

SITE MANAGEMENT

ANNUAL REPORT 2011 CALENDAR YEAR

WORK ASSIGNMENT D004440-26

ROSE VALLEY LANDFILL RUSSIA (T)

SITE NO. 622017 HERKIMER (C), NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Joseph Martens, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation 77 Goodell Street Buffalo, New York 14203

ROSE VALLEY LANDFILL 2011 ANNUAL REPORT SITE MANAGEMENT

SITE # 622017 TOWN OF RUSSIA, HERKIMER COUNTY, NEW YORK

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D004440-26

PREPARED BY:
URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

NOVEMBER 2011

TABLE OF CONTENTS

				<u>Page No.</u>
1.0	INTRO	ODUCTIO	ON	1-1
	1.1	Genera	ıl	1-1
	1.2		Background	
2.0	SITE	DESCRIP	PTION	2-1
3.0	MONI	TORING	ACTIVITIES	3-1
	3.1	Ground	dwater Hydraulic Monitoring	3-1
	3.2	Ground	dwater Sampling	3-2
		3.2.1	Groundwater Results	3-2
	3.3	Surface	e Water/Detention Pond Sampling	3-3
		3.3.1	Surface Water/Detention Pond Results	
4.0	Site M	laintenanc	ce	4-1
	4.1	Monito	oring Well Inspections	4-1
	4.2	Landfil	Il Inspection	4-1
	4.3	Mainte	enance Performed	4-1
		4.3.1	Monitoring Well Maintenance	4-1
		4.3.2	Routine Maintenance	4-1
		4.3.3	Intermittent Maintenance	4-2
5.0	SUMN	MARY Al	ND RECOMMENDATIONS	5-1
	5.1	Ground	dwater Hydraulic Monitoring	5-1
	5.2	Ground	dwater Quality Monitoring	5-1
	5.3	Surface	e Water/Detention Pond Quality Monitoring	5-1
	5.4	Monito	oring Well Maintenance	5-1
	5.5	Landfi	ll Maintenance	5-1
			TABLES	
Table	1	Groun	dwater Elevation Measurements	
Table	2	Summ	nary of Detected Compounds in 2011 Groundwater Samples	
Table	3		nary of Historically Detected Compounds in Groundwater Sam	ples
Table	4	Summ	nary of Detected Compounds in 2011 Surface/Detention Pond	Water
		Sampl	es	

TABLES (continued)

Table 5	Summary of Historically Detected Compounds in Surface/Detention Pond Water
	Samples
Table 6	Summary of Historically Detected Compounds in Surface Water - Criteria for
	Class C Surface Waters Requiring Calculation

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Potentiometric Surface (Shallow) – July 12, 2011
Figure 4	Potentiometric Surface (Deep) – July 12, 2011
Figure 5	Groundwater Exceedances
Figure 6	Surface Water/ Detention Pond Exceedances

APPENDICES

Appendix A	Field Notes
Appendix B	Monitoring Well Purge Logs
Appendix C	Photographic Log
Appendix D	Data Usability Summary Report (on compact disk)
Appendix E	Well Inspection Forms
Appendix F	Landfill Inspection Form
Appendix G	2010 Intermittent Maintenance Construction Report and Photo Log

1.0 INTRODUCTION

1.1 General

This Site Management Annual Report for 2011 has been prepared under New York State Department of Environmental Conservation (NYSDEC) URS Work Assignment No. D004440-26 for the Rose Valley Landfill site (Figure 1). The purpose of this Annual Report is to provide a record of the long-term maintenance of the cap, wells and stormwater management features associated with remediation at the Rose Valley Landfill and to monitor the effectiveness of natural attenuation. This report is the second annual report as called for by Section 6.3 of the Conceptual Operation, Monitoring and Maintenance Plan (COMMP) (URS, November 2006). The COMMP was modified based upon comments from the NYSDEC. The modified plan, retitled as the Site Management Plan was submitted to the Department, reviewed, and approved in September 2010.

The purpose of the site management as presented in the Record of Decision (ROD) is to provide guidance for the operation and maintenance of the site relative to:

- Maintaining the capped area;
- Long term monitoring of the natural attenuation of the groundwater plume by and within the downslope wetlands; and
- Documenting the effectiveness of natural attenuation.

1.2 **Project Background**

The NYSDEC proposed a remedy in the ROD dated March 30, 2001. The recommendation involved:

- On-site disposal of contaminated surface soils from the older septic disposal pit into the on-site landfill;
- Installing a new cap on the landfill to reduce infiltration through the wastes;
- Installing a new residential well in a deeper, clean aquifer for the impacted residence; and
- Long-term monitoring of the leachate and contaminated groundwater plume by monitoring natural attenuation.

A description of the project site can be found in Section 2.0.

2.0 SITE DESCRIPTION

The Rose Valley Landfill is a privately owned, unlined dump that was open from 1963 to 1985. The site is located in Russia Township in Herkimer County as part of a 91-acre parcel (since subdivided into two parcels in 1986). The site is bounded to the east by Military Road, to the west by Bromley Road, and to the southwest by Rose Valley Road (Figure 2). A NYSDEC Class C stream locally known as Finch Brook separates the site from Military Road. Finch Brook is a tributary of Hurricane Brook (also a NYSDEC Class C stream).

The landfill is located on the side of a hill that has approximately 120 feet of relief. A steep, 60-foot-high sand embankment extends above the landfill to the west. The site is characterized by high relief, with sharp drops in elevation from southwest to northeast and a moderate, even south to southwest slope. The gradient across the western portion of the property is less severe, sloping in the opposite direction.

The area surrounding the site is sparsely populated, with few known permanent residents. At the time that the ROD was issued, a private well immediately adjacent to the landfill entrance on Rose Valley Road (and downgradient of the landfill) was found to be contaminated with site-related contaminants. A new replacement drinking water well into the deeper aquifer has since been installed at the residence; it is being monitored by the Herkimer County Department of Health.

The remedial design of the landfill closure was completed and the construction of the landfill cap was completed in 2007. A 6-foot high chain-link fence was constructed to limit access to the landfill cap area.

3.0 MONITORING ACTIVITIES

Monitoring activities were performed during July 2011 in accordance with the Site Management Plan (URS, September 2010). Site monitoring consisted of the collection of groundwater samples from ten (10) wells and surface water samples from four (4) locations, shown on Figure 2. Seven of the groundwater wells are "Sentry Wells" (i.e., SW-01S, SW-01D, SW-02S, SW-02D SW-03S, SW-04S and SW-04D) and three are monitoring wells (i.e., MW-03, MW-04 and MW-16). Sentry Wells are constructed the same as monitoring wells, but are called Sentry Wells because they are located between the landfill and nearby residential drinking water wells or a surface water body. The monitoring wells are located within the wetland, east of the landfill. Surface water samples locations are: at the toe of the embankment (SWTR-1T); at the entrance of the downgradient stream (SWTR-1E); at the North Detention Pond (NDP); and at the South Detention Pond (SDP). A copy of the field notes from the 2011 monitoring activities is provided in Appendix A.

In order to extend the time frame for URS to perform long-term monitoring without additional funding, the Department took responsibility for the cost of analytical services through a call-out to TestAmerica-Buffalo, located in Amherst, NY.

3.1 Groundwater Hydraulic Monitoring

On July 12, 2011, synoptic groundwater level measurements were obtained from fourteen wells (i.e., seven Sentry Wells and seven monitoring wells). The water level measurements are provided in Table 1. Three of the Sentry Wells (i.e., SW-01D, SW-02D and SW-04D) and four of the monitoring wells (MW-02, MW-14, MW-15 and MW-17) are deep wells. Four of the Sentry Wells (i.e., SW-01S, SW-02S, SW-03S and SW-04S) and the three monitoring wells (MW-03, MW-04, and MW-16) are shallow wells. One of the deep wells east of the landfill is an artesian well (i.e., SW-04D), and efforts to measure the water column in April 2010 were unsuccessful. A deep well contour interval could not be created with two wells, therefore based on the recommendations in the 2010 Calendar Year Annual Report, monitoring wells MW-02, MW-14, MW-15 and MW-17 were added to the synoptic groundwater level measurement list in 2011. A potentiometric surface map based on the water level measurements from the shallow wells, using a 10.0-foot contour interval, is provided in Figure 3. A potentiometric surface map based on the water level measurements from the deep wells, using a 10.0-foot contour interval, is provided in Figure 4.

The shallow groundwater flow is to the east-northeast towards Military Road. The deep groundwater flow is in the same general direction.

3.2 Groundwater Sampling

On July 12 and 13, 2011, URS collected groundwater samples from seven Sentry Wells and three monitoring wells plus quality control (QC) samples using low-flow sampling procedures.

Prior to sample collection, standing water was purged from each well with a either a GeoPump2 peristaltic pump or Grundfos Redi-Flow 2 submersible pump using dedicated/disposable high-density polyethylene (HDPE) tubing. Wells were purged at a rate of 1-liter per minute or less and the purge rate was adjusted to minimize draw down. During the purging of the well, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-22 Multi-parameter Instrument with a flow-through cell. The water quality parameters were documented on a purge log. Samples were collected after the water quality parameters stabilized. Well purge logs are provided in Appendix B and a Photographic Log is provided in Appendix C. Purge water was disposed of on the ground up-gradient of the well locations, as per the direction of the Department

All groundwater samples were transported under chain-of custody (COC) to the TestAmerica Amherst, NY facility. The samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) plus tentatively identified compounds (TICs) following United States Environmental Protection Agency (USEPA) SW846 Method 8260B.

3.2.1 Groundwater Results

All analytical data (i.e., NYSDEC ASP Category B data deliverables) was received by URS on August 3, 2011. The data was reviewed in accordance with the requirements outlined in Guidance for Data Deliverables and the Development of Data Usability Summary Reports (DUSR), Appendix 2B, *DER-10/Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010). Data summary tables, Form I's and Form Ie's (TICs) are provided in the DUSR and include the reporting limit for each non-detected compound. A copy of the DUSR may be found in Appendix D, on a compact disk (CD).

A summary of the detected compounds in the groundwater samples are provided in Table 2. Results exceeding TOGS 1.1.1 Class GA groundwater standards or guidance values are

indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 5. Only two VOCs [i.e., 1,1-dichloroethane ($10~\mu g/L$, MW-04) and cis-1,2-dichloroethene ($8.0~\mu g/L$, MW-03)] were detected above TOGS 1.1.1 Class GA limits in the groundwater samples. No VOCs exceeded TOGS No. 1.1.1 standards or guidance values in the samples from Sentry Wells (i.e., SW-01D, SW-01S, SW-02D, SW-02S SW-03S, SW-04D, and SW-04S) or monitoring well MW-16. A historical summary of detected results in groundwater is provided in Table 3. Results from the 2011 sampling event are consistent with the 2010 sampling event.

3.3 Surface Water/Detention Pond Sampling

On July 13, 2011, URS collected surface water samples from locations SWTR-1T and SWTR-1E, the North Detention Pond (NDP) and the South Detention Pond (SDP), plus QC samples. At each location the surface water sample was collected by immersing pre-cleaned, laboratory grade sample bottles as close to the middle of the water body as possible without disturbing the sediment. During the collection of the surface water samples, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-22 Multi-parameter Instrument. The water quality parameters were documented on a sample log, which may be found in Appendix B. Photographs of surface water sampling are provided in Appendix C.

All surface samples were transported under COC to the TestAmerica Amherst, NY facility. The samples were analyzed for TCL VOCs plus TICs following USEPA SW846 Method 8260B.

3.3.1 Surface Water/Detention Pond Results

A summary of the detected compounds in surface water samples are provided in Table 4. No VOCs exceeded TOGS No. 1.1.1 Class C standards or guidance values in the surface water locations sampled, as shown on Figure 6. A historical summary of detected results in surface water is provided in Table 5. Table 6 lists criteria that require calculation, per TOGS No. 1.1.1 for Class C surface waters. Results from the 2011 sampling event are consistent with the 2010 sampling event.

4.0 SITE MAINTENANCE

4.1 **Monitoring Well Inspections**

During the 2011 groundwater sampling event, a well inspection was performed. All wells appeared to be in good condition. Locks, which were found to be either missing from the well casing or non-functional in the 2010 inspection, were installed during the 2011 inspection. URS keyed alike locks were used. The monitoring well inspection logs may be found in Appendix E.

4.2 <u>Landfill Inspection</u>

During the 2011 groundwater sampling event, a landfill inspection was performed by URS accompanied by NYSDEC personnel. A copy of the completed landfill inspection form can be found in Appendix F. The landfill cap components appeared to be in good condition with the following exceptions. Ruts approximately 6 inches deep were present in the gravel road on the landfill. The geotech fabric was exposed due to erosion alongside the main access road. Hogweed, a non-native invasive species was observed near the main gate. It was also noted that the quantity of silt and sediment in the detention ponds appears to have increased since the last site inspection. Trash (e.g., tires, metal, cardboard) has been dumped in the sand borrow area east of the landfill. Photographs taken during the landfill inspection can be found in Appendix C.

4.3 Maintenance Performed

The following subsections describe site maintenance activities.

4.3.1 Monitoring Well Maintenance

Other than the installation of new padlocks, no monitoring well maintenance was necessary or performed at the time this report was prepared.

4.3.2 Routine Maintenance

The 2010 Site Management Report was completed prior to the completion of all site maintenance activities for that year. The 2010 landfill cap moving was performed on September 22, 2010 by Environmental Products and Services of Vermont, Inc. (EPS). URS was on site during the moving activities. The moving activities were documented on the construction report which may be found in Appendix G.

In July 2011, the Department requested URS to allocate funds in its budget for the cost of mowing in 2011 and provided URS with the solicitation records. URS submitted a letter to the NYSDEC on July 7, 2011 requesting the approval for the use of Marcy Excavation Services, LLC (Marcy) for mowing. The 2011 Landfill cap mowing was performed by Marcy on July 8 and 11, 2011. URS was not on site during the mowing activities. Visual inspection of the site on July 12, 2011 indicated the 2011 mowing was completed satisfactorily. No other routine maintenance was performed at the time this report was prepared.

4.3.3 Intermittent Maintenance

On September 22, 2010, EPS performed intermittent maintenance at the site. Maintenance included filling and regrading eroded areas, topsoil placement and seeding of non-road areas and placement of erosion mats in the areas repaired. A copy of the construction report and photographic log is provided in Appendix G. No intermittent maintenance was performed during 2011 at the time this report was prepared.

5.0 SUMMARY AND RECOMMENDATIONS

A summary of the annual monitoring and recommendations are provided below.

5.1 Groundwater Hydraulic Monitoring

Shallow and deep groundwater flows in an east-northeast direction. In addition to the wells sampled, four more wells were measured in order to provide the deep groundwater contours. It is recommended that these wells continue to be measured during future monitoring events.

5.2 **Groundwater Quality Monitoring**

Two VOCs (cis-1,2-dichoroethene and 1,1-dichloroethane) exceed TOGS 1.1.1 Class GA standards and guidance values. There were no exceedances in the Sentry Wells. Historical results of the ten wells are provided in Table 3. The concentrations of detected VOCs are lower in 2010 when compared to the 2004 results. The concentrations of VOCs in the 2011 sampling event are consistent with the 2010 sampling event results.

5.3 <u>Surface Water/Detention Pond Quality Monitoring</u>

No VOCs were detected in the four surface water locations at concentrations that exceeded the TOGS 1.1.1 Class C surface water standards and guidance values. Historical data from the surface water sampling locations is provided in Table 5.

5.4 Monitoring Well Maintenance

Other than replacing locks, no maintenance was necessary for the monitoring wells.

5.5 <u>Landfill Maintenance</u>

The landfill was mowed on September 22, 2010 and July 9-11, 2011. On September 22, 2010 corrective action was taken to mitigate the erosion observed in April 2010. In July 2011, erosion was noted on the west side of the landfill at the toe drain/channel interface and on the north side of the site, north of the stone-lined drainage channel. Ruts, approximately 6 inches deep, have formed in the gravel on the landfill road. Trash has been dumped in the sand borrow area east of the landfill. Corrective action will be necessary to mitigate the erosion and to remove the trash. All landfill cap components appeared to be sound.

TABLES

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location III)/	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MW-02		1601925.82	356255.39			1305.15	В						
V	٧L							8/17/2004 1415	58.38	1246.77	0.00		
V	٧L							7/12/2011 1313	57.55	1247.60	0.00		
MW-03		1602437.498	357450.2192			1175.58	Α						
V	٧L							8/19/2004 1210	3.31	1172.27	0.00		
V	٧L							4/21/2010 0000	3.03	1172.55	0.00		
V	٧L							7/12/2011 1335	3.01	1172.57	0.00		
MW-04		1602588.989	357572.8098			1172.46	Α						
V	٧L							8/19/2004 1310	2.56	1169.90	0.00		
V	٧L							4/21/2010 0000	2.63	1169.83	0.00		
V	٧L							7/12/2011 1345	2.54	1169.92	0.00		
MW-14		1602932.523	356221.9497			1317.83	В						
V	٧L							8/19/2004 1610	96.74	1221.09	0.00		
V	٧L							7/12/2011 1520	98.55	1219.28	0.00		
MW-15		1602594.762	356379.221			1312.36	В						
V	٧L							8/17/2004 1625	85.85	1226.51	0.00		
	٧L							7/12/2011 1507	87.76	1224.60	0.00		
MW-16		1602287.308	357950.8887			1152.58	Α						
V	٧L							8/18/2004 1320	4.00	1148.58	0.00		
	٧L							4/21/2010 0000	3.00	1149.58	0.00		
V	٧L							7/12/2011 1400	3.56	1149.02	0.00		
MW-17	1	1602592.476	356386.6381			1311.72	В						
V	٧L							8/17/2004 1715	87.30	1224.42	0.00		
	٧L							7/12/2011 1505	86.69	1225.03	0.00		
SW-01D		1601823.93	355356.06	1262.0		1264.70	В						
V	٧L							8/17/2004 1025	68.64	1196.06	0.00		
	٧L							4/21/2010 0000	67.13	1197.57	0.00		
	٧L							7/12/2011 1437	67.37	1197.33	0.00		

NM - No Measurement

Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SW-01S	1601817.02	355346.13	1260.5		1263.17	Α						
WL							8/17/2004 1020	19.32	1243.85	0.00		
WL							4/21/2010 0000	19.05	1244.12	0.00		
WL							7/12/2011 1435	18.56	1244.61	0.00		
SW-02D	1601370.34	355721.25			1257.00	В						
WL							8/16/2004 1600	70.49	1186.51	0.00		
WL							4/21/2010 0000	70.10	1186.90	0.00		
WL							7/12/2011 1450	70.73	1186.27	0.00		
SW-02S	1601367.21	355730.86			1257.20	Α						
WL							8/16/2004 1700	12.05	1245.15	0.00		
WL							4/21/2010 0000	12.36	1244.84	0.00		
WL							7/12/2011 1448	11.30	1245.90	0.00		
SW-03S	1601483.4	355518.17			1257.67	Α						
WL							8/17/2004 0925	12.73	1244.94	0.00		
WL							4/21/2010 0000	12.81	1244.86	0.00		
WL							7/12/2011 1440	11.85	1245.82	0.00		
SW-04D	1602328.65	358265.16	1149.0		1148.65	В						
WL							8/18/2004 1205	NM	-	NM	-	Artesian well
WL							4/21/2010 0000	NM	-	NM	-	Artesian well
WL							7/12/2011 1415	NM	-	NM	-	Artesian well
SW-04S	1602315.5	358278.21	1148.3		1148.00	Α						
WL							8/18/2004 1225	3.76	1144.24	0.00		
WL							4/21/2010 0000	2.83	1145.17	0.00		
WL							7/12/2011 1420	3.40	1144.60	0.00		

NM - No Measurement

Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2011 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			MW-03	MW-04	MW-16	SW-01D SW-01D	SW-01S
Sample ID			MW-03	MW-04	MW-16		FD-071211
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft)		-	-	-	-	-
Date Sampled			07/13/11	07/13/11	07/13/11	07/12/11	07/12/11
Parameter	Units	*					Field Duplicate (1-1)
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5	2.2	10			
1,2-Dichloroethene (cis)	UG/L	5	8.0	2.4			
Chloroethane	UG/L	5		0.35 J			

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2011 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	it)		-	-	-	-	-
Date Sampled			07/12/11	07/12/11	07/12/11	07/12/11	07/13/11
Parameter	Units	*					
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2011 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			SW-04S
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (f	t)		-
Date Sampled	07/13/11		
Parameter	Units	*	
Volatile Organic Compounds			
1,1-Dichloroethane	UG/L	5	
1,2-Dichloroethene (cis)	UG/L	5	
Chloroethane	UG/L	5	0.48 J

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Volatile Organic Compounds 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethene (cis) Chloroethane UG/L Dichlorodifluoromethane UG/L Metals Aluminum UG/L Antimony UG/L Arsenic Barium UG/L 1,2-Dichloroethene (cis) UG/L UG/L UG/L 10 Cadmium	MW-03 Groundw		MW-03 Groundwater	MW-04	MW-04	
Depth Interval (ft)	Groundw -	ater Groundwater	Groundwater			
Date Sampled	-			Groundwater	Groundwater	
Parameter Volatile Organic Compounds 1,1,1-Trichloroethane 1,1-Dichloroethane UG/L 1,2-Dichloroethene (cis) UG/L Chloroethane UG/L Dichlorodifluoromethane UG/L Metals Aluminum UG/L Antimony UG/L Arsenic Barium UG/L 10 UG/L Cadmium		-	-	-	-	
Volatile Organic Compounds 1,1,1-Trichloroethane 1,1-Dichloroethane UG/L 1,2-Dichloroethene (cis) UG/L Chloroethane UG/L Dichlorodifluoromethane UG/L Metals Aluminum UG/L Antimony UG/L Arsenic Barium UG/L 100 UG/L Cadmium	08/19/0	4 04/21/10	07/13/11	08/19/04	04/21/10	
1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethene (cis) UG/L 1,2-Dichloroethene (cis) UG/L Chloroethane UG/L Dichlorodifluoromethane UG/L Metals Aluminum UG/L Antimony UG/L Arsenic UG/L UG/L Cadmium	eria*					
UG/L UG/L						
UG/L	5					
UG/L	5 4 J	2.3	2.2	16	9.3	
UG/L	5 16	7.1	8.0	3 J	2.3	
UG/L	5					
Aluminum	5	0.75 J			0.86 J	
UG/L						
UG/L 2 2 3 3 3 3 3 3 3 3	- 164 B		NA	131 B		
UG/L 10 UG/L 10 UG/L 10 UG/L 10 UG/L 10 UG/L UG/	3 3.7 B		NA			
UG/L Cadmium	25		NA			
Cadmium	000 60.4 E		NA	17.2 B	16.0	
UG/L	5 0.25 E		NA			
Calcium UG/L	- 220,00	0 225,000	NA	156,000	171,000	
UG/L	50		NA			
Cobalt UG/L	- 2.0 B		NA	1.1 B		
Copper UG/L 2	00		NA	1.5 B		
Iron UG/L 3	918	252	NA	1,190	1,050	
Magnesium UG/L 35	000 23,500		NA	26,800	31,700	
UG/L	00 2,210) NA	304 J	525	
Nickel UG/L 1	00 5.6 B		NA	13.5 B		
Potassium UG/L	- 3,950	В 3,320	NA	1,070 B	1,130	
Silver UG/L	50		NA			
Sodium UG/L 20	5,940	3,800	NA	16,600	14,100	
Vanadium UG/L	-		NA			
Zinc UG/L 20	000		NA			

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown. Concentration Exceeds Criteria - = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

Location ID			MW-04	MW-16	MW-16	MW-16	SW-01D	
Sample ID			MW-04	MW-16	MW-16	MW-16	SW-1D Groundwater	
Matrix			Groundwater	Groundwater -	Groundwater	Groundwater		
Depth Interval (07/13/11	08/18/04	- 04/21/10	07/13/11	- 08/17/04		
	Ī		07/13/11	00/10/04	04/21/10	07/13/11	00/17/04	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5	10					
1,2-Dichloroethene (cis)	UG/L	5	2.4					
Chloroethane	UG/L	5	0.35 J					
Dichlorodifluoromethane	UG/L	5						
Metals								
Aluminum	UG/L	-	NA	964 J		NA		
Antimony	UG/L	3	NA			NA		
Arsenic	UG/L	25	NA	3.5 B		NA		
Barium	UG/L	1000	NA	59.6 B	31.0	NA	61.9 B	
Cadmium	UG/L	5	NA	1.0 B		NA	0.24 B	
Calcium	UG/L	-	NA	88,400	77,900	NA	17,500	
Chromium	UG/L	50	NA			NA	1.6 B	
Cobalt	UG/L	-	NA	1.0 B		NA	0.54 B	
Copper	UG/L	200	NA			NA	0.96 B	
Iron	UG/L	300	NA	17,100	16,600	NA	65.4 B	
Magnesium	UG/L	35000	NA	9,330	8,150	NA	9,700	
Manganese	UG/L	300	NA	1,260 J	1,090	NA	8.3 B	
Nickel	UG/L	100	NA			NA	1.6 B	
Potassium	UG/L	-	NA	1,080 B		NA	1,780 B	
Silver	UG/L	50	NA	2.0 BJ		NA		
Sodium	UG/L	20000	NA	9,150	5,800	NA	15,200	
Vanadium	UG/L	-	NA	2.5 B		NA		
Zinc	UG/L	2000	NA	8.7 B		NA	11.0 B	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. $\,\,$ J - The reported concentration is an estimated value.

Location ID			SW-01D	SW-01D	SW-01D	SW-01S	SW-01S	
Sample ID			DUP-2	SW-01D	SW-01D	SW-1S	SW-01S Groundwater	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (-	-	-	-	04/24/40	
Date Sampled	1		04/21/10 Field Duplicate (1-1)	04/21/10	07/12/11	08/17/04	04/21/10	
Parameter	Units	Criteria*	Fleid Duplicate (1-1)					
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Chloroethane	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Metals								
Aluminum	UG/L	-			NA	215	5,830	
Antimony	UG/L	3			NA			
Arsenic	UG/L	25			NA			
Barium	UG/L	1000	71.2	70.2	NA	27.3 B	33.4	
Cadmium	UG/L	5			NA	0.56 B		
Calcium	UG/L	-	28,600	27,600	NA	146,000	109,000	
Chromium	UG/L	50			NA	11.2	6.9	
Cobalt	UG/L	-			NA	1.3 B		
Copper	UG/L	200			NA	4.0 B		
Iron	UG/L	300	292 J	631 J	NA	R	3,700	
Magnesium	UG/L	35000	14,000	13,500	NA	4,430 B	4,000	
Manganese	UG/L	300	8.8	11.8	NA	R	50.5	
Nickel	UG/L	100			NA	6.3 B		
Potassium	UG/L	-	1,940	1,890	NA	1,520 B	2,080	
Silver	UG/L	50			NA	0.41 B		
Sodium	UG/L	20000	10,200	9,900	NA	3,050 B	2,100	
Vanadium	UG/L	-			NA		6.6	
Zinc	UG/L	2000			NA	14.4 B		

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown. Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

Location ID	SW-01S	SW-01S	SW-02D	SW-02D	SW-02D			
Sample ID			FD-071211	SW-01S	SW-2D	SW-02D	SW-02D Groundwater	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater		
Depth Interval (i	-	-	-	-	-			
Date Sampled	1		07/12/11	07/12/11	08/16/04	04/22/10	07/12/11	
Parameter	Units	Criteria*	Field Duplicate (1-1)					
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Chloroethane	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Metals								
Aluminum	UG/L	-	NA	NA		443	NA	
Antimony	UG/L	3	NA	NA			NA	
Arsenic	UG/L	25	NA	NA			NA	
Barium	UG/L	1000	NA	NA	84.4 B	65.7	NA	
Cadmium	UG/L	5	NA	NA	0.25 B		NA	
Calcium	UG/L	-	NA	NA	44,100	62,800	NA	
Chromium	UG/L	50	NA	NA	3.0 B	4.1	NA	
Cobalt	UG/L	-	NA	NA	0.55 B		NA	
Copper	UG/L	200	NA	NA	5.6 B		NA	
Iron	UG/L	300	NA	NA	51.2 B	433	NA	
Magnesium	UG/L	35000	NA	NA	19,800	22,300	NA	
Manganese	UG/L	300	NA	NA	2.8 B	10.2	NA	
Nickel	UG/L	100	NA	NA	3.3 B		NA	
Potassium	UG/L	-	NA	NA	9,580	1,870	NA	
Silver	UG/L	50	NA	NA			NA	
Sodium	UG/L	20000	NA	NA	11,300	7,500	NA	
Vanadium	UG/L	-	NA	NA			NA	
Zinc *Critoria, NVSDEC TOGS (1.1.1) Ambient Wa	UG/L	2000	NA	NA	11.7 B		NA	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

Location ID			SW-02S	SW-02S	SW-02S	SW-03S	SW-03S	
Sample ID			SW-2S	SW-02S	SW-02S	SW-3S	SW-03S	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (1	t)		-	-	-	-	-	
Date Sampled			08/16/04	04/22/10	07/12/11	08/16/04	04/22/10	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5	3 J	1.9				
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Chloroethane	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Metals								
Aluminum	UG/L	-	250		NA	197 B		
Antimony	UG/L	3			NA			
Arsenic	UG/L	25			NA			
Barium	UG/L	1000	16.2 B	2.9	NA	27.6 B	8.8	
Cadmium	UG/L	5			NA	0.29 B		
Calcium	UG/L	-	53,500	57,400	NA	95,400	74,400	
Chromium	UG/L	50	3.5 B		NA	2.3 B		
Cobalt	UG/L	-	0.79 B		NA	0.78 B		
Copper	UG/L	200	4.3 B		NA	4.3 B		
Iron	UG/L	300	R		NA	R		
Magnesium	UG/L	35000	2,670 B	2,240	NA	4,380 B	3,040	
Manganese	UG/L	300	R		NA	R		
Nickel	UG/L	100	2.9 B		NA	2.3 B		
Potassium	UG/L	-	444 B		NA	2,640 B	1,910	
Silver	UG/L	50			NA			
Sodium	UG/L	20000	746 B	1,000	NA	63,500	22,600	
Vanadium	UG/L	-			NA			
Zinc	UG/L	2000	11.5 B		NA	21.4		

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

Location ID	SW-03S	SW-04D	SW-04D	SW-04D	SW-04S			
Sample ID			SW-03S	SW-04D	SW-04D	SW-04D	SW-04S Groundwater	
Matrix			Groundwater	Groundwater -	Groundwater	Groundwater		
Depth Interval (- 07/12/11	08/18/04	- 04/21/10	07/13/11	- 08/18/04		
Date Sampled	Ī		07/12/11	00/10/04	04/21/10	07/13/11	00/10/04	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5						
1,1-Dichloroethane	UG/L	5						
1,2-Dichloroethene (cis)	UG/L	5						
Chloroethane	UG/L	5						
Dichlorodifluoromethane	UG/L	5						
Metals								
Aluminum	UG/L	-	NA	1,120 J	1,800	NA	914 J	
Antimony	UG/L	3	NA			NA		
Arsenic	UG/L	25	NA			NA		
Barium	UG/L	1000	NA	18.4 B	14.7	NA	123 B	
Cadmium	UG/L	5	NA		2.4	NA	0.68 B	
Calcium	UG/L	-	NA	10,700	12,200	NA	105,000	
Chromium	UG/L	50	NA	1.1 B		NA	59.5	
Cobalt	UG/L	-	NA	0.81 B		NA	2.2 B	
Copper	UG/L	200	NA			NA	4.8 B	
Iron	UG/L	300	NA	1,360	1,630	NA	3,040	
Magnesium	UG/L	35000	NA	1,750 B	1,960	NA	11,200	
Manganese	UG/L	300	NA	36.1 J	38.7	NA	775 J	
Nickel	UG/L	100	NA	1.2 B		NA	43.1 J	
Potassium	UG/L	-	NA	1,160 B	1,170	NA	6,150 J	
Silver	UG/L	50	NA			NA		
Sodium	UG/L	20000	NA	32,700	32,000	NA	11,700	
Vanadium	UG/L	-	NA	1.8 B		NA	2.2 B	
Zinc	UG/L	2000	NA	5.5 B		NA	12.6 B	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown. Concentration Exceeds Criteria - = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

Location ID	SW-04S	SW-04S		
Sample ID	SW-04S	SW-04S		
Matrix	Groundwater	Groundwater		
Depth Interval (-	-		
Date Sampled	04/21/10	07/13/11		
Parameter	Units	Criteria*		
Volatile Organic Compounds				
1,1,1-Trichloroethane	UG/L	5		
1,1-Dichloroethane	UG/L	5		
1,2-Dichloroethene (cis)	UG/L	5		
Chloroethane	UG/L	5		0.48 J
Dichlorodifluoromethane	UG/L	5		
Metals				
Aluminum	UG/L	-	336	NA
Antimony	UG/L	3		NA
Arsenic	UG/L	25		NA
Barium	UG/L	1000	26.1	NA
Cadmium	UG/L	5		NA
Calcium	UG/L	-	92,700	NA
Chromium	UG/L	50		NA
Cobalt	UG/L	-		NA
Copper	UG/L	200		NA
Iron	UG/L	300	8,870	NA
Magnesium	UG/L	35000	6,900	NA
Manganese	UG/L	300	2,080	NA
Nickel	UG/L	100		NA
Potassium	UG/L	-	1,940	NA
Silver	UG/L	50		NA
Sodium	UG/L	20000	4,300	NA
Vanadium	UG/L	-		NA
Zinc	UG/L	2000		NA

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

TABLE 4 SUMMARY OF DETECTED COMPOUNDS IN 2011 SURFACE / DETENTION POND WATER SAMPLES ROSE VALLEY LANDFILL

Location ID	NDP	NDP	SDP	SWTR-1E	SWTR-1T		
Sample ID			FD-071311	NDP-WS	SDP-WS	SWTR-1E	SWRT-1T
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (f	-	-	-	-	-		
Date Sampled			07/13/11	07/13/11	07/13/11	07/13/11	07/13/11
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Acetone	UG/L	-					20 J
Benzene	UG/L	10					1.8 J
Chlorobenzene	UG/L	5					3.3 J

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

TABLE 5 SUMMARY OF HISORICALLY DETECTED COMPOUNDS IN SURFACE / DETENTION POND WATER SAMPLES

ROSE VALLEY LANDFILL

Location ID			NDP	NDP	NDP	SDP	SDP SDP	
Sample ID			NDP	FD-071311	NDP-WS	DUP-1		
Matrix	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water			
Depth Interval (ft)			-	-	-	-	-	
Date Sampled	k		04/20/10	07/13/11	07/13/11	04/20/10	04/20/10	
Parameter	Units	Criteria*		Field Duplicate (1-1)		Field Duplicate (1-1)		
Volatile Organic Compounds								
Acetone	UG/L	-						
Benzene	UG/L	10						
Chlorobenzene	UG/L	5						
Metals								
Aluminum	UG/L	100 ionic		NA	NA	1,570	1,460	
Barium	UG/L	-	32.5	NA	NA	51.8	49.7	
Calcium	UG/L	-	123,000	NA	NA	77,200	74,600	
Cobalt	UG/L	5		NA	NA			
Iron	UG/L	300	1,650	NA	NA	2,790	2,360	
Magnesium	UG/L	-	15,900	NA	NA	16,200	15,800	
Manganese	UG/L	-	720	NA	NA	101 J	71.3 J	
Nickel	UG/L	calc, diss		NA	NA			
Potassium	UG/L	-	3,700	NA	NA	7,760	7,650	
Sodium	UG/L	-	4,000	NA	NA	6,200	6,100	
Miscellaneous Parameters								
Hardness (calculated)	MG/L	-	373	NA	NA	259	251	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

NA - Not Analyzed.

Calculated standards are shown on Table 6.

Only Detected Results Reported.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

TABLE 5 SUMMARY OF HISORICALLY DETECTED COMPOUNDS IN SURFACE / DETENTION POND WATER SAMPLES ROSE VALLEY LANDFILL

Location ID			SDP	SWTR-1E	SWTR-1E	SWTR-1T	SWTR-1T
Sample ID			SDP-WS	SWTR-1E	SWTR-1E	SWTR-1T	SWRT-1T
Matrix	Surface Water						
Depth Interval (-	-	-	-	-	
Date Sampled	k		07/13/11	04/20/10	07/13/11	04/21/10	07/13/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Acetone	UG/L	-				9.4	20 J
Benzene	UG/L	10					1.8 J
Chlorobenzene	UG/L	5				0.75 J	3.3 J
Metals							
Aluminum	UG/L	100 ionic	NA		NA		NA
Barium	UG/L	-	NA	22.3	NA	117	NA
Calcium	UG/L	-	NA	88,400	NA	122,000	NA
Cobalt	UG/L	5	NA		NA	7.1	NA
Iron	UG/L	300	NA	230	NA	10,500	NA
Magnesium	UG/L	-	NA	12,800	NA	26,100	NA
Manganese	UG/L	-	NA	25.4	NA	385	NA
Nickel	UG/L	calc, diss	NA		NA	12.0	NA
Potassium	UG/L	-	NA	5,570	NA	70,800	NA
Sodium	UG/L	-	NA	6,600	NA	65,400	NA
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	NA	273	NA	412	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

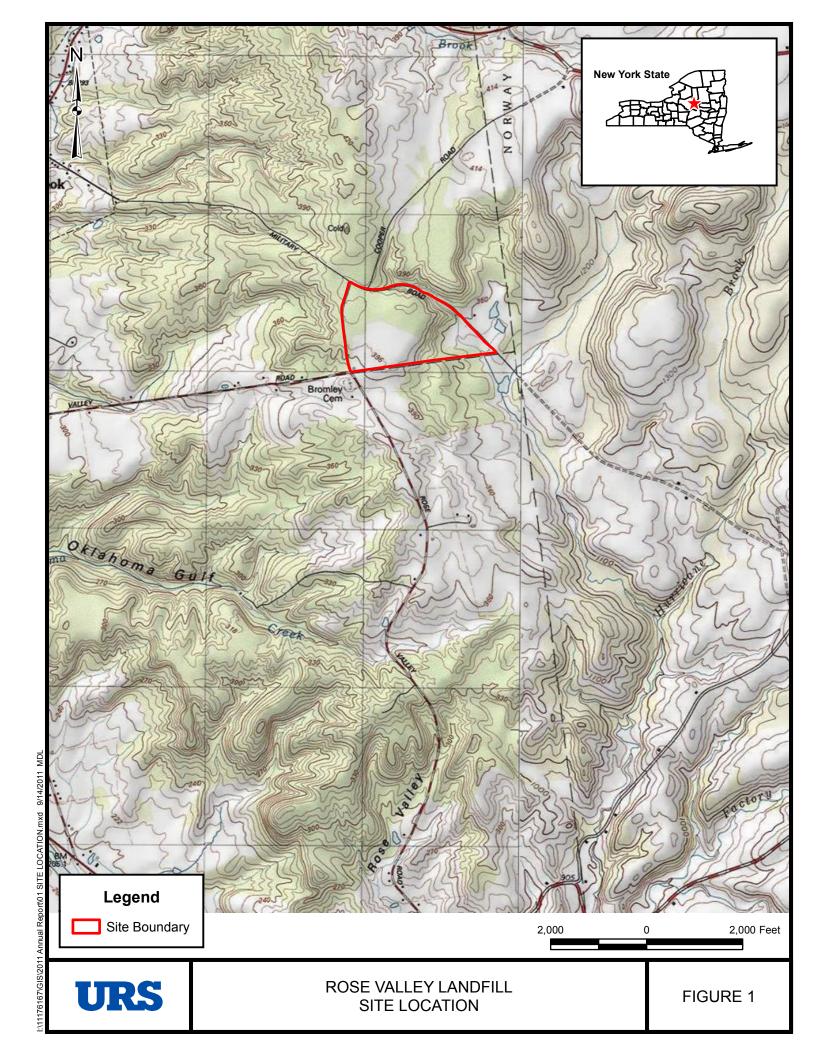
NA - Not Analyzed.

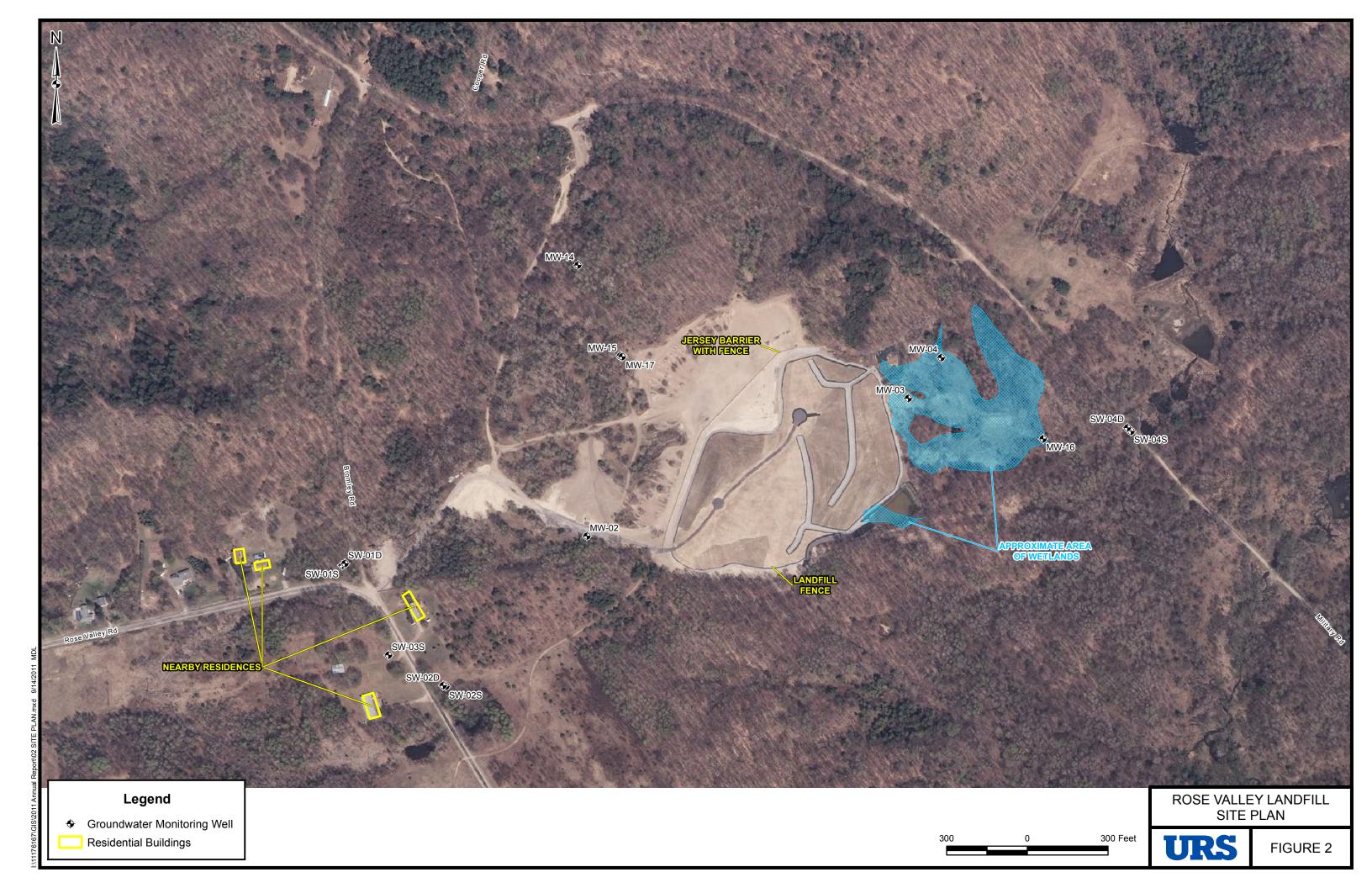
Calculated standards are shown on Table 6.

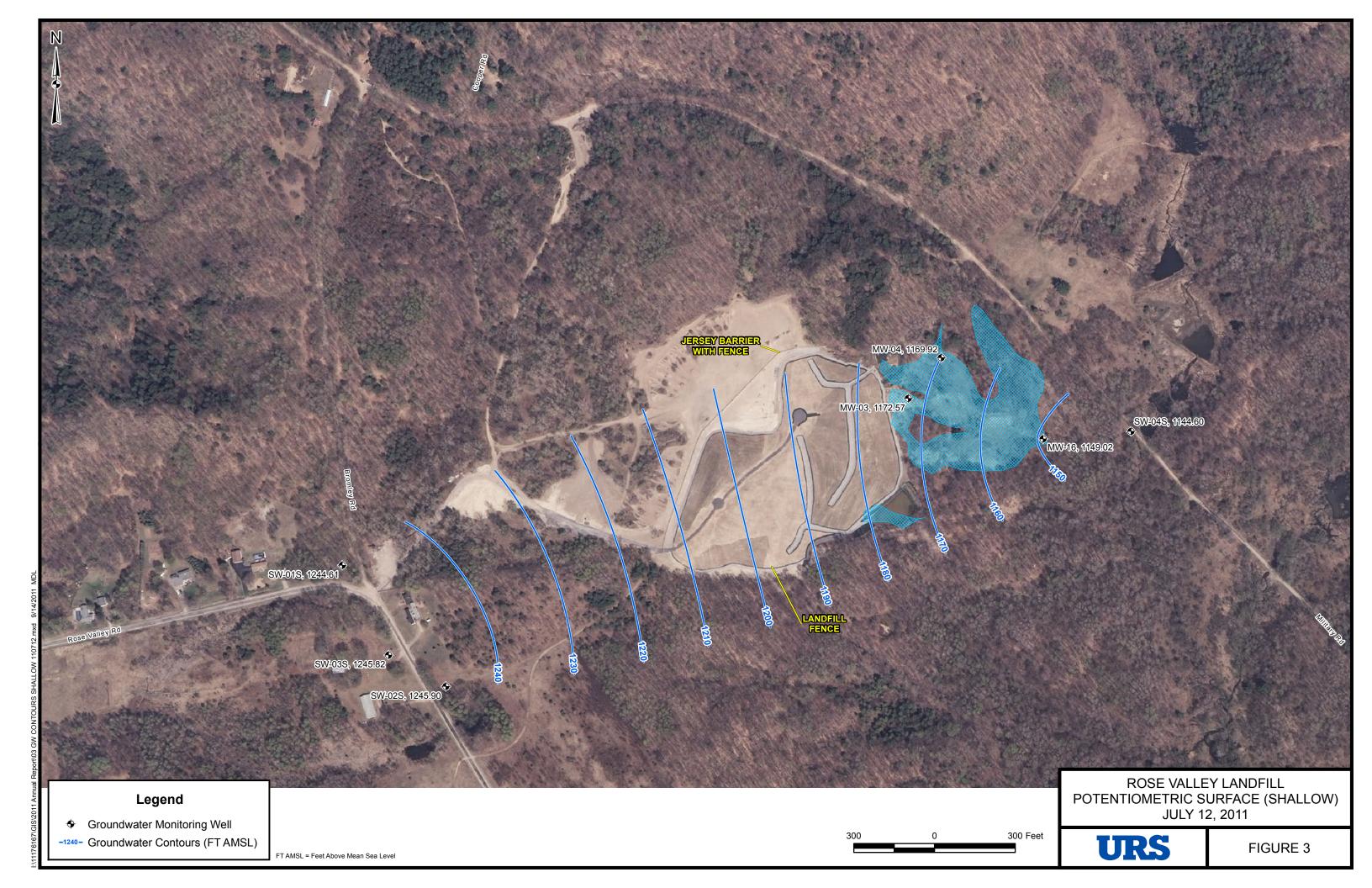
Only Detected Results Reported.

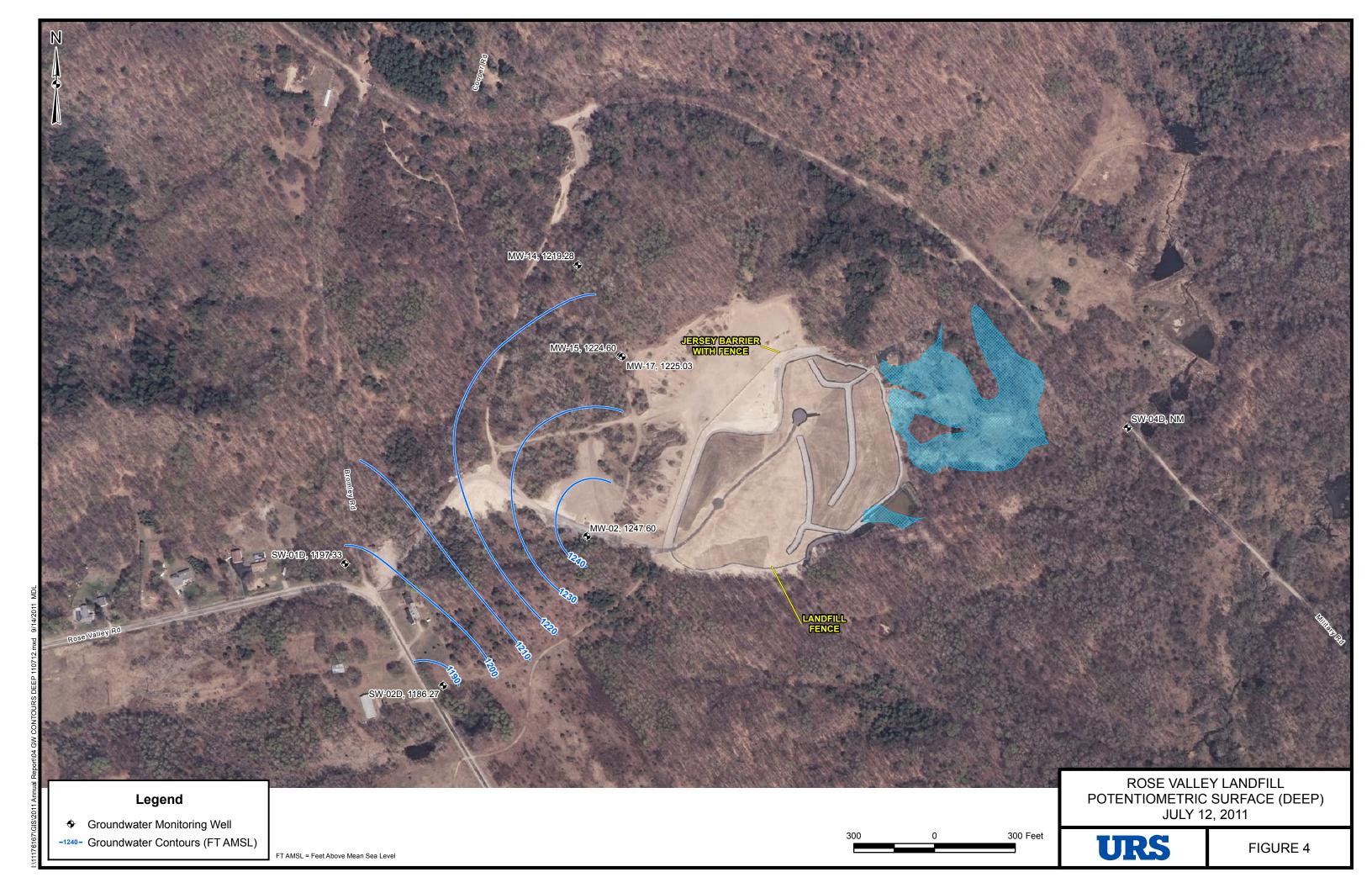
^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

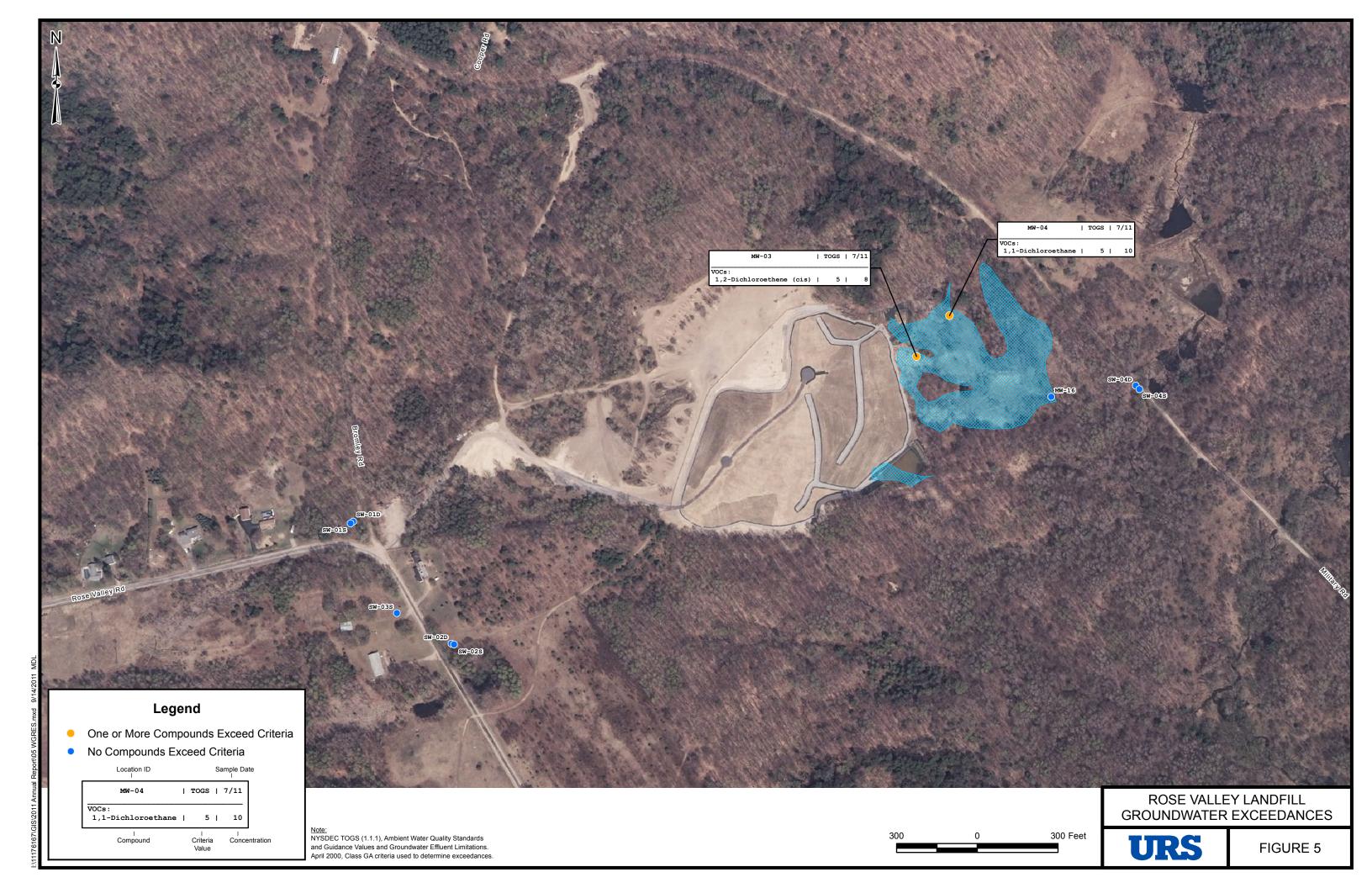
TABLE 6 SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE WATER CRITERIA FOR CLASS C SURFACE WATERS REQUIRING CALCULATION ROSE VALLEY LANDFILL

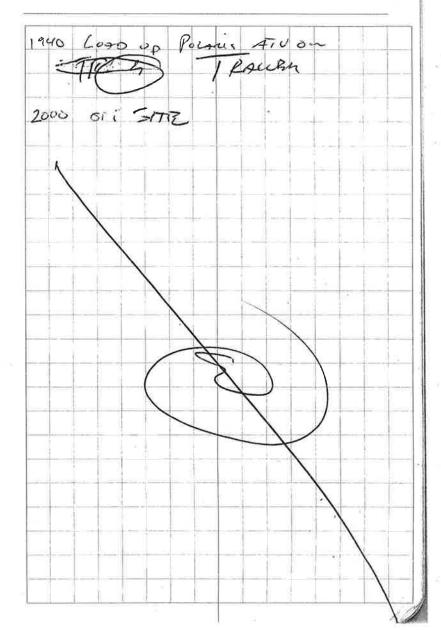

	Sample ID		NDP		DUP-1 (SDP)		SDP		SWTR-1E		SWTR-1T	
	Sample Date		04/20/10		04/20/10		04/20/10		04/20/10		04/21/10	
	Units	Criteria Applies To	Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result
Metals												
Hardness (calculated)	MG/L	Not applicable		373		259		251		273		412
Nickel	UG/L	Dissolved form	158		117		113		122		172	12.0


Criteria:


NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.


-- - No criteria
Blank cell - not detected
Only detected results shown.


FIGURES


APPENDIX A FIELD NOTES

Location RVLF	7/.2/	2
Location BV=[Date 7/12/"	-
Project / Client		

	WA	treve le	uELS	•							
10	DTY	ا ا	DT B	\$	τ	jugo	۶		C0.	ų.u	التحا
10 ne-03	3,0	(17.2	5	13:	35	1	hid	Y	eg	
mc -0 T	21	7	17.5	5	13	:45			sen	9	5
me-16	3.	6	11.4	6	14	:00	d			3	
Sw-01											
Sw- 01	11 124		P. C.				100000000000000000000000000000000000000				
Sw-02				25000			1000			-	
Su-0-	15	> 40	8	22	Ð	,	4:5	פו			
3000	100	vlesiau	1 8	3 33	-	10	1:15	-		21	esia
Sw-63		11:85								SV I	23100
ADDITION	H U	Jells	,,,	,							
ma-07	2_	57,	55/	76.	45	9	3-	13		an	15
ma-15		87.7	6	90.	65		15	0	7		
mu-1		86.6									
MW-14		78:55									
								_			
North: 2											- 2
- Fc.s	\$1 III	11	10.00				m n				
=AC50		MUAD	Fo	n	tαe:	\$5	pA	raf	0	-	
mar-10	2 -		-	-		4		-	0	-/	74

22 Location	RVLF Date 17/12/11	
98	Client	
	2	
	BEGIN TO purcher SW-OID	
1730	Sample Sw-OIP	_
10:	SW-01D	
Thirz	1730	
ANALY	sis - TCL VOC +TIG	
	3 -40me vial of Hec.	
1745	BEGIN TO PURGE SW-035	_
	SAMPUZ SW-035.	
	5w-035	
toner	1800	
100	SIS - TEC VOC+TICS	
	3-40ml Vist of HCL	
825	BEGIN TO PURGIZ SUI-023.	
	SAMPLER SW-025	
	30-025	
	1840	
	544 VOC+TICS	
2	3 - 40ml Vin of Hel	
1650	BEGIN TO DURENT SW. OZD	
	SAMAY SW-02D	
	SW-OZD	
	1920	
	in TEL VOLTTICS	
7	3-40 ml Visco of tel.	
	o to my votes with	

ocation	Date 7/12(11	
Project / Client		

Location		Date <u>\(\beta / 1 \) </u>	
	W/	13. 10. 10.0	
Project / Client			

1055 Collect Sample From	DUTTE -IE
ID SUTR-IR	
Trus 1055	
Auscysis: TCL VOE + TICS	
3-40 ml vist of	Hei.
- collect ms/msD samp	CRS AT
SWTR-11E	
1100 SeT Upon mw-16	
1155 Collow Sample From	, mw-16
10: mw-16	
TIMPL: 1155	
ANACYSIS : TCL VOC + TICS	
3 - 40m/ vist u	-/ HCC -
1230 Set up on nw-0	4
1310 BAMPUR MULLOY	
10: mw-04	
marg : 1310	
Analysis : Tel voc +Tics	
3-40ml vials	
1330 Ber Jp 0~ Mu	-63
1430 5 Augle Mc -03	
1P. Mu-03	
Ture 1430	
Analysis TEL VOCTTICS	3-domlored with

Location	21:4			Date >	13/4
Project / (Jilent	_			
00	Sarple	None	4 DeTe	or por	0
	15P-5U				
ma:	1500				
		C VOC +	Tus.		
,		donlo	4		
- coll	ect F	caro de	purane	sough 6	, e,
	- 0713	1			
30 5	suple	SOUTA	1-2T		
	SWIR-				
wz	1530				
ny	s! TEL	UOC +	TIC.		
	3-	40ml 0	als ev	HCC.	
45 5	_	_		on paci)
	p-su			80	
me :					
-		L UOC+	TICS		
11		- woml			
1545				s. Rette	
TO				ant o	
		ef .		perform	
1 An	10 = II	12500	Tun.	,	
- 20	B 44	us recel	Ber	9/2/4-	7/4/4.

Location	Date 7/13/1/	27
Project / Client		

11		L					
100100					on.		
	->	Ho	s we	ev pr	rset	byn	316
		9.	ste	. mr	1 Aus	ve .	
					100		
					iz) A		nsi
				2040.		,	
	- 01	1204	6	20310	0.41	Lunn	(grave)
	1	1		.11	11	. 4	a da m
							6'desp
							resty
9			I. II		intel	1m 27	K-1-3
		. 11		24-5.	-	-	
					TO M		*
	nul	u	derc	when	pono		
	GAV	base	du-	new	(le	TIRES.	monse,
	CAL	ساطك	(m	0.	are i	of e	at
				The state of the s	~ 540	3.0	
	Are		_ ~				
1800	5/	NA	د.ن	OFF	5274		
7			-		+ +	-	
		`\	ullet				
		-					
						\setminus	
							\setminus

APPENDIX B MONITORING WELL PURGE LOGS

Project:	11176167.000	11176167.00002		Site: Rose Valley Lan			MW-3		
Sampling	Personnel: C. Dusel, S. M		Date:	7/13/11	_Company:	URS Corporation			
Purging/ Sampling Device:	Geopump		_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint	
Measuring Point:	Initial Depth TOC to Water:	3.01	Depth toWell Bottom:	17.25	Well Diameter:	2"	Screen Length:	10'	
Casing Type:	PVC		Volume in 1 Well Casing (liters):	8.79	_	Estimated Purge Volume (liters):	9.0		
Sample ID:	MW-03	Sample Time	: 1430		_ QA/QC:	None			
Sample Para	ameters: TCL VOC + T	TICs							
	-								

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1354	6.62	8.84	1.22	1.38	84.5	-15	250	3.01
1358	6.59	8.96	1.22	1.12	64.1	-15	250	3.03
1402	6.59	8.87	1.22	0.96	55.4	-11	250	3.03
1416	6.57	8.83	1.21	0.31	41.1	-9	250	3.05
1410	6.57	8.82	1.21	0.0	36.1	-8	250	3.05
1414	6.56	8.76	1.21	0.0	15.4	-7	250	3.06
1418	6.52	8.50	1.21	0.0	4.17	-8	250	3.05
1422	6.55	8.53	1.21	0.0	1.48	-11	250	3.06
1426	6.51	8.50	1.21	0.0	0.93	-13	250	3.05
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.000	11176167.00002		Site: Rose Valley Landfill			Well #:MW-4		
Sampling	Personnel: C. Dusel, S. M		Date:	7/13/11	_Company:	URS Corporation			
Purging/ Sampling Device:	Geopump		_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	/lidpoint	
Measuring Point:	Initial Depth TOC to Water:	2.52	Depth toWell Bottom:	17.55	Well Diameter:	2"	Screen Length:	10'	
Casing Type:	PVC		Volume in 1 Well Casing (liters):	9.27	-	Estimated Purge Volume (liters):	10.8	-	
Sample ID:	MW-04	Sample Time	: 1310		_ QA/QC:	None			
Sample Para	ameters: TCL VOC + 1	TCs							
								-	

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1230	7.01	8.84	0.845	1.04	31.0	-62	300	2.52
1234	6.88	8.94	0.831	0.47	13.9	-52	300	2.59
1238	6.86	9.04	0.827	0.34	4.73	-42	300	2.63
1242	6.87	9.06	0.826	0.29	7.91	-41	300	2.64
1246	6.90	9.13	0.824	0.14	3.66	-40	300	2.68
1250	6.93	9.17	0.824	0.10	4.69	-37	300	2.69
1254	6.92	9.34	0.824	0.06	1.75	-36	300	2.71
1258	6.90	9.30	0.824	0.05	0.04	-35	300	2.75
1302	6.87	8.91	0.823	0.02	0.0	-34	300	2.79
1306	6.90	9.01	0.823	0.01	0.0	-36	300	2.83
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		11176167.000	02	_ Site: _	Rose Val	lley Landfill	Well #:	MW-16		
Sampling	Personnel	C. Dusel, S. N	ИсCabe		Date:	7/13/11	_Company:	URS Corp	oration	
Purging/ Sampling Device:		Geopump		_Tubing Type:_	НС	DPE	_ Tubing Inlet:	Screen M	1idpoint	
Measuring Point:	TOC	Initial Depth to Water:	3.50	Depth to Well Bottom:	11.60	Well Diameter:	2"	Screen Length:	8'	
Casing Type:	P'	VC		Volume in 1 Well Casing (liters):	5.00	-	Estimated Purge Volume (liters):	6.0		
Sample ID:	MW-16		Sample Time:	1155		QA/QC:	None			
Sample Para	ameters:	TCL VOC + T	ïCs							
		TCL VOC + T	·	1155		QA/QC:	None			

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1100	6.81	9.90	0.407	0.12	36.1	-122	200	3.50
1110	6.76	10.08	0.408	0.0	14.5	-124	100	4.71
1120	6.76	9.76	0.410	0.0	3.7	-126	100	6.35
1130	6.76	9.59	0.408	0.0	0.0	-127	100	6.91
1140	6.80	9.89	0.406	0.0	0.0	-129	100	7.23
1150	6.80	9.89	0.409	0.0	0.0	-128	100	7.39
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		11176167.000	02	Site:	Rose Val	ley Landfill	_ Well #:	SW-01S	
Sampling	Personnel	C. Dusel, S. M	/IcCabe		Date:	7/12/11	_Company:	URS Corp	ooration
Purging/ Sampling Device:		Geopump		_Tubing Type:_	НС)PE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	TOC	Initial Depth to Water:	18.56	Depth to _Well Bottom: _	28.40	Well Diameter:	2"	Screen Length:	10'
Casing Type:	P'	VC		Volume in 1 Well Casing (liters):	6.07	-	Estimated Purge Volume (liters):	7.0	
Sample ID:	SW-01S		Sample Time:	1630		QA/QC:	FD-071211		
Sample Para	ameters:	TCL VOC + T	ICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1600	6.29	7.07	0.561	11.38	65.9	183	250	18.56
1604	6.33	7.52	0.562	11.13	2.07	185	250	18.56
1608	6.35	7.53	0.551	10.90	3.22	184	250	18.59
1612	6.35	7.50	0.563	10.52	4.66	189	250	18.61
1616	6.35	7.37	0.566	10.53	4.74	190	250	18.64
1620	6.36	7.69	0.568	10.29	4.71	191	250	18.69
1624	6.36	7.78	0.561	10.34	5.13	192	250	18.71
1628	6.36	7.72	0.569	10.35	5.46	194	250	18.73
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.00	002	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-01D	
Sampling	Personnel: <u>C. Dusel, S.</u>	McCabe		Date:	7/12/11	_Company:	URS Corp	ooration
Purging/ Sampling Device:	RediFlow 2	2	_Tubing Type:_	Н	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	67.37	Depth to Well Bottom:	83.90	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC	-	Volume in 1 Well Casing (liters):	10.20	-	Estimated Purge Volume (liters):	10.0	·
Sample ID:	SW-01D	Sample Time:	1730		QA/QC:	None		
Sample Para	ameters: TCL VOC +	ΓICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	0.29	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1645	7.60	9.63	0.243	1.81	11.5	-19	250	67.37
1649	7.63	11.10	0.243	1.36	6.48	-25	250	67.44
1653	7.64	11.99	0.243	1.13	4.46	-31	250	67.45
1657	7.65	12.13	0.246	0.99	4.14	-41	250	67.51
1701	7.65	12.38	0.246	0.81	2.02	-49	250	67.55
1705	7.64	12.55	0.246	0.87	0.48	-54	250	67.57
1709	7.66	12.61	0.246	0.67	0.27	-65	250	67.58
1713	7.66	13.90	0.245	0.59	0.36	-69	250	67.60
1717	7.67	12.86	0.246	0.52	0.80	-72	250	67.63
1721	7.67	12.73	0.246	0.41	0.88	-76	250	67.65
1725	7.67	12.67	0.245	0.44	0.34	-75	250	67.69
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	1	11176167.000	02	Site:	Rose Val	ley Landfill	_ Well #:	SW-02S	
Sampling	Personnel:	C. Dusel, S. M	IcCabe		Date:	7/12/11	_Company:	URS Corp	ooration
Purging/ Sampling Device:		Geopump		_Tubing Type:_	НС)PE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	TOC	Initial Depth to Water:	11.30	Depth to Well Bottom:	20.05	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PV	<u>′C</u>		Volume in 1 Well Casing (liters):	5.40	-	Estimated Purge Volume (liters):	8.4	
Sample ID:	SW-02S	_	Sample Time:	1840		QA/QC:	None		
Sample Para	ameters:	TCL VOC + TI	Cs						
	-								

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1825	7.45	8.00	0.257	13.60	98	116	600	11.30
1827	7.40	8.02	0.244	13.01	13.1	117	600	11.31
1829	7.39	7.96	0.239	12.97	4.27	118	600	11.31
1831	7.38	8.21	0.230	12.70	0.91	120	600	11.32
1833	7.37	8.19	0.228	12.68	0.07	121	600	11.32
1835	7.36	8.15	0.229	12.70	0.11	122	600	11.33
1837	7.35	8.14	0.225	12.62	0.13	122	600	11.32
1839	7.34	8.16	0.223	12.55	0.16	123	600	11.32
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11	176167.00002	<u> </u>	Site:	Rose Valle	ey Landfill	_ Well #:	SW-02D	
Sampling	Personnel: <u>C</u>	. Dusel, S. Mc	Cabe		Date:	7/12/11	_Company:	URS Corp	ooration
Purging/ Sampling Device:		Grundfos		_Tubing Type:_	HDI	PE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:		nitial Depth to Water:	70.73	Depth to Well Bottom:	79.16	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC	<u> </u>		Volume in 1 Well Casing (liters):	5.20		Estimated Purge Volume (liters):	7.3	
Sample ID:	SW-02D	S	ample Time:	1920		QA/QC:	None		
Sample Para	ameters: <u>T</u>	CL VOC + TIC	S						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1850	7.43	10.10	0.409	3.28	14.0	6	250	70.73
1854	7.42	11.98	0.400	2.95	13.5	6	250	70.80
1859	7.44	12.37	0.403	2.91	5.1	9	250	70.81
1903	7.47	12.72	0.406	2.81	3.7	11	250	70.79
1907	7.48	12.86	0.405	2.78	3.2	13	250	70.77
1911	7.49	12.95	0.406	2.76	4.6	12	250	70.77
1915	7.49	12.97	0.406	2.74	1.8	10	250	70.77
1919	7.50	13.10	0.405	2.69	0.8	12	250	70.77
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.00	002	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-03	
Sampling	Personnel: <u>C. Dusel, S. l</u>	McCabe		Date:	7/12/11	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		_Tubing Type:_	НС	DPE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:	Initial Depth to Water:	11.85	Depth to Well Bottom:	18.77	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	4.27	-	Estimated Purge Volume (liters):	8.4	
Sample ID:	SW-03S	Sample Time:	: 1800		QA/QC:	None		
Sample Para	ameters: TCL VOC + 7	ΓICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1745	7.13	9.16	0.873	12.08	176	104	600	11.85
1747	7.07	9.00	0.800	13.11	73	107	600	11.91
1749	7.04	9.06	0.777	13.35	26	107	600	11.91
1751	7.03	8.86	0.747	12.38	12.8	111	600	11.91
1753	7.01	8.96	0.743	11.81	9.51	113	600	11.91
1755	6.99	8.94	0.716	11.70	10.80	114	600	11.91
1757	6.98	8.96	0.716	11.63	8.70	115	600	11.91
1759	6.97	8.90	0.713	11.67	8.47	116	600	11.91
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		11176167.000	02	_ Site: _	Rose Va	lley Landfill	Well #:	SW-04S	
Sampling	Personnel	: C. Dusel, S. M	/IcCabe		Date:	7/13/11	_Company:	URS Corp	oration
Purging/ Sampling Device:		Geopump		Tubing Type:	Н	DPE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:	TOC	Initial Depth to Water:	2.95	Depth to _Well Bottom: _	8.22	Well _ Diameter:	2"	Screen Length:	8'
Casing Type:	Р	VC		Volume in 1 Well Casing (liters):	3.25	_	Estimated Purge Volume (liters):	3.5	
Sample ID:	SW-04S		Sample Time:	0930		QA/QC:	MS/MSD		
Sample Para	ameters:	TCL VOC + T	ICs						

PURGE PARAMETERS

			COND.	DISS. O ₂	TURB.		FLOW RATE	DEPTH TO WATER
TIME	рН	TEMP (°C)	(mS/cm)	(mg/l)	(NTU)	ORP (mV)	(ml/min.)	(btor)
0915	6.76	11.17	0.449	0.96	0.30	-117	250	2.95
0917	6.77	11.80	0.431	0.62	0.29	-116	250	2.97
0919	6.76	11.82	0.430	0.46	0.0	-116	250	2.98
0921	6.75	11.85	0.435	0.33	0.0	-115	250	3.04
0923	6.73	11.72	0.445	0.14	0.0	-117	250	3.09
0925	6.73	11.62	0.448	0.06	0.0	-118	250	3.11
0927	6.72	11.53	0.453	0.0	0.0	-121	250	3.17
0929	6.73	11.42	0.451	0.0	0.0	-123	250	3.23
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.000	002	_ Site: _	Rose Val	ley Landfill	_ Well #:	SW-04D	
Sampling	Personnel: C. Dusel, S. M	McCabe		Date: 7/13/11		_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		_Tubing Type:_	НС)PE	_ Tubing Inlet:	Screen Midpoint	
Measuring Point:	Initial Depth TOC to Water:	0.00	Depth to Well Bottom: _	83.35	Well Diameter:	2"	Screen Length:	8'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	51.43	-	Estimated Purge Volume (liters):	40.0	
Sample ID:	SW-04D	Sample Time:	1040		QA/QC:	None		
Sample Para	ameters: TCL VOC + T	TCs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
0945	8.25	7.45	0.157	0.0	59.6	-255	800	0
0950	8.79	7.53	0.157	0.0	67.5	-247	800	0
0955	8.80	7.78	0.155	0.0	76.5	-241	800	0
1000	8.81	7.86	0.155	0.0	86.0	-235	800	0
1005	8.79	7.92	0.154	0.0	69.1	-232	800	0
1010	8.76	7.95	0.154	0.0	34.2	-230	800	0
1015	8.75	7.95	0.154	0.0	28.9	-229	800	0
1020	8.74	7.94	0.154	0.0	13.1	-227	800	0
1025	8.74	7.94	0.154	0.0	5.64	-227	800	0
1030	8.74	7.94	0.154	0.0	1.61	-227	800	0
1035	8.73	7.95	0.154	0.0	3.31	-227	800	0
				1001				
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Comments: Artesian well.

Project:	11176167.00		02	Site: _	Rose Va	alley Landfill	_ Location:	North Detention Pon		
Sampling	Personn	el: C. Dusel, S. M	1cCabe		Date:	7/13/11	_Company:	URS Corp	ooration	
Purging/ Sampling Device:		Immersion		_Tubing Type:_	NA		_ Tubing Inlet:	NA	NA	
Measuring Point:	NA	Initial Depth to Water:	NA	Depth to Well Bottom:	Well NA Diameter:		NA	Screen Length:	NA	
Casing Type:		NA		Volume in 1 Well Casing (liters):	NA	_	Estimated Purge Volume (liters):	NA		
Sample ID:	NDP-WS		Sample Time	: 1500		QA/QC:	None			
Sample Para	ameters:	TCL VOC + T	ICs							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1500	7.51	16.20	0.619	9.54	47	47		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

 $\textbf{Information:} \quad \text{WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 3 inch diameter well = 617 ml/ft; 3$

4 inch diameter well = 2470 ml/ft (vol $_{cyl}$ = $\pi r^2 h$)

Project: _		11176167.000	02	Site:	Rose V	alley Landfill	Location:	South Detention	on Pond
Sampling	Personne	el: <u>C. Dusel, S. N</u>	/IcCabe		Date:	7/13/11	_Company:	URS Corp	oration
Purging/ Sampling Device:		Immersion		_Tubing Type:_		NA	_ Tubing Inlet:	NA	
Measuring Point:	NA	Initial Depth to Water:	NA	Depth to Well Bottom:	NA	Well Diameter:	NA	Screen Length:	NA
Casing Type:		NA		Volume in 1 Well Casing (liters):	NA	_	Estimated Purge Volume (liters):	NA	
Sample ID:	SDP-WS		Sample Time:	1545		QA/QC:	None		
Sample Parameters:		TCL VOC + T	ICs						

PURGE PARAMETERS

TIME	-11	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ODD (m) ()	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
TIME	рН	TEIVIF (C)	(III3/CIII)	(1119/1)	(1410)	ORP (mV)	(1111/111111.)	(DIOI)
1545	7.83	19.28	0.381	7.93	39	-58		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176167.00002		02	Site:	Rose Valley Landfill		Location:	SWTR-1E	
Sampling Personnel: C. Dusel, S. M			1cCabe		Date:	7/13/11	_Company: _	URS Corp	oration
Purging/ Sampling Device:		Immersion		_Tubing Type:_	ı	NA	_ Tubing Inlet: _	NA	
Measuring Point:	NA	Initial Depth to Water:	NA	Depth to _Well Bottom: _	NA	Well _ Diameter:	NA	Screen Length:	NA
Casing Type:		NA		Volume in 1 Well Casing (liters):	NA	_	Estimated Purge Volume (liters):	NA	
Sample ID:	SWTR-1E		Sample Time	: 1055		QA/QC:	MS/MSD		
Sample Para	ameters:	TCL VOC + T	ICs						
		-							

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1055	7.74	14.82	0.468	8.01	15.1	58		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	t:1117616		76167.00002 Site:		Rose Valley Landfill		Location: SWTR-1T		
Sampling	Personne	el: <u>C. Dusel, S. M</u>	IcCabe		Date:	7/13/11	_Company: _	URS Corp	oration
Purging/ Sampling Device:		Immersion		_Tubing Type:_		NA	_Tubing Inlet: _	NA	
Measuring Point:	NA	Initial Depth to Water:	NA	Depth to Well Bottom:	NA	Well Diameter:	NA	Screen Length:	NA
Casing Type:		NA		Volume in 1 Well Casing (liters):	NA	_	Estimated Purge Volume (liters):	NA	
Sample ID:	SWTR-1T		Sample Time:	1530		QA/QC:	None		
Sample Para	ameters:	TCL VOC + T	lCs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1530	6.89	16.14	2.06	4.19	28.7	-106		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

 $\textbf{Information:} \quad \text{WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 3 inch diameter well = 617 ml/ft; 3$

4 inch diameter well = 2470 ml/ft (vol $_{cyl}$ = $\pi r^2 h$)

APPENDIX C PHOTOGRAPHIC LOG

Photo 1: 7/12/2011-Hogweed growing around front entrance gate to the site.

Photo 2: 7/12/2011-Erosion/rilling in access road (upper center of photograph) has reached underlying geotextile fabric and is up to 1 foot across and up to 1 foot deep. Note hogweed growing to right side of gate.

Photo 3: 7/12/2011-View of west side of the landfill, looking north showing recently completed mowing.

Photo 4: 7/12/2011-View of top of the landfill, looking east showing recently completed mowing.

Photo 5: 7/12/2011-View of south side of the landfill, looking east showing recently completed mowing.

Photo 6: 7/12/2011-View of central portion of the landfill, looking south showing recently completed mowing.

Photo 7: 7/12/2011-South Detention Pond with sediment accumulation.

Photo 8: 7/12/2011-North Detention Pond with sediment accumulation.

Photo 9: 7/11/2011-Collection of surface water sample from location SWTR-1E.

Photo 10: 7/11/2011-Low flow sampling setup MW-16 in the background.

Photo 11: 7/12/11-North side of landfill looking west from North Detention Pond.

Photo 12: 7/12/11-North side of landfill looking west from a location half way up the landfill.

Photo 13: 7/13/2011-Erosion mat along west side of landfill looking north.

Photo 14: 7/13/2011-Erosion mat along west side of landfill looking south.

Photo 15: 7/13/2011-Rilling on gravel access road which is on top of the landfill cap.

Photo 16: 7/13/2011-Dumping to the northwest of the landfill.

APPENDIX D

DATA USABILITY SUMMARY REPORT

(On Compact Disk)

DATA USABILITY SUMMARY REPORT

ROSE VALLEY LANDFILL SITE ID NO. 622017 TOWN OF RUSSIA HERKIMER COUNTY, NEW YORK

Analyses Performed by:

TESTAMERICA LABORATORIES, INC.
AMHERST, NEW YORK

Prepared by:

URS CORPORATION
77 GOODELL STREET
BUFFALO, NY 14203

NOVEMBER 2011

TABLE OF CONTENTS

		Page No.
I.	INTRODUCTION	1
II.	SAMPLE COLLECTION	1
III.	ANALYTICAL METHODOLOGIES AND DATA VALIDATION	1
IV.	DATA DELIVERABLE COMPLETENESS	2
V.	SAMPLE RECEIPT/HOLDING TIMES	2
VI.	NON-CONFORMANCES	2
VII.	SAMPLE RESULTS AND REPORTING	3
VIII.	SUMMARY	3
	TABLES	
	(Following Text)	
Table	1 Summary of Data Qualifications	
Table	2 Validated Groundwater Sample Analytical Results	
Table	3 Validated Surface Water Sample Analytical Results	

ATTACHMENTS

Validated Field QC Analytical Results

Attachment A Validated Form I's

Table 4

Attachment B Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, *Appendix 2B - Guidance for Data Deliverables and the Development of Data Usability Summary Reports*, May 2010. Analytical data for 14 aqueous samples plus quality control (QC) collected July 12-13, 2011 are discussed in this DUSR. The samples were collected in support of the site management task assigned to URS under NYSDEC Work Assignment D004440-26 for the Rose Valley Landfill Site (Site Number 622017), located in the Town of Russia, Herkimer County, New York.

II. SAMPLE COLLECTION

On July 12-13, 2011, 10 groundwater samples, one blind field duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, 4 surface water samples, one blind field duplicate and one MS/MSD pair, and one trip blank were collected from the site. The samples were sent to the NYSDEC's CallOut laboratory: TestAmerica Laboratories, Inc., located in Amherst, New York (TestAmerica-Buffalo) under NYSDEC CallOut ID 119939. TestAmerica-Buffalo is a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory.

III. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

All samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) plus tentatively identified compounds (TICs) by United States Environmental Protection Agency (USEPA) Method SW8260B.

A limited data validation was performed on the samples following the guidelines in the USEPA's Region II document: Validating Volatile Organic Compounds by SW-846 Method 8260B, HW-24, Revision 2, August 2008.

The limited data review included a review of completeness of all required deliverables; holding times; QC results (blanks, instrument tunes, calibration standards, MS/MSD recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were

analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Qualifications applied to the data include 'UJ' [estimated quantitation limit (QL)]. A summary of qualifications made to the data is presented in Table 1. The validated analytical results are provided in Tables 2 and 3 for groundwater and surface water, respectively. Field QC results are provided in Table 4. Copies of the validated laboratory results (i.e., Form 1s) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only problems affecting data usability are discussed in this report.

IV. DATA DELIVERABLE COMPLETENESS

A full deliverable data package (i.e., equivalent to NYSDEC ASP Category B) was provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

V. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, under proper chain-of-custody with the exception of the trip blank. The trip blank was not listed on the chain-of-custody, however, it was submitted with the samples and logged in by the laboratory. All samples were analyzed within the required holding times.

VI. NON-CONFORMANCES

Instrument Calibration

The percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the RRF in the continuing calibration (CCAL) standards was greater than 20% for the following VOCs 1,2-dibromo-3-chloropropane, bromoform, bromomethane, carbon tetrachloride, chloroethane, dibromochloromethane, dichlorodifluoromethane and/or trichlorofluoromethane. The results for these compounds were qualified 'J' or 'UJ' as listed in Table 1.

Documentation supporting the qualification of data (i.e., Form 7, run log) is presented in

Attachment B.

VII. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were

adjusted for sample volume. Results reported where the concentration detected was below the

QL, but greater than the method detection limit (MDL), are qualified 'J' by the laboratory. TICs

were qualified 'JN'.

Surface water sample SWRT-1T was analyzed at a dilution because of foaming during

sample purging. The QL for the non-detect compounds represent the lowest achievable at the

diluted level.

A field duplicate sample was collected at surface water location NDP (FD-071311) and a

field duplicate sample was collected at groundwater location SW-01S (FD-071211). The results

were in agreement.

VIII. **SUMMARY**

All sample analyses were found to be compliant with the method criteria, except where

Those results qualified 'J' (estimated concentration), 'UJ' (estimated previously noted.

quantitation limit) or 'JN' (TIC) are considered conditionally usable. All other sample results are

usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By: George Kisluk, Senior Chemist 531 Date: 11 7 11

Reviewed By: Peter Fairbanks, Senior Chemist Date: 11 7 11

-3-

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- **JN** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

TABLE 1 SUMMARY OF DATA QUALIFICATIONS ROSE VALLEY LANDFILL

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
Groundwater: FD-07211 (SW-01S), SW-01D, SW-01S, SW-02D, SW-02S, SW-03S, SW-04S		%D between the ICAL average RRF and the CCAL RRF >20% for dibromochloromethane.	Qualify non-detect results 'UJ'.
Groundwater: MW-03, MW-04, MW-16, SW-04D Surface Water: FD-071311 (NDP), NDP-WS, SDP-WS, SWTR-1E, SWR-1T Field QC: Trip Blank		%D between the ICAL average RRF and the CCAL RRF > 20% for 1,2-dibromo-3-chloropropane, bromoform, bromomethane, carbon tetrachloride, chloroethane, dibromochloromethane, dichlorodifluoromethane and trichlorofluoromethane.	Qualify non-detect results 'UJ' and detects 'J'.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Sample ID			MW-03	MW-04	MW-16	SW-01D	FD-071211
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft	t)		-	-	-	-	-
Date Sampled		1	07/13/11	07/13/11	07/13/11	07/12/11	07/12/11
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	UG/L	5	2.2	$\bigcirc 10 \bigcirc$	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	8.0	2.4	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzene	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	UG/L	50	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U or ND - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Sample ID			MW-03	MW-04	MW-16	SW-01D	FD-071211
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (•		-	-	-	-	-
Date Sampled		1	07/13/11	07/13/11	07/13/11	07/12/11	07/12/11
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
Bromomethane	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
Carbon disulfide	UG/L	60	1.0 U				
Carbon tetrachloride	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
Chlorobenzene	UG/L	5	1.0 U				
Chloroethane	UG/L	5	1.0 UJ	0.35 J	1.0 UJ	1.0 U	1.0 U
Chloroform	UG/L	7	1.0 U				
Chloromethane	UG/L	5	1.0 U				
Cyclohexane	UG/L	-	1.0 U				
Dibromochloromethane	UG/L	50	1.0 UJ				
Dichlorodifluoromethane	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
Ethylbenzene	UG/L	5	1.0 U				
Isopropylbenzene (Cumene)	UG/L	5	1.0 U				
Methyl acetate	UG/L	-	1.0 U				
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U				
Methyl tert-butyl ether	UG/L	10	1.0 U				
Methylcyclohexane	UG/L	-	1.0 U				
Methylene chloride	UG/L	5	1.0 U				
Styrene	UG/L	5	1.0 U				
Tetrachloroethene	UG/L	5	1.0 U				
Toluene	UG/L	5	1.0 U				
Trichloroethene	UG/L	5	1.0 U				
Trichlorofluoromethane	UG/L	5	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U
Vinyl chloride	UG/L	2	1.0 U				
Xylene (total)	UG/L	5	2.0 U				

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U or ND - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft	:)		07/12/11	- 07/12/11	- 07/12/11	- 07/12/11	- 07/13/11
Date Sampled		1	07/12/11	07/12/11	07/12/11	07/12/11	07/13/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	UG/L	50	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzene	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	UG/L	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U or ND - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			SW-01S	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-	-	-	-
Date Sampled	ı		07/12/11	07/12/11	07/12/11	07/12/11	07/13/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Bromomethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Carbon disulfide	UG/L	60	1.0 U				
Carbon tetrachloride	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Chlorobenzene	UG/L	5	1.0 U				
Chloroethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Chloroform	UG/L	7	1.0 U				
Chloromethane	UG/L	5	1.0 U				
Cyclohexane	UG/L	-	1.0 U				
Dibromochloromethane	UG/L	50	1.0 UJ				
Dichlorodifluoromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Ethylbenzene	UG/L	5	1.0 U				
Isopropylbenzene (Cumene)	UG/L	5	1.0 U				
Methyl acetate	UG/L	-	1.0 U				
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U				
Methyl tert-butyl ether	UG/L	10	1.0 U				
Methylcyclohexane	UG/L	-	1.0 U				
Methylene chloride	UG/L	5	1.0 U				
Styrene	UG/L	5	1.0 U				
Tetrachloroethene	UG/L	5	1.0 U				
Toluene	UG/L	5	1.0 U				
Trichloroethene	UG/L	5	1.0 U				
Trichlorofluoromethane	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
Vinyl chloride	UG/L	2	1.0 U				
Xylene (total)	UG/L	5	2.0 U				

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U or ND - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID	SW-04S		
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (f	•		
Date Sampled			07/13/11
Parameter	Units	Criteria*	
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U
1,1-Dichloroethane	UG/L	5	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U
2-Hexanone	UG/L	50	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U
Acetone	UG/L	50	10 U
Benzene	UG/L	1	1.0 U
Bromodichloromethane	UG/L	50	1.0 U
Bromoform	UG/L	50	1.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID	SW-04S		
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (-		
Date Sampled	<u> </u>		07/13/11
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Bromomethane	UG/L	5	1.0 U
Carbon disulfide	UG/L	60	1.0 U
Carbon tetrachloride	UG/L	5	1.0 U
Chlorobenzene	UG/L	5	1.0 U
Chloroethane	UG/L	5	0.48 J
Chloroform	UG/L	7	1.0 U
Chloromethane	UG/L	5	1.0 U
Cyclohexane	UG/L	-	1.0 U
Dibromochloromethane	UG/L	50	1.0 UJ
Dichlorodifluoromethane	UG/L	5	1.0 U
Ethylbenzene	UG/L	5	1.0 U
Isopropylbenzene (Cumene)	UG/L	5	1.0 U
Methyl acetate	UG/L	-	1.0 0
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U
Methyl tert-butyl ether	UG/L	10	1.0 U
Methylcyclohexane	UG/L	-	1.0 U
Methylene chloride	UG/L	5	1.0 U
Styrene	UG/L	5	1.0 U
Tetrachloroethene	UG/L	5	1.0 U
Toluene	UG/L	5	1.0 U
Trichloroethene	UG/L	5	1.0 U
Trichlorofluoromethane	UG/L	5	1.0 U
Vinyl chloride	UG/L	2	1.0 U
Xylene (total) *Critoria NYSDEC TOGS (1.1.1) Ambient W.	UG/L	5	2.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			NDP	NDP	SDP	SWTR-1E	SWTR-1T
Sample ID			FD-071311	NDP-WS	SDP-WS	SWTR-1E	SWRT-1T
Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
Depth Interval (ft	:)		-	•	-	-	•
Date Sampled			07/13/11	07/13/11	07/13/11	07/13/11	07/13/11
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,1,2,2-Tetrachloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,1,2-Trichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,1-Dichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,1-Dichloroethene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dibromo-3-chloropropane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloroethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloroethene (cis)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloroethene (trans)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,2-Dichloropropane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,3-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,3-Dichloropropene (cis)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,3-Dichloropropene (trans)	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
1,4-Dichlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
2-Hexanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	20 U
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	5.0 U	5.0 U	20 U
Acetone	UG/L	-	10 U	10 U	10 U	10 U	20 J
Benzene	UG/L	10	1.0 U	1.0 U	1.0 U	1.0 U	1.8 J
Bromodichloromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Bromoform	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

Location ID			NDP	NDP	SDP	SWTR-1E	SWTR-1T
Sample ID			FD-071311	NDP-WS	SDP-WS	SWTR-1E	SWRT-1T
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (-	-	-	-	-
Date Sampled	<u> </u>		07/13/11	07/13/11	07/13/11	07/13/11	07/13/11
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Bromomethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Carbon disulfide	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Carbon tetrachloride	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Chlorobenzene	UG/L	5	1.0 U	1.0 U	1.0 U	1.0 U	3.3 J
Chloroethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Chloroform	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Chloromethane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Cyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Dibromochloromethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Dichlorodifluoromethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Ethylbenzene	UG/L	17	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Isopropylbenzene (Cumene)	UG/L	2.6	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Methyl acetate	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	-	10 U	10 U	10 U	10 U	40 U
Methyl tert-butyl ether	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Methylcyclohexane	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Methylene chloride	UG/L	200	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Styrene	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Tetrachloroethene	UG/L	1	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Toluene	UG/L	100	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Trichloroethene	UG/L	40	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Trichlorofluoromethane	UG/L	-	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	4.0 UJ
Vinyl chloride	UG/L	-	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U
Xylene (total)	UG/L	65	2.0 U	2.0 U	2.0 U	2.0 U	8.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U or ND - Not detected above the reported quantitation limit. UJ - Not detected. The reported quantitation limit is an estimated value.

^{- =} No standard or guidance value.

J - The reported concentration is an estimated value.

TABLE 4 VALIDATED FIELD QC ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID	FIELDQC	
Sample ID	TRIP BLANK	
Matrix	Water Quality	
Depth Interval (ft)		-
Date Sampled		07/13/11 Trip Blank (1-1)
Parameter	Units	ттр Біапк (1-1)
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1.0 U
1,1,2-Trichloroethane	UG/L	1.0 U
1,1-Dichloroethane	UG/L	1.0 U
1,1-Dichloroethene	UG/L	1.0 U
1,2,4-Trichlorobenzene	UG/L	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	1.0 UJ
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1.0 U
1,2-Dichlorobenzene	UG/L	1.0 U
1,2-Dichloroethane	UG/L	1.0 U
1,2-Dichloroethene (cis)	UG/L	1.0 U
1,2-Dichloroethene (trans)	UG/L	1.0 U
1,2-Dichloropropane	UG/L	1.0 U
1,3-Dichlorobenzene	UG/L	1.0 U
1,3-Dichloropropene (cis)	UG/L	1.0 U
1,3-Dichloropropene (trans)	UG/L	1.0 U
1,4-Dichlorobenzene	UG/L	1.0 U
2-Hexanone	UG/L	5.0 U
4-Methyl-2-pentanone	UG/L	5.0 U
Acetone	UG/L	10 U
Benzene	UG/L	1.0 U
Bromodichloromethane	UG/L	1.0 U
Bromoform	UG/L	1.0 UJ

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

TABLE 4 VALIDATED FIELD QC ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID	FIELDQC	
Sample ID	TRIP BLANK	
Matrix	Water Quality	
Depth Interval (ft)		-
Date Sampled Parameter		07/13/11 Trip Blank (1-1)
raidilletei	Units	p Diai.i. (1.1)
Volatile Organic Compounds		
Bromomethane	UG/L	1.0 UJ
Carbon disulfide	UG/L	1.0 U
Carbon tetrachloride	UG/L	1.0 UJ
Chlorobenzene	UG/L	1.0 U
Chloroethane	UG/L	1.0 UJ
Chloroform	UG/L	1.0 U
Chloromethane	UG/L	1.0 U
Cyclohexane	UG/L	1.0 U
Dibromochloromethane	UG/L	1.0 UJ
Dichlorodifluoromethane	UG/L	1.0 UJ
Ethylbenzene	UG/L	1.0 U
Isopropylbenzene (Cumene)	UG/L	1.0 U
Methyl acetate	UG/L	1.0 U
Methyl ethyl ketone (2-Butanone)	UG/L	10 U
Methyl tert-butyl ether	UG/L	1.0 U
Methylcyclohexane	UG/L	1.0 U
Methylene chloride	UG/L	1.0 U
Styrene	UG/L	1.0 U
Tetrachloroethene	UG/L	1.0 U
Toluene	UG/L	1.0 U
Trichloroethene	UG/L	1.0 U
Trichlorofluoromethane	UG/L	1.0 UJ
Vinyl chloride	UG/L	1.0 U
Xylene (total)	UG/L	2.0 U

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

ATTACHMENT A VALIDATED FORM 1s

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1						
SDG No.:							
Client Sample ID: SW-01S	Lab Sample ID: 480-7265-1						
Matrix: Water	Lab File ID: P3981.D						
Analysis Method: 8260B	Date Collected: 07/12/2011 16:30						
Sample wt/vol: 5 (mL)	Date Analyzed: 07/17/2011 14:44						
Soil Aliquot Vol:	Dilution Factor: 1						
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)						
% Moisture:	Level: (low/med) Low						
Analysis Batch No.: 23814	Units: ug/L						

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-01S	Lab Sample ID: 480-7265-1		
Matrix: Water	Lab File ID: P3981.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 16:30		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 14:44		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480	7265-1			
SDG No.:					
Client Sample ID: SW-01S	Lab Sample I	D: 480-7265-1			
Matrix: Water	Lab File ID:	P3981.D			
Analysis Method: 8260B	Date Collect	ed: 07/12/20	11 16:30		
Sample wt/vol: 5(mL)	Date Analyze	d: 07/17/201	14:44		
Soil Aliquot Vol:	Dilution Fac	Dilution Factor: 1			
Soil Extract Vol.:	GC Column:	ZB-624 (60)	ID: 0.25(mm)	
% Moisture:	Level: (low/	med) Low			
Analysis Batch No.: 23814	Units: ug/L				
Number TICs Found: 0	TIC Result	Total: 0			
CAS NO.	COMPOUND NAME	RT	RESULT	Q	
Pentatively Ident	ified Compound		None	+	

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-01D	Lab Sample ID: 480-7265-2		
Matrix: Water	Lab File ID: P3982.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 17:30		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:09		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UJ	1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-01D	Lab Sample ID: 480-7265-2		
Matrix: Water	Lab File ID: P3982.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 17:30		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:09		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		66-137
2037-26-5	Toluene-d8 (Surr)	86		71-126
460-00-4	4-Bromofluorobenzene (Surr)	80		73-120

Lab Name: TestAmerica Buffalo		Job No.: 480-7265-1				
SDG No.:						
Client Sample	ID: SW-01D	Lab Sample ID: 480-7265-2				
Matrix: Water	r	Lab File ID: P3982.D				
Analysis Meth	nod: 8260B	Date Collected: 07/12/2011 17:30				
Sample wt/vol: 5 (mL) Soil Aliquot Vol: Soil Extract Vol.:		Date Analyzed: 07/17/2011 15:09				
		Dilution Factor: 1				
		GC Column: ZB-624 (60) ID: 0.25 (mm)				
% Moisture:		Level: (low/med) Low				
Analysis Bato	ch No.: 23814	Units: ug/L				
Number TICs F	Pound: 0	TIC Result Total: 0				
CAS NO.	COMPOUND NAME	RT RESULT	Q			
	Tentatively Identified Compound	None				

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1			
SDG No.:				
Client Sample ID: SW-03S	Lab Sample ID: 480-7265-3			
Matrix: Water	Lab File ID: P3983.D			
Analysis Method: 8260B	Date Collected: 07/12/2011 18:00			
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:34			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 23814	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	117	1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-03S	Lab Sample ID: 480-7265-3		
Matrix: Water	Lab File ID: P3983.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 18:00		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:34		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		66-137
2037-26-5	Toluene-d8 (Surr)	83		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-03S	Lab Sample ID: 480-7265-3
Matrix: Water	Lab File ID: P3983.D
Analysis Method: 8260B	Date Collected: 07/12/2011 18:00
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:34
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23814	Units: ug/L
Number TICs Found: 0	TIC Result Total: 0
CAS NO.	OMPOUND NAME RT RESULT Q

Tentatively Identified Compound

None

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-02S	Lab Sample ID: 480-7265-4
Matrix: Water	Lab File ID: P3984.D
Analysis Method: 8260B	Date Collected: 07/12/2011 18:40
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:59
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23814	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	1)7	1.0	0.32
75-00-3	Chloroethane	ND	0.3	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-02S	Lab Sample ID: 480-7265-4		
Matrix: Water	Lab File ID: P3984.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 18:40		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 15:59		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	82		71-126
460-00-4	4-Bromofluorobenzene (Surr)	78		73-120

Lab Name: TestAmerica Buffalo		Job No.: 480-7265-1									
SDG No.:											
Client Sample I	D: SW-02S	Lab Sample ID: 480-7265-4									
Matrix: Water Analysis Method: 8260B Sample wt/vol: 5(mL) Soil Aliquot Vol: Soil Extract Vol.:		Lab File ID: P3984.D									
		Date Collected: 07/12/2011 18:40 Date Analyzed: 07/17/2011 15:59 Dilution Factor: 1 GC Column: ZB-624 (60) ID: 0.25 (mm)									
						% Moisture:		Level: (low/med) Low			
						Analysis Batch	No.: 23814	Units: ug/L			
						Number TICs Fou	nd: 0	TIC Result Total: 0			
CAS NO.	COMPOUND NAME	RT RESULT Q									
Tr.	entatively Identified Compound	None									

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SW-02D	Lab Sample ID: 480-7265-5		
Matrix: Water	Lab File ID: P3985.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 19:20		
Sample wt/vol: 5 (mL)	Date Analyzed: 07/17/2011 16:24		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UJ	1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-02D	Lab Sample ID: 480-7265-5
Matrix: Water	Lab File ID: P3985.D
Analysis Method: 8260B	Date Collected: 07/12/2011 19:20
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 16:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23814	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		66-137
2037-26-5	Toluene-d8 (Surr)	85		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1	
SDG No.:		
Client Sample ID: SW-02D	Lab Sample ID: 480-7265-5	
Matrix: Water	Lab File ID: P3985.D	
Analysis Method: 8260B	Date Collected: 07/12/2011 19:20	
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 16:24	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 23814	Units: ug/L	
Number TICs Found: 0	TIC Result Total: 0	
CAS NO.	MPOUND NAME RT RESULT C	2

Tentatively Identified Compound

None

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: FD-071211	Lab Sample ID: 480-7265-6		
Matrix: Water	Lab File ID: P3986.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 00:00		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 16:49		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		1.0	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	DIT	1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: FD-071211	Lab Sample ID: 480-7265-6		
Matrix: Water	Lab File ID: P3986.D		
Analysis Method: 8260B	Date Collected: 07/12/2011 00:00		
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 16:49		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23814	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND	1	1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.1
108-87-2	Methylcyclohexane	ND		1.0	0.1
75-09-2	Methylene Chloride	ND		1.0	0.4
100-42-5	Styrene	ND		1.0	0.7
127-18-4	Tetrachloroethene	ND		1.0	0.3
108-88-3	Toluene	ND		1.0	0.5
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.9
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.3
79-01-6	Trichloroethene	ND		1.0	0.4
75-69-4	Trichlorofluoromethane	ND		1.0	0.8
75-01-4	Vinyl chloride	ND		1.0	0.9
1330-20-7	Xylenes, Total	ND		2.0	0.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffalo		Job No.: 480-7265-1					
SDG No.:							
Client Sample	e ID: FD-071211	Lab Sample ID: 480-7	265-6				
Matrix: Wate	r	Lab File ID: P3986.D					
Analysis Meth	hod: 8260B	Date Collected: 07/12/2011 00:00 Date Analyzed: 07/17/2011 16:49					
Sample wt/vo	1: 5(mL)						
Soil Aliquot Vol: Soil Extract Vol.:		Dilution Factor: 1					
		GC Column: ZB-624 (60) ID: 0.25(mm					
% Moisture:		Level: (low/med) Low	ī.				
Analysis Bate	ch No.: 23814	Units: ug/L					
Number TICs 1	Found: 0	TIC Result Total: 0)			_	
CAS NO.	COMPOUND NAME	R	T RE	SULT	Q		
	Tentatively Identified Compound			None		=	

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1			
SDG No.:				
Client Sample ID: SW-04S	Lab Sample ID: 480-7265-7			
Matrix: Water	Lab File ID: P3987.D			
Analysis Method: 8260B	Date Collected: 07/13/2011 09:30			
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 17:14			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 23814	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	0.48	J	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-04S	Lab Sample ID: 480-7265-7
Matrix: Water	Lab File ID: P3987.D
Analysis Method: 8260B	Date Collected: 07/13/2011 09:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 17:14
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23814	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.5
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.1
108-87-2	Methylcyclohexane	ND		1.0	0.1
75-09-2	Methylene Chloride	ND		1.0	0.4
100-42-5	Styrene	ND		1.0	0.7
127-18-4	Tetrachloroethene	ND		1.0	0.3
108-88-3	Toluene	ND		1.0	0.5
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.9
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.3
79-01-6	Trichloroethene	ND		1.0	0.4
75-69-4	Trichlorofluoromethane	ND		1.0	0.8
75-01-4	Vinyl chloride	ND		1.0	0.9
1330-20-7	Xylenes, Total	ND		2.0	0.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	80		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1				
SDG No.:					
Client Sample ID: SW-04S	Lab Sample ID: 480-7265-7				
Matrix: Water	Lab File ID: P3987.D				
Analysis Method: 8260B	Date Collected: 07/13/2011 09:30				
Sample wt/vol: 5(mL)	Date Analyzed: 07/17/2011 17:14				
Soil Aliquot Vol:	Dilution Factor: 1 GC Column: ZB-624 (60) ID: 0.25(mm)				
Soil Extract Vol.:					
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 23814	Units: ug/L				
Number TICs Found: 0	TIC Result Total: 0				
CAS NO. COMPOUND NAME	RT RESULT Q				
Tentatively Identified Compound	None				

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-04D	Lab Sample ID: 480-7265-8
Matrix: Water	Lab File ID: P4006.D
Analysis Method: 8260B	Date Collected: 07/13/2011 10:40
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 16:13
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1,2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UT	1.0	0.26
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UJ	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UJ	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.83
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.68
100-41-4	Ethylbenzene	ND	V J	1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SW-04D	Lab Sample ID: 480-7265-8
Matrix: Water	Lab File ID: P4006.D
Analysis Method: 8260B	Date Collected: 07/13/2011 10:40
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 16:13
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND	0.5	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	80		73-120

Lab Name: TestAme	erica Buffalo	Job No.: 480-7265-1					
SDG No.:							
Client Sample ID:	SW-04D	Lab Sample ID: 480-7265-8					
Matrix: Water Analysis Method: 8260B Sample wt/vol: 5(mL) Soil Aliquot Vol:		Lab File ID: P4006.D					
		Date Collected: 07/13/2011 10:40 Date Analyzed: 07/18/2011 16:13					
							Dilution Factor: 1
		Soil Extract Vol.	:	GC Column: ZB-624 (60) ID: 0.25(mm) Level: (low/med) Low			
% Moisture:							
Analysis Batch No	.: 23902	Units: ug/L					
Number TICs Found	: 0	TIC Result Tot	al: 0				
CAS NO.	COMPOUND NAME		RT	RESULT	Q		
Tent	atively Identified Compound		-	None			

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SWTR-1E	Lab Sample ID: 480-7265-9
Matrix: Water	Lab File ID: P4007.D
Analysis Method: 8260B	Date Collected: 07/13/2011 10:55
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 16:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UJ	1.0	0.26
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.2
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UJ	1.0	0.32
75-00-3	Chloroethane	ND	U.T	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.3
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.8
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.3
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.7
98-82-8	Isopropylbenzene	ND		1.0	0.7

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SWTR-1E	Lab Sample ID: 480-7265-9
Matrix: Water	Lab File ID: P4007.D
Analysis Method: 8260B	Date Collected: 07/13/2011 10:55
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 16:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND	7.7	1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	85		66-137
2037-26-5	Toluene-d8 (Surr)	85		71-126
460-00-4	4-Bromofluorobenzene (Surr)	80		73-120

Lab Name: TestAmerica Buffa	alo Job No.: 48	0-7265-1				
SDG No.:						
Client Sample ID: SWTR-1E	Lab Sample I	D: 480-7265-9	j			
Matrix: Water	Lab File ID:	P4007.D				
Analysis Method: 8260B	Date Collect	ted: 07/13/201	10:55			
Sample wt/vol: 5(mL)	Date Analyze	Date Analyzed: 07/18/2011 16:38 Dilution Factor: 1				
Soil Aliquot Vol:	Dilution Fac					
Soil Extract Vol.:	GC Column:	ZB-624 (60)	ID: 0.25(mm)		
% Moisture:	Level: (low/	med) Low				
Analysis Batch No.: 23902	Units: ug/L					
Number TICs Found: 0	TIC Result	Total: 0				
CAS NO.	COMPOUND NAME	RT	RESULT	Q		
Tentatively Ide	entified Compound		None			

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1			
SDG No.:				
Client Sample ID: MW-16	Lab Sample ID: 480-7265-10			
Matrix: Water	Lab File ID: P4010.D			
Analysis Method: 8260B	Date Collected: 07/13/2011 11:55			
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 17:53			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 23902	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UT	1.0	0.26
74-83-9	Bromomethane	ND	UJ	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UJ	1.0	0.68
100-41-4	Ethylbenzene	ND	- U	1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1			
SDG No.:				
Client Sample ID: MW-16	Lab Sample ID: 480-7265-10			
Matrix: Water	Lab File ID: P4010.D			
Analysis Method: 8260B	Date Collected: 07/13/2011 11:55			
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 17:53			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 23902	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UJ	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	80		73-120

Lab Name: To	estAmerica Buffalo	Job No.: 480-7265-1										
SDG No.:												
Client Sampl	e ID: MW-16	Lab Sample ID:	480-7265-1	Ö								
Matrix: Wate	er	Lab File ID: P4	010.D									
Analysis Method: 8260B Sample wt/vol: 5(mL) Soil Aliquot Vol: Soil Extract Vol.:		Date Collected: 07/13/2011 11:55 Date Analyzed: 07/18/2011 17:53 Dilution Factor: 1 GC Column: ZB-624 (60) ID: 0.25 (mm)										
							% Moisture:		Level: (low/med)	Low		
							Analysis Bat	ch No.: 23902	Units: ug/L			
							Number TICs	Found: 0	TIC Result Tota	11: 0		
CAS NO.	COMPOUND NAME		RT	RESULT	Q							
	Tentatively Identified Compound			None								

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: MW-04	Lab Sample ID: 480-7265-11
Matrix: Water	Lab File ID: P4011.D
Analysis Method: 8260B	Date Collected: 07/13/2011 13:10
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 18:17
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	10		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.43
75-27-4	Bromodichloromethane	ND	سيسيسا	1.0	0.39
75-25-2	Bromoform	ND	UT	1.0	0.2
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.2
108-90-7	Chlorobenzene	ND		1.0	0.7
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	0.35	J	1.0	0.3
67-66-3	Chloroform	ND		1.0	0.3
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	2.4		1.0	0.8
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.3
110-82-7	Cyclohexane	ND		1.0	0.1
75-71-8	Dichlorodifluoromethane	ND	UJ	1.0	0.6
100-41-4	Ethylbenzene	ND		1.0	0.7
98-82-8	Isopropylbenzene	ND		1.0	0.7

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: MW-04	Lab Sample ID: 480-7265-11
Matrix: Water	Lab File ID: P4011.D
Analysis Method: 8260B	Date Collected: 07/13/2011 13:10
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 18:17
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UI	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	84		66-137
2037-26-5	Toluene-d8 (Surr)	83		71-126
460-00-4	4-Bromofluorobenzene (Surr)	78		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1	
SDG No.:		
Client Sample ID: MW-04	Lab Sample ID: 480-7265-11	
Matrix: Water	Lab File ID: P4011.D	
Analysis Method: 8260B	Date Collected: 07/13/2011 13:10	
Sample wt/vol: 5 (mL) Date Analyzed: 07/18/2011 18:17		
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 23902	Units: ug/L	
Number TICs Found: 3	TIC Result Total: 14.8	

CAS NO.	COMPOUND NAME	RT	RESULT	Q
	Tentatively Identified Compound		None	
75-45-6	Chlorodifluoromethane	2.84	8.2	JN
75-43-4	Dichlorofluoromethane	4.03	0.90	JN
60-29-7	Ethyl ether	4.36	5.7	TAL

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: MW-03	Lab Sample ID: 480-7265-12
Matrix: Water	Lab File ID: P4012.D
Analysis Method: 8260B	Date Collected: 07/13/2011 14:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 18:43
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	2.2		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UJ	1.0	0.26
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.27
108-90-7	Chlorobenzene	ND	- "	1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	8.0		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.68
100-41-4	Ethylbenzene	ND	- 1	1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: MW-03	Lab Sample ID: 480-7265-12
Matrix: Water	Lab File ID: P4012.D
Analysis Method: 8260B	Date Collected: 07/13/2011 14:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 18:43
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

79-20-9 Methyl acetate ND 1634-04-4 Methyl tert-butyl ether ND 108-87-2 Methylcyclohexane ND 75-09-2 Methylene Chloride ND 100-42-5 Styrene ND 127-18-4 Tetrachloroethene ND		
108-87-2 Methylcyclohexane ND 75-09-2 Methylene Chloride ND 100-42-5 Styrene ND	1.0	0.50
75-09-2 Methylene Chloride ND 100-42-5 Styrene ND	1.0	0.16
100-42-5 Styrene ND	1.0	0.16
	1.0	0.44
127-18-4 Tetrachloroethene ND	1.0	0.73
	1.0	0.36
108-88-3 Toluene ND	1.0	0.51
156-60-5 trans-1,2-Dichloroethene ND	1.0	0.90
10061-02-6 trans-1,3-Dichloropropene ND	1.0	0.37
79-01-6 Trichloroethene ND	1.0	0.46
75-69-4 Trichlorofluoromethane ND ()	1.0	0.88
75-01-4 Vinyl chloride ND	1.0	0.90
1330-20-7 Xylenes, Total ND	2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	85		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffa	alo Job No.: 48	Job No.: 480-7265-1			
SDG No.:					
Client Sample ID: MW-03	Lab Sample	ID: 480-7265-1	.2		
Matrix: Water	Lab File ID	P4012.D			
Analysis Method: 8260B	Date Collec	ted: 07/13/201	1 14:30		
Sample wt/vol: 5(mL)	Date Analyz	ed: 07/18/2011	18:43		
Soil Aliquot Vol:	Dilution Fa	Dilution Factor: 1 GC Column: ZB-624 (60) ID: 0.25(mm)			
Soil Extract Vol.:	GC Column:				
% Moisture:	Level: (low	/med) Low			
Analysis Batch No.: 23902	Units: ug/	В			
Number TICs Found: 0	TIC Result	Total: 0			
CAS NO.	COMPOUND NAME	RT	RESULT	Q	
Tentatively Ide	antified Compound		None	<u> </u>	

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: NDP-WS	Lab Sample ID: 480-7265-13
Matrix: Water	Lab File ID: P4013.D
Analysis Method: 8260B	Date Collected: 07/13/2011 15:00
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:08
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 23902	Units: na/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UT	1.0	0.26
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.83
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.3
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.6
100-41-4	Ethylbenzene	ND	<u> </u>	1.0	0.7
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: NDP-WS	Lab Sample ID: 480-7265-13		
Matrix: Water	Lab File ID: P4013.D		
Analysis Method: 8260B	Date Collected: 07/13/2011 15:00		
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:08		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23902	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: TestAmerica Buffalo	estAmerica Buffalo Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: NDP-WS	Lab Sample ID: 480-7265-13		
Matrix: Water	Lab File ID: P4013.D		
Analysis Method: 8260B	Date Collected: 07/13/2011 15:00		
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:08		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23902	Units: ug/L		
Number TICs Found: 0	TIC Result Total: 0		
CAS NO. COMPOUND NAME	RT RESULT Q		
Tentatively Identified Compound	None		

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SWRT-1T	Lab Sample ID: 480-7265-14
Matrix: Water	Lab File ID: P4014.D
Analysis Method: 8260B	Date Collected: 07/13/2011 15:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:33
Soil Aliquot Vol:	Dilution Factor: 4
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		4.0	3.3
79-34-5	1,1,2,2-Tetrachloroethane	ND		4.0	0.84
79-00-5	1,1,2-Trichloroethane	ND		4.0	0.92
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		4.0	1.2
75-34-3	1,1-Dichloroethane	ND		4.0	1.5
75-35-4	1,1-Dichloroethene	ND		4.0	1.2
120-82-1	1,2,4-Trichlorobenzene	ND		4.0	1.6
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	4.0	1.6
106-93-4	1,2-Dibromoethane	ND		4.0	2.9
95-50-1	1,2-Dichlorobenzene	ND		4.0	3.2
107-06-2	1,2-Dichloroethane	ND		4.0	0.84
78-87-5	1,2-Dichloropropane	ND		4.0	2.9
541-73-1	1,3-Dichlorobenzene	ND		4.0	3.1
106-46-7	1,4-Dichlorobenzene	ND		4.0	3.4
591-78-6	2-Hexanone	ND		20	5.0
78-93-3	2-Butanone (MEK)	ND		40	5.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	8.4
67-64-1	Acetone	20	J	40	12
71-43-2	Benzene	1.8	J	4.0	1.6
75-27-4	Bromodichloromethane	ND		4.0	1.6
75-25-2	Bromoform	ND	UT	4.0	1.0
74-83-9	Bromomethane	ND	UT	4.0	2.8
75-15-0	Carbon disulfide	ND		4.0	0.76
56-23-5	Carbon tetrachloride	ND	UT	4.0	1.1
108-90-7	Chlorobenzene	3.3	J	4.0	3.0
124-48-1	Dibromochloromethane	ND	UT	4.0	1.3
75-00-3	Chloroethane	ND	UT	4.0	1.3
67-66-3	Chloroform	ND	~ ~	4.0	1.4
74-87-3	Chloromethane	ND		4.0	1.4
156-59-2	cis-1,2-Dichloroethene	ND		4.0	3.2
10061-01-5	cis-1,3-Dichloropropene	ND		4.0	1.4
110-82-7	Cyclohexane	ND		4.0	0.72
75-71-8	Dichlorodifluoromethane	ND	UT	4.0	2.
100-41-4	Ethylbenzene	ND		4.0	3.0
98-82-8	Isopropylbenzene	ND		4.0	3.2

Lab Name: TestAmerica Buffalo Job No.: 480-7265-1

SDG No.:

Client Sample ID: SWRT-1T Lab Sample ID: 480-7265-14

Matrix: Water Lab File ID: P4014.D

Analysis Method: 8260B Date Collected: 07/13/2011 15:30

Sample wt/vol: 5(mL) Date Analyzed: 07/18/2011 19:33

Soil Aliquot Vol: Dilution Factor: 4

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 23902 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		4.0	2.0
1634-04-4	Methyl tert-butyl ether	ND		4.0	0.64
108-87-2	Methylcyclohexane	ND		4.0	0.64
75-09-2	Methylene Chloride	ND		4.0	1.8
100-42-5	Styrene	ND		4.0	2.9
127-18-4	Tetrachloroethene	ND		4.0	1.4
108-88-3	Toluene	ND		4.0	2.0
156-60-5	trans-1,2-Dichloroethene	ND		4.0	3.6
10061-02-6	trans-1,3-Dichloropropene	ND		4.0	1.5
79-01-6	Trichloroethene	ND		4.0	1.8
75-69-4	Trichlorofluoromethane	ND	UT	4.0	3.5
75-01-4	Vinyl chloride	ND		4.0	3.6
1330-20-7	Xylenes, Total	ND		8.0	2.6

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	78		73-120

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1		
SDG No.:			
Client Sample ID: SWRT-1T	Lab Sample ID: 480-7265-14		
Matrix: Water	Lab File ID: P4014.D		
Analysis Method: 8260B	Date Collected: 07/13/2011 15:30		
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:33		
Soil Aliquot Vol:	Dilution Factor: 4		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 23902	Units: ug/L		
Number TICs Found: 3	TIC Result Total: 52.3		

CAS NO.	COMPOUND NAME	RT	RESULT	Q
	Tentatively Identified Compound		None	
75-45-6	Chlorodifluoromethane	2.84	6.3	TN
60-29-7	Ethyl ether	4.36	10	TN
109-99-9	Tetrahydrofuran	7.01	36	TN

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SDP-WS	Lab Sample ID: 480-7265-15
Matrix: Water	Lab File ID: P4015.D
Analysis Method: 8260B	Date Collected: 07/13/2011 15:45
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UJ	1.0	0.26
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND	3	1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.68
100-41-4	Ethylbenzene	ND	0.0	1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: SDP-WS	Lab Sample ID: 480-7265-15
Matrix: Water	Lab File ID: P4015.D
Analysis Method: 8260B	Date Collected: 07/13/2011 15:45
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 19:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Lab Name: Te	stAmerica Buffalo	Job No.: 480-72	65-1		
SDG No.:					
Client Sample	e ID: SDP-WS	Lab Sample ID:	480-7265-1	15	
Matrix: Wate	r	Lab File ID: P	1015.D		
Analysis Meth	nod: 8260B	Date Collected:	07/13/201	11 15:45	
Sample wt/vol	L: 5 (mL)	Date Analyzed:	07/18/2011	19:58	
Soil Aliquot	Vol:	Dilution Factor	1		
Soil Extract	Vol.:	GC Column: ZB-6	524 (60)	ID: 0.25(m	ım)
% Moisture:		Level: (low/med) Low		
Analysis Bato	ch No.: 23902	Units: ug/L			
Number TICs F	Pound: 0	TIC Result Tot	al: 0		
CAS NO.	COMPOUND NAME		RT	RESULT	Q
	Tentatively Identified Compound		1	None	

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	·
Client Sample ID: FD-071311	Lab Sample ID: 480-7265-16
Matrix: Water	Lab File ID: P4016.D
Analysis Method: 8260B	Date Collected: 07/13/2011 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 20:23
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UT	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.43
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	TU	1.0	0.2
74-83-9	Bromomethane	ND	UT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UJ.	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.7
124-48-1	Dibromochloromethane	ND	UT	1.0	0.3
75-00-3	Chloroethane	ND	UT	1.0	0.3
67-66-3	Chloroform	ND		1.0	0.3
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.8
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.3
110-82-7	Cyclohexane	ND		1.0	0.1
75-71-8	Dichlorodifluoromethane	ND	UT	1.0	0.6
100-41-4	Ethylbenzene	ND		1.0	0.7
98-82-8	Isopropylbenzene	ND		1.0	0.7

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1
SDG No.:	
Client Sample ID: FD-071311	Lab Sample ID: 480-7265-16
Matrix: Water	Lab File ID: P4016.D
Analysis Method: 8260B	Date Collected: 07/13/2011 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 07/18/2011 20:23
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 23902	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	77		73-120

Lab Name: TestAmerica	Buffalo	Job No.: 480-7	265-1		
SDG No.:					
Client Sample ID: FD-	071311	Lab Sample ID:	480-7265-1	6	
Matrix: Water		Lab File ID: I	P4016.D		
Analysis Method: 8260	В	Date Collected:	: 07/13/201	1 00:00	
Sample wt/vol: 5(mL)		Date Analyzed:	07/18/2011	20:23	ž.
Soil Aliquot Vol:		Dilution Factor	c: 1		
Soil Extract Vol.:		GC Column: ZB-	-624 (60)	ID: 0.25(m	nm)
% Moisture:		Level: (low/med	d) Low		
Analysis Batch No.: 2	23902	Units: ug/L			
Number TICs Found: 0		TIC Result To	tal: 0		
CAS NO.	COMPOUND NAME		RT	RESULT	Q
	ly Identified Compound			None	-

Lab Name: TestAmerica Buffalo	Job No.: 480-7265-1					
SDG No.:						
Client Sample ID: TRIP BLANK	Lab Sample ID: 480-7265-17					
Matrix: Water	Lab File ID: P4017.D					
Analysis Method: 8260B	Date Collected: 07/13/2011 00:00					
Sample wt/vol: 5(mL)						
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 23902	Units: ug/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND	UJ	1.0	0.39
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
591-78-6	2-Hexanone	ND		5.0	1.2
78-93-3	2-Butanone (MEK)	ND		10	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-25-2	Bromoform	ND	UT	1.0	0.26
74-83-9	Bromomethane	ND	VT	1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND	UT	1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND	UT	1.0	0.32
75-00-3	Chloroethane	ND	UT	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
110-82-7	Cyclohexane	ND		1.0	0.18
75-71-8	Dichlorodifluoromethane	ND	1)5	1.0	0.68
100-41-4	Ethylbenzene	ND	-	1.0	0.74
98-82-8	Isopropylbenzene	ND		1.0	0.79

Lab Name: TestAmerica Buffalo Job No.: 480-7265-1 SDG No.: Client Sample ID: TRIP BLANK Lab Sample ID: 480-7265-17 Matrix: Water Lab File ID: P4017.D Analysis Method: 8260B Date Collected: 07/13/2011 00:00 Date Analyzed: 07/18/2011 20:47 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm) % Moisture: Level: (low/med) Low

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-20-9	Methyl acetate	ND		1.0	0.50
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
100-42-5	Styrene	ND		1.0	0.73
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	UT	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		66-137
2037-26-5	Toluene-d8 (Surr)	84		71-126
460-00-4	4-Bromofluorobenzene (Surr)	79		73-120

Analysis Batch No.: 23902

Lab Name: TestAm	erica Buffalo	Job No.: 480-7	265-1		
SDG No.:					
Client Sample ID:	TRIP BLANK	Lab Sample ID:	480-7265-1	17	
Matrix: Water		Lab File ID: P	4017.D		
Analysis Method:	8260B	Date Collected:	07/13/201	11 00:00	
Sample wt/vol:	5 (mL)	Date Analyzed:	07/18/2011	20:47	
Soil Aliquot Vol		Dilution Factor	1		
Soil Extract Vol.		GC Column: ZB-	624 (60)	ID: 0.25(mm)
% Moisture:		Level: (low/med	l) Low		
Analysis Batch No	o.: 23902	Units: ug/L			
Number TICs Found	1: 0	TIC Result Tot	:al: 0		
					1
CAS NO.	COMPOUND NAME		RT	RESULT	Q
Ton	tativaly Identified Compound		7	Mono	1

ATTACHMENT B SUPPORT DOCUMENTATION

								7.7E	TESTS				١,	Γ
CHAIN		OF C	JS	CUSTODY	<u>C</u>	ECORD		4		The state of the s				
PROJECT NO	57	20000		SITE NAME	Ma, LANDEI	, T.		1 VOC			LAB TEST AMERICA	100	3	ii)
SAMPLERS (PRINT/SIGNATURE)	(PRINT/SIGNA	TURE)	}		7			24	100	17-11-20	COOLER	- of -		1
N. 3	S. neagh	7	2350					BOTTLE	TYPE	AND PRESERVATIVE	PAGE\	5		
DELIVERY SERVICE:	SERVICE:			AIRBILL NO.:			NO.# OF	7 min			REMARKS	TYPE	(TBBH NI	IN FEET)
LOCATION	DATE	TIME	COMP/ GRAB	SAN	SAMPLEID	MATRIX	TOTAL CONTA	> H 1 ~ O h				SAMPLE	ENDING	
Sw.o.s	7-12-11	16.30	S	12,53	-015	3	3	m				13 .		
S0-01D	7-12-11	1730	Ç	5.4.5	O i o	ស់ថា	3	(?)				ż	+	1
50.035	1-2-1	1800	S	3.0-0	-033	3	3	M				1		
\$73-0°S Pag	1-154	1848	Ŀ	ئ - ښ ڏ	\$23	ابئث	3	2				ž	+	1
25-22	1221-1	1920	Ś	تہ سچ	42 Cr	اکال	3	ίV				15-	+	1
D. Scient	リーマーと	1	ડ	1-2113-0-1	1121	100	3	3				Q.	+	1
35. JOHS	12-52-6	O£130	ড	Sw-045	5	ω Ω	3	7				ŧ	_}	-{
540-045	17-21-6	0630	S	Sw -045-	5- 75	23	Ю	W				3	+	- (
Sm-04S	11-61-6	1240	S	Sw-045	S-msis	2 L	'n	r				ś	1	1
Su-a4D	7-13-11	0,491	'n	Sw-o4D	9	ሌት	3	^				इ	+	1
31-1FU.S	7-13-11	550	v	SwTR-1E	1E	84 د	W	W				2	1	1
Sura IE	1-15-1	5.501	9	Swirt SR-	1A-MS	2	n	8				7254	1	
SwiR-112	7-13-11	1055	ۍ:	SUTR-IR-M	1R-MSD	Z	3					24	1	1
MATRIX	AA - AMBIE SE - SEDIN SH - HAZA	AA - AMBIENT AIR SE - SEDIMENT SH - HAZARDOUS SOLID WASTE	ASTE	SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER		WG - GROUND WATER SO - SOIL DC - DRILL CUTTINGS	WATER	MC-I	WL - LEACHATE GS - SOIL GAS WC - DRILLING WATER	WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD QC	LH - HAZARDOUS LIQUID WASTE LF - FLOATING/FREE PRODUCT ON GW TABLE	PRODUC	TON GW T	ABLE
SAMPLE TYPE CODES		TB# - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE	CATE	RB# - RINSE BLANK FR# - FIELD REPLICATE		# - NORMAL S# - MATRIX	ENVIRONIA : SPIKE	N# · NORMAL ENVIRONMENTAL SAMPLE MS# · MATRIX SPIKE		NUMBER (FROM 1 TO 9) TO	(# - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMINODATE MULTIPLE SAMPLES IN A SINGLE DAY)	SAMPLES	IN A SING	LE DAY)
RELATIONSHED	JED BY (SIC	BY (SIGNATURE)	DATE	E TIME	RECEIVED BY (SIGNATURE)	BY (sign)	ATURE)		DATE TIME	SPECIAL INSTRUCTIONS	GRORE KY	3		
RELINQUISHED BY (SIGNATURE)	HED BY (SIG	INATURE)	DATE	E TIME	RECEIVED FOR LAB BY (SIGNATURE)	OR LAB	BY (SIG	NATURE)	DATE TIME	3	4 asstron	7		
Distribution: Original accompanies shipment, copy to coordinato	Original acc	ompanies si	hipment,	copy to coc	ordinator field files	files		,		716	716-923-1321	72		
URSF-075C/1 OF 1/CdCR/GCM	of CR/GCM						,			2	رے			

CHA	N	FC	UST	CHAIN OF CUSTODY R	ECORD	2 Q		TESTS	8		URS	V	Í	
PROJECT NO	OJECT NO.	200		SITE NAME Zosa Valla	, anstruct		57L 1780 T			LAB_TEST	ST AMI	AMPRICA	4	
SAMPLERS (PRINT/SIGNATURE)	(PRINT/SIGNA	TURE)		1			2000			20	4	jo 7		Ì
S. MC.	JASP 1	0	US al			-	96	BOILLE LYPE AND	PRESERVATIVE	PAGE				
DELIVERY SERVICE:	FRVICE:			AIRBILL NO.:	į	I NO:# OF	pmn 7			REMARKS	***	NING NING		(IN FEET) OT NO.# S ONLY)
LOCATION	DATE	TIME	COMP/ GRAB	SAMPLEID	MATRIX	ATOT	241 140h			30	IdMA2	BECIN	ENDIN	HELD I
MW-16	7-13-1	1155	9	mw-16	36	3	2				ż	-		-1
	1-13-1	1310	5	ma-04	3		W				3	<u>-</u>		-
	11-51-6	1430	7	mw-63	λ W	4	^	*			\$	7	1	\downarrow
ADV	7-13-11	0051	ঙ	SW-90W	کس ا	5 3	3				<u>ام</u>	۲ -		+
	11-21-6	1530	S	SwTR-1T	200	5	M				ابر	1/	\perp	1
^	7-13-11	745	15	SDP-WS	δω		3				3	- 1		-
-	7-13-11	ļ	J	FD-071311	1	h	r				17.2	- 7:		
320										4				
						-							+	
MATRIX	AA - AMBIEI SE - SEDIMI SH - HAZAR	AA - AMBIENT AIR SE - SEDIMENT SH SH - HAZARDOUS SOJD WASTE	ASTE	SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER	WG - GROI SO - SOIL DC - DRILL	WG - GROUND WATER SO - SOIL DC - DRILL CUTTINGS	WC, SS.	WL - LEACHATE GS - SOIL GAS WC - DRILLING WATER	WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD GC		LH - HAZARDOUS LIQUID WASTE LF - FLOATING/FREE PRODUCT ON GW TABLE	WASTE DUCT ON	- GW TA	ABLE
SAMPLE TYPE CODES		TB# - TRIP BLANK SD# - MATHIX SPIKE DUPLICATE	ICATE	RB# - RINSE BLANK FR# - FIELD REPLICATE	N# - NORN MS# - MAT	IAL ENVIRON	N# - NORIMAL ENVIRONMENTAL SAMPLE MS# - MATRIX SPIKE		AL NUMBER (FROM 1 TC	($oldsymbol{\epsilon}$ - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	AULTIPLE SAMF	IPLES IN ,	A SINGL	LE DAY)
REMINOR	SHED BY (SIG	BY (SIGNATURE)	DATE 7/1/1	E TIME RECEIVE	IVED BY (SIGNATURE)	SNATURE)		DATE TIME		SPECIAL INSTRUCTIONS KILLY	Kich	42		
RELINQUISHED BY (SIGNATURE)	IED BY (sig	INATURE)	DATE	E TIME RECEIV	ED FOR	LAB BY (S)	BY (SIGNATURE)	DATE TIME 7-14 1245			2000			
	Original accu	ompanies s.	hipment,	Distribution: Original accompanies shipment, copy to coordinator	field files					226 946	3-132	128		
URSF-075C/1 OF 1/CofCR/GCM	#CR/GCM											١	1	

Page

7/2

Job Narrative 480-7265-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method 8260B: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: SWRT-1T (480-7265-14). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-7265-1

SDG No.:

Lab Sample ID: CCVIS 480-23814/2 Calibration Date: 07/17/2011 13:01

Instrument ID: HP5973P Calib Start Date: 07/13/2011 19:24

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 07/13/2011 21:28

Lab File ID: P3978.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Toluene	Ave	2.000	1.788		22.3	25.0	-10.6	20.0
trans-1,3-Dichloropropene	Ave	1.144	1.107		24.2	25.0	-3.2	50.0
Ethyl methacrylate	Ave	1.146	1.122		24.5	25.0	-2.1	50.0
1,1,2-Trichloroethane	Ave	0.6933	0.6421		23.2	25.0	-7.4	50.0
Tetrachloroethene	Ave	0.8799	0.7757		22.0	25.0	-11.8	50.0
1,3-Dichloropropane	Ave	1.369	1.278		23.3	25.0	-6.6	50.0
2-Hexanone	Ave	0.8736	0.8740		125	125	0.0	50.0
Dibromochloromethane	LinF		0.6507		18.4	25.0	-26.4	50.0
1,2-Dibromoethane	Ave	0.8544	0.8030		23.5	25.0	-6.0	50.0
Chlorobenzene	Ave	2.246	2.017	0.3000	22.5	25.0	-10.2	50.0
Ethylbenzene	Ave	3.686	3.401		23.1	25.0	-7.7	20.0
1,1,1,2-Tetrachloroethane	LinlF		0.6478		19.8	25.0	-20.8	50.0
m,p-Xylene	Ave	1.406	1.289		45.8	50.0	-8.3	50.0
o-Xylene	Ave	1.393	1.257		22.6	25.0	-9.8	50.0
Styrene	Ave	2.332	2,217		23.8	25.0	-4.9	50.0
Bromoform	QuaF		0.4230	0.1000	20.2	25.0	-19.2	50.0
Isopropylbenzene	Ave	3.242	3.033		23.4	25.0	-6.5	50.0
1,1,2,2-Tetrachloroethane	Ave	1.146	1.109	0.3000	24.2	25.0	-3.2	50.0
Bromobenzene	Ave	0.9879	0,9113		23.1	25.0	-7.8	50.0
trans-1,4-Dichloro-2-butene	Ave	0.2941	0.3202		136	125	8.9	50.0
1,2,3-Trichloropropane	Ave	0.3253	0.3057		23.5	25.0	-6.0	50.0
N-Propylbenzene	Ave	4.379	4.218		24.1	25.0	-3.7	50.0
2-Chlorotoluene	Ave	0.8485	0.7821		23.0	25.0	-7.8	50.0
1,3,5-Trimethylbenzene	Ave	2.746	2.557		23.3	25.0	-6.9	50.0
4-Chlorotoluene	Ave	0.8947	0.8184		22.9	25.0	-8.5	50.0
tert-Butylbenzene	Ave	0.5499	0.4872		22.2	25.0	-11.4	50.0
1,2,4-Trimethylbenzene	Ave	2.766	2.641		23.9	25.0	-4.5	50.0
sec-Butylbenzene	Ave	3.407	3.196		23.4	25.0	-6.2	50.0
4-Isopropyltoluene	Ave	2.770	2.603		23.5	25.0	-6.0	50.0
1,3-Dichlorobenzene	Ave	1.760	1.605		22.8	25.0	-8.8	50.0
1,4-Dichlorobenzene	Ave	1.831	1.696		23.2	25.0	-7.4	50.0
n-Butylbenzene	Ave	2.796	2.718		24.3	25.0	-2.8	50.0
1,2-Dichlorobenzene	Ave	1.737	1.597		23.0	25.0	-8.1	50.0
1,2-Dibromo-3-Chloropropane	LinlF		0.2040		22.0	25.0	-12.0	50.0
1,2,4-Trichlorobenzene	Ave	1.185	1.127		23.8	25.0	-5.0	50.0
Hexachlorobutadiene	Ave	0.2388	0.2241		23.5	25.0	-6.1	50.0
Naphthalene	Ave	1.589	1.697		26.7	25.0	6.9	50.0
1,2,3-Trichlorobenzene	Ave	0.5670	0.5734		25.3	25.0	1.1	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2641	0.2200		20.8	25.0	-16.7	50.0
Toluene-d8 (Surr)	Ave	2.602	2.198		21.1	25.0	-15.5	50.0
4-Bromofluorobenzene (Surr)	Ave	0.9146	0.7872		21.5	25.0	-13.9	50.0

GC/MS VOA ANALYSIS RUN LOG

Lab Name: T	estAmerica B	uffalo	Job No.:	480-7265-1
SDG No.:				
Instrument I	D: HP5973P		Start Dat	e: 07/17/2011 12:36
Analysis Bat	ch Number:	23814	End Date:	07/17/2011 18:04

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
3FB 480-23814/1		07/17/2011 12:36	1	P3977.D	ZB-624 (60) 0.25 (mm)
CCVIS 480-23814/2		07/17/2011 13:01	1	P3978.D	ZB-624 (60) 0.25(mm)
LCS 480-23814/3		07/17/2011 13:39	1	P3979.D	ZB-624 (60) 0.25 (mm)
4B 480-23814/4		07/17/2011 14:04	1	P3980.D	ZB-624 (60) 0.25(mm)
180-7265-1	SW-01S	07/17/2011 14:44	1	P3981.D	ZB-624 (60) 0.25(mm)
180-7265-2	SW-01D	07/17/2011 15:09	1	P3982.D	ZB-624 (60) 0.25 (mm)
180-7265-3	SW-03S	07/17/2011 15:34	1	P3983.D	ZB-624 (60) 0.25 (mm)
180-7265-4	SW-02S	07/17/2011 15:59	1	P3984.D	ZB-624 (60) 0.25(mm)
180-7265-5	SW-02D	07/17/2011 16:24	1	P3985.D	ZB-624 (60) 0.25(mm)
180-7265-6	FD-071211	07/17/2011 16:49	1	P3986.D	ZB-624 (60) 0.25(mm)
180-7265-7	SW-04S	07/17/2011 17:14	1	P3987.D	ZB-624 (60) 0.25(mm)
180-7265-7 MS	SW-04S MS	07/17/2011 17:39	1	P3988.D	ZB-624 (60) 0.25(mm)
180-7265-7 MSD	SW-04S MSD	07/17/2011 18:04	1	P3989.D	ZB-624 (60) 0.25 (mm)

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-7265-1

SDG No.:

Lab Sample ID: CCVIS 480-23902/2 Calibration Date: 07/18/2011 14:40

Instrument ID: HP5973P Calib Start Date: 07/13/2011 19:24

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 07/13/2011 21:28

Lab File ID: P4003.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.5050	0.3936		19.5	25.0	(-22.1)	50.0
Chloromethane	Ave	0.5132	0.4332	0.1000	21.1	25.0	-15.6	50.0
Vinyl chloride	Ave	0.4642	0.3848		20.7	25.0	-17.1	20.0
Bromomethane	Ave	0.2051	0.1471		17.9	25.0	(-28.3)	50.0
Chloroethane	Ave	0.2066	0.1547		18.7	25.0	-25.1	50.0
Trichlorofluoromethane	Ave	0.6963	0.4933		17.7	25.0	-29.2	50.0
Acrolein	Ave	0.0297	0.0246		413	500	-17.4	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3703	0.3695		25.0	25.0	-0.2	50.0
1,1-Dichloroethene	Ave	0.4160	0.3680	0.1000	22.1	25.0	-11.6	20.0
Acetone	Ave	0.2005	0.1851		115	125	-7.7	50.0
Iodomethane	Ave	0.5337	0.4989		23.4	25.0	-6.5	50.0
Carbon disulfide	Ave	1.050	1.037		24.7	25.0	~1.2	50.0
Methyl acetate	Ave	0.7803	0.6750		21.6	25.0	-13.5	50.0
Acetonitrile	Ave	0.0463	0.0427		923	1000	-7.7	50.0
Methylene Chloride	Ave	0.4802	0.4286		22.3	25.0	-10.7	50.0
Methyl tert-butyl ether	Ave	1.287	1.165		22.6	25.0	-9.5	50.0
trans-1,2-Dichloroethene	Ave	0.4266	0.3951		23.2	25.0	-7.4	50.0
Acrylonitrile	Ave	0.2106	0.1913		114	125	-9.1	50.0
Vinyl acetate	Ave	0.8116	0.7443		115	125	-8.3	50.0
1,1-Dichloroethane	Ave	0.8154	0.7432		22.8	25.0	-8.9	50.0
2-Butanone (MEK)	Ave	0.3048	0.2770		114	125	-9.1	50.0
2,2-Dichloropropane	Ave	0.5184	0.4539		21.9	25.0	-12.4	50.0
cis-1,2-Dichloroethene	Ave	0.4651	0.4294		23.1	25.0	-7.7	50.0
Bromochloromethane	Ave	0.2219	0.2034		22.9	25.0	-8.4	50.0
Tetrahydrofuran	Ave	0.1949	0.1735		111	125	-11.0	50.0
Chloroform	Ave	0.7759	0.6909		22.3	25.0	-11.0	20.0
1,1,1-Trichloroethane	Ave	0.5780	0.4779		20.7	25.0	-17.3	50.0
Cyclohexane	Ave	0.6389	0.5816		22.8	25.0	-9.0	50.0
1,1-Dichloropropene	Ave	0.5725	0.4912		21.4	25.0	-14.2	50.0
Carbon tetrachloride	Ave	0.4879	0.3513		18.0	25.0	-28:0	50.0
Benzene	Ave	1.619	1.452		22.4	25.0	-10.3	50.0
1,2-Dichloroethane	Ave	0.6622	0.5877		22.2	25.0	-11.3	50.0
Trichloroethene	Ave	0.4247	0.3760		22.1	25.0	-11.5	50.0
Methylcyclohexane	Ave	0.5730	0.5384		23.5	25.0	-6.0	50.0
1,2-Dichloropropane	Ave	0.4379	0.3970		22.7	25.0	-9.3	20.0
Dibromomethane	Ave	0.3020	0.2736		22.6	25.0	-9.4	50.0
Bromodichloromethane	Ave	0.4809	0.4530		23.6	25.0	-5.8	50.0
2-Chloroethyl vinyl ether	Ave	0.3150	0.2988		119	125	-5.2	50.0
cis-1,3-Dichloropropene	Ave	0.5998	0.5624		23.4	25.0	-6.2	50.0
4-Methyl-2-pentanone (MIBK)	Ave	1.179	1.069		113	125	-9.3	50.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-7265-1

SDG No.:

Lab Sample ID: CCVIS 480-23902/2 Calibration Date: 07/18/2011 14:40

Instrument ID: HP5973P Calib Start Date: 07/13/2011 19:24

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 07/13/2011 21:28

Lab File ID: P4003.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Toluene	Ave	2.000	1.705		21.3	25.0	-14.8	20.0
trans-1,3-Dichloropropene	Ave	1.144	1.032		22.6	25.0	-9.7	50.0
Ethyl methacrylate	Ave	1.146	1.023		22.3	25.0	-10.8	50.0
1,1,2-Trichloroethane	Ave	0.6933	0.6065		21.9	25.0	-12.5	50.0
Tetrachloroethene	Ave	0.8799	0.7206		20.5	25.0	-18.1	50.0
1,3-Dichloropropane	Ave	1.369	1.204		22.0	25.0	-12.1	50.0
2-Hexanone	Ave	0.8736	0.8062		115	125	-7.7	50.0
Dibromochloromethane	LinF	0.0750	0.5876		16.6	25.0	-33.6	50.0
1,2-Dibromoethane	Ave	0.8544	0.7451		21.8	25.0	-12.8	50.0
Chlorobenzene	Ave	2.246	1.933	0.3000	21.5	25.0	-14.0	
Ethylbenzene			3.235	0.3000				50.0
	Ave	3.686			21.9	25.0	-12.2	20.0
1,1,1,2-Tetrachloroethane	Lin1F		0.5878		17.9	25.0	-28.4	
m,p-Xylene	Ave	1.406	1.218		43.3	50.0	-13.3	50.0
o-Xylene	Ave	1.393	1.205		21.6	25.0	-13.5	50.0
Styrene	Ave	2.332	2.087	8 14 4 4 4	22.4	25.0	-10.5	50.0
Bromoform	QuaF		0.3758	0.1000	18.1	25.0	-27.6	
Isopropylbenzene	Ave	3.242	2.876		22.2	25.0	-11.3	50.0
1,1,2,2-Tetrachloroethane	Ave	1.146	1.044	0.3000	22.8	25.0	-8.9	50.0
Bromobenzene	Ave	0.9879	0.8715		22.1	25.0	-11.8	50.0
trans-1,4-Dichloro-2-butene	Ave	0.2941	0.2908		124	125	-1.1	50.0
1,2,3-Trichloropropane	Ave	0.3253	0.2818		21.7	25.0	-13.4	50.0
N-Propylbenzene	Ave	4.379	3.958		22.6	25.0	-9.6	50.0
2-Chlorotoluene	Ave	0.8485	0.7410		21.8	25.0	-12.7	50.0
1,3,5-Trimethylbenzene	Ave	2.746	2.418		22.0	25.0	-11.9	50.0
4-Chlorotoluene	Ave	0.8947	0.7638		21.3	25.0	-14.6	50.0
tert-Butylbenzene	Ave	0.5499	0.4596		20.9	25.0	-16.4	50.0
1,2,4-Trimethylbenzene	Ave	2.766	2.511		22.7	25.0	-9.2	50.0
sec-Butylbenzene	Ave	3.407	3.010		22.1	25.0	-11.7	50.0
4-Isopropyltoluene	Ave	2.770	2.425		21.9	25.0	-12.5	50.0
1,3-Dichlorobenzene	Ave	1.760	1.552		22.0	25.0	-11.8	50.0
1,4-Dichlorobenzene	Ave	1.831	1.593		21.8	25.0	-13.0	50.0
n-Butylbenzene	Ave	2.796	2.508		22.4	25.0	-10.3	50.0
1,2-Dichlorobenzene	Ave	1.737	1.527		22.0	25.0	-12.1	50.0
1,2-Dibromo-3-Chloropropane	Lin1F		0.1801		19.4	25.0	(-22.4	50.0
1,2,4-Trichlorobenzene	Ave	1.185	1.071		22.6	25.0	-9.6	50.0
Hexachlorobutadiene	Ave	0.2388	0.2063		21.6	25.0	-13.6	50.0
Naphthalene	Ave	1.589	1.548		24.4	25.0	-2.5	50.0
1,2,3-Trichlorobenzene	Ave	0.5670	0.5236		23.1	25.0	-7.7	50.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2641	0.2180		20.6	25.0	-17.4	50.0
Toluene-d8 (Surr)	Ave	2.602	2.211		21.2	25.0	-17.4	50.0
4-Bromofluorobenzene (Surr)	Ave	0.9146	0.7988		21.2	25.0	-13.0	50.0

GC/MS VOA ANALYSIS RUN LOG

Lab Name:	TestAmerica Buffalo		Job No.: 480-7265-1	
SDG No.:				
Instrument ID: HP5973P			Start Date: 07/18/2011 14:14	
Analysis E	Batch Number:	23902	End Date: 07/19/2011 01:22	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 480-23902/1		07/18/2011 14:14	1	P4002.D	ZB-624 (60) 0.25(mm)
CCVIS 480-23902/2		07/18/2011 14:40	1	P4003.D	ZB-624 (60) 0.25 (mm)
LCS 480-23902/3		07/18/2011 15:23	1	P4004.D	ZB-624 (60) 0.25(mm)
MB 480-23902/4		07/18/2011 15:48	1	P4005.D	ZB-624 (60) 0.25(mm)
480-7265-8	SW-04D	07/18/2011 16:13	1	P4006.D	ZB-624 (60) 0.25(mm)
480-7265-9	SWTR-1E	07/18/2011 16:38	1	P4007.D	ZB-624 (60) 0.25(mm)
480-7265-9 MS	SWTR-1E MS	07/18/2011 17:03	1	P4008.D	ZB-624 (60) 0.25(mm)
480-7265-9 MSD	SWTR-1E MSD	07/18/2011 17:28	1	P4009.D	ZB-624 (60) 0.25 (mm)
480-7265-10	MW-16	07/18/2011 17:53	1	P4010.D	ZB-624 (60) 0.25 (mm)
480-7265-11	MW-04	07/18/2011 18:17	1	P4011.D	ZB-624 (60) 0.25(mm)
480-7265-12	MW-03	07/18/2011 18:43	1	P4012.D	ZB-624 (60) 0.25(mm)
480-7265-13	NDP-WS	07/18/2011 19:08	1	P4013.D	ZB-624 (60) 0.25(mm)
480-7265-14	SWRT-1T	07/18/2011 19:33	4	P4014.D	ZB-624 (60) 0.25(mm)
480-7265-15	SDP-WS	07/18/2011 19:58	1	P4015.D	ZB-624 (60) 0.25(mm)
480-7265-16	FD-071311	07/18/2011 20:23	1	P4016.D	ZB-624 (60) 0.25(mm)
480-7265-17	TRIP BLANK	07/18/2011 20:47	1	P4017.D	ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 21:12	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 21:37	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 22:02	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 22:27	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 22:52	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 23:17	1		ZB-624 (60) 0.25(mm)
ZZZZZ		07/18/2011 23:42	1		ZB-624 (60) 0.25 (mm)
ZZZZZ		07/19/2011 00:07	1		ZB-624 (60) 0.25 (mm)
ZZZZZ		07/19/2011 00:32	1		ZB-624 (60) 0.25 (mm)
ZZZZZ		07/19/2011 00:57	1		ZB-624 (60) 0.25 (mm)
ZZZZZ		07/19/2011 01:22	1		ZB-624 (60) 0.25(mm)

APPENDIX E WELL INSPECTION FORMS

SITE NAME:	Rose Valley Landfi		
JOB#:	11176167		
DATE:	7/12/2011		
TIME:	13:35		
WELL ID:	MW-03		
		EXTERIOR INSPEC	TION
PROTECTIVE	CASING: C	Κ	
LOCK/HASP:	New locks installed	Used URS' keyed locks.	
HINGE/ LID:	ОК		
WELL PAD:	OK		
BOLLARDS:	None		
LABEL/ID:	None		
OTHER:	Thick vegetation su	rrounding well.	
		INTERIOR INSPECT	ΓΙΟΝ
WELL RISER:	_	ОК	
ANULAR SPAC	CE: _	OK	
WELL CAP:	_	OK	
WATER LEVEL	L: _	3.01	
DEPTH TO BO	OTTOM:	17.25 HARD/SOFT BOTTO	OM Soft
OTHER:			
COMMENTS:			
SIGNATURE IN	NSPECTOR:	SIGNATURE APPRO	DVAL:
	_		

SITE NAME:	Rose Valle	y Landfill		
JOB#:	11176167			
DATE:	7/12/2011			_
TIME:	13:45			
WELL ID:	MW-4			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks	installed. Used	I URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTION	
WELL RISER:		OK	INTERIOR INC. ECTION	
ANULAR SPA		OK OK		
WELL CAP:	OL.	OK OK		
WATER LEVE	iL:	2.52		
DEPTH TO BO		17.55	HARD/SOFT BOTTOM Soft	
OTHER:				
COMMENTS:				_
	NODEOTOD		OLONIATURE ARREST (AL	
SIGNATURE I	NSPECTOR	<u>: </u>	SIGNATURE APPROVAL:	_

SITE NAME:	Rose Valley	Landfill		
JOB#:	11176167			
DATE:	7/12/2011			
TIME:	14:00			
WELL ID:	MW-16			
			EXTERIOR INSPECTI	ON
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks in	nstalled. Use	d URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTION	DN
WELL RISER:	_	OK		
ANULAR SPAC	CE:	OK		
WELL CAP:	_	OK		
WATER LEVE	L: _	3.50		
DEPTH TO BO	OTTOM:	11.6	HARD/SOFT BOTTOM	Soft
OTHER:				
COMMENTS:				
SIGNATURE II	NSPECTOR:		SIGNATURE APPROVA	 L:
LOCK KEY #	2246			

SITE NAME:	Rose Valle	y Landfill		
JOB#:	11176167			
DATE:	7/12/2011			_
TIME:	14:35			
WELL ID:	SW-01S			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks	installed. Used	d URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			_
LABEL/ID:	None			
OTHER:	_			
			INTERIOR INSPECTION	
WELL RISER:		OK		
ANULAR SPA	CE:	OK		
WELL CAP:		OK		
WATER LEVE	L:	18.56		
DEPTH TO BO	OTTOM:	28.4	HARD/SOFT BOTTOM Soft	
OTHER:				
COMMENTS:				_
SIGNATURE I	NSPECTOR	:	SIGNATURE APPROVAL:	
LOCK KEY #	2246			

SITE NAME:	Rose Valley	y Landfill		
JOB#:	11176167			
DATE:	7/12/2011			
TIME:	14:37			
WELL ID:	SW-01D			
			EXTERIOR INSPECTI	ON
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks i	nstalled. Use	d URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTION	DN
WELL RISER:	_	OK		
ANULAR SPAC	CE:	OK		
WELL CAP:	•	OK		
WATER LEVE	L:	67.37		
DEPTH TO BC	OTTOM:	83.9	HARD/SOFT BOTTOM	Soft
OTHER:	•			
COMMENTS:				
SIGNATURE II	NSPECTOR:		SIGNATURE APPROVA	L:
LOCK KEY #	2246			

·				
SITE NAME:	Rose Valley	/ Landfill		
JOB#:	11176167			
DATE:	7/12/2011			
TIME:	14:48			
WELL ID:	SW-02S			
			EXTERIOR INSPECTI	ON
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks i	nstalled. Use	d URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTIO	DN
WELL RISER:	_	OK		
ANULAR SPAC	CE:	OK		
WELL CAP:	_	OK		
WATER LEVE	L:	11.30		
DEPTH TO BC	OTTOM:	20.05	HARD/SOFT BOTTOM	Soft
OTHER:				
COMMENTS:				
SIGNATURE II	NSPECTOR:		SIGNATURE APPROVA	L:
LOCK KEY #	2246			

SITE NAME:	Rose Valle	y Landfill		
JOB#:	11176167			
DATE:	7/12/2011			
TIME:	14:50			
WELL ID:	SW-02D			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks	installed. Used	URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
				_
			INTERIOR INSPECTION	
WELL RISER:		OK		
ANULAR SPA	CE:	OK		
WELL CAP:		OK		
WATER LEVE	L:	70.73		
DEPTH TO BO	OTTOM:	79.16	HARD/SOFT BOTTOM Soft	
OTHER:				
COMMENTS:				
SIGNATURE I	NSPECTOR	<u>:</u>	SIGNATURE APPROVAL:	
LOCK KEY #	2246			

SITE NAME:	Rose Valle	y Landfill		
JOB#:	11176167			
DATE:	7/12/2011			_
TIME:	14:40			
WELL ID:	SW-03S			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks	installed. Used	URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			_
BOLLARDS:	None			_
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTION	
WELL RISER:	•	OK		
ANULAR SPA	CE:	OK		
WELL CAP:		OK		
WATER LEVE	L:	11.85		
DEPTH TO BO	OTTOM:	18.77	HARD/SOFT BOTTOM Soft	
OTHER:				
COMMENTS:				
SIGNATURE I	NSPECTOR	<u>:</u>	SIGNATURE APPROVAL:	
LOCK KEY #	2246			

SITE NAME:	Rose Valley	/ Landfill		
JOB#:	11176167			
DATE:	7/12/2011			
TIME:	14:20			
WELL ID:	SW-04S			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK		
LOCK/HASP:	New locks i	nstalled. Use	ed URS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			INTERIOR INSPECTION	
WELL RISER:	_	OK		
ANULAR SPAC	CE:	OK		
WELL CAP:		OK		
WATER LEVE	L:	2.95		
DEPTH TO BO	OTTOM:	8.22	HARD/SOFT BOTTOM Soft	
OTHER:				
COMMENTS:				
SIGNATURE II	NSPECTOR:		SIGNATURE APPROVAL:	
LOCK KEY #	2246			

SITE NAME:		alley Landfill		
JOB#:	111761			
DATE:	7/12/20)11		
TIME:	14:15			
WELL ID:	SW-04E)		
			TYTERIOR INCREATION	
			EXTERIOR INSPECTION	
PROTECTIVE				
LOCK/HASP:		cks installed. Used L	JRS' keyed locks.	
HINGE/ LID:	OK			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
				_
		I	NTERIOR INSPECTION	
WELL RISER:		ОК		
ANULAR SPA	CE:	OK		
WELL CAP:		OK		
WATER LEVE	L:	Not measured.		
DEPTH TO BO	OTTOM:	83.35	HARD/SOFT BOTTOM Soft	
OTHER:		•		
COMMENTS:	Artesiar	n well.		
SIGNATURE I	NSPECT(OR:	SIGNATURE APPROVAL:	

APPENDIX F LANDFILL INSPECTION FORM

LANDFILL CAP AND SITE STORMWATER MANAGEMENT SYSTEM

MINIMUM CHECKLIST FOR ROUTINE INSPECTIONS

ROSE VALLEY LANDFILL

NYSDEC SITE NO. 622017

Component	Item	Number/Location/ Area Checked	Condition
Cap Grading	Obvious subsidences, depressions, or cracks hove Evidence of ponded water ho Stressed vegetation how Signs of erosion occurring at a localized change in grade ho Breaching of toe how Animal burrows how	entire cop was inspected	good Condition
Cap Vegetation and Repaired Vegetation	Areas of sparse, dead, or missing vegetation As Me Small rill erosion As we observed Animal burrows Love	en hie	good condition
Drainage Channel	Missing or displaced stones Nowe. Woody vegetation growing in the stones or grass cover 165 - Starting - woody / bwsh	11/0	future removal
GW Monitoring Wells	Condition of lock and cover $\lambda e \omega$ Signs of damage to casing or collar λo Condition of weep hole from casing Evidence of tampering λo	wells were Sampled + good Hzo & Medural	see m. well inspection logs.

ROSE VALLEY LANDFILL SITE - POST CLOSURE

NYSDEC SITE NO. 622017

INSPECTION LOG SHEET

Date: 7 13 11	Inspector: Chuck Duse
Weather: partly cloudy - rail	Signature:
Temperature: 485° F	Company: URS COUP.

Type: Winter Spring Summer Fall (Circle One)

Item Inspected	Maintenance Needed (Y/N)	Comments	Inspector's Initials		
Drainage Channel	Yes	Needs to be weedwacked	CD.		
Groundwater Monitoring Wells	No	conducted annual sumpling event replace locks on M. Wells	d co		
Perimeter Access Road	Yes				
Vegetative Cover	Yes	scheduled to be Mowel is Sept 2011	CD		
Repaired Vegetation	evosion	repairs to west side of LF a	CO		
Final Cover Layers (Cap Settlement, etc.)	No -	shape veg cover growing up thru evosion mat	S C D.		
Gas Vents	иo	good conditur	CD		
Fence and Gates	No	good condition	CD		
Other Items: (Specify) Sife access Road	Yes	site access Road between RV area (see photos) + site has significant erosion rills	CD.		
Other Items: (Specify) North & South	Yes	a fair amount of sediment in both lossins	<u>CD.</u>		
Two Jeviey Barriers	425	erosion underweath (see photos)	CD		

fence live insperted	sue check		
Missing locks, ninges, etc. from gates & Motorbike or snowmobile tracks \(\psi \) \(\psi \) Shotgun shell casings \(\psi \) Sec cans or other trash \(\psi \) \(\psi \) \(\psi \) Condition of access road surface \(\psi \) \(\psi \) Uther:	Integrity of pipes and joints OKAY Plumbness and differential settlement WINC Obstruction of vents by bird, insect or animal nests C Corrosion or deterioration of pipes or supports No Localized browning of vegetation Nou C Other:	Page 2 of 2	

on top of landfill also emsion rills

see photos.

condition

good

Spot Check

tacks from ATVs

Condition

Number/Location/

Item

Area Checked

entire Pence

Missing locks, hinges, etc. from gates No

Gas Vent

Cutting or bending of fence fabric

Fences, Gates and Perimeter Access Road

Component

APPENDIX G

2010 INTERMITTENT MAINTENANCE

CONSTRUCTION REPORT AND PHOTO LOG

URS

77 Goodell Street

Buffalo, Nev	w York 14203			DAY	SIM	Т	W	TH	F	S	
(716) 856-56											
DAILY	CONSTRUCT	ION REF	PORT	WEATHER	Bright Sun	Clear	Over	cast	Rain	Snow	
PROJECT:	Rose Valley Landfill			TEMP	To 32	32-50	50-	70	70-85	85 and up	
OWNER:											
CONTRACT NO				WIND	Still	Moder	High		Report No.		
CONTRACTOR_Environmental Products and Services (EPS)				LILIMIDITY			I bossist		1		
URS JOB No	MANAGER: Chuck Dusel			HUMIDITY	Dry	Moder	Humid				
UKS PROJECT	MANAGER:_ CHUCK DUSEI										
AVERAGE FIE	LD FORCE										
	lame of Contractor	Non-manual	Manual			R	emarks				
URS		1		Inspector/Ov	versight						
EPS		1	3	Supervisor,	2 operator	s, 1 lab	orer				
				l							
VISITORS Time	Poproconting	Ponros	conting	Remarks							
Time Representing Representing						N	emaiks				
EQUIPMENT A											
2 ton flatbed, 2 bobcats, mower											
9 rolls of erosion mat (6.67-feet wide, 80 yd² per roll), 13 yd³ topsoil, 3 15-pound bags grass seed (3,750 ft2/bag). Only 2 of 3 bags used. Copy of grass seed tag attached.											
CONSTRUCTION		bag). Only 2 of	3 bags used.	Copy of gras	ss seed tag	j allaci	iea.				
0900 - Arrive on site. Bobcat used to place fill material and regrade eroded areas.											
Contractor using bobcat (Brushcat 6X7) to mow grass on landfill.											
Soil/sandy material taken from borrow source on west side of landfill and used to backfill eroded areas.											
Topsoil spread with bobcat and manual shoveling. Seeded applicable areas.											
Erosion mat placed over regraded areas and seeded. Three to four-inch fabric overlap at seams. Mat was secured using staples.											
Channels in northeastern portion of landfill were inspected and are in good shape.											
1545 - Site seeding completed.											
1630 - Left site. Recommendation:											
Spray RoundUp (or similar herbicide) to control poplar tree growth in rock-lined ditches.											
Note:											
Contractor will complete installation of erosion fabric and fine grading on 9/23/11.											
Contractor will send URS copies of photographs which will document the completed work.											
							;	SHEE	T1	_OF_1	
Г	X - designates info on		BYChuck D	usel T	ΓΙΤLE_ <u>Ins</u>	nector II	RS Pro	iect M	anager		
			REVIEWED BY:					, , , , , , , , , , , , , , , , , , , ,			

DATE____9/22/2010_____

LOT NUMBER: £144-9-FSIGNE17G TEST DATE: 4/10 SELL BY: 7/11 (maz, ca, co, de, r., ind), mm, nm, nm, nv, oh, pa and vt) SIGNATURE SERIES NORTHEAST LAWN MIXTURE PURESEED VARIETY KIND GERMINAT 29.00% INTEGRA PERENNIAL RYEGRASS 90 GERMINATION ORIGIN 90% OR 29.00% JET PERENNIAL RYEGRASS 90% OR 19.40% MOONSTRUCK KENTUCKY BLUEGRASS 80% WA 9.70% ORACLE RED FESCUE 809(CANADA 9.70% SHADOW II CHEWINGS FESCUE 80% OR 0.80% OTHER CROP SEED 2.30% INERT MATTER 0.10% WEED SEED **NET WEIGHT: 15 POUNDS** NOXIOUS WEED SEED: NONE FOUND PER POUND PENNINGTON SEED INC. 270 HANSARD AVENUE LEBANON, OR 97355

PSI#118728

Photo Date 09-22-10. Looking north, skid steer being used to backfill and grade erosion swales.

Photo Date 09-23-10. Looking west, site access gate and newly installed erosion matt pinned into soil.

Photo Date 09-23-10. Looking northeast at mowed landfill.

Photo Date 09-23-10. Looking north at Bobcat mowing landfill.

Photo Date 09-23-10. South view of mowed landfill.

Photo Date 09-23-10. Southeast view of mowed landfill.

Photo Date 09-23-10. Northwest view of mowed landfill and erosion matt.

Photo Date 09-23-10. North view of newly installed erosion matt. Approximate dimensions are 310' long x 18' wide.

Photo Date 09-23-10. East view of mowed landfill with north detention basin in background.

