

### SITE MANAGEMENT

### ANNUAL REPORT 2012 CALENDAR YEAR

### WORK ASSIGNMENT D007622-07

ROSE VALLEY LANDFILL RUSSIA (T)

SITE NO. 622017 HERKIMER (C), NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Joe Martens, Commissioner

**DIVISION OF ENVIRONMENTAL REMEDIATION** 

URS Corporation 77 Goodell Street Buffalo, New York 14203

### ROSE VALLEY LANDFILL 2012 ANNUAL REPORT SITE MANAGEMENT

### SITE # 622017 TOWN OF RUSSIA, HERKIMER COUNTY, NEW YORK

### **PREPARED FOR:**

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D007622-07

PREPARED BY:
URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

**JULY 2013** 

### TABLE OF CONTENTS

|         |         |           | Page No.                                                                | <u>).</u> |
|---------|---------|-----------|-------------------------------------------------------------------------|-----------|
| 1.0     | INTRO   | DUCTIO    | ON1-                                                                    | 1         |
|         | 1.1     | Genera    | ıl1-                                                                    | 1         |
|         | 1.2     |           | t Background1-                                                          |           |
| 2.0     | SITE D  | ESCRIF    | PTION2-                                                                 | 1         |
| 3.0     | MONIT   | ΓORING    | ACTIVITIES3-                                                            | 1         |
|         | 3.1     | Ground    | dwater Hydraulic Monitoring3-                                           | 1         |
|         | 3.2     | Ground    | dwater Sampling3-                                                       | 2         |
|         |         | 3.2.1     | Groundwater Results3-                                                   | 2         |
|         | 3.3     | Surfac    | e Water/Detention Pond Sampling3-                                       | 3         |
|         |         | 3.3.1     | Surface Water/Detention Pond Results                                    | 3         |
| 4.0     | Site Ma | aintenand | ce4-                                                                    | 1         |
|         | 4.1     | Monito    | oring Well Inspections4-                                                | 1         |
|         | 4.2     | Landfi    | ll Inspection4-                                                         | 1         |
|         | 4.3     | Mainte    | enance Performed4-                                                      | 2         |
|         |         | 4.3.1     | Monitoring Well Maintenance4-                                           | 2         |
|         |         | 4.3.2     | Routine Maintenance4-                                                   | 2         |
|         |         | 4.3.3     | Intermittent Maintenance                                                | 2         |
| 5.0     | SUMM    | [ARY A]   | ND RECOMMENDATIONS5-                                                    | 1         |
|         | 5.1     | Ground    | dwater Hydraulic Monitoring5-                                           | 1         |
|         | 5.2     | Ground    | dwater Quality Monitoring5-                                             | 1         |
|         | 5.3     | Surfac    | e Water/Detention Pond Quality Monitoring5-                             | 1         |
|         | 5.4     | Monito    | oring Well Maintenance5-                                                | 1         |
|         | 5.5     | Landfi    | Il Maintenance5-                                                        | 1         |
|         |         |           | TABLES                                                                  |           |
| Table 1 | l       | Groun     | ndwater Elevation Measurements                                          |           |
| Table 2 | 2       | Summ      | nary of Detected Compounds in 2012 Groundwater Samples                  |           |
| Table 3 | 3       | Summ      | nary of Historically Detected Compounds in Groundwater Samples          |           |
| Table 4 | 1       | Summ      | nary of Historically Detected Compounds in Surface/Detention Pond Water | •         |
|         |         | Sampl     | les                                                                     |           |
| Table 5 | 5       | Summ      | nary of Historically Detected Compounds in Surface Water - Criteria for |           |
|         |         | Class     | C Surface Waters Requiring Calculation                                  |           |

### **FIGURES**

| Figure 1 | Site Location Map                                        |
|----------|----------------------------------------------------------|
| Figure 2 | Site Plan                                                |
| Figure 3 | Potentiometric Surface (Shallow) – October 17, 2012      |
| Figure 4 | Potentiometric Surface (Deep) – October 17, 2012         |
| Figure 5 | Groundwater Exceedances – October 2102                   |
| Figure 6 | Historical Groundwater Exceedances                       |
| Figure 7 | Surface Water/ Detention Pond Exceedances – October 2012 |

### **APPENDICES**

| Appendix A | Field Notes                                                       |
|------------|-------------------------------------------------------------------|
| Appendix B | Monitoring Well Purge Logs/Surface Water Sample Log               |
| Appendix C | Photographic Log                                                  |
| Appendix D | Data Usability Summary Report                                     |
| Appendix E | Well Inspection Forms                                             |
| Appendix F | Landfill Inspection Form                                          |
| Appendix G | 2012 Intermittent Maintenance Construction Reports and Photo Logs |

#### 1.0 INTRODUCTION

#### 1.1 General

This Site Management Annual Report for 2012 has been prepared under New York State Department of Environmental Conservation (NYSDEC) URS Work Assignment No. D007622-07 for the Rose Valley Landfill site (Figure 1). The purpose of this Annual Report is to provide a record of the long-term maintenance of the cap, wells and stormwater management features associated with remediation at the Rose Valley Landfill and to monitor the effectiveness of natural attenuation. This report is the third annual report as called for by Section 6.3 of the Conceptual Operation, Monitoring and Maintenance Plan (COMMP) (URS, November 2006). The COMMP was modified based upon comments from the NYSDEC. The modified plan, retitled as the Site Management Plan (SMP) was submitted to the Department, reviewed, and approved in September 2010.

The purpose of the site management as presented in the Record of Decision (ROD) is to provide guidance for the operation and maintenance of the site relative to:

- Maintaining the capped area;
- Long term monitoring of the natural attenuation of the groundwater plume by and within the downslope wetlands; and
- Documenting the effectiveness of natural attenuation.

### 1.2 **Project Background**

The NYSDEC proposed a remedy in the ROD dated March 30, 2001. The recommendation involved:

- On-site disposal of contaminated surface soils from the older septic disposal pit into the on-site landfill;
- Installing a new cap on the landfill to reduce infiltration through the wastes;
- Installing a new residential well in a deeper, clean aquifer for the impacted residence; and
- Long-term monitoring of the leachate and contaminated groundwater plume by monitoring natural attenuation.

A description of the project site can be found in Section 2.0.

### 2.0 SITE DESCRIPTION

The Rose Valley Landfill is a privately owned, unlined dump that was open from 1963 to 1985. The site is located in Russia Township in Herkimer County as part of a 91-acre parcel (since subdivided into two parcels in 1986). The site is bounded to the east by Military Road, to the west by Bromley Road, and to the southwest by Rose Valley Road (Figure 2). A NYSDEC Class C stream locally known as Finch Brook separates the site from Military Road. Finch Brook is a tributary of Hurricane Brook (also a NYSDEC Class C stream).

The landfill is located on the side of a hill that has approximately 120 feet of relief. A steep, 60-foot-high sand embankment extends above the landfill to the west. The site is characterized by high relief, with sharp drops in elevation from southwest to northeast and a moderate, even south to southwest slope. The gradient across the western portion of the property is less severe, sloping in the opposite direction.

The area surrounding the site is sparsely populated, with few known permanent residents. At the time that the ROD was issued, a private well immediately adjacent to the landfill entrance on Rose Valley Road (and downgradient of the landfill) was found to be contaminated with site-related contaminants. A new replacement drinking water well into the deeper aquifer has since been installed at the residence; it is being monitored by the Herkimer County Department of Health.

The remedial design of the landfill closure was completed and the construction of the landfill cap was completed in 2007. A 6-foot high chain-link fence was constructed to limit access to the landfill cap area.

#### 3.0 MONITORING ACTIVITIES

Monitoring activities were performed during October 2012 in accordance with the SMP (URS, September 2010). Site monitoring consisted of the collection of groundwater samples from ten (10) wells and surface water samples from four (4) locations, shown on Figure 2. Seven of the groundwater wells are "Sentry Wells" (i.e., SW-01S, SW-01D, SW-02S, SW-02D SW-03S, SW-04S and SW-04D) and three are monitoring wells (i.e., MW-03, MW-04 and MW-16). Sentry Wells are constructed the same as monitoring wells, but are called Sentry Wells because they are located between the landfill and nearby residential drinking water wells or a surface water body. The monitoring wells are located within the wetland, east of the landfill. Surface water samples locations are: at the toe of the embankment (SWTR-1T); at the entrance of the downgradient stream (SWTR-1E); at the North Detention Pond (NDP); and at the South Detention Pond (SDP). A copy of the field notes from the 2012 monitoring activities is provided in Appendix A.

### 3.1 Groundwater Hydraulic Monitoring

On October 17, 2012, synoptic groundwater level measurements were obtained from fourteen wells (i.e., seven Sentry Wells and seven monitoring wells). The water level measurements are provided in Table 1. Four of the Sentry Wells (i.e., SW-01S, SW-02S, SW-03S and SW-04S) and the three monitoring wells (MW-03, MW-04, and MW-16) are shallow wells. Three of the Sentry Wells (i.e., SW-01D, SW-02D and SW-04D) and four of the monitoring wells (MW-02, MW-14, MW-15 and MW-17) are deep wells. One of the deep wells east of the landfill is an artesian well (i.e., SW-04D), and previous efforts to measure the water column (April 2010 and July 2011) were unsuccessful. Monitoring wells MW-14, MW-15 and MW-17 were added to the hydraulic monitoring list in the SMP (URS, September 2010). These wells were added to the list in 2011 due to the artesian condition found in well SW-04D, which prevented the creation of a deep potentiometric surface map.

A potentiometric surface map based on the water level measurements from the shallow wells, using a 10.0-foot contour interval, is provided in Figure 3. A potentiometric surface map based on the water level measurements from the deep wells, using a 10.0-foot contour interval, is provided in Figure 4.

The shallow groundwater flow is to the east-northeast towards Military Road. The deep groundwater flow is in the same general direction.

### 3.2 **Groundwater Sampling**

On October 17 and 18, 2012, URS collected groundwater samples from seven Sentry Wells and three monitoring wells plus quality control (QC) samples using low-flow sampling procedures.

Prior to sample collection, standing water was purged from each well with a either a GeoPump2 peristaltic pump or Grundfos Redi-Flow 2 submersible pump using dedicated/disposable high-density polyethylene (HDPE) tubing. Wells were purged at a rate of two-liters per minute or less and the purge rate was adjusted to minimize draw down. During the purging of the well, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-52 Multi-parameter instrument with a flow-through cell. The water quality parameters were documented on a purge log. Samples were collected after the water quality parameters stabilized. Well purge logs are provided in Appendix B and a Photographic Log is provided in Appendix C. Purge water was disposed of on the ground up-gradient of the well locations, as per the direction of the Department.

All groundwater samples were shipped via common courier under chain-of custody (COC) to URS' standby subcontract laboratory, H2M Labs, Inc (H2M)., located in Melville, NY, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) plus tentatively identified compounds (TICs) following United States Environmental Protection Agency (USEPA) SW846 Method 8260B.

### 3.2.1 Groundwater Results

NYSDEC Analytical Services Protocol (ASP) Category B data deliverables was received by URS. The data was reviewed in accordance with the requirements outlined in *Guidance for Data Deliverables and the Development of Data Usability Summary Reports (DUSR), Appendix 2B, DER-10/Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010). Data summary tables, Form I's and Form Ie's (TICs) are provided in the DUSR and include the reporting limit for each non-detected compound. A copy of the DUSR may be found in Appendix D.

A summary of the detected compounds in the groundwater samples are provided in Table 2. Results exceeding TOGS 1.1.1 Class GA groundwater standards or guidance values are

indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 5. Only two VOCs [i.e., 1,1-dichloroethane (15  $\mu$ g/L, MW-04) and cis-1,2-dichloroethene (5.0  $\mu$ g/L, MW-03)] were detected above TOGS 1.1.1 Class GA limits in the groundwater samples. No VOCs exceeded TOGS No. 1.1.1 standards or guidance values in the samples from Sentry Wells (i.e., SW-01D, SW-01S, SW-02D, SW-02S SW-03S, SW-04D, and SW-04S) or monitoring well MW-16. A historical summary of detected results in groundwater is provided in Table 3 and shown on Figure 6. Results from the 2012 sampling event are consistent with the 2010 and 2011 sampling events.

### 3.3 Surface Water/Detention Pond Sampling

On October 18, 2012, URS collected surface water samples from locations SWTR-1T and SWTR-1E, the North Detention Pond (NDP) and the South Detention Pond (SDP), plus QC samples. At each location the surface water sample was collected by immersing pre-cleaned, laboratory grade sample bottles as close to the middle of the water body as possible without disturbing the sediment. During the collection of the surface water samples, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-52 Multi-parameter instrument. The water quality parameters were documented on a sample log, which may be found in Appendix B. Photographs of surface water sampling are provided in Appendix C.

All surface samples were shipped via common courier under COC to H2M. The samples were analyzed for TCL VOCs plus TICs following USEPA SW846 Method 8260B.

### 3.3.1 Surface Water/Detention Pond Results

No VOCs were detected in the 2012 surface water samples. Figure 7 shows only the location of samples collected since no VOCs exceeded TOGS No. 1.1.1 Class C standards or guidance values in the surface water. A historical summary of detected results in surface water is provided in Table 4. Table 5 lists criteria that required calculation, per TOGS No. 1.1.1 for Class C surface waters. VOCs results from the 2012 sampling event are consistent with the 2010 and 2011 sampling events, with the exception of SWTR-1T, where several VOCs were previously detected but did not exceed criteria.

### 4.0 SITE MAINTENANCE

### 4.1 **Monitoring Well Inspections**

During the 2012 groundwater sampling event, a well inspection was performed. All wells appeared to be in good condition. URS keyed alike locks which were found to be either missing from the well casing or non-functional in the 2010 inspection and replaced during the 2011 inspection were intact. The monitoring well inspection logs may be found in Appendix E.

### 4.2 <u>Landfill Inspection</u>

A landfill inspection was performed by URS accompanied by NYSDEC personnel in August 2012 and during the October 2012 groundwater sampling event. A copy of the completed landfill inspection form from the October 2012 site visit can be found in Appendix F. The August 2012 site inspection is documented in the construction reports which may be found in Appendix G. The landfill cap components appeared to be in good condition. The landfill fence was also inspected and was found to be in good condition.

In the areas surrounding the landfill cap, the following was observed:

- Ruts up to approximately one foot deep and one foot wide were present in the gravel access road which leads to the landfill;
- The geotech fabric was exposed due to erosion alongside the main access road;
- It was noted that the quantity of silt and sediment in the detention ponds appears to have increased since the last site inspection;
- The area north of the cap between the North Detention Pond and the all-terrain vehicle recreational area/hill shows considerable erosion; and
- Hogweed, a non-native invasive species, observed near the main gate in 2011 was not encountered in 2012.

Two new trash piles were observed at the back entrance from Military Road. The piles included municipal solid waste and construction and demolition debris. In the sand borrow area east of the landfill where the Department had previously removed over 500 discarded tires and other trash, more tires have been discarded, along with deer carcasses and other trash. Photographs taken during the landfill inspection can be found in Appendix C.

### 4.3 <u>Maintenance Performed</u>

The following subsections describe site maintenance activities.

### 4.3.1 Monitoring Well Maintenance

No monitoring well maintenance was necessary or performed at the time this report was prepared.

### 4.3.2 Routine Maintenance

The landfill cap was mowed in August 2012 by Marcy Excavation Services, LLC., (MES) a subcontractor to the NYSDEC call-out contractor Environmental Products & Services of Vermont (EPS). The mowing activities were documented on the construction reports which may be found in Appendix G. No other routine maintenance was performed at the time this report was prepared.

#### 4.3.3 Intermittent Maintenance

In August 2012, the following maintenance activities were performed on the site by MES:

- Three landfill gas vents damaged by gun shots were repaired; and
- Additional jersey barriers were placed at the entrance to a side access road onto the landfill. The placement of additional jersey barriers were necessary in order to prevent dumping on the site.

The maintenance activities were documented on the construction reports which may be found in Appendix G. No other intermittent maintenance was performed at the time this report was prepared.

### 5.0 SUMMARY AND RECOMMENDATIONS

A summary of the annual monitoring and recommendations are provided below.

### 5.1 Groundwater Hydraulic Monitoring

Shallow and deep groundwater flows in an east-northeast direction. In addition to the wells sampled, four additional wells (i.e., MW-02, MW-14, MW-15 and MW-17) were measured in order to provide the deep groundwater contours. It is recommended that these wells continue to be measured during future monitoring events.

### 5.2 **Groundwater Quality Monitoring**

Two VOCs (cis-1,2-dichoroethene and 1,1-dichloroethane) exceed TOGS 1.1.1 Class GA standards and guidance values in the 2012 groundwater samples at two locations, MW-03 and MW-04. There were no VOC exceedances in the Sentry Wells. Historical results of the ten wells are provided in Table 3 and Figure 6. The concentrations of the VOCs in the 2012 sampling event are slightly higher when compared with the 2010 and 2011 results at MW-03 and MW-04 and suggest an increasing trend.

### 5.3 Surface Water/Detention Pond Quality Monitoring

No VOCs were detected in the four surface water locations from the 2012 sampling event. Historically, no VOCs exceeded the TOGS 1.1.1 Class C surface water standards and guidance values. Historical data from the surface water sampling locations is provided in Table 4.

### 5.4 Monitoring Well Maintenance

No maintenance was necessary for the monitoring wells.

### 5.5 Landfill Maintenance

All landfill cap components appeared to be sound. The landfill was mowed in August 2012. Erosion was noted on the west side of the landfill at the toe drain/channel interface and on the north side of the site, north of the stone-lined drainage channel. Ruts have formed in the gravel on the landfill road.

During the October 18, 2012 site inspection, new trash dumping piles were observed at the back entrance from Military Road. The trash piles included municipal solid waste along with construction and demolition debris. In the area where the Department had previously removed over 500 discarded tires, more tires have been discarded, along with deer carcasses and other municipal trash. The NYSDEC will

### **TABLES**

### TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

| Location ID<br>Type | / Northing  | Easting     | Ground<br>Elevation (ft) | Casing<br>Elevation (ft) | Meas.point<br>(Riser)Elev.(ft) | Geol.<br>Zone | Specific<br>Gravity | Date / Time     | Depth to<br>Water (ft) | Water<br>Elev. (ft) | Product<br>Thick. (ft) | Corrected Water<br>Elev. (ft) | Remark |
|---------------------|-------------|-------------|--------------------------|--------------------------|--------------------------------|---------------|---------------------|-----------------|------------------------|---------------------|------------------------|-------------------------------|--------|
| MW-02               | 1601925.82  | 356255.39   |                          |                          | 1305.15                        | В             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/17/2004 1415  | 58.38                  | 1246.77             | 0.00                   |                               |        |
| V                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1313  | 57.55                  | 1247.60             | 0.00                   |                               |        |
| V                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1028 | 60.59                  | 1244.56             | 0.00                   |                               |        |
| MW-03               | 1602437.498 | 357450.2192 |                          |                          | 1175.58                        | Α             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/19/2004 1210  | 3.31                   | 1172.27             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 4/21/2010 0000  | 3.03                   | 1172.55             | 0.00                   |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1335  | 3.01                   | 1172.57             | 0.00                   |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1223 | 2.85                   | 1172.73             | 0.00                   |                               |        |
| MW-04               | 1602588.989 | 357572.8098 |                          |                          | 1172.46                        | Α             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/19/2004 1310  | 2.56                   | 1169.90             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 4/21/2010 0000  | 2.63                   | 1169.83             | 0.00                   |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1345  | 2.54                   | 1169.92             | 0.00                   |                               |        |
| V                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1234 | 2.40                   | 1170.06             | 0.00                   |                               |        |
| MW-14               | 1602932.523 | 356221.9497 |                          |                          | 1317.83                        | В             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/19/2004 1610  | 96.74                  | 1221.09             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1520  | 98.55                  | 1219.28             | 0.00                   |                               |        |
| V                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1129 | 98.42                  | 1219.41             | 0.00                   |                               |        |
| MW-16               | 1602287.308 | 357950.8887 |                          |                          | 1152.58                        | Α             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/18/2004 1320  | 4.00                   | 1148.58             | 0.00                   |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 4/21/2010 0000  | 3.00                   | 1149.58             | 0.00                   |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1400  | 3.56                   | 1149.02             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1208 | 3.30                   | 1149.28             | 0.00                   |                               |        |
| MW-17               | 1602592.476 | 356386.6381 |                          |                          | 1311.72                        | В             |                     |                 |                        |                     |                        |                               |        |
| W                   | /L          |             |                          |                          |                                |               |                     | 8/17/2004 1715  | 87.30                  | 1224.42             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 7/12/2011 1505  | 86.69                  | 1225.03             | 0.00                   |                               |        |
| ٧                   | /L          |             |                          |                          |                                |               |                     | 10/17/2012 1121 | 87.06                  | 1224.66             | 0.00                   |                               |        |

NM - No Measurement

Geologic Zone:

A Shallow Unconfined Aquifer

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

B Deep Unconfined Aquifer

### TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

| Location ID /<br>Type | Northing   | Easting   | Ground<br>Elevation (ft) | Casing<br>Elevation (ft) | Meas.point<br>(Riser)Elev.(ft) | Geol.<br>Zone | Specific<br>Gravity | Date / Time     | Depth to<br>Water (ft) | Water<br>Elev. (ft) | Product<br>Thick. (ft) | Corrected Water<br>Elev. (ft) | Remark |
|-----------------------|------------|-----------|--------------------------|--------------------------|--------------------------------|---------------|---------------------|-----------------|------------------------|---------------------|------------------------|-------------------------------|--------|
| SW-01D                | 1601823.93 | 355356.06 | 1262.0                   |                          | 1264.70                        | В             |                     |                 |                        |                     |                        |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 8/17/2004 1025  | 68.64                  | 1196.06             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 67.13                  | 1197.57             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1437  | 67.37                  | 1197.33             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1048 | 68.71                  | 1195.99             | 0.00                   |                               |        |
| SW-01S                | 1601817.02 | 355346.13 | 1260.5                   |                          | 1263.17                        | Α             |                     |                 |                        |                     |                        |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 8/17/2004 1020  | 19.32                  | 1243.85             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 19.05                  | 1244.12             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1435  | 18.56                  | 1244.61             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1045 | 20.82                  | 1242.35             | 0.00                   |                               |        |
| SW-02D                | 1601370.34 | 355721.25 |                          |                          | 1257.00                        | В             |                     |                 |                        |                     |                        |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 8/16/2004 1600  | 70.49                  | 1186.51             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 70.10                  | 1186.90             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1450  | 70.73                  | 1186.27             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1106 | 70.97                  | 1186.03             | 0.00                   |                               |        |
| SW-02S                | 1601367.21 | 355730.86 |                          |                          | 1257.20                        | Α             |                     |                 |                        |                     |                        |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 8/16/2004 1700  | 12.05                  | 1245.15             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 12.36                  | 1244.84             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1448  | 11.30                  | 1245.90             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1108 | 13.95                  | 1243.25             | 0.00                   |                               | _      |
| SW-03S                | 1601483.4  | 355518.17 |                          |                          | 1257.67                        | Α             |                     |                 |                        |                     |                        |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 8/17/2004 0925  | 12.73                  | 1244.94             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 12.81                  | 1244.86             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1440  | 11.85                  | 1245.82             | 0.00                   |                               |        |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1058 | 14.52                  | 1243.15             | 0.00                   |                               |        |

#### NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

#### Geologic Zone:

- A Shallow Unconfined Aquifer
- B Deep Unconfined Aquifer

### TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

| Location ID /<br>Type | Northing   | Easting   | Ground<br>Elevation (ft) | Casing<br>Elevation (ft) | Meas.point<br>(Riser)Elev.(ft) | Geol.<br>Zone | Specific<br>Gravity | Date / Time     | Depth to<br>Water (ft) | Water<br>Elev. (ft) | Product<br>Thick. (ft) | Corrected Water<br>Elev. (ft) | Remark        |
|-----------------------|------------|-----------|--------------------------|--------------------------|--------------------------------|---------------|---------------------|-----------------|------------------------|---------------------|------------------------|-------------------------------|---------------|
| SW-04D                | 1602328.65 | 358265.16 | 1149.0                   |                          | 1148.65                        | В             |                     |                 |                        |                     |                        |                               |               |
| WL                    |            |           |                          |                          |                                |               |                     | 8/18/2004 1205  | NM                     | -                   | NM                     | -                             | Artesian well |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | NM                     | -                   | NM                     | -                             | Artesian well |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1415  | NM                     | -                   | NM                     | -                             | Artesian well |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1152 | NM                     | -                   | NM                     | -                             | Artesian well |
| SW-04S                | 1602315.5  | 358278.21 | 1148.3                   |                          | 1148.00                        | Α             |                     |                 |                        |                     |                        |                               |               |
| WL                    |            |           |                          |                          |                                |               |                     | 8/18/2004 1225  | 3.76                   | 1144.24             | 0.00                   |                               |               |
| WL                    |            |           |                          |                          |                                |               |                     | 4/21/2010 0000  | 2.83                   | 1145.17             | 0.00                   |                               |               |
| WL                    |            |           |                          |                          |                                |               |                     | 7/12/2011 1420  | 3.40                   | 1144.60             | 0.00                   |                               |               |
| WL                    |            |           |                          |                          |                                |               |                     | 10/17/2012 1153 | 3.20                   | 1144.80             | 0.00                   |                               |               |

#### NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

#### Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

### TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2012 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |          |           | MW-03       | MW-04                  | MW-16       | SW-01D      | SW-01S      |
|----------------------------|----------|-----------|-------------|------------------------|-------------|-------------|-------------|
| Sample ID                  |          |           | MW-03       | MW-04                  | MW-16       | SW-01D      | SW-01S      |
| Matrix                     |          |           | Groundwater | Groundwater            | Groundwater | Groundwater | Groundwater |
| Depth Interval (           | ft)      |           | -           | -                      | -           | -           | -           |
| Date Sampled               | 10/18/12 | 10/18/12  | 10/18/12    | 10/17/12               | 10/17/12    |             |             |
| Parameter                  | Units    | Criteria* |             |                        |             |             |             |
| Volatile Organic Compounds |          |           |             |                        |             |             |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |             |                        |             |             |             |
| 1,1-Dichloroethane         | UG/L     | 5         | 3 J         | $\bigcirc 15 \bigcirc$ |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         |             | 3 J                    |             |             |             |
| Dichlorodifluoromethane    | UG/L     | 5         |             | 1 J                    |             |             |             |

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

### TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2012 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |              |           | SW-02D                | SW-02D      | SW-02S      | SW-03S      | SW-04D      |
|----------------------------|--------------|-----------|-----------------------|-------------|-------------|-------------|-------------|
| Sample ID                  |              |           | FD-101712             | SW-02D      | SW-02S      | SW-03S      | SW-04D      |
| Matrix                     |              |           | Groundwater           | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (           | (ft)         |           | -                     | -           | -           | -           | -           |
| Date Sampled               | Date Sampled |           |                       | 10/17/12    | 10/17/12    | 10/17/12    | 10/17/12    |
| Parameter                  | Units        | Criteria* | Field Duplicate (1-1) |             |             |             |             |
| Volatile Organic Compounds |              |           |                       |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L         | 5         |                       |             | 1 J         |             |             |
| 1,1-Dichloroethane         | UG/L         | 5         |                       |             |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L         | 5         |                       |             |             |             |             |
| Dichlorodifluoromethane    | UG/L         | 5         |                       |             |             |             |             |

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Blank cell - Not detected. J - The reported concentration is an estimated value.

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

### TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2012 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |          |           | SW-04S      |
|----------------------------|----------|-----------|-------------|
| Sample ID                  |          |           | SW-04S      |
| Matrix                     |          |           | Groundwater |
| Depth Interval (f          |          | -         |             |
| Date Sampled               | 10/17/12 |           |             |
| Parameter                  | Units    | Criteria* |             |
| Volatile Organic Compounds |          |           |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |             |
| 1,1-Dichloroethane         | UG/L     | 5         |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         |             |
| Dichlorodifluoromethane    | UG/L     | 5         |             |

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

| Location ID                |          |           | MW-03                             | MW-03       | MW-03       | MW-03       | MW-04       |
|----------------------------|----------|-----------|-----------------------------------|-------------|-------------|-------------|-------------|
| Sample ID                  |          |           | MW-03                             | MW-03       | MW-03       | MW-03       | MW-04       |
| Matrix                     |          |           | Groundwater                       | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (           |          |           | -                                 | -           | -           | -           | -           |
| Date Sampled               | <u> </u> |           | 08/19/04                          | 04/21/10    | 07/13/11    | 10/18/12    | 08/19/04    |
| Parameter                  | Units    | Criteria* |                                   |             |             |             |             |
| Volatile Organic Compounds |          |           |                                   |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |                                   |             |             |             |             |
| 1,1-Dichloroethane         | UG/L     | 5         | 4 J                               | 2.3         | 2.2         | 3 J         | 16          |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         | $\bigcirc \qquad \qquad \bigcirc$ | 7.1         | 8.0         |             | 3 J         |
| Chloroethane               | UG/L     | 5         |                                   |             |             |             |             |
| Dichlorodifluoromethane    | UG/L     | 5         |                                   | 0.75 J      |             |             |             |
| Metals                     |          |           |                                   |             |             |             |             |
| Aluminum                   | UG/L     | -         | 164 B                             |             | NA          | NA          | 131 B       |
| Antimony                   | UG/L     | 3         | 3.7 B                             |             | NA          | NA          |             |
| Arsenic                    | UG/L     | 25        |                                   |             | NA          | NA          |             |
| Barium                     | UG/L     | 1000      | 60.4 B                            | 47.6        | NA          | NA          | 17.2 B      |
| Cadmium                    | UG/L     | 5         | 0.25 B                            |             | NA          | NA          |             |
| Calcium                    | UG/L     | -         | 220,000                           | 225,000     | NA          | NA          | 156,000     |
| Chromium                   | UG/L     | 50        |                                   |             | NA          | NA          |             |
| Cobalt                     | UG/L     | -         | 2.0 B                             |             | NA          | NA          | 1.1 B       |
| Copper                     | UG/L     | 200       |                                   |             | NA          | NA          | 1.5 B       |
| Iron                       | UG/L     | 300       | 918                               | 252         | NA          | NA          | 1,190       |
| Magnesium                  | UG/L     | 35000     | 23,500                            | 18,600      | NA          | NA          | 26,800      |
| Manganese                  | UG/L     | 300       | 2,210 J                           | 2,450       | NA          | NA          | 304 J       |
| Nickel                     | UG/L     | 100       | 5.6 B                             |             | NA          | NA          | 13.5 B      |
| Potassium                  | UG/L     | -         | 3,950 B                           | 3,320       | NA          | NA          | 1,070 B     |
| Silver                     | UG/L     | 50        |                                   |             | NA          | NA          |             |
| Sodium                     | UG/L     | 20000     | 5,940                             | 3,800       | NA          | NA          | 16,600      |
| Vanadium                   | UG/L     | -         |                                   |             | NA          | NA          |             |
| Zinc                       | UG/L     | 2000      |                                   |             | NA          | NA          |             |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |          |           | MW-04       | MW-04       | MW-04                               | MW-16       | MW-16       |
|----------------------------|----------|-----------|-------------|-------------|-------------------------------------|-------------|-------------|
| Sample ID                  |          |           | MW-04       | MW-04       | MW-04                               | MW-16       | MW-16       |
| Matrix                     |          |           | Groundwater | Groundwater | Groundwater                         | Groundwater | Groundwater |
| Depth Interval             |          |           | -           | -           | -                                   | -           | -           |
| Date Sample                | <u> </u> |           | 04/21/10    | 07/13/11    | 10/18/12                            | 08/18/04    | 04/21/10    |
| Parameter                  | Units    | Criteria* |             |             |                                     |             |             |
| Volatile Organic Compounds |          |           |             |             |                                     |             |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |             |             |                                     |             |             |
| 1,1-Dichloroethane         | UG/L     | 5         | 9.3         | 10          | $ \begin{array}{c} 15 \end{array} $ |             |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         | 2.3         | 2.4         | 3 J                                 |             |             |
| Chloroethane               | UG/L     | 5         |             | 0.35 J      |                                     |             |             |
| Dichlorodifluoromethane    | UG/L     | 5         | 0.86 J      |             | 1 J                                 |             |             |
| Metals                     |          |           |             |             |                                     |             |             |
| Aluminum                   | UG/L     | -         |             | NA          | NA                                  | 964 J       |             |
| Antimony                   | UG/L     | 3         |             | NA          | NA                                  |             |             |
| Arsenic                    | UG/L     | 25        |             | NA          | NA                                  | 3.5 B       |             |
| Barium                     | UG/L     | 1000      | 16.0        | NA          | NA                                  | 59.6 B      | 31.0        |
| Cadmium                    | UG/L     | 5         |             | NA          | NA                                  | 1.0 B       |             |
| Calcium                    | UG/L     | -         | 171,000     | NA          | NA                                  | 88,400      | 77,900      |
| Chromium                   | UG/L     | 50        |             | NA          | NA                                  |             |             |
| Cobalt                     | UG/L     | -         |             | NA          | NA                                  | 1.0 B       |             |
| Copper                     | UG/L     | 200       |             | NA          | NA                                  |             |             |
| Iron                       | UG/L     | 300       | 1,050       | ) NA        | NA                                  | 17,100      | 16,600      |
| Magnesium                  | UG/L     | 35000     | 31,700      | NA          | NA                                  | 9,330       | 8,150       |
| Manganese                  | UG/L     | 300       | 525         | ) NA        | NA                                  | 1,260 J     | 1,090       |
| Nickel                     | UG/L     | 100       |             | NA          | NA                                  |             |             |
| Potassium                  | UG/L     | -         | 1,130       | NA          | NA                                  | 1,080 B     |             |
| Silver                     | UG/L     | 50        |             | NA          | NA                                  | 2.0 BJ      |             |
| Sodium                     | UG/L     | 20000     | 14,100      | NA          | NA                                  | 9,150       | 5,800       |
| Vanadium                   | UG/L     | -         |             | NA          | NA                                  | 2.5 B       |             |
| Zinc                       | UG/L     | 2000      |             | NA          | NA                                  | 8.7 B       |             |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |          |           | MW-16       | MW-16       | SW-01D      | SW-01D                | SW-01D      |
|----------------------------|----------|-----------|-------------|-------------|-------------|-----------------------|-------------|
| Sample ID                  |          |           | MW-16       | MW-16       | SW-1D       | DUP-2                 | SW-01D      |
| Matrix                     |          |           | Groundwater | Groundwater | Groundwater | Groundwater           | Groundwater |
| Depth Interval             |          |           | -           | -           | -           | -                     | -           |
| Date Sample                | <u> </u> |           | 07/13/11    | 10/18/12    | 08/17/04    | 04/21/10              | 04/21/10    |
| Parameter                  | Units    | Criteria* |             |             |             | Field Duplicate (1-1) |             |
| Volatile Organic Compounds |          |           |             |             |             |                       |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |             |             |             |                       |             |
| 1,1-Dichloroethane         | UG/L     | 5         |             |             |             |                       |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         |             |             |             |                       |             |
| Chloroethane               | UG/L     | 5         |             |             |             |                       |             |
| Dichlorodifluoromethane    | UG/L     | 5         |             |             |             |                       |             |
| Metals                     |          |           |             |             |             |                       |             |
| Aluminum                   | UG/L     | -         | NA          | NA          |             |                       |             |
| Antimony                   | UG/L     | 3         | NA          | NA          |             |                       |             |
| Arsenic                    | UG/L     | 25        | NA          | NA          |             |                       |             |
| Barium                     | UG/L     | 1000      | NA          | NA          | 61.9 B      | 71.2                  | 70.2        |
| Cadmium                    | UG/L     | 5         | NA          | NA          | 0.24 B      |                       |             |
| Calcium                    | UG/L     | -         | NA          | NA          | 17,500      | 28,600                | 27,600      |
| Chromium                   | UG/L     | 50        | NA          | NA          | 1.6 B       |                       |             |
| Cobalt                     | UG/L     | -         | NA          | NA          | 0.54 B      |                       |             |
| Copper                     | UG/L     | 200       | NA          | NA          | 0.96 B      |                       |             |
| Iron                       | UG/L     | 300       | NA          | NA          | 65.4 B      | 292 J                 | 631 J       |
| Magnesium                  | UG/L     | 35000     | NA          | NA          | 9,700       | 14,000                | 13,500      |
| Manganese                  | UG/L     | 300       | NA          | NA          | 8.3 B       | 8.8                   | 11.8        |
| Nickel                     | UG/L     | 100       | NA          | NA          | 1.6 B       |                       |             |
| Potassium                  | UG/L     | -         | NA          | NA          | 1,780 B     | 1,940                 | 1,890       |
| Silver                     | UG/L     | 50        | NA          | NA          |             |                       |             |
| Sodium                     | UG/L     | 20000     | NA          | NA          | 15,200      | 10,200                | 9,900       |
| Vanadium                   | UG/L     | -         | NA          | NA          |             |                       |             |
| Zinc                       | UG/L     | 2000      | NA          | NA          | 11.0 B      |                       |             |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |       |           | SW-01D      | SW-01D      | SW-01S      | SW-01S      | SW-01S                |
|----------------------------|-------|-----------|-------------|-------------|-------------|-------------|-----------------------|
| Sample ID                  |       |           | SW-01D      | SW-01D      | SW-1S       | SW-01S      | FD-071211             |
| Matrix                     |       |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater           |
| Depth Interval (i          | it)   |           | -           | -           | -           | -           | -                     |
| Date Sampled               |       |           | 07/12/11    | 10/17/12    | 08/17/04    | 04/21/10    | 07/12/11              |
| Parameter                  | Units | Criteria* |             |             |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds |       |           |             |             |             |             |                       |
| 1,1,1-Trichloroethane      | UG/L  | 5         |             |             |             |             |                       |
| 1,1-Dichloroethane         | UG/L  | 5         |             |             |             |             |                       |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |             |             |             |             |                       |
| Chloroethane               | UG/L  | 5         |             |             |             |             |                       |
| Dichlorodifluoromethane    | UG/L  | 5         |             |             |             |             |                       |
| Metals                     |       |           |             |             |             |             |                       |
| Aluminum                   | UG/L  | -         | NA          | NA          | 215         | 5,830       | NA                    |
| Antimony                   | UG/L  | 3         | NA          | NA          |             |             | NA                    |
| Arsenic                    | UG/L  | 25        | NA          | NA          |             |             | NA                    |
| Barium                     | UG/L  | 1000      | NA          | NA          | 27.3 B      | 33.4        | NA                    |
| Cadmium                    | UG/L  | 5         | NA          | NA          | 0.56 B      |             | NA                    |
| Calcium                    | UG/L  | -         | NA          | NA          | 146,000     | 109,000     | NA                    |
| Chromium                   | UG/L  | 50        | NA          | NA          | 11.2        | 6.9         | NA                    |
| Cobalt                     | UG/L  | -         | NA          | NA          | 1.3 B       |             | NA                    |
| Copper                     | UG/L  | 200       | NA          | NA          | 4.0 B       |             | NA                    |
| Iron                       | UG/L  | 300       | NA          | NA          | 419 R       | 3,700       | NA                    |
| Magnesium                  | UG/L  | 35000     | NA          | NA<br>NA    | 4,430 B     | 4,000       | NA                    |
| Manganese                  | UG/L  | 300       | NA          | NA<br>NA    | 44.7 R      | 50.5        | NA                    |
| Nickel                     | UG/L  | 100       | NA          | NA<br>NA    | 6.3 B       | 0.000       | NA                    |
| Potassium                  | UG/L  | -         | NA          | NA<br>NA    | 1,520 B     | 2,080       | NA                    |
| Silver                     | UG/L  | 50        | NA          | NA<br>NA    | 0.41 B      | 0.100       | NA                    |
| Sodium                     | UG/L  | 20000     | NA          | NA          | 3,050 B     | 2,100       | NA                    |
| Vanadium                   | UG/L  | -         | NA          | NA          |             | 6.6         | NA                    |
| Zinc                       | UG/L  | 2000      | NA          | NA          | 14.4 B      |             | NA                    |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |          |           | SW-01S      | SW-01S      | SW-02D      | SW-02D      | SW-02D      |
|----------------------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                  |          |           | SW-01S      | SW-01S      | SW-2D       | SW-02D      | SW-02D      |
| Matrix                     |          |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (           |          |           | -           | -           | -           | -           | -           |
| Date Sampled               | <u> </u> |           | 07/12/11    | 10/17/12    | 08/16/04    | 04/22/10    | 07/12/11    |
| Parameter                  | Units    | Criteria* |             |             |             |             |             |
| Volatile Organic Compounds |          |           |             |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         |             |             |             |             |             |
| 1,1-Dichloroethane         | UG/L     | 5         |             |             |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         |             |             |             |             |             |
| Chloroethane               | UG/L     | 5         |             |             |             |             |             |
| Dichlorodifluoromethane    | UG/L     | 5         |             |             |             |             |             |
| Metals                     |          |           |             |             |             |             |             |
| Aluminum                   | UG/L     | -         | NA          | NA          |             | 443         | NA          |
| Antimony                   | UG/L     | 3         | NA          | NA          |             |             | NA          |
| Arsenic                    | UG/L     | 25        | NA          | NA          |             |             | NA          |
| Barium                     | UG/L     | 1000      | NA          | NA          | 84.4 B      | 65.7        | NA          |
| Cadmium                    | UG/L     | 5         | NA          | NA          | 0.25 B      |             | NA          |
| Calcium                    | UG/L     | -         | NA          | NA          | 44,100      | 62,800      | NA          |
| Chromium                   | UG/L     | 50        | NA          | NA          | 3.0 B       | 4.1         | NA          |
| Cobalt                     | UG/L     | -         | NA          | NA          | 0.55 B      |             | NA          |
| Copper                     | UG/L     | 200       | NA          | NA          | 5.6 B       |             | NA          |
| Iron                       | UG/L     | 300       | NA          | NA          | 51.2 B      | 433         | NA          |
| Magnesium                  | UG/L     | 35000     | NA          | NA          | 19,800      | 22,300      | NA          |
| Manganese                  | UG/L     | 300       | NA          | NA          | 2.8 B       | 10.2        | NA          |
| Nickel                     | UG/L     | 100       | NA          | NA          | 3.3 B       |             | NA          |
| Potassium                  | UG/L     | -         | NA          | NA          | 9,580       | 1,870       | NA          |
| Silver                     | UG/L     | 50        | NA          | NA          |             |             | NA          |
| Sodium                     | UG/L     | 20000     | NA          | NA          | 11,300      | 7,500       | NA          |
| Vanadium                   | UG/L     | -         | NA          | NA          |             |             | NA          |
| Zinc                       | UG/L     | 2000      | NA          | NA          | 11.7 B      |             | NA          |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |       |           | SW-02D                | SW-02D      | SW-02S      | SW-02S      | SW-02S      |
|----------------------------|-------|-----------|-----------------------|-------------|-------------|-------------|-------------|
| Sample ID                  |       |           | FD-101712             | SW-02D      | SW-2S       | SW-02S      | SW-02S      |
| Matrix                     |       |           | Groundwater           | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (           | ft)   |           | -                     | -           | -           | -           | -           |
| Date Sampled               |       |           | 10/17/12              | 10/17/12    | 08/16/04    | 04/22/10    | 07/12/11    |
| Parameter                  | Units | Criteria* | Field Duplicate (1-1) |             |             |             |             |
| Volatile Organic Compounds |       |           |                       |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L  | 5         |                       |             | 3 J         | 1.9         |             |
| 1,1-Dichloroethane         | UG/L  | 5         |                       |             |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |                       |             |             |             |             |
| Chloroethane               | UG/L  | 5         |                       |             |             |             |             |
| Dichlorodifluoromethane    | UG/L  | 5         |                       |             |             |             |             |
| Metals                     |       |           |                       |             |             |             |             |
| Aluminum                   | UG/L  | -         | NA                    | NA          | 250         |             | NA          |
| Antimony                   | UG/L  | 3         | NA                    | NA          |             |             | NA          |
| Arsenic                    | UG/L  | 25        | NA                    | NA          |             |             | NA          |
| Barium                     | UG/L  | 1000      | NA                    | NA          | 16.2 B      | 2.9         | NA          |
| Cadmium                    | UG/L  | 5         | NA                    | NA          |             |             | NA          |
| Calcium                    | UG/L  | 1         | NA                    | NA          | 53,500      | 57,400      | NA          |
| Chromium                   | UG/L  | 50        | NA                    | NA          | 3.5 B       |             | NA          |
| Cobalt                     | UG/L  | -         | NA                    | NA          | 0.79 B      |             | NA          |
| Copper                     | UG/L  | 200       | NA                    | NA          | 4.3 B       |             | NA          |
| Iron                       | UG/L  | 300       | NA                    | NA          | 418 R       |             | NA          |
| Magnesium                  | UG/L  | 35000     | NA                    | NA          | 2,670 B     | 2,240       | NA          |
| Manganese                  | UG/L  | 300       | NA                    | NA          | 50.4 R      |             | NA          |
| Nickel                     | UG/L  | 100       | NA                    | NA          | 2.9 B       |             | NA          |
| Potassium                  | UG/L  | -         | NA                    | NA          | 444 B       |             | NA          |
| Silver                     | UG/L  | 50        | NA                    | NA          |             |             | NA          |
| Sodium                     | UG/L  | 20000     | NA                    | NA          | 746 B       | 1,000       | NA          |
| Vanadium                   | UG/L  | -         | NA                    | NA          |             |             | NA          |
| Zinc                       | UG/L  | 2000      | NA                    | NA          | 11.5 B      |             | NA          |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |          |           | SW-02S      | SW-03S      | SW-03S      | SW-03S      | SW-03S      |
|----------------------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                  |          |           | SW-02S      | SW-3S       | SW-03S      | SW-03S      | SW-03S      |
| Matrix                     |          |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval             |          |           | -           | •           | -           | -           | -           |
| Date Sampled               | <u> </u> |           | 10/17/12    | 08/16/04    | 04/22/10    | 07/12/11    | 10/17/12    |
| Parameter                  | Units    | Criteria* |             |             |             |             |             |
| Volatile Organic Compounds |          |           |             |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L     | 5         | 1 J         |             |             |             |             |
| 1,1-Dichloroethane         | UG/L     | 5         |             |             |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L     | 5         |             |             |             |             |             |
| Chloroethane               | UG/L     | 5         |             |             |             |             |             |
| Dichlorodifluoromethane    | UG/L     | 5         |             |             |             |             |             |
| Metals                     |          |           |             |             |             |             |             |
| Aluminum                   | UG/L     | -         | NA          | 197 B       |             | NA          | NA          |
| Antimony                   | UG/L     | 3         | NA          |             |             | NA          | NA          |
| Arsenic                    | UG/L     | 25        | NA          |             |             | NA          | NA          |
| Barium                     | UG/L     | 1000      | NA          | 27.6 B      | 8.8         | NA          | NA          |
| Cadmium                    | UG/L     | 5         | NA          | 0.29 B      |             | NA          | NA          |
| Calcium                    | UG/L     | -         | NA          | 95,400      | 74,400      | NA          | NA          |
| Chromium                   | UG/L     | 50        | NA          | 2.3 B       |             | NA          | NA          |
| Cobalt                     | UG/L     | -         | NA          | 0.78 B      |             | NA          | NA          |
| Copper                     | UG/L     | 200       | NA          | 4.3 B       |             | NA          | NA          |
| Iron                       | UG/L     | 300       | NA          | 394 R       |             | NA          | NA          |
| Magnesium                  | UG/L     | 35000     | NA          | 4,380 B     | 3,040       | NA          | NA          |
| Manganese                  | UG/L     | 300       | NA          | 32.4 R      |             | NA          | NA          |
| Nickel                     | UG/L     | 100       | NA          | 2.3 B       |             | NA          | NA          |
| Potassium                  | UG/L     | -         | NA          | 2,640 B     | 1,910       | NA          | NA          |
| Silver                     | UG/L     | 50        | NA          |             |             | NA          | NA          |
| Sodium                     | UG/L     | 20000     | NA          | 63,500      | 22,600      | NA          | NA          |
| Vanadium                   | UG/L     | -         | NA          |             |             | NA          | NA          |
| Zinc                       | UG/L     | 2000      | NA          | 21.4        |             | NA          | NA          |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |       |           | SW-04D      | SW-04D      | SW-04D      | SW-04D      | SW-04S      |
|----------------------------|-------|-----------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                  |       |           | SW-04D      | SW-04D      | SW-04D      | SW-04D      | SW-04S      |
| Matrix                     |       |           | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (1          | t)    |           | -           | -           | -           | -           | -           |
| Date Sampled               |       |           | 08/18/04    | 04/21/10    | 07/13/11    | 10/17/12    | 08/18/04    |
| Parameter                  | Units | Criteria* |             |             |             |             |             |
| Volatile Organic Compounds |       |           |             |             |             |             |             |
| 1,1,1-Trichloroethane      | UG/L  | 5         |             |             |             |             |             |
| 1,1-Dichloroethane         | UG/L  | 5         |             |             |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |             |             |             |             |             |
| Chloroethane               | UG/L  | 5         |             |             |             |             |             |
| Dichlorodifluoromethane    | UG/L  | 5         |             |             |             |             |             |
| Metals                     |       |           |             |             |             |             |             |
| Aluminum                   | UG/L  | -         | 1,120 J     | 1,800       | NA          | NA          | 914 J       |
| Antimony                   | UG/L  | 3         |             |             | NA          | NA          |             |
| Arsenic                    | UG/L  | 25        |             |             | NA          | NA          |             |
| Barium                     | UG/L  | 1000      | 18.4 B      | 14.7        | NA          | NA          | 123 B       |
| Cadmium                    | UG/L  | 5         |             | 2.4         | NA          | NA          | 0.68 B      |
| Calcium                    | UG/L  | -         | 10,700      | 12,200      | NA          | NA          | 105,000     |
| Chromium                   | UG/L  | 50        | 1.1 B       |             | NA          | NA          | 59.5        |
| Cobalt                     | UG/L  | -         | 0.81 B      |             | NA          | NA          | 2.2 B       |
| Copper                     | UG/L  | 200       |             |             | NA          | NA          | 4.8 B       |
| Iron                       | UG/L  | 300       | 1,360       | 1,630       | NA          | NA          | 3,040       |
| Magnesium                  | UG/L  | 35000     | 1,750 B     | 1,960       | NA          | NA          | 11,200      |
| Manganese                  | UG/L  | 300       | 36.1 J      | 38.7        | NA<br>NA    | NA          | 775 J       |
| Nickel                     | UG/L  | 100       | 1.2 B       | 4.70        | NA<br>NA    | NA          | 43.1 J      |
| Potassium                  | UG/L  | -         | 1,160 B     | 1,170       | NA          | NA          | 6,150 J     |
| Silver                     | UG/L  | 50        | 20.722      | 20,000      | NA<br>NA    | NA          | 44 700      |
| Sodium                     | UG/L  | 20000     | 32,700      | 32,000      | NA<br>NA    | NA          | 11,700      |
| Vanadium                   | UG/L  | -         | 1.8 B       |             | NA          | NA          | 2.2 B       |
| Zinc                       | UG/L  | 2000      | 5.5 B       |             | NA          | NA          | 12.6 B      |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

| Location ID                |       |           | SW-04S      | SW-04S      | SW-04S      |
|----------------------------|-------|-----------|-------------|-------------|-------------|
| Sample ID                  |       |           | SW-04S      | SW-04S      | SW-04S      |
| Matrix                     |       |           | Groundwater | Groundwater | Groundwater |
| Depth Interval (           |       |           | -           | -           | -           |
| Date Sampled               |       |           | 04/21/10    | 07/13/11    | 10/17/12    |
| Parameter                  | Units | Criteria* |             |             |             |
| Volatile Organic Compounds |       |           |             |             |             |
| 1,1,1-Trichloroethane      | UG/L  | 5         |             |             |             |
| 1,1-Dichloroethane         | UG/L  | 5         |             |             |             |
| 1,2-Dichloroethene (cis)   | UG/L  | 5         |             |             |             |
| Chloroethane               | UG/L  | 5         |             | 0.48 J      |             |
| Dichlorodifluoromethane    | UG/L  | 5         |             |             |             |
| Metals                     |       |           | _           |             |             |
| Aluminum                   | UG/L  | -         | 336         | NA          | NA          |
| Antimony                   | UG/L  | 3         |             | NA          | NA          |
| Arsenic                    | UG/L  | 25        |             | NA          | NA          |
| Barium                     | UG/L  | 1000      | 26.1        | NA          | NA          |
| Cadmium                    | UG/L  | 5         |             | NA          | NA          |
| Calcium                    | UG/L  | -         | 92,700      | NA          | NA          |
| Chromium                   | UG/L  | 50        |             | NA          | NA          |
| Cobalt                     | UG/L  | -         |             | NA          | NA          |
| Copper                     | UG/L  | 200       |             | NA          | NA          |
| Iron                       | UG/L  | 300       | 8,870       | NA          | NA          |
| Magnesium                  | UG/L  | 35000     | 6,900       | NA          | NA          |
| Manganese                  | UG/L  | 300       | 2,080       | NA          | NA          |
| Nickel                     | UG/L  | 100       |             | NA          | NA          |
| Potassium                  | UG/L  | -         | 1,940       | NA          | NA          |
| Silver                     | UG/L  | 50        |             | NA          | NA          |
| Sodium                     | UG/L  | 20000     | 4,300       | NA          | NA          |
| Vanadium                   | UG/L  | -         |             | NA          | NA          |
| Zinc                       | UG/L  | 2000      | _           | NA          | NA          |

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. B (metals or inorganics) - The reported concentration is above the method detection limit but below the quantitation limit. NA - Not analyzed.

### **TABLE 4**

## SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE/DETENTION POND WATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |       |            | NDP           | NDP                   | NDP           | NDP           | SDP                   |
|----------------------------|-------|------------|---------------|-----------------------|---------------|---------------|-----------------------|
| Sample ID                  |       |            | NDP           | FD-071311             | NDP-WS        | NDP-WS        | DUP-1                 |
| Matrix                     |       |            | Surface Water | Surface Water         | Surface Water | Surface Water | Surface Water         |
| Depth Interval (           | ft)   |            | -             | -                     | -             | •             | -                     |
| Date Sampled               |       |            | 04/20/10      | 07/13/11              | 07/13/11      | 10/18/12      | 04/20/10              |
| Parameter                  | Units | Criteria*  |               | Field Duplicate (1-1) |               |               | Field Duplicate (1-1) |
| Volatile Organic Compounds |       |            |               |                       |               |               |                       |
| Acetone                    | UG/L  | -          |               |                       |               |               |                       |
| Benzene                    | UG/L  | 10         |               |                       |               |               |                       |
| Chlorobenzene              | UG/L  | 5          |               |                       |               |               |                       |
| Metals                     |       |            |               |                       |               |               |                       |
| Aluminum                   | UG/L  | 100 ionic  |               | NA                    | NA            | NA            | 1,570                 |
| Barium                     | UG/L  | -          | 32.5          | NA                    | NA            | NA            | 51.8                  |
| Calcium                    | UG/L  | -          | 123,000       | NA                    | NA            | NA            | 77,200                |
| Cobalt                     | UG/L  | 5          |               | NA                    | NA            | NA            |                       |
| Iron                       | UG/L  | 300        | 1,650         | NA                    | NA            | NA            | 2,790                 |
| Magnesium                  | UG/L  | -          | 15,900        | NA                    | NA            | NA            | 16,200                |
| Manganese                  | UG/L  | -          | 720           | NA                    | NA            | NA            | 101 J                 |
| Nickel                     | UG/L  | calc, diss |               | NA                    | NA            | NA            |                       |
| Potassium                  | UG/L  | -          | 3,700         | NA                    | NA            | NA            | 7,760                 |
| Sodium                     | UG/L  | -          | 4,000         | NA                    | NA            | NA            | 6,200                 |
| Miscellaneous Parameters   |       |            |               |                       |               |               |                       |
| Hardness (calculated)      | MG/L  | -          | 373           | NA                    | NA            | NA            | 259                   |

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

### **TABLE 4**

## SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE/DETENTION POND WATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |       |            | SDP           | SDP           | SDP                   | SDP           | SWTR-1E       |
|----------------------------|-------|------------|---------------|---------------|-----------------------|---------------|---------------|
| Sample ID                  |       |            | SDP           | SDP-WS        | FD-101812             | SDP-WS        | SWTR-1E       |
| Matrix                     |       |            | Surface Water | Surface Water | Surface Water         | Surface Water | Surface Water |
| Depth Interval (           | ft)   |            | -             | -             | -                     | -             | -             |
| Date Sampled               |       |            | 04/20/10      | 07/13/11      | 10/18/12              | 10/18/12      | 04/20/10      |
| Parameter                  | Units | Criteria*  |               |               | Field Duplicate (1-1) |               |               |
| Volatile Organic Compounds |       |            |               |               |                       |               |               |
| Acetone                    | UG/L  | -          |               |               |                       |               |               |
| Benzene                    | UG/L  | 10         |               |               |                       |               |               |
| Chlorobenzene              | UG/L  | 5          |               |               |                       |               |               |
| Metals                     |       |            |               |               |                       |               |               |
| Aluminum                   | UG/L  | 100 ionic  | 1,460         | NA            | NA                    | NA            |               |
| Barium                     | UG/L  | -          | 49.7          | NA            | NA                    | NA            | 22.3          |
| Calcium                    | UG/L  | -          | 74,600        | NA            | NA                    | NA            | 88,400        |
| Cobalt                     | UG/L  | 5          |               | NA            | NA                    | NA            |               |
| Iron                       | UG/L  | 300        | 2,360         | NA            | NA                    | NA            | 230           |
| Magnesium                  | UG/L  | -          | 15,800        | NA            | NA                    | NA            | 12,800        |
| Manganese                  | UG/L  | -          | 71.3 J        | NA            | NA                    | NA            | 25.4          |
| Nickel                     | UG/L  | calc, diss |               | NA            | NA                    | NA            |               |
| Potassium                  | UG/L  | -          | 7,650         | NA            | NA                    | NA            | 5,570         |
| Sodium                     | UG/L  | -          | 6,100         | NA            | NA                    | NA            | 6,600         |
| Miscellaneous Parameters   |       |            |               |               |                       |               |               |
| Hardness (calculated)      | MG/L  | -          | 251           | NA            | NA                    | NA            | 273           |

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

### **TABLE 4**

## SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE/DETENTION POND WATER SAMPLES ROSE VALLEY LANDFILL

| Location ID                |       |            | SWTR-1E       | SWTR-1E       | SWTR-1T       | SWTR-1T       | SWTR-1T       |
|----------------------------|-------|------------|---------------|---------------|---------------|---------------|---------------|
| Sample ID                  |       |            | SWTR-1E       | SWTR-1E       | SWTR-1T       | SWRT-1T       | SWTR-1T       |
| Matrix                     |       |            | Surface Water |
| Depth Interval             | (ft)  |            | •             | •             | -             | •             | -             |
| Date Sample                | d     |            | 07/13/11      | 10/18/12      | 04/21/10      | 07/13/11      | 10/18/12      |
| Parameter                  | Units | Criteria*  |               |               |               |               |               |
| Volatile Organic Compounds |       |            |               |               |               |               |               |
| Acetone                    | UG/L  | -          |               |               | 9.4           | 20 J          |               |
| Benzene                    | UG/L  | 10         |               |               |               | 1.8 J         |               |
| Chlorobenzene              | UG/L  | 5          |               |               | 0.75 J        | 3.3 J         |               |
| Metals                     |       |            |               |               |               |               |               |
| Aluminum                   | UG/L  | 100 ionic  | NA            | NA            |               | NA            | NA            |
| Barium                     | UG/L  | -          | NA            | NA            | 117           | NA            | NA            |
| Calcium                    | UG/L  | -          | NA            | NA            | 122,000       | NA            | NA            |
| Cobalt                     | UG/L  | 5          | NA            | NA            | 7.1           | NA            | NA            |
| Iron                       | UG/L  | 300        | NA            | NA            | 10,500        | NA            | NA            |
| Magnesium                  | UG/L  | -          | NA            | NA            | 26,100        | NA            | NA            |
| Manganese                  | UG/L  | -          | NA            | NA            | 385           | NA            | NA            |
| Nickel                     | UG/L  | calc, diss | NA            | NA            | 12.0          | NA            | NA            |
| Potassium                  | UG/L  | -          | NA            | NA            | 70,800        | NA            | NA            |
| Sodium                     | UG/L  | -          | NA            | NA            | 65,400        | NA            | NA            |
| Miscellaneous Parameters   |       |            |               |               |               |               |               |
| Hardness (calculated)      | MG/L  | -          | NA            | NA            | 412           | NA            | NA            |

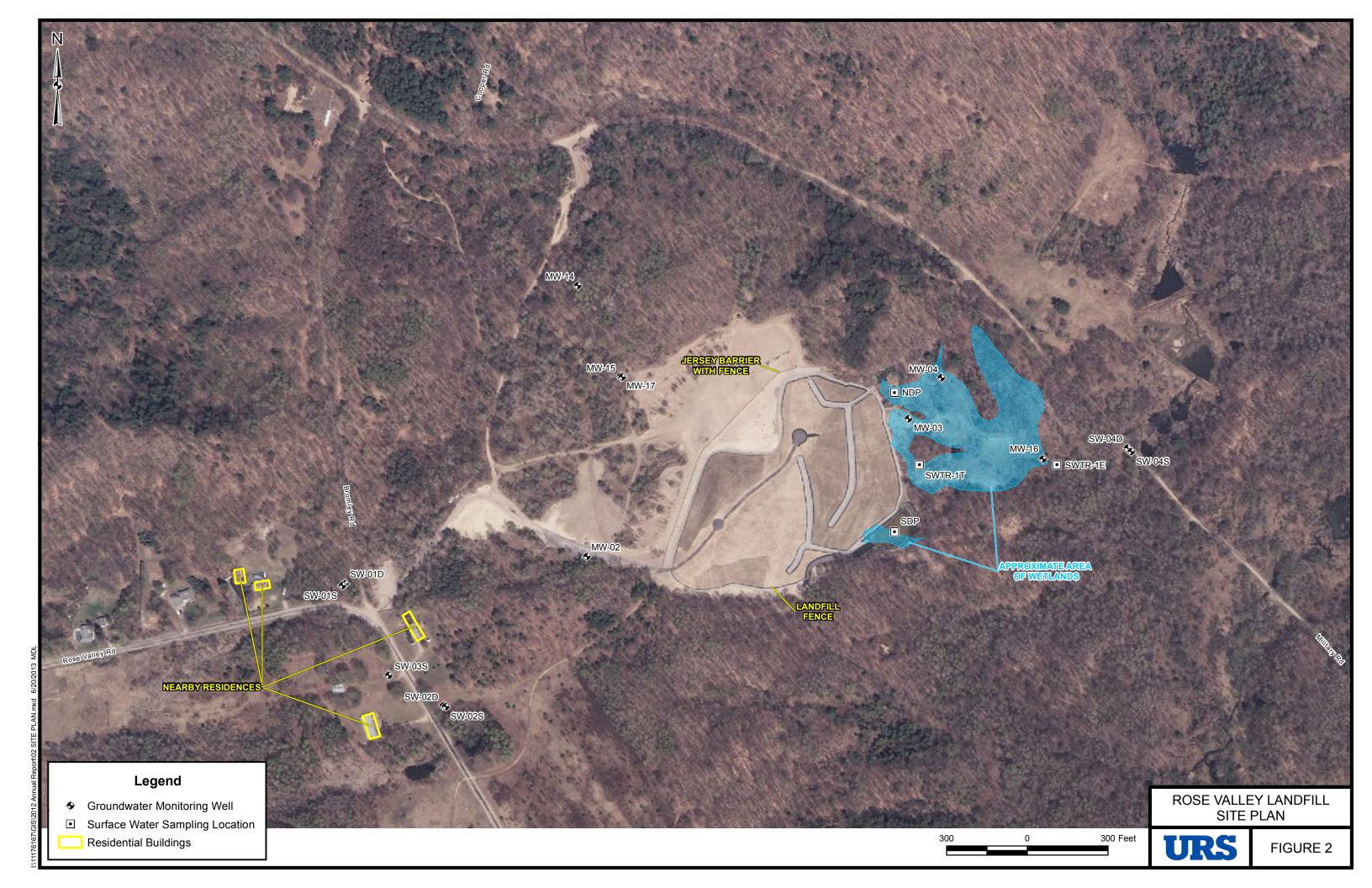
Flags assigned during chemistry validation are shown.

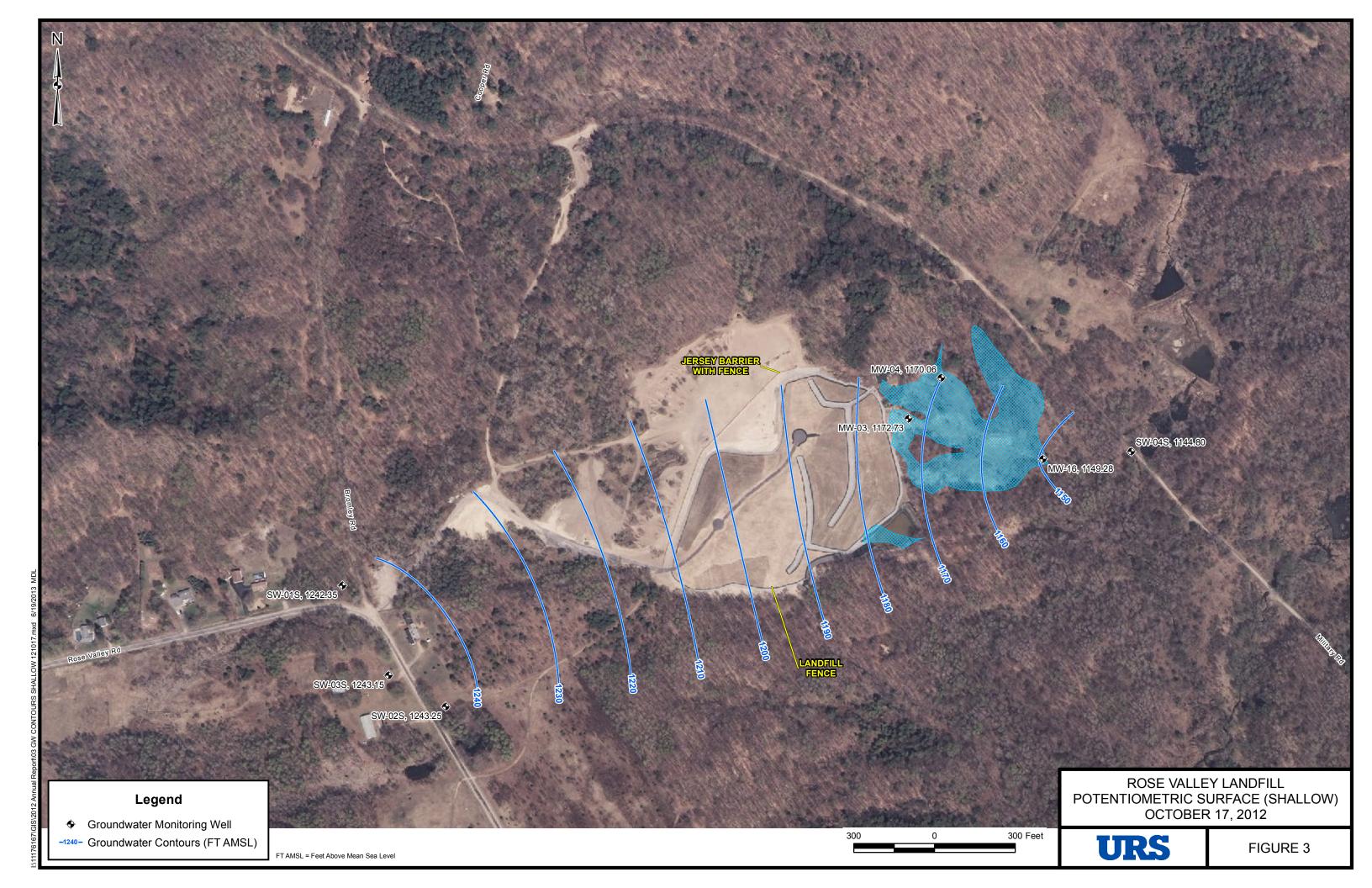
<sup>\*</sup>Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

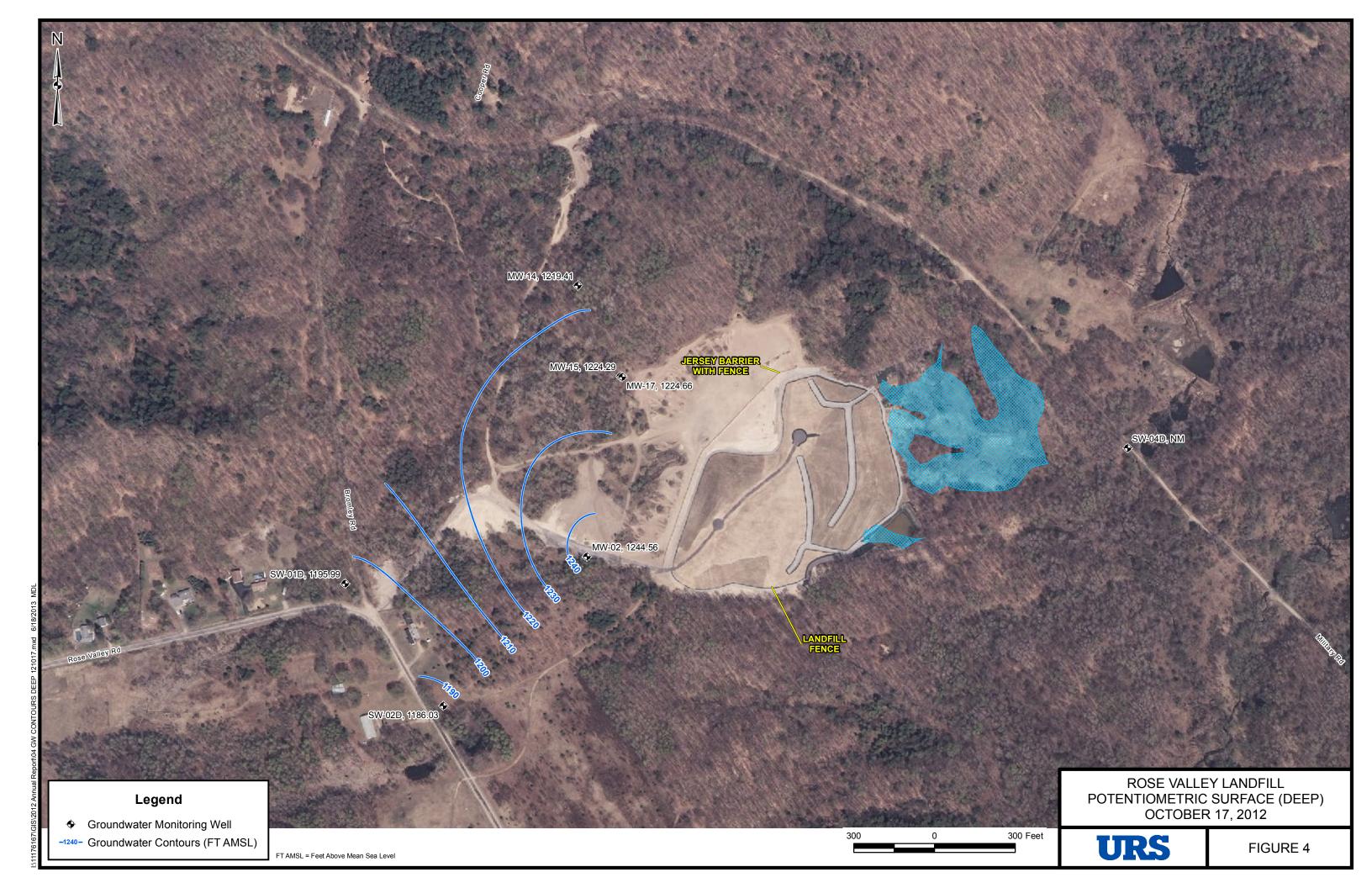
<sup>- =</sup> No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

## TABLE 5 SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE WATER CRITERIA FOR CLASS C SURFACE WATERS REQUIRING CALCULATION ROSE VALLEY LANDFILL

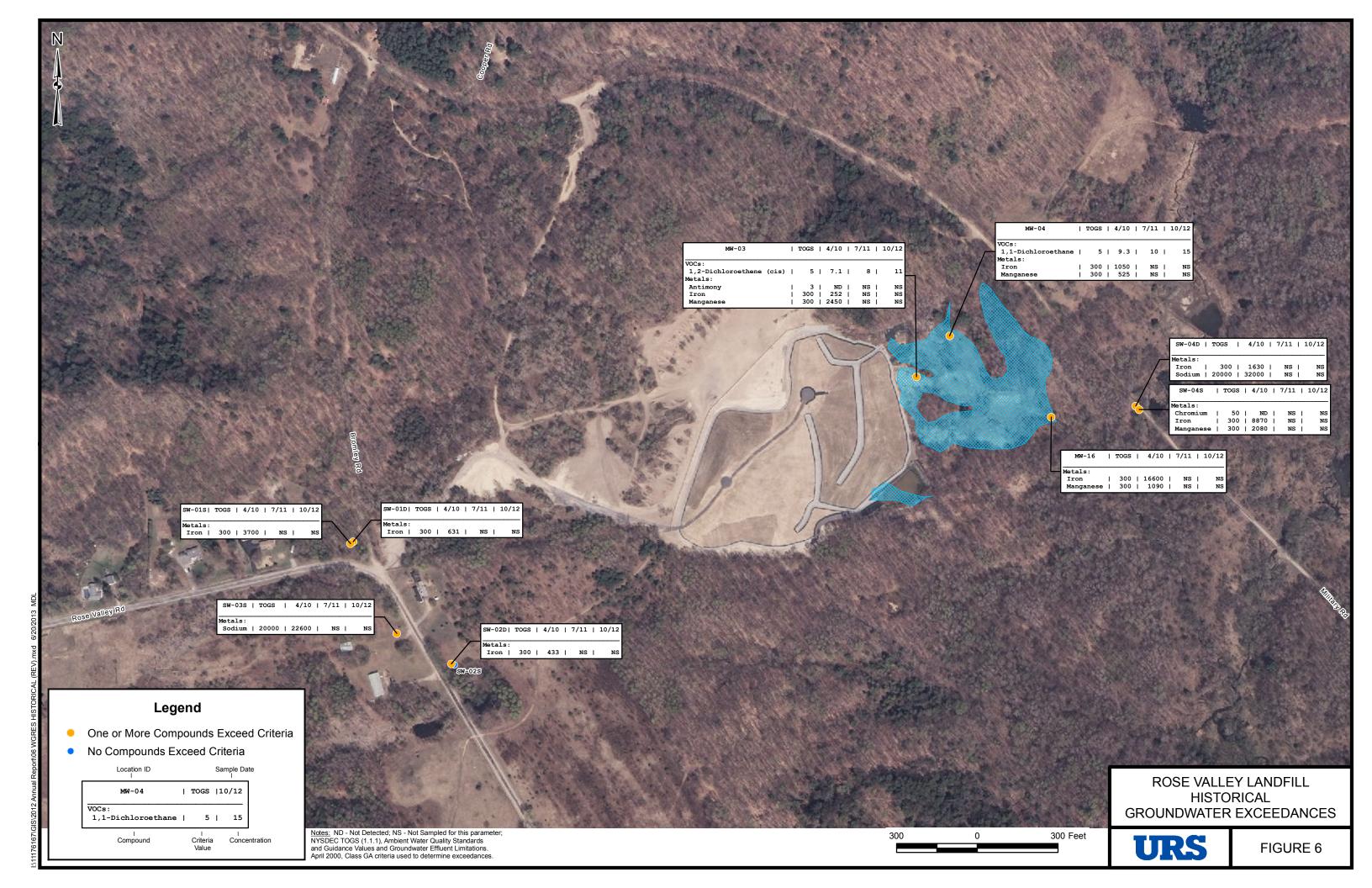

|                       |             | Sample ID           | NDP      |        | DUP-1 (SDP) |        | SDP      |        | SWTR-1E  |        | SWTR-1T  |        |
|-----------------------|-------------|---------------------|----------|--------|-------------|--------|----------|--------|----------|--------|----------|--------|
|                       | Sample Date |                     | 04/20/10 |        | 04/20/10    |        | 04/20/10 |        | 04/20/10 |        | 04/21/10 |        |
|                       | Units       | Criteria Applies To | Criteria | Result | Criteria    | Result | Criteria | Result | Criteria | Result | Criteria | Result |
| Metals                |             |                     |          |        |             |        |          |        |          |        |          |        |
| Hardness (calculated) | MG/L        | Not applicable      |          | 373    |             | 259    |          | 251    |          | 273    |          | 412    |
| Nickel                | UG/L        | Dissolved form      | 158      |        | 117         |        | 113      |        | 122      |        | 172      | 12.0   |


### Criteria:


NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.


--- No criteria
Blank cell - not detected
Only detected results shown.


### **FIGURES**
















## APPENDIX A FIELD NOTES

Location Roce Vallay LF Date 10/17/12 Cours/S 17.26 85.95 78.42 MW-17 98.42 19.60 20.04 78.95 soft Bothow = 60.59 9018 Project / Client MYSDE C 5w -035 1452 20.82 1601 Went or 15.65 010-W2 4 500-040 arking 1 mu-15 88.07 2.40 7-32 020-ms K 8. se - 50 - 01 5 21-16 78-03 70-37 15:15 set up at sist-025
15:49 collected single @ sw. 025
15:55 set up at lownin sw. 02D
collected Field dupe at this
Lowton- Gradhes pung used
at this bocation dueto depth (79.42)
16:35 collected sauple Sumy - it Location Rose Valley (F Date 10/12/1 Volumes - Flow rate 500 Ml 15:02 collected sample + MS/MSD 15:15 set up at 5W-025 1300 - Stop for 1 out and Motel cheel-10 using goping uf Horba US2 URS Pasamel - Char O. + Tim I Calibrate 0.52 w/ Flow Cell Setup Polaris Otility Vehice + Roading 40 0.0 14:15 set up @ SW 03 \$. Wester - Mostly Sony 1400 Return to Landfill 0945 - Arina @ the site Actual 4.49 Project / Client NYSDEC ego sporent Tuch. Cond

1058 Signal 25 10 10:45 A 80:11

Location Rose Wally Corrd RV Date 19/18/12 39 - Meet Mike Mayare 7.15 in bu bould (2 lods) occurs Dark entrance from a ce of debras adjustments were made to geoping so flow rate ould be pamped at most rate which is 12 m occurred on Minha Ref where lange occurd - (5) removed almosts soo they now swend when they almost almost almost almost almost so see and order the sample @ 500-045 8:30 mote | Make equip / thank after bring site town set up at SU-045 - , notes frontax Mis is an aterian well-SU-045 - por a Dirok Project / Client 18:00 Collected sample 1830 2-40ml vials were collected e each lotter for Tel vers + 16:45 moved to SW-15
17:29 collected sample
alread, set up @ SW-1D
17:39 15h 5tatel punging up
Grund Pos 5tatel punging up Polaris landed up on trailer - URS offsite TICS analysis Project / Client NYDEC Location RULF

Sw TR- 1T. South Defending 17:05 collected South Defending Pond SDP-WS - also calleded Dupe at this Colation 18:00 Secured Ranger and 18:00 Secured Ranger and Doubed up all gas - gut sipe -Date 10/18/1241 16:45 colled sculace Has Says cloudy 600 F DURALO. Location RVLF Project / Client DEC Mis location 11:35/11 moved to MW-16

14:37 collected scarple

Well we purper at locast flow
14:30 15h prepared for collect my
of scalaa water swork in 15: 40 set up at m W-3, 16: 33 collected 19st and 420 collected NDP- WS, and collected MS and MSD @ Location Rose Unlley LF Date 10/18/12 14-14:00 lawd - old site 14-15:00 Engineery inspection of landfill conducted by Mite Moran NYSDEZ + Chulk yks NO defticions of day MEV.4 Say too his great shape , they to be 15:33 collocks Project / Client NYINEC Consequence 15.00

## APPENDIX B

## MONITORING WELL PURGE LOGS/ SURFACE WATER SAMPLE LOG

### **SURFACE WATER SAMPLING - SAMPLE COLLECTION DATA SHEET**

Project Name: Rose Valley Landfill Project Num 11176716

Sampling Crew Members: <u>C. Dusel, T. Ifkovich</u> Supervisor: <u>C. Dusel</u>

Date of Sample Collection: <u>10/18/2012</u>

| Sample<br>I.D.<br>Number | Sample<br>Location | Est.<br>Stream<br>Width | Est.<br>Stream<br>Depth | Est.<br>Stream<br>Velocity | рH   | Temp.<br><sup>0</sup> C | Diss. O <sub>2</sub> (mg/L) | Turb.<br>(NTU) | Cond.<br>(mS/cm) | ORP<br>(mV) | Time | Sample<br>Analysis | Sample<br>Description        |
|--------------------------|--------------------|-------------------------|-------------------------|----------------------------|------|-------------------------|-----------------------------|----------------|------------------|-------------|------|--------------------|------------------------------|
| NDP                      | NDP                | Not<br>measured         | Not<br>measured         | Not<br>measured            | 7.99 | 14.54                   | 7.14                        | 15.6           | 0.565            | 7           | 1630 | VOCs               | Surface water &<br>MS/MSD    |
| SDP                      | SDP                | Not<br>measured         | Not<br>measured         | Not<br>measured            | 7.76 | 13.79                   | 3.10                        | 22.2           | 0.522            | 30          | 1705 | VOCs               | Surface water &<br>FD-101812 |
| SWTR-1E                  | SWTR-1E            | Not<br>measured         | Not<br>measured         | Not<br>measured            | 7.75 | 12.20                   | 4.58                        | 0.2            | 0.449            | -92         | 1237 | VOCs               | Surface water                |
| SWTR-1T                  | SWTR-1T            | Not<br>measured         | Not<br>measured         | Not<br>measured            | 7.00 | 14.11                   | 0.34                        | >1000          | 1.11             | -54         | 1645 | VOCs               | Surface water                |
|                          |                    |                         |                         |                            |      |                         |                             |                |                  |             |      |                    |                              |
|                          |                    |                         |                         |                            |      |                         |                             |                |                  |             |      |                    |                              |
|                          |                    |                         |                         |                            |      |                         |                             |                |                  |             |      |                    |                              |
|                          |                    |                         |                         |                            |      |                         |                             |                |                  |             |      |                    |                              |

| Additional Comments: |  |  |  |
|----------------------|--|--|--|
|                      |  |  |  |
|                      |  |  |  |

| Project:                        | 11176716.000                     | 004          | Site: _                                 | Rose Va | lley Landfill     | _ Well #:                                 | MW-3              |          |
|---------------------------------|----------------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personnel: <u>C. Dusel, T. I</u> | fkovich      |                                         | Date:   | 10/18/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: | Geopump                          |              | _Tubing Type:_                          | Н       | DPE               | _ Tubing Inlet:                           | Screen M          | 1idpoint |
| Measuring Point:                | Initial Depth TOC to Water:      | 2.85         | Depth to<br>Well Bottom:                | 17.26   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 | PVC                              |              | Volume in 1<br>Well Casing<br>(liters): | 8.9     | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 9.8               |          |
| Sample ID:                      | MW-03                            | Sample Time: | 1623                                    |         | _ QA/QC:          | None                                      |                   |          |
| Sample Para                     | meters: TCL VOC + T              | TICs         |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

|            |      |           | COND.   | DISS. O <sub>2</sub> | TURB. |           | FLOW<br>RATE | DEPTH TO<br>WATER |
|------------|------|-----------|---------|----------------------|-------|-----------|--------------|-------------------|
| TIME       | рН   | TEMP (°C) | (mS/cm) | (mg/l)               | (NTU) | ORP (mV)  | (ml/min.)    | (btor)            |
| 1548       | 7.09 | 15.93     | 0.823   | 4.72                 | 5.3   | 38        | 250          | 2.85              |
| 1553       | 6.93 | 14.81     | 0.840   | 2.40                 | 0.0   | 30        | 250          | 3.41              |
| 1558       | 6.88 | 14.42     | 0.846   | 0.96                 | 0.0   | 27        | 250          | 3.43              |
| 1603       | 6.86 | 14.33     | 0.850   | 0.16                 | 0.0   | 27        | 300          | 3.43              |
| 1608       | 6.84 | 14.14     | 0.853   | 0.00                 | 0.0   | 26        | 300          | 3.43              |
| 1613       | 6.83 | 14.11     | 0.852   | 0.00                 | 0.0   | 26        | 300          | 3.43              |
| 1618       | 6.83 | 13.96     | 0.853   | 0.00                 | 0.0   | 25        | 300          | 3.43              |
| 1623       | 6.82 | 13.92     | 0.853   | 0.00                 | 0.0   | 24        | 300          | 3.43              |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            | _    |           |         |                      |       |           | _            |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
| Tolerance: | 0.1  |           | 3%      | 10%                  | 10%   | + or - 10 |              |                   |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        | 11176716.0                     | 0004        | Site: _                                 | Rose Va | lley Landfill       | _ Well #:                                 | MW-4              |          |
|---------------------------------|--------------------------------|-------------|-----------------------------------------|---------|---------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personnel: <u>C. Dusel, T.</u> | . Ifkovich  |                                         | Date:   | 10/18/12            | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: | Geopum                         | p           | Tubing Type:_                           | Н       | DPE                 | _ Tubing Inlet:                           | Screen M          | 1idpoint |
| Measuring<br>Point:             | Initial Depti                  | h<br>2.40   | Depth toWell Bottom:                    | 17.51   | Well<br>_ Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 | PVC                            | _           | Volume in 1<br>Well Casing<br>(liters): | 9.3     | _                   | Estimated<br>Purge<br>Volume<br>(liters): | 8.5               |          |
| Sample ID:                      | MW-04                          | Sample Time | e: 1533                                 |         | QA/QC:              | None                                      |                   |          |
| Sample Para                     | ameters: <u>TCL VOC +</u>      | TICs        |                                         |         |                     |                                           |                   |          |
|                                 |                                |             |                                         |         |                     |                                           |                   |          |

#### **PURGE PARAMETERS**

|            |      |           | COND.   | DISS. O <sub>2</sub> | TURB. |           | FLOW<br>RATE | DEPTH TO<br>WATER |
|------------|------|-----------|---------|----------------------|-------|-----------|--------------|-------------------|
| TIME       | рН   | TEMP (°C) | (mS/cm) | (mg/l)               | (NTU) | ORP (mV)  | (ml/min.)    | (btor)            |
| 1458       | 7.51 | 14.20     | 0.794   | 0.00                 | 5.6   | -21       | 200          | 2.40              |
| 1503       | 7.35 | 14.18     | 0.796   | 0.00                 | 2.0   | -17       | 250          | 2.68              |
| 1508       | 7.25 | 13.89     | 0.786   | 0.00                 | 4.6   | -14       | 250          | 2.70              |
| 1513       | 7.21 | 13.79     | 0.785   | 0.00                 | 6.8   | -7        | 250          | 2.73              |
| 1518       | 7.17 | 13.78     | 0.785   | 0.00                 | 7.3   | -5        | 250          | 2.76              |
| 1523       | 7.15 | 13.74     | 0.785   | 0.00                 | 0.0   | -4        | 250          | 2.78              |
| 1528       | 7.14 | 13.63     | 0.786   | 0.00                 | 0.0   | -3        | 250          | 2.79              |
| 1533       | 7.13 | 13.63     | 0.787   | 0.00                 | 0.7   | -3        | 250          | 2.80              |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
| Tolerance: | 0.1  |           | 3%      | 10%                  | 10%   | + or - 10 |              |                   |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        | 11176716.000                     | 004          | _ Site: _                               | Rose Va | lley Landfill     | _ Well #:                                 | MW-16             |          |
|---------------------------------|----------------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personnel: <u>C. Dusel, T. I</u> | fkovich      |                                         | Date:   | 10/18/12          | _Company:                                 | URS Corp          | oration  |
| Purging/<br>Sampling<br>Device: | Geopump                          |              | _Tubing Type:_                          | Н       | DPE               | _ Tubing Inlet:                           | Screen M          | lidpoint |
| Measuring<br>Point:             | Initial Depth TOC to Water:      | 3.30         | Depth to<br>Well Bottom:                | 11.63   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 8'       |
| Casing<br>Type:                 | PVC                              |              | Volume in 1<br>Well Casing<br>(liters): | 5.1     | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 4.7               |          |
| Sample ID:                      | MW-16                            | Sample Time: | 1227                                    |         | QA/QC:            | None                                      |                   |          |
| Sample Para                     | ameters: TCL VOC + T             | TCs          |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
|            |      |           |                  |                             |                | , , ,     | ,                         |                             |
| 1137       | 8.39 | 14.15     | 0.406            | 0.00                        | 28.0           | -47       | 100                       | 3.30                        |
| 1142       | 7.72 | 14.19     | 0.407            | 0.00                        | 21.9           | -63       | 100                       | 4.09                        |
| 1147       | 7.40 | 14.21     | 0.390            | 0.00                        | 28.5           | -74       | 100                       | 4.50                        |
| 1152       | 7.24 | 14.86     | 0.386            | 0.00                        | 22.2           | -73       | 90                        | 4.57                        |
| 1157       | 7.18 | 15.57     | 0.382            | 0.00                        | 17.4           | -76       | 90                        | 4.65                        |
| 1202       | 7.15 | 15.95     | 0.385            | 0.00                        | 15.9           | -77       | 90                        | 4.72                        |
| 1207       | 7.13 | 16.35     | 0.387            | 0.00                        | 19.0           | -78       | 90                        | 4.79                        |
| 1212       | 7.12 | 16.63     | 0.383            | 0.00                        | 13.9           | -80       | 90                        | 4.86                        |
| 1217       | 7.11 | 16.77     | 0.382            | 0.00                        | 10.8           | -81       | 90                        | 4.91                        |
| 1222       | 7.10 | 16.86     | 0.382            | 0.00                        | 8.7            | -81       | 90                        | 4.96                        |
| 1227       | 7.10 | 16.90     | 0.383            | 0.00                        | 8.7            | -81       | 90                        | 5.04                        |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        |          | 11176716.000               | 04           | _ Site: _                               | Rose Va | lley Landfill     | Well #:                                   | SW-01S            |          |
|---------------------------------|----------|----------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich       |                                         | Date:   | 10/17/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: |          | Geopump                    |              | Tubing Type:                            | Н       | DPE               | _ Tubing Inlet:                           | Screen M          | 1idpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 20.82        | Depth to<br>Well Bottom:                | 28.41   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 |          | PVC                        |              | Volume in 1<br>Well Casing<br>(liters): | 4.7     | _                 | Estimated<br>Purge<br>Volume<br>(liters): | 8.9               |          |
| Sample ID:                      | SW-01S   |                            | Sample Time: | 1729                                    |         | _ QA/QC:          | None                                      |                   |          |
| Sample Para                     | ameters: | TCL VOC + T                | ICs          |                                         |         |                   |                                           |                   |          |
|                                 |          |                            |              |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

|            |      |           | COND.   | DISS. O <sub>2</sub> | TURB. |           | FLOW<br>RATE | DEPTH TO<br>WATER |
|------------|------|-----------|---------|----------------------|-------|-----------|--------------|-------------------|
| TIME       | рН   | TEMP (°C) | (mS/cm) | (mg/l)               | (NTU) | ORP (mV)  | (ml/min.)    | (btor)            |
| 1654       | 7.31 | 12.73     | 0.491   | 0.76                 | 149   | 148       | 300          | 20.82             |
| 1659       | 7.03 | 12.39     | 0.486   | 0.17                 | 34.6  | 164       | 300          | 21.24             |
| 1704       | 6.98 | 12.33     | 0.465   | 0.66                 | 20.2  | 171       | 300          | 21.60             |
| 1709       | 6.95 | 12.47     | 0.466   | 0.40                 | 129   | 175       | 240          | 21.75             |
| 1714       | 6.94 | 12.39     | 0.481   | 0.27                 | 134   | 180       | 240          | 21.85             |
| 1719       | 6.93 | 12.45     | 0.494   | 0.07                 | 167   | 182       | 200          | 21.95             |
| 1724       | 6.93 | 12.47     | 0.504   | 0.01                 | 171   | 183       | 200          | 21.99             |
| 1729       | 6.93 | 12.51     | 0.509   | 0.00                 | 173   | 184       | 200          | 22.04             |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
|            |      |           |         |                      |       |           |              |                   |
| Tolerance: | 0.1  |           | 3%      | 10%                  | 10%   | + or - 10 |              |                   |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        |          | 11176716.000               | 04           | _ Site: _                               | Rose Va | lley Landfill     | _ Well #:                                 | SW-01D            |          |
|---------------------------------|----------|----------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich       |                                         | Date:   | 10/17/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: |          | Grundfos                   |              | _Tubing Type:_                          | Н       | DPE               | _ Tubing Inlet:                           | Screen M          | 1idpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 68.71        | Depth to<br>Well Bottom:                | 83.95   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 | ı        | PVC                        |              | Volume in 1<br>Well Casing<br>(liters): | 9.4     | _                 | Estimated<br>Purge<br>Volume<br>(liters): | 16.0              |          |
| Sample ID:                      | SW-01D   |                            | Sample Time: | 1800                                    |         | QA/QC:            | None                                      |                   |          |
| Sample Para                     | ameters: | TCL VOC + T                | ICs          |                                         |         |                   |                                           |                   |          |
|                                 |          |                            |              |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1730       | 7.46 | 11.98     | 0.221            | 0.00                        | 28.7           | 148       | 900                       | 68.71                       |
| 1735       | 7.89 | 14.88     | 0.224            | 0.00                        | 8.9            | 2         | 900                       | 69.65                       |
| 1740       | 8.00 | 15.69     | 0.222            | 0.00                        | 5.4            | -23       | 450                       | 69.81                       |
| 1745       | 8.10 | 16.68     | 0.221            | 0.00                        | 4.2            | -43       | 450                       | 70.05                       |
| 1750       | 8.14 | 16.50     | 0.220            | 0.00                        | 1.1            | -47       | 250                       | 70.13                       |
| 1755       | 8.16 | 16.71     | 0.219            | 0.00                        | 0.0            | -49       | 250                       | 70.15                       |
| 1800       | 8.17 | 16.79     | 0.219            | 0.00                        | 0.0            | -50       | 250                       | 70.17                       |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

|          | 11176716.0000              | )4                                                                          | Site:                                                   | Rose Va                                                                                                                                                  | lley Landfill                                                                                                                                                         | Well #:                                                                                                                                                                            | SW-02S                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Personne | l: C. Dusel, T. Ifk        | kovich                                                                      |                                                         | Date:                                                                                                                                                    | 10/17/12                                                                                                                                                              | _Company: _                                                                                                                                                                        | URS Corp                                                             | ooration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | Geopump                    |                                                                             | _Tubing Type:_                                          | НС                                                                                                                                                       | )PE                                                                                                                                                                   | Tubing Inlet:                                                                                                                                                                      | Screen M                                                             | 1idpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TOC      | Initial Depth<br>to Water: | 13.95                                                                       | Depth to<br>Well Bottom:                                | 20.04                                                                                                                                                    | Well<br>Diameter:                                                                                                                                                     | 2"                                                                                                                                                                                 | Screen<br>Length:                                                    | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ſ        | PVC                        |                                                                             | Volume in 1<br>Well Casing<br>(liters):                 | 3.8                                                                                                                                                      | _                                                                                                                                                                     | Estimated Purge Volume (liters):                                                                                                                                                   | 15.0                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SW-02S   |                            | Sample Time:                                                                | 1549                                                    |                                                                                                                                                          | QA/QC:                                                                                                                                                                | None                                                                                                                                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ameters: | TCL VOC + TI               | Cs                                                                          |                                                         |                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | TOC                        | Personnel: C. Dusel, T. Ifit  Geopump  Initial Depth to Water:  PVC  SW-02S | Initial Depth to Water: 13.95  PVC  SW-02S Sample Time: | Personnel: C. Dusel, T. Ifkovich  Geopump Tubing Type:  Initial Depth Depth to Well Bottom:  Volume in 1 Well Casing (liters):  SW-02S Sample Time: 1549 | Personnel: C. Dusel, T. Ifkovich  Geopump Tubing Type: HE  Initial Depth Depth to Well Bottom: 20.04  Volume in 1 Well Casing (liters): 3.8  SW-02S Sample Time: 1549 | Personnel: C. Dusel, T. Ifkovich  Geopump Tubing Type: HDPE  Initial Depth to Well Bottom: 20.04 Diameter:  Volume in 1 Well Casing (liters): 3.8  SW-02S Sample Time: 1549 QA/QC: | Personnel: C. Dusel, T. Ifkovich  Date: 10/17/12 Company:    Geopump | Personnel: C. Dusel, T. Ifkovich  Date: 10/17/12 Company: URS Company: |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1519       | 8.26 | 17.63     | 0.225            | 6.85                        | 30.4           | 133       | 500                       | 13.95                       |
| 1524       | 8.03 | 16.62     | 0.223            | 6.54                        | 30.8           | 141       | 500                       | 13.95                       |
| 1529       | 7.93 | 16.14     | 0.226            | 6.24                        | 11.7           | 147       | 500                       | 13.95                       |
| 1534       | 7.89 | 15.88     | 0.227            | 6.30                        | 7.8            | 149       | 500                       | 13.95                       |
| 1539       | 7.86 | 15.93     | 0.226            | 6.33                        | 3.9            | 151       | 500                       | 13.95                       |
| 1544       | 7.86 | 16.18     | 0.223            | 6.38                        | 1.2            | 152       | 500                       | 13.95                       |
| 1549       | 7.85 | 16.06     | 0.225            | 6.40                        | 0.5            | 152       | 500                       | 13.95                       |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        |          | 11176716.000               | 04           | _ Site: _                               | Rose Va | lley Landfill     | Well #:                                   | SW-02D            |          |
|---------------------------------|----------|----------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich       |                                         | Date:   | 10/17/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: |          | Grundfos                   |              | _Tubing Type:_                          | Н       | DPE               | _ Tubing Inlet:                           | Screen M          | 1idpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 70.95        | Depth to<br>Well Bottom:                | 79.42   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 | 1        | PVC                        |              | Volume in 1<br>Well Casing<br>(liters): | 5.2     | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 60.0              |          |
| Sample ID:                      | SW-02D   |                            | Sample Time: | 1635                                    |         | _ QA/QC:          | FD-101712                                 |                   |          |
| Sample Para                     | ameters: | TCL VOC + T                | ICs          |                                         |         |                   |                                           |                   |          |
|                                 |          | -                          |              |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1605       | 7.71 | 14.07     | 0.396            | 0.00                        | 0.0            | 125       | 2,000                     | 70.95                       |
| 1610       | 7.73 | 13.13     | 0.395            | 0.00                        | 0.0            | 118       | 2,000                     | 70.99                       |
| 1615       | 7.76 | 13.01     | 0.391            | 0.00                        | 0.0            | 105       | 2,000                     | 70.99                       |
| 1620       | 7.79 | 12.96     | 0.383            | 0.00                        | 0.0            | 96        | 2,000                     | 70.99                       |
| 1625       | 7.79 | 12.96     | 0.382            | 0.00                        | 0.0            | 90        | 2,000                     | 70.99                       |
| 1630       | 7.80 | 12.96     | 0.380            | 0.00                        | 0.0            | 87        | 2,000                     | 70.99                       |
| 1635       | 7.81 | 12.96     | 0.378            | 0.00                        | 0.0            | 85        | 2,000                     | 70.99                       |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        |          | 11176716.000               | 04          | Site: _                                 | Rose Va | lley Landfill     | _ Well #:                                 | SW-03S            |          |
|---------------------------------|----------|----------------------------|-------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich      |                                         | Date:   | 10/17/12          | _Company:                                 | URS Cor           | poration |
| Purging/<br>Sampling<br>Device: |          | Geopump                    |             | _Tubing Type:_                          | НС      | DPE               | _ Tubing Inlet:                           | Screen N          | Midpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 14.52       | Depth to Well Bottom:                   | 18.80   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 10'      |
| Casing<br>Type:                 |          | PVC                        |             | Volume in 1<br>Well Casing<br>(liters): | 2.6     | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 15.0              | _        |
| Sample ID:                      | SW-03S   | _                          | Sample Time | : 1502                                  |         | QA/QC:            | MS/MSD                                    |                   |          |
| Sample Par                      | ameters: | TCL VOC + T                | ICs         |                                         |         |                   |                                           |                   |          |
|                                 |          |                            |             |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1432       | 6.27 | 18.88     | 0.568            | 5.57                        | 38.6           | 183       | 500                       | 14.52                       |
| 1437       | 7.02 | 17.33     | 0.611            | 5.10                        | 23.6           | 159       | 500                       | 14.55                       |
| 1442       | 7.23 | 16.55     | 0.613            | 4.70                        | 10.2           | 156       | 500                       | 14.55                       |
| 1447       | 7.31 | 16.43     | 0.614            | 4.47                        | 6.0            | 155       | 500                       | 14.55                       |
| 1452       | 7.36 | 16.47     | 0.612            | 4.36                        | 3.8            | 154       | 500                       | 14.55                       |
| 1457       | 7.38 | 16.44     | 0.610            | 4.28                        | 3.0            | 155       | 500                       | 14.55                       |
| 1502       | 7.40 | 16.45     | 0.604            | 4.21                        | 0.6            | 155       | 500                       | 14.55                       |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

| Project:                        |          | 11176716.000               | 04           | _ Site: _                               | Rose Va | lley Landfill     | _ Well #:                                 | SW-04S            |          |
|---------------------------------|----------|----------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich       |                                         | Date:   | 10/18/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: |          | Geopump                    |              | Tubing Type:                            | Н       | DPE               | Tubing Inlet:                             | Screen M          | lidpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 3.20         | Depth to Well Bottom:                   | 8.21    | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 8'       |
| Casing<br>Type:                 |          | PVC                        |              | Volume in 1<br>Well Casing<br>(liters): | 3.1     | _                 | Estimated<br>Purge<br>Volume<br>(liters): | 6.0               |          |
| Sample ID:                      | SW-04S   |                            | Sample Time: | 1035                                    |         | QA/QC:            | None                                      |                   |          |
| Sample Para                     | ameters: | TCL VOC + T                | ICs          |                                         |         |                   |                                           |                   |          |
|                                 |          | -                          |              |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1005       | 7.61 | 11.85     | 0.540            | 0.00                        | 168            | 12        | 200                       | 3.20                        |
| 1010       | 7.07 | 13.29     | 0.524            | 0.00                        | 139            | -41       | 200                       | 3.70                        |
| 1015       | 6.97 | 13.65     | 0.524            | 0.00                        | 74.6           | -45       | 200                       | 3.68                        |
| 1020       | 6.93 | 13.88     | 0.530            | 0.00                        | 30.4           | -49       | 200                       | 3.70                        |
| 1025       | 6.90 | 14.18     | 0.531            | 0.00                        | 23.7           | -54       | 200                       | 3.71                        |
| 1030       | 6.87 | 14.37     | 0.532            | 0.00                        | 23.8           | -56       | 200                       | 3.73                        |
| 1035       | 6.87 | 14.50     | 0.532            | 0.00                        | 20.5           | -57       | 200                       | 3.75                        |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

Comments:

\_\_\_\_\_\_

| Project:                        |          | 11176716.000               | 04           | _ Site: _                               | Rose Va | lley Landfill     | _ Well #:                                 | SW-04D            |          |
|---------------------------------|----------|----------------------------|--------------|-----------------------------------------|---------|-------------------|-------------------------------------------|-------------------|----------|
| Sampling                        | Personne | el: <u>C. Dusel, T. If</u> | kovich       |                                         | Date:   | 10/18/12          | _Company:                                 | URS Corp          | ooration |
| Purging/<br>Sampling<br>Device: |          | Geopump                    |              | Tubing Type:                            | НС      | DPE               | Tubing Inlet:                             | Screen M          | lidpoint |
| Measuring<br>Point:             | TOC      | Initial Depth<br>to Water: | 0.00         | Depth to<br>Well Bottom:                | 84.42   | Well<br>Diameter: | 2"                                        | Screen<br>Length: | 8'       |
| Casing<br>Type:                 |          | PVC                        |              | Volume in 1<br>Well Casing<br>(liters): | 52.1    | -                 | Estimated<br>Purge<br>Volume<br>(liters): | 25.0              |          |
| Sample ID:                      | SW-04D   |                            | Sample Time: | 1110                                    |         | QA/QC:            | None                                      |                   |          |
| Sample Para                     | ameters: | TCL VOC + T                | ICs          |                                         |         |                   |                                           |                   |          |
|                                 |          |                            |              |                                         |         |                   |                                           |                   |          |

#### **PURGE PARAMETERS**

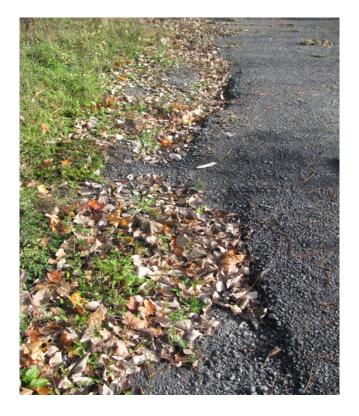
| TIME       | рН   | TEMP (°C) | COND.<br>(mS/cm) | DISS. O <sub>2</sub> (mg/l) | TURB.<br>(NTU) | ORP (mV)  | FLOW<br>RATE<br>(ml/min.) | DEPTH TO<br>WATER<br>(btor) |
|------------|------|-----------|------------------|-----------------------------|----------------|-----------|---------------------------|-----------------------------|
| 1045       | 7.73 | 11.88     | 0.152            | 0.00                        | 60.9           | -169      | 1,000                     | 0.00                        |
| 1050       | 8.71 | 11.58     | 0.152            | 0.00                        | 62.9           | -193      | 1,000                     | 0.00                        |
| 1055       | 8.95 | 11.57     | 0.152            | 0.00                        | 85.8           | -195      | 1,000                     | 0.00                        |
| 1100       | 9.07 | 11.56     | 0.152            | 0.00                        | 112            | -197      | 1,000                     | 0.00                        |
| 1105       | 9.11 | 11.54     | 0.152            | 0.00                        | 117            | -198      | 1,000                     | 0.00                        |
| 1110       | 9.13 | 11.53     | 0.152            | 0.00                        | 120            | -197      | 1,000                     | 0.00                        |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
|            |      |           |                  |                             |                | _         |                           |                             |
|            |      |           |                  |                             |                |           |                           |                             |
| Tolerance: | 0.1  |           | 3%               | 10%                         | 10%            | + or - 10 |                           |                             |

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol  $_{cyl} = \pi r^2 h$ )

Comments: Artesian well.

# APPENDIX C PHOTOGRAPHIC LOG




**Photo 1:** 10/17/12 Front gate at entrance to site at intersection of Rose Valley Road and Bromley Road, looking southeast.



**Photo 2:** 10/17/12 Area where hogweed plant was found in July 2011 on south side near front entrance gate, looking southeast. No hogweed was present in 2012.



**Photo 3:** 10/17/12 Erosion/rilling in access road. Conditions are similar to those documented in July 2011 site inspection.



**Photo 4:** 10/17/12 Close-up of erosion/rilling in access road shown in Photo 3.



**Photo 5:** 10/17/12 Jersey barrier installed near Military Road to limit site access and trash disposal.



**Photo 6:** 10/17/12 Trash dumped on the northern side of the Jersey barrier between the barrier and Military Road.



**Photo 7:** 10/17/12 Close up of the trash/debris that has been dumped.



**Photo 8:** 10/17/12 Looking south over barrier where dumping used to occur.



**Photo 9:** Standing near North Detention Pond looking in a westerly direction at toe of landfill and drain chutes.



**Photo 10:** 10/17/12 Standing near North Detention Pond looking in a southwesterly direction. The edge of the wetland is in the foreground and green landfill vegetative cover in background.



**Photo 11:** 10/17/12 Corrugated metal standpipe in North Detention Pond, barely visible due to vegetative growth.



**Photo 12:** 10/17/12 North Detention Pond. Sediment accumulation is evident.



**Photo 13:** 10/17/12 North Detention Pond. Some four-wheeler/all-terrain vehicles have driven directly through the North Detention Pond.



**Photo 14:** 10/17/12 Typical low-flow groundwater sampling set-up. Photo taken at sentry well SW-01S.



**Photo 15:** 10/18/12 Tires continue to be discarded in ravine along Military Road. The NYSDEC had removed and disposed of several hundred discarded tires from this location.



**Photo 16:** 10/18/12 Dumped deer carcasses in ravine along Military Road.



**Photo 17:** 10/18/12 Trash and empty barrels in ravine along Military Road, southeast of the location where tires have been discarded.



**Photo 18:** 10/18/12 Looking east at landfill. The rilling/erosion in this area is starting to re-occur. Erosion is up to 1 foot across and 1 foot deep.



**Photo 19:** 10/18/12 Looking north at main all-terrain vehicle recreation area/hill in background. The edge of the landfill is in the foreground.

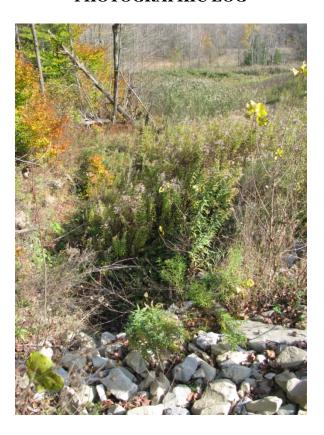


**Photo 20:** 10/18/12 Close-up of main all-terrain vehicle recreation area/hill and perimeter swale.



**Photo 21:** 10/18/12 Temporary shelter located at top of all-terrain vehicle recreation area/hill.

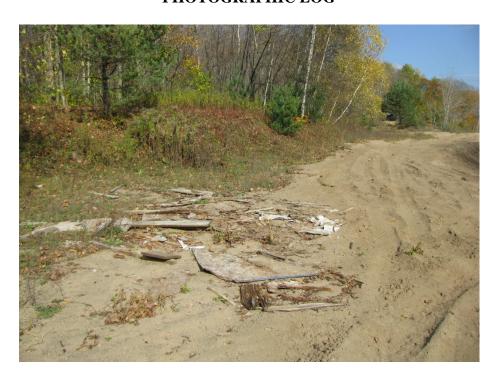



**Photo 22:** 10/18/12 Looking east along northern side of landfill near North Detention Pond.



**Photo 23:** 10/18/12 Standing on north side of landfill looking southeast at riprap lined drain chutes.




**Photo 24:** 10/18/12 Erosion occurring north of landfill, exposing fabric. Continued monitoring is advised.



**Photo 25:** 10/18/12 Erosion occurring at area where rip-rap terminates. Looking east towards North Detention Pond.



**Photo 26:** 10/18/12 Looking southeast at South Detention Pond.



**Photo 27:** 10/18/12 Construction and demolition debris being discarded west of landfill/site.



**Photo 28:** 10/18/12 Typical low-flow groundwater sampling set-up. Photo taken at location MW-04.

### ROSE VALLEY LANDFILL 2012 SITE MANAGEMENT PHOTOGRAPHIC LOG



**Photo 29:** 10/18/12 Standing in North Detention Pond area, looking in a westerly direction at landfill.



**Photo 30:** 10/18/12 Sampling surface water at the North Detention Pond.

### ROSE VALLEY LANDFILL 2012 SITE MANAGEMENT PHOTOGRAPHIC LOG



**Photo 31:** 10/18/12 West side of South Detention Pond looking west at landfill.



**Photo 32:** 10/18/12 Close-up of gas vent.

### ROSE VALLEY LANDFILL 2012 SITE MANAGEMENT PHOTOGRAPHIC LOG



**Photo 33:** 10/18/12 Wildlife along southern edge of landfill.



**Photo 34:** 10/18/12 Erosion exposing geotextile fabric at along site access road, approximately half way between front gate and actual landfill.

# APPENDIX D DATA USABILITY SUMMARY REPORT

#### DATA USABILITY SUMMARY REPORT

## ROSE VALLEY LANDFILL SITE MANAGEMENT GROUNDWATER SAMPLING EVENT NYSDEC WORK ASSIGNMENT #D007622-07

ROSE VALLEY LANDFILL
HERKIMER COUNTY, NEW YORK
SITE NO. 622017

Analyses Performed by:

H2M LABS, INC. 575 BROAD HOLLOW ROAD MELVILLE, NY 11747

### Prepared for:

### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Prepared by:

URS CORPORATION
77 GOODELL STREET
BUFFALO, NY 14203

**DECEMBER 2012** 

### TABLE OF CONTENTS

|         | <u>Page No</u> .                                     |
|---------|------------------------------------------------------|
| 1.0     | INTRODUCTION1                                        |
| 2.0     | ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES1 |
| 3.0     | DATA DELIVERABLE COMPLETENESS                        |
| 4.0     | SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES2           |
| 5.0     | NON-CONFORMANCES                                     |
| 6.0     | SAMPLE RESULTS AND REPORTING                         |
| 7.0     | SUMMARY3                                             |
|         | TABLES (Following Text)                              |
| Table 1 | Summary of Data Qualifications                       |
| Table 2 | Validated Groundwater Sample Results                 |
| Table 3 | Validated Field QC Sample Results                    |
|         |                                                      |
|         | ATTACHMENTS                                          |
| Attachr | ment A Validated Form 1's                            |
| Attachr | nent B Support Documentation                         |

#### 1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B-Guidance for Data Deliverables and the Development of Data Usability and Summary Reports*, May 2010. Discussed in this DUSR are analytical data for 14 groundwater samples, 2 field duplicates, 1 matrix spike/matrix spike duplicate (MS/MSD) pair, and 1 trip blank collected by URS personnel between October 17-18, 2012 from the Rose Valley Landfill site. The samples were collected in support of NYSDEC Work Assignment # D007622-07, Site No. 622017.

#### 2.0 ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES

All samples were sent to H2M Labs, Inc. (Melville, NY) and analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method SW8260B, plus tentatively identified compounds (TICs).

A limited data validation was performed following the guidelines in the following USEPA Region II document:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008.

The limited validation included: a review of completeness of all required deliverables; holding times; a review of quality control (QC) results [blanks, instrument tunings, calibration standards, duplicate analyses, and MS/MSD/laboratory control sample (LCS) recoveries] to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Data qualifiers applied to the results during the validation included 'J' (estimated concentration), 'UJ' (estimated quantitation limit), and 'U' (non-detect). Definitions of USEPA Region II data qualifiers are presented at the end of this text. A summary of data qualifications is provided on Table 1. The validated analytical results are presented on Tables 2 and 3. Copies of the validated laboratory results

(i.e., Form 1's) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

#### 3.0 DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B, or equivalent) were provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

#### 4.0 PRESERVATION/SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC).

All samples were analyzed within the required holding times.

#### 5.0 NON-CONFORMANCES

#### **Instrument Calibration**

The percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the RRF in one or more of the continuing calibration standards (CCALs) associated with the samples was greater than 20% for one or more of the following VOCs: 1,2-dibromo-3-chloropropane, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-hexanone, 4-methyl-3-pentanone, acetone, bromomethane, chloromethane, carbon tetrachloride, dichlorodifluoromethane, styrene, and/or tetrachloroethene. The results for these compounds in the associated samples listed in Table 1 were qualified 'J' or 'UJ'.

The laboratory applied a 'Z' qualifier to those samples where the associated CCAL exhibited a %D greater than 15%. The QC guidelines specified in the validation document noted above are 20%. As appropriate the 'Z' qualifier has either been crossed off or replaced with a 'J/UJ' (if %D > 20%) by the data reviewer.

**Blank/Instrument Contamination** 

Acetone was detected in the laboratory method blanks and the trip blank. The results for acetone

in the associated samples listed on Table 1 were less than 10 times the blank results. The acetone

results in these samples have been qualified 'U' at the quantitation limit (QL).

Field Duplicate Samples

The field duplicates generally exhibited good analytical precision. Note, USEPA Region II

validation guidelines do not require qualification of VOC analytical results based upon field

duplicate precision.

6.0 SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were

adjusted for sample volume and dilution factors.

7.0 **SUMMARY** 

All sample analyses were found to be compliant with the method criteria, except where

previously noted. Those results qualified 'J' (estimated) or 'UJ' (estimated quantitation limit) are

considered conditionally usable. Those results qualified 'U' are considered non-detect. URS does not

recommend the recollection of any samples at this time.

Prepared By:

Reviewed By:

Ann Marie Kropovitch, Chemist

Date: Will

Peter R. Fairbanks, Senior Chemist

Date: 12 | 11 | 12

3

I:\11176716\Deliverables\GW Rose Valley Oct 2012.docx

### **DEFINITIONS OF USEPA REGION II DATA QUALIFIERS**

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The positive value is the result of an analysis at a secondary dilution factor

### TABLE 1 SUMMARY OF DATA QUALIFICATIONS ROSE VALLEY LANDFILL SITE

| SAMPLE ID                                                                                         | FRACTION | ANALYTICAL DEVIATION                                                                                                                                                                                                                        | QUALIFICATION                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| NDP-WS, SDP-WS, FD-<br>101812 (SDP-WS),<br>SWTR-1E, and TB-<br>101812                             | VOA      | %D between the ICAL average RRF and the CCAL RRF >20% for 1,2-dibromo-3-chloropropane, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,2,4-trichlorobenzene, 2-hexanone, 4-methyl-3-pentanone, bromomethane, dichlorodifluoromethane, and styrene. | Qualify non-detect<br>results 'UJ'.                       |  |  |  |  |  |
| SWTR-1T                                                                                           | VOA      |                                                                                                                                                                                                                                             | Qualify non-detect results 'UJ'.                          |  |  |  |  |  |
| MW-04, MW-16, SW-<br>01D, SW-01S, SW-02D,<br>FD-101712 (SW-02D),<br>SW-02S, SW-03S, and<br>SW-04S | VOA      | %D between the ICAL average RRF and the CCAL RRF >20% for chloromethane and dichlorodifluoromethane.                                                                                                                                        | Qualify detected results 'J' and non-detect results 'UJ'. |  |  |  |  |  |
| MW-03 and SW-04D                                                                                  | VOA      | %D between the ICAL average RRF and the CCAL RRF >20% for bromomethane, carbon tetrachloride, and dichlorodifluoromethane.                                                                                                                  |                                                           |  |  |  |  |  |
| NDP-WS, SDP-WS, FD-<br>101812 (SDP-WS), and<br>SWTR-1T                                            | VOA      | Method blanks/trip blank contamination for acetone and samples < 10x blank result.                                                                                                                                                          | Qualify detected results 'U' at QL                        |  |  |  |  |  |

| Location ID                            |       | MW-03       | MW-04              | MW-16       | NDP         | SDP                   |
|----------------------------------------|-------|-------------|--------------------|-------------|-------------|-----------------------|
| Sample ID                              |       | MW-03       | MW-04              | MW-16       | NDP-WS      | FD-101812             |
| Matrix                                 |       | Groundwater | Groundwater        | Groundwater | Groundwater | Groundwater           |
| Depth Interval (ft)                    |       | <b>?€</b> . | (i) <del>‡</del> 3 | *           | *           |                       |
| Date Sampled                           |       | 10/18/12    | 10/18/12           | 10/18/12    | 10/18/12    | 10/18/12              |
| Parameter                              | Units |             |                    |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds             |       |             |                    |             |             |                       |
| 1,1,1-Trichloroethane                  | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 10 U        | 10 U               | 10 U        | 10 UJ       | 10 UJ                 |
| 1,1,2-Trichloroethane                  | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,1-Dichloroethane                     | UG/L  | 3 J         | 15                 | 10 U        | 10 U        | 10 U                  |
| 1,1-Dichloroethene                     | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 10 U        | 10 U               | 10 U        | 10 UJ       | 10 UJ                 |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 10 U        | 10 U               | 10 U        | 10 UJ       | 10 UJ                 |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,2-Dichlorobenzene                    | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,2-Dichloroethane                     | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,2-Dichloroethene (cis)               | UG/L  | 11          | 3 J                | 10 U        | 10 U        | 10 U                  |
| 1,2-Dichloroethene (trans)             | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,2-Dichloropropane                    | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,3-Dichlorobenzene                    | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,3-Dichloropropene (cis)              | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,3-Dichloropropene (trans)            | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 1,4-Dichlorobenzene                    | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| 2-Hexanone                             | UG/L  | 10 U        | 10 U               | 10 U        | 10 UJ       | 10 UJ                 |
| 4-Methyl-2-pentanone                   | UG/L  | 10 U        | 10 U               | 10 U        | 10 UJ       | 10 UJ                 |
| Acetone                                | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| Benzene                                | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |
| Bromodichloromethane                   | UG/L  | 10 U        | 10 U               | 10 U        | 10 U        | 10 U                  |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | MW-03       | MW-04        | MW-16       | NDP         | SDP                   |
|----------------------------------|-------|-------------|--------------|-------------|-------------|-----------------------|
| Sample ID                        |       | MW-03       | MW-04        | MW-16       | NDP-WS      | FD-101812             |
| Matrix                           |       | Groundwater | Groundwater  | Groundwater | Groundwater | Groundwater           |
| Depth Interval (ft)              |       | (*)         | ; <b>≤</b> ; |             |             | -                     |
| Date Sampled                     |       | 10/18/12    | 10/18/12     | 10/18/12    | 10/18/12    | 10/18/12              |
| Parameter                        | Units |             |              |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds       |       |             |              |             |             |                       |
| Bromoform                        | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Bromomethane                     | UG/L  | 10 UJ       | 10 U         | 10 U        | 10 UJ       | 10 UJ                 |
| Carbon disulfide                 | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Carbon tetrachloride             | UG/L  | 10 UJ       | 10 U         | 10 U        | 10 U        | 10 U                  |
| Chlorobenzene                    | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Chloroethane                     | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Chloroform                       | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Chloromethane                    | UG/L  | 10 U        | 10 UJ        | 10 UJ       | 10 U        | 10 U                  |
| Cyclohexane                      | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Dibromochloromethane             | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Dichlorodifluoromethane          | UG/L  | 10 UJ       | 1 J          | 10 UJ       | 10 UJ       | 10 UJ                 |
| Ethylbenzene                     | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Isopropylbenzene (Cumene)        | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Methyl acetate                   | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Methyl tert-butyl ether          | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Methylcyclohexane                | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Methylene chloride               | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Styrene                          | UG/L  | 10 U        | 10 U         | 10 U        | 10 UJ       | 10 UJ                 |
| Tetrachloroethene                | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Toluene                          | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Trichloroethene                  | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |
| Trichlorofluoromethane           | UG/L  | 10 U        | 10 U         | 10 U        | 10 U        | 10 U                  |

Flags assigned during chemistry validation are shown.

| Location ID                |       | MW-03          | MW-04       | MW-16       | NDP         | SDP                   |
|----------------------------|-------|----------------|-------------|-------------|-------------|-----------------------|
| Sample ID                  |       | MW-03          | MW-04       | MW-16       | NDP-WS      | FD-101812             |
| Matrix                     |       | Groundwater    | Groundwater | Groundwater | Groundwater | Groundwater           |
| Depth Interval (ft)        |       | 3 <b>.</b> 97i | 352         |             |             | *                     |
| Date Sampled               |       | 10/18/12       | 10/18/12    | 10/18/12    | 10/18/12    | 10/18/12              |
| Parameter                  | Units |                |             |             |             | Field Duplicate (1-1) |
| Volatile Organic Compounds |       |                |             |             |             |                       |
| Vinyl chloride             | UG/L  | 10 U           | 10 U        | 10 U        | 10 U        | 10 U                  |
| Xylene (total)             | UG/L  | 10 U           | 10 U        | 10 U        | 10 U        | 10 U                  |

Flags assigned during chemistry validation are shown.

| Location ID                            |       | SDP         | SW-01D                | SW-01S      | SW-02D                | SW-02D                |
|----------------------------------------|-------|-------------|-----------------------|-------------|-----------------------|-----------------------|
| Sample ID<br>Matrix                    |       | SDP-WS      | SW-01D<br>Groundwater | SW-01S      | FD-101712             | SW-02D<br>Groundwater |
|                                        |       | Groundwater |                       | Groundwater | Groundwater           |                       |
| Depth Interval (ft)                    |       |             |                       | -           |                       | •                     |
| Date Sampled                           |       | 10/18/12    | 10/17/12              | 10/17/12    | 10/17/12              | 10/17/12              |
| Parameter                              | Units |             |                       |             | Field Duplicate (1-1) |                       |
| Volatile Organic Compounds             |       |             |                       |             |                       |                       |
| 1,1,1-Trichloroethane                  | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 10 UJ       | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,1,2-Trichloroethane                  | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,1-Dichloroethane                     | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,1-Dichloroethene                     | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2,4-Trichlorobenzene                 | UG/L  | 10 UJ       | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 10 UJ       | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dichlorobenzene                    | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dichloroethane                     | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dichloroethene (cis)               | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dichloroethene (trans)             | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,2-Dichloropropane                    | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,3-Dichlorobenzene                    | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,3-Dichloropropene (cis)              | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,3-Dichloropropene (trans)            | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 1,4-Dichlorobenzene                    | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 2-Hexanone                             | UG/L  | 10 UJ       | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| 4-Methyl-2-pentanone                   | UG/L  | 10 UJ       | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| Acetone                                | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| Benzene                                | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |
| Bromodichloromethane                   | UG/L  | 10 U        | 10 U                  | 10 U        | 10 U                  | 10 U                  |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | SDP           | SW-01D        | SW-01S      | SW-02D                | SW-02D      |
|----------------------------------|-------|---------------|---------------|-------------|-----------------------|-------------|
| Sample ID                        |       | SDP-WS        | SW-01D        | SW-01S      | FD-101712             | SW-02D      |
| Matrix                           |       | Groundwater   | Groundwater   | Groundwater | Groundwater           | Groundwater |
| Depth Interval (ft)              |       | 3 <b>#</b> .0 | ; <b>.</b> €5 | 0.00        | •                     | *           |
| Date Sampled                     |       | 10/18/12      | 10/17/12      | 10/17/12    | 10/17/12              | 10/17/12    |
| Parameter                        | Units |               |               |             | Field Duplicate (1-1) |             |
| Volatile Organic Compounds       |       |               |               |             |                       |             |
| Bromoform                        | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Bromomethane                     | UG/L  | 10 UJ         | 10 U          | 10 U        | 10 U                  | 10 U        |
| Carbon disulfide                 | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Carbon tetrachloride             | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Chlorobenzene                    | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Chloroethane                     | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Chloroform                       | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Chloromethane                    | UG/L  | 10 U          | 10 UJ         | 10 UJ       | 10 UJ                 | 10 UJ       |
| Cyclohexane                      | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Dibromochloromethane             | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Dichlorodifluoromethane          | UG/L  | 10 UJ         | 10 UJ         | 10 UJ       | 10 UJ                 | 10 UJ       |
| Ethylbenzene                     | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Isopropylbenzene (Cumene)        | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Methyl acetate                   | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Methyl tert-butyl ether          | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Methylcyclohexane                | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Methylene chloride               | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Styrene                          | UG/L  | 10 UJ         | 10 U          | 10 U        | 10 U                  | 10 U        |
| Tetrachloroethene                | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Toluene                          | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Trichloroethene                  | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |
| Trichlorofluoromethane           | UG/L  | 10 U          | 10 U          | 10 U        | 10 U                  | 10 U        |

Flags assigned during chemistry validation are shown.

| Location ID                |       | SDP         | SW-01D      | SW-01S      | SW-02D                | SW-02D      |
|----------------------------|-------|-------------|-------------|-------------|-----------------------|-------------|
| Sample ID                  |       | SDP-WS      | SW-01D      | SW-01S      | FD-101712             | SW-02D      |
| Matrix                     |       | Groundwater | Groundwater | Groundwater | Groundwater           | Groundwater |
| Depth Interval (ft)        |       | ±€0         | 3800        | :•:         | D <del>)</del>        | *           |
| Date Sampled               |       | 10/18/12    | 10/17/12    | 10/17/12    | 10/17/12              | 10/17/12    |
| Parameter                  | Units |             |             |             | Field Duplicate (1-1) |             |
| Volatile Organic Compounds |       |             |             |             |                       |             |
| Vinyl chloride             | UG/L  | 10 U        | 10 U        | 10 U        | 10 U                  | 10 U        |
| Xylene (total)             | UG/L  | 10 U        | 10 U        | 10 U        | 10 U                  | 10 U        |

Flags assigned during chemistry validation are shown.

| Location ID                            |       | SW-02S      | SW-03S      | SW-04D      | SW-04S      | SWTR-1E     |
|----------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                              |       | SW-02S      | SW-03S      | SW-04D      | SW-04S      | SWTR-1E     |
| Matrix                                 |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)                    |       | 340         | -           | (=          | •           | ¥           |
| Date Sampled                           |       | 10/17/12    | 10/17/12    | 10/17/12    | 10/17/12    | 10/18/12    |
| Parameter                              | Units |             |             |             |             |             |
| Volatile Organic Compounds             |       |             |             |             |             |             |
| 1,1,1-Trichloroethane                  | UG/L  | 1 J         | 10 U        | 10 U        | 10 U        | 10 U        |
| 1,1,2,2-Tetrachloroethane              | UG/L  | 10 U        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L  | 10 U        | 10 U        | 10 U        | 10 U        | 10 UJ       |
| 1,1,2-Trichloroethane                  | UG/L  | 10 U        |
| 1,1-Dichloroethane                     | UG/L  | 10 U        |
| 1,1-Dichloroethene                     | UG/L  | 10 U        |
| 1,2,4-Trichlorobenzene                 | UG/L  | 10 U        | 10 U        | 10 U        | 10 U        | 10 UJ       |
| 1,2-Dibromo-3-chloropropane            | UG/L  | 10 U        | 10 U        | 10 U        | 10 U        | 10 UJ       |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L  | 10 U        |
| 1,2-Dichlorobenzene                    | UG/L  | 10 U        |
| 1,2-Dichloroethane                     | UG/L  | 10 U        |
| 1,2-Dichloroethene (cis)               | UG/L  | 10 U        |
| 1,2-Dichloroethene (trans)             | UG/L  | 10 U        |
| 1,2-Dichloropropane                    | UG/L  | 10 U        |
| 1,3-Dichlorobenzene                    | UG/L  | 10 U        |
| 1,3-Dichloropropene (cis)              | UG/L  | 10 U        |
| 1,3-Dichloropropene (trans)            | UG/L  | 10 U        |
| 1,4-Dichlorobenzene                    | UG/L  | 10 U        |
| 2-Hexanone                             | UG/L  | 10 U        | 10 U        | 10 U        | 10 U        | 10 UJ       |
| 4-Methyl-2-pentanone                   | UG/L  | 10 U        | 10 U        | 10 U        | 10 U        | 10 UJ       |
| Acetone                                | UG/L  | 10 U        |
| Benzene                                | UG/L  | 10 U        |
| Bromodichloromethane                   | UG/L  | 10 U        |

Flags assigned during chemistry validation are shown.

| Location ID                      |       | SW-02S      | SW-03S                | SW-04D       | SW-04S      | SWTR-1E                |
|----------------------------------|-------|-------------|-----------------------|--------------|-------------|------------------------|
| Sample ID<br>Matrix              |       | SW-02S      | SW-03S<br>Groundwater | SW-04D       | SW-04S      | SWTR-1E<br>Groundwater |
|                                  |       | Groundwater |                       | Groundwater  | Groundwater |                        |
| Depth Interval (ft)              |       | 190         |                       | ; <b>4</b> . | 79          | *                      |
| Date Sampled                     |       | 10/17/12    | 10/17/12              | 10/17/12     | 10/17/12    | 10/18/12               |
| Parameter                        | Units |             |                       |              |             |                        |
| Volatile Organic Compounds       |       |             |                       |              |             |                        |
| Bromoform                        | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Bromomethane                     | UG/L  | 10 U        | 10 U                  | 10 UJ        | 10 U        | 10 UJ                  |
| Carbon disulfide                 | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Carbon tetrachloride             | UG/L  | 10 U        | 10 U                  | 10 UJ        | 10 U        | 10 U                   |
| Chlorobenzene                    | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Chloroethane                     | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Chloroform                       | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Chloromethane                    | UG/L  | 10 UJ       | 10 UJ                 | 10 U         | 10 UJ       | 10 U                   |
| Cyclohexane                      | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Dibromochloromethane             | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Dichlorodifluoromethane          | UG/L  | 10 UJ       | 10 UJ                 | 10 UJ        | 10 UJ       | 10 UJ                  |
| Ethylbenzene                     | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Isopropylbenzene (Cumene)        | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Methyl acetate                   | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Methyl ethyl ketone (2-Butanone) | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Methyl tert-butyl ether          | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Methylcyclohexane                | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Methylene chloride               | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Styrene                          | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 UJ                  |
| Tetrachloroethene                | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Toluene                          | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Trichloroethene                  | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |
| Trichlorofluoromethane           | UG/L  | 10 U        | 10 U                  | 10 U         | 10 U        | 10 U                   |

Flags assigned during chemistry validation are shown.

| Location ID                |       | SW-02S      | SW-03S      | SW-04D      | SW-04S      | SWTR-1E     |
|----------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Sample ID                  |       | SW-02S      | SW-03S      | SW-04D      | SW-04S      | SWTR-1E     |
| Matrix                     |       | Groundwater | Groundwater | Groundwater | Groundwater | Groundwater |
| Depth Interval (ft)        |       | 380         | :=:         | 0#6         | 00#0        | *           |
| Date Sampled               |       | 10/17/12    | 10/17/12    | 10/17/12    | 10/17/12    | 10/18/12    |
| Parameter                  | Units |             |             |             |             |             |
| Volatile Organic Compounds |       |             |             |             |             |             |
| /inyl chloride             | UG/L  | 10 U        |
| Kylene (total)             | UG/L  | 10 U        |

Flags assigned during chemistry validation are shown.

| Location ID                            | SWTR-1T     |          |
|----------------------------------------|-------------|----------|
| Sample ID                              | SWTR-1T     |          |
| Matrix                                 | Groundwater |          |
| Depth Interval (ft)                    |             | 193      |
| Date Sampled                           |             | 10/18/12 |
| Parameter                              | Units       |          |
| Volatile Organic Compounds             |             |          |
| 1,1,1-Trichloroethane                  | UG/L        | 10 U     |
| 1,1,2,2-Tetrachloroethane              | UG/L        | 10 U     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane  | UG/L        | 10 U     |
| 1,1,2-Trichloroethane                  | UG/L        | 10 U     |
| 1,1-Dichloroethane                     | UG/L        | 10 U     |
| 1,1-Dichloroethene                     | UG/L        | 10 U     |
| 1,2,4-Trichlorobenzene                 | UG/L        | 10 U     |
| 1,2-Dibromo-3-chloropropane            | UG/L        | 10 U     |
| 1,2-Dibromoethane (Ethylene dibromide) | UG/L        | 10 U     |
| 1,2-Dichlorobenzene                    | UG/L        | 10 UJ    |
| 1,2-Dichloroethane                     | UG/L        | 10 U     |
| 1,2-Dichloroethene (cis)               | UG/L        | 10 U     |
| 1,2-Dichloroethene (trans)             | UG/L        | 10 U     |
| 1,2-Dichloropropane                    | UG/L        | 10 U     |
| 1,3-Dichlorobenzene                    | UG/L        | 10 UJ    |
| 1,3-Dichloropropene (cis)              | UG/L        | 10 U     |
| 1,3-Dichloropropene (trans)            | UG/L        | 10 U     |
| 1,4-Dichlorobenzene                    | UG/L        | 10 UJ    |
| 2-Hexanone                             | UG/L        | 10 U     |
| 4-Methyl-2-pentanone                   | UG/L        | 10 U     |
| Acetone                                | UG/L        | 10 UJ    |
| Benzene                                | UG/L        | 10 U     |
| Bromodichloromethane                   | UG/L        | 10 U     |

Flags assigned during chemistry validation are shown.

| Location ID                      |          | SWTR-1T<br>SWTR-1T |  |
|----------------------------------|----------|--------------------|--|
| Sample ID                        |          |                    |  |
| Matrix                           |          | Groundwater        |  |
| Depth Interval (ft)              | 10/18/12 |                    |  |
| Date Sampled Parameter           |          | 10/10/12           |  |
| raiannetei                       | Units    |                    |  |
| Volatile Organic Compounds       |          |                    |  |
| Bromoform                        | UG/L     | 10 U               |  |
| Bromomethane                     | UG/L     | 10 U               |  |
| Carbon disulfide                 | UG/L     | 10 U               |  |
| Carbon tetrachloride             | UG/L     | 10 U               |  |
| Chlorobenzene                    | UG/L     | 10 U               |  |
| Chloroethane                     | UG/L     | 10 U               |  |
| Chloroform                       | UG/L     | 10 U               |  |
| Chloromethane                    | UG/L     | 10 UJ              |  |
| Cyclohexane                      | UG/L     | 10 U               |  |
| Dibromochloromethane             | UG/L     | 10 U               |  |
| Dichlorodifluoromethane          | UG/L     | 10 UJ              |  |
| Ethylbenzene                     | UG/L     | 10 U               |  |
| Isopropylbenzene (Cumene)        | UG/L     | 10 U               |  |
| Methyl acetate                   | UG/L     | 10 U               |  |
| Methyl ethyl ketone (2-Butanone) | UG/L     | 10 U               |  |
| Methyl tert-butyl ether          | UG/L     | 10 U               |  |
| Methylcyclohexane                | UG/L     | 10 U               |  |
| Methylene chloride               | UG/L     | 10 U               |  |
| Styrene                          | UG/L     | 10 U               |  |
| Tetrachloroethene                | UG/L     | 10 UJ              |  |
| Toluene                          | UG/L     | 10 U               |  |
| Trichloroethene                  | UG/L     | 10 U               |  |
| Trichlorofluoromethane           | UG/L     | 10 U               |  |

Flags assigned during chemistry validation are shown.

| Location ID                |       | SWTR-1T     |  |
|----------------------------|-------|-------------|--|
| Sample ID                  |       | SWTR-1T     |  |
| Matrix                     |       | Groundwater |  |
| Depth Interval (ft)        |       | :=:         |  |
| Date Sampled               |       | 10/18/12    |  |
| Parameter                  | Únits |             |  |
| Volatile Organic Compounds |       |             |  |
| Vinyl chloride             | NG/L  | 10 U        |  |
| Xylene (total)             | UG/L  | 10 U        |  |

Flags assigned during chemistry validation are shown.

### TABLE 3 VALIDATED FIELD QC SAMPLE RESULTS ROSE VALLEY LANDFILL

| Location ID                              | FIELDQC  |                  |  |
|------------------------------------------|----------|------------------|--|
| Sample ID<br>Matrix                      |          | TB-101812        |  |
|                                          |          | Water Quality    |  |
| Depth Interval (ft)                      | (#)      |                  |  |
| Date Sampled                             | 10/18/12 |                  |  |
| Parameter                                | Units    | Trip Blank (1-1) |  |
| Volatile Organic Compounds               |          |                  |  |
| 1,1,1-Trichloroethane                    | UG/L     | 10 U             |  |
| 1,2,2-Tetrachloroethane UG/L             |          | 10 U             |  |
| 1,2-Trichloro-1,2,2-trifluoroethane UG/L |          | 10 UJ            |  |
| 1,1,2-Trichloroethane                    | UG/L     | 10 U             |  |
| 1,1-Dichloroethane                       | UG/L     | 10 U             |  |
| 1,1-Dichloroethene                       | UG/L     | 10 U             |  |
| 1,2,4-Trichlorobenzene                   | UG/L     | 10 UJ            |  |
| 1,2-Dibromo-3-chloropropane              | UG/L     | 10 UJ            |  |
| 1,2-Dibromoethane (Ethylene dibromide)   | UG/L     | 10 U             |  |
| 1,2-Dichlorobenzene                      | UG/L     | 10 U             |  |
| 1,2-Dichloroethane                       | UG/L     | 10 U             |  |
| 1,2-Dichloroethene (cis)                 | UG/L     | 10 U             |  |
| 1,2-Dichloroethene (trans)               | UG/L     | 10 U             |  |
| 1,2-Dichloropropane                      | UG/L     | 10 U             |  |
| 1,3-Dichlorobenzene                      | UG/L     | 10 U             |  |
| 1,3-Dichloropropene (cis)                | UG/L     | 10 U             |  |
| 1,3-Dichloropropene (trans)              | UG/L     | 10 U             |  |
| 1,4-Dichlorobenzene                      | UG/L     | 10 U             |  |
| 2-Hexanone                               | UG/L     | 10 UJ            |  |
| 4-Methyl-2-pentanone                     | UG/L     | 10 UJ            |  |
| Acetone                                  | UG/L     | 6 J              |  |
| Benzene                                  | UG/L     | 10 U             |  |
| Bromodichloromethane                     | UG/L     | 10 U             |  |

Flags assigned during chemistry validation are shown.

### TABLE 3 VALIDATED FIELD QC SAMPLE RESULTS ROSE VALLEY LANDFILL

| Location ID                      |           | FIELDQC          |  |
|----------------------------------|-----------|------------------|--|
| Sample ID                        | TB-101812 |                  |  |
| Matrix                           |           | Water Quality    |  |
| Depth Interval (ft)              |           | (₩)              |  |
| Date Sampled                     | 10/18/12  |                  |  |
| Parameter                        | Units     | Trip Blank (1-1) |  |
| Volatile Organic Compounds       |           |                  |  |
| Bromoform                        | UG/L      | 10 U             |  |
| omomethane UG/L                  |           | 10 UJ            |  |
| arbon disulfide UG/L             |           | 10 U             |  |
| Carbon tetrachloride             | UG/L      | 10 U             |  |
| Chlorobenzene                    | UG/L      | 10 U             |  |
| Chloroethane                     | UG/L      | 10 U             |  |
| Chloroform                       | UG/L      | 10 U             |  |
| Chloromethane                    | UG/L      | 10 U             |  |
| Cyclohexane                      | UG/L      | 10 U             |  |
| Dibromochloromethane             | UG/L      | 10 U             |  |
| Dichlorodifluoromethane          | UG/L      | 10 UJ            |  |
| Ethylbenzene                     | UG/L      | 10 U             |  |
| Isopropylbenzene (Cumene)        | UG/L      | 10 U             |  |
| Methyl acetate                   | UG/L      | 10 U             |  |
| Methyl ethyl ketone (2-Butanone) | UG/L      | 10 U             |  |
| Methyl tert-butyl ether          | UG/L      | 10 U             |  |
| Methylcyclohexane                | UG/L      | 10 U             |  |
| Methylene chloride               | UG/L      | 14               |  |
| Styrene                          | UG/L      | 10 UJ            |  |
| Tetrachloroethene                | UG/L      | 10 U             |  |
| Toluene                          | UG/L      | 10 U             |  |
| Trichloroethene                  | UG/L      | 10 U             |  |
| Trichlorofluoromethane           | UG/L      | 10 U             |  |

Flags assigned during chemistry validation are shown.

### TABLE 3 VALIDATED FIELD QC SAMPLE RESULTS ROSE VALLEY LANDFILL

| Location ID                |       | FIELDQC          |  |
|----------------------------|-------|------------------|--|
| Sample ID                  |       | TB-101812        |  |
| Matrix                     |       | Water Quality    |  |
| Depth Interval (ft)        |       | (*)              |  |
| Date Sampled               |       |                  |  |
| Parameter                  | Units | Trìp Blank (1-1) |  |
| Volatile Organic Compounds |       |                  |  |
| Vinyl chloride             | UG/L  | 10 U             |  |
| Xylene (total)             | UG/L  | 10 U             |  |

Flags assigned during chemistry validation are shown.

# ATTACHMENT A VALIDATED FORM 1's

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| MW-03 | <br> |  |
|-------|------|--|
|       |      |  |

| Lab Name: H2M L2  | ABS INC                   | Contract:             |                 |
|-------------------|---------------------------|-----------------------|-----------------|
| Lab Code: H2M     | Case No.: URS             | SAS No.:              | SDG No.: URS143 |
| Matrix: (soil/wat | er) <u>WATER</u>          | Lab Sample ID:        | 1210B72-001A    |
| Sample wt/vol:    | <u>5</u> (g/mL) <u>ML</u> | Lab File ID:          | 12\G16548.      |
| Level: (low/med   | LOW                       | Date Received:        | 10/20/12        |
| % Moisture: not d | ec.                       | Date Analyzed:        | 10/26/12        |
| GC Column: Rtx-   | 624 ID: <u>.18</u>        | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volu | me: (µL                   | ) Soil Aliquot Volu   | ume (µL)        |

#### CONCENTRATION UNITS:

| CAS NO.    | COMPOUND                              | OUND (µg/L or µg/Kg) UG/L |    |
|------------|---------------------------------------|---------------------------|----|
| 75-71-8    | Dichlorodifluoromethane               | 10                        | U  |
| 74-87-3    | Chloromethane                         | 10                        | U  |
| 75-01-4    | Vinyl chloride                        | 10                        | U  |
| 74-83-9    | Bromomethane                          | 10                        | U  |
| 75-00-3    | Chloroethane                          | 10                        | U  |
| 75-69-4    | Trichlorofluoromethane                | 10                        | U  |
| 75-35-4    | 1,1-Dichloroethene                    | 10                        | U  |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                        | U  |
| 67-64-1    | Acetone                               | 10                        | U  |
| 75-15-0    | Carbon disulfide                      | 10                        | Ū  |
| 79-20-9    | Methyl Acetate                        | 10                        | U  |
| 75-09-2    | Methylene chloride                    | 10                        | U  |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                        | U  |
| 1634-04-4  | Methyl tert-butyl ether               | 10                        | U  |
| 75-34-3    | 1,1-Dichloroethane                    | 3                         | JZ |
| 156-59-2   | cis-1,2-Dichloroethene                | 11                        | 7  |
| 78-93-3    | 2-Butanone                            | 10                        | Ū  |
| 67-66-3    | Chloroform                            | 10                        | U  |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                        | U  |
| 110-82-7   | Cyclohexane                           | 10                        | U  |
| 56-23-5    | Carbon tetrachloride                  | 10                        | Ū٠ |
| 71-43-2    | Benzene                               | 10                        | Ū  |
| 107-06-2   | 1,2-Dichloroethane                    | 10                        | U  |
| 79-01-6    | Trichloroethene                       | 10                        | U  |
| 108-87-2   | Methylcyclohexane                     | 10                        | U  |
| 78-87-5    | 1,2-Dichloropropane                   | 10                        | U  |
| 75-27-4    | Bromodichloromethane                  | 10                        | U  |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                        | U  |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                        | U  |
| 108-88-3   | Toluene                               | 10                        | U  |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                        | U  |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                        | U  |
| 127-18-4   | Tetrachloroethene                     | 10                        | U  |
| 591-78-6   | 2-Hexanone                            | 10                        | U  |
| 124-48-1   | Dibromochloromethane                  | 10                        | U  |

1B

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| MW-03 |  |  |
|-------|--|--|
|       |  |  |

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|     |       |              |           |  |

Lab Code: <u>H2M</u> Case No.: <u>URS</u> SAS No.: \_\_\_\_\_ SDG No.: <u>URS143</u>

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-001A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16548}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/26/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (pL) Soil Aliquot Volume (pL)

#### CONCENTRATION UNITS:

| CAS NO.          | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|------------------|-----------------------------|-----------------------------|---|
| 106-93-4         | 1,2-Dibromoethane           | 10                          | U |
| 108-90-7         | Chlorobenzene               | 10                          | U |
| 100-41-4         | Ethylbenzene                | 10                          | U |
| 1330-20-7        | Xylene (total)              | 10                          | Ū |
| 100-42-5         | Styrene                     | 10                          | U |
| 75-25-2          | Bromoform                   | 10                          | Ü |
| 98-82-8          | Isopropylbenzene            | 10                          | U |
| 79-34 <b>-</b> 5 | 1,1,2,2-Tetrachloroethane   | 10                          | Ü |
| 541-73-1         | 1,3-Dichlorobenzene         | 10                          | U |
| 106-46-7         | 1,4-Dichlorobenzene         | 10                          | Ū |
| 95-50-1          | 1,2-Dichlorobenzene         | 10                          | Ū |
| 96-12 <b>-</b> 8 | 1,2-Dibromo-3-chloropropane | 10                          | Ū |
| 120-82-1         | 1,2,4-Trichlorobenzene      | 10                          | Ū |

1F

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| PLE NO. | SAMPLE | EPA  |
|---------|--------|------|
|         | 03     | MW-C |
|         | 03     | MW-C |

| Lab Name:     | H2M LABS INC      |                |          | Contra   | ct:           | _               |               |      |
|---------------|-------------------|----------------|----------|----------|---------------|-----------------|---------------|------|
| Lab Code:     | <u>H2M</u>        | Case No.       | : URS    | SAS No.: |               | SDG No.:        | <u>URS143</u> |      |
| Matrix: (soil | l/water)          | WATER          |          |          | Lab Sample    | ID: <u>1</u>    | 210B72-001A   |      |
| Sample wt/vol | l: <u>5</u>       |                | (g/mL)   | ML       | Lab File II   | ): <u>1</u>     | 2\G16548.     |      |
| Level: (low   | v/med) <u>LOW</u> |                |          |          | Date Receiv   | red: <u>1</u> 0 | 0/20/12       |      |
| % Moisture: n | not dec.          |                |          |          | Date Analyz   | zed: <u>1</u> 0 | 0/26/12       |      |
| GC Column: E  | Rtx-624           | ID: <u>.18</u> | (mm)     |          | Dilution Fa   | actor: 1        | .00           |      |
| Soil Extract  | Volume:           |                | (µ1)     |          | Soil Aliquo   | ot Volume:      | <u>0</u>      | (µL) |
|               |                   |                |          | CONCEN'  | TRATION UNITS | S:              |               |      |
| Number TICs f | found:            | 0              |          | (µg/L    | or µg/Kg)     | UG              | <u>/L</u>     | 4440 |
| C             | AS NUMBER         |                | COMPOUND | NAME     | RT            | EST CONC        | 0             |      |

### 1A

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

| Lab Name: HZM LABS   | INC            | Contract:             |                 |
|----------------------|----------------|-----------------------|-----------------|
| Lab Code: H2M        | Case No.: URS  | SAS No.:              | SDG No.: URS143 |
| Matrix: (soil/water) | WATER          | Lab Sample ID:        | 1210B72-002A    |
| Sample wt/vol: $5$   | (g/mL) ML      | Lab File ID:          | 12\G16522.      |
| Level: (low/med)     | LOW            | Date Received:        | 10/20/12        |
| % Moisture: not dec. |                | Date Analyzed:        | 10/25/12        |
| GC Column: Rtx-624   | ID: <u>.18</u> | (mm) Dilution Factor: | 1.00            |

### CONCENTRATION UNITS:

(µL) Soil Aliquot Volume (µL)

| CAS NO.    | COMPOUND (                            | μg/L or μg/Kg) <u>UG/L</u> | Q           |
|------------|---------------------------------------|----------------------------|-------------|
| 75-71-8    | Dichlorodifluoromethane               | 1 1                        | DZ -        |
| 74-87-3    | Chloromethane                         | 10                         | U           |
| 75-01-4    | Vinyl chloride                        | 10                         | U           |
| 74-83-9    | Bromomethane                          | 10                         | U           |
| 75-00-3    | Chloroethane                          | 10                         | U           |
| 75-69-4    | Trichlorofluoromethane                | 10                         | U           |
| 75-35-4    | 1,1-Dichloroethene                    | 10                         | U           |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                         | U           |
| 67-64-1    | Acetone                               | 10                         | Ü           |
| 75-15-0    | Carbon disulfide                      | 1.0                        | Ū           |
| 79-20-9    | Methyl Acetate                        | 10                         | U           |
| 75-09-2    | Methylene chloride                    | 10                         | U           |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                         | Ü           |
| 1634-04-4  | Methyl tert-butyl ether               | 10                         | U           |
| 75-34-3    | 1,1-Dichloroethane                    | 15                         | 51135515511 |
| 156-59-2   | cis-1,2-Dichloroethene                | 3                          | JZ          |
| 78-93-3    | 2-Butanone                            | 10                         | ΰ           |
| 67-66-3    | Chloroform                            | 10                         | Ü           |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                         | U           |
| 110-82-7   | Cyclohexane                           | 10                         | ט           |
| 56-23-5    | Carbon tetrachloride                  | 10                         | U           |
| 71-43-2    | Benzene                               | 10                         | U           |
| 107-06-2   | 1,2-Dichloroethane                    | 10                         | U           |
| 79-01-6    | Trichloroethene                       | 10                         | U           |
| 108-87-2   | Methylcyclohexane                     | 10                         | U           |
| 78-87-5    | 1,2-Dichloropropane                   | 10                         | U           |
| 75-27-4    | Bromodichloromethane                  | 10                         | U           |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                         | Ü           |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                         | U           |
| 108-88-3   | Toluene                               | 10                         | U           |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                         | U           |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                         | U           |
| 127-18-4   | Tetrachloroethene                     | 10                         | U           |
| 591-78-6   | 2-Hexanone                            | 10                         | Ū           |
| 124-48-1   | Dibromochloromethane                  | 10                         | U           |

1B

### VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC

EPA SAMPLE NO.

| MW-04 |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |

| Lab | Name: | H2M LABS | INC       |     | Contract: | -           |          |        |
|-----|-------|----------|-----------|-----|-----------|-------------|----------|--------|
| Lab | Code: | н2м      | Case No.: | URS | SAS No.:  | <del></del> | SDG No.: | URS143 |

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-002A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{12 \backslash \text{G16522}}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

 $(\mu L)$  Soil Aliquot Volume  $(\mu L)$ Soil Extract Volume:

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q |
|-----------|-----------------------------|----------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | Ü |
| 108-90-7  | Chlorobenzene               | 10                   | U |
| 100-41-4  | Ethylbenzene                | 10                   | U |
| 1330-20-7 | Xylene (total)              | 10                   | Ü |
| 100-42-5  | Styrene                     | 10                   | U |
| 75-25-2   | Bromoform                   | 10                   | U |
| 98-82-8   | Isopropylbenzene            | 10                   | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | Ü |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | Ü |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | U |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | Ū |

1F

CAS NUMBER

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| MW-( | )4     |     |  |

| Number TICs found:             | 0                    | (µg/L or µg/Kg)                        | UG/L                 |      |
|--------------------------------|----------------------|----------------------------------------|----------------------|------|
|                                |                      | CONCENTRATION UNITS:                   |                      |      |
| Soil Extract Volume:           | (µ1)                 | Soil Aliquot Vo.                       | lume: <u>0</u>       | (µL) |
| GC Column: Rtx-624             | ID: <u>.18</u> (mm)  | Dilution Factor                        | : <u>1.00</u>        |      |
| % Moisture: not dec.           |                      | Date Analyzed:                         | 10/25/12             |      |
| Level: (low/med)               | TOM                  | Date Received:                         | 10/20/12             |      |
| Sample wt/vol: $\underline{5}$ | (g/mL)               | $\underline{\mathtt{ML}}$ Lab File ID: | 12\G16522.           |      |
| Matrix: (soil/water)           | WATER                | Lab Sample ID:                         | 1210B72-002A         |      |
| Lab Code: H2M                  | Case No.: <u>URS</u> | SAS No.:SD                             | G No.: <u>URS143</u> |      |
| Lab Name: HZM LABS             | INC                  | Contract:                              |                      |      |

COMPOUND NAME

RT

EST. CONC.

### VOLATILE ORGANICS ANALYSIS DATA SHEET

|     | _ |  |  |  |  |
|-----|---|--|--|--|--|
| W-1 | 6 |  |  |  |  |
|     |   |  |  |  |  |
|     |   |  |  |  |  |
|     |   |  |  |  |  |

| Lab Name:   | H2M LABS IN   | IC .           | Contract: | <del></del>  |                 |
|-------------|---------------|----------------|-----------|--------------|-----------------|
| Lab Code:   | н2м           | Case No.: URS  | SAS No.:  |              | SDG No.: URS143 |
| Matrix: (so | il/water)     | WATER          | Lab       | Sample ID:   | 1210B72-003A    |
| Sample wt/v | rol: <u>5</u> | (g/mL) ML      | Lab       | File ID:     | 12\G16523.      |
| Level: (1   | ow/med)       | LOW            | Date      | Received:    | 10/20/12        |
| % Moisture: | not dec.      |                | Date      | Analyzed:    | 10/25/12        |
| GC Column:  | Rtx-624       | ID: <u>.18</u> | (mm) Dilu | tion Factor: | 1.00            |
| Soil Extrac | t Volume:     | (рг)           | Soil      | Aliquot Volu | me (µL)         |

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND (p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıg/L or μg/Kg) <u>UG/L</u> | Q   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|
| 75-71-    | 8 Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                         | טיש |
| 74-87-    | 3 Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 75-01-    | 4 Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                         | Ų   |
| 74-83-    | 9 Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                         | U   |
| 75-00-    | 3 Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                         | U   |
| 75-69-    | 4 Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                         | Ü   |
| 75-35-    | 4 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                         | Ū   |
| 76-13-    | 1 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                         | U   |
| 67-64-    | 1 Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                         | U   |
| 75-15-    | O Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                         | Ü   |
| 79-20-    | 9 Methyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                         | Ü   |
| 75-09-    | 2 Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                         | Ū   |
| 156-60-   | 5 trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                         | Ū   |
| 1634-04-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 75-34-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 156-59-   | 2 cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                         | U   |
| 78-93-    | 3 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                         | U   |
| 67-66-    | 3 Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                         | U   |
| 71-55-    | 6 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                         | U   |
| 110-82-   | 7 Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                         | Ū   |
| 56-23-    | 5 Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                         | U   |
| 71-43-    | 2 Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                         | U   |
| 107-06-   | 2 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                         | Ü   |
| 79-01-    | 6 Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                         | U   |
| 108-87-   | 2 Methylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                         | Ü   |
| 78-87-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 75-27-    | **** *** **** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** * | 10                         | Ü   |
| 10061-01- | 5 cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                         | U   |
| 108-10-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 108-88-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 10061-02- | 6 trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                         | U   |
| 79-00-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |
| 127-18-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | Ü   |
| 591-78-   | 6 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                         | U   |
| 124-48-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                         | U   |

1B

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| MW-16   |  |  |
|---------|--|--|
| MM - TO |  |  |
|         |  |  |
|         |  |  |

| Lab Name: H2M LABS INC | Contract: |
|------------------------|-----------|
|------------------------|-----------|

Lab Code: <u>H2M</u> Case No.: <u>URS</u> SAS No.: \_\_\_\_\_ SDG No.: <u>URS143</u>

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-003A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16523}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:  $(\mu L)$  Soil Aliquot Volume  $(\mu L)$ 

#### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q  |  |
|-----------|-----------------------------|----------------------|----|--|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | U  |  |
| 108-90-7  | Chlorobenzene               | 10                   | U  |  |
| 100-41-4  | Ethylbenzene                | 10                   | Ū  |  |
| 1330-20-7 | Xylene (total)              | 10                   | U  |  |
| 100-42-5  | Styrene                     | 10                   | U  |  |
| 75-25-2   | Bromoform                   | 10                   | U  |  |
| 98-82-8   | Isopropylbenzene            | 10                   | U  |  |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | Ū  |  |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | U  |  |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | Ū  |  |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | Ü  |  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | Ü  |  |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | IJ |  |

1F

### VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA | SAMPLE | NO. |  |
|-----|--------|-----|--|
| MW- | 1.6    |     |  |
|     |        |     |  |

| Lab Name:     | H2M LABS INC     | Contract:      |            |          |                     |                   |      |
|---------------|------------------|----------------|------------|----------|---------------------|-------------------|------|
| Lab Code:     | <u>H2M</u>       | Case No.       | : URS      | SAS No.: | SDG No              | o.: <u>URS143</u> |      |
| Matrix: (soil | /water)          | WATER          |            |          | Lab Sample ID:      | 1210B72-003A      |      |
| Sample wt/vol | : <u>5</u>       |                | (g/mL)     | ML       | Lab File ID:        | 12\G16523.        |      |
| Level: (low   | /med) <u>LOW</u> |                |            |          | Date Received:      | 10/20/12          |      |
| % Moisture: n | ot dec.          |                |            |          | Date Analyzed:      | 10/25/12          |      |
| GC Column: R  | ttx-624          | ID: <u>.18</u> | (mm)       |          | Dilution Factor:    | 1.00              |      |
| Soil Extract  | Volume:          |                | (µ1)       |          | Soil Aliquot Volume | e: <u>0</u>       | (µL) |
|               |                  |                |            | CONCENT  | RATION UNITS:       |                   |      |
| Number TICs f | ound:            | 0              |            | (µg/L o  | r µg/Kg)            | UG/L              | 21   |
| CZ            | AS NUMBER        |                | COMPOUND 1 | JAME     | RT EST.C            | ONC O             | i    |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| NDP-WS |  |  |
|--------|--|--|
|        |  |  |

| Lab Name: H2M LABS   | INC            | Contract:   |               |                |
|----------------------|----------------|-------------|---------------|----------------|
| Lab Code: H2M        | Case No.: URS  | SAS No.: _  | S.            | DG No.: URS142 |
| Matrix: (soil/water) | WATER          | Lab Sa      | ample ID: 1   | 210B69-001A    |
| Sample wt/vol: 5     | (g/mL) ML      | Lab Fi      | le ID: 1      | 2\G16592.      |
| Level: (low/med)     | FOM            | Date R      | deceived: 1   | 0/20/12        |
| % Moisture: not dec. |                | Date A      | malyzed:      | 10/29/12       |
| GC Column: Rtx-624   | ID: <u>.18</u> | (mm) Diluti | on Factor:    | 1.00           |
| Soil Extract Volume: | (117.)         | Soil &      | liquet Velume | e (11T.)       |

| CAS NO.    | COMPOUND                              | µg/L or µg/Kg) UG/L | Q    |
|------------|---------------------------------------|---------------------|------|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | טע   |
| 74-87-3    | Chloromethane                         | 10                  | U    |
| 75-01-4    | Vinyl chloride                        | 10                  | Ü    |
| 74-83-9    | Bromomethane                          | 10                  | U    |
| 75-00-3    | Chloroethane                          | 10                  | U    |
| 75-69-4    | Trichlorofluoromethane                | 10                  | U    |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | U    |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | U    |
| 67-64-1    | Acetone                               | 10-3-               | SZ V |
| 75-15-0    | Carbon disulfide                      | 10                  | Ū    |
| 79-20-9    | Methyl Acetate                        | 10                  | Ū    |
| 75-09-2    | Methylene chloride                    | 10                  | Ü    |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | U    |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | U    |
| 75-34-3    | 1,1-Dichloroethane                    | 10                  | Ü    |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | U    |
| 78-93-3    | 2-Butanone                            | 10                  | Ū    |
| 67-66-3    | Chloroform                            | 10                  | U    |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | U    |
| 110-82-7   | Cyclohexane                           | 10                  | Ū    |
| 56-23-5    | Carbon tetrachloride                  | 10                  | U    |
| 71-43-2    | Benzene                               | 10                  | Ü    |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | Ū    |
| 79-01-6    | Trichloroethene                       | 10                  | U    |
| 108-87-2   | Methylcyclohexane                     | 10                  | Ū    |
| 78-87-5    | 1,2-Dichloropropane                   | 10                  | U    |
| 75-27-4    | Bromodichloromethane                  | 10                  | U    |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | U    |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                  | US   |
| 108-88-3   | Toluene                               | 10                  | U    |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                  | U    |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                  | U    |
| 127-18-4   | Tetrachloroethene                     | 10                  | U    |
| 591-78-6   | 2-Hexanone                            | 10                  | US   |
| 124-48-1   | Dibromochloromethane                  | 10                  | Ü    |

## VOLATILE ORGANICS ANALYSIS DATA SHEET

|     | ~      |    |
|-----|--------|----|
| EPA | SAMPLE | NO |

| NDP-WS |  |  |
|--------|--|--|
|        |  |  |

| Lab Name: H2M LABS   | INC              | Contract:             |                 |
|----------------------|------------------|-----------------------|-----------------|
| Lab Code: H2M        | Case No.: URS    | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/water) | WATER            | Lab Sample ID:        | 1210B69-001A    |
| Sample wt/vol: 5     | (g/mL) ML        | Lab File ID:          | 12\G16592.      |
| Level: (low/med)     | LOW              | Date Received:        | 10/20/12        |
| % Moisture: not dec. |                  | Date Analyzed:        | 10/29/12        |
| GC Column: Rtx-624   | ID: <u>.18</u> ( | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume: | (µL)             | Soil Aliquot Volu     | me (µL)         |

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q   |
|-----------|-----------------------------|-----------------------------|-----|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | U   |
| 108-90-7  | Chlorobenzene               | 10                          | U   |
| 100-41-4  | Ethylbenzene                | 10                          | Ü   |
| 1330-20-7 | Xylene (total)              | 10                          | U   |
| 100-42-5  | Styrene                     | 10                          | U   |
| 75-25-2   | Bromoform                   | 10                          | U   |
| 98-82-8   | Isopropylbenzene            | 10                          | U   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | U   |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U   |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | Ü   |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | U   |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | U/S |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                          | U   |



# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| NDP- | -ws    |     |  |

Lab Name: H2M LABS INC Contract: Lab Code: H2M SAS No.: \_\_\_\_\_ SDG No.: URS142 Case No.: URS Matrix: (soil/water) WATER Lab Sample ID: 1210B69-001A Sample wt/vol: 5 (g/mL) Lab File ID: 12\G16592. ML Level: (low/med) LOW Date Received: 10/20/12 % Moisture: not dec. Date Analyzed: 10/29/12 ID: .18 (mm) GC Column: Rtx-624 Dilution Factor: 1.00 Soil Extract Volume: (pl) Soil Aliquot Volume: <u>0</u> (μL) CONCENTRATION UNITS: Number TICs found: 0 (µg/L or µg/Kg) UG/L CAS NUMBER COMPOUND NAME RT EST. CONC.

#### EPA SAMPLE NO.

## VOLATILE ORGANICS ANALYSIS DATA SHEET

|        | 1 - 1007,- |  |
|--------|------------|--|
| SDP-WS |            |  |
|        |            |  |

| Lab Name: H2M LAI  | BS INC          | Contract:             |                 |
|--------------------|-----------------|-----------------------|-----------------|
| Lab Code: H2M      | Case No.: URS   | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/wate | r) <u>WATER</u> | Lab Sample ID:        | 1210B69-002A    |
| Sample wt/vol:     | 5 (g/mL) ML     | Lab File ID:          | 12\G16593.      |
| Level: (low/med)   | TOM             | Date Received:        | 10/20/12        |
| % Moisture: not de | c.              | Date Analyzed:        | 10/29/12        |
| GC Column: Rtx-6   | 24 ID: .18      | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volum | e: (uL)         | Soil Alignot Volu     | ume (u.t.)      |

| CAS NO.    | COMPOUND                              | µg/L or µg/Kg) UG/L | Q    |
|------------|---------------------------------------|---------------------|------|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | ט 🏲  |
| 74-87-3    | Chloromethane                         | 10                  | U    |
| 75-01-4    | Vinyl chloride                        | 10                  | Ü    |
| 74-83-9    | Bromomethane                          | 10                  | U5   |
| 75-00-3    | Chloroethane                          | 10                  | Ū    |
| 75-69-4    | Trichlorofluoromethane                | 10                  | Ü    |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | Ū    |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | על ע |
| 67-64-1    |                                       | 10-2                | JZ   |
| 75-15-0    | Carbon disulfide                      | 10                  | Ü    |
| 79-20-9    | Methyl Acetate                        | 10                  | Ū    |
| 75-09-2    | Methylene chloride                    | 10                  | U    |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | Ü    |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | U    |
| 75-34-3    |                                       | 10                  | Ū    |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | Ü    |
| 78-93-3    | 2-Butanone                            | 10                  | Ü    |
| 67-66-3    | Chloroform                            | 10                  | U    |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | U    |
| 110-82-7   | Cyclohexane                           | 10                  | Ŭ    |
| 56-23-5    | Carbon tetrachloride                  | 10                  | Ü    |
| 71-43-2    | Benzene                               | 10                  | Ü    |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | U    |
| 79-01-6    | Trichloroethene                       | 10                  | Ü    |
| 108-87-2   | Methylcyclohexane                     | 10                  | U    |
| 78-87-5    |                                       | 10                  | U    |
| 75-27-4    |                                       | 10                  | Ü    |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | U    |
| 108-10-1   |                                       | 10                  | U    |
| 108-88-3   |                                       | 10                  | U    |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                  | U    |
| 79-00-5    |                                       | 10                  | Ü    |
| 127-18-4   |                                       | 10                  | U    |
| 591-78-6   |                                       | 10                  | U    |
| 124-48-1   |                                       | 10                  | U    |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

| SDP - | -wa |  |  |  |
|-------|-----|--|--|--|
| ,,,,  | MD  |  |  |  |
|       |     |  |  |  |
|       |     |  |  |  |

| Lab Name: H2M LABS   | INC            | Contract:             |                 |
|----------------------|----------------|-----------------------|-----------------|
| Lab Code: H2M        | Case No.: URS  | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/water) | WATER          | Lab Sample ID:        | 1210B69-002A    |
| Sample wt/vol: $5$   | (g/mL) ML      | Lab File ID:          | 12\G16593.      |
| Level: (low/med)     | TOM            | Date Received:        | 10/20/12        |
| % Moisture: not dec. |                | Date Analyzed:        | 10/29/12        |
| GC Column: Rtx-624   | ID: <u>.18</u> | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume: | (uL)           | Soil Aliquot Volu     | ıme (uL)        |

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q   |
|-----------|-----------------------------|-----------------------------|-----|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | Ū   |
| 108-90-7  | Chlorobenzene               | 10                          | Ü   |
| 100-41-4  | Ethylbenzene                | 10                          | Ü   |
| 1330-20-7 | Xylene (total)              | 10                          | Ü   |
| 100-42-5  | Styrene                     | 10                          | ک ت |
| 75-25-2   | Bromoform                   | 10                          | Ü   |
| 98-82-8   | Isopropylbenzene            | 10                          | U   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | U   |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U   |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | U   |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | Ü   |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | ע   |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                          | U C |



CAS NUMBER

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| SDP- | -WS    |     |  |
|      |        |     |  |

Q

| Lab Name: H2M L     | ABS INC        |        | Contrac  | :t:                |                    |      |
|---------------------|----------------|--------|----------|--------------------|--------------------|------|
| Lab Code: H2M       | Case No.       | : URS  | SAS No.: | SDG :              | No.: <u>URS142</u> |      |
| Matrix: (soil/water | WATER          |        |          | Lab Sample ID:     | 1210B69-002A       |      |
| Sample wt/vol:      | <u>5</u>       | (g/mL) | ML       | Lab File ID:       | 12\G16593.         |      |
| Level: (low/med)    | LOW            |        |          | Date Received:     | 10/20/12           |      |
| % Moisture: not dec | <b>.</b>       |        |          | Date Analyzed:     | 10/29/12           |      |
| GC Column: Rtx-624  | ID: <u>.18</u> | (mm)   |          | Dilution Factor:   | 1.00               |      |
| Soil Extract Volume | 1:             | (µ1)   |          | Soil Aliquot Volum | ne: <u>0</u>       | (µL) |
|                     |                |        | CONCENT  | RATION UNITS:      |                    |      |
| Number TICs found:  | 0              |        | (µg/L c  | pr μg/Kg)          | UG/L               |      |

RT

EST. CONC.

COMPOUND NAME

SOP-WS

#### 1A

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FD-101812

| Lab Name:    | H2M LABS IN  | <u>IC</u>   | Contrac  | ct:               |                 |
|--------------|--------------|-------------|----------|-------------------|-----------------|
| Lab Code:    | H2M          | Case No.: [ | ORS SAS  | No.:              | SDG No.: URS142 |
| Matrix: (soi | ll/water)    | WATER       |          | Lab Sample ID:    | 1210B69-004A    |
| Sample wt/vo | ol: <u>5</u> | (g/mL)      | ML       | Lab File ID:      | 12\G16595.      |
| Level: (lo   | ow/med)      | TOM         |          | Date Received:    | 10/20/12        |
| % Moisture:  | not dec.     |             |          | Date Analyzed:    | 10/29/12        |
| GC Column:   | Rtx-624      | ID:         | .18 (mm) | Dilution Factor:  | 1.00            |
| Soil Extract | : Volume:    |             | (hr)     | Soil Aliquot Volu | nwe (hr)        |

| CAS NO.   | COMPOUND (                              | μg/L or μg/Kg) <u>UG/L</u> | Q   |
|-----------|-----------------------------------------|----------------------------|-----|
| 75-71-    | 8 Dichlorodifluoromethane               | 10                         | US  |
| 74-87-    | 3 Chloromethane                         | 10                         | U   |
| 75-01-    | 4 Vinyl chloride                        | 10                         | U   |
| 74-83-    | 9 Bromomethane                          | 10                         | U   |
| 75-00-    | 3 Chloroethane                          | 10                         | U   |
| 75-69-    | 4 Trichlorofluoromethane                | 10                         | Ü   |
| 75-35-    | 4 1,1-Dichloroethene                    | 10                         | Ū   |
| 76-13-    | 1 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                         | U-S |
| 67-64-    |                                         | 10 2                       | 1ZC |
| 75-15-    | O Carbon disulfide                      | 10                         | Ū   |
| 79-20-    | 9 Methyl Acetate                        | 10                         | Ū   |
| 75-09-    | 2 Methylene chloride                    | 10                         | Ū   |
| 156-60-   | 5 trans-1,2-Dichloroethene              | 10                         | U   |
| 1634-04-  |                                         | 10                         | Ü   |
| 75-34-    | 3 1,1-Dichloroethane                    | 10                         | Ū   |
| 156-59-   | 2 cis-1,2-Dichloroethene                | 10                         | U   |
| 78-93-    | 3 2-Butanone                            | 10                         | Ū   |
| 67-66-    | 3 Chloroform                            | 10                         | U   |
| 71-55-    | 6 1,1,1-Trichloroethane                 | 10                         | Ŭ   |
| 110-82-   | 7 Cyclohexane                           | 10                         | Ū   |
| 56-23-    | 5 Carbon tetrachloride                  | 10                         | Ü   |
| 71-43-    | 2 Benzene                               | 10                         | Ü   |
| 107-06-   | 2 1,2-Dichloroethane                    | 10                         | U   |
| 79-01-    | 6 Trichloroethene                       | 10                         | Ü   |
| 108-87-   | 2 Methylcyclohexane                     | 10                         | U   |
| 78-87-    | 5 1,2-Dichloropropane                   | 10                         | Ū   |
| 75-27-    | 4 Bromodichloromethane                  | 10                         | Ū   |
| 10061-01- | 5 cis-1,3-Dichloropropene               | 10                         | U   |
| 108-10-   | 1 4-Methyl-2-pentanone                  | 10                         | US  |
| 108-88-   | 3 Toluene                               | 10                         | U   |
| 10061-02- | 6 trans-1,3-Dichloropropene             | 10                         | U   |
| 79-00-    |                                         | 10                         | Ü   |
| 127-18-   | 4 Tetrachloroethene                     | 10                         | U   |
| 591-78-   | 6 2-Hexanone                            | 10                         | 0 3 |
| 124-48-   | 1 Dibromochloromethane                  | 10                         | Ü   |

SDP-WS

#### 1B

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FD-101812

| Lab Name: H2M LAB   | S INC Contra      | ict:              |                 |
|---------------------|-------------------|-------------------|-----------------|
| Lab Code: H2M       | Case No.: URS SAS | No.:              | SDG No.: URS142 |
| Matrix: (soil/water | ) <u>WATER</u>    | Lab Sample ID:    | 1210B69-004A    |
| Sample wt/vol:      | (g/mL) ML         | Lab File ID:      | 12\G16595.      |
| Level: (low/med)    | FOM               | Date Received:    | 10/20/12        |
| % Moisture: not dec | •                 | Date Analyzed:    | 10/29/12        |
| GC Column: Rtx-62   | 1D: .18 (mm)      | Dilution Factor:  | 1.00            |
| Soil Extract Volume | (pL)              | Soil Aliquot Volu | ıme (µL)        |

| CAS NO.   | COMPOUND                    | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{\text{UG/L}}$ | Q   |  |
|-----------|-----------------------------|------------------------------------------------------|-----|--|
| 106-93-4  | 1,2-Dibromoethane           | 10                                                   | Ü   |  |
| 108-90-7  | Chlorobenzene               | 10                                                   | U   |  |
| 100-41-4  | Ethylbenzene                | 10                                                   | U   |  |
| 1330-20-7 | Xylene (total)              | 10                                                   | U   |  |
| 100-42-5  | Styrene                     | 10                                                   | UJ  |  |
| 75-25-2   | Bromoform                   | 10                                                   | Ü   |  |
| 98-82-8   | Isopropylbenzene            | 10                                                   | U   |  |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                                                   | U   |  |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                                                   | Ü   |  |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                                                   | U   |  |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                                                   | Ū   |  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                                                   | บี  |  |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                                                   | U J |  |



50P-WS

1F

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| FD-1 | 101812 |     |  |

| Lab Name:   | H2M LABS INC |                |          | Contrac  | :t:           | -             |               |      |
|-------------|--------------|----------------|----------|----------|---------------|---------------|---------------|------|
| Lab Code:   | <u>H2M</u>   | Case No.       | : URS    | SAS No.: |               | SDG No.:      | <u>URS142</u> |      |
| Matrix: (so | il/water)    | WATER          |          |          | Lab Sample I  | D: <u>1</u>   | 210B69-004A   |      |
| Sample wt/v | ol: <u>5</u> |                | (g/mL)   | ML       | Lab File ID:  | 1             | 2\G16595.     |      |
| Level: (1   | ow/med) LOW  |                |          |          | Date Receive  | :d: <u>1</u>  | 0/20/12       |      |
| % Moisture: | not dec.     |                |          |          | Date Analyze  | :d: <u>1</u>  | 0/29/12       |      |
| GC Column:  | Rtx-624      | ID: <u>.18</u> | (mm)     |          | Dilution Fac  | tor: <u>1</u> | .00           |      |
| Soil Extrac | t Volume:    |                | (µ1)     |          | Soil Aliquot  | Volume:       | <u>0</u>      | (µL) |
|             |              |                |          | CONCENT  | RATION UNITS: |               |               |      |
| Number TICs | found:       | 0              |          | (µg/L c  | r μg/Kg)      | UG            | <u>/L</u>     |      |
|             | CAS NUMBER   |                | COMPOUND | NAME     | RT            | EST.CONC      | . Q           |      |

#### 1A

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| Lab Name: H2M LAB   | INC              | Contract:            |                 |
|---------------------|------------------|----------------------|-----------------|
| Lab Code: H2M       | Case No.: URS    | SAS No.:             | SDG No.: URS143 |
| Matrix: (soil/water | ) <u>WATER</u>   | Lab Sample ID:       | 1210B72-004A    |
| Sample wt/vol:      | (g/mL) ML        | Lab File ID:         | 12\G16524.      |
| Level: (low/med)    | TOM              | Date Received:       | 10/20/12        |
| % Moisture: not dec |                  | Date Analyzed:       | 10/25/12        |
| GC Column: Rtx-62   | 4 ID: <u>.18</u> | (mm) Dilution Factor | : 1.00          |
| Soil Extract Volume | : (µL)           | Soil Aliquot Vo      | lume (µL)       |

| as no.     | COMPOUND (                            | pg/L or pg/Kg) UG/L | Q   |
|------------|---------------------------------------|---------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | ט づ |
| 74-87-3    | Chloromethane                         | 10                  | U   |
| 75-01-4    | Vinyl chloride                        | 10                  | U   |
| 74-83-9    | Bromomethane                          | 10                  | U   |
| 75-00-3    | Chloroethane                          | 10                  | U   |
| 75-69-4    | Trichlorofluoromethane                | 10                  | U   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | U   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | U   |
| 67-64-1    | Acetone                               | 10                  | U   |
| 75-15-0    | Carbon disulfide                      | 10                  | U   |
| 79-20-9    | Methyl Acetate                        | 10                  | U   |
| 75-09-2    | Methylene chloride                    | 10                  | Ū   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | U   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | Ü   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                  | υ   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | U   |
| 78-93-3    | 2-Butanone                            | 10                  | U   |
| 67-66-3    | Chloroform                            | 10                  | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | Ü   |
| 110-82-7   | Cyclohexane                           | 10                  | Ū   |
| 56-23-5    | Carbon tetrachloride                  | 10                  | υ   |
| 71-43-2    | Benzene                               | 10                  | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | Ü   |
| 79-01-6    | Trichloroethene                       | 10                  | Ü   |
| 108-87-2   | Methylcyclohexane                     | 10                  | υ   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                  | U   |
| 75-27-4    | Bromodichloromethane                  | 10                  | U   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | Ü   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                  | U   |
| 108-88-3   | Toluene                               | 10                  | Ü   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                  | Ū   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                  | Ü   |
| 127-18-4   | Tetrachloroethene                     | 10                  | Ü   |
| 591-78-6   | 2-Hexanone                            | 10                  | Ü   |
| 124-48-1   | Dibromochloromethane                  | 10                  | U   |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| SW-01D |  |  |  |
|--------|--|--|--|
|        |  |  |  |

Lab Name: H2M LABS INC Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-004A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16524}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND | (µg/L or µg/Kg) UG/L   | 0 |
|-----------|----------|------------------------|---|
| C11D 110. | COMECOND | (µg/11 OI µg/Ng/ OG/11 | ¥ |

| 106-93-4  | 1,2-Dibromoethane           | 10 | ט |
|-----------|-----------------------------|----|---|
| 108-90-7  | Chlorobenzene               | 10 | U |
| 100-41-4  | Ethylbenzene                | 10 | ט |
| 1330-20-7 | Xylene (total)              | 10 | U |
| 100-42-5  | Styrene                     | 10 | Ü |
| 75-25-2   | Bromoform                   | 10 | U |
| 98-82-8   | Isopropylbenzene            | 10 | Ü |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10 | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10 | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10 | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10 | U |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10 | U |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10 | Ü |

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| sw-c | )1D    |     |  |

Q

| Lab Name:      | H2M LABS INC     |                |            | Contrac    | t:          |            |         |          |      |
|----------------|------------------|----------------|------------|------------|-------------|------------|---------|----------|------|
| Lab Code:      | <u>H2M</u>       | Case No.       | : URS      | SAS No.: _ |             | SDG No     | .: URS  | 143      |      |
| Matrix: (soil, | /water)          | WATER          |            |            | Lab Sample  | e ID:      | 1210B72 | -004A    |      |
| Sample wt/vol  | : <u>5</u>       |                | (g/mL)     | ML         | Lab File    | ID:        | 12\G165 | 24.      |      |
| Level: (low,   | /med) <u>LOW</u> |                |            |            | Date Recei  | ived:      | 10/20/1 | 2        |      |
| % Moisture: no | ot dec.          |                |            |            | Date Analy  | yzed:      | 10/25/1 | 2        |      |
| GC Column: R   | tx-624           | ID: <u>.18</u> | (mm)       |            | Dilution I  | Factor:    | 1.00    |          |      |
| Soil Extract   | Volume:          |                | (µ1)       |            | Soil Aliqu  | uot Volume | :       | <u>o</u> | (µL) |
|                |                  |                |            | CONCENT    | RATION UNIT | rs:        |         |          |      |
| Number TICs fo | ound:            | 0              |            | (µg/L o    | r μg/Kg)    | 2          | UG/L    |          | -11  |
| CA             | AS NUMBER        |                | COMPOUND N | NAME       | RT          | EST.CO     | NC.     | Q        |      |

#### 1A

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| SW-01S |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |

| Lab Name: H2M LABS  | INC            | Contract: | -              |                 |
|---------------------|----------------|-----------|----------------|-----------------|
| Lab Code: H2M       | Case No.: URS  | SAS No.:  | L)             | SDG No.: URS143 |
| Matrix: (soil/water | ) WATER        | Lab       | Sample ID:     | 1210B72-005A    |
| Sample wt/vol:      | (g/mL) ML      | Lab       | File ID:       | 12\G16525.      |
| Level: (low/med)    | LOW            | Date      | Received:      | 10/20/12        |
| % Moisture: not dec | •              | Date      | Analyzed:      | 10/25/12        |
| GC Column: Rtx-62   | 1D: <u>.18</u> | (mm) Dilu | tion Factor:   | 1.00            |
| Soil Extract Volume | : (µI          | ) Soil    | . Aliquot Volu | nme (µL)        |

| CAS NO.    | COMPOUND                              | (µg/L or µg/Kg) UG/L | Q   |
|------------|---------------------------------------|----------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                   | ט 🤇 |
| 74-87-3    | Chloromethane                         | 10                   | 70  |
| 75-01-4    | Vinyl chloride                        | 10                   | U   |
| 74-83-9    | Bromomethane                          | 10                   | Ü   |
| 75-00-3    | Chloroethane                          | 10                   | U   |
| 75-69-4    | Trichlorofluoromethane                | 10                   | U   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                   | U   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                   | U   |
| 67-64-1    | Acetone                               | 10                   | U   |
| 75-15-0    | Carbon disulfide                      | 10                   | υ   |
| 79-20-9    | Methyl Acetate                        | 10                   | U   |
| 75-09-2    | Methylene chloride                    | 10                   | Ü   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                   | U   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                   | U   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                   | U   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                   | U   |
| 78-93-3    | 2-Butanone                            | 10                   | U   |
| 67-66-3    | Chloroform                            | 10                   | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                   | U   |
| 110-82-7   | Cyclohexane                           | 10                   | U   |
| 56-23-5    | Carbon tetrachloride                  | 10                   | Ü   |
| 71-43-2    | Benzene                               | 10                   | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                   | U   |
| 79-01-6    | Trichloroethene                       | 10                   | Ū   |
| 108-87-2   | Methylcyclohexane                     | 10                   | U   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                   | Ü   |
| 75-27-4    | Bromodichloromethane                  | 10                   | Ū   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                   | U   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                   | U   |
| 108-88-3   | Toluene                               | 10                   | U   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                   | U   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                   | υ   |
| 127-18-4   | Tetrachloroethene                     | 10                   | Ü   |
| 591-78-6   | 2-Hexanone                            | 10                   | U   |
| 124-48-1   | Dibromochloromethane                  | 10                   | Ü   |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| sw-01s |  |  |
|--------|--|--|
|        |  |  |

Lab Name: H2M LABS INC Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-005A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{12 \backslash \text{G16525}}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q |
|-----------|-----------------------------|----------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | Ü |
| 108-90-7  | Chlorobenzene               | 10                   | U |
| 100-41-4  | Ethylbenzene                | 10                   | U |
| 1330-20-7 | Xylene (total)              | 10                   | U |
| 100-42-5  | Styrene                     | 10                   | Ü |
| 75-25-2   | Bromoform                   | 10                   | Ū |
| 98-82-8   | Isopropylbenzene            | 10                   | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | Ü |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | ט |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | U |

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| sw-C | 018    |     |  |

| Lab Name:     | HZM LABS INC      |                |          | Contra   | ct:          | -              |             |      |
|---------------|-------------------|----------------|----------|----------|--------------|----------------|-------------|------|
| Lab Code:     | <u>H2M</u>        | Case No.       | : URS    | SAS No.: |              | SDG No.:       | URS143      |      |
| Matrix: (soil | 1/water)          | WATER          |          |          | Lab Sample   | ID: <u>12</u>  | 210B72-005A |      |
| Sample wt/vol | L: <u>5</u>       |                | (g/mL)   | ML       | Lab File I   | D: <u>12</u>   | 2\G16525.   |      |
| Level: (low   | v/med) <u>LOW</u> |                |          |          | Date Recei   | ved: <u>10</u> | 0/20/12     |      |
| % Moisture: n | not dec.          |                |          |          | Date Analy   | zed: <u>10</u> | 0/25/12     |      |
| GC Column: R  | Rtx-624           | ID: <u>.18</u> | (mm)     |          | Dilution F   | actor: 1.      | .00         |      |
| Soil Extract  | Volume:           |                | (µ1)     |          | Soil Aliqu   | ot Volume:     | <u>0</u>    | (µL) |
|               |                   |                |          | CONCEN   | TRATION UNIT | S:             |             |      |
| Number TICs f | found:            | 0              |          | (µg/L    | or µg/Kg)    | UG             | <u>/L</u>   |      |
| CZ            | AS NUMBER         |                | COMPOUND | NAME     | RT           | EST.CONC       | . Q         |      |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

|        |  |  | 7. |
|--------|--|--|----|
| SW-02D |  |  |    |
|        |  |  |    |

| Lab | Name: | H2M LABS I | NC        |     | Contract: |              |        |
|-----|-------|------------|-----------|-----|-----------|--------------|--------|
| Lab | Code: | н2м        | Case No.: | URS | SAS No.;  | <br>SDG No.: | URS143 |

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-006A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{12 \backslash \text{G16526}}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (μL) Soil Aliquot Volume (μL)

| CAS NO.    | COMPOUND                              | (µg/L or µg/Kg) UG/L | Q |
|------------|---------------------------------------|----------------------|---|
| 75-71-8    | Dichlorodifluoromethane               | 10                   | ט |
| 74-87-3    | Chloromethane                         | 10                   | U |
| 75-01-4    | Vinyl chloride                        | 10                   | U |
| 74-83-9    | Bromomethane                          | 10                   | Ū |
| 75-00-3    | Chloroethane                          | 10                   | U |
| 75-69-4    | Trichlorofluoromethane                | 10                   | U |
| 75-35-4    | 1,1-Dichloroethene                    | 10                   | U |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                   | U |
| 67-64-1    | Acetone                               | 10                   | U |
| 75-15-0    | Carbon disulfide                      | 10                   | Ü |
| 79-20-9    | Methyl Acetate                        | 10                   | U |
| 75-09-2    | Methylene chloride                    | 10                   | U |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                   | U |
| 1634-04-4  | Methyl tert-butyl ether               | 10                   | U |
| 75-34-3    | 1,1-Dichloroethane                    | 10                   | Ü |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                   | U |
| 78-93-3    | 2-Butanone                            | 10                   | Ū |
| 67-66-3    | Chloroform                            | 10                   | Ü |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                   | U |
| 110-82-7   | Cyclohexane                           | 10                   | U |
| 56-23-5    | Carbon tetrachloride                  | 10                   | U |
| 71-43-2    | Benzene                               | 10                   | U |
| 107-06-2   | 1,2-Dichloroethane                    | 10                   | Ü |
| 79-01-6    | Trichloroethene                       | 10                   | U |
| 108-87-2   | Methylcyclohexane                     | 10                   | Ū |
| 78-87-5    | 1,2-Dichloropropane                   | 10                   | U |
| 75-27-4    | Bromodichloromethane                  | 10                   | υ |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                   | U |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                   | U |
| 108-88-3   | Toluene                               | 10                   | Ü |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                   | Ū |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                   | Ü |
| 127-18-4   | Tetrachloroethene                     | 10                   | Ū |
| 591-78-6   | 2-Hexanone                            | 10                   | Ū |
| 124-48-1   | Dibromochloromethane                  | 10                   | U |



#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|

SW-02D

| Lab | Name: | H2M LABS INC | Contract: |
|-----|-------|--------------|-----------|
|-----|-------|--------------|-----------|

Lab Code: H2M Case No.: URS SAS No.: SDG No.: URS143

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-006A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16526}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|-----------------------------|-----------------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | Ü |
| 108-90-7  | Chlorobenzene               | 10                          | Ü |
| 100-41-4  | Ethylbenzene                | 10                          | U |
| 1330-20-7 | Xylene (total)              | 10                          | U |
| 100-42-5  | Styrene                     | 10                          | U |
| 75-25-2   | Bromoform                   | 10                          | U |
| 98-82-8   | Isopropylbenzene            | 10                          | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | Ü |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | Ü |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | U |
| 120-82-1  | 1.2.4-Trichlorobenzene      | 10                          | U |

CAS NUMBER

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| sw-C | )2D    |     |  |

Q

EST.CONC.

RT

| Lab Name:     | HZM LABS INC      |                |        | Contrac  |                    |                    |        |
|---------------|-------------------|----------------|--------|----------|--------------------|--------------------|--------|
| Lab Code:     | <u>H2M</u>        | Case No.       | : URS  | SAS No.: | SDG N              | No.: <u>URS143</u> |        |
| Matrix: (soi) | l/water)          | WATER          |        |          | Lab Sample ID:     | 1210B72-006A       | 8      |
| Sample wt/vol | 1: <u>5</u>       |                | (g/mL) | ML       | Lab File ID:       | 12\G16526.         |        |
| Level: (lov   | w/med) <u>LOW</u> |                |        |          | Date Received:     | 10/20/12           |        |
| % Moisture: n | not dec.          |                |        |          | Date Analyzed:     | 10/25/12           |        |
| GC Column: I  | Rtx-624           | ID: <u>.18</u> | (mm)   |          | Dilution Factor:   | 1.00               |        |
| Soil Extract  | Volume:           |                | (µ1)   |          | Soil Aliquot Volum | e: <u>0</u>        | (µL)   |
|               |                   |                |        | CONCENT  | TRATION UNITS:     |                    |        |
| Number TICs 1 | found:            | 0              |        | (µg/L c  | or µg/Kg)          | UG/L               | eniq I |
|               |                   |                |        |          |                    |                    |        |

COMPOUND NAME

#### 1A

Lab Name: H2M LABS INC

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

FD-101712

EPA SAMPLE NO.

| Lab Code: | H2M | Case No.: | URS | SAS No.: | SDG No.: | URS143 |
|-----------|-----|-----------|-----|----------|----------|--------|

Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-012A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$ Lab File ID: 12\G16533.

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/26/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

(µL) Soil Aliquot Volume (µL) Soil Extract Volume:

| CAS NO.    | COMPOUND                              | µg/L or µg/Kg) UG/L | Q  |
|------------|---------------------------------------|---------------------|----|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | U  |
| 74-87-3    | Chloromethane                         | 10                  | υ≾ |
| 75-01-4    | Vinyl chloride                        | 10                  | U  |
| 74-83-9    | Bromomethane                          | 10                  | υ  |
| 75-00-3    | Chloroethane                          | 10                  | Ü  |
| 75-69-4    | Trichlorofluoromethane                | 10                  | U  |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | U  |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | U  |
| 67-64-1    | Acetone                               | 10                  | Ü  |
| 75-15-0    | Carbon disulfide                      | 10                  | Ü  |
| 79-20-9    | Methyl Acetate                        | 10                  | U  |
| 75-09-2    | Methylene chloride                    | 10                  | υ  |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | Ü  |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | Ü  |
| 75-34-3    | 1,1-Dichloroethane                    | 10                  | U  |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | Ū  |
| 78-93-3    | 2-Butanone                            | 10                  | Ū  |
| 67-66-3    | Chloroform                            | 10                  | Ü  |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | Ū  |
| 110-82-7   | Cyclohexane                           | 10                  | U  |
| 56-23-5    | Carbon tetrachloride                  | 10                  | Ü  |
| 71-43-2    | Benzene                               | 10                  | Ü  |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | Ü  |
| 79-01-6    | Trichloroethene                       | 10                  | U  |
| 108-87-2   | Methylcyclohexane                     | 10                  | U  |
| 78-87-5    | 1,2-Dichloropropane                   | 10                  | U  |
| 75-27-4    | Bromodichloromethane                  | 10                  | U  |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | U  |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                  | U  |
| 108-88-3   | Toluene                               | 10                  | Ü  |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                  | U  |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                  | U  |
| 127-18-4   | Tetrachloroethene                     | 10                  | U  |
| 591-78-6   | 2-Hexanone                            | 10                  | υ  |
| 124-48-1   | Dibromochloromethane                  | 10                  | U  |



#### VOLATILE ORGANICS ANALYSIS DATA SHEET

56-020

FD-101712

EPA SAMPLE NO.

 Lab Name:
 H2M LABS INC
 Contract:

 Lab Code:
 H2M
 Case No.:
 URS
 SAS No.:
 SDG No.:
 URS143

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1210B72-012A

 Sample wt/vol:
 5
 (g/mL) ML
 Lab File ID:
 12\G16533.

 Level:
 (low/med)
 LOW
 Date Received:
 10/20/12

% Moisture: not dec. Date Analyzed: 10/26/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q |
|-----------|-----------------------------|----------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | Ū |
| 108-90-7  | Chlorobenzene               | 10                   | U |
| 100-41-4  | Ethylbenzene                | 10                   | U |
| 1330-20-7 | Xylene (total)              | 10                   | Ū |
| 100-42-5  | Styrene                     | 10                   | U |
| 75-25-2   | Bromoform                   | 10                   | U |
| 98-82-8   | Isopropylbenzene            | 10                   | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | U |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | U |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | U |



EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET FD-101712 TENTATIVELY IDENTIFIED COMPOUNDS

| Lab Name:   | H2M LABS INC |                |          | C    | ontrac | t:          | ====>:    |           |      |      |
|-------------|--------------|----------------|----------|------|--------|-------------|-----------|-----------|------|------|
| Lab Code:   | <u>H2M</u>   | Case No.       | : URS    | SAS  | No.:   |             | SDG No    | .: URS14  | 13   |      |
| Matrix: (so | il/water)    | WATER          |          |      |        | Lab Sample  | ID:       | 1210B72-0 | )12A |      |
| Sample wt/v | ol: <u>5</u> |                | (g/mL)   | ML   |        | Lab File I  | D:        | 12\G16533 | 3.   |      |
| Level: (1   | ow/med) LOW  |                |          |      |        | Date Recei  | ved:      | 10/20/12  |      |      |
| % Moisture: | not dec.     |                |          |      |        | Date Analy  | zed:      | 10/26/12  |      |      |
| GC Column:  | Rtx-624      | ID: <u>.18</u> | (mm)     |      |        | Dilution F  | actor:    | 1.00      |      |      |
| Soil Extrac | t Volume:    |                | (µ1)     |      |        | Soil Aliqu  | ot Volume |           | 0    | (µL) |
|             |              |                |          | C    | ONCENT | RATION UNIT | s:        |           |      |      |
| Number TICs | found:       | 0              |          | (    | μg/L o | r μg/Kg)    | 1         | UG/L      |      |      |
|             | CAS NUMBER   |                | COMPOUND | NAME |        | RT          | EST.CO    | NC.       | Q    |      |



#### EPA SAMPLE NO.

## VOLATILE ORGANICS ANALYSIS DATA SHEET

SW-02S

| Lab Name: H2M LABS   | INC            | Contract:             |                 |
|----------------------|----------------|-----------------------|-----------------|
| Lab Code: H2M        | Case No.: URS  | SAS No.:              | SDG No.: URS143 |
| Matrix: (soil/water) | WATER          | Lab Sample ID:        | 1210B72-007A    |
| Sample wt/vol: 5     | (g/mL) ML      | Lab File ID:          | 12\G16527.      |
| Level: (low/med)     | TOM            | Date Received:        | 10/20/12        |
| % Moisture: not dec. |                | Date Analyzed:        | 10/25/12        |
| GC Column: Rtx-624   | ID: <u>.18</u> | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume: | (µІ            | Soil Aliquot Vol      | ume (µL)        |

| AS NO.     | COMPOUND                              | (µg/L or µg/Kg) <u>UG/L</u> | Q   |
|------------|---------------------------------------|-----------------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                          | ע ע |
| 74-87-3    | Chloromethane                         | 10                          | U   |
| 75-01-4    | Vinyl chloride                        | 10                          | ט   |
| 74-83-9    | Bromomethane                          | 10                          | U   |
| 75-00-3    | Chloroethane                          | 10                          | U   |
| 75-69-4    | Trichlorofluoromethane                | 10                          | Ŭ   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                          | Ŭ   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                          | U   |
| 67-64-1    | Acetone                               | 10                          | U   |
| 75-15-0    | Carbon disulfide                      | 10                          | Ü   |
| 79-20-9    | Methyl Acetate                        | 10                          | U   |
| 75-09-2    | Methylene chloride                    | 10                          | U   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                          | Ü   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                          | U   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                          | Ü   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                          | U   |
| 78-93-3    | 2-Butanone                            | 10                          | U   |
| 67-66-3    | Chloroform                            | 10                          | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 1                           | J   |
| 110-82-7   | Cyclohexane                           | 1.0                         | U   |
| 56-23-5    | Carbon tetrachloride                  | 10                          | U   |
| 71-43-2    | Benzene                               | 10                          | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                          | Ü   |
| 79-01-6    | Trichloroethene                       | 10                          | U   |
| 108-87-2   | Methylcyclohexane                     | 10                          | Ü   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                          | Ü   |
| 75-27-4    | Bromodichloromethane                  | 10                          | Ū   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                          | U   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                          | U   |
| 108-88-3   | Toluene                               | 10                          | Ü   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                          | Ü   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                          | U   |
| 127-18-4   | Tetrachloroethene                     | 10                          | U   |
| 591-78-6   | 2-Hexanone                            | 10                          | Ū   |
| 124-48-1   | Dibromochloromethane                  | 10                          | U   |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

SW-02S

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|     |       |              |           |  |

Lab Code: H2M Case No.: URS SAS No.: SDG No.: URS143

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-007A

Sample wt/vol:  $\underline{5}$  (g/mL) ML Lab File ID:  $\underline{12}$ \G16527.

Date Received: 10/20/12 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

COMPOUND

120-82-1 1,2,4-Trichlorobenzene

CAS NO.

(μL) Soil Aliquot Volume (μL) Soil Extract Volume:

## CONCENTRATION UNITS: (µg/L or µg/Kg) UG/L

10

Q

|                  |                             |    | _   |
|------------------|-----------------------------|----|-----|
| 106-93-4         | 1,2-Dibromoethane           | 10 | U   |
| 108-90-7         | Chlorobenzene               | 10 | Ū   |
| 100-41-4         | Ethylbenzene                | 10 | Ū   |
| 1330-20-7        | Xylene (total)              | 10 | U   |
| 100-42-5         | Styrene                     | 10 | υ   |
| 75-25-2          | Bromoform                   | 10 | U   |
| 98-82-8          | Isopropylbenzene            | 10 | υ   |
| 79-34-5          | 1,1,2,2-Tetrachloroethane   | 10 | ט   |
| 541-73-1         | 1,3-Dichlorobenzene         | 10 | U   |
| 106-46-7         | 1,4-Dichlorobenzene         | 10 | U   |
| 95-50 <b>-</b> 1 | 1,2-Dichlorobenzene         | 10 | U   |
| 96-12-8          | 1,2-Dibromo-3-chloropropane | 10 | Ü   |
| 400 00 4         |                             |    | 100 |

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| SW-( | )2S    |     |  |

| Lab Name | H2M LABS          | INC            |          | Contrac                   | :t:          |                 |               |            |
|----------|-------------------|----------------|----------|---------------------------|--------------|-----------------|---------------|------------|
| Lab Code | : <u>H2M</u>      | Case No.       | : URS    | SAS No.:                  |              | SDG No.:        | <u>URS143</u> |            |
| Matrix:  | (soil/water)      | WATER          |          |                           | Lab Sample   | ID: <u>121</u>  | 0B72-007A     | 14.<br>Pi- |
| Sample w | t/vol: <u>5</u>   |                | (g/mL)   | $\underline{\mathtt{ML}}$ | Lab File II  | ): <u>12\</u>   | G16527.       |            |
| Level:   | (low/med)         | LOW            |          |                           | Date Receiv  | red: <u>10/</u> | 20/12         |            |
| % Moistu | re: not dec.      |                |          |                           | Date Analyz  | zed: <u>10/</u> | 25/12         |            |
| GC Colum | n: <u>Rtx-624</u> | ID: <u>.18</u> | (mm)     |                           | Dilution Fa  | nctor: 1.0      | 0             |            |
| Soil Ext | ract Volume:      |                | (µ1)     |                           | Soil Alique  | ot Volume:      | <u>0</u>      | (µL)       |
|          |                   |                |          | CONCENT                   | RATION UNITS | S:              |               |            |
| Number T | ICs found:        | 0              |          | (µg/L c                   | or µg/Kg)    | UG/I            | <u>.</u>      |            |
|          | CAS NUMBER        |                | COMPOUND | NAME                      | RT           | EST.CONC.       | Q             |            |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

|       |   |  | - |
|-------|---|--|---|
| SW-03 | S |  |   |
|       |   |  |   |

| Lab Name:    | H2M LABS IN  | IC .      |        | Contrac | t:     | 3            |            |        |
|--------------|--------------|-----------|--------|---------|--------|--------------|------------|--------|
| Lab Code: 1  | <b>Н2</b> М  | Case No.: | URS    | SAS N   | ٠<br>ا |              | SDG No.:   | URS143 |
| Matrix: (soi | il/water)    | WATER     |        | 1       | Lab S  | ample ID:    | 1210B72-00 | 8A     |
| Sample wt/vo | ol: <u>5</u> | (g/mL)    | ML     | 1       | Lab F  | ile ID:      | 12\G16528. |        |
| Level: (lo   | ow/med)      | LOW       |        | I       | Date   | Received:    | 10/20/12   |        |
| % Moisture:  | not dec.     |           |        | I       | Date   | Analyzed:    | 10/25/12   |        |
| GC Column:   | Rtx-624      | ID:       | .18    | (mm)    | Dilut  | ion Factor:  | 1.00       |        |
| Soil Extract | - Volume:    |           | (117.) | 9       | sod 1  | Aliquot Volu | me         | (11T.) |

| CAS NO.    | COMPOUND                              | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{	t U}$ G/L | Q |  |
|------------|---------------------------------------|---------------------------------------------------|---|--|
| 75-71-8    | Dichlorodifluoromethane               | 10                                                | U |  |
| 74-87-3    | Chloromethane                         | 10                                                | U |  |
| 75-01-4    | Vinyl chloride                        | 10                                                | Ū |  |
| 74-83-9    | Bromomethane                          | 10                                                | Ü |  |
| 75-00-3    | Chloroethane                          | 10                                                | U |  |
| 75-69-4    | Trichlorofluoromethane                | 10                                                | Ü |  |
| 75-35-4    | 1,1-Dichloroethene                    | 10                                                | Ŭ |  |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                                                | U |  |
| 67-64-1    | Acetone                               | 10                                                | U |  |
| 75-15-0    | Carbon disulfide                      | 10                                                | U |  |
| 79-20-9    | Methyl Acetate                        | 10                                                | U |  |
| 75-09-2    | Methylene chloride                    | 10                                                | U |  |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                                                | U |  |
| 1634-04-4  | Methyl tert-butyl ether               | 10                                                | Ü |  |
| 75-34-3    | 1,1-Dichloroethane                    | 10                                                | Ū |  |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                                                | U |  |
| 78-93-3    | 2-Butanone                            | 10                                                | Ū |  |
| 67-66-3    | Chloroform                            | 10                                                | U |  |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                                                | U |  |
| 110-82-7   | Cyclohexane                           | 1.0                                               | Ū |  |
| 56-23-5    | Carbon tetrachloride                  | 10                                                | U |  |
| 71-43-2    | Benzene                               | 10                                                | U |  |
| 107-06-2   | 1,2-Dichloroethane                    | 10                                                | Ü |  |
| 79-01-6    | Trichloroethene                       | 10                                                | Ü |  |
| 108-87-2   | Methylcyclohexane                     | 10                                                | Ü |  |
| 78-87-5    | 1,2-Dichloropropane                   | 10                                                | Ū |  |
| 75-27-4    | Bromodichloromethane                  | 10                                                | Ū |  |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                                                | Ü |  |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                                                | U |  |
| 108-88-3   | Toluene                               | 10                                                | U |  |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                                                | U |  |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                                                | U |  |
| 127-18-4   | Tetrachloroethene                     | 10                                                | U |  |
| 591-78-6   | 2-Hexanone                            | 10                                                | Ü |  |
| 124-48-1   | Dibromochloromethane                  | 10                                                | U |  |

#### EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

| ,1,1,1,1,1 | ONGRATED | THE TOTO | DAIN |     | sw-03s |
|------------|----------|----------|------|-----|--------|
|            |          |          |      | (1) |        |

Lab Name: H2M LABS INC Contract:

Lab Code: <u>H2M</u> Case No.: <u>URS</u> SAS No.: \_\_\_\_\_ SDG No.: <u>URS143</u>

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-008A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{12 \backslash \text{G16528}}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/25/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

(µL) Soil Aliquot Volume (µL) Soil Extract Volume:

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q |
|-----------|-----------------------------|----------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | ט |
| 108-90-7  | Chlorobenzene               | 10                   | U |
| 100-41-4  | Ethylbenzene                | 10                   | U |
| 1330-20-7 | Xylene (total)              | 10                   | Ü |
| 100-42-5  | Styrene                     | 10                   | U |
| 75-25-2   | Bromoform                   | 10                   | U |
| 98-82-8   | Isopropylbenzene            | 10                   | U |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | U |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | U |

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| sw-( | 038    |     |  |

| Lab Name:     | H2M LABS INC      |                |          | Contrac  | t:            | -               |          |      |
|---------------|-------------------|----------------|----------|----------|---------------|-----------------|----------|------|
| Lab Code:     | <u>н2м</u>        | Case No.       | : URS    | SAS No.: |               | SDG No.:        | URS143   |      |
| Matrix: (soil | l/water)          | WATER          |          |          | Lab Sample 1  | D: <u>1210</u>  | B72-008A |      |
| Sample wt/vol | 1: <u>5</u>       |                | (g/mL)   | ML       | Lab File ID:  | 12\0            | 16528.   |      |
| Level: (lov   | w/med) <u>LOW</u> |                |          |          | Date Receive  | ed: <u>10/2</u> | 20/12    |      |
| % Moisture: r | not dec.          |                |          |          | Date Analyze  | ed: 10/2        | 25/12    |      |
| GC Column: E  | Rtx-624           | ID: <u>.18</u> | (mm)     |          | Dilution Fac  | tor: 1.00       | )        |      |
| Soil Extract  | Volume:           |                | (µ1)     |          | Soil Aliquot  | Volume:         | <u>o</u> | (µL) |
| ×             |                   |                |          | CONCENT  | RATION UNITS: |                 |          |      |
| Number TICs i | found:            | 0              |          | (µg/L o  | r μg/Kg)      | UG/L            |          |      |
| C             | AS NUMBER         |                | COMPOUND | NAME     | RT            | EST.CONC.       | Q        |      |

#### EPA SAMPLE NO.

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

| Lab Name: | H2M LABS INC | Contract: |
|-----------|--------------|-----------|
|           |              |           |

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-009A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{\text{ML}}$  Lab File ID:  $\underline{12 \backslash \text{G16541}}$ .

Level: (low/med) LOW Date Received: 10/20/12

Date Analyzed: 10/26/12 % Moisture: not dec.

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

 $(\mu L)$  Soil Aliquot Volume  $(\mu L)$ Soil Extract Volume:

| CAS NO.    | COMPOUND                              | (µg/L or µg/Kg) UG/L | Q   |
|------------|---------------------------------------|----------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                   | U   |
| 74-87-3    | Chloromethane                         | 10                   | U   |
| 75-01-4    | Vinyl chloride                        | 10                   | Ū   |
| 74-83-9    | Bromomethane                          | 10                   | U   |
| 75-00-3    | Chloroethane                          | 10                   | U   |
| 75-69-4    | Trichlorofluoromethane                | 10                   | U   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                   | Ü   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                   | U   |
| 67-64-1    | Acetone                               | 10                   | Ū   |
| 75-15-0    | Carbon disulfide                      | 10                   | U   |
| 79-20-9    | Methyl Acetate                        | 10                   | Ū   |
| 75-09-2    | Methylene chloride                    | 10                   | Ū   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                   | Ū   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                   | U   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                   | ט   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                   | Ŭ   |
| 78-93-3    | 2-Butanone                            | 10                   | Ū   |
| 67-66-3    | Chloroform                            | 10                   | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                   | Ü   |
| 110-82-7   | Cyclohexane                           | 10                   | ΰ   |
| 56-23-5    | Carbon tetrachloride                  | 10                   | U < |
| 71-43-2    | Benzene                               | 10                   | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                   | Ü   |
| 79-01-6    | Trichloroethene                       | 10                   | U   |
| 108-87-2   | Methylcyclohexane                     | 10                   | Ŭ   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                   | U   |
| 75-27-4    | Bromodichloromethane                  | 10                   | U   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                   | Ŭ   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                   | U   |
| 108-88-3   | Toluene                               | 10                   | U   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                   | U   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                   | ΰ   |
| 127-18-4   | Tetrachloroethene                     | 10                   | U   |
| 591-78-6   | 2-Hexanone                            | 10                   | U   |
| 124-48-1   | Dibromochloromethane                  | 10                   | U   |

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | C 7 | MD | TD | NTO |
|-----|-----|----|----|-----|
|     |     |    |    |     |

SW-04D

| Lab | Name: | H2M LABS INC | Contract: |  |
|-----|-------|--------------|-----------|--|
|     |       |              |           |  |

Lab Code: H2M Case No.: URS SAS No.: SDG No.: URS143

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-009A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16541}$ .

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/26/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|-----------------------------|-----------------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | υ |
| 108-90-7  | Chlorobenzene               | 10                          | Ŭ |
| 100-41-4  | Ethylbenzene                | 10                          | U |
| 1330-20-7 | Xylene (total)              | 10                          | U |
| 100-42-5  | Styrene                     | 10                          | U |
| 75-25-2   | Bromoform                   | 10                          | U |
| 98-82-8   | Isopropylbenzene            | 10                          | Ū |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | U |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | Ü |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | Ū |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                          | U |

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| sw-( | 04D    |     |  |

Lab Name: H2M LABS INC Contract: SAS No.: \_\_\_\_\_ SDG No.: <u>URS143</u> Lab Code: H2M Case No.: URS Lab Sample ID: 1210B72-009A Matrix: (soil/water) WATER Lab File ID: 12\G16541. Sample wt/vol: 5 (g/mL) ML Date Received: 10/20/12 Level: (low/med) LOW 10/26/12 Date Analyzed: % Moisture: not dec. Dilution Factor: 1.00 ID: .18 (mm) GC Column: Rtx-624 (pl) Soil Aliquot Volume: 0 (µL) Soil Extract Volume: CONCENTRATION UNITS: Number TICs found: 0 (µg/L or µg/Kg) UG/L EST.CONC. RT Q COMPOUND NAME CAS NUMBER

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

| 5W-04S |  |  |
|--------|--|--|
|        |  |  |

| Lab | Name: | H2M LABS INC | Contract: |
|-----|-------|--------------|-----------|

Lab Code: <u>H2M</u> Case No.: <u>URS</u> SAS No.: \_\_\_\_\_ SDG No.: <u>URS143</u>

Matrix: (soil/water) WATER Lab Sample ID: 1210B72-010A

Sample wt/vol:  $\frac{5}{2}$  (g/mL) ML Lab File ID:  $\frac{12 \cdot G16532}{12 \cdot G16532}$ 

Level: (low/med) LOW Date Received: 10/20/12

% Moisture: not dec. Date Analyzed: 10/26/12

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:  $(\mu L)$  Soil Aliquot Volume  $(\mu L)$ 

| CAS NO.    | COMPOUND                              | µg/L or µg/Kg) UG/L | Q |
|------------|---------------------------------------|---------------------|---|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | U |
| 74-87-3    | Chloromethane                         | 10                  | U |
| 75-01-4    | Vinyl chloride                        | 10                  | U |
| 74-83-9    | Bromomethane                          | 10                  | U |
| 75-00-3    | Chloroethane                          | 10                  | U |
| 75-69-4    | Trichlorofluoromethane                | 10                  | U |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | υ |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | U |
| 67-64-1    | Acetone                               | 10                  | U |
| 75-15-0    | Carbon disulfide                      | 10                  | U |
| 79-20-9    | Methyl Acetate                        | 10                  | U |
| 75-09-2    | Methylene chloride                    | 10                  | Ū |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | Ū |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | U |
| 75-34-3    | 1,1-Dichloroethane                    | 10                  | Ū |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | Ü |
| 78-93-3    | 2-Butanone                            | 10                  | U |
| 67-66-3    | Chloroform                            | 10                  | U |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | Ü |
| 110-82-7   | Cyclohexane                           | 10                  | Ū |
| 56-23-5    | Carbon tetrachloride                  | 10                  | Ū |
| 71-43-2    | Benzene                               | 10                  | U |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | Ü |
| 79-01-6    | Trichloroethene                       | 10                  | U |
| 108-87-2   | Methylcyclohexane                     | 10                  | Ū |
| 78-87-5    | 1,2-Dichloropropane                   | 10                  | U |
| 75-27-4    | Bromodichloromethane                  | 10                  | U |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | U |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                  | U |
| 108-88-3   | Toluene                               | 10                  | U |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                  | U |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                  | U |
| 127-18-4   | Tetrachloroethene                     | 10                  | U |
| 591-78-6   | 2-Hexanone                            | 10                  | Ū |
| 124-48-1   | Dibromochloromethane                  | 10                  | Ū |

## VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

|  | EPA | SAMPL | E NO. |
|--|-----|-------|-------|
|--|-----|-------|-------|

SW-04S

| Lab Name: H2M LABS I | ENC           | Contract:             |                 |
|----------------------|---------------|-----------------------|-----------------|
| Lab Code: H2M        | Case No.: URS | SAS No.:              | SDG No.: URS143 |
| Matrix: (soil/water) | WATER         | Lab Sample ID:        | 1210B72-010A    |
| Sample wt/vol: 5     | (g/mL) ML     | Lab File ID:          | 12\G16532.      |
| Level: (low/med)     | TOM           | Date Received:        | 10/20/12        |
| % Moisture: not dec. |               | Date Analyzed:        | 10/26/12        |
| GC Column: Rtx-624   | ID: .18       | (mm) Dilution Factor: | 1.00            |

## CONCENTRATION UNITS:

(µL) Soil Aliquot Volume (µL)

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) UG/L | Q  |
|-----------|-----------------------------|----------------------|----|
| 106-93-4  | 1,2-Dibromoethane           | 10                   | Ü  |
| 108-90-7  | Chlorobenzene               | 10                   | U  |
| 100-41-4  | Ethylbenzene                | 10                   | U  |
| 1330-20-7 | Xylene (total)              | 10                   | U  |
| 100-42-5  | Styrene                     | 10                   | U  |
| 75-25-2   | Bromoform                   | 10                   | Ū  |
| 98-82-8   | Isopropylbenzene            | 10                   | U  |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                   | Ü  |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                   | U  |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                   | Ū  |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                   | Ū  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                   | U  |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                   | IJ |

# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| SW-( | )4S    |     |  |

Lab Name: H2M LABS INC Contract: SAS No.: \_\_\_\_\_ SDG No.: URS143 Lab Code: H2M Case No.: URS Matrix: (soil/water) Lab Sample ID: 1210B72-010A WATER Sample wt/vol: 5 Lab File ID: (g/mL) ML 12\G16532. Date Received: Level: (low/med) LOW 10/20/12 % Moisture: not dec. Date Analyzed: 10/26/12 ID: .18 (mm) Dilution Factor: 1.00 GC Column: Rtx-624 Soil Extract Volume: Soil Aliquot Volume:  $(\mu 1)$ 0 (µL) CONCENTRATION UNITS: Number TICs found: 0 (µg/L or µg/Kg) UG/L CAS NUMBER EST.CONC.

RT

COMPOUND NAME

#### EPA SAMPLE NO.

## VOLATILE ORGANICS ANALYSIS DATA SHEET

SWTR-1E

| Lab Name: H2M I  | LABS INC                  | Contract:             |                 |
|------------------|---------------------------|-----------------------|-----------------|
| Lab Code: H2M    | Case No.: URS             | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/wa | ter) <u>WATER</u>         | Lab Sample ID:        | 1210B69-006A    |
| Sample wt/vol:   | <u>5</u> (g/mL) <u>ML</u> | Lab File ID:          | 12\G16597.      |
| Level: (low/me   | d) <u>LOW</u>             | Date Received:        | 10/20/12        |
| % Moisture: not  | dec.                      | Date Analyzed:        | 10/29/12        |
| GC Column: Rtx   | -624 ID: <u>.18</u>       | (mm) Dilution Factor: | 1.00            |
| Soil Extract Vol | ume: (uL                  | ) Soil Alignot Vol    | ume (u.t.)      |

| CAS NO.    | COMPOUND                              | (µg/L or µg/Kg) UG/L | Q   |
|------------|---------------------------------------|----------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                   | ט 🗹 |
| 74-87-3    | Chloromethane                         | 10                   | Ü   |
| 75-01-4    | Vinyl chloride                        | 10                   | U   |
| 74-83-9    |                                       | 10                   | US  |
| 75-00-3    | Chloroethane                          | 10                   | Ü   |
| 75-69-4    | Trichlorofluoromethane                | 10                   | U   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                   | U   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                   | υď  |
| 67-64-1    | Acetone                               | 10                   | U   |
| 75-15-0    | Carbon disulfide                      | 10                   | Ü   |
| 79-20-9    | Methyl Acetate                        | 10                   | U   |
| 75-09-2    | Methylene chloride                    | 10                   | Ū   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                   | Ū   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                   | U   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                   | บ   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                   | U   |
| 78-93-3    |                                       | 10                   | Ü   |
| 67-66-3    | Chloroform                            | 10                   | Ŭ   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                   | U   |
| 110-82-7   | Cyclohexane                           | 10                   | Ū   |
| 56-23-5    | Carbon tetrachloride                  | 10                   | Ū   |
| 71-43-2    | Benzene                               | 10                   | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                   | U   |
| 79-01-6    | Trichloroethene                       | 10                   | Ŭ   |
| 108~87-2   | Methylcyclohexane                     | 10                   | Ŭ   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                   | Ü   |
| 75-27-4    | Bromodichloromethane                  | 10                   | Ü   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                   | Ū   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                   | Urs |
| 108-88-3   | Toluene                               | 10                   | Ū   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                   | U   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                   | U   |
| 127-18-4   | Tetrachloroethene                     | 10                   | U   |
| 591-78-6   | 2-Hexanone                            | 10                   | טיל |
| 124-48-1   | Dibromochloromethane                  | 10                   | U   |

## VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|-----|--------|----|

SWTR-1E

| Lab Name: H2M LABS             | INC            | Contract:            |                 |
|--------------------------------|----------------|----------------------|-----------------|
| Lab Code: H2M                  | Case No.: URS  | SAS No.:             | SDG No.: URS142 |
| Matrix: (soil/water)           | WATER          | Lab Sample ID:       | 1210B69-006A    |
| Sample wt/vol: $\underline{5}$ | (g/mL) ML      | Lab File ID:         | 12\G16597.      |
| Level: (low/med)               | LOW            | Date Received:       | 10/20/12        |
| % Moisture: not dec.           |                | Date Analyzed:       | 10/29/12        |
| GC Column: Rtx-624             | ID: <u>.18</u> | (mm) Dilution Factor | : 1.00          |
| Soil Extract Volume:           | (µL)           | Soil Aliquot Vo      | lume (µL)       |

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q  |
|-----------|-----------------------------|-----------------------------|----|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | Ü  |
| 108-90-7  | Chlorobenzene               | 10                          | U  |
| 100-41-4  | Ethylbenzene                | 10                          | U  |
| 1330-20-7 | Xylene (total)              | 10                          | U  |
| 100-42-5  | Styrene                     | 10                          | US |
| 75-25-2   | Bromoform                   | 10                          | Ü  |
| 98-82-8   | Isopropylbenzene            | 10                          | U  |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | Ü  |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U  |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | Ū  |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | U  |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | US |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                          | U  |



# VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.
SWTR-1E

| Lab Name:    | H2M LABS INC      |                |          | Contrac  | t:            |         |                  |     |      |
|--------------|-------------------|----------------|----------|----------|---------------|---------|------------------|-----|------|
| Lab Code:    | <u>H2M</u>        | Case No        | .: URS   | SAS No.: |               | SDG No  | .: <u>URS14</u>  | 2   |      |
| Matrix: (soi | 1/water)          | WATER          |          |          | Lab Sample ID | :       | <u>1210B69-0</u> | 06A |      |
| Sample wt/vo | 1: <u>5</u>       |                | (g/mL)   | ML       | Lab File ID:  |         | 12\G16597        | ·   |      |
| Level: (lo   | w/med) <u>LOW</u> |                |          |          | Date Received | :       | 10/20/12         |     |      |
| % Moisture:  | not dec.          |                |          |          | Date Analyzed | :       | 10/29/12         |     |      |
| GC Column:   | Rtx-624           | ID: <u>.18</u> | (mm)     |          | Dilution Fact | or:     | 1.00             |     |      |
| Soil Extract | Volume:           |                | (µ1)     |          | Soil Aliquot  | Volume: | 1                | 0   | (µL) |
|              |                   |                |          | CONCENT  | RATION UNITS: |         |                  |     |      |
| Number TICs  | found:            | 0              |          | (µg/L o  | r µg/Kg)      | Ţ       | JG/L             |     |      |
|              | CAS NUMBER        |                | COMPOUND | NAME     | RT            | EST.CO  | NC.              | Q   | Ì    |

### VOLATILE ORGANICS ANALYSIS DATA SHEET

| SWTR-1T |  |  |
|---------|--|--|
|         |  |  |

| Lab Name: H2M LABS             | INC            | Contract:             |                 |
|--------------------------------|----------------|-----------------------|-----------------|
| Lab Code: H2M                  | Case No.: URS  | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/water)           | WATER          | Lab Sample ID:        | 1210B69-003A    |
| Sample wt/vol: $\underline{5}$ | (g/mL) ML      | Lab File ID:          | 12\G16614.      |
| Level: (low/med)               | LOW            | Date Received:        | 10/20/12        |
| % Moisture: not dec.           |                | Date Analyzed:        | 11/01/12        |
| GC Column: Rtx-624             | ID: <u>.18</u> | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume:           | (рЪ            | ) Soil Aliquot Volu   | ume (µL)        |

### CONCENTRATION UNITS:

| AS NO.     | COMPOUND (                            | μg/L or μg/Kg) <u>UG/L</u> | Q   |
|------------|---------------------------------------|----------------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                         | ט   |
| 74-87-3    | Chloromethane                         | 10                         | U   |
| 75-01-4    | Vinyl chloride                        | 10                         | Ü   |
| 74-83-9    | Bromomethane                          | 10                         | Ü   |
| 75-00-3    | Chloroethane                          | 10                         | Ū   |
| 75-69-4    | Trichlorofluoromethane                | 10                         | U   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                         | Ü   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                         | Ü   |
| 67-64-1    | Acetone                               | 10-2-                      | BJZ |
| 75-15-0    | Carbon disulfide                      | 10                         | Ü   |
| 79-20-9    | Methyl Acetate                        | 10                         | Ū   |
| 75-09-2    | Methylene chloride                    | 10                         | U   |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                         | Ü   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                         | Ü   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                         | U   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                         | Ü   |
| 78-93-3    | 2-Butanone                            | 10                         | U   |
| 67-66-3    | Chloroform                            | 10                         | U   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                         | U   |
| 110-82-7   | Cyclohexane                           | 10                         | U   |
| 56-23-5    | Carbon tetrachloride                  | 10                         | U   |
| 71-43-2    | Benzene                               | 10                         | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                         | U   |
| 79-01-6    | Trichloroethene                       | 10                         | U   |
| 108-87-2   | Methylcyclohexane                     | 10                         | Ŭ   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                         | U   |
| 75-27-4    | Bromodichloromethane                  | 10                         | υ   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                         | Ü   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                         | Ū   |
| 108-88-3   | Toluene                               | 10                         | U   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                         | ΰ   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                         | Ü   |
| 127-18-4   | Tetrachloroethene                     | 10                         | ט 🗸 |
| 591-78-6   | 2-Hexanone                            | 10                         | Ū   |
| 124-48-1   | Dibromochloromethane                  | 10                         | Ü   |

#### 1B

### VOLATILE ORGANICS ANALYSIS DATA SHEET

| EPA | SAMPLE | NO |
|-----|--------|----|
|     |        |    |

SWTR-1T

| Lab Name: H2M LABS IN       | C              | Contract:          |                 |
|-----------------------------|----------------|--------------------|-----------------|
| Lab Code: <u>H2M</u>        | Case No.: URS  | SAS No.:           | SDG No.: URS142 |
| Matrix: (soil/water)        | WATER          | Lab Sample ID      | : 1210B69-003A  |
| Sample wt/vol: $\frac{5}{}$ | (g/mL) ML      | Lab File ID:       | 12\G16614.      |
| Level: (low/med)            | LOW            | Date Received      | : 10/20/12      |
| % Moisture: not dec.        |                | Date Analyzed      | : 11/01/12      |
| GC Column: Rtx-624          | ID: <u>.18</u> | (mm) Dilution Fact | or: <u>1.00</u> |
| Soil Extract Volume:        | (uL)           | Soil Alignot       | Volume (u.i.)   |

### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND                    | ( $\mu$ g/L or $\mu$ g/Kg) $\underline{	t UG/L}$ | Q   |
|-----------|-----------------------------|--------------------------------------------------|-----|
| 106-93-4  | 1,2-Dibromoethane           | 10                                               | Ü   |
| 108-90-7  | Chlorobenzene               | 10                                               | U   |
| 100-41-4  | Ethylbenzene                | 10                                               | Ü   |
| 1330-20-7 | Xylene (total)              | 10                                               | U   |
| 100-42-5  | Styrene                     | 10                                               | U   |
| 75~25-2   | Bromoform                   | 10                                               | U   |
| 98-82-8   | Isopropylbenzene            | 10                                               | U   |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                                               | Ü   |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                                               | ט 🕥 |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                                               | US  |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                                               | U 1 |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                                               | U   |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                                               | Ū   |



1F

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| SWTE | R-1T   |     |  |

Lab Name: H2M LABS INC Contract: \_\_\_\_ Lab Code: H2M SAS No.: \_\_\_\_\_ SDG No.: URS142 Case No.: URS Matrix: (soil/water) WATER Lab Sample ID: 1210B69-003A Sample wt/vol: 5 (g/mL) Lab File ID: 12\G16614. ML Level: (low/med) LOW Date Received: 10/20/12 % Moisture: not dec. Date Analyzed: 11/01/12 GC Column: Rtx-624 ID: <u>.18</u> (mm) Dilution Factor: 1.00 Soil Extract Volume: (µ1) Soil Aliquot Volume: 0 (µL) CONCENTRATION UNITS: Number TICs found: 0 (µg/L or µg/Kg) UG/L CAS NUMBER EST.CONC. COMPOUND NAME RT Q

#### VOLATILE ORGANICS ANALYSIS DATA SHEET

TB-101812

| Lab | Name: | H2M LABS | INC | Contract: |  |
|-----|-------|----------|-----|-----------|--|
|     |       |          |     |           |  |

Matrix: (soil/water) WATER Lab Sample ID: 1210B69-005A

Sample wt/vol:  $\underline{5}$  (g/mL)  $\underline{ML}$  Lab File ID:  $\underline{12\backslash G16596}$ .

Level: (low/med) LOW Date Received: 10/20/12

Date Analyzed: 10/29/12 % Moisture: not dec.

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

 $(\mu L)$  Soil Aliquot Volume  $(\mu L)$ Soil Extract Volume:

#### CONCENTRATION UNITS:

| CAS NO.    | COMPOUND                              | (µg/L or µg/Kg) UG/L | Q   |
|------------|---------------------------------------|----------------------|-----|
| 75-71-8    | Dichlorodifluoromethane               | 10                   | ט 🗹 |
| 74-87-3    | Chloromethane                         | 10                   | U   |
| 75-01-4    | Vinyl chloride                        | 10                   | Ü   |
| 74-83-9    | Bromomethane                          | 10                   | U   |
| 75-00-3    | Chloroethane                          | 10                   | U   |
| 75-69-4    | Trichlorofluoromethane                | 10                   | Ü   |
| 75-35-4    | 1,1-Dichloroethene                    | 10                   | Ū   |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                   | Ŭ 🔿 |
| 67-64-1    | Acetone                               | 6                    | JZ  |
| 75-15-0    | Carbon disulfide                      | 10                   | Ü   |
| 79-20-9    | Methyl Acetate                        | 10                   | U   |
| 75-09-2    | Methylene chloride                    | 14                   |     |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                   | U   |
| 1634-04-4  | Methyl tert-butyl ether               | 10                   | Ū   |
| 75-34-3    | 1,1-Dichloroethane                    | 10                   | Ü   |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                   | U   |
| 78-93-3    | 2-Butanone                            | 10                   | U   |
| 67-66-3    | Chloroform                            | 10                   | Ū   |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                   | U   |
| 110-82-7   | Cyclohexane                           | 10                   | Ü   |
| 56-23-5    | Carbon tetrachloride                  | 10                   | U   |
| 71-43-2    | Benzene                               | 10                   | U   |
| 107-06-2   | 1,2-Dichloroethane                    | 10                   | Ü   |
| 79-01-6    | Trichloroethene                       | 10                   | U   |
| 108-87-2   | Methylcyclohexane                     | 10                   | Ü   |
| 78-87-5    | 1,2-Dichloropropane                   | 10                   | U   |
| 75-27-4    | Bromodichloromethane                  | 10                   | U   |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                   | Ü   |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                   | U   |
| 108-88-3   | Toluene                               | 10                   | U   |
| 10061-02-6 | trans-1,3-Dichloropropene             | 10                   | U   |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                   | U   |
| 127-18-4   | Tetrachloroethene                     | 10                   | U   |
| 591-78-6   | 2-Hexanone                            | 10                   | U 🧻 |
| 124-48-1   | Dibromochloromethane                  | 10                   | U   |

#### 18

### VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-101812

| Lab Name: H2M LABS  | INC              | Contract:             |                 |
|---------------------|------------------|-----------------------|-----------------|
| Lab Code: H2M       | Case No.: URS    | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/water | WATER            | Lab Sample ID:        | 1210B69-005A    |
| Sample wt/vol: 5    | (g/mL) <u>ML</u> | Lab File ID:          | 12\G16596.      |
| Level: (low/med)    | LOW              | Date Received:        | 10/20/12        |
| % Moisture: not dec |                  | Date Analyzed:        | 10/29/12        |
| GC Column: Rtx-624  | ID: <u>.18</u>   | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume | ; (µL            | Soil Aliquot Volu     | me (µL)         |

### CONCENTRATION UNITS:

| CAS NO.   | COMPOUND                    | (µg/L or µg/Kg) <u>UG/L</u> | Q |
|-----------|-----------------------------|-----------------------------|---|
| 106-93-4  | 1,2-Dibromoethane           | 10                          | Ü |
| 108-90-7  | Chlorobenzene               | 10                          | Ü |
| 100-41-4  | Ethylbenzene                | 10                          | Ü |
| 1330-20-7 | Xylene (total)              | 10                          | U |
| 100-42-5  | Styrene                     | 10                          | U |
| 75-25-2   | Bromoform                   | 10                          | ט |
| 98-82-8   | Isopropylbenzene            | 10                          | Ü |
| 79-34-5   | 1,1,2,2-Tetrachloroethane   | 10                          | U |
| 541-73-1  | 1,3-Dichlorobenzene         | 10                          | U |
| 106-46-7  | 1,4-Dichlorobenzene         | 10                          | υ |
| 95-50-1   | 1,2-Dichlorobenzene         | 10                          | Ü |
| 96-12-8   | 1,2-Dibromo-3-chloropropane | 10                          | U |
| 120-82-1  | 1,2,4-Trichlorobenzene      | 10                          | U |



1F

## VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

| EPA  | SAMPLE | NO. |  |
|------|--------|-----|--|
| TB-I | 01812  |     |  |

| Lab Name: | H2M LABS II               | NC             |            | Contrac  | t:          | -             |               |      |
|-----------|---------------------------|----------------|------------|----------|-------------|---------------|---------------|------|
| Lab Code: | <u>H2M</u>                | Case No.       | : URS      | SAS No.: |             | SDG No.:      | <u>URS142</u> |      |
| Matrix:   | (soil/water)              | WATER          |            |          | Lab Sample  | ID: <u>1</u>  | 210B69-005A   |      |
| Sample wt | :/vol: <u>5</u>           |                | (g/mL)     | ML       | Lab File I  | D: <u>1</u>   | 2\G16596.     |      |
| Level:    | (low/med) $\underline{L}$ | <u>ow</u>      |            |          | Date Recei  | ved: <u>1</u> | 0/20/12       |      |
| % Moistur | e: not dec.               |                |            |          | Date Analy  | zed: <u>1</u> | 0/29/12       |      |
| GC Column | n: Rtx-624                | ID: <u>.18</u> | (mm)       |          | Dilution F  | actor: 1      | .00           |      |
| Soil Extr | act Volume:               |                | (µ1)       |          | Soil Aliqu  | ot Volume:    | <u>0</u>      | (µL) |
|           |                           |                |            | CONCENT  | RATION UNIT | S:            |               |      |
| Number TI | Cs found:                 | 0              |            | (µg/L o  | r μg/Kg)    | UG            | <u>/L</u>     |      |
|           | CAS NUMBER                |                | COMPOUND 1 | NAME     | RT          | EST.CONC      | . Ω           |      |

# ATTACHMENT B SUPPORT DOCUMENTATION

| CHAIN OF CUSTODY            | Z                                      | F CI                                                            | USI           | TODY REC                                                                | COR                                                   |                    | 20000000                                               | TESTS                                                 |                                                         | URS                                                                                      | 2        | 10        |                       |
|-----------------------------|----------------------------------------|-----------------------------------------------------------------|---------------|-------------------------------------------------------------------------|-------------------------------------------------------|--------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|----------|-----------|-----------------------|
| PROJECT NO.                 | 2.00                                   | T NO.                                                           |               | SITE NAME ROSE UP, //ev La                                              | ndf:1                                                 |                    | JON T                                                  |                                                       |                                                         | LAB HZM                                                                                  | Ī        | -         |                       |
| SAMPLERS (PRINT/SIGNATURE)  | NT/SIGNA                               | TURE)                                                           | ionie         | Check Duse                                                              |                                                       |                    |                                                        | BOTTLE TYPE AND F                                     | PRESERVATIVE                                            | COOLER /                                                                                 | o   o    | 14        |                       |
| DELIVERY SERVICE:           | VICE:                                  | Fedex                                                           |               | -AIRBILL NO::                                                           |                                                       | - NO.# OF          | 17t                                                    | 11.0                                                  |                                                         | REMARKS                                                                                  | E TYPE   | (IN FEET) | (T337 NI)<br>TOU TO.# |
| LOCATION<br>IDENTIFIER      | DATE                                   | TIME                                                            | COMP/<br>GRAB | SAMPLEID                                                                | MATRIX                                                | ATOT               | l<br>Moh                                               |                                                       |                                                         |                                                                                          | J4MA\$   |           |                       |
| 10 30-05                    | 21/4                                   | 2051                                                            | 9             | 562-035                                                                 | 200                                                   | 2                  | 7                                                      |                                                       |                                                         | 800-7£80121                                                                              | 3        | 1         |                       |
| 20-035 10/                  | while                                  | 1505                                                            | o             | Sw-035-ms                                                               | 20                                                    | 7                  | 2                                                      |                                                       |                                                         |                                                                                          | 75,      |           |                       |
| 101 550-02                  | 11/12                                  | 1502                                                            | v             | SW-035-SD                                                               | 50                                                    | 7                  | 7                                                      |                                                       |                                                         | <b>→</b>                                                                                 | 50,      |           |                       |
| 560-025 10                  | Iolola                                 | 1549                                                            | S             | Sw-025                                                                  | 40                                                    | 7                  | 2                                                      |                                                       |                                                         | 2010201V                                                                                 | Ž        |           |                       |
| 500-020 10                  | ulation                                | 1635                                                            | S             | 560-020                                                                 | 200                                                   | 2                  | 2                                                      |                                                       |                                                         | 900                                                                                      | 5,       |           |                       |
| applicate 101               | הולכין                                 |                                                                 | S             | FD-101712                                                               | 20                                                    | 7                  | 7                                                      | 3                                                     | 1090                                                    | 710                                                                                      | FO,      |           |                       |
| 101 510-516                 | ulation                                | 1729                                                            | S             | 500-015                                                                 | 200                                                   | 7                  | 2                                                      |                                                       | 1:                                                      | 200                                                                                      | 5        |           |                       |
| 101 010-CJS                 | 21/21/01                               | 1800                                                            | ৩             | 54-00                                                                   | 3                                                     | 2                  | 2                                                      |                                                       |                                                         | 004                                                                                      | Ź        |           | -                     |
| 101 200 wc                  | 10/18/12                               | 1035                                                            | S             | 220-045                                                                 | 3                                                     | 7                  | Ŋ                                                      |                                                       |                                                         | 010                                                                                      | 5,       |           |                       |
| 01 CHO-CUC                  | 24/8/101                               | 1110                                                            | S             | 20-040                                                                  | 33                                                    | 2                  | 2                                                      | -                                                     |                                                         | p00                                                                                      | 2,       |           |                       |
| MW-16 10                    | 21/81/01                               | 1227                                                            | S             | ターのと                                                                    | 200                                                   | N                  | 2                                                      |                                                       |                                                         | \$ (2)                                                                                   | 5        |           |                       |
| SWTR-1E 10                  | 19/8/LZ                                | 1237                                                            | ত             | 505TR-1E                                                                | $\omega_{S}$                                          | 7                  | 2                                                      |                                                       |                                                         | 1210kg 60121                                                                             | 2        | Ą         |                       |
| MW-04 10                    | 21/8/101                               | 1533                                                            | 0             | MW-04                                                                   | 10 G                                                  | 7                  | 7                                                      |                                                       |                                                         | VIZIDETZ 801                                                                             | 5,       | <u>용</u>  | _                     |
| MATRIX                      | AA - AMBIE<br>SE - SEDIM<br>SH - HAZAR | AA - AMBIENT AIR<br>SE - SEDIMENT<br>SH - HAZARDOUS SOLID WASTE | ASTE          | SL - SLUDGE<br>WP - DRINKING WATER<br>WW - WASTE WATER                  | WG - GROUND WATER<br>SO - SOIL<br>DC - DRILL CUTTINGS | D WATER<br>ITTINGS |                                                        | WL - LEACHATE<br>GS - SOIL GAS<br>WC - DRILLING WATER | WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD OC |                                                                                          | UID WAST | ON GW     | TABLE                 |
| SAMPLE<br>TYPE CODES        | TB# - TRIP  <br>SD# - MATH             | TB# - TRIP BLANK<br>SD# - MATRIX SPIKE DUPLICATE                | CATE          | R8# - RINSE BLANK<br>FR# - FIELD REPLICATE                              | N# - NORMAL<br>AS# - MATRIX                           | ENVIRON<br>SPIKE   | N# - NORMAL ENVIRONMENTAL SAMPLE<br>MS# - MATRIX SPIKE |                                                       | NUMBER (FROM 1 TO 9) T                                  | (* - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY $)$ | SAMPLES  | N A SIN   | GLE D.                |
| RELINQUISHED BY (SIGNATURE) | BY (sig                                | NATURE)                                                         | DATE          |                                                                         | BY (SIGNATURE)                                        | ATURE)             |                                                        | DATE TIME                                             | SPECIAL INSTRUCTIONS                                    | UCTIONS                                                                                  |          |           | -                     |
| RELINQUISHED BY (SIGNATURE) | BY (SIGI                               | NATURE)                                                         | DATE 162016   | E TIME RECEIVED FOR LAB                                                 | FOR LAB                                               |                    | (SIGNATURE)                                            | DATE TIME                                             | Cotact Ga                                               | orge Kislok u                                                                            | 2/2      | 7 -       |                       |
| Shirt Banda                 | inal accu                              | ompanies s                                                      | hipment,      | Distributed by the accompanies shipmen, copy to coordinate (infliction) | に                                                     | 20                 | ٦.                                                     | 13/24/12 10:00                                        |                                                         |                                                                                          |          |           |                       |
| URSF-075C/1 OF 1/CdCR/GCM   | SCM                                    |                                                                 |               |                                                                         |                                                       |                    |                                                        |                                                       |                                                         |                                                                                          |          | i         |                       |
| URS143 S6                   | 3 Se                                   |                                                                 |               |                                                                         | 2)                                                    |                    |                                                        |                                                       |                                                         |                                                                                          |          |           |                       |
|                             |                                        |                                                                 |               |                                                                         |                                                       |                    |                                                        |                                                       |                                                         |                                                                                          |          |           |                       |

| URS 177.  URB 142.7  COOLER / of / PAGE 2 of 2                                                                                                                        | REMS ONLY)  SAMPLE TYPE SEPTH (IN FEET) | H                                                                                                                                                                                                                                                             | WO-OCEAN WATER WO-OCEAN WATER WO-OCEAN WATER WO-OCEAN WATER WO-WATER FIELD OG WA-SURFACE WAS WO-WATER FIELD OG WA-SURFACE WAS WO-WATER FIELD OG WA-WA-FIELD OG WA-SURFACE WAS WO-WATER FIELD OG WA-WA-FIELD OG WA-SURFACE WAS WA-WA-FIELD OG WA-SURFACE WAS WA-WA-FIELD OG WA-SURFACE WAS WA-WA-FIELD OG WA-SURFACE WAS WA-WA-FIELD OG WA-FIELD OG WA-WA-FIELD OG WA-WA-WA-WA-WA-WA-WA-WA-WA-WA-WA-WA-WA-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAIN OF CUSTODY RECORD  PROJECT NO.  SITE NAME  1117 GIGT: 0 000 2  SAMPLERS (PRINT/SIGNATURE)  Tim ISKOUGU (Twin Afflect) Churk Dusc!  BOTTLE TYPE AND PRESERVATIVE | DELIVERY SERVICE: Feclex AIRBILL NO.: # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                             | MW-03 Idigir, 1623 6 MW-03 WG 2 2  NOP Icligir, 1630 6 NDP-WS WG 2 2  NDP Idigir, 1630 6 NDP-WS-MS WS 2 2  NDP Idigir, 1630 6 NDP-WS-MS WS 2 2  SWTR-1T Idigir, 1645 6 SWTR-1T WS 2 2  SWTR-1T Idigir, 1765 6 SWTR-1T WS 2 2  Trybluk Idigir — TB-10/812 TB 2 | MATRIX SE. SEDIMENT AIR SE. SEDIMENT SEL SEDIMENT SEDIME |



labs

575 Broad Hollow Road Melville, NY 11747 tel fax

631.694.3040 631.420.8436

## SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 10/22/12 SDG #: URS142

For Sample(s):

 NDP-WS
 TB-101812

 SDP-WS
 SWTR-1E

 SWTR-1T
 SB-102512

FD-101812

The above sample(s) and blanks was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q.C. data and calibrations met the requirements of the method, and no problems were encountered with sample analysis. The following should be noted:

Sample NDP-WS was analyzed as matrix spike/matrix spike duplicate (MS/MSD). Several percent recoveries and RPDs were outside of Q.C. limits. Lab fortified blanks were analyzed. All percent recoveries were within or above Q.C. limits except for a 67% recovery for styrene in LFB102912 (low limit 71%).

Linear responses with average RFs or linear regression calibration were used as required.

In the continuing calibration verification (CCV's) some compounds had %D's above 15%. These compounds are notes on Form VII. Results for these analytes are regarded as estimated and are flagged with a "Z" qualifier if found in samples associated with that calibration.

Low levels of acetone and 1,2,4-trichlorobenzene were present in some method blanks. These analytes were flagged with a "B" qualifier if present in samples associated with these blanks.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: November 14, 2012

Joann M. Slavin

Senior Vice President

#### 4A

### VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK110112

Lab Name: H2M LABS INC

Contract:

Lab File ID: 12\G16611A

Lab Sample ID: VBLK110112

Date Analyzed: 11/01/12

Time Analyzed: 19:36

GC Column: Rtx-624 ID: .18 (mm) Heated Purge: (Y/N) N

Instrument ID: HP5972-2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

|    | EPA<br>SAMPLE NO. | LAB<br>SAMPLE ID | LAB<br>FILE ID | TIME<br>ANALYZED |
|----|-------------------|------------------|----------------|------------------|
| 01 | LFB110112         | LFB110112        | 12\G16612A     | 20:06            |
| )2 | SWTR-1T           | 1210B69-003A     | 12\G16614.     | 21:05            |
| )3 | NDP-WSMS          | 1210B69-001AMS   | 12\G16616.     | 22:05            |
| )4 | NDP-WSMSD         | 1210B69-001AMSD  | 12\G16617.     | 22:35            |

| COMMENTS: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | The state of the s |
|           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## VOLATILE ORGANICS ANALYSIS DATA SHEET

| BLK110112 |  |
|-----------|--|
|-----------|--|

| Lab Name: H2M LABS             | INC              | Contract:             |                 |
|--------------------------------|------------------|-----------------------|-----------------|
| Lab Code: H2M                  | Case No.: URS    | SAS No.:              | SDG No.: URS142 |
| Matrix: (soil/water)           | WATER            | Lab Sample ID:        | VBLK110112      |
| Sample wt/vol: $\underline{5}$ | (g/mL) <u>ML</u> | Lab File ID:          | 12\G16611A      |
| Level: (low/med)               | FOM              | Date Received:        |                 |
| % Moisture: not dec.           |                  | Date Analyzed:        | 11/01/12        |
| GC Column: Rtx-624             | ID: <u>.18</u>   | (mm) Dilution Factor: | 1.00            |
| Soil Extract Volume:           | · (µL)           | Soil Aliquot Vol      | ume (µL)        |

### CONCENTRATION UNITS:

| CAS NO.    | COMPOUND                              | μg/L or μg/Kg) UG/L | Q  |
|------------|---------------------------------------|---------------------|----|
| 75-71-8    | Dichlorodifluoromethane               | 10                  | Ū  |
| 74-87-3    | Chloromethane                         | 10                  | U  |
| 75-01-4    | Vinyl chloride                        | 10                  | U  |
| 74-83-9    | Bromomethane                          | 10                  | U  |
| 75-00-3    | Chloroethane                          | 10                  | Ū  |
| 75-69-4    | Trichlorofluoromethane                | 10                  | U  |
| 75-35-4    | 1,1-Dichloroethene                    | 10                  | U  |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethane | 10                  | Ŭ  |
| 67-64-1    | Acetone                               | 1                   | JZ |
| 75-15-0    | Carbon disulfide                      | 10                  | U  |
| 79-20-9    | Methyl Acetate                        | 10                  | Ū  |
| 75-09-2    | Methylene chloride                    | 10                  | U  |
| 156-60-5   | trans-1,2-Dichloroethene              | 10                  | U  |
| 1634-04-4  | Methyl tert-butyl ether               | 10                  | U  |
| 75-34-3    | 1,1-Dichloroethane                    | 10                  | U  |
| 156-59-2   | cis-1,2-Dichloroethene                | 10                  | Ū  |
| 78-93-3    | 2-Butanone                            | 10                  | Ü  |
| 67-66-3    | Chloroform                            | 10                  | U  |
| 71-55-6    | 1,1,1-Trichloroethane                 | 10                  | Ü  |
| 110-82-7   | Cyclohexane                           | 10                  | Ū  |
| 56-23-5    | Carbon tetrachloride                  | 10                  | U  |
| 71-43-2    | Benzene                               | 10                  | Ū  |
| 107-06-2   | 1,2-Dichloroethane                    | 10                  | U  |
| 79-01-6    | Trichloroethene                       | 10                  | ט  |
| 108-87-2   | Methylcyclohexane                     | 10                  | U  |
| 78-87-5    | 1,2-Dichloropropane                   | 10                  | Ū  |
| 75-27-4    | Bromodichloromethane                  | 10                  | U  |
| 10061-01-5 | cis-1,3-Dichloropropene               | 10                  | Ü  |
| 108-10-1   | 4-Methyl-2-pentanone                  | 10                  | U  |
| 108-88-3   | Toluene                               | 10                  | U  |
| 10061-02-6 | trans-1,3-Dichloropropene             | 1.0                 | U  |
| 79-00-5    | 1,1,2-Trichloroethane                 | 10                  | Ü  |
| 127-18-4   | Tetrachloroethene                     | 10                  | U  |
| 591-78-6   | 2-Hexanone                            | 10                  | U  |
| 124-48-1   | Dibromochloromethane                  | 10                  | U  |

5A

### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: H2M LABS INC

Contract: Lab Code: H2M Case No.: URS

SAS No.: SDG No.: URS142

Lab File ID: <u>12\G16577.</u> BFB Injection Date: 10/29/12

Instrument ID: HP5972-2 BFB Injection Time: 7:53

GC Column: Rtx-624 ID: .18 (mm)

|     |                                    | % RELATIVE   |
|-----|------------------------------------|--------------|
| m/e | ION ABUNDANCE CRITERIA             | ABUNDANCE    |
| 50  | 15.0 - 40.0% of mass 95            | 18.8         |
| 75  | 30.0 - 60.0% of mass 95            | 44.9         |
| 95  | Base peak, 100% relative abundance | 100.0        |
| 96  | 5.0 - 9.0% of mass 95              | 6.5          |
| 173 | Less than 2.0% of mass 174         | 0.1 (0.2)1   |
| 174 | Greater than 50.0% of mass 95      | 75.3         |
| 175 | 5.0 - 9.0% of mass 174             | 5.3 (7.0)1   |
| 176 | 95.0 - 101.0% of mass 174          | 72.0 (95.7)1 |
| 177 | 5.0 - 9.0% of mass 176             | 4.8 (6.7)2   |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

|     | EPA        | LAB          | LAB        | DATE     | TIME     |
|-----|------------|--------------|------------|----------|----------|
|     | SAMPLE NO. | SAMPLE ID    | FILE ID    | ANALYZED | ANALYZED |
| 01  | VSTD050    | VSTD050      | 12\G16579. | 10/29/12 | 8:44     |
| 02  | VBLK102912 | VBLK102912   | 12\G16581, | 10/29/12 | 9:44     |
| οз[ | LFB102912  | LFB102912    | 12\G16582. | 10/29/12 | 10:14    |
| 04  | NDP-WS     | 1210B69-001A | 12\G16592. | 10/29/12 | 15:11    |
| 05  | SDP-WS     | 1210B69-002A | 12\G16593. | 10/29/12 | 15:40    |
| 06  | FD-101812  | 1210B69-004A | 12\G16595. | 10/29/12 | 17:16    |
| 07  | TB-101812  | 1210B69-005A | 12\G16596. | 10/29/12 | 17:45    |
| 80  | SWTR-1E    | 1210B69-006A | 12\G16597. | 10/29/12 | 18:15    |
| 09  | SB-102512  | 1210B69-007A | 12\G16598. | 10/29/12 | 18:45    |

Lab Name: H2M LABS INC Contract:

Instrument ID: HP5972-2 Calibration Date: 10/29/12 Time: 8:44

Lab File ID: 12\G16579. Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No. (VSTD050##): <u>VSTD050</u> Init. Calib. Times: <u>10:49</u> <u>14:27</u>

Heated Purge: (Y/N) N

GC Column: Rtx-624 ID: .18 (mm)

|                                       |       |       | MIN   |        | MAX  |
|---------------------------------------|-------|-------|-------|--------|------|
| COMPOUND                              | RRF   | RRF50 | RRF   | 8D     | &D   |
| Dichlorodifluoromethane               | 2.766 | 1.822 |       | (-34.1 |      |
| Chloromethane                         | 2.871 | 2.502 | 0.100 | -12.9  |      |
| Vinyl chloride                        | 2.339 | 2.333 |       | -0.3   | 20.0 |
| Bromomethane                          | 1.346 | 1.637 |       | 21.6   |      |
| Chloroethane                          | 1.336 | 1.525 |       | 14.1   |      |
| Trichlorofluoromethane                | 2.667 | 3.063 |       | 14.8   |      |
| 1,1-Dichloroethene                    | 1.506 | 1.683 |       | 11.8   | 20.0 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.455 | 1.796 |       | 23.4   |      |
| Acetone                               | 0.845 | 0.710 |       | -15.9  |      |
| Carbon disulfide                      | 5.561 | 6.199 |       | 11.5   |      |
| Methyl Acetate                        | 1.976 | 2.091 |       | 5.8    |      |
| Methylene chloride                    | 2.052 | 2.198 |       | 7.1    |      |
| trans-1,2-Dichloroethene              | 1.764 | 2.029 |       | 15.1   |      |
| Methyl tert-butyl ether               | 5.973 | 6.098 |       | 2.1    |      |
| 1,1-Dichloroethane                    | 3.444 | 3.737 | 0.100 | 8.5    |      |
| cis-1,2-Dichloroethene                | 1.964 | 2.229 |       | 13.5   |      |
| 2-Butanone                            | 1.393 | 1.220 |       | -12.4  |      |
| Chloroform                            | 3.320 | 3.585 |       | 8.0    | 20.0 |
| 1,1,1-Trichloroethane                 | 0.458 | 0.441 |       | -3.7   |      |
| Cyclohexane                           | 0,463 | 0.482 |       | 4.2    |      |
| Carbon tetrachloride                  | 0.355 | 0.364 |       | 2.6    |      |
| Benzene                               | 1.212 | 1.251 |       | 3.2    |      |
| 1,2-Dichloroethane                    | 2.853 | 2.756 |       | -3.4   |      |
| Trichloroethene                       | 0.303 | 0.311 |       | 2.7    |      |
| Methylcyclohexane                     | 0.364 | 0.375 |       | 2.9    |      |
| 1,2-Dichloropropane                   | 0.351 | 0.341 |       | -2.8   | 20.0 |
| Bromodichloromethane                  | 0.457 | 0.441 |       | -3.5   |      |
| cis-1,3-Dichloropropene               | 0.565 | 0.548 |       | -3.1   |      |
| 4-Methyl-2-pentanone                  | 0.571 | 0.416 |       | -27.1  |      |
| Toluene                               | 1.347 | 1.184 |       | -12.1  | 20.0 |
| trans-1,3-Dichloropropene             | 0.560 | 0.551 |       | -1.6   |      |
| 1,1,2-Trichloroethane                 | 0.319 | 0.310 |       | -2.8   |      |
| Tetrachloroethene                     | 0.244 | 0.216 |       | -11.5  |      |
| 2-Hexanone                            | 0.392 | 0.289 |       | -26.4  |      |
| Dibromochloromethane                  | 0.365 | 0.347 |       | -4.9   |      |

All other compounds must meet a minimum RRF of 0.010.

7B
VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: H2M LABS INC Contract:

Instrument ID:  $\underline{HP5972-2}$  Calibration Date:  $\underline{10/29/12}$  Time:  $\underline{8:44}$ 

Lab File ID: 12\G16579. Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No. (VSTD050##): <u>VSTD050</u> Init. Calib. Times: <u>10:49</u> <u>14:27</u>

Heated Purge: (Y/N) N

GC Column: Rtx-624 ID: .18 (mm)

|                             |       |       | MIN   |         | MAX  |
|-----------------------------|-------|-------|-------|---------|------|
| COMPOUND                    | RRF   | RRF50 | RRF   | %D      | %D   |
| 1,2-Dibromoethane           | 0.399 | 0.321 |       | -19.5   |      |
| Chlorobenzene               | 0.950 | 0.755 | 0.300 | -20.5   |      |
| Ethylbenzene                | 0.466 | 0.380 |       | -18.4   | 20.0 |
| Xylene (total)              | 0.572 | 0.461 |       | -19.5   |      |
| Styrene                     | 1.027 | 0.763 |       | 25.7    |      |
| Bromoform                   | 0.254 | 0.248 | 0.100 | -2.4    |      |
| Isopropylbenzene            | 1.399 | 1.130 |       | -19.2   |      |
| 1,1,2,2-Tetrachloroethane   | 0.503 | 0.406 | 0.300 | -19.3   |      |
| 1,3-Dichlorobenzene         | 0.625 | 0.556 |       | -11.0   |      |
| 1,4-Dichlorobenzene         | 0.643 | 0.579 |       | -10.0   |      |
| 1,2-Dichlorobenzene         | 0.609 | 0.541 |       | -11.1   |      |
| 1,2-Dibromo-3-chloropropane | 0.099 | 0.065 |       | (-34.7) |      |
| 1,2,4-Trichlorobenzene      | 0.390 | 0.278 |       | (-28.8  |      |

### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Contract: Lab Name: H2M LABS INC

SAS No.:\_\_\_\_\_ SDG No.: URS142 Lab Code: H2M Case No.: URS

Lab File ID: <u>12\G16609</u>. BFB Injection Date: 11/01/12

Instrument ID: HP5972-2 BFB Injection Time: 18:41

GC Column: Rtx-624 ID: .18 (mm)

| / -   | TON ADMINDANCE CONTENTS                  | % RELATIVE   |  |  |
|-------|------------------------------------------|--------------|--|--|
| m/e   | ION ABUNDANCE CRITERIA                   | ABUNDANCE    |  |  |
| 50    | 15.0 - 40.0% of mass 95                  | 18.3         |  |  |
| 75    | 30.0 - 60.0% of mass 95 43.4             |              |  |  |
| 95    | Base peak, 100% relative abundance 100.0 |              |  |  |
| 96    | 5.0 - 9.0% of mass 95                    | 6.8          |  |  |
| 173   | Less than 2.0% of mass 174               | 0.1 (0.2)1   |  |  |
| 174   | Greater than 50.0% of mass 95            | 78.9         |  |  |
| 175   | 5.0 - 9.0% of mass 174                   | 5.6 (7.2)1   |  |  |
| 176   | 95.0 - 101.0% of mass 174                | 76.4 (96.9)1 |  |  |
| 177   | 5.0 - 9.0% of mass 176                   | 5.0 (6.5)2   |  |  |
| -Valu | e is % mass 174 2-Value is % mass        | 176          |  |  |

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| - 1 | EPA LAB                 |                 | EPA LAB LAB |          | TIME     |  |
|-----|-------------------------|-----------------|-------------|----------|----------|--|
|     | SAMPLE NO.              | SAMPLE ID       | FILE ID     | ANALYZED | ANALYZED |  |
| 01  | VSTD050                 | VSTD050         | 12\G16610A  | 11/01/12 | 19:06    |  |
| 02  | VBLK110112 VBLK110112   |                 | 12\G16611A  | 11/01/12 | 19:36    |  |
| 23  | LFB110112 LFB110112     |                 | 12\G16612A  | 11/01/12 | 20:06    |  |
| 04  | SWTR-1T 1210B69-003A    |                 | 12\G16614.  | 11/01/12 | 21:05    |  |
| 05  | NDP-WSMS 1210B69-001AMS |                 | 12\G16616.  | 11/01/12 | 22:05    |  |
| 06  | NDP-WSMSD               | 1210B69-001AMSD | 12\G16617.  | 11/01/12 | 22:35    |  |

7A
VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: <u>H2M LABS INC</u> Contract:

Instrument ID: HP5972-2 Calibration Date: 11/01/12 Time: 19:06

Lab File ID: 12\G16610A Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No.(VSTD050##): <u>VSTD050</u> Init. Calib. Times: <u>10:49</u> <u>14:27</u>

Heated Purge: (Y/N) N

GC Column:  $\underline{Rtx-624}$  ID:  $\underline{.18}$  (mm)

|                                       |       |       | MIN   |         | MAX  |
|---------------------------------------|-------|-------|-------|---------|------|
| COMPOUND                              | RRF   | RRF50 | RRF   | &D      | &D   |
| Dichlorodifluoromethane               | 2.766 | 1.769 |       | -36.0   |      |
| Chloromethane                         | 2.871 | 2.195 | 0.100 | (-23.5) |      |
| Vinyl chloride                        | 2.339 | 2.063 |       | -11.8   | 20.0 |
| Bromomethane                          | 1.346 | 1.392 |       | 3.4     |      |
| Chloroethane                          | 1.336 | 1.271 |       | -4.9    |      |
| Trichlorofluoromethane                | 2.667 | 2.472 |       | -7.3    |      |
| 1,1-Dichloroethene                    | 1.506 | 1.577 |       | 4.7     | 20.0 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.455 | 1.573 |       | 8.1     |      |
| Acetone                               | 0.845 | 0.641 |       | (-24.1) |      |
| Carbon disulfide                      | 5.561 | 5.885 |       | 5.8     |      |
| Methyl Acetate                        | 1.976 | 1.877 |       | -5.0    |      |
| Methylene chloride                    | 2.052 | 2.247 |       | 9.5     |      |
| trans-1,2-Dichloroethene              | 1.764 | 1.972 |       | 11.8    |      |
| Methyl tert-butyl ether               | 5.973 | 5.701 |       | -4.6    |      |
| 1,1-Dichloroethane                    | 3.444 | 3.445 | 0.100 | 0.0     |      |
| cis-1,2-Dichloroethene                | 1.964 | 2.138 |       | 8.9     |      |
| 2-Butanone                            | 1.393 | 1.171 |       | -16.0   |      |
| Chloroform                            | 3.320 | 3.383 |       | 1.9     | 20.0 |
| 1,1,1-Trichloroethane                 | 0.458 | 0.493 |       | 7.7     |      |
| Cyclohexane                           | 0.463 | 0.521 |       | 12.6    |      |
| Carbon tetrachloride                  | 0.355 | 0.422 |       | 18,9    |      |
| Benzene                               | 1.212 | 1.411 |       | 16.4    |      |
| 1,2-Dichloroethane                    | 2.853 | 2.546 |       | -10.8   |      |
| Trichloroethene                       | 0.303 | 0.355 |       | 17.3    |      |
| Methylcyclohexane                     | 0.364 | 0.420 |       | 15.2    |      |
| 1,2-Dichloropropane                   | 0.351 | 0.380 |       | 8.3     | 20.0 |
| Bromodichloromethane                  | 0.457 | 0.491 |       | 7.4     |      |
| cis-1,3-Dichloropropene               | 0.565 | 0.636 |       | 12.5    |      |
| 4-Methyl-2-pentanone                  | 0.571 | 0.570 |       | -0.1    |      |
| Toluene                               | 1.347 | 1.610 |       | 19.6    | 20.0 |
| trans-1,3-Dichloropropene             | 0.560 | 0.596 |       | 6.5     |      |
| 1,1,2-Trichloroethane                 | 0.319 | 0.339 |       | 6.2     |      |
| Tetrachloroethene                     | 0.244 | 0.308 |       | 26.2    |      |
| 2-Hexanone                            | 0.392 | 0.401 |       | 2.2     |      |
| Dibromochloromethane                  | 0.365 | 0.400 |       | 9.7     |      |

All other compounds must meet a minimum RRF of 0.010.

7B
VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: H2M LABS INC Contract:

Instrument ID: HP5972-2 Calibration Date: 11/01/12 Time: 19:06

Lab File ID: 12\G16610A Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No.(VSTD050##):  $\underline{\text{VSTD050}}$  Init. Calib. Times:  $\underline{\text{10:49}}$   $\underline{\text{14:27}}$ 

Heated Purge: (Y/N) N

GC Column: <u>Rtx-624</u> ID: <u>.18</u> (mm)

|                             |       |       | MIN    |        | MAX  |
|-----------------------------|-------|-------|--------|--------|------|
| COMPOUND                    | RRF   | RRF50 | RRF    | &D     | %D   |
| 1,2-Dibromoethane           | 0.399 | 0.411 |        | 3.0    |      |
| Chlorobenzene               | 0.950 | 1.028 | 0.300  | 8.3    |      |
| Ethylbenzene                | 0.466 | 0.516 |        | 10.8   | 20.0 |
| Xylene (total)              | 0.572 | 0.628 |        | 9.7    |      |
| Styrene                     | 1.027 | 1.157 |        | 12.7   |      |
| Bromoform                   | 0.254 | 0.277 | 0.100  | 9.0    |      |
| Isopropylbenzene            | 1.399 | 1.553 |        | 11.0   |      |
| 1,1,2,2-Tetrachloroethane   | 0.503 | 0.538 | 0.300  | 7.0    |      |
| 1,3-Dichlorobenzene         | 0.625 | 0.777 |        | (24.3) |      |
| 1,4-Dichlorobenzene         | 0.643 | 0.807 |        | (25.4) |      |
| 1,2-Dichlorobenzene         | 0.609 | 0.758 |        | (24.5) |      |
| 1,2-Dibromo-3-chloropropane | 0.099 | 0.083 |        | -16.6  |      |
| 1,2,4-Trichlorobenzene      | 0.390 | 0.400 | ****** | 2.5    |      |



tel 631.694.3040 fax 631.420.8436

## SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 10/22/12 SDG #: URS143

For Sample(s):

MW-03 SW-02S MW-04 SW-03S MW-16 SW-04D SW-01D SW-04S SW-01S FD-101712 SW-02D SB-102512

The above sample(s) and blanks was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q.C. data and calibrations met the requirements of the method, and no problems were encountered with sample analysis. The following should be noted:

Sample SW-03S was analyzed as matrix spike/matrix spike duplicate (MS/MSD). All percent recoveries and RPDs were met except for twenty two analytes with high recoveries. Lab fortified blanks were analyzed. All percent recoveries were within or above Q.C. limits.

Linear responses with average RFs or linear regression calibration were used as required.

In the continuing calibration verification (CCV's) some compounds had %D's above 15%. These compounds are notes on Form VII. Results for these analytes are regarded as estimated and are flagged with a "Z" qualifier if found in samples associated with that calibration.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: November 15, 2012

\*\*\*\*\*\*\*\*\*\*

\*

Joann M. Slavin Senior Vice President

5A

## VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: H2M LABS INC Contract:

BFB Injection Date: 10/25/12 Lab File ID: 12\G16511.

Instrument ID: <u>HP5972-2</u> BFB Injection Time: 15:07

GC Column: Rtx-624 ID:  $\underline{.18}$  (mm)

| ABUNDANCE<br>19.9<br>45.8<br>100.0<br>6.8 |
|-------------------------------------------|
| 45.8<br>100.0                             |
| 100.0                                     |
|                                           |
| 6.8                                       |
|                                           |
| 0.2 (0.3)1                                |
| 71.8                                      |
| 5.3 (7.4)1                                |
| 71.2 (99.1)1                              |
| 4.9 (6.9)2                                |
|                                           |

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

| ſ  | EPA                | LAB             | LAB        | DATE     | TIME     |
|----|--------------------|-----------------|------------|----------|----------|
|    | SAMPLE NO.         | SAMPLE ID       | FILE ID    | ANALYZED | ANALYZED |
| 1  | VSTD050            | VSTD050         | 12\G16513. | 10/25/12 | 15:58    |
| 2  | VBLK102512         | VBLK102512      | 12\G16515. | 10/25/12 | 16:57    |
| 3  | LFB102512          | LFB102512       | 12\G16516. | 10/25/12 | 17:27    |
| 4  | MW-04 1210B72-002A |                 | 12\G16522. | 10/25/12 | 20:25    |
| 5  | MVV-16             | 1210B72-003A    | 12\G16523. | 10/25/12 | 20:55    |
| 6  | SW-01D             | 1210B72-004A    | 12\G16524. | 10/25/12 | 21:24    |
| 7  | SW-018             | 1210B72-005A    | 12\G16525. | 10/25/12 | 21:54    |
| 8  | SW-02D             | 1210B72-006A    | 12\G16526. | 10/25/12 | 22:24    |
| 9  | SW-02S             | 1210B72-007A    | 12\G16527. | 10/25/12 | 22:53    |
| lo | SW-03S             | 1210B72-008A    | 12\G16528. | 10/25/12 | 23:23    |
| 1  | SW-03SMS           | 1210B72-008AMS  | 12\G16529. | 10/25/12 | 23:52    |
| 2  | SW-03SMSD          | 1210B72-008AMSD | 12\G16530. | 10/26/12 | 0:22     |
| ا3 | SW-04S             | 1210B72-010A    | 12\G16532. | 10/26/12 | 1:21     |
| 4  | FD-101712          | 1210B72-012A    | 12\G16533. | 10/26/12 | 1:51     |
| 15 | SB-102512          | 1210B72-013A    | 12\G16534. | 10/26/12 | 2:20     |

## 7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: H2M LABS INC Contract:

Instrument ID: HP5972-2 Calibration Date: 10/25/12 Time: 15:58

Lab File ID: 12\G16513. Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No. (VSTD050##): <u>VSTD050</u> Init. Calib. Times: <u>10:49</u> <u>14:27</u>

Heated Purge: (Y/N) N

GC Column: Rtx-624 ID: .18 (mm)

| E-77                                  |       |       | MIN     |         | MAX  |
|---------------------------------------|-------|-------|---------|---------|------|
| COMPOUND                              | RRF   | RRF50 | RRF     | &D      | %D   |
| Dichlorodifluoromethane               | 2.766 | 1.665 |         | (-39.8) |      |
| Chloromethane                         | 2.871 | 2.212 | 0.100   | -23.0   |      |
| Vinyl chloride                        | 2.339 | 2.031 |         | -13.2   | 20.0 |
| Bromomethane                          | 1.346 | 1.425 |         | 5.8     |      |
| Chloroethane                          | 1.336 | 1.271 |         | -4.9    |      |
| Trichlorofluoromethane                | 2.667 | 2.463 |         | -7.7    |      |
| 1,1-Dichloroethene                    | 1.506 | 1.664 |         | 10.5    | 20.0 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 1.455 | 1.672 |         | 14.9    |      |
| Acetone                               | 0.845 | 0.720 |         | -14.8   |      |
| Carbon disulfide                      | 5.561 | 6.428 |         | 15.6    |      |
| Methyl Acetate                        | 1.976 | 2.169 |         | 9.8     |      |
| Methylene chloride                    | 2.052 | 2.356 |         | 14.8    |      |
| trans-1,2-Dichloroethene              | 1.764 | 2.074 |         | 17.6    |      |
| Methyl tert-butyl ether               | 5.973 | 6.421 |         | 7.5     |      |
| 1,1-Dichloroethane                    | 3.444 | 3.851 | 0.100   | 11.8    |      |
| cis-1,2-Dichloroethene                | 1.964 | 2.302 |         | 17.2    |      |
| 2-Butanone                            | 1.393 | 1.313 |         | -5.8    |      |
| Chloroform                            | 3.320 | 3.787 |         | 14.1    | 20.0 |
| 1,1,1-Trichloroethane                 | 0.458 | 0.513 |         | 12.0    |      |
| Cyclohexane                           | 0.463 | 0.484 |         | 4.6     |      |
| Carbon tetrachloride                  | 0.355 | 0.420 |         | 18.3    |      |
| Benzene                               | 1.212 | 1.426 |         | 17.7    |      |
| 1,2-Dichloroethane                    | 2.853 | 2.897 | O House | 1.5     |      |
| Trichloroethene                       | 0.303 | 0.348 |         | 15.0    |      |
| Methylcyclohexane                     | 0.364 | 0.347 |         | -4.8    |      |
| 1,2-Dichloropropane                   | 0.351 | 0.391 |         | 11.4    | 20.0 |
| Bromodichloromethane                  | 0.457 | 0.525 |         | 14.9    |      |
| cis-1,3-Dichloropropene               | 0.565 | 0.656 |         | 16.0    |      |
| 4-Methyl-2-pentanone                  | 0,571 | 0.588 |         | 3.0     |      |
| Toluene                               | 1.347 | 1.488 |         | 10.5    | 20.0 |
| trans-1,3-Dichloropropene             | 0.560 | 0.672 |         | 20.1    |      |
| 1,1,2-Trichloroethane                 | 0.319 | 0.363 |         | 13.8    |      |
| Tetrachloroethene                     | 0.244 | 0.252 |         | 3.2     |      |
| 2-Hexanone                            | 0.392 | 0.416 |         | 6.0     |      |
| Dibromochloromethane                  | 0.365 | 0.429 |         | 17.6    |      |

All other compounds must meet a minimum RRF of 0.010.

5A

## VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Contract: Lab Name: H2M LABS INC

Lab Code: H2M Case No.: URS SAS No.: SDG No.: URS143

Lab File ID: 12\G16535. BFB Injection Date: 10/26/12

BFB Injection Time: Instrument ID: HP5972-2 15:33

GC Column: Rtx-624 ID: .18 (mm)

|     |                                    | % RELATIVE   |
|-----|------------------------------------|--------------|
| m/e | ION ABUNDANCE CRITERIA             | ABUNDANCE    |
| 50  | 15.0 - 40.0% of mass 95            | 20.6         |
| 75  | 30.0 - 60.0% of mass 95            | 48.2         |
| 95  | Base peak, 100% relative abundance | 100.0        |
| 96  | 5.0 - 9.0% of mass 95              | 6.7          |
| 173 | Less than 2.0% of mass 174         | 0.4 (0.5)1   |
| 174 | Greater than 50.0% of mass 95      | 69.5         |
| 175 | 5.0 - 9.0% of mass 174             | 5.1 (7.3)1   |
| 176 | 95.0 - 101.0% of mass 174          | 67.6 (97.3)1 |
| 177 | 5.0 - 9.0% of mass 176             | 4.5 (6.6)2   |

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

|    | EPA        | LAB          | LAB        | DATE     | TIME     |
|----|------------|--------------|------------|----------|----------|
|    | SAMPLE NO. | SAMPLE ID    | FILE ID    | ANALYZED | ANALYZED |
| 01 | VSTD050    | VSTD050      | 12\G16536. | 10/26/12 | 15:54    |
| 02 | VBLK102612 | VBLK102612   | 12\G16538. | 10/26/12 | 16:53    |
| 03 | LFB102612  | LFB102612    | 12\G16539. | 10/26/12 | 17:23    |
| 04 | SW-04D     | 1210B72-009A | 12\G16541. | 10/26/12 | 18:22    |
| 05 | MW-03      | 1210B72-001A | 12\G16548. | 10/26/12 | 21:50    |

## 7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: H2M LABS INC Contract:

Instrument ID: HP5972-2 Calibration Date: 10/26/12 Time: 15:54

Lab File ID: 12\G16536. Init. Calib. Date(s): 03/03/12 03/03/12

EPA Sample No. (VSTD050##): VSTD050 Init. Calib. Times: 10:49 14:27

Heated Purge: (Y/N) N

GC Column: Rtx-624 ID: .18 (mm)

| COMPOUND                                      | RRF   | RRF50 | MIN<br>RRF | %D      | MAX<br>%D |
|-----------------------------------------------|-------|-------|------------|---------|-----------|
| Dichlorodifluoromethane                       | 2.766 | 1.954 | 1/1/1      | (-29.4) | 0.0       |
| Chloromethane                                 | 2.700 | 2,624 | 0.100      | -8.6    |           |
| Vinyl chloride                                | 2.339 | 2.024 | 0.100      | -2.9    | 20.0      |
| Bromomethane                                  | 1,346 | 1.674 |            | 24.3    | 20.0      |
| Chloroethane                                  | 1.336 | 1.480 |            | 10.8    |           |
| Trichlorofluoromethane                        | 2.667 | 3.115 |            | 16.8    |           |
| 1,1-Dichloroethene                            | 1.506 | 1,670 |            | 10.9    | 20.0      |
|                                               | 1.455 | 1.741 |            | 19.7    | 20.0      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone | 0.845 | 0.751 |            | -11.1   |           |
| Carbon disulfide                              | 5,561 | 6.274 |            | 12.8    |           |
|                                               | 1.976 | 2.199 |            | 11.3    |           |
| Methyl Acetate                                | 2.052 | 2.199 |            | 11.7    |           |
| Methylene chloride                            | 1.764 | 2.291 |            | 15.7    |           |
| trans-1,2-Dichloroethene                      | 5.973 | 6.752 |            | 13.0    |           |
| Methyl tert-butyl ether                       |       | 3.970 | 0.400      | 15.3    |           |
| 1,1-Dichloroethane                            | 3.444 |       | 0.100      | 16.9    |           |
| cis-1,2-Dichloroethene                        | 1.964 | 2.296 |            |         |           |
| 2-Butanone                                    | 1.393 | 1.329 |            | -4.6    | 00.0      |
| Chloroform                                    | 3.320 | 3.934 |            | 18.5    | 20.0      |
| 1,1,1-Trichloroethane                         | 0.458 | 0.518 |            | 13.1    |           |
| Cyclohexane                                   | 0.463 | 0.521 |            | 12.6    |           |
| Carbon tetrachloride                          | 0.355 | 0.429 |            | 20.9    | 2         |
| Benzene                                       | 1.212 | 1.365 |            | 12.6    |           |
| 1,2-Dichloroethane                            | 2.853 | 3.178 |            | 11.4    |           |
| Trichloroethene                               | 0.303 | 0.329 |            | 8.7     |           |
| Methylcyclohexane                             | 0.364 | 0.388 |            | 6.5     |           |
| 1,2-Dichloropropane                           | 0.351 | 0.380 |            | 8.3     | 20.0      |
| Bromodichloromethane                          | 0.457 | 0.524 |            | 14.7    |           |
| cis-1,3-Dichloropropene                       | 0.565 | 0.642 |            | 13.5    |           |
| 4-Methyl-2-pentanone                          | 0.571 | 0.514 |            | -9.9    |           |
| Toluene                                       | 1.347 | 1.396 |            | 3.7     | 20.0      |
| trans-1,3-Dichloropropene                     | 0.560 | 0.638 |            | 14.0    |           |
| 1,1,2-Trichloroethane                         | 0.319 | 0.344 |            | 7.8     |           |
| Tetrachloroethene                             | 0.244 | 0.245 |            | 0.4     |           |
| 2-Hexanone                                    | 0.392 | 0.360 |            | -8.3    |           |
| Dibromochloromethane                          | 0.365 | 0.395 | 20000000   | 8.3     |           |

All other compounds must meet a minimum RRF of 0.010.

## APPENDIX E

## WELL INSPECTION FORMS

| SITE NAME:        | Rose Valley | / Landfill        |                         |          |  |
|-------------------|-------------|-------------------|-------------------------|----------|--|
| JOB#:             | 11176716    |                   |                         |          |  |
| DATE:             | 10/17/2012  |                   |                         |          |  |
| TIME:             | 12:23       |                   |                         |          |  |
| WELL ID:          | MW-03       |                   |                         |          |  |
|                   |             |                   |                         |          |  |
|                   |             |                   | EXTERIOR INSPECTION     |          |  |
| PROTECTIVE        | CASING:     | ОК                |                         |          |  |
| LOCK/HASP:        | OK          |                   |                         |          |  |
| HINGE/ LID:       | OK          |                   |                         |          |  |
| WELL PAD:         | ОК          |                   |                         |          |  |
| BOLLARDS:         | None        |                   |                         |          |  |
| LABEL/ID:         | None        |                   |                         |          |  |
| OTHER:            | Thick veget | tation surroundin | ng well.                |          |  |
|                   |             |                   |                         |          |  |
|                   |             |                   |                         |          |  |
|                   |             |                   |                         |          |  |
|                   |             |                   | INTERIOR INSPECTION     |          |  |
| WELL RISER:       |             | OK                |                         |          |  |
| ANULAR SPA        | CE:         | OK                |                         |          |  |
| WELL CAP:         |             | OK                |                         | - Up-    |  |
| WATER LEVE        | L:          | 2.85              |                         |          |  |
|                   | TTO ME      | 17.26             | LIADD/COET BOTTOM Coff  |          |  |
| DEPTH TO BO       | ) I I OIVI: | 17.20             | HARD/SOFT BOTTOM Soft   |          |  |
| DEPTH TO BO       |             | 17.20             | HARD/SOFT BOTTOM SOIL   |          |  |
|                   |             |                   | HARD/SOFT BOTTOM _SOIL_ |          |  |
|                   |             | 17.20             | HARD/SOFT BOTTOM Soit   |          |  |
|                   |             | 17.20             | HARD/SOFT BOTTOM Soit   |          |  |
|                   |             |                   | HARD/SOFT BOTTOM Soit   | ^        |  |
| OTHER:            |             |                   | HARD/SUFT BUTTOM Soit   | <u> </u> |  |
| OTHER:  COMMENTS: |             |                   |                         |          |  |
| OTHER:  COMMENTS: | NSPECTOR    | : Tim Sille       | SIGNATURE APPROVAL:     | 6        |  |

| SITE NAME:  | Rose Valley | Landfill |                       |
|-------------|-------------|----------|-----------------------|
| JOB#:       | 11176716    |          |                       |
| DATE:       | 10/17/2012  |          |                       |
| TIME:       | 12:34       |          |                       |
| WELL ID:    | MW-4        |          |                       |
|             |             |          |                       |
|             |             |          | EXTERIOR INSPECTION   |
| PROTECTIVE  | CASING:     | ОК       |                       |
| LOCK/HASP:  | OK          |          |                       |
| HINGE/ LID: | OK          |          |                       |
| WELL PAD:   | OK          |          |                       |
| BOLLARDS:   | None        |          |                       |
| LABEL/ID:   | None        |          |                       |
| OTHER:      |             |          |                       |
|             |             |          |                       |
| ¥           |             |          |                       |
| ,           |             |          |                       |
|             |             |          | INTERIOR INSPECTION   |
| WELL RISER: |             | OK       |                       |
| ANULAR SPAC | CE:         | OK       |                       |
| WELL CAP:   |             | OK       |                       |
| WATER LEVE  | L:          | 2.40     |                       |
| DEPTH TO BO | OTTOM:      | 17.51    | HARD/SOFT BOTTOM Soft |
| OTHER:      |             |          |                       |
|             |             |          |                       |
|             |             |          |                       |
|             |             |          |                       |
| COMMENTS:   | 8           |          |                       |
|             |             |          |                       |
|             |             |          | A A                   |
| SIGNATURE I | NSPECTOR    | Tun d    | SIGNATURE APPROVAL:   |
| OTOTAL I    |             | - Janes  |                       |

| SITE NAME:     | Rose Valley | Landfill |                            |      |
|----------------|-------------|----------|----------------------------|------|
| JOB#:          | 11176716    |          |                            |      |
| DATE:          | 10/17/2012  |          |                            |      |
| TIME:          | 12:08       |          |                            |      |
| WELL ID:       | MW-16       |          |                            |      |
|                |             |          |                            |      |
|                |             |          | <b>EXTERIOR INSPECTION</b> |      |
| PROTECTIVE     | CASING:     | ОК       |                            |      |
| LOCK/HASP:     | OK          |          |                            |      |
| HINGE/ LID:    | OK          |          |                            |      |
| WELL PAD:      | ОК          |          |                            |      |
| BOLLARDS:      | None        |          |                            |      |
| LABEL/ID:      | None        |          |                            |      |
| OTHER:         |             |          |                            |      |
|                |             |          |                            |      |
|                |             |          |                            |      |
|                |             |          |                            |      |
|                |             |          | INTERIOR INSPECTION        |      |
| WELL RISER:    |             | OK       |                            |      |
| ANULAR SPAC    | CE:         | OK       |                            |      |
| WELL CAP:      |             | ОК       |                            |      |
| WATER LEVE     | L:          | 3.30     |                            |      |
| DEPTH TO BO    | OTTOM:      | 11.63    | HARD/SOFT BOTTOM Soft      |      |
| OTHER:         |             |          |                            |      |
|                |             |          | 79                         |      |
| (Marie Alleria |             |          |                            |      |
|                |             |          |                            |      |
| COMMENTS:      |             |          |                            |      |
|                |             |          |                            |      |
|                |             |          |                            |      |
| SIGNATURE I    | NSPECTOR    | Tim 1    | SIGNATURE APPROVAL:        | Chif |
| LOCK KEY#      | 2246        |          | <b>/</b>                   |      |

| SITE NAME:    | Rose Valley | Landfill |                                       |  |
|---------------|-------------|----------|---------------------------------------|--|
| JOB#:         | 11176716    |          |                                       |  |
| DATE:         | 10/17/2012  |          |                                       |  |
| TIME:         | 10:45       |          |                                       |  |
| WELL ID:      | SW-01S      |          |                                       |  |
| N====         |             |          |                                       |  |
|               |             |          | EXTERIOR INSPECTION                   |  |
| PROTECTIVE    | CASING:     | OK       |                                       |  |
| LOCK/HASP:    | ОК          |          |                                       |  |
| HINGE/ LID:   | ОК          |          |                                       |  |
| WELL PAD:     | ОК          |          |                                       |  |
| BOLLARDS:     | None        |          |                                       |  |
| LABEL/ID:     | None        |          |                                       |  |
| OTHER:        |             |          |                                       |  |
|               |             |          |                                       |  |
|               |             |          |                                       |  |
|               |             |          |                                       |  |
|               |             |          | INTERIOR INSPECTION                   |  |
| WELL RISER:   |             | OK       |                                       |  |
| ANULAR SPA    | CE:         | OK       |                                       |  |
| WELL CAP:     | :           | OK       |                                       |  |
| WATER LEVE    | L:          | 20.82    |                                       |  |
| DEPTH TO BO   | OTTOM:      | 28.41    | HARD/SOFT BOTTOM Hard                 |  |
| OTHER:        |             |          | · · · · · · · · · · · · · · · · · · · |  |
|               |             |          |                                       |  |
|               |             |          |                                       |  |
|               |             |          |                                       |  |
| COMMENTS:     |             |          |                                       |  |
| 7             |             |          |                                       |  |
| ş <del></del> |             |          |                                       |  |
| SIGNATURE I   | NSPECTOR:   | Tim a    | SIGNATURE APPROVAL:                   |  |
| LOCK KEY#     | 2246        |          |                                       |  |

| SITE NAME:  | Rose Valley | Landfill |                            |      |
|-------------|-------------|----------|----------------------------|------|
| JOB#:       | 11176716    |          |                            |      |
| DATE:       | 10/17/2012  |          |                            |      |
| TIME:       | 10:48       |          |                            |      |
| WELL ID:    | SW-01D      |          |                            |      |
|             |             |          |                            |      |
|             |             |          | <b>EXTERIOR INSPECTION</b> |      |
| PROTECTIVE  | CASING:     | OK       |                            |      |
| LOCK/HASP:  | OK          |          |                            |      |
| HINGE/ LID: | OK          |          |                            |      |
| WELL PAD:   | ОК          |          |                            |      |
| BOLLARDS:   | None        |          |                            |      |
| LABEL/ID:   | None        |          |                            |      |
| OTHER:      |             |          |                            |      |
| ¥.          |             |          |                            |      |
|             |             |          |                            |      |
|             |             |          |                            |      |
|             |             |          | INTERIOR INSPECTION        |      |
| WELL RISER: |             | OK       |                            |      |
| ANULAR SPA  | CE:         | OK       |                            |      |
| WELL CAP:   |             | OK       |                            |      |
| WATER LEVE  | L:          | 68.71    |                            |      |
| DEPTH TO BO | OTTOM:      | 83.95    | HARD/SOFT BOTTOM Soft      |      |
| OTHER:      |             |          |                            |      |
|             |             |          |                            |      |
|             |             |          |                            |      |
|             |             |          |                            |      |
| COMMENTS:   |             |          |                            |      |
|             |             |          |                            |      |
|             |             | ,        | 7                          | - 1  |
| SIGNATURE I | NSPECTOR:   | Timo     | SIGNATURE APPROVAL:        | C.Du |
| LOCK KEY#   |             |          |                            |      |

| SITE NAME:  | Rose Valley | Landfill |                         |      |
|-------------|-------------|----------|-------------------------|------|
| JOB#:       | 11176716    |          |                         |      |
| DATE:       | 10/17/2012  |          |                         |      |
| TIME:       | 11:08       |          |                         |      |
| WELL ID:    | SW-02S      |          |                         |      |
|             |             |          |                         |      |
| -           |             |          | EXTERIOR INSPECTION     |      |
| PROTECTIVE  | CASING:     | OK       |                         |      |
| LOCK/HASP:  | OK          |          |                         |      |
| HINGE/ LID: | OK          |          |                         |      |
| WELL PAD:   | ОК          |          |                         |      |
| BOLLARDS:   | None        |          |                         |      |
| LABEL/ID:   | None        |          |                         |      |
| OTHER:      |             |          |                         |      |
|             |             |          |                         |      |
|             |             |          |                         |      |
|             |             |          |                         |      |
|             |             |          | INTERIOR INSPECTION     |      |
| WELL RISER: |             | OK       |                         |      |
| ANULAR SPA  | CE:         | OK       |                         |      |
| WELL CAP:   |             | OK       |                         |      |
| WATER LEVE  | L:          | 13.95    |                         |      |
| DEPTH TO BO | OTTOM:      | 20.04    | HARD/SOFT BOTTOM Soft   |      |
| OTHER:      |             |          |                         |      |
|             |             |          |                         |      |
| ,           |             |          |                         |      |
|             |             |          |                         |      |
| COMMENTS:   |             |          |                         |      |
|             |             |          |                         |      |
| A           |             |          |                         |      |
| SIGNATURE   | NSPECTOR    | Jun &    | Mal SIGNATURE APPROVAL: | Claw |
| LOCK KEY#   | 2246        |          |                         |      |

| SITE NAME:  | Pose Valla             | v Landfill |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|------------------------|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JOB#:       | Rose Valle<br>11176716 | y Lanullii |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATE:       | 10/17/2012             | )          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME:       | 11:06                  |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL ID:    | SW-02D                 |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL ID.    | - OW-02D               |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            | EXTERIOR INSPECT | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PROTECTIVE  | CASING:                | OK         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LOCK/HASP:  | ОК                     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HINGE/ LID: | ОК                     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL PAD:   | OK                     |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOLLARDS:   | None                   |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LABEL/ID:   | None                   |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER:      |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            | INTERIOR INSPECT | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WELL RISER: |                        | OK         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANULAR SPA  | CE:                    | OK         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL CAP:   |                        | <u>OK</u>  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WATER LEVE  |                        | 70.97      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DEPTH TO BO | OTTOM:                 | 79.42      | HARD/SOFT BOTTON | M Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OTHER:      | -                      |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTS:   |                        |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTO    |                        |            |                  | All and a second a |
|             |                        |            |                  | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SIGNATURE I | NSPECTOF               | R: Tem     | SIGNATURE APPROV | VAL: C. Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LOCK KEY#   | 224                    | 6          |                  | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ×                      |            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| SITE NAME:  | Rose Valley | Landfill |          |             |          |       |            |
|-------------|-------------|----------|----------|-------------|----------|-------|------------|
| JOB#:       | 11176716    |          |          |             |          |       |            |
| DATE:       | 10/17/2012  |          |          |             |          |       |            |
| TIME:       | 10:58       |          |          |             |          |       |            |
| WELL ID:    | SW-03S      |          |          |             |          |       |            |
|             |             |          |          |             |          |       |            |
|             |             |          | EXTERI   | OR INSPE    | CTION    |       |            |
| PROTECTIVE  | CASING:     | ОК       |          |             |          |       |            |
| LOCK/HASP:  | OK          |          |          |             |          |       |            |
| HINGE/ LID: | OK          |          |          |             |          |       |            |
| WELL PAD:   | OK          |          |          |             |          |       |            |
| BOLLARDS:   | None        |          |          |             |          |       |            |
| LABEL/ID:   | None        |          |          |             |          |       |            |
| OTHER:      | :(=         |          |          |             |          |       |            |
|             |             |          |          |             |          |       |            |
|             |             |          |          |             |          |       |            |
|             |             |          |          |             |          |       |            |
|             |             |          | INTERIO  | OR INSPE    | CTION    |       |            |
| WELL RISER: |             | OK       |          |             |          |       |            |
| ANULAR SPA  | CE:         | OK       |          |             |          |       |            |
| WELL CAP:   |             | OK       |          |             |          |       |            |
| WATER LEVE  | L:          | 14.52    |          |             |          |       |            |
| DEPTH TO BO | OTTOM:      | 18.8     | HAI      | RD/SOFT BOT | TOM Soft |       |            |
| OTHER:      |             |          |          |             |          |       |            |
|             |             |          |          |             |          |       |            |
| ·           |             |          |          |             |          |       |            |
| X.          |             |          |          |             |          |       |            |
| COMMENTS:   |             |          |          |             |          |       |            |
|             |             |          |          |             |          |       | ٨          |
| (           |             |          | 7.00     |             |          | - A N | V          |
| SIGNATURE   | NSPECTOR    | Jim of   | huch SIG | SNATURE APP | ROVAL:   | C Ju  | i <u>u</u> |
| LOCK KEY#   | 2246        | 3        |          |             |          |       | )          |

| SITE NAME:  | Rose Valley | Landfill |                      |           |                                       |
|-------------|-------------|----------|----------------------|-----------|---------------------------------------|
| JOB#:       | 11176716    |          |                      |           |                                       |
| DATE:       | 10/17/2012  |          |                      |           |                                       |
| TIME:       | 11:53       |          |                      |           |                                       |
| WELL ID:    | SW-04S      |          |                      |           |                                       |
|             |             |          |                      |           |                                       |
|             |             |          | EXTERIOR INSPEC      | TION      |                                       |
| PROTECTIVE  | CASING:     | ОК       |                      |           |                                       |
| LOCK/HASP:  | ОК          |          |                      |           |                                       |
| HINGE/ LID: | ОК          |          |                      |           |                                       |
| WELL PAD:   | ОК          |          |                      |           |                                       |
| BOLLARDS:   | None        |          |                      | index of  |                                       |
| LABEL/ID:   | None        |          |                      |           |                                       |
| OTHER:      | H           |          |                      |           |                                       |
| ***         |             |          |                      |           |                                       |
|             |             |          |                      |           |                                       |
|             |             |          |                      |           | · · · · · · · · · · · · · · · · · · · |
|             |             |          | INTERIOR INSPEC      | TION      |                                       |
| WELL RISER: | ñ           | OK       |                      |           |                                       |
| ANULAR SPA  | CE:         | ОК       |                      |           |                                       |
| WELL CAP:   |             | OK       |                      |           |                                       |
| WATER LEVE  | L:          | 3.20     |                      |           |                                       |
| DEPTH TO BO | OTTOM:      | 8.21     | HARD/SOFT BOTT       | DM Hard   |                                       |
| OTHER:      | -           |          |                      |           |                                       |
| (           |             |          |                      |           |                                       |
| (           |             |          |                      |           |                                       |
|             |             |          |                      |           |                                       |
| COMMENTS:   | •           |          |                      |           |                                       |
|             |             |          |                      | A         |                                       |
|             |             |          | 011                  | - A       | \                                     |
| SIGNATURE I | NSPECTOR:   | Tim      | Afhil SIGNATURE APPR | OVAL: CHA |                                       |
| LOCK KEY#   | 2246        |          | U .                  |           | <b>\</b>                              |

| OUTE MANES  | D 1/ II     | 100       |                     |            |        |
|-------------|-------------|-----------|---------------------|------------|--------|
| SITE NAME:  | Rose Valley | Landfill  |                     |            |        |
| JOB#:       | 11176716    |           |                     |            |        |
| DATE:       | 10/17/2012  |           |                     |            |        |
| TIME:       | 11:52       |           |                     |            |        |
| WELL ID:    | SW-04D      |           |                     |            |        |
|             |             |           | EXTERIOR INS        | PECTION    |        |
| PROTECTIVE  | CASING:     | ОК        |                     |            |        |
| LOCK/HASP:  | OK          |           |                     |            |        |
| HINGE/ LID: | OK          |           |                     |            |        |
| WELL PAD:   | ОК          |           |                     |            |        |
| BOLLARDS:   | None        |           |                     |            |        |
| LABEL/ID:   | None        |           |                     |            |        |
| OTHER:      |             |           |                     |            |        |
|             |             |           |                     |            |        |
|             |             |           |                     |            |        |
|             |             |           |                     |            |        |
|             |             |           | INTERIOR INSE       | PECTION    |        |
| WELL RISER: |             | OK        |                     |            |        |
| ANULAR SPA  | CE:         | OK        |                     |            |        |
| WELL CAP:   |             | OK        |                     |            |        |
| WATER LEVE  | L:          | Not Measu | ıred                |            |        |
| DEPTH TO BO | OTTOM:      | 84.42     | HARD/SOFT B         | OTTOM Soft |        |
| OTHER:      |             |           |                     |            |        |
| 7           |             |           |                     |            |        |
|             |             |           |                     |            |        |
|             |             |           |                     |            |        |
| COMMENTS:   | Artesian we | ell.      |                     |            |        |
|             |             |           |                     |            | Λ      |
|             |             |           |                     |            |        |
| SIGNATURE I | NSPECTOR    | Tim       | Affinal SIGNATURE A | APPROVAL:  | C. Jan |
| LOCK KEY#   | 2246        | <u> </u>  | V                   |            |        |

# APPENDIX F LANDFILL INSPECTION FORM

## ROSE VALLEY LANDFILL SITE – POST CLOSURE

## NYSDEC SITE NO. 6-22-017

## INSPECTION LOG SHEET

| Date: 10/18/(2          | Inspector: Chuck Druse |
|-------------------------|------------------------|
| Weather: Sunny          | Signature:             |
| Temperature: _ ~ 65 ° F | Company: URS Corp.     |

Type: Winter Spring Summer Fall (Circle One)

| Item Inspected                                         | Maintenance<br>Needed (Y/N) | Comments                                                                                                                             | Inspector's<br>Initials |
|--------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Drainage Channel                                       | N                           | Structually sound                                                                                                                    | c0.                     |
| Groundwater Monitoring<br>Wells                        | $\mathcal{N}$               | continue to lubricate locks w/ wo-40 annually tepaired in August 2012.                                                               | Co.                     |
| Perimeter Access Road                                  | $^{\prime\prime}$           | Minor Prosion occurring                                                                                                              | C.D.                    |
| Vegetative Cover                                       | Y                           | Mowing required<br>in Spring 2013                                                                                                    | c.D                     |
| Repaired Vegetation                                    | $\mathcal{N}$               | N/A                                                                                                                                  | C.P.                    |
| Final Cover Layers (Cap<br>Settlement, etc.)           | $^{\prime\prime}$           | good condition                                                                                                                       | CD.                     |
| Gas Vents                                              | $\wedge$                    | two vents were repaired in this 2012                                                                                                 | CD.                     |
| Fence and Gates                                        | $\mathcal{N}$               | good condition                                                                                                                       | CD,                     |
| Other Items: (Specify)<br>North & South Detention Ends | Y                           | at some point sediment<br>removal - A fait amount of<br>sediment in both basius -<br>some CHD debis dumping<br>should be cleaned up. | CP.                     |
| Other Items: (Specify)  Jersey Barriers Port Back      | Y                           | some CID debis dumping should be cleaned up.                                                                                         | CD,                     |

TABLE 2

# LANDFILL CAP AND SITE STORMWATER MANAGEMENT SYSTEM

## MINIMUM CHECKLIST FOR ROUTINE INSPECTIONS

| Component                              | Item                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number/Location/                                             | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cap Grading                            | Obvious subsidences, depressions, or cracks $\mathcal{L}\mathcal{O}\mathcal{M}$ Evidence of ponded water $\mathcal{N}\mathcal{O}\mathcal{M}\mathcal{C}$ . Stressed vegetation $\mathcal{N}\mathcal{O}\mathcal{M}\mathcal{C}$ . Signs of erosion occurring at a localized change in grade Evidence of Breaching of toe $\mathcal{N}\mathcal{O}\mathcal{M}\mathcal{C}$ . Animal burrows $\mathcal{N}\mathcal{O}\mathcal{M}\mathcal{C}$ . Other: | <u> </u>                                                     | Only evosion of Concern is actually both of the cop between the cope between the cost to the constant of the cope |
| Cap Vegetation and Repaired Vegetation | Areas of sparse, dead, or missing vegetation $\lambda loullet log log log log log log log log log log$                                                                                                                                                                                                                                                                                                                                        | entire                                                       | Cop was mowed in August August 2012, Navy 2008 stand of Breen Vearbits will week mounts in Syring 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drainage Channel                       | Missing or displaced stones $\lambda/\partial \nu$ e. Woody vegetation growing in the stones or grass cover                                                                                                                                                                                                                                                                                                                                   | all channels<br>illspected                                   | Mixor woody brush growing of dainel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GW Monitoring Wells                    | Condition of lock and cover Signs of damage to casing or collar Condition of weep hole from casing Evidence of tampering Other:                                                                                                                                                                                                                                                                                                               | All-see<br>individual<br>Moniforing Well<br>Inspertion forms | Wen locks in 2011<br>CUB-40 to all locks-<br>10 M. Wells Were<br>Sampled + Woter level<br>MESUVEMANTS Made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Component                               | Item                                                                                                                                                                                                                                                                         | Number/Location/<br>Area Checked  | Condition                                                                                                |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------|
| Fences, Gates and Perimeter Access Road | Cutting or bending of fence fabric $\Lambda b$ Missing locks, hinges, etc. from gates $\lambda b \nu e$ Motorbike or snowmobile tracks Shotgun shell casings $\lambda b$ Beer cans or other trash Other signs of access or vandalism Condition of access road surface Other: | entive force<br>line<br>inspected | Minimal tite tracks from ATV observed on top of lendfill some recent CED type their disposed see photos. |
| Gas Vent                                | Integrity of pipes and joints  Pool Plumbness and differential settlement Obstruction of vents by bird, insect or animal nests to Corrosion or deterioration of pipes or supports to Localized browning of vegetation Other:                                                 | spot<br>Checked                   | two gas vents replied repaired August 2013 permander in good condition                                   |

### **APPENDIX G**

### 2012 INTERMITTENT MAINTENANCE

## CONSTRUCTION REPORTS AND PHOTO LOGS





TEMPERATURE:80'SSKIES:High HazeWIND:StillPRECIPITATION:None

Periodic site visit to observe and document the following:

- 1. Repair of gas vents that were damaged by gun shots.
- 2. Placement of jersey barriers at the entrance to a side access road onto the landfill
- 3. General cap conditions after mowing (to occur today and tomorrow).

On-site at 9:15 A.M. Met with Michael Mason and Kris Keenan of the NYSDEC. Eric Hale and one other employee were on-site for Marcy Excavation Services (MES).

MES was on-site to install jersey barriers across an old access road onto the landfill (as well as to perform periodic mowing of the cap). This road has been used by unknown persons to gain access to the landfill property so that they can dump debris there. Mike Mason stated that the jersey barriers are not intended to keep ATVs or three-wheeled vehicles off of the property, only larger vehicles hauling waste.

The barriers were in place when I arrived. After discussion, the NYSDEC instructed MES to move one jersey barrier slightly closer to the edge of the road to make the passageway there even tighter.

Subsequently, the NYSDEC and I toured the landfill cap.

Mike Mason pointed out the three gas vent risers that had been repaired (determination made by observing the coupling used to join the new section to the old). He expressed no concerns with the work.

We walked the berms of both stormwater management ponds. No issues were noted.

The vegetative cover of the cap appeared to be very healthy, with no apparent bare spots or erosion.

Off-site for lunch at 11:30. After lunch, the NYSDEC returned to their offices, and I returned to the landfill for further inspection and documentation.

Offsite at 2:30 P M

### PHOTO LOG - SEE ATTACHED 9 IMAGES.

PREPARED BY: Randy West TITLE: Resident Engineer

REVIEWED BY: Chuck Dusel TITLE: Project Manager





PHOTO 1: Jersey barriers across side accesss road leading onto landfill.





PHOTO 2: Excavator used to position jersey barriers. Note fork attachment in bucket.





PHOTO 3: Jersey barriers in place, allowing for passage of smaller vehicles (ATVs, etc.), but not trucks





PHOTO 4: Same as in PHOTO 3. The front barrier was subsequently slid farther to the right to make passage on that side more difficult.





PHOTO 5: Equipment brought by Marcy for cap mowing.





PHOTO 6: Outflow structure of south stormwater management pond. Note cleanliness of gravel blanket. The gravel does not appear to have been inundated.





PHOTO 7: Repaired gas vent riser near mid-cap swale.



PHOTO 8: Second repaired gas vent riser.





PHOTO 9: Third repaired gas vent riser in area just mowed







TEMPERATURE:80'SSKIES:High HazeWIND:StillPRECIPITATION:None

Periodic site visit to observe and document the following:

- 1. Repair of gas vents that were damaged by gun shots.
- 2. Placement of jersey barriers at the entrance to a side access road onto the landfill
- 3. General cap conditions after mowing (to occur today and tomorrow).

On-site at 9:45 A.M.

Conducted inspection of landfill after mowing by Marcy Excavation Services.

With the exception noted below, the cap and stormwater management system appear to be in excellent condition. The stone lining of the swales and downchutes is exceptionally clean, with no evidence of high flows at all. No leaf litter or other debris is present in the channel lining.

Only concern: the diversion channel around the north side of the landfill is head cutting, so that there is now an approximately 6-foot high vertical discontinuity in the channel bottom at about the mid-point of the landfill. See photo 10.

It appears that the headcutting has been stopped, however, by the effects of the geotextile that underlay the downstream end of the channel armor, of which a length of about 10 feet has failed. It is unclear if this equilibrium will persist as the geotextile degrades. It is also unclear, even assuming that the headcutting has stopped, if the adjacent sides of the landfill will hold. It was, however, the north bank of the channel that appeared to be eroding, which can also be seen in the pictures. Thus, the erosion is occurring on the side of the channel away from the landfill.

However, if the headcutting continues, there could be significant erosion of, and damage to, the landfill cap. It will be much less costly to repair this situation now than after any such failure has occurred. I would recommend that we begin to evaluate measures to control or stop this erosion (headcutting).

The situation can be monitored by noting the tree that occurs at location of the discontinuity. Should future inspections reveal that the discontinuity has moved upslope of that tree, quick action will be required.

Offsite at 2:00 P.M.

### PHOTO LOG - SEE ATTACHED 10 IMAGES.

PREPARED BY: Randy West TITLE: Resident Engineer





PHOTO 1: Look downslope and east along the southern boundary of the landfill at the south stormwater management pond. Note that not all of the cap had been moved by this time.





PHOTO 2: Look north at the general condition of the vegetative cover and stone.





PHOTO 3: Look north at the cleanliness of the stone lining of a swale and downchute.





PHOTO 4: Look east along the northern edge of the landfill at the north stormwater management pond. The erosion problem discussed in the report occurs at about the midpoint of this picture.





PHOTO 5: Look west from the north stormwater management pond at a portion of the final cover that Marcy did not mow. Note that this is the area in which there were two slides during construction. I discussed with Marcy's man on-site, and did not raise any objection to the area remaining un-mowed at the time. Given the steepness of the slope, this area should be minimally maintained, only to correct any erosion that may occur (none was noted) and to remove woody vegetation..





PHOTO 6: Look east from the landfill at the north stormwater management pond.





PHOTO 7: Look north along the western fence and vandalism barrier. Note the degree to which the sand has accumulated against the barriers.





PHOTO 8: Look south along the western fence and vandalism barrier. Note the degree to which the sand has accumulated against the barriers.





PHOTO 9: The northeast corner of the landfill perimeter. Beyond the small rise, the ground slopes steeply down, ultimately to the north stormwater management pond. The erosional problem discussed in this report occurs about halfway to the pond. Note the channel cut under barrier by stormwater runoff from the adjacent hill to the north (left). That stormwater flows under the fence and then is picked up and carried downhill by the channel whose end has collapsed as can be seen in the next photo. Thus, this flow pattern appears to be contributing to the above-mentioned erosion problem, though to an uncertain degree.





PHOTO 10: Look northwest at the erosion problem discussed in this report. Note the location of the fence and trees for future reference.