

JOHNNY CAKE ROAD FARM SITE

TOWN OF DANUBE, HERKIMER COUNTY, NEW YORK

SITE MANAGEMENT PLAN

NYSDEC Site Number 622016

Prepared for:

New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway, 12th Floor
Albany, New York

Prepared by:

TRC Engineers, Inc. 3 Corporate Drive, Suite 202 Clifton Park, New York 12065

Revisions to Final Approved Site Management Plan:

Revision	Date		NYSDEC
No.	Submitted	Summary of Revision	Approval Date
0	06/21/2011	Original Submittal	06/21/2011
1	01/12/2024	Update to the latest SMP template, update of Engineering Controls to include the groundwater monitoring well network, revision to the groundwater monitoring well network and sampling schedule, revision to the Periodic Review Report schedule, and removal of the Site Management Report requirement.	02/21/2024

FEBRUARY 2024

♦ TRC

CERTIFICATION STATEMENT

I Kevin D. Sullivan ___certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and DER Green Remediation (DER-31).

P.E.

February 21, 2024 DATE

TRC ENGINEERS, INC. FEBRUARY 2024

SITE MANAGEMENT PLAN

JOHNNY CAKE ROAD FARM

TOWN OF DANUBE, HERKIMER COUNTY, NEW YORK

Table of Contents

ES	$\mathbf{E}^{\mathbf{x}}$	XECUTIVE SUMMARY	ES-1
1.	IN	TRODUCTION	1
1.1		General	1
1.2		Revisions and Alterations	2
1.3	•	Notifications	2
2.	SU	UMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTION	S 5
2.1		Site Location and Description	5
2.2		Physical Setting	
2	2.2.1	. Land Use	5
2	2.2.2	. Geology	5
2	2.2.3	. Hydrogeology	5
2.3	•	Investigations and Remedial History	ε
2.4	•	Remedial Action Objectives (RAOs)	9
2.5		Remaining Contamination	9
2	2.5.1	. Soil	10
2	2.5.2	. Site-Related Groundwater	11
2	2.5.3	. Site-Related Soil Vapor Intrusion (SVI)	12
3.	IN	STITUTIONAL AND ENGINEERING CONTROL PLAN	13
3.1		General	13
3.2		Institutional Controls	13
3	3.2.1	. Excavation Restrictions	15
3	3.2.2	. SVI Evaluation for New Construction	16
3.3		Engineering Controls	16
3	3.3.1	. Monitoring Well Network	17
3	3.3.2	. Criteria for Completion of Remediation/Termination of Remedial Systems	17

i

4.	M	ONITORING AND SAMPLING	18
4.1.	(General	18
4.2.	9	Site-Wide Inspection	19
4.3.	ı	Post Remediation Media Monitoring and Sampling	20
4	.3.1.	Groundwater Sampling	20
4	.3.2.	Monitoring and Sampling Protocol	21
4	.3.3	Monitoring Well Repairs, Replacement, and Decommissioning	22
5.	Ol	PERATION AND MAINTENANCE PLAN	23
5.1.	(General	23
6.	PE	RIODIC ASSESMENTS/EVALUATIONS	24
6.1.	(Climate Change Vulnerability Assessment	24
6.2.	(Green Remediation Evaluation	24
6	.2.1.	Timing of Green Remediation Evaluations	25
6	.2.2	Frequency of System Checks, Sampling and Other Periodic Activities	25
6	.2.3	Metrics and Reporting	26
6.3.	١	Remedial Systems Optimization	26
7.	RI	EPORTING REQUIREMENTS	28
7.1.	9	Site Management Reports	28
7.2.	I	Periodic Review	30
7	.2.1.	Reports Certification of Institutional [and Engineering] Controls	32
7.3.	(Corrective Measures Work Plan	33
7.4.	I	Remedial Systems Optimization Report	33
Q	DI	FEDENCES	3.1

FEBRUARY 2024

List of Figures

- Figure 1 Site Location Map
- Figure 2 Site Layout Map
- Figure 3 October 2008 Groundwater Investigation Results
- Figure 4 July 2022 Groundwater Monitoring Results
- Figure 5 Environmental Easement Description

List of Tables

- Table 1 Notifications
- Table 2 Post Remediation Sampling Requirements and Schedule
- Table 3 Schedule of Interim Monitoring/Inspection Reports

List of Appendices

- Appendix A Environmental Easement
- Appendix B List of Site Contacts
- Appendix C Monitoring Well Network Construction Summary and Boring Logs
- Appendix D Excerpts from NYSDEC Site Files
 - Appendix D1 Historic Well Information from Environmental Subsurface Investigation Report June 1990
 - Appendix D2 Historic Well Information from Extent of Contamination Study Report November 1991
 - Appendix D3 Historic Well Information from Removal Action Report November 2006
 - Appendix D4 Soil Data Tables & Figures from Removal Action Report November 2006
 - Appendix D5 Historical Groundwater Data & Attenuation Analysis October 2008
 - Appendix D6 Historic Well Information from Site Investigation Report February 2009
 - Appendix D7 Historical Groundwater Data & Attenuation Analysis January 2011
 - Appendix D8 Historical and Recent Groundwater Data 2009 to 2012, 2014, 2016, and 2022
- Appendix E Letter to Herkimer County Highway Department dated February 11, 2010
- Appendix F Excavation Work Plan
- Appendix G Generic Quality Assurance Project Plan
- Appendix H Site Management Forms
- Appendix I Generic Field Activities Plan

FEBRUARY 2024

 $Appendix \ J-Generic \ Health \ and \ Safety \ Plan$

Appendix K – Green Remediation Metrics

Appendix L – Remedial Systems Optimization Table of Contents

List of Acronyms

AMSL Above Mean Sea Level
bgs below ground surface
COC Certificate of Completion
CP Commissioner Policy
DCE Dichloroethene

DER Division of Environmental Remediation

DUSR Data Usability Summary Report

EC Engineering Control

ECL Environmental Conservation Law

EWP Excavation Work Plan HASP Health and Safety Plan IC Institutional Control

IHWDS Inactive Hazardous Waste Disposal Site

IRM Interim Remedial Measure

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYCRR New York Codes, Rules, and Regulations

O&M Operation and Maintenance
P.E. Professional Engineer
PCE Tetrachloroethene

PRR Periodic Review Report

ppm Parts Per Million

QAPP Quality Assurance Project Plan RAO Remedial Action Objective RAWP Remedial Action Work Plan

ROD Record of Decision

RSO Remedial System Optimization SCGs Standards, Criteria and Guidelines

SCO Soil Cleanup Objective
SI Site Investigation
SMP Site Management Plan
SVI Soil Vapor Intrusion
TCE Trichloroethene

TCL Target Compound List

TOGS Technical and Operational Guidance Series

TRC TRC Engineers, Inc.

USEPA United States Environmental Protection Agency

USMS United States Marshals Service VOCs Volatile Organic Compounds

FEBRUARY 2024

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Johnny Cake Road Farm Site (Site), as well as the inspections, monitoring, maintenance, and reporting activities required by this Site Management Plan (SMP):

Site Identification:

NYSDEC Site No. 622016, Johnny Cake Road Farm Site

Institutional Controls:

- 1. The property may be used for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv).
- 2. The property may not be used for a higher level of use, such as Unrestricted Use, without additional remediation and amendment of the Environmental Easement, as approved by the New York State Department of Environmental Conservation (NYSDEC or Department).
- 3. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- 4. The use of the groundwater underlying the property as a source of potable or process water is prohibited without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH).
- 5. The potential for vapor intrusion must be evaluated for any buildings developed within the Site boundary, and any potential impacts that are identified must be monitored or mitigated.
- 6. The Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the Site.

Site Identification: NYSDEC Site No. 622016, Johnny Cake Road Farm Site

Institutional Controls:	7. The Environmental Easement grantor will submit to NYSDEC a written statement that certifies: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the Department; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the Department finds acceptable.	
	8. Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns, as applicable.	
	9. Groundwater monitoring must be performed by NYSDEC (or NYSDEC's designated representative) as defined in this SMP.	
	10. Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP.	
	11. All Engineering Controls (ECs) must be operated and maintained as specified in the SMP.	
	12. All ECs must be inspected at a frequency and in a manner defined in the SMP.	
Engineering Controls:	Groundwater monitoring well network	
Inspections:		Frequency
Site-wide including groundwater monitoring wells		Annually

Site Identification: NYSDEC Site No. 622016, Johnny Cake Road Farm Site

Monitoring:	
Groundwater	Every three years within 30 days before or after April 1st
Maintenance:	
Groundwater monitoring wells	As needed
Reporting:	
Periodic Review Report	Every five years

Further descriptions of the above requirements are provided in detail in the latter sections of this SMP.

1. INTRODUCTION

1.1. General

This Site Management Plan (SMP) is a required element of the remedial program at the Johnny Cake Road Farm Site (hereinafter referred to as the "Site") under the New York State Inactive Hazardous Waste Disposal Site (IHWDS) Remedial Program administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated by the United States Environmental Protection Agency (USEPA) through a series of Interim Remedial Measures (IRMs). A Record of Decision (ROD) indicating "No Further Action with Site Management" was issued for the Site (Site #: 6-22-016) on March 30, 2009 (NYSDEC, 2009).

NYSDEC is executing the ROD for this Site under the State Superfund Program. The Johnny Cake Road Farm Site is located in the Town of Danube, Herkimer County, New York. The Site is 3.24 acres in size. **Figure 1** illustrates location and approximate boundaries of the Site. **Figure 2** illustrates the Site Layout. The boundaries of the Site are more fully described in the metes and bounds Site description that is part of the Environmental Easement (**Appendix A**).

After completion of the remedial work described in the November 2006 "Removal Action Report" prepared by the USEPA, some contamination was left at the Site, which is hereafter referred to as "remaining contamination." Institutional Controls (ICs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to NYSDEC, and recorded with the Herkimer County Clerk, requires compliance with this SMP and all ICs placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with Environmental Conservation Law (ECL) Article 71, Title 36. This SMP has been approved by NYSDEC, and compliance with this SMP is required by the Grantor of the Environmental Easement and the Grantor's successors and assigns. This SMP may only be revised with the approval of the Department.

It is important to note that:

- This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC); and
- Failure to comply with this SMP is also a violation of ECL and Title 6 of New York Codes, Rules, and Regulations (NYCRR) Part 375, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in **Table 1** of this SMP.

This SMP was prepared by TRC Engineers, Inc. (TRC), on behalf of NYSDEC, in accordance with the requirements of DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010 and DER-31 ("Green Remediation"), dated August 2010. This SMP addresses the means for implementing the ICs that are required by the Environmental Easement for the Site.

1.2. Revisions and Alterations

Revisions and alterations to this plan will be proposed in writing to the NYSDEC project manager. The Department can also make changes to the SMP or request revisions from the remedial party. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shutdown of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant changes to the Site conditions. All approved alterations must conform with Article 145 Section 7209 of the Education Law regarding the application of professional seals and alterations. For example, any changes to the monitoring well network or monitoring frequency must be stamped by a New York State Professional Engineer (P.E.). In accordance with the Environmental Easement for the Site, the NYSDEC project manager will provide a notice of any approved changes to the SMP and append these notices to the SMP that is retained in its files.

1.3. Notifications

Notifications will be submitted by the property owner to NYSDEC, as needed, in accordance with DER-10 for the following reasons:

- 1. 60-day advance notice of any proposed changes in Site use that are required under the terms of 6 NYCRR Part 375 and/or ECL.
- 2. 7-day advance notice of any field activity associated with the remedial program.
- 3. 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan (EWP) provided in **Appendix F**. If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- 4. Notice within 48 hours of any damage or defect to the foundation, structures or ECs that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- 5. Notice within 48 hours of any non-routine maintenance activities.
- 6. Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the

> TRC

Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

7. Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the Department within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- 8. At least 60 days prior to the change, the Department will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/remedial party has been provided with a copy of all approved work plans and reports, including this SMP.
- 9. Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to the Department.

Table 1 includes contact information for the above notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in **Appendix B**.

Table 1: Notifications*

Name	Contact Information	Required Notification**
Robert Strang Project Manager NYSDEC	518-402-8642 robert.strang@dec.ny.gov	All Notifications
Kristen Davidson Citizen Participation Specialist NYSDEC	716-851-7220 kristen.davidson@dec.ny.gov	All Notifications
David Storandt Region 6 Remediation Engineer NYSDEC	315-785-2524 david.storandt@dec.ny.gov	Notifications 1 and 8
Shaun J. Surani NYSDOH Bureau of Environmental Exposure Investigation	518-402-7860 BEEI@health.ny.gov	Notifications 4, 6, and 7

^{*} Note: Notifications are subject to change and will be updated as necessary.

^{**} Note: Numbers in this column reference the numbered bullets in the notification list in this section.

2. SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1. Site Location and Description

The Site is located in the Town of Danube, Herkimer County, New York (see **Figure 1**) and is identified as Section 127 Subsection 002 Block 4 Lot 1 (i.e., Tax Parcel 127.002-4-1) on the Herkimer County Tax Map. The owner of the Site parcel at the time of issuance of this SMP is the United States Marshal Service. The Site is comprised of 3.24 acres on a larger parcel of 35.5 acres of rural farmland. The Site is on the northern and southern sides of Johnny Cake Road and includes a portion of the Johnny Cake Road right-of-way (see **Figure 2**). The Site previously contained a farmhouse, garage, in-ground pool, stable building, and dairy barn, as depicted on **Figure 2**. The surrounding area consists primarily of active and fallow farmland and rural residences. The boundaries of the Site are more fully described in the Environmental Easement included as **Appendix A**.

2.2. Physical Setting

2.2.1. Land Use

The Site consists of vegetated land on the northern and southern sides of Johnny Cake Road that slopes from south to north. Just south of the Site boundary, a small intermittent stream meanders from west to east. The Site is currently vacant and there are no structures, paths, or access roads on-Site. The properties adjoining the Site are agricultural farm fields.

2.2.2. Geology

According to the U.S. Geological Survey, the area incorporating the Site consists of surficial deposits of lacustrine sand underlain by kame moraine and ablation till. Till extends one to 50 meters below grade. Boring logs from the installation of the groundwater monitoring wells at the Site identify surface soil and colluvium covering underlying glacial till.

2.2.3. <u>Hydrogeology</u>

Groundwater in the overburden aquifer follows Site topography and flows north through the Site. Depth to groundwater in the overburden aquifer ranged between 3 to 10 feet below grade in October 2008. Historically, during wet periods, perched groundwater has been observed on the south side of the Site. Artesian conditions have been observed in the bedrock aquifer. Groundwater flow as measured in October 2008 is shown on **Figure 3**.

Groundwater elevations observed in October 2008 ranged from 740.12 feet above mean sea level (AMSL) (MW-10) to 791.36 feet AMSL (MW-7). A summary of the monitoring well construction details and associated construction and boring logs are provided in **Appendix C**.

TRC

2.3. Investigations and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles of the referenced documents are included in **Section 8**.

The Johnny Cake Road Farm operated as a dairy farm prior to becoming the Site of a cocaine manufacturing and distribution operation in the mid-1980s. Drug production lasted 14 months and in 1987, the United States Marshals Service (USMS) seized the Site as part of a long-term investigation into the illegal operation. The former dairy farm operated over 377-acres but completed investigations limited Site contamination to a 3.24-acre Site boundary, as shown on **Figure 2**. Non-impacted portions of the farm were sold off by the USMS.

Significant quantities of hazardous chemicals, specifically chlorinated solvents, were used as part of the drug manufacturing process. Solvents were reportedly dumped in various locations in and around the former farmhouse, including on the dirt floor and in the driveway. Solvents were also dumped into an underground septic tank east of the farmhouse to the point of overflow, which eventually discharged into an adjacent drainage swale. Additionally, an on-Site inground swimming pool was used to rinse drug manufacturing equipment. As a result of poor chemical handling, impacts to soil and groundwater were identified during investigations.

Several Site Investigations (SIs) were performed to characterize the nature and extent of contamination at the Site between 1990 and 2008 through a cooperative agreement between the USMS and USEPA. During these SIs, a total of 23 monitoring wells were installed and dozens of soil borings were advanced. The results of these SIs are described in detail in the following reports:

- C.T. Male Associates, P.C., "Environmental Subsurface Investigation Report," June 1990;
- Roy F. Weston, Inc., "Extent of Contamination Study Report," November 1991;
- USEPA, "Removal Action Report," November 2006;
- Earth Tech Northeast, Inc., "Site Investigation Report," February 2009;
- NYSDEC, "Record of Decision," March 2009;
- "2010 Groundwater Monitoring Report," January 2011*;
- AECOM, "Periodic Review Report," September 2012;
- AECOM, "Periodic Review Report," October 2013;

- AECOM, "Periodic Review Report," December 2016; and
- TRC Engineers, Inc., "Periodic Review Report," February 2023.

*Indicates that TRC was not able to locate the report.

Relevant excerpts of the reports listed above are included in **Appendix D**.

The Site was remediated by the USEPA through a series of IRMs. These IRMs are described below:

- In 1990, the USEPA removed the contents from on-Site drums and the septic tank, both of which contained volatile organic compounds (VOCs), primarily consisting of chlorinated solvents. The contents of the septic tank and 55-gallon drums were transferred into secure on-Site containers and in March 1991, transported off-Site for disposal at a permitted facility.
- In the early 1990s, the USEPA demolished and removed all on-Site structures including the farmhouse, garage, pool, stable building, and dairy barn. After removing the pool, the excavation was backfilled with clean fill.
- In 2005, the USEPA conducted a removal action to excavate soil in exceedance of the 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) for residential land use and identified as a source of contamination to groundwater. Two source areas were excavated, one by the former farmhouse and septic tank and one by the former garage. These areas were associated with the previous storage and dumping of drummed chlorinated solvents. The septic tank source area excavation measured 23 feet by 23 feet horizontally with a maximum depth of 17.5 feet. The former septic tank was removed and was found to be a degraded metal vessel. The garage source area excavation measured 25 feet by 32 feet horizontally with a maximum depth of 16.5 feet. A total of 325 cubic yards of soil considered source material was excavated, removed, and disposed of off-Site in a permitted landfill. Soil sampling was conducted to verify the level of cleanup and confirmed the removal of source soils.
- Two other suspected source areas were investigated as part of the 2005 IRM. A previously identified source area near the stable building was investigated by excavation and test pitting; however, field screening indicated no contamination above background values. The other area of investigation was the Johnny Cake Road drainage ditch just south of Johnny Cake Road. Six surface and three subsurface soil samples were taken from this area and

TRC

results indicated removal of soils was not necessary. Confirmatory soil sampling results and figures from the 2005 IRM are provided in **Appendix D4**.

Confirmation soil sampling and four quarters of groundwater sampling were completed following the 2005 IRM. Documentation of this IRM and the results of soil confirmation and groundwater sampling were presented in the November 2006 Removal Action Report prepared by the USEPA.

In October 2008, NYSDEC completed an additional groundwater investigation to determine the horizontal and vertical extents of groundwater contamination remaining following the removal of source areas. The results of this groundwater sampling were presented in the February 2009 SI Report prepared by NYSDEC. The soil confirmation sampling results and the groundwater sampling results from the November 2006 Removal Action Report and the February 2009 SI Report were used to represent current Site conditions in the March 2009 ROD. The results of the October 2008 groundwater sampling (see **Figure 3**) are considered the baseline groundwater conditions for this SMP.

The ROD specifies the remedy for this Site as No Further Action with Site Management including continued groundwater monitoring and ICs. In accordance with the ROD, the elements of the remedy to be implemented through this SMP are as follows:

- 1) Imposition of an IC in the form of an environmental easement that will require: (a) limiting the use and development of the property to residential use, which would also allow commercial or industrial uses. Further, due to the Site-specific nature of the contamination (i.e. VOCs in deep subsurface soil and groundwater) agricultural use will be permitted.; (b) compliance with the approved SMP; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH); and (d) the remedial party or Site owner to complete a periodic certification of ICs. The Site boundary subject to the environmental easement is shown on **Figure 5**.
- 2) Development of a SMP which will include the following: (a) evaluation of the potential for vapor intrusion for any buildings developed on the Site, including provision for mitigation of any impacts identified; (b) monitoring of groundwater; (c) restricting use of the Site as set forth in the environmental easement; and (d) providing the Herkimer County Highway Department with all relevant reports and data to identify the location and requirements to handle potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the Site. Groundwater monitoring wells identified in the SMP will be sampled and analyzed for VOCs on a periodic basis. The monitoring well network could

be reduced as future delineation shows they are no longer needed. This program will allow groundwater to be monitored and will be a component of the long-term management for the Site.

3) The remedial party will provide a periodic certification of the ICs, prepared and submitted by a P.E. or such other expert acceptable to NYSDEC, until NYSDEC determines the certification is no longer needed. This submittal will: (a) contain certification that the ICs put in place are still in place and are either unchanged from the previous certification or are compliant with Department-approved modifications; (b) allow the Department access to the Site; and (c) state that nothing has occurred that would impair the ability of the control to protect public health or the environment, or constitute a violation or failure to comply with the SMP unless otherwise approved by the Department.

Annual groundwater sampling in October 2009 and October 2010 confirmed the results of previous SIs and the ROD. Ten monitoring wells were decommissioned in October 2009. In June 2011, a SMP was prepared and approved by NYSDEC. An Environmental Easement for the Site was filed with the Herkimer County Clerk in July 2011.

2.4. Remedial Action Objectives (RAOs)

The overall remedial requirements for the Site include the following:

- Eliminate, to the extent practicable, ingestion of groundwater impacted by the Site that does not attain NYSDOH drinking water standards.
- Eliminate, to the extent practicable, further off-Site migration of groundwater that does not attain NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Standards and Guidance Values (Class GA Values).
- Eliminate, to the extent practicable, exposure to VOC-impacted soil at the Site.

2.5. Remaining Contamination

Following the 2005 IRM, soils below the 6 NYCRR Part 375 SCOs for residential land use, but above the 6 NYCRR Part 375 SCOs for unrestricted use remained at the Site. Confirmation sampling indicated subsurface soil exceeded the unrestricted land use SCO for acetone, DCE, vinyl chloride, TCE, and toluene. The exceedances were located beneath the former septic tank at the bottom and down gradient edge of the excavation at a depth of about 16 feet bgs and appear attributed to a small sand lenses. Figures showing areas where excavation was performed as well as tables summarizing confirmation sampling results are provided in **Appendix D4**.

As discussed in **Section 2.3.2**, groundwater contamination remains at the Site. Groundwater analytical results from October 2008 are shown on **Figure 3**. The most recent groundwater analytical results, collected in July 2022, are shown on **Figure 4**. The horizontal and vertical boundaries of groundwater contamination have been delineated and are within the 3.24-acre Site boundary which is subject to an Environmental Easement. In order to account for groundwater contamination remaining at the Site, the easement shall require compliance with the approved SMP and restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH. Groundwater monitoring wells identified in this SMP will be sampled and analyzed for VOCs on a periodic basis.

In accordance with the March 2009 ROD, the Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacement of the section of Johnny Cake Road which runs through the Site.

A summary of current Site conditions by media is included below.

2.5.1. Soil

Following completion of the 2005 IRM, six surface soil samples (RSD-01, RSD-02A, RSD-03, RSD-04A, RSD-05, and RSD-06A) were taken at a depth of 0 to 0.5 feet below ground surface (bgs) in a roadside ditch just south of Johnny Cake Road and analyzed for VOCs to evaluate if contamination from the septic tank had migrated into the sediments/surface soils in the ditch. Sample locations and sampling results are provided in **Appendix D4**. Results indicated one marginal exceedance (0.065 parts per million (ppm) at RSD-03) of the 6 NYCRR Part 375-6.8 Unrestricted Use SCO for acetone (0.05 ppm); however, this level is well below the Residential Use SCO for acetone of 100 ppm.

As part of the IRM in 2005 confirmation subsurface soil samples were collected following excavation of source areas identified during previous investigations and from a drainage ditch adjacent to Johnny Cake Road. Sample locations and sampling results are provided in **Appendix D4**. A total of 21 confirmatory samples were collected and analyzed for VOCs. Confirmation sampling exceeded the Unrestricted Use SCO for acetone, dichloroethene (DCE), vinyl chloride, trichloroethene (TCE), and toluene. The exceedances were located beneath the former septic tank bottom (about 16 feet below grade) and downgradient edge of the source soil excavation. The contamination appears to be associated with small sand lenses in the subsurface geology.

Three subsurface soil samples (RSD-02B, RSD-04B, and RSD-06B) were taken in a roadside ditch at a depth of 1.0 to 1.25 feet bgs just south of Johnny Cake Road to evaluate if contamination from

the septic tank had migrated into the sediments/surface soils in the ditch. Sample locations and sampling results are provided in **Appendix D4**. Contaminants were not detected above SCOs in the three subsurface soil samples.

No Site-related subsurface soil contamination exceeds the 6 NYCRR Part 375 SCOs for Residential Use.

2.5.2. Site-Related Groundwater

As of the March 2009 ROD, 23 monitoring wells were installed on and in the vicinity of the Site boundary. Locations of the wells are shown on **Figure 2**. A monitoring well construction summary is included as **Appendix C**. The wells ranged in depth from 12 to 40 feet bgs except for one well which extended to 101 feet bgs. The deeper wells are installed into a till unit which is a relatively impermeable unit with a large clay content.

A series of groundwater monitoring events since 1990 have documented a contaminant plume emanating from the source areas. The plume consists of VOCs, primarily chlorinated solvents tetrachloroethene (PCE) and TCE, and their bi-products DCE and vinyl chloride. Historically, other VOCs such as acetone, trans-1,2-DCE, 2-butanone, and dichlorodifluoromethane have been detected in Site wells. The groundwater plume follows the overburden aquifer north from the source areas and extends beneath Johnny Cake Road.

Following the completion of the 2005 IRM, a total of 14 monitoring wells were sampled on a quarterly basis for VOCs from summer 2005 to spring 2006 to confirm the effectiveness of the IRM. A supplemental sampling of 17 existing monitoring wells and three new monitoring wells was conducted in October 2008 to confirm the findings of previous sampling and to establish the horizontal extent of the groundwater plume. The three new monitoring wells (MW-21, MW-22, and MW-23) were installed downgradient of the suspected final extent of groundwater contamination. The results of the October 2008 groundwater investigation are shown on **Figure 3** and provided in **Appendix D5**. Groundwater results were compared to the applicable Standards, Criteria, and Guidance (SCGs) provided in **Table 2** of the "Use and Protection of Water", 6 NYCRR Part 608.

The results of the 2005-2006 quarterly groundwater monitoring event and the October 2008 groundwater monitoring event indicate that groundwater contamination for VOCs is continuing to decrease since the 2005 IRM. During these investigations five VOCs, all chlorinated solvents, exceeded the groundwater SCGs: 1,2-dichloroethane, cis-1,2-DCE, PCE, TCE, and vinyl chloride. The October 2008 sampling event, depicted on **Figure 3**, indicated lower levels of groundwater contamination than at any previous point. This confirms the continued effectiveness of the IRMs. In general, PCE and TCE were detected in higher concentrations to the south of Johnny Cake Road

near the former source areas, while cis-1,2-DCE (a product of the natural degradation of PCE and TCE) was detected both in the source areas and downgradient to north of Johnny Cake Road. This is evidence that contaminants are attenuating naturally as they migrate with groundwater.

The October 2008 groundwater investigation also established the vertical and horizontal limits of groundwater contamination. Three new monitoring wells (MW-21, MW-22, and MW-23) were installed beyond the suspected horizontal limits of groundwater contamination as shown on **Figure 3**. No VOCs were detected above SCGs in these wells. These results confirm the contaminated groundwater plume follows the overburden groundwater aquifer north from the source areas and extends approximately 200 feet to the north of Johnny Cake Road. The plume extends no more than 15 feet into the till layer underlying overburden soils and further vertical migration of the contamination plume has not been observed.

The source of groundwater contamination identified during previous SIs was addressed during the 2005 IRM. Although groundwater contamination is still present at the Site, analytical data indicates the plume is decreasing, is no longer migrating either horizontally or vertically, and is not expected to migrate beyond the Site boundary.

Annual groundwater sampling in October 2009 and October 2010 confirmed earlier conclusions made about remaining groundwater contamination, with further reductions in contaminant concentrations observed. The results of the October 2009 and October 2010 groundwater sampling are included in **Appendix D7**.

Groundwater samples were collected again in April 2012, April 2014, April 2016, and July 2022 as part of Site management activities under the 2011 SMP. Historical groundwater sampling results through July 2022 indicate that, in general, VOC concentrations in the overburden groundwater are decreasing, indicating a trend of attenuation of these compounds. However, SCGs for VOCs have not been achieved at well MW-1.

Groundwater data from 2009 to 2012, 2014, 2016, and 2022 is included in **Appendix D8**.

2.5.3. Site-Related Soil Vapor Intrusion (SVI)

The potential for soil vapor and indoor air contamination has been identified during the course of the SIs. No sampling was conducted during SIs and/or IRMs as there are presently no structures on the Site. The results of the investigations indicate that the adjacent residences are not impacted nor expected to be impacted by VOCs found on-Site. However, the potential for contaminated soil vapor above the groundwater plume must be addressed in accordance with the ROD.

3. INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1. General

Since remaining contamination exists at the Site, ICs and ECs are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC project manager.

This plan provides:

- A description of all ICs/ECs on the Site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs such as the implementation of the EWP (as provided in **Appendix F**) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the Site remedy, as determined by the NYSDEC project manager.

3.2. Institutional Controls

A series of ICs is required by the ROD to: (1) implement, maintain, and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the Site to residential use which would allow commercial and industrial uses. Further, due to the Site-specific nature of the contamination (i.e. VOCs in deep subsurface soil and groundwater) agricultural use would be permitted. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on **Figure 2**. These ICs are:

• Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns, as applicable;

- Groundwater, soil vapor and other environmental or public health monitoring must be performed by NYSDEC (or a NYSDEC designated representative) as defined in this SMP; and
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Site has a series of ICs in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may be used for Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv).
- The property may not be used for a higher level of use, such as Unrestricted Use without additional remediation and amendment of the Environmental Easement, as approved by the Department.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- The use of the groundwater underlying the property for potable or process water is prohibited without treatment rendering it safe for intended use as determined by the NYSDOH.
- The potential for vapor intrusion must be evaluated for any buildings developed within the Site boundary, and any potential impacts that are identified must be monitored or mitigated.
- The Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the Site.
- The Environmental Easement grantor will submit to NYSDEC a written statement that certifies: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by NYSDEC; and (2)

nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that NYSDEC finds acceptable.

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns, as applicable.
- Groundwater monitoring must be performed by NYSDEC (or NYSDEC's designated representative) as defined in this SMP.
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP.
- All ECs must be operated and maintained as specified in the SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.

3.2.1. Excavation Restrictions

The Site has been remediated for residential use, which also allows for agricultural use due to the Site-specific nature of contamination (i.e. VOCs in deep subsurface soil and groundwater). The grantor of the Environmental Easement is responsible for adherence to this use restriction. In accordance with the March 2009 ROD, the Herkimer County Highway Department was provided with all relevant reports and data to identify the location and recommendations on proper handling of potentially contaminated groundwater in the county right-of-way/dedicated public highway during future repairs and/or replacements of the section of Johnny Cake Road which runs through the Site.

In a letter dated February 11, 2010, NYSDEC provided the Herkimer County Highway Department with the requirements for handling potentially contaminated groundwater which may be encountered during future repair and/or replacement of the section of Johnny Cake Road which runs through the Site. Also included with this letter were excerpts from the February 2009 SI Report which provides the location of contaminated groundwater at the Site. Any future intrusive work that may potentially disturb the remaining groundwater contamination in the county right-of-way/dedicated public highway during future repairs and/or replacement of the section of Johnny Cake Road which runs through the Site will be performed in compliance with this letter, which is attached as **Appendix E** to this SMP. In the event that the periodic groundwater monitoring

described in **Section 4.0** indicates a significant increase in the magnitude or extent of groundwater contamination at the Site, NYSDEC will notify the Herkimer County Highway Department of any additional recommendations for handling potentially contaminated groundwater.

3.2.2. SVI Evaluation for New Construction

Prior to the construction of any enclosed structures located over areas within the Site boundary, an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report (PRR).

All provisions of the Environmental Easement and SMP relating to the evaluation of SVI shall be the responsibility of the grantor of the Environmental Easement. As identified above, and as presented in the ROD (NYSDEC, 2010), continued evaluation of the potential for vapor intrusion must be conducted for any buildings developed on the Site, including provision for mitigation of any impacts identified.

3.3. Engineering Controls

ECs are part of the remedy for the Site. **Figure 2** shows the Site boundaries where the ECs for the Site apply.

3.3.1. Monitoring Well Network

The groundwater monitoring well network consists of the following seven wells: MW-1, MW-2R, MW-6R, MW-12A, MW-13, MW-18, and MW-19. A monitoring well construction summary and monitoring well boring and construction logs are provided in **Appendix C.**

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC project manager in consultation with NYSDOH project manager, until residual groundwater concentrations are found to be consistently below ambient water quality standards, the site SCGs, or have become asymptotic at an acceptable level over an extended period. In the event that monitoring data indicates that monitoring for natural attenuation may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the Department, additional source removal, treatment and/or control measures will be evaluated.

3.3.2. Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the RAOs identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10. Unless waived by NYSDEC, confirmation samples of applicable environmental media are required before terminating any remedial actions at the site. Confirmation samples require Category B deliverables and a Data Usability Summary Report (DUSR).

As discussed below, NYSDEC may approve termination of a groundwater monitoring program. When a remedial party receives this approval, the remedial party will decommission all site-related monitoring, injection and recovery wells as per NYSDEC Commissioner Policy (CP)-43 policy.

The remedial party will also conduct any needed site restoration activities, such as asphalt patching and decommissioning treatment system equipment. In addition, the remedial party will conduct any necessary restoration of vegetation coverage, trees and wetlands, and will comply with NYSDEC and United States Army Corps of Engineers regulations and guidance. Also, the remedial party will ensure that no ongoing erosion is occurring on the site.

4. MONITORING AND SAMPLING

4.1. General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC project manager. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of Site management for the Site are included in the Generic Quality Assurance Project Plan (QAPP) provided in **Appendix G**.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater);
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient groundwater standards; and
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Reporting requirements are provided in **Section 7.0** of this SMP.

4.2. Site-Wide Inspection

Site-wide inspections will be performed once per year. During these inspections, an inspection form will be completed as provided in **Appendix H** - Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General Site conditions at the time of the inspection;
- The Site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.

Inspections of all remedial components installed at the Site will be conducted. A comprehensive Site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the PRR. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If Site records are complete and up to date.

Reporting requirements are outlined in **Section 7.0** of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the Site, verbal notice to the NYSDEC project manager must be given by noon of the following day. In addition, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the Site by a qualified environmental professional, as defined in 6 NYCRR Part 375. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public. The

remedial party will submit follow-up status reports to NYSDEC within 45 days of the event on actions taken to respond to any emergency event requiring ongoing responsive action, describing and documenting actions taken to restore the effectiveness of the ECs.

4.3. Post Remediation Media Monitoring and Sampling

4.3.1. Groundwater Sampling

Groundwater monitoring will be performed every three years within 30 days before or after April 1st by NYSDEC (or a NYSDEC designated representative) to assess the performance of the remedy.

The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the Site. A total of 23 monitoring wells were installed during the SIs.

The initial monitoring well network included in the 2011 SMP consisted of 11 wells. Seven wells (MW-2R, MW-6R, MW-12A, MW-19, MW-21, MW-22, and MW-23) served as horizontal perimeter monitoring wells, two wells (MW-16 and MW-18) served as vertical perimeter monitoring wells, and two wells (MW-1 and MW-13) served as mid-plume monitoring wells to assess the groundwater contaminant plume. Two monitoring wells (MW-4R and MW-17) were designated as contingency wells to remain at the Site but not be sampled as part of routine sampling. Ten monitoring wells (MW-2RR, MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-14, MW-15 and MW-20) were decommissioned in October 2009.

Nine wells (MW-1, MW-2R, MW-4R, MW-6R, MW-12A, MW-13, MW-18, MW-19, and MW-22) were identified during Site inspections performed in 2017 and 2022. As recommended in the NYSDEC-approved February 2023 PRR, the monitoring well network was reduced to seven wells (MW-1, MW-2R, MW-6R, MW-12A, MW-13, MW-18, and MW-19) with MW-22 and MW-4R remaining as contingency wells. The monitoring well network subject to this SMP is shown on **Figure 2**. Baseline post-remedial groundwater results from October 2008 and the most recent groundwater results from July 2022 are shown on **Figures 3** and **4**, respectively.

All available historical well documentation for the nine monitoring wells that exist at the Site is included in **Appendices D1**, **D2**, **D3**, and **D6**. For some current monitoring wells boring and/or construction logs are not available. Available monitoring well construction logs for wells which were part of the initial groundwater monitoring program (2011) are included in **Appendix C**.

Each of the seven monitoring wells identified as a part of the monitoring well network above shall be sampled periodically using standard USEPA low-flow sampling techniques and analyzed for Target Compound List (TCL) VOCs by the USEPA Method 8260. Sampling shall take place every

three years within 30 days before or after April 1st. Following each sampling event, the results of the groundwater sampling event will be reported in the PRR as described in **Section 7.0**. Results shall be compared to the groundwater SCGs. Deliverables for the groundwater monitoring program are specified in **Section 7.0**.

Based on these results the sampling frequency may be modified with the approval from NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Groundwater monitoring will continue until groundwater SCGs are met for all wells, or NYSDEC determines groundwater monitoring is no longer necessary.

The completion of groundwater monitoring as defined by this section of the SMP shall be solely the responsibility of the Department.

All provisions of the Environmental Easement and SMP relating to groundwater monitoring shall be the responsibility of NYSDEC (or a NYSDEC designated representative). The only responsibility of the Environmental Easement Grantor in respect to the groundwater monitoring described in this section is to provide access to the Site to NYSDEC (or a NYSDEC designated representative) for maintaining the monitoring well network and the collection of samples.

Sampling locations, required analytical parameters, and schedule are provided in **Table 2** – Post Remediations Sampling Requirements and Schedule below. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager.

Table 2: Post Remediation Sampling Requirements and Schedule

Sampling Locations	Analytical Parameters	Schedule
MW-1, MW-2R, MW-6R, MW-12A, MW-13, MW-18, and MW-19	USEPA method 8260 for TCL VOCs	Every three years (within 30 days before or after April 1st)

Detailed sample collection and analytical procedures and protocols are provided in **Appendix G** – QAPP and **Appendix I** – Generic Field Activities Plan.

4.3.2. Monitoring and Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater-sampling log as provided in **Appendix H** - Site Management Forms. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

TRC

All monitoring wells subject to the groundwater sampling program shall initially be gauged for water level. Water levels shall be used to generate a groundwater contour map to be submitted with each PRR. All wells shall be sampled in accordance with USEPA low-flow groundwater sampling procedures and analyzed for TCL VOCs by USEPA Method 8260. The entity which is responsible for the implementation of the groundwater monitoring program must prepare and submit to NYSDEC for approval a QAPP, a Groundwater Monitoring Well Sampling Form, a Field Sampling Plan, and a Health and Safety Plan (HASP) which adhere to DER-10 prior to the initiation of field work. The QAPP, Groundwater Monitoring Well Sampling Form, Field Sampling Plan, and HASP prepared by TRC for this SMP are provided in **Appendix G**, **Appendix H**, **Appendix I**, and **Appendix J**, respectively.

4.3.3. Monitoring Well Repairs, Replacement, and Decommissioning

If biofouling or silt accumulation occurs in the on-Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan) if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance. Ten (10) monitoring wells (MW-2RR, MW-3, MW-7, MW-8, MW-9, MW-10, MW-11, MW-14, MW-15 and MW-20) were decommissioned in October 2009. Additional monitoring wells may be decommissioned in the future with NYSDEC approval if the wells no longer serve a function in the monitoring well network. The Department will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent PRR. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with CP-43: Groundwater Monitoring Well Decommissioning Policy. Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by NYSDEC.

5. OPERATION AND MAINTENANCE PLAN

5.1. General

The Site remedy does not rely on any mechanical systems, such as groundwater treatment systems, sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the O&M of such components is not included in this SMP.

6. PERIODIC ASSESMENTS/EVALUATIONS

6.1. Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given Site and associated remedial systems. Vulnerability assessments provide information so that the Site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

The Site is located in an area of minimal flooding; however, flooding has occurred during instances of severe weather. If flooding does occur in the future, it is not expected to affect the monitoring well network as currently installed. The Site and ECs will be inspected annually and after any significant weather event to evaluate the condition of the Site.

6.2. Green Remediation Evaluation

DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including Site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the Site during Site management, and as reported in the PRR.

Waste Generation

Monitoring, maintenance, and reporting activities associated with the groundwater sampling result in material consumption and the generation of waste. A summary of the current material consumption and waste generation activities for the groundwater monitoring are summarized below:

- Personal protective equipment associated with groundwater sampling, such as disposable gloves, etc.;
- Polyethylene tubing for groundwater sampling events;
- Packaging material and ice used to pack and preserve samples to be submitted for laboratory analysis;

- Paper and office supplies associated with monitoring logs, groundwater injections, and report preparation; and
- Repair and replacement of monitoring wells.

Fossil Fuel Usage

Groundwater monitoring does not directly use fossil fuels as part of its routine operation; however, fossil fuels are indirectly used during the completion of groundwater monitoring. Indirect fossil fuel use results from completion of the following Site related activities:

- Transportation to and from the Site for monitoring and sampling.
- Off-Site transportation and shipment of samples collected for laboratory analysis.

Water Usage

Minimal amounts of water are used during groundwater sampling to decontaminate sampling equipment. Efforts will be made to minimize to the extent practicable the energy consumption, waste generation and water usage for implementation of this SMP.

6.2.1. Timing of Green Remediation Evaluations

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a Remedial System Optimization (RSO), or at any time that the NYSDEC project manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine O&M activities. Reporting of these modifications will be presented in the PRR.

6.2.2. Frequency of System Checks, Sampling and Other Periodic Activities

Transportation to and from the Site, use of consumables in relation to visiting the Site in order to conduct system checks and/or collect samples, and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

Consideration shall be given to:

- Reduced sampling frequencies;
- Reduced Site visits and system checks;
- Installation of remote sensing/operations and telemetry;
- Coordination/consolidation of activities to maximize foreman/labor time; and
- Use of mass transit for Site visits, where available, and carpooling.

6.2.3. Metrics and Reporting

As discussed in **Section 7.0** and as shown in **Appendix H** – Site Management Forms, information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during Site management and to identify corresponding benefits. A set of metrics has been developed.

6.3. Remedial Systems Optimization

A RSO study will be conducted any time that the NYSDEC project manager or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. The RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the Decision Document:
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the Site management to another remedial party or agency; and

• A new and applicable remedial technology becomes available.

A RSO will provide a critique of a Site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the Site's cleanup goals, gather additional performance or media specific data and information and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study will focus on overall Site cleanup strategy, process optimization and management with the intent of identifying impediments to cleanup and improvements to Site operations to increase efficiency, cost effectiveness and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

7. REPORTING REQUIREMENTS

7.1. Site Management Reports

All Site management inspection, maintenance and monitoring events will be recorded on the appropriate Site Management Forms provided in **Appendix H**. These forms are subject to NYSDEC revision. All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the Site during the reporting period will be provided in electronic format to NYSDEC in accordance with the requirements of **Table 3** and summarized in the PRR.

Table 3: Schedule of Interim Monitoring/Inspection Reports

Task/Report	Reporting Frequency*
Site-Wide Inspections and Reports	Annually
Groundwater Monitoring	Every three years within 30 days before or after April 1st
PRR	Every five years

^{*} The frequency of events will be conducted as specified until otherwise approved by the NYSDEC project manager.

All routine monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation);
- Sampling results in comparison to appropriate standards/criteria;

♦ TRC

- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
 and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

7.2. Periodic Review

A periodic review will be conducted, and a PRR will be submitted, every five years to the NYSDEC project manager or at another frequency as may be required by the NYSDEC project manager. In the event that the Site is subdivided into separate parcels with different ownership, a single PRR will be prepared that addresses the Site described in **Appendix A** - Environmental Easement. The report will be prepared in accordance with DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the PRR. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site.
- Results of the required annual Site inspections, fire inspections and severe condition inspections, if applicable.
- Description of any change of use, import of materials, or excavation that occurred during the certifying period.
- All applicable Site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- Identification of any wastes generated during the reporting period, along with waste characterization data, manifests, and disposal documentation.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These tables and figures will include a presentation of past data as part of an evaluation of contaminant concentration trends, including but not limited to:
 - o Trend monitoring graphs that present groundwater contaminant levels from before the start of the remedy implementation to the most current sampling data;

- Trend monitoring graphs depicting system influent analytical data on a per event and cumulative basis;
- O&M data summary tables;
- o A current plume map for Sites with remaining groundwater contamination; and
- o A groundwater elevation contour map for each gauging event.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the Department. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A Site evaluation, which includes the following:
 - o The compliance of the remedy with the requirements of the Site-specific Remedial Action Work Plan (RAWP), ROD or Decision Document;
 - o The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan;
 - An evaluation of trends in contaminant levels in the affected media to determine if the remedy continues to be effective in achieving remedial goals as specified by the RAWP, ROD or Decision Document; and
 - o The overall performance and effectiveness of the remedy.

A quantitative and qualitative overview of the Site's environmental impacts must be provided through the completion of the Summary of Green Remediation Metrics provided in **Appendix K**.

7.2.1. Reports Certification of Institutional [and Engineering] Controls

Following the last inspection of the reporting period, a qualified environmental professional as defined in 6 NYCRR Part 375 or Professional Engineer licensed to practice and registered in New York State will prepare, and include in the PRR, the following certification as per the requirements of DER-10:

"For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction:
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the Site is compliant with the environmental easement;*
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program; and
- *The information presented in this report is accurate and complete.*

The signed certification will be included in the PRR.

The PRR will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager. The PRR may also need to be submitted in hard-copy format if requested by the NYSDEC project manager.

7.3. Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control or failure to conduct Site management activities, a Corrective Measures Work Plan will be submitted to the NYSDEC project manager for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC project manager.

7.4. Remedial Systems Optimization Report

If an RSO is to be performed (see **Section 6.3**), upon completion of an RSO, an RSO report must be submitted to the NYSDEC project manager for approval. A general outline for the RSO report is provided in **Appendix L**. The RSO report will document the research/ investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model and present recommendations. RSO recommendations are to be implemented upon approval from NYSDEC. Additional work plans, design documents, HASPs etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

The RSO report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager.

8. REFERENCES

TRC Engineers, Inc., 2023. Periodic Review Report, Johnny Cake Road Farm Site, NYSDEC Site No. 6-22-016, Work Assignment No. D009812-25. (February 2023).

AECOM, 2016. Periodic Review Report, Johnny Cake Road Farm Site, NYSDEC Site No. 6-22-016, Work Assignment No. D007626-06. (December 2016).

AECOM, 2013. Periodic Review Report, Johnny Cake Road Farm Site, NYSDEC Site No. 6-22-016, Work Assignment No. D007626-06. (October 2013).

AECOM, 2012. Periodic Review Report, Johnny Cake Road Farm Site, NYSDEC Site No. 6-22-016, Work Assignment No. D007626-06. (September 2012).

NYSDEC, 2011. Site Management Plan, Johnny Cake Road Farm Site, Town of Danube, Herkimer County, New York. (June 2011).

"2010 Groundwater Monitoring Report", January 2011*.

NYSDEC, 2010. DER-31/Green Remediation. (August 2010).

NYSDEC, 2010. DER-10/Technical Guidance for Site Investigation and Remediation. (May 2010).

NYSDEC, 2009. Record of Decision, Johnny Cake Road Farm Site, Town of Danube, Herkimer County, Site Number 6-22-016. (March 2009).

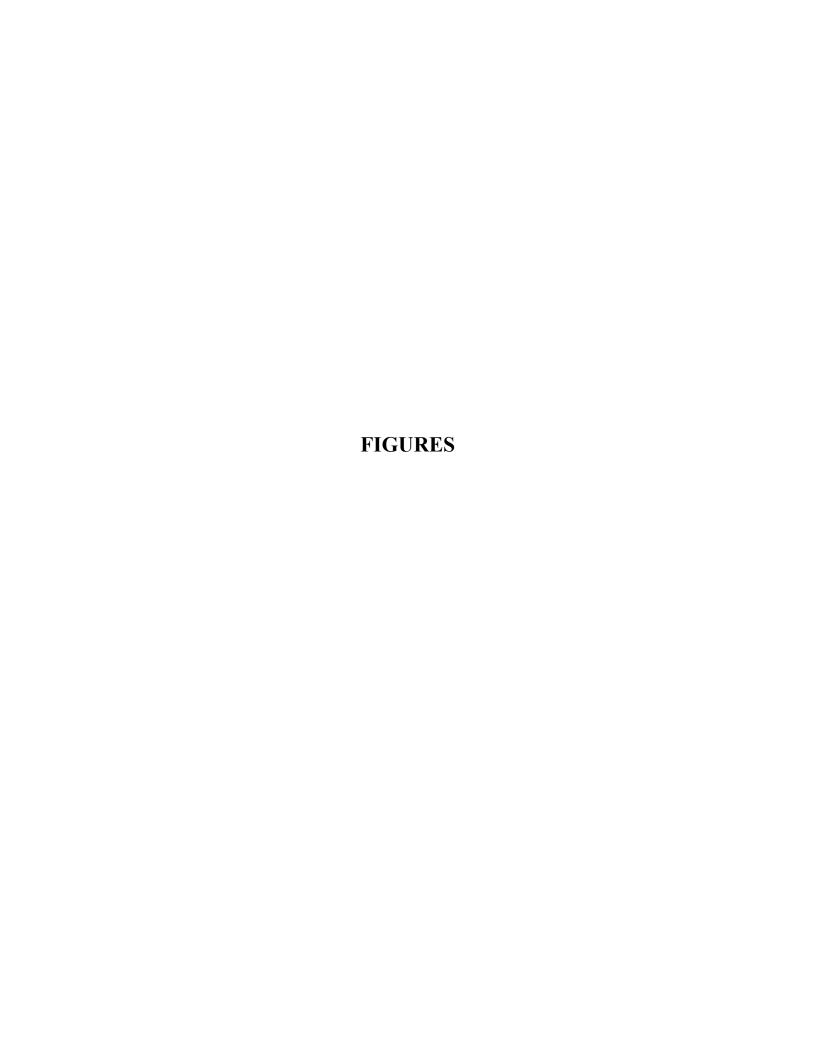
Earth Tech Northeast, Inc., 2009. Site Investigation Report, Johnny Cake Road Site, Site Number: 622016, Work Assignment No. D004436-22, (February 2009).

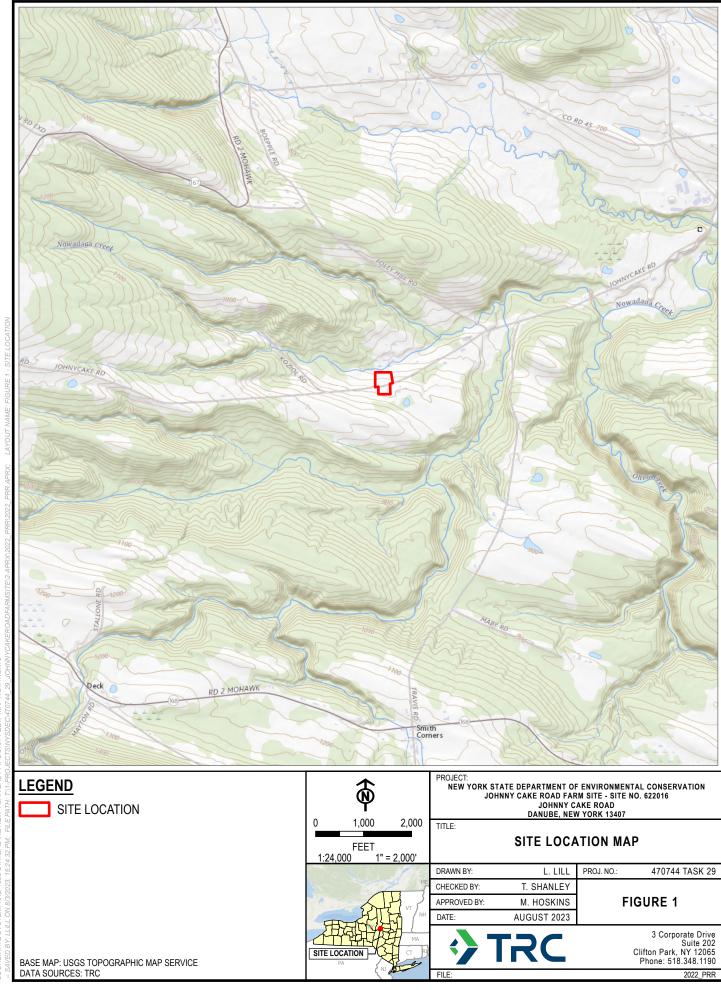
NYSDEC, 2006. 6 NYCRR Part 375 Environmental Remediation Programs. (December 2006).

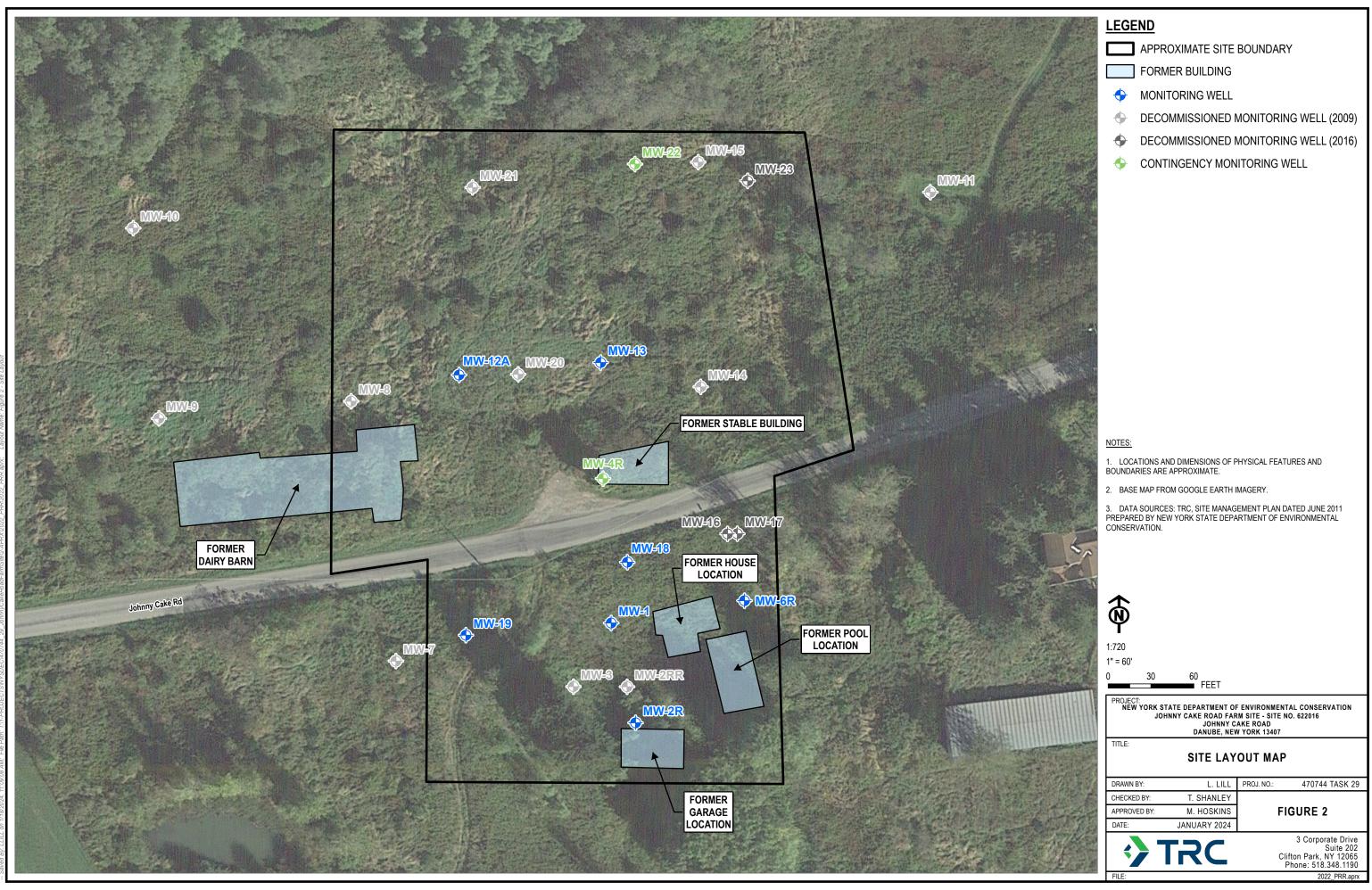
USEPA, 2006. Removal Action Report, Johnny Cake Road Site, Danube Township, Herkimer County, New York, Site ID# 6M. (November 2006).

USEPA, 2006. Superfund Contract Support Team Sampling Report for the Johnny Cake Farm Road Site in Danube, Herkimer County, New York, March 7 – 9, 2006. (March 2006).

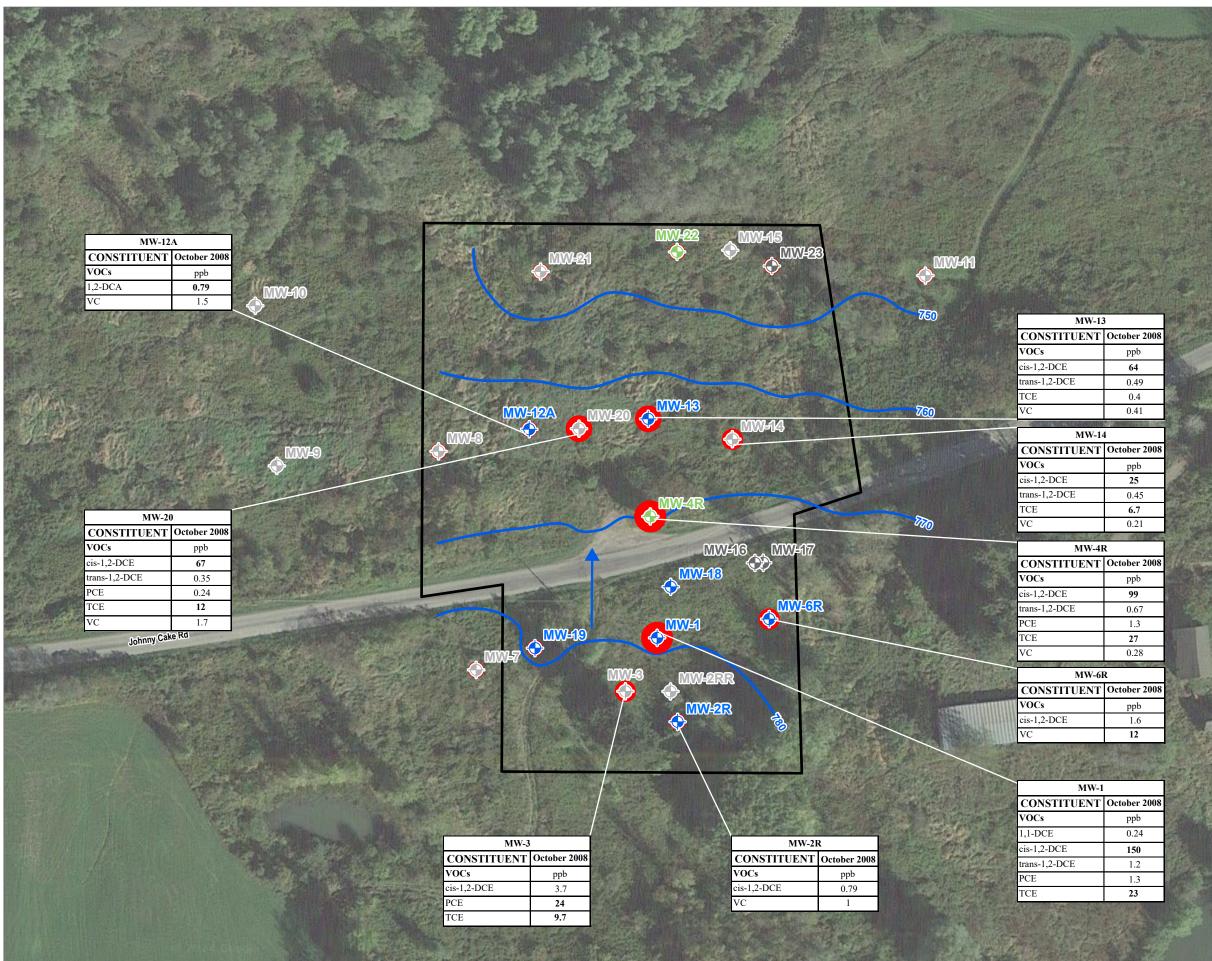
USEPA, 2005. Removal Action Workplan, Johnny Cake Road Site, Danube Township, Herkimer County, New York, Site ID# 6M. (March 2005).


NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. (June 1998, April 2000 addendum).


Roy F. Weston, Inc., 1991. Extent of Contamination Study, Johnny Cake Road Site, Danube Township, Herkimer County, New York. (November 1991).


C.T. Male Associates, P.C., 1990. *Johnny Cake Road Farm Site, Environmental Investigation, Town of Danube, Herkimer County, New York, Federal Seizure No. 87-CV-980.* (June 1990).

* Indicates that TRC was not able to locate the report.



System: NAD 1983 StatePlane New York East FIPS 3101 Feet; Map Rotation: 0

LEGEND

APPROXIMATE SITE BOUNDARY GROUNDWATER ELEVATION CONTOUR (10' INTERVALS)

GROUNDWATER FLOW DIRECTION

MONITORING WELL

DECOMMISSIONED MONITORING WELL

DECOMMISSIONED MONITORING WELL

CONTINGENCY MONITORING WELL

TOTAL VOCs (PPB)

< 5

5 - 50

50 - 100

VOCs	ppb
. 0 00	PPO
1,2-DCA	0.6
1,1-DCE	5
cis-1,2-DCE	5
trans-1,2-DCE	5
PCE	5
TCE	5
VC	2

- 1. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.
- 2. ONLY DETECTED VOCs ARE SHOWN ON THIS FIGURE.
- 3. VALUES SHOWN IN BOLD EXCEED THE LISTED CRITERIA.
- 4. NO VOCs WERE DETECTED IN MW-15, MW-16, MW-17, OR MW-18. THESE WELLS ARE SCREENED BELOW THE LEVEL OF GROUNDWATER CONTAMINATION AND WERE NOT USED TO GENERATE GROUNDWATER CONTOURS.
- 5. FOR FIGURE CLARITY, LABORATORY QUALIFIERS AND DUPLICATE SAMPLE RESULTS ARE NOT
- 6. GROUNDWATER ELEVATION UNITS IN FEET ABOVE MEAN SEA LEVEL.

ACRONYMS: 1,2-DCA - 1,2-DICHLOROETHANE 1,1-DCE - 1,1-DICHLOROETHENE

1,1-UCE - 1,1-UICHLOROE HENE
cis-1,2-DCE - cis-1,2-UICHLOROETHENE
trans-1,2-DCE - trans-1,2-DICHLOROETHENE
PCE - TETRACHLOROETHENE
PPB - PARTS PER BILLION
NO - NOT DETECTED
TET TRUCKLOROETHENE

TCE - TRICHLOROETHENE VC - VINYL CHLORIDE

VOCs - VOLATILE ORGANIC COMPOUNDS

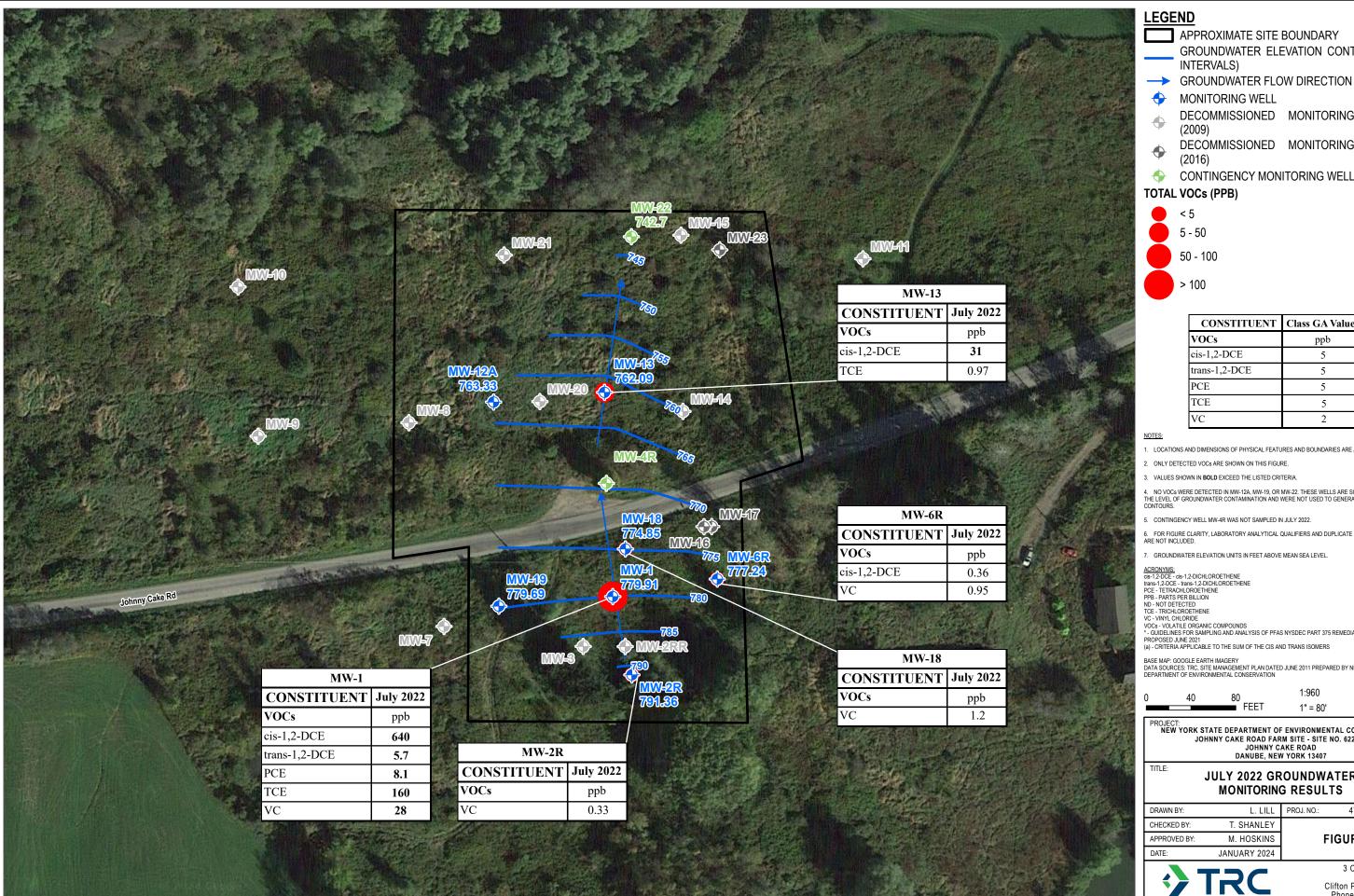
*- GUIDELINES FOR SAMPLING AND ANALYSIS OF PFAS NYSDEC PART 375 REMEDIAL PROGRAMS,
PROPOSED JUNE 2021

(a) - CRITERIA APPLICABLE TO THE SUM OF THE CIS AND TRANS ISOMERS

BASE MAP: GOOGLE EARTH IMAGERY
DATA SOURCES: TRC, SITE MANAGEMENT PLAN DATED JUNE 2011 PREPARED BY NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

1:960 FEET

1" = 80'


PROJECT:
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION JOHNNY CAKE ROAD FARM SITE - SITE NO. 622016 JOHNNY CAKE ROAD DANUBE, NEW YORK 13407

OCTOBER 2008 GROUNDWATER **INVESTIGATION RESULTS**

	DRAWN BY:	L. LILL	PROJ. NO.:	470744 TASK 29
	CHECKED BY:	T. SHANLEY		
l	APPROVED BY:	M. HOSKINS	FI	IGURE 3
а	DATE:	JANUARY 2024		

3 Corporate Drive Suite 202 Clifton Park, NY 12065 Phone: 518.348.1190 SMP Update 2023.aprx

APPROXIMATE SITE BOUNDARY

GROUNDWATER ELEVATION CONTOUR (5' INTERVALS)

MONITORING WELL

DECOMMISSIONED MONITORING WELL (2009)

DECOMMISSIONED MONITORING WELL

CONTINGENCY MONITORING WELL

TOTAL VOCs (PPB)

< 5

5 - 50

50 - 100

CONSTITUENT	Class GA Value*
VOCs	ppb
cis-1,2-DCE	5
trans-1,2-DCE	5
PCE	5
TCE	5
VC	2

- 1. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.
- 2. ONLY DETECTED VOCs ARE SHOWN ON THIS FIGURE.
- 3. VALUES SHOWN IN BOLD EXCEED THE LISTED CRITERIA.
- $4.\,$ NO VOCs WERE DETECTED IN MW-12A, MW-19, OR MW-22. THESE WELLS ARE SCREENED BELOW THE LEVEL OF GROUNDWATER CONTAMINATION AND WERE NOT USED TO GENERATE GROUNDWATER CONTOURS.
- 5. CONTINGENCY WELL MW-4R WAS NOT SAMPLED IN JULY 2022.
- 6. FOR FIGURE CLARITY, LABORATORY ANALYTICAL QUALIFIERS AND DUPLICATE SAMPLE RESULTS
- 7. GROUNDWATER ELEVATION UNITS IN FEET ABOVE MEAN SEA LEVEL.

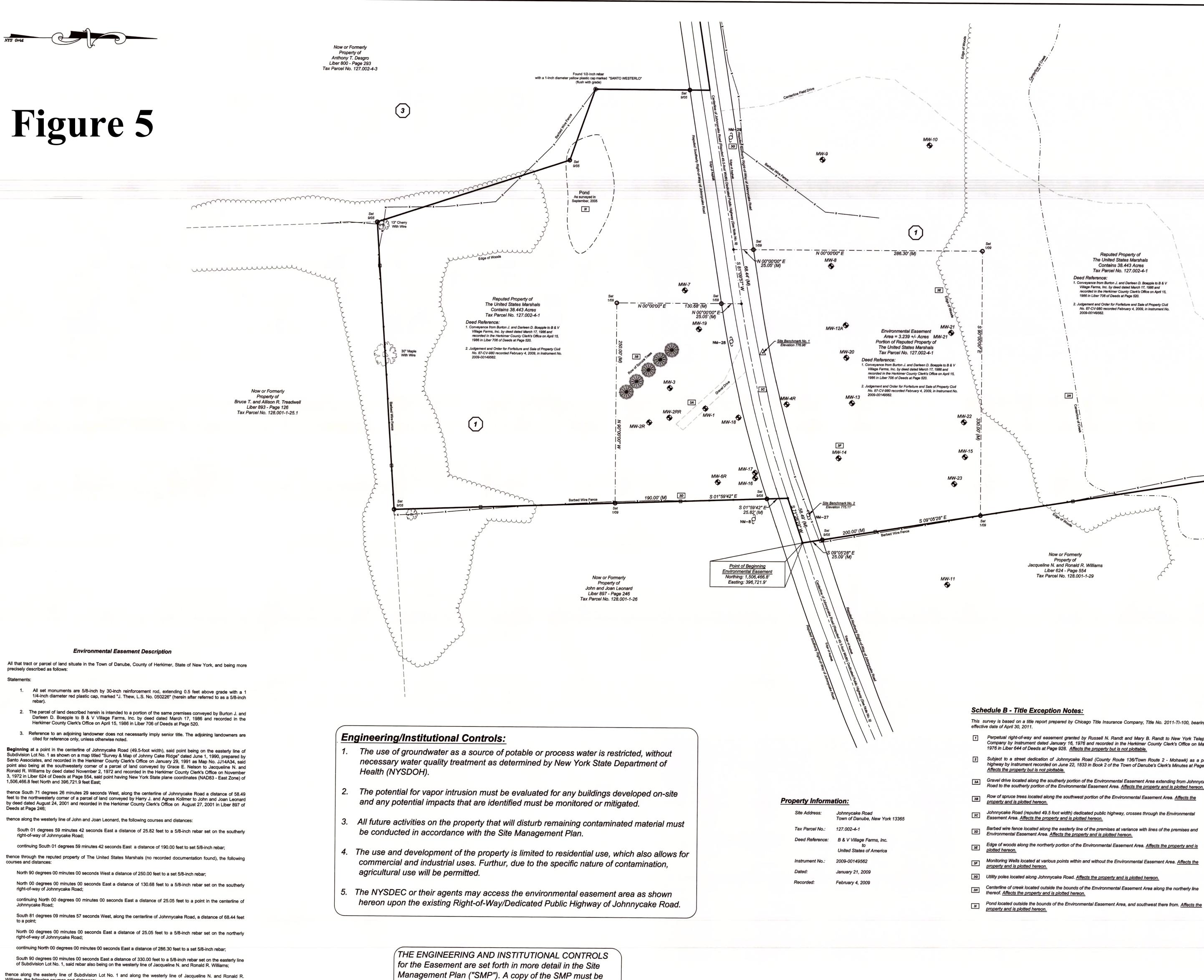
VC - VINYL CHLORIDE

VOS - VOLATILE ORGANIC COMPOUNDS

*- GUIDELINES FOR SAMPLING AND ANALYSIS OF PFAS NYSDEC PART 375 REMEDIAL PROGRAMS,
PROPOSED JUNE 2021

(a) - CRITERIA APPLICABLE TO THE SUM OF THE CIS AND TRANS ISOMERS

BASE MAP: GOOGLE EARTH IMAGERY
DATA SOURCES: TRC, SITE MANAGEMENT PLAN DATED JUNE 2011 PREPARED BY NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION


PROJECT:
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
JOHNNY CAKE ROAD FARM SITE - SITE NO. 622016 JOHNNY CAKE ROAD DANUBE, NEW YORK 13407

JULY 2022 GROUNDWATER MONITORING RESULTS

470744 TASK 29 L. LILL PROJ. NO.: T. SHANLEY CHECKED BY: FIGURE 4 M. HOSKINS APPROVED BY JANUARY 2024

3 Corporate Drive Suite 202 Clifton Park, NY 12065 Phone: 518.348.1190 SMP Update 2023.aprx

Management Plan ("SMP"). A copy of the SMP must be obtained by any party with an interest in the property. The SMP may be obtained from New York State Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233 or at derweb@gw.dec.state.ny.us.

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law.

This survey is based on a title report prepared by Chicago Title Insurance Company, Title No. 2011-TI-100, bearing an

Reputed Property of The United States Marshals Contains 38.443 Acres

Tax Parcel No. 127.002-4-1

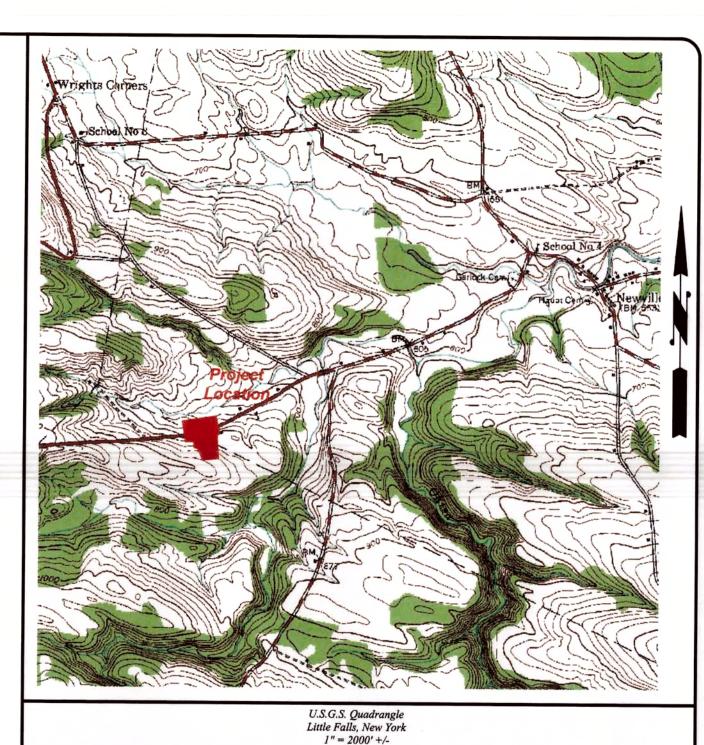
1. Conveyance from Burton J. and Darleen D. Boepple to B & V Village Farms, Inc. by deed dated March 17, 1986 and recorded in the Herkimer County Clerk's Office on April 15, 1986 in Liber 706 of Deeds at Page 520.

2. Judgement and Order for Forfeiture and Sale of Property Civil No. 87-CV-980 recorded February 4, 2009, in Instrument No.

Deed Reference:

- Perpetual right-of-way and easement granted by Russell N. Randt and Mary B. Randt to New York Telephone Company by Instrument dated January 16, 1976 and recorded in the Herkimer County Clerk's Office on May 25, 1976 in Liber 644 of Deeds at Page 928. Affects the property but is not plottable.
- Subject to a street dedication of Johnnycake Road (County Route 136/Town Route 2 Mohawk) as a public highway by Instrument recorded on June 22, 1833 in Book 2 of the Town of Danube's Clerk's Minutes at Page 79. Affects the property but is not plottable.
- Gravel drive located along the southerly portion of the Environmental Easement Area extending from Johnnycake Road to the southerly portion of the Environmental Easement Area. Affects the property and is plotted hereon. Row of spruce trees located along the southwest portion of the Environmental Easement Area. <u>Affects the property and is plotted hereon.</u>
- Johnnycake Road (reputed 49.5 foot width) dedicated public highway, crosses through the Environmental Easement Area. <u>Affects the property and is plotted hereon.</u>
- Barbed wire fence located along the easterly line of the premises at variance with lines of the premises and Barbed wire tence located along the eastern line of the property and is plotted hereon.

 Environmental Easement Area. Affects the property and is plotted hereon.
- Edge of woods along the northerly portion of the Environmental Easement Area. Affects the property and is plotted hereon.
- 36 Utility poles located along Johnnycake Road. Affects the property and is plotted hereon.
- Сеnterline of creek located outside the bounds of the Environmental Easement Area along the northerly line thereof. <u>Affects the property and is plotted hereon.</u>


Copyright © 2011 Thew Associates PE-LS, PLLC - All Rights Reserved REV

ALTA / ACSM Land Title Survey

I hereby certify to New York State Department of Environmental Conversation:

This is to certify that this map or plat and the survey on which it is based were made in accordance with the "Minimum Standard Detail Requirements for ALTA/ACSM Land Title Surveys" jointly established and adopted by ALTA and NSPS in 2005. Pursuant to the accuracy standards as adopted by ALTA and NSPS and in effect on the date of this certification, the undersigned further certifies that in my professional opinion, as a land surveyor registered in the State of New York, the relative positional accuracy of this survey does not exceed that which is

Registration Number: 050578 Within the State of: New York Date of Field Survey: January 14, 2009 Date of Survey: February 2, 2009 Date of Last Revision: May 17, 2011

General Notes:

- 1. This survey is referenced horizontally to the North American Datum of 1983 (NAD83) and projected on the New York State Plane Coordinate System (East Zone), and vertically to the North American Vertical Datum of 1988 (NAVD88).
- 2 . North arrow as shown indicates Grid North referenced to NAD83 and projected on the New York State Plane Coordinate System (East Zone).
- 3. The reference horizontal control station is a GPS Continuously Operating Reference Station (CORS) designated as "HERKIMER CORS ARP" (NYHM). NYHM is a horizontal and vertical Control Station established by the National Geodetic Survey (NGS) in 2006.
- V 281 RESET is a third order benchmark. Elevation 604.19 feet 4. A title report prepared by Chicago Title Insurance Company, Title No. 2011-TI-100, bearing an effective date of April

The reference benchmark is a Coast and Geodetic Survey (CGS) disc distinguished as "E 316", established in 1942.

- 30, 2011 was utilized in the preparation of this survey. 5. The information shown hereon is based on an instrument survey completed on September 13, 2005.
- 6. The location of the centerline of creek shown hereon is based on aerial photography.

Department has the right to use, maintain and repair the highway.

- 7. Monitoring well locations and elevations were obtained by Thew Associates PE-LS, PLLC on October 28, 2008. 8. At the time of the survey there were not any buildings on site.
- 9. Based on conversations with with representatives of Herkimer County Department of Transportation, Johnnycake Road (A.K.A. County Route 136) is a dedicated public highway with a width of four rods (66 feet). They referenced Book No. 2 of the Town of Danube's Clerk's Minutes, at Page 79 which presumably states how the County acquired the road. However, after review of the document, it is unclear as to who the grantor was, if there was any consideration, and under what method was the acquisition taken (i.e. Fee acquisition, right-of-way, eminent domain, easement, etc.). Therefore, it appears that that the ownership of Johnnycake Road (A.K.A. County Route 136) lies

with the private landowners adjacent to the road and the public, Town Highway Department and County Highway

Reference Drawings:

- 1. Titled "Survey & Map of Johnny Cake Ridge" dated June 1, 1990, prepared by Santo Associates, and recorded in the Herkimer County Clerks Office on January 29, 1991 as Map Number JJ14A34.
- 2. Titled "Proposed Subdivision Map of Lands of Robert D. Johnson, Estate to be Conveyed to Charles Soukup" dated October 5, 2003, and prepared by Charles R. Ackerbauer, PE LS.
- 3. Titled "Figure 2 Soil Boring Locations and Soil Sample Results Johnny Cake Road Site Danube, New York" dated May 13, 2004, and prepared by Weston Solutions, Inc.
- 4. Titled "Map Showing Lands of Michaels Associates, Inc. and J. Michael Sanders" dated September 15, 2005, last revised September 20, 2005, prepared by Thew Associates PE-LS, PLLC, and distinguished as UK075-08-05.

Site Benchmarks:

Site Benchmark No. 1
Set 5/8-inch rebar with a 1 1/4-inch diameter orange plastic cap marked "THEW BASELINE", located on the northerly side of Johnnycake Road, approximately 71 feet westerly of MW-4R. Elevation 776.96 feet.

Railroad spike set 1-foot above grade in the southerly face of Utility Pole NM-27, located on the northerly side of

Johnnycake Road, approximately 80 feet southeasterly of MW-14. Elevation 775.11 feet.

	Environmental Easement line
	Adjoiner Deed Line
	Traveled Centerline
xx	Barbed Wire Fence
***************************************	Stone Wall
· · · · · · · · · · · · · · · · · · ·	Edge of Woods/Brush
	Centerline of Creek
	Edge of Water
	Edge of Gravel
	Centerline of Field Drive
0	Set 5/8-inch Rebar with a 1 1/4-inch diameter red plastic cap marked "J. Thew, L.S. No. 050226"
•	Found Iron (Pipe Rebar, et cetera) as Noted
⊡	Set 5-foot Metal Fence Post
3C	Schedule B Title Exception Identifier
мw-8 💠	Monitoring Well and Identifier
\odot	Subdivision Lot Number
G.	Utility Pole
	Deciduous Tree
	Coniferous Tree
△	Site Benchmark

(IN METERS) 1 inch: 15.24 meters GRAPHIC SCALE

(IN FEET 1 inch = 50 ft.

ALTA/ACSM Land Title Survey R.D.S. Tax Parcel No. 127.002-4-1 Environmental Easement Description RHK. DEC Site No. 6-22-016 Town of Danube County of Herkimer 1" = 50' State of New York P.O. Box 463
6431 US Highway 11
Canton, New York 13617
T. 315/386-2776

T. 315/386-2776

Thew Associates

LAND SURVEYORS

Marcy, New York 13403
T. 315/733-7278
F: 315/797-1957 2/2/09 Updated Map per Title Commitmen T: 315/386-2776
F: 315/386-1012
www.ThewAssociates.com UK233-10-08

Unauthorized alteration or addition to a survey map bearing a licensed land surveyors seal is a violation of Section 7209, Subdivision 2 of the New York

Only copies from the original of this survey marked with an original of the

surveyor's inked seal or his embossed seal shall be considered to be valid and

Williams, the following courses and distances:

right-of-way of Johnnycake Road;

South 09 degrees 05 minutes 28 seconds East a distance of 200.00 feet to a 5/8-inch rebar set on the northerly

continuing South 09 degrees 05 minutes 28 seconds East a distance of 25.09 feet to the Point of Beginning.

To contain 3.239 acres of land, more or less, as surveyed by Robert H. Korosec, Licensed Land Surveyor No. 050578.

last revised on May 17, 2011, and is distinguished as Drawing No. UK233-10-08.

A map of the above described parcel of land was prepared by Thew Associates PE-LS, PLLC, dated February 2, 2009,

APPENDIX A ENVIRONMENTAL EASEMENT

Herkimer County Honorable Sylvia M Rowan County Clerk 109 Mary Street Suite 1111 Herkimer. New York 13350-2923

ORIGINAL

Instrument Number: 2011-00166171

As

Recorded On: July 27, 2011

Easement

Parties: UNITED STATES OF AMERICA

PEOPLE OF THE STATE OF NEW YORK

Billable Pages:

11

Recorded By: UNITED STATES MARSHAL SERVICE

Num Of Pages:

12

Comment:

** Examined and Charged as Follows: **

Easement

95.00

Coversheet

5.00

TP584 Affidavit

5.00

Recording Charge:

105.00

Consideration

Amount RS#/CS#

Amount

0.00

Tax-Transfer

0.00

0.00 RS 1820

Basic

Additional

0.00 Transfer

0.00

DANUBE T/O

Local

0.00 Special Additional

0.00

Tax Charge:

0.00

STATE OF NEW YORK, COUNTY OF HERKIMER SS:

I, Sylvia M. Rowan, Clerk of the County of Herkimer of the County Court of said County and of the Supreme Court, both being Courts of Record having a common seal.

DO HEREBY CERTIFY that I have compared this copy with the original filed, recorded, or entered in this office and that the same is a correct transcript thereof and of the whole of said original.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed the seal of said County and Courts on

Facsimile signature used pursuant to Sec. 903 County Law

** THIS PAGE IS PART OF THE INSTRUMENT **

I hereby certify that the within and foregoing was recorded in the Clerk's Office For: Herkimer County, NY

File Information:

Record and Return To:

Document Number: 2011-00166171

UNITED STATES MARSHAL SERVICE

Receipt Number: 163822

100 SOUTH CLINTON STREET SYRACUSE NY 13261

Recorded Date/Time: July 27, 2011 12:57:24P

Book-Vol/Pg: Bk-R VI-1405 Pg-277

Cashier / Station: M Murphy / Cashier Station 3

Sylvia M Rowan Herkimer County Clerk

Site No: 6-22-016

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the Johnny Cake Road, Mohawk, NY 13407 in the Town of Danube, County of Herkimer and State of New York, known and designated on the tax map of the County Clerk of Herkimer as tax map parcel numbers: Section 127.002 Block 4 Lot 1, being the same as that property conveyed to Grantor by Judgment and Forfeiture and Sale of Property dated February 27, 1990 and recorded on February 4, 2009 in the Herkimer County Clerk's Office in Instrument No. 2009-00149562, and by Deed dated March 17, 1986 recorded on April 15, 1986 in Book 706 Page 520, comprising approximately 3.239 ± acres, and hereinafter more fully described in the Land Title Survey dated January 21, 2009 and revised on October 22, 2010 and again on May 17, 2011, prepared by Thew Associates PE-LS, PLLC, which will be attached to the Site Management Plan. The property description (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

Site No: 6-22-016

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order Number: None, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.
- (4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- (8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.

County: Herkimer

- (9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer NYSDEC – Region 6 Division of Environmental Remediation 317 Washington Street Watertown, NY 13601-3787, Phone: (315) 785-2238

or

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

Site No: 6-22-016

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a

Site No: 6-22-016

defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: 6-22-016

Office of General Counsel.

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

Site No: 6-22-016

- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment</u>. This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantors Name: The United States of America
U.S. Marsha Service By Mule (ail
Print Name: Jennifer Crane
Title: Acting Assistant Program Manager
Date: Sure 24, 207/

Grantor=s Acknowledgment

STATE OF NEW YORK

COUNTY OF ARLING TO (

On the 24th day of JUNC, in the year 20 11, before me, the undersigned, personally appeared Jennifer Cranc, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

MUNICAHUS CREGORD Notary Public - State of New York Virginia My commission expires, this 30th day of November 2013. I was commissioned a Notary Public as Terokeshas. Purce.

Environmental Easement Page 6

Site No: 6-22-016

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner.

By:

Dale A. Desnoyers, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)

COUNTY OF A (Vary) ss:

On the day of _____, in the year 20_11, before me, the undersigned, personally appeared _____ personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

SCHEDULE "A" ENVIRONMENTAL EASEMENT PROPERTY DESCRIPTION

Johnny Cake Road Site No. 6-22-016

Town of Danube, County of Herkimer, State of New York

Tax Map Number: 127.002 - 4 - 1

All that tract or parcel of land situate in the Town of Danube, County of Herkimer, State of New York, and being more precisely described as follows:

Statements:

- 1. All set monuments are 5/8 –inch by 30-inch reinforcement rod, extending 0.5 feet above grade with a 1 1/4 –inch diameter red plastic cap, marked "J. Thew, L.S. No. 050226" (herein after referred to as a 5/8-inch rebar).
- 2. The parcel of land described herein is intended to a portion of the same premises conveyed by Burton J. and Darleen D. Boepple to B & V Village Farms, Inc. by deed dated March 17, 1986 and recorded in the Herkimer County Clerk's Office on April 15, 1986 in Liber 706 of Deeds at Page 520.
- 3. Reference to an adjoining landowner does not necessarily imply senior title. The adjoining landowners are cited for reference only, unless otherwise noted.

Beginning at a point in the centerline of Johnnycake Road (49.5-foot width), said point being on the easterly line of Subdivision Lot No. 1 as shown on map entitled "Survey & Map of Johnny Cake Ridge" dated June 1, 1990, prepared by Santo Associates, and recorded in the Herkimer County Clerk's Office on January 29, 1991 as Map No. JJ14A34, said point also being at the southwesterly corner of a parcel of land conveyed by Grace E. Nelson to Jacqueline N. and Ronald R. Williams by deed dated November 2, 1972 and recorded in the Herkimer County Clerk's Office on November 3, 1972 in Liber 624 of Deeds at Page 554, said point having New York State plane coordinates (NAD83 – East Zone) of 1,506,466.8 feet North and 396,721.9 feet East;

thence South 71 degrees 26 minutes 29 seconds West, along the centerline of Johnnycake Road a distance of 58.49 feet to the northwesterly corner of a parcel of land conveyed by Harry J. and Agnes Kollmer to John and Joan Leonard by deed dated August 24, 2001 and recorded in the Herkimer County Clerk's Office on August 27, 2001 in Liber 897 at Page 246;

Thence along the westerly line of John and Joan Leonard, the following courses and distances:

South 01 degrees 59 minutes 42 seconds East a distance of 25.82 feet to a 5/8-inch rebar set on the southerly right-of-way of Johnnycake Road;

continuing South 01 degrees 59 minutes 42 seconds East a distance of 190.00 feet to set 5/8-inch rebar;

thence through the reputed property of The United States Marshals (no recorded documentation found), the following courses and distances:

North 90 degrees 00 minutes 00 seconds West a distance of 250.00 feet to a set 5/8-inch rebar;

North 00 degrees 00 minutes 00 seconds East a distance of 130.68 feet a 5/8-inch rebar set on the southerly right-of-way of Johnnycake Road;

continuing North 00 degrees 00 minutes 00 seconds East a distance of 25.05 feet to a point in the centerline of Johnnycake Road;

South 81 degrees 09 minutes 57 seconds West, along the centerline of Johnnycake Road, a distance of 68.44 feet to a point;

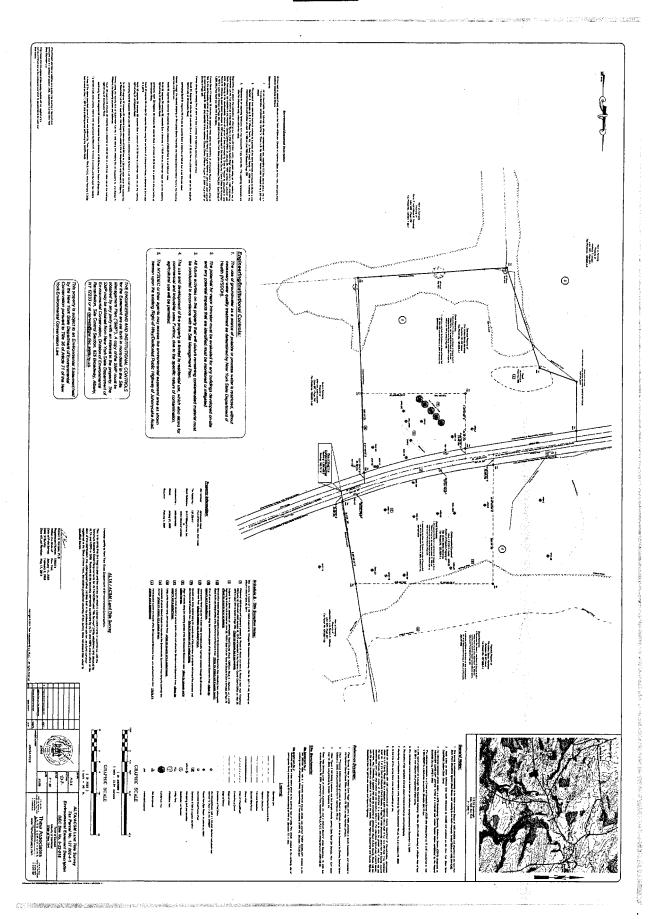
Site No: 6-22-016

North 00 degrees 00 minutes 00 seconds East a distance of 25.05 feet to a 5/8-inch rebar set on the northerly right-of-way of Johnnycake Road;

continuing North 00 degrees 00 minutes 00 seconds East a distance of 286.30 feet to a set 5/8-inch rebar;

South 90 degrees 00 minutes 00 seconds East a distance of 330.00 feet to a 5/8-inch rebar set on the easterly line of Subdivision Lot No. 1, said rebar also being on the westerly line of Jacqueline N. and Ronald R. Williams;

thence along the easterly line of Subdivision Lot No. 1 and along the westerly line of Jacqueline N. and Ronald R. Williams, the following courses and distances:


South 09 degrees 05 minutes 28 seconds East a distance of 200.00 feet to a 5/8- inch rebar set on the northerly right-of-way of Johnnycake Road;

continuing South 09 degrees 05 minutes 28 seconds East a distance of 25.09 feet to the Point of Beginning.

To contain 3.239 acres of land, more or less, as surveyed by Robert H. Korosec, Licensed Land Surveyor No. 050578.

Site No: 6-22-016

SURVEY

APPENDIX B LIST OF SITE CONTACTS

APPENDIX B

LIST OF SITE CONTACTS

Name Phone/Email Address

Matthew Hoskins, P.G. (315) 454-7539

Senior Project Manager mhoskins@trccompanies.com TRC Engineers, Inc.

Robert Strang (518) 402-8642

Project Manager robert.strang@dec.ny.gov

NYS Department of Environmental Conservation

Kristen Davidson (716) 851-7220

Citizen Participation Specialist kristen.davidson@dec.ny.gov NYS Department of Environmental Conservation

David Storandt (315) 785-2524

Region 6 Remediation Engineer david.storandt@dec.ny.gov NYS Department of Environmental Conservation

Shaun J. Suarani (518) 402-7860

NYS Department of Health shaun.surani@health.ny.gov

Bureau of Environmental Exposure Investigation

APPENDIX C MONITORING WELL NETWORK CONSTRUCTION SUMMARY AND BORING LOGS

Table 1 New York State Department of Environmental Conservation

Johnny Cake Road Farm Site - Site No. 622016 Town of Danube, New York

Monitoring Well Construction Summary

				Total			Screen		Eleva	tion (feet A	MSL)	Locati	ion ³
		Well Dia.	Well	Depth		Тор	Bottom	Length	Top of	Scr	een		
Well ID	Installation Date	(inches)	Material	(feet bgs)	Screened Formation	(feet bgs)	(feet bgs)	(feet)	Casing	Тор	Bottom	Northing (ft)	Easting (ft)
MW-1	4/19/1990	2	PVC	12	Overburden	2	12	10	785.55	780.55	770.50	1506345.56	396552.00
MW-2R	7/25/2005	4	PVC	23	Overburden	3	23	20	791.40	786.40	766.40	1506275.61	396569.08
MW-2RR ¹	7/27/2005	2	PVC	25	Overburden	4.5	24.5	20	NA	NA	NA	1506300.87	396563.15
MW-3 ¹	4/20/1990	2	PVC	13	Overburden	3	13	10	NA	NA	NA	1506300.99	396525.56
MW-4R	7/26/2005	4	PVC	23.5	Overburden	3.5	23.5	20	778.99	773.00	753.00	1506446.74	396546.32
MW-6R	7/25/2005	4	PVC	23	Overburden	3	23	20	785.46	780.10	760.10	1506361.20	396645.38
MW-7 ¹	1990	NA	PVC	24	Overburden	4	24	20	NA	NA	NA	1506318.88	396401.19
MW-8 ¹	1990	NA	PVC	NA	Overburden	NA	NA	NA	NA	NA	NA	1506500.97	396369.83
MW-9 ¹	1990	NA	PVC	12	Overburden	2	12	10	NA	NA	NA	1506488.92	396235.11
MW-10 ¹	1990	NA	PVC	18	Overburden	2.5	17.5	15	NA	NA	NA	1506622.32	396217.12
MW-11 ¹	5/21/1991	4	PVC	20	Overburden	5	20	15	NA	NA	NA	1506647.47	396775.57
MW-12A	5/17/1991	4	PVC	20	Overburden	10	20	10	769.44	757.20	747.20	1506519.39	396445.45
MW-13	5/21/1991	4	PVC	15	Overburden	5	15	10	768.71	761.60	751.60	1506528.08	396544.61
MW-14 ¹	5/20/1991	4	PVC	21	Overburden	6	21	15	NA	NA	NA	1506511.05	396614.72
MW-15 ¹	5/23/1991	2	PVC	101	Overburden	91	101	10	NA	NA	NA	1506668.54	396612.96
MW-16 ²	9/23/2003	4	PVC	25	Overburden	15	25	10	NA	NA	NA	15607763.70	1678739.49
MW-17 ²	9/25/2003	4	PVC	40	Overburden	30	40	10	NA	NA	NA	15607763.36	1678734.80
MW-18	9/29/2003	4	PVC	25	Overburden	15	25	10	784.12	766.50	756.50	15607743.73	1678664.82
MW-19	9/29/2003	4	PVC	25	Overburden	15	25	10	788.22	770.60	760.60	15607691.13	1678557.56
MW-20 ¹	10/1/2003	4	PVC	24	Overburden	14	24	20	NA	NA	NA	1506519.86	396486.88
MW-21 ²	9/29/2008	2	PVC	23	Overburden	8	23	15	NA	NA	NA	1506650.81	396454.89
MW-22	9/30/2008	2	PVC	21	Overburden	6	21	15	748.77	740.30	725.30	1506667.21	396568.63
MW-23 ²	9/30/2008	2	PVC	20	Overburden	5	20	15	NA	NA	NA	1506655.43	396647.60

Notes:

AMSL : above mean sea level feet bgs : feet below ground surface PVC : polyvinyl chloride

NA : Not Available

Well information from 2011 SMP prepared by NYSDEC.

¹Decommissioned in 2009. ²Decommissioned in 2016.

³Universal Transverse Mercator, 18 North, WGS 1984 Datum

DATE HOLE NO. B-14/19/90 STARTED . SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. 4/19/90 FINISHED . C. W. DEPTH See Note #1 OF____ SHEET _ PROJECT Environmental Site Assessment LOCATION Johny Cake Road Town of Stark: NY BLOWS ON BLOW ON CASING C SOIL OR ROCK SAMPLER **NOTES** CLASSIFICATION /18. Note #1: At comple-17 Brown SILT & CLAY, Some Gravel tion of boring, a 2" 10 5 PVC ground water moni-5 -grades trace gravel toring well was instal 3 led as per attached 6 8 18 monitoring well detail (Wet-Soft to Stiff) 10 14 Brown Galcial Till 12 1.6 34 18 24 5 1001.5 -little recovery: rock fragments 6 50 49 26 grades gray (Moist-Compact) 20 End of Boring @ 12.4' N = No blows to drive 2 " spoon 12 " with 140b, pin wt. falling 30 "per blow. CLASSIFICATION Visual by Driller C = No blows to drive _____ " casing ____ " with ____ lb. weight falling _____ ___"per blow.

MITHOD OF INDESTIGATION 41" T.D. Hollow Stem Anders

į

į,

WAD BOX SUPPECE. PEPTY ELEVATION: 77/8 MANYAS 1.0 CONCRETE_ SEAL BENTONITE SEAL 2.01 PVC PIPE 2" Sch 40 PVC Flush Thread MAND PACKS = Whitehead WATER LEVEL Bros #0 Sand IN MONITOP) WELL SCHEEN 2" Sch 40 PVC Slot Size-.010" 12.4 12.4

WELL Nº

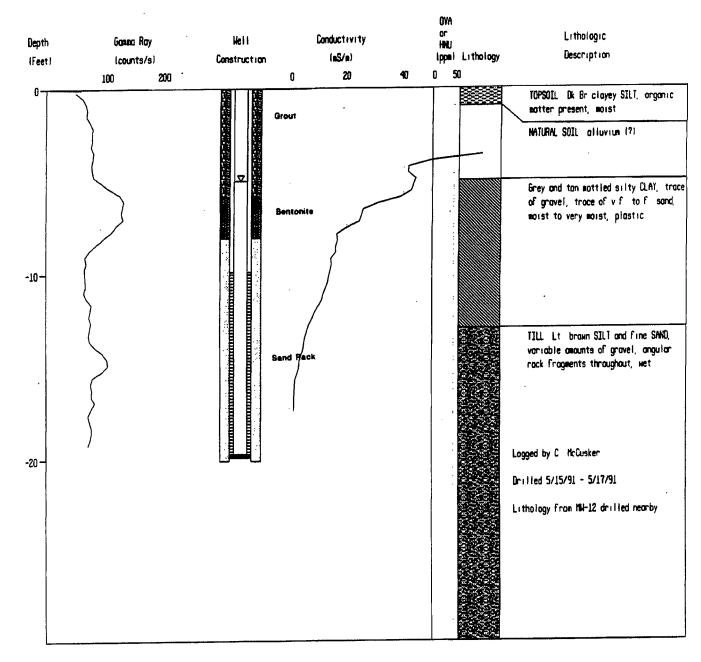
1

B-1

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J.H	SCALE: N.T. S.	PROI. NO.AD-90-36
	DATE: 5/23/90	DRWG.NO.

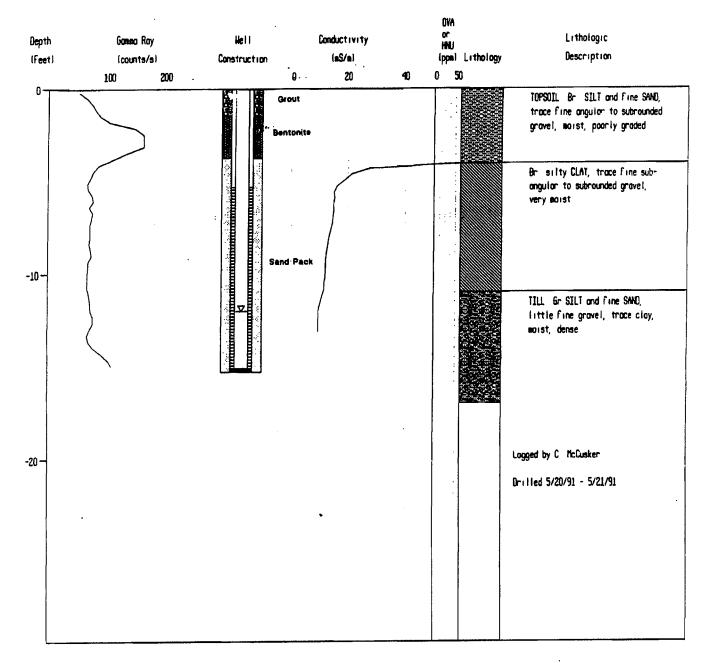

S		SUR	FACE		Subsuri Log		Hole No.:	MW-2R				e started	• •
Clland							Sheet	1 of 1		\A/mil		Finished .	
Client: Locatio		Johnny	ech, Inc. Cake Road f Danube, NY		Meniod		tigation: 6 1/4" Holl	ow-Stem Auger		Depth to	Depth Screen		23.0' bgs 3.0' bgs
		: 86361		ł	lling Co.;			Driller: J. Grant D. Helper: C. Ross					Weather Sunny
rojec	t Mgr	.: Pete		Ge	ologist:	N/A		Drill Rig: Mobile B	3-59	T		1 107.0	85 deg. l
Depth		Depth	Sample Blows	1	Recovery	ĺ		Sample			Depth	Well Details	Groundwate and Other
(ft.)	No.	(ft.)	per 6"	"N"				escription		ŀ	bg5		Observation
114.7	110.	(10)		Ť	,, <u>, </u>				 	5' of 4"			
		-				0.0-5.5	Moist, brown	fine to coarse sand; s	оте	diameter	0.5		6" Steel Stickup
								race clay; trace organi		Sch 40 PVC riser	2.5'		N
			***************************************	†									Seal
5		 	<u> </u>	1							!		\
<u> </u>				1			': Wet, brown ind; trace orga	slit and clay; trace fin	NE 10				Top of
İ		-				~~ a 36	, adoc digi						Screen at
ľ		1				12.5'-25.	5': Wet. arav	slit and clay; some fin	ne to				3.0
Ì								e to coarse sand.					
10										ļ			
										20' of 4"			
-										diameter			
ı				\Box						Sch 40, 0.01 slot,			
1										PVC well			
15	7		the state of the s							20186V			
													GW at 17.5'
r													▼
ľ							•						=
Γ													Sand Pack
20_													
				·									
						•			1	4"			23.0' BOW
										diameter			
25	\Box									PVC plug	25.5'	:::::: <u>\</u>	10*
										İ	вов	- 1	diameter
									}	ļ	1		borehole
L	_			$\sqcup \downarrow$]		1	
_ _	_			$\sqcup \downarrow$					Ī		I	1	
30	_										1	ŀ	
\vdash				-					Ì			- 1	
-	+	_		\vdash								ſ	
-	+	_								1		1	
<u>. </u>	+			-					ł		I	- 1	
35	L Tiese						1		Mall D	ackell Var	1		
mple ` = Spli			2" by 2"	T- C	helby Tul	יםי			Cemen	ackfill Key			Native Fill
= Spii l = Ro					Auger cut	_			Option 1	ıı			a wauve Fill
= AST				· _	auger cut	11193			Sand				Bentonite

5			RFACE		Subsur Log		Hole No.:	MW-2RR			Da	te started	l: 7/27/05
			Solutions				Sheet	1 of 1				Finished	
Clier Loca		Johi	h Tech, Inc. nny Cake Road In of Danube, NY		Method	of inves	itigation: 6 1/4" Hol	low-Stem Auger		We Depth to	Il Depti Screer		24.5' bgs 4.5' bgs
Proje	ct N	o.: 863	61	Dri	lling Co.:	SDS		Driller: J. Grant					Weather:
Dessio	ct M	ar i D	sta labacan	Car	ologist:	N/A		D. Helper: C. Ross	:A				M-Sunny
PIUJE	1	yr Pi	ete <u>Johnson</u> Sample	loc	ologist.	IV/A		Drlf Rig: Mobile 8-5	19	·····	Т	Well	80 deg. F Groundwater
Dept	h	Dept		T	Recovery	1		Sample			Depth	1	and Other
(ft.)	No	. (ft.)	per 6"	"N"	(ft)		D	escription			bgs	Details	Observations
5_						little med organics. 1.5'-7.0':	lium to coarse Wet, brown	n fine sand; some fine gra e sand; trace clay; trace silt and fine sand; little d; trace clay; trace organi		5' of 4" diameter Sch 40 PVC riser	0.5° 2.5'		6" Steel Stickup Bentonite Seal Top of Screen at
10							: Wet, brown dium to coars	n slit and fine sand; little o e sand.					4.5'
15								silt and fine sand; little fin o coarse sand; trace clay.	ne (20' of 4" diameter Sch 40, 0.01 slot, PVC well screen			
20											,		Sand Pack No. 00N GW at 20.3
										4" lameter VC plug			24.5' BOW
25										o a pilag	25.0' BOB		10° diameter borehole
30													
35				\top						İ	1		
mple = Sp	lit Sp	oon: _			elby Tub				ell Back ment	fill Key	·····		Native Fill
? = R = AS		core: _ 1586	C	<u> </u>	uger cutti	ngs		Sa Sa	end				Bentonite

S		SUF rilling So	RFACE		Subsur Log		Hole No.:		W-4R			e started	
<u></u>					_		Sheet	1	of 1	<u> </u>		Finished	
Client: Locatio		Johnny	Tech, Inc. Cake Road of Danube, NY		Method	or inves	itigation: 6 1/4" Ho	llow-Stem Au	ger	Depth to	Depth Screen		23.5' bgs 3.5' bgs
Projec	t No.	: 86361		Dri	lling Co.:	SDS		Driller: J. Gr. D. Helper: C					Weathe Overcast,
Project	t Mg	r.: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mo	bile B-59		· · · · · · · · · · · · · · · · · · ·		75 deg. (
			Sample			1						Well	Groundwal
Depth		Depth	Blows	45.0	Recovery			Sample			Depth	Details	and Othe
(ft.)	No.	(ft.)	per 6"	"N"	(fL)			escription		5' of 4"	bgs		Observatio
		 		+		0040	Maich brown	n fine sand; little	foo oraval	diameter	1.5'		6" Steel
	├	-		+				n nne sano; iitue e sand; trace or		Sch 40	2.5'	牌 牌	Stickup
ļ				+					•	PVC riser			\ Bentonite
5	-			+							İ		Seal
-		 +		+				silt and fine san			1		Top of
ŀ		-		+		coarse to	medium san	d; trace organic	5.				Screen at
ŀ				-		75.45.0		- 114 1144					3.5
ŀ						7.5'-15.0	: Wet, brow	n silt; little fine s	sand and clay.				
10		-+		+						1			
10				╁						20' of 4"			
}				1						diameter			
-	_			 		15 01-25 0	V. 14/at bass	m silt; little fine :	cand and class	Sch 40.			
ŀ				-		trace cobi		m sucjuide line :	sonu anu uay,	0.01 slot, PVC well			
 				-				•		screen			
15													GW at 16.5
F				┝╾┼				·					GAN ST 10"
H		 -		-									~
<u> </u>	-	+										= 1	Sand Pac
20	-+												No. 00N
-	-+			+							I		
F			· · · · · · · · · · · · · · · · · · ·								ı		
<u> </u>	-									4"	Į		23.5' BOW
<u> </u>	-									diameter			13.3 0044
5		_								PVC plug	25.0'	V	
-	$\neg +$									1	BOB	1	10"
<u> </u>	_			-							j	1	diameter borehole
<u> </u>	_			_							ı	- 1	30.0.10.2
	_			_							ŀ	- 1	
0	+			+							- 1	1	
_	1								į		- 1	- 1	
											1	[
				1							1	1	
				T							- 1		
5													
nple	Гуре	5:	· · · · · · · · · · · · · · · · · · ·						Well B	ackfill Key		·	
= Spli			2" by 2'	T= S	helby Tub	ne:			Cemer				Native Fill
= Ro				<u>A</u> C	uger cutt	ings							
AST	M D	1586							Sand				Bentonite

Figure 28

Geophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-12A



U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

> Johnny Cake Road Site Danube, New York WA #3347-31-01-4431 October, 1991

Figure 29

Geophysical Well Logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-13

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract: Contract No. 68-03-3482

> Johnny Cake Road Site Danube, New York WA #3347-31-01-4431 October, 1991

TES	TROR	ING LO	2	AGENCY	,					
COMPANY	NAME	ING LOC	<u> </u>	70011 0					HOLE NUMBER MW-16	
Weston PROJECT N	Solutions			SJB	UBCONTRA Service	CTOR		SHEET		
	Cake Road					SITE	LOCATION		1 of 3	
Bill Bos	RILLER					He	rkimer Count	ty, NY		
NAME OF G						No	rth - 475724	6.377 (m): Fa	st 511679.797 (
R. Moul						SIGN	ATURE OF GEOLOG	GIST	011019.191	<u>'''')</u>
CME 85	o track mour	IND SAMPLING EQUI	PMENT	······································			STARTED	DATE COMP	ETED	
		••				9/23	3/03 ACE ELEVATION	9/23/03		
						1 237	7.748 (m)			
						DEPTI 6 ft.	TO FIRST ENCOU	NTERED WATER		
OVERBURDE	N THICKNESS/ DEF	TH TO BEDROCK						LAPSED TIME AFTER	DRILLING COMPLETED	
DEPTH DRILL	ED INTO BEDROCK	(ASUREMENTS (SPE		
TOTAL DEPT	OF HOLE					ŀ			(IFY)	
GEOTECHNIC	AI SAMPLES	6.0'				İ	FLUID LOSSES			
	or ormir Eco		SAMPLE DEPTH	UNDISTURBED	VDISTURBE	D	TOTAL NUMBER	OF CORE BOXES		
ENVIRONMENT	(N. 0411 -1									
CHAILCHWEN	ial samples		SAMPLE DEPTH	ANALYTES					TOTAL CORE RECOVER	V &
			 							
DISPOSITION O	FHOLE		BACKFILLED	MONITORING W	E) 1	1046				
DATE	STARTTIME	FINISH TIME				LAS	ING TYPE	WELL DEPTH	SCREENED INTERVAL	
		I stion time	DRILLI	NG DEPTH				DESCRIPTION		
ļ	ļ									_#
										-
KETCH (F DRILLING	G LOCATION	/ADDITIONA	COMME	NTC					7
a.			"ADDITIONA	r Countie	412	SC	CALE:	Not T	o Scale	7
										ı
			See Seil	Doring L						
			066 3011	Boring L	ocatio	n Ma	ıp			ı
						•				I
										1
			•							
										l
OJECT										[
^hnny Cake	Road					t	E NO.			ı
						M	<i>N</i> -16			

RECOVERY SYMBOL MUNSEL DESCRIPTION OF MATERIALS PID READINGS LITHOLOGY DRILLING REMARKS	DEPTH	***************************************	Johnny Ca			GEOLOG R. Moult			HOLE NUMBER 3
0 Index	DEPIN	INTERVAL/ RECOVERY/	BLOW	USCS SYMBOL	MUNSELL COLOR		PID READINGS	LITHOLOGY	2 of 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	- IME	-	+'				LITHULUGY	DRILLING REMARKS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	, 1		'	1	C-II	+		
2 25 Sample MW-16A Sample MW-16A Sample MW-16A 4 3 Sample MW-16A 4 4 Wet to saturated 1.4 5 12 10 12 15 25 8 3 Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 Sample MW-16B 11 Sample MW-16B 12 Sample MW-16B 13 Sample MW-16B 14 Sample MW-16C 15 Sample MW-16C 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 1	-	, 1	3	,			4.5		j
2 — 4 4 4 3 5.7	1	, ,	25 25	,			4.2		
4 —	2		1	,	1	,			
4 3 5 5 7 4.4	- 1	,		,	1		1 1		
4 5 4 4 Wet to saturated 1.4 0.4 0.5	1	J	1 2	1	r				Sample MMAL 46A
## Company of the state of the	- 1	J	1 5	,	1				Carrible MAA-104
6	4				l .		4.4		
6	1		3 ']]	1	1			
6 4 10 10 12 12 12 12 12 13 14 16 15 10 10 12 12 15 15 12 15 15 16 17 18 19 18 19 18 16 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1		, 4 , 4	1)	,	1	1 44		
8 10	.	Ì		1 1	1	Wet to saturated			
8 12 15 15 16 25 17 18 17 18 18 19 18 18 19 18 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	9	1	. 10	1 1	,	1	0.5		
8 25			10 ,	1 1	, ,	1	1		
8 25 Sample MW-16B 10 21 18 19 11 21 18 19 12 22 10 12 3 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-16D 5.0 Sample MW-16D 5.1 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-	1		15	1 1	,	1	128	ı	
Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 10 12 12 14 15 16 16 17 18 19 10 11 11 11 12 12 13 14 15 16 17 18 19 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10	Ω		25			1	5.2	'	Sample MW-16B
10	,		3 1			Till; CL, clay, silty, low to moderate	1		
10	1		11		,	plasticity, firm to stiff, wet to saturated	1	,	
10 — 10	1		12	1	,		22.3	,	
12 8 5.0 Sample MW-16C 12 8 5.4 2.7 14 21 18 19 22 16 Sample MW-16C 5.0 Sample MW-16C 5.0 Sample MW-16C 5.1 2.	10	1	10 /	1	•	1	36.8	,	Comple SEAL 100
12 9 9 14 5.4 2.7		1	22	1	1	1	5.0	,	Sample MW-16C
12 —		-1	9	1	ļ	1	i l	,	1
12 — 8 12 12 13 15 15 15 18 19 22 Fine sand lenses Sample MW-16D Sample MW-16D	-	ł	9	1	J	1	,	Ţ.	1
14 21	12	1	14	1		1	5.4	J	1
14 15 12 15 3.9 1.8 1.4 18 19 22 16 21 16 21 17 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 20 20 20 20 20 20 2	1			<i>i</i>			2.7	Ţ.	l
14 21	I		12	$i = \frac{1}{2}$	 	Fine sand lenses	3.5	,	1
21 18 19 22	1	1	12		J	ino dana lenges	3.9	,	Sample MM 460
16 21 18 19 22	14				1			J	Jampie MM-10D
19 22	I		21		1		1.4	I	í
16 22	1		18	.			I		i
16			22				ı	1	
OJECT NAME: Johnny Cake Road	O IECT !	AIAAAE.			I			1	

2000	1				GEOLOGIST:			HOLE NUMBER MW-16
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS			SHEET:
	TIME		STMBUL	COLOR	- INTERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
	!	12		1	hard, grey, moist			
1	['	14 14	1 1	1	The Gray, Horse	0		
	1 1	15	1	1		0	1	
18	i 1		1 1	1		0	1	
	i 1	12	1 1	1			1	
j	1 1	15 14	1 1	i		1 , 1	1	
	1	15		i		0	İ	
20			1 1	i		0	l .	
I	, ,	21 18	1	ı			I	Sample MW-16E
1		16	1 1	,		1 24 1		
22		20			l	3.4 4.4	1	
22		100	1 1	,		11.1	i i	
1		18 25 25	1 1	'	1	1 1		Sample MW-16F
1	1	25		'	1	2.5 3.0 2.9 1.7	1	
	· 1	30/0	1	,	1	3.0	1	
24	l	I	1		1	1.7		
1	1	22	1	1			1	
1	į	24 25	1 1	,		1)	l
		25 43	<i>i</i> 1	1	Tatala u and	0.1	}	1
26			i = 1	,	Total Depth 26 ft.; groundwater at 6 ft.	0.1		Sample MW-16G
l	1		, 1	,	1	1 1	İ	i
	l	[ı İ	1	ı		1	i
28	1	1	, [1	ı		1	,
20			.			1		
1	ĺ	I	.					
]	.		ı			
30				I	,	1		
~ -	1	1		1	·		1	
	1	1			,	1	İ	
1	1	- 1	1	1	,			
32	-				1			
DIFCT	NAME: Jo	ohnny Cake				i	1	

TEC	TDAR	INO : G		LAGENCY	-			
COMPANY	PUBUK	ING LO	j	AGENCY				HOLE NUMBER
	NAME 1 Solutions			DRILL SUBCON	TRACTOR		SHEET	MW-17
PROJECT N	AME		·	SJB Serv				1 of 4
Johnny	Cake Road					ELOCATION Prkimer Coun	to AIV	
iame of di Bos۱القر	RILLER				HOL	E LOCATION	ty, IN Y	
NAME OF G	OLOGIST				N	orth - 475724	6.271 (m); Eas	st - 511679.367 (m)
R. Mouli	t				SIGI	NATURE OF GEOLO	GIST	(111)
CME 85	ize of drilling a 0 track mour	ND SAMPLING EQUI	PMENT		DAT	E STARTED	DATE COMPL	ETED
OWIE GO	o track inour	К				4/03	9/25/03	2125
						FACE ELEVATION 7.233 (m)		
					DEPT	H TO FIRST ENCOL	INTERED WATER	
OVERBURDE	N THICKNESS/ DEP	TH TO BEDROCK			6 fi	t.		
Ĭ					DEPT	H TO WATER AND I	ELAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL M	EASUREMENTS (SPEC	IFY)
TOTAL DEPTH	OF HOLE							··· • ,
	4(0.0'			TOTAL	L FLUID LOSSES		
GEOTECHNIC	al samples		SAMPLE DEPTH	UNDISTURBEDIDIST	JRBED	TOTAL NUMBER	OF CORE BOXES	
			ł					
ENVIRONMENT	TAL SAMPLES		SAMPLE DEPTH	ANALYTES				
				AVALITES				TOTAL CORE RECOVERY %
	···		 					
DISPOSITION	F HOLE		BACKFILLED	MONITORING WELL	164	SWO TYPE		
DATE					~	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DRILL	NG DEPTH	T		DESCRIPTION	
		 	 		 			
					 			
			····		 -			
KETCH (OF DRILLING	G LOCATION	/ADDITIONA	L COMMENTS	1	CALE:		
						CALE:	Not I	o Scale
				•				
								į
								ĺ
			Son Call	Davina I	47			
			266 201	Boring Loca	ition M	ap		
								į
								· ·
								1
								#
						•		
OJECT								
าhnny Cak	o Bood					OLE NO.		
anny Cak	e voad				11	WW-17		

ROJE	ORING	Johnny Cal			ONTINUATION SHET			HOLE NUMBER	,
DEPTH	INTERVAL/ RECOVERY/	BLOW	USCS	MUNSELL	Tr. IVIOUIT			SHEET:	0 -5 4
	TIME		SYMBOL	COLOR	THE PROPERTY OF MINISTRALS	PID READINGS	LITHOLOGY	DRILL	2 of 4 ING REMARKS
0	!				Colluvium; CL. clav, silty low placticity	+			
2		Auger to			Colluvium; CL, clay, silty, low plasticity, brown, soft to firm, v. moist, small angular gravels (10 % + 4) to cobbles				
_		27		ĺ			I		
4									
6 —					Wet to saturated				
							!		
8					Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated				
10									
12									
14					Fine sand lenses			ł	
		1							
6		1	1		1	1			
JECT	NAME: Jo	lohnny Cake				<i>i</i>			

ROJECT NAI	ME:	LOG			GEOLOGIST:			HOLE NUMBER MW-17 SHEET:
OEF IN	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 4 REMARKS
		!			hard, grey, moist			
18								
20 —								
22					·			
		ļ						
24		10 18 15			Same as above; rock fragments			
26		17 10 17				0		Sample MW-17F
28		22 30 2 7				0		
30 —		11 15				0		
32	NAME: Jo	9 25 31 28 Ohnny Cake				0.9 0		Sample MW-17G

OJECT NAI					GEOLOGIST:			HOLE NUMBER MVV-17
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 4 of 4 REMARKS
		10 26 33 21			hard, grey, moist	0		
34						0 0.3 0		Sample MW-17H
		9 35 34 28						
36						0 0		
_		14 37 29						
38		32				0 0.1		Sample MW-17I
		12 42 48 37				0 0 0		
40		37			Total Depth 40 feet; groundwater at 6 ft.	0		Sample MW-17J
42					·			
14 —								
6		·						
8	NAME: Jo	hnny Cake						

TEC	TPAR	NO LO		AGENCY				
	DUK	NG LO	خ	MOENCY				HOLE NUMBER
Weston	NAME Solutions			DRILL SUBCONT	RACTOR		SHEET	MW-18
PROJECT N	AME			SJB Servi				1 of 3
Johnny	Cake Road					E LOCATION		
					HOI	erkimer Count	y, NY	
III Bosy					N	orth – 47572 4	(0.290 /m)· Ea	ct E11657.000 ()
R. Moult					SIGI	ATURE OF GEOLOG	GIST	st - 511657.038 (m)
TYPE AND SI	ZE OF DRILLING A	ND SAMPLING EQUI	PMENT					
CME 850	track moun	nt				e started 6/03	DATE COMPL	ETED
						ACE ELEVATION	9/29/03	
- 1					23	7.444 (m)		-
- 1					DEPT	H TO FIRST ENCOU	NTERED WATER	
OVERBURDE	THICKNESS/ DEP	TH TO BEDROCK		<u> </u>	9 f			
DESTINATION OF					JOEP!	H TO WATER AND E	LAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL ME	ASUREMENTS (SPEC	SEY)
TOTAL DEPTH	OF HOLE							en vy
	2	5. 0 '			TOTAL	FLUID LOSSES		
GEOTECHNICA	L SAMPLES		SAMPLE DEPTH	UNDISTURBED/DISTUR	RBED	TOTAL NUMBER	OF CODE BOYES	
ı			1			TOTAL HUMBER	OF CORE BOXES	
ENVIRONMENT	Al CAMPIEC	···						
	AL SAMPLES		SAMPLE DEPTH	ANALYTES	······································			TOTAL CORE RECOVERY %
				•				1
DISPOSITION O						·		
DISPUSITION O	F HOLE		BACKFILLED N	IONITORING WELL	CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	55016					OUTTHED MIEKAME
		}	DRILLIN	G DEPTH	İ		DESCRIPTION	
								
								
'CKETCH C	F DRILLING	LOCATION	/ADDITIONAL	COMMENTS		CALE		
				COMMENTS	3	CALE:	Not T	o Scale
~								1
								i
Ī								
1								1
								İ
			See Soil I	Boring Locat	ion M	an		1
				y Local	-U11 1V	aγ		1
								l
								j
								ł
								1
								Į.
								.[
								1
								1
								Į
ROJECT								i
Johnny Cake	Pood		-			PLE NO.		
	RUAU				N	™ -18		1

ROJE	·	Johnny Cal	ke Road		GEOLOGA. R. Moult			HOLE NUMBER 3
DEPTH	INTERVALI RECOVERY/	BLOW	USCS SYMBOL	MUNSELL		— <u>—</u>		SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1 ,	1	DRILLING REMARKS
1	1	2	,	1		 		
1	1 7	3	,	1	Colluvium; CL, clay, silty, low plasticity,		1	
1	1	3	,	1		ŏ	Ĺ	1
_	<i>i</i>	3	,	1	gravels (5 % + 4) to cobbles		1	1
2	1 7		,	1		ŏ	i	l
J	,	3	1	f	1	1	I	
- 1	<i>i</i>	3	1	1	· i	0	i	1
1	, J	4	1	1	· I	0	i	·
4		4 1	1	1	· i	0	1	
Ī	. 1	, , '	1 1	1	1	0		Sample MW-18A
i		2 2		1	,	1		Cample MAA-104
1	1	2	1 1		1	1 , 1		1
1	1	2		4	Wet	0 0		1
6	i	_ 1		,	1	0		1
1	1	1 1	1	, 4	1	1 1	٠,	1
1	1	1 1	1	4	1	0	,	1
I	1	2	1	, , , , , , , , , , , , , , , , , , ,	1		,	1
	ì	2	1	, · · · · · · · · · · · · · · · · · · ·	· I	0		1
8	1	1	1	,	1		,	1
1	1	2	1	. · · · · · · · · · · · · · · · · · · ·	Colluvium: Cl. clay silly law startists	1	,	Sample MW-18B
I	1	6	1	, ,	Colluvium; CL, clay, silty, low plasticity, mottled, brown to black, stiff to hard, moist gravels (10 % + 4)	4.5	,	1
1	1	8 13	1	,	gravels (10 % + 4)		,	Sample MW-18C
10	1	15	1	,	1	0.4	,	1
1	ı	4	1	,	1	0.6	,	1
1	I	22		,	1	26	Ţ	1
I	[22	. 1	,	1	2.6 0.7	Ţ.	1
		25		J	1	0.7	. J	4
12	1	-		J	1	0.7	1	4
1	1	3		Ţ	1	· · ·)	4
1	1	11		J.	Till; ML, silt, low plasticity, fine sand		J	4
1	1	12	,)	Lenses, firm to stiff, saturated	0.3		4
14	i	11		j	, mili to still, saturated	1.3	J	Committee a man a man
	1	11	. 1	1	1	0.7	1	Sample MW-18D
į		13	1	.]		1	1	
[ł	14	-	1		<u> </u>	ì	
	1	13		I		0	ł	
16			1	1		0	[•
OJECT	NAME: J	ohnny Cake	e Road			ĭ	1	

OJEC1,	30RING				GEOLOGIST:			HOLE NUMBER MVV-18	
EPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS Symbol	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 3 of 3 REMARKS	
		11 12			hard, grey, wet to saturated				
		12 14				0 0			
18		8				0			
		12 11 14				0		Sample MW-18E	
20		9				ŏ			
l		14 18 18							
22		18 16				0			
		20 16 22							
24		22				0		Sample MW-18F	
26					Total Depth 25 ft.; groundwater at 9 ft.			·	
8							·		
o									
2									
JECT	NAME: Jo	ohnny Cake	Road						

TES	TBOR	ING LO			AGENCY			-		
COMPANY	NAME	MO LO	<u> </u>		DDM - Company					HOLE NUMBER MW-19
Westor PROJECT N	n Solutions				DRILL SUBCON SJB Serv	TRACTOR			SHEET	
				1		Si	E LOCAT			1 of 3
'AME OF DI	Cake Road					H	erkime	r County	y, NY	
III Bos	worth								4 257 (m): Ec	ort - E44004 0444
R. Moult	•					SIG	NATURE	OF GEOLOG	IST (111), Ea	nst - 511624.344 (m)
CNAL DE	ZE OF DRILLING A	AND SAMPLING EQUI	PMENT				E START			
CIVIE 00	0 track mour	nt					29/03		9/29/03	LETED
İ							FACE ELI		15,25,00	
•						DEP	39.616 TH TO FIR	(III) ST ENCOUN	TERED WATER	
OVERBURDE	N THICKNESS DEF	TH TO BEDROCK				61	ft.			
1						DEP	TH TO WA	TER AND EL	APSED TIME AFTER	DRILLING COMPLETED
DEPTH DKILL	ED INTO BEDROCK	K				ОТН	ER WATE	LEVEL ME	ASUREMENTS (SPE	(IFY)
TOTAL DEPTH	OF HOLE						·			, ,
GEOTECHNICA	2	4.0'					L FLUID L	OSSES		
OLO / ECHINO	C SAMPLES		SAMPLE DEPTH	UNDIS	TURBED/DISTU	RBED	TOTA	NUMBER O	F CORE BOXES	
L				1						
ENVIRONMENT	AL SAMPLES		SAMPLE DEPTH	ANALY	TES					
				1						TOTAL CORE RECOVERY %
				 	······································					
DISPOSITION O	FHOLE		BACKFILLED	MONITO	ORING WELL	[C/	ASING TY	E	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	Deni	ING DEP	-					SCREENED INTERVAL
<u> </u>			I Drice	ING DEF	111			-	DESCRIPTION	
						 				
SKETCH C	E DELL IN	CLOCATION								
· (E) O) (. DIVILLIA	G LOCATION	VADDITIONA	L CO	MMENTS	S	CALE	:	Not T	o Scale
										İ
										8
					•					į
			Son Call	m						ŀ
			266 201	ROL	ing Locat	tion M	ар			1
										1
										1
										į
										1
										4
										1
										
OJECT				····]He	OLE NO.			
ohnny Cake	Road					i	/W-19			
·						, ,				H

ROJ	<u>:</u> :	Johnny Ca	ke Road		GEOLOG. B. Marit	<u>-•</u>		HOLE NUMBER 19
DEPTH	INTERVAL/	BLOW	USCS	MUNSELL	T. MOUIT			SHEET:
	RECOVERY/	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0	TIME		 				LITTULUGY	DRILLING REMARKS
Ī	1	1 .	1	1		+	-	
ı	1	1 2	1 1	1	Colluvium; CL, clay, silty, low plasticity, brown, soft to firm, v. moist, small angular gravels (10 % + 4)	0		
1	1	2 2	1 1	l .	brown, soft to firm, v. moist, small angular			
2	, 1	3	1 1	i	graveis (10 % + 4)	ŏ		
2		1		i		0		Samala MAL 40 4
- 1	;	2	1	i				Sample MW-19A
Ī		4		ľ		0		
	1	5		! !		0		1
4 —	1	i ,	1	. !	1	l ŏ l		İ
1	1	1 '		, 1	1	1		
- 1	j	1 1	1 1	1	•	0		
		2 2	1 1		!	0		
6	1		1 1	1		0		1
1	J	2 2	1	1	1			Sample MW-19B
	1	2		1	1			1
- 1	1	3		J	1	0		1
8	1	3	1 1	,	1	0	•	1
	ļ	5	<i>i</i> 1	ſ	Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated	0	,	Sample MW-19C
1		8	. 1	1	plasticity, firm to stiff, wet to saturated	0	,	
		11		!	1	ŏ		1
10 -	1	12		I	1	0	1	1
.	I	7	,		i	0	,	l
	1	á l		1			1	
1	i	8 7		1		i	ļ	1
12	-	10	1	I	1	0	,	ı
'-	į.	40		1		ŏ	1	1
ı	-	10 8			i	j	I	
	1	11		1			I	
	1	13	I	1		0		
14	1	l	I	1	·	ŏ	1	
- 1	1	5 12	j	I		, I	1	Sample MW-19D
1	l	12		1		1	1	
1		15 9		- 1	1		1	
6					1	0	1	
DJECT N	NAME: Jr	ohnny Cake	Road	———		· I		

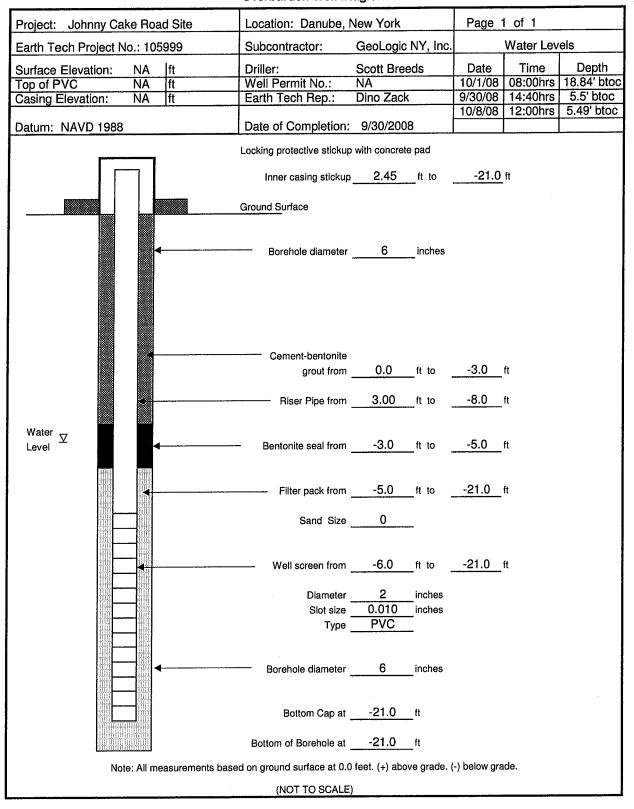
ROJEE. "	BORING				GEOLOGIST:			HOLE NUMBER MW-19
DEPTH	INTERVAL	BLOW	USCS	MUNSELL				SHEET:
	INTERVAL/ RECOVERY/ TIME	COUNT	USCS	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18	·	15 14 13 16			hard, grey, moist	0		
20		8 8 5 12				0 0		Sample MW-19E
22		10 19 18 17				0 0		
24		15 22 25			Total Depth 24 feet; groundwater at 6 ft.	0 0 0 0		Sample MW-19F
26								
28								
30								
32	NAME: Jo	ohnny Cake						

			HTW DRILLING LOG				HOLE		MW-21
PROJEC	OT .	ماما	ny Cake Road Site	10. HO	LE LOCATIO	N		SHEET 1 OF	SHEETS 2
1. LOCA	TION	JOHN	ly Cake Hoad Sile	11. NO	OF OVERB	JRDEN GEOTE	CH SAMPLES		UNDISTURBED
2. COMP	DANIV	Danul	be, New York	12 SAI	O MPLES FOR	CHEMICAL ANA	LYSIS	13. Total Number of Core	Boxes
Z. COIVIF	ANT	Earth	Tech Northeast, Inc.		0				
	ING COMP		ogio NV Inc	14. SU	RFACE ELEV	ATION AT HOLE		15. ELEVATION DATUM NAVD 88	
4. MANU	JFACTURE	R'S DESIG	ogic NY, Inc.	17. DA	TE HOLE STA	ARTED		18. DATE HOLE COMPLI	TED
F 6175	ND TVOC	OF EQUIP	45B track-mounted rig	16 DES	9/28/20	008 UNDWATER EN	COUNTERE	9/28/2008	
5. SIZE /	AND ITPE	6" HA			NA	0.101111211			
6. NAME	OF DRILL		Breeds	1	ATHER Cloudy	light rain			
7. THICK	NESS OF	OVERBUR		20. DIS	POSITION O	, light rain			
8 DEPTI	H DRIU ED	23+ INTO ROC	ft	21. NAN	E OF INSPE	CTOR			
o. Der II	n DHILLED	NA	ft		Dino Za	ack			
9. TOTAL	. DEPTH O		ft	22. SIG	NATURE OF	INSPECTOR			
ECEV-		23 LEGEND		REC.	SAMPLE No.	PID (ppm)	BLOW	REMARK	s
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	(TIME)		ļ	HEWARA	
	_		0-1" TOPSOIL	8	NA	0.0	1		
			1-8" brown SILT, trace f.sand, trace clay (moist)				2		
	1 —		(moist)						
	-						3		
							3		
	2-		0-8" light brown SILT, trace f.sand, trace	8	NA NA	0.0	2		
	-		organics (moist)	ਁ	,	0.0			
	\exists						3		
	3						3	•	
	コ								
	. 4						3		
	4		0-10" light brown SILT, trace f.sand (moist)	19	NA	0.0	5		
			10-19" light brown SILT, little angular				4		
İ			medium rock fragments, trace fc.sand, trace clay (moist)						
	5		trace clay (moist)				3		
							3		
	6-				N I A	0.0			
	~ 		0-20" light brown SILT, little f.gravel, little f	22	NA	0.0	3	Top of till at ~7.	p, päs
	_		c.sand, trace clay - stiffening with depth (moist)				5		
	7—		20-22" dark grey SILT, some f.sand, little				7		
	4		f.mgravel, little fc.sand, trace clay (moist-				'		
	ゴ		dry) TILL				14		
	8-		0-7" light brown SILT, some f.sand, little f	9	NA	0.0	9		
			m.gravel, trace clay (moist) sluff?			-			
	7		20-22" dark grey SILT, some f.sand, little				12		
	9	1	f.mgravel, little fc.sand, trace clay (moist-				17		
			dry) TILL						
		ŀ					. 22		
	10-								

			HTW DRILLING LOG				HOLE 1		٨	/W-21
PROJEC	r	Johnny	Cake Road Site					SHEET 2	OF	SHEETS 2
I. LOCAT	10N		e, New York	21. NAN	E OF INSPE	CTOR				
2. COMP	ANY		ech Northeast, Inc.	22. SIGI	NATURE OF	NSPECTOR				
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT		REMARKS	
	10	-	0-2" sluff	20	(TIME) NA	0.0	19			
	11 -		2-20" dark grey SILT, some fm. angular gravel, little fc.sand, trace clay (moist-dry) stiff TILL				25			
							29 42			
	12—		0-22" dark grey SILT, some fm.gravel, little fc.sand, trace clay (dry) crumbly TILL	22	NA	0.0	47			
	13						100/.4			
	14-		0-4" sluff 4-10" dark grey SILT, some fm.gravel, little	14	NA	0.0	57			
	15		fc.sand, trace clay (dry-moist) TILL 10-14" SHALE in shoe				100/.4			
	16 - - 17-		0-12" dark grey SILT, little fm.gravel, trace fc.sand, trace clay (dry) TILL	12	NA	0.0	65			
	18		0-15" medium grey SILT and FSAND	15	NA	0.0	52			
	-		(thinly layered), trace clay (moist) soft			0.0	35			
	19		·				32			
	20		0-6" medium grey SILT and F.SAND (thinly layered), trace clay (moist) soft	24	NA	0.0	23			
	21 —		6-24" medium grey SILT and F.SAND (thinly layered), trace clay (dry) dense				40			
	, _ _ _						90			
	22		0-8" medium grey SILT and F.SAND (thinly layered), trace clay (moist) dense 8-12" dark grey SILT and F.SAND (thinly layered), trace fm.gravel (moist-dry) dense End of boring at 23' - refer to well installation diagram for additional details.	12	NA	0.0	17 22			

Location: Danube, New York Page 1 of 1 Project: Johnny Cake Road Site Water Levels GeoLogic NY, Inc. Earth Tech Project No.: 105999 Subcontractor: Time Depth **Scott Breeds** Date Driller: Surface Elevation: NA lft 9/30/08 | 09:00hrs | 5.5' btoc Well Permit No.: NA NA Top of PVC ft Dino Zack 9/30/08 | 14:40hrs | 5.5' btoc Earth Tech Rep.: Casing Elevation: NA ft 10/7/08 | 12:00hrs | 5.5' btoc Date of Completion: 9/29/2008 Datum: NAVD 1988 Locking protective stickup with concrete pad Inner casing stickup 2.5 ft to -23.0 ft **Ground Surface** Borehole diameter 6 inches Cement-bentonite grout from 0.0 ft to -5.0 ft Riser Pipe from 2.75 ft to -8.0 ft Bentonite seal from -5.0 ft to -7.0 ft Level Filter pack from -7.0 ft to -23.0 ft Sand Size 0 Well screen from -8.0 ft to -23.0 ft Diameter inches 0.010 Slot size inches PVC Type Borehole diameter _____6 ___inches Bottom Cap at -23.0 ft Bottom of Borehole at ______ ft Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade. (NOT TO SCALE)

Overburden Well Diagram


Well No. MW-21

			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCA	TION		pe, New York	21. NAN	ME OF INSPE	CTOR		
2. COMP	ANY		Tech Northeast, Inc.	22. SIG	NATURE OF	INSPECTOR		
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT	REMARKS
	10 _		0-10" medium grey SILT, little f.sand, trace	10	(TIME) NA	0.0	13	
			mc.sand, trace fm.gravel (moist)				15	
	11 —						17	
	_						16	
	12		0-6" medium grey SILT, little f.sand, trace	20	NA	0.0	13	
			mc.sand, trace fm.gravel (moist)		'''	0.0	9	
	13—		6-14" medium grey SILT and F.SAND, trace mc.sand, trace fm.gravel (wet)					
	-		14-20" grey SILT, little fc.sand, fm.gravel,				10	
			trace clay (moist)				14	
	14		SLUFF - rock in shoe	0	NA	NA	14	
	亅						9	
	15—						10	
							10	·
	16-		SLUFF - rock in shoe - auger to 18'	0	NA	NA	12	
	\dashv	:	_				13	
	17						14	
	4						12	
	18		O d Oll Oll T I E . O A N D . (4b imb.)	12	NA NA	0.0	7	
	4	ļ	0-12" grey SILT and FSAND (thinly layered), little mc.sand, little fm.gravel,	۱۲		0.0		
	19-		trace clay (moist) soft				7	
	19						8	
							8	
	20		0-12" grey SILT and FSAND (thinly	12	NA	0.0	9	
	=		layered), little mc.sand, little fm.gravel, trace clay (moist) soft				9	:
	21		End of boring at 21' - refer to well					
	-		installation diagram for additional details.					
	22						+	
	4							
	23							
	_							

			HTW DRILLING LOG				HOLE		MW-22	
PROJEC	Т			10. HO	E LOCATIO	1		SHEET	SHEETS	
		Johnn	y Cake Road Site	11 NO	OF OVERBI	RDEN GEOTE	CH SAMPLES	DISTURBED	OF 2	
1. LOCA	TION	Danub	e, New York	11.110.	0					
2. COMP	ANY	Danue	e, New Tork	12. SAMPLES FOR CHEMICAL ANALYSIS 13. Total Number of Core Boxes						
			Tech Northeast, Inc.	0 14. SURFACE ELEVATION AT HOLE 15. ELEVATION DATUM						
3. DRILLI	NG COMP		ogic NY, Inc.	14. 501	NA	ATION AT TIOL	-	NAVD		
4. MANU	FACTURE	R'S DESIG	NATION OF DRILL	17. DAT	E HOLE STA			18. DATE HOLE CO	MPLETED	
		CME 4	45B track-mounted rig	140 555	9/29/20	08 INDWATER E	NOOLINTEDE	9/29/20	08	
SIZE A	ND TYPE	OF EQUIPA		I I O. DEF	NA	JINDWATER E	NOODIVILIIL.	, and the second		
. NAME	OF DRILL			19. WE	ATHER					
		Scott F	Breeds	00 10101	Sunny;	60F				
7. THICK	NESS OF	OVERBURG	ft	20. 0131	-03/1/0/100	HOLL				
3. DEPTH	DRILLED	21+ INTO ROC		21. NAN	E OF INSPE					
			ft	20.000	Dino Za	ICK INSPECTOR				
O. TOTAL	DEPTH C		ft	122. SIGI	NATURE OF	INOPEUIUN				
ELEV-		21 LEGEND		REC.	SAMPLE	PID (nnm)	BLOW	pri	MARKS	
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	No. (TIME)	(ppm)	COUNT	HEI	nei (NO	
			0-1" TOPSOIL	8	NA	0.0	2			
	_		1-8" tan SILT, little f.sand, trace mc.sand,	:						
	-		trace f.gravel (moist)				3			
	1-						3			
	-							1		
							6			
	2-		O diller Oil T little found troop m o good	18	NA	0.0	2			
	-		0-4" tan SILT, little f.sand, trace mc.sand, trace f.gravel (moist)	'0	1 1	0.0	-			
	_		4-18" tan-light brown SILT, little f.sand		İ		3			
	3—		(moist; wet at 16-18")							
			(110101), 1101011 10 70 7				2			
				İ			1			
	4									
	4 —		0-6" tan-light brown SILT, little f.sand	16	NA	0.0	1			
	_		(moist)				2			
	-		6-12" light brown SILT, little f.sand, trace f							
	5—		m.sand, trace fm.gravel (moist) 12-16" brown-grey SILT, little f.sand, trace f.				4	Top of till at	~5.5' bgs	
			m.sand, trace fm.gravel (moist-wet) TILL							
	-		misand, hade it migraver (molet wee) The				4			
	6-		0-12" grey SILT, some f.sand, little m	12	NA	0.0	3			
	-		c.sand, littlefm.gravel, trace clay (moist-							
	_		wet) TILL				4			
	7		•				5			
	-		•							
1							5			
1	8—			8	NA	0.0	8			
ļ	_		SLUFF - rock in shoe	0	INA	0.0	°			
	_						13			
	<u> </u>									
	9						13			
	-						15			
	-						'			
	10 —									

Overburden Well Diagram

Well No. MW-22

			HTW DRILLING LOG				HOLE		MW-23
PROJEC	т			10. HOL	E LOCATION	V		SHEET	SHEETS OF 2
1. LOCAT	TION	Johnn	y Cake Road Site	11. NO.	OF OVERBL	IRDEN GEOTE	CH SAMPLES	1 DISTURBED	OF 2 UNDISTURBED
II. LOÇAI	IION	Danub	e, New York		0				
2. COMP	ANY			12. SAMPLES FOR CHEMICAL ANALYSIS 13. Total Number of Core Box					
a DOILL	NG COMF		Tech Northeast, Inc.	14. SUF	O FACE ELEV	ATION AT HOL	15. ELEVATION DA	TUM	
			paic NY, Inc.		88				
4. MANU	FACTURE		OGIC NY, Inc.	17. DAT	E HOLE STA 9/29/20			18. DATE HOLE CO 9/29/20	
5 SIZE A	ND TYPE	OF EQUIPA	45B track-mounted rig	16. DEF	TH OF GRO	UNDWATER E	NCOUNTERE		00
o. OILL A		6" HAS			NA				
6. NAME	OF DRILL		Proods	19. WE		d clouds:	60F		
7. THICK	NESS OF	Scott E	DEN	20. DISI	OSITION OF	d clouds;			
		21+	ft	LOC NAT	E OF INSPE	CTOR			
8. DEPTH	ORILLED	NA	к ft	ZI. IVAIV	Dino Za				
9. TOTAL	DEPTH C		n.	22. SIGI		INSPECTOR			
			ft	REC.	SAMPLE	PID	BLOW	I	
ELEV- ATION	OEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	(int)	No.	(ppm)	COUNT	REM	MARKS
			0-1" TOPSOIL	11	(TIME)	0.0	1		
	-		1-11" tan-light brown SILT, trace f.sand,						
			trace clay (dry-moist)				1		
	1 —		• • •				2		
	_						_		
							3		
	2-		OUT BUILT a good broom	4	NA	0.0	6		
			0-4" light brown SILT, little fc.sand, trace	+	147	0.0	"		
	_		f.gravel (dry)				12		
	3-								
	_						9		
							4		
	1 -			1		0.0			
	4-		0-8" light brown SILT, little fc.sand, trace	14	NA	0.0	2		
	_		f.gravel (dry) 8-14" grey SILT, little f.sand, trace f.gravel				4		
	- -		(moist) TILL					Top of till at	~5.0' bgs
	5 <i>-</i>		(motor) free				6		
							7		
	-			ļ., <u>.</u>					
	6		0-4" SLUFF	13	NA	0.0	8		
			4-13" grey SILT and F.SAND, little f				9		
	., -		m.gravel, little mc.sand (moist)						
	7—						14		
							14		
	_								
	8		0-6" brown SILT, little fc.sand, trace f	20	NA	0.0	6		
			m.gravel (dry) sluff?				7		
	-		6-20" grey SILT and F.SAND, trace clay				′		
	9 —		(dry)				9		
							14		
							'4		
	10			1					

			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCAT	TION		pe, New York	21. NA	ME OF INSPE	CTOR		
2. COMP.		Earth	Tech Northeast, Inc.	Ì	NATURE OF			
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No. (TIME)	(ppm)	COUNT	REMARKS
	10 _		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	7	
	_		(dry)				10	
	11 —						12	
	-						20	
	12-		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	14	
	_		(dry)				16	
	13						12	
	-			:			16	
	14		0-6" grey SILT, little f.sand, trace mc.sand,	24	NA	NA	10	
	4		trace fm.gravel, trace clay (moist) 6-24" grey SILT and F.SAND, trace clay,				14	
	15		trace fm.gravel (moist)				16	
							21	
	16		0.40" area CILT and E CAND, trace clay	18	NA	NA	21	
	₫		0-18" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	,0	IVA	1471		
	17						20	
							23	
	18						24	
			0-24" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	24	NA	0.0	17	
	19—		End of boring at 20' - refer to well				24	
	197		installation diagram for additional details.				22	
	F						28	
	20							
	21—							
	4							
	22							
	-							
	23							
	7			İ				

	Overburgen well bi	agram	Well No.		
Project: Johnny Cake Road Site	Location: Danube, N	lew York	Page 1	of 1	
Earth Tech Project No.: 105999	Subcontractor:	GeoLogic NY, Inc.	: 	Water Leve	els
Surface Elevation: NA ft	Driller:	Scott Breeds	Date	Time	Depth
Top of PVC NA ft	Well Permit No.:	NA		07:30 hrs	19.4' btoc
Casing Elevation: NA ft	Earth Tech Rep.:	Dino Zack		13:22 hrs	19.1' btoc 18.5' btoc
Datum: NAVD 1988	Date of Completion:	9/30/2008		07:02 hrs 08:00 hrs	6.90' btoc
	Locking protective stickup	with concrete pad			
	Inner casing stickup	2.60 ft to	-21.0	ft	
	Ground Surface				
	Borehole diameter	6 inches			
-	Cement-bentonite	0.0 ft to	-2.0	ft	
	groat nom				
•	Riser Pipe from	2.80 ft to	-8.0	ft	
Water <u>∨</u> Level -	- Bentonite seal from	-2.0 ft to	-4.0	ft	
	Filter pack from	-4.0 ft to	-20.0	ft	
	Sand Size	0			
					
	Well screen from	-5.0 ft to	-20.0	ft	
	Diameter	2 inches			
	Slot size	0.010 inches			
	Туре	PVC			
	Borehole diameter	6 inches			
	potential digitieter				
	Bottom Cap at	-20.0 ft			
	Bottom of Borehole at	-20.0 ft			
[#####################################			(-) halow are	ada	
Note: All measurements base			(-) neiow gra	wo.	
	(NOT TO SCALE)			

Overburden Well Diagram

Well No. MW-23

APPENDIX D EXCERPTS FROM NYSDEC SITE FILES

Appendix D1: Historic Well Information from Environmental Subsurface Investigation Report – June 1990

DATE HOLE NO. B-14/19/90 STARTED . SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. 4/19/90 FINISHED . C. W. DEPTH See Note #1 OF____ SHEET _ PROJECT Environmental Site Assessment LOCATION Johny Cake Road Town of Stark: NY BLOWS ON BLOW ON CASING C SOIL OR ROCK SAMPLER **NOTES** CLASSIFICATION /18. Note #1: At comple-17 Brown SILT & CLAY, Some Gravel tion of boring, a 2" 10 5 PVC ground water moni-5 -grades trace gravel toring well was instal 3 led as per attached 6 8 18 monitoring well detail (Wet-Soft to Stiff) 10 14 Brown Galcial Till 12 1.6 34 18 24 5 1001.5 -little recovery: rock fragments 6 50 49 26 grades gray (Moist-Compact) 20 End of Boring @ 12.4' N = No blows to drive 2 " spoon 12 " with 140b, pin wt. falling 30 "per blow. CLASSIFICATION Visual by Driller C = No blows to drive _____ " casing ____ " with ____ lb. weight falling _____ ___"per blow.

MITHOD OF INDESTIGATION 41" T.D. Hollow Stem Anders

į

į,

WAD BOX SUPPECE. PEPTY ELEVATION: 77/8 MANYAS 1.0 CONCRETE_ SEAL BENTONITE SEAL 2.01 PVC PIPE 2" Sch 40 PVC Flush Thread MAND PACKS = Whitehead WATER LEVEL Bros #0 Sand IN MONITOP) WELL SCHEEN 2" Sch 40 PVC Slot Size-.010" 12.4 12.4

WELL Nº

1

B-1



MONITORING WELL DETAILS

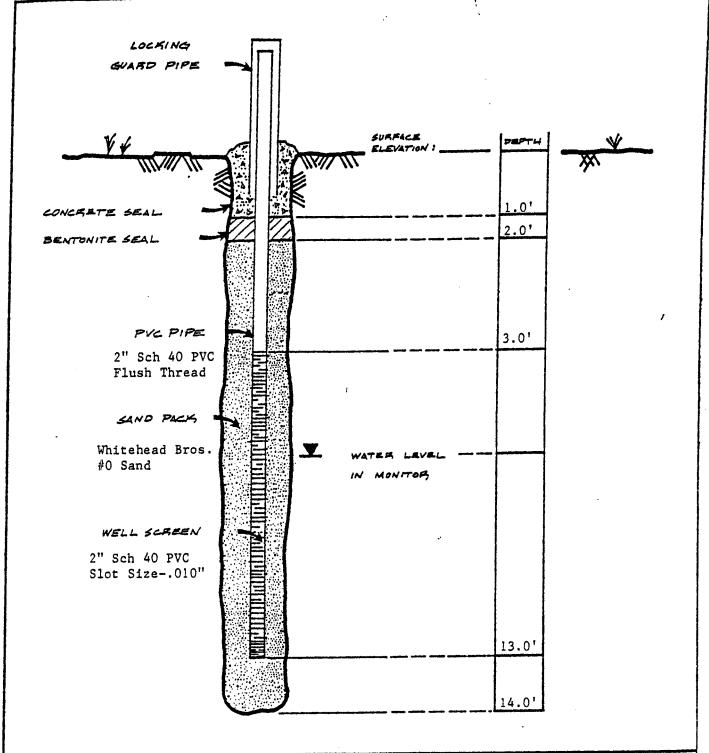
JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J.H	SCALE: N.T. D.	PROI. NO.AD-90-36
	DATE: 5/23/90	DRWG.NO.

FIN	RTED ISHED	4/19 4/19 1 (/90		SOIL	MPIRE SINVESTIGATIONS INC. SUBSURFACE LO	G. W. DEPTH See Note #1
PROJ	ECT _	Envi	rons	enta	al Sit	e Assessment LOCATION Johny Cake)
						Town of Stark	N.Y.
Эренил	SAMPLE NO	0 6	OWS ON AMPLER 12 12	a -	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
5-/	2 3	3 4 6 4 5 2 3 3 4 2		5 5		Brown SILT, SAND & GRAVEL	Note #1: At completion of borings a 2" PVC groundwater Mon- itoring Well was instal- led as per attached Monitoring Well Detail.
	5	 14 6		14		(Moist - Loose) Gray Glacial Till	
10		8 1 7 1 10 1 22 2	1 4	21			
15		18 18	3			(Moist-Firm to Compact) End of Boring @ 14.0'	
1 1 1							
							.
						"with 140 lb. pin wt. falling 30 "per blow. CLASS "with lb. weight falling "per blow.	FICATION <u>Visual by</u> Driller
						D. Hollow Stem Augers	

WELL Nº

B-2



MONITORING WELL DETAILS

Johny Cake Road E.S.A. TOWN OF STARK, N.Y.

DR BY JH | SCALE: N.T. . | PROI. NO. AD-90-36

CX'D BY | DATE 5-23-90 | DRWG NO. _____

WELL Nº

B-3

EMPIRE SOILS INVESTIGATIONS INC

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DRBY J.H.	SCALE	N.T.S.	PROI. NOAD-90-36
CK'D BY RWD	DATE 5	/23/90	DRWG NO

CURB BOX 0.5' 2.01 BENTONITE SEAL 3.0' PVC PIPE 2"Sch 40 PVC Flush Thread SAND PACKS . Whitehead Bros #0 Sand MONITORY WELL GUREEN 2" Sch 40 PVC Slot Size-.010" 13.0 14.0

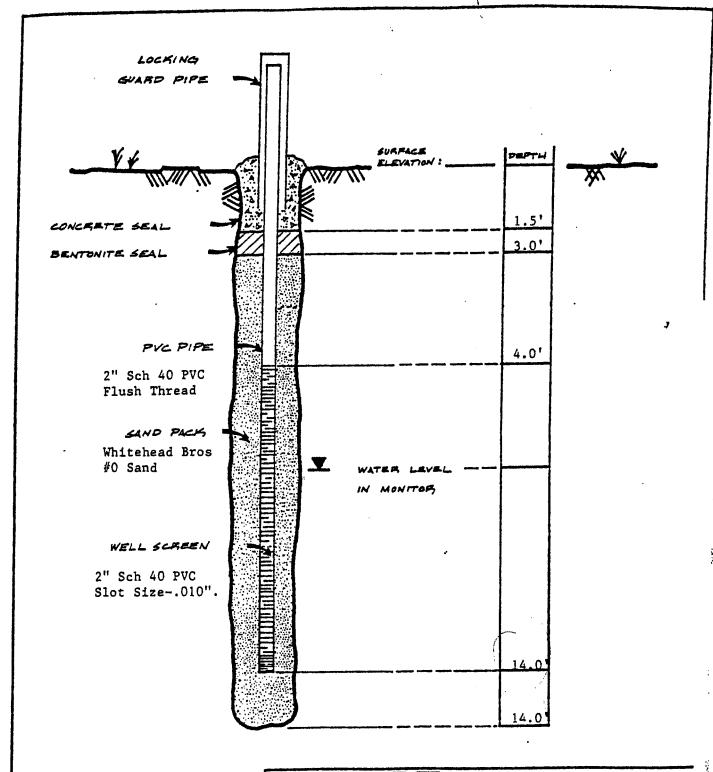
WELL Nº

B-4

W

FMPIRE SOILS INVESTIGATIONS INC.

MONITORING WELL DETAILS


JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

DR.BY: J. H. | SCALE: N.T. = . | PROI. NO. AD-90-36.

CK'D.BY: | DATE: 5/23/90 | DRWG.NO.

F SHE	TAR INIS	HED	4		/90 1		SOIL	SUBSURFACE LO Assessment LOCATION Johny Cak	G. W. DEPTH
_								Town of Sta	rk. NY
DEPTH-FT	SAMPLES	SAMPLE NO	0/6	SAM	75 ON PLER	\ \ \	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
15	1	3 4	1 3 6 7 10 3 2 2			9 5		Brown SILT, SAND & GRAVEL, trace clay -rock fragments (Moist to Wet-Loose to Compact) Augers advanced w/o sampling to 14.0'. End of Boring @ 14.0'	Note #1: At completion of boring, a 2" PVC groundwater Monitoring Well was installed as per attached Monitoring Well Detail.
C = N	n b	lows	to dr	ve		" casii	٠ع٦	" with 140 lb. pin wt. falling 30 "per blow. CLASS" " with lb. weight falling "per blow. Hollow Stem Augers	SIFICATION <u>Visual by</u> Driller

The state of the s

WELL Nº

MW-.6

14

11.

EMPIRE SOMESTIVE STRUCK

MONITORING WELL DETAILS

JOHNY CAKE ROAD E.S.A. TOWN OF STARK, N.Y.

OR BY	J.H!	SCALE:	N.T. 5.	PROL NO	AD-90-36
CK'D BY	1	DATE. 5	/23/90	I DRWG NO)

Appendix D2: Historic Well Information from Extent of Contamination Study Report – November 1991

The following is a summary of well depths and screened interval of the wells installed by ERT/REAC:

Monitor Well	Depth (feet below grade)	Screened Interval (feet below grade)
MW-11	22	5 to 20
MW-12A	20	10 to 20
MW-13	17	5.3 to 15.3
MW-14	21	6 to 21
MW-15	101	91 to 101

The information pertaining to these monitor wells are indicated in the Monitor Well Drilling and Installation Logs, which appear in Appendix G.

In general, below the few inches of clayey topsoil, borings encountered a moist, brown silty clay to a depth of approximately two to three feet. Below this layer, wet, brown fine sand and silt with traces of fine angular gravel were encountered to depths of approximately ten feet. This layer was underlain by a wet, dense, gray, fine sand and silt with little fine and, coarse angular gravel layer, interpreted as glacial till. This unit was found to be 32 feet (from 10 to 42 feet depth in MW-15) to 40 feet thick (from 15 to 55 feet depth in B-12). Below the till layer, a moist, plastic, gray clay was found to the deeper portion of the borings. This unit was found to be at least 59 feet in MW-15 and at least 55 feet in B-12.

One day after the completion of MW-15, water from the well was found to be flowing slightly and consistently over the two-foot "stickup" (i.e., artesian condition). This indicates that the well was screened in an aquifer under confined conditions.

A total of 28 split spoon samples were recovered in acetate sleeves. These samples are summarized in Table 5.

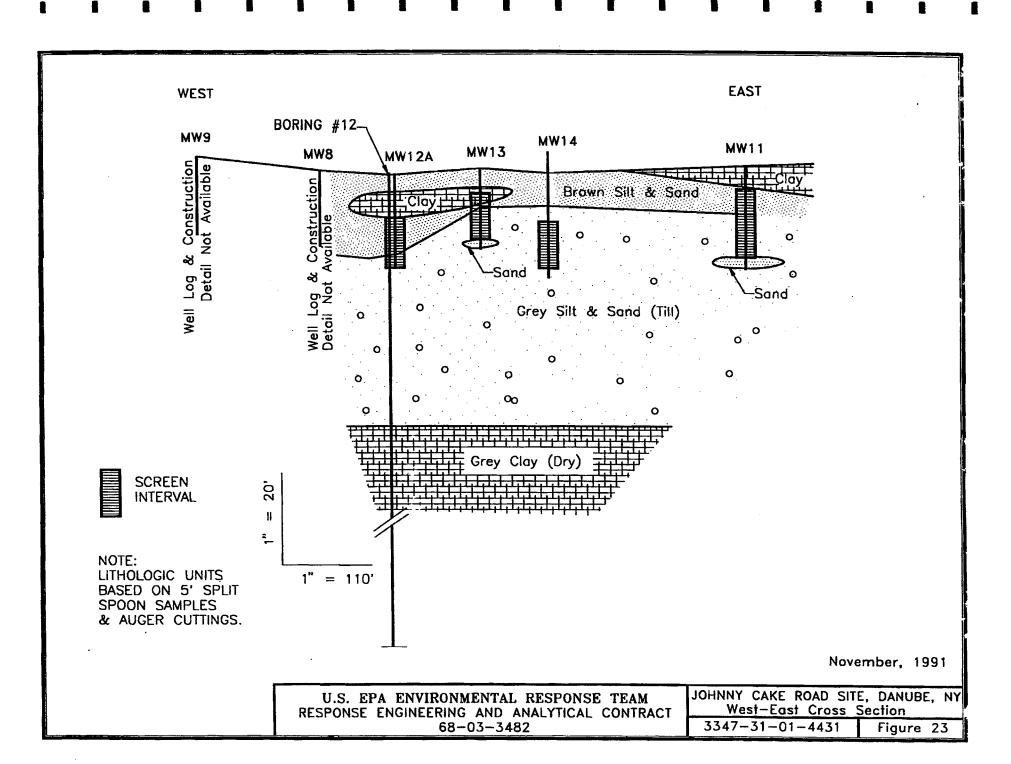
3.2 Hydrogeology

Water level measurements were converted using resurveyed top of casing elevation data to formulate water table elevations at each of the monitor well locations. These data are reported in Table 6. Water table depths ranged on November 15, 1990 from 0.5 feet (MW-1) to 9.75 feet (MW-6) and on May 22, 1991 from 1.61 feet (MW-1) to 7.77 feet (MW-8). No water table depths were collected at the REAC installed wells (monitor wells MW-11 to MW-15) due to the water levels not having sufficient time to stabilize.

Water table elevations for both sets of sampling events, September 11, 1990 and May 22, 1991 were plotted on the site map (Figures 5 and 6, respectively), were contoured, and then interpreted for groundwater flow direction. During both dates, overburden groundwater was found to be flowing from south to north consistent with the downslope of the hillside. It appears that the stream lying in the topographic low (i.e., stream valley) receives its source of water from the overburden aquifer, and the small tributaries that also feed it.

Table 6

Summary of Ground Water Table Data For November 15, 1990 and May 22, 1991


Johnny Cake Road Site Danube, New York

October, 1991

		11/15/90			5/2	2/91
Monitor Well	Top of Casing (F.A.D.)	Depth to Water (feet)	Elevation of Water Table (F.A.D.)	Top of Casing (F.A.D.)	Depth to Water (feet)	Elevation of Water Table (F.A.D.)
MW-1	177.51	0.50	177.01	177.51	1.61	175.90
MW-2	191.04	3.72	187.32	191.04	5.14	185.90
MW-3	186.77	3.62	183.15	186.06	5.72	180.34
MW-4	172.62	3.12	169.50	172.10	3.35	168.75
MW-6	185.50	9.75	175.75	184.92	6.95	177.97
MW-7	187.02	1.88	185.14	186.49	3.38	183.11
MW-8	164.59	6.37	158.22	164.17	7.77	156.40
MW-9	167.52	4.52	163.00	167.12	5.79	161.33
MW-10	146.90	6.00	140.90	146.50	6.19	140.31
MW-11	****			145.57	ND	ND
MW-12A	4000		usse	164.30	ND	ND
MW-13	****	****	2000	163.60	ND	ND
MW-14	***	****	***	164.22	ND	ND
MW-15	****	••••	****	126.45	ND	ND
Upper Pond	204.15	204.15	204.15	ND	ND	ND
Lower Pond	150.00	150.00	150.00	ND	ND	ND

Note: Change in arbritary datums between sampling events. NR = Not Recorded; ND = No data

F.A.D. = Feet above site datum

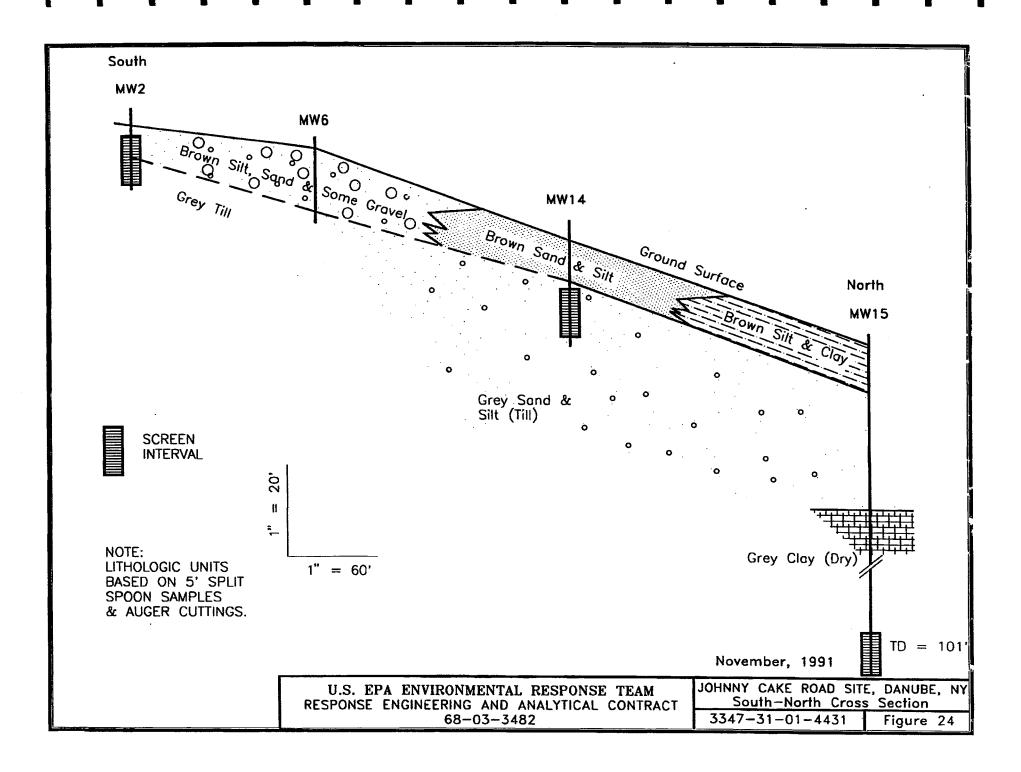
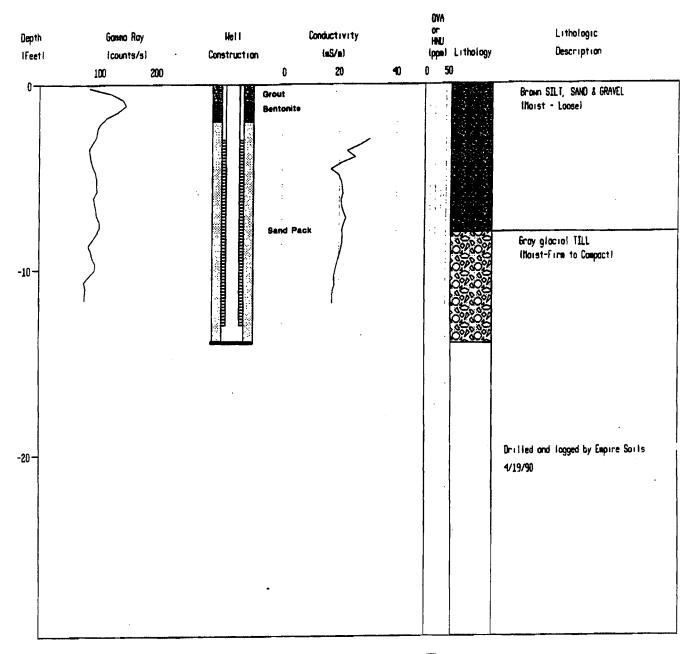
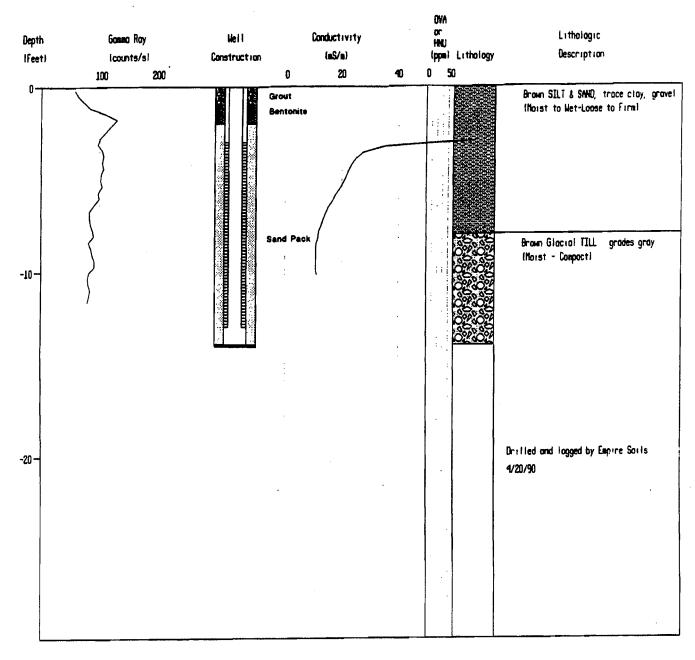




Figure 25

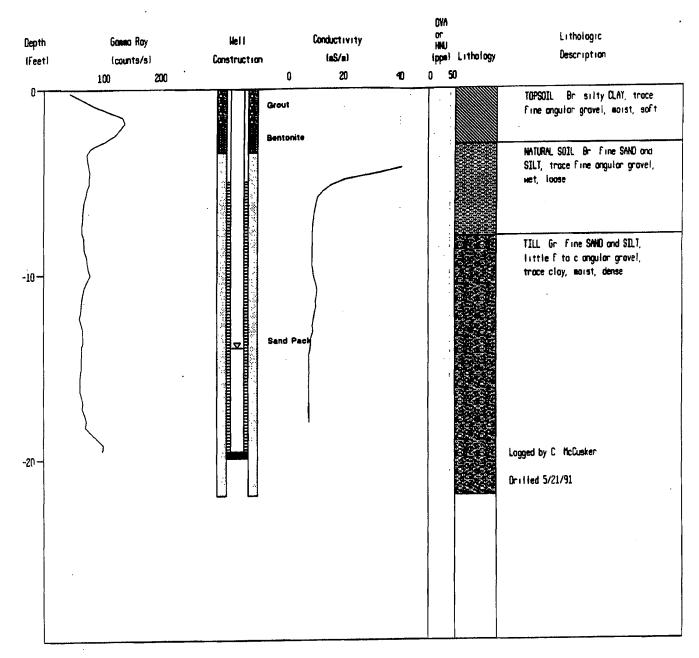

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 26

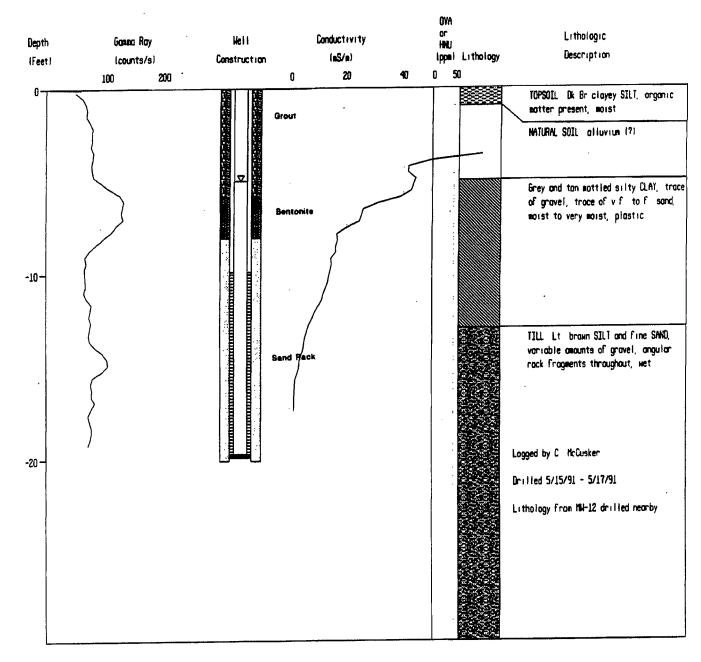

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 27

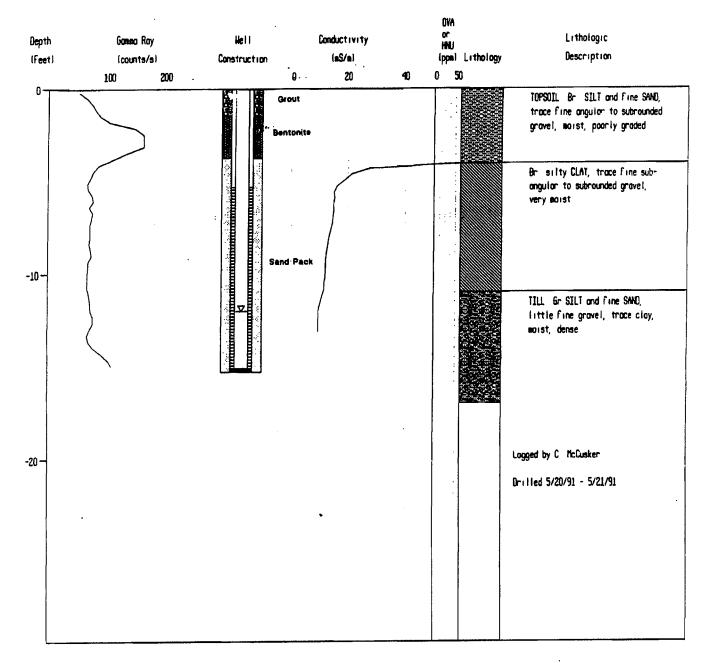

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 28

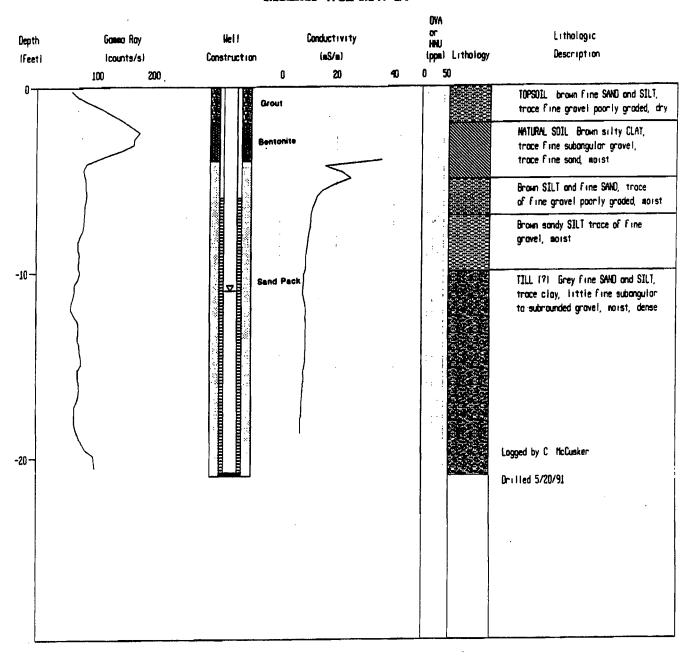

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 29

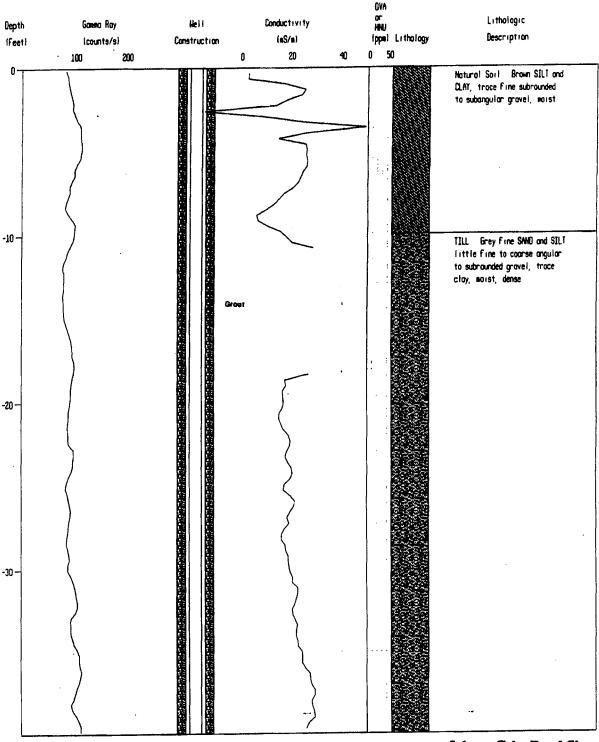
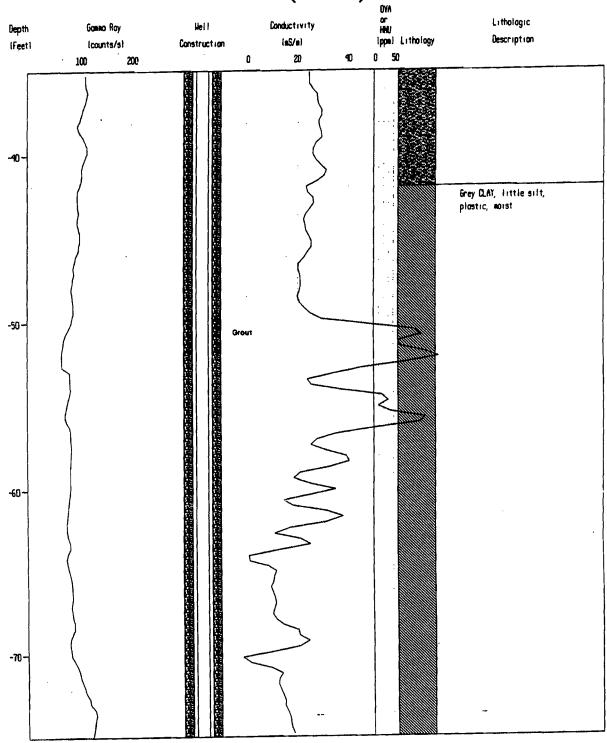

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract: Contract No. 68-03-3482

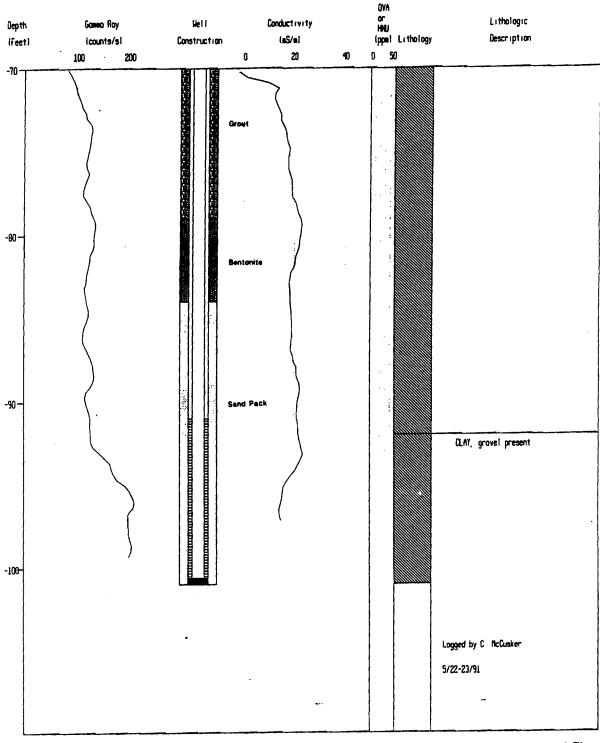
Figure 30

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482


Figure 31

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 31 Continued


Geophysic a well logs, Well Construction, and Soil Stratigraphy For Monitor Well MW-15 (35-75 Feet)

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Figure 31 Continued

Geophysical Well Logs, Well Constitution, and Soil Stratigraphy For Monitor Well MW-15 (70-110 Feet)

U.S. EPA Environmental Response Team Response Engineering & Analytical Contract Contract No. 68-03-3482

Appendix D3: Historic Well Information from Removal Action Report – November 2006

S		SUR	FACE		Subsuri Log		Hole No.:	MW-2R				e started	• •
Cilera							Sheet	1 of 1		\A/mil	Date Depth	Finished	: 7/25/05 23.0' bgs
Client: Locati		Johnny	ech, Inc. Cake Road f Danube, NY		meu 100	or mves	stigation: 6 1/4" Hol	low-Stem Auger		Depth to	•		3.0' bgs
-		: 86361			lling Co.:			Driller: J. Grant D. Helper: C. Ross			-		Weather: Sunny
rojec	t Mgr	:: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mobile B	-59		T	1 30/011	85 deg. f
Depth		Depth	Sample Blows	7-	Recovery	1		Sample			Depth	Well Details	Groundwate and Other
)を P は1 (代.)	No.	(ft.)	per 6"	"N"			D	escription		1	bg5		Observation
5						fine grav	: Moist, browi vel; trace silt;	n fine to coarse sand; so trace clay; trace organion	cs.	5' of 4" diameter Sch 40 PVC riser	0.5° 2.5°		6" Steel Stickup Bentonite Seal
10						coarse s	and; trace org			20' of 4" diameter			Yop of Screen at 3.0°
15										Sch 40, 0.01 slot, PVC well screen			GW at 17.5
20													Sand Pack No. 00N
25						·				4" diameter PVC plug	25.5' BOB		23.0' BOW
30													
35							 -		Mall C	elegii Mari			
mple` = Spl			2" by 2'	T≂ S	helby Tul	oe:			Cemen	ckfill Key t			Native Fill
= R	ock C	ore:			luger cut	_							a B
= AST	M D	1586		-					Sand				Bentonite

S	U	BSUE	RFACE		Subsur		Hole No.:	MW-2RR		Dat	e started	7/27/05
l	n	rilling So	lutions		Log		Sheet	1 of 1		Date	Finished	7/27/05
Client Locati			Tech, Inc. y Cake Road		Method	of inves	itigation: 6 1/4" Hol	llow-Stem Auger	We Depth to	ll Depth Screen		24.5' bgs 4.5' bgs
<u> </u>	<u> </u>	Town	of Danube, NY				•	· · · · · · · · · · · · · · · · · · ·				
Projec	t No	.: 86361	Į.	Dri	lling Co.:	SDS		Driller: J. Grant				Weather:
Denice	+ Ma	r . Dok	Johnson	1	ologist:	B1/A		D. Helper: C. Ross				M-Sunny
riojec	I	II. PELE	Sample	loc	ologist.	N/A		Drill Rig: Mobile 8-59		Т	Well	80 deg. F Groundwater
Depth	一	Depth	Blows	Π	Recovery	1		Sample		Depth	1	and Other
(ft.)	No.	(ft.)	per 6"	"N"	(ft.)		D	escription		bgs	Details	Observations
									5' of 4"			6* Steel
	<u> </u>			L				n fine sand; some fine gravel;	diameter Sch 40	0.5		Stickup
						organics.		e sand; trace clay; trace	PVC riser	2.5'		Bentonite
						organica						Seal
5						1.5′-7.0′:	Wet, brown	silt and fine sand; little				Top of
				_		coarse to	medium san	d; trace clay; trace organics.				Top of Screen at
										Ì		4.5'
			····				': Wet, brown dium to coars	n silt and fine sand; little clay;				
10						u ace med	alum to coars	e sain.		1		
10									20' of 4"			
ŀ				-					diameter	L	H= 1	
ŀ	-					15 0'-2E 0	li Mat arau	silt and fine sand; little fine	Sch 40,]		
ŀ	\dashv	 						coarse sand; trace day.	0.01 slot, PVC well			
15				\dashv				·	screen			
ŀ	7											
Ī				一								
				丁								Sand Pack No. 00N
20												NO. UUN
				\Box								GW <u>at</u> 20.3
L												<u></u>
L									4"	l	2 2	4.5' BOW
_									diameter			
25	_			\bot					PVC plug	25.0		10°
_	-	•		4						вов	l l	diameter
	-									l		borehole
-	-+			-						l		
30	-			+						j	- 1	
30	+			-						- 1		
-	-			十								
-	-			_					1			
	1			1								
35	1			十					İ	1	ł	
mple 1						***************************************		Well B	ackfill Key	L	J	
= Spli					relby Tub			Ceme				Native Fill
R = Ro			0	A	uger cutti	ngs					PROGRAMM	
= AST	M DI	.586						Sand				Bentonite

S			FACE		Subsur Log	, 1100	e No.:	MW-4R		Date	e started:	7/26/0
	D	rilling Sol	utions	1	_	Sne		1 of 1			Finished:	
Client			fech, Inc.		Method	of investigat		_		Depth		23.5' bgs
_ocati	on:		Cake Road			6 1/	4" Hollow-	Stem Auger	Depth to	Screen	:	3. 5 ' bg s
			of Danube, NY				1					1
rojec	t No.	: 86361		Dri	lling Co.:	SDS		er: J. Grant				Weathe
					-11-4	A1 (A	4	elper: C. Ross				Overcast,
rojec	t Mgi	Pete	Johnson	JGe	ologist:	N/A	ווחטן	Rig: Mobile B-59		т	1 141-11	75 deg.
epth	 	D4-1	Sample Blows	т		1	Sam	nla		Depth	Well Details	Groundwa and Oth
(ft.)	No.	Depth	per 6"	"N"	Recovery (ft.)		Descri	•		bgs		Observation
11.7	NO.	(ft.)	per o	14	(12)		UGSCII	ption	5' of 4"	Dys		ODSEI Vau
		-		\vdash		0.0.400.000			diameter	1.5'		6" Steel
	\vdash			-				sand; little fine gravel l; trace organics.	Sch 40	2.5'		Stickup
ļ				-		nac medium c	o cualas suns	, trace organics.	PVC riser	2.3		│ Bentonite
				 					1.			Şeal
5				\vdash		4.0'-7.5': Wet,	brown silt an	d fine sand; trace				Top of
				 		coarse to medi	um sand; trac	e organics.				Screen a
,				\sqcup								3.5
ļ				\vdash		7.5'-15.0': We	t, brown silt;	little fine sand and clay	.			
ļ									-			
10	-								1			
L									20' of 4"		-=	
L									Sch 40.			
							et, brown silt;	little fine sand and clay	/; 0.01 slot,			
						trace cobbles.			PVC well			
15 📗									screen			
						•	•		1			GW <u>at</u> 16.
										ı		-
									1 1	1		Sand Pad No. 00N
0	-1			\Box								
										- 1		
Γ									4"		: 5 2	3.5' BOW
Γ									diameter			
5									PVC plug	25.0'	······································	
									1	вов		10" diameter
										j	1	porehole
											- 1	
										1	- 1	
0	\top			\top						- 1	1	
										1	ı	
	\Box									}	Į.	
Γ	\Box											
				\top						- 1		
5											- [
nple	Гуре	5:	· · · · · · · · · · · · · · · · · · ·					Well	Backfill Key			
= Spli	t Spo	on:	2" by 2'	= SI	helby Tub	ne:		Cem				Native Fil
= Ro) <u>A</u>	uger cutt	ings		1414141 9				
: AST	M DI	.586						San-	d			Bentonite

S			FACE		Subsur		Hole No.:	MW-6	5R		Dat	e started	7/25/0
	<u></u>	rilling So	utions		Log		Sheet	1 of	1			Finished	
Client			Tech, Inc.		Method		tigation:				Depth		23.0' bgs
Locati	on:		Cake Road				6 1/4" Hol	iow-Stem Auge	r	Depth to	Screen	1	3.0' bgs
Projec	t No	10Wn (of Danube, NY	Dri	lling Co.:	SDS		Driller: J. Grant					Weather
TOJEC	LINO	., 00201		1011	mig co	303		D. Helper: C. R					Sunny
Projec	t Mg	r.: Pete	Johnson	Ge	ologist:	N/A		Drill Rig: Mobil					85 deg.
			Sample					-				Well	Groundwat
Depth		Depth	Blows		Recovery			Sample			Depth	Details	and Other
(ft.)	No.	(ft.)	per <u>6"</u>	"N"	(ft.)	ļ		escription		5' of 4"	bgs		Observatio
		 		-		00 500	Maiet brauu	n fine sand; some fi	na armed	dlameter	1.0'		6" Steel
	 -	 		╁				e sand; trace organ		Sch 40 PVC riser	2.0		Stickup
	-	 		\vdash		1		•		LACHRE			Bentonite Seal
5		 		1						1	1) Jean
<u> </u>				1			Wet, brown e silt; trace o	fine to coarse sand roanics.	; trace				Top of
							- only makes to	. 2=11.4At		1			Screen at 3.0'
İ						8.0'-14.5'	: Wet, brow	n fine to coarse san	d; little				- /-
[fine grave	el; trace day;	trace silt; trace org	ganics.				
10													
										20' of 4" diameter			
ļ									d:	Sch 40,			
-				┝╌┤				fine sand; little med ; trace sllt; trace or		0.01 slot, PVC well	i		
<u>.</u>				├ ─┤			,	,	J.S	screen			
15													GW <u>at 17.0</u>
}				\vdash					ĺ				J. 1 2 1 1 1
F				-									
-													Sand Pack
20	\exists			1				•		1	į		140.0014
									l				
]	1	1		
				\perp					ł	. 4 ^M	ĺ	具片	23.0' BOW
	\bot			_						dlameter PVC plug			
5	_								ĺ	Frag	25.0' BOB	<u> </u>	. 10"
-	-+			-+					}		550		diameter
-											- [1	borehole
-		\dashv		十									
30 F	十			+						ŀ		1	
1										İ	ļ	- 1	
	\Box									ł	- 1		
									1				
									j]	}		
5										1000			
nple 7			7/1 1/21 -	r_ c	haller Tub		1			ckfill Key			Matter Elli
= Spli . = Ro					helby Tub uger cutt				Cemen	τ			Native Fill
- AST			··	J 7	ager cutt	11193			Sand				Bentonite

TES	TROR	ING LO	2	AGENCY	,					
COMPANY	NAME	ING LOC	<u> </u>	70011.00					HOLE NUMBER MW-16	
Weston PROJECT N	Solutions			SJB	UBCONTRA Service	CTOR		SHEET		
	Cake Road					SITE	LOCATION		1 of 3	
Bill Bos	RILLER					He	rkimer Count	ty, NY		
NAME OF G						No	rth - 475724	6.377 (m): Fa	st 511679.797 (
R. Moul						SIGN	ATURE OF GEOLOG	GIST	011019.191	<u>'''')</u>
CME 85	o track mour	IND SAMPLING EQUI	PMENT	······································			STARTED	DATE COMP	ETED	
		••				9/23	3/03 ACE ELEVATION	9/23/03		
						1 237	7.748 (m)			
						DEPTI 6 ft.	TO FIRST ENCOU	NTERED WATER		
OVERBURDE	N THICKNESS/ DEF	TH TO BEDROCK						LAPSED TIME AFTER	DRILLING COMPLETED	
DEPTH DRILL	ED INTO BEDROCK	(ASUREMENTS (SPE		
TOTAL DEPT	OF HOLE					ŀ			(IFY)	
GEOTECHNIC	AI SAMPLES	6.0'				İ	FLUID LOSSES			
	or ormir EEG		SAMPLE DEPTH	UNDISTURBED	VDISTURBE	D	TOTAL NUMBER	OF CORE BOXES		
ENVIRONMENT	(N. 0411 -1									
CHAILCHWEN	ial samples		SAMPLE DEPTH	ANALYTES					TOTAL CORE RECOVER	V &
			 							
DISPOSITION O	FHOLE		BACKFILLED	MONITORING W	E) 1	1046				
DATE	STARTTIME	FINISH TIME				LAS	ING TYPE	WELL DEPTH	SCREENED INTERVAL	
		I stion time	DRILLI	NG DEPTH				DESCRIPTION		
ļ	ļ									_#
										-
KETCH (F DRILLING	G LOCATION	/ADDITIONA	COMME	NTC					7
a.			"ADDITIONA	r Countie	412	SC	CALE:	Not T	o Scale	7
										ı
			See Seil	Doring L						
			066 3011	Boring L	ocatio	n Ma	ıp			ı
						•				I
										1
			•							
										l
OJECT										[
∩hnny Cake	Road					t	E NO.			ı
						M	<i>N</i> -16			

RECOVERY SYMBOL MUNSEL DESCRIPTION OF MATERIALS PID READINGS LITHOLOGY DRILLING REMARKS	DEPTH	***************************************	Johnny Ca			GEOLOG R. Moult			HOLE NUMBER 3
0 Index	DEPIN	INTERVAL/ RECOVERY/	BLOW	USCS SYMBOL	MUNSELL COLOR		PID READINGS	LITHOLOGY	2 of 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	- IME	-	+'				LITHULUGY	DRILLING REMARKS
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	, 1		'	1	C-II	+		
2 25 Sample MW-16A Sample MW-16A Sample MW-16A 4 3 Sample MW-16A 4 4 Wet to saturated 1.4 5 12 10 12 15 25 8 3 Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 Sample MW-16B 11 Sample MW-16B 12 Sample MW-16B 13 Sample MW-16B 14 Sample MW-16C 15 Sample MW-16C 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 18 Sample MW-16D 19 Sample MW-16D 19 Sample MW-16D 10 Sample MW-16D 11 Sample MW-16D 11 Sample MW-16D 12 Sample MW-16D 13 Sample MW-16D 14 Sample MW-16D 15 Sample MW-16D 16 Sample MW-16D 17 Sample MW-16D 18 Sample MW-16D 1	-	, 1	3	,			4.5		j
2 — 4 4 4 3 5.7	1	, ,	25 25	,			4.2		
4 —	2		1	,	1	,			
4 3 5 5 7 4.4	- 1	,		,	1		1 1		
4 5 4 4 Wet to saturated 1.4 0.4 0.5	1	J	1 2	1	r				Sample MMAL 46A
## Company of the state of the	- 1	J	1 5	,	1				Carrible MAA-104
6	4				1		4.4		
6	1		3 ']]	1	1			
6 4 10 10 12 12 12 12 12 13 14 16 15 10 10 12 12 15 15 12 15 15 16 17 18 19 18 19 18 16 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1		4	1)	i ,	1	1 44		
8 10	.	Ì		1 1	1	Wet to saturated			
8 12 15 15 16 25 17 18 17 18 18 19 18 18 19 18 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	9	1	. 10	1 1	,	1	0.5		
8 25			10 ,	1 1	, ,	1	1		
8 25 Sample MW-16B 10 21 18 19 11 21 18 19 12 22 10 12 3 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16B 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-16D 5.0 Sample MW-16D 5.1 Sample MW-16D 5.2 Sample MW-16D 5.3 Sample MW-16D 5.4 Sample MW-16D 5.5 Sample MW-16D 5.6 Sample MW-16D 5.7 Sample MW-16D 5.8 Sample MW-16D 5.9 Sample MW-16D 5.9 Sample MW-16D 5.0 Sample MW-	1		15	1 1	,	1	128	ı	
Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated 10 10 12 12 14 15 16 16 17 18 19 10 11 11 11 12 12 13 14 15 16 17 18 19 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 11 12 13 14 15 16 17 18 18 19 19 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10	Ω		25			1	5.2	'	Sample MW-16B
10	,		3 1			Till; CL, clay, silty, low to moderate	1		
10	1		11		,	plasticity, firm to stiff, wet to saturated	1	,	
10 — 10	1		12	1	,		22.3	,	
12 8 5.0 Sample MW-16C 12 8 5.4 2.7 14 21 18 19 22 16 Sample MW-16C 5.0 Sample MW-16C 5.0 Sample MW-16C 5.1 2.	10	1	10 /	1	•	1	36.8	,	Comple SEAL 100
12 9 9 14 5.4 2.7		1	22	1	1	1	5.0	,	Sample MW-16C
12 —		-1	9	1	ļ	1	<i>i</i>	,	1
12 — 8 12 12 13 15 15 15 18 19 22 Fine sand lenses Sample MW-16D Sample MW-16D	-	ł	9	1	J	1	,	Ţ.	1
14 21	12	1	14	1		1	5.4	J	1
14 15 12 15 3.9 1.8 1.4 18 19 22 16 21 16 21 17 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 16 21 18 19 22 20 20 20 20 20 20 2	1			<i>i</i>			2.7	Ţ.	l
14 21	I		12	$i = \frac{1}{2}$	 	Fine sand lenses	3.5	,	1
21 18 19 22	1	1	12		J	ino dana lenges	3.9	,	Sample MM 460
16 21 18 19 22	14				1			J	Jampie MM-10D
19 22	I		21		1		1.4	I	í
16 22	1		18	.			I		i
16			22				ı	1	
OJECT NAME: Johnny Cake Road	O IECT !	AIAAAE.			I			1	

2000	1				GEOLOGIST:			HOLE NUMBER MW-16
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS			SHEET:
	TIME		STMBUL	COLOR	- INTERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
	!	12		1	hard, grey, moist			
1	['	14 14	1 1	1	The Gray, Horse	0		
	1 1	15	1	1		0	1	
18	i 1		1 1	1		0	1	
1	i 1	12	1 1	1			1	
J	1 1	15 14	1 1	i		1 , 1	1	
	1	15		i		0	l	
20			1 1	i		0	l .	
I	, ,	21 18	1	ı			I	Sample MW-16E
1		16	1 1	,		1 24 1		
22		20			l	3.4 4.4	1	
22		100	1 1	,		11.1	i i	
1		18 25 25	1 1	'	1	1 1		Sample MW-16F
1	1	25		'	1	2.5 3.0 2.9 1.7	1	
	· 1	30/0	1	,	1	3.0	1	
24	l	I	1		1	1.7		
1	1	22	1	1			1	
1	į	24 25	1 1	,		1)	l
		25 43	<i>i</i> 1	1	Tatala u aa	0.1	}	1
26			i = 1	,	Total Depth 26 ft.; groundwater at 6 ft.	0.1		Sample MW-16G
l	1		, 1	,	1	1 1	İ	i
	l	[ı İ	1	ı		1	i
28	1	1	, [1	ı		1	,
20			.			1		
1	ĺ	I	.					
]	.		1			
30				I	,	1		
~ -	1	1		1	·		1	
	1	1				1	İ	
1	1	- 1	1	1	,			
32	ļ				1			
DIFCT	NAME: Jo	ohnny Cake				i	1	

TEC	TDAR	INO : G		LAGENCY	-			
COMPANY	PUBUK	ING LO	j	AGENCY				HOLE NUMBER
	NAME 1 Solutions			DRILL SUBCON	TRACTOR		SHEET	MW-17
PROJECT N	AME		·	SJB Serv				1 of 4
Johnny	Cake Road					ELOCATION Prkimer Coun	to AIV	
iame of di Bos۱القر	RILLER				HOL	E LOCATION	ty, IN Y	
NAME OF G	OLOGIST				N	orth - 475724	6.271 (m); Eas	st - 511679.367 (m)
R. Mouli	t				SIGI	NATURE OF GEOLO	GIST	(111)
CME 85	ize of drilling a 0 track mour	ND SAMPLING EQUI	PMENT		DAT	E STARTED	DATE COMPL	ETED
OWIE GO	o track inour	К				4/03	9/25/03	2125
						FACE ELEVATION 7.233 (m)		
					DEPT	H TO FIRST ENCOL	INTERED WATER	
OVERBURDE	N THICKNESS/ DEP	TH TO BEDROCK			6 fi	t.		
Ĭ					DEPT	H TO WATER AND I	ELAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	ED INTO BEDROCK				OTHE	R WATER LEVEL M	EASUREMENTS (SPEC	IFY)
TOTAL DEPTH	OF HOLE							··· • ,
	4(0.0'			TOTAL	L FLUID LOSSES		
GEOTECHNIC	al samples		SAMPLE DEPTH	UNDISTURBEDIDIST	JRBED	TOTAL NUMBER	OF CORE BOXES	
			ł					
ENVIRONMENT	TAL SAMPLES		SAMPLE DEPTH	ANALYTES				
				AVALITES				TOTAL CORE RECOVERY %
	···		 					
DISPOSITION	F HOLE		BACKFILLED	MONITORING WELL	164	SWO TYPE		
DATE					~	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DRILL	NG DEPTH	T		DESCRIPTION	
		 	 		 			
					 			
			····		 -			
KETCH (OF DRILLING	G LOCATION	/ADDITIONA	L COMMENTS	1	CALE:		
					•	CALE:	Not I	o Scale
				•				
								į
								ĺ
			Son Call	Davina I	47			
			266 201	Boring Loca	ition M	ap		
								į
								· ·
								1
								#
						•		
OJECT								
าhnny Cak	o Bood					OLE NO.		
anny Cak	e voad				11	WW-17		

ROJE	ORING	Johnny Cal			ONTINUATION SHET			HOLE NUMBER	,
DEPTH	INTERVAL/ RECOVERY/	BLOW	USCS	MUNSELL	Tr. IVIOUIT			SHEET:	0 -5 4
	TIME		SYMBOL	COLOR	THE PROPERTY OF MINISTRALS	PID READINGS	LITHOLOGY	DRILL	2 of 4 ING REMARKS
0	!				Colluvium; CL. clav, silty low placticity	+			
2		Auger to			Colluvium; CL, clay, silty, low plasticity, brown, soft to firm, v. moist, small angular gravels (10 % + 4) to cobbles				
_		27		ĺ			I		
4									
6 —					Wet to saturated				
							!		
8					Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated				
10									
12									
14					Fine sand lenses			ł	
		1							
6		1	1		1	1			
JECT	NAME: Jo	lohnny Cake				<i>i</i>			

ROJECT NAI	ME:	LOG			GEOLOGIST:			HOLE NUMBER MW-17 SHEET:
OEF IN	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 4 REMARKS
		!			hard, grey, moist			
18								
20 —								
22					·			
		ļ						
24		10 18 15			Same as above; rock fragments			
26		17 10 17				0		Sample MW-17F
28		22 30 2 7				0		
30 —		11 15				0		
32	NAME: Jo	9 25 31 28 Ohnny Cake				0.9 0		Sample MW-17G

OJECT NAI					GEOLOGIST:			HOLE NUMBER MVV-17
DEPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 4 of 4 REMARKS
		10 26 33 21			hard, grey, moist	0		
34						0 0.3 0		Sample MW-17H
		9 35 34 28						
36						0 0		
_		14 37 29						
38		32				0 0.1		Sample MW-17I
		12 42 48 37				0 0 0		
40		37			Total Depth 40 feet; groundwater at 6 ft.	0		Sample MW-17J
42					·			
14 —								
6		·						
8	NAME: Jo	hnny Cake						

TEC	TPAR	NO LO	<u> </u>	IAGENCY		-		
	DUKI	ING LO	خ	MOENCY				HOLE NUMBER
Weston	Solutions			DRILL SUBCONT	RACTOR		SHEET	MW-18
PROJECT N	AME			SJB Service				1 of 3
Johnny	Cake Road					LOCATION		
					9FI	rkimer Count	y, NY	
III Bosy					No	orth – 4757 24	10 200 (m): Ea	C14057 000 1
R. Moult					SIGN	ATURE OF GEOLOG	GIST	ıst - 511657.038 (m)
TYPE AND SI	ZE OF DRILLING A	ND SAMPLING EQUI	DIAFAT		L			
CME 850	track moun	nt	PMENI	_		STARTED	DATE COMPL	ETED
						6/03 ACE ELEVATION	9/29/03	
j						7.444 (m)		
ı				DEPT	H TO FIRST ENCOU	NTERED WATER		
OVERBURDE	THICKNESS/ DEP	TH TO REDPOSE		19 ft				
ı		III TO BEDROCK			DEPT	H TO WATER AND E	LAPSED TIME AFTER	DRILLING COMPLETED
DEPTH DRILL	D INTO BEDROCK				[
					UIHE	K WATER LEVEL ME	ASUREMENTS (SPEC	CIFY)
TOTAL DEPTH		r 0'			TOTAL	FLUID LOSSES		
GEOTECHNICA	ZC SAMPLES	5.0'	T		- 1			
	L OMMPLES		SAMPLE DEPTH	UNDISTURBED/DISTUR	BED	TOTAL NUMBER	OF CORE BOXES	
			1 1					
ENVIRONMENT	AL SAMPLES		SAMPLE DEPTH A	INALYTES				
i			January EL DEFTH	MALTIES				TOTAL CORE RECOVERY %
 			<u> </u>	•				į.
DISPOSITION O	E NOVE					····		
1-101 001110110	HOLE		BACKFILLED M	ONITORING WELL	CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DDU (6)	G DEPTH				THE PROPERTY OF THE PROPERTY O
L	1	}	DRICLIN	S DEPIH			DESCRIPTION	
								7
								
								
KETCH C	F DRILLING	S LOCATION	/ADDITIONAL	001111				
		S ECCATION	MADDITIONAL	COMMENTS	S	CALE:	Not T	o Scale
								1
T								
ł								
								į
	•							
								j
			<u>.</u> .					1
			See Soil I	Boring Locati	ion Ma	ap		
				•				i
								1
								1
								i i
				•				
								.1
								1
								ĺ
								ĺ
								j
ROJECT				·····	INO.	LE NO.		
Johnny Cake	Road							
					I M	IW-18		

ROJE		Johnny Cal	ke Road		GEOLOGI. R. Moult			HOLE NUMBER 3
DEPTH	INTERVALI RECOVERY/	BLOW	USCS SYMBOL	MUNSELL		— <u>—</u>		SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0			+			1 ,	1	DRILLING REMARKS
j	1	2	,	1		 		
1	1	3	1 ,	1	Colluvium; CL, clay, silty, low plasticity,		1	
1	<i>i</i>	3	,	1		ŏ	Ĺ	1
_	, J	3	,	1	gravels (5 % + 4) to cobbles		1	1
2	, ,		,	1	1	ŏ	i	l
- 1	, J	3	1 1	f		1	I	
1	, ,	3	1	1	· 1	0	i	1
1	, J	4	1)	1	1	0	i	·
4		1. 4 7	1	1	1	0	1	
İ		, , '	1 1	1	1	0		Sample MW-18A
i	J	2 2		1	· [1		Cample MAA-104
1	1	2	1 1	4	1	1 , 1		1
I	1	2		1	Wet	0 0		1
6	i	, - ,	1 1	4	1	0		1
1	ì	. 1 /	1 1	4	1	1 1	٠,	1
]	1	, 1 1	1	,	1	0	,	1
l	1	2	1	, , , , , , , , , , , , , , , , , , ,	1		,	1
	ì	2	(, , , , , , , , , , , , , , , , , , ,	· I	0		1
8	1		1	,	1		,	1
- 1	1	2	1		Colluvium: Ct. clay sith, law startist	1	,	Sample MW-18B
- 1		6	1	. *	Colluvium; CL, clay, silty, low plasticity, mottled, brown to black, stiff to hard, moist gravels (10 % + 4)	4.5	,	1
1	1	8 13	1	,	gravels (10 % + 4)		,	Sample MW-18C
10	1	13	1	, , , , , , , , , , , , , , , , , , ,	1	0.4	,	1
	1	4	1		1	0.6	,	1
- 1		22	<i>i</i> [,	1	26	Ţ	1
I	1	22	1	,	1	2.6 0.7	Ţ.	1
	l	25		,	1	0.7	. J	4
12	1	1		ļ	1	0.7	1	4
ı	1	3		Ţ	1	· · ·)	4
1	I	11		J.	Till; ML, silt, low plasticity, fine sand		J	4
1		12 11	,)	Lenses, firm to stiff, saturated	0.3		4
14	I	13	,	j	and to suit, saturated	1.3	J	Committee and
1	1	11	. 1	J	1	0.7	1	Sample MW-18D
1		13		. J	1	1	1	
[ł	14	1	1	4	<u> </u>	ì	
	1	13	.	J	,	0	ł	
16			1	1		0	[
OJECT N	NAME: J	Johnny Cake	e Road	L		ĭ	1	

OJEC1,	30RING				GEOLOGIST:			NUMBER MW-18
EPTH	INTERVAL/ RECOVERY/ TIME	BLOW	USCS Symbol	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	SHEET: 3 of 3 REMARKS
		11 12			hard, grey, wet to saturated			
18		12 14				0		
10		8				0		
		12 11 14				0		Sample MW-18E
20		9				ŏ		
		14 18 18						
22		18 16				0		
1		20						
24		16 22				0		Sample MW-18F
								oampie WWW.10P
26					Total Depth 25 ft.; groundwater at 9 ft.			·
	·							
28	·							
0								
2								
JECT	NAME: Jo	ohnny Cake				İ	1	

TES	T BOR	ING LO			AGENCY				
COMPANY	NAME	MO LO	<u> </u>		DDM L COM -			ļ	HOLE NUMBER MW-19
Westor PROJECT N	n Solutions			ľ	DRILL SUBCON SJB Servi	TRACTOR		SHEET	
						SIT	E LOCATION .		1 of 3
AME OF D	Cake Road					He	erkimer Cour	ity, NY	
III Bos	worth							24 257 (m): En	ort E44004.044.4
R. Mouli	t					SIG	VATURE OF GEOLG	ogist (III), Ea	ast - 511624.344 (m)
TYPE AND S	ZE OF DRILLING	AND SAMPLING EQUI	PMENT				E STARTED		
CIVIE 03	0 track mou	nt				9/2	9/03	9/29/03	.ETED
							FACE ELEVATION	15:55:00	
]						DEP	9.616 (m) TH TO FIRST ENCO	UNTERED WATER	
OVERBURDE	N THICKNESS! DE	TH TO BEDROCK	· · · · · · · · · · · · · · · · · · ·	6 f	t.				
1	ED INTO BEDROCI					DEPT	H TO WATER AND	ELAPSED TIME AFTER	ORILLING COMPLETED
DET IN DRILL	EO IM IO BEDROCI	(OTHE	R WATER LEVEL M	EASUREMENTS (SPEC	CIFY)
TOTAL DEPTH							L FLUID LOSSES		
GEOTECHNIC	AL SAMPLES	4.0'					C FEOID EOSSES		
	TO OPINI LLO		SAMPLE DEPTH	UNDIS	TURBED/DISTU	RBED	TOTAL NUMBER	OF CORE BOXES	
			1						
ENVIRONMENT	TAL SAMPLES		SAMPLE DEPTH	ANALY	TES		<u> </u>		TTOTAL CODE
			1						TOTAL CORE RECOVERY %
DISPOSITION O				 					
DISPOSITION O	r HOLE		BACKFILLED	MONITO	ORING WELL	CA	SING TYPE	WELL DEPTH	SCREENED INTERVAL
DATE	START TIME	FINISH TIME	DRILL	ING DEP	тн				THE THE THE
ļ	<u> </u>							DESCRIPTION	
<u></u>	 								
									
CKETCH C	OF DRILLING	G LOCATION	/ADDITIONA	1 00	1000000	L			
			MOULICAM	L CO	MMENTS	S	CALE:	Not T	o Scale
									Į.
									Í
									I
									1
					•				j
			See Soil	Rori	ng Locat	ion M			
			333 301	0011	ng Local		ар		
									1
									I
									1
									I
							•		
			٠						
									1
									1
OJECT									I
ohnny Cake	Post					нс	LE NO.		
Cake	NUAU					N	IW-19		

ROJ		Johnny Ca	ke Road		GEOLOG.	·	_	HOLE NUMBER 19
DEPTH	INTERVAL	BLOW	USCS	MUNSELL	r. Moult			SHEET:
1	RECOVERY/ TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0		 				1		DRILLING REMARKS
	1	1	1 1	ĺ		+		
	1 1	1 2	1 1	l .	Colluvium; CL, clay, silty, low plasticity,	0		
i	i 1	2 2 3	1 1	i	The street of th			1
.	. 1	3	1 1	ı	gravels (10 % + 4)	ŏ		1
2	, J	1	1 1	ı		0		Samuela Anal da
		2	1 1	i				Sample MW-19A
- 1		4	1 1	i		0		
- 1		4 5	1	ı	ì	0		ļ
4		,	1	,		0		1
		, 1			1	'		1
	ſ	1	1 1		1	0		1
- 1	1	2		,	1	0		
6	1	2	1	'	1	0		1
1	1	2 1	1	,	1	0		Sample MW-19B
	1	2 2	1 1	,	1	1		Aguille MAA-1AD
1	ĺ	3	1 1	,	1			l
.		3		Ī	1	0		
8		1	1		Till: Cl. clay silks lands	ŏ	!	_
	1	5	i 1	1	Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated		!	Sample MW-19C
1		8 11	<i>i</i> [1	wer to saturated	0		
		12		į	1	0	,	
10	i	'-		1	1	0		
- 1	1	7		1	i 📗			
1	1	8	,	ſ	i	ļ		
		7	. 1	1	,		1	
12	I	10		ļ	, i	0	I	
1	1	10		1		0	1	
	1	8		1			j	
	1	11		1			I	
14		13	1	l		0		
-	1	_		i	·	ŏ	I	0
- 1		5 12		1		1	1	Sample MW-19D
- 1		15		1			1	
_	1	9		1	1	1	1	
6		1		İ	1	0	1	
DJECT I	NAME: Jo	ohnny Cake	Road			, i	1	

ROJEC	BORING				MTINUATION SH			HOLE NUMBER MW-19
DEPTH	INTERVAL	BLOW	Tuscs	MINSELL				SHEET:
	INTERVAL/ RECOVERY/ TIME	COUNT	USCS	MUNSELL COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18	·	15 14 13 16			hard, grey, moist	0		
20		8 8 5 12				0 0		Sample MW-19E
22	:	19 18 17				0		
24		15 22 25			Total Depth 24 feet; groundwater at 6 ft.	0 0 0	•	Sample MW-19F
26								
28						·		
30								
32		1						
SJECT	NAME: Jo	ohnny Cake	Pood				1	

SHEET CATION MER COUNTY, NY DEATION 1 — 4757280.234 (m); Ea: URE OF GEOLOGIST ARTED DATE COMPL 10/01/03 E ELEVATION 39 (m) D FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC UID LOSSES OTAL NUMBER OF CORE BOXES	ETED DRULLING COMPLETED
mer County, NY DECATION 1 — 4757280.234 (m); Ea: URE OF GEOLOGIST ARTED 10/01/03 E ELEVATION 139 (m) D FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC	st — 511634.312 ETED DRULLING COMPLETED
OCATION 1 — 4757280.234 (m); Easure of Geologist ARTED 10/01/03 E ELEVATION 239 (m) O FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPECULIA LICENSES)	ETED DRULLING COMPLETED
A - 4757280.234 (m); Easure of Geologist ARTED DATE COMPLIANCE (M) DATE COMPLIANCE (M) DATE COMPLIANCE (M) DO FIRST ENCOUNTERED WATER DOWNTER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPECULIA LOSSES	ETED DRULLING COMPLETED
ARTED DATE COMPL 03 10/01/03 E ELEVATION (39 (m) D FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC	ETED DRULLING COMPLETED
10/01/03 E ELEVATION 39 (M) O FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC	DRILLING COMPLETED
E ELEVATION (39 (M) O FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC	DRILLING COMPLETED
(39 (m) O FIRST ENCOUNTERED WATER D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC UID LOSSES	
D WATER AND ELAPSED TIME AFTER ATER LEVEL MEASUREMENTS (SPEC UID LOSSES	
ATER LEVEL MEASUREMENTS (SPEC	
UID LOSSES	IFY)
UID LOSSES	
OTAL NUMBER OF CORE BOXES	
	TOTAL CORE RECOVE
ı	OUNE RECOVE
TYPE WELL DEPTH	SCREENED INTERVAL
DESCRIPTION	
ILE: Not T	n Scale
•	
NO.	

ROJ	E:	Johnny Cal	ke Road		GEOLO B MOUNT			HOLE NUMBER .J
DEPTH	INTERVAL	BLOW	USCS	MUNSELL	T. IVIQUIT			SHEET:
/	RECOVERY/ TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	2 of 3
0 —	,	 	+			1 1	[DRILLING REMARKS
į	1	1	1 1	1		 		
J	1	2	1	1	Colluvium; CL, clay, silty, low plasticity,	1 1	1	
1	1	3	1 1	1	brown, soft to firm, v. moist, small angular gravels (5 % + 4)	1	í	
2	1 '	3	1 /	1	9.41010 (0 /0 : 4)		ı	
-	1	3		i		0	·	
1	, , , , ,	3		i	·	1		
1	, t	4	1 1	i	'	1		
4	, 1	5	1 1	i	1	0	1	
I	,	3	1 1		1	0	,	Sample MW-20A
- 1	. 1	3			1	1 1	,	, , , , , , , , , , , , , , , , , , ,
1		3	1 1	ı	1	1	,	
6	J	3		,	1	0	<i>'</i>	1
!	Į.	4	1 1	,	1	0	,	1
1	1	3	1	,	1	0		1
1	I	3	1	7	1	o o	,	l .
8	1	3	1	!	1	0	,	1
1		. 1 /	1	1	Thin sand lense, micaceous, saturated	0	,	Sample MW-20B
1	l	4		, , , , , , , , , , , , , , , , , , ,	- 1	0	,	
ı	-	4	1	j	1	3.0	j	1
10		4	.	1	1	3.4	. 1	Sample MAN 500
1		1		ļ	1	1.7	I	Sample MW-20C
	1	3	,	ŀ	ITill: Cl. clay silb; lourte made	0	1	
1	1	5	. 1	1	Till; CL, clay, silty, low to moderate plasticity, firm to stiff, wet to saturated	İ	1	
12	1	ĭ	1	1	, wor to saturated	0.5	1	
	I	14	1	I		0.8	1	
1		15				0		
- 1	1	17 21		1		0	l	
14	I	- '	1	[1	0	1	
1	1	5	1	1	1	0	1	
1	1	9			1		1	
	1	8		- 1		5.3	l	Samula MALORA
16				1		5.0 5.2	1	Sample MW-20D
OJECT N	NAME: J	ohnny Cake	Road			5.2	1	

ROJECT NA	BORING	3 LOG		(CON	TINUATION SHI			
					GEOLOGIST:			NUMBER MW-20
DEPTH	INTERVAL/ RECOVERY/	BLOW COUNT	USCS SYMBOL	MUNSELL COLOR	DESCRIPTION OF MA			SHEET:
	TIME	COUNT	SYMBOL	COLOR	DESCRIPTION OF MATERIALS	PID READINGS	LITHOLOGY	3 of 3 REMARKS
18		22 22 13 15			hard, grey, moist , rock fragments			
	 -	18 16 15 12				3.8 1.3 0		Sample MW-20E
20		95 25 33 53			Cobbles at 20 ft.	0		·
22		53 31 31 49 52				0		
24		52			Total Depth 24 feet; groundwater at 6 ft.			Sample MW-20F
26							·	
28					, ·			
30								
2								
DJECT	NAME: Jo	hnny Cake	Road				1	

TABLE 12 - GPS DATA

JOHNNY CAKE ROAD SITE DANUBE, NY

October 14, 2003

Table Reference North/East Coordinates for Universal Transverse Mercator, 18 North, WGS 1984 Datum

LOCATION II	NORTH (m)	EAST (m)	ALTITUDE (m) (MSL)	COMMENTS
MW-16	4757246.377	511679.797	238.113*	Groundwater monitoring wel
MW-17	4757246.271	511678.367	238.046*	Groundwater monitoring wel
MW-18	4757240.290	511657.038	238.890*	Groundwater monitoring well
MW-19	4757224.257	511624.344	240.069*	Groundwater monitoring well
MW-20	4757280.234	511634.312	234.510*	Groundwater monitoring well
JCRS-029	4757255.629	511618.363	234.399	Soil boring
JCRS-030	4757260.770	511637.922	235.899	Soil boring
JCRS-031	4757263.007	511645.359	235.906	Soil boring
JCRS-032	4757291.190	511675.318	230.511	Soil boring
JCRS-033	4757277.829	511681.285	232.276	Soil boring
JCRS-034	4757266.103	511668.529	235.858	Soil boring
JCRS-035	4757256.340	511641.826	235.969	Soil boring
JCRS-036	4757242.478	511692.323	236.805	Soil boring
JCRS-037	4757236.415	511694.202	237.907	Soil boring
JCRS-038	4757225.848	511692.692	239.362	Soil boring
JCRS-039	4757232.055	511681.332	239.301	Soil boring
JCRS-040	4757243.501	511666.606	237.493	Soil boring
JCRS-041	4757233.112	511653.415	238.946	Soil boring
CRS-042	4757213.058	511657.582	240.514	Soil boring
CRS-043	4757220.914	511671.142	240.336	Soil boring

Table 1 Monitor Well Information Johnny Cake Road October 2006

Monitor Well	Ref. Point Elevation	Diameter	Screen Interval
	(feet-AMSL)	(inches)	(feet-bgs)
		(money)	(leet-ogs)
MW-1	782.49	2	2 - 12
* MW-2 *	793.01	2	3 - 13
MW-2R	NA	2	3 - 23
MW-2RR	NA	2	4.5 - 24.5
MW-3	791.16	2	
* MW-4 *	NA	NA NA	3 - 13
MW-4R	NA	2	NA 2.5 22.5
* MW-6 *	789.55	2	3.5 - 23.5
MW-6R	NA	2	3 - 13
MW-7	791,27	NA NA	3 - 23
MW-8	768.87	NA NA	4 - 24
MW-9	769.27	NA NA	NA NA
MW-10	752.25	NA NA	2 - 12
MW-11	750.29	4	2.5 - 17.5
MW-12A	768.91	4	5 - 20
MW-13	768.25	4	10 - 20
MW-14	768.91	4	5 - 15
MW-15	746.65	$\frac{4}{2}$	6 - 21
MW-16	781.21		91 - 101
MW-17	780.99	4	15 - 25
MW-18	783.76	4	30 - 40
MW-19	787.63	4	15 - 25
MW-20	769.39	4	15 - 25
	/09.39	4	14 - 24

AMSL - above mean sea level

bgs - below ground surface

NA - data not available

MW-15 - sand packed to 83 feet bgs

* Note: MW-2 and MW-6 no longer exist. They were removed during soil excavation activities in June/July 2005. MW-4 could not be found. The preceding wells were replaced with the "R" series wells in July 2005.

Appendix D4: Soil Data Tables & Figures from Removal Action Report – November 2006

TABLE 1 THNNY CAKE ROAD SITE , Herkimer County, New York

Septic Tank Excavation

	- 1									·	
Sample Number	NYSDEC	ST-01	ST-01	ST-02	ST-02	ST-03	ST-03	ST-04	ST-04	ST-05	ST-05
Sample Depth (ft)	TAGM*	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.5	17.0-17.
Date Sampled	(ppm)	07/06/2005	07/06/2005								
Dilution Factor		1.02	3.68	1.01	4.27	1.01	4.42	1.02	4.31	500	2000
VOLATILE ORGANICS (ppm)											
Acetone	0.11	0.032	0.065	0.022	0.051	0.025	0.059	0.028	0.055	ND	ND
Carbon disulfide	2.7	0.0012 J	ND	0.00068 J	ND	0.0017 J	ND	0.039	0.073	ND	ND
Cis-1.2-dichloroethene	0.2	0.046	0.004 J	ND	ND	0.014	0.0082 J	0.0057	0.004 J	37 E	60
Methylene Chloride	0.1	0.00087 J	0.0033 J	0.0084 J	0.0037 J	0.0012 J	0.0044 J	0.0018 J	0.0034 J	ND	ND
Trans-1,2-dichloroethene	0.2	0.00067 J	ND	ND	ND	ND	ND	ND	ND	0.3 J	0.48 J
Vinyl Chloride	0.12	0.0092	ND	ND	ND	0.01	0.0038 J	0.0029 J	ND	3.1	1.9 J
Tetrachloroethene	1.4	ND .	ND	ND	ND	0.0038	0.0043 J	ND	ND	0.53 J	1 J
Trichloroethene	0.7	ND	ND	ND	ND	0.00078 J	ND	0.00087 J		1.1 J	2.2 J
Toluene	1.5	ND	ND	ND	ND	ND	ND	ND	ND	14	26
2-Butanone	0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.5	ND	ND	ND	ND	ND	ND:	ND	ND	ND	ND
Xylenes(total)	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Complete Number	NYSDEC	ST-06	ST-07	ST-08	ST-08	ST-08	ST-09				•
Sample Number	TAGM*	8.0-8.5	6.0-6.5	7.5-8.0	7.5-8.0	7.5-8.0	7.5-8.0				
Sample Depth (ft)	(ppm)						07/06/2005	.1			
Date Sampled	(ppiii)	1	1.02	9.8	10.2	500	500				
Dilution Factor		'	1.02	0.0	10.2		000	<u> </u>			
VOLATILE ORGANICS (ppm)											
Acetone	0.11	0.0094 J	0.0042 J	0.84 J	0.084 J	ND	ND	<u> </u>			
Carbon disulfide	2.7	ND	ND	0.049	0.02 J	ND	ND]			
Cis-1.2-dichloroethene	0.2	0.11	0.035	2.1			12				
Methylene Chloride	0.1	ND	ND	0.006 J	0.0066 J		ND				
Trans-1,2-dichloroethene	0.2	0.0027	0.00054 J	0.0065 J	0.059	ND	ND]			
Vinyl Chloride	0.12	0.077	ND	0.18		ND	0.59 J				
Tetrachioroethene	1.4	0.00083 J	0.062	ND	0.047	ND	ND	1			
Trichloroethene	0.7	0.0032	0.057	0.0013 J		0.22 J	0.16 J				
Toluene	1.5	0.007	ND	ND	ND	ND	ND	7			
2-Butanone	0.3	0.0016 J	ND	ND	ND	ND	ND				
Ethylbenzene	5.5	0.00055	ND	ND	ND	ND	ND	7			
Xylenes(total)	1.2	0.0013 J	ND	ND	ND	ND	ND				
7.2											

NOTES:

* - Soil Cleanup Objectives to Protect GW Quality ppm - parts per million ND - not detected

J - Analyte Detected Below Quantitation Limits E - Value Above Quantitation Range

Shading - result exceed cleanup criteria

TABLE 2 JOHNNY CAKE ROAD SITE Danube, Herkimer County, New York

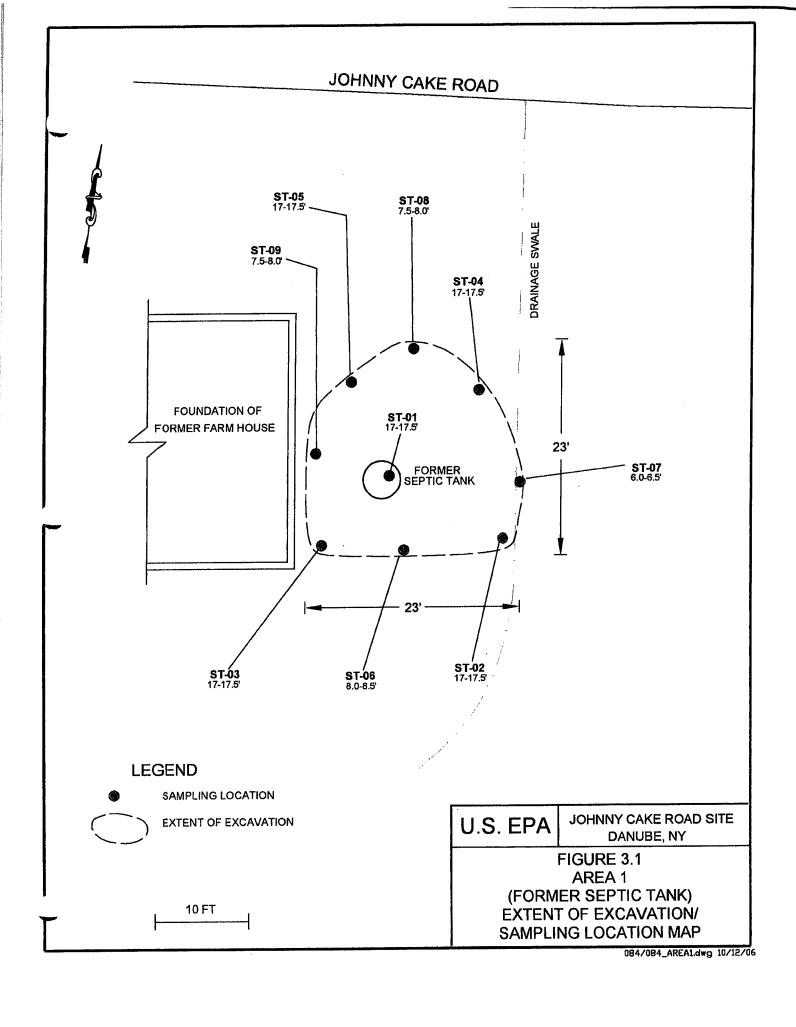
GARAGE AREA EXCAVATION

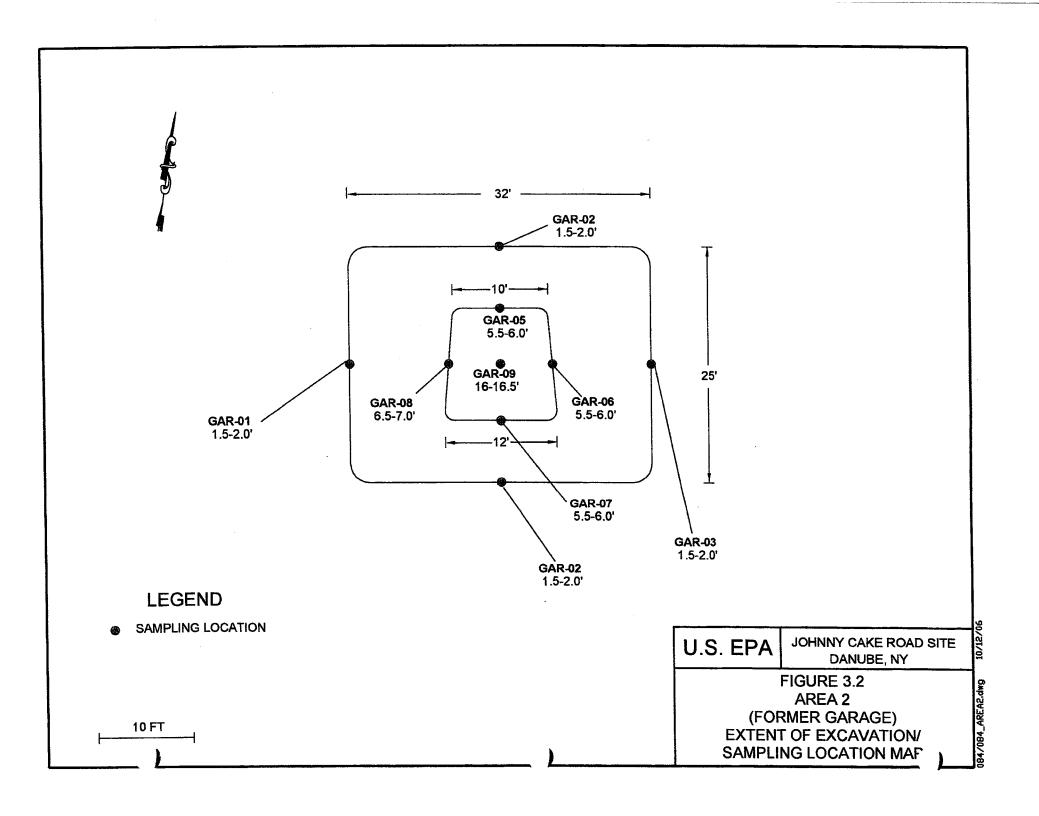
Sample Number Sample Depth (ft) Date Sampled Dilution Factor	NYSDEC TAGM* (ppm)	GAR-01 1.5-2.0 07/06/2005 0.99	GAR-02 1.5-2.0 07/06/2005 1.01	GAR-02 1.5-2.0 07/06/2005 10.2	GAR-03 1.5-2.0 07/06/2005 1.01	GAR-04 1.5-2.0 07/06/2005 1	GAR-05 5.5-6.0 07/06/2005 9.61	GAR-06 5.5-6.0 07/06/2005 1	GAR-06 5.5-6.0 07/06/2005 10	GAR-07 5.5-6.0 07/06/2005 1.01	GAR-08 6.5-7.0 07/07/2005 1	GAR-08 6.5-7.0 07/07/2005 10	GAR-09 16.0-16.5 07/06/2005 1	GAR-09 16.0-16.5 07/06/2005 4.54
VOLATILE ORGANICS (ppm)														
Acetone	0.11	0.0052 J	0.0066 J	0.079 J	0.0061 J	0.0058 J	0.068 J	0.0078 J	0.058 J	0.014	0.011 J	0.066 J	0.022	0.061
Carbon disulfide	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.085	ND	0.002 J	0.0058 J
Cis-1,2-dichloroethene	0.2	0.0008 J	0.0075	0.0074 J	0.0048	0.0027 J	0.022 J	0.075	0.053	0.0034	0.074	0.018 J	0.0032	ND
Methylene Chloride	0.1	ND	ND	ND	ND	ND	ND	0.0006 J	ND	ND	ND	ND	0.0013 J	0.0047 J
Trans-1,2-dichloroethene	0.2	ND	ND	ND	ND	ND	ND	0.0024 J	ND	0.0013 J	0.0037	ND	ND	ND
Vinyl Chloride	0.12	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	0.0022 J	ND
Tetrachloroethene	1.4	0.038	1 E	1.9	0.2	0.063	0.61	0.98 E	1.3	0.0084	0.41 E	0.22	0.0019 J	ND
Trichloroethene	0.7	0.0015 J	0.085	0.083	0.11	0.039	0.38	0.5 E	0.48	0.063	0.61 E	0.23	0.001 J	ND
Toluene	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	0.3	ND	ND	ND	ND	ND	ND	ND	ND	0.0028 J	0.0023 J	ND	ND	ND
2-hexanone	1.2	ND	ND	ND	ND	ND	ND	ND	ND	0.0013 J	0.0033 J	ND	ND	ND
		1									1			

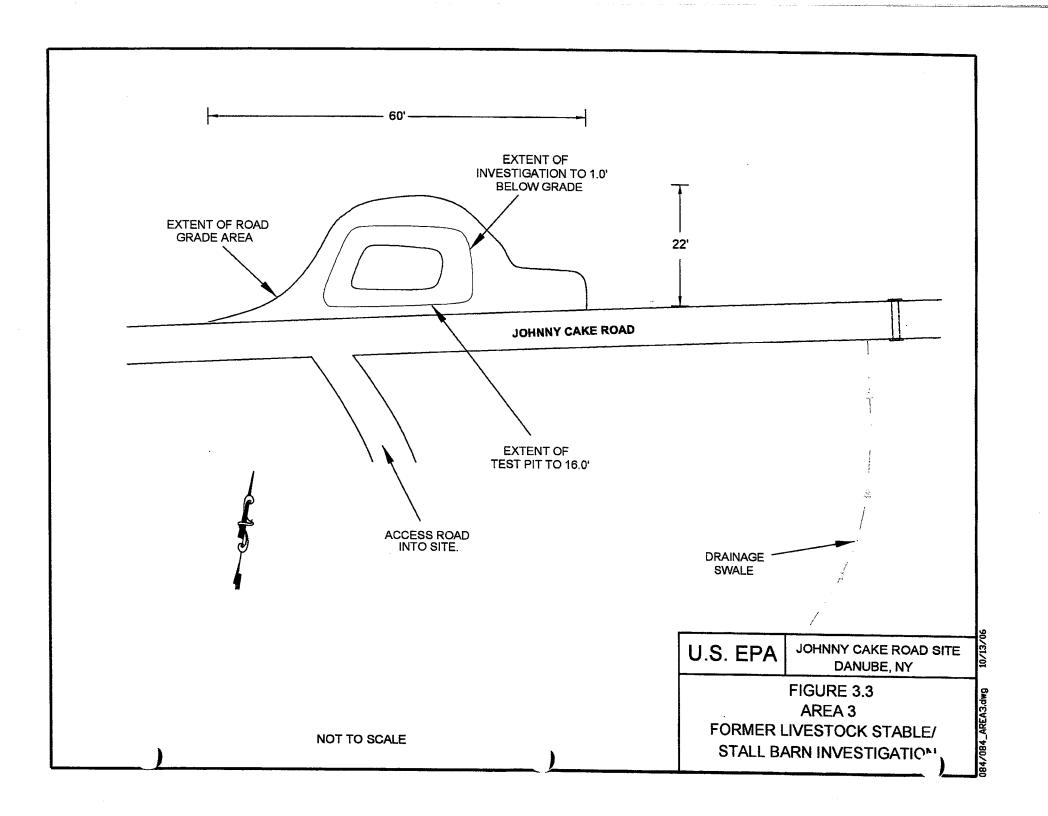
NOTES:
* - Soil Cleanup Objectives to Protect GW Quality
ppm - parts per million
ND - not detected
J - Analyte Detected Below Quantitation Limits
E - Value Above Quantitation Range
Shading - result exceed cleanup criteria

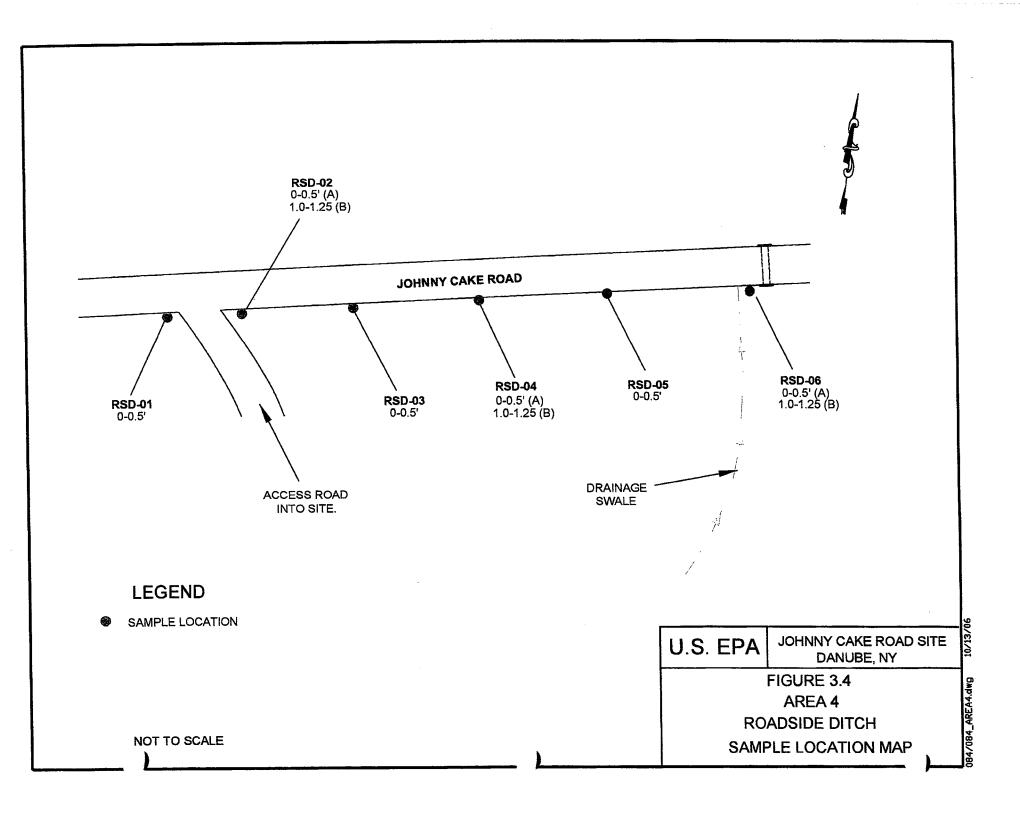
TABLE 3 JOHNNY CAKE ROAD SITE Danube, Herkimer County, New York

ROAD SIDE DITCH SAMPLES


Sample Number Sample Depth (ft) Date Sampled Dilution Factor	NYSDEC TAGM* (ppm)	RSD-01 0.0-0.5 07/12/2005 1.01	RSD-02A 0.0-0.5 07/12/2005 1	RSD-02B 1.0-1.25 07/12/2005 0.99	RSD-03 0.0-0.5 07/12/2005 0.99	RSD-04A 0.0-0.5 07/12/2005 1	RSD-04B 1.0-1.25 07/12/2005 0.99	RSD-05 0.0-0.5 07/12/2005 0.99	RSD-06A 0.0-0.5 07/12/2005 1.01	RSD-06B 1.0-1.25 07/12/2005 1.01
VOLATILE ORGANICS (ppm)										
Acetone	0.11	0.0069 J	0.018	0.016	0.065	0.0068 J	0.0068 J	0.005 J	0.011	0.024
Carbon disulfide	2.7	ND	ND	0.033	0.001 J	ND	ND	ND	0.0046	0.065
Cis-1,2-dichloroethene	0.2	0.0018 J	0.0018 J	0.039	0.002 J	0.017	0.0034	0.00084 J	0.0013 J	0.0036
Methylene Chloride	0.1	0.001 J	ND	ND	0.00084 J	0.00088 J	0.0079 J	0.00089 J	ND	ND
Trans-1,2-dichloroethene	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.12	ND	0.0035 J	0.052	ND	0.00074 J	ND	ND	0.001 J	0.022
Tetrachloroethene	1.4	0.004	ND	0.0015 J	ND	0.0053	0.013	0.00075 J	0.00089 J	ND
Trichloroethene	0.7	0.0051	ND	0.001 J	0.0033	0.0098	0.029	0.0016 J	ND	0.00087 J
Toluene	1.5	ND	0.0024 J	ND	ND	ND	ND	ND	ND	0.00011 J
2-Butanone	0.3	ND	0.0052 J	0.0047 J	0.16	ND	ND	ND	0.0026 J	0.0088 J
2-hexanone	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenxene	5.5	ND	0.00088 J	0.0033	ND	ND	ND	ND	ND	ND
Xylenes (total)	1.2	ND	0.0021 J	0.016	ND	ND	ND	ND	ND	ND


NOTES:


* - Soil Cleanup Objectives to Protect GW Quality


ppm - parts per million ND - not detected

J - Analyte Detected Below Quantitation Limits E - Value Above Quantitation Range Shading - result exceed cleanup criteria

Appendix D5: Historic Groundwater Data & Attenuation Analysis – October 2008

TABLE 1 HISTORIC PCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	25.1	0	140		0		10	1	9.8	2.4	0.9	0.67	0		0	1.3
MW-2	40000	470	19000		39000	1300	34000	5200	5300	12000	5400					
MW-2R					-		-					1.3	0	0	0	0
MW-2RR												0	0	0	0	Ť
MW-3	6000	730	510			620	4	40	23	17		16	11	38	27	24
MW-4																
MW-4R												0.69	1.3	8.1	7.3	1.3
MW-5														<u> </u>	7.0	
MW-6	30000	28000	13000		18000	6200	620	210	680	240	67					
MW-6R												0	0	0	0	0
MW-7	0	0								0						0
MW-8	0	0														0
MW-9	0	0								0	0					
MW-10	0	0								0.56	0			***		
MW-11		0	0			0	3	0	0	0						0
MW-12A										2.7	1.1	0	0	0	0	0
MW-13		0				0	0	0	0.4	1.1	0.9	0	0	0	0	0
MW-14		0				0	0	0	0	5.4	0	0	0	0	0	0
MW-15		0	0	0	0	0	6	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MVV-17									<u> </u>	0	0	0	0	0	0	0
MW-18									<u> </u>	0	0	0	0	0	0	0
MW-19										4	0	Ō	0	0	0	0
MW-20										4.6	0	0	0.78	0.24	0	0.24
MW-21																0
MW-22									i	1						0
MW-23																0

TABLE 2
HISTORIC TCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MVV-1	51.2	26	190				28	11	14	8.1	8.4	2.4	1		4.3	23
MW-2	870	1200	5400		4700	620	4900	710	1900	1500	710		,			
MW-2R												1.3	0.84	0	0	0
MW-2RR												0	0	0	0	
MW-3	360	150	58			170	0	21	5.2	4.6		11	1.7	8.6	5.5	9.7
MW-4																0.1
MW-4R												35	20	200	110	27
MW-5															.,,	
MW-6	6600	8300	13000		24000	5300	290	300	1200	650	360					
MW-6R												0	0.84	0	0	0
MW-7	0	0								0						0
MW-8	0	0														0
MW-9	0	0				-				0	0					
MW-10	0	0					i			0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A					-					0	0	0	0	0	0	0
MW-13		0				0	0	1	2.1	1.9	2.7	0.63	1.3	1.2	2.2	0.4
MW-14		0				0	2	11	7.6	5.1	4.6	4.3	2.8	2.5	3.4	6.7
MW-15		0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18									<u> </u>	0	0	0	0	0	0	0
MW-19										0.4	0	0	0	0	0	0
MW-20										0.56	0.9	7.4	10	8.6	4.9	12
MW-21													. <u>. </u>		7.0	0
MW-22																0
MW-23																0

Notes:

0 - Non Detect Blank - No Data

TABLE 3 HISTORIC TOTAL DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MVV-1	320	1100	2209.8				98	38	27.3	16	36.6	4.3	8.4		11	151.2
MW-2	980	630	3232		3431	400	495	110	183.8	451	222					
MW-2R												6.6	4.8	0	4.5	0.79
MW-2RR												0	0	0	0	
MVV-3	0	80	13			37	0	4	2.1	1.4		12	0.6	0	2.5	3.7
MW-4																
MW-4R												57.91	50	303.3	171.8	97.175
MW-5																
MW-6	6400	10000	24200		32000	0	190	280	664.6	1600	686					
MW-6R												1.6	3.15	2.1	2.4	1.6
MW-7		0								0						0
MW-8		0														0
MW-9		0								0	0					
MW-10		0								0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A	ļ						<u> </u>			0.59	0	0.83	0	0	0	0
MW-13		0				14	86	57	39	64.41	45.1	35.57	19	100	31	64.49
MW-14		3.5				88	29	60	49	29	33.7	30.71	96	19	20	25.45
MW-15	1	0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										6.2	4.6	34	5.6	2.6	2.1	0
MW-19										0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22.81	67.35
MW-21																0
MW-22																0
MW-23					<u> </u>											0

TABLE 3a
HISTORIC cis-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	0	0	2200				98	38	27	16	36	4.3	8.4		11	150
MW-2	0	0	3200		3400		495	110	180	440	210					
MW-2R												6.6	4.8	0	4.5	0.79
MW-2RR												0	0	0	0	
MW-3	0	0	13				0	4	2.1	1.4		12	0.6	0	2.5	3.7
MW-4					·											
MW-4R				-								57	50	300	170	96.5
MW-5																
MVV-6	0	0	23000		32000		190	280	660	1600	670					
MW-6R												1.6	3.15	2.1	2.4	1.6
MW-7	0	0								0						0
MW-8		0														0
MW-9		0								0	0					
MW-10		0		i.						0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A										0.59	0	0.83	0	0	0	0
MW-13		0			1		86	57	39	64	44	35	19	100	31	64
MW-14		0					29	60	48	29	33	30	96	19	20	25
MW-15	1	0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	ō
MW-17					1					0	0	0	0	0	0	0
MW-18										6.2	4.6	34	5.6	2.6	2.1	0
MW-19										0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22	67
MW-21																0
MW-22																Ō
MW-23																0

Notes:

0 - Non Detect Blank - No Data

TABLE 3b HISTORIC trans-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	320	1100	9.8				0	0	0.3	0	0.6	0	0		0	1.2
MW-2	980	630	32		31		0	0	3.8	11	12					
MW-2R												0	0	0	0	0
MW-2RR												0	0	0	0	
MW-3	0	80	0				0	0	0	0		0	0	0	0	0
MW-4																
MW-4R												0.91	0	3.3	1.8	0.675
MW-5																
MW-6	6400	10000	1200		0		0	0	4.6	0	16					
MW-6R												0	0	0	0	0
MW-7										0						0
MW-8																0
MW-9										0	0					
MW-10	<u> </u>									0	0					
MW-11		0	0			0	0	0	0	0						0
MW-12A										0	0	0	0	0	0	0
MW-13		0					0	0	0	0.41	1.1	0.57	0	0	0	0.49
MW-14		3.5					0	0	1	0	0.7	0.71	0	0	0	0.45
MW-15		0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										0	0	0	0	0	0	O
MW-19										0	0	0	0	0	0	0
MW-20										0	0	0	0	0	0.81	0.35
MW-21																0
MW-22																0
MW-23																0

TABLE 4 HISTORIC VC CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08
MW-1	0	0	0				65	30	8.5	4.6	30	0	18		4.5	0
MW-2	0	0	0		0	0	0	0	0	0	0					
MW-2R									-			0	0	0	3.2	· 1
MW-2RR												0	0	0	0	
MW-3	0	0	0		0	0	0	0	0.3	0.88		18	0	0	0	0
MW-4													·			
MW-4R												0.65	3	0	5.4	0.27
MW-5																
MW-6	3.4	0	44		28	3000	7	16	26	350	72					
MW-6R												1.3	0	0	12	12
MW-7										0						0
MW-8														· · · · · · · · · · · · · · · · · · ·		0
MW-9										0	0					
MW-10										0	0					
MW-11		0	0		0	0	0	0	0	0						0
MW-12A										1	0	2.5	0.77	0	1.5	1.5
MW-13		0	0		0	0	0	0	0	0	0	0	0	0	0	0.41
MW-14		0	0		0	0	0	0	0	0	0	0	0	0	0	0.21
MW-15		0	0	0	0	0	0	0	0	0	0					0
MW-16										0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0
MW-18										16	11	43	14	0	6	0
MW-19										0	0	0	0	0	0	0
MW-20										0	0.6	2.5	2.4	0	2.1	1.7
MW-21																0
MW-22																0
MW-23	1.															0

TABLE 5 NATURAL ATTENUATION REGRESSION STATISTICS (10/1/08) JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

MW-1

MW-3

MW-2/2R

MW-13

MW-14

MW-20

k (days⁻¹)

0.000683

0.000962

0.000537

-0.000150

-0.000155

MW-6/6R 0.001446

R²

0.613

0.671

0.591

0.728

0.110

0.107

-0.000293 0.064 -10.873

29.400

40.123

21.630

58.640

-1.903

-2.375

			PCE At	tenuation		
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to C = 5
MW-1	0.000717	0.689	28.041	1395	0.64	_
MW-2/2R	0.000532	0.132	27.339	1880	496.16	23.66
MVV-3	0.000790	0.701	33.310	1266	6.89	1.11
MW-6/6R	0.001152	0.958	48.809	868	21.10	3.42
MW-13	-0.000826	0.640	-31.627	-1211	3.27	increasing
MW-14				All Non-Detect		
MW-18				All Non-Detect		
MW-20	0.001633	0.719	62.943	612	0.15	-

			TCE Att	enuation		
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to C = 5
MW-1	0.000437	0.487	18.717	2288	3.89	-
MW-2/2R	0.000784	0.308	34.562	1276	30.57	6.32
MW-3	0.000644	0.794	26,693	1553	3.04	_
MW-6/6R	0.001105	0.630	46.755	905	17.50	3.10
MW-13	0.000327	0.182	12.793	3058	0.82	-
MW-14	0.000050	0.008	3,385	20000	4.05	
MW-18			F	All Non-Detect		
MW-20	-0.001755	0.582	-66.528	-570	24.15	increasing

MW-18	0.000822	0.077	33.411	1217	2.14	_
MW-20	-0.002033	0.613	-75.740	-492	150.63	increasing
			VC	Attenuation		
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to C = 2 (yrs)
MW-1	0.000650	0.302	27.310	1538	4.44	3.36
MW-2/2R	0.001400	1.000	54,613	714	0.37	-
MW-3	-0.003390	_	-128.212	-295	629.91	increasing
MW-6/6R	0.000152	0.024	8.881	6579	17.17	38.73
MW-13				Insufficient	data	
MW-14				Insufficient	data	
MW-18	0.000546	0.071	23.698	1832	7.46	6.60

Total DCE Attenuation

1464

1040

1862

692

-6667

-6452

-3413

Coeff | Half Life (days) | Current C (ug/L) | Time to C = 5 (yrs)

9.68

6.76

1.35

3.33

57.70

43.90

2.15

2.65

0.86

increasing

increasing

increasing

Notes:

Current C (Concentration) and Years to Goal From 10/1/2008

Appendix D6: Historic Well Information from Site Investigation Report – February 2009

			HTW DRILLING LOG				HOLE		MW-21
PROJEC	OT .	ماما	ny Cake Road Site	10. HO	LE LOCATIO	N		SHEET 1 OF	SHEETS 2
1. LOCA	TION	JOHN	ly Cake Hoad Sile	11. NO	OF OVERB	JRDEN GEOTE	CH SAMPLES		UNDISTURBED
2. COMP	DANIV	Danul	be, New York	12 SAI	O MPLES FOR	CHEMICAL ANA	LYSIS	13. Total Number of Core	Boxes
Z. COIVIF	ANT	Earth	Tech Northeast, Inc.		0				
	ING COMP		ogio NV Inc	14. SU	RFACE ELEV	ATION AT HOLE		15. ELEVATION DATUM NAVD 88	
4. MANU	JFACTURE	R'S DESIG	ogic NY, Inc.	17. DA	TE HOLE STA	ARTED		18. DATE HOLE COMPLI	TED
F 6175	ND TVOC	OF EQUIP	45B track-mounted rig	16 DES	9/28/20	008 UNDWATER EN	COUNTERE	9/28/2008	
5. SIZE /	AND ITPE	6" HA			NA	0.101111211			
6. NAME	OF DRILL		Breeds	1	ATHER Cloudy	light rain			
7. THICK	NESS OF	OVERBUR		20. DIS	POSITION O	, light rain			
8 DEPTI	H DRIU ED	23+ INTO ROC	ft	21. NAN	E OF INSPE	CTOR			
o. Der II	n DHILLED	NA	ft		Dino Za	ack			
9. TOTAL	. DEPTH O		ft	22. SIG	NATURE OF	INSPECTOR			
ECEV-		23 LEGEND		REC.	SAMPLE No.	PID (ppm)	BLOW	REMARK	s
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	(TIME)		ļ	HEWARA	
	_		0-1" TOPSOIL	8	NA	0.0	1		
			1-8" brown SILT, trace f.sand, trace clay (moist)				2		
	1 —		(moist)						
	-						3		
							3		
	2-		0-8" light brown SILT, trace f.sand, trace	8	NA NA	0.0	2		
	-		organics (moist)	ਁ	,	0.0			
	\exists						3		
	3						3	•	
	コ								
	. 4						3		
	4		0-10" light brown SILT, trace f.sand (moist)	19	NA	0.0	5		
			10-19" light brown SILT, little angular				4		
İ			medium rock fragments, trace fc.sand, trace clay (moist)						
	5		trace clay (moist)				3		
							3		
	6-				N I A	0.0			
	~ 		0-20" light brown SILT, little f.gravel, little f	22	NA	0.0	3	Top of till at ~7.	p, päs
	_		c.sand, trace clay - stiffening with depth (moist)				5		
	7—		20-22" dark grey SILT, some f.sand, little				7		
	4		f.mgravel, little fc.sand, trace clay (moist-				'		
	ゴ		dry) TILL				14		
	8-		0-7" light brown SILT, some f.sand, little f	9	NA	0.0	9		
			m.gravel, trace clay (moist) sluff?			-			
	7		20-22" dark grey SILT, some f.sand, little				12		
	9	1	f.mgravel, little fc.sand, trace clay (moist-				17		
			dry) TILL						
		ŀ					. 22		
	10-								

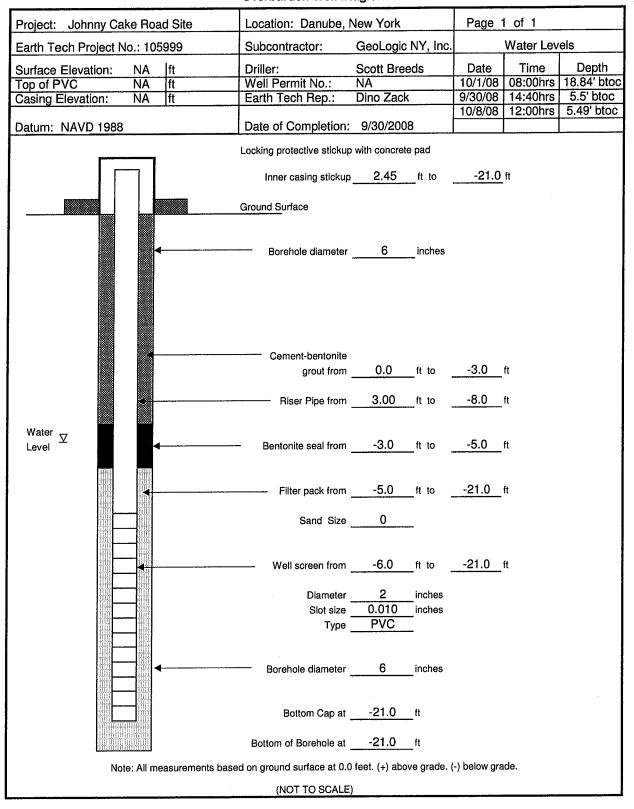
			HTW DRILLING LOG				HOLE 1		٨	/W-21
PROJEC	r	Johnny	Cake Road Site					SHEET 2	OF	SHEETS 2
I. LOCAT	10N		e, New York	21. NAN	E OF INSPE	CTOR				
2. COMP	ANY		ech Northeast, Inc.	22. SIGI	NATURE OF	NSPECTOR				
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No.	PID (ppm)	BLOW COUNT		REMARKS	
	10	-	0-2" sluff	20	(TIME) NA	0.0	19			
	11 -		2-20" dark grey SILT, some fm. angular gravel, little fc.sand, trace clay (moist-dry) stiff TILL				25			
							29 42			
	12—		0-22" dark grey SILT, some fm.gravel, little fc.sand, trace clay (dry) crumbly TILL	22	NA	0.0	47			
	13						100/.4			
	14-		0-4" sluff 4-10" dark grey SILT, some fm.gravel, little	14	NA	0.0	57			
	15		fc.sand, trace clay (dry-moist) TILL 10-14" SHALE in shoe				100/.4			
	16 - - 17-		0-12" dark grey SILT, little fm.gravel, trace fc.sand, trace clay (dry) TILL	12	NA	0.0	65			
	18		0-15" medium grey SILT and FSAND	15	NA	0.0	52			
	-		(thinly layered), trace clay (moist) soft			0.0	35			
	19		·				32			
	20		0-6" medium grey SILT and F.SAND (thinly layered), trace clay (moist) soft	24	NA	0.0	23			
	21 —		6-24" medium grey SILT and F.SAND (thinly layered), trace clay (dry) dense				40			
	, _ _ _						90			
	22		0-8" medium grey SILT and F.SAND (thinly layered), trace clay (moist) dense 8-12" dark grey SILT and F.SAND (thinly layered), trace fm.gravel (moist-dry) dense End of boring at 23' - refer to well installation diagram for additional details.	12	NA	0.0	17 22			

			HTW DRILLING LOG				HOLE		MW-22
PROJEC	Т			10. HO	E LOCATIO	1		SHEET	SHEETS
		Johnn	y Cake Road Site	11 NO	OF OVERBI	RDEN GEOTE	CH SAMPLES	DISTURBED	OF 2
1. LOCA	TION	Danub	e, New York	11.110.	0				
2. COMP	ANY	Danue	e, New Tork	12. SAN		HEMICAL ANA	ALYSIS	13. Total Number of	Core Boxes
			Tech Northeast, Inc.	14 010	O EACE ELEV	ATION AT HOL	F	15. ELEVATION DA	TUM
3. DRILLI	NG COMP		ogic NY, Inc.	14. 501	NA	ATION AT THOS	-	NAVD	
4. MANU	FACTURE	R'S DESIG	NATION OF DRILL	17. DAT	E HOLE STA			18. DATE HOLE CO	MPLETED
		CME 4	45B track-mounted rig	140 555	9/29/20	08 INDWATER E	NOOLINTEDE	9/29/20	08
SIZE A	ND TYPE	OF EQUIPA		I I O. DEF	NA	JINDWATER E	NOODIVILIIL.	, and the second	
. NAME	OF DRILL			19. WE	ATHER				
		Scott F	Breeds	00 10101	Sunny;	60F			
7. THICK	NESS OF	OVERBURG	ft	20. 0131	-03/1/0/100	HOLL			
3. DEPTH	DRILLED	21+		21. NAN	E OF INSPE				
			ft	20.000	Dino Za	ICK INSPECTOR			
O. TOTAL	DEPTH C		ft	122. SIGI	NATURE OF	INOPEUIUN			
ELEV-		21 LEGEND		REC.	SAMPLE	PID (nnm)	BLOW	pri	MARKS
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(int)	No. (TIME)	(ppm)	COUNT	HEI	nei (NO
			0-1" TOPSOIL	8	NA	0.0	2		
	_		1-8" tan SILT, little f.sand, trace mc.sand,	:					
	-		trace f.gravel (moist)				3		
	1-						3		
	-							1	
							6		
	2-		O diller Oil T little found troop m o good	18	NA	0.0	2		
	-		0-4" tan SILT, little f.sand, trace mc.sand, trace f.gravel (moist)	'0	1 1	0.0	-		
	_		4-18" tan-light brown SILT, little f.sand		İ		3		
	3—		(moist; wet at 16-18")						
			(110101), 1101011 10 70 7				2		
				İ			1		
	4								
	4 —		0-6" tan-light brown SILT, little f.sand	16	NA	0.0	1		
	_		(moist)				2		
	-		6-12" light brown SILT, little f.sand, trace f						
	5—		m.sand, trace fm.gravel (moist) 12-16" brown-grey SILT, little f.sand, trace f.				4	Top of till at	~5.5' bgs
			m.sand, trace fm.gravel (moist-wet) TILL						
	-		misand, hade it migraver (molet wee) The				4		
	6-		0-12" grey SILT, some f.sand, little m	12	NA	0.0	3		
	-		c.sand, littlefm.gravel, trace clay (moist-						
	_		wet) TILL				4		
	7		•				5		
	-		•						
1							5		
1	8—			8	NA	0.0	8		
ļ	_		SLUFF - rock in shoe	0	INA	0.0	°		
	_						13		
	<u> </u>								
	9						13		
	-						15		
	-						'		
	10 —								

			HTW DRILLING LOG				HOLE N		М	W-22
PROJEC	Т	Johnn	y Cake Road Site					SHEET 2	OF	SHEETS 2
1. LOCA	TION			21. NA	ME OF INSPE	CTOR			<u></u>	
2. COMP	ANY		e, New York	22. SIG	NATURE OF I	NSPECTOR				
ELEV-		Earth LEGEND	Tech Northeast, Inc.	REC.	SAMPLE	PID	BLOW			
ATION	(FEET)		CLASSIFICATION OF MATERIAL	(ft)	No. (TIME)	(ppm)	COUNT	R	EMARKS	
	10 _		0-10" medium grey SILT, little f.sand, trace mc.sand, trace fm.gravel (moist)	10	NA	0.0	13			
			mc.sand, trace rm.graver (moist)				15			
	11—						17			
	_						16			
	12 —									
			0-6" medium grey SILT, little f.sand, trace mc.sand, trace fm.gravel (moist)	20	NA	0.0	13			
	_		6-14" medium grey SILT and F.SAND, trace				9			
	13		mc.sand, trace fm.gravel (wet) 14-20" grey SILT, little fc.sand, fm.gravel,				10			
]	-		trace clay (moist)				14			
	14—		OLUET week to the	0	NA	NA	14			
			SLUFF - rock in shoe	U	14/	, INC				
	7						9			
	15—						10			
							10			
	16-		SLUFF - rock in shoe - auger to 18'	0	NA	NA	12			
			SLOFF - 100k 1 Slide - augel to 10							
							13			
	17—						14			
	亅						12			
	18		0-12" grey SILT and FSAND (thinly	12	NA	0.0	7			
	コ		layered), little mc.sand, little fm.gravel,							
-	19—		trace clay (moist) soft				7			
	19—						8			
							8			
	20		0-12" grey SILT and FSAND (thinly	12	NA	0.0	9			
	4		layered), little mc.sand, little fm.gravel,				9			
	21 —		trace clay (moist) soft							
	- ' -		End of boring at 21' - refer to well							
	ᆿ	:	installation diagram for additonal details.							
	22									
	4									
	23									

			HTW DRILLING LOG				HOLE		MW-23
PROJEC	т			10. HOL	E LOCATION	V		SHEET	SHEETS OF 2
1. LOCAT	TION	Johnn	y Cake Road Site	11. NO.	OF OVERBL	IRDEN GEOTE	CH SAMPLES	1 DISTURBED	OF 2 UNDISTURBED
II. LOÇAI	IION	Danub	e, New York		0				
2. COMP	ANY			12. SAM		CHEMICAL ANA	LYSIS	13. Total Number of	Core Boxes
a DOILL	NG COMF		Tech Northeast, Inc.	14. SUF	O FACE ELEV	ATION AT HOL	E	15. ELEVATION DA	TUM
			paic NY, Inc.		NA			NAVD	
4. MANU	FACTURE		OGIC NY, Inc.	17. DAT	E HOLE STA 9/29/20			18. DATE HOLE CO 9/29/20	
5 SIZE A	ND TYPE	OF EQUIPA	45B track-mounted rig	16. DEF	TH OF GRO	UNDWATER E	NCOUNTERE		00
o. OILL A		6" HAS			NA				
6. NAME	OF DRILL		Proods	19. WE		d clouds:	60F		
7. THICK	NESS OF	Scott E	DEN	20. DISI	OSITION OF	d clouds;			
		21+	ft	LOC NAT	E OF INSPE	CTOR			
8. DEPTH	ORILLED	NA	к ft	ZI. IVAIV	Dino Za				
9. TOTAL	DEPTH C		n.	22. SIGI		INSPECTOR			
			ft	REC.	SAMPLE	PID	BLOW	I	
ELEV- ATION	OEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	(int)	No.	(ppm)	COUNT	REM	MARKS
			0-1" TOPSOIL	11	(TIME)	0.0	1		
	-		1-11" tan-light brown SILT, trace f.sand,						
			trace clay (dry-moist)				1		
	1 —		• • •				2		
	_						_		
							3		
	2-		OUT BUILT a good broom	4	NA	0.0	6		
			0-4" light brown SILT, little fc.sand, trace	+	147	0.0	"		
	_		f.gravel (dry)				12		
	3-								
	_						9		
							4		
	1 -			1		0.0			
	4-		0-8" light brown SILT, little fc.sand, trace	14	NA	0.0	2		
	_		f.gravel (dry) 8-14" grey SILT, little f.sand, trace f.gravel				4		
	- -		(moist) TILL					Top of till at	~5.0' bgs
	5 <i>-</i>		(motor) free				6		
							7		
	-			ļ., <u>.</u>					
	6		0-4" SLUFF	13	NA	0.0	8		
			4-13" grey SILT and F.SAND, little f				9		
	., -		m.gravel, little mc.sand (moist)						
	7—						14		
							14		
	_								
	8		0-6" brown SILT, little fc.sand, trace f	20	NA	0.0	6		
			m.gravel (dry) sluff?				7		
	-		6-20" grey SILT and F.SAND, trace clay				′		
	9 —		(dry)				9		
							14		
							'4		
	10			1					

			HTW DRILLING LOG				HOLE	
PROJEC	T	Johnn	y Cake Road Site					SHEET SHEETS 2 OF 2
1. LOCAT	TION		pe, New York	21. NA	ME OF INSPE	CTOR		
2. COMP.		Earth	Tech Northeast, Inc.	Ì	NATURE OF			
ELEV- ATION	DEPTH (FEET)	LEGEND	CLASSIFICATION OF MATERIAL	REC. (ft)	SAMPLE No. (TIME)	(ppm)	COUNT	REMARKS
	10 _		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	7	
	_		(dry)				10	
	11 —						12	
	-						20	
	12-		0-18" grey SILT and F.SAND, trace clay	18	NA	0.0	14	
	_		(dry)				16	
	13						12	
	-			:			16	
	14		0-6" grey SILT, little f.sand, trace mc.sand,	24	NA	NA	10	
	4		trace fm.gravel, trace clay (moist) 6-24" grey SILT and F.SAND, trace clay,				14	
	15		trace fm.gravel (moist)				16	
							21	
	16		0.40" area CILT and E CAND, trace clay	18	NA	NA	21	
	₫		0-18" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	,0	IVA	1471		
	17						20	
							23	
	18						24	
			0-24" grey SILT and F.SAND, trace clay, trace fm.gravel (moist)	24	NA	0.0	17	
	19—		End of boring at 20' - refer to well				24	
	197		installation diagram for additional details.				22	
	F						28	
	20							
	21—							
	4							
	22				-			
	-							
	23							
	7			İ				


Location: Danube, New York Page 1 of 1 Project: Johnny Cake Road Site Water Levels GeoLogic NY, Inc. Earth Tech Project No.: 105999 Subcontractor: Time Depth **Scott Breeds** Date Driller: Surface Elevation: NA lft 9/30/08 | 09:00hrs | 5.5' btoc Well Permit No.: NA NA Top of PVC ft Dino Zack 9/30/08 | 14:40hrs | 5.5' btoc Earth Tech Rep.: Casing Elevation: NA ft 10/7/08 | 12:00hrs | 5.5' btoc Date of Completion: 9/29/2008 Datum: NAVD 1988 Locking protective stickup with concrete pad Inner casing stickup 2.5 ft to -23.0 ft **Ground Surface** Borehole diameter 6 inches Cement-bentonite grout from 0.0 ft to -5.0 ft Riser Pipe from 2.75 ft to -8.0 ft Bentonite seal from -5.0 ft to -7.0 ft Level Filter pack from -7.0 ft to -23.0 ft Sand Size 0 Well screen from -8.0 ft to -23.0 ft Diameter inches 0.010 Slot size inches PVC Type Borehole diameter _____6 ___inches Bottom Cap at -23.0 ft Bottom of Borehole at ______ ft Note: All measurements based on ground surface at 0.0 feet. (+) above grade. (-) below grade. (NOT TO SCALE)

Overburden Well Diagram

Well No. MW-21

Overburden Well Diagram

Well No. MW-22

	Overburden Well Diagram	Well No. MW-23
Project: Johnny Cake Road Site	Location: Danube, New York	Page 1 of 1
Earth Tech Project No.: 105999	Subcontractor: GeoLogic NY, Inc.	Water Levels
Surface Elevation: NA ft	Driller: Scott Breeds	Date Time Depth
Top of PVC NA ft	Well Permit No.: NA	10/1/08 07:30 hrs 19.4 btoc 10/1/08 13:22 hrs 19.1 btoc
Casing Elevation: NA ft	Earth Tech Rep.: Dino Zack	10/1/08 13.22 hrs 18.5' btoc
Datum: NAVD 1988	Date of Completion: 9/30/2008	10/8/08 08:00 hrs 6.90' btoc
	Locking protective stickup with concrete pad	
	Inner casing stickup 2.60 ft to	<u>-21.0</u> ft
	Ground Surface	
→	Borehole diameter 6 inches	
-	Cement-bentonite grout from 0.0 ft to	
•	Riser Pipe from 2.80 ft to	ft
Water _▽ Level	- Bentonite seal from <u>-2.0</u> ft to	ft
 	Filter pack fromft_to	-20.0 ft
	Sand Size0	
	Well screen fromft to	<u>-20.0</u> ft
	Diameter 2 inches Slot size 0.010 inches Type PVC	
	Borehole diameter6inches	
	Bottom Cap atft	
	Bottom of Borehole atft	
Note: All measurements base	ed on ground surface at 0.0 feet. (+) above grade.	(-) below grade.
	(NOT TO SCALE)	

Appendix D7: Historic Groundwater Data & Attenuation Analysis - January 2011

TABLE 1 HISTORIC PCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	25.1	0	140		0		10	1	9.8	2.4	0.9	0.67	0		0	1.3	0	0.36
MW-2	40000	470	19000		39000	1300	34000	5200	5300	12000	5400							
MW-2R												1.3	0	0	0	0	0	0
MW-2RR												0	0	0	0			
MW-3	6000	730	510			620	4	40	23	17		16	11	38	27	24		
MW-4																		
MW-4R												0.69	1.3	8.1	7.3	1.3		
MW-5																		
MW-6	30000	28000	13000		18000	6200	620	210	680	240	67							
MW-6R												0	0	0	0	0	0	0
MW-7	0	0								0						0		
MW-8	0	0														0		
MW-9	0	0								0	0							
MW-10	0	0								0.56	0							
MW-11		0	0			0	3	0	0	0						0		
MW-12A										2.7	1.1	0	0	0	0	0	0	0
MW-13		0				0	0	0	0.4	1.1	0.9	0	0	0	0	0	0	0
MW-14		0				0	0	0	0	5.4	0	0	0	0	0	0		
MW-15		0	0	0	0	0	6	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										0	0	0	0	0	0	0	0	0
MW-19										4	0	0	0	0	0	0	0	0
MW-20		,								4.6	0	0	0.78	0.24	0	0.24		
MW-21																0	0	0
MW-22																0	0	0
MW-23		·														0	0	0

TABLE 2
HISTORIC TCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	51.2	26	190				28	11	14	8.1	8.4	2.4	1		4.3	23	5.1	6.8
MW-2	870	1200	5400		4700	620	4900	710	1900	1500	710							
MW-2R												1.3	0.84	0	0	0	0	0.4
MW-2RR												0	0	0	0			
MW-3	360	150	58			170	0	21	5.2	4.6		11	1.7	8.6	5.5	9.7		
MW-4																		
MW-4R												35	20	200	110	27		
MW-5																		
MW-6	6600	8300	13000		24000	5300	290	300	1200	650	360							
MW-6R												0	0.84	0	0	0	0	0
MW-7	0	0								0						0		
MW-8	0	0														0		
MW-9	0	0								0	0							
MW-10	0	0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0	0	0	0	0	0	0	0.79	0
MW-13		0				0	0	1	2.1	1.9	2.7	0.63	1.3	1.2	2.2	0.4	0.42	0.39
MW-14		0				0	2	11	7.6	5.1	4.6	4.3	2.8	2.5	3.4	6.7		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										0	0	0	0	0	0	0	0	0
MW-19										0.4	0	0	0	0	0	0	0	0
MW-20										0.56	0.9	7.4	10	8.6	4.9	12		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 3
HISTORIC TOTAL DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	320	1100	2209.8				98	38	27.3	16	36.6	4.3	8.4		11	151.2	51.42	38.41
MW-2	980	630	3232		3431	400	495	110	183.8	451	222							
MW-2R												6.6	4.8	0	4.5	0.79	0.27	0.23
MW-2RR												0	0	0	0			
MW-3	0	80	13			37	0	4	2.1	1.4		12	0.6	0	2.5	3.7		
MW-4																		
MW-4R												57.91	50	303.3	171.8	97.175		
MW-5																		
MW-6	6400	10000	24200		32000	0	190	280	664.6	1600	686							
MW-6R												1.6	3.15	2.1	2.4	1.6	0.6	0.27
MW-7		0								0						0		
MW-8		0														0		
MW-9		0								0	0							
MW-10		0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0.59	0	0.83	0	0	0	0	0	0.57
MW-13		0				14	86	57	39	64.41	45.1	35.57	19	100	31	64.49	32.32	9.7
MW-14		3.5				88	29	60	49	29	33.7	30.71	96	19	20	25.45		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17						, and the second				0	0	0	0	0	0	0		
MW-18										6.2	4.6	34	5.6	2.6	2.1	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22.81	67.35		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 3a
HISTORIC cis-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	0	0	2200				98	38	27	16	36	4.3	8.4		11	150	51	38
MW-2	0	0	3200		3400		495	110	180	440	210							
MW-2R												6.6	4.8	0	4.5	0.79	0.27	0.23
MW-2RR												0	0	0	0			
MW-3	0	0	13				0	4	2.1	1.4		12	0.6	0	2.5	3.7		
MW-4																		
MW-4R												57	50	300	170	96.5		
MW-5																		
MW-6	0	0	23000		32000		190	280	660	1600	670							
MW-6R												1.6	3.15	2.1	2.4	1.6	0.6	0.27
MW-7	0	0								0						0		
MW-8		0														0		
MW-9		0								0	0							
MW-10		0								0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0.59	0	0.83	0	0	0	0	0	0.57
MW-13		0					86	57	39	64	44	35	19	100	31	64	32	9.7
MW-14		0					29	60	48	29	33	30	96	19	20	25		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										6.2	4.6	34	5.6	2.6	2.1	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20										1	16	42	35	34	22	67		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 3b HISTORIC trans-1,2 DCE CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	320	1100	9.8				0	0	0.3	0	0.6	0	0		0	1.2	0.42	0.41
MW-2	980	630	32		31		0	0	3.8	11	12							
MW-2R												0	0	0	0	0	0	0
MW-2RR												0	0	0	0			
MW-3	0	80	0				0	0	0	0		0	0	0	0	0		
MW-4																		
MW-4R												0.91	0	3.3	1.8	0.675		
MW-5																		
MW-6	6400	10000	1200		0		0	0	4.6	0	16							
MW-6R												0	0	0	0	0	0	0
MW-7										0						0		
MW-8																0		
MW-9										0	0							
MW-10										0	0							
MW-11		0	0			0	0	0	0	0						0		
MW-12A										0	0	0	0	0	0	0	0	0
MW-13		0					0	0	0	0.41	1.1	0.57	0	0	0	0.49	0.32	0
MW-14		3.5					0	0	1	0	0.7	0.71	0	0	0	0.45		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										0	0	0	0	0	0	0	0	0
MW-19										0	0	0	0	0	0	0	0	0
MW-20										0	0	0	0	0	0.81	0.35		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 4
HISTORIC VC CONCENTRATIONS (ug/L)
JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

Date/Well	Nov-90	May-91	Oct-93	12-Nov-93	29-Nov-93	Aug-95	Apr-00	May-01	May-02	Dec-03	Mar-05	29-Aug-05	29-Nov-05	7-Mar-06	8-Jun-06	1-Oct-08	20-Oct-09	20-Oct-10
MW-1	0	0	0				65	30	8.5	4.6	30	0	18		4.5	0	0.84	2.6
MW-2	0	0	0		0	0	0	0	0	0	0							
MW-2R												0	0	0	3.2	1	0.49	0.56
MW-2RR												0	0	0	0			
MW-3	0	0	0		0	0	0	0	0.3	0.88		18	0	0	0	0		
MW-4																		
MW-4R												0.65	3	0	5.4	0.27		
MW-5																		
MW-6	3.4	0	44		28	3000	7	16	26	350	72							
MW-6R												1.3	0	0	12	12	4.3	0.77
MW-7										0						0		
MW-8																0		
MW-9										0	0							
MW-10										0	0							
MW-11		0	0		0	0	0	0	0	0						0		
MW-12A										1	0	2.5	0.77	0	1.5	1.5	1.0	1.1
MW-13		0	0		0	0	0	0	0	0	0	0	0	0	0	0.41	0	0
MW-14		0	0		0	0	0	0	0	0	0	0	0	0	0	0.21		
MW-15		0	0	0	0	0	0	0	0	0	0					0		
MW-16										0	0	0	0	0	0	0	0	0
MW-17										0	0	0	0	0	0	0		
MW-18										16	11	43	14	0	6	0	0.36	0.69
MW-19										0	0	0	0	0	0	0	0	0
MW-20										0	0.6	2.5	2.4	0	2.1	1.7		
MW-21																0	0	0
MW-22																0	0	0
MW-23																0	0	0

TABLE 5 NATURAL ATTENUATION REGRESSION STATISTICS (1/1/11) JOHNNY CAKE ROAD, SITE NO. 6-22-016, TOWN OF DANUBE, HERKIMER COUNTY

				PCE Attenu	ation		
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to $C = 5$	Actual C (ug/L)
MW-1	0.000719	0.743	28.107	1391	0.35		0.36
MW-2/2R	0.000532	0.132	27.339	1880	320.41	21.41	0
MW-6/6R	0.001152	0.958	48.809	868	12.46	2.17	0
MW-13	-0.000826	0.640	-31.627	-1211	4.76	increasing	0
MW-18				All Non-Deter	ct		0

				Total DC	E Attenuation		
	k (days ⁻¹)	R ²	Coeff	Half Life (days)	Current C (ug/L)	Time to $C = 5$ (yrs)	Actual C (ug/L)
MW-1	0.000540	0.508	24.298	1852	11.07	4.03	34.81
MW-2/2R	0.001160	0.751	47.118	862	1.09		0.23
MW-6/6R	0.001536	0.790	61.872	651	0.67		0.27
MW-13	0.000041	0.008	5.210	24390	34.73	129.43	9.7
MW-18	0.000822	0.077	33.411	1217	1.47	-	0

				TCE Attenu	ıation		
	k (days ⁻¹)	R ²	Coeff	Half Life	Current C (ug/L)	Time to $C = 5$	Actual C (ug/L)
MW-1	0.000385	0.482	16.854	2597	3.47		6.8
MW-2/2R	0.001010	0.465	42.523	990	4.82		0.4
MW-6/6R	0.001105	0.630	46.755	905	10.56	1.85	0
MW-13	0.000471	0.473	18.260	2123	0.43		0.39
MW-18				All Non-Dete	ct		0

				VC A	ttenuation		
	k (days ⁻¹)	R^2	Coeff	Half Life	Current C (ug/L)	Time to $C = 2$ (yrs)	Actual C (ug/L)
MW-1	0.000835	0.628	34.273	1198	1.52		2.6
MW-2/2R	0.001200	0.920	47.681	833	0.38		0.56
MW-6/6R	0.000340	0.135	15.604	2941	6.17	9.07	0.77
MW-13				Insufficien	t data		0
MW-18	0.001712	0.809	68.502	584	0.40		0.69

Notes:
Current C (Concentration) and Years to Goal From 1/1/2010

PCE has been ND at MW-2R, MW-6R, or MW-13 since 2005, and the trends are biased based on previous high concentrations.

DCE has been stable at MW-13 since 1995, and this trend is likely the result of the decay process.

Appendix D8: Historic and Recent Groundwater Data – 2009 to 2012, 2014, 2016, and 2022

Johnny Cake Road Site Summary of Laboratory Analytical Data Detections for Groundwater 2009-2012

Sample ID		N	IW-1		MW-1		MW-1		MW-1	MW-2R		MW-2R	MW	V-2R	MW-	-2R	MW-	6R	MW-6R		MW-6R	MW-	-6R	MW-12A	MW-1	2A	MW-12A		MW-12A	N	MW-13	MV	N-13	MW-	13	MW-13
Sampling Date		10	/8/08		10/20/09)	10/18/1	0	4/25/12	10/06/08		10/20/09	10/1	19/10	4/25	/12	10/02	/08	10/21/0	9	10/20/10	4/25	/12	10/02/2008	10/20	/09	10/20/10		4/25/12	10/	/02/2008	10/2	21/09	10/20	10	4/26/12
Lab Sample ID		G17	34-13A	H	2093-07	Ά	J2119-0)1	L0864-01	G1734-03A		H2093-06A	J211	19-06	L086	4-02	G1709	-07H	H2093-11	IA	J2119-11	L086	4-03	G1709-08H	H2093	-04A	J2119-07		L0864-04	G1	709-09H	H209	93-12A	J2119	-08	L0864-05
Volatiles	AWQS/GV Values																																			
trans-1,2-Dichloroethene	5		1.2		0.42	J	0.41	J	0.74	< 0.50	UJ <	0.50 U	< 0.	50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	60 U	< 0.50 L	< 0.5) U	< 0.50	U <	0.50 U	J	0.49 J	0.	.32 J	< 0.50) U .	< 0.50 l
Cyclohexane	NL	< (0.50	U <	0.50	U <	0.50	U	0.53	< 0.50	U <	0.50 U	< 0.	.50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	50 U	< 0.50 L	< 0.5) U	< 0.50	U <	0.50 U	J <	0.50 U	< 0	.50 U	< 0.50	U .	< 0.50 l
Toluene	5	< (0.50	U <	0.50	U <	0.50	U <	: 0.50 L	J < 0.50	U <	0.50 U	< 0.	.50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	50 U	< 0.50 L	< 0.5) U	< 0.50	U <	0.50 U	J <	0.50 U	< 0	.50 U	< 0.50	U .	< 0.50 l
Tetrachloroethene (PCE)	5		1.3	<	0.50	U	0.36	J <	0.50 L	J < 0.50	U <	0.50 U	< 0.	50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	60 U	< 0.50 L	< 0.5) U	< 0.50	U <	0.50 U	J <	0.50 U	< 0.	.50 U	< 0.50) U .	< 0.50 l
1,2-Dichloroethane	0.6	< (0.50	U <	0.50	U <	0.50	U <	0.50 L	J < 0.50	U <	0.50 U	< 0.	50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	0 U	0.79	< 0.5) U	< 0.50	U <	0.50 U	J <	0.50 U	< 0	.50 U	< 0.50) U .	< 0.50 l
1,1-Dichloroethene	5).24	J <	0.50	U <	0.50	U	2.10	< 0.50	U <	0.50 U	< 0.	.50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	50 U	< 0.50 L	< 0.5) U	< 0.50	U <	0.50 U	J <	0.50 U	< 0	.50 U	< 0.50	U .	< 0.50 l
cis-1,2-Dichloroethene (DCE)	5		150		51		38		150	0.79	J	0.27 J	0.	.23 J	0.2	23 J	1.6	6	0.6		0.27 J	0.6	60 J	< 0.50 L	< 0.5) U	0.57		0.26 J	1	64 J		32	9.7		4.9
Trichloroethene (TCE)	5		23.0		5.1		6.8		4.3	< 0.50	U <	0.50 U	0.	40 J	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	60 U	< 0.50 L	0.7	9	< 0.50	U <	0.50 U	J	0.40 J	0.	.42 J	0.39) J	0.60
Vinyl chloride (VC)	2	< (0.50	U	0.84	J	2.6		39.0	1.00		0.49 J	0.	.56	0.6	62	12.	0	4.3		0.77	2.6	0	1.5	1.0)	1.1		0.73		0.41 J	< 0	.50 U	< 0.50) U -	< 0.50 l
Dichlorodifluoromethane	5	< (0.50	U	0.31	J	0.35	J	7.10	< 0.50	U <	0.50 U	< 0.	50 U	< 0.5	50 U	< 0.5	0 U	< 0.50	U <	< 0.50 L	J < 0.5	50 U	< 0.50 L	< 0.5	o U	< 0.50	U <	0.50 U	J <	0.50 U	< 0	.50 U	< 0.50	U .	< 0.50 l

Sample ID		MW-16	MW-16	MW-16	MW-16	MW-18	MW-18*	MW-18*	MW-18*	MW-19	MW-19	MW-19	MW-19	MW-21	MW-21	MW-21	MW-21	MW-22	MW-22	MW-22	MW-22
Sampling Date		10/01/08	10/20/09	10/20/10	4/26/12	10/02/08	10/20/09	10/20/10	4/26/12	10/06/08	10/20/09	10/19/10	4/26/12	10/07/08	10/19/09	10/19/10	4/26/12	10/08/08	10/19/09	10/19/10	4/26/12
Lab Sample ID		G1709-01H	H2093-08A	J2119-09	L0864-07	G1709-10H	H2093-09A	J2119-10	L0864-08	G1734-01A	H2093-05A	J2119-05	L0864-10	G1734-11A	H2093-01A	J2119-04	L0864-12	G1734-14A	H2093-02A	J2119-03	L0864-13
Volatiles	AWQS/GV Values																				
trans-1,2-Dichloroethene	5	< 0.50 UJ	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Cyclohexane	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Toluene	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	0.21 J	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	0.25 J	< 0.50 U	< 0.50 U	< 0.50 U
Tetrachloroethene (PCE)	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-Dichloroethane	0.6	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1-Dichloroethene	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
cis-1,2-Dichloroethene (DCE)	5	< 0.50 UJ	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Trichloroethene (TCE)	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Vinyl chloride (VC)	2	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50U /0.47J	0.69/0.63	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Dichlorodifluoromethane	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U

Sample ID			MW-23			MW-23			MW-23			MW-23	
Sampling Date			10/08/08			10/19/09			10/19/10			4/26/12	
Lab Sample ID			G1734-15A			H2093-03A			J2119-02			L0864-14	
Volatiles	AWQS/GV Values												
trans-1,2-Dichloroethene	5	<	0.50	U	<	0.50	U	<	0.50	U	<	0.50	U
Cyclohexane	NL	<	0.50	U	٧	0.50	U	<	0.50	U	<	0.50	U
Toluene	5	<	0.50	U	٧	0.50	J	<	0.50	U	<	0.50	U
Tetrachloroethene (PCE)	5	<	0.50	U	٧	0.50	J	<	0.50	U	<	0.50	U
1,2-Dichloroethane	0.6	<	0.50	U	٧	0.50	U	<	0.50	U	<	0.50	U
1,1-Dichloroethene	5	<	0.50	U	٧	0.50	U	<	0.50	U	<	0.50	U
cis-1,2-Dichloroethene (DCE)	5	<	0.50	U	٧	0.50	U	<	0.50	U	<	0.50	U
Trichloroethene (TCE)	5	<	0.50	U	<	0.50	U	<	0.50	U	<	0.50	U
Vinyl chloride (VC)	2	<	0.50	U	٧	0.50	U	<	0.50	U	<	0.50	U
Dichlorodifluoromethane	5	<	0.50	U	<	0.50	U	<	0.50	U	<	0.50	U

Notes:
AWQS/GV Values - New York State Ambient Water Quality Standards/guidance values (TOGs 1.1.1).

Units are µg/L
Detected concentrations and qualifiers shown in **bold** font.

- Shaded cell indicates exceedances of AWQS/GV.

 U Compound not detected at or above the instrument detection limit (IDL).
- J Estimated concentration above the IDL but less than the contract required detection limits (CRDL).
- * Duplicate sample produced equivalent results, save those given otherwise

Table 3

Summary of April 2014 Analytical Groundwater Data Johnny Cake Road Farm Site NYSDEC Site Code No. 622016 Danube, New York

Sample ID	Groundwater	MW-1-041514	M۷	V-2R-041	514	M۱	V-6R-041	1514	ΜV	/-12A-04	1414	M۱	N-13-041	414	MV	V-16-041	1514
Date Collected	NYCRR	04/15/14		04/15/14	1		04/15/14	4		04/14/14	1		04/15/14	4		04/15/14	4
Lab Sample ID	Criteria	N0571-01A	1	N0571-02	2A	1	N0571-03	3A	1	N0571-05	iΑ	1	N0571-06	6A	1	N0571-08	3A
Volatile Organic Compounds by M	ethod 8260 (µg	/L)															
1,1-Dichloroethene	5	1.2	<	0.5	С	٧	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
cis-1,2-Dichloroethene	5	250	<	0.5	U	<	0.5	U	<	0.5	U		3.2		<	0.5	U
Dichlorodifluoromethane	5	3.4	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Tetrachloroethene	5	1.4	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Trichloroethene	5	32	<	0.5	U	<	0.5	U	<	0.5	U		0.4	J	<	0.5	U
trans-1,2-Dichloroethene	5	0.82	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Vinyl chloride	2	58		0.52		٧	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Total Volatile Organic Compounds	NA	346.8		0.52			0.0			0.0			3.6			0.0	

Sample ID	Groundwater	MV	V-18-041	514	М	W-19-041	514	M۱	W-21-041	414	MV	V-22-041	414	M۷	V-23-041	414
Date Collected	NYCRR		04/15/14	4		04/15/14	ļ		04/14/14	4		04/14/14	ļ		04/14/14	4
Lab Sample ID	•						Α		N0571-11	ΙA	١	10571-12	A:	1	N0571-13	3A
Volatile Organic Compounds by M	ethod 8260 (µg	J/L)														
1,1-Dichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	С	<	0.5	U	<	0.5	U
cis-1,2-Dichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Dichlorodifluoromethane	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Tetrachloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Trichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
trans-1,2-Dichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Vinyl chloride	2	<	0.5	U	٧	0.5	U	٧	0.5	U	٧	0.5	U	<	0.5	U
Total Volatile Organic Compounds	NA		0.0			0.0			0.0	Ţ		0.0			0.0	

Notes:

NYCRR - New York Code of Rules and Regulations, Title 6, Part 702.15(a)(2) and 703.5.

Bolded values indicate detection above practical quantitation limit.

Bolded values and bold outline indicate exceedance of standard.

J - Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.

U - Not detected at or above reporting limit.

μg/L - Micrograms per liter

Table 4

Summary of April 2016 Analytical Groundwater Data Johnny Cake Road Farm Site NYSDEC Site Code No. 622016 Danube, New York

Sample ID	Groundwater	MW-1-041916	M۱	V-2R-041	816	N	1W-6R-041	916	MV	V-12A-04	1816	316 MW-13-0		1W-13-041816		MW-16-0419	
Date Collected	NYCRR	04/19/16		04/18/16			04/19/16			04/18/16		04/18/16		04/19/16		6	
Lab Sample ID	Criteria	R0327-01		R0327-02	2		R0327-0	3		R0327-0	4		R0327-0	5	R0327-0		16
Volatile Organic Compounds by Method 8260 (μg/L)																	
1,1-Dichloroethene	5	1.5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
cis-1,2-Dichloroethene	5	260		0.23	J		0.54			0.23			4.7		<	0.5	U
Dichlorodifluoromethane	5	1.7	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Tetrachloroethene	5	4.7	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Trichloroethene	5	72	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
trans-1,2-Dichloroethene	5	1.7	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Vinyl chloride	2	27	0.49 J			1.1		0.34 J			0.67		<	0.5	U		
Total Volatile Organic Compounds		368.6		0.7			1.6			0.6			5.4			0.0	

Sample ID	Groundwater	MV	V-18-041	916	M۱	N-19-041	916	M۱	N-21-041	816	MW-22-041816			MW-23-041816		816
Date Collected	NYCRR		04/19/16	3		04/19/16		04/18/16			04/18/16				04/18/16	
Lab Sample ID	Criteria		R0327-0	7		R0327-0	8		R0327-0	9		R0327-10			R0327-11	
Volatile Organic Compounds by Method 8260 (µg/L)																
1,1-Dichloroethene	5	<	0.5	C	٧	0.5	U	٧	0.5	U	٧	0.5	U	٧	0.5	U
cis-1,2-Dichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Dichlorodifluoromethane	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Tetrachloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Trichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
trans-1,2-Dichloroethene	5	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U	<	0.5	U
Vinyl chloride	oride 2 < 0.5 U < 0.5 U < 0.5 U < 0.5 U						٧	0.5	U							
Total Volatile Organic Compounds			0.0			0.0			0.0			0.0			0.0	

Notes:

NYCRR - New York Code of Rules and Regulations, Title 6, Part 702.15(a)(2) and 703.5.

Bolded values indicate detection above practical quantitation limit.

Bolded values and bold outline indicate exceedance of standard.

- J Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.
- U Not detected at or above reporting limit.

μg/L - Micrograms per liter

Table 3 New York State Department of Environmental Conservation Johnny Cake Road Farm Site - Site No. 622016 Town of Danube, New York Summary of Groundwater Sampling Results - July 2022

	Sample Location:	MW-1	MW-2R	MW-6R	MW-12A	MW-13		V-18	MW-19	MW-22
	Sample Name: Lab Sample ID:	MW-1 22G0742-03	MW-2R 22G0742-07	MW-6R 22G0742-08	MW-12A 22G0742-02	MW-13 22G0742-09	MW-18 22G0742-04	DUP-01 22G0742-05	MW-19 22G0742-06	MW-22 22G0742-10
	Sample Date:	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022
VOC-	Class GA					D14- (
VOCs Acetone	Values*	250 UJ	50 UJ	50 UJ	50 UJ	Results (µg/L) 50 UJ	50 UJ	50 UJ	50 UJ	50 U
Acrylonitrile	NC NC	250 U	5 U	50 U	5 U	5 U	5 U	5 U	5 U	50 C
tert-Amylmethyl Ether (TAME)	NC	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene	1	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 L
Bromobenzene Bromochloromethane	5	5 U 5 UJ	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1 U 1 UJ	1 U
Bromodichloromethane	50	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	50	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	5	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 L
2-Butanone (MEK)	50	9.9 J	20 U	20 U	20 U 20 U	20 U	20 U	20 U	20 U 20 U	20 U
tert-Butyl Alcohol n-Butylbenzene	NC 5	100 U 5 U	20 U 1 U	20 U 1 U	20 U 1 U	20 U 1 U	20 U 1 U	20 U 1 U	20 U 1 U	20 U
sec-Butylbenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
tert-Butylbenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
tert-Butylethyl Ether (TBEE)	NC	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon Disulfide Carbon Tetrachloride	60 5	25 U 25 U	5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U
Chlorobenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	5	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Chloroform	7	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 L
Chloromethane	5	10 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 U
2-Chlorotoluene 4-Chlorotoluene	NC NC	5 U 5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
4-Chlorotoluene Chlorodibromomethane	50	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-Chloropropane (DBCP)	0.04	25 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 U
1,2-Dibromoethane	0.0006	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NC	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	3	5 U 5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
1,4-Dichlorobenzene	3	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,4-Dichloro-2-Butene	NC	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 L
Dichlorodifluoromethane (Freon 12)	5	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,1-Dichloroethane	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane 1,1-Dichloroethylene	0.6 5	5 U 1.8 J	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
cis-1,2-Dichloroethylene	5	640	1 U	0.36 J	1 U	31	1 U	0.21 J	1 U	1 L
trans-1,2-Dichloroethylene	5	5.7	1 U	1 U	1 U	0.49 J	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 L
1,3-Dichloropropane	NC	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 L
2,2-Dichloropropane	NC NC	5 U 10 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 L 2 L
1,1-Dichloropropene cis-1,3-Dichloropropene	0.4(b)	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4(b)	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Diethyl Ether	NC	10 U	2 U	1.6 J	2 U	5.5	8.8 JH	29 JH	2 U	2 U
Diisopropyl Ether (DIPE)	NC	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 L
1,4-Dioxane	0.35**	250 U 5 U	50 U 1 U	50 U 1 U	50 U 1 U	50 U 1 U	50 U 1 U	50 U 1 U	50 U 1 U	50 U
Ethyl Benzene Hexachlorobutadiene	5 0.5	3 U	0.6 U	1 U 0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
2-Hexanone (MBK)	50	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene (Cumene)	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
p-Isopropyltoluene (p-Cymene)	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 L
Methyl Acetate Mathyl tout Dutyl Ethon (MTDE)	NC 10	5 U 5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
Methyl tert-Butyl Ether (MTBE) Methyl Cyclohexane	NC	5 U 5 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U
Methylene Chloride	5	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (MIBK)	NC	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene	10	10 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 U
n-Propylbenzene Styrene	5	5 U 5 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U
Styrene 1,1,1,2-Tetrachloroethane	NC	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	5	2.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethylene	5	8.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrahydrofuran	NC	50 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Toluene 1,2,3-Trichlorobenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	25 UJ 5 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 UJ 1 U	5 L
1,3,5-Trichlorobenzene	NC	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 T
1,1,2-Trichloroethane	1	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethylene Trichlorofluoromethane (Freon 11)	5	160 10 U	1 U 2 U	1 U 2 U	1 U 2 U	0.97 J 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U
1,2,3-Trichloropropane	0.04	10 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 t
1,1,2-Trichloro-1,2,2-Trifluoroethane	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 T
1,3,5-Trimethylbenzene	5	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	2	28	0.33 J 2 U	0.95 J	2 U	2 U	1.2 JH		2 U 2 U	2 U
m/p Xylene o-Xylene	5(a) 5(a)	10 U 5 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U	2 U
-	J(a)	5 0	. 0	. 0	. 0	, 0	. 0	1 0	1 0	. (
SVOCs						l				1
SVOCs 1,4-Dioxane	0.35**	0.22 U	0.21 UJ	0.21 U	0.21 U	0.23 U	0.19 U	0.21 U	0.22 U	0.19 T
I,4-Dioxane PFAS	0.35**	0.22 U	0.21 UJ	0.21 U	0.21 U	0.23 U Results (ng/L)	0.19 U	0.21 U	0.22 U	0.19 U
1,4-Dioxane	0.35** NC	0.22 U 1.1 J 0.4 J	0.21 UJ 1.8 U 1.8 U	0.21 U	0.21 U		0.19 U 1.9 U 1.9 U	0.21 U 1.7 U 1.7 U	0.22 U 1.9 U 1.9 U	0.19 U

Table 3 New York State Department of Environmental Conservation Johnny Cake Road Farm Site - Site No. 622016 Town of Danube, New York Summary of Groundwater Sampling Results - July 2022

Sai	nple Location:	MW-1	MW-2R	MW-6R	MW-12A	MW-13	MV	V-18	MW-19	MW-22
	Sample Name:	MW-1	MW-2R	MW-6R	MW-12A	MW-13	MW-18	DUP-01	MW-19	MW-22
L	ab Sample ID:	22G0742-03	22G0742-07	22G0742-08	22G0742-02	22G0742-09	22G0742-04	22G0742-05	22G0742-06	22G0742-10
	Sample Date:	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022
Perfluorohexanoic Acid (PFHxA)	NC	0.81 J	2.8	0.45 J	1.9 U	0.37 J	1.9 U	1.7 U	1.9 U	1.8 U
11Cl-PF3OUdS (F53B Minor)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
9CI-PF3ONS (F53B Major)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
HFPO-DA (GenX)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 UJ	1.7 UJ	1.9 U	1.8 U
8:2 Fluorotelomer Sulfonate (8:2 FTS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorodecanoic Acid (PFDA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorododecanoic Acid (PFDoA)	NC	1.7 UJ	1.8 U	1.8 UJ	1.9 UJ	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoroheptanesulfonic Acid (PFHpS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
N-EtFOSAA	NC	1.7 UJ	1.8 UJ	1.8 UJ	1.9 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.9 UJ	1.8 UJ
N-MeFOSAA	NC	1.7 UJ	1.8 UJ	1.8 UJ	1.9 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.9 UJ	1.8 UJ
Perfluorotetradecanoic Acid (PFTeA)	NC	R	1.8 U	1.8 UJ	1.9 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.9 U	1.8 UJ
Perfluorotridecanoic Acid (PFTriA)	NC	R	1.8 U	1.8 UJ	1.9 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.9 U	1.8 UJ
4:2 Fluorotelomer Sulfonate (4:2 FTS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorodecanesulfonic Acid (PFDS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorooctane Sulfonamide (FOSA)	NC	1.7 UJ	1.8 UJ	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorononanesulfonic Acid (PFNS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorohexanesulfonamide (FHxSA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorobutylsulfonamide (FBSA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorohexanesulfonic Acid (PFHxS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoro-3-methoxypropanoic Acid (PFMPA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoro(4-methoxybutanoic) Acid (PFMBA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
6:2 Fluorotelomer Sulfonate (6:2 FTS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoropentanesulfonic Acid (PFPeS)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoroundecanoic Acid (PFUnA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluoro-3,6-dioxaheptanoic acid (NFDHA)	NC	1.7 UJ	1.8 UJ	1.8 UJ	1.9 UJ	1.8 UJ	1.9 UJ	1.7 UJ	1.9 UJ	1.8 UJ
Perfluoroheptanoic Acid (PFHpA)	NC	0.4 J	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorooctanoic Acid (PFOA)	6.7**	0.72 J	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorooctanesulfonic Acid (PFOS)	2.7**	3	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U
Perfluorononanoic Acid (PFNA)	NC	1.7 U	1.8 U	1.8 U	1.9 U	1.8 U	1.9 U	1.7 U	1.9 U	1.8 U

ng/L - nanograms per liter.

ug/L - micrograms per liter.
J - Estimated value.

JH - Estimated value; biased high.

NA - Sample not analyzed for the listed analyte.

NC - No NYSDEC standards exist for this analyte.
U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in **bold** indicate the analyte was detected. Values shown in **bold** and shaded type exceed the listed Guidance value.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds. PFAS - Per- and Polyfluoroalkyl Substances.

* - NYSDEC Ambient Water Quality Standards and Guidance Values

* - NYSIJEL Ambient Water Quanty Standards and cutatines values

** - Guidelines for Sampling and Analysis of PFAS NYSDEC Part 375 Remedial Programs, proposed June 2021.

for Class GA water, June 1998 with the April 2000 Addendum.

(a) - criteria applicable to xylene (total), the sum of the xylene isomers.

(b) - criteria applicable to the sum of the cis and trans isomers.

APPENDIX E LETTER TO HERKIMER COUNTY HIGHWAY DEPARTMENT DATED FEBRUARY 11, 2010

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau C, 11th Floor

625 Broadway, Albany, New York 12233-7014

Phone: (518) 402-9662 • Fax: (518) 402-9679

Website: www.dec.ny.gov

February 11, 2010

Herkimer County Highway Department Jay W. Ewanyk 313 3rd Avenue Herkimer, NY 13350

Re: Johnny Cake Road Farm Site, Site No. 6-22-016, Town of Danube, Herkimer County Groundwater Contamination in County Right-of-Way

Dear Mr. Ewanyk,

The purpose of this letter is to notify the Herkimer County Highway Department of the presence of contaminated groundwater beneath a county road and county right-of-way in the Town of Danube, Herkimer County.

The New York State Department of Environmental Conservation (Department) in March 2009 issued a Record of Decision (ROD) for the Johnny Cake Road Farm Site, Site No. 6-22-016. The ROD outlines a remedy for the site which includes placing an Environmental Easement on the site due to the presence of contaminated groundwater. As required by the ROD groundwater will be monitored by the Department. The ROD also includes a provision requiring notification of the Herkimer County Highway Department with all relevant reports and data to identify the location and requirements to handle potentially contaminated groundwater in the county right-of-way during future repairs and/or replacements of the section of Johnny Cake Road which runs through the site.

Therefore, as required by the ROD please find enclosed with this letter the following excerpts from documents concerning the Johnny Cake Road Site:

- "Record of Decision", March 2009 Figure 7: Groundwater Investigation & Site Boundary
- "Site Investigation Report", February 2009 Attachment H: Site Survey
- "Site Investigation Report", February 2009 Table 2: Summary of Laboratory Analytical Data for Groundwater

Figure 7 of the Record of Decision and Attachment H: Site Survey of the Site Investigation Report identify and illustrate the boundary of the 3.24 acre Johnny Cake Road Farm site. Figure 7 of the Record of Decision and Table 2 of the Site Investigation Report contain recent groundwater data for contaminants of concern in groundwater at the site. Contaminants of concern include Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene

(DCE), and Vinyl chloride (VC). The 3.24 acre boundary of the Johnny Cake Road Farm site is currently a portion of the larger Herkimer County tax parcel 127.002-4-1.

The site boundary shown on Figure 7 and Attachment H represents the area which is currently or may potentially be underlain by contaminated groundwater. This site boundary includes a county right of way approximately 375 feet in length through which Johnny Cake Road passes. Site investigations indicate groundwater may be between 3 and 10 feet below grade in the county right of way, and thus groundwater could potentially be encountered during repairs or replacements of the section of Johnny Cake Road which runs through the site. The Department therefore requests the Herkimer County Highway Department take the following precautions for repairs of this section of Johnny Cake Road which could potentially expose contaminated groundwater:

Prior to the start of any activity that is anticipated to encounter remaining groundwater contamination in the county right-of-way, the Herkimer County Highway Department will notify the Department. Currently, this notification will be made to:

William Bennett, Project Manager
NYSDEC
Division of Environmental Remediation
Remedial Bureau C, Remedial Section B
625 Broadway
Albany, NY 12233-7014
1-800-520-2334

This notification will include:

- A schedule for the work during which groundwater may be encountered
- A plan to screen and manage contaminated groundwater
- A Health & Safety Plan (HSP) and Community Air Monitoring Plan (CAMP)

A copy of this letter will be including in a Site Management Plan (SMP) for the site. The Site Management Plan describes the long term requirements including institutional controls and monitoring that are required to protect public health and the environment. A copy of the final SMP will be provided to the Herkimer County Highway Department upon completion.

If you have any questions or concerns do not hesitate to contact me at (518) 402-9662.

Sincerely,

William Bennett

Environmental Engineer 1

William Bennett

Remedial Bureau C

Division of Environmental Remediation

Attachments (3)

cc:

W. Snider, USMS A. Deminski, USMS

ec:

G. Rys, NYSDOH A. Confortini, EPA

APPENDIX F EXCAVATION WORK PLAN

APPENDIX F – EXCAVATION WORK PLAN

F-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the Site owner or their representative will notify the New York State Department of Environmental Conservation (NYSDEC). Currently, this notification will be made to:

Robert Strang, Project Manager NYSDEC Division of Environmental Remediation 625 Broadway Albany, NY 12233-7017 Phone: (518) 402-8642

E-mail: Robert.Strang@dec.ny.gov

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for Site re-grading, intrusive elements, or utilities to be installed below the ground surface, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this Excavation Work Plan (EWP);
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the Contractor's Health and Safety Plan (HASP), in electronic format, if it differs from the HASP Addendum provided as **Appendix J** of this SMP;
- A copy of the Contractor's Community Air Monitoring Plan (separate plan, not embedded in the HASP), prepared in accordance with NYSDEC DER-10 / Technical Guidance for Site Investigation and Remediation (DER-10);
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

F-2 SOIL SCREENING METHODS

Prior to intrusive soil screening, on-Site utilities shall be field located and appropriate notifications to public utility locating services shall be made. Soil screening is to take place prior to any

excavation or disposal of soil from within the Site boundaries. Soil boring methods or test pit methods may be used to screen soils in advance of excavation. Soil samples shall be collected at a minimum of 5-6 per 500 yd³ of planned soil excavation (per NYSDEC DER-10, Table 5.4(e)10) and analyzed for volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260 or per the disposal facility's requirements, if applicable.

Visual, olfactory, and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after completion of the Remedial Action (RA).

Soils will be segregated based on previous environmental data and screening results into materials that require off-Site disposal, materials that require testing, materials that can be returned to the subsurface, and materials that can be used as cover soil.

F-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay or straw bales will be used as needed near catch basins, surface waters, and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for review by the NYSDEC.

F-4 MATERIALS EXCAVATION AND LOAD OUT

Surface features such as asphalt or concrete shall be saw-cut, removed, and stockpiled prior to excavation of underlying soil. Surficial stone shall also be removed prior to excavation of underlying soil. Excavated underlying soil shall be stockpiled separate from asphalt, concrete, stone, or other debris prior to load out. Excavations left open overnight or longer shall be surrounded by temporary construction fencing. A qualified environmental professional or person under their supervision will oversee all invasive work, and the excavation and load-out of all excavated material. The owner of the Property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Excavation Work Plan. The contractor shall prepare and implement a Community Air Monitoring Plan (CAMP) in accordance with DER-10. The CAMP shall be implemented on a full-time basis during any and all ground intrusive work at the Site.

The presence of utilities and easements on the Site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the Site.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and New York State Department of Transportation requirements (and all other applicable transportation requirements).

If Site conditions during excavation activities require that trucks drive over bare soil, a truck wash will be operated on-Site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at a truck wash before leaving the Site until the activities performed under this section are complete. Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-Site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site-derived materials.

F-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the Site if necessary. Truck wash waters will be collected and disposed of off-Site in an appropriate manner.

F-6 MATERIALS DISPOSAL OFFSITE

All material excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and federal regulations. If disposal of material from this Site is proposed for unregulated off-Site disposal (i.e., clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-Site management of materials from this Site will not occur without formal NYSDEC approval.

Off-Site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate (i.e., hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, construction/debris recycling facility, etc). Actual disposal quantities and associated documentation will be reported to the NYSDEC in the subsequent Periodic Review Report. This documentation will include waste profiles, test results, facility acceptance letters, manifests, bills of lading, and facility receipts.

F-7 MATERIALS REUSE ONSITE

Analytical results from soil screening activities, which are completed in accordance with Section 1.2 of this EWP, will be used to determine if reuse is appropriate. Only material meeting the requirements of NYSDEC DER-10 Table 5.4(e)4, and applicable constituent levels in 6 NYCRR Part 375, Table 375-6.8(b), shall be considered appropriate for reuse. The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material is not reused on-Site. Concrete crushing or processing on-Site will not be performed without prior NYSDEC approval.

F-8 FLUIDS MANAGEMENT

All liquids to be removed from the Site, including but not limited to, excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported, and disposed in accordance with applicable local, state, and federal regulations. Dewatering, purge, and development fluids will not be recharged back to the land surface or subsurface of the Site, and will be managed off-Site, unless prior approval is obtained from NYSDEC.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream, or river) would be subject to NYSDEC SPDES permitting.

F-9 STORMWATER POLLUTION PREVENTION

Sediment barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook, maintained at the Site, and available for inspection by the NYSDEC. All necessary repairs to these erosion and sediment controls shall be made immediately. Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in this plan shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

All sediment and erosion controls implemented at the Site shall be constructed and maintained in accordance with New York Standards and Specifications for Erosion and Sediment Control, November 2016.

F-10 COMMUNITY AIR MONITORING PLAN

Continuous air monitoring will be conducted for protection of the downwind community during Site work activities, per the New York State Department of Health (NYSDOH) generic Community Air Monitoring Plan in DER-10 Appendix 1A. Continuous monitoring for volatile

organic compound (VOC) and particulate levels at the perimeter of the work area using approved instrumentation will be required during ground intrusive activities, which include excavation and handling of Site soil, test pitting, trenching, and the installation of soil borings. Monitoring stations will be located both upwind and downwind of the work and shall be approved by NYSDEC. If total VOC levels exceed 5 parts per million (ppm) above background at the work area perimeter or 25 ppm (whichever is lower), work activities will be halted and monitoring continued. All readings will be recorded and available to the NYSDEC and NYSDOH personnel to review.

Exceedances of action levels listed in the Community Air Monitoring Plan will be reported to NYSDEC and NYSDOH Project Managers.

F-11 ODOR CONTROL PLAN

Specific odor control methods to be used on a routine basis will include odor-masking agents, covering stockpiles and exposed excavation edges with tarps, and timely loading of excavated soils and other wastes into sealable containers, drums, or dump trucks for off-Site disposal. If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted, and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated.

NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the Site developer, and any measures that are implemented will be discussed in the subsequent Periodic Review Report.

All necessary means will be employed to prevent on-Site and off-Site nuisances. At a minimum, these measures will include:

- (a) limiting the area of open excavations and size of soil stockpiles;
- (b) shrouding open excavations with tarps and other covers; and
- (c) using foams to cover exposed odorous soils.

If odors develop and cannot be adequately controlled, additional means to eliminate odor nuisances will include:

- (a) direct load-out of soils to trucks for off-Site disposal;
- (b) use of chemical odorants in spray or misting systems; and,
- (c) use of staff to monitor odors in surrounding properties/neighborhoods.

If nuisance odors develop during construction activities that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-Site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

F-12 DUST CONTROL PLAN

Particulate monitoring must be conducted according to the Community Air Monitoring Plan (CAMP) provided in Section C-10. If particulate levels at the Site exceed the thresholds listed in the CAMP or if airborne dust is observed on the Site or leaving the Site, the dust suppression techniques listed below will be employed. The remedial party will also take measures listed below to prevent dust production on the Site. A dust suppression plan that addresses dust management during invasive on-Site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-Site water truck for road wetting. The truck will be equipped with water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing, or topsoil stripping will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel, with watering/wetting, as needed, will be used on roadways to provide a clean and dust-free road surface.
- On-Site roads will be limited in total area to minimize the area required for water truck wetting/watering.
- be limited in total area to minimize the area required for water truck sprinkling.

APPENDIX G GENERIC QUALITY ASSURANCE PROJECT PLAN (Under separate cover)

APPENDIX H SITE MANAGEMENT FORMS

(Site Name), Site No. XXXXXX

						_						
NYSDEC Division of Environme	ental Remed	diation	کے		artment of ronmental servation	Contract N						
Site Location:						DEC PM -						
	Weathe	r Condition	ns			Contractor Supt. –						
General Description		AM			PM	Engineer I	PM -					
Temperature		AM			PM	Engineer I	nsp. –					
Wind		AM			PM		р.					
Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments".												
Were there any change						*Yes	No	NA				
Were there any exceedances of the perimeter air monitoring reported on this date?												
Were there any nuisance issues reported/observed on this date? *Yes No NA												
Health & Safety Comments												
Summary of Work Performed Arrived at site.												
Summary of Work Performed Arrived at site: Departed Site:												
Equipment/Material T				4:	. ((B # a.t.) with	J. Tuo akin a C		"				
If any box below is ch Were there any vehicle			•				omments					
placards?	s which did	not display	proper D	.O.1 Humbe	ers and	*Yes	No	NA				
Were there any vehicle	s which wer	e not tarped	1 ?			* Yes	No	NA				
Were there any vehicle work site?	s which wer	e not decon	ıtaminate	d prior to e	xiting the	* Yes	No	NA				
Personnel and Equip	ment											
Individual		Co	mpany			Γrade	To	tal Hours				
			-									
II .												

Page 1 of 7
Date: MM/DD/YYYY

(Site Name), Site No. XXXXXX

Equipment Descri	iption	Co	ontractor/Vendor		Quantity	U	sed
						1	
						1	
						1	
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Sourc Disposal (If Appli	Facility	Daily Loads	Daily Weight (tons)*
				` ''	,		,
		-					
		+					
*On-Site scale for off-site	shipment, deli	very ticket for m	naterial received				
Equipment/Material T							

Page 2 of 7
Date: MM/DD/YYYY

(Site Name), Site No. XXXXXX

Visitors to Site				
Name	Re	presenting	En	tered Exclusion/ CRZ Zone
			Yes	No
			Yes	No
			Yes	No
			Yes	No
			Yes	No
			Yes	No
			Yes	No
			Yes	No
			Yes	No
Site Representatives		_		
Name		Representing		
Project Schedule Comments		•		
.,				
Issues Pending				
Interestion with Public Property C	Numero Madia	10		
Interaction with Public, Property C	wners, Wedia, e	lC.		

Page **3** of **7**

Date: MM/DD/YYYY

Include (insert) figures with markups showing location of work and job progress

Page **4** of **7** (Site Name), Site No. XXXXXX Date: MM/DD/YYYY

Site Photographs (Descriptions Below)										

DAILY INSPECTION REPORT - No. XXX Page **5** of **7** Date: MM/DD/YYYY (Site Name), Site No. XXXXXX Comments

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work? Yes \square No \square

Site Inspector(s):

Date:

DAILY INSPECTION REPORT - No. XXX (Site Name), Site No. XXXXXX

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes □	No □	N/A□
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No □	N/A□
Containers are in good condition or properly overpacked?	Yes □	No □	N/A□
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No □	N/A□
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes □	No □	N/A□
Piles are securely covered when not in use?	Yes □	No □	N/A□
Containers are closed when not in use?	Yes □	No □	N/A□
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No □	N/A□
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No □	N/A□
If any issues noted, has Contractor been notified?	Yes □	No □	N/A□
<u>Comments:</u>			

Page **6** of **7**

Date: MM/DD/YYYY

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No □	N/A□
Were there any odors detected on this date?	Yes □	No □	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No □	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A□
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A□
Was turbidity checked at the outfall(s)?	AM □	РМ□	N/A□
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A□
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A□
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A□
If yes, has Contractor been notified?	Yes □	No □	N/A□
<u>Comments:</u>			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Page **7** of **7**

Date: MM/DD/YYYY

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No □	N/A□
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No □	N/A□
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No □	N/A□
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No □	N/A□
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A□
Is work being sequenced to avoid double handling?	Yes □	No □	N/A□
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No □	N/A□
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No □	N/A□
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No □	N/A□
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No □	N/A□
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No □	N/A□
Has Contractor been notified of any deficiencies?	Yes □	No □	N/A□
<u>Comments:</u>			

^{*} BART – Best Available Retrofit Technology

MAINTENNING MAINTENNING				L	OW FLOW	GKOUKL	YYY F	ATTUR SAM	I LING I	LOG			
SAMPLE S		PROJECT NAME				7	LOC	CATION ID		DATE			
Marke Mark		PROJECT NUMBE	R				STAI	RT TIME		END TIME			
Marke Mark		SAMPLE ID		SA	MPLE TIME	-	SITE	E NAME/NUMBEI	2	PAGE			
NET MINISTER DI NETE 2 4 6 7 7 7 7 7 7 7 7 7				J					•		OF		
MANAGEMENT NOT YOUNG	WELL DIA	METER (INCHES)	1	24	6	8		OTHER				CAP	
MANUAL PRIVATE PRIVATE	TUBING ID	(INCHES)	1/8	1/4 3/	8 1/2	5/8		OTHER				CASING	
MILL ORT MAN	MEASURE	MENT POINT (MP)	TOP O	F RISER (TOR)	TOP OF CA	SING (TOC)		OTHER					
MATING TO A MINISTRATE T		DTW	FT			FT				FT			E FT
CALL March		ЕРТН	FT			FT				PPM			
CALCALIATE CAL			FT	VOLUME			MOU			PPM			
Column C	CALCUI	ATED			DTW X well diam. s	quared X 0.041		WDOWN/			PRI	ESSURE	
TREE					total minutes X 0.000		TOT	AL PURGED			то	PUMP	PSI
PARCE PARC	-	RAMETERS WITH I			ERIA (AS LISTED I	N THE QAPP))						
BEGIN PURGING BEGIN PURGING		0.0-0.33 ft			(mS/cm)	pH (un				(ntu) (mv)	I	NTAKE	COMMENTS
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%			GING		(17- 370)					(1/- 10 III	v) D	LI III (II)	
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cr. 3333 - 330, 86% = 0.0%)													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cr. 3333 - 330, 86% = 0.0%)													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%											_		
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%													
FINAL STABILIZED PIELD PARAMETERS (to appropriate significant figures (SF)) COND. 35 Frame (cc. 3333 - 334), 66% = 0.09%											TEN	(D : nonrost do	paras (av. 10.1 = 10)
PURCE OBSERVATIONS PURCE WATER POUNDED PRESERVATIONS PURCE WATER POUNDED PRESERVATIONS PURCE WATER POUNDED PRESERVATIONS PURCE WATER POUNDED PRESERVATIONS PURCE WATER POUNDED PURCE WATER POUNDED POUND		FI	NAL STABILIZ	ZED FIELD PAR	AMETERS (to a	ppropriate si	ignifi	icant figures[SF])		CON pH:: DO: TUR	ND.: 3 SF max nearest tenth (nearest tenth (tB: 3 SF max,	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5) (ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
PERISTALTIC SUBMERSIBLE SUBMERSIBLE BLADDER BL	EQUIPMENT	DOCUMENTATION	Ň								ORF	P: 2 SF (44.1 =	44, 191 = 190)
SUBMERSBLE BLADDER VATTER BUDDER WATTER FOR AUTHOR OTHER OTHER OTHER OTHER NETHON OTHER OTHER NETHON OTHER OTHER NETHON OTHER NETHON OTHER NETHON OTHER NETHON OTHER NETHON OTHER NETHON OTHER NUMBER NETHOD FIELD PRESERVATION NUMBER FILTERED PRESERVATION REQUIRED PURP REQUIRED REQUIRED REQUIRED REQUIRED RETURNOTES PURGE OBSERVATIONS PURGE WATER NO OTHER NO OTHER NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD VES, purged approximately 1 standing volume prior UTILIZED Print Name: SUBMERSBLE POTABLE WATER TELON TUBING HOPE TUBING OTHER OTHE							NG/PU				_	_	
WATTERA OTHER OTHE	SUB	MERSIBLE	X	DEIONIZED WATER	TEFL	ON TUBING		PVC I	UMP MATERIA	AL.		PID	
OTHER OTHER NETHANOL OTHER OTHER OTHER SOLECTION OTHER OTHER OTHER SAMPLE OTHER FILTERED OTHER SAMPLE OCLECTED OTHER FILTERED OTHER SAMPLE OCLECTED OTHER OTHER SAMPLE OCLECTED OTHER SAMPLE OCCUPANTION OCC							ING						
OTHER X OTHER ALCONOX OTHER OTHER OTHER DILTERS NO. TYPE ANALYTICAL PARAMETER PARAMETER METHOD FIELD NUMBER FILTERED NUMBER FILTERED PRESERVATION WETHOD REQUIRED COLLECTED COLLECTED COLLECTED SAMPLE OCCULECTED NUMBERS PURGE OBSERVATIONS PURGE OBSERVATIONS PURGE WATER YES NO GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location. SETCH/NOTES SKETCH/NOTES SKETCH/NOTES													
PARAMETER METHOD FIELD PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBERS PURGE OBSERVATIONS PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED GENERATED TO Sampling or mL for this sample location. SKETCH/NOTES SKETCH/NOTES SKETCH/NOTES SKETCH/NOTES SKETCH/NOTES	OTH	ER	X										
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:	ANALYTI										СО		
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:													
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:													
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:													
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:													<u> </u>
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:											_		<u> </u>
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED nL for this sample location. Sampler Signature: Print Name:							1				_		<u> </u>
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED In the sampling or mL for this sample location. Sampler Signature: Print Name:			NO	NUMBER OF GAI	LLONS		SI	KETCH/NOTES					
UTILIZED	CONTAIN	ERIZED											
Sampler Signature: Print Name:		E METHOD YES	NO NO										
			<u> </u>				1						
Checked By: Date:	Sampler Sig	gnature:		Print Name:									
	Checked By	y:		Date:									

APPENDIX I GENERIC FIELD ACTIVITIES PLAN

(Under separate cover)

APPENDIX J GENERIC HEALTH AND SAFETY PLAN (Under separate cover)

APPENDIX K GREEN REMEDIATION METRICS

Summary of Green Ren	nediation Metrics for	Site Management	
Site Name:		Site Code:	
Address:		 City:	
Address:State:	Zip Code:	County:	
Initial Report Period (S Start Date:	_	overed by the Initial I	Report submittal)
Current Reporting Peri	iod		
Reporting Period From:		To:	
Contact Information			
Preparer's Name:		Phone No.:	
Preparer's Affiliation:			
		Current Reporting Period	Total to Date
Fuel Type 1 (e.g., natur			
Fuel Type 2 (e.g., fuel o	oil, propane (gals))		
Electricity (kWh)			
Of that Electric usage,	provide quantity:		
Derived from renewable wind)	e sources (e.g. solar,		
Other energy sources solar thermal (Btu))	(e.g., geothermal,		
Provide a description of	^r all energy usage red	uction programs for t	he site in the space
provided on Page 3.			
II. Solid Waste Gersite.	neration: Quantify the	management of solid	waste generated on-
		Current	Total to Data

	Current Reporting Period (tons)	Total (tons)	to Date
Total waste generated on-site			
OM&M generated waste			
Of that total amount, provide quantity:			
Transported off-site to landfills			
Transported off-site to other disposal facilities			
Transported off-site for recycling/reuse			
Reused on-site			

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 3.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor		
Laboratory Courier/Delivery Service		
Waste Removal/Hauling		

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site		
Of that total amount, provide quantity:		
Public potable water supply usage		
Surface water usage		
On-site groundwater usage		
Collected or diverted storm water usage		

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to Date (acres)
Land disturbed		
Land restored		

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 3.

Description of green remediation programs reported above (Attach additional sheets if needed)	
Energy Usage:	
Waste Generation:	
Transmortation/Chimpings	
Transportation/Shipping:	
Water usage:	
Land Use and Ecosystems:	
Land Ose and Leosystems.	
Other:	
CONTRACTOR CERTIFICATION	
I, (Name) do hereby certify that I ar	n
(Title) of (Contractor Name), which	ιh
is responsible for the work documented on this form. According to my knowledge ar	ıd
belief, all of the information provided in this form is accurate and the site management	
program complies with the DER-10, DER-31, and CP-49 policies.	
program complies with the DER 10, DER 31, and C1-47 policies.	
Date Contractor	

APPENDIX L
REMEDIAL SYSTEMS OPTIMIZATION TABLE OF CONTENTS

REMEDIAL SYSTEM OPTIMIZATION FOR JOHNNY CAKE ROAD FARM

TABLE OF CONTENTS

- 1.0 INTRODUCTION
- 1.1 SITE OVERVIEW
- 1.2 PROJECT OBJECTIVES AND SCOPE OF WORK
- 1.3 REPORT OVERVIEW
- 2.0 REMEDIAL ACTION DESCRIPTION
- 2.1 SITE LOCATION AND HISTORY
- 2.2 REGULATORY HISTORY AND REQUIREMENTS
- 2.3 CLEAN-UP GOALS AND SITE CLOSURE CRITERIA
- 2.4 PREVIOUS REMEDIAL ACTIONS
- 2.5 DESCRIPTION OF EXISTING REMEDY
- 2.5.1 System Goals and Objectives
- 2.5.2 System Description
- 2.5.3 Operation and Maintenance Program
- 3.0 FINDINGS AND OBSERVATIONS
- 3.1 SUBSURFACE PERFORMANCE
- 3.2 TREATMENT SYSTEM PERFORMANCE
- 3.3 REGULATORY COMPLIANCE
- 3.4 MAJOR COST COMPONENTS OR PROCESSES
- 3.5 SAFETY RECORD
- 4.0 RECOMMENDATIONS
- 4.1 RECOMMENDATIONS TO ACHIEVE OR ACCELERATE SITE CLOSURE
- 4.1.1 Source Reduction/Treatment
- 4.1.2 Sampling
- 4.1.3 Conceptual Site Model (Risk Assessment)
- 4.2 RECOMMENDATIONS TO IMPROVE PERFORMANCE

- 4.2.1 Maintenance Improvements
- 4.2.2 Monitoring Improvements
- 4.2.3 Process Modifications
- 4.3 RECOMMENDATIONS TO REDUCE COSTS
- 4.3.1 Supply Management
- 4.3.2 Process Improvements or Changes
- 4.3.3 Optimize Monitoring Program
- 4.3.4 Maintenance and Repairs
- 4.4 RECOMMENDATIONS FOR IMPLEMENTATION