

SITE MANAGEMENT

ANNUAL REPORT 2010 CALENDAR YEAR

WORK ASSIGNMENT D004440-26

ROSE VALLEY LANDFILL RUSSIA (T)

SITE NO. 622017 HERKIMER (C), NY

Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway, Albany, New York

Alexander B. Grannis, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation 77 Goodell Street Buffalo, New York 14203

ROSE VALLEY LANDFILL 2010 ANNUAL REPORT SITE MANAGEMENT

SITE # 6-22-017 TOWN OF RUSSIA, HERKIMER COUNTY, NEW YORK

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D004440-26

PREPARED BY:
URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

AUGUST 2010

ROSE VALLEY LANDFILL 2010 ANNUAL REPORT SITE MANAGEMENT

TABLE OF CONTENTS

			Page No.							
1.0	INTRODUCTION									
	1.1	General	1-1							
	1.2	Project Background								
2.0	SITE	DESCRIPTION	2-1							
3.0	MONITORING ACTIVITIES									
	3.1	Groundwater Hydraulic Monitoring	3-1							
	3.2	Groundwater Sampling	3-2							
		3.2.1 Groundwater Results	3-2							
	3.3	Surface Water/Detention Pond Sampling	3-3							
		3.3.1 Surface Water/Detention Pond Results	3-3							
4.0	Site Maintenance									
	4.1	Monitoring Well Inspections	4-1							
	4.2	Landfill Inspection	4-1							
	4.3	Maintenance Performed	4-1							
		4.3.1 Monitoring Well Maintenance	4-1							
		4.3.2 Routine Maintenance	4-1							
		4.3.3 Intermittent Maintenance	4-1							
5.0	SUM	MARY AND RECOMMENDATIONS	5-1							
	5.1	Groundwater Hydraulic Monitoring	5-1							
	5.2	Groundwater Quality Monitoring								
	5.3	Surface Water/Detention Pond Quality Monitoring	5-1							
	5.4	Monitoring Well Maintenance	5-2							
	5.5	Landfill Maintenance	5-2							

TABLES

	FIGURES
Table 5	Summary of Historically Detected Compounds in Groundwater
Table 4	Criteria for Class C Surface Waters Requiring Calculation
Table 3	Summary of Detected Compounds in Surface Water/Detention Pond Water
Table 2	Summary of Detected Compounds in Groundwater
Table 1	Groundwater Elevation Measurements

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Potentiometric Surface (Shallow) – April 21, 2010
Figure 4	Groundwater Exceedances
Figure 5	Surface Water/ Detention Pond Exceedances

APPENDICES

Appendix A	Field Notes
Appendix B	Monitoring Well Purge Logs
Appendix C	Photographic Log
Appendix D	Data Usability Summary Report (on compact disk)
Appendix E	Well Inspection Forms
Appendix F	Landfill Inspection Form

1.0 INTRODUCTION

1.1 General

This Site Management Annual Report for the Calendar Year 2010 has been prepared under New York State Department of Environmental Conservation (NYSDEC) URS Work Assignment No. D004440-26 for the Rose Valley Landfill site (Figure 1). The purpose of this Annual Report is to provide a record of the long-term maintenance of the cap, wells and stormwater management features associated with remediation at the Rose Valley Landfill and to monitor the effectiveness of natural attenuation. This report is the first annual report as called for by Section 6.3 of the Conceptual Operation, Monitoring and Maintenance Plan (URS, November 2006).

The purpose of the site management as presented in the Record of Decision (ROD) is to provide guidance for the operation and maintenance of the site relative to:

- Maintaining the capped area;
- Long term monitoring of the natural attenuation of the groundwater plume by and within the downslope wetlands; and
- Documenting the effectiveness of natural attenuation.

1.2 **Project Background**

The NYSDEC proposed a remedy in the ROD dated March 30, 2001. The recommendation involved:

- On-site disposal of contaminated surface soils from the older septic disposal pit into the on-site landfill;
- Installing a new cap on the landfill to reduce infiltration through the wastes;
- Installing a new residential well in a deeper, clean aquifer for the impacted residence; and

• Long-term monitoring of the leachate and contaminated groundwater plume by monitoring natural attenuation.

A description of the project site can be found in Section 2.0.

2.0 SITE DESCRIPTION

The Rose Valley Landfill is a privately owned, unlined dump that was open from 1963 to 1985. The site is located in Russia Township in Herkimer County as part of a 91-acre parcel (since subdivided into two parcels in 1986). The site is bounded to the east by Military Road, to the west by Bromley Road, and to the southwest by Rose Valley Road (Figure 2). A NYSDEC Class C stream locally known as Finch Brook separates the site from Military Road. Finch Brook is a tributary of Hurricane Brook (also a NYSDEC Class C stream).

The landfill is located on the side of a hill that has approximately 120 feet of relief. A steep, 60-foot-high sand embankment extends above the landfill to the west. The site is characterized by high relief, with sharp drops in elevation from southwest to northeast and a moderate, even south to southwest slope. The gradient across the western portion of the property is less severe, sloping in the opposite direction.

The area surrounding the site is sparsely populated, with few known permanent residents. At the time that the ROD was issued, a private well immediately adjacent to the landfill entrance on Rose Valley Road (and downgradient of the landfill) was found to be contaminated with site-related contaminants. A new replacement drinking water well into the deeper aquifer has since been installed at the residence; it is being monitored by the Herkimer County Department of Health.

The remedial design of the landfill closure was completed and the construction of the landfill cap was completed in 2007. A 6-foot high chain-link fence was constructed to limit access to the landfill cap area.

3.0 MONITORING ACTIVITIES

Monitoring activities performed during April 2010 consisted of the collection of groundwater samples from ten wells and surface water samples from 4 locations, shown on Figure 2. Seven of the groundwater wells are "Sentry Wells" (i.e., SW-01S, SW-01D, SW-02S, SW-02D SW-03S, SW-04S and SW-04D) and three are monitoring wells (i.e., MW-03, MW-04 and MW-16). Sentry Wells are constructed the same as monitoring wells, but are called Sentry Wells because they are located between the landfill and nearby residential drinking water wells or a surface water body. The monitoring wells are located within the wetland, east of the landfill. Surface water samples locations are: at the toe of the embankment (SWTR-1T); at the entrance of the downgradient stream (SWTR-1E); at the North Detention Pond (NDP); and at the South Detention Pond (SDP). The location and number of surface water sample locations described the Conceptual Operation, Monitoring and Maintenance Plan (URS, November 2006) was modified at the request of the Department in a January 13, 2010 meeting between the Department and URS.

In order to extend the time frame for URS to perform long-term monitoring without additional funding, the Department took responsibility for the cost of analytical services through a call-out to TestAmerica-Buffalo, located in Amherst, NY.

3.1 Groundwater Hydraulic Monitoring

On April 21, 2010, synoptic groundwater level measurements were obtained from ten wells (i.e., seven Sentry Wells and three monitoring wells). Three of the Sentry Wells (i.e., SW-01D, SW-02D and SW-04D) are deep wells. Four of the Sentry Wells (i.e., SW-01S, SW-02S, SW-03S and SW-04S) and the three monitoring wells (MW-03, MW-04, MW-16) are shallow wells. The water level measurements are provided in Table 1. A potentiometric surface map based on the water level measurements from the shallow wells, using a 10.0-foot contour interval, is provided in Figure 3. A potentiometric surface map for the deep wells could not be plotted because only data from 2 locations were available and at least 3 locations are needed. The only deep well east of the landfill is an artesian well, and efforts to measure the water column were unsuccessful (see field notes in Appendix A and photo 13 in Appendix C).

The shallow groundwater flow is to the east-northeast towards Military Road.

3.2 **Groundwater Sampling**

On April 21 and 22, 2010, URS collected groundwater samples from seven Sentry Wells and three monitoring wells plus quality control (QC) samples using low-flow sampling procedures.

Prior to sample collection, standing water was purged from each well with a either a GeoPump2 peristaltic pump or Grundfos Redi-Flow 2 submersible pump using dedicated/disposable high-density polyethylene (HDPE) tubing. Wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to minimize draw down. During the purging of the well, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-22 Multi-parameter Instrument with a flow-through cell. The water quality parameters were documented on a purge log. Samples were collected after the water quality parameters stabilized. A copy of the daily field notes are provided in Appendix A. Well purge logs are provided in Appendix B and a Photographic Log is provided in Appendix C. Purge water was disposed of on the ground upgradient of the well locations, as per the direction of the Department

All groundwater samples were transported under chain-of custody (COC) to TestAmerica Service Center located in Syracuse, New York. The service center transferred the samples to the TestAmerica Amherst, NY facility. The samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) plus tentatively identified compounds (TICs) following United States Environmental Protection Agency (USEPA) SW846 Method 8260B, TCL semi-volatile organic compounds (SVOCs) plus TICs following USEPA SW846 Method 8270C and target analyte list (TAL) metals following USEPA SW846 Methods 6010B/7470A.

3.2.1 Groundwater Results

The analytical data (i.e., NYSDEC ASP Category B data deliverables) was received by URS on May 18, 2010. The data was reviewed in accordance with the requirements outlined in Guidance for Data Deliverables and the Development of Data Usability Summary Reports (DUSR), Appendix 2B, *DER-10/Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010). Data summary tables, Form I and Form Ie (TICs) are provided in the

DUSR and include the reporting limit for each non-detected compound. A copy of the DUSR may be found in Appendix D, on a compact disk (CD)

A summary of the detected compounds in the groundwater samples are provided in Table 2. Results exceeding TOGS 1.1.1 Class GA groundwater standards or guidance values are indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 4. Only two VOCs [i.e., 1,1-dichloroethane (9.3 μ g/L, MW-04) and cis-1,2-dichloroethene (7.1 μ g/L, MW-03)] and metals (i.e., iron, manganese and/or sodium) were detected above TOGS 1.1.1 Class GA limits in the groundwater samples. No compounds exceeded TOGS No. 1.1.1 standards or guidance values in the samples from Sentry Wells SW-01D and SW-02S.

3.3 Surface Water/Detention Pond Sampling

On April 20, 2010, URS collected surface water samples from locations SWTR-1T and SWTR-1E, the North Detention Pond (NDP) and the South Detention Pond (SDP) plus QC samples. At each location the surface water sample was collected by immersing pre-cleaned, laboratory grade sample bottles as close to the middle of the water body as possible without disturbing the sediment. A copy of the daily field notes are provided in Appendix A and a Photographic Log is provided in Appendix C.

All surface samples were transported under COC to TestAmerica Service Center located in Syracuse, New York. The service center transferred the samples to the TestAmerica Amherst, NY facility. The samples were analyzed for TCL VOCs plus TICs following USEPA SW846 Method 8260B, TCL SVOCs plus TICs following USEPA SW846 Method 8270C and TAL metals following USEPA SW846 Methods 6010B/7470A.

3.3.1 Surface Water/Detention Pond Results

The analytical data (i.e., NYSDEC ASP Category B data deliverables) was received by URS on May 18, 2010. The data was reviewed in accordance with the requirements outlined in Guidance for Data Deliverables and the Development of DUSRs, Appendix 2B, *DER-10/Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010). Data

summary tables, Form I and Form Ie (TICs) are provided in the DUSR and include the reporting limit for each non-detected compound.

A summary of the detected compounds in surface water samples are provided in Table 3. The standard for nickel is provided on Table 4. Results exceeding TOGS 1.1.1 Class C surface water standards or guidance values are indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 5. Only metals (i.e., aluminum, cobalt and iron) were detected above TOGS 1.1.1 Class C limits in the surface water samples. No compounds exceeded TOGS No. 1.1.1 standards or guidance values in the sample from surface water location SWTR-1E. It should be noted that the aluminum standard is based on the ionic form, whereas the results are for total aluminum. Ionic aluminum would typically be present in only the dissolved form.

4.0 SITE MAINTENANCE

4.1 Monitoring Well Inspections

During the 2010 groundwater sampling event, a well inspection was performed. All wells appeared to be in good condition with the exception of the locks which were either missing or non functional. The monitoring well inspection logs may be found in Appendix E.

4.2 <u>Landfill Inspection</u>

During the 2010 groundwater sampling event, a landfill inspection was performed by URS accompanied by NYSDEC personnel. A copy of the completed landfill inspection form can be found in Appendix F. The landfill cap components appeared to be in good condition. However, erosion was noted on the west side of the landfill at the toe drain/channel interface and on the north side of the site, north of the stone-lined drainage channel. Photographs of the erosion can be found in Appendix C.

4.3 Maintenance Performed

4.3.1 Monitoring Well Maintenance

No monitoring well maintenance was performed at the time this report was prepared.

4.3.2 Routine Maintenance

No routine maintenance was performed at the time this report was prepared.

4.3.3 Intermittent Maintenance

No intermittent maintenance was performed at the time this report was prepared.

5.0 SUMMARY AND RECOMMENDATIONS

The Conceptual Operation, Monitoring and Maintenance Plan (URS, November 2006) is currently being modified based upon comments from the NYSDEC. The modified plan will be re-titled as the Site Management Plan. The Site Management Plan is expected to be submitted to the Department, reviewed and approved by the end of the 2010 calendar year.

5.1 Groundwater Hydraulic Monitoring

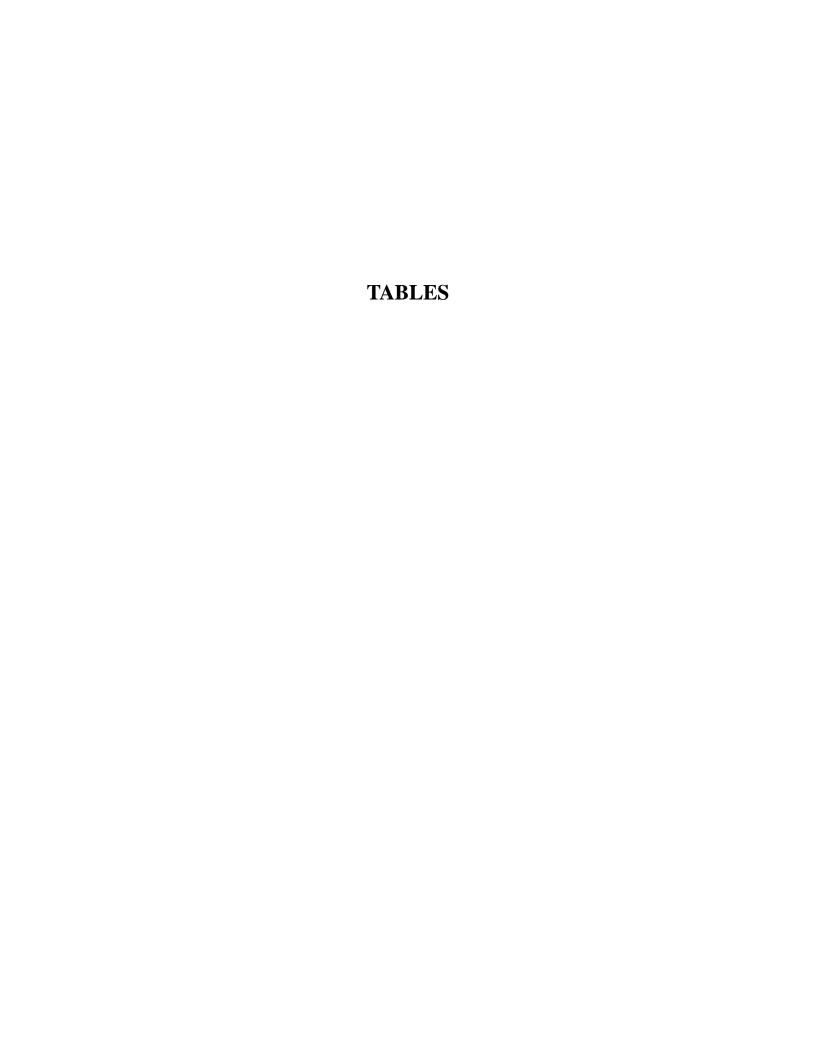
Shallow groundwater flows in an east-northeast direction. The flow direction of the deep groundwater could not be determined at this time due to the artesian conditions encountered at SW-04D. Future monitoring events should include additional water level measurements from monitoring wells located on and around the perimeter of the landfill to more accurately depict the potentiometric surface at the site.

5.2 **Groundwater Quality Monitoring**

Two VOCs (cis-1,2-dichoroethene and 1,1-dichloroethane) and several metals (iron manganese, sodium) exceed TOGS 1.1.1 Class GA standards and guidance values. There were no exceedances in two of the Sentry Wells. Table 5 includes results from the August 2004 sampling of the ten wells. The concentrations of detected VOCs are lower in 2010 when compared to the 2004 results. The concentrations of metals are relatively unchanged.

5.3 Surface Water/Detention Pond Quality Monitoring

Only the compounds aluminum, cobalt and/or iron were detected in three of the four surface water locations at concentrations that exceeded the TOGS 1.1.1 Class C surface water standards and guidance values. No historical data is available from the surface water sampling locations.


5.4 <u>Monitoring Well Maintenance</u>

Other than replacing locks, no maintenance was necessary for the monitoring wells. The locks will be replaced during the next site visit.

5.5 <u>Landfill Maintenance</u>

All landfill cap components appeared to be sound. Erosion was noted on the west side of the landfill, west of the toe drain/channel. Erosion was noted on the west side of the landfill at the toe drain/channel interface and on the north side of the site, north of the stone-lined drainage channel. Corrective action will be necessary to mitigate the erosion.

The landfill has not been mowed at the time of this report and should be mowed during the 2010 calendar year.

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location Type	ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MW-03		1602437.498	357450.2192			1175.58	Α						
	WL							8/19/2004 1210	3.31	1172.27	0.00		
	WL							4/21/2010 0000	3.03	1172.55	0.00		
MW-04		1602588.989	357572.8098			1172.46	Α						
	WL							8/19/2004 1310	2.56	1169.90	0.00		
	WL							4/21/2010 0000	2.63	1169.83	0.00		
MW-16		1602287.308	357950.8887			1152.58	Α						
	WL							8/18/2004 1320	4.00	1148.58	0.00		
	WL							4/21/2010 0000	3.00	1149.58	0.00		
SW-01D		1601823.93	355356.06	1262.0		1264.70	В						
	WL							8/17/2004 1025	68.64	1196.06	0.00		
	WL							4/21/2010 0000	67.13	1197.57	0.00		
SW-01S		1601817.02	355346.13	1260.5		1263.17	Α						
	WL							8/17/2004 1020	19.32	1243.85	0.00		
	WL							4/21/2010 0000	19.05	1244.12	0.00		
SW-02D		1601370.34	355721.25			1257.00	В						
	WL							8/16/2004 1600	70.49	1186.51	0.00		
	WL							4/21/2010 0000	70.10	1186.90	0.00		
SW-02S		1601367.21	355730.86			1257.20	Α						
	WL							8/16/2004 1700	12.05	1245.15	0.00		
	WL							4/21/2010 0000	12.36	1244.84	0.00		
SW-03S		1601483.4	355518.17			1257.67	Α						
	WL							8/17/2004 0925	12.73	1244.94	0.00		
	WL							4/21/2010 0000	12.81	1244.86	0.00		
SW-04D		1602328.65	358265.16	1149.0		1148.65	В						
	WL							8/18/2004 1205	NM	-	NM	-	Artesian well
	WL							4/21/2010 0000	NM	-	NM	-	Artesian well

NM - No Measurement

Geologic Zone:

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 1 **GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL**

Location ID /	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SW-04S	1602315.5	358278.21	1148.3		1148.00	Α						
WI							8/18/2004 1225	3.76	1144.24	0.00		
WI	-						4/21/2010 0000	2.83	1145.17	0.00		

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

Shallow Unconfined Aquifer

Deep Unconfined Aquifer

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER 2010 MONITORING EVENT ROSE VALLEY LANDFILL

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04	MW-16	DUP-2	SW-01D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval ((ft)		-	-	-	-	-
Date Sampled	t		04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	2.3	9.3			
1,2-Dichloroethene (cis)	UG/L	5	7.1	2.3			
Dichlorodifluoromethane	UG/L	5	0.75 J	0.86 J			
Total Volatile Organic Compounds	UG/L	-	10.15	12.46	ND	ND	ND
Metals							
Aluminum	UG/L	-					
Barium	UG/L	1000	47.6	16.0	31.0	71.2	70.2
Cadmium	UG/L	5					
Calcium	UG/L	-	225,000	171,000	77,900	28,600	27,600
Chromium	UG/L	50					
Iron	UG/L	300	252	1,050	16,600	292 J	631 J
Magnesium	UG/L	35000	18,600	31,700	8,150	14,000	13,500
Manganese	UG/L	300	2,450	525	1,090	8.8	11.8
Potassium	UG/L	-	3,320	1,130		1,940	1,890
Sodium	UG/L	20000	3,800	14,100	5,800	10,200	9,900
Vanadium	UG/L	-					

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

- = No standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER 2010 MONITORING EVENT ROSE VALLEY LANDFILL

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval ((ft)		-	-	-	-	-
Date Sampled	t		04/21/10	04/22/10	04/22/10	04/22/10	04/21/10
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5			1.9		
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Total Volatile Organic Compounds	UG/L	-	ND	ND	1.9	ND	ND
Metals							
Aluminum	UG/L	-	5,830	443			1,800
Barium	UG/L	1000	33.4	65.7	2.9	8.8	14.7
Cadmium	UG/L	5					2.4
Calcium	UG/L	-	109,000	62,800	57,400	74,400	12,200
Chromium	UG/L	50	6.9	4.1			
Iron	UG/L	300	3,700	433			1,630
Magnesium	UG/L	35000	4,000	22,300	2,240	3,040	1,960
Manganese	UG/L	300	50.5	10.2			38.7
Potassium	UG/L	-	2,080	1,870		1,910	1,170
Sodium	UG/L	20000	2,100	7,500	1,000	22,600	32,000
Vanadium	UG/L	-	6.6				

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER 2010 MONITORING EVENT ROSE VALLEY LANDFILL

Location ID			SW-04S
Sample ID			SW-04S
Matrix			Groundwater
Depth Interval (f	t)		-
Date Sampled			04/21/10
Parameter	Units	Criteria*	
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	
1,1-Dichloroethane	UG/L	5	
1,2-Dichloroethene (cis)	UG/L	5	
Dichlorodifluoromethane	UG/L	5	
Total Volatile Organic Compounds	UG/L	-	ND
Metals			
Aluminum	UG/L	-	336
Barium	UG/L	1000	26.1
Cadmium	UG/L	5	
Calcium	UG/L	-	92,700
Chromium	UG/L	50	
Iron	UG/L	300	8,870
Magnesium	UG/L	35000	6,900
Manganese	UG/L	300	2,080
Potassium	UG/L	-	1,940
Sodium	UG/L	20000	4,300
Vanadium	UG/L	-	,

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 3 SUMMARY OF DETECTED COMPOUNDS IN SURFACE WATER / DETENTION POND WATER 2010 MONITORING EVENT ROSE VALLEY LANDFILL

Location ID			NDP	SDP	SDP	SWTR-1E	SWTR-1T
Sample ID			NDP	DUP-1	SDP	SWTR-1E	SWTR-1T
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
Acetone	UG/L	-					9.4
Chlorobenzene	UG/L	5					0.75 J
Total Volatile Organic Compounds	UG/L	-	ND	ND	ND	ND	10.15
Metals							
Aluminum	UG/L	100 ionic		1,570	1,460		
Barium	UG/L	-	32.5	51.8	49.7	22.3	117
Calcium	UG/L	-	123,000	77,200	74,600	88,400	122,000
Cobalt	UG/L	5					7.1
Iron	UG/L	300	1,650	2,790	2,360	230	10,500
Magnesium	UG/L	-	15,900	16,200	15,800	12,800	26,100
Manganese	UG/L	-	720	101 J	71.3 J	25.4	385
Nickel	UG/L	calc, diss					12.0
Potassium	UG/L	-	3,700	7,760	7,650	5,570	70,800
Sodium	UG/L	-	4,000	6,200	6,100	6,600	65,400
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	373	259	251	273	412

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Calculated standards are shown on Table 4.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

TABLE 4 CRITERIA FOR CLASS C SURFACE WATERS REQUIRING CALCULATION ROSE VALLEY LANDFILL

Sample ID		Criteria Applies To	NDP		DUP-1 (SDP)		SDP		SWTR-1E		SWTR-1T	
	Units		Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result
Metals												
Hardness (calculated)	MG/L	Not applicable		373		259		251		273		412
Nickel	UG/L	Dissolved form	158		117		113		122		172	12.0

Criteria:

NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

-- - No criteria

blank cell - not detected

Only detected results shown.

Location ID			MW-03	MW-03	MW-04	MW-04	MW-16
Sample ID			MW-03	MW-03	MW-04	MW-04	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	ft)		-	-	-	-	-
Date Sampled			08/19/04	04/21/10	08/19/04	04/21/10	08/18/04
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	4 J	2.3	16	9.3	
1,2-Dichloroethene (cis)	UG/L	5	16	7.1	3 J	2.3	
Dichlorodifluoromethane	UG/L	5		0.75 J		0.86 J	
Total Volatile Organic Compounds	UG/L	-	20	10.15	19	12.46	ND
Metals							
Aluminum	UG/L	-	164 B		131 B		964 J
Antimony	UG/L	3	3.7 B				
Arsenic	UG/L	25					3.5 B
Barium	UG/L	1000	60.4 B	47.6	17.2 B	16.0	59.6 B
Cadmium	UG/L	5	0.25 B				1.0 B
Calcium	UG/L	-	220,000	225,000	156,000	171,000	88,400
Chromium	UG/L	50					
Cobalt	UG/L	-	2.0 B		1.1 B		1.0 B
Copper	UG/L	200			1.5 B		
Iron	UG/L	300	918	252	1,190	1,050	17,100
Magnesium	UG/L	35000	23,500	18,600	26,800	31,700	9,330
Manganese	UG/L	300	2,210 J	2,450	304 J	525	1,260 J
Nickel	UG/L	100	5.6 B		13.5 B		
Potassium	UG/L	-	3,950 B	3,320	1,070 B	1,130	1,080 B
Silver	UG/L	50					2.0 BJ
Sodium	UG/L	20000	5,940	3,800	16,600	14,100	9,150
Vanadium	UG/L	-					2.5 B
Zinc	UG/L	2000					8.7 B

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Blank cell or ND - Not detected. J - The reported concentration is an estimated value. R - The results have been rejected.

^{- =} No standard or guidance value.

Location ID			MW-16	SW-01D	SW-01D	SW-01D	SW-01S	
Sample ID			MW-16	SW-1D	DUP-2	SW-01D	SW-1S	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft)		=	-	-	=	-	
Date Sampled		04/21/10	08/17/04	04/21/10	04/21/10	08/17/04		
Parameter	Units	Criteria*			Field Duplicate (1-1)			
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Total Volatile Organic Compounds	UG/L	-	ND	ND	ND	ND	ND	
Metals								
Aluminum	UG/L	-					215	
Antimony	UG/L	3						
Arsenic	UG/L	25						
Barium	UG/L	1000	31.0	61.9 B	71.2	70.2	27.3 B	
Cadmium	UG/L	5		0.24 B			0.56 B	
Calcium	UG/L	-	77,900	17,500	28,600	27,600	146,000	
Chromium	UG/L	50		1.6 B			11.2	
Cobalt	UG/L	-		0.54 B			1.3 B	
Copper	UG/L	200		0.96 B			4.0 B	
Iron	UG/L	300	16,600	65.4 B	292 J	631 J	R	
Magnesium	UG/L	35000	8,150	9,700	14,000	13,500	4,430 B	
Manganese	UG/L	300	1,090	8.3 B	8.8	11.8	R	
Nickel	UG/L	100		1.6 B			6.3 B	
Potassium	UG/L	-		1,780 B	1,940	1,890	1,520 B	
Silver	UG/L	50					0.41 B	
Sodium	UG/L	20000	5,800	15,200	10,200	9,900	3,050 B	
Vanadium	UG/L	-						
Zinc	UG/L	2000		11.0 B			14.4 B	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Blank cell or ND - Not detected. J - The reported concentration is an estimated value. R - The results have been rejected.

^{- =} No standard or guidance value.

Location ID			SW-01S	SW-02D	SW-02D	SW-02S	SW-02S	
Sample ID			SW-01S	SW-2D	SW-02D	SW-2S	SW-02S Groundwater -	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (ft)		-	-	-	-		
Date Sampled			04/21/10	08/16/04	04/22/10	08/16/04	04/22/10	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5				3 J	1.9	
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Total Volatile Organic Compounds	UG/L	-	ND	ND	ND	3	1.9	
Metals								
Aluminum	UG/L	-	5,830		443	250		
Antimony	UG/L	3						
Arsenic	UG/L	25						
Barium	UG/L	1000	33.4	84.4 B	65.7	16.2 B	2.9	
Cadmium	UG/L	5		0.25 B				
Calcium	UG/L	-	109,000	44,100	62,800	53,500	57,400	
Chromium	UG/L	50	6.9	3.0 B	4.1	3.5 B		
Cobalt	UG/L	-		0.55 B		0.79 B		
Copper	UG/L	200		5.6 B		4.3 B		
Iron	UG/L	300	3,700	51.2 B	433	R		
Magnesium	UG/L	35000	4,000	19,800	22,300	2,670 B	2,240	
Manganese	UG/L	300	50.5	2.8 B	10.2	R		
Nickel	UG/L	100		3.3 B		2.9 B		
Potassium	UG/L	-	2,080	9,580	1,870	444 B		
Silver	UG/L	50						
Sodium	UG/L	20000	2,100	11,300	7,500	746 B	1,000	
Vanadium	UG/L	-	6.6					
Zinc	UG/L	2000		11.7 B		11.5 B		

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Blank cell or ND - Not detected. J - The reported concentration is an estimated value. R - The results have been rejected.

^{- =} No standard or guidance value.

Location ID			SW-03S	SW-03S	SW-04D	SW-04D	SW-04S	
Sample ID			SW-3S	SW-03S	SW-04D	SW-04D	SW-04S Groundwater	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (f	-		-	-	-	-	-	
Date Sampled			08/16/04	04/22/10	08/18/04	04/21/10	08/18/04	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Total Volatile Organic Compounds	UG/L	-	ND	ND	ND	ND	ND	
Metals								
Aluminum	UG/L	-	197 B		1,120 J	1,800	914 J	
Antimony	UG/L	3						
Arsenic	UG/L	25						
Barium	UG/L	1000	27.6 B	8.8	18.4 B	14.7	123 B	
Cadmium	UG/L	5	0.29 B			2.4	0.68 B	
Calcium	UG/L	-	95,400	74,400	10,700	12,200	105,000	
Chromium	UG/L	50	2.3 B		1.1 B		59.5	
Cobalt	UG/L	-	0.78 B		0.81 B		2.2 B	
Copper	UG/L	200	4.3 B				4.8 B	
Iron	UG/L	300	R		1,360	1,630	3,040	
Magnesium	UG/L	35000	4,380 B	3,040	1,750 B	1,960	11,200	
Manganese	UG/L	300	R		36.1 J	38.7	775 J	
Nickel	UG/L	100	2.3 B		1.2 B		43.1 J	
Potassium	UG/L	-	2,640 B	1,910	1,160 B	1,170	6,150 J	
Silver	UG/L	50						
Sodium	UG/L	20000	63,500	22,600	32,700	32,000	11,700	
Vanadium	UG/L	-			1.8 B		2.2 B	
Zinc	UG/L	2000	21.4		5.5 B		12.6 B	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

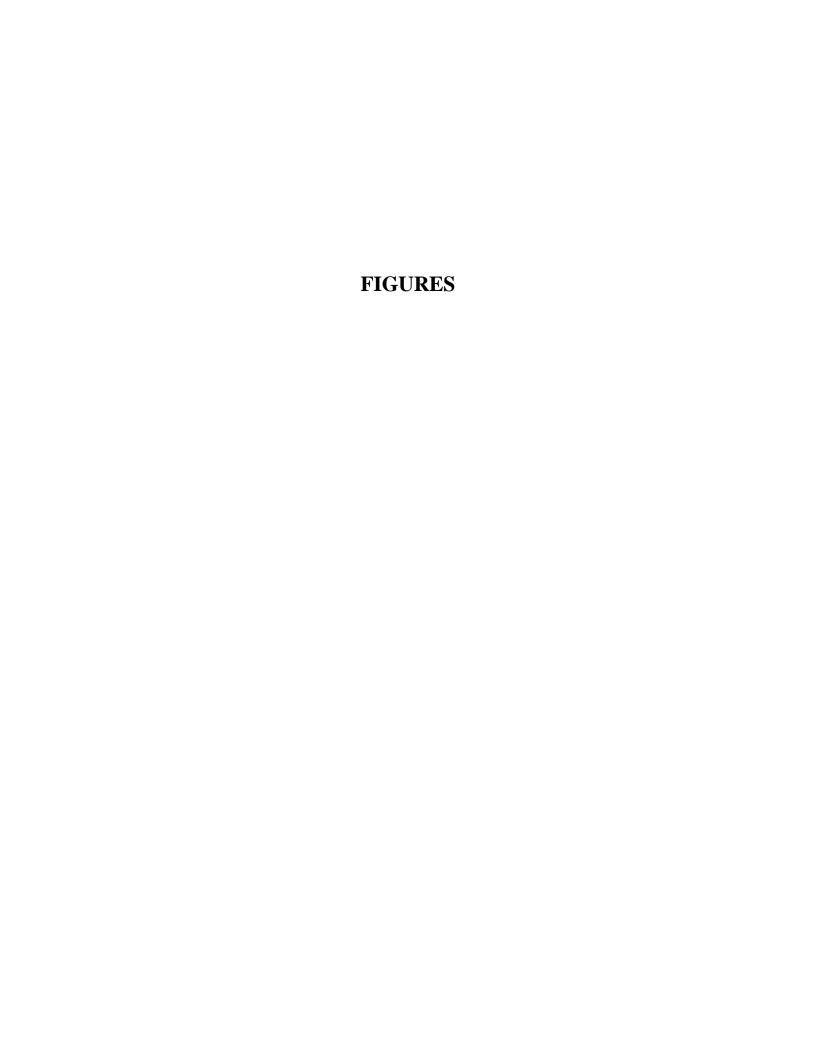
Flags assigned during chemistry validation are shown.

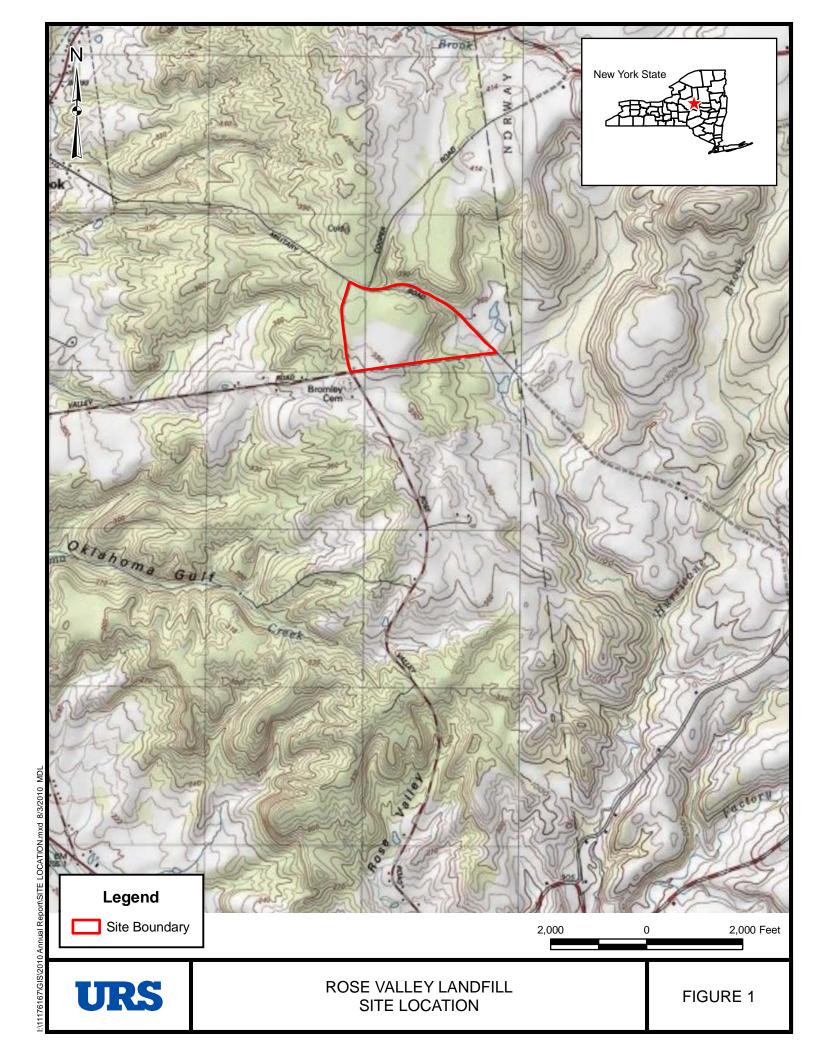
Concentration Exceeds Criteria

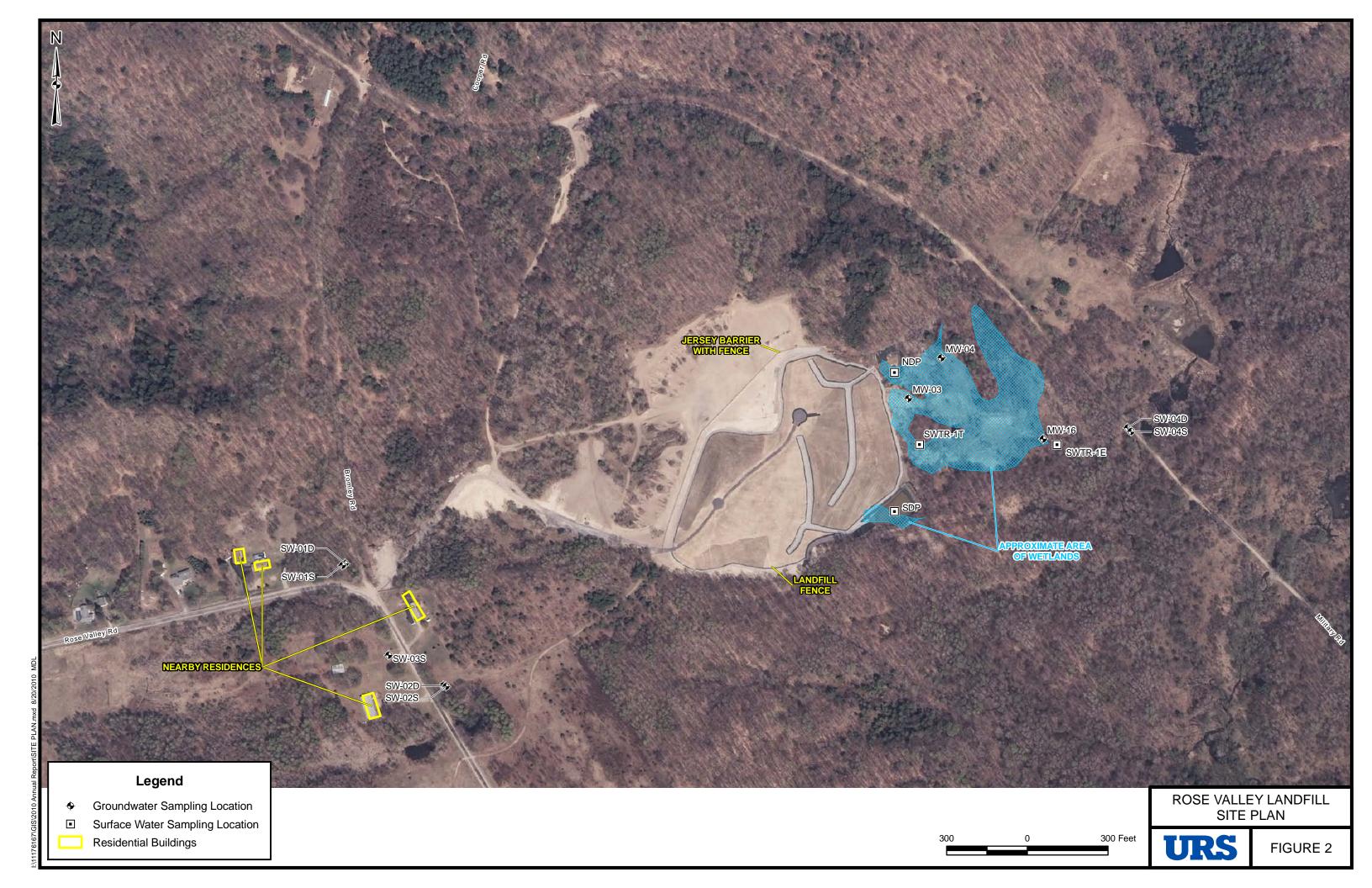
Blank cell or ND - Not detected. J - The reported concentration is an estimated value. R - The results have been rejected.

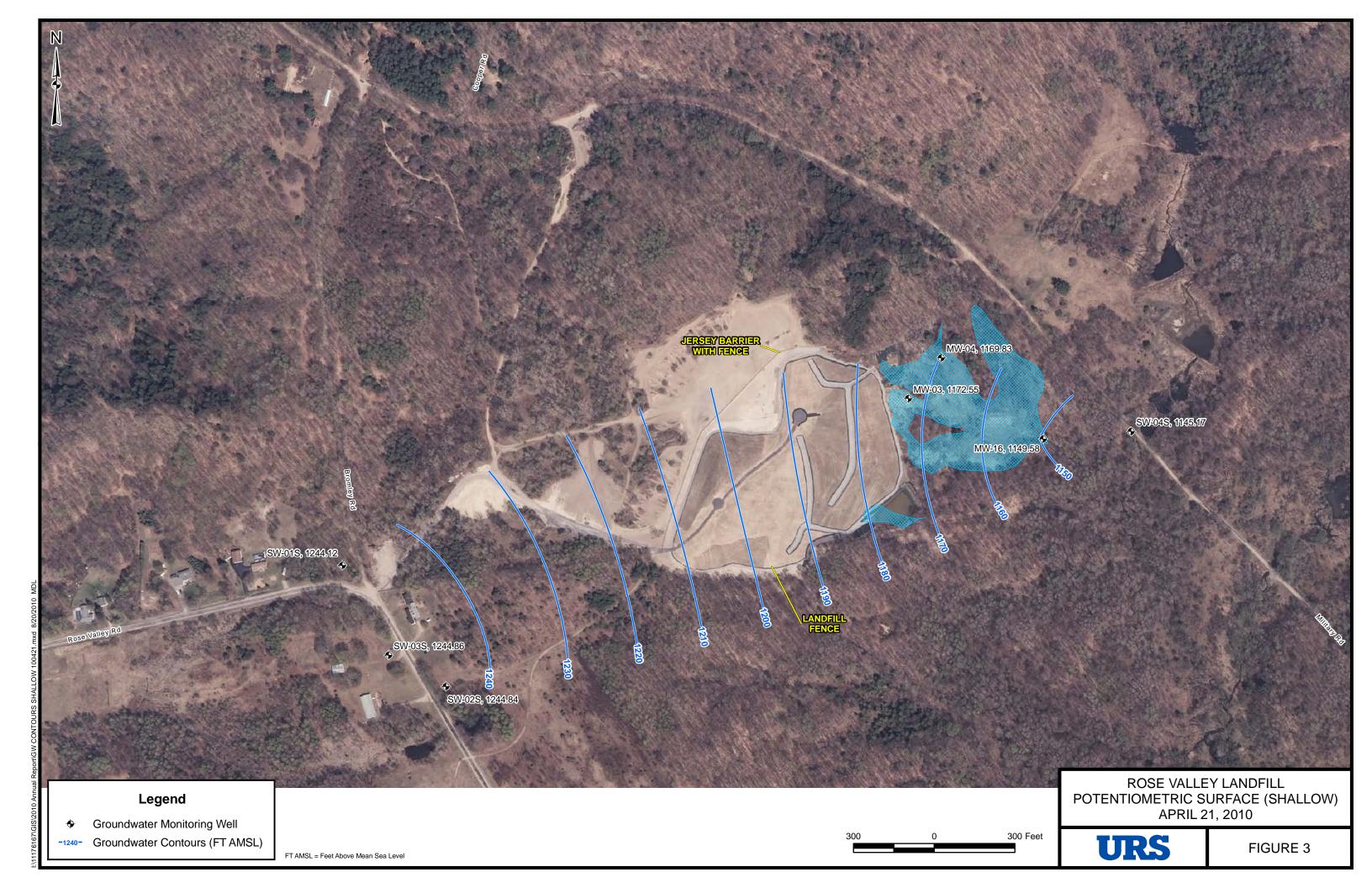
^{- =} No standard or guidance value.

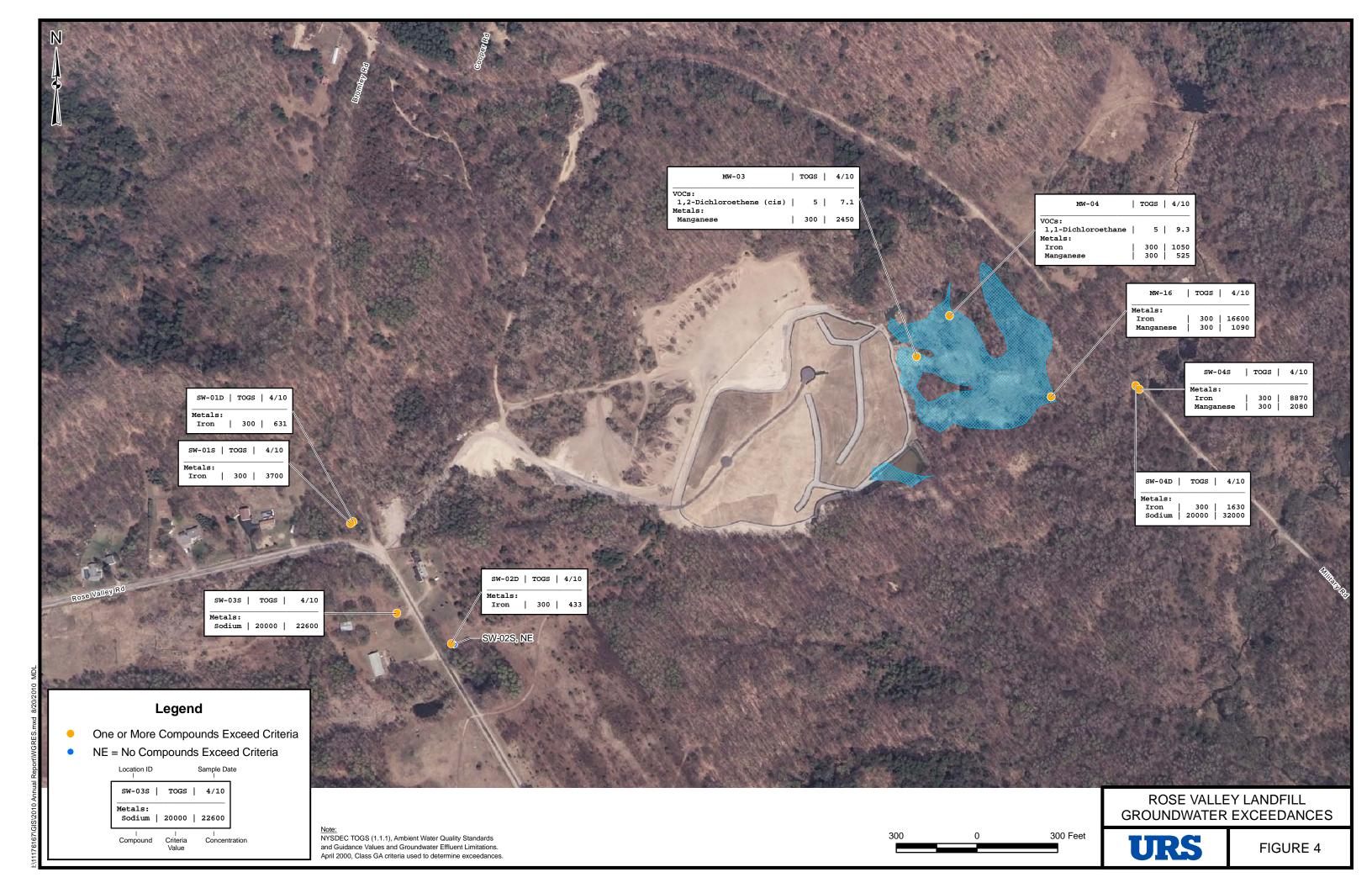
Location ID	SW-04S		
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (-		
Date Sampled	04/21/10		
Parameter			
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	
1,1-Dichloroethane	UG/L	5	
1,2-Dichloroethene (cis)	UG/L	5	
Dichlorodifluoromethane	UG/L	5	
Total Volatile Organic Compounds	UG/L	-	ND
Metals			
Aluminum	UG/L	-	336
Antimony	UG/L	3	
Arsenic	UG/L	25	
Barium	UG/L	1000	26.1
Cadmium	UG/L	5	
Calcium	UG/L	-	92,700
Chromium	UG/L	50	
Cobalt	UG/L	-	
Copper	UG/L	200	
Iron	UG/L	300	8,870
Magnesium	UG/L	35000	6,900
Manganese	UG/L	300	2,080
Nickel	UG/L	100	
Potassium	UG/L	-	1,940
Silver	UG/L	50	
Sodium	UG/L	20000	4,300
Vanadium	UG/L	-	
Zinc	UG/L	2000	

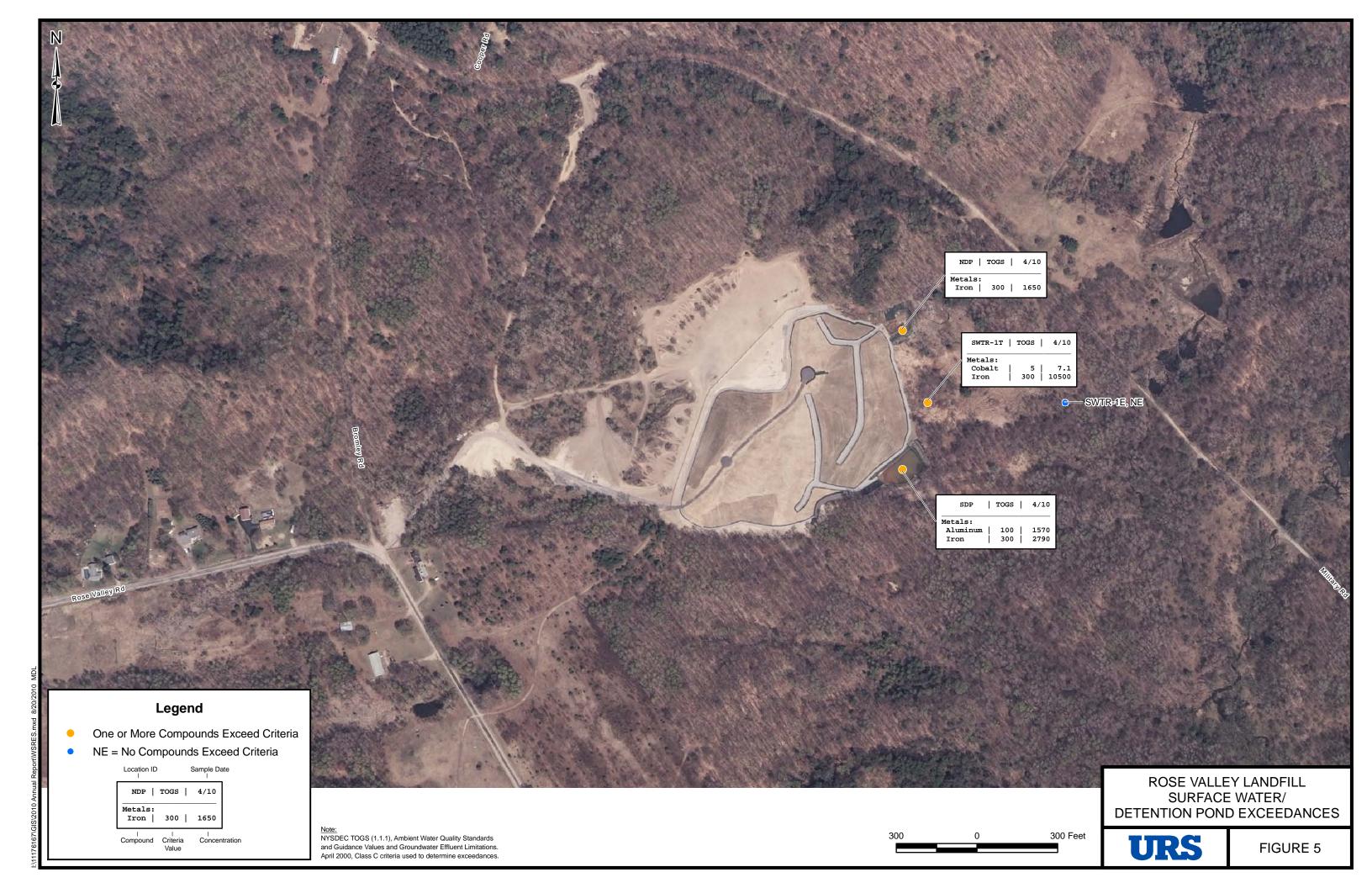

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

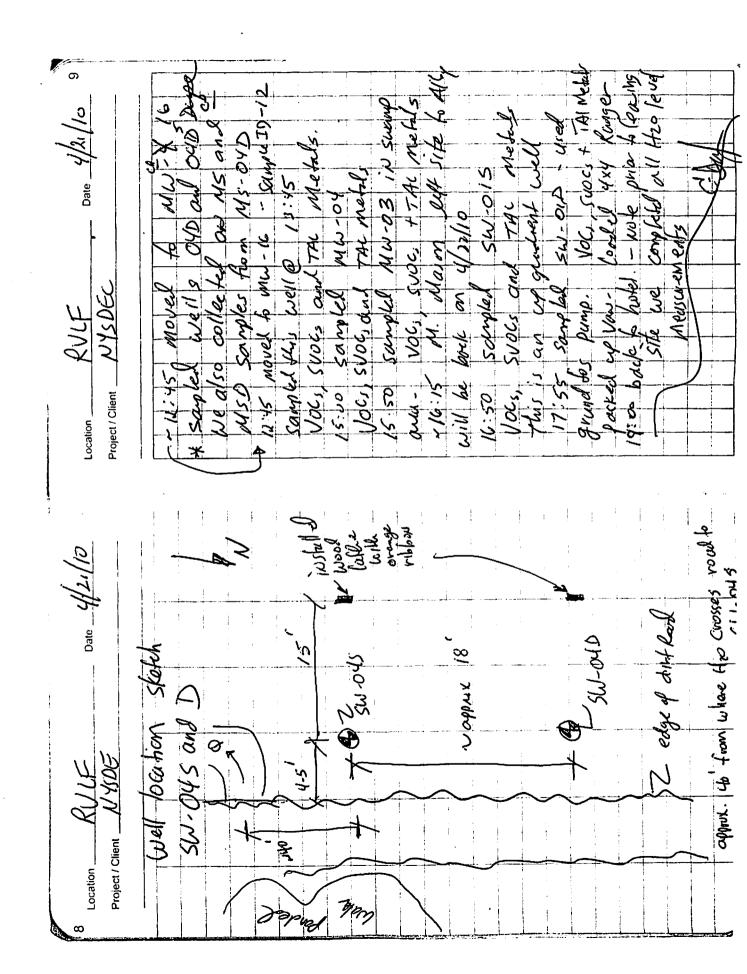

Flags assigned during chemistry validation are shown.


Concentration Exceeds Criteria


Blank cell or ND - Not detected. J - The reported concentration is an estimated value. R - The results have been rejected.


^{- =} No standard or guidance value.




APPENDIX A FIELD NOTES

Location Poland Wy Date 4/20/10 3	Project / Client Kose Valley (and hill - 55% Portly class)	200	Bisith have a suples	13:35 anne Ble Med Loch, My .	1 - pry - Carh Ch. Casty - 101 h on site - punt fora po	- telus M. Mosa- he will buily	(and fill 0	Lip collected The	VOC. SVOC. THE METALE OUT.	el in pand is ver ount of Azo fourth
		DATE								
	CONTENTS	REFERENCE								

PAGE

のなが SAMPLING DP-JUST BUTLOF CONFLOR Date 4/20/10 TE Close con awd inlet area into Nobel Pan inlat pipe. Feson SMEGIE COllecting S. Det. Paul あること 3. Same lowton- outy view looky South PHOTO 604 Swlaw Aro T.A. MW -1/2 1/2 harlgans MAIDE Samo/12 520-045 19,20 000-03 2 close ant Project / Client Location 13.30 3:27 Put 15:00 15:50 9:30 55, [00:00 13.35 16:50 TIME 12.35 17.55 815:40 00:11 16:30 13:35 17.00 11:05 6: b 17:8 INDESTIFATION TABLE 4-24-10 0-17-7 01-02-1 4-20.10 4-25-6 4-50-10 4-21-10 01-12-1 4-23.10 4-13-10 4-20-10 0-16-7 10-66-P 01.02-6 4.76-10 4-71-10 0-18.7 4-21-10 4-00-4 Dak Dape 246 Sample ID シナンクラウ RULF 5w78+7(m) 06 30 07 8/ 0 60 9 8 0 N. Det. Portlyoo) OY 50.035 MS NOP SAMPLE MW103 0 10 05H DHO-5/11 210-WS 010/MS SU-0225 S Det. Powd Sw. 02D Project / Client __ 4010h 5 Delanton Para MW 110 Cochon 5W-045 SW-OKD SWTR-1E Location

@ g: 30am Date _ Scindy 00. 5. 80° 200 MYIDEC RULF 2:00 am 13h amilt Project / Client م 5 Location _ Fruid OUS + 40 Yet paint al Hours location to callect will a sime between & pondo Date 4/20/10 duy samp 1 18:30 9×9 16:30 after 1/2 hr of squirings Some 大作 ine did, Suface 1720 Sauple 100 wing hand showl of the bould US, and Wells 045 and 040 Project / Client NYS DEC revew on eus Water 13 doen chule in stalled Location RULF DOINT regul cent overny cul SWTR-18 We tend location w 3000 Sannled Pannel and

7 w/17/b Date ___ ~13:40 or felt site -のとうの Project / Client NYINEC RVCF 14:45 Location Jash~ - April was Channel Date ___ wat side of land DECL HIRS puging Project / Client DYS OEL Cap Wellection. Location AVIF 7:000m looke のよういが 540-WS S. McGhe) Hotole C. Durel + Sandy MATCH 900 NRA ~ 08:30 08:30 fuel

APPENDIX B MONITORING WELL PURGE LOGS

Project:	11176167.0	00002	Site:	Rose Va	ılley Landfill	Well #:	MW-3	
Sampling	Personnel: <u>C. Dusel, S</u>	S. McCabe		Date:	4/21/10	_Company:	URS Corp	poration
Purging/ Sampling Device:	Geopun	np	Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	/lidpoint
Measuring Point:	Initial Dep		Depth to Well Bottom:	17.45	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC	_	Volume in 1 Well Casing (liters):	8.90	_	Estimated Purge Volume (liters):	10.8	-
Sample ID:	MW-3	Sample Tim	e: 1550		QA/QC:	none		
Sample Para	ameters: TCL VOC	+ TICs, TCL SV	OC + TICs, TAL M	etals				
	-							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1530	6.40	8.0	1.520	.43	31	21	600	3.03
1533	6.28	7.8	1.520	0.0	22	17	600	3.27
1536	6.26	7.7	1.520	0.0	21	15	600	3.27
1539	6.16	7.7	1.510	0.0	22	14	600	3.27
1542	6.15	7.7	1.510	0.0	23	13	600	3.27
1545	6.15	7.7	1.510	0.0	24	13	600	3.27
1548	6.13	7.7	1.510	0.0	22	12	600	3.27
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information:	WATER VOLUMES0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;
	4 inch diameter well = 2470 ml/ft (vol $_{rd} = \pi l^2 h$)

Project:	11176167.0000)2	Site: _	Rose Va	lley Landfill	_ Well #:	MW-4	
Sampling	Personnel: <u>C. Dusel, S. M</u>	cCabe		Date: 4/21/10		_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	2.63	Depth to _Well Bottom:	17.76	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	9.34	-	Estimated Purge Volume (liters):	9.0	
Sample ID:	MW-4 :	Sample Time:	1500		QA/QC:	none		
Sample Para	ameters: TCL VOC + TIC	Cs, TCL SVO	C + TICs, TAL M	etals				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
							,	
1438	6.96	8.3	1.380	0.0	25	-58	500	2.63
1440	6.94	8.2	1.380	0.0	27	-60	500	2.83
1442	6.94	8.2	1.380	0.0	27	-60	500	2.91
1444	6.93	8.2	1.380	0.0	25	-61	500	2.99
1446	6.91	8.2	1.370	0.0	24	-60	500	3.01
1448	6.84	8.2	1.370	0.0	19	-59	500	3.13
1450	6.81	8.2	1.370	0.0	19	-57	500	3.17
1452	6.77	8.2	1.370	0.0	16	-54	500	3.18
1454	6.75	8.2	1.370	0.0	18	-53	500	3.19
1456	6.70	8.3	1.360	0.0	16	-47	500	3.23
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.00002			Site: _	Rose Val	ley Landfill	_ Well #:	MW-16	
Sampling	Personnel	: C. Dusel, S. Mo	Cabe		Date:	4/21/10	_Company:	URS Corp	poration
Purging/ Sampling Device: Geopul				_Tubing Type:_	HD)PE	_ Tubing Inlet:	Screen Midpoint	
Measuring Point:	,		3.00	Depth to Well Bottom:	11.73	Well Diameter:	2"	Screen Length:	8'
Casing Type:	P	VC		Volume in 1 Well Casing (liters):	5.39	-	Estimated Purge Volume (liters):	6.4	-
Sample ID:	MW-16		Sample Time	: 1345		QA/QC:	none		
Sample Par	ameters:	TCL VOC + TIC	s, TCL SVO	C + TICs, TAL M	etals				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1330	6.87	6.8	.484	.13	14	-112	800	3.00
1332	6.68	7.0	.476	0.0	39	-115	800	3.10
1334	6.62	7.1	.472	0.0	36	-111	800	3.25
1336	6.53	6.8	.477	0.0	11	-112	800	3.34
1338	6.51	6.7	.478	0.0	9.3	-113	400	3.41
1340	6.53	6.9	.483	0.0	7.2	-117	400	3.42
1342	6.49	6.8	.487	0.0	16	-116	400	3.45
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.0	00002	Site:	Rose Va	lley Landfill	Well #:	SW-01S	
Sampling	Personnel: <u>C. Dusel, S</u>	S. McCabe		Date:	4/21/10	_Company:	URS Corp	poration
Purging/ Sampling Device:	Geopur	np	Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	/lidpoint
Measuring Point:	Initial Dep		Depth toWell Bottom:	28.63	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC	_	Volume in 1 Well Casing (liters):	5.91	_	Estimated Purge Volume (liters):	13.0	-
Sample ID:	SW-01S	Sample Tim	e: <u>1650</u>		QA/QC:	none		
Sample Para	ameters: TCL VOC	+ TICs, TCL SV	OC + TICs, TAL M	etals				

PURGE PARAMETERS

			COND.	DISS. O ₂	TURB.		FLOW RATE	DEPTH TO WATER
TIME	рН	TEMP (°C)	(mS/cm)	(mg/l)	(NTU)	ORP (mV)	(ml/min.)	(btor)
1622	6.44	8.4	.940	7.19	74	80	600	19.05
1627	6.46	8.3	.910	7.58	30	89	500	19.05
1632	6.46	8.2	.483	7.53	49	91	500	19.05
1637	6.45	8.0	.480	7.48	42	94	500	19.05
1642	6.44	8.0	.477	7.83	51	99	500	19.05
1647	6.43	8.0	.481	8.08	37	101	500	19.05
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.000	02	Site: _	Rose Va	lley Landfill	_ Well #:	SW-01D	
Sampling	Personnel: <u>C. Dusel, S. M</u>	/IcCabe		Date: 4/21/10		_Company:	URS Corp	ooration
Purging/ Sampling Device:	Grundfos		_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	67.13	Depth to 67.13 Well Bottom:		Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	10.48	-	Estimated Purge Volume (liters):	23.2	
Sample ID:	SW-01D	Sample Time	:1755		_ QA/QC:	Dup-2		
Sample Para	ameters: TCL VOC + T	ICs, TCL SVO	C + TICs, TAL M	etals				

PURGE PARAMETERS

TIME	mU.	TEMP (°C)	0.29	DISS. O ₂ (mg/l)	TURB. (NTU)	OBB (m)/)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
IIIVIE	рН	I LIVIE (C)	0.23	(1119/1)	(1410)	ORP (mV)	(1111/11111.)	(btoi)
1725	6.91	10.9	.290	.40	13	-8	800	67.13
1728	6.92	11.1	.290	.31	12	-13	800	67.32
1731	6.93	11.6	.289	.09	9.1	-24	800	67.32
1734	6.97	12.1	.287	0.0	4.7	-39	800	67.32
1737	6.98	12.3	.285	0.0	3.7	-43	800	67.32
1740	7.00	12.5	.282	0.0	3.2	-69	800	67.32
1743	7.05	12.5	.283	0.0	4.1	-71	800	67.32
1745	7.07	12.6	.281	0.0	1.9	-76	800	67.32
1748	7.09	12.8	.281	0.0	1.9	-82	800	67.32
1751	7.09	12.9	.280	0.0	1.5	-83	800	67.32
1754	7.10	12.8	.280	0.0	2.3	-84	800	67.32
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.000	002	Site: _	Rose Va	lley Landfill	_ Well #:	SW-02S	
Sampling	Personnel: C. Dusel, S. I	McCabe		Date:	4/22/10	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	12.42	Depth toWell Bottom:	20.15	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	4.77	-	Estimated Purge Volume (liters):	9.6	
Sample ID:	SW-02S	Sample Time	e: <u>0930</u>		_ QA/QC:	none		
Sample Para	ameters: TCL VOC + 1	TCs, TCL SVC	OC + TICs, TAL M	etals				
	_							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
916	6.90	7.9	.298	7.82	0.0	99	800	12.42
918	6.89	7.9	.298	7.41	0.0	98	800	12.42
920	6.89	7.9	.297	7.24	0.0	97	800	12.42
922	6.90	7.8	.297	7.15	0.0	97	800	12.42
924	6.90	7.8	.297	6.86	0.0	97	800	12.42
926	6.87	7.8	.296	6.78	0.0	96	800	12.42
928	6.88	7.8	.295	6.66	0.0	96	800	12.42
				100/				
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.000	02	Site: Rose Valley Land		lley Landfill	Well #: SW-02D		
Sampling	Personnel: <u>C. Dusel, S. M</u>	ИсCabe		Date:	4/22/10	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Grundfos		_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	70.18	Depth to _Well Bottom:_	79.35	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	5.66	-	Estimated Purge Volume (liters):	10.8	
Sample ID:	SW-02D	Sample Time	:1010		QA/QC:	none		
Sample Para	ameters: TCL VOC + T	TCs, TCL SVO	C + TICs, TAL M	etals				

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
950	6.86	11.8	.458	2.23	62	44	600	7018
952	6.86	12.5	.458	2.20	59	34	600	70.25
954	6.86	12.8	.460	2.18	51	29	600	70.25
956	6.88	13.1	.463	2.14	41	21	600	70.25
958	6.90	13.1	.464	2.11	38	13	600	70.25
1000	6.93	13.3	.465	2.04	39	10	600	70.25
1002	6.96	13.3	.465	2.02	40	7	600	70.25
1004	6.97	13.2	.465	1.90	41	6	600	70.25
1006	6.98	13.1	.464	1.84	44	4	600	70.25
1008	6.99	13.1	.463	1.81	41	4	600	70.25
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information:	WATER VOLUMES0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;
	4 inch diameter well = 2470 ml/ft (vol $_{rd} = \pi l^2 h$)

Project:	11176167.000	02	Site: _	Rose Va	Rose Valley Landfill		SW-03	
Sampling	Personnel: <u>C. Dusel, S. M</u>	/IcCabe		Date:	4/22/10	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		Tubing Type:	Н	DPE	Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	12.78	Depth toWell Bottom:	18.95	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	3.81	-	Estimated Purge Volume (liters):	7.0	
Sample ID:	SW-03	Sample Time	e: <u>0900</u>		QA/QC:	none		
Sample Para	TCL VOC + T	ICs, TCL SVC	OC + TICs, TAL M	etals				

PURGE PARAMETERS

			COND.	DISS. O ₂	TURB.		FLOW RATE	DEPTH TO WATER
TIME	рН	TEMP (°C)	(mS/cm)	(mg/l)	(NTU)	ORP (mV)	(ml/min.)	(btor)
848	6.68	9.0	.538	6.81	45	97	700	12.78
850	6.73	9.0	.539	6.72	40	98	700	12.82
852	6.74	9.0	.540	6.72	38	99	700	12.82
854	6.78	8.9	.536	6.70	33	100	700	12.82
856	6.79	8.9	.525	6.69	27	100	700	12.82
858	6.81	8.9	.497	6.65	15	101	700	12.82
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	1117616	7.00002	Site:	Rose Va	ılley Landfill	Well #: SW-04S		
Sampling	Personnel: <u>C. Dusel</u>	, S. McCabe		Date:	4/21/10	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geop	ump	Tubing Type:	Н	DPE	Tubing Inlet:	Screen M	lidpoint
Measuring Point:	Initial De	•	Depth toWell Bottom:	8.28	Well _ Diameter:	2"	Screen Length:	8'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	3.36	_	Estimated Purge Volume (liters):	5.2	
Sample ID:	SW-04S	Sample Tim	ne: 1105		QA/QC:	none		
Sample Para	ameters: TCL VO	C + TICs, TCL SV	OC + TICs, TAL M	etals				

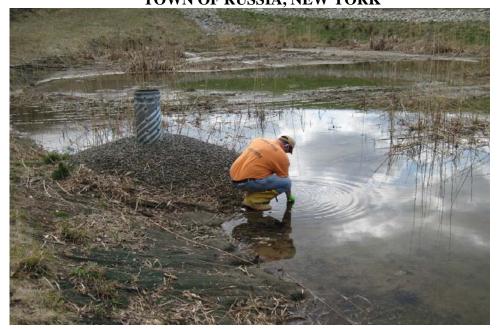
PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1055	6.67	8.3	.521	0.0	54	-124	600	2.83
1057	6.57	8.0	.506	0.0	50	-146	500	2.91
1059	6.58	8.0	.509	0.0	25	-148	500	2.99
1101	6.59	8.0	.512	0.0	22	-150	500	3.03
1103	6.60	8.0	.517	0.0	8.8	-147	500	3.05
1105	6.63	8.0	.521	0.0	3.0	-150	500	3.04
						_		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.00	0002	_ Site: _	Rose Val	lley Landfill	_ Well #:	SW-04D	
Sampling	campling Personnel: C. Dusel, S. McCabe			Date:	4/21/10	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopum	0	Tubing Type:	НС	DPE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:	Initial Depth	n > 10'	Depth to _Well Bottom: _	83.60	Well Diameter:	2"	Screen Length:	8'
Casing Type:	PVC	_	Volume in 1 Well Casing (liters):	51.58	-	Estimated Purge Volume (liters):	5.2	
Sample ID:	SW-04D	_ Sample Time:	1235		QA/QC:	MS and MSD		
Sample Para	ameters: TCL VOC +	TICs, TCL SVO	C + TICs, TAL M	etals				

PURGE PARAMETERS


TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1130	7.51	9.6	.182	4.86	121	-207	1000	0
1135	7.41	9.6	.180	3.88	69	-209	1000	0
1140	7.23	9.5	.180	4.61	131	-201	1000	0
1145	7.22	9.5	.179	4.62	122	-194	1000	0
1150	7.44	9.5	.178	4.46	114	-197	1000	0
1155	7.46	9.5	.179	4.23	94	-201	1000	0
1200	7.46	9.6	.178	3.83	83	-200	1000	0
1205	7.46	9.6	.178	3.81	76	-207	1000	0
1210	7.48	9.8	.178	3.72	64	-209	1000	0
1215	7.46	9.6	.178	4.48	45	-210	1000	0
1220	7.46	9.5	.176	4.41	44	-211	1000	0
1225	7.45	9.4	.177	4.53	31	-211	1000	0
1230	7.46	9.6	.177	3.05	43	-210	1000	0
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol $_{cyl}$ = $\pi r^2 h$)

Comments: Artesian well. Water level was >10' above to of riser. Well riser extended 10' and water still overflowed.

APPENDIX C PHOTOGRAPHIC LOG

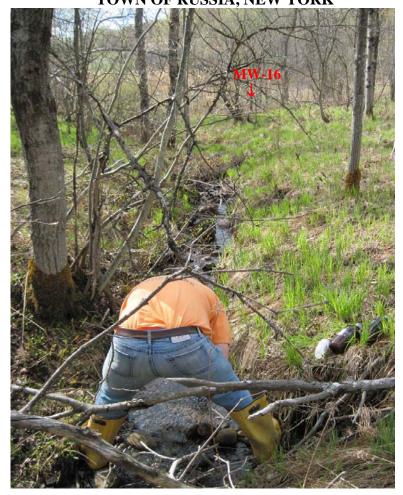

Photo 1: Collection of surface water sample from South Detention Pond.

Photo 2: Close up of inlet pipe for South Detention Pond showing iron staining.

Photo 3: Same location as Photo 2, with landfill in background.

Photo 4: Surface water sample location SWTR-1E with MW-16 in the background.

Photo 5: Collection of surface water sample from location SWTR-1E.

Photo 6: Path to surface water sample from location SWTR-1E was marked with flagging.

Photo 7: SWTR-1E location was marked with painted fencepost.

Photo 8: Eroded area leading into North Detention Pond. Note – Erosion is occurring outside drainage channel.

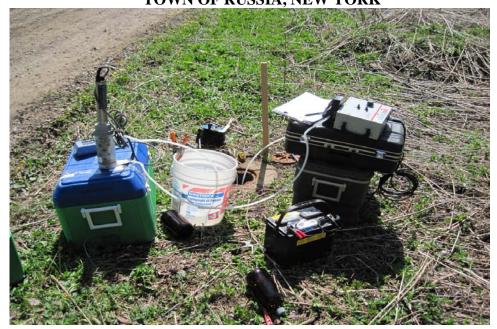

Photo 9: Inlet of North Detention Pond. Sediment in basin. Erosion occurring outside drainage channel.

Photo 10: Collection of surface water sample from North Detention Pond.

Photo 11: Collection of surface water sample from location SWTR-1T.

Photo 12: Low flow sampling setup at SW-04S.

Photo 13: Additional PVC riser added to SW-04D in an attempt to obtain a water level due to the artesian conditions of the well.

Photo 14: Low flow sampling setup at MW-4.

Photo 15: Low flow sampling setup at MW-3.

Photo 16: Erosion along west side of landfill looking north.

Photo 17: Close up of erosion along west side of landfill. Erosion at toe drain interface has resulted in undermining of stone channel.

Photo 18: Erosion along west side of landfill looking south. Erosion has occurred at toe drain/channel interface.

Photo 19: Erosion along north side of site looking east. Erosion has occurred north of stone lined channel.

APPENDIX D

DATA USABILITY SUMMARY REPORT

(On Compact Disk)

DATA USABILITY SUMMARY REPORT

ROSE VALLEY LANDFILL SITE ID NO. 6-22-017 RUSSIA, HERKIMER COUNTY, NEW YORK,

Analyses Performed by:

TESTAMERICA LABORATORIES, INC.
AMHERST, NEW YORK

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

JULY 2010

TABLE OF CONTENTS

	Page No.						
I.	INTRODUCTION1						
II.	SAMPLE COLLECTION						
III.	ANALYTICAL METHODOLOGIES AND DATA VALIDATION1						
IV.	DATA DELIVERABLE COMPLETENESS						
V.	SAMPLE RECEIPT/HOLDING TIMES						
VI.	NON-CONFORMANCES						
VII.	SAMPLE RESULTS AND REPORTING						
VIII.	SUMMARY4						
	TABLES (Following Text)						
Table 1	Summary of Data Qualifications						
Table 2	Validated Groundwater Sample Analytical Results						
Table 3	Validated Surface Water Sample Analytical Results						
Table 4	Criteria For Class C Surface Waters Requiring Calculation						
Table 5	Validated Field QC Analytical Results						

ATTACHMENTS

Attachment A Validated Form I's

Attachment B Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and the Development of Data Usability Summary Reports*, May 2010. Analytical data for 14 samples plus quality control (QC) collected April 20-22, 2010 are discussed in this DUSR. The samples were collected in support of the site management task assigned to URS under NYSDEC Work Assignment D004440-26 for the Rose Valley Landfill Site, Site Number 6-22-017, located in the town of Russia, Herkimer County, New York.

II. SAMPLE COLLECTION

On April 20-22, 2010, 10 groundwater samples, one blind field duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, 4 surface water samples, one blind field duplicate and one MS/MSD pair, and one trip blank were collected from the site. The samples were sent to TestAmerica Laboratories, Inc., located in Amherst, New York (TestAmerica-Buffalo) under NYSDEC Project No. NY5A946109. TestAmerica-Buffalo is a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory.

III. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

All samples were analyzed for the following parameters.

<u>Parameter</u>	<u>Method Number</u>
Target Compound List (TCL) Volatile Organic Compounds (VOCs) plus tentatively identified compounds (TICs)	SW8260B
TCL Semivolatile Organic Compounds (SVOCs) plus TICs	SW8270C
Target Analyte List (TAL) Metals	SW6010B/7470A

The trip blank was analyzed only for TCL VOCs plus TICs.

A limited data validation was performed on the samples following the guidelines in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by SW-846 Method 8260B, HW-24, Revision 2, August 2008;
- Validating Semivolatile Organic Compounds by SW-846 Method 8270, HW-22, Revision 4, August 2008; and
- Evaluation of Metals Data for the CLP Program based on SOW ILMO5.3, SOP HW-2, Revision 13, September 2006.

The limited data review included a review of completeness of all required deliverables; holding times; QC results (blanks, instrument tunes, calibration standards, MS/MSD recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Qualifications applied to the data include 'UJ' (estimated quantitation limit). A summary of qualifications made to the data is presented in Table 1. The complete analytical results are provided in Tables 2 and 3 for groundwater and surface water, respectively. Table 4 provides Class C surface water criteria for those compounds that require calculations to determine sample specific Class C criteria. Field QC results are provided in Table 5. Copies of the validated laboratory results (i.e., Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only problems affecting data usability are discussed in this report.

IV. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., equivalent to NYSDEC ASP Category B) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

V. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, under proper chain-of-custody and were analyzed within the required holding times

VI. NON-CONFORMANCES

Instrument Calibration

The percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the RRF in the continuing calibration (CCAL) standards was greater than 20% for the VOCs 1,2-dibromo-3-chloropropane, bromoform and bromomethane.. The results for these compounds were qualified 'UJ' in all samples.

The %D between the ICAL average RRF and the RRF in the CCAL standards was greater than 20% for the SVOC atrazine. The results for atrazine were qualified 'UJ' in all samples.

Documentation supporting the qualification of data (i.e., Forms 5, 7) is presented in Attachment B.

Field Duplicates

The relative percent difference (RPD) between sample and field duplicate results was greater than 20% for the metal manganese in samples SDP and DUP-1 and iron in samples SW-01D and DUP-2. The results for manganese in samples SDP and DUP-1 and iron in samples SW-01D and DUP were qualified 'J', per the validation guidelines. Documentation supporting the qualification of data (i.e., field duplicate comparison) is presented in Attachment B

VII. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample volume. Results reported where the concentration detected was below the QL, but greater than the method detection limit (MDL), are qualified 'J' by the laboratory.

Field duplicate sample were collected at location SDP (DUP-1) and SW-01D (DUP-2). The results were generally in agreement.

VIII. SUMMARY

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'J' (estimated concentration) or 'UJ' (estimated quantitation limit) are considered conditionally usable. All other sample results are usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By: George Kisluk, Senior Chemist Date: PAULO

Reviewed By: Mary Bitka, Principal Chemist Date: 85410

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

TABLE 1 SUMMARY OF DATA QUALIFICATIONS ROSE VALLEY LANDFILL

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
All samples		%D between the ICAL average RRF and the CCAL RRF >20% for 1,2-dibromo- 3-chloropropane, bromoform and bromomethane.	Qualify non-detect results 'UJ'.
All Samples		%D between the ICAL average RRF and the CCAL RRF >20% for atrazine.	Qualify non-detect results 'UJ'.
SDP, DUP-1		RPD between parent sample and field duplicate greater than 20% for manganese.	Qualify results 'J'.
SW-01D, DUP-2		RPD between parent sample and field duplicate greater than 20% for iron.	Qualify results 'J'.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04	MW-16	DUP-2	SW-01D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (fl	:)		-	-	-	-	-
Date Sampled		_	04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	UG/L	5	2.3	9.3	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.3	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	UG/L	50	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04	MW-16	DUP-2	SW-01D
Matrix			Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater
Depth Interval (-	-	-
Date Sampled			04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
Bromomethane	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
Carbon disulfide	UG/L	60	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	UG/L	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	UG/L	5	0.75 J	0.86 J	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene (Cumene)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether	UG/L	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	UG/L	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04	MW-16	DUP-2	SW-01D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
Total Volatile Organic Compounds	UG/L	-	10.15	12.46	ND	ND	ND
Semivolatile Organic Compounds							
1,1'-Biphenyl	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,2'-oxybis(1-Chloropropane)	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,4,5-Trichlorophenol	UG/L	1	24 U	24 U	24 U	24 U	24 U
2,4,6-Trichlorophenol	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,4-Dichlorophenol	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,4-Dimethylphenol	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,4-Dinitrophenol	UG/L	10	47 U	47 U	47 U	47 U	47 U
2,4-Dinitrotoluene	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2,6-Dinitrotoluene	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2-Chloronaphthalene	UG/L	10	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2-Chlorophenol	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2-Methylnaphthalene	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2-Methylphenol (o-cresol)	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
2-Nitroaniline	UG/L	5	47 U	47 U	47 U	47 U	47 U
2-Nitrophenol	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
3,3'-Dichlorobenzidine	UG/L	5	19 U	19 U	19 U	19 U	19 U
3-Nitroaniline	UG/L	5	47 U	47 U	47 U	47 U	47 U
4,6-Dinitro-2-methylphenol	UG/L	1	47 U	47 U	47 U	47 U	47 U
4-Bromophenyl-phenylether	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
4-Chloro-3-methylphenol	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
4-Chloroaniline	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
4-Chlorophenyl-phenylether	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04	MW-16	DUP-2	SW-01D
Matrix			Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater
Depth Interval (t)				-	-	-
Date Sampled			04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Semivolatile Organic Compounds							
4-Methylphenol (p-cresol)	UG/L	1	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-Nitroaniline	UG/L	5	47 U	47 U	47 U	47 U	47 U
4-Nitrophenol	UG/L	1	47 U	47 U	47 U	47 U	47 U
Acenaphthene	UG/L	20	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Acenaphthylene	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Acetophenone	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Anthracene	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Atrazine	UG/L	7.5	9.4 UJ	9.4 UJ	9.4 UJ	9.4 UJ	9.4 UJ
Benzaldehyde	UG/L	-	47 U	47 U	47 U	47 U	47 U
Benzo(a)anthracene	UG/L	0.002	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Benzo(a)pyrene	UG/L	ND	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Benzo(b)fluoranthene	UG/L	0.002	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Benzo(g,h,i)perylene	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Benzo(k)fluoranthene	UG/L	0.002	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
bis(2-Chloroethoxy)methane	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
bis(2-Chloroethyl)ether	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
bis(2-Ethylhexyl)phthalate	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Butylbenzylphthalate	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Caprolactam	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Carbazole	UG/L	-	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
Chrysene	UG/L	0.002	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Dibenz(a,h)anthracene	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Dibenzofuran	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Diethylphthalate	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01D
Sample ID			MW-03	MW-04 Groundwater -	MW-16	DUP-2	SW-01D Groundwater -
Matrix			Groundwater -		Groundwater	Groundwater -	
Depth Interval (f	t)				-		
Date Sampled			04/21/10	04/21/10	04/21/10	04/21/10	04/21/10
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Semivolatile Organic Compounds							
Dimethylphthalate	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Di-n-butylphthalate	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Di-n-octylphthalate	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Fluoranthene	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Fluorene	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Hexachlorobenzene	UG/L	0.04	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Hexachlorobutadiene	UG/L	0.5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Hexachlorocyclopentadiene	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Hexachloroethane	UG/L	5	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Isophorone	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Naphthalene	UG/L	10	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Nitrobenzene	UG/L	0.4	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
N-Nitroso-di-n-propylamine	UG/L	-	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
N-Nitrosodiphenylamine	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Pentachlorophenol	UG/L	1	47 U	47 U	47 U	47 U	47 U
Phenanthrene	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Phenol	UG/L	1	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Pyrene	UG/L	50	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
Total Semivolatile Organic Compounds	UG/L	-	ND	ND	ND	ND	ND
Metals							
Aluminum	UG/L	-	200 U	200 U	200 U	200 U	200 U
Antimony	UG/L	3	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Arsenic	UG/L	25	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Loca	ation ID		MW-03	MW-04	MW-16	SW-01D	SW-01D
San	nple ID		MW-03	MW-04	MW-16	DUP-2	SW-01D
M	latrix		Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater
Depth I	nterval (ft)				-	-	-
Date Sampled		04/21/10	04/21/10	04/21/10	04/21/10	04/21/10	
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Metals							
Barium	UG/L	1000	47.6	16.0	31.0	71.2	70.2
Beryllium	UG/L	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cadmium	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	UG/L	-	225,000	171,000	77,900	28,600	27,600
Chromium	UG/L	50	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	UG/L	-	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Copper	UG/L	200	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Iron	UG/L	300	252	1,050	16,600	292 J	631 J
Lead	UG/L	25	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Magnesium	UG/L	35000	18,600	31,700	8,150	14,000	13,500
Manganese	UG/L	300	2,450	525	1,090	8.8	11.8
Mercury	UG/L	0.7	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	UG/L	100	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Potassium	UG/L	-	3,320	1,130	500 U	1,940	1,890
Selenium	UG/L	10	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U
Silver	UG/L	50	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Sodium	UG/L	20000	3,800	14,100	5,800	10,200	9,900
Thallium	UG/L	0.5	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Vanadium	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	UG/L	2000	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID			SW-01S SW-01S	SW-02D SW-02D	SW-02S SW-02S	SW-03S SW-03S	SW-04D SW-04D
Sample ID Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft	٠١		Groundwater	- 04/22/10	Groundwater	Groundwater	- 04/21/10
Date Sampled	.)		04/21/10		04/22/10	04/22/10	
Parameter				0	0	0	020
	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1.0 U	1.0 U	1.9	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U				
1,1,2-Trichloroethane	UG/L	1	1.0 U				
1,1-Dichloroethane	UG/L	5	1.0 U				
1,1-Dichloroethene	UG/L	5	1.0 U				
1,2,4-Trichlorobenzene	UG/L	5	1.0 U				
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 UJ				
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U				
1,2-Dichlorobenzene	UG/L	3	1.0 U				
1,2-Dichloroethane	UG/L	0.6	1.0 U				
1,2-Dichloroethene (cis)	UG/L	5	1.0 U				
1,2-Dichloroethene (trans)	UG/L	5	1.0 U				
1,2-Dichloropropane	UG/L	1	1.0 U				
1,3-Dichlorobenzene	UG/L	3	1.0 U				
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U				
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U				
1,4-Dichlorobenzene	UG/L	3	1.0 U				
2-Hexanone	UG/L	50	5.0 U				
4-Methyl-2-pentanone	UG/L	-	5.0 U				
Acetone	UG/L	50	5.0 U				
Benzene	UG/L	1	1.0 U				
Bromodichloromethane	UG/L	50	1.0 U				
Bromoform	UG/L	50	1.0 UJ				

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D SW-02D	SW-02S SW-02S	SW-03S	SW-04D SW-04D
Sample ID			SW-01S	Groundwater	Groundwater - 04/22/10	SW-03S Groundwater	Groundwater - 04/21/10
Matrix	F4\		Groundwater			- 04/22/10	
Depth Interval (Date Sampled			04/21/10	- 04/22/10			
·	·			04/22/10	04/22/10	04/22/10	04/21/10
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Bromomethane	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
Carbon disulfide	UG/L	60	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	UG/L	7	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene (Cumene)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether	UG/L	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	UG/L	2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			04/21/10	04/22/10	04/22/10	04/22/10	04/21/10
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Total Volatile Organic Compounds	UG/L	-	ND	ND	1.9	ND	ND
Semivolatile Organic Compounds							
1,1'-Biphenyl	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,2'-oxybis(1-Chloropropane)	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,4,5-Trichlorophenol	UG/L	1	24 U				
2,4,6-Trichlorophenol	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,4-Dichlorophenol	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,4-Dimethylphenol	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,4-Dinitrophenol	UG/L	10	47 U	47 U	48 U	47 U	48 U
2,4-Dinitrotoluene	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2,6-Dinitrotoluene	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2-Chloronaphthalene	UG/L	10	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2-Chlorophenol	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2-Methylnaphthalene	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2-Methylphenol (o-cresol)	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
2-Nitroaniline	UG/L	5	47 U	47 U	48 U	47 U	48 U
2-Nitrophenol	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
3,3'-Dichlorobenzidine	UG/L	5	19 U				
3-Nitroaniline	UG/L	5	47 U	47 U	48 U	47 U	48 U
4,6-Dinitro-2-methylphenol	UG/L	1	47 U	47 U	48 U	47 U	48 U
4-Bromophenyl-phenylether	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
4-Chloro-3-methylphenol	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
4-Chloroaniline	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
4-Chlorophenyl-phenylether	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater -	Groundwater -	Groundwater	Groundwater	Groundwater
Depth Interval (-				-	-	-
Date Sampled			04/21/10	04/22/10	04/22/10	04/22/10	04/21/10
Parameter	Units	Criteria*					
Semivolatile Organic Compounds							
4-Methylphenol (p-cresol)	UG/L	1	4.7 U	4.7 U	4.8 U	4.7 U	4.8 U
4-Nitroaniline	UG/L	5	47 U	47 U	48 U	47 U	48 U
4-Nitrophenol	UG/L	1	47 U	47 U	48 U	47 U	48 U
Acenaphthene	UG/L	20	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Acenaphthylene	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Acetophenone	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Anthracene	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Atrazine	UG/L	7.5	9.4 UJ	9.4 UJ	9.5 UJ	9.4 UJ	9.5 UJ
Benzaldehyde	UG/L	-	47 U	47 U	48 U	47 U	48 U
Benzo(a)anthracene	UG/L	0.002	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Benzo(a)pyrene	UG/L	ND	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Benzo(b)fluoranthene	UG/L	0.002	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Benzo(g,h,i)perylene	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Benzo(k)fluoranthene	UG/L	0.002	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
bis(2-Chloroethoxy)methane	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
bis(2-Chloroethyl)ether	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
bis(2-Ethylhexyl)phthalate	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Butylbenzylphthalate	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Caprolactam	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Carbazole	UG/L	-	4.7 U	4.7 U	4.8 U	4.7 U	4.8 U
Chrysene	UG/L	0.002	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Dibenz(a,h)anthracene	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Dibenzofuran	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Diethylphthalate	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater -	Groundwater -	Groundwater - 04/22/10	Groundwater - 04/22/10	Groundwater - 04/21/10
Depth Interval (fi	t)						
Date Sampled			04/21/10	04/22/10			
Parameter	Units	Criteria*					
Semivolatile Organic Compounds							
Dimethylphthalate	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Di-n-butylphthalate	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Di-n-octylphthalate	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Fluoranthene	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Fluorene	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Hexachlorobenzene	UG/L	0.04	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Hexachlorobutadiene	UG/L	0.5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Hexachlorocyclopentadiene	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Hexachloroethane	UG/L	5	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Isophorone	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Naphthalene	UG/L	10	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Nitrobenzene	UG/L	0.4	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
N-Nitroso-di-n-propylamine	UG/L	-	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
N-Nitrosodiphenylamine	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Pentachlorophenol	UG/L	1	47 U	47 U	48 U	47 U	48 U
Phenanthrene	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Phenol	UG/L	1	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Pyrene	UG/L	50	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U
Total Semivolatile Organic Compounds	UG/L	-	ND	ND	ND	ND	ND
Metals							
Aluminum	UG/L	-	5,830	443	200 U	200 U	1,800
Antimony	UG/L	3	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Arsenic	UG/L	25	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location	on ID		SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sampl	le ID		SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Mati	rix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Inte	erval (ft)		-	-	-	-	-
Date Sampled		04/21/10	04/22/10	04/22/10	04/22/10	04/21/10	
Parameter	Units	Criteria*					
Metals							
Barium	UG/L	1000	33.4	65.7	2.9	8.8	14.7
Beryllium	UG/L	3	2.0 U				
Cadmium	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	2.4
Calcium	UG/L	-	109,000	62,800	57,400	74,400	12,200
Chromium	UG/L	50	6.9	4.1	4.0 U	4.0 U	4.0 U
Cobalt	UG/L	-	4.0 U				
Copper	UG/L	200	10.0 U				
Iron	UG/L	300	3,700	433	50.0 U	50.0 U	1,630
Lead	UG/L	25	5.0 U				
Magnesium	UG/L	35000	4,000	22,300	2,240	3,040	1,960
Manganese	UG/L	300	50.5	10.2	3.0 U	3.0 U	38.7
Mercury	UG/L	0.7	0.20 U				
Nickel	UG/L	100	10.0 U				
Potassium	UG/L	-	2,080	1,870	500 U	1,910	1,170
Selenium	UG/L	10	15.0 U				
Silver	UG/L	50	3.0 U				
Sodium	UG/L	20000	2,100	7,500	1,000	22,600	32,000
Thallium	UG/L	0.5	20.0 U				
Vanadium	UG/L	-	6.6	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	UG/L	2000	10.0 U				

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID			SW-04S
Sample ID	SW-04S		
Matrix			Groundwater
Depth Interval (f	-		
Date Sampled	04/21/10		
Parameter	Units	Criteria*	
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U
1,1-Dichloroethane	UG/L	5	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U
2-Hexanone	UG/L	50	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U
Acetone	UG/L	50	5.0 U
Benzene	UG/L	1	1.0 U
Bromodichloromethane	UG/L	50	1.0 U
Bromoform	UG/L	50	1.0 UJ

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID			SW-04S
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (-		
Date Sampled	04/21/10		
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Bromomethane	UG/L	5	1.0 UJ
Carbon disulfide	UG/L	60	1.0 U
Carbon tetrachloride	UG/L	5	1.0 U
Chlorobenzene	UG/L	5	1.0 U
Chloroethane	UG/L	5	1.0 U
Chloroform	UG/L	7	1.0 U
Chloromethane	UG/L	5	1.0 U
Cyclohexane	UG/L	=	1.0 U
Dibromochloromethane	UG/L	50	1.0 U
Dichlorodifluoromethane	UG/L	5	1.0 U
Ethylbenzene	UG/L	5	1.0 U
Isopropylbenzene (Cumene)	UG/L	5	1.0 U
Methyl acetate	UG/L	-	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	5.0 U
Methyl tert-butyl ether	UG/L	10	1.0 U
Methylcyclohexane	UG/L	-	1.0 U
Methylene chloride	UG/L	5	1.0 U
Styrene	UG/L	5	1.0 U
Tetrachloroethene	UG/L	5	1.0 U
Toluene	UG/L	5	1.0 U
Trichloroethene	UG/L	5	1.0 U
Trichlorofluoromethane	UG/L	5	1.0 U
Vinyl chloride	UG/L	2	1.0 U
Xylene (total)	UG/L	5	2.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-04S
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (f	-		
Date Sampled	04/21/10		
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Total Volatile Organic Compounds	UG/L	-	ND
Semivolatile Organic Compounds			
1,1'-Biphenyl	UG/L	5	9.4 U
2,2'-oxybis(1-Chloropropane)	UG/L	5	9.4 U
2,4,5-Trichlorophenol	UG/L	1	24 U
2,4,6-Trichlorophenol	UG/L	1	9.4 U
2,4-Dichlorophenol	UG/L	5	9.4 U
2,4-Dimethylphenol	UG/L	50	9.4 U
2,4-Dinitrophenol	UG/L	10	47 U
2,4-Dinitrotoluene	UG/L	5	9.4 U
2,6-Dinitrotoluene	UG/L	5	9.4 U
2-Chloronaphthalene	UG/L	10	9.4 U
2-Chlorophenol	UG/L	1	9.4 U
2-Methylnaphthalene	UG/L	-	9.4 U
2-Methylphenol (o-cresol)	UG/L	1	9.4 U
2-Nitroaniline	UG/L	5	47 U
2-Nitrophenol	UG/L	1	9.4 U
3,3'-Dichlorobenzidine	UG/L	5	19 U
3-Nitroaniline	UG/L	5	47 U
4,6-Dinitro-2-methylphenol	UG/L	1	47 U
4-Bromophenyl-phenylether	UG/L	-	9.4 U
4-Chloro-3-methylphenol	UG/L	1	9.4 U
4-Chloroaniline	UG/L	5	9.4 U
4-Chlorophenyl-phenylether	UG/L	-	9.4 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID			SW-04S						
	Sample ID								
Matrix			Groundwater						
Depth Interval (f	-								
Date Sampled	04/21/10								
Parameter	Units	Criteria*							
Semivolatile Organic Compounds									
4-Methylphenol (p-cresol)	UG/L	1	4.7 U						
4-Nitroaniline	UG/L	5	47 U						
4-Nitrophenol	UG/L	1	47 U						
Acenaphthene	UG/L	20	9.4 U						
Acenaphthylene	UG/L	-	9.4 U						
Acetophenone	UG/L	-	9.4 U						
Anthracene	UG/L	50	9.4 U						
Atrazine	UG/L	7.5	9.4 UJ						
Benzaldehyde	UG/L	-	47 U						
Benzo(a)anthracene	UG/L	0.002	9.4 U						
Benzo(a)pyrene	UG/L	ND	9.4 U						
Benzo(b)fluoranthene	UG/L	0.002	9.4 U						
Benzo(g,h,i)perylene	UG/L	-	9.4 U						
Benzo(k)fluoranthene	UG/L	0.002	9.4 U						
bis(2-Chloroethoxy)methane	UG/L	5	9.4 U						
bis(2-Chloroethyl)ether	UG/L	1	9.4 U						
bis(2-Ethylhexyl)phthalate	UG/L	5	9.4 U						
Butylbenzylphthalate	UG/L	50	9.4 U						
Caprolactam	UG/L	-	9.4 U						
Carbazole	UG/L	-	4.7 U						
Chrysene	UG/L	0.002	9.4 U						
Dibenz(a,h)anthracene	UG/L	-	9.4 U						
Dibenzofuran	UG/L	-	9.4 U						
Diethylphthalate	UG/L	50	9.4 U						

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-04S
Sample ID			SW-04S
Matrix		Groundwater	
Depth Interval (f	-		
Date Sampled	04/21/10		
Parameter	Units	Criteria*	
Semivolatile Organic Compounds			
Dimethylphthalate	UG/L	50	9.4 U
Di-n-butylphthalate	UG/L	50	9.4 U
Di-n-octylphthalate	UG/L	50	9.4 U
Fluoranthene	UG/L	50	9.4 U
Fluorene	UG/L	50	9.4 U
Hexachlorobenzene	UG/L	0.04	9.4 U
Hexachlorobutadiene	UG/L	0.5	9.4 U
Hexachlorocyclopentadiene	UG/L	5	9.4 U
Hexachloroethane	UG/L	5	9.4 U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	9.4 U
Isophorone	UG/L	50	9.4 U
Naphthalene	UG/L	10	9.4 U
Nitrobenzene	UG/L	0.4	9.4 U
N-Nitroso-di-n-propylamine	UG/L	-	9.4 U
N-Nitrosodiphenylamine	UG/L	50	9.4 U
Pentachlorophenol	UG/L	1	47 U
Phenanthrene	UG/L	50	9.4 U
Phenol	UG/L	1	9.4 U
Pyrene	UG/L	50	9.4 U
Total Semivolatile Organic Compounds	UG/L	-	ND
Metals			
Aluminum	UG/L	-	336
Antimony	UG/L	3	20.0 U
Arsenic	UG/L	25	10.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location	on ID		SW-04S						
Sampl	Sample ID								
Matı	Groundwater								
Depth Inte	-								
Date Sa	04/21/10								
Parameter	Units	Criteria*							
Metals									
Barium	UG/L	1000	26.1						
Beryllium	UG/L	3	2.0 U						
Cadmium	UG/L	5	1.0 U						
Calcium	UG/L	-	92,700						
Chromium	UG/L	50	4.0 U						
Cobalt	UG/L	-	4.0 U						
Copper	UG/L	200	10.0 U						
Iron	UG/L	300	8,870						
Lead	UG/L	25	5.0 U						
Magnesium	UG/L	35000	6,900						
Manganese	UG/L	300	2,080						
Mercury	UG/L	0.7	0.20 U						
Nickel	UG/L	100	10.0 U						
Potassium	UG/L	-	1,940						
Selenium	UG/L	10	15.0 U						
Silver	UG/L	50	3.0 U						
Sodium	UG/L	20000	4,300						
Thallium	UG/L	0.5	20.0 U						
Vanadium	UG/L	-	5.0 U						
Zinc	UG/L	2000	10.0 U						

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

^{- =} No standard or guidance value.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID		NDP	SDP	SDP	SWTR-1E	SWTR-1T	
Sample ID Matrix		NDP	DUP-1	SDP Surface Water	SWTR-1E	SWTR-1T Surface Water	
		Surface Water	Surface Water		Surface Water		
Depth Interval (ft)		-	-	=	-	-
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (trans)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (cis)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (trans)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	9.4
Benzene	UG/L	10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

 $[\]mbox{\bf J}$ - The reported concentration is an estimated value.

Location ID		NDP	SDP	SDP	SWTR-1E	SWTR-1T	
Sample ID			NDP	DUP-1	SDP	SWTR-1E	SWTR-1T
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
Bromomethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ
Carbon disulfide	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	0.75 J
Chloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	UG/L	17	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene (Cumene)	UG/L	2.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	UG/L	200	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	UG/L	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	UG/L	40	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylene (total)	UG/L	65	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID		NDP	SDP	SDP	SWTR-1E	SWTR-1T	
Sample ID Matrix		NDP	DUP-1	SDP	SWTR-1E	SWTR-1T	
		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
Depth Interval (f			-	-	-	-	
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Semivolatile Organic Compounds							
1,1'-Biphenyl	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,2'-oxybis(1-Chloropropane)	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,4,5-Trichlorophenol	UG/L	1	24 U	24 U	25 U	24 U	24 U
2,4,6-Trichlorophenol	UG/L	1	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,4-Dichlorophenol	UG/L	1	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,4-Dimethylphenol	UG/L	5	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,4-Dinitrophenol	UG/L	5	48 U	49 U	49 U	47 U	48 U
2,4-Dinitrotoluene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2,6-Dinitrotoluene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2-Chloronaphthalene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2-Chlorophenol	UG/L	1	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2-Methylnaphthalene	UG/L	4.7	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2-Methylphenol (o-cresol)	UG/L	5	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
2-Nitroaniline	UG/L	-	48 U	49 U	49 U	47 U	48 U
2-Nitrophenol	UG/L	5	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
3,3'-Dichlorobenzidine	UG/L	-	19 U	19 U	20 U	19 U	19 U
3-Nitroaniline	UG/L	-	48 U	49 U	49 U	47 U	48 U
4,6-Dinitro-2-methylphenol	UG/L	5	48 U	49 U	49 U	47 U	48 U
4-Bromophenyl-phenylether	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
4-Chloro-3-methylphenol	UG/L	1	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
4-Chloroaniline	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
4-Chlorophenyl-phenylether	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
4-Methylphenol (p-cresol)	UG/L	5	4.8 U	4.9 U	4.9 U	4.7 U	4.8 U
4-Nitroaniline	UG/L	-	48 U	49 U	49 U	47 U	48 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

 $[\]mbox{\bf J}$ - The reported concentration is an estimated value.

Location ID		NDP	SDP	SDP	SWTR-1E	SWTR-1T	
Sample ID Matrix		NDP	DUP-1	SDP	SWTR-1E	SWTR-1T	
		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Semivolatile Organic Compounds							
4-Nitrophenol	UG/L	5	48 U	49 U	49 U	47 U	48 U
Acenaphthene	UG/L	5.3	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Acenaphthylene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Acetophenone	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Anthracene	UG/L	3.8	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Atrazine	UG/L	-	9.6 UJ	9.7 UJ	9.8 UJ	9.4 UJ	9.6 UJ
Benzaldehyde	UG/L	-	48 U	49 U	49 U	47 U	48 U
Benzo(a)anthracene	UG/L	0.03	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Benzo(a)pyrene	UG/L	0.0012	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Benzo(b)fluoranthene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Benzo(g,h,i)perylene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Benzo(k)fluoranthene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
bis(2-Chloroethoxy)methane	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
bis(2-Chloroethyl)ether	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
bis(2-Ethylhexyl)phthalate	UG/L	0.6	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Butylbenzylphthalate	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Caprolactam	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Carbazole	UG/L	-	4.8 U	4.9 U	4.9 U	4.7 U	4.8 U
Chrysene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Dibenz(a,h)anthracene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Dibenzofuran	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Diethylphthalate	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Dimethylphthalate	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Di-n-butylphthalate	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID Sample ID		NDP	SDP	SDP	SWTR-1E SWTR-1E Surface Water	SWTR-1T SWTR-1T Surface Water	
			DUP-1	SDP			
Matrix			Surface Water	Surface Water			
Depth Interval (ft)		-	-	-	-		
Date Sampled			04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Semivolatile Organic Compounds							
Di-n-octylphthalate	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Fluoranthene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Fluorene	UG/L	0.54	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Hexachlorobenzene	UG/L	3.00E-04	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Hexachlorobutadiene	UG/L	0.01	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Hexachlorocyclopentadiene	UG/L	0.45	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Hexachloroethane	UG/L	0.6	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Indeno(1,2,3-cd)pyrene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Isophorone	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Naphthalene	UG/L	13	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Nitrobenzene	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
N-Nitroso-di-n-propylamine	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
N-Nitrosodiphenylamine	UG/L	-	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Pentachlorophenol	UG/L	calc	48 U	49 U	49 U	47 U	48 U
Phenanthrene	UG/L	5	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Phenol	UG/L	5	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Pyrene	UG/L	4.6	9.6 U	9.7 U	9.8 U	9.4 U	9.6 U
Metals							
Aluminum	UG/L	100 ionic	200 U	1,570	1,460	200 U	200 U
Antimony	UG/L	-	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Arsenic	UG/L	150 dissolved	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Barium	UG/L	-	32.5	51.8	49.7	22.3	117
Beryllium	UG/L	1100 hard >75ppm	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cadmium	UG/L	calc, diss	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

J - The reported concentration is an estimated value.

Location ID		NDP	SDP	SDP	SWTR-1E	SWTR-1T	
Sample ID			NDP DUP-	DUP-1	SDP	SWTR-1E	SWTR-1T
Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		04/20/10	04/20/10	04/20/10	04/20/10	04/21/10
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Metals							
Calcium	UG/L	-	123,000	77,200	74,600	88,400	122,000
Chromium	UG/L	calc, diss	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	UG/L	5	4.0 U	4.0 U	4.0 U	4.0 U	7.1
Copper	UG/L	calc, diss	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Iron	UG/L	300	1,650	2,790	2,360	230	10,500
Lead	UG/L	calc, diss	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Magnesium	UG/L	-	15,900	16,200	15,800	12,800	26,100
Manganese	UG/L	-	720	101 J	71.3 J	25.4	385
Mercury	UG/L	7.00E-04 dissolved	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	UG/L	calc, diss	10.0 U	10.0 U	10.0 U	10.0 U	12.0
Potassium	UG/L	-	3,700	7,760	7,650	5,570	70,800
Selenium	UG/L	4.6 dissolved	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U
Silver	UG/L	0.1 ionic	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Sodium	UG/L	-	4,000	6,200	6,100	6,600	65,400
Thallium	UG/L	8	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Vanadium	UG/L	14	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	UG/L	calc, diss	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	373	259	251	273	412

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

^{- =} No standard or guidance value. Diss = dissolved. Hard = hardness. Calc = calculated. The calculated criteria are provided in Table 4.

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

TABLE 4
CRITERIA FOR CLASS C SURFACE WATERS REQUIRING CALCULATION
ROSE VALLEY LANDFILL

Sample ID		Criteria Applies To	N	IDP		DUP-1	(SDP)		SI	DP	SW	ΓR-1E	SW	ΓR-1T	
	Units		Criteria	Resu	lt	Criteria	Result		Criteria	Result	Criteria	Result	Criteria	Resu	lt
Semivolatile Organic C	ompour	nds	-						-						
Pentachlorophenol	UG/L	Total	6.7	48	U	6.7	49 l	U	6.7	49 U	6.7	47 U	6.7	48	U
Metals															
Hardness (calculated)	MG/L	Not applicable		373			259			251		273		412	
Beryllium	UG/L	Hardness > 75 MG/L	1,100	2.0	U	1,100	2.0 l	J	1,100	2.0 U	1,100	2.0 U	1,100	2.0	U
Cadmium	UG/L	Dissolved form	5.9	1.0	U	4.4	1.0 l	J	4.3	1.0 U	4.6	1.0 U	6.4	1.0	U
Chromium	UG/L	Dissolved form	218	4.0	U	162	4.0 l	J	158	4.0 U	169	4.0 U	236	4.0	U
Copper	UG/L	Dissolved form	27.6	10.0	U	20.2	10.0 l	J	19.7	10.0 U	21.2	10.0 U	30.0	10.0	U
Lead	UG/L	Dissolved form	15.3	5.0	U	10.5	5.0 l	J	10.2	5.0 U	11.1	5.0 U	17.0	5.0	U
Nickel	UG/L	Dissolved form	158	10.0	U	117	10.0 l	J	113	10.0 U	122	10.0 U	172	12.0	
Zinc	UG/L	Dissolved form	253	10.0	U	186	10.0 l	J	181	10.0 U	194	10.0 U	275	10.0	U

Criteria:

NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C. Criteria for pentachlorophenol is based on the assumption that the pH of the water is 7.0.

U - Not detected above the sample quantitation limit.

-- - No criteria

Made By: GEK 08/02/2010 Checked By: PRF 08/06/2010

TABLE 5 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID		FIELDQC
Sample ID		TRIP BLANK
Matrix		Water Quality
Depth Interval (ft)		-
Date Sampled	_	04/22/10 Trip Blank (1-1)
Parameter	Units	ттр ыапк (1-1)
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1.0 U
1,1,2-Trichloroethane	UG/L	1.0 U
1,1-Dichloroethane	UG/L	1.0 U
1,1-Dichloroethene	UG/L	1.0 U
1,2,4-Trichlorobenzene	UG/L	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1.0 U
1,2-Dichlorobenzene	UG/L	1.0 U
1,2-Dichloroethane	UG/L	1.0 U
1,2-Dichloroethene (cis)	UG/L	1.0 U
1,2-Dichloroethene (trans)	UG/L	1.0 U
1,2-Dichloropropane	UG/L	1.0 U
1,3-Dichlorobenzene	UG/L	1.0 U
1,3-Dichloropropene (cis)	UG/L	1.0 U
1,3-Dichloropropene (trans)	UG/L	1.0 U
1,4-Dichlorobenzene	UG/L	1.0 U
2-Hexanone	UG/L	5.0 U
4-Methyl-2-pentanone	UG/L	5.0 U
Acetone	UG/L	5.0 U
Benzene	UG/L	1.0 U
Bromodichloromethane	UG/L	1.0 U
Bromoform	UG/L	1.0 UJ

Flags assigned during chemistry validation are shown.

TABLE 5 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID		FIELDQC
Sample ID		TRIP BLANK
Matrix		Water Quality
Depth Interval (ft)		-
Date Sampled		04/22/10 Trip Blank (1-1)
Parameter	Units	ттр ыапк (т-т)
Volatile Organic Compounds		
Bromomethane	UG/L	1.0 UJ
Carbon disulfide	UG/L	1.0 U
Carbon tetrachloride	UG/L	1.0 U
Chlorobenzene	UG/L	1.0 U
Chloroethane	UG/L	1.0 U
Chloroform	UG/L	1.0 U
Chloromethane	UG/L	1.0 U
Cyclohexane	UG/L	1.0 U
Dibromochloromethane	UG/L	1.0 U
Dichlorodifluoromethane	UG/L	1.0 U
Ethylbenzene	UG/L	1.0 U
Isopropylbenzene (Cumene)	UG/L	1.0 U
Methyl acetate	UG/L	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	5.0 U
Methyl tert-butyl ether	UG/L	1.0 U
Methylcyclohexane	UG/L	1.0 U
Methylene chloride	UG/L	1.0 U
Styrene	UG/L	1.0 U
Tetrachloroethene	UG/L	1.0 U
Toluene	UG/L	1.0 U
Trichloroethene	UG/L	1.0 U
Trichlorofluoromethane	UG/L	1.0 U
Vinyl chloride	UG/L	1.0 U
Xylene (total)	UG/L	2.0 U

Flags assigned during chemistry validation are shown.

ATTACHMENT A VALIDATED FORM 1s

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Project:

Client:

New York State D.E.C. - Albany, NY

NYSDEC - Rose Valley Landfill - Site# 622017

MW-03

Matrix:

Ground Water

Laboratory ID:

RTD1782-14

File ID:

T9120.D

Sampled:

04/21/10 15:50

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 17:45

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane]	1.0	υ
7 9 -34-5	1,1,2,2-Tetrachioroethane	1	1.0	ប
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U .
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	2.3	
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	せい
106-93-4	1,2-Dibromoethane	1	1.0	. υ
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	υ
78-93-3	2-Butanone	1	5.0	υ
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	U
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	405
74-83-9	Bromomethane	1	1.0	J. W.
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1,0	U
108-90-7	Chlorobenzene	1	1.0	U
75-00-3	Chloroethane	<u> </u>	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1,0	U
156-59-2	cis-1,2-Dichloroethene	<u> </u>	7.1	
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1 1	1.0	υ
75-71-8	Dichlorodifluoromethane	1	0.75	J
	Ethylbenzene	1	1.0	U
100-41-4		1	1.0	U
98-82-8	Isopropylbenzene Market A catalan	1	1.0	U
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexane		1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	<u> </u>

Form Rev: 11/23/09

198/1262

for Stifes

Printed: 05/14/2010

Form 1

ORGANIC ANALYSIS DATA SHEET

MW-03

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-14

File ID:

T9120.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 17:45

Solids:

04/21/10 15:50

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Sonas:		Lichs	nanon.	או נוטבטר	10		пицарт в	Jan.	2 mar 6 mm	
Batch:	10D2681	Sequence:	T001752		Calibratio	n:	R10D196	<u>i</u>	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUNI)			DILU	TION		CONC	C. (ug/L)	Q
100-42-5	Styrene					1		1	1.0	U
127-18-4	Tetrachloroe	thene				1	_]	.00.	U
108-88-3	Toluene					1]	1.0	U
156-60-5	trans-1,2-Dic	hloroethene				1		1	1.0	ט
10061-02-6	trans-1,3-Dic	ans-1,3-Dichloropropene				1		1	0.1	บ
79-01-6	Trichloroethe	richloroethene				1		1.0		
75-69-4	Trichlorofluc	romethane				1		,	1.0	ש
75-01-4	Vinyl chlorid	Vinyl chloride				1	<u> </u>	1	1.0	U
1330-20-7	Xylenes, tota	1				1	<u> </u>		2.0	U
CAS NO.	TENTATIVI	ELY IDENTIFIED C	OMPOUND				RT	EST	CONC. (ug/L)	Q
NOTICS	No TICs four	nd							0.0	U
SYSTEM MON	NTORING COM	APOUND	ADDE	O (ug/L)	CONC	C (ug/L)_	% I	ŒC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25	5.0	2	3.3	9	3	66 - 137	
4-Bromofluoro	benzene		2.	5.0	2	0.6	_ 8	3	73 - 120	
Toluene-d8			2:	5.0	2	3.2	9	3	71 - 126	
INTERNAL ST	TANDARD		AF	REA	1	et	REF.	AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4	zene-d4 348142		142	9	.86	604796		9.86	
1,4-Difluorobe			372	5.68		1263836		5.68	<u> </u>	
Chlorobenzene	-d5		715	924	7	.95	112	9078	7.95	<u> </u>

^{*} Values outside of QC limits

Form Rev: 11/23/09

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-04

8260B

Laboratory:

TestAmerica Buffalo

New York State D.E.C. - Albany, NY

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client:

Project:

Matrix:

Ground Water

Laboratory ID:

File ID: RTD1782-13

T9119.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 17:21

Solids:

04/21/10 15:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation:	<u> </u>	Imitian Phiai: 5 int. / Jitte	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	ט
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	9.3	
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	υ
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	# UT
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	บ
107-06-2	1,2-Dichloroethane	1	1.0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	ט
78-93-3	2-Butanone	1	5.0	ט
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	ับ
71-43-2	Benzene	1	1.0	บ
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	せして
74-83-9	Bromomethane	1	1,0	υ Ψ
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	1.0	U
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	ט
74-87-3	Chloromethane	1	1.0	บ
156-59-2	cis-1,2-Dichloroethene	1	2,3	
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	1	0,86	J
100-41-4	Ethylbenzene	1	1.0	υ
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acetate	1	1.0	U
108-87-2			1.0	υ
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	Ü

Form Rev: 11/23/09

190/1262

W/1/10

Printed: 05/14/2010

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-04

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-13

File ID:

T9119.D

Sampled:

Analyzed:

04/29/10 17:21

04/21/10 15:00

Prepared:

04/28/10 14:44

Initial/Final:

Solids:		Prepa	ration:	5030B I	<u>MS</u>		Initial/F	nal:	<u>5 mL / 5 mL</u>	
Batch:	10D2681	Sequence:	T001752		Calibration	o:	R10D19	6	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILU	TION		CONC	C. (ug/L)	Q
100-42-5	Styrene					1			1.0	U
127-18-4	Tetrachloroeth	ene				1			1.0	U
108-88-3	Toluene					1		1	1.0	U
156-60-5	trans-1,2-Dich	rans-1,2-Dichloroethene				1		1	1.0	U
10061-02-6	trans-1,3-Dich	trans-1,3-Dichloropropene				1		1	1.0	U
79-01-6	Trichloroether	Trichloroethene				1		1	1.0	υ
75-69-4	Trichlorofluoromethane			<u> </u>	1			1.0	U	
75-01-4	Vinyl chloride	Vinyl chloride				1			1,0	U
1330-20-7	Xylenes, total			··-		1	<u> </u>	3	2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND			RT ES		EST	CONC. (ug/L)	Q
NOTICS	No TICs found	i							0.0	ַ
SYSTEM MON	IITORING COM	POUND	ADDE	D (ug/L)	CONC	(ug/L)	%	REC	QCLIMITS	Q
1,2-Dichloroeth	ane-d4		2	5.0	2.	3.6		95	66 - 137	
4-Bromofluorol	enzene		2	5.0	2	1.0		84	73 - 120	
Toluene-d8			2	25.0	2	3.2		93	71 - 126	
INTERNAL ST	ANDARD		A	REA	ŀ	RT	REF	AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		35	7738	9	86	60	4796	9.86	ļ
1,4-Difluorober	Difluorobenzene 827774		7774	5.68		1263836		5.68		
Chlorobenzene	-d5		73	4072	7	.95	112	9078	7.95	

^{*} Values outside of QC limits

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-12

File ID: <u>T9118.D</u>

Sampled:

Analyzed:

04/29/10 16:57

04/21/10 13:45

Prepared:

04/28/10 14:44

Sn	1:,	da.	

Preparation: 5030B MS Initial/Final;

5 mL / 5 mL

Sonds:	Preparation: 5030B	MS	mida/rinai; <u>5 mil/5 ml</u>	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	บ
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	11	1.0	U
79-00-5	1,1,2-Trichloroethane	1.	1.0	U
75-34-3	1,1-Dichloroethane	1	1.0	υ
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	*UT
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1,0	U
1 07 -06-2	1,2-Dichloroethane	11	1.0	U U
78-87-5	1,2-Dichloropropane	11	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	υ
106-46-7	1,4-Dichlorobenzene	_11	1.0	U
78-93-3	2-Butanone	1	5.0	ַ
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	บ
71-43-2	Benzene	1	1.0	υ
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1,0	せい
74-83-9	Bromomethane	1	1.0	u V
75-15-0	Carbon disulfide	_11	1.0	uu
56-23-5	Carbon Tetrachloride	11	1.0	U
108-90-7	Chlorobenzene	11	1.0	υ
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	11	1.0	U
74-87-3	Chloromethane	11	1.0	U
156-59-2	cis-1,2-Dichloroethene	11	1.0	U
10061-01-5	cis-1,3-Dichloropropene	11	1.0	U
110-82-7	Cyclohexane	11	1,0	ַ ע
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	11	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	111	1.0	υ
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexane	1	1.0	υ
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	U

Form Rev: 11/23/09

184/1262

 $\sqrt{\gamma / \eta} (i)$ Printed: 05/14/2010

Form 1 ORGANIC ANALYSIS DATA SHEET

MW-16

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-12

File ID:

T9118.D

Sampled:

04/21/10 13:45

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 16:57

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D2681	Sequence:	T001752	Calibration:	R10D19	96	Instrument:	HP5975T
CAS NO.	COMPOUND			DILUTIO	N	CONC	C. (ug/L)	Q
100-42-5	Styrene			1		1.0		ט
127-18-4	Tetrachloroeth	ene		_ 1			1.0	U
108-88-3	Toluene	oluene					1.0	U
156-60-5	trans-1,2-Dich	ns-1,2-Dichloroethene				1	1.0	U
10061-02-6	trans-1,3-Dich	trans-1,3-Dichloropropene					1.0	U
79-01-6	Trichloroethen	Trichloroethene				1	1.0	U
75-69-4	Trichlorofluor	Trichlorofluoromethane				1.0		
75-01-4	Vinyl chloride	Vinyl chloride				- 1	1.0	U
1330-20-7	Xylenes, total			1			2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND		RT	EST.	CONC. (ug/L)	Q
NOTICS	No TICs found	i					0.0	U
SYSTEM MOI	NITORING COM	POUND	ADDED (ug/L)	CONC (ug/	'L) %	REC	QC LIMITS	Q
1,2-Dichloroeth	лапе <u>-d</u> 4		25.0	23.6		94	66 - 137	
4-Bromofluoro			25.0	21.3		85	73 - 120	
Toluene-d8			25.0	22.4		90	71 - 126	<u> </u>
INTERNAL ST	RNAL STANDARD AR		AREA	RT	REF	AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		363803	9.86	60	4796	9.86	
1,4-Diffuorober	nzene		822398	5.68	12	63836	5.68	
Chlorobenzene	-d5		741918	7.95	11:	29078	7,95	

^{*} Values outside of QC limits

Form Rev: 11/23/09

Form 1 ORGANIC ANALYSIS DATA SHEET

8260B

DUP-2

Laboratory:

TestAmerica Buffalo

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client: Matrix:

New York State D.E.C. - Albany, NY

Project:

Ground Water

Laboratory ID:

RTD1782-17

File ID:

T9123.D

Sampled:

04/21/10 00:00

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 18:57

Solids:		Prepa	ration:	5030B M	<u>is</u>	Initial/Final:	5 mL / 5 mL	·
Batch:	10D2681 S	equence:	T001752	(Calibration:	R10D196	Instrument:	HP5975T
CAS NO.	COMPOUND				DILUTION		CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethan	e			1		1.0	ַט
79-34-5	1,1,2,2-Tetrachloroe	thane			1		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2	2-trifluoroetha	ne		. 1		1.0	U
79-00-5	1,1,2-Trichloroethan	ie			1		1.0	U
75-34-3	1,1-Dichloroethane				1		1.0	บ
75-35-4	1,1-Dichloroethene				1		1.0	U ·
120-82-1	1,2,4-Trichlorobenz	ene			1		1.0	U
96-12-8	1,2-Dibromo-3-chlo	ropropane			1		1.0	* VV
106-93-4	1,2-Dibromoethane				1		1.0	U
95-50-1	1,2-Dichlorobenzen	<u> </u>			1		1.0	U
107-06-2	1,2-Dichloroethane			_	11		1.0	U
78-87-5	1,2-Dichloropropane	<u> </u>			1		1.0	U
541-73-1	1,3-Dichlorobenzen	.			1		1.0	U
106-46-7	1,4-Dichlorobenzen	e			11		1.0	U
78-93-3	2-Butanone				1		5.0	U
591-78-6	2-Hexanone				1		5.0	U
108-10-1	4-Methyl-2-pentano	ne			11		5.0	U
67-64-1	Acetone				11		5.0	U
71-43-2	Benzene			-	I		1.0	U
75-27-4	Bromodichlorometh	ane			1		1.0	U
75-25-2	Bromoform	······································			1		1.0	BUT
74-83-9	Bromomethane				11		1.0	-0 W
75-15-0	Carbon disulfide				1		1.0	U
56-23-5	Carbon Tetrachlorid	le			1		1.0	U
108-90-7	Chiorobenzene		····		1		1.0	ע
75-00-3	Chloroethane		·		1		1.0	<u> </u>
67-66-3	Chloroform				1		1.0	<u> </u>
74-87-3	Chloromethane				1		1.0	U
156-59-2	cis-1,2-Dichloroeth	ene			11		1.0	Ŭ
10061-01-5	cis-1,3-Dichloropro	pene			11		1.0	<u> </u>
110-82-7	Cyclohexane			· 	1		1.0	U
124-48-1	Dibromochlorometh	ane			1		1.0	
75-71-8	Dichlorodifluorome	thane			11		1.0	UU
100-41-4	Ethylbenzene				1		1.0	ַ
98-82-8	Isopropylbenzene	· · · · · · · · · · · · · · · · · · ·			1		1.0	U .
79-20-9	Methyl Acetate		<u></u> .		11		1.0	U
108-87-2	Methylcyclohexane		_ ,		1		1.0	ַ
75-09-2	Methylene Chloride	l			11		1.0	ט
1634-04-4	Methyl-t-Butyl Ethe	r (MTBE)			1		1,0	U

Form 1

ORGANIC ANALYSIS DATA SHEET

8260B

DUP-2

Laboratory;

TestAmerica Buffalo

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client:

New York State D.E.C. - Albany, NY

Project:

Matrix:

Ground Water

Laboratory ID:

RTD1782-17

File ID:

T9123.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 18:57

Solids:

04/21/10 00:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D2681	Sequence:	T001752	Calibration:	R10D19	<u>6</u>	Instrument:	HP5975T
CAS NO.	COMPOUNI)		DILUTION		CON	C. (ug/L)	Q
100-42-5	Styrene			1		1	1.0	U
127-18-4	Tetrachloroet	hene		1			1.0	U
108-88-3	Toluene			1			1.0	U
156-60-5	trans-1,2-Dic	hloroethene		1	1		1.0_	U
10061-02-6	trans-1,3-Dic	ans-1,3-Dichloropropene					1.0	U
79-01-6	Trichloroethe	Trichloroethene			,		1.0	<u>u</u>
75-69-4	Trichlorofluo	Trichlorofluoromethane				1.0		
75-01-4	Vinyl chlorid	Vinyl chloride					1.0	U_
1330-20-7	Xylenes, tota	<u> </u>		1			2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND	<u> </u>	RT	EST.	CONC. (ug/L)	Q
NOTICS	No TICs four	nd					0.0	U
SYSTEM MON	VITORING CON	APOUND	ADDED (ug/L)	CONC (ug/L) %	REC	QC LIMITS	. Q
1,2-Dichloroeth	iane-d4		25.0	24.1		96	66 - 137	
4-Bromofluoro			25.0	20.6		82	73 - 120	
Toluene-d8			25.0	23.0		<u>9</u> 2	71 - 126	
INTERNAL ST	TANDARD	ANDARD		RT	REF	AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		358724	9.86	60	4796	9.86	
1,4-Difluorober			810925	5.68	120	63836	5.68_	
Chlorobenzene	-d5		729110	7.95	113	29078	7.95	<u> </u>

^{*} Values outside of QC limits

Form Rev: 11/23/09

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-16

File ID:

T9122.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 18:33

Solids:

04/21/10 14:55

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation: 5030	<u>B MS</u>	Initial/Final:	<u>5 mL/5 mL</u>	
Batch:	10D2681 Sequence: <u>T001752</u>	Calibration:	R10D196	Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CON	IC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1		1.0	ָ ט
79-34-5	1,1,2,2-Tetrachloroethane	1		1.0	ט
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1		1.0	บ
79-00-5	1,1,2-Trichloroethane	1		1,0	U
75-34-3	1,1-Dichloroethane	1		1.0	U
75-35-4	1,1-Dichloroethene	1		1.0	Ŭ
120-82-1	1,2,4-Trichlorobenzene	1		1.0	Ü
96-12-8	1,2-Dibromo-3-chloropropane	1		1.0	V U5
106-93-4	1,2-Dibromoethane	1		1.0	υ
95-50-1	1,2-Dichlorobenzene	1		1.0	U
107-06-2	1,2-Dichloroethane	111		1.0	U
78-87-5	1,2-Dichloropropane	1	<u>·</u>	1.0	U
541-73-1	1,3-Dichlorobenzene	1		1.0	U
106-46-7	1,4-Dichlorobenzene	1		1.0	U
78-93-3	2-Butanone	11		5.0	U
591-78-6	2-Hexanone	1		5.0	U
108-10-1	4-Methyl-2-pentanone	1		5.0	ַ ע
67-64-1	Acetone	1		5.0	U
71-43-2	Benzene	11		1.0	U
75-27-4	Bromodichloromethane	1		1.0	U
75-25-2	Bromoform	11		1.0	150
74-83-9	Bromomethane	1 .		1.0	V 4
75-15-0	Carbon disulfide	1		1.0	Ü
56-23-5	Carbon Tetrachloride	1		1.0	U
108-90-7	Chlorobenzene	1		1.0	U
75-00-3	Chloroethane	1		1.0	U
67-66-3	Chloroform	1		1.0	U
74-87-3	Chloromethane	1		1.0	U
156-59-2	cis-1,2-Dichloroethene	1		1.0	U
10061-01-5	cis-1,3-Dichloropropene	<u>t</u>		1.0	U
110-82-7	Cyclohexane	1		1.0	U
124-48-1	Dibromochloromethane	1		1.0	U
75-71-8	Dichlorodifluoromethane	1		1.0	U
100-41-4	Ethylbenzene	1		1.0	U
98-82-8	Isopropylbenzene	1		1.0	U
79-20-9	Methyl Acetate	1		1.0	υ
108-87-2	Methylcyclohexane	1		1.0	U
75-09-2	Methylene Chloride	1		1.0	υ
1634-04-4	Methyl-t-Butyl Ether (MTBE)	11		1.0	U

Form Rev: 11/23/09

212/1262

V July

SW-01D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

110,000.

File ID: <u>T9122,D</u>

Sampled:

Olouna Water

•

RTD1782-16

04/29/10 18:33

. ...

04/21/10 14:55

Prepared;

04/28/10 14:44

Analyzed:

9 1/ 23/ 10 1015 P

Solids:

Preparation:

5030B MS

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Batch:	10D2681	Sequence:	T001752	Calibration:	R10D190	<u>6</u>	Instrument:	HP5975T
CAS NO.	COMPOUND) ·	 -	DILUTION		CONC. (ug/L)		
100-42-5	Styrene			1	1 1		.00	U
127-18-4	Tetrachloroet	hene		1			.0	U
108-88-3	Toluene		-	1		1.	.0	U
156-60-5	trans-1,2-Dic	hloroethene		1		1.	.0	UU
10061-02-6	trans-1,3-Dic	hloropropene		1	1.0			UU
79-01-6	Trichloroethe	Trichloroethene				1	.0	U
75-69-4	Trichlorofluoromethane			1		1.0		
75-01-4	Vinyl chloride			11		1	.0	U
1330-20-7	Xylenes, tota	Xylenes, total				2.0		U
CAS NO.	TENTATIVE	ELY IDENTIFIED C	OMPOUND		RT	EST.	CONC. (ug/L)	Q
NOTICS	No TICs four	nd					0,0	U
SYSTEM MON	NITORING CON	APOUND	ADDED (ug/L)	CONC (ug/L)	% I	REC	QC LIMITS	Q
1,2-Dichloroeth	iane-d4		25.0	23.7	g)5	66 - 137	
4-Bromofluorol	benzene		25,0	21.2	8	35	73 - 120	
Toluene-d8			25.0	23.1	9)2	71 - 126	
INTERNAL STANDARD AREA		AREA	RT	REF.	AREA	REF RT	Q	
1,4-Dichlorobe	nzene-d4		360399	9.86	604	1796	9.86	
1,4-Difluorobe	nzene		820670	5.68	126	3836	5.68	<u> </u>
Chlorobenzene	-d5		735543	7.95	112	9078	7.95	

^{*} Values outside of QC limits

SW-01S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID;

RTD1782-15

File ID:

T9121.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 18:09

Solids:

04/21/10 16:50

Preparation:

5030B MS

Initial/Final:

<u>5 mL / 5 mL</u>

Sonas;	rteparation: 203	OD MIS	mitagrifiat.	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	11	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U
79-00 -5	1,1,2-Trichloroethane	1	1.0	υ
75-34-3	1,1-Dichloroethane	1	1.0	υ
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	P U 7
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	ī	1.0	U
78-87-5	1,2-Dichloropropane	1	1.0	υ
541-73-1	1,3-Dichlorobenzene	1	1.0	υ
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	υ
591-78-6	2-Hexanone	1	5,0	ט
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	υ
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	11	1.0	1000
74-83-9	Bromomethane	1	1.0	N W
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	1.0	U
75-00-3	Chloroethane	1	1.0	υ
67-66-3	Chloroform	1	1,0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	υ
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	11	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexanc	1	1.0	υ
75-09-2	Methylene Chloride	11	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	ַ ע

Form Rev: 11/23/09

206/1262

W MID

SW-01S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-15

File ID:

T9121.D

Sampled:

04/21/10 16:50

Prepared:

04/28/10 14:44

Analyzed: Initial/Final: 04/29/10 18:09 5 mL / 5 mL

Solids:		Prepar	ration:	5030B N	<u> 18</u>		Initial/Fi	nal:	<u>5 mL / 5 mL</u>	
Batch:	10D2681	Sequence:	<u>T001752</u>		Calibration: R10D		R10D19	<u> </u>	Instrument:	HP5975T
CAS NO.	COMPOUND	OMPOUND			DILUT	TION		CONC	C. (ug/L)	Q
100-42-5	Styrene				1	1 1.0			.0	U
127-18-4	Tetrachloroeth	ene			1		1.0			บ
108-88-3	Toluene			· · · · · · · · · · · · · · · · · · ·	1		1	1	1.0	U
156-60-5	trans-1,2-Dichloroethene				1			1	1.0	U
10061-02-6	trans-1,3-Dichl	loropropene			1			1	1.0	U
79-01-6	Trichloroethene			1			1.0			
75-69-4	Trichlorofluoromethane			1			1	1.0	U	
75-01-4	Vinyl chloride			1				1.0	υ	
1330-20-7	Xylenes, total				1				2.0	ប
CAS NO.	TENTATIVE	Y IDENTIFIED CO	OMPOUND			RT ES		EST.	CONC. (ug/L)	Q
NOTICS	No TICs found								0.0	U
SYSTEM MON	ITORING COM	POUND	ADDE	D (ug/L)	CONC	(ug/L)	% REC		QC LIMITS	Q
1,2-Dichloroeth	ane-d4		2	5.0	24.	.4	9	8	66 - 137	
4-Bromofluorob	enzene		2	5.0	20	.7		3	73 - 120	
Toluene-d8			2	5.0	23	.2	9	3	71 - 126	
INTERNAL ST	ANDARD		A	REA	R'	Γ	REF.	AREA	REF RT	Q
1,4-Dichlorober	izene-d4		36	3587	9.8	36	604	796	9.86	
1,4-Difluoroben	zene		80	9273	5.6	58	1263836		5.68	<u> </u>
Chlorobenzene-	d5		73	8115	7.9)5	112	9078	7.95	1

^{*} Values outside of QC limits

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-20

File ID:

T9126.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 20:09

Solids:

04/22/10 10:10

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch:	10D2681 Sequence: T001752	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	.1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	u
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	1.0	υ_
75-35-4	1,1-Dichloroethene	1	1,0	U
120-82-1	1,2,4-Trichlorobenzene	1	1,0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	# UT
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	υ
107-06-2	1,2-Dichloroethane	1	1,0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5,0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	ט
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	-5 U.T
74-83-9	Bromomethane	1	1.0	1 0 4
75-15-0	Carbon disulfide	1	1.0	ប
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	1.0	บ
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	ַ ע
75-71-8	Dichlorodifluoromethane	1	1.0	υ
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acetate	1	1.0	υ
108-87-2	Methylcyclohexanc	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	U

Form Rev: 11/23/09

237/1262

White

SW-02D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-20

File ID;

T9126.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 20:09

Solids:

04/22/10 10:10

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	1GS:	riepa	ereparation: <u>303015 M/S</u>		-		iai.	THILE C PHILL		
Batch:	10D2681	Sequence:	T001752	Calibratio	Ŋ: 	R10D196		Instrument:	<u>HP5975T</u>	
CAS NO.	COMPOUND)		DILI	JTION		CONC	C. (ug/L)	Q	
100-42-5	Styrene		<u> </u>		1	l	1.0			
127-18-4	Tetrachloroet	hene			1		1.0			
108-88-3	Toluene				1					
156-60-5	trans-1,2-Dicl	hioroethene			1		1.0			
10061-02-6	trans-1,3-Dic	trans-1,3-Dichloropropene			1		1	.0	υ	
79-01-6	Trichloroethene				1		1.0			
75-69-4	Trichlorofluoromethane				1	1.0			U	
75-01-4	Vinyl chloride				1			.0	U	
1330-20-7	Xylenes, total				1	2.0			U	
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND			RT EST. CONC. (CONC. (ug/L)	Q	
NOTICS	No TICs four	ıd						0.0	U_	
SYSTEM MOI	VITORING COM	IPOUND	ADDED (ug/L)	CON	C (ug/L)	% REC		QC LIMITS	Q	
1,2-Dichloroeth	nane-d4		25.0	2	4.2	97		66 - 137		
4-Bromofluoro			25.0	2	0.9	8	4	73 - 120		
Toluene-d8		· · · · · ·	25.0	2	2.6	9	0	71 ~ 126		
INTERNAL STANDARD		AREA	1	RT	REF A	AREA	REF RT	Q		
1,4-Dichlorobe	nzene-d4		349803	9	.86	604796		9.86		
1,4-Difluorobe	nzene		783829	5	.68	1263836		5.68		
Chlorobenzene	-d5		712004	7	.95	1129	2078	7.95	<u></u>	

^{*} Values outside of QC limits

Form 1

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-19

File ID:

<u>T9125.D</u>

Sampled:

04/22/10 09:30

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 19:45

SW-02S

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Sonus.	•	WIND		
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.9	
79-34-5	1,1,2,2-Tetrachloroethane	11	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	11	1.0	υ
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	11	1.0	U
75-35-4	1,1-Dichloroethene	1	1,0	U
120-82-1	1,2,4-Trichlorobenzene	11	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	VU)
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	11	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	u
78-87-5	1,2-Dichloropropane	1	1.0	<u>ט</u>
541-73-1	1,3-Dichlorobenzene	11	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	111	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	_1	5.0	U
71-43-2	Benzene	_1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	JU.
74-83-9	Bromomethane	1	1.0	∪ <i>\</i>
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chiorobenzene	11	1.0	U
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	υ
75-71-8	Dichlorodifluoromethane	1	1.0	υ
100-41-4	Ethylbenzene	. 1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	Ū
79-20-9	Methyl Acetate	11	1.0	U
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	Ŭ
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	ט

Form Rev: 11/23/09

230/1262

1-11/10

Form 1

ORGANIC ANALYSIS DATA SHEET

SW-02S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-19

File ID: T9125.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 19:45

04/22/10 09:30

5030B MS

Solids:	ids: Preparation: <u>5030B MS</u>			ln itial/Fi	inal:	5 mL / 5 mL				
Batch:	10D2681	Sequence:	T001752		Calibration	n;	R10D196		Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILU	TION		CON	C. (ug/L)	Q
100-42-5	Styrene					1 .			1.0	Ŭ
127-18-4	Tetrachloroeth	ene				1			1.0	U
108-88-3	Toluene				_	1			1.0	ับ
156-60-5	trans-1,2-Dich	trans-1,2-Dichloroethene			·	1		_	1.0	U
10061-02-6	trans-1,3-Dichloropropene				1			1.0	υ	
79-01-6	Trichloroethene				1 1.0			1.0	ט	
75-69-4	Trichlorofluoromethane				1 1.0			1.0	U	
75-01-4	Vinyl chloride				1			1.0	U	
1330-20-7	Xylenes, total					1			2.0	ט
CAS NO.	TENTATIVE	LY IDENTIFIED CO	OMPOUND			_	RT EST		CONC. (ug/L)	Q
NOTICS	No TICs found	il							0.0	U
SYSTEM MOI	NITORING COM	POUND	ADDED	(ug/L)	CONC	CONC (ug/L) % F		REC	QCLIMITS	Q
1,2-Dichloroeth	ane-d4		25.0	0	23	3.9	95		66 - 137	
4-Bromofluoro	penzene		25.0	0	20).6		33	73 - 120	
Toluene-d8			25.0	0	22	2.8	<u> </u>	1	71 - 126	
INTERNAL ST	ANDARD		ARE	ia _	F	T	REF	AREA _	REF RT	Q
1,4-Dichlorobe	nzene-d4		3528	28	9.	86	604796		9.86	
1,4-Difluorober	nzene		7940	89	5.68		1263836		5.68	
Chlorobenzene	-d5		7343	08	7.	95	1129078		7.95	

^{*} Values outside of QC limits

SW-03S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-18

File ID;

T9124.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 19:21

Solids:

04/22/10 09:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Bate	ch:
_	CAS

DD2681	Sequence:
OL MOTINE	

R10D196

Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	υ
79-00-5	1,1,2-Trichloroethane	1	1.0	ַ ַ ַ ַ
75-34-3	1,1-Dichloroethane	1	1.0	U
75-35-4	1,1-Dichloroethene	1	1.0	υ
120-82-1	1,2,4-Trichlorobenzene	1	1.0	บ
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	4 リブ
106-93-4	1,2-Dibromoethane	1	1.0	ט
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	U_
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	υ
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	υ
67-64-1	Acetone	1	5.0	U
71-43-2	Benzene	1	1.0	υ
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	- UJ
74-83-9	Bromomethane	1	1.0	10 16
75-15-0	Carbon disulfide	1	11.0	
56-23-5	Carbon Tetrachloride	1	1.0	_ប
108-90-7	Chlorobenzene	1	1.0	Ū
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	υ
156-59-2	cis-1,2-Dichloroethene	1	1.0	n
10061-01-5	cis-1,3-Dichloropropeле	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	1	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	ซ
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	ַט

SW-03S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-18

File ID:

T9124.D

Sampled:

Analyzed:

04/29/10 19:21

Solids:

04/22/10 09:00

Prepared:

04/28/10 14:44

Initial/Final:

Solids:		Prepa	ration:	5030B N	MS		Initial/Fi	nal:	5 mL / 5 mL	
Batch:	10D2681	Sequence:	T001752	_	Calibration):	R10D19	<u>6</u>	Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND				DILUTION CONG			C. (ug/L)	Q	
100-42-5	Styrene				1 1.0			.0	U	
127-18-4	Tetrachloroeth	ene]	<u> </u>	1.0			U
108-88-3	Toluene]			1	1.0	ש
156-60-5	trans-1,2-Dich	loroethene			1	l	<u> </u>		1.0	U
10061-02-6	trans-1,3-Dichloropropene			1	<u> </u>		1	0.1	U	
79-01-6	Trichloroethene]		1.0			U	
75-69-4	Trichlorofluoromethane]	<u> </u>	1.0			U	
75-01-4	Vinyl chloride				1	l		1	1.0	U
1330-20-7	Xylenes, total					<u> </u>		2	U	
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND			RT ES		EST.	CONC. (ug/L)	Q
NOTICS	No TICs found	I							0.0	U
SYSTEM MON	ITORING COM	POUND	ADDE	D (ug/L)	CONC	(ug/L)	%	REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		2	5.0	24	.0		96	66 - 137	
4-Bromofluorot	enzene		2	5.0	20	.7		83	73 - 120	
Toluene-d8			2	5.0	2.7	.7)1	71 - 126	
INTERNAL STANDARD		A`	REA	R	T	REF	AREA	REF RT	Q	
1,4-Dichlorober	nzene-d4		35:	5124	9.	86	604796		9.86	
1,4-Difluorober	zene		79	1540	5.	5.68		3836	5.68	<u> </u>
Chlorobenzene	d5		733	2293	7.	95	112	9078	7.95	1,,,,,

^{*} Values outside of QC limits

SW-04D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-09

File ID:

T9115.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 15:44

Solids:

04/21/10 12:35

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	rreparation. 303	OB M3	mitabi mai. 5 me / 5 me	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	11	1,0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	υ
79-00-5	1,1,2-Trichloroethane	1	1,0	<u> </u>
75-34-3	1,1-Dichloroethane	1	1.0	U
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	A 022
106-93-4	1,2-Dibromoethane	1	1.0	υ
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	ט
67-64-1	Acetone	1	5.0	U
71-43-2	Benzene	1	1.0	υ
75-27-4	Bromodichloromethane	_1	1.0	U
75-25-2	Bromoform	1	1.0	せい
74-83-9	Bromomethane	1	1.0	VY
75-15-0	Carbon disulfide	1	1.0	ט
56-23-5	Carbon Tetrachloride	1	1.0	υ
108-90-7	Chlorobenzene	1	1.0	U
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	Ŭ
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	11	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	1	1.0	U
100-41-4	Ethylbenzene	i	1.0	U
98-82-8	Isopropylbenzene	1	1,0	υ
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	ע
1634-04-4	Methyl-t-Butyl Ether (MTBE)	11	1.0	U

SW-04D

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-09

T9115.D File ID:

Analyzed:

04/29/10 15:44

Sampled:

04/21/10 12:35

Prepared:

04/28/10 14:44

Initial/Final:

Solids:		Prepar	ration:	5030B N	<u> 18</u>		Initial/F	nal:	5 mL / 5 mL	
Batch:	10D2681	Sequence:	T001752		Calibration	n:	R10D19	6	Instrument:	HP5975T
CAS NO.	COMPOUND				DILU	TION		CONC	. (ug/L)	Q
100-42-5	Styrene				1			.0	υ	
127-18-4	Tetrachioroeth	enc						<u></u>]	.00	ט
108-88-3	Toluene					<u> </u>		1	.0	U
156-60-5	trans-1,2-Dich	ans-1,2-Dichloroethene		_		<u>l</u>		1	.0	U
10061-02-6	trans-1,3-Dich	trans-1,3-Dichloropropene				<u> </u>	ļ	1	.0	บ
79-01-6	Trichloroethe	Trichloroethene				<u> </u>		1	U	
75-69-4	Trichlorofluoromethane				l		1	.0	U	
75-01-4	Vinyl chloride				<u> </u>			.0	U	
1330-20-7	Xylenes, total					<u>.</u>	2.0			U
CAS NO.	TENTATIVE	LY IDENTIFIED CO	OMPOUND			RT EST		EST.	CONC. (ug/L)	Q
NOTICS	No TICs foun	d							0.0	U
SYSTEM MO	NITORING COM	POUND	ADDED	(ug/L)	CONC	(ug/L)	%	REC	QC LIMITS	Q
1,2-Dichloroeth	nane-d4		25	.0	23	.6		94	66 - 137	
4-Bromofluoro	benzene		25	.0	21	.0		84	73 - 120	<u> </u>
Toluene-d8			25	.0	22	.9		92	71 - 126	
INTERNAL ST	INTERNAL STANDARD		AR	ea '	R	T	REF	AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		363	793	9.	86	604796		9.86	
1,4-Difluorobe	nzene		836	650	5.	68	120	3836	5.68	
Chlorobenzene	-d5		7480	658	7.	95	112	9078	7.95	<u> </u>

^{*} Values outside of QC limits

SW-04S

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.F.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-08

File ID:

T9114.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 15:20

Solids:

04/21/10 11:05

Preparation:

5030B MS

Initial/Final:

<u>5 mL/5 mL</u>

Solids:	Preparation:	<u> 5030B MS</u>	midal/Final: 5 mL/5 inL	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	υ
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	l	1.0	U
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	υ
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	υ
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	<u>U</u>
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	U
71-43-2	Benzene	1	1.0	· U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	TU UT
74-83-9	Bromomethane	1	1.0	ゼル
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	1.0	U
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	ט
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1,0	บ
75-71-8	Dichlorodifluoromethane	1	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acctate	1	1.0	U
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	U

Form Rev: 11/23/09

172/1262

SW-04S

8260B

Laboratory:

TestAmerica Buffalo

New York State D.E.C. - Albany, NY

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client: Matrix:

Project:

T9114,D

Ground Water

Laboratory ID:

RTD1782-08

File ID:

Sampled:

04/21/10 11:05

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 15:20

Solids:		Prepa	ration:	5030B	MS		Initial/Fi	nal:	5 mL / 5 mL	
Batch:	10D2681	Sequence:	<u>T001752</u>		Calibration	Ľ	R10D19	<u>5</u>	Instrument:	HP5975T
CAS NO.	COMPOUND				DILU	TION		CON	C. (ug/L)	Q
100-42-5	Styrene					l			1.0	U
127-18-4	Tetrachloroeth	епе			1	<u>.</u>			1.0	Ŭ
108-88-3	Toluene				1	1 1.0			U	
156-60-5	trans-1,2-Dich	rans-1,2-Dichloroethene			1	l			1.0	U
10061-02-6	trans-1,3-Dich	trans-1,3-Dichloropropene			:	l		1	1.0	U
79-01-6	Trichloroether	Trichloroethene			1	1		1.0		
75-69-4	Trichlorofluoromethane				L			1.0	υ	
75-01-4	Vinyl chloride	Vinyl chloride				l			1.0	U
1330-20-7	Xylenes, total					<u> </u>	<u> </u>	2.0		
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND			RT EST. CON		. CONC. (ug/L)	Q	
NOTICS	No TICs found	1					0.0		0.0	Ŭ
SYSTEM MON	IITORING COM	POUND	ADDE	O (ug/L)	CONC	(ug/L)	%1	REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		2	5.0	23	.8	9)5	66 - 137	
4-Bromofluorob	enzene		2	5.0	21	.0	8	4	73 - 120	
Toluene-d8			2.	5.0	22	2.2		9	71 - 126	
	INTERNAL STANDARD		Al	REA	R	T	REF	AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		36	3653	9.	86	604	796	9,86	
1,4-Difluorober	izene		832	2546	5.	68	126	3836	5.68	
Chlorobenzene-	d5		750	5286	7.	95	112	9078	7.95	<u></u>

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-14

File ID;

V2340.D

Sampled:

01/01/10 15:56

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04;53

Solids:

<u>04/21/10 15:50</u>

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326 Sequence: <u>T001853</u>	Calibration:	R10E011 Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.4	Ū
95-95-4	2,4,5-Trichlorophenol	1	24	ע
88-06-2	2,4,6-Trichlorophenol	1	9.4	U
120-83-2	2,4-Dichlorophenol	1	9.4	U
105-67-9	2,4-Dimethylphenol	1	9.4	υ
51-28-5	2,4-Dinitrophenol	1	47	υ
121-14-2	2,4-Dinitrotoluene	1	9.4	U _
606-20-2	2,6-Dinitrotoluene	1	9.4	υ
91-58-7	2-Chloronaphthaiene	1	9.4	υ
95-57-8	2-Chlorophenol	1	9.4	ט
91-57-6	2-Methylnaphthalene	1	9.4	ט
95-48-7	2-Methylphenol	1	9.4	υ
88-74-4	2-Nitroaniline	1	47	U
88-75-5	2-Nitrophenol	1	9.4	U
91-94-1	3,3'-Dichlorobenzidine	1	19	U
99-09-2	3-Nitroaniline	1	47	U
534-52-1	4,6-Dinitro-2-methylphenol	1	47	U
101-55-3	4-Bromophenyl phenyl ether	1	9.4	U
59-50-7	4-Chloro-3-methylphenol	1	9.4	U
106-47-8	4-Chloroaniline	1	9.4	U
7005-72-3	4-Chlorophenyl phenyl ether	1	9,4	U
106-44-5	4-Methylphenol	1	4.7	บ
100-01-6	4-Nitroaniline	1	47	U
100-02-7	4-Nitrophenol	1	47	U
83-32-9	Acenaphthene	1	9,4	U
208-96-8	Acenaphthylene	1	9.4	U
98-86-2	Acetophenone	1	9,4	U
120-12-7	Anthracene	1	9,4	U
1912-24-9	Atrazine	1	9.4	40
100-52-7	Benzaldehyde	1	47	U
56-55-3	Benzo(a)anthracene	1	9.4	U
50-32-8	Benzo(a)pyrene	1	9.4	U
205-99-2	Benzo(b)fluoranthene	1	9.4	U
191-24-2	Benzo(ghi)perylene	1	9.4	U
207-08-9	Benzo(k)fluoranthene	1	9.4	U
92-52-4	Biphenyl	1	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	1	9.4	U
111-44-4	Bis(2-chloroethyl)ether	1	9.4	υ
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.4	υ

Form Rev: 11/23/09

617/1262

 $\exp \int \int \int \int d^3x \, dx \, dx$

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-14

V2340.D File ID:

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 04:53

04/21/10 15:50

Prepared:

lids:		Preparation: 351	IOC MB	Initial/Fir	nal: 1060 mL / 1 ml	يا	
tch:	10D2326 Sequence	T001853	Calibration:	R10E011	Instrument:	HP5973V	
CAS NO.	COMPOUND		DILUTION		CONC. (ug/L)	Q	
85-68-7	Butyl benzyl phthalate		11		9.4	U	
105-60-2	Caprolactam		1		9.4	U	
86-74-8	Carbazole		1		4.7	U	
218-01-9	Chrysene		1		9.4	U	
53-70-3	Dibenzo(a,h)anthracene		1		9,4	U	
132-64-9	Dibenzofuran		1		9.4	U	
84-66-2	Diethyl phthalate		1		9.4	บบ	
131-11-3	Dimethyl phthalate		11		9.4	U	
84-74-2	Di-n-butyl phthalate		1		9,4	บ	
117-84-0	Di-n-octyl phthalate		1		9.4	U	
206-44-0	Fluoranthene		1		9.4	υ	
86-73-7	Fluorene		1		9.4	U_	
118-74-1	Hexachlorobenzene		1		9.4	υ	
87-68-3	Hexachlorobutadiene		1		9.4	ַַ	
77-47-4	Hexachlorocyclopentadiene		1		9.4	Ŭ	
67-72-1	Hexachioroethane		1		9.4	U	
193-39-5	Indeno(1,2,3-cd)pyrene	<u> </u>	1		9.4	υ	
78-59-1	Isophorone		1		9.4	บ	
91-20-3	Naphthalene		1		9.4	U	
98-95-3	Nitrobenzene		1		9.4	U	
621-64-7	N-Nitrosodi-n-propylamine		1		9.4	υ	
86-30-6	N-Nitrosodiphenylamine		1		9.4	υ_	
87-86-5	Pentachlorophenol		1		47		
85-01-8	Phenanthrene		1		9.4		
108-95-2	Phenol		1		9.4	U_	
129-00-0	Pyrene		1		9.4	U	
CAS NO.	TENTATIVELY IDENTIFI	ED COMPOUND		R'T	EST. CONC. (ug/L)	Q	
none	Unknown01		1	1.605	13		
none	Unknown02		1	1.638	7.1		
попе	Unknown03		1	2.487	6.3		
none	Unknown04		1	2.519	26		
none	Unknown05		1	2.653	72		
none	Unknown06			3.304	13		
none	Unknown07			3.347	22		
none	Unknown08			3.368	18		
none	Unknown09			13.47	41		
noné	Unknown10			3.748	7.5		
				2000	, ,,,,	1	
none	Unknown11 Unknown12			4.058 14.08	40		

Form Rev: 11/23/09

MW-03

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-14

File ID: <u>V2340.D</u>

Sampled:

Prepared:

04/25/10 08:00

· Analyzed:

05/06/10 04:53

Solids:

04/21/10 15:50

Preparation:

3510C MB

Initial/Final:

1060 mL/1 mL

SOHO,		, .cpu.	<u> </u>						
Batch;	10D2326	Sequence:	T001853	Calibratio	n:	R10E011		Instrument:	<u>HP5973V</u>
CAS NO.	TENTATIVE	Y IDENTIFIED CO	MPOUND		F	T .	EST. C	CONC. (ug/L)	Q
none	Unknown14				14.6	02		7.6	
none	Unknown15				14.7	68		71	<u> </u>
none	Unknown16				14.	79		32	<u> </u>
none	Unknown17				15.5	21		7.1	ļ
попе	Unknown 18				15.5	53		15	
none	Unknown19	m19			15.5	96		18	<u> </u>
none	Unknown20			16.		53		8.4	<u> </u>
SYSTEM MON	ITORING COM	POUND	ADDED (ug/L)	CONC	C (ug/L)	% REC	: 1	QC LIMITS	Q
2,4,6-Tribromo	phenol		142	1	23	87		52 - 132	
2-Fluorobiphen			94.3	6	6.2	70		48 - 120	
2-Fluorophenol			142	4	6.0	33		20 - 120	<u> </u>
Nitrobenzene-di	5		94.3	5	9.4	63		46 - 120	
Phenol-d5			142	3	6.4	26	$-\downarrow$	16 - 120	
p-Terphenyl-dl	4		94.3	. 5	6.5	60		24 - 136	<u> </u>
INTERNAL ST	ANDARD		AREA	<u> </u>	RT	REF ARI	EA	REF RT	<u>Q</u>
1,4-Dichlorober	nzene-d4		75576	5	.68	106427	,	5.68	
Acenaphthene-c	110		169428	9	.69	242116	5	9,69	<u> </u>
Chrysene-d12			395398		3.88	550990	5	13.88	<u> </u>
Naphthalenc-d8	<u> </u>		280915	7	.41	393137	7	7.41	
Perylene-d12			332351	1:	5.13	47422	7	15.13	
Phenanthrene-d	10		313999	1	1.4	44952	2	11.4	

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

Calibration:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

T001853

RTD1782-13

File ID:

V2339,D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04:28

Solids:

04/21/10 15:00

Preparation:

Initial/Final:

R10E011

1060 mL/1 mL

Instrument:

Batch:

10D2326

Sequence:

3510C MB

HP5973V

Batch:	1001633	Cantilauon.	KIOEOII matunent.	111 32 13 1
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.4	U
95-95-4	2,4,5-Trichlorophenol	1	24	U
88-06-2	2,4,6-Trichlorophenol	1	9,4	U
120-83-2	2,4-Dichlorophenol	1	9.4	ט י
105-67-9	2,4-Dimethylphenol	1	9.4	U
51-28-5	2,4-Dinitrophenol	11	47	υ
121-14-2	2,4-Dinitrotoluene	1	9.4	ט
606-20-2	2,6-Dinitrotoluene	1	9.4	U
91-58-7	2-Chloronaphthalene	1	9.4	U
95-57-8	2-Chlorophenol	1	9.4	ט
91-57-6	2-Methylnaphthalene	1	9.4	ט
95-48-7	2-Methylphenol	1	9.4	ט
88-74-4	2-Nitroaniline	11	47	ט
88-75-5	2-Nitrophenol	1	9.4	ט
91-94-1	3,3'-Dichlorobenzidine	1	19	U
99-09-2	3-Nitroaniline	1	47	บบ
534-52-1	4,6-Dinitro-2-methylphenol	11	47	U
101-55-3	4-Bromophenyl phenyl ether	1	9,4	U
59-50-7	4-Chloro-3-methylphenol	1	9,4	U
106-47-8	4-Chloroaniline	1,	9.4	
7005-72-3	4-Chlorophenyl phenyl ether	1	9.4	U
106-44-5	4-Methylphenol	11	4.7	U
100-01-6	4-Nitroaniline	1	47	u
100-02-7	4-Nitrophenol	1	47	U
83-32-9	Acenaphthene	1	9.4	U
208-96-8	Acenaphthylene	1	9.4	<u> </u>
98-86-2	Acetophenone	1	9.4	U
120-12-7	Anthracene	1	9.4	U
1912-24-9	Atrazine	1	9.4	-tr UJ
100-52-7	Benzaldehyde	1	47	U
56-55-3	Benzo(a)anthracene	11	9.4	U
50-32-8	Benzo(a)pyrene	1	9.4	U
205-99-2	Benzo(b)fluoranthene	<u> </u>	9.4	υ
191-24-2	Benzo(ghi)perylene	11	9.4	U
207-08-9	Benzo(k)fluoranthene	1	9.4	U
92-52-4	Biphenyl	1	9.4	U
111-91-1	Bis(2-chloroethoxy)methane	1	9.4	U
111-44-4	Bis(2-chloroethyl)ether	11	9.4	U
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.4	υ

Form Rev: 11/23/09

589/1262

W///r

MW-04

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-13

File ID:

V2339.D

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 04:28

04/21/10 15:00

Prepared:

3510C MB

Initial/Final:

1060 mL / 1 mL

Preparation: 351	<u>10C MB</u>	Initial/Final:	<u>1060 mL/1 mL</u>	:
10D2326 Sequence: <u>T001853</u>	Calibration:	R10E011	Instrument:	HP5973V
	DILUTION		CONC. (ug/L)	Q
	11		9.4	υ
	1		9.4	U U
	11		4.7	U
	1		9.4	ַ
 	1		9.4	U
	1		9.4	U
	1		9.4	U
	1		9.4	U
	1		9.4	υ
	1		9.4	บ
	1		9.4	U
	1		9.4	υ
			9.4	U
			9.4	U
			9.4	U
			9.4	ַ ט
			9.4	
				บ
				U
				U
				U
				U
	_ 			υ
		-		U
				U
				ט
		PT		Q
TENTATIVELY IDENTIFIED COMPOUND				
Unknown01				
Unknown02				
· · · · · · · · · · · · · · · · · · ·				
	-			
				
1 LINKNOWN I I				
Unknown12		14.079	15	
· · · · · · · · · · · · · · · · · · ·	COMPOUND Butyl benzyl phthalate Caprolactam Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Din-butyl phthalate Din-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene TENTATIVELY IDENTIFIED COMPOUND Unknown01	DD2326 Sequence: T001853 Calibration:	DD2326 Sequence: T001853 Calibration: R10E011	DD2326 Sequence: T001853 Calibration: R10E011 Instrument:

Form Rev: 11/23/09

590/1262

MW-04

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-13

File ID:

V2339.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04:28

Solids:

04/21/10 15:00

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Solias:		г гера:	anon: <u>3310C tv</u>	Ш		пппареша	4.	TOOU THE / 1 THE	
Batch:	10D2326	Sequence:	T001853	Calibratio	n;	R10E011		Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		I	RT .	EST.	CONC. (ug/L)	Q
none	Unknown14			14.60		03		7.9	
none	Unknown15				14.	76		52	
none	Unknown16				14.7	95		51	
none	Unknown17				14.	91		40	
none	Unknown18				15.5	54	_	12	·
none	Unknown19		~_ ~~ , ~ ,		15.5	96		13	
none	Unknown20				16.6	33		5.1	
SYSTEM MOI	NITORING COM	(POUND	ADDED (ug/L)	CONG	(ug/L)	% RE	C	QC LIMITS	Q
2,4,6-Tribromo	phenol		142	1	18	84		52 - 132	
2-Fluorobiphen	ıyl		94.3	5	8.2	62		48 - 120	
2-Fluorophenol	<u> </u>		142	3	8.4	27		20 - 120	
Nitrobenzene-c	15		94.3	4	8.9	52		46 - 120	
Phenol-d5			142	3	2.7	23		16 - 120	
p-Terphenyl-dl	14		94.3	5	8.2	62		24 - 136	
INTERNAL S	FAN DARD		AREA	I	et	REF A	ŒA	REF RT	Q
1,4-Dichlorobe	nzene-d4		69810	5	.68	10642	27	5.68	
Acenaphthene-	d10		161724	9	.69	2421	16	9.69	
Chrysene-d12			363389	13	.88	55099	96	13.88	
Naphthalene-d	8		263131	7	.41	3931	37	7.41	
Perylene-d12			310948	15	5.13	4742	27	15.13	
Phenanthrene-o	110		294841	1	1.4	4495	22	11.4	

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-12

File ID:

V2338.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04:03

Solids:

04/21/10 13:45

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326 Sequence:	T001853	Calibration:	R10E011 Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND		DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	_	1	9.4	U
95-95-4	2,4,5-Trichlorophenol		1	24	υ
88-06-2	2,4,6-Trichlorophenol		1	9.4	U
120-83-2	2,4-Dichlorophenol		1	9.4	ט
105-67-9	2,4-Dimethylphenol	-	1	9,4	U
51-28-5	2,4-Dinitrophenol	•	1	47	U
121-14-2	2,4-Dinitrotoluene		1	9.4	บ
606-20-2	2,6-Dinitrotoluene		1	9.4	U
91-58-7	2-Chloronaphthalene		1	9.4	υ
95-57-8	2-Chlorophenol		1	9,4	υ
91-57-6	2-Methylnaphthalene			9.4	U
95-48-7	2-Methylphenol		1	9.4	U
88-74-4	2-Nitroaniline		1	47	υ
88-75-5	2-Nitrophenol		1	9.4	υ
91-94-1	3,3'-Dichlorobenzidine		1	19	U
99-09-2	3-Nitroaniline		1	47	U
534-52-1	4,6-Dinitro-2-methylphenol	<u></u>	. 1	47	U
101-55-3	4-Bromophenyl phenyl ether		1	9.4	U
59-50-7	4-Chloro-3-methylphenol		1	9.4	U
106-47-8	4-Chloroaniline		1	9,4	U
700 5-72-3	4-Chlorophenyl phenyl ether		1	9,4	U
106-44-5	4-Methylphenol		1	4.7	U
100-01-6	4-Nitroaniline		1	47	U
100-02-7	4-Nitrophenol		1	47	U
83-32-9	Acenaphthene		11	9.4	U
208-96-8	Acenaphthylene		1	9.4	U
98-86-2	Acetophenone		1	9.4	U
120-12-7	Anthracene		1	9.4	ט
1912-24-9	Atrazine		1	9.4	יט ער
100-52-7	Benzaldehyde		1	47	U
56-55-3	Benzo(a)anthracene		11	9,4	U
50-32-8	Benzo(a)pyrene		1	9.4	U
205-99-2	Benzo(b)fluoranthene		1	9.4	ט
191-24-2	Benzo(ghi)perylene		1	9.4	U
207-08-9	Benzo(k)fluoranthene		1	9,4	U
92-52-4	Biphenyl		1	9.4	U
111-91-1	Bis(2-chloroethoxy)methane		1	9.4	U
111-44-4	Bis(2-chloroethyl)ether		1	9.4	ט
117-81-7	Bis(2-ethylhexyl) phthalate		1	9.4	υ

Form Rev: 11/23/09

561/1262

er Ille

MW-16

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-12

File ID:

V2338,D

Sampled;

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04:03

04/21/10 13:45

lolids:	Prep	paration: 35	10C MB	Initial/Fin	al: <u>1060 mL/1 m</u>	<u>L</u>
Batch:	10D2326 Sequence:	T001853	Calibration:	<u>R10E011</u>	Instrument:	HP5973V
CAS NO.	COMPOUND		DILUTION		CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate		1		9.4	U
105-60-2	Caprolactam		1		9.4	บ
86-74-8	Carbazole		1		4.7	U
218-01-9	Chrysene		1		9.4	U
53-70-3	Dibenzo(a,h)anthracene		1		9,4	U
132-64-9	Dibenzofuran		1		9,4	U
84-66-2	Diethyl phthalate		1		9.4	บ
131-11-3	Dimethyl phthalate	,	1		9.4	U
84-74-2	Di-n-butyl phthalate				9.4	Ŭ [.]
117-84-0	Di-n-octyl phthalate				9,4	U
206-44-0	Fluoranthene				9.4	U
86-73-7	Fluorene				9.4	U
118-74-1	Hexachlorobenzene		1		9.4	U_
87-68-3	Hexachlorobutadiene		1		9.4	U
77-47-4	Hexachlorocyclopentadiene		1		9.4	U
67- 72-1	Hexachloroethane		1		9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene		1		9.4	U
78-59-1	Isophorone	<u>,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,</u>	1		9.4	U
91-20-3	Naphthalene		1	1	9.4	U
98-95-3	Nitrobenzene		1		9,4	U
621-64-7	N-Nitrosodi-n-propylamine		1		9.4	Ū
86-30-6	N-Nitrosodiphenylamine		1			บ
87-86-5	Pentachlorophenol		1			U
85-01-8	Phenanthrene		1		47 9.4	ט
108-95-2	Phenol		1		9.4	Ū
129-00-0	Pyrene		- - - - - - - - - - 		9,4	U
CAS NO.	TENTATIVELY IDENTIFIED	COMPOUND		RT	EST. CONC. (ug/L)	Q
000134-62-3	Diethyltoluamide			10.195	12	
допе	Unknown01	· · · · · · · · · · · · · · · · · · ·		11.616	6.9	
none	Unknown02			11.637	3.8	
none	Unknown03			12.519	15	
попе	Unknown04			12.647	32	
none	Unknown05			13.304	7.6	
none	Unknown06			13.34	15	
none	Unknown07			13.37	11	
none	Unknown08			13.465	33	
none	Unknown09			13.491	50	
none	Unknown10	· · · · · · · · · · · · · · · · · · ·		13.748	4.8	
none	Unknown 1			14.079	63	
none	Unknown12		562/1262	14,191	24	l

Form Rev: 11/23/09

562/1262

MW-16

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-12

File ID:

<u>V2338.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 04:03

Solids:

04/21/10 13:45

Preparation:

Initial/Final:

Solids:		Prepar	ation: <u>35</u>	10C M	В		Initial/Fin	al:	1060 mL/1 mL	
Batch:	10D2326	Sequence:	T001853	C	alibratio	n:	R10E011		Instrument:	HP5973V
CAS NO.	TENTATIVE	Y IDENTIFIED CO	MPOUND	UND		RT EST. CONC. (ug/L)		Q		
none	Unknown13					14.2	71		3.9	
none	Unknown14					14.597			4.3	<u> </u>
попе	Unknown15					14.763			14	<u> </u>
none	Unknown16					14.7	95		22	<u></u>
. none	Unknown17					15.5	16		3,8	
none	Unknown18					15.5	53		8.5	
none	Unknown19					15.5	96		10	
SYSTEM MON	ITORING COM	POUND	ADDED (ug	/L)	CONC	(ug/L)	% R	EC	QC LIMITS	Q
2,4,6-Tribromop	henol		142]	20	8:	5	52 - 132	
2-Fluorobipheny	1	·	94.3		51	3.6	62	2	48 - 120	
2-Fluorophenol			142		4).2	25	3	20 - 120	
Nitrobenzene-d5			94.3		5	3.1	50	5	46 - 120	
Phenol-d5			142		3	2.8	2:	3	16 - 120	
p-Terphenyl-d14	<u> </u>	····	94.3		6).5	64		24 - 136	
INTERNAL ST.	ANDARD		AREA		F	T	REF A	REA	REF RT	Q
1,4-Dichloroben	zene-d4		72664		5.	68	1064	127	5,68	
Acenaphthene-d	10		169878		9	69	242	116	9.69	
Chrysene-d12			385152		13	.88	550	996	13.88	
Naphthalene-d8			277142		7.	4]	393	137	7.41	<u></u>
Perylene-d12			324201		15	.13	474	227	15.13	
Phenanthrene-di	.0		308114		1	1.4	449	522	11.4	<u>L</u>

^{*} Values outside of QC limits

DUP-2

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-17

File ID: V2343.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06:07

04/21/10 00:00

Solids:		Prep	aration;	3510C N	<u> 1B</u>	Initial/Final:	1060 mL/1 m	<u>L</u>
Batch:	10D2326	Sequence:	T001853		Calibration:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND)			DILUTION	co	NC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-	-Chloropropane)			1		9.4	ט
95-95-4	2,4,5-Trichlor	rophenol			1		24	υ
88-06-2	2,4,6-Trichlor	rophenol			1		9.4	υ
120-83-2	2,4-Dichlorop	henol			1		9.4	U
105-67-9	2,4-Dirnethyl	phenol			1		9.4	<u>u</u>
51-28-5	2,4-Dinitroph	enol			1		47	U
121-14-2	2,4-Dinitrotol	luene			11		9.4	U
606-20-2	2,6-Dinitrotol	luene			1		9.4	U
91-58-7	2-Chloronaph	thalene			1		9.4	U
95-57-8	2-Chlorophen	юl			1		9.4	υ
91-57-6	2-Methylnaph	nthalene			1		9.4	U
95-48-7	2-Methylpher	aol			11		9.4	U
88-74-4	2-Nitroaniline	В			1		47	U
88-75-5	2-Nitropheno	1			1		9.4	U
91-94-1	3,3'-Dichloro	benzidine	<u> </u>		1		19	U
99-09-2	3-Nitroaniline	e			1		47	υ
534-52-1	4,6-Dinitro-2	-methylphenol			1	-,,	47	U
101-55-3	4-Bromophen	yl phenyl ether			1		9.4	U
59-50-7	4-Chloro-3-m	nethylphenol	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		9.4	UU
106-47-8	4-Chloroanili	ne			1		9.4	U U
7005-72-3	4-Chlorophen	ıyl phenyl ether			1		9.4	Ŭ
106-44-5	4-Methylpher	nol	,		1		4.7	<u>U</u>
100-01-6	4-Nitroaniline	e			11		47	U
100-02-7	4-Nitropheno	1			1		47	U
83-32-9	Acenaphthen	е			1		9.4	U
208-96-8	Acenaphthyle	ene	- <u></u>		1		9.4	U
98-86-2	Acetophenon	e	······································		11		9.4	U
120-12-7	Anthracene		··		1		9.4	U
1912-24-9	Atrazine				1		9.4	405
100-52-7	Benzaldehyd	e			1		47	<u> </u>
56-55-3	Benzo(a)anth	тасепе			11		9.4	ע
50-32-8	Benzo(a)pyre	ene	,		11		9.4	U
205-99-2	Benzo(b)fino	ranthene			11		9.4	Ü
191-24-2	Benzo(ghi)pe				11	<u></u>	9.4	U
207-08-9	Benzo(k)fluo	ranthene			1		9.4	U
92-52-4	Biphenyl		·		1		9.4	U
111-91-1		ethoxy)methane			11		9.4	Ü
111-44-4	Bis(2-chloroe				1	, ,	9.4	U
117-81-7	Bis(2-ethylhe	xyl) phthalate			<u> </u>		9.4	U

Form Rev: 11/23/09

701/1262

8270C

DUP-2

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-17

File ID:

V2343,D

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 06:07

04/21/10 00:00

Prepared:

Solids:	Ртер	aration: 3	510C MB	Initia	al/Final: 1060 mL	/1 mL
Batch:	10D2326 Sequence:	<u>T001853</u>	Calibration	<u>R10</u>	E011 Instrume	nt: <u>HP5973V</u>
CAS NO.	COMPOUND		DILU"	TION	CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate		1		9.4	U
105-60-2	Caprolactam		1		9.4	U
86-74-8	Carbazole		1		4.7	U
218-01-9	Chrysene		1		9.4	U
53-70-3	Dibenzo(a,h)anthracene		1		9.4	υ
132-64-9	Dibenzofuran		1		9.4	U
84-66-2	Diethyl phthalate		1		9.4	U
<u>131-11-3</u>	Dimethyl phthalate		1		9.4	Ŭ
84-74-2	Di-n-butyl phthalate		1		9,4	U
117-84-0	Di-n-octyl phthalate		1		9.4	U
206-44-0	Fluoranthene		1		9.4	U
86-73-7	Fluorene		1		9.4	U
118-74-1	Hexachlorobenzene		1		9.4	ט
87-68-3	Hexachlorobutadiene		1		9,4	U
77-47-4	Hexachlorocyclopentadiene		1		9.4	U
67-72-1	Hexachloroethane		1		9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene		1		9.4	υ
78-59-1	Isophorone		I		9.4	υ
91-20-3	Naphthalene		_ 1		9.4	U
98-95-3	Nitrobenzene		1		9,4	υ
621-64-7	N-Nitrosodi-n-propylamine		1		9.4	U
86-30-6	N-Nitrosodiphenylamine		1		9.4	U
87-86-5	Pentachlorophenol		1		47	· U
85-01-8	Phenanthrene		1		9,4	U
108-95-2	Phenol		1		9.4	U
129-00-0	Pyrene		1		9.4	U
CAS NO.	TENTATIVELY IDENTIFIED C	OMPOUND		RT	EST, CONC. (u	g/L) Q
none	Unknown01			11.605	13	
none	Unknown02			11.638	7.1	
none	Unknown03			12.519	28	
none	Unknown04			12.653	72	
поле	Unknown05			13.304	13	
none	Unknown06			13,347	21	
none	Unknown07			13.374	18	
none	Unknown08			13.465	50	
none	Unknown09			13.748	7.2	
none	Unknown10			14.058	40	
none	Unknown11			14.079	19	
лопе	Unknown12			14.191	37	
none	Unknown13		702/1262	14.741	21	

Form Rev: 11/23/09

702/1262

DUP-2

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

File ID:

RTD1782-17

V2343.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06:07

Solids:

04/21/10 00:00

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

SOMUS.		rtepai	ation. <u>3310C M</u>	<u>115</u>		Truirdats I. ma	1.	1000 mc / 1 mc	
Batch:	10D2326	Sequence:	T001853	Calibration	n:	R10E011		Instrument:	<u>HP5973V</u>
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		1	RT	EST.	CONC. (ug/L)	Q
none	Unknown14				14.7	763		43	
none	Unknown15				14.7	14.795		62	
none	Unknown16				14.9	912		56	
none	Unknown17				15.5	521		7.3	
none	Unknown18				15.5	553		15	
none	Unknown19				15.5	596		18	<u> </u>
none	Unknown20				16.6	533		9.6	
SYSTEM MOI	NITORING COM	POUND	ADDED (ug/L)	CONC	(ug/L)	% RE	C	QC LIMITS	Q
2,4,6-Tribromo	phenol		142	1	38_	98		52 - 132	
2-Fluorobipher	yl		94.3	7:	2.0	76		48 - 120	
2-Fluorophenol	<u> </u>		142	5:	5.8	39		20 - 120	
Nitrobenzene-d	15		94.3	6	8.3	72		46 - 120	
Phenol-d5			142	4	4.5	31		16 - 120	
p-Terphenyl-dl	4		94.3	7	1.7	76		24 - 136	
INTERNAL S'	FANDARD		AREA	I	RT.	REF AJ	XEA	REF RT	Q
1,4-Dichlorobe	nzene-d4		72775	5.	.68	10642	27	5.68	
Acenaphthene	d10		169235	9	.69	2421	16	9.69	
Chrysene-d12			386228	13	.88	5509	96	13.88	
Naphthalene-d	8		275222	7	41	3931	37	7.41	
Perylene-d12			326460	15	.13	4742	27	15.13	
Phenanthrene-	110		313154	1	1.4	4495	22	11.4	ł

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-16

File ID:

V2342.D

Sampled:

04/01/10 14.55

Prepared:

<u>04/25/10 08:00</u>

Analyzed:

05/06/10 05:43

Solids:

04/21/10 14:55

Preparation:

3510C MB

Initial/Final:

1060 mL/1 mL

Solids:		г тер а	aration:	351UC M	IB	mmavrmat.	TOO INC / LITE	L
Batch:	10D2326	Sequence:	T001853		Calibration:	R10E011	Instrument:	<u>HP5973 V</u>
CAS NO.	COMPOUND				DILUTION	CC	NC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-	-Chloropropane)			1		9.4	U
95-95-4	2,4,5-Trichlor	ophenol			1		24	U
88-06-2	2,4,6-Trichlor	ophenol			1		9.4	U
120-83-2	2,4-Dichloroph	henol			1		9.4	U U
105-67-9	2,4-Dimethylp	henol			1		9.4	U
51-28-5	2,4-Dinitrophe	enol			1		47	ט
121-14-2	2,4-Dinitrotoh	uene			11		9.4	ט
606-20-2	2,6-Dinitrotoli	иеле			1		9.4	U
91-58-7	2-Chloronapht	thalene			11		9.4	υ
95-57-8	2-Chlorophene	ol			1		9.4	U
91-57-6	2-Methylnaph	thalene			11		9.4	U
95-48-7	2-Methylphen	ol			1		9.4	U
88-74-4	2-Nitroaniline				1		47	U
88-75-5	2-Nitrophenol	·			1		9.4	บ
91-94-1	3,3'-Dichlorob	oenzidine			11		19	υ
99-09-2	3-Nitroaniline				1		47	U
534-52-1	4,6-Dinitro-2-	methylphenol			1		47	U
101-55-3	4-Bromophen	yl phenyl ether			1		9.4	U
59-50-7	4-Chloro-3-m	ethylphenol			1	_	9.4	U
106-47-8	4-Chloroanilir	ne			1		9.4	U
7005-72-3	4-Chlorophen	yl phenyl ether	· · · · · · · · · · · · · · · · · · ·		1		9.4	Ŭ
106-44-5	4-Methylphen	iol		·	1		4.7	U
100-01-6	4-Nitroaniline	;		<u> </u>	1		47	ַט
100-02-7	4-Nitrophenol				1		47	U
83-32-9	Acenaphthene				1		9.4	U
208-96-8	Acenaphthyle	ne			1		9.4	U
98-86-2	Acetophenone	e			11		9.4	U
120-12-7	Anthracene				11		9.4	U
1912-24-9	Atrazine				1		9.4	<u> </u>
100-52-7	Benzaldehyde	·			1		47	<u> </u>
56-55-3	Benzo(a)anthi	racene	· · · · · · ·		. 1		9.4	ַ
50-32-8	Benzo(a)pyrei	ne			1		9.4	U
205-99-2	Benzo(b)fluor	ranthene			1		9.4	U
191-24-2	Benzo(ghi)per	rylene			1		9,4	U
207-08-9	Benzo(k)fluor	ranthene	· · · ·		1 .		9.4	U
92-52-4	Biphenyl				1	.	9.4	U
111-91-1	Bis(2-chloroe	thoxy)methane			11		9.4	U
111-44-4	Bis(2-chloroe	thyl)ether			1		9.4	U
117-81-7	Bis(2-ethylhe				1		9.4	U

Form Rev: 11/23/09

673/1262

V-11/10

SW-01D

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-16

File ID:

<u>V2342,D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 05:43

Solids:

04/21/10 14:55

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

SOHOS:	Preparation: 33	TOC WIR	tinuan-mar:	1000 mL / (m)	2
Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	R10E011	Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTION	CC	NC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.4	U
105-60-2	Caprolactam	1		9.4	U
86-74-8	Carbazole	1		4.7	U
218-01-9	Chrysene	1		9.4	U
53-70-3	Dibenzo(a,h)anthracene	1		9.4	U
132-64-9	Dibenzofuran	1		9,4	U
84-66-2	Diethyl phthalate	1		9.4	U
131-11-3	Dimethyl phthalate	1		9.4	U
84-74-2	Di-n-butyl phthalate	1		9.4	บ
117-84-0	Di-n-octyl phthalate	1		9.4	U
206-44-0	Fluoranthene	1		9.4	υ
86-73-7	Fluorene	1	1	9.4	U
118-74-1	Hexachlorobenzene	1		9.4	ט
87-68-3	Hexachlorobutadiene	1		9.4	υ
77-47-4	Hexachlorocyclopentadiene	1		9.4	U
67-72-1	Hexachloroethane	1		9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1		9.4	U
78-59-1	Isophorone	1		9.4	U
91-20-3	Naphthalene	1		9.4	U
98-95-3	Nitrobenzene	1		9.4	υ
621-64-7	N-Nitrosodi-n-propylamine	1		9.4	υ
86-30-6	N-Nitrosodiphenylamine	1	 	9.4	ט
87-86-5	Pentachlorophenol	1		47	U
85-01-8	Phenanthrene	1		9.4	U
108-95-2	Phenol	1		9.4	U
129-00-0	Pyrene	1		9,4	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT E	ST. CONC. (ug/L)	Q
none	Unknown01	11	.606	14	
none	Unknown02	1	1.64	7.8	
none	Unknown03	12	.487	7.7	
none	Unknown04	12	.519	29	
попе	Unknown05	1:	2.65	74	.
none	Unknown06	13	.304	14	
none	Unknown07		.347	22	
none	Unknown08		.368	19	
none	Unknown09		3.48	49	 - -
none	Unknown10		.748	7.4	·
none	Unknown11		.058	40	
none	Unknown12		.079	16	
none	Unknown13		.191	36	

Form Rev: 11/23/09

674/1262

SW-01D

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-16

File ID;

V2342.D

Sampled:

04/21/10 14:55

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 05:43

Solids:

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Sonas:		Prepar	atton: <u>3310C tv</u>	祌		Hittiar E. Mai	1000 1103 (1 11115	
3atch:	10D2326	Sequence:	T001853	Calibratio	n:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		F	T E	ST. CONC, (ug/L)	Q
поле	Unknown14				14.7	42	21	
попе	Unknown15				14.7	63	37	
none	Unknown16				14.7	95	39	
none	Unknown17				15.5	16	6.8	
none	Unknown18				15.5	55	15	<u></u>
none	Unknown19		······		15.	6	18	
none	Unknown20				16.6	33	8.7	<u></u>
SYSTEM MON	IITORING COM	POUND	ADDED (ug/L)	CONG	C (ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromo	phenol		142		34	95	52 - 132	
2-Fluorobiphen	yl		94.3	6	8.2	72	48 - 120	ļ <u>.</u>
2-Fluorophenol			142	5	0.0	35	20 - 120	
Nitrobenzene-d	5	 	94.3	6	1.4	65	46 - 120	
Phenol-d5			142	3	9.7	28	16 - 120	
p-Terphenyl-d1	4	<u></u>	94.3	. 7	0.2	74	24 - 136	ļ. <u></u>
INTERNAL ST	ANDARD		AREA		RT	REF AREA	REF RT	Q
1,4-Dichlorober	nzene-d4		72748	5	.68	106427	5.68	
Acenaphthene-	d10		169035	9	.69	242116	9.69	
Chrysene-d12			387385	1.	3.88	550996	13.88	
Naphthalene-da	3		276715	7	.41	393137	7.41	<u> </u>
Perylene-d12			326712	1:	5.13	474227	15.13	
Phenanthrene-d	110		314142] 1	1.4	449522	11.4	<u> </u>

^{*} Values outside of QC limits

ORGANIC ANALYSIS DATA SHEET

SW-01S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-15

File ID:

<u>V2341.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 05:18

Solids:

04/21/10 16:50

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	R10E011 Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.4	U
95-95-4	2,4,5-Trichlorophenol	1	24	U
88-06-2	2,4,6-Trichlorophenol	1	9.4	U
120-83-2	2,4-Dichlorophenol	1	9.4	U
105-67-9	2,4-Dimethylphenol	1	9.4	Ü
51-28-5	2,4-Dinitrophenol	1	47	U
121-14-2	2,4-Dinitrotoluene	1	9.4	U
606-20-2	2,6-Dinitrotoluene	1	9.4	υ
91-58-7	2-Chloronaphthalene	1	9.4	υ
95-57-8	2-Chlorophenol	1	9.4	υ
91-57-6	2-Methylnaphthalene	1	9.4	U
95-48-7	2-Methylphenol	1	9.4	U
88-74-4	2-Nitroaniline	1	47	U
88-75-5	2-Nitrophenol	1	9.4	U
91-94-1	3,3'-Dichlorobenzidine	1	19	υ
99-09-2	3-Nitroaniline	1	47	U
534-52-1	4,6-Dinitro-2-methylphenol	1	47	υ
101-55-3	4-Bromophenyl phenyl ether	1	9.4	υ
59-50-7	4-Chloro-3-methylphenol	1	9.4	υ
106-47-8	4-Chloroaniline	1	9.4	U
7005-72-3	4-Chlorophenyl phenyl ether	1	9.4	U
106-44-5	4-Methylphenol	1	4.7	บ
100-01-6	4-Nitroaniline	1	47	U
100-02-7	4-Nitrophenol	1	47	U
83-32-9	Acenaphthene	I	9.4	U
208-96-8	Acenaphthylene	11	9,4	U
98-86-2	Acetophenone	1	9,4	U
120-12-7	Anthracene	1	9,4	U
1912-24-9	Atrazine	1	9,4	せい
100-52-7	Benzaldebyde	1	47	U
56-55-3	Benzo(a)anthracene	1	9.4	U
50-32-8	Benzo(a)pyrene	1	9,4	U
205-99-2	Benzo(b)fluoranthene	11	9.4	U
191-24-2	Benzo(ghi)perylene	1	9.4	U
207-08-9	Benzo(k)fluoranthene	1	9.4	บ
92-52-4	Biphenyl	1	9.4	บ
111-91-1	Bis(2-chloroethoxy)methane	1	9.4	U
111-44-4	Bis(2-chloroethyl)ether	1	9.4	υ
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.4	U

Form Rev: 11/23/09

645/1262

 $\rho^{3/1/3}$

SW-01S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-15

File ID:

V2341.D

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 05:18

Solids:

04/21/10 16:50

Prepared:
Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326 Sequence: T001853	Calibration:	R10E011 Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1	9.4	U
105-60-2	Caprolactam	1	9.4	U
86-74-8	Carbazole	1	4.7	U
218-01-9	Chrysene	1	9.4	U
53-70-3	Dibenzo(a,h)anthracene	I	9.4	U
132-64-9	Dibenzofuran	1	9.4	U
84-66-2	Diethyl phthalate	1	9.4	U
131-11-3	Dimethyl phthalate	1	9.4	υ
84-74-2	Di-n-butyl phthalate	1	9.4	υ
117-84-0	Di-n-octyl phthalate	1	9.4	U
206-44-0	Fluoranthene	1	9.4	ט
86-73-7	Fluorene	1	9.4	U
118-74-1	Hexachlorobenzene	1	9.4	U
87-68-3	Hexachlorobutadiene	1	9.4	ט
77-47-4	Hexachlorocyclopentadiene	1	9.4	υ
67-72-1	Hexachloroethane	1	9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	9.4	U
78-59-1	Isophorone	1	9.4	U
91-20-3	Naphthalene	1	9.4	U
98-95-3	Nitrobenzene	1	9,4	U
621-64-7	N-Nitrosodi-n-propylamine	1	9.4	U
86-30-6	N-Nitrosodiphenylamine	1	9.4	ט
87-86-5	Pentachlorophenol	1	47	υ
85-01-8	Phenanthrene	1	9.4	U
108-95-2	Phenol	1	9.4	U
129-00-0	Pyrene	1	9.4	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND	1	RT EST, CONC. (ug/L)	Q
none	Unknown01	11,4	461 6.5	
none	Unknown02	11.0	505 14	
none	Unknown03	11,0	538 7.4	
none	Unknown04	12.:	519 27	
none	Unknown05	12	65 53	
none	Unknown06	13,3	304 13	
none	Unknown07	13.3	342 24	
none	Unknown08	13.3		
none	Unknown09	13,4		<u> </u>
none	Unknown10	13.1		
none	Unknown11	14.0		
none	Unknown12	14.		
none	Unknown13	646/1363	191 38	<u></u>

Form Rev: 11/23/09

646/1262

SW-018

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

<u>RTD1782-15</u> File ID:

<u>V2341.D</u>

Sampled:

Situate trave

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 05:18

Solids:

04/21/10 16:50

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326	Sequence:	<u>T001853</u>	Calibration);	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	TENTATIVEL	Y IDENTIFIED C	OMPOUND		RT ES		. CONC. (ug/L)	Q
none	Unknown14				14.6	502	8.0	
none	Unknown15				14.76		71	
none	Unknown16				14.795		34	
none	Unknown17				15.5	521	7.5	
none	Unknown18				15.:	55	15	
none	Unknown19				15.5	196	17	
none	Unknown20				16.6	33	9.4	
SYSTEM MO	NITORING COMP	OUND	ADDED (ug/L)	CONC	(ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribrome	phenol		142	1	30	92	52 - 132	
2-Fluorobipher	ıyl		94.3	67	1.5	72	48 - 120	<u> </u>
2-Fluoropheno	<u>l</u>		142	48	.6	34	20 - 120	
Nitrobenzene-c	15		94.3	61	.9	66	46 - 120	
Phenol-d5			142	40).5	29	16 - 120	
p-Terphenyl-d	14		94.3	65	5.7	70	24 - 136	
INTERNAL S	TANDARD	· ·	AREA	R	Т	REF AREA	REF RT	Q
1,4-Dichlorobe	enzene-d4		74054	5.	68	106427	5.68	
Acenaphthene	-d10		173318	9.	69	242116	9,69	
Chrysene-d12			383609	13	.88	550996	13.88	
Naphthalene-d	8		281972	7.	41	393137	7.41	
Perylene-d12			331787	15	13	474227	15.13	
Phenanthrene-	d10		315428	11	.4	449522	11.4	1

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-20

File ID:

V2346.D

Sampled:

04/22/10 10:10

04/25/10 08:00

Analyzed:

05/06/10 07:22

Solids:

Prepared: Preparation:

3510C MB

Initial/Final:

1060 mL/1 mL

Solids:		Prepa	aration:	3510C M	<u>18</u>	minavrinai:	1060 mL / 1 m	ᆫ
Batch:	10D2326	Sequence:	T001853		Calibration:	R10E011	Instrument;	<u>HP5973V</u>
CAS NO.	COMPOUND				DILUTION	CC	ONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Cl	hloropropane)			1		9.4	U
95-95-4	2,4,5-Trichloropl				1		24	ប
88-06-2	2,4,6-Trichloropl	henol			1		9.4	บ_
120-83-2	2,4-Dichloropher				1		9.4	ַט
105-67-9	2,4-Dimethylphe	nol			1		9.4	U
51-28-5	2,4-Dinitropheno	ol			1		47	ט
121-14-2	2,4-Dinitrotoluer	пе			1		9,4	U
606-20-2	2,6-Dinitrotolues	ne			1		9.4	U
91-58-7	2-Chloronaphtha	dene			1		9.4	U
95-57-8	2-Chlorophenol				1		9.4	U
91-57-6	2-Methylnaphtha	alene			1		9.4	บ
95-48-7	2-Methylphenol				1		9.4	U
88-74-4	2-Nitroaniline	····			1		47	U
88-75 - 5	2-Nitrophenol				1		9.4	U
91-94-1	3,3'-Dichloroben	zidine			1		19	U
99-09-2	3-Nitroaniline				1		47	U
534-52-1	4,6-Dinitro-2-me	ethylphenol		•	1		47	U
101-55-3	4-Bromophenyl	phenyl ether			1		9.4	U
59-50-7	4-Chloro-3-meth	ylphenol			1		9.4	ט
106-47-8	4-Chloroaniline				1	<u>. </u>	9.4	<u> </u>
7005-72-3	4-Chlorophenyl	phenyl ether			1		9.4	U
106-44-5	4-Methylphenol				1		4.7	บ
100-01-6	4-Nitroaniline				1		47	U
100-02-7	4-Nitrophenol				1		47	U
83-32-9	Acenaphthene				1		9.4	U
208-96-8	Acenaphthylene				1		9.4	U
98-86-2	Acetophenone				1		9.4	U
120-12-7	Anthracene				1		9.4	U
1912-24-9	Atrazine				1		9.4	-t ()
100-52-7	Benzaldehyde				11		47	U
56-55-3	Benzo(a)anthrac	ene			1		9.4	υ
50-32-8	Benzo(a)pyrene				1		9.4	U
205-99-2	Benzo(b)fluoran	thene			1		9.4	บ
191-24-2	Benzo(ghi)peryl	lene			ĭ		9.4	ַ
207-08-9	Benzo(k)fluoran				l		9,4	U
92-52-4	Biphenyl				1		9.4	U
111-91-1	Bis(2-chloroetho	oxy)methane			1		9.4	U
111-44-4	Bis(2-chloroethy				1		9.4	U
117-81-7	Bis(2-ethylhexy				1		9.4	U

Form Rev: 11/23/09

784/1262

1/1/1/10

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-20

V2346.D File ID:

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 07:22

Solids:

04/22/10 10:10

Prepared: Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Solina.	ттератацон. 331	QC MID	ATTICION L'INIZI.	1000 1102/ 1 1111	-
Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	<u>R10E011</u>	Instrument:	<u> HP5973V</u>
CAS NO.	COMPOUND	DILUTION	C	ONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.4	U
105-60-2	Caprolactam	1		9.4	υ
86-74-8	Carbazole	1		4.7	ប
218-01-9	Chrysene	1		9.4	U
53-70-3	Dibenzo(a,h)anthracene	1		9.4	U
132-64-9	Dibenzofuran	1		9.4	U
84-66-2	Diethyl phthalate	1		9.4	υ
131-11-3	Dimethyl phthalate	1		9.4	υ
84-74-2	Di-n-butyl phthalate	1		9.4	U ·
117-84-0	Di-n-octyl phthalate	1		9.4	U
206-44-0	Fluoranthene	1		9,4	U
86-73-7	Fluorene	1		9.4	U
118-74-1	Hexachlorobenzene	1		9.4	U
87-68-3	Hexachlorobutadiene	1		9.4	U
77-47-4	Hexachlorocyclopentadiene	1		9.4	U
67-72-1	Hexachloroethane	1		9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1		9,4	U
78-59-1	Isophorone	1		9.4	U
91-20-3	Naphthalene	1		9.4	ט
98-95-3	Nitrobenzene	1		9.4	U
621-64-7	N-Nitrosodi-n-propylamine	1		9.4	U
86-30-6	N-Nitrosodiphenylamine	1		9.4	U
87-86-5	Pentachlorophenol	1		47	บ
85-01-8	Phenanthrene	1		9,4	U
108-95-2	Phenol	1		9.4	U
129-00-0	Pyrene	1		9.4	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT	EST. CONC. (ug/L)	Q
none	Unknown01	11	.606	19	
попе	Unknown02	11	.638	10	
none	Unknown03	12	.487	9.5	
none	Unknown04	1	2.52	34	
попе	Unknown05	12	.653	63	
none	Unknown06		.304	16	
none	Unknown07		347	25	-
none	Unknown08		.368	21	
попе	Unknown09		3.47	61	
none	Unknown10		3.5	93	
none	Unknown11		.748	8.6	
none	Unknown12		.058	47	
none	Unknown13	785/1262	4.08	22	

785/1262

Form Rev: 11/23/09

SW-02D

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-20

File ID:

V2346,D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 07:22

04/22/10 10:10

3510C MB

Solids:	Preparation: 3510C MB			Initial/Final:		al:	1060 mL / 1 mL			
Batch:	10D2326	Sequence:	T001853	Calibration:		ı:	R10E011		Instrument:	HP5973V
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND					RT EST		CONC. (ug/L)	Q	
none	Unknown14				14.19			48		
none	Unknown15					14.741			24	,
none	Unknown16	Unknown16				14.763			40	
лопе	Unknown17				14,795			44		
none	Unknown18				15.554		16			
none	Unknown19				15.	15.6		20	\ <u>-</u>	
none	Unknown20						6.63		11	
SYSTEM MONITORING COMPOUND		ADDED (ug	/L) (CONC	(ug/L)	% R	EC	QC LIMITS	Q	
2,4,6-Tribromophenol		142		138		98		52 - 132		
2-Fluorobiphenyl		94.3		74.6		79		48 - 120		
2-Fluorophenol		142		57.8		41		20 - 120		
Nitrobenzene-d5		94.3		71.7		76		46 - 120		
Phenol-d5		142		44,1		31		16 - 120		
p-Terphenyl-d14		94.3		66.4		70	<u> </u>	24 - 136		
INTERNAL STANDARD		AREA		RT		REF A	REA	REF RT	Q	
1,4-Dichlorobenzene-d4			70112		5.68		1064	27	5.68	
Acenaphthene-d10		162728		9.69		2421	16	9.69	<u> </u>	
Chrysene-d12		369866		13.88		5509	96	13.88		
Naphthalene-d8		263105		7.41		3931	37	7.41		
Perylene-d12			320692		15.13		4742	27	15.13	<u> </u>
Phenanthrene-d10		297182		11.4		449522		11.4	<u> </u>	

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-19

File ID:

<u>V2345.D</u>

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 06:57

Form Rev: 11/23/09

04/22/10 09:30

Prepared:

3510C MB

Initial/Final:

1050 mL / 1 ml.

Solids:	Preparation: 351	<u>0С МВ</u>	Initial/Final: 10)50 mL / 1 mL	
Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	<u>R10E011</u> In	strument: I	<u> 1P5973V</u>
CAS NO.	COMPOUND	DILUTION	CONC. (u	g/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.5		U
95-95-4	2,4,5-Trichlorophenol	11	24		U
88-06-2	2,4,6-Trichlorophenol	1	9.5		U
120-83-2	2,4-Dichlorophenol	1	9.5		U
105-67-9	2,4-Dimethylphenol	1	9.5		U
51-28-5	2,4-Dinitrophenol	1	48		ַט
121-14-2	2,4-Dinitrotoluene	1	9.5		บ
606-20-2	2,6-Dinitrotoluene	1	9.5		U
91-58-7	2-Chloronaphthalene	1	9.5		Ŭ
95-57-8	2-Chlorophenol	11	9.5		U
91-57-6	2-Methylnaphthalene	1	9.5		U
95-48-7	2-Methylphenol	11	9.5		บ
88-74-4	2-Nitroaniline	11	48		U
88-75-5	2-Nitrophenol	1	9.5		U
91-94-1	3,3'-Dichlorobenzidine	1	19		U
99-09-2	3-Nitroaniline	1	48		<u>U</u>
534-52-1	4,6-Dinitro-2-methylphenol	1	48		U
101-55-3	4-Bromophenyl phenyl ether	1	9.5		U
59-50-7	4-Chloro-3-methylphenol	1	. 9.5		U
106-47-8	4-Chloroaniline	1	9.5		U
7005-72-3	4-Chlorophenyl phenyl ether	1	9.5	- -	U
106-44-5	4-Methylphenol	1	4.8		U
100-01-6	4-Nitroaniline	1	48		U
100-02-7	4-Nitrophenol	1	48_		U
83-32-9	Acenaphthene	1	9.5		U
208-96-8	Acenaphthylene	1	9.5		U
98-86-2	Acetophenone	1	9,5		U
120-12-7	Anthracene	1	9.5		U
1912-24-9	Atrazine	1	9.5		- UJ
100-52-7	Benzaldehyde	1	48		<u>U</u>
56-55-3	Benzo(a)anthracene	1	9.5		U
50-32-8	Benzo(a)pyrene	1	9.5		U
205-99-2	Benzo(b)fluoranthene	1	9.5		U
191-24-2	Benzo(ghi)perylene	1	9.5		U
207-08-9	Benzo(k)fluoranthene	1	9.5		U
92-52-4	Biphenyl	1	9.5		U
111-91-1	Bis(2-chloroethoxy)methane	1	9.5		U
111-44-4	Bis(2-chloroethyl)ether	1	9.5		U
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.5		U

757/1262

Prof/10

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-19

File ID:

<u>V2345,D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06:57

Solids:

04/22/10 09:30

Preparation:

3510C MB

Initial/Final:

1050 mL / 1 mL

olids:	Preparation:	35 LUC MB	muarri	iai: 1030 mil / 1 mil	
atch;	<u>10D2326</u> Sequence: <u>T00185</u>	3 Calibration:	R10E011	Instrument:	HP5973V
CAS NO.	COMPOUND	DILUT	ION	CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.5	U
105-60-2	Caprolactam	1		9.5	U
86-74-8	Carbazole	1		4.8	ט
218-01-9	Chrysene	1		9.5	U
53-70-3	Dibenzo(a,h)anthracene	1		9.5	U
132-64-9	Dibenzofuran	1		9.5	U
84-66-2	Diethyl phthalate	1		9.5	U
131-11-3	Dimethyl phthalate	1		9.5	U
84-74-2	Di-n-butyl phthalate	1		9.5	ט
117-84-0	Di-n-octyl phthalate	1		9.5	U
206-44-0	Fluoranthene	1		9.5	Ŭ
86-73-7	Fluorene	1		9.5	U
118-74-1	Hexachlorobenzene	1		9.5	υ
87-68-3	Hexachlorobutadiene	1	******	9.5	U
77-47-4	Hexachlorocyclopentadiene	1		9,5	U
67-72-1	Hexachloroethane	1		9.5	
193-39-5	Indeno(1,2,3-cd)pyrene	1		9.5	U
78-59-1	Isophorone	1		9.5	U
91-20-3	Naphthalene	1		9.5	υ
98-95-3	Nitrobenzene	1		9.5	U
621-64-7	N-Nitrosodi-n-propylamine	1		9.5	U
86-30-6	N-Nitrosodiphenylamine	1	1 9.5		U
87-86-5	Pentachlorophenol	. 1		48	U
85-01-8	Phenanthrene	1		9.5	U
108-95-2	Phenol	1		9.5	U
129-00-0	Pyrene	1		9.5	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT	EST. CONC. (ug/L)	Q
none	Unknown01		12.519	12	
none	Unknown02		12.653	34	
none	Unknown03		13.304	8,6	
none	Unknown04		13.342	17	
none	Unknown05		13,368	13	
none	Unknown06		13.465	32	<u> </u>
none	Unknown07		13.748	4.6	
none	Unknown08		14.058	30	
none	Unknown09		14.079	12	
none	Unknown10		14.19	88	<u> </u>
none	Unknown11		14.597	5.0	
none	Unknown12		14.741	15	+
none	Unknown13	758/1262	14.763	28	

Form Rev: 11/23/09

758/1262

SW-02S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-19

File ID: <u>V2345.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06:57

Solids;

04/22/10 09:30

Preparation:

3510C MB

Initial/Final:

1050 mL / 1 mL

			<u> </u>				•	AUGUSTINES	
Batch:	10D2326	Sequence:	T001853	Calibratio	n:	R10E011		Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		I	RT	EST. C	ONC. (ug/L)	Q
none	Unknown14				14.7	195		30	1
попс	Unknown15				15.5	16		5.8	
попе	Unknown16				15.5	554		10	
none	Unknown17				15.5	96		13	
none	Unknown18				16.	57		4.1	
none	Unknown19 16.633 6.7				6.7	<u> </u>			
SYSTEM MONI	TORING COM	POUND	ADDED (ug/L)	CONC	C (ug/L)	% REC		QC LIMITS	Q
2,4,6-Tribromoph	enol		143	1	26	88 52 - 1		52 - 132	
2-Fluorobiphenyl		-	95,2	6	7.8	71	71 48 - 120		
2-Fluorophenol			143	4	8.6	34		<u> 20 - 120</u>	<u> </u>
Nitrobenzene-d5			95.2	6	3.8	67		46 - 120	
Phenol-d5			143	3	8.8	27		16 - 120	<u> </u>
p-Terphenyl-d14			95.2	7	5.2	79		24 - 136	
INTERNAL STA	NDARD		AREA	Ŧ	ETT	REF AR	EA	REF RT	_ Q
1,4-Dichlorobenz	ene-d4		74646	5	.68	10642	7	5.68	L
Acenaphthene-dl	0		171826	9	69	24211	6	9.69	
Chrysene-d12	<u></u>		380702	13	.88	550990	5	13.88	
Naphthalene-d8			278828	7.	41	393131	7	7.41	
Perylene-d12			330247	15	.13	47422	7	15.13	
Phenanthrene-d10)		315176	1	1,4	449522	2	11.4	T

^{*} Values outside of QC limits

Form Rev: 11/23/09

SW-03S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client;

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-18

File ID:

V2344,D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06:32

Solids:

04/22/10 09:00

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Solids:	rreparation: 351	<u>an wr</u>	initial/Final: 1000 mL / 1 m	<u>L</u>
Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	R10E011 Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.4	U
95-95-4	2,4,5-Trichlorophenol	1	24	U
88-06-2	2,4,6-Trichlorophenol	1	9.4	U
120-83-2	2,4-Dichlorophenol	1	9.4	υ
105-67-9	2,4-Dimethylphenol	1	9.4	ט
51-28-5	2,4-Dinitrophenol	1	47	U
121-14-2	2,4-Dinitrotoluene	1	9.4	U
606-20-2	2,6-Dinitrotoluene	1	9.4	U
91-58-7	2-Chloronaphthalene	1	9.4	ט
95-57-8	2-Chlorophenol	1	9.4	U
91-57-6	2-Methylnaphthalene	1	9.4	<u>ט</u>
95-48-7	2-Methylphenol	1	9.4	υ
88-74-4	2-Nitroaniline	1	47	U
88-75-5	2-Nitrophenol	1	9.4	U
91-94-1	3,3'-Dichlorobenzidine	1	. 19	U
99-09-2	3-Nitroaniline	1	47	U
534-52-1	4,6-Dinitro-2-methylphenol	1	47	U
101-55-3	4-Bromophenyl phenyl ether	1	9.4	U
59-50-7	4-Chloro-3-methylphenol	1	9.4	υ
106-47-8	4-Chloroaniline	1	9.4	U
7005-72-3	4-Chlorophenyl phenyl ether	1	9.4	U
106-44-5	4-Methylphenol_	1	4.7	U
100-01-6	4-Nitroaniline	1	47	U
100-02-7	4-Nitrophenol	1	47	υ
83-32-9	Acenaphthene	1	9.4	U
208-96-8	Acenaphthylene	1	9.4	Ü
98-86-2	Acetophenone	1	9.4	ប
120-12-7	Anthracene	1	9.4	U
1912-24-9	Atrazine	1	9,4	8 U.
100-52-7	Benzaldehyde	1	47	u
56-55-3	Benzo(a)anthracene	1	9.4	U
50-32-8	Benzo(a)pyrene	1	9.4	U
205-99-2	Benzo(b)fluoranthene	1.	9.4	U
191-24-2	Benzo(ghi)perylene	1	9.4	U
207-08-9	Benzo(k)fluoranthene	1	9.4	U
92-52-4	Biphenyl	1	9,4	Ų
111-91-1	Bis(2-chloroethoxy)methane	1	9.4	Û
111-44-4	Bis(2-chloroethyl)ether	1	9.4	Ū
117-81-7	Bis(2-ethylhexyl) phthalate	1	9,4	υ

Form Rev: 11/23/09

729/1262

11/5 ml

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

File ID: V2344.D

Sampled:

RTD1782-18 04/25/10 08:00

Analyzed:

05/06/10 06:32

Solids:

04/22/10 09:00

Prepared: Preparation:

3510C MB

Initial/Final:

1060 mL/1 mI

Solids:	Preparation: 351	OC MB	Initial/Final:	<u>1060 mL / 1 mI</u>	<u> </u>
Batch:	10D2326 Sequence: <u>T001853</u>	Calibration:	R10E011	Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTION	co	NC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.4	U
105-60-2	Caprolactam	1		9.4	U
86-74-8	Carbazole	1		4.7	U
218-01-9	Chrysene	1		9.4	U
53-70-3	Dibenzo(a,h)anthracene	1		9.4	υ
132-64-9	Dibenzofuran	1		9,4	U
84-66-2	Diethyl phthalate	1		9.4	U
131-11-3	Dimethyl phthalate	1		9.4	U
84-74-2	Di-n-butyl phthalate	1		9.4	U
117-84-0	Di-n-octyl phthalate	1		9,4	บ
206-44-0	Fluoranthene	1		9.4	υ
86-73-7	Fluorene	1		9.4	υ
118-74-1	Hexachlorobenzene	1		9.4	ט
87-68-3	Hexachlorobutadiene	1		9.4	U
77-47-4	Hexachlorocyclopentadiene	1		9.4	Ŭ
67-72-1	Hexachloroethane	1		9.4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1		9,4	U
78-59-1	Isophorone	1		9.4	U
91-20-3	Naphthalene	1		9.4	n .
98-95-3	Nitrobenzene	1		9.4	U
621-64 -7	N-Nitrosodi-n-propylamine	1		9.4	U
86-30-6	N-Nitrosodiphenylamine	1		9.4	U
87-86-5	Pentachlorophenol	1		47	U
85-01-8	Phenanthrene	1		9,4	υ
108-95-2	Phenol	1		9.4	υ
129-00-0	Ругепе	1		9.4	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT E	ST. CONC. (ug/L)	Q
none	Unknown01	11	.605	5.9	
none	Unknown02	1	1.64	6.1	
none	Unknown03	12	.487	6.5	
none	Unknown04	12	.519	23	
none	Unknown05	12	.653	46	
none	Unknown06	13	.304	12	
none	Unknown07		3.35	19	
none	Unknown08		3.37	16	
none	Unknown09		3.47	44	· · · · · · · · · · · · · · · · · · ·
none	Unknown10		.748	6.2	
none	Unknown!1		.058	36	
none	Unknown12		.079	17	-
none	Unknown13	730/1262	4.19	36	

Form Rev: 11/23/09

730/1262

SW-03S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-18

File ID:

V2344.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 06;32

Solids:

04/22/10 09:00

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326	Sequence:	T001853	Calibratio	n:	R10E011	Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND]	RT ES	T. CONC. (ug/L)	Q
none	Unknown14				14.0	502	7.8	
none	Unknown15				14.1	763	63	
none	Unknown16				14.	795	31	
none	Unknown17				15.	516	6.5	
none	Unknown18				15.5	553	14	
none	Unknown19			·	15.5	596	16	
none	none Unknown20				16.0	633	7.8	<u> </u>
SYSTEM MOI	NITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)		% REC	QC LIMITS	Q
2,4,6-Tribromophenol		142	1	30	92	52 - 132		
2-Fluorobipher	ıyl		94.3	6	8.8	73	48 - 120	
2-Fluoropheno	<u> </u>		142	5	1.6	39	20 - 120	
Nitrobenzene-d	15		94.3	6	6,0	70	46 - 120	<u> </u>
Phenol-d5	, , , , , , , , , , , , , , , , , , , ,		142	4	2.0	30	16 - 120	
p-Terphenyl-dl			94.3	7	3.6	78	24 - 136	
INTERNAL ST	TANDARD		AREA	F	lT	REF AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		71654	5	68	106427	5.68	
Acenaphthene-	d10	· · · · · · · · · · · · · · · · · · ·	168772	9	69	242116	9.69	
Chrysene-d12			380516	13	.88	550996	13.88	
Naphthalene-di	8		277569	7	41	393137	7.41	
Perylene-d12	***		324523	15	.13	474227	15.13	
Phenanthrene-c	110		309732	1	1.4	449522	11.4	

^{*} Values outside of QC limits

SW-04D

8270C

Laboratory:

TestAmerica Buffalo

New York State D.E.C. - Albany, NY

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client: Matrix:

Project:

File ID: V2337.D

Sampled:

Ground Water

Laboratory ID:

RTD1782-09

Analyzed:

05/06/10 03:38

04/21/10 12:35

Prepared:

04/25/10 08:00

mL

HP5973V

Solids:		Ртер	aration:	3510C MB	Initial/Final:	1050 mL / 1
Batch:	10D2326	Sequence:	T001853	Calibration:	R10E011	Instrument:
CAS NO.	COMPOUND			DILUTION	CO	NC. (ug/L)
108-60-1	2,2'-Oxybis(1	-Chloropropane)		1		9.5
95-95-4	2,4,5-Trichlor	ophenol		1		24
88-06-2	2,4,6-Trichlor	ophenol		1		9.5
	1		·	* **		

108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.5	Ü
95-95-4	2,4,5-Trichlorophenol	l l	24	U
88-06-2	2,4,6-Trichlorophenol	1	9.5	U
120-83-2	2,4-Dichlorophenol	1	9.5	U
105-67-9	2,4-Dimethylphenol	11	9.5	U_
51-28-5	2,4-Dinitrophenol	1	48	U
121-14-2	2,4-Dinitrotoluene	1	9.5	U
606-20-2	2,6-Dinitrotoluene	11	9.5	U
91-58-7	2-Chloronaphthalene	1	9.5	U
95-57-8	2-Chlorophenol	1	9.5	U
91-57-6	2-Methylnaphthalene	1	9,5	U
95-48-7	2-Methylphenol	1	9.5	U
88-74-4	2-Nitroaniline	1	48	U
88-75-5	2-Nitrophenol	1	9.5	υ
91-94-1	3,3'-Dichlorobenzidine	1	19	U
99-09-2	3-Nitroaniline	1	48	U
534-52-1	4,6-Dinitro-2-methylphenol	1	48	บ
101-55-3	4-Bromophenyl phenyl ether	1	9.5	ט
59-50-7	4-Chloro-3-methylphenol	1	9.5	ับ
106-47-8	4-Chloroaniline	1	9.5	ט
7005-72-3	4-Chlorophenyl phenyl ether	1	9.5	ַט
106-44-5	4-Methylphenol	1	4.8	υ
100-01-6	4-Nitroaniline	1	48	υ
100-02-7	4-Nitrophenol	11	48	U
83-32-9	Acenaphthene	1	9.5	U
208-96-8	Acenaphthylene	1	9.5	U
98-86-2	Acetophenone	1	9.5	ַ ט
120-12-7	Anthracene	11	9.5	U
1912-24-9	Atrazine	1	9.5	-UU,
100-52-7	Benzaldehyde	1	48	บ
56-55-3	Benzo(a)anthracene	1	9.5	U
50-32-8	Benzo(a)pyrene	1	9,5	U
205-99-2	Benzo(b)fluoranthene	1	9.5	υ
191-24-2	Benzo(ghi)perylene	1	9,5	U
207-08-9	Benzo(k)fluoranthene	1	9.5	U
92-52-4	Biphenyl	1	9.5	U
111-91-1	Bis(2-chloroethoxy)methane	1	9.5	U
111-44-4	Bis(2-chloroethyl)ether	11	9.5	U
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.5	U

Form Rev: 11/23/09

533/1262

Will vil

SW-04D

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-09

File ID:

V2337.D

Sampled:

Analyzed:

05/06/10 03:38

04/21/10 12:35

Prepared:

04/25/10 08:00

Solids:		Preparation:	3510C MB		Initial/Final:	1050 mL / 1 ml	
Batch:	10D2326 Seque	mcc: <u>T001853</u>	Calibra	tion;	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND		DI	LUTION		CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate			1		9.5	ט
105-60-2	Caprolactam			1		9.5	U
86-74-8	Carbazole			1		4.8	U
218-01-9	Chrysene			1		9.5	U
53-70-3	Dibenzo(a,h)anthracene			1		9.5	Ŭ
132-64-9	Dibenzofuran			1		9.5	U
84-66-2	Diethyl phthalate			1		9.5	Ŭ
131-11-3	Dimethyl phthalate			1	Ī	9.5	U
84-74-2	Di-n-butyl phthalate			1	Ţ	9.5	U
117-84-0	Di-n-octyl phthalate			1		9.5	U
206-44-0	Fluoranthene			1		9.5	U
86-73-7	Fluorene	<u> </u>		1		9.5	U
118-74-1	Hexachlorobenzene			1		9.5	U
87-68-3	Hexachlorobutadiene			1		9.5	U
77-47-4	Hexachlorocyclopentadi	iene		1		9.5	U
67-72-1	Hexachloroethane	ione		1		9.5	U
193-39-5	Indeno(1,2,3-cd)pyrene			1		9.5	U
78-59-1	Isophorone			1	- 	9.5	U
91-20-3	Naphthalene			1	1	9.5	U
98-95-3	Nitrobenzene			1	1	9.5	U
621-64-7	N-Nitrosodi-n-propylan	nine		1		9.5	υ
86-30-6	N-Nitrosodiphenylamin			1	 	9.5	U
87-86-5	Pentachlorophenol			1	 	48	U
	Phenanthrene		. 		· · · · · · · · · · · · · · · · · · ·	9.5	U
85-01-8				1	 	9.5	U
108-95-2	Phenol			`_	1	9.5	Ü
129-00-0 CAS NO.	Pyrene TENTATIVELY IDEN	TEED COMPOUND			RT T	EST, CONC. (ug/L)	Q
·		TIPLED COM CERTS	<u> </u>		461	6.2	-
none	Unknown01		·····		606	14	
none	Unknown02				638	7.6_	
none	Unknown03 Unknown04				519	27	
none	Unknown05				.65	48	
none	Unknown06				305	11	
none	Unknown07				342	22	
none	Unknown08				.37	16	
none	Unknown09				475	47	
none	Unknown10				491	69	
none	Unknown11			13	743	5.9	
none	Unknown12			14	.058	35	
none	Unknown13		534/1262	14	.08	13	

Form Rev: 11/23/09

534/1262

SW-04D

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-09

File ID:

V2337.D

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 03:38

04/21/10 12:35

Prepared:

3510C MB

Solids:		Prepara	tion: <u>3510</u>	C MB		Initial/Final:	1050 mL / 1 mL	
Batch:	10D2326	Sequence:	T001853	Calibrat	ion:	R10E011	Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		RT		EST. CONC. (ug/L)	Q
none	Unknown 14				14.1	91	32	
none	Unknown15				14	.6_	5.9	
none	Unknown16				14.	763	64	
none	Unknown17				14.	795	27	
none	Unknown18			· · · · · · · · · · · · · · · · · · ·	15.	554	12	
none	Unknown19		·		15.5	596	14	
none	Unknown20	<u> </u>			16.0	533	7.0	
SYSTEM MON	ITORING COM	POUND	ADDED (ug/I) CON	IC (ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromo	henol		143		135	95	52 - 132	
2-Fluorobiphen	yl		95.2		<u>68.5</u>	72,	48 - 120	<u> </u>
2-Fluorophenol			143		50,8	36	20 - 120	
Nitrobenzene-d	5		95.2		62.0	65	46 - 120	. ,
Phenol-d5	· · · · · · ·		143		40.0	28	16 - 120	
p-Terphenyl-dl-	4		95.2		72.8	76	24 - 136	
INTERNAL ST	ANDARD		AREA		RT	REF ARE	A REF RT	Q
1,4-Dichlorober	ızene-d4		70078		5.68	106427	5.68	
Acenaphthene-c	110		163426		9.69	242116	9.69	
Chrysene-d12			369832		13.88	550996	13.88	
Naphthalene-d8			268875		7,41	393137	7.41	
Perylene-d12			314435		5.13	474227	15.13	
Phenanthrene-d	10		297817		11.4	449522	11.4	

^{*} Values outside of QC limits

Form Rev: 11/23/09

SW-04S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-08

File ID:

V2336.D

Sampled:

04/01/10 11 05

04/25/10 08:00

Analyzed:

05/06/10 03:13

04/21/10 11:05

Prepared:
Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Solids:	Preparation: 35	LOC MB	Initial/Final:	1060 mL / 1 ml	<u>L</u>
latch:	10D2326 Sequence: <u>T001853</u>	Calibration:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION	CO	NC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1		9.4	U
95-95-4	2,4,5-Trichlorophenol	1		24	U
88-06-2	2,4,6-Trichlorophenol	1		9.4	U
120-83-2	2,4-Dichlorophenol	1		9.4	U
105-67-9	2,4-Dimethylphenol	1		9.4	υ
51-28-5	2,4-Dinitrophenol	1		47	ַ
121-14-2	2.4-Dinitrotoluene	1		9.4	U
606-20-2	2,6-Dinitrotoluene	1		9.4	U
91-58-7	2-Chloronaphthalene	1		9.4	U
95-57-8	2-Chlorophenol	1		9.4	U
91-57-6	2-Methylnaphthalene	l l		9.4	U
95-48-7	2-Methylphenol	1		9.4	U
88-74-4	2-Nitroaniline	1		47	U
88-75-5	2-Nitrophenol	1		9.4	ַ
91-94-1	3,3'-Dichlorobenzidine	1		19	U
99-09-2	3-Nitroaniline	1		47	U
534-52-1	4,6-Dinitro-2-methylphenol	1		47	U
101-55-3	4-Bromophenyl phenyl ether	1		9,4	ָט
59-50-7	4-Chloro-3-methylphenol	1		9.4	Ŭ
106-47-8	4-Chloroaniline	1		9.4	U
7005-72-3	4-Chlorophenyl phenyl ether	1		9.4	U
106-44-5	4-Methylphenol	1		4.7	U
100-01-6	4-Nitroaniline	11		47	U
100-02-7	4-Nitrophenol	1		47	U
83-32-9	Acenaphthene	1		9.4	U
208-96-8	Acenaphthylene	1		9.4	U
98-86-2	Acetophenone	1		9.4	U
120-12-7	Anthracene	1		9.4	U
1912-24-9	Atrazine	1		9.4	H U
100-52-7	Benzaldehyde	11		47	U
56-55-3	Benzo(a)anthracene	1		9.4	U
50-32-8	Benzo(a)pyrene	11		9.4	U
205-99-2	Benzo(b)fluoranthene	1		9.4	U
191-24-2	Benzo(ghi)perylene	1		9.4	U
207-08-9	Benzo(k)fluoranthene	1		9.4	U
92-52-4	Biphenyl	11		9.4	U
111-91-1	Bis(2-chloroethoxy)methane			9.4	U
111-44-4	Bis(2-chloroethyl)ether	1		9.4	<u>י</u>
117-81-7	Bis(2-ethylhexyl) phthalate	1		9.4	U

Form Rev: 11/23/09

pr Mills

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-08

File ID:

V2336.D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 03:13

Solids:

04/21/10 11:05

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

atch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	R10E01	1 Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION		CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	11		9.4	U
105-60-2	Caprolactam	1		9.4	
86-74-8	Carbazole	1		4.7	υ
218-01-9	Chrysene	1		9.4	U
53-70-3	Dibenzo(a,h)anthracene	1		9.4	U
132-64-9	Dibenzofuran	1		9.4	U
84-66-2	Diethyl phthalate	1		9.4	U
131-11-3	Dimethyl phthalate	1		9.4	U
84-74-2	Di-n-butyl phthalate	1		9.4	U
117-84-0	Di-n-octyl phthalate	1		9.4	U
206-44-0	Fluoranthene	I		9.4	U
86-73-7	Fluorene	1		9.4	U
118-74-1	Hexachlorobenzene	1		9.4	U
87-68-3	Hexachlorobutadiene	1		9.4	U
77-47-4	Hexachlorocyclopentadiene	1		9.4	U
67-72-1	Hexachloroethane	1		9,4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1		9.4	Ū
78-59-1	Isophorone	1		9.4	U
91-20-3	Naphthalene	1		9.4	U
98-95-3	Nitrobenzene	1		9.4	U
621-64-7	N-Nitrosodi-n-propylamine	1		9.4	Ū
86-30-6	N-Nitrosodiphenylamine	1		9.4	U
87-86-5	Pentachlorophenol	1		47	U
85-01-8	Phenanthrene	1		9.4	U
108-95-2	Phenol	1		9.4	U
129-00-0	Pyrene	1		9.4	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT	EST. CONC. (ug/L)	Q
none	Unknown01		11.606	14	
none	Unknown02		11.638	7.8	
none	Unknown03		12.51	17	
попе	Unknown04		12.653	56	
none	Unknown05		13.305	14	
none	Unknown06		13.35	22	
попе	Unknown07		13.37	19	
попе	Unknown08		13.465	56	
none	Unknown09		13.5	84	
none	Unknown10		13.743	7.9	
none	Unknown11		14.058	42	
none	Unknown12		14.079	17	
none	Unknown13	506/1262	14.19	39	

Form Rev: 11/23/09

506/1262

SW-04S

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-08

File ID:

V2336.D

Sampled:

04/01/10 11:06

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 03:13

Solids:

04/21/10 11:05

Preparation:

3510C MB

Initial/Final;

1060 mL / 1 mL

sonus.		, lopus	**************************************	 .				
Batch;	10D2326	Sequence:	T001853	Calibration	n:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND		F	T EST	. CONC. (ug/L)	Q
none	Unknown14				14.	6	8.8	
none	Unknown15				14.7	63	75	
попе	Unknown16		·		14.7	95	37	
попе	Unknown17		<u> </u>		15.5	16	7.4	
none	Unknown18	·			15.5	54	15	
none	Unknown19	Unknown19			15.5		17	
none	Unknown20			i	16.6	27	8.6	ļ
SYSTEM MO	NITORING COM	POUND	ADDED (ug/L)	CONC	(u g/L)	% REC	QCLIMITS	Q
2,4,6-Tribrome	phenol		142	1	15	81	52 - 132	<u> </u>
2-Fluorobipher	ıyl		94.3	5!	9.4	- 63	48 - 120	
2-Fluoropheno	l		142	42	2.7	30	20 - 120	 -
Nitrobenzene-	d5		94.3	5	1.8	55	46 - 120	
Phenol-d5			142	· 3	5.4	25	16 - 120	_
p-Terphenyl-d	14		94.3		8.8	62	24 - 136	
INTERNAL S	TANDARD		AREA	F	RT	REF AREA	REF RT	Q
1,4-Dichlorobe	enzene-d4		71619	5	.68	106427	5.68	
Acenaphthene	d10		167206	9	.69	242116	9.69	
Chrysene-d12			371284	13	3.88	550996	13.88	
Naphthalene-d	18		273058	7	.41	393137	7.41	
Perylene-d12			318018	1.5	5.13	474227	15.13	
Phenanthrene-	d10		300940]. 1	1.4	449522	11.4	1

^{*} Values outside of QC limits

MW-03

Form 1 **INORGANIC ANALYSIS DATA SHEET** 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-14

File ID: 1042610-115

Sampled: 04/21/10 15:50

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:03

Solids:

0.00

Preparation: 3005A

Initial/Final: 50 mL / 50 mL,

Batch: 10D2292

Sequence: T001775 Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	l	Ü	6010B
7440-36-0	Antimony	0.0200	mg/L	1	υ	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0476	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	225	mg/L	ı		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	0.252	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	U	6010B
7439-95-4	Magnesium	18.6	mg/L	1		6010B
7439-96-5	Manganese	2.45	mg/L	l		6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	3.32	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	υ	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	3.8	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

MW-04

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: <u>RTD1782-13</u>

File ID: 1042610-114

Sampled: 04/21/10 15:00

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 22:58

Initial/Final: 50 mL / 50 mL

Solids:

0.00

Batch: 10D2292

Preparation: 3005A T001775

Calibration: R10D216

G.G.NO				Dilution		35.0
CAS NO.	Analyte	Concentration	Units	Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	1	U	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	υ	6010B
7440-39-3	Barium	0.0160	mg/L	l 1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	Ŭ	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	171	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	1.05	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	υ	6010B
7439-95-4	Magnesium	31.7	mg/L	1		6010B
7439-96-5	Manganese	0.525	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	1	Ü	6010B
7440-09-7	Potassium	1.13	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/I.	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	14.1	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	i	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

MW-16

Form 1 **INORGANIC ANALYSIS DATA SHEET** 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-12

File ID: 1042610-113

Sampled: 04/21/10 13:45

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 22:53

Solids:

0.00

Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

			Dilution				
CAS NO.	Analyte	Concentration	Units	Factor	Q	Method	
7429-90-5	Aluminum	0.200	mg/L	1	U	6010B	
7440-36-0	Алtimony	0.0200	mg/L	1	U	6010B	
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B	
7440-39-3	Barium	0.0310	mg/L	1		6010B	
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B	
7440-43-9	Cadmium	0.0010	mg/L	1	Ū	6010B	
7440-70-2	Calcium	77.9	mg/L	1	<u> </u>	6010B	
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B	
7440-48-4	Cobalt	0.0040	mg/L	1	Ü	6010B	
7440-50-8	Соррет	0.0100	mg/L	1	U	6010B	
7439-89-6	Iron	16.6	mg/L	1		6010B	
7439-92-1	Lead	0.0050	mg/L	1	U	6010B	
7439-95-4	Magnesium	8.15	mg/L	1		6010B	
7439-96-5	Manganese	1.09	mg/L	1		6010B	
7440-02-0	Nickel	0.0100	mg/L	ı	U	601 0 B	
7440-09-7	Potassium	0.500	mg/L	1	U	6010B	
7782-49-2	Selenium	0.0150	mg/L	1	ŭ	6010B	
7440-22-4	Silver	0.0030	mg/L	1	Ŭ	6010B	
7440-23-5	Sodium	5.8	mg/L	1		6010B	
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B	
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B	
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B	

DUP-2

Field Mart SW-WD

Laboratory: TestAmerica Buffalo

Sequence:

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-17

File ID: 1042610-118

Sampled: 04/21/10 00:00

Solids:

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:18

0.00

Batch: 10D2292

Preparation: 3005A

T001775

Initial/Final: 50 mL / 50 mL Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	1	U	6010B
7440-36-0	Antimony	0.0200	mg/L	1	Ü	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0712	mg/L]	ļ —————	6010B
7440-41-7	Beryllium	0.0020	mg/L	1	υ	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	28.6	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L) .	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	บ	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	0.292	mg/L	1	3	6010B
7439-92-1	Lead	0.0050	mg/L	1	Ŭ	6010B
7439-95-4	Magnesium	14.0	mg/L	1		6010B
7439-96-5	Manganese	0.0088	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	1.94	mg/L	1		6010B
7782-49-2	Seleníum	0.0150	mg/L	l	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	10.2	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	Ű	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	Ü	6010B
7440-66-6	Zinc	0.0100	mg/L	i	U	6010B

SW-01D

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-16

File ID: 1042610-117

Sampled: <u>04/21/10 14:55</u>

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:13

Solids: 0.00 Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

T001775

Sequence:

Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	l	υ	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0702	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	27.6	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	I	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	0.631	mg/L	1	5	6010B
7439-92-1	Lead	0.0050	mg/L	1	บ	6010B
7439-95-4	Magnesium	13.5	mg/L	1		6010B
7439-96-5	Manganese	0.0118	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	l	υ	6010B
7440-09- 7	Potassium	1.89	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	9.9	mg/L	l		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	Ü	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SW-01S

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-15

File ID: 1042610-116

Sampled: 04/21/10 16:50

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:08

Solids:

<u>0.00</u>

Batch: 10D2292

Preparation: 3005A

T001775

Initial/Final: 50 mL / 50 mL Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	5.83	mg/L	1		6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	}	U	6010B
7440-39-3	Barium	0.0334	mg/L	1	 	6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	ט	6010B
7440-70-2	Calcium	109	mg/L	1		6010B
7440-47-3	Chromium	0.0069	mg/L	1	 	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	ט	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	3.70	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	U	6010B
7439-95-4	Magnesium	4.00	mg/L	1		6010B
7439-96-5	Manganese	0.0505	mg/L	I		6010B
7440-02-0	Nickel	0,0100	mg/L	1	U	6010B
7440-09-7	Potassium	2.08	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	Ŭ	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	2.1	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0066	mg/I.	1	-	6010B
7440-66-6	Zinc	0.0100	mg/L	1	υ	6010B

SW-02D

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

ter Laboratory ID: RTD1782-20

File ID: 1042610-121

Sampled: 04/22/10 10:10

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:33

Solids: 0.00

Preparation: 3005A

5 A Ini

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.443	mg/L	1		6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0657	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	ប	6010B
7440-70-2	Calcium	62.8	mg/L	1		6010B
7440-47-3	Chromium	0.0041	mg/L	i		6010B
7440-48-4	Cobalt	0.0040	mg/L	ı	U	6010B
7440-50-8	Copper	0.0100	mg/L	l	U	6010B
7439-89-6	Iron	0.433	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	υ	6010B
7439-95-4	Magnesium	22.3	mg/L	1		6010В
7439-96-5	Manganese	0.0102	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	I	U	6010B
7440-09-7	Potassium	1.87	mg/L)		6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	7.5	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	Ü	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SW-02S

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-19

File ID: 1042610-120

Analyzed: 04/26/10 23:28

Sampled: 04/22/10 09:30

Prepared: 04/26/10 09:30

Solids: 0.00

Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	1	Ū	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	υ	6010B
7440-39-3	Barium	0.0029	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	Ū	6010B
7440-70-2	Calcium	57.4	mg/L	1		601 0 B
7440-47-3	Chromium	0.0040	mg/L	1	υ	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	İron	0.050	mg/L	1	Ü	601 0B
7439-92-1	Lead	0.0050	mg/L	1	U	6010B
7439-95-4	Magnesium	2.24	mg/L	1		6010B
7439-96-5	Manganese	0.0030	mg/L	1	U	6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	0.500	mg/L	1	U	6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	1.0	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SW-03S

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-18

File ID: 1042610-119

Sampled: <u>04/22/10 09:00</u>

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 23:23

Solids: 0.00 Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence: T001775 Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	l	U	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0088	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	υ	6010B
7 440- 43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	74.4	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	υ	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	Ü	6010B
7440-50-8	Copper	0.0100	mg/L	1	υ	6010B
7439-89-6	Iron	0.050	mg/L	. 1	υ	6010B
7439-92-1	Lead	0.0050	mg/L	1	Ü	6010B
7439-95-4	Magnesium	3.04	mg/L	1		6010B
7439-96-5	Manganese	0.0030	mg/L	I	U	6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	1.91	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	Ŭ	6010B
7440-23-5	Sodium	22.6	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	ı	Ü	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	Ü	6010B

SW-04D

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-09

File ID: 1042610-108

Sampled: 04/21/10 12:35

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 22:25

Solids: 0.00

<u>04/21/10 12..</u>

Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292 Sequence:

T001775

Calibration: R10D216

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	1.80	mg/L	1		6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0147	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0024	mg/L]		6010B
7440-70-2	Calcium	12.2	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	lron	1.63	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	U	6010B
7439-95-4	Magnesium	1.96	mg/L	1		6010B
7439-96-5	Manganese	0.0387	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	l	U	6010B
7440-09-7	Potassium	1.17	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	υ	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	32.0	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1 .	Ŭ	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SW-04S

Form 1 **INORGANIC ANALYSIS DATA SHEET** 6010B

Laboratory: TestAmerica Buffalo

SDG:

Calibration: R10D216

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-08

File ID: 1042610-107

n 11 /00 /00

Sampled: 04/21/10 11:05

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 22:20

Solids:

0.00

Batch: 10D2292

Preparation: 3005A

T001775

Initial/Final: 50 mL / 50 mL

							
CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method	
7429-90-5	Aluminum	0.336	mg/L	1		6010B	
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B	
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B	
7440-39-3	Barium	0.0261	mg/L	1.		6010B	
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B	
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B	
7440-70-2	Calcium	92.7	mg/L	1		6010B	
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B	
7440-48-4	Cobalt	0.0040	mg/L	1	Ü	6010B	
7440-50-8	Copper	0.0100	mg/L	1	U	6010B	
7439-89-6	Iron	8.87	mg/L	1		6010B	
7439-92-1	Lead	0.0050	mg/L	1	· U	6010B	
7439-95-4	Magnesium	6.90	mg/L	1		6010B	
7439-96-5	Manganese	2.08	mg/L	1		6010B	
7440-02-0	Nickel	0.0100	. mg/L	1	U	6010B	
7440-09-7	Potassium	1.94	mg/L	1		6010B	
7782-49-2	Selenium	0.0150	mg/L	1	υ	6010B	
7440-22-4	Silver	0.0030	mg/L	I	U	6010B	
7440-23-5	Sodium	4,3	mg/L	1		6010B	
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B	
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B	
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B	

MW-03

Laboratory: <u>TestAmerica Buffalo</u>

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-14

File ID: <u>H04260W2-55</u>

Sampled: 04/21/10 15:50

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:22

Solids: 0.00

Preparation: 7470A

(nitial/F

(nitial/Final: 30 mL/50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

Instrument: <u>Leeman 2</u>

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q_	Method
7439-97-6	Mercury	0.0002	mg/L	I	ប	7470A

MW-04

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-13

File ID: <u>H04260W2-52</u>

Sampled: 04/21/10 15:00

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:17

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method	
7439-97-6	Mercury	0.0002	mg/L	1	υ	7470A	

MW-16

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-12

File ID: H04260W2-51

Sampled: 04/21/10 13:45

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:15

Solids: 0.00 Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

DUP-2

Field dut of Swood

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-17

File ID: H04260W2-58

Sampled: 04/21/10 00:00

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:27

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

Form 1

INORGANIC ANALYSIS DATA SHEET

7470A

SW-01D

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-16

File ID: H04260W2-57

Sampled: 04/21/10 14:55

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:25

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

Form 1

INORGANIC ANALYSIS DATA SHEET

7470A

SW-01S

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-15

File ID: H04260W2-56

Sampled: 04/21/10 16:50

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:23

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method	
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A	

SW-02D

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-20

File ID: H04260W2-61

Sampled: 04/22/10 10:10

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:32

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/I.	1	U	7470 A

SW-02S

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Initial/Final: 30 mL / 50 mL

Matrix: Ground Water

Laboratory ID: RTD1782-19

File ID: <u>H04260W2-60</u>

Sampled: 04/22/10 09:30

T001707

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:30

Solids:

0.00

Batch: 10D2454

Preparation: 7470A

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L]	U	7470A

SW-03S

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-18

File ID: H04260W2-59

Initial/Final: 30 mL / 50 mL

Sampled: 04/22/10 09:00

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:28

Solids:

0.00

Batch: 10D2454

Preparation: 7470A

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

7470A

SW-04D

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-09

File ID: H04260W2-47

Sampled: <u>04/21/10 12:35</u>

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:08

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	74 70A

7470A

SW-04S

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-08

File ID: <u>H04260W2-46</u>

Sampled: 04/21/10 11:05

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:06

Solids:

0,00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

NDP

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-04

File ID:

T9110.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 13:44

Solids:

04/20/10 17:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

sonus.	Preparation: 50	30B MS	Initial/Final: 5 mL / 5 mL	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	υ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	1.0	U
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	-tr UJ
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	บ
107-06-2	1,2-Dichloroethane	1	1.0	U
78-87~5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	υ
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	5.0	ט
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	405
74-83-9	Bromomethane	1	1.0	ال عد
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	l	1.0	U
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156 -59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	υ
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	บ
75-71-8	Dichlorodifluoromethane	1	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	ע
79-20-9	Methyl Acetate	1	1.0	บ
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	υ

Form Rev: 11/23/09

157/1262

Walle W

NDP

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-04

File ID: <u>T9110.D</u>

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 13:44

Solids:

04/20/10 17:00

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Sonus.		riepai	aumi, 1	N CINCO	122		minappi	nu.	2 mr. 1 2 mr.	
Batch:	10D2681	Sequence:	T001752	1	Calibration	n:	R10D19	<u>6</u>	Instrument:	HP5975T
CAS NO.	COMPOUNT)			DILU	TION		CONC	. (ug/L)	Q
100-42-5	Styrene				·	1		1	.0	Ŭ_
127-18-4	Tetrachloroct	hene				1]	1	.0	U
108-88-3	Toluene					1		1.0		U
156-6 0 -5	trans-1,2-Dic	hloroethene				1	<u> </u>	1.0		U
10061-02-6	trans-1,3-Dic	hloropropene				1		1	.0	U
79-01-6	Trichloroethe	me				1	<u> </u>	1	U	
75-69-4	Trichlorofluo	romethane				1	<u> </u>	1	.0	U
75-01-4	Vinyl chlorid	Vinyl chloride				1		1	.00.	U
1330-20-7	Xylenes, tota					1		2	U	
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND				RT	RT EST, CONC. (ug/		Q
NOTICS	No TICs four	ıd							0.0	U
SYSTEM MON	VITORING COM	APOUND	ADDED (u	ıg/L)	CONC	(ug/L)	%1	REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25,0		. 2:	3.4	9)4	66 - 137	
4-Bromofluorol	benzene		25.0		2	1,1	1 - 1	34	73 - 120	
Tolucne-d8			25.0		2	3.0	. 9	02	71 - 126	
INTERNAL ST	TANDARD		AREA	`	F	e T	REF	AREA	REF RT	Q
1,4-Dichlorobe	ozene-d4		384416	5	9.	86	604	1796	9.86	
1,4-Difluorober	nzene		870560	2	5.	68	126	3836	5.68	
Chlorobenzene	-d5		773918	₃ _	7.	95	112	9078	7.95	<u> </u>

^{*} Values outside of QC limits

Form 1

ORGANIC ANALYSIS DATA SHEET

8260B

DUP-1

Field My

Laboratory:

TestAmerica Buffalo

SDG:

NYSDEC - Rose Valley Landfill - Site# 622017

Client: Matrix:

Laboratory ID:

Project:

Ground Water

RTD1782-02

File ID:

T9108.D

Sampled:

04/20/10 00:00

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 12:55

New York State D.E.C. - Albany, NY

Solids:	Preparation	n: <u>5030</u> E	3 MS	Initial/Final: 5	<u>mľ. / 5 mľ.</u>
Batch:	<u>10D2681</u> Sequence: 1	<u>001752</u>	Calibration:	R10D196 In	strument: <u>HP5975T</u>
CAS NO.	COMPOUND		DILUTION	CONC. (u	
71-55-6	1,1,1-Trichloroethane		1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane		1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane		1	1.0	U
79-00-5	1,1,2-Trichloroethane		1	1.0	Ŭ
75-34-3	1,1-Dichloroethane		i	1.0	U
75-35-4	1,1-Dichloroethene		1	1.0	ט
120-82-1	1,2,4-Trichlorobenzene		1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane		1	1.0	- tr UT
106-93-4	1,2-Dibromoethane		1	1.0	U
95-50-1	1,2-Dichlorobenzene		1	1.0	U U
107-06-2	1,2-Dichloroethane		1	1.0	U
78-87-5	1,2-Dichloropropane		1	1.0	υ
541-73-1	1,3-Dichlorobenzene		1	1.0	U
106-46-7	1,4-Dichlorobenzene		1	1.0	U
78-93-3	2-Butanone		1	5.0	U
591-78-6	2-Hexanone		1	5.0	U
108-10-1	4-Methyl-2-pentanone		1	5.0	U
67-64-1	Acetone		1	5.0	U
71-43-2	Benzene		1	1.0	U
75-27-4	Bromodichloromethane		1	1.0	ט
75-25-2	Bromoform		1	1.0	405
74-83-9	Bromomethane		1	1.0	v V
75-15-0	Carbon disulfide		1	1.0	U
56-23-5	Carbon Tetrachloride		1	1.0	ט
108-90-7	Chlorobenzene		1	1.0	U
75-00-3	Chloroethane		1	1.0	U
67-66-3	Chloroform		1	1.0	U
74-87-3	Chloromethane		1	1.0	U
156-59-2	cis-1,2-Dichloroethene		1	1.0	U
10061-01-5	cis-1,3-Dichloropropene		1	1.0	U
110-82-7	Cyclohexane		1	1.0	U
124-48-1	Dibromochloromethane		11	1.0	U
75-71-8	Dichlorodifluoromethane		1	1.0	ŭ
100-41-4	Ethylbenzene		1	1.0	υ
98-82-8	Isopropylbenzene		1	1.0	U
79-20-9	Methyl Acetate		1	1.0	U
108-87-2	Methylcyclohexane		1	1.0	U
75-09-2	Methylene Chloride		1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)		1	1.0	U

Form Rev: 11/23/09

144/1262

 $o\eta_{il_F} v \vartheta$

DUP-1

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Field My

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-02

File ID:

T9108.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 12:55

Solids:

04/20/10 00:00

Preparation:

5030B MS

Initial/Final:

5 mT. / 5 mT

bolluş.		гтера	ганол: <u>50</u>	30B MS		Initial/Fi	181.	<u>5 mL / 5 mL</u>	
Batch:	10D2681	Sequence:	T001752	Calibratio	on:	R10D196	í	Instrument:	HP5975T
CAS NO.	COMPOUND)		DIL	UTION	T	CON	C. (ug/L)	Q
100-42-5	Styrene				1			1.0	U
127-18-4	Tetrachloroetl	iene			1	 		1.0	U
108-88-3	Toluene				1	1		1.0	U
156-60-5	trans-1,2-Dich	loroethene	_		1	1		1.0	<u> </u>
10061-02-6	trans-1,3-Dich	lloropropene			1			1.0	U
79-01-6	Trichloroether	ne	_		1	1		1.0	U
75-69-4	Trichlorofluor	omethane			1			.0	U
75-01-4	Vinyl chloride	Vinyl chloride			1	<u> </u>		1.0	U
1330-20-7	Xylenes, total				1			2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND			RT		CONC. (ug/L)	Q
NOTICS	No TICs found	d						0.0	U
SYSTEM MON	NITORING COM	POUND	ADDED (ug	L) CON	C (ug/L)	% R	EC	QCLIMITS	Q
1,2-Dichloroeth	ane-d4		25.0		3.3	92	·	66 - 137	
4-Bromofluorol	enzene		25.0	2	1.9	87		73 - 120	
Toluene-d8		·	25.0	2	3,1	92		71 - 126	
INTERNAL ST	ANDARD		AREA	1	RT	REF A	REA	REF RT	Q
1,4-Dichlorober	nzene-d4		404462	9	.86	6047	96	9.86	† -
1,4-Difluoroben	fluorobenzene 9		904719	5	.68	1263	R36	5.68	
Chlorobenzene	d5		811222	7	.95	1129	078	7.95	

^{*} Values outside of QC limits

SDP

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-01

File ID:

T9107.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 12:31

Solids:

04/20/10 15:30

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:		Preparation:	5030B MS	Initial/Final:	5 mL / 5 mL	
Batch:	10D2681 Sequence	T001752	Calibration:	R10D196	Instrument:	HP5975T
CAS NO.	COMPOUND		DILUTION	CO	NC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane		1		1.0	ŭ
79-34-5	1,1,2,2-Tetrachloroethane		1		1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	octhane	1		1.0	υ
79-00-5	1,1,2-Trichloroethane		1		1.0	U
75-34-3	1,1-Dichloroethane		1		1.0	U
75-35-4	1,1-Dichloroethene		1		1.0	U
120-82-1	1,2,4-Trichlorobenzene		1		1.0	υ
96-12-8	1,2-Dibromo-3-chloropropan	ie	1		1.0	آل ہے۔
106-93-4	1,2-Dibromoethane		1		1.0	ប
95-50-1	1,2-Dichlorobenzene		1		1.0	U
107-06-2	1,2-Dichloroethane		1		1.0	υ
78-87-5	1,2-Dichloropropane		1		1.0	U
541-73-1	1,3-Dichlorobenzene		1		1.0	บ
106-46-7	1,4-Dichlorobenzene		1		1.0	U
78-93-3	2-Butanone		l		5.0	υ
591-78-6	2-Hexanone		1		5.0	ט
108-10-1	4-Methyl-2-pentanone	·	1		5.0	U
67-64-1	Acetone		11		5.0	U
71-43-2	Benzene		1		1.0	υ
75-27-4	Bromodichloromethane		1		1.0	U
75-25-2	Bromoform		1		1.0	700
74-83-9	Bromomethane				1.0	おりむ
75-15-0	Carbon disulfide		1		1.0	U
56-23-5	Carbon Tetrachloride		1		1.0	U
108-90-7	Chlorobenzene			· ·	1.0	U
75-00-3	Chloroethane		1		1.0	U
67-66-3	Chloroform		1		1.0	υ
74-87-3	Chloromethane	· · · · · · · · · · · · · · · · · · ·	1		1.0	U
156-59-2	cis-1,2-Dichloroethene	· • · · · · · · · · · · · · · · · · · ·	1		1.0	U
10061-01-5	cis-1,3-Dichloropropene			1	1.0	U
110-82-7	Cyclohexane		1		1.0	u
124-48-1	Dibromochloromethane		1		1.0	U
75-71-8	Dichlorodifluoromethane		1		1.0	U
100-41-4	Ethylbenzene		11		1.0	U
98-82-8	Isopropylbenzenc		1	J	1.0	ט
79-20-9	Methyl Acctate		1		1.0	U
108-87-2	Methylcyclohexane		1		0.1	U
75-09-2	Methylene Chloride		1		1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE	S)	1		1.0	<u>u</u>

Form Rev: 11/23/09

138/1262 br my

SDP

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-01

File ID:

T9107.D

Sampled:

04/28/10 14:44

Analyzed:

04/29/10 12:31

04/20/10 15:30

Prepared:

5030B MS

Solids:		Prepar	ation:	5030B I	MS		Initial/F	inal:	5 mL / 5 mL	
Batch:	10D2681	Sequence:	T001752		Calibratic	m:	R10D19	6	Instrument:	HP5975T
CAS NO.	COMPOUNT)			DIL	JTION	T	CON	C. (ug/L)	Q
100-42-5	Styrene					1	†		1.0	U
127-18-4	Tetrachloroet	hene				1			1.0	U
108-88-3	Toluene					1	1		1.0	U
156-60-5	trans-1,2-Dic	hloroethene				1			1.0	U
10061-02-6	trans-1,3-Dic	hloropropene				1	1		1.0	U
79-01-6	Trichloroethe	ne				1	1		1.0	υ
75-69-4	Trichlorofluo	romethane				1			1.0	U
75-01-4	Vinyl chlorid	£				1	1		1.0	บ
1330-20-7	Xylenes, total					1	 		2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND			 	RT		CONC, (ug/L)	Q
NOTICS	No TICs foun	d		~					0.0	U
SYSTEM MON	ITORING COM	POUND	ADDEL	(ug/L)	CONC	(ug/L)	%1	REC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25	.0		2.8	9	1	66 - 137	
4-Bromofluorob	enzene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25	.0	2	1.3	8	5	73 - 120	
Toluene-d8			25	.0	2:	3.0	9	2	71 - 126	
INTERNAL ST.	ANDARD		AR	EA	FI I	iT	REF	AREA	REF RT	Q
1,4-Dichloroben	zene-d4		423	603	9.	86	604	796	9.86	
1,4-Difluoroben			959	172	5.	68	 -	3836	5.68	
Chlorobenzene-	15		862	088	7.	95	1129	2078	7.95	

^{*} Values outside of QC limits

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

File ID: RTD1782-03

T9109.D

Sampled:

04/28/10 14:44

Analyzed:

04/29/10 13:19

Solids:

04/20/10 16:30

Prepared: Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:		Prepara	tion:	5030B N	<u>fS</u>	Initial/Final:	<u>5 mL / 5 mL</u>	
Batch:	10D2681	Sequence:	T001752		Calibration;	R10D196	Instrument:	HP5975T
CAS NO.	COMPOUND				DILUTION	CO	NC. (ug/L)	Q
71-55-6	1,1,1-Trichloroeth	ane			1		1.0	U
79-34-5	1,1,2,2-Tetrachlor	oethane			l		1.0	U
76-13-1	1,1,2-Trichloro-1,	2,2-trifluoroethane			1		1.0	υ
79-00-5	1,1,2-Trichloroeth	ane			l		1.0	U
75-34-3	1,1-Dichloroethan	e			1		1.0	U
75-35-4	1,1-Dichloroethen	e			1		1.0	U
120-82-1	1,2,4-Trichlorober	nzene			i		1.0	υ
96-12-8	1,2-Dibromo-3-ch	Іогоргорапе			l		1,0	JU C
106-93-4	1,2-Dibromoethar	ıc			1		1.0.	U
95-50-1	1,2-Dichlorobenze	ene			1		1.0	U
107-06-2	1,2-Dichloroethan	e			1		1.0	U
78-87-5	1,2-Dichloropropa	ne			1		1.0	Ų
541-73-1	1,3-Dichlorobenze	ene			L		1.0	ט
106-46-7	1,4-Dichlorobenze	ene			1		1.0	U
78-93-3	2-Butanone				1		5.0	U
591-78-6	2-Hexanone				1		5,0	U
108-10-1	4-Methyl-2-pentar	none			1		5.0	U
67-64-1	Acetone				1		5.0	U
71-43-2	Benzene				1		1.0	U
75-27-4	Bromodichlorome	thane			1		1.0	U
75-25-2	Bromoform				1		1.0	むし
74-83-9	Bromomethane				1		1.0	-U V
75-15-0	Carbon disulfide				1		1.0	U
56-23-5	Carbon Tetrachlor	ide			11		1.0	U
108-90-7	Chlorobenzene				11		1.0	U
75-00-3	Chloroethane				1		1.0	U
67-66-3	Chloroform				1		1.0	<u>u</u>
74-87-3	Chloromethane				1		1.0	บ
156-59-2	cis-1,2-Dichloroet	hene			1		1.0	U_
10061-01-5	cis-1,3-Dichlorope	ropene			1		1.0	U
110-82-7	Cyclohexane				1		1.0	U
124-48-1	Dibromochlorome	thane			1		1.0	U_
75-71-8	Dichlorodifluoron	1ethane			1		1.0	U
100-41-4	Ethylbenzene				11		1.0	U
98-82-8	Isopropylbenzene				11		1.0	U
79-20-9	Methyl Acetate				1		1.0	υ
108-87-2	Methylcyclohexar	ie			1		1.0	U
75-09-2	Methylene Chlorie	de		<u>.</u>	11		1.0	U
1634-04-4	Methyl-t-Butyl Et	her (MTBE)			I		1.0	U

151/1262

Form Rev: 11/23/09

Par Mills

SWTR-1E

8260B

Laboratory:

TestAmerica Buffalo

SDG.

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-03

File ID:

T9109,D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 13:19

Solide

04/20/10 16:30

Solids:		Prepa	ration: 5030B	<u>MS</u>		Initial/F	inal:	<u>5 mL / 5 mL</u>	•
Batch:	10D2681	Sequence:	<u>T001752</u>	Calibration	n:	R10D19	<u>6</u>	Instrument:	HP5975T
CAS NO.	COMPOUNT)		DILU	TION	1	CON	C. (ug/L)	Q
100-42-5	Styrene				1	 		1.0	U
127-18-4	Tetrachloroet	hene]			1.0	U
108-88-3	Toluene			T			1.0	U	
156-60-5	trans-1,2-Dicl	trans-1,2-Dichloroethene			l			1.0	U
10061-02-6	trans-1,3-Dicl	hloropropene			<u> </u>	T		1.0	U
79-01-6	Trichloroethe	ne			L.			1.0	U
75-69-4	Trichlorofluo	Trichlorofluoromethane			1 1		1.0	U	
75-01-4	Vinyl chlorid	Vinyl chloride			l			1.0	U
1330-20-7	Xylenes, total	l			 L			2.0	U
CAS NO.	TENTATIVE	LY IDENTIFIED CO	OMPOUND			RT	EST	CONC. (ug/L)	Q
NOTICS	No TICs foun	d						0.0	U
SYSTEM MON	TTORING COM	POUND	ADDED (ug/L)	CONC	(ug/L)	%1	REC	QCLIMITS	Q
1,2-Dichloroeth			25.0	23	.6		94	66 - 137	
4-Bromofluorol	enzene		25.0	21	.6	1	36	73 - 120	
Toluene-d8			25.0	23	.0	9)2	71 - 126	
INTERNAL ST	ANDARD		AREA	R.	T .	REF.	AREA	REF RT	Q
1,4-Dichlorober	izene-d4		390411	9.8	36	604796		9.86	
1,4-Difluorober	benzene		871073	5.0	58	1263836		5.68	
Chlorobenzene-	d5		784853	7.5	95	112	9078	7.95	

^{*} Values outside of QC limits

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-07

. File ID; T9113.D

Sampled:

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 14:56

Solide

04/21/10 09:30

Solids:	Preparation: 50	30B MS	Initial/Final: 5 mL / 5 mL	•
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	<u>HP5975T</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	TQ
71-55-6	1,1,1-Trichloroethane	1	1,0	U
79-34-5	1,1,2,2-Tetrachioroethane	1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	1.0	υ
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	J UT
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1,0	U
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	U
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	1	9.4	
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	U
75-25-2	Bromoform	1	1.0	401
74-83-9	Bromomethane	11	1.0	ル ソ
75-15-0	Carbon disulfide	1	1.0	U
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	0.75	1
75-00-3	Chloroethane	1	1.0	U
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	U
75-71-8	Dichlorodifluoromethane	1	1.0	U
100-41-4	Ethylbenzene	1	1.0	U
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acetate	1	1.0	U
108-87-2	Methylcyclohexane	1	1.0	U
75-09-2	Methylene Chloride	1	1.0	U
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	U

Form Rev: 11/23/09

12/1/10

Form 1

ORGANIC ANALYSIS DATA SHEET

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-07

File ID; T9113.D

Sampled:

Prepared:

Analyzed:

04/29/10 14:56

SWTR-TT

Solids:

04/21/10 09:30

04/28/10 14:44

Initial/Final:

Solids:	•	Prepar	ration;	<u>5030B N</u>	<u> </u>		Initial/F	inal:	5 mL / 5 mL	
Batch:	10D2681	Sequence:	<u>T001752</u>		Calibration	n;	R10D19	<u>6</u>	Instrument:	HP5975T
CAS NO.	COMPOUNI)			DILU	TION	1	CON	C. (ug/L)	Q
100-42-5	Styrene		,,,]			1.0	U
127-18-4	Tetrachloroet	hene				1			1.0	- υ
108-88-3	Toluene					1	1		1.0	υ
156-60-5	trans-1,2-Dic	nloroethene				1			1.0	ט
10061-02-6	trans-1,3-Dicl	lloropropene				· ·			1.0	U
79-01-6	Trichloroethe	ne				 [1.0	U
75-69-4	Trichlorofluo	romethane				l			1.0	U
75-01-4	Vinyl chlorid	E	-			[1.0	U
1330-20-7	Xylenes, total					!	+		2.0	U
CAS NO.		LY IDENTIFIED CO	MPOUND				RT		CONC. (ug/L)	Q
000109-99-9	Furan, tetrahy	dro-				4.9	48		16	+
SYSTEM MON	ITORING COM	POUND	ADDEI) (ug/L)	CONC	(ug/L)	%]	REC	QC LIMITS	Q
1,2-Dichloroetha	me-d4_		25	0.0	23	.0	9	2	66 - 137	
4-Bromofluorob	nzene		25	i.0	21	.1	1	4	73 - 120	
Toluene-d8			25	.0	22	.8	9	1_	71 - 126	
INTERNAL ST	ANDARD		AR	ŒΑ	R	T	REF	AREA	REF RT	Q
1,4-Dichloroben	zene-d4		367	775	9.8	36	604	796	9.86	
1,4-Difluorobenz	zene		849	176	5.0	58	126	3836	5.68	
Chlorobenzene-d	15		750	747	7.9)5	112	9078	7.95	

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-04 File ID:

V2331,D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 01:19

Solids

04/20/10 17:00

Solids:	Prepara	tion:	3510C MB	lnitial/Fir	ial: <u>1040 mL / 1 m</u>	<u>.L</u>
Batch:	<u>10D2326</u> Sequence:	T001852	Calibration:	<u>R10E011</u>	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND		DILUT	ION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)		1		9.6	ŭ
95-95-4	2,4,5-Trichlorophenol		1		24	U
88-06-2	2,4,6-Trichlorophenol		1		9.6	Ū
120-83-2	2,4-Dichlorophenol		1		9.6	U
105-67-9	2,4-Dimethylphenol		1		9.6	U
51-28-5	2,4-Dinitrophenol		1		48	U
121-14-2	2,4-Dinitrotoluene		1		9.6	U
606-20-2	2,6-Dinitrotoluene		1		9.6	U
91-58-7	2-Chloronaphthalene		11_		9.6	U
95-57-8	2-Chlorophenol		1		9.6	U
91-57-6	2-Methylnaphthalene		1		9.6	ט
95-48-7	2-Methylphenol		1		9.6	U
88-74-4	2-Nitroaniline		1		48	U
88-75-5	2-Nitrophenol		1		9.6	υ
91-94-1	3,3'-Dichlorobenzidine		1		19	Ū
99-09-2	3-Nitroaniline		1		48	ט
534-52-1	4,6-Dinitro-2-methylphenol	<u> </u>	1		48	U
101-55-3	4-Bromophenyl phenyl ether		11_		9.6	U
59-50-7	4-Chloro-3-methylphenol		1		9.6	ט
106-47-8	4-Chlorosniline		1		9.6	U
7005-72-3	4-Chlorophenyl phenyl ether	···	1		9.6	U
106-44-5	4-Methylphenol		1		4.8	ט
100-01-6	4-Nitroaniline		1		48	U
100-02-7	4-Nitrophenol		11		48	U
83-32-9	Acenaphthene		1		9.6	U
208-96-8	Acenaphthylene		11_		9.6	U
98-86-2	Acetophenone		1		9.6	U
120-12-7	Anthracene		1		9.6	U
1912-24-9	Atrazine		1		9.6	-U U
100-52-7	Benzaldehyde		1		48	U
56-55-3	Benzo(a)anthracene		1		9.6	υ
50-32-8	Benzo(a)pyrene		1		9.6	U
205-99-2	Benzo(b)fluoranthene		1		9.6	u
191-24-2	Benzo(ghi)perylene		1	<u> </u>	9.6	υ
207-08-9	Benzo(k)fluoranthene	-	1		9.6	U
92-52-4	Biphenyl		1		9.6	U
111-91-1	Bis(2-chloroethoxy)methane		1		9.6	U
111-44-4	Bis(2-chloroethyl)ether		1		9.6	υ
117-81-7	Bis(2-ethylhexyl) phthalate		1		9.6	ט

Form Rev: 11/23/09

449/1262

Po 11/10

8270C

NDP

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-04

File ID:

<u>V2331.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 01:19

04/20/10 17:00

Solids:	Preparation:	3510C MB	Initial/F	inal: <u>1040 mL / 1 m</u>	<u>L</u>
Batch:	<u>10D2326</u> Sequence: <u>T00185</u>	Calibration:	<u>R10E01</u>	1 Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTI	ON	CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.6	U
105-60-2	Caprolactam	1		9.6	U
86-74-8	Carbazole	1		4.8	U
218-01-9	Chrysene	1		9.6	U
53-70-3	Dibenzo(a,h)anthracene	1		9.6	U
132-64-9	Dibenzofuran	1	1	9.6	U
84-66-2	Diethyl phthalate	1		9,6	U
131-11-3	Dimethyl phthalate	1		9.6	IJ
84-74-2	Di-n-butyl phthalate	1		9.6	U
117-84-0	Di-n-octyl phthalate	1		9.6	Ü
206-44-0	Fluoranthene	1		9.6	ט
86-73-7	Fluorene	1		9.6	U
118-74-1	Hexachlorobenzene	1		9.6	U
87-68-3	Hexachlorobutadiene	1		9.6	U
77-47-4	Hexachlorocyclopentadiene	1		9.6	ט
67-72-1	Hexachloroethane	1		9.6	U
193-39-5	Indeno(1,2,3-cd)pyrene	1		9.6	U
78-59-1	Isophorone	1		9,6	U
91-20-3	Naphthalene	1		9.6	U
98-95-3	Nitrobenzene	1		9.6	U
621-64-7	N-Nitrosodi-n-propylamine	1		9.6	U
86-30-6	N-Nitrosodiphenylamine	1		9.6	U
87-86-5	Pentachlorophenoi	1	-	48	U
85-01-8	Phenanthrene	1		9.6	U
108-95-2	Phenol	1		9.6	U
129-00-0	Pyrene	1		9.6	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT	EST. CONC. (ug/L)	Q
попе	Unknown01		11,605	15	
none	Unknown02		11.637	8.3	
none	Unknown03		12.519	34	
none	Unknown04		12.65	67	
none	Unknown05		13.304	17	
none	Unknown06		13.35	30	
none	Unknown07		13.37	22	
none	Unknown08		13.464	46	
none	Unknown09		13.748	9.2	
none	Unknown10		14.057	53	
none	Unknown1)		14,079	24	
none	Unknown12		14.191	120	
попе	Unknown13	450/1262	14.602	8.9	J

Form Rev: 11/23/09

450/1262

NDP

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-04

File ID:

V2331.D

Sampled:

04/20/10 17:00

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 01:19

Solids:

04/20/10 17:00

Preparation:

3510C MB

Initial/Final;

1040 mL / 1 mL

Batch:	<u>10D2326</u> Sequence: <u>T001852</u> (Calibratic	n:	R10E011	Instrument:	<u>HP5973V</u>	
CAS NO.	TENTATIVEL	Y IDENTIFIED CO	OMPOUND)	RT E	ST. CONC. (ug/L)	Q
none	Unknown14				14.		28	
none	Unknown15				14.763		49	
попе	Unknown16				14.1	795	50	
попе	Unknown17				15.52		8.0	
none	Unknown18	Inknown18			15.5	553	19	
none	Unknown19	Unknown19			15.5	596	23	
none	Unknown20				16.6	533	12	
SYSTEM MOI	NITORING COME	OUND	ADDED (ug/L)	CONC	C(ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromo	phenol		144	1	69	117	52 - 132	
2-Fluorobiphen	ıyl		96.2	8	6.1	90	48 - 120	
2-Fluorophenol	<u> </u>	······································	144	6	1.7	43	20 - 120	
Nitrobenzene-d	<u>IS</u>		96.2	8	0.9	84	<u>46 - 120</u>	
Phenol-d5			144	4	9.8	34	16 - 120	
p-Terphenyl-dl	4		96.2		5.0	88	24 - 136	
INTERNAL ST	TANDARD		AREA	1	KT	REF AREA	REFRT	Q
1,4-Dichlorobe	nzene-d4		57330	5	.68	81657	5.68	
Acenaphthene-	d10		131332	9	69	185812	9.69	
Chrysene-d12			295197	13	.88	418270	13.88	
Naphthalene-da	3		210999	7	41	299192	7.41	
Perylene-d12			247175	15	.13	357754	15.13	
Phenanthrene-d	110		238564	1	1.4	339823	11.4	

^{*} Values outside of QC limits

8270C

DUP-1

Field dop of

Laboratory:

TestAmerica Buffalo

SDG;

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

File ID:

V2329.D

Sampled:

Laboratory ID:

RTD1782-02

Analyzed:

05/06/10 00:29

04/20/10 00:00

Prepared:

04/25/10 08:00

Solids:	Prepara	ation:	3510C MB	Initial/Final:	1030 mL/1 m	<u>L</u> ,
Batch:	10D2326 Sequence:	T001852	Calibration:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND		DILUTION	CON	iC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)		1		9.7	U
95-95-4	2,4,5-Trichlorophenol		1		24	ט
88-06-2	2,4,6-Trichlorophenol		1		9.7	υ
120-83-2	2,4-Dichlorophenol		- 1		9.7	ט
105-67-9	2,4-Dimethylphenol		11		9.7	U
51-28-5	2,4-Dinitrophenol		1.		49	U
121-14-2	2,4-Dinitrotoluene		1		9.7	ט
606-20-2	2,6-Dinitrotoluene		1		9.7	υ
91-58-7	2-Chloronaphthalene		1		9.7	ַט
95-57-8	2-Chlorophenol		1		9.7	ט
91-57-6	2-Methylnaphthalene		1		9.7	บ
95-48-7	2-Methylphenol		1		9.7	U
88-74-4	2-Nitroaniline		1		49	U
88-75-5	2-Nitrophenol		1		9.7	ับ
91-94-1	3,3'-Dichlorobenzidine		1		19	บ
99-09-2	3-Nitroaniline		1		49	U
534-52-1	4,6-Dinitro-2-methylphenol		1		49	U
101-55-3	4-Bromophenyl phenyl ether		1		9.7	ט
59-50-7	4-Chloro-3-methylphenol		11		9.7	U
106-47-8	4-Chloroaniline		11		9.7	U
7005-72-3	4-Chlorophenyl phenyl ether		1		9.7	υ
106-44-5	4-Methylphenol		11		4.9	U
100-01-6	4-Nitroaniline		1		49	U
100-02-7	4-Nitrophenol		1	<u> </u>	49	Ŭ ·
83-32-9	Acenaphthene		1		9.7	U
208-96-8	Acenaphthylene		1	<u> </u>	9.7	U
98-86-2	Acetophenone		1		9.7	U
120-12-7	Anthracene		1		9.7	U
1912-24-9	Atrazine		1		9.7	4 U.T
100-52-7	Benzaldehyde		11		49	U
<u>56-5</u> 5-3	Benzo(a)anthracene		1		9.7	U
50-32-8	Benzo(a)pyrene		1		9.7	U
205-99-2	Benzo(b)fluoranthene		1		9.7	υ
191-24-2	Benzo(ghi)perylene		1		9.7	U
207-08-9	Benzo(k)fluoranthene		1		9.7	U
92-52-4	Biphenyl		11		9.7	U
111-91-1	Bis(2-chloroethoxy)methane	·- ·- ·	1		9.7	บ
111-44-4	Bis(2-chloroethyl)ether		1		9.7	U
117-81-7	Bis(2-ethylhexyl) phthalate		11		9.7	บ

Form Rev: 11/23/09

393/1262 11/10

8270C

DUP-1

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-02 File ID:

<u>V2329.D</u>

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 00:29

Solida

04/20/10 00:00

Prepared:

2510C MD

T=141=1701==1-

Solids:	Preparation: 35	10C MB	Initial/Final:	1030 mL / 1 ml	<u>L</u>
Batch:	<u>10D2326</u> Sequence: <u>T001852</u>	Calibration:	R10E011	Instrument;	HP5973V
CAS NO.	COMPOUND	DILUTION	С	ONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1		9.7	υ.
105-60-2	Caprolactant	1		9.7	U
86-74-8	Carbazole	1		4.9	U
218-01-9	Chrysene	1		9.7	U
53-70-3	Dibenzo(a,h)anthracene	1		9.7	U
132-64-9	Dibenzofuran	1		9,7	υ
84-66-2	Diethyl phthalate	1		9.7	U
131-11-3	Dimethyl plithalate	1		9.7	U
84-74-2	Di-n-butyl phthalate	1		9.7	U
117-84-0	Di-n-octyl phthalate	1	1	9.7	U
206-44-0	Fluoranthene	1		9.7	U
86-73-7	Fluorene	1		9.7	U
118-74-1	Hexachlorobenzene	1		9.7	U
87-68-3	Hexachlorobutadiene	1		9.7	บ
77 -47-4	Hexachlorocyclopentadiene	1		9.7	U
67-72-1	Hexachloroethane	1		9.7	U
193-39 -5	Indeno(1,2,3-cd)pyrene	1		9.7	U
78-59-1	Isophorone	1		9.7	บ
91-20-3	Naphthalene	1		9.7	U
98-95-3	Nitrobenzene	1		9.7	U
621-64-7	N-Nitrosodi-n-propylamine	1		9.7	U
86-30-6	N-Nitrosodiphenylamine	1		9.7	ט
87-86-5	Pentachlorophenol	1		49	U
85-01-8	Phenanthrene	1		9.7	U
108-95-2	Phenol	1		9.7	U
129-00-0	Рутепе	1	_	9.7	U
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT E	ST. CONC. (ug/L)	Q
none	Unknown01	11	.461	6.7	
none	Unknown02	11	.605	18	
none	Unknown03	11	.638	9.4	
none	Unknown04	12	.466	7.0	
none	Unknown05	12	2.65	60	
none	Unknown06	13	.304	15	
none	Unknown07		3.34	24	
попе	Unknewn08		.368	19	
none	Unknown09		.475	55	
none	Unknown10		.742	8.0	<u> </u>
попе	Unknown11	··	.058	45	
none	Unknown12		1.08	17	
none	Unknown13	394/1262	.191	39	

Form Rev: 11/23/09

394/1262

8270C

DUP-1

Field der of

Laboratory:

TestAmerica Buffalo

SDG;

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Laboratory ID:

Ground Water

RTD1782-02

File ID:

V2329,D

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 00:29

Solids:

04/20/10 00:00

Preparation:

3510C MB

Initial/Final:

1030 mL / 1 mL

		Trepare	<u> 33100 H</u>	<u></u>		Mudabi Mai.	1030 HLL / L HILL	
Batch:	10D2326	Sequence:	T001852	Calibratio	n:	R10E011	Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND]	RT EST	r. CONC. (ug/L)	Q
none	Unknown14				14	.6	7.1	
none	Unknown15	Unknown15			14.7	763	22	
none	Unknown16				14.7	195	37	
none	Unknown17				15.5	16	6.8	
none	Unknown18				15.	55	13	
none	Unknown19				15.5	96	17	
none	Unknown20				16.6	33	7.6	
SYSTEM MON	TTORING COM	POUND	ADDED (ug/L)	CONC	(ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromor	henol		146	1	41	97	52 - 132	
2-Fluorobipheny	<i>i</i> 1		97.1	78	3.4	81	48 - 120	
2-Fluorophenol		· · · · · · · · · · · · · · · · · · ·	146	50	5.7	39	20 - 120	
Nitrobenzene-de			97.1	71	1.0	73	46 - 120	
Phenol-d5			146	4(5.7	32	16 - 120	
p-Terphenyl-d14	<u> </u>		97.1	60).4	62	24 - 136	
INTERNAL ST	ANDARD		AREA	R	T	REF AREA	REF RT	Q
1,4-Dichloroben	zene-d4		66312	5.	68	81657	5.68	
Acenaphthene-d	10		151605	9,	69	185812	9.69	
Chrysene-d12			345104	13	.88	418270	13,88	
Naphthalene-d8			251346	7.	41	299192	7.41	
Perylene-d12			287780	15	.13	357754	15.13	
Phenanthrene-dl	0		277657	11	.4	339823	11.4	

^{*} Values outside of QC limits

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-01

File ID:

<u>V2328.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 00:04

Salida

04/20/10 15:30

Solids:	Preparation: 351	<u>0С МВ</u>	Initial/Final: 1020 mL	<u>/1 mL</u>
Batch:	<u>10D2326</u> Sequence: <u>T001852</u>	Calibration:	R10E011 Instrume	nt: <u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.8	ַט
95-95-4	2,4,5-Trichlorophenol	1	25	U
88-06-2	2,4,6-Trichlorophenol	1	9.8	υ
120-83-2	2,4-Dichlorophenol	1	9.8	U
105-67-9	2,4-Dimethylphenol	1	9.8	υ
51-28-5	2,4-Dinitrophenol	ı	49	ט
121-14-2	2,4-Dinitrotoluene	1	9.8	Ū
606-20-2	2,6-Dinitrotoluene	1	9.8	U
91-58-7	2-Chloronaphthalene	1	9.8	ַט
9 <u>5</u> -57-8	2-Chlorophenol	1	9.8	U
91-57-6	2-Methylnaphthalene	1	9.8	U
95-48-7	2-Methylphenol	1	9.8	U
88-74-4	2-Nitroaniline	1	49	ט
88-75-5	2-Nitrophenol	1	9.8	ט
91-94-1	3,3'-Dichlorobenzidine	1	20	ַ ט
99-09-2	3-Nitroaniline	1	49	U
534-52-1	4,6-Dinitro-2-methylphenol	1	49	U
101-55-3	4-Bromophenyl phenyl ether	1	9.8	U
59- 50-7	4-Chloro-3-methylphenol	1	9.8	U
106-47-8	4-Chloroaniline	1	9.8	U
7005-72-3	4-Chlorophenyl phenyl ether	1	9.8	υ
106-44-5	4-Methylphenol	1	4.9	ט
100-01-6	4-Nitroaniline	1	49	<u> </u>
100-02-7	4-Nitrophenol	1	49	U
83-32-9	Acenaphthene	1	9.8	U
208-96-8	Acenaphthylene	<u>1</u>	9.8	U
98-86-2	Acetophenone	11	9.8	υ
120-12-7	Anthracene	1	9,8	U
1912-24-9	Atrazine	1	9.8	#UJ
100-52-7	Benzaldehyde	1	49	ַ
56-55-3	Benzo(a)anthracene	1	9.8	U
50-32-8	Вепго(а)ругепе	1	9.8	U
205-99-2	Benzo(b)fluoranthene	1	9.8	U
191-24-2	Benzo(ghi)perylene	1	9.8	U
207-08-9	Benzo(k)fluoranthene	1	9.8	U
92-52-4	Biphenyl	1	9.8	U
111-91-1	Bis(2-chloroethoxy)methane	1	9.8	Ū
111-44-4	Bis(2-chloroethyl)ether	1	9.8	U
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.8	<u> </u>

365/1262

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-01

File ID:

<u>V2328.D</u>

Sampled:

,<u>01</u>01222 1, ----

Prepared:

04/25/10 08:00 An

Analyzed:

05/06/10 00:04

Solids:

04/20/10 15:30

Preparation:

3510C MB

Initial/Final:

1020 mL / 1 mL

olids:	Pr	eparation:	3510C MB		Initial/Fin	al: <u>1020 mL / 1 mI</u>	<u>.</u>
atch:	10D2326 Sequence:	T001852	Calibrat	ion:	R10E011	Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND		DII	LUTION		CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate			1		9.8	U
105-60-2	Caprolactam			1		9.8	U
86-74-8	Carbazole			1		4.9	υ
218-01-9	Chrysene			1		9.8	U
53-70-3	Dibenzo(a,h)anthracene			1		9.8	u
132-64-9	9 Dibenzofuran			1		9.8	U
84-66-2	Diethyl phthalate			1		9.8	U
131-11-3	1-3 Dimethyl phthalate			1		9.8	υ
84-74-2	Di-n-butyl phthalate	. ,,		1		9.8	U
117-84-0	Di-n-octyl phthalate			1	<u> </u>	9.8	U
206-44-0	Fluoranthene			1		9.8	U
86-73-7	Fluorene			1		9.8	U
118-74-1	Hexachlorobenzene			1		9.8	U
87-68-3	Hexachlorobutadiene	···		1		9.8	U
77-47-4				1		9.8	
67-72-1	Hexachloroethane			1	1	9.8	
193-39-5	Indeno(1,2,3-cd)pyrene			1		9.8	
78-59-1	Isophorone			1	-	9.8	<u>ט</u>
91-20-3	Naphthalene			1	 -	9.8	υ
98-95-3	Nitrobenzene			. : 1		9.8	U
621-64-7	N-Nitrosodi-n-propylamine			1		9.8	U
86-30-6	N-Nitrosodiphenylamine		· · · · · · · · · · · · · · · · · · ·	1		9.8	U
87-86-5	Pentachlorophenol		· · · · · ·	1		49	U
85-01-8	Phenanthrene			1		9.8	U
108-95-2	Phenol			1	 	9.8	U
129-00-0	Pyrene	· · · · · · · · · · · · · · · · · · ·		1	 	9.8	U
CAS NO.	TENTATIVELY IDENTIFIED	COMPOUND		Ī	RT	EST. CONC. (ug/L)	Q
none	Unknown01			11	:605	21	1
none	Unknown02	-	-	1	.637	11	<u> </u>
попе	Unknown03	-			.519	38	
none	Unknown04			12	2.65	71	
none	Unknown05			13	.304	18	
none	Unknown06			13	3,35	28	
none	Unknown07			13	3.37	23	
none	Unknown08			13.	.465	65	
none	Unknown09	·		13	.742	10	
none	Unknown10			14.	.058	52	
none	Unknown11			14.	.079	19	<u> </u>
none	Unknown12				.191	46	
поле	Unknown13		266/1262	1. 1.	4.6	11	<u> </u>

366/1262

SDP

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-01

File ID:

V2328.D

Sampled:

04/20/20 15 25

.

Preparation:

04/06/10 08:00

A 1 1

05/06/10 00:04

Solids:

<u>04/20/10 15:30</u>

Prepared:

04/25/10 08:00

Analyzed: Initial/Final:

1020 mL/1 mL

Batch: 10D2326 Sequence: T001852 Calibration: R10E011 Instrument: HP5973V

CAS NO. TENTATIVELY IDENTIFIED COMPOUND

RT FST CONC (100/L) O

3510C MB

CAS NO.	TENTATIVELY IDENTIFIED	TENTATIVELY IDENTIFIED COMPOUND		I	RT EST	EST. CONC. (ug/L)	
none	Unknown14			14.7	/41	27	
none	Unknown15			14.763		53	
none	Unknown16			14.	79	43	
none	Unknown17				553	19	
none	Unknown18		15.5	596	21		
none	Unknown19			15.7	172	11	
none	Unknown20			16.6	527	10	
SYSTEM MO	NITORING COMPOUND	ADDED (ug/L)	CON	C (ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromo	phenol	147	1	58	107	52 - 132	
2-Fluorobipher	ıyl	98.0	8	6.3	88	48 - 120	
2-Fluoropheno	<u> </u>	147	6	1.0	42	20 - 120	
Nitrobenzene-d	15	98.0		0.1	82	46 - 120	
Phenol-d5		147	4	9.2	33	16 - 120	·
p-Terphenyl-dl	14	98.0	6	7.7	69	24 - 136	
INTERNAL S	TANDARD	AREA	J	RT	REF AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4	66364	5	.68	81657	5.68	
Acenaphthene-	d10	152437	9	.69	185812	9.69	
Chrysene-d12		347622	13	3.88	418270	13.88	
Naphthalene-d	8	245239	7.41		299192	7.41	
Perylene-d12		291564	1.5	5.13	357754	15.13	
Phenanthrene-c	110	277929	1	1.4_	339823	11.4	

^{*} Values outside of QC limits

8270C

SWTR-1E

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-03 File ID:

V2330.D

Sampled:

04/20/10 16:30

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 00:54

Calida

2510/23/0

Solids:	Preparat	ion:	3510C MB	Initial/Final:	1060 mL / 1 m	<u>L</u>
Batch:	10D2326 Sequence:	T001852	Calibration:	R10E011	Instrument:	HP5973V
CAS NO.	COMPOUND		DILUTION	CONC	C. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)		1	9	.4	U
95-95-4	2,4,5-Trichkorophenol		1	2	A	U
88-06-2	2,4,6-Trichlorophenol		1	9	.4	บ
120-83-2	2,4-Dichlorophenol		1	9	.4	U
105-67-9	2,4-Dimethylphenol		1	9	.4	U
51-28-5	2,4-Dinitrophenol		1	4	17	υ
121-14-2	2,4-Dinitrotoluene		1	9	.4	บ
606-20-2	2,6-Dinitrotoluene		1	9	.4	U
91-58-7	2-Chloronaphthalene		ı	9	.4	U
95-57-8	2-Chlorophenol		1	9	.4	U
91-57-6	2-Methylnaphthalene		1	9	.4	U
95-48-7	2-Methylphenol		1	9	.4	U
88-74-4	2-Nitroaniline		11	4	7	U
88-75-5	2-Nitrophenol		1	9	.4	U
91-94-1	3,3'-Dichlorobenzidine		1	1	9	U
99-09-2	3-Nitroaniline		1	4	7	U
534-52-1	4,6-Dinitro-2-methylphenol		_ l	4	17	U
101-55-3	4-Bromophenyl phenyl ether		1	9	.4	U
59-50-7	4-Chloro-3-methylphenol		1	9	.4	υ
106-47-8	4-Chloroaniline		1	9	.4	U
7005-72-3	4-Chlorophenyl phenyl ether		1	9	.4	u
106-44-5	4-Methylphenol		1	4	.7	U
100-01-6	4-Nitroaniline		1	4	7	บ
100-02-7	4-Nitrophenol		1	4	7	υ
83-32-9	Acenaphthene	~ ~~~	t	9	.4	U
208-96-8	Acenaphthylene			9	.4	U
98-86-2	Acetophenone		1	9	.4	U
120-12-7	Anthracene		1	9	.4	υ
1912-24-9	Atrazine		1	9	.4	# UT
100-52-7	Benzaldehyde	·	1	4	7	Ū
56-55-3	Benzo(a)anthracene		11	9	.4	U
50-32-8	Benzo(a)pyrene		1	9	.4	U
205-99-2	Benzo(b)fluoranthene			9.	.4	Ū
191-24-2	Benzo(ghi)perylene		1	9.	.4	U
207-08-9	Benzo(k)fluoranthene		1	9	.4	U
92-52-4	Biphenyl		1	9.	.4	U
111-91-1	Bis(2-chloroethoxy)methane		1	9	.4	Ū
111-44-4	Bis(2-chloroethyl)ether		1	9.	.4	บ_
117-81-7	Bis(2-ethylhexyl) phthalate		111	1 9	.4	υ

Form Rev: 11/23/09

421/1262

wallip

SWTR-1E

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-03 File ID: <u>V2330.D</u>

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 00:54

04/20/10 16:30

Prepared:

Solids:	·-	10C MB	Initial/Final: 1060 mL/1 m	Ļ
atch:	<u>10D2326</u> Sequence: <u>T001852</u>	Calibration:	R10E011 Instrument:	<u>HP5973V</u>
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate	1	9,4	ַ
105-60-2	Caprolactam	1	9.4	U
86-74-8	Carbazole	1	4.7	U
218-01-9	Chrysene	1	9.4	U
53-70-3	Dibenzo(a,h)anthracene	1	9.4	U
132-64-9	Dibenzofuran	1	9.4	U
84-66-2	Diethyl phthalate	1	9.4	U
131-11-3	Dimethyl phthalate	1	9.4	U
84-74-2	Di-n-butyl phthalate	1	9.4	U
117-84-0	Di-n-octyl phthalate	1	9.4	Ü
206-44-0	Fluoranthene	1	9.4	U
86-73-7	Fluorene	1	9.4	υ
118-74-1	Hexachlorobenzene	1	9,4	U
87-68-3	Hexachlorobutadiene	1	9.4	U
77-47-4	Hexachlorocyclopentadiene	1	9,4	U
67-72-1	Hexachloroethane	1	9,4	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	9,4	U
78-59 -1	Isophorone	1	9.4	U
91-20-3	Naphthalene	1	9.4	U
98-95-3	Nitrobenzene	1	9.4	U
621-64-7	N-Nitrosodi-n-propylamine	1	9.4	ע
86-30-6	N-Nitrosodiphenylamine	i	9,4	U
87-86-5	Pentachlorophenol	ı	47	U
85-01-8	Phenanthrene	1	9.4	U
108-95-2	Phenol	1	9.4	U
129-00-0	Pyrene	1	9.4	ט
CAS NO.	TENTATIVELY IDENTIFIED COMPOUND		RT EST. CONC. (ug/L)	Q
000111-06-8	Hexadecanoic acid, butyl ester	12.	802 40	·
000123-95-5	Octadecanoic acid, butyl ester		422 37	
none	Unknown01		616 15	
попе	Unknown02	12.	51930	
none	Unknown03	12.	653 64	
none	Unknown04	13.	304 16	
none	Unknown05	13.	347 30	
none	Unknown06	13	.37 21	
попе	Uuknown07	13.	475 35	
none	Unknown08	13.	742 9,4	
none	Unknown09		058 50	
none	Unknown10		079 24	
none	Unknown11	422/1262	191 110	.

Form Rev: 11/23/09

422/1262

SWTR-1E

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-03

File ID:

<u>V2330.D</u>

Sampled:

...

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 00:54

Solids:

04/20/10 16:30

Preparation:

3510C MB

Initial/Final:

1060 mL / 1 mL

Batch:	10D2326	Sequence:	T001852	Calibration	1:	R10E011	Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED C	OMPOUND)	RT E	ST. CONC. (ug/L)	Q
none	Unknown12				14.	763	26	
none	Unknown13				14.1	795	41	1
none	Unknown14				14.9	907	68	
none	Unknown15		,		15.	516	9.2	<u> </u>
none	Unknown16				15.	553	17	
none	Unknown17				15.5	596	22	
none	Unknown18				16.0	633	12	
SYSTEM MO	NITORING COM	POUND	ADDED (ug/L)	CONC	(ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribrome	ophenol		142	16	55	117	52 - 132	
2-Fluorobipher	nyl		94.3	91	.0_	97	48 - 120	
2-Fluoropheno	1		142	67	.5	48	20 - 120	
Vitrobenzene-c	d5		94.3	82	.2	87	46 - 120	
Phenol-d5			142	53	.3	38	16 - 120	
-Terphenyl-dl	14		94.3	81	.2	86	24 - 136	
NTERNAL S'	TANDARD		AREA	R	T	REF AREA	REF RT	Q
1,4-Dichlorobe	nzene-d4		58538	5.6	58	81657	5.68	
Acenaphthene-	-d10		135608	9.0	59	185812	9.69	
Chrysene-d12			304713	13.	88	418270	13,88	
Naphthalene-d	8		223492	7.4	11	299192	7.41	
Perylene-d12			262231	15.	13	357754	15.13	
Phenanthrene-c	d10		249438	11	.4	339823	11.4	

^{*} Values outside of QC limits

SWTR-TT

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-07 File ID:

V2335.D

Sampled:

04/25/10 08:00

05/06/10 02:48

04/21/10 09:30

Prepared:

Analyzed:

1040 mT / 1 mT

٠.	lids	

3510C MB

Initial/Final-

Solids:	Preparation: <u>351</u>	OC MB	Initial/Final: 1040 mL / 1 m	<u>L</u>
Batch:	<u>10D2326</u> Sequence: <u>T001853</u>	Calibration:	R10E011 Instrument:	HP5973V
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
108-60-1	2,2'-Oxybis(1-Chloropropane)	1	9.6	U
95-95-4	2,4,5-Trichlorophenol	1	24	U
88-06-2	2,4,6-Trichlorophenol	1	9.6	U
120-83-2	2,4-Dichlorophenol	1	9.6	U
105-67-9	2,4-Dimethylphenol	1	9.6	U
51-28-5	2,4-Dinitrophenol	1	48	U
121-14- 2	2,4-Dinitrotoluene	_ 1	9.6	U
606-20-2	2,6-Dinitrotoluene	1	9.6	U
91-58-7	2-Chloronaphthalene	1	9.6	บ
9 5- <i>5</i> 7-8	2-Chlorophenol	1	9.6	บ
91-57-6	2-Methylnaphthalene	1	9.6	U
95-48-7	2-Methylphenol	1	9,6	U
88-74-4	2-Nitroaniline	1	48	υ
88-75-5	2-Nitrophenol	1	9.6	U
91-94-1	3,3'-Dichlorobenzidine	1	19	U
99-09-2	3-Nitroaniline	1	48	U
534-52-1	4,6-Dinitro-2-methylphenol	1	48	U
101-55-3	4-Bromophenyl phenyl ether	1	9.6	U
59-50-7	4-Chloro-3-methylphenol	_ 1	9.6	U
106-47-8	4-Chloroaniline	1	9.6	U
7005-72-3	4-Chlorophenyl phenyl ether	1	9.6	U
106-44-5	4-Methylphenol	1	4.8	U
100-01-6	4-Nitroaniline	1	48	U
100-02-7	4-Nitrophenol	1	48	U
83-32-9	Acenaphthene	1	9.6	υ
208-96-8	Acenaphthylene	1	9.6	U
98-86-2	Acetophenone	1	9.6	U
120-12-7	Anthracene	1	9.6	U
1912-24-9	Atrazine	1	9.6	₩ U.
100-52-7	Benzaldehyde	1	48	U
56-55-3	Benzo(a)anthracene	1	9.6	Ü
50-32-8	Benzo(a)pyrene	1	9.6	U
205-99-2	Benzo(b)fluoranthene	1	9.6	υ
191-24-2	Benzo(ghi)perylene	1	9.6	U
207-08-9	Benzo(k)fluoranthene	1	9.6	U
92 -52-4	Biphenyl	1	9.6	υ
111-91-1	Bis(2-chloroethoxy)methane	1	9.6	Ū
111-44-4	Bis(2-chloroethyl)ether	1	9,6	υ
117-81-7	Bis(2-ethylhexyl) phthalate	1	9.6	u

SWTR-TT

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID: RTD1782-07

File ID:

<u>V2335.D</u>

Sampled:

Prepared:

04/25/10 08:00

Analyzed:

05/06/10 02:48

04/21/10 09:30

Solids:	Prepara	ation: <u>35</u>]	10C MB	Initial/F	inal: <u>1040 mL/1 m</u>	<u>L</u>
Batch:	10D2326 Sequence:	T001853	Calibration:	R10E01	1 Instrument:	HP5973V
CAS NO.	COMPOUND		DILUTION		CONC. (ug/L)	Q
85-68-7	Butyl benzyl phthalate		1		9.6	U
105-60-2	Caprolactam		1		9.6	ט
86-74-8	Carbazole		1		4.8	U
218-01-9	Chrysene		1		9.6	
53-70-3	Dibenzo(a,h)anthracene		1		9.6	U
132-64-9	Dibenzofuran		1		9.6	บ
84-66-2	Diethyl phthalate		1		9.6	U
131-11-3	Dimethyl phthalate		1		9.6	U
84-74-2	Di-n-butyl phthalate		1		9.6	υ
117-84-0	Di-n-octyl phthalate		1		9.6	U
206-44-0	Fluoranthene		ı		9.6	U
86-73-7	Fluorene		1		9.6	U
118-74-1	Hexachlorobenzene		1		9.6	ט
87-68-3	Hexachlorobutadiene		1		9.6	U
77-47-4	Hexachlorocyclopentadiene		1		9,6	U
67-72-1	Hexachloroethane		1	_	9,6	ט
193-39-5	Indeno(1,2,3-cd)pyrene		1		9,6	U
78-59-1	Isophorone		1		9.6	U
91-20-3	Naphthalene		1		9.6	υ
98-95-3	Nitrobenzene		1		9.6	U
621-64-7	N-Nitrosodi-n-propylamine		1		9.6	U
86-30-6	N-Nitrosodiphenylamine		1		9.6	U
87-86-5	Pentachlorophenol		1			U
85-01-8	Phenanthrene		1		9,6	U
108-95-2	Phenol		1		9.6	U
129-00-0	Pyrene		1		9.6	U
CAS NO.	TENTATIVELY IDENTIFIED COM	MPOUND		RT	EST. CONC. (ug/L)	Q
000934-34-9	2(3H)-Benzothiazolone		10	0.783	6.7	
none	Unknown01		11	0.195	6.9	
none	Unknown02		_ 1	1.461	9.6	
попе	Unknown03		1	1.616	12	
none	Unknown04		12	2.519	17	
none	Unknown05		1:	2.653	56	
none	Unknown06		1	3.31	9.6	
попе	Unknown07			3.35	31	
none	Unknown08			3.37	59	
none	Unknown09			3.47	47	
none	Unknown10			3,496	91	
попе	Unknown11			3.748	14	
none	Unknown12		478/1262	4.015	10	

Form Rev: 11/23/09

478/1262

SWTR-TT

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Ground Water

Laboratory ID:

RTD1782-07

File ID:

V2335.D

Sampled:

04/25/10 08:00

Analyzed:

05/06/10 02:48

04/21/10 09:30

Prepared:

3510C MB

Solids:		Prepara	ation: <u>3510</u>	<u>С МВ</u>		Initial/Final:	1040 mL / 1 mL	!
Batch:	10D2326	Sequence:	T001853	Calibrati	on:	R10E011	Instrument:	HP5973V
CAS NO.	TENTATIVE	LY IDENTIFIED CO	MPOUND			RT I	EST. CONC. (ug/L)	Q
попе	Unknown13				14.0	079	60	<u> </u>
none	Unknown14				14.	196	30	
none	Unknown15				14.2	277	15	
none	Unknown16				14.:	538	12	
none	Unknown17				14.	768	48	
none	Unknown18				15.5	559	8.9	
none	Unknown19				15	.6	11	
SYSTEM MON	ITORING COM	POUND	ADDED (ug/L) CON	C (ug/L)	% REC	QC LIMITS	Q
2,4,6-Tribromop	henol		144		123	86	52 - 132	
2-Fluorobipheny	1		96 .2		64.5	67	48 - 120	
2-Fluorophenol			144		46.6	32	20 - 120	
Nitrobenzene-d5	···	·-·	96.2		57.9	60	46 - 120	
Phenol-d5			144		3 7 .7	26	16 - 120	
p-Terphenyl-d14			96.2		50.6	53	24 - 136	
INTERNAL ST.	ANDARD		AREA		RT	REF AREA	A REFRT	Q
1,4-Dichloroben	zene-d4		72339		5.68	106427	5.68_	
Acenaphthene-d	10		164868		9,69	242116	9.69	
Chrysene-d12			382334	1	3.88	550996	13.88	
Naphthalene-d8			270210		7,41	393137	7.41	
Perylene-d12	·		330191	1	5.13	474227	15.13	
Phenanthrene-dl	0		302665		11.4	449522	11.4	

^{*} Values outside of QC limits

INORGANIC ANALYSIS DATA SHEET

6010B

Form 1

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-04

File ID: 1042610-103

Sampled: 04/20/10 17:00

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 21:59

Solids: 0.00

11/09/00

Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

Instrument: Trace 1

NDP

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	1	ប	6010B
7440-36-0	Antimony	0.0200	mg/L	l	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	ı	U	6010B
7440-39-3	Barium	0.0325	mg/L	1		6010B
7440-41-7	Beryllium	0,0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	ì	U	6010B
7440-70-2	Calcium	123	mg/L	1 _		601 0B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	1.65	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	1	Ü	6010B
7439-95-4	Magnesium	15.9	mg/L	1		6010B
7439-96-5	Manganese	0.720	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L]	U	6010B
7440-09-7	Potassium	3.70	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	ı	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	4.0	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L]	Ŭ	6010B
7440-66-6	Zine	0.0100	mg/L	1	U	6010B

DUP-1

Field by houte of

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-02

File ID: 1042610-101

Sampled: 04/20/10 00:00

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 21:49

Solids: 0.00

T001775

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Preparation: 3005A

Calibration: R10D216

Instrument: Trace I

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	1.57	mg/L	1		6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.0518	mg/L	1		6010B
7440-41-7	Beryllium	0,0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	6010B
7440-70-2	Calcium	77.2	mg/L	1		60 10B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	2.79	mg/L	1		6010B
7439-92-1	Lead	0,0050	mg/L	1	Ū	6010B
7439-95-4	Magnesium	16.2	mg/L	1		6010B
7439-96-5	Manganese	0.101	mg/L	1	J	6010B
7440-02-0	Nickel	0.0100	mg/L]	U	601 0B
7440-09-7	Potassium	7.76	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	6,2	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1 .	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SDP

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-01

File ID: 1042610-100

Sampled: 04/20/10 15:30

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 21:44

Solids: <u>0.00</u>

Preparation: 3005A

Initial/Final: 50 ml / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

Instrument: Trace 1

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	1.46	mg/L	1		6010B
7440-36-0	Antimony	0,0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	<u> </u>	U	6010B
7440-39-3	Barium	0.0497	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	l l	U	6010B
7440-70-2	Calcium	74.6	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	U	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	2.36	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	i	U	6010B
7439-95-4	Magnesium	15.8	mg/L	1		6010B
7439-96-5	Manganese	0.0713	mg/L	1	J	6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	7.65	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	I	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	6.1	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	υ	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

W/110

SWTR-1E

Form 1 INORGANIC ANALYSIS DATA SHEET 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-03

File ID: 1042610-102

Sampled: 04/20/10 16:30

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 21:54

Solids: 0.00 Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

Instrument: Trace 1

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	ı	U	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	Ü	6010B
7440-39-3	Barium	0.0223	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	1	U	60 10B
7440-70-2	Calcium	88.4	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	1	U	6010B
7440-48-4	Cobalt	0.0040	mg/L	1	Ü	6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	0.230	mg/L	1		6010B
7439-92-1	Lead	0,0050	mg/L	1	Ū	6010B
7439-95-4	Magnesium	12.8	mg/L	ì		6010B
7439-96-5	Manganese	0.0254	mg/L	1		6010B
7440-02-0	Nickel	0.0100	mg/L	1	U	6010B
7440-09-7	Potassium	5.57	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	U	6010B
7440-22-4	Silver	0.0030	mg/L	1	υ	6010B
7440-23-5	Sodium	6.6	mg/L	1		6010B
7440-28-0	Thallium	0,0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	U	6010B

SWTR-TT

Form 1 **INORGANIC ANALYSIS DATA SHEET** 6010B

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-07

File ID: 1042610-106

Sampled: 04/21/10 09:30

Prepared: 04/26/10 09:30

Analyzed: 04/26/10 22:15

Solids: 0.00 Preparation: 3005A

Initial/Final: 50 mL / 50 mL

Batch: 10D2292

Sequence:

T001775

Calibration: R10D216

Instrument: Trace 1

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7429-90-5	Aluminum	0.200	mg/L	1	U	6010B
7440-36-0	Antimony	0.0200	mg/L	1	U	6010B
7440-38-2	Arsenic	0.0100	mg/L	1	U	6010B
7440-39-3	Barium	0.117	mg/L	1		6010B
7440-41-7	Beryllium	0.0020	mg/L	1	U	6010B
7440-43-9	Cadmium	0.0010	mg/L	I	U	6010B
7440-70-2	Calcium	122	mg/L	1		6010B
7440-47-3	Chromium	0.0040	mg/L	ı	U	6010B
7440-48-4	Cobalt	0.0071	mg/L	1		6010B
7440-50-8	Copper	0.0100	mg/L	1	U	6010B
7439-89-6	Iron	10.5	mg/L	1		6010B
7439-92-1	Lead	0.0050	mg/L	l	υ	6010B
7439-95-4	Magnesium	26.1	mg/L	1		6010B
7439-96-5	Manganese	0.385	mg/L	1		6010B
7440-02-0	Nickel	0.0120	mg/L	1		6010B
7440-09-7	Potassium	70.8	mg/L	1		6010B
7782-49-2	Selenium	0.0150	mg/L	1	Ŭ	6010B
7440-22-4	Silver	0.0030	mg/L	1	U	6010B
7440-23-5	Sodium	65.4	mg/L	1		6010B
7440-28-0	Thallium	0.0200	mg/L	1	U	6010B
7440-62-2	Vanadium	0.0050	mg/L	1	U	6010B
7440-66-6	Zinc	0.0100	mg/L	1	Ū	6010B

7470A

NDP

Laboratory: <u>TestAmerica Buffalo</u>

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-04

File ID: H04260W2-39

Sampled: 04/20/10 17:00

Prepared: <u>04/26/10 14:30</u>

Analyzed: 04/26/10 18:54

Solids: <u>0.00</u> Preparation: 7470A

T001707

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	74 70 A

7470A

DUP-1

Field day of

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-02

File ID: H04260W2-37

Sampled: 04/20/10 00:00

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 18:50

Solids:

0.00

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

SDP

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Sequence:

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-01

File ID: H04260W2-36

Sampled: 04/20/10 15:30

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 18:48

Solids:

0.00

Batch: 10D2454

Preparation: 7470A

T001707

Initial/Final: 30 mL / 50 mL Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

Form 1

INORGANIC ANALYSIS DATA SHEET

SWTR-1E

7470A

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-03

File ID: H04260W2-38

Sampled: 04/20/10 16:30

Prepared: 04/26/10 14:30

Sequence:

T001707

Initial/Final: 30 mL / 50 mL

Analyzed: 04/26/10 18:52

Solids: 0.00

Batch: 10D2454

Preparation: 7470A

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	1	U	7470A

SWTR-TT

Laboratory: TestAmerica Buffalo

SDG:

Client: New York State D.E.C. - Albany, NY

Project: NYSDEC - Rose Valley Landfill - Site# 622017

Matrix: Ground Water

Laboratory ID: RTD1782-07

File ID: H04260W2-45

Sampled: 04/21/10 09:30

Prepared: 04/26/10 14:30

Analyzed: 04/26/10 19:04

Solids:

00.0

Preparation: 7470A

Initial/Final: 30 mL / 50 mL

Batch: 10D2454

Sequence:

T001707

Calibration: R10D187

CAS NO.	Analyte	Concentration	Units	Dilution Factor	Q	Method
7439-97-6	Mercury	0.0002	mg/L	l	U	7470A

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Water

Laboratory ID:

RTD1782-21

File ID:

<u>T9127.D</u>

Sampled:

04/22/10 00:00

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 20:34

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Solids:	Preparation: 5030	B MS	Initial/Final: 5 mL/5 mL	
Batch:	<u>10D2681</u> Sequence: <u>T001752</u>	Calibration:	R10D196 Instrument:	HP5975T
CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q
71-55-6	1,1,1-Trichloroethane	1	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	1	1.0	U
79-00-5	1,1,2-Trichloroethane	1	1.0	U
75-34-3	1,1-Dichloroethane	1	1.0	U
75-35-4	1,1-Dichloroethene	1	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1	1.0	JY U J
106-93-4	1,2-Dibromoethane	1	1.0	U
95-50-1	1,2-Dichlorobenzene	1	1.0	U
107-06-2	1,2-Dichloroethane	1	1.0	ַ
78-87-5	1,2-Dichloropropane	1	1.0	U
541-73-1	1,3-Dichlorobenzene	1	1.0	U
106-46-7	1,4-Dichlorobenzene	1	1.0	υ
78-93-3	2-Butanone	1	5.0	U
591-78-6	2-Hexanone	1	5.0	U
108-10-1	4-Methyl-2-pentanone	1	5.0	U
67-64-1	Acetone	I	5.0	Ų
71-43-2	Benzene	1	1.0	U
75-27-4	Bromodichloromethane	1	1.0	υ
75-25-2	Bromoform	11	1.0	かりて
74-83-9	Bromomethane	1	1.0	10 \$
75-15-0	Carbon disulfide	1	1.0	υ
56-23-5	Carbon Tetrachloride	1	1.0	U
108-90-7	Chlorobenzene	1	1.0	ט
75-00-3	Chloroethane	1	1.0	Ü
67-66-3	Chloroform	1	1.0	U
74-87-3	Chloromethane	1	1.0	U
156-59-2	cis-1,2-Dichloroethene	1	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1	1.0	U
110-82-7	Cyclohexane	1	1.0	U
124-48-1	Dibromochloromethane	1	1.0	ט
75-71-8	Dichlorodifluoromethane]	1.0	U
100-41-4	Ethylbenzene	1	1,0	U
98-82-8	Isopropylbenzene	1	1.0	U
79-20-9	Methyl Acetate	1	1,0	U
108-87-2	Methylcyclohexane	1	1.0	Ū
75-09-2	Methylene Chloride	1	1.0	Ü
1634-04-4	Methyl-t-Butyl Ether (MTBE)	1	1.0	Ų

Form Rev: 11/23/09

243/1262

 $\psi_{\eta i \eta r} \psi$

TRIP BLANK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Matrix:

Laboratory ID;

File ID:

Sampled:

Water

RTD1782-21

T9127.D

04/22/10 00:00

Prepared:

04/28/10 14:44

Analyzed:

04/29/10 20:34

Solids:

Preparation:

5030B MS

Initial/Final:

5 mL / 5 mL

Batch;	10D2681	Sequence:	T001752	Calibration:	R10D196	ź	Instrument:	HP5975T
CAS NO.	COMPOUND			DILUTION		CONC	C. (ug/L)	Q
100-42-5	Styrene			1	<u> </u>		.0	U
127-18-4	Tetrachloroeth	ene		1			.0	U
108-88-3	Toluene			1			.0	U
156-60-5	trans-1,2-Dich	loroethene	· · · · · · · · · · · · · · · · · · ·	I			.0	υ
10061-02-6	trans-1,3-Dich	loropropene		1	<u> </u>	1	.0	υ
79-01-6	Trichloroethen	c		1			.0	U
75-69-4	Trichlorofluoro	omethane		1			.0	U
75-01-4	Vinyl chloride			1		1	.0	U
1330-20-7	Xylenes, total			1			.0	U
CAS NO.	TENTATIVEL	Y IDENTIFIED CO	OMPOUND	}	RT	EST.	CONC. (ug/L)	Q
NOTICS	No TICs found						0.0	U
SYSTEM MON	NITORING COM	POUND	ADDED (ug/L)	CONC (ug/L)	% R	EC	QC LIMITS	Q
1,2-Dichloroeth	ane-d4		25,0	24.0	91	6	66 - 137	
4-Bromofluorol	enzene		25.0	20.6	8:	3	73 - 120	,
Toluene-d8			25.0	23.2	9:	3	71 - 126	
INTERNAL ST	ANDARD		AREA	RT	REF A	REA	REF RT	Q
1,4-Dichlorobe	nzene-d4		351271	9.86	604	796	9.86	
1,4-Difluorober	ızene		790914	5.68	1263	836	5.68	
Chlorobenzene	-d5		717015	7.95	1129	078	7.95	

^{*} Values outside of QC limits

ATTACHMENT B SUPPORT DOCUMENTATION

Chain of Custody Record

	Jane 1			MU Ac I	l	l		Cheron Tracking Males	ne Moles	CCY. KA	
Clent Information	27	<u>م</u>		Brian Fischer	Scher					04142010 13:57	7.1
Clent Carbot Mule Meson	How			F-Man	41	i	100 July 100			Pepe	
				Z I I			Dream, Tablite juries di lici Kari Kukukuli			_	
Conguir New York State D.E.C Albany, NY							Paramo	Parameter(s) Requested		ki G	
Address 625 Broadway, 12th Floor	Due Date Requested	ÿ		-		ļ				Preservation Codes:	Mest: 2=2
Cog' Strans	TAT Requested (Business Days)	Ausinees Days								H-MaOH	i I
Son. 2. Syn. 2. Syn. 2.		!								Devanor Aed	
HVO/H	a Car									-Non-	
(518) 402-9814				10					<u> </u>	S-H2504	
Ectaf mamasan@yw.dec.smle.ny បន				N 101			-			V=MCAA	
Project Name SEVENDEC - Rose Market Landfill - Selvin 622001	Statestal Sections a BENEDIA LONGOL S. C.	NEG O MOR	T-Draft ION/S								Terefor
الله	SECOND.					1.					
						şteh				S-Sunama	
			elame?	Matific		V(\$)			_	1891	
			adkı		y dia					THINK!	
Samole Identification	Set of the Control of	Sample	(C=comp, G≜orab)	, .	ومره	40V8	201			Istol	Gracial Institutions Motor
		X	- >		X	-	1 4		-		
100 QUS	Difection	1530	ৎ	₹		7	71		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9	
Z00 - 47 C	4 Zalim		ত	ķ		; * ; N	. 73		-	p	
ري يي اي	4/20/10	1630	٠	×	-		i			ç	
AAN 0004	0/0/2	1900	20	*	<u> </u>	<u> </u>	, m			ŝ.	
0.00 CM 0.00	4/20/10	700	J	À	Ų.					9	
475. A S D 000	417.110	20.00	1	3	1	,	en		 	5	
Se. 178 - 1. fr 00.	4/21/10	04.90	<u> </u>	3		-	m			80	
St., 1645, one	01/14/1	11/15	<u> </u>	E		1	7		 	9	
600 QF.C.Q	4 21/10	٦ ا ؟ ا	S	**		- ^~ - N	. m	.+	-	20	
013	4/2/10	8	6	; ; ;	↓ <u> </u>	}	127	;		60	
Su. 645 ms 010	43,100	75.6	5	*	<u>~</u>	 -	٠.			9	
entification					Samo	2	sposat (A fee r	Sample Disposal (A fee may be assessed if samples are relained longer than 1 month)	Samples are rel	anad longer than !	monthj
ij	Calpulson B Contraguen		Radickogesaf		.J	Retu	Return To Chent	Osposal By Leb	,	Archive For	Months
Other (specify)					Spec	al Inst	Special Instructions/OC Requirements	quicements			
Empty Ka Rainguished by		(Tule		=	Jane		7	A MACHINE	Muzhar et Shippayer		
Parison straight Market	E C	ß	<u> </u>	Strains,	≝	Received or	J. Part Ja	NA CONTRACTOR OF THE PARTY OF T	Delle Isan	005 311	Series y
Restract Marie Mar	Jest June	3351	<u></u>	Contany	<u> æ</u> `	Ten Carlo	A. C.	22/2	12 2 1/2 Z 1/2 Z 1/2 Z 1/2 Z	0 0400	Company
Retorquated by	DateTire		<u>0</u> _	Cerrolany	<u> </u>	ALC HARRY IV	14.	 	Valey lone		Cantany
Custody Seats Inlate Custody Seat No			1		12-	S S	Cirkle (entreticks) Caustober Recursis.		1		
A Yes. A NO								9	アクト		

Chain of Custody Record

! America	
Test/	 •

Client Information	Syl /C	a		Stier F	Lab Fiki: Brien Fischer		ı	•	Carrier Tracking Notal:	#	D4142010 13:57	7_2 -
Chert Cardon Mike Mason	l Thenc:			F-Mail: Brian.	- Robaré	testan	Е-мэл. Влал. Fischar@testamentaute сот.				100 C	
Contract				ľ							# QCF	
New York State D.E.C Atheny, NY							Parameter(s)	eris) Requested	sted			
Address: [625 Brossdawy, 12th Ploor	Due Data Requested			-	:						Preservation Codes:	X
City (Albany	TAT Requested (Business Days)	Inors Days] 10									D-NaOH C=4n Aoelete	
Sak Zb NY, 12233-7017						·					D=New Acro	
PF:04 (518) 402-9814	E 0										Nething SeH2504	
Email. mamason@gw dec state ny.us	WO # RTD1235									_	V MCAA	
Project harm: NYSDEC - Rose Valley Landfill - Sito# 622017	PRINTS OF REGION 9 REMEDIATION SPILLS CON	N 9 REME	DIATIONSP									Ta Tedler Ve Vlai
- F	5.5CPA/#					ışte						
		9000	Sample Type (C=comp.	Market I	i beselles bi Mi@M creat	Weisla W			·	· ·	тефлий (в	
Sample Identification	Ѕащріо Важ	-	G=grab) en-		hed)				-	_		Special Instructions/Note:
	V V	X	Present Code:	ort Code:	Ź	4 N P	A-V:		_			
110 Q84 Q40-115	Hfz1110 (0	7521	S	3	3	<u>-</u>	-		•		so.	
l	_	ነ34ኛ	ড	3	2	-	3			,	÷.	
B14, -03 014	110	ردکی	৻	*	2	1	3				ig :	
210 aid	1/10/12	755	S	*	1	-	3			 .	9	
500 OUS	11/12/10	650	2	**		2 1	3				ŋ	
2007	01/12/1		v	*	2	-			_		¢.	
S(J. 435 018	4/2410 0	0400	く	ж.		۲- ۱	3				g	
810 SZa- WS	ا ہا	O613D	5	*	2	-	3				9	
0Z0~C/S	1/2/10	alo	S	**	~	-	3				ណ	
									, <u>_</u> _			
		 -							-			
Š	D Paison B Lahmown		C. Radiokyjical		Samp 	ie Disp Retem	ample Disposal (A fee n TRutum To Client	nay be assessed if san [od if sampa i By Lab		Sample Disposal (A fee may be essessed if samples are retained longer than 1 month) Care to Client To Cl	f month) tdoaths
sted 1, II, III, IV, Other (specify)					Speci	ม เกรสก	Special instructions/OC Requirements	ន្ទាលេញរញ្ញាស្វ				
Empty Kd Reinquished by	٥	Dute	_	Ť	1 imu		,	W.	Method of Shipman	E-J		
White the way	U132/14	JOY)		Сотрапу	R R	Received by	the	N. C.	Our J	1221	1500	Personal SYR
Reminds Strong Strong Commendation of the Comm	1/22/10	DOO	3 \ 0	J. 48 Sugar	* `	Secretary Secret	1	220		4723/10	10 Ofco	Cooper
Re inquished by	Deterline		Š	rigeny	,	Second by	3.		ce C	Dage Trave		Company
Custody Seats Inlact Custody Soat No					ង	داله و و	ekrulluns) 'C an	Strike ferrore survivals's and tither Roman's \mathcal{F}	23			

New York State D.E.C. - Albany, NY 625 Broadway, 12th Floor Albany, NY 12233-7017 Work Order: RTD1782

Received:

04/23/10

Reported:

05/17/10 15:15

Project: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Project Number: NY5A946109

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

New York State D.E.C. - Albany, NY

625 Broadway, 12th Floor Albany, NY 12233-7017

Work Order: RTD1782

Received: Reported: 04/23/10

05/17/10 15:15

Project: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Project Number:

NY5A946109

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

SpecificMethod

8270C

4-Methylphenol

<u>Units</u> ug/L

Client RL 5.0

Lab PQL

10

New York State D.E.C. - Albany, NY

625 Broadway, 12th Floor Albany, NY 12233-7017 Work Order: RTD1782

Received:

04/23/10

Reported:

05/17/10 15:15

Project: NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

Project Number: NY5A946109

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection

Limit (MDL). Concentrations within this range are estimated.

This compound is a calibrated analyte and therefore is qualitatively and quantitatively reported compared to a known

standard that is in control.

T7 Tentatively identified compound. Concentration is estimated based on the closest internal standard.

NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below

the laboratory reporting limit.

TIC Analyzed by MS T.I.C. (Tentatively Identified Compound)

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Form 7

CONTINUING CALIBRATION CHECK

8260B

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Instrument ID:

HP5975T

Calibration:

R10D196

Lab File ID;

T9103.D

Calibration Date:

04/27/10 20:47

Sequence:

Injection Date:

04/29/10

T001752

Lab Sample ID: T001752-CCV	<u>L</u>		Inj	ection Time;	<u>10:13</u>			
		CON	C. (ug/L)	RES	PONSE FACT	OR	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,1,1-Trichloroethane	A	25.0	25.5	0.3759185	0.3829405		1.9	100
1,1,2,2-Tetrachloroethane	, A	25.0	23.8	1,057135	1.005582	0.3	-4.9	100
1,1,2-Trichloro-1,2,2-trifluoroethane	A	25.0	27.8	0.2843967	0.3160513		11.1	100
1,1,2-Trichloroethane	A	25.0	24.7	0.3299928	0.3256524		-1.3	100
1,1-Dichloroethane	A	25.0	25.0	0.6519784	0.6527445	0.1	0.1	100
1,1-Dichloroethene	A	25.0	26.2	0.3062715	0.3209641		4.8	. 20
1,2,4-Trichlorobenzene	A	25.0	26.2	1.050107	1.098911	<u> </u>	4.6	100
1,2-Dibromo-3-chloropropane	L0	25.0	17.9	0.1232608	0.1127157		-28.6	100
1,2-Dibromoethane	A	25.0	24.8	0.4099259	0.4074165		-0.6	100
1,2-Dichlorobenzene	A	25.0	24.8	1.717461	1.706934		-0.6	100
1,2-Dichloroethane	A	25,0	23.9	0,4764582	0.455764		-4.3	100
1,2-Dichloroethane-d4	A	25.0	21.9	0.3264392	0.2856304		-12,5	100
1,2-Dichloropropane	A	25.0	24.3	0.4117513	0.3997307		-2,9	20
1,3-Dichlorobenzene	A	25.0	24.6	1.774768	1.744765		-1.7	100
1,4-Dichlorobenzene	Α	25.0	24.5	1.805213	1.770655		-1.9	100
2-Butanone	A	125	128	0.337328	0.3442358		2.0	100
2-Hexanone	LO	125	109	0.5520437	0.5662619		-13.2	100
4-Bromofluorobenzene	A	25,0	23.7	0.4135957	0.3925929		-5.1	100
4-Methyl-2-pentanone	A	125	131	0.7370635	0.7733149		4.9	100
Acetone	A	125	123	0.1907471	0.1883843		-1,2	100
Benzene	A	25.0	24.5	1.528428	1.498065		-2.0	100
Bromodichloromethane	A	25.0	25.1	0.3330843	0.3349272		0.6	100
Bromoform	LO	25,0	17.8	0.321345	0.322064	0.1	-28.8	100
Bromomethane	Α	25.0	30.4	0.126817	0.1543531		21.7	100
Carbon disulfide	LO	25.0	24.4	0.8185994	0.9433961		-2.4	100
Carbon Tetrachloride	A	25.0	25.3	0.3178833	0.3214768		1.1	100
Chlorobenzene	Α	25.0	24.3	1.166797	1.134395	0.3	-2.8	100
Chloroethane	A.	25.0	26.1	0.1655051	0.1729053		4.5	100
Chloroform	A	25.0	24.7	0.5716045	0.565696		-1.0	20

Form Rev: 11/23/09

283/1262

Printed: 05/14/2010

GCMS YOLATILE INJECTION LOG Lighout 8 A10-42-97 Rec 1, 1109

	_	_		_			·			 -												_																	1
D.F.	1	-	<u> </u>	-	Ŀ	-	-	-]	-	-	-	-	1		ļ.	L	4	-	_	-	-	-	-	_	_	-	-	,	_	_	1	-	,	1	-	-	7	245
	ı	-	_		-		<u> </u>	_					-1	1		1	-													Н	IT]	П	H				7	000045
<u>15</u> Vo.	545	_		Ŀ	_	L							1	SAL	,				1	-	j					Н		_						ŀ				7	PAGE
JOS PAR	ロジナ	-	_	1	2713	-	11910		D1676		7	DWATT	7	-7				7	DITY2	1				_		1	-											7	
Sample ID	(4TO 1614-02	-03	10-	20-	App (773-1)	70-	Pro1671-61	70-	ATO1676-01	62	-03	A171477 -1	70-	T001752-51001	-0001	-5227	10D2681-RS	- 13UK	Am 1782-61	- 02	-03	+10-	10D2681-MS1	KJSW-	- 07	80-	-00	10D2681-MSZ	-MSD2	-12	=13	71-	SI- '	-16	<u> </u>	31-	51-	-20	JEVIEWED BY
# 22	19084	79096	79091	75097	79093	146961	14015	19095	1901	19099	19095	79100	19107	-	19103	19101	79105	74106	T4107	T9100	19105	19110	1311	14112	19113	79114	14115	74116	19117	19110	T9119	74120	14121	74122	T4123	नवाध्न	T9125	7,172	μE
Areaya	ž	1	_	_	-			Ţ					4	Ž	1	-				_	_		_	1			\exists			\exists				1			H	1	
Tens	<u>بر</u> برگر	1,003	1691	1655	416	574	503)	1832	95%	(420)	1110	7008	2037	0451	1613	10-16	0111	1200	1231	1255	1319	1416	2011	432	1451	1520	1544	83 1	1635	lles 1	1721	1745	1809	1825	1857	1751	કાંધ	250	
	4 78 ID	1											1	4 24 10	:	-		26	712	62												-	-					1	

GCMS VOLATILE INJECTION LOG Legeot & All-02-47 Rev 1, 1/08

Comments	14. AUX	78											1	55	10 (RID) 14L)	1 🛰	200000000000000000000000000000000000000																					
日の日	×	ሂ	×	. Y.	ý	X	¥	¥	×	¥	× ×	. *	×	 	8770	\$ /	(l	X	X	X	X	×	X	X	×	×	¥	X	×	*	У	X	X	٦ ٦	X	X.	人 人
IS/SS NEX # PA	R104731	1,8015								_		l	7	40 mm	-1801S	-						_		_													-	1
sto#	7								3	1			7	Fresses		K274713	PR0344					7	Rtp3f94					12723994	7									7

PAGE 000046

REVIEWED BY

GCMS YOLATHE INJECTION LOG Logookt Affect of

		\$ Z	Fie#	Sample ID	Japa 28710	₹ \ <u>7</u>	E	9.5	
		-	1972	I PANC.	1	+	1	11-	
227	1		1925	10-18#1CTPN	2	\pm			
2210			79151	50				-	
			26161	74	_	-			
2258			19133	-05				_	
		•	नवाधन	90				-	
		•	79135	-0.1				-	
7	7	•	नदाध	<i></i> ان	7	7	7	_	
		l							
·	_								
		L							
·		_							
	-								
-									
	7 1	Ш							
Ì									
	1								
-									
	1								
		ᆫ							
		—							
		_							
		_							

PAGE___000047

REVIEWED BY__

GCIMS VOLATILE INJECTION LOG Logbook & Atle Ct. of New 1, 1008

The section of the se

*OTS	ISING MIX #	E T	¥	Comments
	12047541		×	
	208		J	
	1		×	VHAY
			y.	
			×	
	-		×	
			×	
			×	
			X	
	4	•	У	
			t	
			丨	
			T	
			T	
			Ì	
			-	
			H	
			H	
			-	
			-	
-			Η,	
		-	┝	
			_	
			\vdash	
		1	\dashv	
REVIEWED BY			040	000048

Form 7

CONTINUING CALIBRATION CHECK

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Instrument ID:

HP5973V

Calibration:

R10E011

Lab File ID:

V2304.D

Calibration Date:

05/05/10 09:42

Sequence:

T001852

Injection Date:

05/05/10

Lab Sample ID:

T001852-CCV2

Injection Time;

14:06

		CONC	. (ng/ul)	RESE	ONSE FACT	OR	% DIF	F / DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,2,4,5-Tetrachlorobenzene	A	50.0	63.7	0.2945368	0.374998		27.3	100
2,3,4,6-Tetrachlorophenol	L	50.0	56.7	0.2449964	0.304213		13.5	100
Acetophenone	A	50.0	46.2	1.913173	1.765776		-7.7	25
Atrazine	A	50.0	60.1	0.1722513	0.2070342		20.2	25
Benzaldehyde	A	50.0	43.9	1.072974	0.9413737		-12.3	25
Biphenyl	A	50.0	49.5	1,42971	1.416285		-0.9	25
Caprolactam	L	50.0	47.5	9.900214E-02	0.1046092		-5.1	25

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

Calibration Type Legend:

A: Average RF

L: Linear through Intercept

Q: Quadratic

Form Rev: 11/23/09

L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero

L02: 1/x2 Weighted Linear forced through Zero

873/1262

Printed: 05/14/2010

^{*} Values outside of QC limits

Form 7

CONTINUING CALIBRATION CHECK

8270C

Laboratory:

TestAmerica Buffalo

SDG:

Client:

New York State D.E.C. - Albany, NY

Project:

NYSDEC - Rose Valley Landfill - Site# 622017

Instrument ID:

HP5973V

Calibration:

R10E011

Lab File ID:

Calibration Date:

05/05/10 09:42

V2334,D

Sequence:

T001853

Injection Date:

05/06/10

Lab Sample ID:

T001853-CCV2

Injection Time:

<u>02:23</u>

		CONC	. (ng/ul)	RESE	ONSE FACT	OR	% DIF	F / DRIFT
COMPOUND	TYPE	STD	ccv	ICAL	ccv	MIN (#)	CCV	LIMIT (#)
1,2,4,5-Tetrachlorobenzene	A	50.0	64.1	0.2945368	0.3773688		28.1	100
2,3,4,6-Tetrachlorophenol	L	50.0	60.6	0.2449964	0.3258969		21.1	100
Acetophenone	A	50.0	46.8	1.913173	1.792702		-6.3	25
Atrazine	A	50.0	61.7	0.1722513	0.2124311		23.3	25
Benzaldehyde	A	50.0	46.1	1.072974	0.9892317		-7.8	25
Biphenyl	A	50.0	49.8	1,42971	1.423343		-0.4	25
Caprolactam	L	50.0	50.0	9.900214E-02	0.1111549		0.0	25

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

Calibration Type Legend:

A: Average RF

Form Rev: 11/23/09

L: Linear through Intercept

Q: Quadratic

L0: Linear forced through Zero

L1: 1/x Weighted Linear through Intercept

L2: 1/x2 Weighted Linear through Intercept

L01: 1/x Weighted Linear forced through Zero

L02: 1/x2 Weighted Linear forced through Zero

^{*} Values outside of QC limits

: C:\MSDCHEM\1\MET...0\8270-R10E011.M (RTE Integrator) Method

Title : 8270 BNA Calibration with EPC
Start (Tune) File ID : C:\MSDCHEM\1\DATA\050510\V2291.D A43
Injection Date : 5 May 2010 Log Time Period (hrs) : ALI
Injection Time : 09:03 Total files within period : 75

Sample Directory : C:\MSDCHEM\1\DATA\050510\

Injection			ble		<i>(</i>)		mi
File ID	Multipl I	ier S	Т	Sample Name Misc Info	standard 305	Date	Time
V2292	1.00	1.00	1.00	T001851-TUN1	12704472	5 May	2010 09:25
V2293	1.00	1.00	1.00	T001851-CAL6	2701987	5 May	2010 09:42
V2294	1.00	1.00	1.00	T001851-CAL5	त्राप्ततक्षरः	5 May	2010 10:07
V2295	1.00	1.00	1.00	T001851-CAL4	PT04485	5 May	2010 10:32
V2296	1.00	1.00	1.00	T001851-CAL3	12774984	5 May	2010 10:57
V2297	1.00	1.00	1.00	T001851-CAL2	1274483	5 May	2010 11:22
V2298	1.00	1.00	1.00	T001851-CAL1	28444	5 Мау	2010 11:47
V2299	1.00	1.00	1.00	T001851-LCV1	p.704991	5 May	2010 12:11
V2300	1.00	1.00	1.00	T001851-SCV1	12704990	5 May	2010 12:36
V2301	1.00	1.00	1.00	A193 SPIKE VI	ERIFICATION	5 Мау	2010 13:01
V2302	1.00	1.00	1.00	T001852-TUN1		5 May	2010 13:24
V2303	1.00	1.00		T001852-CCV1	•	5 Мау	2010 13:41
V2304	1.00	1.00	1.00	T001852-CCV2	2704427	5 May	2010 14:06
V2 305	1.00	1.00	1.00	10D2551-BS1		5 May	2010 14:31
V2306	1.00	1.00	1.00	.RTD1812-09		5 May	2010 14:56
V2307	1.00	1.00	1.00	RTD1812-10	•	5 May	2010 15:21
V2308	1.00	1.00	1.00	RTD1812-11	•	5 May	2010 15:46
V2309	1.00	1.00	1.00	RTD1812-1201	0x	5 May	2010 16:11
V2310	1.00	1.00	1.00	RTD1812-13@1	0x	5 May	2010 16:35
V2311	1.00	1.00	1.00	RTD1812-14		5 Мау	2010 17:00
V2312	1.00	1.00	1.00	RTD1812-15@1	00x	5 May	2010 17:25
V2313	1.00	1.00	1.00	RTD1812-16		5 May	2010 17:50

Method : C:\MSDCHEM\1\MET...0\8270-R10E011.M (RTE Integrator)

Title : 8270 BNA Calibration with EPC

Start (Tune) File ID : C:\MSDCHEM\1\DATA\050510\V2291.D

Injection Date: 5 May 2010 Log Time Period (hrs): ALL Injection Time: 09:03 Total files within period: 75

Sample Directory : C:\MSDCHEM\1\DATA\050510\

Injection			ble	Ø3 - N		Dete	m:
File ID	Multipl I	s	Т	Sample Name Misc Info	·	Date	Time
V2314	1.00	1.00	1.00	RTD1812-17		5 May	2010 18:15
V2315	1.00	1.00	1.00	RTD1812-18		5 May	2010 18:40
V2316	1.00	1.00	1.00	10E0212-BLK1		5 May	2010 19:05
V2317	1.00	1.00	1.00	10E0212-BS1		5 May	2010 19:30
V2318	1.00	1.00	1.00	10E0212-BSD1		5 May	2010 19:55
V2319	1.00	1.00	1.00	RTE0266-01		5 Мау	2010 20:20
V2320	1.00	1.00	1.00	10D2326-BLK1		5 May	2010 20:45
v 2321	1.00	1.00	1.00	10D2326-BS1		5 May	2010 21:10
V2322	1.00	1.00	1.00	10D2326-MS1		5 May	2010 21:34
V2323	1.00	1.00	1.00	10D2326-MS2		5 May	2010 21:59
V2324	1.00	1.00	1.00	10D2326-MSD1		5 May	2010 22:24
V2325	1.00	1.00	1.00	10D2326-MSD2		5 May	2010 22:49
V2326	1.00	1.00	1.00	RTD1734-01		5 May	2010 23:14
V2327	1.00	1.00	1.00	RTD1734-02		5 May	2010 23:39
V2328	1.00	1.00	1.00	RTD1782-01		6 May	2010 00:04
V2329	1.00	1.00	1.00	RTD1782-02		6 May	2010 00:29
V2330	1.00	1.00	1.00	RTD1782-03		_	2010 00:54
V2331	1.00	1.00	1.00	RTD1782-04		6 May	2010 01:19
V2332	1.00	1.00	1.00	T001853-TUN1	P704472		2010 01:42
V2333	1.00	1.00		T001853-CCV1	2734964	б Мау	2010 01:59
V2334	1.00	1.00	1.00	T001853-CCV2	12704427	6 May	2010 02:23
V2335	1.00	1.00	1.00	RTD1782-07		6 May	2010 02:48

: C:\MSDCHEM\1\MET...0\8270-R10E011.M (RTE Integrator) Method

Title : 8270 BNA Calibration with EPC

Start (Tune) File ID : C:\MSDCHEM\1\DATA\050510\V2291.D Injection Date : 5 May 2010 Log Time Period Injection Time : 09:03 Total files with Sample Directory : C:\MSDCHEM\1\DATA\050510\ Log Time Period (hrs) : ALI Total files within period : 75

Injection File ID	Log Sum Multipl I		ble T	Sample Name Misc Info	Date	Time
V2336	1.00	1.00	1.00	RTD1782-08		2010 03:13
V2337	1.00	1.00	1.00	RTD1782-09	6 May	2010 03:38
V2338	1.00	1.00	1.00	RTD1782-12	6 May	2010 04:03
V2339	1.00	1.00	1.00	RTD1782-13	6 Мау	2010 04:28
V2340	1.00	1.00	1.00	RTD1782-14	6 Мау	2010 04:53
V2341	1.00	1.00	1.00	RTD1782-15	6 маз	2010 05:18
V2342	1.00	1.00	1.00	RTD1782-16	6 May	2010 05:43
V2343	1.00	1.00	1.00	RTD1782-17	6 Мау	2010 06:07
V2344	1.00	1.00	1.00	RTD1782-18	б Мау	2010 06:32
V2345	1.00	1.00	1.00	RTD1782-19	6 Мау	2010 06:57
V2346	1.00	1.00	1.00	RTD1782-20	6 Мау	2010 07:22
V2347	1.00	1.00	1.00	10D2829-BLK1	6 May	2010 07:47
V2348	1.00	1.00	1.00	10D2829-BS1	6 May	2010 08:12
V2349	1.00	1.00	1.00	10D2829-MS1050X	6 M ay	2010 08:37
V2350	1.00	1.00	1.00	10D2829-MSD1050X	6 May	2010 09:01
V2351	1.00	1.00	1.00	RTD2064-01050X	6 May	2010 09:26
V2352	1.00	1.00	1.00	RTD2064-02020X	6 Мау	2010 09:51
V2353	1.00	1.00	1.00	10E0086-BLK1	6 Мау	2010 10:16
V2354	1.00	1.00	1.00	10E0086-BLK2	6 мау	2010 10:41
V2355	1.00	1.00	1.00	10E0086-BS1	6 мау	2010 11:05
V2356	1.00	1.00	1.00	10E0086-BSD1	6 May	2010 11:30
V2357	1.00	1.00	1.00	RTD2027-01	6 May	2010 11:55

Method : C:\MSDCHEM\1\MET...0\8270-R10E011.M (RTE Integrator)

Title : 8270 BNA Calibration with EPC

Start (Tune) File ID : C:\MSDCHEM\1\DATA\050510\V2291.D Injection Date : 5 May 2010 Log Time Period Log Time Period (hrs) Injection Time : 09:03 Total files within period: 75

Sample Directory : C:\MSDCHEM\1\DATA\050510\

Injection File ID	Log Sun Multipl		able T	Sample Name Misc Info	Date	Time
V2358	1.00	1.00	1.00	RTD2052-01	6 May	2010 12:20
V2359	1.00	1.00	1.00	RTD2052-02	6 May	2010 12:45
V2360	1.00	1.00	1.00	RTD2120-07	6 May	2010 13:10
V2361	1.00	1.00	1.00	10E0333-BTKI	б Мау	2010 13:35
V2362	1.00	1.00	1.00	10E0333-BS1	6 May	2010 14:00
V2363	1.00	1.00	1.00	10E0333-BS2	6 May	2010 14:24
V2364	1.00	1.00	1.00	10E0333-BS3	6 May	2010 14:49
V2365	1.00	1.00	1.00	10E0333-BS4	6 May	2010 15:14
V2366	1.00	1.00	1.00	A193 SPIKE VERIFICATION	6 May	2010 15:39

Analyst: Mef Inj. Volume: 1.bul NGI.S: 400 ISID: 912/072/9000905/9060906

FIELD DUPLICATE COMPARISON APRIL 2010 SAMPLING EVENT ROSE VALLEY LANDFILL

		LOCAT	ON SDP				
Parameter	Units	SDP	DUP-1	Difference	RPD	QL	5 X QL
Aluminum	UG/L	1460	1570		7.3%	200	1000
Barium	UG/L	49.7	51.8		4.1%	2	10
Calcium	UG/L	74600	77200		3.4%	500	2500
Iron	UG/L	2360	2790		16.7%	50	250
Magnesium	UG/L	15800	16200		2.5%	200	1000
Manganese	UG/L	71.3	101		34.5%	3	15
Potassium	UG/L	7650	7760		1.4%	500	2500
Sodium	UG/L	6100	6200		1.6%	1000	5000
			· -				-
		LOCATIO	N SW-01D		· · - ·-	-	
Parameter	Units	SW-01D	DUP-2	Difference	RPD	QL	5 X QL
Barium	UG/L	70.2	71.2		1.4%	2	10
Calcium	UG/L	27600	28600		3.6%	500	2500
Iron	UG/L	631	292		73.5%	50	250
Magnesium	UG/L	13500	14000		3.6%	200	1000
Manganese	UG/L	11.8	8.8	3	29.1%	3	15
Potassium	UG/L	1890	1940	50	2.6%	500	2500
Sodium	UG/L	9900	10200		3.0%	1000	5000

If concentration is less than 5 times the QL, difference must be less than QL.

APPENDIX E WELL INSPECTION FORMS

a									
SITE NAME:	Rose Valle	y Landfill							
JOB#:	11176167 4/21/2010								
DATE:									
TIME:	15:50								
WELL ID:	MW-3								
			EXTERIOR INSPECTION						
PROTECTIVE	CASING:	OK							
LOCK/HASP:	Not presen	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK							
ANULAR SPA	CE:	OK							
WELL CAP:		OK							
WATER LEVE	L:	3.03							
DEPTH TO BO	OTTOM:	17.45	HARD/SOFT BOTTOM Soft						
OTHER:									
COMMENTS:									
SIGNATURE I	•	:	SIGNATURE APPROVAL:						
LOCK KEY#	None								

SITE NAME:	Rose Valle	y Landfill							
JOB#:	11176167								
DATE:	4/21/2010								
TIME:	1500								
WELL ID:	MW-4								
			EXTERIOR INSPECTION						
PROTECTIVE	CASING:	OK	EXTERIOR INSI ESTION						
LOCK/HASP:	Not presen								
HINGE/ LID:	OK	•							
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:	-								
			INTERIOR INSPECTION						
WELL RISER:		OK							
ANULAR SPA	CE:	OK							
WELL CAP:		OK							
WATER LEVE	iL:	2.63							
DEPTH TO BO	OTTOM:	17.76	HARD/SOFT BOTTOM Soft						
OTHER:									
COMMENTS:									
SIGNATURE I	•	:	SIGNATURE APPROVAL:						
I OCK KEV #	None								

SITE NAME:	Rose Valle	y Landfill							
JOB#:	11176167								
DATE:	4/21/2010								
TIME:	13:45								
WELL ID:	MW-16								
			EVERIOR INCRECTION						
			EXTERIOR INSPECTION						
PROTECTIVE	•	OK							
LOCK/HASP:	Not presen	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK							
ANULAR SPA	CE:	OK							
WELL CAP:		OK							
WATER LEVE	iL:	3.00							
DEPTH TO BO	OTTOM:	1173	HARD/SOFT BOTTOM Soft						
			TWIND/GOTT BOTTOM GOIL						
OTHER:			- INTROCOLL BOLLOW GOT						
OTHER:			TWINDIGHT BOTTOM GOIL						
OTHER:			- TWIND/COLLEGE TOWN						
OTHER:			- IWARDICOLL BOLLOW Gott						
OTHER: COMMENTS:									

SITE NAME:	Rose Valley	y Landfill							
JOB#:	11176167 4/21/2010								
DATE:									
TIME:	16:50								
WELL ID:	SW-01S								
			EVERIOR INORECTION						
			EXTERIOR INSPECTION						
PROTECTIVE	•	OK							
LOCK/HASP:	Not present	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK	INTERIOR INSPECTION						
WELL RISER: ANULAR SPA	•	OK OK	INTERIOR INSPECTION						
	•		INTERIOR INSPECTION						
ANULAR SPA	CE:	OK	INTERIOR INSPECTION						
ANULAR SPA WELL CAP:	CE:	OK OK	INTERIOR INSPECTION HARD/SOFT BOTTOM Soft						
ANULAR SPA WELL CAP: WATER LEVE	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE:	OK OK 19.05							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE:	OK OK 19.05 28.63	HARD/SOFT BOTTOM Soft						

SITE NAME:	Rose Valle	y Landfill							
JOB#:	11176167								
DATE:	4/21/2010								
TIME:	17:55								
WELL ID:	SW-01D								
			EXTERIOR INSPECTION						
PROTECTIVE	CASING:	OK							
LOCK/HASP:	Not presen	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK							
ANULAR SPA	CE:	OK							
WELL CAP:	•	OK							
WATER LEVE	L:	67.13							
DEPTH TO BO	OTTOM:	84.12	HARD/SOFT BOTTOM Soft						
OTHER:									
COMMENTS:									
COMMENTS:									
COMMENTS:									
COMMENTS: SIGNATURE I	NSPECTOR	:	SIGNATURE APPROVAL:						

SITE NAME:	Rose Valley	y Landfill							
JOB#:	11176167								
DATE:	4/21/2010								
TIME:	16:15								
WELL ID:	SW-02S								
			EXTERIOR INSPECTION						
PROTECTIVE	CASING:	OK							
LOCK/HASP:	Not present	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK							
ANULAR SPA	CE:	OK							
WELL CAP:		OK							
WATER LEVE	L:	12.36							
DEPTH TO BO	OTTOM:	20.15	HARD/SOFT BOTTOM Soft						
OTHER:									
COMMENTS:									
SIGNATURE I	NSPECTOR:	:	SIGNATURE APPROVAL:						
	•								

SITE NAME:	Rose Valle	y Landfill							
JOB#:	11176167								
DATE:	4/21/2010								
TIME:	16:20								
WELL ID:	SW-02D								
			EVERIOR INORESTION						
			EXTERIOR INSPECTION						
PROTECTIVE	•	OK							
LOCK/HASP:	Not present	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:		OK	INTERIOR INSPECTION						
WELL RISER: ANULAR SPA	•	OK OK	INTERIOR INSPECTION						
	•		INTERIOR INSPECTION						
ANULAR SPA	CE:	OK	INTERIOR INSPECTION						
ANULAR SPA WELL CAP:	CE:	OK OK	INTERIOR INSPECTION HARD/SOFT BOTTOM Soft						
ANULAR SPA WELL CAP: WATER LEVE	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE:	OK OK 70.10							
ANULAR SPA WELL CAP: WATER LEVE DEPTH TO BO OTHER:	CE: CIL: CITTOM:	OK OK 70.10 79.35	HARD/SOFT BOTTOM Soft						

SITE NAME:	Rose Valley Landfill	
JOB#:	11176167	
DATE:	4/21/2010	
TIME:	16:10	
WELL ID:	SW-03S	
		EXTERIOR INSPECTION
PROTECTIVE	CASING: OK	
LOCK/HASP:	Not present	
HINGE/ LID:	OK	
WELL PAD:	OK	
BOLLARDS:	None	
LABEL/ID:	None	
OTHER:		
		INTERIOR INSPECTION
WELL RISER:	OK	
ANULAR SPAC	CE: OK	
WELL CAP:	OK	
WATER LEVE	L: 12.81	
DEPTH TO BO	OTTOM: 18.95	HARD/SOFT BOTTOM Soft
OTHER:		
COMMENTS:		
SIGNATURE II	NSPECTOR:	SIGNATURE APPROVAL:

	_								
SITE NAME:	Rose Valley	y Landfill							
JOB#:	11176167 4/21/2010								
DATE:									
TIME:	11:05								
WELL ID:	SW-04S								
			EXTERIOR INSPECTION						
PROTECTIVE	CASING:	OK							
LOCK/HASP:	Not present	t							
HINGE/ LID:	OK								
WELL PAD:	OK								
BOLLARDS:	None								
LABEL/ID:	None								
OTHER:									
			INTERIOR INSPECTION						
WELL RISER:	-	OK							
ANULAR SPA	CE:	OK							
WELL CAP:	-	OK							
WATER LEVE	iL:	2.83							
DEPTH TO BO	OTTOM:	8.28	HARD/SOFT BOTTOM Soft						
OTHER:									
COMMENTS:									
SIGNATURE I	NODEOTOD.		CICNATURE ARREOVAL.						
SIGNATORE	NSPECTOR.	•	SIGNATURE APPROVAL:						

	5 \							
SITE NAME:	Rose Valle	y Landfill						
JOB#:	11176167 4/21/2010							
DATE:								
TIME:	12:35							
WELL ID:	SW-04D							
			EXTERIOR INSPECTION					
PROTECTIVE	CASING:	OK						
LOCK/HASP:	Not presen	t						
HINGE/ LID:	ОК							
WELL PAD:	ОК							
BOLLARDS:	None							
LABEL/ID:	None							
OTHER:								
			INTERIOR INSPECTION					
WELL RISER:		OK						
ANULAR SPA	CE:	OK						
WELL CAP:		OK						
WATER LEVE	L:	>+10.0						
DEPTH TO BO	OTTOM:	83.6	HARD/SOFT BOTTOM Soft					
OTHER:								
COMMENTS:	Artesian w	ell. Water le	vel was > 10.0+ feet above top of riser. Used fernco and 10' PVC to extend riser.					
SIGNATURE I	NSPECTOR	<u>:</u>	SIGNATURE APPROVAL:					
LOCK KEY #	None							

APPENDIX F LANDFILL INSPECTION FORM

ROSE VALLEY LANDFILL SITE - POST CLOSURE

NYSDEC SITE NO. 6-22-017

INSPECTION LOG SHEET

Date: 422 10	Inspector: Chuck Dusel
Weather: Cloudy windy	Signature:
Temperature: UMra 45° F	Company: URS dorp

Type: Winter Spring Summer Fall (Circle One)

Item Inspected	Maintenance Needed (Y/N)	Comments	Inspector's Initials
Drainage Channel	Yes	west side of Londhill erosion has andermind stone channel	CD.
Groundwater Monitoring Wells	Yes	Need New locks See Well inspection sheets.	<u>co.</u>
Perimeter Access Road	No	landfill iv good shape	c D.
Vegetative Cover	No	good conditon	c <u>D</u>
Repaired Vegetation	NA		
Final Cover Layers (Cap Settlement, etc.)	No	good condition	CD.
Gas Vents	No	good condition	<u>en</u>
Fence and Gates	No	good condition	CD.
Other Items: (Specify)		evosion has occurred outside of landfill	4110
Other Items: (Specify)		North of stone channel Near North detending Basal	CP.

TABLE 2

LANDFILL CAP AND SITE STORMWATER MANAGEMENT SYSTEM

MINIMUM CHECKLIST FOR ROUTINE INSPECTIONS

Condition	good	good	good	see well inspection logs
Number/Location/ Area Checked	entire Cap WAS inspected.	enthre	All	A!(
Item	Obvious subsidences, depressions, or cracks Mue Evidence of ponded water Wo Stressed vegetation Wind Signs of erosion occurring at a localized change in grade Wo Evidence of Breaching of toe Wo Animal burrows Wood	Areas of sparse, dead, or missing vegetation - Nore Small rill erosion - Nore observed Animal burrows - Nore	Missing or displaced stones – Noue Woody vegetation growing in the stones or grass cover	Condition of lock and cover Signs of damage to casing or collar Condition of weep hole from casing Evidence of tampering Other:
Component	Cap Grading	Cap Vegetation and Repaired Vegetation	Drainage Channel	GW Monitoring Wells

1000	_	Andrew All	ites 1 0	_	umber/Location/ Area Checked en hive fence	tacks from ATVs, etc. over all outside
	8 1 9 3	4 7 H	ONSSO	tes 19	_	Na
	Fences, Gates and Perimeter Access Road	Gas Vent	Component Fences, Gates and Perimeter Access Road	Cutt Mis Mo Sho Bee	16s - No	tes - No