO4, TOS, SU, Turbidity			
<u> </u>						

Sample Collection	Start	End
Time	12:30	

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>RC + MC</u> Date: <u>10 28 14</u>

Well Number: <u>MW- 14 A</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
10:13					3.11							
11:23	20	5	10	300	4.35	9.64	12.8	2.13	8.30	177	90.1	.300
11:26	20	5	10	300	4.52	5.60	12.77	2.15	6.42	147	79.8	.3
11:29	. .	10	11	9.	4.53	5.60	12.79	Z. 16	6.07	147	53.6	- 3
11:31	¥*		с ^и	4*	4.53	5.67	12.74	2.15	5.87	155	49.2	. 43
11:34	1990 - C.	~	1	- 1 ¹	4.53	5.59	12.76	219	5.36	180	35.6	•*
												
	Stabiliza	tion Criteria		100-400 ml/min	Drawdown <0.3'	± 0.1 units	3%	3%	10%	± 10 mv	10% (>1 NTU)	Total Purge
	Stabilization	Achieved (Y/N)										

Sampling/Purge	Equipment
Water Level Meter:	Solinst Model 101
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model
Pump:	QED Bladder Pump Model
Intake Depth (feet below PVC):	
Tubing:	QED Bonded Poly Sample Tubing

Laboratory Analyses/Containers							
Container	Preservativ e	"	Analysis				
B-OZ P	HNO3	1	Metals/Hardness				
4-OZ P/G	None	1	Alk/Bicard/Card				
32-OZ P	None	1	Br, CI, SO4, TDS, SU, Turbidity				

synapse

Sample Collection	Start	End
Time	11:35	

Total depth: 12.99'

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Date:

Synapse Representative:	T	2	de la	4	۸	$\land \subset$	
oynapse nepresentative.	_	7					_

2014 10/28

Well Number: MW-

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	turbidity (NTU)	PURGE VOLUME (liters)
12,50												
			· · · · · · · · · · · · · · · · · · ·									
	Stabiliz	ition Criteria		100-400 ml/min	Drawdown <0.3	± 0.1 units	3%	3%	10%	± 10 mv	10% (>1 NTU)	Total Purge
	Stabilization	n Achieved (Y/N)										

Sampling/Purge Equipment							
Water Level Meter:	Solinst Model 101						
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model						
Pump:	QED Bladder Pump Model						
Intake Depth (feet below PVC):							
Tubing:	QED Bonded Poly Sample Tubing						

DTW-10.95

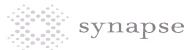
Laboratory Analyses/Containers							
Container	Preservativ e	Ħ	Analysis				
8-0Z P	HNO3	1	Metals/Hardness				
4-OZ P/G	None	1	Alk/Bicard/Card				
32-OZ P None		1	Br, CI, SO4, TDS, SU, Turbidity				

Sample Collection	Start	End
Time		

REMEDIAL ACTION FACILITY 2200 BLEECKER STREET UTICA, NEW YORK NYSDEC SITE NO. 622003

Synapse Representative: <u>RC+MC</u>

Date: 0 28


Well Number: <u>MW- 18</u>

TIME	PUMP SETTING (feet of H ₂ O)	DISCHARGE TIME (seconds)	REFILL TIME (seconds)	FLOW RATE (ml/min)	DEPTH TO WATER (feet)	pH (SU)	TEMP (°C)	SPECIFIC CONDUCTANCE (mS/cm)	DISSOLVED OXYGEN (mg/l)	ORP (mv)	TURBIDITY (NTU)	PURGE VOLUME (liters)
a :1/	15	9	10	325	5.18							.325
14:16		**			6.91	5.60	14.9	1.93	9.29	- 48	3.2	
14:18	-		3.4	.*	6.81	5.50	14.6	1.90	2.41	-60	4.4	
14:2	15	U	÷*	15	7.05	5.45	14.4	1.93	1.79	-74	10-9	
14:24	••	n	1997 - C.		7.15	5.52	14.4	1.95	1.47	-72	6.5	
14:26			1997 - S.	1997 - S.	0.10	5.45	14.3	1.95	1.3]	-79	Ÿ.5	
						_						
					1							
	Stabiliza	tion Criteria		100-400 ml/min	Drawdown <0.3'	± 0.1 units	3%	3%	10%	± 10 mv	10% (>1 NTU)	Total Purge
	Stabilization	Achieved (Y/N)										

Sampling/Purge Equipment							
Water Level Meter:	Solinst Model 101						
pH/S.C./Dissolved Oxygen/ORP/Turbidity:	Horbia Model						
Pump:	QED Bladder Pump Model						
Intake Depth (feet below PVC):							
Tubing:	QED Bonded Poly Sample Tubing						

Laboratory Analyses/Containers							
Container	Preservativ e		Analysis				
8-0Z P	HNO3	1	Metals/Hardness				
4-0Z P/G	None	1	Alk/Bicard/Card				
32- 0 Z P	None	1	Br, CI, SO4, TDS, SU, Turbidity				

Total Depth: 11.79 pH calibration confirmed; passed all many Sample Start End Collection Time 14:20 21 (a librations

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, LLC.

405 Cambridge Ave Syracuse, NY 13208 Toll-free: (877) 903-PINE (7463)

Pine Environmental Services, Inc.

Instrument I	D 21376						
Descriptio	n Horiba U-52						
	ed 10/27/2014 10	:44:50AM					
Manufactur	er Horiba			State Certifie			
Model Numbe	er U-5000				s Pass		
Serial Number/ L				Temp °C	20.6		
Numb				Humidity %	4-10		
Locatio Departme	on New York			Humany /	0 77		
				<u></u>	0.1		
		Calib	ration Specific:	ations			
	oup # 1			Range Acc %			
	lame PH			Reading Acc %			
Stated	Accy Pct of Read	ling		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	Lft As	Dev%	<u> Pass/Fail</u>
7.01 / 7.01	PH	7.01	PH	7.01	7.01	0.00%	Pass
4.01 / 4.01	РН	4.01	PH	4.01	4.01	0.00%	Pass
Gro	oup # 2			Range Acc %	0.0000		
Group N	Name Turbidity			Reading Acc %	3.0000		
Stated	Accy Pct of Read	ling		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	<u> Pass/Fail</u>
0.00 / 0.00	NTU	0.00	NTU	0.00	0.00	0.00%	Pass
800.00 / 800.00	NTU	800.00	NTU	800.00	800.00	0.00%	Pass
Gre	oup # 3			Range Acc %	0.0000		
Group N	Name Conductivi	ty		Reading Acc %	3.0000		
Stated	Accy Pct of Read	ding		Plus/Minus	0.000		
<u>Nom In Val / In Val</u>	In Type	<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	<u> Pass/Fail</u>
0.718 / 0.718	ms/cm	0.718	ms/cm	0.718	0.718	0.00%	Pass
5.000 / 5.000	ms/cm	5.000	ms/cm	5.000	5.000	0.00%	Pass
80.000 / 80.000	ms/cm	80.000	ms/cm	80.000	80.000	0.00%	Pass
Gre	oup # 4			Range Acc %			
Group I	Name Redox (OF	RP)		Reading Acc %	3.0000		
Stated	Accy Pct of Read	ding		Plus/Minus	0.00		
<u>Nom In Val / In Val</u>	<u>In Type</u>	<u>Out Val</u>	<u>Out Type</u>	Fnd As	Lft As	Dev%	<u>Pass/Fail</u>
240.00 / 240.00	mv	240.00	mv	240.00	240.00	0.00%	Pass
	oup # 5			Range Acc %			
Group I	Reading Acc %						
Stated	Accy Pct of Rea		Plus/Minus	0.00			

Pine Environmental Services, LLC., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, LLC.

405 Cambridge Ave Syracuse, NY 13208 Toll-free: (877) 903-PINE (7463)

Pine Environmental Services, Inc.

Desc	nent ID 21376 cription Horiba U-52 ibrated 10/27/2014 10:4	14:50AM					
	Group # 5 oup Name Disolved Oxy tated Accy Pct of Readir	•	R	Range Acc % eading Acc % Plus/Minus	3.0000		
<u>Nom In Val / In V</u> 0.00 / 0.00	•	<u>Out Val</u> 0.00	<u>Out Түре</u> mg/L	<u>Fnd As</u> 0.00	<u>Lft As</u> 0.00	<u>Dev%</u> 0.00%	<u>Pass/Fail</u> Pass
	Group # 6 oup Name Temperature tated Accy Plus / Minus	DO Span	R	Range Acc % eading Acc % Plus/Minus	0.0000		
<u>Nom In Val / In V</u>		<u>Out Val</u>	Out Type	Fnd As	<u>Lft As</u>	Dev%	Pass/Fail
20.00 / 18.00	degrees C	9.18	mg/L	9.18	9.18	0.00%	Pass
<u>Test Instruments</u> <u>Test Standard ID</u>	Used During the Calibr	<u>ration</u> <u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Numl</u> Lot Number	<u>per /</u> Las	t Cal Date/ Ex	ry Date) ext Cal Date / opiration Date
NYS COND 5K - 4AD416	NYS COND 5K - 4AD416	AquaPhoenix Scientific	SL20500-5G	4AD416	<u>Ope</u>	ened Date 4/	30/2015
- 4AD412	NYS COND 718 - 4AD412	GFS	SL20718-HA5C	6 4AD412		4/.	30/2015
NYS COND 80K - 4AD416	NYS COND 80K - 4AD416	AquaPhoenix Scientific	SL20032-5G	4AD416		4/:	30/2015
NYS DO ZERO NYS ORP 240 - 6448	NYS DO ZERO NYS ORP 240 - 6448	EMD Hanna	WQA90122 240 MV	201023821 6448		7/.	30/2018
NYS PH 4 - 4AB415	NYS PH 4 - 4AB415	VWR	SL1007-5G	4AB415		2/:	28/2016
NYS PH 7 - 4AC064	NYS PH 7 - 4AC064	VWR	SL1007-5G	4AC064		3/:	31/2016
NYS TURB 0 NTU - C468986	NYS TURB 0 NTU - C468986	GFS	SL30005-5G	C468986		3/:	31/2015
NYS TURB 800 NTU - A3073	NYS TURBIDITY STANDARD 800 NTU - A3073	Horiba	SL40047-1L	A3073		2/.	28/2016

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Joseph P. Burkhart

Pine Environmental Services, LLC., Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, LLC.

405 Cambridge Ave Syracuse, NY 13208 Toll-free: (877) 903-PINE (7463)

Pine Environmental Services, Inc.

Instrument ID 21376 Description Horiba U-52 Calibrated 10/27/2014 10:44:50AM

All instruments are calibrated by Pine Environmental Services, LLC. according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services, LLC. of any defect within 24 hours of receipt of equipment Please call 866-960-7463 for Technical Assistance

APPENDIX F GROUNDWATER ANALYTICAL DATA

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

ANALYTICAL REPORT

Lab Number:	L1408453
Client:	Synapse Risk Management, LLC 360 Erie Blvd. East Syracuse, NY 13202
ATTN: Phone:	Roger Creighton (315) 475-3700
Project Name:	DANA 01-14.02
Project Number:	Not Specified
Report Date:	05/05/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number:	L1408453
Report Date:	05/05/14

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1408453-01	MW-14A	2200 BLEECKER ST., UTICA, NY	04/22/14 12:00
L1408453-02	MW-13A	2200 BLEECKER ST., UTICA, NY	04/22/14 13:00
L1408453-03	MW-6R	2200 BLEECKER ST., UTICA, NY	04/22/14 14:10
L1408453-04	MW-18	2200 BLEECKER ST., UTICA, NY	04/22/14 15:00
L1408453-05	042214 DUP	2200 BLEECKER ST., UTICA, NY	04/22/14 00:00

Project Name:

Project Number:

DANA 01-14.02

Not Specified

Project Name: DANA 01-14.02 Project Number: Not Specified
 Lab Number:
 L1408453

 Report Date:
 05/05/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DANA 01-14.02Project Number:Not Specified

 Lab Number:
 L1408453

 Report Date:
 05/05/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 05/05/14

ORGANICS

VOLATILES

		Serial_No	:05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-01	Date Collected:	04/22/14 12:00
Client ID:	MW-14A	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/02/14 15:22		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	85		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	103		70-130	

Analyst:

PD

		Serial_No	:05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-02	Date Collected:	04/22/14 13:00
Client ID:	MW-13A	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/02/14 15:51		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	85		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	104		70-130	

		Serial_No	:05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1408453-03 MW-6R 2200 BLEECKER ST., UTICA, NY Water	Date Collected: Date Received: Field Prep:	04/22/14 14:10 04/22/14 Not Specified
Analytical Method: Analytical Date: Analyst:			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	86		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	102		70-130	

		Serial_No	:05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-04	Date Collected:	04/22/14 15:00
Client ID:	MW-18	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/02/14 17:46		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Vinyl chloride	19		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	85		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	104		70-130	

		Serial_No	:05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-05	Date Collected:	04/22/14 00:00
Client ID:	042214 DUP	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/02/14 18:15		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Vinyl chloride	19		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.17	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	86		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	105		70-130	

Analyst:

PD

Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	05/02/14 11:02
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL	
/olatile Organics by GC/MS - West	borough Lab	for sample(s): 0 ²	1-05 Batch:	WG686969-3	
Vinyl chloride	ND	ug/l	1.0	0.33	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.17	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	86		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	100		70-130	

Lab Number: L1408453 Report Date: 05/05/14

Parameter	LCS %Recovery	Qual	-	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	ample(s):	01-05 B	Batch:	WG686969-1	WG686969-2			
Methylene chloride	120		1	18		70-130	2		20
1,1-Dichloroethane	122		1	17		70-130	4		20
Chloroform	119		1	15		70-130	3		20
Carbon tetrachloride	101		9	98		63-132	3		20
1,2-Dichloropropane	123		1	18		70-130	4		20
Dibromochloromethane	89		;	89		63-130	0		20
1,1,2-Trichloroethane	93		9	94		70-130	1		20
Tetrachloroethene	88		ł	86		70-130	2		20
Chlorobenzene	93		9	92		75-130	1		20
Trichlorofluoromethane	125		1	20		62-150	4		20
1,2-Dichloroethane	120		1	19		70-130	1		20
1,1,1-Trichloroethane	114		1	10		67-130	4		20
Bromodichloromethane	114		1	14		67-130	0		20
trans-1,3-Dichloropropene	89			90		70-130	1		20
cis-1,3-Dichloropropene	120		1	17		70-130	3		20
1,1-Dichloropropene	117		1	11		70-130	5		20
Bromoform	88			89		54-136	1		20
1,1,2,2-Tetrachloroethane	86			86		67-130	0		20
Benzene	119		1	14		70-130	4		20
Toluene	90			90		70-130	0		20
Ethylbenzene	92		:	91		70-130	1		20

Project Name: DANA 01-14.02 Project Number: Not Specified

Lab Number: L1408453 Report Date: 05/05/14

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-05	Batch:	WG686969-1	WG686969-2			
Chloromethane	126			119		64-130	6		20
Bromomethane	87			92		39-139	6		20
Vinyl chloride	119			113		55-140	5		20
Chloroethane	138			130		55-138	6		20
1,1-Dichloroethene	117			113		61-145	3		20
trans-1,2-Dichloroethene	118			113		70-130	4		20
Trichloroethene	118			115		70-130	3		20
1,2-Dichlorobenzene	87			85		70-130	2		20
1,3-Dichlorobenzene	87			86		70-130	1		20
1,4-Dichlorobenzene	87			86		70-130	1		20
Methyl tert butyl ether	115			113		63-130	2		20
p/m-Xylene	94			93		70-130	1		20
o-Xylene	95			94		70-130	1		20
cis-1,2-Dichloroethene	120			115		70-130	4		20
Dibromomethane	120			117		70-130	3		20
1,2,3-Trichloropropane	89			90		64-130	1		20
Acrylonitrile	119			121		70-130	2		20
Styrene	96			95		70-130	1		20
Dichlorodifluoromethane	117			109		36-147	7		20
Acetone	125			121		58-148	3		20
Carbon disulfide	117			112		51-130	4		20

Project Name: DANA 01-14.02 Project Number: Not Specified

Lab Number: L1408453

Report Date: 05/05/14

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough L	ab Associated sample	e(s): 01-05 Batch:	WG686969-1 WG686969-2		
2-Butanone	111	110	63-138	1	20
Vinyl acetate	127	124	70-130	2	20
4-Methyl-2-pentanone	117	116	59-130	1	20
2-Hexanone	81	83	57-130	2	20
Bromochloromethane	125	121	70-130	3	20
2,2-Dichloropropane	120	115	63-133	4	20
1,2-Dibromoethane	88	90	70-130	2	20
1,3-Dichloropropane	92	90	70-130	2	20
1,1,1,2-Tetrachloroethane	93	90	64-130	3	20
Bromobenzene	86	84	70-130	2	20
n-Butylbenzene	77	76	53-136	1	20
sec-Butylbenzene	85	82	70-130	4	20
tert-Butylbenzene	85	82	70-130	4	20
o-Chlorotoluene	91	89	70-130	2	20
p-Chlorotoluene	87	84	70-130	4	20
1,2-Dibromo-3-chloropropane	81	81	41-144	0	20
Hexachlorobutadiene	79	77	63-130	3	20
Isopropylbenzene	86	84	70-130	2	20
p-Isopropyltoluene	85	80	70-130	6	20
Naphthalene	77	79	70-130	3	20
n-Propylbenzene	86	84	69-130	2	20

Lab Number: L1408453 Report Date: 05/05/14

Parameter	LCS %Recovery	Qual	LC: %Rec	-	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-05 B	atch:	WG686969-1	WG686969-2			
1,2,3-Trichlorobenzene	76		7	78		70-130	3		20
1,2,4-Trichlorobenzene	74		7	76		70-130	3		20
1,3,5-Trimethylbenzene	87		8	35		64-130	2		20
1,2,4-Trimethylbenzene	85		8	32		70-130	4		20
1,4-Dioxane	104		1(05		56-162	1		20
1,4-Diethylbenzene	81		7	78		70-130	4		20
4-Ethyltoluene	87		8	34		70-130	4		20
1,2,4,5-Tetramethylbenzene	80		8	32		70-130	2		20
Ethyl ether	125		1:	20		59-134	4		20
trans-1,4-Dichloro-2-butene	86		8	34		70-130	2		20

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		100		70-130	
Toluene-d8	86		87		70-130	
4-Bromofluorobenzene	96		96		70-130	
Dibromofluoromethane	103		102		70-130	

		Batch Quality Control		
Project Name:	DANA 01-14.02		Lab Number:	L1408453
Project Number:	Not Specified		Report Date:	05/05/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS 13A	- Westborough	Lab Associa	ated sample(s)	: 01-05 QC E	Batch ID: V	VG686969)-4 WG686969)-5 QC	Sample: L	1408453	3-02 Client ID: MW-
Methylene chloride	ND	10	13	129		13	128		70-130	0	20
1,1-Dichloroethane	ND	10	13	131	Q	13	130		70-130	0	20
Chloroform	ND	10	13	129		13	128		70-130	0	20
Carbon tetrachloride	ND	10	11	112		11	109		63-132	0	20
1,2-Dichloropropane	ND	10	13	129		13	130		70-130	0	20
Dibromochloromethane	ND	10	9.5	95		9.6	96		63-130	1	20
1,1,2-Trichloroethane	ND	10	9.8	98		10	100		70-130	2	20
Tetrachloroethene	ND	10	9.3	93		9.1	91		70-130	2	20
Chlorobenzene	ND	10	9.6	96		9.5	95		75-130	1	20
Trichlorofluoromethane	ND	10	14	139		13	131		62-150	7	20
1,2-Dichloroethane	ND	10	13	132	Q	13	131	Q	70-130	0	20
1,1,1-Trichloroethane	ND	10	12	125		12	125		67-130	0	20
Bromodichloromethane	ND	10	12	125		12	125		67-130	0	20
trans-1,3-Dichloropropene	ND	10	9.2	92		9.3	93		70-130	1	20
cis-1,3-Dichloropropene	ND	10	12	120		12	122		70-130	0	20
1,1-Dichloropropene	ND	10	12	124		12	121		70-130	0	20
Bromoform	ND	10	9.1	91		9.3	93		54-136	2	20
1,1,2,2-Tetrachloroethane	ND	10	8.9	89		9.3	93		67-130	4	20
Benzene	ND	10	13	127		13	126		70-130	0	20
Toluene	ND	10	9.3	93		9.2	92		70-130	1	20
Ethylbenzene	ND	10	9.5	95		9.3	93		70-130	2	20

		Batch Quality Control		
Project Name:	DANA 01-14.02	Daten Quality Control	Lab Number:	L1408453
Project Number:	Not Specified		Report Date:	05/05/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/M 13A	1S - Westborough	n Lab Associ	ated sample(s): 01-05 QC E	Batch ID:	WG686969	9-4 WG686969	9-5 Q(C Sample: L	1408453	3-02 Client ID: MW-
Chloromethane	ND	10	14	140	Q	14	140	Q	64-130	0	20
Bromomethane	ND	10	8.2	82		9.1	91		39-139	10	20
Vinyl chloride	ND	10	13	131		13	133		55-140	0	20
Chloroethane	ND	10	14	142	Q	14	142	Q	55-138	0	20
1,1-Dichloroethene	ND	10	13	128		13	127		61-145	0	20
trans-1,2-Dichloroethene	ND	10	13	127		13	128		70-130	0	20
Trichloroethene	ND	10	13	128		13	126		70-130	0	20
1,2-Dichlorobenzene	ND	10	8.7	87		8.9	89		70-130	2	20
1,3-Dichlorobenzene	ND	10	8.7	87		8.8	88		70-130	1	20
1,4-Dichlorobenzene	ND	10	8.6	86		8.8	88		70-130	2	20
Methyl tert butyl ether	ND	10	12	125		12	125		63-130	0	20
p/m-Xylene	ND	20	19	97		19	96		70-130	0	20
o-Xylene	ND	20	19	97		20	98		70-130	5	20
cis-1,2-Dichloroethene	ND	10	13	128		13	129		70-130	0	20
Dibromomethane	ND	10	13	128		13	132	Q	70-130	0	20
1,2,3-Trichloropropane	ND	10	9.2	92		9.4	95		64-130	2	20
Acrylonitrile	ND	10	13	133	Q	14	136	Q	70-130	7	20
Styrene	ND	20	20	100		20	99		70-130	0	20
Dichlorodifluoromethane	ND	10	12	124		11	113		36-147	9	20
Acetone	1.0J	10	14	136		14	143		58-148	0	20
Carbon disulfide	ND	10	12	123		12	124		51-130	0	20

		Batch Quality Control		
Project Name:	DANA 01-14.02		Lab Number:	L1408453
Project Number:	Not Specified		Report Date:	05/05/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RF Qual Lin	PD nits
Volatile Organics by GC/MS	S - Westborough	n Lab Associa	ated sample(s)): 01-05 QC I	Batch ID: W	G686969	-4 WG686969	9-5 QC	Sample: L	1408453	3-02 Client	ID: MW-
2-Butanone	ND	10	13	128		12	124		63-138	8	2	20
Vinyl acetate	ND	10	13	135	Q	13	132	Q	70-130	0	2	20
4-Methyl-2-pentanone	ND	10	12	124		13	131	Q	59-130	8	2	20
2-Hexanone	ND	10	8.6	86		9.0	90		57-130	5	2	20
Bromochloromethane	ND	10	13	132	Q	14	136	Q	70-130	7	2	20
2,2-Dichloropropane	ND	10	12	123		12	120		63-133	0	2	20
1,2-Dibromoethane	ND	10	9.4	95		9.6	96		70-130	2	2	20
1,3-Dichloropropane	ND	10	9.5	95		9.7	97		70-130	2	2	20
1,1,1,2-Tetrachloroethane	ND	10	9.7	97		9.8	98		64-130	1	2	20
Bromobenzene	ND	10	8.7	87		8.8	88		70-130	1	2	20
n-Butylbenzene	ND	10	6.8	68		8.5	85		53-136	22	Q 2	20
sec-Butylbenzene	ND	10	8.3	83		8.3	83		70-130	0	2	20
tert-Butylbenzene	ND	10	8.4	84		8.3	83		70-130	1	2	20
o-Chlorotoluene	ND	10	9.0	90		9.0	90		70-130	0	2	20
p-Chlorotoluene	ND	10	8.5	85		8.6	86		70-130	1	2	20
1,2-Dibromo-3-chloropropane	ND	10	7.7	77		8.7	87		41-144	12	2	20
Hexachlorobutadiene	ND	10	7.2	72		7.3	73		63-130	1	2	20
Isopropylbenzene	ND	10	8.5	85		8.4	84		70-130	1	2	20
p-Isopropyltoluene	ND	10	7.9	79		8.4	85		70-130	6	2	20
Naphthalene	ND	10	5.8	58	Q	8.5	85		70-130	38	Q 2	20
n-Propylbenzene	ND	10	8.5	85		8.4	84		69-130	1	2	20

Project Name:	DANA 01-14.02	Batch Quality Control	Lab Number:	L1408453
Project Number:	Not Specified		Report Date:	05/05/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	, RPD	Qual	RPD Limits
Volatile Organics by GC/M 13A	S - Westborough	Lab Associa	ated sample(s)	: 01-05 QC	Batch ID:	WG686969	-4 WG686969	9-5 QC	C Sample: L	.1408453	3-02 C	Client ID: MW-
1,2,3-Trichlorobenzene	ND	10	6.4	64	Q	8.7	87		70-130	30	Q	20
1,2,4-Trichlorobenzene	ND	10	6.2	62	Q	8.5	85		70-130	31	Q	20
1,3,5-Trimethylbenzene	ND	10	8.6	86		8.6	86		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	8.0	80		8.6	87		70-130	7		20
1,4-Dioxane	ND	500	ND	0	Q	ND	0	Q	56-162	NC		20
1,4-Diethylbenzene	ND	10	7.3	73		8.4	85		70-130	14		20
4-Ethyltoluene	ND	10	8.4	84		8.4	84		70-130	0		20
1,2,4,5-Tetramethylbenzene	ND	10	6.6	66	Q	8.6	86		70-130	26	Q	20
Ethyl ether	ND	10	13	127		13	129		59-134	0		20
trans-1,4-Dichloro-2-butene	ND	10	8.8	88		9.1	91		70-130	3		20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	104	104	70-130	
4-Bromofluorobenzene	93	94	70-130	
Dibromofluoromethane	105	105	70-130	
Toluene-d8	85	85	70-130	

PCBS

		Serial_No:	05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-01	Date Collected:	04/22/14 12:00
Client ID:	MW-14A	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	04/24/14 04:06
Analytical Date:	04/25/14 19:42	Cleanup Method1:	EPA 3665A
Analyst:	JW	Cleanup Date1:	04/25/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	04/25/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1254	ND		ug/l	0.083	0.034	1	А		
Aroclor 1260	ND		ug/l	0.083	0.032	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	84		30-150	А
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	84		30-150	В

		Serial_No:0	05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-02	Date Collected:	04/22/14 13:00
Client ID:	MW-13A	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	04/24/14 04:06
Analytical Date:	04/25/14 19:54	Cleanup Method1:	EPA 3665A
Analyst:	JW	Cleanup Date1:	04/25/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	04/25/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1254	ND		ug/l	0.083	0.034	1	A	
Aroclor 1260	ND		ug/l	0.083	0.032	1	А	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	А
Decachlorobiphenyl	78		30-150	А
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В
Decachlorobiphenyl	79		30-150	В

		Serial_No:	05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-03	Date Collected:	04/22/14 14:10
Client ID:	MW-6R	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	04/24/14 04:06
Analytical Date:	04/25/14 20:06	Cleanup Method1:	EPA 3665A
Analyst:	WL	Cleanup Date1:	04/25/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	04/25/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1254	ND		ug/l	0.083	0.034	1	А		
Aroclor 1260	ND		ug/l	0.083	0.032	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	А
Decachlorobiphenyl	48		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	46		30-150	В

		Serial_No:0	05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-04	Date Collected:	04/22/14 15:00
Client ID:	MW-18	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	04/24/14 04:06
Analytical Date:	04/25/14 20:19	Cleanup Method1:	EPA 3665A
Analyst:	WL	Cleanup Date1:	04/25/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	04/25/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1254	ND		ug/l	0.083	0.034	1	A		
Aroclor 1260	ND		ug/l	0.083	0.032	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	49		30-150	А
Decachlorobiphenyl	65		30-150	А
2,4,5,6-Tetrachloro-m-xylene	52		30-150	В
Decachlorobiphenyl	64		30-150	В

		Serial_No:	05051414:28
Project Name:	DANA 01-14.02	Lab Number:	L1408453
Project Number:	Not Specified	Report Date:	05/05/14
	SAMPLE RESULTS		
Lab ID:	L1408453-05	Date Collected:	04/22/14 00:00
Client ID:	042214 DUP	Date Received:	04/22/14
Sample Location:	2200 BLEECKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	04/24/14 04:06
Analytical Date:	04/25/14 20:31	Cleanup Method1:	EPA 3665A
Analyst:	WL	Cleanup Date1:	04/25/14
		Cleanup Method2:	EPA 3660B
		Cleanup Date2:	04/25/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westbo	brough Lab						
Aroclor 1254	ND		ug/l	0.083	0.034	1	A
Aroclor 1260	ND		ug/l	0.083	0.032	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		30-150	А
Decachlorobiphenyl	94		30-150	А
2,4,5,6-Tetrachloro-m-xylene	81		30-150	В
Decachlorobiphenyl	97		30-150	В

L1408453

05/05/14

Lab Number:

Report Date:

04/25/14

Project Name:DANA 01-14.02Project Number:Not Specified

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8082A
Analytical Date:	04/25/14 21:20
Analyst:	JW

Extraction Method:EPA 3510CExtraction Date:04/24/14 04:06Cleanup Method1:EPA 3665ACleanup Date1:04/25/14Cleanup Method2:EPA 3660BCleanup Date2:04/25/14

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01-05	Batch:	WG6846	76-1
Aroclor 1254	ND		ug/l	0.083		0.034	А
Aroclor 1260	ND		ug/l	0.083		0.032	А

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В			
2,4,5,6-Tetrachloro-m-xylene	53		30-150	А			
Decachlorobiphenyl	87		30-150	А			
Decachlorobiphenyl	89		30-150	В			

Matrix Spike Analysis

Project Name:	DANA 01-14.02	Batch Quality Control	Lab Number:	L1408453
Project Number:	Not Specified		Report Date:	05/05/14

Davamatar	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	Column
Parameter	Sample	Audeu	Found	/orecovery	Qual	Touna	/orecovery	Quai	LIIIIIIS	RPD	Quai	LIIIIIIS	Column
Polychlorinated Biphenyls b MW-13A	y GC - Westbord	ough Lab As	sociated sam	ple(s): 01-05	QC Batch	ID: WG68	4676-4 WG68	34676-5	QC Sampl	e: L140	8453-02	Client	ID:
Aroclor 1016	ND	2.6	1.72	66		2.10	81		40-140	20		50	А
Aroclor 1260	ND	2.6	2.07	80		1.55	60		40-140	29		50	А

	MS	5	MS	SD	Acceptance		
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	65		76		30-150	А	
Decachlorobiphenyl	81		93		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	70		81		30-150	В	
Decachlorobiphenyl	81		95		30-150	В	

Lab Control Sample Analysis Batch Quality Control

Project Name:DANA 01-14.02Project Number:Not Specified

 Lab Number:
 L1408453

 Report Date:
 05/05/14

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-05 Batch: WG684676-2 WG684676-3 78 84 Aroclor 1016 40-140 7 50 А 40-140 Aroclor 1260 87 91 5 50 А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	57		66		30-150	А
Decachlorobiphenyl	97		90		30-150	А
2,4,5,6-Tetrachloro-m-xylene	61		71		30-150	В
Decachlorobiphenyl	98		90		30-150	В

METALS

	4					Date Re	ollected:	•	14 12:00	
2200 BI		MW-14A						04/22/14		
2200 BLEECKER ST., UTICA, NY					Field Pr	ep:	Not Sp	pecified		
Water										
					Dilution	Date	Date	Prep Mothod	Analytical Method	Analyst
-						Dilution	Dilution Date	Dilution Date Date	Dilution Date Date Prep	Dilution Date Date Prep Analytical

Total Metals - We	stborough Lal	b						
Chromium, Total	0.00059	J	mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:37 EPA 3005A	1,6020A	KL
Copper, Total	0.00423		mg/l	0.00100 0.00010	1	04/29/14 09:39 04/30/14 11:37 EPA 3005A	1,6020A	KL
Lead, Total	0.00135		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:37 EPA 3005A	1,6020A	KL
Zinc, Total	0.00445	J	mg/l	0.01000 0.00120	1	04/29/14 09:39 04/30/14 11:37 EPA 3005A	1,6020A	KL

Project Name:	DANA	01-14.02					Lab Nu	mber:	L1408	453	
Project Number:	Not Sp	pecified					Report	Date:	05/05/	14	
			S	AMPL	E RES	ULTS					
Lab ID:	L14084	453-02					Date Co	ollected:	04/22/	14 13:00	
Client ID:	MW-13	3A					Date Re	eceived:	04/22/	14	
Sample Location:	2200 E	BLEECKER	ST., UTIC	A, NY			Field Pr	ep:	Not Sp	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method An	alyst

Total Metals - Westborough Lab												
Chromium, Total	0.00027	J	mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:15 EPA 3005A	1,6020A	KL				
Copper, Total	0.00074	J	mg/l	0.00100 0.00010	1	04/29/14 09:39 04/30/14 11:15 EPA 3005A	1,6020A	KL				
Lead, Total	ND		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:15 EPA 3005A	1,6020A	KL				
Zinc, Total	0.01360		mg/l	0.01000 0.00120	1	04/29/14 09:39 04/30/14 11:15 EPA 3005A	1,6020A	KL				

Project Name:	DANA	01-14.02					Lab Nu	mber:	L14084	L1408453		
Project Number:	Not Sp	ecified					Report	Date:	05/05/ [,]	14		
			S		E RES	ULTS						
Lab ID:	L14084	453-03					Date Co	llected:	04/22/	14 14:10		
Client ID:	MW-6F	२					Date Re	ceived:	04/22/ ⁻	14		
Sample Location:	2200 B	BLEECKER	ST., UTIC	A, NY			Field Pr	ep:	Not Sp	ecified		
Matrix:	Water											
						Dilution	Date	Date	Prep	Analytical		
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst	

Total Metals - Westborough Lab												
Chromium, Total	0.00114		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:40 EPA 3005A	1,6020A	KL				
Copper, Total	0.00254		mg/l	0.00100 0.00010	1	04/29/14 09:39 04/30/14 11:40 EPA 3005A	1,6020A	KL				
Lead, Total	0.00086	J	mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:40 EPA 3005A	1,6020A	KL				
Zinc, Total	0.01502		mg/l	0.01000 0.00120	1	04/29/14 09:39 04/30/14 11:40 EPA 3005A	1,6020A	KL				

Project Name:	DANA	01-14.02					Lab Nu	mber:	L14084	453
Project Number:	Not Sp	pecified					Report	Date:	05/05/	14
			S	AMPL	E RES	ULTS				
Lab ID:	L14084	453-04					Date Co	llected:	04/22/ ⁻	14 15:00
Client ID:	MW-18	3					Date Re	ceived:	04/22/ ⁻	14
Sample Location:	2200 E	BLEECKER	ST., UTIC	A, NY			Field Pr	ep:	Not Sp	ecified
Matrix:	Water									
						Dilution	Date	Date	Prep	Analytical
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method Analyst

Total Metals - Westborough Lab												
Chromium, Total	ND		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:44 EPA 3005A	1,6020A	KL				
Copper, Total	0.00072	J	mg/l	0.00100 0.00010	1	04/29/14 09:39 04/30/14 11:44 EPA 3005A	1,6020A	KL				
Lead, Total	ND		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:44 EPA 3005A	1,6020A	KL				
Zinc, Total	0.00459	J	mg/l	0.01000 0.00120	1	04/29/14 09:39 04/30/14 11:44 EPA 3005A	1,6020A	KL				

Project Name:	DANA	01-14.02					Lab Nu	mber:	L1408	453		
Project Number:	Not Sp	lot Specified					Report	Date:	05/05/	05/05/14		
				SAMPL	E RES	ULTS						
Lab ID:	L1408	453-05					Date Co	ollected:	04/22/	/14 00:00		
Client ID:	04221	4 DUP					Date Re	eceived:	04/22/	′14		
Sample Location:	2200 E	BLEECKER	ST., UTIC	CA, NY			Field Pi	rep:	Not S	pecified		
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	

Total Metals - Westborough Lab												
Chromium, Total	0.00023	J	mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:48 EPA 3005A 1,6020A	KL					
Copper, Total	0.00091	J	mg/l	0.00100 0.00010	1	04/29/14 09:39 04/30/14 11:48 EPA 3005A 1,6020A	KL					
Lead, Total	ND		mg/l	0.00100 0.00020	1	04/29/14 09:39 04/30/14 11:48 EPA 3005A 1,6020A	KL					
Zinc, Total	0.01549		mg/l	0.01000 0.00120	1	04/29/14 09:39 04/30/14 11:48 EPA 3005A 1,6020A	KL					

Project Name:DANA 01-14.02Project Number:Not Specified

 Lab Number:
 L1408453

 Report Date:
 05/05/14

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westboro	ugh Lab fo	r sample(s): 01-05	Batch:	WG68	5780-1				
Chromium, Total	ND		mg/l	0.00100	0.00020	1	04/29/14 09:39	04/30/14 10:57	1,6020A	KL
Copper, Total	0.00059	J	mg/l	0.00100	0.00010	1	04/29/14 09:39	04/30/14 10:57	1,6020A	KL
Lead, Total	ND		mg/l	0.00100	0.00020	1	04/29/14 09:39	04/30/14 10:57	1,6020A	KL
Zinc, Total	ND		mg/l	0.01000	0.00120	1	04/29/14 09:39	04/30/14 10:57	1,6020A	KL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1408453

 Report Date:
 05/05/14

Project Number: Not Specified

DANA 01-14.02

Project Name:

LCS LCSD %Recovery %Recovery %Recovery Limits **RPD** Limits Parameter Qual RPD Qual Qual Total Metals - Westborough Lab Associated sample(s): 01-05 Batch: WG685780-2 Chromium, Total 95 80-120 --Copper, Total 97 80-120 --Lead, Total 100 80-120 --Zinc, Total 100 80-120 --

Matrix Spike Analysis Batch Quality Control

Project Name:	DANA 01-14.02	Batch Quality Control
Project Number:	Not Specified	

 Lab Number:
 L1408453

 Report Date:
 05/05/14

<u>F</u>	Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
	Total Metals - Westborough Lab	Associated	sample(s): 07	1-05 QC	Batch ID: WG6	685780-	3 WG68578	80-4 QC Sai	mple: L1408453-02	Clie	nt ID: M	IW-13A
	Chromium, Total	0.00027J	0.2	0.1895	95		0.1907	95	75-125	1		20
	Copper, Total	0.00074J	0.25	0.2410	96		0.2396	96	75-125	1		20
	Lead, Total	ND	0.51	0.5089	100		0.5076	100	75-125	0		20
	Zinc, Total	0.01360	0.5	0.4920	96		0.4995	97	75-125	2		20

Lab Number: L1408453 Report Date: 05/05/14

Project Name:DANA 01-14.02Project Number:Not Specified

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler A Absent

B Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1408453-01A	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-01B	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-01C	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-01D	Plastic 500ml HNO3 preserved	В	<2	4.8	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-01E	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-01F	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-02A	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02A1	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02A2	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02B	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02B1	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02B2	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02C	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02C1	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02C2	Vial HCI preserved	В	N/A	4.8	Y	Absent	NYTCL-8260(14)
L1408453-02D	Plastic 500ml HNO3 preserved	В	<2	4.8	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-02D1	Plastic 500ml HNO3 preserved	В	<2	4.8	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-02D2	Plastic 500ml HNO3 preserved	В	<2	4.8	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-02E	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-02E1	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-02E2	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-02F	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)

Project Name:DANA 01-14.02Project Number:Not Specified

Serial_No:05051414:28

Lab Number: L1408453 Report Date: 05/05/14

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1408453-02F1	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-02F2	Amber 1000ml unpreserved	В	7	4.8	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-03A	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-03B	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-03C	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-03D	Plastic 500ml HNO3 preserved	A	<2	2.9	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-03E	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-03F	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-04A	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-04B	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-04C	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-04D	Plastic 500ml HNO3 preserved	A	<2	2.9	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-04E	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-04F	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-05A	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-05B	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-05C	Vial HCI preserved	А	N/A	2.9	Y	Absent	NYTCL-8260(14)
L1408453-05D	Plastic 500ml HNO3 preserved	A	<2	2.9	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1408453-05E	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)
L1408453-05F	Amber 1000ml unpreserved	А	7	2.9	Y	Absent	NYTCL-8082-1200ML(7)

L1408453

05/05/14

Project Name: DANA 01-14.02

Project Number: Not Specified

Lab Number: Report Date:

Acronyms

GLOSSARY

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with 'J' Qualifiers

05/05/14

Project Name: DANA 01-14.02

Project Number: Not Specified

Lab Number: L1408453 **Report Date:**

Data Qualifiers

- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- S - Analytical results are from modified screening analysis.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:DANA 01-14.02Project Number:Not Specified

 Lab Number:
 L1408453

 Report Date:
 05/05/14

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

<u>I</u>	NEW YORK	Service Centers	Dd Quite E		Page)										
Шрна	CHAIN OF	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker Wa	ay		oi	F		Date in	Rec'o Lab		1	111	<u>к</u> ² –		ALPHA Job #	5
AND	CUSTODY	Tonawanda, NY 14150: 275 Coo	per Ave, Sulte 10	5			1.0000 1.0000 1.0000		Lap.		123		1.7200		E LI LA BAD	7
Westborough, MA 01581	Mansfield, MA 02048	Project Information			·		Deliv	erable	s						Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: DANA OI	-14.02				X	ASP-	A			ASP-E	3		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 2200 B		Itica, NY			1 🗂		S (1 F	ile)		EQuis	S (4 File)) F	 °O#	
Client Information		Project #		10.101			1 🗖	Othe	•				. ,			
	Alwand and mut III	(Use Project name as <u>Pro</u>	piect #) X				Reau			iremen					Disposal Site Information	
Address: 360 Ecie								NY TO				NY Par	rt 375		Please identify below location of	
		Project Manager: Roop	<u>» Creighte</u>	^			┥┝		Standa	rde					applicable disposal facilities.	
Syracise, Nº		ALPHAQuote #:	-										-01			
Phone: (315)- 47		Turn-Around Time					┫╠		estricted			Other			Disposal Facility:	-
Fax: (315) - 475		Standard Rush (only if pre approved)	上たたこ	Due Date:						ted Use				Ļ		
Email: (creightone				T # of Days:			┇╝			Dischar	ge				Other:	T-
These samples have bee								LYSIS	i 					!	Sample Filtration	0
Other project specific r	requirements/comm	ents:					(TKE, CIS, Teal								Done	t
							1년	(0921 1 4521)	*						Lab to do	a L
							[笔]	1						ľ	Preservation Lab to do	
Please specify Metals of	or TAL.						1 4	54	P							B
					·		进	2	Metals						(Please Specify below)	t
ALPHA Lab ID			Colle	ection	Sample	Sampler's	- ^ A		2							t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	Vacs	PCB	lota			1		5	Sample Specific Comments	l e
DAVISAN	MW-14 A		4/22/14	12:00	GW	RC	3	Z							* TCE, (IS, Travis DCE, UC)	
	MW-13A	/MS/MSD	4/22/14	13:00	aw	RC	9	6	.3			<u> </u>			** (U, Cr. Pb, Zn_	
		VENTICINI	4 22/19	14:10	GW	RC	3	2		┝──┤				Ť		
	<u>NW-6R</u> MW-18		4/22/14			RC	$\frac{3}{3}$	1	+					+		
				15:00	GW			1	\downarrow							
	042214 0	Op.	4122/14		aw	RC RC	3	<u>ــــــ</u>	<u> '</u>						<u> </u>	
						<u> </u>	·			┝──┤				-+		
				•		<u> </u>		 	 	┝──┤		[-+		
	. <u></u>					<u> </u>	<u> </u>		<u> </u>							
					_	<u> </u>				\vdash						
	· •		<u>.</u>													
	Container Code P = Plastic	Westboro: Certification No	o: MA935	,	Con	ntainer Type	V	A	P]				1	Please print clearly, legibly	
	A = Amber Glass	Mansfield: Certification No	o: MA015			кашы туре	.V	14	`						and completely. Samples c	
C = HNO ₃ V	/ = Vial	\sim						A	C						not be logged in and	
	G = Glass 3 = Bacteria Cup	11			F F	Preservative	B	A	C						turnaround time clock will n start until any ambiguities a	
	C = Cube	Relingviened E) Date/	Time].	I Receiv	ued Pr				Date/	Time	1	resolved. BY EXECUTING	
G = NaHSO₄ C	D = Other		<u></u>		15:57 -	5 00			AP	1,	4-,7	10	155	<u>.</u>	THIS COC, THE CLIENT	
11 - 1420203	E = Encore D = BOD Bottle	ATT Cheel	} ,	1-414	1020		20	$\frac{1}{1}$	4A		loal	11/2	137	2	HAS READ AND AGREES	
K/E = Zn Ac/NaOH ^L O = Other		Ho Kulle	7	12719	<u> </u>	Mm L	p	<u> </u>	<u>·)/[]</u>	<u> </u>		X S A		님	TO BE BOUND BY ALPHA TERMS & CONDITIONS.	5
	,	the cary	<u> </u>	23/19 0	μQ	1 m	hæ	¥È	<u>¢</u> J	CO U	t VV	931	<u>4 617</u>	16	(See reverse side.)	
Form No: 01-25 HC (rev. 30-	-Sept-2013)	Y Ű		-		1									·····,	

ANALYTICAL REPORT

Lab Number:	L1425739
Client:	Synapse Risk Management, LLC 360 Erie Blvd. East Syracuse, NY 13202
ATTN: Phone:	Roger Creighton (315) 475-3700
Project Name:	UHC SEMI-ANNUAL GROUNDWATER
Project Number:	DANA 01.14.02
Report Date:	11/07/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:UHC SEMI-ANNUAL GROUNDWATERProject Number:DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1425739-01	MW-14A	WATER	2220 BLEEKER ST., UTICA, NY	10/28/14 11:35	10/28/14
L1425739-02	MW-13A	WATER	2220 BLEEKER ST., UTICA, NY	10/28/14 12:30	10/28/14
L1425739-03	MW-6R	WATER	2220 BLEEKER ST., UTICA, NY	10/28/14 13:20	10/28/14
L1425739-04	MW-18	WATER	2220 BLEEKER ST., UTICA, NY	10/28/14 14:30	10/28/14
L1425739-05	DUP	WATER	2220 BLEEKER ST., UTICA, NY	10/28/14 00:00	10/28/14

Project Name:UHC SEMI-ANNUAL GROUNDWATERProject Number:DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: UHC SEMI-ANNUAL GROUNDWATER Project Number: DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG737544-4/-5 MS/MSD recoveries, performed on L1425739-03, are above the acceptance criteria for trans-1,2-dichloroethene (136%/143%), trichloroethene (140%/146%), and cis-1,2-dichloroethene (138%/146%); however, the associated LCS/LCSD recoveries are within overall method allowances.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Jendon Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 11/07/14

ORGANICS

VOLATILES

		Serial_No	:11071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-01	Date Collected:	10/28/14 11:35
Client ID:	MW-14A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	11/04/14 17:15		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	103		70-130	

		Serial_No	:11071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-02	Date Collected:	10/28/14 12:30
Client ID:	MW-13A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	11/04/14 17:43		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

		Acceptance						
Surrogate	% Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	106		70-130					
Toluene-d8	100		70-130					
4-Bromofluorobenzene	109		70-130					
Dibromofluoromethane	103		70-130					

		Serial_No	:11071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-03	Date Collected:	10/28/14 13:20
Client ID:	MW-6R	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	11/04/14 18:11		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Vinyl chloride	ND		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	102		70-130	

		Serial_No	:11071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-04	Date Collected:	10/28/14 14:30
Client ID:	MW-18	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	11/04/14 18:40		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Vinyl chloride	20		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	103		70-130	

		Serial_No	:11071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-05	Date Collected:	10/28/14 00:00
Client ID:	DUP	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	11/04/14 19:08		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	prough Lab					
Vinyl chloride	18		ug/l	1.0	0.33	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	110	70-130
Dibromofluoromethane	103	70-130

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	11/04/14 10:39
Analyst:	PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01-	05 Batch:	WG737544-3	
Vinyl chloride	ND	ug/l	1.0	0.33	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1.2-Dichloroethane-d4	101		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	111		70-130
Dibromofluoromethane	99		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: UHC SEMI-ANNUAL GROUNDWATER

Project Number: DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Parameter	LCS %Recovery	Qual	_	CSD covery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-05	Batch:	WG737544-1	WG737544-2				
Vinyl chloride	113			111		55-140	2		20	
trans-1,2-Dichloroethene	110			107		70-130	3		20	
Trichloroethene	108			108		70-130	0		20	
cis-1,2-Dichloroethene	109			110		70-130	1		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	99		100		70-130	
Toluene-d8	99		100		70-130	
4-Bromofluorobenzene	102		101		70-130	
Dibromofluoromethane	101		100		70-130	

Matrix Spike Analysis

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Batch Quality Control	Lab Number:	L1425739
Project Number:	DANA 01.14.02		Report Date:	11/07/14

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recover Limits	,	RPD Qual Limits
Volatile Organics by GC/M 6R	IS - Westborough	Lab Associa	ated sample(s)	: 01-05 QC	Batch ID:	WG737544	4-4 WG737544	4-5 QC	Sample:	L1425739-0	3 Client ID: MW-
Vinyl chloride	ND	10	11	112		12	119		55-140	9	20
trans-1,2-Dichloroethene	ND	10	14	136	Q	14	143	Q	70-130	0	20
Trichloroethene	ND	10	14	140	Q	15	146	Q	70-130	7	20
cis-1,2-Dichloroethene	ND	10	14	138	Q	14	146	Q	70-130	0	20

	MS	M	SD	Acceptance	
Surrogate	% Recovery Qu	alifier % Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103	103		70-130	
4-Bromofluorobenzene	97	97		70-130	
Dibromofluoromethane	103	102		70-130	
Toluene-d8	98	99		70-130	

PCBS

		Serial_No:1	1071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-01	Date Collected:	10/28/14 11:35
Client ID:	MW-14A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	11/01/14 15:36
Analytical Date:	11/04/14 06:18	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Parameter	Result Q	ualifier Units	s RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab					
Aroclor 1254	ND	ug/l	0.083	0.034	1	А
Aroclor 1260	ND	ug/l	0.083	0.032	1	А
Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column		

2,4,5,6-Tetrachloro-m-xylene	77	30-150	В
Decachlorobiphenyl	72	30-150	В
2,4,5,6-Tetrachloro-m-xylene	77	30-150	А
Decachlorobiphenyl	64	30-150	А

		Serial_No:1	1071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-02	Date Collected:	10/28/14 12:30
Client ID:	MW-13A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	11/01/14 15:36
Analytical Date:	11/04/14 06:31	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Parameter		Result	Qualifier Unit	s RL	MDL	Dilution Factor	Column
Polychlorin	nated Biphenyls by GC - Westb	orough Lab					
Aroclor 1254		ND	ug/l	0.083	0.034	1	A
Aroclor 1260		ND	ug/l	0.083	0.032	1	А
	Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column		
	2,4,5,6-Tetrachloro-m-xylene	77		30-150	В		

2,4,5,6-Tetrachloro-m-xylene	77	30-150	В
Decachlorobiphenyl	83	30-150	В
2,4,5,6-Tetrachloro-m-xylene	79	30-150	А
Decachlorobiphenyl	77	30-150	А

		Serial_No:1	1071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-03	Date Collected:	10/28/14 13:20
Client ID:	MW-6R	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	11/01/14 15:36
Analytical Date:	11/04/14 07:12	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Result Qu	ualifier Units	s RL	MDL	Dilution Factor	Column
Westborough Lab					
ND	ug/l	0.083	0.034	1	A
ND	ug/l	0.083	0.032	1	А
% Recovery	Qualifier	Acceptance Criteria	Column		
	Westborough Lab ND ND	Westborough Lab ND ug/l ND ug/l	Westborough Lab ND ug/l 0.083 ND ug/l 0.083 Acceptance	Westborough Lab ug/l 0.083 0.034 ND ug/l 0.083 0.032 Acceptance Acceptance Acceptance	Westborough Lab ug/l 0.083 0.034 1 ND ug/l 0.083 0.032 1 Acceptance Karal Karal Karal Karal

2,4,5,6-Tetrachloro-m-xylene	76	30-150	В
Decachlorobiphenyl	67	30-150	В
2,4,5,6-Tetrachloro-m-xylene	76	30-150	А
Decachlorobiphenyl	60	30-150	А

		Serial_No:1	1071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-04	Date Collected:	10/28/14 14:30
Client ID:	MW-18	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	11/01/14 15:36
Analytical Date:	11/04/14 06:45	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Parameter	Result Q	ualifier Units	s RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab					
Aroclor 1254	ND	ug/l	0.083	0.034	1	А
Aroclor 1260	ND	ug/l	0.083	0.032	1	А
Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column		
Surrogate	% Recovery	Qualifier	Criteria	Column		

2,4,5,6-Tetrachloro-m-xylene	77	30-150	В
Decachlorobiphenyl	74	30-150	В
2,4,5,6-Tetrachloro-m-xylene	79	30-150	А
Decachlorobiphenyl	69	30-150	А

		Serial_No:1	1071419:44
Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-05	Date Collected:	10/28/14 00:00
Client ID:	DUP	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Method:	EPA 3510C
Analytical Method:	1,8082A	Extraction Date:	11/01/14 15:36
Analytical Date:	11/04/14 06:59	Cleanup Method:	EPA 3665A
Analyst:	JT	Cleanup Date:	11/03/14
		Cleanup Method:	EPA 3660B
		Cleanup Date:	11/03/14

Parameter	Result Q	ualifier Units	s RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab					
Aroclor 1254	ND	ug/l	0.083	0.034	1	A
Aroclor 1260	ND	ug/l	0.083	0.032	1	А
Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column		

2,4,5,6-Tetrachloro-m-xylene	72	30-150	В
Decachlorobiphenyl	68	30-150	В
2,4,5,6-Tetrachloro-m-xylene	74	30-150	А
Decachlorobiphenyl	63	30-150	А

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8082A	Extraction Metho
Analytical Date:	11/04/14 07:54	Extraction Date:
Analyst:	JT	Cleanup Method
		Cleanup Date:

Extraction Method:	EPA 3510C
Extraction Date:	11/01/14 15:36
Cleanup Method:	EPA 3665A
Cleanup Date:	11/03/14
Cleanup Method:	EPA 3660B
Cleanup Date:	11/03/14

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01-05	Batch:	WG7367	′03-1
Aroclor 1254	ND		ug/l	0.083		0.034	А
Aroclor 1260	ND		ug/l	0.083		0.032	А

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В			
Decachlorobiphenyl	65		30-150	В			
2,4,5,6-Tetrachloro-m-xylene	76		30-150	А			
Decachlorobiphenyl	61		30-150	А			

Matrix Spike Analysis

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Batch Quality Control	Lab Number:	L1425739
Project Number:	DANA 01.14.02		Report Date:	11/07/14

Paramatar	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recoverv		Recovery Limits	RPD	Qual	RPD Limits	Column
Parameter	Sample	Auueu	Found	/orrecovery	Quai	Tounu	/orecovery	Quai	Liiiits	RPD	Quai	LIIIIIIS	Column
Polychlorinated Biphenyls by MW-6R	y GC - Westbor	ough Lab As	sociated samp	ole(s): 01-05	QC Batch I	D: WG73	86703-4 WG73	6703-5	QC Sampl	e: L142	25739-03	Client	ID:
Aroclor 1016	ND	2.6	2.32	75		2.28	74		40-140	2		50	А
Aroclor 1260	ND	2.6	2.02	78		2.06	79		40-140	2		50	А

	MS	5	M	SD	Acceptance		
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	75		74		30-150	В	
Decachlorobiphenyl	70		73		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	78		75		30-150	А	
Decachlorobiphenyl	64		66		30-150	А	

Lab Control Sample Analysis Batch Quality Control

Project Name: UHC SEMI-ANNUAL GROUNDWATER

Project Number: DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

	LCS	LCS		%Recove	ery	RPD	
Parameter	%Recovery	Qual	%Recovery	Qual Limits	RPD	Qual Limits	Column
Polychlorinated Biphenyls by GC - West	oorough Lab Associa	ted sample(s)	: 01-05 Batch:	WG736703-2 WG7	36703-3		
Aroclor 1016	91		87	40-140	4	50	А
Aroclor 1260	80		83	40-140	5	50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		72		30-150	В
Decachlorobiphenyl	85		79		30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		74		30-150	А
Decachlorobiphenyl	84		84		30-150	А

METALS

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-01	Date Collected:	10/28/14 11:35
Client ID:	MW-14A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	tborough L	ab									
Chromium, Total	0.0016		mg/l	0.0010	0.0003	1	11/05/14 07:43	11/05/14 19:35	EPA 3005A	1,6020A	BM
Copper, Total	0.0043		mg/l	0.0010	0.0003	1	11/05/14 07:43	11/05/14 19:35	EPA 3005A	1,6020A	BM
Lead, Total	0.0008	J	mg/l	0.0010	0.0001	1	11/05/14 07:43	11/05/14 19:35	EPA 3005A	1,6020A	BM
Zinc, Total	0.0144		mg/l	0.0100	0.0026	1	11/05/14 07:43	11/05/14 19:35	EPA 3005A	1,6020A	BM

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-02	Date Collected:	10/28/14 12:30
Client ID:	MW-13A	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - We	stborough L	.ab									
Chromium, Total	0.0007	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:39	EPA 3005A	1,6020A	BM
Copper, Total	0.0003	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:39	EPA 3005A	1,6020A	BM
Lead, Total	ND		mg/l	0.0010	0.0001	1	11/05/14 07:43	3 11/05/14 19:39	EPA 3005A	1,6020A	BM
Zinc, Total	0.0039	J	mg/l	0.0100	0.0026	1	11/05/14 07:43	11/05/14 19:39	EPA 3005A	1,6020A	BM

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-03	Date Collected:	10/28/14 13:20
Client ID:	MW-6R	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	stborough L	.ab									
Chromium, Total	0.0009	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 18:51	EPA 3005A	1,6020A	BM
Copper, Total	0.0005	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 18:51	EPA 3005A	1,6020A	BM
Lead, Total	0.0002	J	mg/l	0.0010	0.0001	1	11/05/14 07:43	3 11/05/14 18:51	EPA 3005A	1,6020A	BM
Zinc, Total	0.0036	J	mg/l	0.0100	0.0026	1	11/05/14 07:43	3 11/05/14 18:51	EPA 3005A	1,6020A	BM

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Lab Number:	L1425739
Project Number:	DANA 01.14.02	Report Date:	11/07/14
	SAMPLE RESULTS		
Lab ID:	L1425739-04	Date Collected:	10/28/14 14:30
Client ID:	MW-18	Date Received:	10/28/14
Sample Location:	2220 BLEEKER ST., UTICA, NY	Field Prep:	Not Specified
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Metals - Westborough Lab												
Chromium, Total	0.0007	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:42	EPA 3005A	1,6020A	BM	
Copper, Total	0.0009	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:42	EPA 3005A	1,6020A	BM	
Lead, Total	ND		mg/l	0.0010	0.0001	1	11/05/14 07:43	11/05/14 19:42	EPA 3005A	1,6020A	BM	
Zinc, Total	ND		mg/l	0.0100	0.0026	1	11/05/14 07:43	11/05/14 19:42	EPA 3005A	1,6020A	BM	

Project Name:	UHC SEMI-ANNUAL GROUNDWATER		Lab Nur	nber:	L1425	739	
Project Number:	DANA 01.14.02		Report I	Date:	11/07/14		
	SAMPLE RESULT	S					
Lab ID:	L1425739-05		Date Co	llected:	10/28/	/14 00:00	
Client ID:	DUP		Date Re	ceived:	10/28/	/14	
Sample Location:	2220 BLEEKER ST., UTICA, NY		Field Pre	ep:	Not S	pecified	
Matrix:	Water						
	Dilu	ution	Date	Date	Prep	Analytical	

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analyst
Total Metals - We	stborough L	ab									
Chromium, Total	0.0006	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:45	EPA 3005A	1,6020A	BM
Copper, Total	0.0006	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	3 11/05/14 19:45	EPA 3005A	1,6020A	BM
Lead, Total	ND		mg/l	0.0010	0.0001	1	11/05/14 07:43	3 11/05/14 19:45	EPA 3005A	1,6020A	BM
Zinc, Total	ND		mg/l	0.0100	0.0026	1	11/05/14 07:43	3 11/05/14 19:45	EPA 3005A	1,6020A	BM

Project Name:UHC SEMI-ANNUAL GROUNDWATERProject Number:DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbor	ough Lab fo	or sample(s	s): 01-05	Batch:	WG73	7462-1				
Chromium, Total	0.0005	J	mg/l	0.0010	0.0003	1	11/05/14 07:43	11/05/14 18:44	1,6020A	BM
Copper, Total	ND		mg/l	0.0010	0.0003	1	11/05/14 07:43	11/05/14 18:44	1,6020A	BM
Lead, Total	ND		mg/l	0.0010	0.0001	1	11/05/14 07:43	11/05/14 18:44	1,6020A	BM
Zinc, Total	ND		mg/l	0.0100	0.0026	1	11/05/14 07:43	11/05/14 18:44	1,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: UHC SEMI-ANNUAL GROUNDWATER

Project Number: DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated s	ample(s): 01-05	Batch: WG	6737462-2					
Chromium, Total	93		-		80-120	-		
Copper, Total	95		-		80-120	-		
Lead, Total	89		-		80-120	-		
Zinc, Total	95		-		80-120	-		

Matrix Spike Analysis

Project Name:	UHC SEMI-ANNUAL GROUNDWATER	Batch Quality Control	Lab Number:	L1425739
Project Number:	DANA 01.14.02		Report Date:	11/07/14

Ī	Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD Limits
	Total Metals - Westborough Lab	Associated	sample(s): 01	-05 QC	Batch ID: WG	737462-:	3 WG73746	2-4 QC San	nple: L1425739-03	Client ID:	MW-6R
	Chromium, Total	0.0009J	0.2	0.1956	98		0.1969	98	75-125	1	20
	Copper, Total	0.0005J	0.25	0.2365	95		0.2311	92	75-125	2	20
	Lead, Total	0.0002J	0.51	0.4626	91		0.4826	95	75-125	4	20
	Zinc, Total	0.0036J	0.5	0.5077	102		0.4762	95	75-125	6	20

Project Name: UHC SEMI-ANNUAL GROUNDWATER Project Number: DANA 01.14.02

Lab Number: L1425739 **Report Date:** 11/07/14

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler А Absent

В	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1425739-01A	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-01B	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-01C	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-01D	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-01E	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-01F	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-02A	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-02B	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-02C	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-02D	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-02E	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-02F	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03A	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03A1	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03A2	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03B	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03B1	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03B2	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03C	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03C1	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03C2	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-03D	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)

6020T(180)

Project Name: UHC SEMI-ANNUAL GROUNDWATER Project Number: DANA 01.14.02

Lab Number: L1425739 **Report Date:** 11/07/14

	Container	Information
--	-----------	-------------

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1425739-03D1	Plastic 250ml HNO3 preserved	А	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-03D2	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-03E	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03E1	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03E2	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03F	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03F1	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-03F2	Amber 1000ml unpreserved	А	7	4.5	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-04A	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-04B	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-04C	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-04D	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-04E	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-04F	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-05A	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-05B	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-05C	Vial HCI preserved	А	N/A	4.5	Y	Absent	NYTCL-8260(14)
L1425739-05D	Plastic 250ml HNO3 preserved	A	<2	4.5	Y	Absent	CR-6020T(180),CU- 6020T(180),ZN-6020T(180),PB- 6020T(180)
L1425739-05E	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)
L1425739-05F	Amber 1000ml unpreserved	В	7	4.4	Y	Absent	NYTCL-8082-1200ML(7)

Project Name: UHC SEMI-ANNUAL GROUNDWATER

Project Number: DANA 01.14.02

Lab Number: L1425739

Report Date: 11/07/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: DU Report with 'J' Qualifiers

Project Name: UHC SEMI-ANNUAL GROUNDWATER

Project Number: DANA 01.14.02

Lab Number: L1425739

Report Date: 11/07/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:UHC SEMI-ANNUAL GROUNDWATERProject Number:DANA 01.14.02

 Lab Number:
 L1425739

 Report Date:
 11/07/14

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

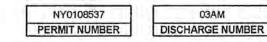
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo	ay	3	Page) of			Date) Jinil	NAMES OF STREET					AURHA Job # 11
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information			, ,			erable			7		L,	Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: UHC	<u>Demi-Anv</u>	Ival Grou	nduate.	<u>Sumpli</u>	¶	ASP-/			ASP-			3 Same as Client Info
		Project Location: 2200			α, N_{μ}	<u> </u>	-		S (1 Fi	le)	_ EQui	IS (4 File	*)	PO #
Client Information		Project # DANA 0	(.14.00	2		· ·		Other						1
Client: Synause Ris	st Management	(Use Project name as Pro	oject #)				Regu	latory	Requir	ement				Disposal Site Information
Address: 360 Eric		Project Manager: Koge		\$			Χ	ΝΥ ΤΟ	GS		NY Pa	art 375		Please identify below location of
Syracuse, NY	13210	ALPHAQuote #:	<u></u>		1.1			AWQ S	Standar	ds [NY CI	P-51		applicable disposal facilities.
Phone: (3(5) - 47	5-3700	Turn-Around Time	•					NY Re	stricted	Use	Other			Disposal Facility:
	- 3780	Standard	X	Due Date:	11/11/1	4		NY Un	restricte	ed Use	ſ			🗆 NJ 🛛 🕅 NY
		Rush (only if pre approved)		# of Days:	11/1/1	-{		NYC S	ewer D	ischarge	r. L			Other:
These samples have bee	en previously analyze	ed by Alpha		,			ANAL							Sample Filtration
Other project specific r													_	Done t
		······································					CIS, Trans		်ဂ္ဂဲ					Lab to do
							اک	κ' μ	092)					Preservation
Please specify Metals o							0	Ú,						Lab to do
r lease specify metals o							(TEE)	3	(1254,					0
								ls.	E		Ì			(Please Specify below)
ALEBATABI	Sa	mple ID	Colle		Sample	Sampler's	VCCs	Metals (cu,cx, Pb,	PCB.					
(Leis Uher(Only)) (P		·	Date	Time	Matrix	Initials		M						Sample Specific Comments e
259212014	<u>MW-14A</u>	· · · · · ·	10 28 14	11:35	GW	RC	3	1	2					····
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	MW - 13A		10 28 14	12:30	Gω	RC	3	1	2					
	MW-6R	IMSIMSD	1012814	13:20	GW	RC	q	3	6					
1200年6月秋春日	MW-18		10 28 14	14:30	GW	RC	3	1	2					
10.5	DUD.		1028/14		GW	12	3	l i	2	-				
100 C					0,00									
											<u> </u>			
				•									-	
											-		-	
				· · · ·				· ·				+		
Preservative Code: C	Container Code							1			+			
A = None P	P = Plastic	Westboro: Certification N			Con	tainer Type	V	P	A					Please print clearly, legibly and completely. Samples can
	∖ = Amber Glass / = Vial	Mansfield: Certification N	o: MA015				•				—	+ <u> </u>		not be logged in and
	G = Glass	\wedge			Р	reservative	B	IC	A					turnaround time clock will not
E = NaOH B	8 = Bacteria Cup					· · · ·								start until any ambiguities are
	C = Cube D = Other	Reinguished I	By:	Date/			Receiv	ved By				/Time		resolved. BY EXECUTING
	E = Encore	L Ool V		10/28/41	उर:य	TUR	ي ا	to	IAA			1 18%	32	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH) = BOD Bottle	(Della	J	12stil	2230	And	Gar	مكم	e	lolz	\$19	$\overline{22}$	30	TO BE BOUND BY ALPHA'S
O = Other		NAA (n. O. I.	/0		DUS I	The	UЛ	M	đ٨		12a/14	01	IC	TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30-	Sept-2013)	17	/	<u> </u>					- v			_ _		(See reverse side.)
b ,	·	·v ···································	· · · ·			 .	-		-					

APPENDIX G DMR'S AND GROUNDWATER TREATMENT SYSTEM INSPECTION LOGS

2014 PERIODIC REVIEW REPORT


2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP					
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712					
FACILITY:	CHICAGO PNEUMATIC TOOL CO.					
LOCATION:	2200 BLEECKER ST UTICA, NY 13501					

ATTN: Christopher Mullin

	MONITORING PERIOD							
1.1	MM/DD/YYYY	12.2	MM/DD/YYYY					
FROM	01/01/2014	TO	01/31/2014					

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER

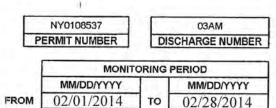
External Outfall

No Discharge

PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION					FREQUENCY OF ANALYSIS	SAMPLE
Elaurata		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS		1	
Flow rate	SAMPLE	10780	13673	(07)		******	******	******	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg. Mon. DAILY MX	ģavö	******			*****		Continuous	RCORDR
рН	SAMPLE	*****	*****		7.00	*****	7.40	(12)	0	- 1/7	gr
00400 1 0 Effluent Gross	PERMIT	2***** 2*****			6 MINIMUM	*******	MAXIMUM	SU	and the second s	Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000431	< 0.000547	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg. Mon. DAILY MX	16/d < 5		Reg Mon. DAILY AV	DAILY MX	Ug/L		Weekly	GRAB
Vinyl chloride	SAMPLE	< 0.000431	< 0.000547	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg. Mon DAILY MX	Ib/d	*****	Reg Mon DAILY AV	DAILY MX	ug/L		Weekly	GRAB
Trichloroethylene " 39180 1 0 Effluent Gross	SAMPLE	0,000414	0.001313	(26)	******	4.8	12	(28)	0	1/7	gr
	PERMIT	Reg. Mon DAILY AV	Rèq: Mon. DAILY MX	ib/d	*****	Reg Mon. DAILY AV	DAILY MX	ugA_		Weekly	GRAB
1,2-cis-Dichloroethylene 81574 1 0 Effluent Gross	SAMPLE	0.000419	0.001094	(26)		4.9	10	(28)	0	1/7	gr
	PERMIT	Reg Mon DAILY AV	Req. Mon DAILY MX	16/d	- mm	Red Mon. DAILY AV	DAILY MX			Weekly	GRAB

	I certify under penalty of haw that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and	11 1/11/11	TEL	EPHONE	DATE	
Christopher K. Mullin P.E.	evaluate the information submitted Band on my inputy of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, ince, securate, and complete 1 an aware that there are significant .		(315) 471-3920		02/13/2014	
TYPED OR PRINTED	VJOIAEDDD.	AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY	

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)


There was a violation (excursion) recorded 1/3/14 and written notification was sent NYSDEC on 01/16/14

Form Approved OMB No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

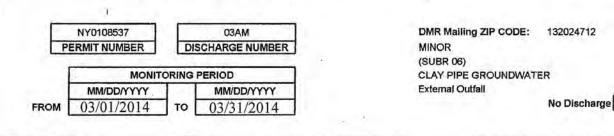
NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

DMR Mailing ZIP CODE:	132024712	
MINOR		
(SUBR 06)		
CLAY PIPE GROUNDWAT	ER	
External Outfall		

No Discharge

PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION				NO. EX	FREQUENCY OF ANALYSIS	SAMPLE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	7040	9566	(07)	******	*****		*****	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Reg. Mon. DAILY MX	gal/d	Asodaa	*****	88676X			Continuous	RCORDR
рН	SAMPLE	******	*****	*****	6.88	*****	7.26	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT	ARARA ARARA	WARREN CONTRACT	*****	MINIMUM	******	MAXIMUM	SU,		Weekiy	GRAS
1,2-trans-Dichloroethylene	SAMPLE	< 0.000282	< 0.000383	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Reg. Mon. DAILY MX	16/d < 5	AXANAA	Reg Mon DAILY AV	10 DAILY MX	ug/L	-	Weekiy	GRAB
Vinyl chloride	SAMPLE MEASUREMENT	< 0.000282	< 0.000383	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg. Mon DAILY MX	16/d		Req Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB
Trichloroethylene	SAMPLE	0.000060	0.000153	(26)	*****	1.1	2	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon DAILY MX	ib/d	*****	Req Mon DAILY AV	DAILY MX	uğ/L	(F	Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE MEASUREMENT	0.000131	0.000383	(26)	*****	2.3	5	(28)	Ō	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon DAILY MX	ib/d	Hat	Reg. Mon. DAILY AV	10 DAILY MX	ug/L	1	Weekly	GRAB


NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the	1/4 / 11/	TEL	EPHONE	DATE	
Christopher K. Mullin P.E.	system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, frace, accurate, and complete. I am sware that there are significant numbling for submitting that information including the nominity of fore and increasing the submitting.	Mille	15251	471-3920	03/17/2014	
Printing for a bonding faile information, webiding the possibility of line and imprisonment for knowing, Violations.		SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	MM/DD/YYYY	

Form Approved OMB No. 2040-0004

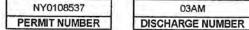
PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

 \leq

PARAMETER		QUANTITY OR LOADING		QUALITY OR CONCENTRATION				NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE	
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS		1	1.000
Flow rate	SAMPLE	9036	12893	(07)	*****	******	******		0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon. DAILY MX	ġal/ö	******	10000000000000000000000000000000000000	394883	*****		Continueus	RÉORDR
рН	SAMPLE MEASUREMENT	*****	******	*****	6.7		7.37	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT	1000 	and a second sec		6 MINIMUM	Sanci Sanci	MAXIMUM	sų,		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000361	< 0.000516	(26)	******	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon. DAILY MX	ib/d < 5	944466 " 111	Reg Mon. DAILY AV	10 DAILY MX	lign	andre and	Weekiy	GRAB
Vinyl chloride	SAMPLE	< 0.000361	< 0.000516	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg. Mon DAILY MX	- e lb/d	inne	Req. Mon. DAILY AV	10 DAILY MX	ug/L		Weekly	GRAB
Trichloroethylene	SAMPLE	0.000377	0.000629	(26)	*****	5.22	6.1	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Rèq Mon DAILY MX	lb/d	741711	Req Mon. DAILY AV	DAILY MX	Ug/L	8 1 1 1 1 1	Weekty	GRAB
1,2-cis-Dichloroethylene	SAMPLE	0.000360	0.000712	(26)	******	4.98	6.9	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg Mon DAILY MX	ib/d	i nin	Reg Mon. DAILY AV	DAILY MX	ugA		Weekly	GRAB


NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or repervision in accordance with a system designed to assure that qualified personal property gather and evaluate the information methed. Based on my incuring of the person of persons who manage the	112/11/		EPHONE	DATE	
Christopher K. Mullin P.E.	system, or those persons directly responsible for gathering the information, the information rubmitted is, in the best of my knowledge and belief, true, accurate, and complete. I are aware that there are significant		(315)471-3920		04/16/2019	
TYPED OR PRINTED	preselies for submitting take miornation, including the possionity of the and unpresenties for anowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY	

Form Approved OMB No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

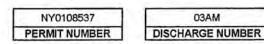
ATTN: Christopher Mullin

1

1	MONITORING PERIOD						
0.00	MM/DD/YYYY		MM/DD/YYYY				
FROM	04/01/2014	TO	04/30/2014				

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER
External Outfall	

No Discharge


PARAMETER		QUANTITY OR LOADING			Q	QUALITY OR CONCENTRATION				FREQUENCY	SAMPLE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS	EX		
Flow rate	SAMPLE	8619	17703	(07)	*****	******			0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon. DAILY MX	gal/d	*****	Parsis.	3 6 4 8 6 X	****		Continuous	RGORDR
рН	SAMPLE MEASUREMENT	*****	******		6.85		7.17	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT	*****	Address (States of	*****	6 MINIMUM	******	MAXIMUM	an		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000345	< 0.000708	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Rég. Mon. DAILY MX	16/d < 5		Reg. Mon. DAILY AV	DAILY MX	Ug/L	200	Weekly	GRAB
Vinyl chloride	SAMPLE	< 0.000345	< 0.000708	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg. Mon DAILY MX	16/d	- Shine	Reg. Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAS
Trichloroethylene	SAMPLE	0.000177	0.000708	(26)	*****	2.56	5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon DAILY MX	ib/d	*****	Reg Mon DAILY AV	DAILY MX	ug/L	01.5	Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE	0.000305	0.000708	(26)	*****	4.4	5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Reg. Mon. DAILY MX	lb/d	THE	Reg Mon. DAILY AV	DAILY MX	ugA		Weekty	GRAD

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attackments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my incipity of the person or persons who manage the	11- 1/1/	TEL	EPHONE	DATE
Christopher K. Mullin P.E.	system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, mourner, and complete 1 am sware that there are significant penalties from how thing the information including the complete 1 of form and the information for any in-	0		471-3920	05/22/2014
TYPED OR PRINTED	violuices.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

	MONITORING PERIOD						
- 5	MM/DD/YYYY	T	MM/DD/YYYY				
FROM	05/01/2014	TO	05/31/2014				

DMR Mailing ZIP CODE: 132024712 MINOR (SUBR 06) CLAY PIPE GROUNDWATER External Outfall

No Discharge

PARAMETER	1	QUANTITY OR LOADING			QUALITY OR CONCENTRATION				NO. EX	FREQUENCY OF ANALYSIS	SAMPLE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	4690	8479	(07)	*****	******	******	*****	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon. DAILY MX	<u>ġ</u> avo			*****	*****		Continuous	RÉORDR
рН	SAMPLE	*****	******		6.8	*****	7.02	(12)	0	* 1/7	gr
00400 1 0 Effluent Gross	PERMIT	****** ******	eedeedd y yn 1943 Gelegaethau yn 1943 Gelegaethau yn 1949	1.1. 244844 1.1.200	MINIMUM	Annes	MAXIMUM	SU.		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000188	< 0.000339	(26)	******	<5	- <5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Req. Mon. DAILY MX	^{1b/d} < 5	A CONTRACTOR OF A CONTRACT OF	Reg Mon. DAILY AV	10 DAILY MX	ug/L		Weekly	GRAB
Vinyl chloride	SAMPLE	< 0.000188	< 0.000339	(26)	******	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg. Mon DAILY MX	le/d		Reg. Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB
Trichloroethylene	SAMPLE	0.000328	0.001357	(26)	******	8.8	20	(28)	1	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon. DAILY MX	ib/d	******	Reg. Mon. DAILY AV	DAILY MX	UgA	A. C. S.	Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE	0.000223	0.000882	(26)	******	5.9	13	(28)	1	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Reg Mon DAILY MX	ib/d		Reg. Mon. DAILY AV	DAILY MX	up/L		Waekly	GRAB

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here) There was an exceedance in the effluent sample collected 05/14/14. Written notification was made 5/27/14 following a verbal notification immediately upon receipt of the laboratory results.

1

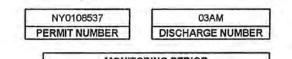
Form Approved OMB No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME: CLOUGH HARBOUR ASSOC, LLP ADDRESS: 441 SOUTH SALINA STREET SYRACUSE, NY 132024712	NY0108537 03AM PERMIT NUMBER DISCHARGE NUMBER	DMR Mailing ZIP CODE: 132024712 MINOR
FACILITY: CHICAGO PNEUMATIC TOOL CO. LOCATION: 2200 BLEECKER ST UTICA, NY 13501	MONITORING PERIOD MM/DD/YYYY MM/DD/YYYY	(SUBR 06) CLAY PIPE GROUNDWATER External Outfall
ATTN: Christopher Mullin	FROM 06/01/2014 TO 06/30/2014	No Discharge

PARAMETER	QUANT	TITY OR LOADING		Q	UALITY OR CON	ENTRATION		NO. EX	FREQUENCY OF ANALYSIS	SAMPLE TYPE	
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE MEASUREMENT	7642	11326	(07)	*****	*****	*****	*****	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT REQUIREMENT	Red. Mon. DAILY AV	Req Mon DAILY MX	gaVd	****	Lange and the second	*****	*****		Continuous	RCORDR
рН	SAMPLE MEASUREMENT	*****	*****	*E31#1	6.8	*****	7.02	(12)	0	` 1/7	gr
00400 1 0 Effluent Gross	PERMIT REQUIREMENT			1-11 (141344-) 1-11(141344-)	6 MINIMUM	******	MAXIMUM	SU,		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000306	< 0.000453		*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT REQUIREMENT	Bég Món DAILY AV	Reg. Mon. DAILY MX	16/d 2 15	200 C	Reg Mon DAILY AV	DAILY MX	ugn.		Weekly	GRAB
Vinyl chloride	SAMPLE MEASUREMENT	< 0.000306	< 0.000453	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon DAILY AV	Req. Mon DAILY MX)6/d		Reg. Mon. DALLY AV	DAILY MX	ug/l.		Weekty	GRAB
Trichloroethylene	SAMPLE MEASUREMENT	< 0.000306	< 0.000453	(26)	*****	< 5	< 5	(28)	· · 0	1/7	gr
39180 1 0 Effluent Gross	PERMIT REQUIREMENT	Reg. Mon DAILY AV	Reg: Mon DAILY MX	ib/d	XuxX+X	Req Mon DAILY AV	DAILY MX	, ugA		Weekty	GRAB
1,2-cis-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000306	< 0.000453	(26)	*****	<5	< 5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT REQUIREMENT	Reg: Mon DAILY AV	Reg Man Sale DAILY MX	16/d_	tauni .	Red Mon DAILY AV	DAILY MX			Weakly	GRAB

	I certify under penalty of law that this document and all attachments were prepared under my direction or approvision in accordance with a system designed to assure that qualified personal property gather and evaluate the information much attack and on my knowing of the person or persons who montait the		TEL	EPHONE	DATE
Christopher K. Mullin P.E.	system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant information when the second belief, true, accurate, and complete. If an aware that there are significant)471-3920	
TYPED OR PRINTED	violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	MM/DD/YYYY


1

OMB NO. 2

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

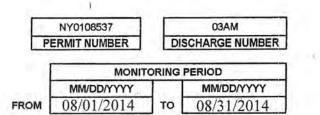
NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

- 1	MONITORING PERIOD							
	MM/DD/YYYY		MM/DD/YYYY					
FROM	07/01/2014	TO	07/31/2014					

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER
External Outfall	
	H- BL-L

No Discharge


PARAMETER		QUANT	QUANTITY OR LOADING		QUALITY OR CONCENTRATION				NO. EX	FREQUENCY	SAMPLE
	8- Just -	VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	7422	9230	(07)	*****	******	******	******	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Reg. Mon. DAIEY AV	Req. Mon. DAILY MX	ğal/d	daabire 		rentix	******		Continuous	RÓORDR
рН	SAMPLE	*****	*****	*****	6.58	*****	6.72	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT		а ранан (1921) 1927 - Алариан (1922) 1927 - Алариан (1922) 1927 - Алариан (1923)	nal ainn i ss Talainn an talainn	6 MINIMUM	Jan 161	MAXIMUM	SU.	設備時に	Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000297	< 0.000369	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon. DAILY MX	16/d. < 5	*****	Reg Mon. DAILY AV	DAILY MX	Ug/L		Weekiy	GRAB
Vinyl chloride	SAMPLE	< 0.000297	< 0.000369	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Reg. Mon DAILY MX	ib/d		Reg Mon DAILY AV	DAILY MX	ug/L		Weekiÿ	GRAB
Trichloroethylene	SAMPLE	< 0.000297	< 0.000369	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Req. Mon. DAILY MX	ib/d	*****	Req Mon. DAILY AV	DAILY MX	Ug/L		Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE	< 0.000297	< 0.000369	(26)	*****	<5	< 5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Req: Mon DAILY AV	Req Mon. DAILY MX	ib/d	11111	Reg. Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and	1/1/1	TEL	EPHONE	DATE
Christopher K. Mullin P.E.	evaluate the information submitted. Based or my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and benef, true, accurate, and complete. I an aways that there are significant	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	10401	471-3920	08/25/2014
TYPED OR PRINTED	violations.	AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

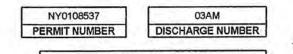
DMR Mailing ZIP CODE: 132024712 MINOR (SUBR 06) CLAY PIPE GROUNDWATER External Outfall

No Discharge

PARAMETER	The second	QUANT	TITY OR LOADING		G	QUALITY OR CON	CENTRATION		NO. EX	PREQUENCY OF ANALYSIS 99/99	SAMPLE TYPE
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	9095	12839	(07)	*****	******	*****	*****	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon. DAILY MX	ġa/d		- Person	2 Parties	*****		Continuous	RCORDR
рН	SAMPLE MEASUREMENT	*****	*****		6.68	*****	7.2	(12)	0	• 1/7	gr
00400 1 0 Effluent Gross	PERMIT	*****	anderik i ryystych A	*****	6 MINIMUM	*****	9 MAXIMUM	SU,		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000364	< 0.000514	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Reg. Mon. DAILY MX	^{Ib/d} 5	*****edenta	Reg. Mon. DAILY AV	DAILY MX	Ug/L		Weekly	GRAB
Vinyl chloride	SAMPLE	< 0.000364	< 0.000514	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg. Mon. DAILY MX	- b (byd	Ni	Reg. Mon. DAILY AV	DAILY MX	υgΛ		Weekly	GRAB
Trichloroethylene	SAMPLE	< 0.000364	< 0.000514	(26)	******	< 5	< 5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Rèq Mon DAILY MX	lb/d	*****	Reg. Mon. DAILY:AV	DAILY MX	ugA.		Weekty	GRAB
1,2-cis-Dichloroethylene	SAMPLE	< 0.000364	< 0.000514	(26)	*****	<5	< 5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Reg Mon. DAILY AV	Reg Mon DAILY MX	lb/d		Reg. Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the	11. 11 11/1	TEL	EPHONE		DATE
Christopher K. Mullin P.E.	system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete I am aware that there are significant produces for submitting false information, including the promitibility of fina and imprime ment for bonum.	Mr. K. Mill		471-3920	09/	22/2014
TYPED OR PRINTED	violation.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	M	M/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)


Form Approved OMB No. 2040-0004

di.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP	
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712	
FACILITY:	CHICAGO PNEUMATIC TOOL CO.	
LOCATION:	2200 BLEECKER ST UTICA, NY 13501	

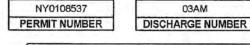
ATTN: Christopher Mullin

	MONIT	ORING	PERIOD
1.11	MM/DD/YYYY		MM/DD/YYYY
FROM	09/01/2014	TO	09/30/2014

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER
External Outfall	
	No Discharge

PARAMETER		QUANT	TITY OR LOADING		(QUALITY OR CON	CENTRATION	- 11	NO. EX	FREQUENCY OF ANALYSIS	SAMPLE
	1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -	VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	7496	10327	(07)	******	*****		******	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon. DAILY MX	gava	4445**	earth.	248448	*****		Continueus	RCORDR
рН	SAMPLE	*****	******	*****	6.9		7.24	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT	*****			6 MINIMUM	******	MAXIMUM	SU		Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000300	< 0.000413	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon. DAILY MX	^{ib/d} < 5	ataxas	Reg Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB
Vinyl chloride	SAMPLE	< 0.000300	< 0.000413	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Reg. Mon. DAILY MX	ib/d	- Anti-	Reg Mon DAILY AV	DAILY MX	ug/L		Weekly	GRAB
Trichloroethylene	SAMPLE	< 0.000300	< 0.000413	(26)	******	< 5	< 5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Rèq Mon DAILY MX	lb/d	X123113	Reg Mon. DAILY AV	DAILY MX	ugA		Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE	< 0.000300	< 0.000413	(26)	******	<5	< 5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Req: Mon. DAILY AV	Req Mon DAILY MX	ib/d	mmi	Reg. Mon. DAILY AV	DÁILY MX	ug/L	部設計	Weekly	GRAB

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and	11/2 1/2	TEL	EPHONE	DATE
	reprivation in accordance while any designed to make an account of property generates and evaluate the information submitted. Bared on my inquiry of the person who persons who makes the system, or those persons devely responsible for gathering the information, the information submitted is, to the best of my knowledge and behief, these, accurate, and complete. It muses we that there are significant	MIN	(315))471-3920	10/24/2014
		SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY


COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

Form Approved OMB No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

4

	MONIT	ORING	PERIOD
	MM/DD/YYYY		MM/DD/YYYY
FROM	10/01/2014	TO	10/31/2014

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER
External Outfall	

No Discharge

PARAMETER	190	QUAN	TTY OR LOADING QUALITY OR CONCENTRATION		QUANTITY OR LOADING		QUALITY OR CONCENTRATION				FREQUENCY OF ANALYSIS	SAMPLE
	8	VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS	1000	1.75.4	1.000	
Flow rate	SAMPLE MEASUREMENT	7683	14069	(07)	#1444A	*****	*****	*****	0	99/99	r.c.	
00056 1 0 Effluent Gross	PERMIT	Req. Mon DAILY AV	Req. Mon. DAILY MX	gal/o	******* 		Sandax.	PARCES		Continuous	ROORDR	
pH	SAMPLE MEASUREMENT	*****	******		6.74		7.25	(12)	0	1/7	gr	
00400 1 0 Effluent Gross	PERMIT	in 1911 - Artan 1912 - Artan Arabaras 1912 - Artan	**************************************	******	6 MINIMUM	******	MAXIMUM	SU		Weekly	GRAB	
1,2-trans-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000307	< 0.000563	(26)	******	<5	<5	(28)	0	1/7	gr	
34546 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Req. Mon. DAILY MX	1b/d < 5		Reg Mon. DAILY AV	10 DAILY MX	ign.		Weekiy	GRAB	
Vinyl chloride	SAMPLE	< 0.000307	< 0.000563	(26)	*****	< 5	< 5	(28)	0	1/7	gr	
39175 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Req Mon DAILY MX	lb/d	shin	Reg. Mon DAILY AV	DAILY MX.	ug/L		Weekly	GRAB	
Trichloroethylene	SAMPLE	< 0.000307	< 0.000563	(26)	*****	< 5	< 5	(28)	α	1/7	gr	
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon DAILY MX	lb/d		Reg Mon. DAILY AV	DAILY MX	nã\(r		Weekly	GRAB	
1,2-cis-Dichloroethylene	SAMPLE	< 0.000307	< 0.000563	(26)	*****	<5	< 5	(28)	Û.	1/7	gr	
81574 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon DAILY MX	ib/d	1045	Reg Mon DAILY AV	DAILY MX	ugA		Weekly	GRAB	

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under prenaty of low that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and	11411.	TEL	EPHONE	DATE
Christopher K. Mullin P.E.	evaluate the information submitted. Based on ny inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information rubmitted is, to the best of ny knowledge and beingt, fuce, accurate, and complete. I am aware that there are significant usualities for submitting failes information. Including the possibility of fice and imprisonment for knowing	A REAL PROPERTY AND A REAL	(5151	471-3920	11/25/2014
TYPED OR PRINTED	preserves for such sung take miornamion, archioling the possioning of the and imprisonment for knowing violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT	AREA Code	NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

Form Approved OMB No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

NY0108537 03AM PERMIT NUMBER DISCHARGE NUMBER

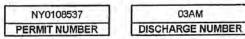
4.

	MONITORING PERIOD							
	MM/DD/YYYY		MM/DD/YYYY					
FROM	11/01/2014	TO	11/30/2014					

DMR Mailing ZIP CODE:	132024712
MINOR	
(SUBR 06)	
CLAY PIPE GROUNDWAT	ER
External Outfall	
	No Discharge

ATTN: Christopher Mullin

PARAMETER	and the second sec	QUANT	TITY OR LOADING	QUANTITY OR LOADING		QUALITY OR CONCENTRATION				FREQUENCY OF ANALYSIS	SAMPLE
	8	VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS		1.00	
Flow rate	SAMPLE	8598	9727	(07)	*****	*****	*****	*****	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Req. Mori. DAILY AV	Req. Mon. DAILY MX	gavo	****	*****	Sentex	***		Continuous	RCORDR
рН	SAMPLE	*****	*****	-	6.66	*****	7.86	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT	is pill the second	n de la constante de la consta	******	MINIMUM	******	MAXIMUM	SU	4 - L	Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000344	< 0.000389	(26)	*****	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT REQUIREMENT	Req. Mon DAILY AV	Reg. Mon. DAILY MX	1b/d < 5	Constanting	Reg Mon. DAILY AV	DAILY MX	ug/L		Weekiy	GRAB
Vinyl chloride	SAMPLE MEASUREMENT	< 0.000344	< 0.000389	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon DAILY MX	lb/d \cdots		Req. Mon. DAILY AV	DAILY MX	ug/L	-	Weekiy	GRAB
Trichloroethylene	SAMPLE MEASUREMENT	< 0.000344	< 0.000389	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg. Mon. DAILY MX	lb/d	******	Req Mon. DAILY AV	DAILY MX	ngA-		Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE MEASUREMENT	< 0.000344	< 0.000389	(26)	*****	<5	< 5	(28)	<u>0</u>	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Reg. Mon. DAILY MX	Ib/d	,,,,,,,	Reg. Mon. DAILY AV	DAILY MX	ug/L	1000	Weekly	GRAB


NAME/TITLE PRINCIPAL EXECUTIVE OFFICER	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my incipity of the person or persons who manage the	11. 11 11	TEL	EPHONE	DATE
	system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I are aware that there are significant penalties for submitting false information, including the nomiliable of fine and innerteement for knowledge.			471-3920	12/19/2014
TYPED OR PRINTED	positions of anomalog same anomalion, as should are positionary of the and inpresonances for anomaly Violations.	SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR	AREA Code	NUMBER	MM/DD/YYYY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME:	CLOUGH HARBOUR ASSOC, LLP
ADDRESS:	441 SOUTH SALINA STREET SYRACUSE, NY 132024712
FACILITY:	CHICAGO PNEUMATIC TOOL CO.
LOCATION:	2200 BLEECKER ST UTICA, NY 13501

ATTN: Christopher Mullin

1	MONITORING PERIOD								
	MM/DD/YYYY		MM/DD/YYYY						
FROM	12/01/2014	TO	12/31/2014						

DMR Mailing ZIP CODE: 132024712 MINOR (SUBR 06) CLAY PIPE GROUNDWATER External Outfall

TELEPHONE

AREA Code

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT (315) 471-3920

NUMBER

No Discharge

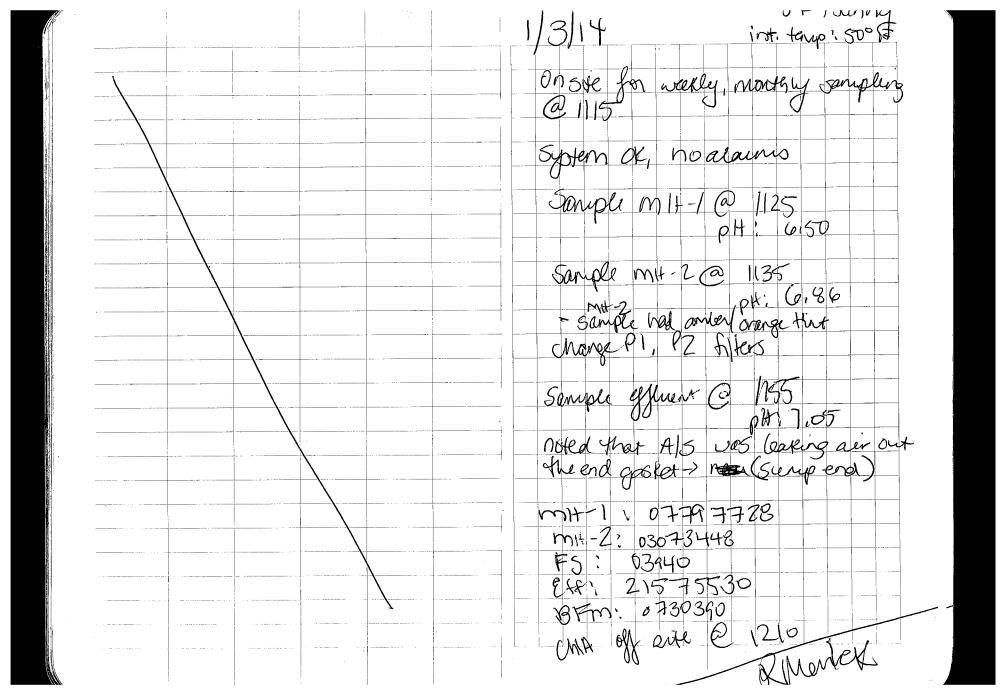
PARAMETER	10 ⁸⁸	QUAN.	TITY OR LOADING	TY OR LOADING QUALITY OR CONCENTRATION			NO. EX		SAMPLE		
		VALUE	VALUE	UNITS	VALUE	VALUE	VALUE	UNITS			
Flow rate	SAMPLE	13513	18853	(07)	*****	******	******	******	0	99/99	r.c.
00056 1 0 Effluent Gross	PERMIT	Reg. Mon. DAILY AV	Req. Mon. DAILY MX	gavð	***** 			*****		Continuous	RCORDR
рН	SAMPLE MEASUREMENT	*****	******		6.71		7.42	(12)	0	1/7	gr
00400 1 0 Effluent Gross	PERMIT			1.4 (376) 376 (1.5) (1.5) (2.5)	MINIMUM	44444	MAXIMUM	SU	語識で	Weekly	GRAB
1,2-trans-Dichloroethylene	SAMPLE	< 0.000541	< 0.000754	(26)	******	<5	<5	(28)	0	1/7	gr
34546 1 0 Effluent Gross	PERMIT	Reg Mon DAILY AV	Req. Man. DAILY MX	ib/d < 5	ATTAC	Reg Mon. DAILY AV	DAILY MX	ug/L	444 - F	Vveckiy	GRAB
Vinyl chloride	SAMPLE	< 0.000541	< 0.000754	(26)	*****	< 5	< 5	(28)	0	1/7	gr
39175 1 0 Effluent Gross	PERMIT	Req Mon DAILY AV	Reg. Mon DAILY MX	Ib/d	11114	Reg. Mon DAILY AV	DAILY MX	uğ/Ļ		Weekly	GRAB
Trichloroethylene	SAMPLE	< 0.000541	< 0.000754	(26)		< 5	< 5	(28)	0	1/7	gr
39180 1 0 Effluent Gross	PERMIT	Reg. Mon DAILY AV	Reg Mon DAILY MX	lb/d	*****	Reg. Mon. DAILY AV	DAILY MX	ug/L		Weekly	GRAB
1,2-cis-Dichloroethylene	SAMPLE	0.000422	< 0.000754	(26)	*****	3.9	< 5	(28)	0	1/7	gr
81574 1 0 Effluent Gross	PERMIT	Req. Mon. DAILY AV	Req. Mon. DAILY MX	lb/d	, must	Reg Mon. DAILY AV	DAILY MX	ugA.		Weekly	GRAÐ

COMMENTS AND EXPLANATION OF ANY VIOLA	TIONS (Deference all attachments have)	

I critify under penalty of law flat this document and all stackes ents were prepared under my direction or repervision in accordance with a system designed to asure that qualified personsel property gather and evaluat the information submitted. Based on my ioquity of the penson or persons who manage the system, or those persons directly responsible for gathering the information, the information pather list of to the best of my knowledge can belief, true, courses, and complete. I ma sweet that there are significant penalities for submitting fastes information, including the possibility of fine and imprisonment for knowing violations.

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

Christopher K. Mullin P.E.


TYPED OR PRINTED

DATE

MM/DDTYYYY

01

21/2015

1/7/14 On site @ 1600 for weekly Samples -> 7°F outside no alarms Changed PI Sampled Effluent @ 1610 PH: 7.40 Sampled MH2 @ 1615 MH1 7813085 MH2 3073448 Sump 3940 Effluent 21615615 BFM 734890 offsite a 430pm

1/15/2014 On site @ 0815 for weekly Samples and Jib crone foundation oversight No alarms, outside temp 36°F inside temp 49°F Changed PI+P2 Hampled effluent @ 830 Am 7.08 Sompled MH2 @ 837Am MH1 07854322 MH2 3073448 Sump 3940 Efflicent 21711899 BFM 745700 Steve Cronk and Clark Sutherland and mike Noble on site @ 900 to install foundation for gib crane

1/15/2014 Continued Called Meghan Platt and Chris Mullin (910 Am to discuss boation - feish with bern as close to wall as possible while still allowing crane to reach the center of an shipper tower Called Chris Mullin @ 1030Am to discuss posibility of ulitizing bern as port of concrete pad due to size At and space restrictions Suggested cutting instead. unother usue arose with spec us field limitations, CHA to talk W Paragon and design engines lyone proceeding work on Site restricted until receive final word on new decision/option (0) 1100 AM at 1215 Paragon received a call from their loss calling the project for the day

115/2014 Cont and were instructed to pack up everything from site. all affsite (w) 1230 Astitler 1/20/14 On site @0700 with Steve Cronk and Mike 1 loble from Brogon Environmental for jib come po installation and weekly sompling Begin scarifying @0715 910 alarms, inside teny @56°F Changed Pl Dampled MHZ @ 0730 Sampled Effluent @0725 pH 7,09

1/20/14 cont. MHI 7883503 MHZ 3073448 Samp 3940 Effluent 21780266 BFM 753370 Placed group and chilled holes, placed relan Clemente France Concrete on Site @ 1400 - offsite 1505 Cleanup process begin @ 1530 including continuing to settle and form pad. Finished concrete mp/stain outside 6BC

1/30/2014 On site @ 1300 for weekly Ampenia. No alarms inside temp@ 58°F Changed PITPZ Sampled MHZ@ 1340 Sampled Effluent @ 1335 pt 7.00 MHI 7914587 mH2 3073448 3940 Sump Effluent 21865362 762900 BEM

2/6/14 On site for monthly samples no olarms, inside temp@580F Changed Pl Sampled MHI@ 1530 PH 7,03 Sampled MH2@ 1536 PH 10,85 Sampled Effluent @ 1542 _____pH. 6,88 7930230 MH MHZ 3073448 Sump 3940 Efflight 21911699 BFM 768090 Dome an is leaking from from between the trap appsile Con 1350

2/13/14 On site a 1300 for weekly sampling w Greg - CHA Untside weather snowy inside temp 50% no alarms Changed P/+P2 Sampled MH2 @ 1330 Sampled Effluent @ 1335 pH 7,26 MH1 7944062 MH2 3073448 3940 Sump Effluent 21953896 772820 BFM Ran system to calculate flow I min Bosec. BFM, 772820 BFm, 772850 Effluent, 21953896 Effluent 2 21954159

B/13/14 Cont. EQ tank, 1350 EQ tank 2 1300 Took pictures of operations for ogm manual Set of EQ low alarm Pumped mHI + MH2 to reset EQ low glarm off off site NHDC

2/19/14 On site @ 1221 for weakly Sampling. Noalarms outside weather - overcast 34°F inside temp 58°F Changed PI Sampled Effluent @ 1235pm pH: 7.08 Sampled MH2B1240pm air Pressure @ 13 psi MH1 \$7954755 MHZ 3073448 Effluent 21985951 5ump 3940 776440 BFM Upsite @ 1255pm

1 JUNNY 3/4/14 interior temp 45° On site @ 730 for J16 crane install + monthly sempling 227/14 On site (2) 1330 for weekly samples outside weather: overcast, snowy, 23°F inside temp: 52°F MH-11n high alarm, MH-Cu no alarms auto mode but not planping. Manuale Changed PI +P2 turned in MH-1 pump Hir Stripper pressure @ 13# 9psi -mt+1 alam will not clear perior not on. PEC on site to discuss site maintenance Sampled MHZ@ 1345 Issues and install crane Fred - Beaton 315 269 2812 Sampled Efflient @ 1350 pH 7.09 Need Erger to more conduct above vane location. MHI 7983535 MHZ 3073448 Sample MH-2@ 1330 Sump 3940 Efflivent 22062476 pH! (0,63 Sample mit-1 @ 1345 BFM 785110 pH! 6.73 Installed plugged in GFCI for sump pump outlet Change of filter Sample efferent @ 1400 offsite 1400 A. Hetter 7.00 BFM 788330 m(t) 799/626m1+-2 3073448 EPP 22091002 @ H3 mende P-5 2940

3/12/14 inside: 6207 snow 00 FSlinny Int tomp SBUE 3614 on site @05745 CHA in site @ 0755 to meet PEC OttA on Stefa electrial modefication and Engly to perform side maintenance and crane base instacl as well as perform weekly sampling (Donnie) Engler Electric on site to move System OK, no ta alarno, System electrical conduct between ous duct sinked off to allow maintenence work. potable water line to be relocated and transformer. transformen to be raised MH-1 alarm on 1 (Edder) Paragon raises water line (no cutting) Engler turned off power and raised off site ~ 1030 Am (2guys) the corduit. When power restored Engler coeste works on raising transformer MH.) high alarm did not come back on. -CittA changes PI, PZ CHA applied labels to effluent, mitz pols Geaton Industrial on sike, 1300 Jim from Engler stopped out to check in to crotall intercare 6ase/ mast on themes Still having thon contal cleanance isus w/transformen near top of ALS. 12'z" from pad Marstomer deavance and Mike Neilson (PEC) (1474 trimed headers back down to normal levels System back on @ 1335 Crane anchor boets need to cure MH-1 high alarm (monutury puncom 144) for 24+ hours. -menucly pump sump -> drained potable CHA off Oute 1420 Fartyn March water the "into' sumpeartier.

UILING WALL rain 1500 min 31 03/20/14 Intenir temp: GZOF (Bb CAA on site C135 to wait for Beaton Sampled Anth- MH-Z@ 1345 to prior crane ustall Sampled effluent @ Blaton on site @ 1430 (change homplaned Engler at down Scrap steel by typ off site @ 1515 No alarms, system DK - Changed PI filter of crane Air Stripper gauge neads 12-17 in 1/20 Sampled MH-2@ 1530 Sample efficient @ 1400 pH: 7,37 Sampled Outer Effluent C 1545 pt: 6,70 MH-1 high aloum cleaned BFM 803880 MH-1: 3017732 MH1 3052457 3073448 MH-2! 3073448 (no change) VhH-2 no change BFM, 794920 Effluent 22228574 P3: 3940 Effluent: 22149286 atte C 1355 øh CABA CHA and Engler off sube @ 1425 Men Lothy Mernel

3/25/14 Nont. 3 25 2014 On site @ 1300 for weekly 514 Pumped EQ Yank oburn to low sampling and air stripper alarm because of upcoming cleaning inside temp 62°F power was hing. Outside weather Sunny ~ 34°F System turned off and procontrol removed for update @ 1357 Uir Prossure @30 psi One alarm- mHI high turned on MHI Manually Removed and trays to dry and Charged PI +PZ tomorrow return Sampled MH2@1326 off site @ 15/5 Sampled Effluent @ 1328 pH 6,90 8053774 MHI mH2 3073448 Sumo 3940 Effluent 22257222 BFM 807130 K. Merrick, C. Mullin from CHA Fred from Beaton, Bruce and Peter M. from Paragon also on

3/26/2014 On site (0800 11 Paragon for air stripper cleaning Dave and Peterm, Bruce and Steve from PBC "Removed form from tray tops "Placed poly along wall to protect electrice · 315-525-8236 Chris Holovitch with Soggs Realty " I sing 18" drill bet - moved up to 5/32" bit ble noticed sm. ning w/ 1/8" was left Braton on site @ 1225 to cut excess scraus and prinstall the stop. on the crane offsite @1300 offsite (1500

3/27/2014 On site with Peter M, Bruce and Static from PEC at sam to continue air stripper maintenance. Placed new form for sealing between new trays using spray glue adhesive on all trays Couldn't get the Ettluent pipe apart to check for build up due to it being glued together. Removed brass fitting on top and efficient port from bottom to look for scale or build up. Little minimal found. Put back logether. Checked air intake - screen was clean of debris Took out concrete aurb but Tound rebas - stopped Will continue Morday offsite 1400 D.

M YOK 3/28/14 @ 1420 - Wide 3/31/14 Utta on site to reinstall Onsite @ 800 - overcast mid 205 pro control box inside temp 60°F procontrol and new modern 3alarms - mill + mill high, installed Sump high Systen back up @ 1508 PEC on site (2080) for EQ tank & pldg clain. tightened inlet values to air turned in mH1 manually as stripper, can the system -no akoms MH-1 and MH-2 EttA whe on Turned on air stripper and EQ tank Als and eff punips turned on water leavent out of influent pipes to top of Als manually to train for cleaning mis Mullin ansite @0700 60 discuss planned work and see what Als and eff pumps truned of has been completed so far. CHA well plasses on Monday offecter (ac 1000 Changed PI+P2@ 0930 MH-1/MH-2 EttA are off on Pumped 50 tank completely for cleaning - low glarm never turned MA of sole @ 1540 on - may be fixed during float Changeout. - KMenck

3/31/14 cont.

Iried to remove Floats from EQ tank but were unsuccess ful, - Can't pull up to the post/tree and pump don't 'tit through together, can't angle and frop to the other side blo the tree is too long and can't get enough of an angle (still 3" above tank) Called C. Mullin @ 1140 - tob to put back together and will discuss Further procedures another day, continue with floor cleaning. Noshad the floor Inside the perm and Scraped all excess/old caulth from

the worden section. Cleaned out the

but no glarms Called K, Merrick - procontrol had Switched to manual mode - fixed by turning to automatic - MHI + MH2 high alarms on - Pumped MHI & reset -alarms 86 PEC used preumatic hammer to chip any remaining concrete curb. aulked curb (on the inside) along The entire perimeter of secondary Containment Opened air stripper effluent to look For any scale build up minimal found Painted Floor and finished ramp

4/1/14 Sunny ~30°F inside 56°F On site @ 750 w/PEC to

Air stripper exhaust leaking

Tank water level (2100 gallons

Seal (paint) Caulk Floor.

water

System turned on auto.

sump

offsite (a) 1445 J. Litter

4/2/2014 Un site for monthly sompting Weather Sunny low 50-5 inside temp 649F 2 alarms - milt mit 2 high Ran both Changed P/+P2 air Stripper @ 15ps; Sampled MH28 1336 pt. 6,64 Sampled Effluent @ 1403 pH 678 7,17 Sampled MHI @ 1340 p# 6.85 MH1 8058094 MH2 3073448 Sump 3940 Effluent 222 65 270 BFM 808050

4/3/14 On site (1) 14/30 because of alarms received through Pro Control Sunny high 405 temp inside @72 - turned heaters down low 3 a larms - mHI & mH2 high tank high FQ filter pressure high bag Changed PIXPO EQ tank high alarm off Aprile @ 1505

4115114 4/+0/2014 On site @ 1305 for weekly CAA ON Site 0905 for response to alarmo and werkly sampling Samples MAT, MIH 2, Flow Sterip high alarms Sunny mid 40°, Inside temp @ 58°F CITA manually pumps down the same to Usar alain . Sungt flow nieter not reading Balarms, MHI + MH2 high, sumphigh Pumped Sump - hit reset Charge At bag filter - no bag fite charge Charged PIT P2 - due to lots inplace fitter was barely used of tunoff and melt causing Noe mit-1 flow rate appears less than build up Nounal (prev avg 5060 gpm) por 30-35 Gg Sampled et Aluerter 1325 - Noted that EAP flow sensor was not pt/ 6,96 working, took out sensor + cleaned -Dampled MH28 1340 started working Kandry, Second Sample brown + murkey MH1 08/18017 - had track a pock that to the F/. So Used the value to prevent Each flow hun MHZ 3073448 mit-2 junchop, will have check value Assessed for integrity Sump 3940 Effluent 2235 8486 Sample Sample MH - 2 @ 1035 (MH) 8119975 Effluent @ 1050 BFM 8/9270 pH: 6.98 offsite Con 1350 MHZ 3073443 FS 3940 8Fm 319540 Eff. 22360452

On site @ 1400 - Cloudy, rain, 60% ATA ON 540 @ 0930 for alaun inside temp & 60% Neponse 4 alarms- mHITMH2 high alarm, MH-1, M/1-2, EQ, Beg Filter high floor sump, low EQ tank pressure high Water on floor - Plugged in Charged A, PZ Milters Sump & turned on mHI MHZ pump / 15hts blinking, numer yrem of while puniping EQ Fark At reset - Sump high and low EQ plarms off Charged Pl down your problem stopped Sampled MH2@ 225pm Manually puniped mit-1 Sampled Effluent@ 230pm montored the system for a bit. CAM off SUR @ 1040 ptt Lergi MHI 8189259 MH2 3073448 Sump 3940 X Menck Etekient 22484378 BFM 834100° Nonitored system -no sign of lacks offsite 1445

4/25/14 att insite 1340 Floor sump, mlt-1, mt-2, EQ hi CHA on site @ 09/5 for sanepling alarms and pro control Swap out Sung - puniped stimp. Source of water no alarms, system OK not conclusively determined no major water ponded w/in beim changed out pro control charged PI, PZ filters offer punping samp system was turned in and monitored watchedsystem > Als did not switch Manually Tured on Als Sampled MHZ @ 1040 No visible leaks identified Turned off heavers for Spring/Summer Sempled EFF @ 1048 p)+1 6,97 manuely purped sump (some duppingtron PI, PZ, bucked from Inder MH-2) Cront MH-1 ERRADTO SUC MH-2 NC 30734/B 000 m sute @ 1230 3940 115 55 95F 22567575 9 Fm 84350

5/8/2014 On site 1335 for monthly samples 4 alarms, MHL & MHZ high high Go ton Sump level, low EGtonk Pumped sump - alarm off Pumped MHI + MHZ into GQ, EQ alarm off Outside temp @ 70°F Aunny Inside temper 76°F Water on floor Changed PI filter Sampled MHI@ 1355 pH 7,14 Sampled MH20 1400 pH 6.93 Sampled GFAluent @ 1405 pH 6,80 MH1 8270224 MH2 3073448 Effluent 22635343 Sump 3940 3FM 851180

5/13/2014 On site (e) 0800 with HEC for site work weather overcast 68°F Inside temp 690F -D falarms- high to tank, high sump, MH14 MH & high Lump drain full of water EQ tank filles to the very top PEC used vac truck to pump water from MHI prior to confined space entry CHA ran air stripper and effluent to pump water from 6Q Bank (prior to PEC contined space entry) high EQ & high sump off PEC is having a hard bine getting water out of MH 2 par, also pumping MHI with system - continuing topump PEC began brush clearing @ 0930 finished @ 1100, still too much water in Mitl

5/13/14 Cont. Continuing pumping mul PEC took apart Ball value for sump pipe and checked for Sediment, none tound. No water in sump Spope with Chris Mullin @ 1130 to figures issues with MH). Well continue trying to pimp with vac truck and system once more also discussed alondoment of det flast stem to place new in manhole on EQ tomb. PECues concerned with stability and suggested cutting a loteness manhale CM authorized To cut larger hale in place of current Stem rather than new hole, W. Pec to oder new float for high alarm and coordinate time to replace.

5/13/2014 conb Connected new MHI pump of 1300, white to make, rea to yellow, Usich to black, actions green to green Put all pieces togethes and pupper breaker, us king MHI pimp 2 Checked Simp ping flow meter - had some debus and/or sedment, cleaned out and checked - is now working (Langed P/+P2 PEC Aprile @ 1415 septem to auto timed affrite 1430

Weening 10 60-1-5/21/14 5/14/2014 CHU on site @ 1130 (a) 1330 CHA on site for weekly sampling SUCCESS performed pro control swep out outpice weather sunny 83°F Sigstem was in manual mode w/mH1, mH-2 high alars inside temp \$3°F 2-alarms MHI + MH > high cleaned gastets on P2 changed PI, PZ Charged Pl Sampled MH-2@1235 Sampled MH2 & 1350 1245 sampled A y C R2184 6.37 Sampled effluent @ 1355 p.H. 7,02 Change PI 2 200 (high pressure) System nerring in Arito MH1 8279212 MH - 828177 Eff 22673359 MHZ 3073448 8FM-85510 MH.2- Nochange Sump 3941 off site @ 1330 Effluent 22671671 BFM 855310 CHA offerte a Min Merce 1415 .t.Mon

1000 001 5/27/14 5 23 14 CHA on Site @ 0930 for Sampling CHA in site @ 13/5 for alarm reginse mH-1, mH-2, EQ, PS high alarms BF high pressure, MH-1, MH-2, high Changed PI, PZ Gag Filters (3 times) daims. Charged PI, PZ turned system book to auto then let system non manually punper sump, Flas meter read for k moment then stapped working again. Suspect #5 Nater was from learling beg filter anothers (note not Kalling upon departure 5/23) Sampled MH-20 10K5 Muc Sampled Efficient @ 10495 charge PIPH: 6.82 OthA of 1322600 MH-1 3073448 SHEE MHZ Eff 22694136 115 FS 3942 861530 9m

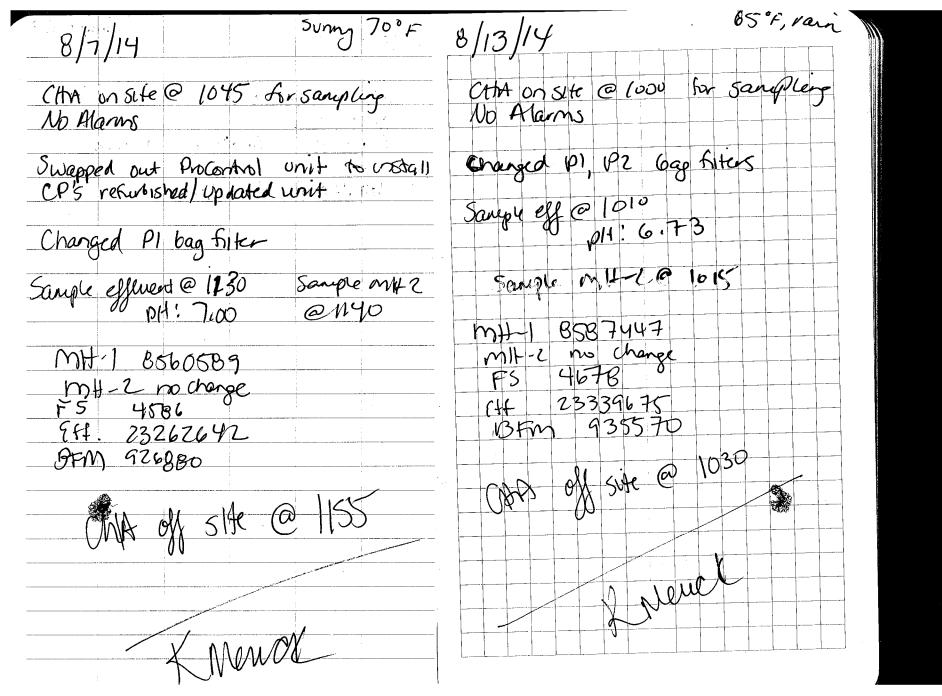
whaly 600 5/28/14 CHA ON SHE @ 1000 for alarmas mH1 mH 2 EttA on CHA on 5210 @ 0850 for alarm response. mH1, mH 2 EttA Also Pricontrol indicated high bag Alter pressure > but alarm not MHJ, MIT-2, FS high alarms Trppel Charging fittes to keep System OK over Manually peripsinip the weekend Charge PI, PZ bog filters MH-2 plenip lights vereblenking wendte Eo high alarn carren will call Eos Re: First issue Change PI Change P1, P2 Charged PI, PZ MIt I high alarm off @ Do35 Noted MH-1, PI on but no flow when only that princip in CAM off site @ 1.115 (hange PI off sure a Mar

6/4/14 6/4/14 cont (P2) Scruple efficient @ 1030 and making w/ NYS DEC pH: 6.98 Charge PI, P2 M1+-1 83642.85 MH 2 No Change DEC VISIT Phichard 672420 BFM Effuent 22784743 all set, he checked about EQ server P3 3942 I told him it is in the weaks Also I explained the flormater calibration of 5)HC (15U pouro Korence Checked out face -> all good MH-1 PI, MH2 P4 pumps were an but no now -> making a clicking noise Calibration Calcs - (872400-872370) 7.48052 allibrook on neger Sample MHIL @ 1005 flow BAM 1 min 52 sec (112 see) ph: 7:20 7.15 1.78 = (1500 - 1300) gal Sample Miz @ 1015 from EQ 6.77 W2 sec oh: 2.35 (22784284-82784518)gal Latitude BFM flas Eff (87240-872370) -749052 M2 sec 112 Jec >

6914 6/6/2014 OttA on 640 @ 0915 For alarm response (Melline on Sire & BAM and weekly sompling PAnnel Somes: Oal, MEI Auro, P2 ANTO, P3 Auro, P4 aff, GA & B Auro Bloose Aoro, Sup Aoro MH-1, MH-2, ER high aburns MAI HILA, MAZAILI, Floor Somp Hy floor sump high daim on floor semp pump not working, appages P1 2609 HR, P2 3824, P3 8621, P4 19786 to be deal, calls to multin -> will contact - manually bailed water from scorp to and Smp 3073 Stored ~ 46 gall in 55 gal steel drum Strang Drip Seen And STRIPPION EXHADST AIR Todolo under filter Stops anarged PI, P2 filers @ 1115 Sample MH-2 @ 1130 EQC 1300gel Sampled Effluent @ 1145 m+1 0377054 (26338) 38270) 1) Sumptimpos, Roson Borron INOPSRATIUS 2) MHI Flow SENSOR INSTANGO UPS. DE DOUR MHZ 30734418 (39377/198277) RE INSTAllos "/ APRaces up Direction 3942 (30731) Flow RATE DEPLAYOD @ 80-90 gpm 228 8098 AF BERS Bross Meter 0872760 of 876160 SPM STTZ PPOP A.R. Pressurie 15p51 1600 off site @ Filter Pressure 100 yr - 15 50y -- 10 Konym Noude Cittan Goos PI 100pm, for Syst on Loft SITE 1030m

anny 65 6/16/14 6 16 14 CHA on sife @ 0830 PEC on site (Eddie) to address momtured system seemed to be OK PEC off site @ 1115 Surip. Also brought a portable pump for the surip. #150 PEC brough 4th EQ Campled MH-2 @ 1/20 float MH-1, MH 2 Ftgh alarms, FS alarm Effluent @ 1/30 p#1 \$6,88 8389699 flow sump pump is operational, cleanel, mp 1 mHZ NO Change out and reconnected pump spers: amax 52 3/4/Hp 880160 BAM 4230 FS 601+2 6.3A 944 22853647 1× 115 VOH 1200 used portable planip from PEC to empty drum of sump water into EQ takk Change PI Filter found a book wire in Floor Sunp outlet Gox-> PE(reconnected cood sump auto operation now works Turned relay trip sensitivity to 2003 FIS Auto Man feature appears to be WORKING

when ismores 6/18/14 CHA on SHE @ DE45 for sampling CHA onsite at GUSpM, responding MHI MH-2, EQ high alarms ON to system alarms. (Dunielle Berati) -manually pumped down EQ tank, then Alarms', MH-1 High SUMP restorted whole sporm whe hard related MH-2 High Swap EQ Tonk High Somp Charged PI Filter (EQ Tank 2 2,000 gallons) monthore system for performance MH1 = 8405284 gallons Sangle M17-2 @ 0930 MHZ = 307 344 8 gallons Sariple effluence @ 0955 pH: 6.76 SUMP = 4242 gallons Efficient = 22865425 gallors 8434497 BH1 MHZ. Nocharge G', 20 pm change Pl and PZ 4379 buy filters BFM 887900 22915757 et-f 6:45 pm EQ High Alarm off Change PD, PZ filles PI @ ISpsi P2 @ 10 psi NA 8 5400 1030 7:10 pm Spoke to k. Merrick who will pump down MH-1 and MH-2 removery 7:30pm - of E site we have and


11/2014 @9m CHA on STE - MHI, MHZ, EQHI & FCSMP Alarms on. EQ TANK @ MAX CAPACITY PUMPON DOWN TO BOOGA (/Googed) Punpon Sump KESET ALADNS MHI & Z H. ALAD System 11 + Auto 1114 off Site 945 ctta on sile @ 1295 14 MHI, MHZ, Earth; Plur sump high alams Charge PI filter So mple mt -1@12 6.72 Sample MH 2@ 1240 pH: 6.51 Sample Efficient @ 1250 pH: 6.58 845 3311 FS 4491 MH 1 mtz 03073448 BFM 893280 55F 22963667 System in Anto, mit-1, MHZ high (Ha Al CH/ @1310

7/9/14 (tra on site w/ PECCB00 SIE SIGNALMASTER SE PEC going to try to replace floats CONTROL SWITCH (h) (P P/N 1006100 MH-1 mH-2 EQ hun alarms on LESA245 20FT CABLE WT SPDT - Change (D) PZ fillers 20SGMWESPDT * While Changing Filters (ED huhon) For proper installation refer to instructions manhole pumps came on causing ER E-Rhombus tank overstow. Noted that effluent pumps were not Kicking on automatically SJE SIGNALMASTER PEC removes float Stick (changes out floats by pulling through while **CONTROL SWITCH** removing old floats (h) 🚯 P/N 1006052 UNTED SING LR54245 20FT CABLE WT N.O. System reasenfold but floats not 20SGMWENO Ed Hoats -> others working Compating, Diagnotics -> need to swap 2 of the flocets to relief For proper installation refer to instructions. SIE-Rhombus Correct position & normally clusted float 22650 County Rd 6: Detroit Lakes MN 56501 USA Tel: 218-847-1317 Fx: 218-847-4617 to the top. Still getting EQ.Hi @ 2nd floot from bottom -> Not Borrect $(n_1) + = 8485725$ K. Merrick call to Eos ve' strange system M12 3073448 Schaution gos Sending banen mit 547 4573 23027895 + 6 Sample Eff @ 1330 ph: 6.62 Brm 900500 No MH. 2 Sample due to System OFFLINE System 1315 Karenel off sufe tronglobal notions

10 Sume Crtth on site @ (300 YEC and Engler Electric Miready on ste. Engles deferances top float way vonect part (Nonally = per not horn closed) floct was repraced w) correct float PEC picked up a float that can go littles normal open or normal close a depend on the configuration. K. Merrick also installed waves procontrol filter Change PI Start up systen -> Fire time and Observe Several Cycles. modelo LO /LOLO wires were crossed causing Sump pung carly LU Man, corrected and system is Usine. Observe 2 more cyclos-7 good -> System nerror fine. Change PI, 12 (tha), PEC, Cangler maich

mar 7 23 14 -7 °09 **(()** 7/15/14 CHA on site @ 0940 for sampling CHA on site @ 1130 for sampling No alarms NO ALARMS charge PI Filter changed Pl Filter, P2 filter Sample MH-2 @ 1000 Sample Mlt-2@ 1150. Sample 20 gluent @ 1010 Sample efferent @ 1200 8519972 04: 6.65 PH: 6.72 MH 1 MHZ No change MH-1 858336 4586 PS MHZ NO Charge Eff. OFM 23128353 23065-796 91B10 PS. Eff BFM 904910 GNA off site a 1030 CHA off site @1215 (menck (prenete

MUIT 8/1/2014 CHA on site @ 1000 for weekly Sempline. System OK -> inv alarms CHANGE PI, P2 Filters Sample effluent @ 1140 pH: 6.65 Split Sample between TA + Sportmum for QA/QC analysis Saniple MH-1 @ 1150 pH: 6.60 ph: 6.51 Sample mit-2 @ 1155 M17-1 854 045B m1+-2 30734448 F5 9ff 4586 23198692 BFM 919700 off site @ 1210 ata Leatingn Mende

8/20/14 11Am CMulline on Site To Sample - NOALARMS CHAMBER PI& PZ FITTERS Samplus = ff @ 1140 pt 6.88 Norco Somo JUSP SoliDS IN SAMPla Samplos MH2 @ 1153(p# 6.79 8612587 3M MH MHZ FS No CHAMBERS EFF 23414951 921 BFM 3944080 cf off SITE 12:30m

8/26/14 330 pm att ON-Site Man Hols 1 & Alson 1 Hancon PISPZ Filtors - Filteres Vory "Dirry" Samples Aluser @ 430pm pH= 7.20 Samplon MHZ@ 445 PH=7.16 MH+ 8631587 No CHANGE MH - 2 FS. EAF 23432812 BFM -946670 NTÈ Spr

UT FSVM 9/4/2014 CITA on side for monthing sampling No alarms Charge PI + PZ (heavy sedement load) Sample mH-1 C 1325 1.6.70 efferient @ 1340 6,90 рĦ 1345 ph ' MH-2@ 6.92 8662170 MH1 MH No change 4673 FS 23525752 1+3 957330 BEM Safe P 1400 off Non

600F SUNNY 70° F 9/17/2014 SUNNY -note: mHI pl on, but no from CHA on Stre for weekly sampling MH-1, MH-2 high alarms on CAAA included System > put in and Charge P) Fifter Change PI pZ FAters Sample Effluent @ 1050 pit? T.18 EQ63 Sample MH-2 @1445 Somple effluent @ 1450 ph 6.99 note that 12 pump not pump, as efficiently 70 opm vs 140 With Bir Rump EQGA. 3696736 mH-1 $mH \cdot 2$ NC MH-1 8679745 FS 4729 967530 BFN MH-2 NC 9HF 236 14935 FS 4678 9FM 963270 1500 Of Gite a 23577907 CHA off site @1115 menol - i

sunny 854-9/23/14 OttA onsure for alarms/ Saupin MH-1, MH-2 Ettialarms EQ'high alarm system in manual mode changed PI pl filtens, sentenal System to auto mode Somple effluent @ K430 pH 7,24 Eff 6B styl running suggish ~40 GPM w/new filters Sampe MI+-20 1440 MH-1 Etti alarm light not off but pumps are not on - take high? MIX-1 8709005 MH-Z NC BFM 970860 8FT 23642684 FS 4729 after moniting System KDT

PIC 70°P 10/1/2014 CATA on sule w/PEC @ 1030 to discuss system and perform Monthly Sampling No alarnis Changed PI, PZ Somepled effected 7,05 pH 1135 mH-1@ 6.86 MH·2 @1140 PH1 6,88 perform calibration test 6 AF BFM 5 23700/13 977430 23700409 977460 30 ×7.48052 =112.2 Plow BFM 2370013-2370040 Plan Eff = 148

10/1/14 10/8/14 P. Sunny 60°F MHI- 8724077 MHZ 237 00409 F3 4729 BFM 977460 on site to weeky sampling and procontrol reset NO alarns pi filter Change off site 1210 Somple efficient @ 0950 MH2@ 0955 7,00 Kathyn Merroll MH1 8737162 EFMHZ N.C. CFF K3744809 4729 FS BFM 982500 Called Eos @ 1005 to reset procontrol and upload new System prouss CAA Monitors System. Appears OK. OH STA @ 130 Mein

Main 6505 10/16/14 CHA on site af PEC for system 1 HA on Sire VAn No ALARMS, CHAMGON P-100 Filton maintenance Samplos @ 730 NO Alarms Efflant pH 7.09 MH2 pH Cell Sample ADH Etfluent @ 0040 DH17.25 MH-1 8789244 MH-2 3073448 (NC) Charge PI, p2 filter 4761 FS-BFM 998640 ct CHA unable to complete flow sensor EFF 28 23888033 replacement for MH-2 6/c need another part (HA of Site 842 PEC dissassembled 6B pump -> @ Cleanout and found a very pugged plashe strainer titles, cleaned strainer and placed book in. Frow for 6B back to 135 - 150 GPM. Dicided to also claan 6A screen. GA Strainer is crocked. Need to reprove MH-1 8756049 (+f:23803622 MHZ NC 85 4761 8/ 5t 1120 8FM 989200 CANNUN

450 Khowers Plc 10/28/14 11 1 2014 CHA on site to respired to alarms CHA on site for weekly/monthly Kon monday Janepling A/S flow Was almost O no alarms (the had placed system in manual mode changed PI, p2 filters (heavy sed) change PI filter tuned system back to AUTO MH-1 MH 20 1245 Sampled hi alarm on 676 ht Sampe MH-2 @ 1030 ϕ mH.1 6-195 6.79 130 0 Sample efferent @ 1050 p/t: 6.74 Eff (P 383547 6.66 mit 1 MIH-ZNC FS 476 mH-1 8809205 EFF 23991876 MH-2 NC FS 476 BEN 101110 BFM 1002140 310 9ff of Sull 23911574 Φ OX SHE C 1110 mend Mind

SCOF, Show Shower DUT Iush 11/20/14 12 CATTA on sure for weekly Sanpler Att on site for weekley sampling no alans tured 3 heaters on temp to day NO alarms 80°F, turned heaters on low Charge PI P2 600 filters Charge PI Sangle eff @ 1410 pit 7.83 SAMPLE EHE 1500 WH: 7.86 SAMPLE MHZ@ 1505 Sample MH-Z @ 1420 MITI 8850041 MH MITZ NC 8872862 MHZ FS 476) NC FIS 4761 BISN 1016090 BFM Eff 240 36336 102 3620 EA 24103687 1430 Eff sute MINC

72 Funny 407 OVORCAST 12/3/2014 11/25/14 527 MSIDS SYFUNDE HA on Site be wonthly SAmplaces On Site for weekly Sampling CHANGE PIEPZ NU alains SAMPLE OFF @ 955m pH 7.06 Charge PI, PZ MH 1 @ 555 pH 6.86 MH Z @ 10:15m pH 6.67 Sample Eff @ 1005 PIt (179 MAI MHZ@ 955 8926204 MIHZ 3073448 m#1 9890504 BFM 1039510 4761 FS MHZ NC 24245726 OFM 1029060 EFF PS 4761 Eff 24152322 off site 1015

12/12/14 M Sofe for weekly Sempling NO alains WY ' SOME ext: Showers 140°P on Sure for weekly Samplin All dams Reonert 5. Gibert Change p), p2 Change PI Filter Sample MHZ @ 1340 Sepide Rffluent @ 1350 Effluent @ 1350 pH 7,05 ph? 7.10 MH-2@1383 9006 359 MH) NC MHI BATB342 MHZ NC m244414972 4776 ES 4776 BFM ' 1061390 EPF 24371147 BFM 1053530 ć THEA

12/22/2014 Overcast 54 F Outside temp: 32°F On site for wækler samplerg Inside temp: 52°F No Alains On site for weekly samples Changed PI PZ No alarms on site Multiple email alerts of high Semple mH2 @ 1005 MH 1 and floor sump, the Effluent @ 1015 alarms were fixed remotely by K. Mernick. The system was pH: 7,42 9082977 m_{1} run manually and once the m + 2EQ tank had been emptied NK 4808 enough, the sump was pumped PS EAR 24625228 BRM 1832580 Changed bag filter P1 off site @ 1040 Sampled MHZ @ 1040Am Sampled efflient @ 1050Am - H: 6.71 MH1: 9037057 MHZ. 3073448 Effleent: 24509237 Supp: 4808 BFM: 1069640 offsite (a) 1106Am A. J

APPENDIX H INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	Site Details 622003	Box 1	
Site Name	Chicago Pneumatic Tool Company		
Site Address City/Town: F County: Herk Site Acreage	imer		
Reporting Pe	eriod: December 31, 2013 to December 31, 2014		
		YES	NO
1. Is the info	ormation above correct?		
If NO, inc	clude handwritten above or on a separate sheet.		
	e or all of the site property been sold, subdivided, merged, or undergone a amendment during this Reporting Period?		
	e been any change of use at the site during this Reporting Period /CRR 375-1.11(d))?		
	y federal, state, and/or local permits (e.g., building, discharge) been issued the property during this Reporting Period?		
lf you an			
	nswered YES to questions 2 thru 4, include documentation or evidence umentation has been previously submitted with this certification form.		1
that doc			
that doc	umentation has been previously submitted with this certification form.	-	
that doc	umentation has been previously submitted with this certification form.		NO
that doc 5. Is the site 6. Is the cur	umentation has been previously submitted with this certification form.	Box 2	NO
 that doc 5. Is the site 6. Is the cur Commerce 	umentation has been previously submitted with this certification form. e currently undergoing development?	Box 2	NO
 that doc 5. Is the site 6. Is the cur Commercian 7. Are all IC 	umentation has been previously submitted with this certification form. e currently undergoing development? rrent site use consistent with the use(s) listed below? cial and Industrial	Box 2 YES	NO
that doc 5. Is the site 6. Is the cur Commerc 7. Are all IC IF	umentation has been previously submitted with this certification form. e currently undergoing development? rrent site use consistent with the use(s) listed below? cial and Industrial cs/ECs in place and functioning as designed? THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a	Box 2 YES	

Description of Institutio			Box 3
	onal Controls		
arcel	<u>Owner</u>	Institutional Control	
04.3-1-24	UTICA HOLDING CO		
		Monitoring Plan	
		O&M Plan	
Description of Enginee	ring Controls		Box 4
arcel	Engineering Contr	ol	
04.3-1-24			
	Groundwater Treat	tment System	
	Cover System Groundwater Cont	ainment	
	Leachate Collectio		
	Fencing/Access Co Vapor Mitigation	ontrol	

IC CERTIFICATIONS SITE NO. 622003			
	Box 6		
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATED REPRESENTATIVE SIGNATED REPRESENTATIVE SIGNATED REPRESENTATIVE SIGNATED I certify that all information and statements in Boxes 1,2, and 3 are true. I und statement made herein is punishable as a Class "A" misdemeanor, pursuant to Penal Law.	erstand that a false		
<u>Royer Creighton</u> at <u>360 Erie Blvd Eas</u> print name am certifying as <u>Remedial Party</u>			
am certifying as <u>nemed for 1 for 17</u>	Owner or Remedial Party)		
for the Site named in the Site Details Section of this form.			
Signature of Dwner, Remedial Party, or Designated Representative	2/27/2015 Date		

IC CERTIFICATIONS SITE NO. 622003
Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.
at
print name print business address
am certifying as (Owner or Remedial Party) f
the Site named in the Site Details Section of this form.
Signature of Owner or Remedial Party Rendering Certification Date
IC/EC CERTIFICATIONS
Box 7 QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE I certify that the information in Boxes 4 and 5 relating to the pump and treat IC/EC are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.
I John P. Sobiech at 575 Broadway, Suite 301, Albany, NY 12207
print name print business address
am certifying as a Qualified Environmental Professional for the
Chicago Pneumatic Company
(Owner or Remedial Party) for the Site named in the Site Details Section of this form.
E OF NAT
Stand P. S. S. S.
Signature of Qualified Environmental Professional, for
Signature of Auglified Equipmental Defensional for

•

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at ZA print business address print name HILS HOLONG am certifying as a Professional Engineer for the _ OM IANY (Owner or Remedial Party) Date Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

APPENDIX I PHOTOGRAPHIC LOG

2014 PERIODIC REVIEW REPORT

2200 BLEECKER STREET UTICA, NEW YORK 13501 NYSDEC SITE NO. 622003

FEBRUARY 2015

2014 Periodic Review Report 2200 Bleecker Street Frankfort, New York

View of the containment cell and the RAF building from the east.

View of the SCADA 3000 auto-dialer from inside the RAF building.

View of the containment cell and the RAF building from the west.

View soil piles in the east parking lot from the 9/2012 unauthorized excavations conducted by 2200 BSP (October 2014).

View soil piles in the west parking lot from the 9/2012 unauthorized excavations conducted by 2200 BSP (October 2014).

Typical SSDS fan mounted to the upper monitor windows of the 2200 Bleecker Street building.

February 2015