

SITE MANAGEMENT

ANNUAL REPORT 2013 CALENDAR YEAR

WORK ASSIGNMENT D007622-07

ROSE VALLEY LANDFILL RUSSIA (T)

SITE NO. 622017 HERKIMER (C), NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Joe Martens, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation 77 Goodell Street Buffalo, New York 14203

ROSE VALLEY LANDFILL 2013 ANNUAL REPORT SITE MANAGEMENT

SITE # 622017 TOWN OF RUSSIA, HERKIMER COUNTY, NEW YORK

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D007622-07

PREPARED BY:
URS CORPORATION
77 GOODELL STREET
BUFFALO, NEW YORK 14203

MARCH 2014

TABLE OF CONTENTS

				Page No.
1.0	INTR	ODUCTIO)N	1-1
	1.1	Genera	1	1-1
	1.2		Background	
2.0	SITE	DESCRIP	TION	2-1
3.0	MON	ITORING	ACTIVITIES	3-1
	3.1	Ground	water Hydraulic Monitoring	3-1
	3.2		water Sampling	
		3.2.1	Groundwater Results	3-2
	3.3	Surface	Water/Detention Pond Sampling	3-3
		3.3.1	Surface Water/Detention Pond Results	3-3
4.0	Site M	l aintenanc	e	4-1
	4.1	Monito	ring Well Inspections	4-1
	4.2	Landfil	l Inspection	4-1
	4.3	Mainte	nance Performed	4-2
		4.3.1	Monitoring Well Maintenance	4-2
		4.3.2	Routine Maintenance	4-2
		4.3.3	Intermittent Maintenance	4-3
5.0	SUMI	MARY AN	ND RECOMMENDATIONS	5-1
	5.1	Ground	water Hydraulic Monitoring	5-1
	5.2	Ground	water Quality Monitoring	5-1
	5.3	Surface	Water/Detention Pond Quality Monitoring	5-1
	5.4	Monito	ring Well Maintenance	5-1
	5.5	Landfil	l Maintenance	5-1

TABLES

	TABLES
Table 1	Groundwater Elevation Measurements
Table 2	Summary of Detected Compounds in 2013 Groundwater Samples
Table 3	Summary of Historically Detected Compounds in Groundwater Samples
Table 4	Summary of Detected Compounds in 2013 Surface/Detention Pond Water
	Samples
Table 5	Summary of Historically Detected Compounds in Surface/Detention Pond Water
	Samples
Table 6	Summary of Historically Detected Compounds in Surface Water - Criteria for
	Class C Surface Waters Requiring Calculation
Table 7	Mann-Kendall Statistical Analysis of Groundwater and Surface Water Analytical
	Results
	FIGURES
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Potentiometric Surface (Shallow) – October 15 & 16, 2013
Figure 4	Potentiometric Surface (Deep) – October 15 & 16, 2013
Figure 5	Groundwater Exceedances
Figure 6	Surface Water/Detention Pond Exceedances
	APPENDICES
Appendix A	Field Notes
Appendix B	Monitoring Well Purge Logs/Surface Water Sample Log
Appendix C	Photographic Log
Appendix D	Data Usability Summary Report
Appendix E	Well Inspection Forms
Appendix F	Landfill Inspection Form
Appendix G	2013 Intermittent Maintenance Construction Reports and Photo Logs

1.0 INTRODUCTION

1.1 General

This Site Management Annual Report for 2013 has been prepared under New York State Department of Environmental Conservation (NYSDEC) URS Work Assignment No. D007622-07 for the Rose Valley Landfill site (Figure 1). The purpose of this Annual Report is to provide a record of the long-term maintenance of the cap, wells and stormwater management features associated with remediation at the Rose Valley Landfill and to monitor the effectiveness of natural attenuation. This report is the fourth annual report as called for by Section 6.3 of the Conceptual Operation, Monitoring and Maintenance Plan (COMMP) (URS, November 2006). The COMMP was modified based upon comments from the NYSDEC. The modified plan, retitled as the Site Management Plan (SMP) was submitted by URS to the Department, reviewed, and approved in September 2010.

The purpose of the site management as presented in the Record of Decision (ROD) is to provide guidance for the operation and maintenance of the site relative to:

- Maintaining the capped area;
- Long term monitoring of the natural attenuation of the groundwater plume by and within the downslope wetlands; and
- Documenting the effectiveness of natural attenuation.

1.2 **Project Background**

The NYSDEC proposed a remedy in the ROD dated March 30, 2001. The recommendation involved:

- On-site disposal of contaminated surface soils from the older septic disposal pit into the on-site landfill;
- Installing a new cap on the landfill to reduce infiltration through the wastes;
- Installing a new residential well in a deeper, clean aquifer for the impacted residence; and
- Long-term monitoring of the leachate and contaminated groundwater plume by monitoring natural attenuation.

A description of the project site can be found in Section 2.0.

2.0 SITE DESCRIPTION

The Rose Valley Landfill is a privately owned, unlined dump that was open from 1963 to 1985. The site is located in Russia Township in Herkimer County as part of a 91-acre parcel (since subdivided into two parcels in 1986). The site is bounded to the east by Military Road, to the west by Bromley Road, and to the southwest by Rose Valley Road (Figure 2). A NYSDEC Class C stream locally known as Finch Brook separates the site from Military Road. Finch Brook is a tributary of Hurricane Brook (also a NYSDEC Class C stream).

The landfill is located on the side of a hill that has approximately 120 feet of relief. A steep, 60-foot-high sand embankment extends above the landfill to the west. The site is characterized by high relief, with sharp drops in elevation from southwest to northeast and a moderate, even south to southwest slope. The gradient across the western portion of the property is less severe, sloping in the opposite direction.

The area surrounding the site is sparsely populated, with few known permanent residents. At the time that the ROD was issued, a private well immediately adjacent to the landfill entrance on Rose Valley Road (and downgradient of the landfill) was found to be contaminated with site-related contaminants. A new replacement drinking water well into the deeper aquifer has since been installed at the residence; it is being monitored by the Herkimer County Department of Health.

The remedial design of the landfill closure was completed and the construction of the landfill cap was completed in 2007. A 6-foot high chain-link fence was constructed to limit access to the landfill cap area.

3.0 MONITORING ACTIVITIES

Monitoring activities were performed during October 2013 in accordance with the SMP (URS, September 2010). Site monitoring consisted of the collection of groundwater samples from ten (10) wells and surface water samples from four (4) locations, shown on Figure 2. Seven of the groundwater wells are "Sentry Wells" (i.e., SW-01S, SW-01D, SW-02S, SW-02D SW-03S, SW-04S and SW-04D) and three are monitoring wells (i.e., MW-03, MW-04 and MW-16). Sentry Wells are constructed the same as monitoring wells, but are called Sentry Wells because they are located between the landfill and nearby residential drinking water wells or a surface water body. The monitoring wells are located within the wetland, east of the landfill. Surface water sample locations are:

- at the toe of the embankment (SWTR-1T); at the entrance of the downgradient stream (SWTR-1E);
- at the North Detention Pond (NDP); and
- at the South Detention Pond (SDP).

A copy of the field notes from the 2013 monitoring activities is provided in Appendix A.

3.1 Groundwater Hydraulic Monitoring

On October 15 and 16, 2013, groundwater level measurements were obtained from fourteen wells (i.e., seven Sentry Wells and seven monitoring wells). The water level measurements are provided in Table 1. Four of the Sentry Wells (i.e., SW-01S, SW-02S, SW-03S and SW-04S) and the three monitoring wells (MW-03, MW-04, and MW-16) are shallow wells. Three of the Sentry Wells (i.e., SW-01D, SW-02D and SW-04D) and four of the monitoring wells (MW-02, MW-14, MW-15 and MW-17) are deep wells. One of the deep wells east of the landfill is an artesian well (i.e., SW-04D). The water column of SW-04D was measured using a pressure gauge. The reading was 8.4 pounds per square inch (psi), which calculates to a column height of 19.38 feet above the measuring point. In addition to the list of wells in the SMP (URS, September 2010), monitoring wells MW-14, MW-15 and MW-17 were added to the hydraulic monitoring list in 2011 to aid in the development of the deep potentiometric surface map due to the artesian condition found in well SW-04D.

A potentiometric surface map based on the water level measurements from the shallow wells, using a 10-foot contour interval, is provided in Figure 3. A potentiometric surface map based on the water level measurements from the deep wells, using a 10-foot contour interval, is provided in Figure 4.

The shallow groundwater flow is generally to the east-northeast towards Military Road. Approaching Bromley and Rose Valley Roads, the shallow groundwater flow is to the west-southwest. The deep groundwater flow is in the same general direction, with the west-southwest direction starting closer to the western end of the landfill cap.

3.2 **Groundwater Sampling**

On October 15 and 16, 2013, URS collected groundwater samples from seven Sentry Wells and three monitoring wells plus quality control (QC) samples using low-flow sampling procedures.

Prior to sample collection, standing water was purged from each well with a either a GeoPump2 peristaltic pump or Grundfos Redi-Flow 2 submersible pump using dedicated/disposable high-density polyethylene (HDPE) tubing. Wells were purged at a rate of two-liters per minute or less and the purge rate was adjusted to minimize draw down. During the purging of the well, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-52-2 Multi-parameter instrument with a flow-through cell. The water quality parameters were documented on a purge log. Samples were collected after the water quality parameters stabilized. Well purge logs are provided in Appendix B and a Photographic Log is provided in Appendix C. Purge water was disposed of on the ground up-gradient of the well locations, as per the direction of the Department.

The samples were transported under chain of custody (COC) to the NYSDEC's callout laboratory, Test America Laboratories, Inc. (Test America), a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) accredited laboratory. The samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs) plus tentatively identified compounds (TICs) following United States Environmental Protection Agency (USEPA) SW846 Method 8260B.

3.2.1 Groundwater Results

NYSDEC Analytical Services Protocol (ASP) Category B data deliverables was received by URS. The data was reviewed in accordance with the requirements outlined in *Guidance for Data Deliverables and the Development of Data Usability Summary Reports (DUSR), Appendix*

2B, DER-10/Technical Guidance for Site Investigation and Remediation (NYSDEC, May 2010). Data summary tables, Form I's and Form Ie's (TICs) are provided in the DUSR and include the reporting limit for each non-detected compound. A copy of the DUSR may be found in Appendix D.

A summary of the detected compounds in the groundwater samples are provided in Table 2. Results exceeding TOGS 1.1.1 Class GA groundwater standards or guidance values are indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 5. Only two VOCs [i.e., 1,1-dichloroethane (11 μg/L, MW-04) and cis-1,2-dichloroethene (6.6 μg/L, MW-03)] were detected above TOGS 1.1.1 Class GA limits in the groundwater samples. No VOCs exceeded TOGS No. 1.1.1 standards or guidance values in the samples from Sentry Wells (i.e., SW-01D, SW-01S, SW-02D, SW-02S SW-03S, SW-04D, and SW-04S) or monitoring well MW-16. A historical summary of detected results in groundwater is provided in Table 3 and shown on Figure 5. Results from the 2013 monitoring event are consistent with the 2010, 2011 and 2012 monitoring events.

3.3 Surface Water/Detention Pond Sampling

On October 16, 2013, URS collected surface water samples from locations SWTR-1T and SWTR-1E, the North Detention Pond (NDP) and the South Detention Pond (SDP), plus QC samples. At each location the surface water sample was collected by immersing pre-cleaned, laboratory grade sample bottles as close to the middle of the water body as possible without disturbing the sediment. During the collection of the surface water samples, water quality parameters (i.e., pH, specific conductivity, temperature, dissolved oxygen, turbidity) were measured using a Horiba U-52-2 Multi-parameter instrument. The water quality parameters were documented on a sample log, which may be found in Appendix B. Photographs of surface water sampling are provided in Appendix C.

All surface water samples were transported under COC to Test America. The samples were analyzed for TCL VOCs plus TICs following USEPA SW846 Method 8260B.

3.3.1 Surface Water/Detention Pond Results

One VOC (i.e., benzene) was detected in the 2013 surface water samples, although benzene did not exceeded TOGS No. 1.1.1 Class C standards or guidance values for surface water. A summary of detected results in the 2013 surface water samples is provided in Table 4. A historical summary of detected results in groundwater is provided in Table 5 and shown on

Figure 6. Table 6 lists criteria that required calculation, per TOGS No. 1.1.1 for Class C surface waters. VOCs results from the 2013 monitoring event are consistent with the 2010, 2011 and 2012 monitoring events.

4.0 SITE MAINTENANCE

4.1 <u>Monitoring Well Inspections</u>

During the 2013 groundwater monitoring event, a well inspection was performed. All wells appeared to be in good condition. The monitoring well inspection logs may be found in Appendix E.

4.2 Landfill Inspection

A landfill inspection was performed by URS accompanied by NYSDEC personnel in July 2013 and during the October 2013 groundwater monitoring event. A copy of the completed landfill inspection form from the October 2013 site visit can be found in Appendix F. The July 2013 site inspection is documented in the inspection report which may be found in Appendix G. During the October inspection, the landfill cap components appeared to be in good condition. The landfill fence was also inspected and was found to be in good condition.

In the areas surrounding the landfill cap, the following was observed during the October inspection:

- Multiple erosion ruts, approximately 12 inches deep and up to 12-inches wide were present in the main gravel access road from Rose Valley Road all the way to the landfill (see Photos 1, 26, and 27 in Appendix C);
- Multiple erosion rills, approximately 10 inches deep, were discovered along the
 access road on top of the landfill, and also along the access road west of the
 landfill (see Photos 5 and 6 in Appendix C);
- As noted initially during the August 9, 2012 site inspection and observed during the July and October inspections, the diversion channel around the north side of the landfill is head cutting. There is now an approximately 6-foot high vertical discontinuity in the channel bottom at about the mid-point of the landfill. There appears to be no significant change to the extent of the head cutting since the August 9, 2012 site inspection.
- It appears that the head cutting has been stopped by the geotextile that underlay the downstream end of the channel armor, of which a length of about 10 feet has failed. It is unclear if this equilibrium will persist as the geotextile degrades. It is also unclear, even assuming that the head cutting has stopped, if the adjacent

sides of the landfill will hold during run-off events. It was observed that the north bank of the channel appears to be eroding. Thus, the erosion is occurring on the side of the channel away from the landfill. If the head cutting continues, there could be significant erosion of and damage to the landfill cap. The situation can be monitored by noting the tree in the center of Photo 11 of the Periodic Inspection Report (July 10, 2013) in Appendix G and in Photos 9, 10, and 11 in Appendix C.

One of the jersey barriers blocking access to the landfill along Military Road was
moved further down the road, presumably by recreational users, allowing access
to the landfill for all terrain vehicles (ATV) riding and continued illegal dumping
of municipal solid waste and construction and demolition debris.

Trash and asphalt have been illegally dumped near the jersey barriers along Military Road. Several tires have also been illegally dumped in the ravine north of the landfill along Military Road. In July 2013, it was noticed that trespassers had removed the double swing gate panels from the gate located at the southwest corner of the landfill to gain access for ATV riding. One gate panel was found lying in the grass next to the gate opening. The second gate panel was found lying up against the northern perimeter fence. On July 22, 2013, the gates were replaced and secured by URS subcontractor, Brady Fence Co. Inc., prior to the October 2013 site inspection.

Photographs taken during the October 2013 landfill inspection can be found in Appendix C. The Periodic Inspection Report (July 10, 2013) can be found in Appendix G.

4.3 Maintenance Performed

The following subsections describe site maintenance activities.

4.3.1 Monitoring Well Maintenance

Monitoring well locks were sprayed with WD-40 to prevent ceasing. No other routine maintenance was performed at the time this report was prepared.

4.3.2 Routine Maintenance

The landfill cap was mowed in July 2013 by Marcy Excavation Services, LLC., (MES) a subcontractor to the NYSDEC call-out contractor Environmental Products & Services of

Vermont (EPS). The mowing activities were documented on the construction report which may be found in Appendix G. The NYSDEC also cut brush/small trees near the monitoring wells and removed some growth from the swales. No other routine maintenance was performed at the time this report was prepared.

4.3.3 <u>Intermittent Maintenance</u>

The double swing gate panels located at the southwestern corner of the landfill were replaced and secured by Brady Fence Co. Inc., prior to the October 2013 site inspection. No other intermittent maintenance was performed at the time this report was prepared.

5.0 SUMMARY AND RECOMMENDATIONS

A summary of the annual monitoring and recommendations are provided below.

5.1 Groundwater Hydraulic Monitoring

Shallow and deep groundwater generally flows in an east-northeast direction towards Military Road. Approaching Bromley and Rose Valley Roads, the shallow and deep groundwater flow is to the west-southwest. In addition to the wells sampled, four additional wells (i.e., MW-02, MW-14, MW-15 and MW-17) were measured in order to provide the deep groundwater contours. It is recommended that these wells continue to be measured during future monitoring events.

5.2 **Groundwater Quality Monitoring**

Two VOCs (cis-1,2-dichoroethene and 1,1-dichloroethane) exceeded TOGS 1.1.1 Class GA standards and guidance values in the 2013 groundwater samples at two locations, MW-03 and MW-04. There were no VOC exceedances in the Sentry Wells. Historical results of the ten wells are provided in Table 3 and Figure 5. The concentrations of the VOCs in the 2013 monitoring event are consistent when compared with the 2010 - 2012 results from MW-03 and MW-04. Using a Mann-Kendall statistical analysis, no trends have been identified in the groundwater, as shown on Table 7.

5.3 Surface Water/Detention Pond Quality Monitoring

Only one VOC, benzene, was detected in one of the four surface water locations from the 2013 monitoring event. No VOCs exceeded the TOGS 1.1.1 Class C surface water standards and guidance values, consistent with previous monitoring events. Historical data from the surface water sampling locations is provided in Table 5. Using a Mann-Kendall statistical analysis, no trends have been identified in the surface water, as shown on Table 7.

5.4 <u>Monitoring Well Maintenance</u>

No maintenance is necessary for the monitoring wells.

5.5 Landfill Maintenance

All landfill cap components appeared to be sound. The landfill was mowed in July 2013. The Department did not want a second mowing to occur in 2013. The landfill should be scheduled to be mowed in June 2014. Erosion was noted on the west side of the landfill at the toe drain/channel interface and on the north side of the site, north of the stone-lined drainage channel. Ruts have formed in the

gravel on the landfill road. URS recommends that approximately 20 cubic yards of gravel be brought on site and used to fill the ruts in an effort to fix the perimeter access road from Rose Valley Road all the way to the landfill. URS and the Department discussed the recommendation of placing approximately 120 linear feet of concrete jersey barrier at the top of the landfill from the west fence, near the southwestern gate, west to the hill to prevent ATVs from riding through the area and creating tracks which promote erosion and rilling. As an additional deterent, URS also recommends welding the existing concrete barriers together that are currently located at the back site entrance along Military Road. This would help prevent site access and minimize the disposal of solid waste and construction and demolition debris.

During the October 16, 2013 site inspection, new trash dumping piles were observed at the back entrance from Military Road. The trash piles included an old toilet, paint cans, and municipal solid waste along with construction and demolition debris. In the area where the Department had previously removed over 500 discarded tires, more tires have been discarded, along with wildlife carcasses and other municipal trash. The NYSDEC will monitor erosion and dumping during the next monitoring event. Corrective action may be necessary to mitigate the erosion and to remove the trash based on future observations.

TABLES

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
MW-02	1601925.82	356255.39			1305.15	В							
WL								8/17/2004 1415	58.38	1246.77	0.00		
WL								7/12/2011 1313	57.55	1247.60	0.00		
WL								10/17/2012 1028	60.59	1244.56	0.00		
WL								10/16/2013 0814	58.89	1246.26	0.00		
MW-03	1602437.498	357450.2192			1175.58	Α							
WL								8/19/2004 1210	3.31	1172.27	0.00		
WL								4/21/2010 0000	3.03	1172.55	0.00		
WL								7/12/2011 1335	3.01	1172.57	0.00		
WL								10/17/2012 1223	2.85	1172.73	0.00		
WL								10/16/2013 1412	2.84	1172.74	0.00		
MW-04	1602588.989	357572.8098			1172.46	Α							
WL								8/19/2004 1310	2.56	1169.90	0.00		
WL								4/21/2010 0000	2.63	1169.83	0.00		
WL								7/12/2011 1345	2.54	1169.92	0.00		
WL								10/17/2012 1234	2.40	1170.06	0.00		
WL								10/16/2013 1318	2.50	1169.96	0.00		
MW-14	1602932.523	356221.9497			1317.83	В							
WL								8/19/2004 1610	96.74	1221.09	0.00		
WL								7/12/2011 1520	98.55	1219.28	0.00		
WL								10/17/2012 1129	98.42	1219.41	0.00		
WL								10/16/2013 0827	95.34	1222.49	0.00		
MW-16	1602287.308	357950.8887			1152.58	Α							
WL								8/18/2004 1320	4.00	1148.58	0.00		
WL								4/21/2010 0000	3.00	1149.58	0.00		
WL								7/12/2011 1400	3.56	1149.02	0.00		

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
WL								10/17/2012 1208	3.30	1149.28	0.00		
WL								10/16/2013 1143	3.01	1149.57	0.00		
MW-17	1602592.476	356386.6381			1311.72	В							
WL								8/17/2004 1715	87.30	1224.42	0.00		
WL								7/12/2011 1505	86.69	1225.03	0.00		
WL								10/17/2012 1121	87.06	1224.66	0.00		
WL								10/16/2013 0820	87.15	1224.57	0.00		
SW-01D	1601823.93	355356.06	1262.0		1264.70	В							
WL								8/17/2004 1025	68.64	1196.06	0.00		
WL								4/21/2010 0000	67.13	1197.57	0.00		
WL								7/12/2011 1437	67.37	1197.33	0.00		
WL								10/17/2012 1048	68.71	1195.99	0.00		
WL								10/15/2013 1500	67.89	1196.81	0.00		
SW-01S	1601817.02	355346.13	1260.5		1263.17	Α							
WL								8/17/2004 1020	19.32	1243.85	0.00		
WL								4/21/2010 0000	19.05	1244.12	0.00		
WL								7/12/2011 1435	18.56	1244.61	0.00		
WL								10/17/2012 1045	20.82	1242.35	0.00		
WL								10/15/2013 1610	19.55	1243.62	0.00		
SW-02D	1601370.34	355721.25			1257.00	В							
WL								8/16/2004 1600	70.49	1186.51	0.00		
WL								4/21/2010 0000	70.10	1186.90	0.00		
WL								7/12/2011 1450	70.73	1186.27	0.00		
WL								10/17/2012 1106	70.97	1186.03	0.00		
WL								10/15/2013 1357	70.42	1186.58	0.00		

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS ROSE VALLEY LANDFILL

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Specific Gravity	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
SW-02S	1601367.21	355730.86			1257.20	Α							
WL								8/16/2004 1700	12.05	1245.15	0.00		
WL								4/21/2010 0000	12.36	1244.84	0.00		
WL								7/12/2011 1448	11.30	1245.90	0.00		
WL								10/17/2012 1108	13.95	1243.25	0.00		
WL								10/15/2013 1239	12.40	1244.80	0.00		
SW-03S	1601483.4	355518.17			1257.67	Α							
WL								8/17/2004 0925	12.73	1244.94	0.00		
WL								4/21/2010 0000	12.81	1244.86	0.00		
WL								7/12/2011 1440	11.85	1245.82	0.00		
WL								10/17/2012 1058	14.52	1243.15	0.00		
WL								10/15/2013 1137	19.96	1237.71	0.00		
SW-04D	1602328.65	358265.16	1149.0		1148.65	В							
WL								8/18/2004 1205	NM	-	NM	-	Artesian well
WL								4/21/2010 0000	NM	-	NM	-	Artesian well
WL								7/12/2011 1415	NM	-	NM	-	Artesian well
WL								10/17/2012 1152	NM	-	NM	-	Artesian well
WL								10/16/2013 0910	-19.38	1168.03	NM		8.4 psi at wellhead
SW-04S	1602315.5	358278.21	1148.3		1148.00	Α							
WL								8/18/2004 1225	3.76	1144.24	0.00		
WL								4/21/2010 0000	2.83	1145.17	0.00		
WL								7/12/2011 1420	3.40	1144.60	0.00		
WL								10/17/2012 1153	3.20	1144.80	0.00		
WL								10/16/2013 1018	3.35	1144.65	0.00		

NM - No Measurement

The value noted in the column labeled Specific Gravity is an assumed value for free product, if found.

Geologic Zone:

A Shallow Unconfined Aquifer

B Deep Unconfined Aquifer

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2013 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Sample ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	it)		-	-	-	-	-
Date Sampled			10/16/13	10/16/13	10/16/13	10/15/13	10/15/13
Parameter	Units	*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	1.9				
1,2-Dichloroethene (cis)	UG/L	5	6.6				

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2013 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			SW-02D	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID			FD-101513	SW-02D	SW-02S	SW-03S	SW-04D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	Depth Interval (ft)				-	-	-
Date Sampled		10/15/13	10/15/13	10/15/13	10/15/13	10/16/13	
Parameter	Units	*	Field Duplicate (1-1)				
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5			1.0		
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					

Flags assigned during chemistry validation are shown.

Concentration Exceeds
- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN 2013 GROUNDWATER SAMPLES ROSE VALLEY LANDFILL

Location ID			SW-04S							
Sample ID	SW-04S									
Matrix	Groundwater									
Depth Interval (f	-									
Date Sampled	, , ,									
Parameter	Units	*								
Volatile Organic Compounds										
1,1,1-Trichloroethane	UG/L	5								
1,1-Dichloroethane	UG/L	5								
1,2-Dichloroethene (cis)	UG/L	5								

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value.

Blank cell or ND - Not detected. J - The reported concentration is an estimated value.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			MW-03	MW-03	MW-03	MW-03	MW-04
Sample ID			MW-03	MW-03	MW-03	MW-03	MW-04
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sampled	ł		04/21/10	07/13/11	10/18/12	10/16/13	04/21/10
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5	2.3	2.2	3 J	1.9	9.3
1,2-Dichloroethene (cis)	UG/L	5	7.1	8.0		6.6	2.3
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5	0.75 J				0.86 J
Metals							
Aluminum	UG/L	-		NA	NA	NA	
Barium	UG/L	1000	47.6	NA	NA	NA	16.0
Cadmium	UG/L	5		NA	NA	NA	
Calcium	UG/L	-	225,000	NA	NA	NA	171,000
Chromium	UG/L	50		NA	NA	NA	
Iron	UG/L	300	252	NA	NA	NA	1,050
Magnesium	UG/L	35000	18,600	NA	NA	NA	31,700
Manganese	UG/L	300	2,450	NA	NA	NA	525
Potassium	UG/L	-	3,320	NA	NA	NA	1,130
Sodium	UG/L	20000	3,800	NA	NA	NA	14,100
Vanadium	UG/L	-	_	NA	NA	NA	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

J - The reported concentration is an estimated value.

Location ID			MW-04	MW-04	MW-04	MW-16	MW-16
Sample ID			MW-04	MW-04	MW-04	MW-16	MW-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	t		07/13/11	10/18/12	10/16/13	04/21/10	07/13/11
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5		$\bigcirc 15 \bigcirc$			
1,2-Dichloroethene (cis)	UG/L	5	2.4	3 J			
Chloroethane	UG/L	5	0.35 J				
Dichlorodifluoromethane	UG/L	5		1 J			
Metals							
Aluminum	UG/L	-	NA	NA	NA		NA
Barium	UG/L	1000	NA	NA	NA	31.0	NA
Cadmium	UG/L	5	NA	NA	NA		NA
Calcium	UG/L	-	NA	NA	NA	77,900	NA
Chromium	UG/L	50	NA	NA	NA		NA
Iron	UG/L	300	NA	NA	NA	16,600	NA
Magnesium	UG/L	35000	NA	NA	NA	8,150	NA
Manganese	UG/L	300	NA	NA	NA	1,090	NA
Potassium	UG/L	-	NA	NA	NA		NA
Sodium	UG/L	20000	NA	NA	NA	5,800	NA
Vanadium	UG/L	-	NA	NA	NA		NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			MW-16	MW-16	SW-01D	SW-01D	SW-01D
Sample ID			MW-16	MW-16	DUP-2	SW-01D	SW-01D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sampled	t		10/18/12	10/16/13	04/21/10	04/21/10	07/12/11
Parameter	Units	Criteria*			Field Duplicate (1-1)		
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	NA			NA
Barium	UG/L	1000	NA	NA	71.2	70.2	NA
Cadmium	UG/L	5	NA	NA			NA
Calcium	UG/L	-	NA	NA	28,600	27,600	NA
Chromium	UG/L	50	NA	NA			NA
Iron	UG/L	300	NA	NA	292 J	631 J	NA
Magnesium	UG/L	35000	NA	NA	14,000	13,500	NA
Manganese	UG/L	300	NA	NA	8.8	11.8	NA
Potassium	UG/L	-	NA	NA	1,940	1,890	NA
Sodium	UG/L	20000	NA	NA	10,200	9,900	NA
Vanadium	UG/L	-	NA	NA			NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-01D	SW-01D	SW-01S	SW-01S	SW-01S
Sample ID			SW-01D	SW-01D	SW-01S	FD-071211	SW-01S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		10/17/12	10/15/13	04/21/10	07/12/11	07/12/11
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	NA	5,830	NA	NA
Barium	UG/L	1000	NA	NA	33.4	NA	NA
Cadmium	UG/L	5	NA	NA		NA	NA
Calcium	UG/L	-	NA	NA	109,000	NA	NA
Chromium	UG/L	50	NA	NA	6.9	NA	NA
Iron	UG/L	300	NA	NA	3,700	NA	NA
Magnesium	UG/L	35000	NA	NA	4,000	NA	NA
Manganese	UG/L	300	NA	NA	50.5	NA	NA
Potassium	UG/L	-	NA	NA	2,080	NA	NA
Sodium	UG/L	20000	NA	NA	2,100	NA	NA
Vanadium	UG/L	-	NA	NA	6.6	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-01S	SW-01S	SW-02D	SW-02D	SW-02D
Sample ID			SW-01S	SW-01S	SW-02D	SW-02D	FD-101712
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval	Depth Interval (ft)		-	-	-	-	-
Date Sample	t		10/17/12	10/15/13	04/22/10	07/12/11	10/17/12
Parameter	Units	Criteria*					Field Duplicate (1-1)
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	NA	443	NA	NA
Barium	UG/L	1000	NA	NA	65.7	NA	NA
Cadmium	UG/L	5	NA	NA		NA	NA
Calcium	UG/L	-	NA	NA	62,800	NA	NA
Chromium	UG/L	50	NA	NA	4.1	NA	NA
Iron	UG/L	300	NA	NA	$\bigcirc 433 \bigcirc$	NA	NA
Magnesium	UG/L	35000	NA	NA	22,300	NA	NA
Manganese	UG/L	300	NA	NA	10.2	NA	NA
Potassium	UG/L	-	NA	NA	1,870	NA	NA
Sodium	UG/L	20000	NA	NA	7,500	NA	NA
Vanadium	UG/L	-	NA	NA		NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-02D	SW-02D	SW-02D	SW-02S	SW-02S
Sample ID			SW-02D	FD-101513	SW-02D	SW-02S	SW-02S
Matrix Depth Interval (ft)		Groundwater	Groundwater -	Groundwater -	Groundwater -	Groundwater	
		-				-	
Date Sample	d		10/17/12	10/15/13	10/15/13	04/22/10	07/12/11
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5				1.9	
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	NA	NA		NA
Barium	UG/L	1000	NA	NA	NA	2.9	NA
Cadmium	UG/L	5	NA	NA	NA		NA
Calcium	UG/L	-	NA	NA	NA	57,400	NA
Chromium	UG/L	50	NA	NA	NA		NA
Iron	UG/L	300	NA	NA	NA		NA
Magnesium	UG/L	35000	NA	NA	NA	2,240	NA
Manganese	UG/L	300	NA	NA	NA		NA
Potassium	UG/L	-	NA	NA	NA		NA
Sodium	UG/L	20000	NA	NA	NA	1,000	NA
Vanadium	UG/L	-	NA	NA	NA		NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID Sample ID Matrix		SW-02S	SW-02S	SW-03S	SW-03S	SW-03S	
		SW-02S Groundwater	SW-02S Groundwater	SW-03S	SW-03S Groundwater	SW-03S Groundwater	
				Groundwater			
Depth Interval	(ft)		-	-	-	-	-
Date Sample	d		10/17/12	10/15/13	04/22/10	07/12/11	10/17/12
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1 J	1.0			
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	NA		NA	NA
Barium	UG/L	1000	NA	NA	8.8	NA	NA
Cadmium	UG/L	5	NA	NA		NA	NA
Calcium	UG/L	-	NA	NA	74,400	NA	NA
Chromium	UG/L	50	NA	NA		NA	NA
Iron	UG/L	300	NA	NA		NA	NA
Magnesium	UG/L	35000	NA	NA	3,040	NA	NA
Manganese	UG/L	300	NA	NA		NA	NA
Potassium	UG/L	-	NA	NA	1,910	NA	NA
Sodium	UG/L	20000	NA	NA	22,600	NA	NA
Vanadium	UG/L	-	NA	NA		NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-03S	SW-04D	SW-04D	SW-04D	SW-04D
Sample ID			SW-03S	SW-04D	SW-04D	SW-04D	SW-04D
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval	(ft)		-	-	-	-	-
Date Sample	t		10/15/13	04/21/10	07/13/11	10/17/12	10/16/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1-Dichloroethane	UG/L	5					
1,2-Dichloroethene (cis)	UG/L	5					
Chloroethane	UG/L	5					
Dichlorodifluoromethane	UG/L	5					
Metals							
Aluminum	UG/L	-	NA	1,800	NA	NA	NA
Barium	UG/L	1000	NA	14.7	NA	NA	NA
Cadmium	UG/L	5	NA	2.4	NA	NA	NA
Calcium	UG/L	-	NA	12,200	NA	NA	NA
Chromium	UG/L	50	NA		NA	NA	NA
Iron	UG/L	300	NA	1,630	NA	NA	NA
Magnesium	UG/L	35000	NA	1,960	NA	NA	NA
Manganese	UG/L	300	NA	38.7	NA	NA	NA
Potassium	UG/L	-	NA	1,170	NA	NA	NA
Sodium	UG/L	20000	NA	32,000	NA	NA	NA
Vanadium	UG/L	-	NA		NA	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-04S	SW-04S	SW-04S	SW-04S
Sample ID			SW-04S	SW-04S	SW-04S	SW-04S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval ((ft)		-	-	-	-
Date Sampled	t		04/21/10	07/13/11	10/17/12	10/16/13
Parameter	units Criteria*					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	5				
1,1-Dichloroethane	UG/L	5				
1,2-Dichloroethene (cis)	UG/L	5				
Chloroethane	UG/L	5		0.48 J		
Dichlorodifluoromethane	UG/L	5				
Metals						
Aluminum	UG/L	-	336	NA	NA	NA
Barium	UG/L	1000	26.1	NA	NA	NA
Cadmium	UG/L	5		NA	NA	NA
Calcium	UG/L	-	92,700	NA	NA	NA
Chromium	UG/L	50		NA	NA	NA
Iron	UG/L	300	8,870	NA	NA	NA
Magnesium	UG/L	35000	6,900	NA	NA	NA
Manganese	UG/L	300	2,080	NA	NA	NA
Potassium	UG/L	-	1,940	NA	NA	NA
Sodium	UG/L	20000	4,300	NA	NA	NA
Vanadium	UG/L	-		NA	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- = No standard or guidance value.

Blank cell or ND - Not detected.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			NDP	NDP	SDP	SWTR-1E	SWTR-1T
Sample ID			FD-101613	NDP	SDP	SWTR-1E	SWTR-1T
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (f	t)		-	-	-	-	-
Date Sampled			10/16/13	10/16/13	10/16/13	10/16/13	10/16/13
Parameter	Parameter Units *		Field Duplicate (1-1)				
Volatile Organic Compounds							
Benzene	UG/L	10					2.1 J

Flags assigned during chemistry validation are shown.

Concentration Exceeds

Blank cell or ND - Not detected.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Location ID Sample ID Matrix Depth Interval (ft)		NDP	NDP	NDP	NDP	NDP	
		NDP	FD-071311 Surface Water	NDP-WS Surface Water	NDP-WS Surface Water	FD-101613 Surface Water	
		Surface Water					
		-		-	-	-	
Date Sampled			04/20/10	07/13/11	07/13/11	10/18/12	10/16/13
Parameter	Units	*		Field Duplicate (1-1)			Field Duplicate (1-1)
Volatile Organic Compounds							
Acetone	UG/L	-					
Benzene	UG/L	10					
Chlorobenzene	UG/L	5					
Metals							
Aluminum	UG/L	100 ionic		NA	NA	NA	NA
Barium	UG/L	-	32.5	NA	NA	NA	NA
Calcium	UG/L	-	123,000	NA	NA	NA	NA
Cobalt	UG/L	5		NA	NA	NA	NA
Iron	UG/L	300	1,650	NA	NA	NA	NA
Magnesium	UG/L	=	15,900	NA	NA	NA	NA
Manganese	UG/L	-	720	NA	NA	NA	NA
Nickel	UG/L	calc, diss		NA	NA	NA	NA
Potassium	UG/L	-	3,700	NA	NA	NA	NA
Sodium	UG/L	-	4,000	NA	NA	NA	NA
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	373	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

^{- =} No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

Location ID			NDP	SDP	SDP	SDP	SDP
Sample ID			NDP	DUP-1	SDP	SDP-WS	FD-101812
Matrix Depth Interval (ft)		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
		-	-		-	-	
Date Sampled	i		10/16/13	04/20/10	04/20/10	07/13/11	10/18/12
Parameter	Units	*		Field Duplicate (1-1)			Field Duplicate (1-1)
Volatile Organic Compounds							
Acetone	UG/L	-					
Benzene	UG/L	10					
Chlorobenzene	UG/L	5					
Metals							
Aluminum	UG/L	100 ionic	NA	1,570	1,460	NA	NA
Barium	UG/L	-	NA	51.8	49.7	NA	NA
Calcium	UG/L	-	NA	77,200	74,600	NA	NA
Cobalt	UG/L	5	NA			NA	NA
Iron	UG/L	300	NA	2,790	2,360	NA	NA
Magnesium	UG/L	-	NA	16,200	15,800	NA	NA
Manganese	UG/L	-	NA	101 J	71.3 J	NA	NA
Nickel	UG/L	calc, diss	NA			NA	NA
Potassium	UG/L	=	NA	7,760	7,650	NA	NA
Sodium	UG/L	-	NA	6,200	6,100	NA	NA
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	NA	259	251	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Location ID			SDP	SDP	SWTR-1E	SWTR-1E	SWTR-1E
Sample ID			SDP-WS	SDP	SWTR-1E	SWTR-1E	SWTR-1E
Matrix Depth Interval (ft)		Surface Water					
		-	=	-	-	-	
Date Sampled			10/18/12	10/16/13	04/20/10	07/13/11	10/18/12
Parameter	Units	*					
Volatile Organic Compounds							
Acetone	UG/L	-					
Benzene	UG/L	10					
Chlorobenzene	UG/L	5					
Metals							
Aluminum	UG/L	100 ionic	NA	NA		NA	NA
Barium	UG/L	-	NA	NA	22.3	NA	NA
Calcium	UG/L	-	NA	NA	88,400	NA	NA
Cobalt	UG/L	5	NA	NA		NA	NA
Iron	UG/L	300	NA	NA	230	NA	NA
Magnesium	UG/L	-	NA	NA	12,800	NA	NA
Manganese	UG/L	-	NA	NA	25.4	NA	NA
Nickel	UG/L	calc, diss	NA	NA		NA	NA
Potassium	UG/L	=	NA	NA	5,570	NA	NA
Sodium	UG/L	-	NA	NA	6,600	NA	NA
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	NA	NA	273	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds

- = No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Location ID		SWTR-1E	SWTR-1T	SWTR-1T	SWTR-1T	SWTR-1T	
Sample ID			SWTR-1E	SWTR-1T	SWRT-1T	SWTR-1T	SWTR-1T Surface Water
Matrix			Surface Water	Surface Water	Surface Water	Surface Water	
Depth Interval (ft)		-	-	-	-	-	
Date Sampled	Date Sampled		10/16/13	04/21/10	07/13/11	10/18/12	10/16/13
Parameter	Units	*					
Volatile Organic Compounds							
Acetone	UG/L	-		9.4	20 J		
Benzene	UG/L	10			1.8 J		2.1 J
Chlorobenzene	UG/L	5		0.75 J	3.3 J		
Metals							
Aluminum	UG/L	100 ionic	NA		NA	NA	NA
Barium	UG/L	-	NA	117	NA	NA	NA
Calcium	UG/L	=	NA	122,000	NA	NA	NA
Cobalt	UG/L	5	NA	7.1	NA	NA	NA
Iron	UG/L	300	NA	10,500	NA	NA	NA
Magnesium	UG/L	-	NA	26,100	NA	NA	NA
Manganese	UG/L	-	NA	385	NA	NA	NA
Nickel	UG/L	calc, diss	NA	12.0	NA	NA	NA
Potassium	UG/L	=	NA	70,800	NA	NA	NA
Sodium	UG/L	-	NA	65,400	NA	NA	NA
Miscellaneous Parameters							
Hardness (calculated)	MG/L	-	NA	412	NA	NA	NA

Flags assigned during chemistry validation are shown.

Concentration Exceeds

^{*-} NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

^{- =} No standard or guidance value. Blank cell or ND - Not detected. J - The reported concentration is an estimated value. NA - Not analyzed.

TABLE 6 SUMMARY OF HISTORICALLY DETECTED COMPOUNDS IN SURFACE WATER CRITERIA FOR CLASS C SURFACE WATERS REQUIRING CALCULATION ROSE VALLEY LANDFILL

Sample ID		N	DP	DUP-	(SDP)	S	DP	SWT	ΓR-1E	SWT	R-1T	
Sample Date		04/20/10		04/20/10		04/20/10		04/20/10		04/21/10		
	Units	Criteria Applies To	Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result	Criteria	Result
Metals	Metals											
Hardness (calculated)	MG/L	Not applicable		373		259		251		273		412
Nickel	UG/L	Dissolved form	158		117		113		122		172	12.0

Criteria:

NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

--- No criteria
Blank cell - not detected
Only detected results shown.

TABLE 7 MANN-KENDALL STATISTICAL ANALYSIS OF GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS ROSE VALLEY LANDFILL

LOCID: MW-03

Parameter	Matrix	Class	Num of Data Points	Num of Data Point Detections	Mann-Kendall Statistic S	Probabilities (1)	Trend (2)
1,1-Dichloroethane	WG	VOA	4	4	1	0.625	No Trend
1,2-Dichloroethene (cis)	WG	VOA	4	4	1	0.625	No Trend
Dichlorodifluoromethane	WG	VOA	4	1	-3	0.375	No Trend
Total Volatile Organic Compounds	WG	VOA	4	4	-1	0.625	No Trend

LOCID: MW-04

Parameter	Matrix	Class	Num of Data Points	Num of Data Point Detections	Mann-Kendall Statistic S	Probabilities (1)	Trend (2)
1,1-Dichloroethane	WG	VOA	4	4	4	0.167	No Trend
1,2-Dichloroethene (cis)	WG	VOA	4	3	-1	0.625	No Trend
Dichlorodifluoromethane	WG	VOA	4	2	-2	0.375	No Trend
Total Volatile Organic Compounds	WG	VOA	4	4	-1	0.625	No Trend

LOCID: SW-02S

Parameter	Matrix	Class	Num of Data Points	Num of Data Point Detections	Mann-Kendall Statistic S	Probabilities (1)	Trend (2)
1,1,1-Trichloroethane	WG	VOA	4	3	-1	0.625	No Trend
Total Volatile Organic Compounds	WG	VOA	4	3	-1	0.625	No Trend

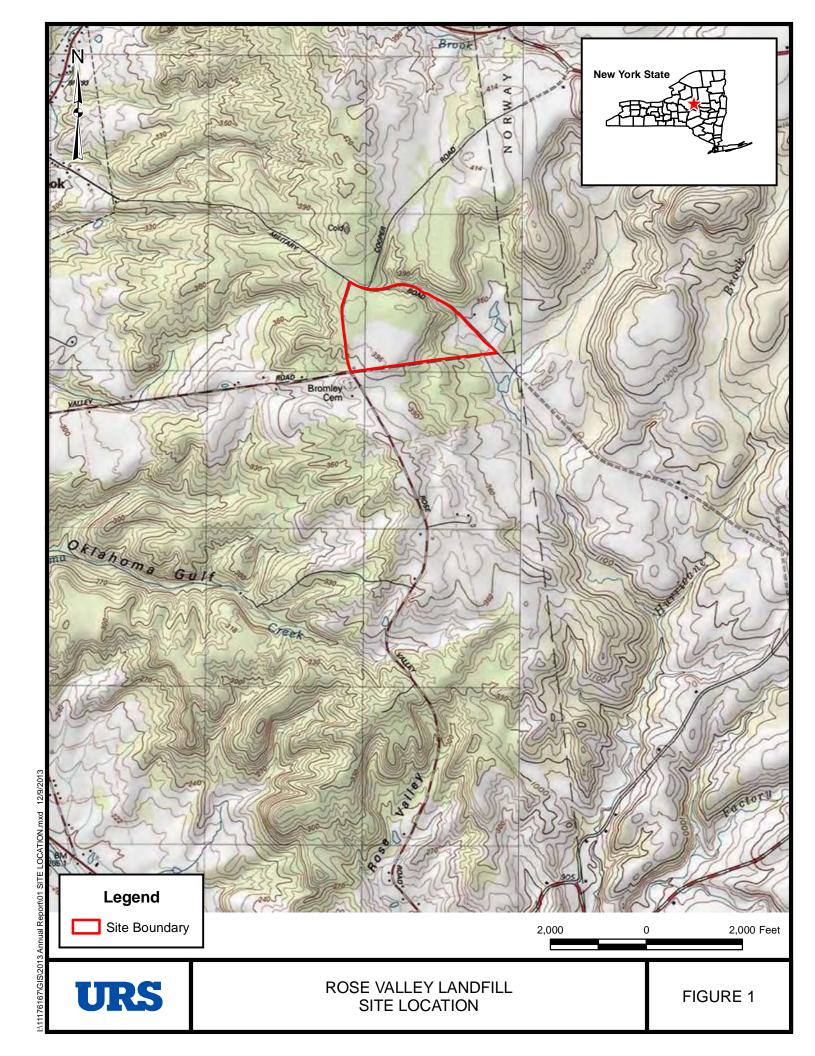
LOCID: SWTR-1T

Parameter	Matrix	Class	Num of Data Points	Num of Data Point Detections	Mann-Kendall Statistic S	Probabilities (1)	Trend (2)
Acetone	WS	VOA	4	2	-3	0.375	No Trend
Benzene	WS	VOA	4	2	2	0.375	No Trend
Chlorobenzene	WS	VOA	4	2	-3	0.375	No Trend
Total Volatile Organic Compounds	WS	VOA	4	3	-2	0.375	No Trend

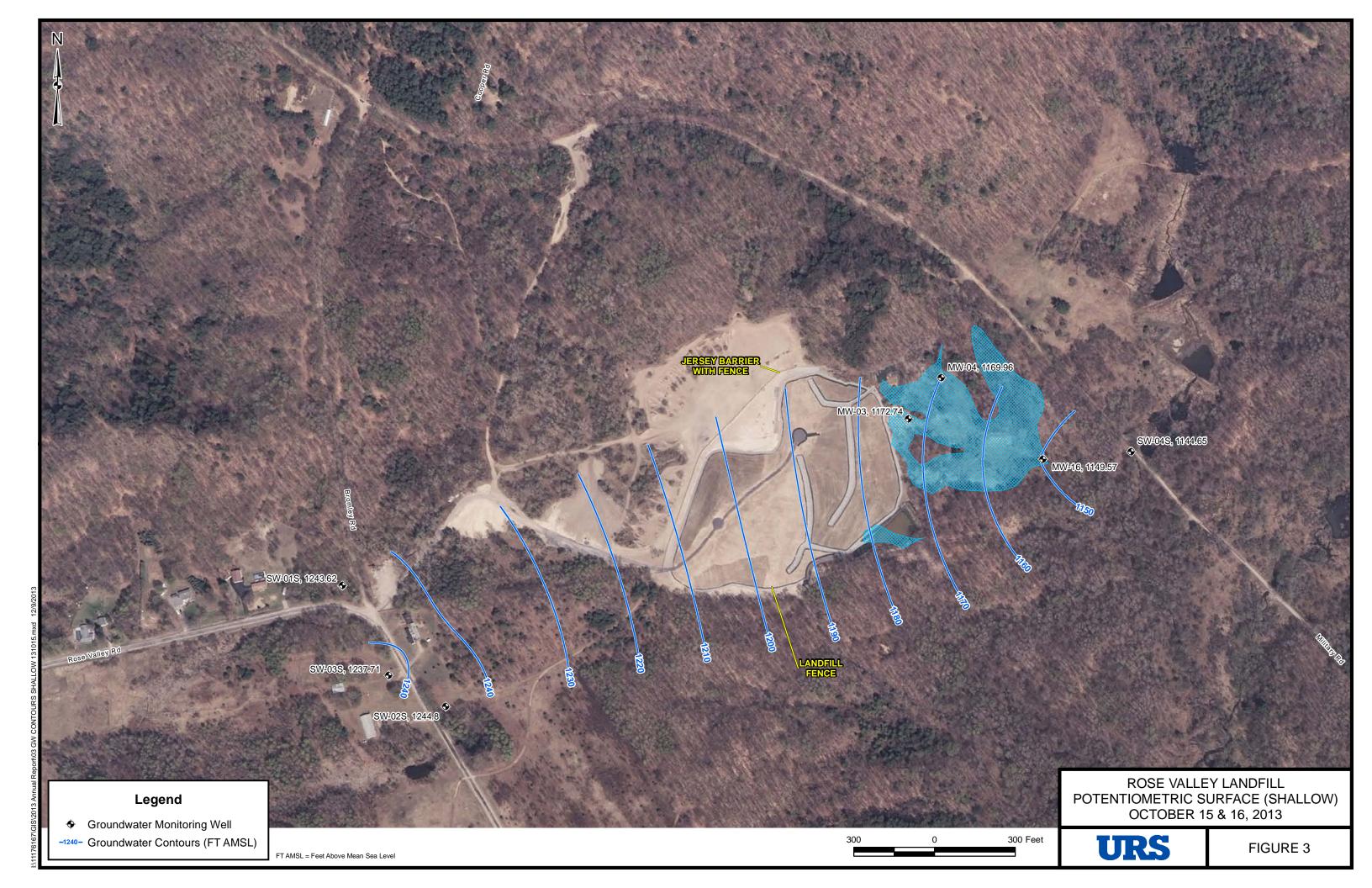
For multiple observations per time period, the Mann-Kendall test to the median was used.

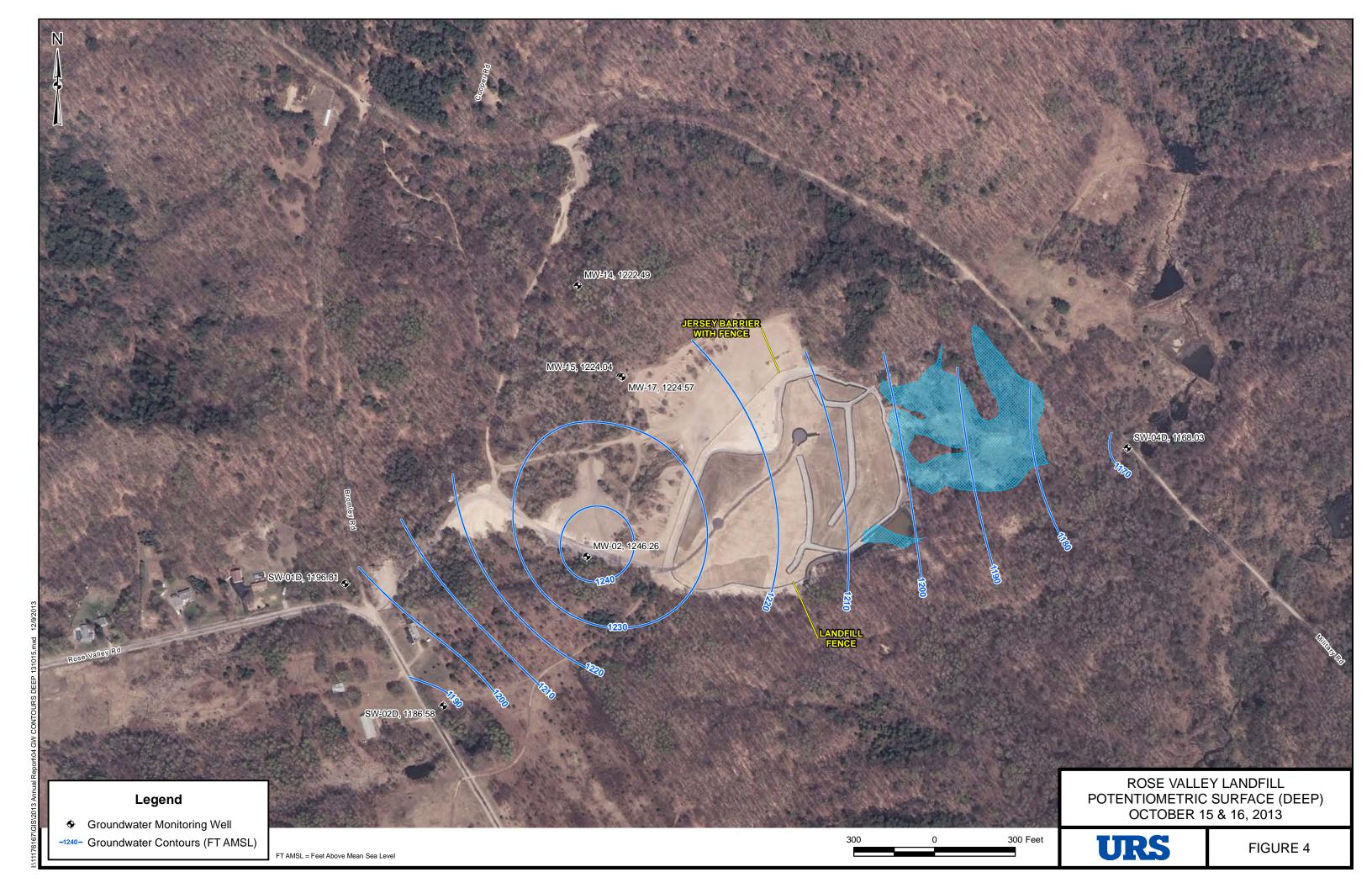
Data reported as less than the detection limit were used by assigning a common value to the data that was smaller than the smallest measurement in the data set.

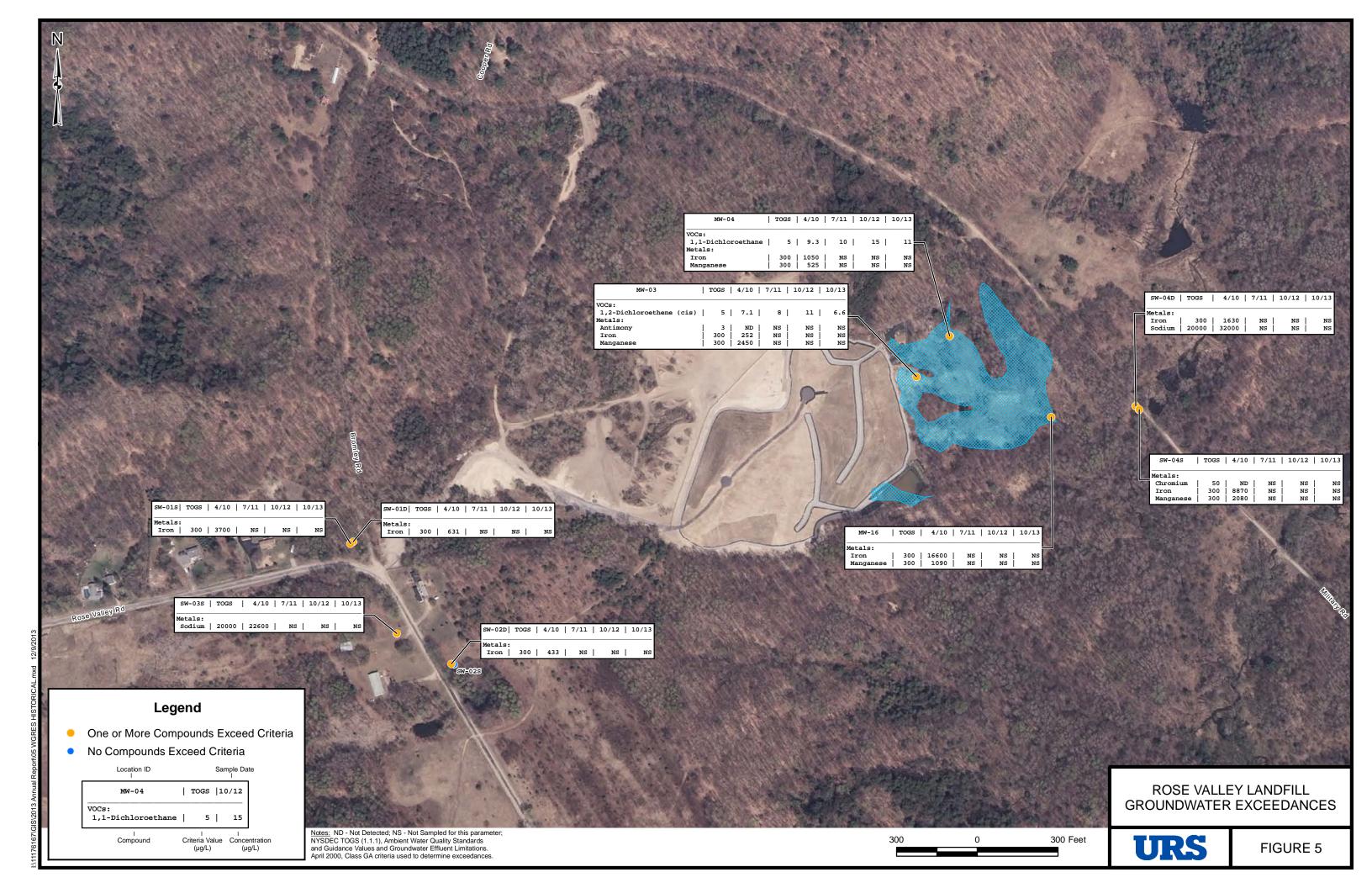
MATRIX: WG - Groundwater. WS - Surface Water.

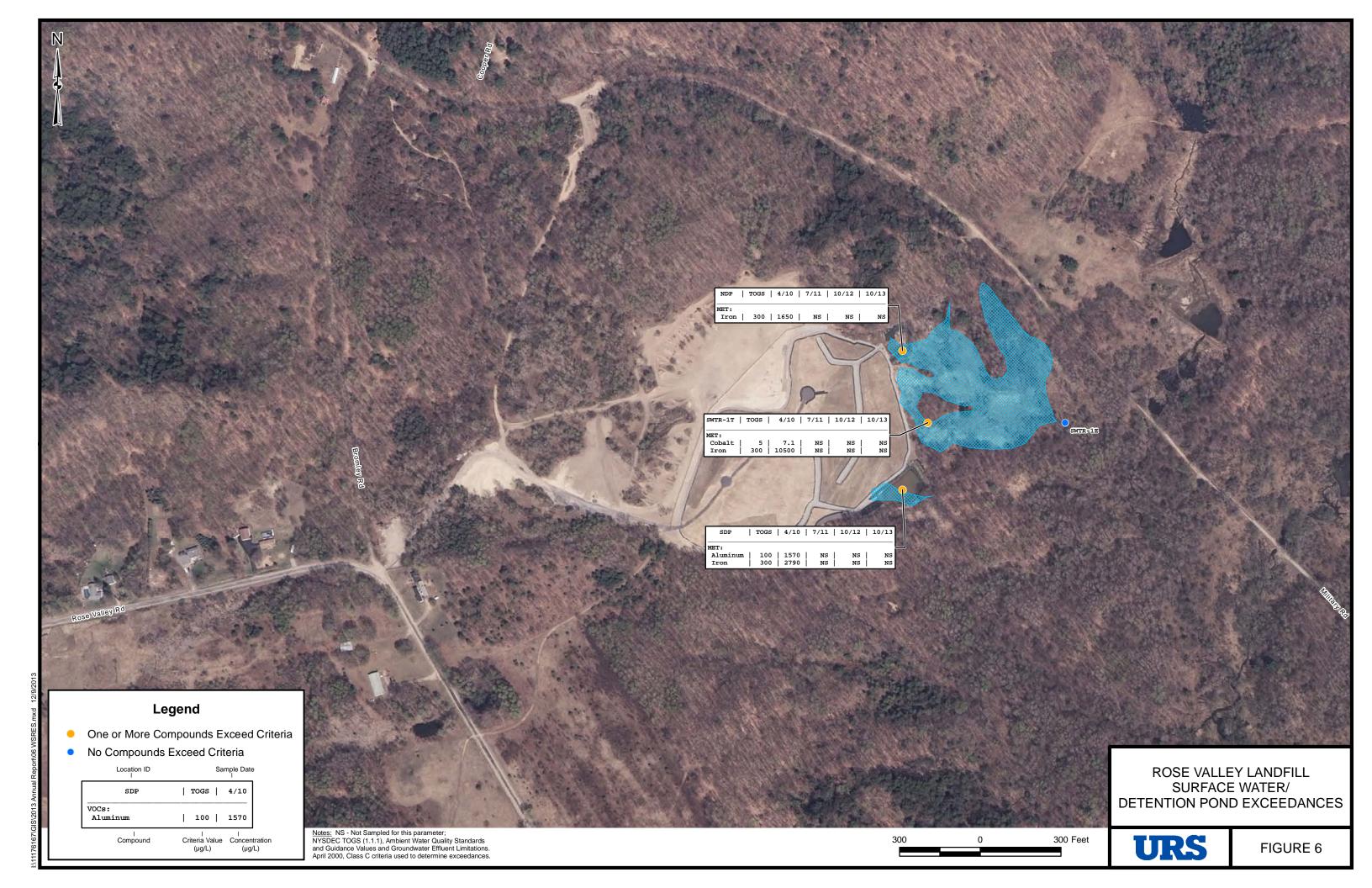

^{(1) -} Probabilities for Mann-Kendall Nonparameteric Test for Trend (Gilbert R.O. 1987, Table A18).


^{(2) -} Assuming a probability of error of 10% in the analyis method and or data, then the probability of no trend as calculated by the Mann-Kendall statistic is less than 10%, then it is assumed that there is a trend.


^{* -} Number of obsevations too small to calculate probablities.


^{** -} Probability Undefined for S=0 and N=6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, or 35.


FIGURES



APPENDIX A FIELD NOTES

Project/Client Rose Valley LadFill / NYSDEC

1100 - arrive onsite CRS- Tim Ithouch weather - partly cloudy ~60° Calibrate U-52 ul Flow cell Actual Regoling PH 39 40 Cond 4.49 4.48 Torb 0.0 0.4 - Will snaple 10 monitoring wells & 4 burface water locations for TEL VOLS + TICS analysis 1137 - Begin to purge SW - 035. NYSDEC onsite - Mike Mason & Chris Keeren 1200 - NYSDEC Offs. te for lunch 1207 - Sample 14 5W-035 1239 - Begin to purge SW-025 of ording 1300 - NYSOEL return to the site 1314- sangle 500-025 W/ 25/050 1357- Bigin to purse SW-OZD 1427 - Sample SW-OZD W/ Fild Dip. 1500 - Begin to purge SW-019 1525 - Chuck Duxl (URS) arrives 015:50

Date 10/15/13 Project/Client Rox Valley Land F.1/ 1546 Collect sample from SW 010 1610- Begin to page 5w-015 1700- Finished sampling Su 015. - TI + CD offsite

Project/Client Rose Vally Land II / NYSDEC

wrather - Cloudy, -600 0800- onsite - Tim Ifkanich, Churk Ousel 40-02 76.60 5889. 08/4 Soft MU-14 10924 99.34 0927 MU-15 90.59 88.32 0822" mw-17 98.81 87.15 0820 0830- collected water level measurement from the above wells, these wells do not require simpling 0900 - used a water pressure gauge (0-30 ps: range) connected to 1" PUC + a 1" Packer to collect a pressure reading from whes in well Sw-04D pressure reading = 8.4 PSI 0910 - Begin to purge SW-04D - CD begins to perform landfill inspection 1010- Sample SW 040 1018 - Begin to purge sw-045 1048 Sample Su -045 1143. Begin to Bagge Mini-16 1233 - Sample MW-16

Date 10/16/13 Project / Client Rose Valley Landfill	Location Project / Client	Date
1240- Collect sample @ SWTR-IE plus Molnop 1318- Bigin to purge MW-04		
1348- Sumple Mee-04 CD completed Land fill inspection. Note: - Erosion silling has continued		
the landfill		
Rd was removed + found further whom the road, may need to		
tonnect & weld the barriers together to prevent tampering - more jarbage was also taken nea-		
1412 - Begin to purge mw-03 1442 - Sample Mw-03		
155- Collect sample @ NDP, also Field ap 1515 - Collect sample @ SWTR-1T 1530 - Collect sample @ SDP		
1630 - Measured distance @ top of landfill from west face, nest to hill (~120')		
May place convete barriers to prevent 4x4's from creating tracks which creates rilling t erosion -URS offsite		

APPENDIX B

MONITORING WELL PURGE LOGS/ SURFACE WATER SAMPLE LOG

Project:	11176716	.00004	Site: _	Rose Va	lley Landfill	_ Well #:	MW-03	
Sampling	Personnel: <u>C. Dusel,</u>	T. Ifkovich		Date:	10/16/13	_Company:	URS Corp	poration
Purging/ Sampling Device:	Geopu	mp	Tubing Type:_	LŒ	DPE	_ Tubing Inlet:	Screen M	/lidpoint
Measuring Point:	Initial De		Depth toWell Bottom:	17.26	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	8.9	_	Estimated Purge Volume (liters):	8.4	-
Sample ID:	MW-03	Sample Tim	e: <u>1442</u>		QA/QC:	None		
Sample Para	ameters: TCL VOC	+ TICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1412	7.24	15.05	1.08	0.00	5.9	19	280	2.84
1417	6.71	13.36	1.13	0.00	2.8	26	280	3.55
1422	6.43	13.01	1.13	0.00	1.4	28	280	3.60
1427	6.40	12.89	1.12	0.00	1.3	25	280	3.62
1432	6.45	12.83	1.11	0.00	1.2	20	280	3.62
1437	6.51	12.80	1.11	0.00	1.0	17	280	3.62
1442	6.49	12.81	1.11	0.00	1.1	17	280	3.62
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	111767	716.00004	Site:	Rose Va	lley Landfill	Well #:	MW-04	
Sampling	Personnel: <u>C. Dus</u>	sel, T. lfkovich		Date:	10/16/13	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geo	ppump	Tubing Type:	LŒ	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial	Depth ater: 2.50	Depth toWell Bottom:	17.54	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	9.3	_	Estimated Purge Volume (liters):	7.5	
Sample ID:	MW-04	Sample Tir	me:1348		QA/QC:	None		
Sample Para	ameters: TCL V	OC + TICs						

PURGE PARAMETERS

			COND.	DISS. O ₂	TURB.		FLOW RATE	DEPTH TO WATER
TIME	рН	TEMP (°C)	(mS/cm)	(mg/l)	(NTU)	ORP (mV)	(ml/min.)	(btor)
1318	7.53	16.37	0.955	0.28	20.9	0	250	2.50
1323	7.08	15.58	0.966	0.00	62.3	-7	250	2.93
1328	6.87	15.15	0.967	0.00	33.9	-4	250	2.93
1333	6.78	14.76	0.974	0.00	23.8	-3	250	2.94
1338	6.75	14.61	0.977	0.00	19.6	-3	250	2.94
1343	6.72	14.55	0.977	0.00	11.8	-2	250	2.94
1348	6.72	14.52	0.978	0.00	9.9	-3	250	2.94
					_			
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

11176716.000	004	_ Site: _	Rose Va	lley Landfill	_ Well #:	MW-16	
Personnel: <u>C. Dusel, T. I</u>	fkovich		Date:	10/16/13	_Company:	URS Corp	ooration
Geopump		_Tubing Type:_	LC)PE	_ Tubing Inlet:	Screen M	lidpoint
Initial Depth TOC to Water:	3.01	Depth to Well Bottom:	11.62	Well Diameter:	2"	Screen Length:	8'
PVC		Volume in 1 Well Casing (liters):	5.3	-	Estimated Purge Volume (liters):	5.1	
MW-16	Sample Time:	1233		QA/QC:	None		
ameters: TCL VOC + 1	ΓICs						
	Personnel: C. Dusel, T. I Geopump Initial Depth to Water: PVC MW-16	TOC to Water: 3.01 PVC MW-16 Sample Time:	Personnel: C. Dusel, T. Ifkovich Geopump Tubing Type: Initial Depth Depth to Well Bottom: Volume in 1 Well Casing (liters): MW-16 Sample Time: 1233	Personnel: C. Dusel, T. Ifkovich Geopump Tubing Type: Initial Depth TOC to Water: 3.01 Volume in 1 Well Casing (liters): 5.3 MW-16 Sample Time: 1233	Personnel: C. Dusel, T. Ifkovich Date: 10/16/13 Geopump Tubing Type: LDPE Initial Depth Depth to Well Bottom: 11.62 Diameter: Volume in 1 Well Casing (liters): 5.3 MW-16 Sample Time: 1233 QA/QC:	Personnel: C. Dusel, T. Ifkovich Date: 10/16/13 Company: Geopump	Personnel: C. Dusel, T. Ifkovich Date: 10/16/13 Company: URS Corporate Geopump Tubing Type: LDPE Tubing Inlet: Screen M Initial Depth Depth to Well Screen M TOC to Water: 3.01 Well Bottom: 11.62 Diameter: 2" Length: Volume in 1 Well Casing (liters): 5.3 (liters): 5.1 MW-16 Sample Time: 1233 QA/QC: None

PURGE PARAMETERS

TIME	-11	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ODD (==)()	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
TIME	рН	TEIMIF (C)	(III3/CIII)	(IIIg/I)	(1410)	ORP (mV)	(1111/111111.)	(Bloi)
1143	7.33	13.48	0.491	0.57	96.7	-64	125	3.01
1148	6.81	12.82	0.492	0.00	31.8	-61	100	4.22
1153	6.86	12.78	0.487	0.00	18.7	-74	100	4.62
1158	6.82	12.75	0.487	0.00	21.2	-75	100	4.85
1203	6.78	12.71	0.485	0.00	24.3	-76	100	5.09
1208	6.75	12.68	0.484	0.00	28.7	-77	100	5.26
1213	6.76	12.75	0.485	0.00	24.3	-79	100	5.37
1218	6.77	12.82	0.485	0.00	22.0	-80	100	5.48
1223	6.85	12.80	0.487	0.00	18.3	-84	100	5.59
1228	6.90	12.79	0.488	0.00	15.7	-87	100	5.67
1233	6.89	12.79	0.490	0.00	15.4	-87	100	5.76
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		11176716.000	04	Site:	Rose Va	lley Landfill	Well #:	SW-01S	
Sampling	Personne	el: <u>C. Dusel, T. If</u>	kovich		Date:	10/15/13	_Company:	URS Corp	ooration
Purging/ Sampling Device:		Geopump		_Tubing Type:_	LC)PE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	TOC	Initial Depth to Water:	19.55	Depth to Well Bottom: _	28.39	Well Diameter:	2"	Screen Length:	10'
Casing Type:		PVC		Volume in 1 Well Casing (liters):	5.5	-	Estimated Purge Volume (liters):	9.4	
Sample ID:	SW-01S		Sample Time:	1648		QA/QC:	None		
Sample Para	ameters:	TCL VOC + T	ICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1608	7.56	13.26	0.569	8.91	216	139	250	19.55
1613	6.99	10.98	0.572	7.94	18.5	173	250	20.12
1618	6.53	10.92	0.556	7.77	6.3	178	250	20.80
1623	6.92	11.00	0.563	7.65	5.3	177	225	20.82
1628	6.76	10.97	0.568	7.54	5.4	185	225	20.84
1633	6.55	10.95	0.574	7.42	5.6	199	225	20.85
1638	6.43	10.89	0.584	7.34	5.9	206	225	20.86
1643	6.44	10.89	0.588	7.30	4.8	208	225	20.87
1648	6.53	10.82	0.590	7.28	4.9	204	225	20.87
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176716.00	004	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-01D	
Sampling	Personnel: <u>C. Dusel, T. l</u>	fkovich		Date:10/15/13		_Company:	URS Corp	ooration
Purging/ Sampling Device:	Grundfos		_Tubing Type:_	LC	DPE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	67.89	Depth to Well Bottom:	83.87	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	9.9	_	Estimated Purge Volume (liters):	10.4	
Sample ID:	SW-01D	Sample Time:	1546		QA/QC:	None		
Sample Para	ameters: TCL VOC + 1	ΓICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1500	7.82	11.78	0.280	0.00	28.3	99	225	67.89
1505	7.59	11.48	0.257	0.00	16.2	68	225	68.60
1510	7.36	13.15	0.256	0.00	12.3	63	225	68.70
1515	7.26	14.37	0.254	0.00	8.6	50	225	68.85
1520	7.31	14.92	0.252	0.00	5.3	24	225	68.98
1525	7.37	14.90	0.250	0.00	3.1	0	225	69.14
1530	7.43	14.93	0.250	0.00	2.3	-9	225	69.25
1535	7.77	14.94	0.248	0.00	2.4	-33	225	69.41
1540	7.67	15.15	0.246	0.00	2.2	-37	225	69.55
1543	7.64	14.98	0.245	0.00	2.0	-38	225	69.58
1546	7.60	14.90	0.245	0.00	2.0	-40	225	69.61
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176716.000	004	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-02S	
Sampling	Personnel: <u>C. Dusel, T. I</u>	fkovich		Date:	10/15/13	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopump		_Tubing Type:_	LC)PE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	Initial Depth TOC to Water:	12.40	Depth to Well Bottom:	20.04	Well Diameter:	2"	Screen Length:	10'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	4.7	-	Estimated Purge Volume (liters):	13.1	
Sample ID:	SW-02S	Sample Time:	1314		QA/QC:	MS/MSD		
Sample Para	ameters: TCL VOC + 1	ΓICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1239	8.12	16.63	0.254	9.77	96.8	148	375	12.40
1244	7.79	14.25	0.244	9.51	59.1	169	375	12.40
1249	7.60	14.30	0.237	9.16	41.3	180	375	12.40
1254	7.37	14.05	0.235	9.01	17.9	190	375	12.40
1259	7.27	13.93	0.233	8.96	13.7	195	375	12.40
1304	7.24	13.91	0.232	8.90	8.2	199	375	12.40
1309	7.20	13.91	0.230	8.76	7.7	201	375	12.40
1314	7.22	13.92	0.229	8.74	5.9	197	375	12.40
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:		11176716.000	04	_ Site: _	Rose Va	lley Landfill	Well #:	SW-02D	
Sampling	Personne	el: <u>C. Dusel, T. If</u>	kovich		Date:	10/15/13	_Company:	URS Corp	ooration
Purging/ Sampling Device:		Grundfos		_Tubing Type:_	LC)PE	_ Tubing Inlet:	Screen M	1idpoint
Measuring Point:	TOC	Initial Depth to Water:	70.42	Depth to Well Bottom:	79.19	Well Diameter:	2"	Screen Length:	10'
Casing Type:	ı	PVC		Volume in 1 Well Casing (liters):	5.4	_	Estimated Purge Volume (liters):	42.0	
Sample ID:	SW-02D		Sample Time:	1427		_ QA/QC:	FD-101513		
Sample Para	ameters:	TCL VOC + T	ICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1357	7.69	10.33	0.470	0.39	3.0	138	1400	70.42
1402	7.48	13.31	0.450	0.00	0.0	129	1400	70.43
1407	7.24	13.67	0.443	0.00	0.0	121	1400	70.43
1412	7.17	13.64	0.441	0.00	0.0	109	1400	70.43
1417	7.28	13.63	0.439	0.00	0.0	102	1400	70.43
1422	7.33	13.59	0.439	0.00	0.0	101	1400	70.43
1427	7.37	13.54	0.437	0.00	0.0	102	1400	70.43
	2.4		201	100/	400/	10		
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Comments:

Grundfos - 200 HZ

Project:		11176716.0000)4	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-03S	
Sampling	Personne	el: <u>C. Dusel, T. lfk</u>	covich		Date:	10/15/13	_Company:	URS Corp	poration
Purging/ Sampling Device:		Geopump		_Tubing Type:_	LC)PE	_ Tubing Inlet:	Screen N	/lidpoint
Measuring Point:	TOC	Initial Depth to Water:	12.96	Depth to Well Bottom:	18.81	Well Diameter:	2"	Screen Length:	10'
Casing Type:		PVC		Volume in 1 Well Casing (liters):	3.6	-	Estimated Purge Volume (liters):	9.8	-
Sample ID:	SW-03S		Sample Time:	1207		_ QA/QC:	None		
Sample Para	ameters:	TCL VOC + TI	Cs						

PURGE PARAMETERS

TIME	pН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1137	7.90	14.42	0.898	11.33	703	124	275	12.96
1142	7.29	13.18	0.801	10.57	232	154	275	13.00
1147	7.06	13.14	0.745	10.30	114	168	350	13.02
1152	6.87	13.10	0.745	10.10	67.0	178	350	13.02
1157	6.86	13.14	0.743	9.92	41.5	181	350	13.02
1202	6.82	13.11	0.742	9.86	36.5	183	350	13.02
1207	6.82	13.15	0.745	9.68	28.6	183	350	13.02
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176716.	00004	Site: _	Rose Va	ılley Landfill	_ Well #:	SW-04S	
Sampling	Sampling Personnel: C. Dusel, T. Ifkovich			Date:	10/16/13	_Company:	URS Corp	ooration
Purging/ Sampling Device:	Geopui	mp	Tubing Type:_	Lſ	DPE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:	Initial Dep		Depth toWell Bottom:	8.20	Well Diameter:	2"	Screen Length:	8'
Casing Type:	PVC		Volume in 1 Well Casing (liters):	3.0	_	Estimated Purge Volume (liters):	6.0	
Sample ID:	SW-04S	Sample Time	e: <u>1048</u>		QA/QC:	None		
Sample Para	ameters: TCL VOC	+ TICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
1018	8.45	12.93	0.601	0.00	52.9	-59	200	3.35
1023	7.52	13.50	0.609	0.00	43.6	-75	200	3.72
1028	7.20	13.62	0.622	0.00	13.1	-77	200	3.86
1033	7.02	13.65	0.634	0.00	11.1	-77	200	3.99
1038	6.91	13.67	0.643	0.00	10.8	-78	200	4.23
1043	6.85	13.68	0.645	0.00	10.0	-79	200	4.45
1048	6.83	13.70	0.645	0.00	12.3	-79	200	4.65
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Project:	11176716.00	_ Site: _	Rose Va	lley Landfill	_ Well #:	SW-04D		
Sampling	Personnel: <u>C. Dusel, T.</u>	lfkovich		Date:	10/16/13	_Company:	URS Corporation	
Purging/ Sampling Device:	Geopump		_Tubing Type:_	LC	DPE	_ Tubing Inlet:	Screen M	lidpoint
Measuring Point:	Initial Depth TOC to Water:	-19.38	Depth to _Well Bottom:_	84.42	Well Diameter:	2"	Screen Length:	8'
Casing Type:	PVC	-	Volume in 1 Well Casing (liters):	52.1	_	Estimated Purge Volume (liters):	54.0	
Sample ID:	SW-04D	_ Sample Time:	: 1010		QA/QC:	None		
Sample Para	ameters: TCL VOC +	TICs						

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
0910	7.35	10.00	0.170	0.12	441	198	900	
0915	7.82	9.82	0.170	0.00	191	151	900	
0920	7.94	9.80	0.170	0.00	307	123	900	
0925	8.07	9.78	0.169	0.00	577	88	900	
0930	8.53	9.78	0.169	0.00	>800	37	900	
0935	8.76	9.77	0.170	0.00	>800	-2	900	
0940	8.57	9.77	0.170	0.00	>800	-18	900	
0945	8.34	9.77	0.170	0.00	>800	-35	900	
0950	8.37	9.76	0.170	0.00	691	-49	900	
0955	8.39	9.76	0.170	0.00	563	-62	900	
1000	8.85	9.77	0.170	0.00	442	-88	900	
1005	8.91	9.77	0.170	0.00	363	-93	900	
1010	9.12	9.75	0.170	0.00	365	-98	900	
Tolerance:	0.1		3%	10%	10%	+ or - 10		

Information: WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft;

4 inch diameter well = 2470 ml/ft (vol $_{cyl} = \pi r^2 h$)

Comments: Artesian well. Pressure reading at well head = 8.4 psi. 1 Pound Per Square Inch = 2.3067 Feet Of Water

SURFACE WATER SAMPLING - SAMPLE COLLECTION DATA SHEET

Project Name: Rose Valley Landfill Project Num 11176716

Sampling Crew Members: <u>C. Dusel, T. Ifkovich</u> Supervisor: <u>C. Dusel</u>

Date of Sample Collection: <u>10/16/2013</u>

Sample I.D. Number	Sample Location	Est. Stream Width	Est. Stream Depth	Est. Stream Velocity	рН	Temp. ⁰ C	Diss. O ₂ (mg/L)	Turb. (NTU)	Cond. (mS/cm)	ORP (mV)	Time	Sample Analysis	Sample Description
NDP	NDP	Not measured	Not measured	Not measured	7.36	14.65	6.11	51.5	0.706	-7	1455	VOCs	Surface water & FD-101613
SDP	SDP	Not measured	Not measured	Not measured	7.45	15.10	9.13	163	0.651	-49	1530	VOCs	Surface water
SWTR-1E	SWTR-1E	Not measured	Not measured	Not measured	7.06	12.84	6.73	5.5	0.529	-96	1240	VOCs	Surface water & MS/MSD
SWTR-1T	SWTR-1T	Not measured	Not measured	Not measured	6.46	14.10	0.29	>800	1.70	-43	1515	VOCs	Surface water
		_		_	-			_		-	_		

Additional Comments:			

APPENDIX C PHOTOGRAPHIC LOG

Photo 1: 10/16/13 Looking east towards the landfill. The erosion/rilling in this area is starting to re-occur.

Photo 2: 10/16/13 Looking east at the western entrance to the landfill.

Photo 3: 10/16/13 Close-up of gas vent.

Photo 4: 10/16/13 Looking north at main all-terrain vehicle recreation area/hill in background.

Photo 5: 10/16/13 Erosion/rilling in access road on top of landfill. In some areas the erosion is approximately 12 inches deep.

Photo 6: 10/16/13 Close-up of erosion/rilling occurring in access road on top of landfill. Note fabric has been exposed.

Photo 7: 10/16/13 Standing at the top of the landfill, looking east.

Photo 8: 10/16/13 Standing at the center of the landfill, looking south at gas vents and rip-rap lined drain chutes.

Photo 9: 10/16/13 Location of erosion occurring north of the landfill.

Photo 10: 10/16/13 Location of erosion occurring north of the landfill.

Photo 11: 10/16/13 Erosion occurring north of landfill, exposing fabric.

Photo 12: 10/16/13 North side of landfill, looking towards the North Detention Pond.

Photo 13: 10/16/13 Looking at northeast drainage channel just west of North Detention Pond.

Photo 14: 10/16/13 Standing along the north side of the landfill. Looking east towards the North Detention Pond.

Photo 15: 10/16/13 Close-up of main all-terrain vehicle recreation area/hill and perimeter swale.

Photo 16: 10/16/13 Trash in ravine along south side of Military Road.

Photo 17: 10/16/13 Discarded tires and carcass in ravine along Military Road.

Photo 18: 10/16/13 Trash and damaged jersey barrier along Military Road.

Photo 19: 10/16/13 Jersey barrier that was moved from the north landfill access road further down Military Road to allow access to the landfill for ATV riding.

Photo 20: 10/16/13 Construction and demolition debris along Military Road.

Photo 21: 10/16/13 Remaining section of jersey barriers along Military Road restricting access to the landfill.

Photo 22: 10/16/13 Trash and jersey barriers along Military Road.

Photo 23: 10/16/13 Looking southeast at landfill from top of sand dune.

Photo 24: 10/16/13 Erosion/rilling in gravel access road west of landfill.

Photo 25: 10/16/13 Erosion/rilling in access road west of landfill. Note camera case and pen for scale.

Photo 26: 10/16/13 Typical low-flow groundwater sampling set-up. Photo taken at location MW-03.

Photo 27: 10/16/13 Looking northwest towards the North Detention Pond.

Photo 28: 10/16/13 Surface water sampling location at North Detention Pond.

Photo 29: 10/16/13 Looking east towards surface water sampling location at SWTR-1T. Note arrow for approximate sampling location.

Photo 30: 10/16/13 Close up of surface water sampling location at SWTR-1T.

Photo 31: 10/16/13 Sampling surface water at South Detention Pond.

APPENDIX D DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT

ROSE VALLEY LANDFILL SITE MANAGEMENT 2013 GROUNDWATER/SURFACE WATER SAMPLING EVENT NYSDEC WORK ASSIGNMENT #D007622-07

ROSE VALLEY LANDFILL HERKIMER COUNTY, NEW YORK SITE NO. 622017

Analyses Performed by:

TESTAMERICA LABORATORIES, INC. 10 HAZELWOOD DRIVE AMHERST, NY 14228

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

NOVEMBER 2013

TABLE OF CONTENTS

	<u>Page No</u> .
1.0	INTRODUCTION
2.0	ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES1
3.0	DATA DELIVERABLE COMPLETENESS
4.0	SAMPLE RECEIPT/PRESERVATION/HOLDING TIMES
5.0	NON-CONFORMANCES
6.0	SAMPLE RESULTS AND REPORTING
7.0	SUMMARY3
	TABLES (Following Text)
Table 1	Summary of Data Qualifications
Table 2	Validated Groundwater Sample Results
Table 3	Validated Surface Water Sample Results
Table 4	Validated Field QC Sample Results
	ATTACHMENTS
Attachn	nent A Validated Form 1's
Attachn	nent B Support Documentation

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B-Guidance for Data Deliverables and the Development of Data Usability and Summary Reports*, May 2010. Discussed in this DUSR are analytical data for ten (10) groundwater samples, one (1) field duplicate, and one (1) matrix spike/matrix spike duplicate (MS/MSD) pair; and four (4) surface water samples, one (1) field duplicate, and one (1) MS/MSD pair collected by URS personnel on October 15-16, 2013 from the Rose Valley Landfill site (Site No. 622017). A trip blank accompanied the sample shipment to the lab. The samples were collected in support of NYSDEC Work Assignment # D007622-07.

2.0 ANALYTICAL METHODOLOGIES/DATA VALIDATION PROCEDURES

All samples were sent to the NYSDEC callout laboratory TestAmerica Laboratories, Inc. (Amherst, NY) and analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method SW8260B, plus tentatively identified compounds (TICs).

A limited data validation was performed following the guidelines in the following USEPA Region II document:

• Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008.

The limited validation included: a review of completeness of all required deliverables; holding times; a review of quality control (QC) results [blanks, instrument tunings, calibration standards, duplicate analyses, and MS/MSD/laboratory control sample (LCS) recoveries] to determine if the data are within the protocol-required limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

Data qualifiers applied to the results during the validation included 'UJ' (estimated quantitation limit), and 'R' (rejected). Definitions of USEPA Region II data qualifiers are presented at the end of this

text. A summary of data qualifications is provided on Table 1. The validated analytical results are presented on Tables 2 (groundwater), 3 (surface water), and 4 (field QC). Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

3.0 DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B, or equivalent) were provided by the laboratory, which included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

4.0 PRESERVATION/SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC).

All samples were analyzed within the required holding times.

5.0 NON-CONFORMANCES

Instrument Calibration

The percent difference (%D) between the initial calibration (ICAL) average relative response factor (RRF) and the RRF in the continuing calibration standard (CCAL) associated with the samples was greater than 20% for dichlorodifluoromethane. The results for this compound in the associated samples listed in Table 1 were qualified 'UJ'.

Instrument Contamination

Column-bleed compounds (i.e., silanols) were reported as TICs by the laboratory. The TIC results for the associated samples listed on Table 1 were qualified 'R' (rejected).

Field Duplicate Samples

The field duplicates were collected at groundwater location SW-02D and surface water location

NDP, which exhibited good analytical precision. Note, USEPA Region II validation guidelines do not require qualification of VOC analytical results based upon field duplicate precision.

6.0 SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were adjusted for sample volume and dilution factors.

Note, the undiluted analysis of surface water SWTR-1T exhibited "foaming", thus requiring a secondary dilution (5x). The quantitation limits reported for the non-detects are the lowest achievable at the diluted level.

7.0 **SUMMARY**

All sample analyses were found to be compliant with the method criteria, except where previously noted. Those results qualified 'UJ' (estimated quantitation limit) are considered conditionally usable. Those TIC results qualified 'R' are rejected and considered unusable. URS does not recommend the recollection of any samples at this time.

Peter R. Fairbanks, Senior Chemist PF Date: 11/20/13

Date: 11/20/13 Prepared By:

George E. Kisluk, Senior Chemist Reviewed By:

TABLE 1 SUMMARY OF DATA QUALIFICATIONS ROSE VALLEY LANDFILL SITE

SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION
All groundwater, surface	VOA	%D between the ICAL average RRF and	Qualify non-detect
water, and field QC		the CCAL RRF > 20% for	results 'UJ'.
samples.		dichlorodifluoromethane.	
MW-04, SW-01D, SW-	VOA	Column-bleed compounds (i.e., silanols)	Qualify TIC results
03S, SW-04D, SWTR-		reported as TICs.	'R'.
1E, SWTR-1T, FD-			
101613 (field duplicate			
of NDP), FD-101613			
(field duplicate of SW-			
02D), TB-101713			

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Sample ID Matrix			MW-03	MW-04	MW-16	SW-01D	SW-01S
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft	:)		-	-	-	-	-
Date Sampled			10/16/13	10/16/13	10/16/13	10/15/13	10/15/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	UG/L	1	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	UG/L	5	1.9		1 U	1 U	1 U
1,1-Dichloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	UG/L	0.6	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (cis)	UG/L	5	6.6	1 U	1 U	1 U	1 U
1,2-Dichloroethene (trans)	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	UG/L	1	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene (cis)	UG/L	0.4	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene (trans)	UG/L	0.4	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
2-Hexanone	UG/L	50	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	UG/L	-	5 U	5 U	5 U	5 U	5 U
Acetone	UG/L	50	10 U				
Benzene	UG/L	1	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	UG/L	50	1 U	1 U	1 U	1 U	1 U
Bromoform	UG/L	50	1 U	1 U	1 U	1 U	1 U
Bromomethane	UG/L	5	1 U	1 U	1 U	1 U	1 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $\mbox{\bf U}$ - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $\ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Sample ID			MW-03	MW-04	MW-16	SW-01D	SW-01S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (-	-	-	-	-
Date Sampled	l		10/16/13	10/16/13	10/16/13	10/15/13	10/15/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Carbon disulfide	UG/L	60	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chloroform	UG/L	7	1 U	1 U	1 U	1 U	1 U
Chloromethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Cyclohexane	UG/L	-	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	UG/L	50	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	UG/L	5	1 UJ				
Ethylbenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene (Cumene)	UG/L	5	1 U	1 U	1 U	1 U	1 U
Methyl acetate	UG/L	-	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U				
Methyl tert-butyl ether	UG/L	10	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	UG/L	-	1 U	1 U	1 U	1 U	1 U
Methylene chloride	UG/L	5	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Trichloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	UG/L	2	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	5	2 U	2 U	2 U	2 U	2 U

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $\mbox{\bf U}$ - Not detected above the reported quantitation limit. ; NA - Not Analyzed

J - The reported concentration is an estimated value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			SW-02D	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID Matrix			FD-101513	SW-02D	SW-02S	SW-03S	SW-04D
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	=	-
Date Sampled			10/15/13	10/15/13	10/15/13	10/15/13	10/16/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1 U	1 U	1	1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	UG/L	1	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	UG/L	0.6	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (cis)	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethene (trans)	UG/L	5	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	UG/L	1	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene (cis)	UG/L	0.4	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene (trans)	UG/L	0.4	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	3	1 U	1 U	1 U	1 U	1 U
2-Hexanone	UG/L	50	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	UG/L	-	5 U	5 U	5 U	5 U	5 U
Acetone	UG/L	50	10 U	10 U	10 U	10 U	10 U
Benzene	UG/L	1	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	UG/L	50	1 U	1 U	1 U	1 U	1 U
Bromoform	UG/L	50	1 U	1 U	1 U	1 U	1 U
Bromomethane	UG/L	5	1 U	1 U	1 U	1 U	1 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. ; NA - Not Analyzed

J - The reported concentration is an estimated value.

Location ID			SW-02D	SW-02D	SW-02S	SW-03S	SW-04D
Sample ID Matrix			FD-101513	SW-02D	SW-02S	SW-03S	SW-04D
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (-	-	-	-	-
Date Sampled	l		10/15/13	10/15/13	10/15/13	10/15/13	10/16/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Carbon disulfide	UG/L	60	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chloroethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Chloroform	UG/L	7	1 U	1 U	1 U	1 U	1 U
Chloromethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Cyclohexane	UG/L	-	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	UG/L	50	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	UG/L	5	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Ethylbenzene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene (Cumene)	UG/L	5	1 U	1 U	1 U	1 U	1 U
Methyl acetate	UG/L	-	1 U	1 U	1 U	1 U	1 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U	10 U	10 U	10 U	10 U
Methyl tert-butyl ether	UG/L	10	1 U	1 U	1 U	1 U	1 U
Methylcyclohexane	UG/L	-	1 U	1 U	1 U	1 U	1 U
Methylene chloride	UG/L	5	1 U	1 U	1 U	1 U	1 U
Styrene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Trichloroethene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Trichlorofluoromethane	UG/L	5	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	UG/L	2	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	5	2 U	2 U	2 U	2 U	2 U

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $\mbox{\bf U}$ - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $\ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID	SW-04S		
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (ft	-		
Date Sampled			10/16/13
Parameter	Units	Criteria*	
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	1 U
1,1,2,2-Tetrachloroethane	UG/L	5	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1 U
1,1,2-Trichloroethane	UG/L	1	1 U
1,1-Dichloroethane	UG/L	5	1 U
1,1-Dichloroethene	UG/L	5	1 U
1,2,4-Trichlorobenzene	UG/L	5	1 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	6.00E-04	1 U
1,2-Dichlorobenzene	UG/L	3	1 U
1,2-Dichloroethane	UG/L	0.6	1 U
1,2-Dichloroethene (cis)	UG/L	5	1 U
1,2-Dichloroethene (trans)	UG/L	5	1 U
1,2-Dichloropropane	UG/L	1	1 U
1,3-Dichlorobenzene	UG/L	3	10
1,3-Dichloropropene (cis)	UG/L	0.4	1 U
1,3-Dichloropropene (trans)	UG/L	0.4	1 U
1,4-Dichlorobenzene	UG/L	3	1 U
2-Hexanone	UG/L	50	5 U
4-Methyl-2-pentanone	UG/L	-	5 U
Acetone	UG/L	50	10 U
Benzene	UG/L	1	1 U
Bromodichloromethane	UG/L	50	1 U
Bromoform	UG/L	50	1 U
Bromomethane	UG/L	5	1 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $[\]ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID	SW-04S		
Sample ID	SW-04S		
Matrix	Groundwater		
Depth Interval (f	-		
Date Sampled			10/16/13
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Carbon disulfide	UG/L	60	1 U
Carbon tetrachloride	UG/L	5	1 U
Chlorobenzene	UG/L	5	1 U
Chloroethane	UG/L	5	1 U
Chloroform	UG/L	7	1 U
Chloromethane	UG/L	5	1 U
Cyclohexane	UG/L	-	1 U
Dibromochloromethane	UG/L	50	1 U
Dichlorodifluoromethane	UG/L	5	1 UJ
Ethylbenzene	UG/L	5	1 U
Isopropylbenzene (Cumene)	UG/L	5	1 U
Methyl acetate	UG/L	-	1 U
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U
Methyl tert-butyl ether	UG/L	10	1 U
Methylcyclohexane	UG/L	-	1 U
Methylene chloride	UG/L	5	1 U
Styrene	UG/L	5	1 U
Tetrachloroethene	UG/L	5	1 U
Toluene	UG/L	5	1 U
Trichloroethene	UG/L	5	1 U
Trichlorofluoromethane	UG/L	5	1 U
Vinyl chloride	UG/L	2	1 U
Xylene (total)	UG/L	5	2 U

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $\ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class GA.

Location ID			NDP	NDP	SDP	SWTR-1E	SWTR-1T
Sample ID Matrix			FD-101613	NDP	SDP	SWTR-1E	SWTR-1T
			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft	:)		-	-	-	-	-
Date Sampled			10/16/13	10/16/13	10/16/13	10/16/13	10/16/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,1,2,2-Tetrachloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,1,2-Trichloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,1-Dichloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,1-Dichloroethene	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2,4-Trichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	5 U
1,2-Dibromo-3-chloropropane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2-Dichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	5 U
1,2-Dichloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2-Dichloroethene (cis)	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2-Dichloroethene (trans)	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,2-Dichloropropane	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,3-Dichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	5 U
1,3-Dichloropropene (cis)	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,3-Dichloropropene (trans)	UG/L	-	1 U	1 U	1 U	1 U	5 U
1,4-Dichlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	5 U
2-Hexanone	UG/L	-	5 U	5 U	5 U	5 U	25 U
4-Methyl-2-pentanone	UG/L	-	5 U	5 U	5 U	5 U	25 U
Acetone	UG/L	-	10 U	10 U	10 U	10 U	50 U
Benzene	UG/L	10	1 U	1 U	1 U	1 U	2.1 J
Bromodichloromethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Bromoform	UG/L	-	1 U	1 U	1 U	1 U	5 U
Bromomethane	UG/L	-	1 U	1 U	1 U	1 U	5 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $\mbox{\bf U}$ - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $\ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

Location ID Sample ID Matrix			NDP	NDP	SDP	SWTR-1E	SWTR-1T
			FD-101613	NDP	SDP	SWTR-1E	SWTR-1T
			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (-	-	-	-	-
Date Sampled		T	10/16/13	10/16/13	10/16/13	10/16/13	10/16/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Carbon disulfide	UG/L	-	1 U	1 U	1 U	1 U	5 U
Carbon tetrachloride	UG/L	-	1 U	1 U	1 U	1 U	5 U
Chlorobenzene	UG/L	5	1 U	1 U	1 U	1 U	5 U
Chloroethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Chloroform	UG/L	-	1 U	1 U	1 U	1 U	5 U
Chloromethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Cyclohexane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Dibromochloromethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Dichlorodifluoromethane	UG/L	-	1 UJ	1 UJ	1 UJ	1 UJ	5 UJ
Ethylbenzene	UG/L	17	1 U	1 U	1 U	1 U	5 U
Isopropylbenzene (Cumene)	UG/L	2.6	1 U	1 U	1 U	1 U	5 U
Methyl acetate	UG/L	-	1 U	1 U	1 U	1 U	5 U
Methyl ethyl ketone (2-Butanone)	UG/L	-	10 U	10 U	10 U	10 U	50 U
Methyl tert-butyl ether	UG/L	-	1 U	1 U	1 U	1 U	5 U
Methylcyclohexane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Methylene chloride	UG/L	200	1 U	1 U	1 U	1 U	5 U
Styrene	UG/L	-	1 U	1 U	1 U	1 U	5 U
Tetrachloroethene	UG/L	1	1 U	1 U	1 U	1 U	5 U
Toluene	UG/L	100	1 U	1 U	1 U	1 U	5 U
Trichloroethene	UG/L	40	1 U	1 U	1 U	1 U	5 U
Trichlorofluoromethane	UG/L	-	1 U	1 U	1 U	1 U	5 U
Vinyl chloride	UG/L	-	1 U	1 U	1 U	1 U	5 U
Xylene (total)	UG/L	65	2 U	2 U	2 U	2 U	10 U

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $\mbox{\bf U}$ - Not detected above the reported quantitation limit. ; NA - Not Analyzed

 $\ensuremath{\mathsf{J}}$ - The reported concentration is an estimated value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. April 2000, Class C.

TABLE 4 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID		FIELDQC
Sample ID	TB-101713	
Matrix		Water Quality
Depth Interval (ft)		-
Date Sampled Parameter		10/16/13 Trip Blank (1-1)
i alametei	Units	=(
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	1 U
1,1,2,2-Tetrachloroethane	UG/L	1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1 U
1,1,2-Trichloroethane	UG/L	1 U
1,1-Dichloroethane	UG/L	1 U
1,1-Dichloroethene	UG/L	1 U
1,2,4-Trichlorobenzene	UG/L	1 U
1,2-Dibromo-3-chloropropane	UG/L	1 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1 U
1,2-Dichlorobenzene	UG/L	1 U
1,2-Dichloroethane	UG/L	1 U
1,2-Dichloroethene (cis)	UG/L	1 U
1,2-Dichloroethene (trans)	UG/L	1 U
1,2-Dichloropropane	UG/L	1 U
1,3-Dichlorobenzene	UG/L	1 U
1,3-Dichloropropene (cis)	UG/L	1 U
1,3-Dichloropropene (trans)	UG/L	1 U
1,4-Dichlorobenzene	UG/L	1 U
2-Hexanone	UG/L	5 U
4-Methyl-2-pentanone	UG/L	5 U
Acetone	UG/L	10 U
Benzene	UG/L	1 U
Bromodichloromethane	UG/L	1 U
Bromoform	UG/L	1 U
Bromomethane	UG/L	1 U
Carbon disulfide	UG/L	1 U

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. ; NA - Not Analyzed

TABLE 4 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS ROSE VALLEY LANDFILL

Location ID	FIELDQC	
Sample ID	TB-101713	
Matrix	Water Quality	
Depth Interval (ft)		-
Date Sampled		10/16/13
Parameter	Units	Trip Blank (1-1)
Volatile Organic Compounds		
Carbon tetrachloride	UG/L	1 U
Chlorobenzene	UG/L	1 U
Chloroethane	UG/L	1 U
Chloroform	UG/L	1 U
Chloromethane	UG/L	1 U
Cyclohexane	UG/L	1 U
Dibromochloromethane	UG/L	1 U
Dichlorodifluoromethane	UG/L	1 UJ
Ethylbenzene	UG/L	1 U
Isopropylbenzene (Cumene)	UG/L	1 U
Methyl acetate	UG/L	1 U
Methyl ethyl ketone (2-Butanone)	UG/L	10 U
Methyl tert-butyl ether	UG/L	1 U
Methylcyclohexane	UG/L	1 U
Methylene chloride	UG/L	1 U
Styrene	UG/L	1 U
Tetrachloroethene	UG/L	1 U
Toluene	UG/L	1 U
Trichloroethene	UG/L	1 U
Trichlorofluoromethane	UG/L	1 U
Vinyl chloride	UG/L	1 U
Xylene (total)	UG/L	2 U

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. ; NA - Not Analyzed

ATTACHMENT A VALIDATED FORM 1's

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The positive value is the result of an analysis at a secondary dilution factor

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-03S

Lab Sample ID:

480-48159-1

Client Matrix:

Water

Date Sampled: 10/15/2013 1207 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID: Lab File 1D:

HP5975D

Prep Method:

5030C

Prep Batch:

N/A

D6793.D

Dilution:

1.0

Initial Weight/Volume:

5 mL

Analysis Date: Prep Date:

10/22/2013 2350 10/22/2013 2350

Final Weight/Volume: 5 mL

Analyte
1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1,2-Trichloro-1,2,2-trifluoroethane
1,1-Dichloroethane
1,1-Dichloroethene
1,2,4-Trichlorobenzene
1,2-Dibromo-3-Chloropropane
1,2-Dichlorobenzene
1,2-Dichloroethane
1,2-Dichloropropane
1,3-Dichlorobenzene
1,4-Dichlorobenzene
2-Butanone (MEK)
2-Hexanone
4-Methyl-2-pentanone (MIBK)
Acetone
Benzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Dibromochloromethane
Chloroethane
Chloroform
Chloromethane
cis-1,2-Dichloroethene
cis-1,3-Dichloropropene
Cyclohexane
Dichlorodifluoromethane
Ethylbenzene
1,2-Dibromoethane
Isopropylbenzene
Methyl acetate
Methyl tert-butyl ether
Methylcyclohexane

Result (ug/L)	Qualifier	MDL	RL
ND		0.82	1.0
ND		0.21	1.0
ND		0.23	1.0
ND		0.31	1.0
ND		0.38	1.0
ND		0.29	1.0
ND		0.41	1.0
ND		0.39	1.0
ND		0.79	1.0
ND		0.21	1.0
ND		0.72	1.0
ND		0.78	1.0
ND		0.84	1.0
ND		1.3	10
ND		1.2	5.0
ND		2.1	5.0
ND ND		3.0	10
ND		0.41	1.0
		0.39	1.0
ND ND		0.26	1.0
		0.69	1.0
ND		0.19	1.0
ND		0.19	1.0
ND		0.75	1.0
ND			1.0
ND		0.32	1.0
ND		0.32 0.34	1.0
ND			1.0
ND		0.35	1.0
ND		0.81 0.36	1.0
ND			1.0
ND		0.18	1.0
ND UJ		0.68	
ND		0.74	1.0
ND	10/30/13	0.73	1.0
ND	19/2/11	0.79	1.0
ND		0.50	1.0
ND		0.16	1.0
ND		0.16	1.0
ND		0.44	1.0
ND		0.73	1.0
ND		0.36	1.0
ND		0.51	1.0
ND		0.90	1.0
ND		0.37	1.0
ND		0.46	1.0
ND		0.88	1.0
			10

trans-1,2-Dichloroethene trans-1,3-Dichloropropene

Methylene Chloride

Tetrachloroethene

Trichloroethene Trichlorofluoromethane

Styrene

Toluene

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID: SW-03S

Lab Sample ID: 480-48159-1 Date Sampled: 10/15/2013 1207

Client Matrix: Water Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-146726 Instrument ID: HP5975D Prep Method: 5030C Prep Batch: N/A Lab File ID: D6793.D

 Dilution:
 1.0
 Initial Weight/Volume:
 5 mL

 Analysis Date:
 10/22/2013 2350
 Final Weight/Volume:
 5 mL

Prep Date: 10/22/2013 2350

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.90
 1.0

 Xylenes, Total
 ND
 0.66
 2.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 Toluene-d8 (Surr)
 98
 71 - 126

 1 2-Dichlorgethane-d4 (Surr)
 100
 66 - 137

 1,2-Dichloroethane-d4 (Surr)
 100
 66 - 137

 4-Bromofluorobenzene (Surr)
 96
 73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-03S

Lab Sample ID:

480-48159-1

10/22/2013 2350 10/22/2013 2350

Analyte

Client Matrix:

Water

Date Sampled: 10/15/2013 1207 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

Analysis Date:

Prep Date:

Cas Number

18173-64-3

8260C

tert-Butyldimethylsilanol

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method: 5 Dilution: 1

5030C 1.0 Prep Batch:

N/A

Lab File ID:

D6793.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

RT

4.04

Est. Result (ug/L)

Qualifier

3.5

TJN R

10/30/13

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-02S

Lab Sample ID:

480-48159-2

Client Matrix:

Water

Date Sampled: 10/15/2013 1314 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

Lab File ID:

Dilution:

5030C

Prep Batch:

N/A

D6794.D

1.0

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0011

Final Weight/Volume:

5 mL

10/23/2013 0011

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND UJ	16.0	0.68	1.0
Ethylbenzene	ND	10/30/13	0.74	1.0
1,2-Dibromoethane	ND	16 3511	0.73	1.0
Isopropylbenzene	ND :		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-02S

Lab Sample ID:

480-48159-2

Client Matrix:

Water

Date Sampled: 10/15/2013 1314

Date Received: 10/17/2013 1115

8260C Volatile	Organic (Compounds t	y GC/MS
----------------	-----------	-------------	---------

Analysis Method: Prep Method:

8260C 5030C

Dilution:

1.0

Analysis Date:

10/23/2013 0011

Prep Date:

Vinyl chloride

Xylenes, Total

10/23/2013 0011

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D D6794.D Lab File ID:

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Analyte

Result (ug/L) ND ND

Qualifier

MDL 0.90 0.66 RL 1.0 2.0

Surrogate

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Qualifier %Rec

99 98 97 Acceptance Limits 71 - 126

66 - 137 73-120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-02S

Lab Sample ID:

480-48159-2

Client Matrix:

Water

Date Sampled: 10/15/2013 1314 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

0

Instrument ID:

HP5975D

Prep Method: Dilution:

5030C

Prep Batch:

N/A

Lab File ID:

D6794.D

Analysis Date:

1.0

Initial Weight/Volume:

Final Weight/Volume:

5 mL 5 mL

Prep Date:

10/23/2013 0011 10/23/2013 0011

Tentatively Identified Compounds

Number TIC's Found:

RT

Est. Result (ug/L)

Qualifier

Cas Number

Analyte

Tentatively Identified Compound

None

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID: SW-02D

 Lab Sample ID:
 480-48159-3
 Date Sampled: 10/15/2013 1427

 Client Matrix:
 Water
 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-146726 Instrument ID: HP5975D Prep Method: 5030C Prep Batch: N/A Lab File ID: D6797.D

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 10/23/2013 0115 Final Weight/Volume: 5 mL

Analysis Date: 10/23/2013 0115 Prep Date: 10/23/2013 0115

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
,1,2-Trichloroethane	ND		0.23	1.0
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
.1-Dichloroethane	ND		0.38	1.0
I,1-Dichloroethene	ND		0.29	1.0
I,2,4-Trichlorobenzene	ND		0.41	1.0
1.2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Benzene Bromodichloromethane	ND		0.39	1.0
	ND		0.26	1.0
Bromoform	ND		0.69	1.0
Bromomethane	ND		0.19	1.0
Carbon disulfide	ND		0.27	1.0
Carbon tetrachloride	ND		0.75	1.0
Chlorobenzene	ND ND		0.32	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.34	1.0
Chloroform	ND ND		0.35	1.0
Chloromethane	ND ND		0.81	1.0
cis-1,2-Dichloroethene			0.36	1.0
cis-1,3-Dichloropropene	ND		0.18	1.0
Cyclohexane	ND		0.68	1.0
Dichlorodifluoromethane	ND WJ	0 30/13	0.74	1.0
Ethylbenzene		3/	0.74	1.0
1,2-Dibromoethane	ND		0.73	1.0
Isopropylbenzene	ND			1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SW-02D

Lab Sample ID:

480-48159-3

Client Matrix:

Water

Date Sampled: 10/15/2013 1427

Date Received: 10/17/2013 1115

Analysis Method: Prep Method:

8260C

5030C 1.0

Dilution: Analysis Date: Prep Date:

10/23/2013 0115

10/23/2013 0115

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D D6797.D Lab File ID:

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

Analyte Vinyl chloride Xylenes, Total Result (ug/L) ND ND

Qualifier

MDL 0.90 0.66 RL 1.0

2.0

Surrogate

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) %Rec 99

Qualifier

Acceptance Limits 71 - 126 66 - 137

99 97

73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-02D

Lab Sample ID:

480-48159-3

Client Matrix:

Water

Date Sampled: 10/15/2013 1427

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

0

Instrument ID:

HP5975D

Prep Method:

Analysis Date:

Prep Date:

5030C

Prep Batch:

N/A

Lab File ID:

D6797.D

1.0 Dilution:

10/23/2013 0115

Initial Weight/Volume:

Final Weight/Volume:

5 mL 5 mL

10/23/2013 0115

Tentatively Identified Compounds

Number TIC's Found:

Cas Number

Analyte

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-01D

Lab Sample ID:

480-48159-4

Client Matrix:

Water

Date Sampled: 10/15/2013 1546 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Prep Batch:

Lab File ID:

D6798_D

Dilution:

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0136

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0136

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon distillide Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane		1 1.2	0.68	1.0
	ND (1	32/13	0.74	1.0
Ethylbenzene	ND	, , , , ,	0.73	1.0
1,2-Dibromoethane	ND		0.79	1.0
Isopropylbenzene	ND ND		0.50	1.0
Methyl acetate	ND ND		0.16	1.0
Methyl tert-butyl ether	ND ND		0.16	1.0
Methylcyclohexane	ND ND		0.44	1.0
Methylene Chloride			0.73	1.0
Styrene	ND		0.75	1.0
Tetrachloroethene	ND			
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SW-01D

Lab Sample ID:

480-48159-4

Client Matrix:

Water

Date Sampled: 10/15/2013 1546

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

5030C

Dilution:

1.0

Analysis Date: Prep Date:

10/23/2013 0136

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID: Lab File ID:

HP5975D D6798.D

Initial Weight/Volume:

5 mL

Final Weight/Volume: 5 mL

10/23/2013 0136

Analyte Vinyl chloride Xylenes, Total Result (ug/L)

ND

Qualifier

MDL 0.90

RL 1.0

0.66 2.0

Surrogate

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

Qualifier

Acceptance Limits 71 - 126 66 - 137 73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-01D

Lab Sample ID:

480-48159-4

Client Matrix:

Water

Date Sampled: 10/15/2013 1546 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

5030C

Prep Method: Dilution:

1.0

Analysis Date:

Prep Date:

10/23/2013 0136 10/23/2013 0136

Analyte

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

Lab File ID:

HP5975D

Initial Weight/Volume:

D6798.D

Final Weight/Volume:

5 mL 5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

RT

Est. Result (ug/L)

Qualifier

Cas Number 18173-64-3

tert-Butyldimethylsilanol

4.04

4.2

TJN

10/30/13

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-01S

Lab Sample ID:

480-48159-5

Client Matrix:

Water

Date Sampled: 10/15/2013 1648 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

RL 1.0 1.0 1.0 1.0 1.0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10

5.0

5.0

10

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Prep Method:

Prep Batch:

Lab File ID:

D6799.D

Dilution:

5030C 1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0157

Final Weight/Volume:

0.41

0.39

0.79

0.21

0.72

0.78

0.84

1.3

1.2

2.1

3.0

0.41

0.39

0.26

0.69

0.19

0.27

0.75

0.32

0.32

0.34

0.35

5 mL

Prep Date:

10/23/2013 0157

Analyte	Result (ug/L)	Qualifier	MDL	-
1.1.1-Trichloroethane	ND		0.82	•
1.1.2.2-Tetrachloroethane	ND		0.21	
1.1.2-Trichloroethane	ND		0.23	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	
1.1-Dichloroethane	ND		0.38	
1,1-Dichloroethene	ND		0.29	

ND

ND

ND

ND

ND

1,2-Dichlorobenzene 1,2-Dichloroethane

1,2-Dichloropropane 1,3-Dichlorobenzene

1,4-Dichlorobenzene 2-Butanone (MEK)

2-Hexanone 4-Methyl-2-pentanone (MIBK) Acetone

Benzene Bromodichloromethane Bromoform Bromomethane

Carbon disulfide Carbon tetrachloride Chlorobenzene

Dibromochloromethane Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene

cis-1,3-Dichloropropene Cyclohexane Dichlorodifluoromethane

Ethylbenzene 1,2-Dibromoethane Isopropylbenzene Methyl acetate

Methyl tert-butyl ether Methylcyclohexane Methylene Chloride Styrene

Tetrachloroethene

Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene

Trichlorofluoromethane

ND UJ ND 10/30/13 ND ND ND ND ND ND ND ND ND

1.0 0.81 1.0 0.36 1.0 0.18 1.0 0.68 0.74 1.0 1.0 0.73 1.0 0.79 0.50 1.0 0.16 1.0 1.0 0.16 0.44 1.0 0.73 1.0 0.36 1.0 0.51 1.0 0.90 1.0 1.0 0.37 0.46 1.0

0.88

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SW-015

Lab Sample ID:

480-48159-5

Client Matrix:

Water

Date Sampled: 10/15/2013 1648 Date Received: 10/17/2013 1115

00000	Maladila.	0	Campaunda	les	CCIME	
826UC	volatile	Organic	Compounds	: Dy	GCIMO	

Analysis Method: Prep Method:

8260C

5030C 1.0

Dilution: Analysis Date: Prep Date:

10/23/2013 0157

10/23/2013 0157

Analysis Batch: Prep Batch: N/A

480-146726

Lab File ID:

HP5975D Instrument ID: D6799.D

Initial Weight/Volume:

5 mL

Final Weight/Volume: 5 mL

Analyte Vinyl chloride Result (ug/L) ND

Qualifier

MDL 0.90 0.66 RL 1.0 2.0

Xylenes, Total Surrogate

%Rec 100

Qualifier

Acceptance Limits 71 - 126

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

101 98

66 - 137 73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-01S

Lab Sample ID:

480-48159-5

Client Matrix:

Water

Date Sampled: 10/15/2013 1648 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method: Dilution:

5030C

Prep Batch:

N/A

Lab File ID: Initial Weight/Volume: D6799.D 5 mL

5 mL

Analysis Date:

1.0

Tentatively Identified Compounds

10/23/2013 0157

Prep Date:

10/23/2013 0157

Number TIC's Found:

0

Cas Number

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Final Weight/Volume:

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SW-04D

Lab Sample ID:

480-48159-6

Client Matrix:

Water

Date Sampled: 10/16/2013 1010 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

Analysis Batch:

480-146726

Instrument ID: Lab File ID:

HP5975D

5030C

Prep Batch:

N/A

Initial Weight/Volume:

D6800.D 5 mL

Dilution: Analysis Date: Prep Date:

1.0

10/23/2013 0219 10/23/2013 0219 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
I,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
I,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2,1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND UJ	10	0.68	1.0
Ethylbenzene	ND (c	30 13	0.74	1.0
1,2-Dibromoethane	ND	~	0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID: SW-04D

Lab Sample ID: 480-48159-6 Date Sampled: 10/16/2013 1010 Date Received: 10/17/2013 1115

Client Matrix: Water

8260C Volatile Organic Compounds by GC/MS

HP5975D Instrument ID: Analysis Method: 8260C Analysis Batch: 480-146726 Lab File ID: D6800.D 5030C Prep Batch: N/A Prep Method:

5 mL Initial Weight/Volume: Dilution: 1.0 10/23/2013 0219 Analysis Date: Final Weight/Volume: 5 mL

10/23/2013 0219 Prep Date:

Result (ug/L) Qualifier MDL RL Analyte 0.90 1.0 Vinyl chloride Xylenes, Total ND 0.66 2.0

Surrogate %Rec Qualifier Acceptance Limits 71 - 126 Toluene-d8 (Surr) 99

100 66 - 137 1,2-Dichloroethane-d4 (Surr) 73 - 120 4-Bromofluorobenzene (Surr) 98

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-04D

Lab Sample ID:

480-48159-6

Client Matrix:

Water

Date Sampled: 10/16/2013 1010

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch: Prep Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

Analysis Date: Prep Date: 5030C

N/A

Lab File ID:

D6800.D

Dilution:

1.0

10/23/2013 0219

Initial Weight/Volume:

5 mL

10/23/2013 0219

Analyte

Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

Est. Result (ug/L)

Qualifier

Cas Number 1066-40-6

Silanol, trimethyl-

RT 4.04

2.4

TJN

10/2/13

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID: SW-04S

 Lab Sample ID:
 480-48159-7
 Date Sampled: 10/16/2013 1048

 Client Matrix:
 Water
 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-146726 Instrument ID: HP5975D Prep Method: 5030C Prep Batch: N/A Lab File ID: D6801_D

 Dilution:
 1.0
 Initial Weight/Volume:
 5 mL

 Analysis Date:
 10/23/2013 0240
 Final Weight/Volume:
 5 mL

Prep Date: 10/23/2013 0240

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane				
1.1.2.2-Tetrachloroethane	ND		0.82	1.0
1,1,2,2 100,000,000	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	MD		0.18	1.0
Dichlorodifluoromethane	ND UJ	1.1.1	0.68	1.0
Ethylbenzene	ND NO	30/13	0.74	1.0
1,2-Dibromoethane	ND		0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
, ,	ND ND		0.44	1.0
Methylene Chloride	ND ND		0.73	1.0
Styrene Tetrachloroothone	ND ND		0.75	1.0
Tetrachloroethene	ND		0.51	1.0
Toluene			0.90	1.0
trans-1,2-Dichloroethene	ND ND		0.37	1.0
trans-1,3-Dichloropropene			0.37	1.0
Trichloroethene Trichlorofluoromethane	ND ND		0.46	1.0

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID: SW-04S

Lab Sample ID: 480-48159-7 Date Sampled: 10/16/2013 1048 Water Date Received: 10/17/2013 1115

Client Matrix:

8260C Volatile Organic Compounds by GC/MS

Instrument ID: HP5975D Analysis Method: 8260C Analysis Batch: 480-146726 Lab File ID: D6801.D 5030C Prep Batch: N/A Prep Method: Dilution: 1.0

5 mL Initial Weight/Volume: Final Weight/Volume: 5 mL

10/23/2013 0240 Analysis Date: 10/23/2013 0240 Prep Date:

Result (ug/L) Qualifier MDL RL Analyte 0.90 1.0 Vinyl chloride Xylenes, Total ND 0.66 2.0

Surrogate %Rec Qualifier Acceptance Limits 71 - 126 Toluene-d8 (Surr) 97 101 66 - 137 1,2-Dichloroethane-d4 (Surr) 73 - 120 4-Bromofluorobenzene (Surr) 98

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SW-04S

Lab Sample ID:

480-48159-7

Client Matrix:

Water

Date Sampled: 10/16/2013 1048

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

0

Instrument ID:

HP5975D

Prep Method:

5030C

Prep Batch:

N/A

Lab File ID:

D6801.D

Dilution:

1.0

Tentatively Identified Compounds

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0240

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0240

Number TIC's Found:

Cas Number

Analyte

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

MW-16

Lab Sample ID:

480-48159-8

Client Matrix:

Water

Date Sampled: 10/16/2013 1253 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

Analysis Batch:

480-146726

Instrument ID: Lab File ID:

HP5975D

Dilution:

5030C 1.0

Prep Batch:

N/A

Initial Weight/Volume:

D6802.D 5 mL

Analysis Date:

10/23/2013 0301

Prep Date:

10/23/2013 0301

Final	Weig	ht/V	'olur

•			
nal Weight/Volume:	5	mL	

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND UJ		0.68	1.0
Ethylbenzene		30/13	0.74	1.0
1,2-Dibromoethane	ND (1)	30/11/	0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

MW-16

Lab Sample ID:

480-48159-8

Client Matrix:

Water

Date Sampled: 10/16/2013 1253 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

8260C

Analysis Method: Prep Method: Dilution:

5030C 1.0

Analysis Date:

Prep Date:

10/23/2013 0301

10/23/2013 0301

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

Lab File ID:

HP5975D D6802.D

Initial Weight/Volume:

5 mL

Final Weight/Volume: 5 mL

Analyte

Vinyl chloride Xylenes, Total Result (ug/L) ND ND

101

100

Qualifier

MDL 0.90 0.66 RL 1.0 2.0

Surrogate

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) %Rec 101

Qualifier

Acceptance Limits 71 - 126

66 - 137 73 - 120

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

MW-16

Lab Sample ID:

480-48159-8

Client Matrix:

Water

Date Sampled: 10/16/2013 1253

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

N/A

Analysis Method:

8260C 5030C Analysis Batch:

480-146726

0

Instrument ID:

HP5975D

Prep Method:

1.0

Prep Batch:

Lab File ID:

D6802.D

Dilution:

Initial Weight/Volume:

Analysis Date:

10/23/2013 0301

Final Weight/Volume:

5 mL 5 mL

Prep Date:

10/23/2013 0301

Number TIC's Found:

Est. Result (ug/L)

Qualifier

Cas Number

Tentatively Identified Compounds

Analyte Tentatively Identified Compound RT

None

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

SWTR-1E

Lab Sample ID:

480-48159-9

Client Matrix:

Water

Date Sampled: 10/16/2013 1240

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C
Prep Method: 5030C
Dilution: 1.0

Prep Batch:

Analysis Batch:

480-146726 N/A Instrument ID: HP5975D Lab File ID: D6803.D

Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analysis Date:

10/23/2013 0322

Prep Date:	10/23/2013	0322

Analyte	Result (ug/L)	Qualifier	MDL	RL.
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND UJ	1. 1.1	0.68	1.0
Ethylbenzene	ND (U	30/13	0.74	1.0
1,2-Dibromoethane	ND	*	0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SWTR-1E

Lab Sample ID:

480-48159-9

Client Matrix:

Water

Date Sampled: 10/16/2013 1240 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Dilution:

5030C 1.0

Prep Batch:

Lab File ID:

D6803.D

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0322

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0322

Analyte Vinyl chloride Result (ug/L)

Qualifier

MDL 0.90 0.66 RL 1.0

2.0

Xylenes, Total

ND

Qualifier

Acceptance Limits 71 - 126

Surrogate Toluené-d8 (Surr)

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

100 100 99

%Rec

66 - 137 73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SWTR-1E

Lab Sample ID:

480-48159-9

Client Matrix:

Water

Date Sampled: 10/16/2013 1240

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method: Dilution:

5030C

Prep Batch:

N/A

Lab File ID:

D6803.D

1.0

Initial Weight/Volume:

5 mL

Analysis Date: Prep Date:

10/23/2013 0322 10/23/2013 0322 Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

Est. Result (ug/L)

Qualifier TJN-17

Cas Number 1066-40-6

Silanol, trimethyl-

Analyte

RT 4.04

2.4

10/30/13

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID: MW-04

 Lab Sample ID:
 480-48159-10
 Date Sampled: 10/16/2013 1348

 Client Matrix:
 Water
 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-146726 Instrument ID: HP5975D Prep Method: 5030C Prep Batch: N/A Lab File ID: D6806,D

 Dilution:
 1.0
 Initial Weight/Volume:
 5 mL

 Analysis Date:
 10/23/2013 0425
 Final Weight/Volume:
 5 mL

Prep Date: 10/23/2013 0425

ND			
NU		0.82	1.0
ND		0.21	1.0
ND		0.23	1.0
ND		0.31	1.0
11		0.38	1.0
ND		0.29	1.0
ND		0.41	1.0
ND		0.39	1.0
ND		0.79	1.0
ND		0.21	1.0
ND		0.72	1.0
ND		0.78	1.0
		0.84	1.0
			10
			5.0
			5.0
			10
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
ND ILT	-1		1.0
ND VC	2013		1.0
ND (O	130		1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0 1.0
	ND 11 ND	ND 11 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

MW-04

Lab Sample ID:

480-48159-10

Client Matrix:

Water

Date Sampled: 10/16/2013 1348 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C

Analysis Batch: Prep Batch:

480-146726 N/A

Instrument ID: Lab File ID:

HP5975D D6806 D

Dilution: 1.0

Analysis Date:

10/23/2013 0425

Initial Weight/Volume: Final Weight/Volume:

MDL

5 mL 5 mL

Prep Date:

Analyte

10/23/2013 0425

Result (ug/L)

Qualifier

Qualifier

RL 1.0

Vinyl chloride Xylenes, Total

ND ND 0.90 0.66

2.0

Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

101 105 99

%Rec

71 - 126 66 - 137 73 - 120

Acceptance Limits

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

MW-04

Lab Sample ID:

480-48159-10

Client Matrix:

Water

Date Sampled: 10/16/2013 1348

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C 5030C Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method: Dilution:

Prep Batch:

Lab File ID:

D6806.D

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date: Prep Date:

10/23/2013 0425 10/23/2013 0425

Dichlorofluoromethane

Analyte

RT

2.14

Final Weight/Volume: 5 mL

Tentatively Identified Compounds

Number TIC's Found:

3

Est. Result (ug/L) Qualifier 0.58 J

60-29-7 55644-10-5

75-43-4

Cas Number

Ethyl ether Silanol, dimethyl(1,1,2-trimethylpropyl) 2.38 4 04

4.6

10/30/13

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

MW-03

Lab Sample ID:

480-48159-11

Client Matrix:

Water

Date Sampled: 10/16/2013 1442 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method: Dilution:

5030C 1.0

Prep Batch:

N/A

Lab File ID: Initial Weight/Volume: D6807.D

Analysis Date:

10/23/2013 0446

Final Weight/Volume:

5 mL 5 mL

Prep Date:

10/23/2013 0446

ND ND ND 1.9 ND		0.82 0.21 0.23 0.31 0.38 0.29 0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3 1.2 2.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ND ND 1.9 ND		0.23 0.31 0.38 0.29 0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3 1.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ND 1.9 ND		0.31 0.38 0.29 0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.9 ND		0.38 0.29 0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ND N		0.29 0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3 1.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ND N		0.41 0.39 0.79 0.21 0.72 0.78 0.84 1.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 10
ND N		0.39 0.79 0.21 0.72 0.78 0.84 1.3	1.0 1.0 1.0 1.0 1.0 1.0 10 5.0
ND		0.79 0.21 0.72 0.78 0.84 1.3	1.0 1.0 1.0 1.0 1.0 10 5.0
ND		0.21 0.72 0.78 0.84 1.3 1.2	1.0 1.0 1.0 1.0 10 5.0
ND ND ND ND ND ND		0.72 0.78 0.84 1.3 1.2	1.0 1.0 1.0 10 5.0
ND ND ND ND ND ND		0.78 0.84 1.3 1.2	1.0 1.0 10 5.0
ND ND ND ND ND		0.84 1.3 1.2	1.0 10 5.0
ND ND ND ND		1.3 1.2	10 5.0
ND ND ND		1.2	5.0
ND ND			
ND		2.1	5.0
			5.0
ND		3.0	10
		0.41	1.0
ND		0.39	1.0
ND		0.26	1.0
ND		0.69	1.0
ND		0.19	1.0
ND		0.27	1.0
ND		0.75	1.0
ND		0.32	1.0
ND		0.32	1.0
ND		0.34	1.0
ND		0.35	1.0
6.6		0.81	1.0
ND		0.36	1.0
ND		0.18	1.0
ND U.J	141	0.68	1.0
ND	30 13	0.74	1.0
ND (P)	1		1.0
			1.0
ND			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
			1.0
	ND N	ND N	ND

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

MW-03

Lab Sample ID:

480-48159-11

Client Matrix:

Water

Date Sampled: 10/16/2013 1442

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Prep Batch:

Lab File ID:

D6807.D

Dilution:

Analyte

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0446

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0446

Result (ug/L)

Qualifier

MDL 0.90 RL

Vinyl chloride Xylenes, Total ND

ND

%Rec

0.66

1.0 2.0

Surrogate

Qualifier

71 - 126 66 - 137

Acceptance Limits

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 99 100 98

73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

MW-03

Lab Sample ID:

480-48159-11

Client Matrix:

Water

Date Sampled: 10/16/2013 1442

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Lab File ID:

D6807.D

Dilution:

1.0

Tentatively Identified Compounds

Prep Batch:

N/A

Analysis Date:

10/23/2013 0446

0

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

Prep Date:

10/23/2013 0446

Number TIC's Found:

Cas Number

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

NDP

Lab Sample ID:

480-48159-12

Client Matrix:

Water

Date Sampled: 10/16/2013 1455 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

5030C

Prep Method: Dilution:

Analysis Date: Prep Date:

1.0

10/23/2013 0508 10/23/2013 0508

Analysis Batch: Prep Batch:

N/A

480-146726 Instrument ID:

Lab File ID:

HP5975D D6808.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

nalyte	Result (ug/L)	Qualifier	MDL	RL
,1,1-Trichloroethane	ND		0.82	1.0
,1,2,2-Tetrachloroethane	ND		0.21	1.0
,1,2-Trichloroethane	ND		0.23	1.0
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
,1-Dichloroethane	ND		0.38	1.0
,1-Dichloroethene	ND		0.29	1.0
,2,4-Trichlorobenzene	ND		0.41	1.0
,2-Dibromo-3-Chloropropane	ND		0.39	1.0
,2-Dichlorobenzene	ND		0.79	1.0
,2-Dichloroethane	ND		0.21	1.0
,2-Dichloropropane	ND		0.72	1.0
,3-Dichlorobenzene	ND		0.78	1.0
,4-Dichlorobenzene	ND		0.84	1.0
P-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND ND		0.32	1.0
	ND ND		0.34	1.0
Chloroform	ND ND		0.35	1.0
Chloromethane			0.81	1.0
cis-1,2-Dichloroethene	ND		0.36	1.0
cis-1,3-Dichloropropene	ND		0.30	1.0
Cyclohexane	ND			
Dichlorodifluoromethane	ND UJ		0.68	1.0
Ethylbenzene	ND	1 1.	0.74	1.0
I,2-Dibromoethane	ND //	30/13	0.73	1.0
sopropylbenzene	ND	~	0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
rans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

NDP

Lab Sample ID:

480-48159-12

Client Matrix:

Water

Date Sampled: 10/16/2013 1455 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C

Dilution:

1.0

Analysis Date: Prep Date:

10/23/2013 0508

10/23/2013 0508

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D Lab File ID: D6808.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Analyte

Vinyl chloride Xylenes, Total Result (ug/L) ND ND

Qualifier

MDL 0.90 0.66

RL 1.0 2.0

Surrogate

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) %Rec 97

99 96 Qualifier Acceptance Limits 71 - 126

66 - 137 73 - 120

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

NDP

Lab Sample ID:

480-48159-12

Client Matrix:

Water

Date Sampled: 10/16/2013 1455 Date Received; 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C Analysis Batch:

480-146726

Instrument ID:

HP5975D

Dilution:

Prep Batch:

N/A

Lab File ID: Initial Weight/Volume: D6808.D 5 mL

5 mL

Analysis Date:

1.0

Tentatively Identified Compounds

10/23/2013 0508

Prep Date:

10/23/2013 0508

Number TIC's Found:

0

Cas Number

Analyte

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Final Weight/Volume:

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SWTR-1T

Lab Sample ID:

480-48159-13

Client Matrix:

Water

Date Sampled: 10/16/2013 1515 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

RL

Dilution:

5030C

Prep Batch:

Lab File ID:

D6809.D

5.0

N/A

Initial Weight/Volume:

5 mL

Final Weight/Volume:

MDL

5 mL

Dilution:	5.0
Analysis Date:	10/23/2013 0529
Prep Date:	10/23/2013 0529
Analyte	
1,1,1-Trichloroeth	ane
1,1,2,2-Tetrachlor	oethane
1,1,2-Trichloroeth	ane
1,1,2-Trichloro-1,2	2,2-trifluoroethane
1,1-Dichloroethan	e
1,1-Dichloroethen	e
1,2,4-Trichlorober	izene
1,2-Dibromo-3-Ch	loropropane
1,2-Dichlorobenze	ene
1,2-Dichloroethan	e
1,2-Dichloropropa	ne
1,3-Dichlorobenze	ene
1,4-Dichlorobenze	
2-Butanone (MEK	()
2-Hexanone	
4-Methyl-2-pentar	ione (MIBK)
Acetone	
Benzene	
Bromodichlorome	thane
Bromoform	
Bromomethane	

1,1,2-Trichloroethane
1,1,2-Trichloro-1,2,2-trifluoroethane
1,1-Dichloroethane
1,1-Dichloroethene
1,2,4-Trichlorobenzene
1,2-Dibromo-3-Chloropropane
1,2-Dichlorobenzene
1,2-Dichloroethane
1,2-Dichloropropane
1,3-Dichlorobenzene
1,4-Dichlorobenzene
2-Butanone (MEK)
2-Hexanone
4-Methyl-2-pentanone (MIBK)
Acetone
Benzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon disulfide
Carbon tetrachloride
Chlorobenzene
Dibromochloromethane
Chloroethane
Chloroform
Chloromethane
cis-1,2-Dichloroethene
cis-1,3-Dichloropropene
Cyclohexane
Dichlorodifluoromethane
Ethylbenzene
1,2-Dibromoethane
Isopropylbenzene
Methyl acetate
Methyl tert-butyl ether
Methylcyclohexane
Methylene Chloride
Styrene
Tetrachloroethene
Toluene

Result (ug/L) Qualifier
ND	
ND	
ND	
ND ND	
ND ND	
ND	
ND ND	
2.1	J
ND	•
ND	
ND ND	
ND	
ND	
ND	
ND	
ND US	T.
ND	10/34/13
ND	
ND	
ND ND	
ND	
ND	
ND	
ND	

Nesuit (ug/L)	Qualifier	IVIDL	IXL
ND		4.1	5.0
ND		1.1	5.0
ND		1.2	5.0
ND		1.6	5.0
ND		1.9	5.0
ND		1.5	5.0
ND		2.1	5.0
ND		2.0	5.0
ND		4.0	5.0
ND		1.1	5.0
		3.6	
ND			5.0
ND		3.9	5.0
ND		4.2	5.0
ND		6.6	50
ND		6.2	25
ND		11	25
ND		15	50
2.1	J	2.1	5.0
ND		2.0	5.0
ND		1.3	5.0
ND		3.5	5.0
ND		0.95	5.0
ND		1.4	5.0
ND		3.8	5.0
ND		1.6	5.0
ND		1.6	5.0
ND		1.7	5.0
ND		1.8	5.0
ND		4.1	5.0
ND		1.8	5.0
ND		0.90	5.0
ND U.J		3.4	5.0
ND (,)		3.7	5.0
ND ND 10 34	(3)	3.7	5.0
ND	7	4.0	5.0
ND		2.5	5.0
ND		0.80	5.0
ND		0.80	5.0
ND		2.2	5.0
ND		3.7	5.0
ND		1.8	5.0
ND		2.6	5.0
ND		4.5	5.0
ND		1.9	5.0
ND		2.3	5.0
ND		4.4	5.0
Page 46 of 379			10/28/

Trichloroethene Trichlorofluoromethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

SWTR-1T

Lab Sample ID:

480-48159-13

Client Matrix:

Water

Date Sampled: 10/16/2013 1515 Date Received: 10/17/2013 1115

8260C Vola	tile Organic	Compounds	by	GC/MS
------------	--------------	-----------	----	-------

Analysis Method: Prep Method: Dilution:

8260C 5030C

5.0

Analysis Date: Prep Date:

10/23/2013 0529 10/23/2013 0529

Analysis Batch: 480-146726 Prep Batch:

N/A

Instrument ID:

HP5975D Lab File ID:

D6809.D

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

Analyte

Vinyl chloride Xylenes, Total Result (ug/L) ND ND

Qualifier

Qualifier

MDL 4.5 3.3

RL 5.0 10

Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

100 103 100

%Rec

71 - 126 66 - 137 73 - 120

Acceptance Limits

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SWTR-1T

Lab Sample ID:

480-48159-13

Client Matrix:

Water

Date Sampled: 10/16/2013 1515

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

726 Instrument ID:

HP5975D

Prep Method:

Analysis Date:

5030C

itch:

Lab File ID:

D6809.D

Dilution:

Prep Date:

5.0

Prep Batch:

N/A

Initial Weight/Volume:

5 mL

10/23/2013 0529 10/23/2013 0529 Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

3

Cas Number	Anal <u>y</u> te	RT	Est. Result (ug/L)	Qualifier
60-29-7	Ethyl ether	2.38	8.9	A. A
1066-40-6	Silanol, trimethyl-	4.04	14	- TJN-/?
109-99-9	Tetrahydrofuran	4.28	25	

10/30/13

Job Number: 480-48159-1 Client: New York State D.E.C.

Client Sample ID:

SDP

Lab Sample ID:

480-48159-14

Client Matrix:

Water

Date Sampled: 10/16/2013 1530 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Prep Batch:

Lab File ID:

D6810.D

Dilution:

1.0

N/A

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

Analysis Date: Prep Date:

10/23/2013 0550

10/23/2013 0550

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
			0.41	
Benzene	ND			1.0
Bromodichloromethane	ND		0.39	1,0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND 		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND	4 4	0.18	1.0
Dichlorodifluoromethane	ND UJ	10/30/13	0.68	1.0
Ethylbenzene	ND	-	0.74	1.0
1,2-Dibromoethane	ND		0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
	ND		0.46	1.0
Trichloroethene				
Trichlorofluoromethane	ND		0.88	1.0

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

SDP

Lab Sample ID:

480-48159-14

Client Matrix:

Water

Date Sampled: 10/16/2013 1530 Date Received: 10/17/2013 1115

8260C	Volatile	Organic	Compour	nds by	GC/MS

Analysis Method: Prep Method:

8260C 5030C

Dilution:

1.0

Analysis Date: Prep Date:

10/23/2013 0550

10/23/2013 0550

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D Lab File ID:

Initial Weight/Volume:

D6810.D 5 mL

Final Weight/Volume:

5 mL

Analyte Vinyl chloride Xylenes, Total Result (ug/L) ND ND

Qualifier

Qualifier

MDL 0.90 0.66 RL 1.0 2.0

Surrogate Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) %Rec

101 104 100 71 - 126 66 - 137 73 - 120

Acceptance Limits

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

SDP

Lab Sample ID:

480-48159-14

Client Matrix:

Water

Date Sampled: 10/16/2013 1530

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Lab File ID:

D6810.D

Dilution:

1.0

Prep Batch:

N/A

Analysis Date:

10/23/2013 0550

Analyte

Initial Weight/Volume:

5 mL 5 mL

Prep Date:

Cas Number

10/23/2013 0550

0

Final Weight/Volume:

Tentatively Identified Compounds

Number TIC's Found:

RT

Est. Result (ug/L)

Qualifier

Tentatively Identified Compound

None

Client: New York State D.E.C.

Job Number: 480-48159-1

Field Duplicate of NDP Client Sample ID: FD-101613

Lab Sample ID:

480-48159-15

Client Matrix:

Water

Date Sampled: 10/16/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

Prep Batch:

Lab File ID:

D6811.D

Dilution:

1.0

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0610

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0610

1,1,1-richloroethane	Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,2-Trichloroethane ND 0.23 1,0 1,1,2-Trichloro-1,2-trifilororethane ND 0.31 1.0 1,1-Dichloroethane ND 0.29 1.0 1,1-Dichloroethane ND 0.41 1.0 1,2-Dichlorobarcane ND 0.41 1.0 1,2-Dichlorobarcane ND 0.39 1.0 1,2-Dichlorobarcane ND 0.79 1.0 1,2-Dichlorobarcane ND 0.79 1.0 1,2-Dichlorobarcane ND 0.72 1.0 1,2-Dichlorobarcane ND 0.72 1.0 1,2-Dichlorobarcane ND 0.78 1.0 1,2-Dichlorobarcane ND 0.78 1.0 1,2-Dichlorobarcane ND 0.78 1.0 1,2-Dichlorobarcane ND 0.78 1.0 1,2-Dichlorobarcane ND 0.84 1.0 2-Butanore (MEK) ND 0.84 1.0 2-Hexanore ND 1.2 5.0	1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2 Trichloro-1,2,2-Irifluoroethane ND 0.31 1.0 1,1-Dichloroethane ND 0.29 1.0 1,1-Dichloroethene ND 0.29 1.0 1,2-Dichrono-S-Chloropropane ND 0.39 1.0 1,2-Dichloroethane ND 0.79 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.78 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.78 1.0 1,2-Dichloropropane ND 0.78 1.0 1,2-Dichloropropane ND 0.72 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Hexanone ND 0.21 5.0 4-Methyl-2-pentanone (MEK) ND 0.31 1.0	1,1,2,2-Tetrachloroethane			0.21	1.0	
1.1 Dichloroethane ND 0.38 1.0 1.1-Dichloroethene ND 0.29 1.0 1.2-Dichloroethene ND 0.41 1.0 1.2-Dichloroproprane ND 0.79 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1.2-Dichloropenzene ND 0.72 1.0 1.2-Dichlorobenzene ND 0.78 1.0 1.3-Dichlorobenzene ND 0.78 1.0 1.4-Dichlorobenzene ND 0.78 1.0 1.4-Dichlorobenzene ND 0.78 1.0 1.4-Dichlorobenzene ND 0.84 1.0 2-Hexanone ND 0.84 1.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanore (MIBK) ND 1.2 5.0 4-Methyl-2-pentanore (MIBK) ND 3.0 10 Berazene ND 3.0 10 Berazene ND 0.41 1.0 Bromodichloromethane	1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethene ND 0,28 1,0 1,2,4-Trichlorobenzene ND 0,41 1,0 1,2-Dichlorobenzene ND 0,39 1,0 1,2-Dichlorobenzene ND 0,79 1,0 1,2-Dichlorobenzene ND 0,21 1,0 1,2-Dichlorobenzene ND 0,72 1,0 1,3-Dichlorobenzene ND 0,78 1,0 1,4-Dichlorobenzene ND 0,84 1,0 2-Butanone (MEK) ND 1,3 10 2-Hexanone ND 1,2 5,0 4-Methyl-2-pentanone (MIBK) ND 1,2 5,0 4-Methyl-2-pentanone (MIBK) ND 1,2 5,0 4-Methyl-2-pentanone (MIBK) ND 2,1 5,0 4-Methyl-2-pentanone (MIBK) ND 1,2 5,0 4-Methyl-2-pentanone (MIBK) ND 0,1 1,0 Rectone ND 0,4 1,0 Benzene ND 0,4 1,0 Benz	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,2,4-Trichlorobenzene ND 0.41 1.0 1,2-Diplorboropopane ND 0.39 1.0 1,2-Diplorborobenzene ND 0.79 1.0 1,2-Diplorboropopane ND 0.21 1.0 1,2-Diplorboropopane ND 0.72 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Butanone (MEK) ND 1.3 10 2-Heasnone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromodichloromethane ND 0.75 1.0 Chloroethane ND 0.75 1.0 Chloroetha	1,1-Dichloroethane	ND		0.38	1.0	
1,2 Dilbromo-3-Chloropropane ND 0.39 1.0 1,2-Dichloroberzene ND 0.79 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.78 1.0 1,3-Dichloroberzene ND 0.78 1.0 1,4-Dichloroberzene ND 0.84 1.0 1,4-Dichloroberzene ND 1.3 10 2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Benzene ND 0.0 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 0.41 1.0 Benzene ND 0.4 1.0 Benzene ND 0.4 1.0 Bromoform ND 0.39 1.0 Bromoform ND 0.26 1.0 Carbon tetrachloride	1,1-Dichloroethene	ND		0.29	1.0	
1,2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloropropane ND 0.21 1.0 1,2-Dichloropropane ND 0.72 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Butanone (MEK) ND 1.3 10 2-Heasnone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Berzene ND 0.41 1.0 Bromodichloromethane ND 0.41 1.0 Bromoform ND 0.39 1.0 Bromodichloromethane ND 0.69 1.0 Bromodichloromethane ND 0.69 1.0 Carbon disulide ND 0.19 1.0 Carbon disulide ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chlorostertane	1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2-Dichloroethane ND 0.72 1.0 1,2-Dichloropropane ND 0.78 1.0 1,3-Dichlorobenzene ND 0.84 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 0.41 1.0 Browned ND 0.26 1.0 Bromodichloromethane ND 0.69 1.0 Carbon tetrachloride ND 0.32 1.0	1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dichloropropane ND 0.72 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disutifide ND 0.99 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.27 1.0 Dibromochloromethane ND 0.32 1.0 Chlorobethane ND 0.34 1.0 Chlorobethane ND 0.36	1,2-Dichlorobenzene	ND		0.79	1.0	
1,3-Dichlorobenzene ND 0.78 1.0 1,4-Dichlorobenzene ND 0.84 1.0 2-Butanne (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Benzene ND 0.41 1.0 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromodichloromethane ND 0.26 1.0 Bromodithloromethane ND 0.69 1.0 Carbon tetrachloride ND 0.19 1.0 Carbon tetrachloride ND 0.75 1.0 Chlorotenzene ND 0.32 1.0 Chlorotenzene ND 0.32 1.0 Chlorotenzene ND 0.32 1.0 Chlorotenzene ND 0.34 1.0 Chlorotentene ND	1,2-Dichloroethane	ND		0.21	1.0	
1,4-Dichlorobenzene ND 0.84 1.0 2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.19 1.0 Chlorobethane ND 0.27 1.0 Chlorobethane ND 0.32 1.0 Chloroethane ND 0.32 1.0 Chloromethane ND 0.34 1.0 Chloroethane ND 0.35 1.0 Chloroethane ND 0.36 1.0 Chloroethane ND 0.36 1.0	1,2-Dichloropropane	ND		0.72	1.0	
2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.69 1.0 Carbon disulfide ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chlorotethane ND 0.32 1.0 Chlorotethane ND 0.34 1.0 Chlorotethane ND 0.35 1.0 cis-1,2-Dichlorotethene ND 0.81 1.0 cis-1,3-Dichlorotethene ND 0.81 1.0 Dichlorodifluoromethane ND 0.18	1,3-Dichlorobenzene	ND		0.78	1.0	
2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon disulfide ND 0.75 1.0 Chlorobenzene ND 0.75 1.0 Chloromethane ND 0.32 1.0 Chlorobethane ND 0.32 1.0 Chloromethane ND 0.34 1.0 Chloromethane ND 0.81 1.0 Chloromethane ND 0.81 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.18 1.0 Ethylbenzene ND 0.73 1.0	1.4-Dichlorobenzene	ND		0.84	1.0	
2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon disulfide ND 0.75 1.0 Chlorobenzene ND 0.75 1.0 Chloromethane ND 0.32 1.0 Chlorobethane ND 0.32 1.0 Chloromethane ND 0.34 1.0 Chloromethane ND 0.81 1.0 Chloromethane ND 0.81 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.18 1.0 Ethylbenzene ND 0.73 1.0	<u> </u>	ND		1.3	10	
4-Methyl-2-pentanone (MIBK) ND 3.0 10 Acetone ND 0.41 1.0 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloroethane ND 0.34 1.0 Chloroethane ND 0.34 1.0 Chloroethane ND 0.81 1.0 cis-1,2-Dichloroptenene ND 0.81 1.0 Cyclohexane ND 0.68 1.0 Dichlorodifiuoromethane ND 0.68 <td< td=""><td></td><td></td><td></td><td>1.2</td><td>5.0</td><td></td></td<>				1.2	5.0	
Acetone ND 3.0 10 Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon distrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorobenzene ND 0.32 1.0 Chlorochloromethane ND 0.32 1.0 Chloroform ND 0.32 1.0 Chloromethane ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloropropene ND 0.81 1.0 Cyclohexane ND 0.18 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.79 1.0 Isopropylbenzene ND 0.79 1.0				2.1		
Benzene ND 0.41 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloromethane ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloropropene ND 0.81 1.0 Cyclohexane ND 0.18 1.0 Cyclohexane ND 0.18 1.0 Ethylbenzene ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.70 0.70						
Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroform ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 Gis-1,2-Dichloropropene ND 0.81 1.0 Cyclohexane ND 0.36 1.0 Oyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.74 1.0 1,2-Dibromoethane ND 0.74 1.0 1,2-Dibromoethane ND 0.79 1.0 1,2-Dibromoethane ND 0.79 1.0 Methyl sectate ND 0.50						
Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chloromechloromethane ND 0.32 1.0 Chloroform ND 0.32 1.0 Chloromethane ND 0.34 1.0 Chloromethane ND 0.35 1.0 Chloromethane ND 0.81 1.0 Cis-1,2-Dichloroptopene ND 0.81 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.18 1.0 Ethylbenzene ND 0.73 1.0 Isopropylbenzene ND 0.73 1.0 Methyl acetate ND 0.50 1.0 Methyl sert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.73<						
Bromomethane						
Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroftrm ND 0.32 1.0 Chloroferm ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,2-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.73 1.0 Ethylbenzene ND 0.73 1.0 Methyl acetate ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND						
Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloroform ND 0.35 1.0 Chloromethane ND 0.81 1.0 Cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.74 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.79 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Styrene ND 0.7						
Chlorobenzene ND 0.75 1.0 Dibromochloromethane ND 0.32 1.0 Chloroethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.74 1.0 1,2-Dibromoethane ND 0.79 1.0 Isopropylbenzene ND 0.50 1.0 Methyl acetate ND 0.50 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylche Chloride ND 0.73 1.0 Styrene ND 0.3						
Dibromochloromethane ND 0.32 1.0 Chloroethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.79 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.73 1.0 Styrene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND						
Chloroethane ND 0.32 1.0 Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,3-Dichloropropene ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.73 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.51 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,3-Dichloropropene						
Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl ert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloropropene ND 0.37 1.0 trans-1,3-Dichloropropene ND 0.46 1.0						
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylerylochexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Cyclohexane ND 0.18 1.0 Dichlorodifluoromethane ND 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	•					
Dichlorodifluoromethane ND UT 0.68 1.0 Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Ethylbenzene ND 0.74 1.0 1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.37 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	•					
1,2-Dibromoethane ND 0.73 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0			1 1			
Isopropylbenzene	•		10/30/13			
Methyl acetate ND 0.50 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0			7-			
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	• • •					
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Methylene Chloride ND 0.44 1.0 Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Styrene ND 0.73 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	-					
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	•					
trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
trans-1,3-Dichloropropene ND 0.37 1.0 Trichloroethene ND 0.46 1.0						
Trichloroethene ND 0.46 1.0						
Trichlorofluoromethane ND 0.88 1.0	Trichloroethene	ND				
	Trichlorofluoromethane	ND		0.88	1.0	

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

FD-101613

Field Dyplicate of NDP

Lab Sample ID: Client Matrix:

480-48159-15

Water

Date Sampled: 10/16/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C

1.0

Analysis Date: Prep Date:

10/23/2013 0610 10/23/2013 0610 Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D Lab File ID: D6811.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

Analyte

Dilution:

Vinyl chloride Xylenes, Total Result (ug/L) ND ND

Qualifier

Qualifier

MDL 0.90 0.66

RL 1_0 20

Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)

71 - 126 66 - 137 73 - 120

Acceptance Limits

Client: New York State D.E.C.

Job Number: 480-48159-1

Fild Daplick of NDP

Client Sample ID:

FD-101613

Lab Sample ID: Client Matrix:

480-48159-15

Water

Date Sampled: 10/16/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C 5030C

Prep Method: Dilution: 1.0

Analysis Date:

Prep Date:

Cas Number

1066-40-6

10/23/2013 0610 10/23/2013 0610

Silanol, trimethyl-

Analyte

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

Final Weight/Volume:

HP5975D D6811.D

Lab File ID: Initial Weight/Volume:

5 mL

5 mL

Tentatively Identified Compounds

Number TIC's Found:

RT

1

Est. Result (ug/L)

Qualifier TJN

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

FD-101513

Field Dupleate of SW-ODD

Lab Sample ID:

480-48159-16

Client Matrix: Water Date Sampled: 10/15/2013 0000

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID: Lab File ID:

HP5975D

Prep Method:

5030C

D6812.D

Dilution:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

5 mL

Analysis Date:

10/23/2013 0631

Final Weight/Volume:

5 mL

Prep Date:

10/23/2013 0631

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK)	ND		1.3	10
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1,0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND LCT		0.68	1.0
Ethylbenzene	ND	10/30/13	0.74	1.0
1,2-Dibromoethane	ND	10/10/10	0.73	1.0
Isopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Tetrachloroethene	ND		0.36	1.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

FD-101513

Field Duplicate of SW-CZD

Lab Sample ID: Client Matrix:

480-48159-16

Water

Date Sampled: 10/15/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Prep Method: Dilution: 1.0

5030C

Analysis Date: Prep Date:

10/23/2013 0631

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

HP5975D Lab File ID: D6812 D

Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

Analyte

Surrogate

10/23/2013 0631

Result (ug/L)

Qualifier

MDL 0.90 0.66

RL 1.0 2.0

Vinyl chloride Xylenes, Total ND

Qualifier

Acceptance Limits 71 - 126

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) 99 102 98

%Rec

66 - 137 73 - 120

Analytical Data

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

FD-101513

Field Duplicate of SW 02D

Lab Sample ID:

480-48159-16

Client Matrix:

Water

Date Sampled: 10/15/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

5030C

Prep Method: Dilution: 1.0

Analysis Date: Prep Date:

10/23/2013 0631 10/23/2013 0631

Analyte

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

Lab File ID:

HP5975D D6812.D

Initial Weight/Volume: 5 mL

Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

Est. Result (ug/L)

Cas Number 18173-64-3

tert-Butyldimethylsilanol

RT 4.04

7.0

Qualifier
TJN R 16/31/15

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

TB-101713

Lab Sample ID:

480-48159-17

Client Matrix:

Water

Date Sampled: 10/16/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C

5030C

1.0

Analysis Date:

Dilution:

10/23/2013 0652

Analysis Batch: Prep Batch:

480-146726

N/A

Instrument ID:

Lab File ID:

HP5975D D6813.D

Initial Weight/Volume:

5 mL

Final Weight/Volume:

5 mL

nalyte	Result (ug/L)	Qualifier	MDL	RL
,1,1-Trichloroethane	ND	-	0.82	1.0
,1,2,2-Tetrachloroethane	ND		0.21	1.0
,1,2-Trichloroethane	ND		0.23	1.0
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
,1-Dichloroethane	ND		0.38	1.0
,1-Dichloroethene	ND		0.29	1.0
,2,4-Trichlorobenzene	ND		0.41	1.0
,2-Dibromo-3-Chloropropane	ND		0.39	1.0
,2-Dichlorobenzene	ND		0.79	1.0
,2-Dichloroethane	ND		0.21	1.0
,2-Dichloropropane	ND		0,72	1.0
,3-Dichlorobenzene	ND		0.78	1.0
,4-Dichlorobenzene	ND		0.84	1.0
-Butanone (MEK)	ND		1.3	10
-Hexanone	ND		1.2	5.0
-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Benzene	ND		0.41	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Dibromochloromethane	ND		0.32	1.0
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
sis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane	ND UJ		0.68	1.0
Ethylbenzene	A I D	ş j	0.74	1.0
,2-Dibromoethane	ND ic	50/14	0.73	1.0
sopropylbenzene	ND		0.79	1.0
Methyl acetate	ND		0.50	1.0
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
Styrene	ND		0.73	1.0
Fetrachloroethene	ND		0.36	1.0
Foluene	ND		0.51	1.0
rans-1,2-Dichloroethene	ND		0.90	1.0
rans-1,3-Dichloropropene	ND		0.37	1.0
Frichloroethene	ND		0.46	1.0
Frichlorofluoromethane	ND		0.88	1.0

Analytical Data

Client: New York State D.E.C. Job Number: 480-48159-1

Client Sample ID:

TB-101713

Lab Sample ID:

480-48159-17

Client Matrix:

Water

Date Sampled: 10/16/2013 0000 Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C 5030C

Prep Method: Dilution:

1.0

Analysis Date: Prep Date: 10/23/2013 0652

10/23/2013 0652

Analysis Batch: Prep Batch:

480-146726 N/A

146726 Instrument ID:

Qualifier

Lab File ID:

HP5975D

Initial Weight/Volume:

D6813.D 5 mL

Final Weight/Volume:

5 mL

Analyte Vinyl chloride Xylenes, Total

ND ND

Result (ug/L) Qualifier
ND

MDL 0.90 0.66 1.0 2.0

Surrogate
Toluene-d8 (Surr)
1,2-Dichloroethane-d4 (Surr)
4-Bromofluorobenzene (Surr)

Acceptance Limits 71 - 126 66 - 137

73 - 120

17

Analytical Data

Client: New York State D.E.C.

Job Number: 480-48159-1

Client Sample ID:

TB-101713

Lab Sample ID:

480-48159-17

Client Matrix:

Water

Date Sampled: 10/16/2013 0000

Date Received: 10/17/2013 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C

Analysis Batch:

480-146726

Instrument ID:

HP5975D

Prep Method:

5030C

atch:

Lab File ID:

D6813.D

Dilution: Analysis Date:

Prep Date:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

5 mL

10/23/2013 0652

10/23/2013 0652

Final Weight/Volume:

5 mL

Tentatively Identified Compounds

Number TIC's Found:

1

Est. Result (ug/L)

Qualifier

Cas Number 18173-64-3

Analyte

tert-Butyldimethylsilanol

RT 4.04

3.2

TJN- R

10/30/15

ATTACHMENT B SUPPORT DOCUMENTATION

Testamerica Buffalo

Amherst, NY 14228-2298 10 Hazelwood Drive

Phone (715) 691-2600 Fax (716) 691-7991

Chain of Custody Record

Carrier Tracking No(s)

TestAmerica

TO SHAW M - Hexane
N - None
O - Ashao2
P - Na20-46
Q - Na20-38
R - Na20-38
R - Na20-38
G - Na20-47
I - TSP Dodecahydrate
U - Acetone
U - Acetone
W - ph 4-5
Z - other (specify) Special Instructions/Note: Company Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client But ab Anchive For Month 480-40168-10641.1 Preservation Codes H - Ascorbic Acid (N) A - HCL
B - NeOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Arrchlor Page 1 of 2 i - Ice J - Di Water K - EDTA L-EDA Total Mumber of containers Date, Timp: 7 # Date/Time: lethod of Shipmant Analysis Requested Cooler Temperature(s) "C and Other Remarks: Special Instructions/QC Requirements Lab PM: Hoffman, Sally J E-Mail sally, hoffman@testamericainc.com Ved bay 277 3 3 3 2,2 रे 2 へい Ž <u>\{\}</u> 2 Ź 2 Time: 560 3=grab) BT-Timm, A-Air Preservation Code: (Versater, S-solid, Orvasta/oll, Water Water Water Water Water Matrix Water Water Water Water Water Water Company 147 Ther.ch Type (C=comp, G=grab) Sample Radiological 0 0 O O C O U 3 Phone: 856.5636 10/15/13 16 48 1207 2421 51/2/01 1240 13/4 10/15/13 1427 10/13 10/0 1048 1233 1348 Meliz 1442 Stundard Sample Date: 10/17/13 Date/Time TAT Requested (days): Unknown Due Date Requested: 16/13 Po#: CallOut 122069 13/13/13 10/10/13 5/15/10 Sample Date 10/16/13 Project #: 48008612 SSOW#: Date/Time # QM Poison B Skin Imtant Deliverable Requested: I, II, III, IV. Other (specify) Custody Seal No. 716-856-5636(Tei) 716-856-2545(Fax) Flammable 5cc - C4D 5/12 020 Possible Hazard Identification Sw. 015 010 57.0 635 Swith-1E mi - 16 NW-04 Empty Kit Relinquished by: Custody Seals Intact: Client Information george.kisluk@urs.com Sample Identification A Yes A No Rose Valley #622017 Non-Hazard 25 Mr George Kisluk 22 Company: URS Corporation Relinquished by: 32 inquished by: 7 Goodell St State, Zip: NY, 14203 Buffalo of 377

Testvarherica Buffalo
10 Hazelwood Drive
Amherst NY 14228-2298

Chain of Custody Record

TestAmerica

Client Information	Sampler IPKovich	Lab PM: Hoffman, Sally J	John Rivers mino	480-40168-10641.2
CHERTHOOMAND	1	E-Mail		Page.
Client Contact Mr. George Kistuk	856-5676	sally.hoffman@testamericainc.com		Page 2 of 2
Company IIPS Commention		Analysis	Requested	
Address:	Due Date Requested:			
// Gooden of	TAT Requested (days):			
Burraio Sizie 20: 14 4203	Standard TAT			D - Nitric Acid P - Nazo45 E - NaHSO4 Q - NaZSO3 F - MeOH R - Na2SZSO3
716.856-2545(Fax)	Po # Callout 122069	(0)		
	WO#:	(ON		J - DI Water K - EDTA
Project Name: Rose Valley #622017	Project #: 48008612	io 60)		
Site.	SSOW#:) ası		_
	Sample	Matrix (Wewall) Satalitic Satalitic Commented to Till Ground Satalitic Satal		ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Sample Identification	Sample Date Time G-grau)	X		
aen	(2) PAN 1.1/21	Water R.A.3		
402. 4	15/5	Water λ_{1} 3		9
400	5 1532	Water 11.4.3		
GETEND DUD SW	1	Water Mc 3		
-C.7	10/15/13 - G	Water LN 3		
MS Six:	10/15/13 124 6	water $\lambda \gamma 3$		
- 570 - 17 C	13 1314	Water MY 3		
MS 4. 17.3 - 16 - MS	10/16/13 1240 G	Water 2,3		
T		Water 673		
		Water		
TR-101712	1			Acht Bank than though
Possible Hazard Identification Non-Hazard Identification Non-Hazard Identification	ison B Taknown Radiological	Sampla Disposal (A fee may	essed if samples are n	Archive For Months
		Special Instructions/QC Requirements	Ī	
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment.	3 - 11
Reinquished by / / / / / / / / / / / / / / / / / /		Company Regarded by Company Regarded by	MAL Date/Time:	113 111 July Company
N Reinquished by:	Date/Time:	Company Rectived by	Date/Fine:	Сотрату
				ı

Job Narrative

Receipt

The samples were received on 10/17/2013 11:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method(s) 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: SWTR-1T (480-48159-13). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The large number of analytes included in the continuing calibration verification (CCV) in batch 146726 gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes of interest are outside the method-defined %D criteria.

Method(s) 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 147050 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260C: The large number of analytes included in the continuing calibration verification (CCV) in batch 147050 gives a high probability that one or more analytes will be outside acceptance criteria. As indicated in the reference method, analysis may proceed as long as no more than 20% of the analytes are outside the method-defined %D criteria.

Method(s) 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 146726 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

FORM V

GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Buffalo Job No.: 480-48159-1

SDG No.:

Lab File ID: D6786.D BFB Injection Date: 10/22/2013

Instrument ID: HP5975D BFB Injection Time: 19:22

Analysis Batch No.: 146726

M/E	ION ABUNDANCE CRITERIA		ATIVE DANCE
50	15.0 - 40.0 % of mass 95	18.3	
75	30.0 - 60.0 % of mass 95	48.0	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	6.8	
173	Less than 2.0 % of mass 174	0.4	(0.5)1
174	50.0 - 120.00 % of mass 95	78.9	
175	5.0 - 9.0 % of mass 174	6.1	(7.7)1
176	95.0 - 101.0 % of mass 174	77.0	(97.5)1
177	5.0 - 9.0 % of mass 176	5.2	(6.8)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-146726/2	D6787.D	10/22/2013	21:26
	LCS 480-146726/4	D6789.D	10/22/2013	22:09
	MB 480-146726/5	D6790.D	10/22/2013	22:30
SW-03S	480-48159-1	D6793.D	10/22/2013	23:50
SW-02S	480-48159-2	D6794.D	10/23/2013	00:11
SW-02D	480-48159-3	D6797.D	10/23/2013	01:15
SW-01D	480-48159-4	D6798.D	10/23/2013	01:36
SW-01S	480-48159-5	D6799.D	10/23/2013	01:57
SW-04D	480-48159-6	D6800.D	10/23/2013	02:19
SW-04S	480-48159-7	D6801.D	10/23/2013	02:40
MW-16	480-48159-8	D6802.D	10/23/2013	03:01
SWTR-1E	480-48159-9	D6803.D	10/23/2013	03:22
SWTR-1E MS	480-48159-9 MS	D6804.D	10/23/2013	03:43
SWTR-1E MSD	480-48159-9 MSD	D6805.D	10/23/2013	04:04
MW-04	480-48159-10	D6806.D	10/23/2013	04:25
MW-03	480-48159-11	D6807.D	10/23/2013	04:46
NDP	480-48159-12	D6808.D	10/23/2013	05:08
SWTR-1T	480-48159-13	D6809.D	10/23/2013	05:29
SDP	480-48159-14	D6810.D	10/23/2013	05:50
FD-101613	480-48159-15	D6811.D	10/23/2013	06:10
FD-101513	480-48159-16	D6812.D	10/23/2013	06:31
TB-101713	480-48159-17	D6813.D	10/23/2013	06:52

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-48159-1

SDG No.:

Lab Sample ID: CCVIS 480-146726/2 Calibration Date: 10/22/2013 21:26

Instrument ID: HP5975D Calib Start Date: 10/17/2013 10:59

GC Column: RTX-CLPII ID: 0.53(mm) Calib End Date: 10/17/2013 12:45

Lab File ID: D6787.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2333	0.1768	0.1000	18.9	25.0	-24.2*	20.0
Chloromethane	Ave	0.2667	0.2818	0.1000	26.4	25.0	5.7	20.0
Vinyl chloride	Ave	0.3217	0.2879	0.1000	22.4	25.0	-10.5	20.0
Bromomethane	Ave	0.1632	0.1323	0.1000	20.3	25.0	-18.9	20.0
Chloroethane	Ave	0.1690	0.1717	0.1000	25.4	25.0	1.6	20.0
Trichlorofluoromethane	Ave	0.3256	0.3060	0.1000	23.5	25.0	-6.0	20.0
Acrolein	Ave	0.0512	0.0590		576	500	15.2	20.0
1,1-Dichloroethene	Ave	0.3059	0.2740	0.1000	22.4	25.0	-10.4	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2808	0.2570	0.1000	22.9	25.0	-8.5	20.0
Acetone	Ave	0.1178	0.1367	0.1000	145	125	16.0	20.0
Iodomethane	Ave	0.4481	0.4189		23.4	25.0	-6.5	20.0
Carbon disulfide	Ave	0.9242	0.8690	0.1000	23.5	25.0	-6.0	20.0
Acetonitrile	Ave	0.0234	0.0278		1190	1000	19.0	20.0
Methyl acetate	Ave	0.4039	0.4330	0.1000	26.8	25.0	7.2	20.0
Methylene Chloride	Ave	0.3630	0.3281	0.1000	22.6	25.0	-9.6	20.0
Methyl tert-butyl ether	Ave	1.076	1.096	0.1000	25.5	25.0	1.9	20.0
trans-1,2-Dichloroethene	Ave	0.3467	0.3163	0.1000	22.8	25.0	-8.8	20.0
Acrylonitrile	Ave	0.1359	0.1536		141	125	13.0	20.0
1,1-Dichloroethane	Ave	0.5984	0.5583	0.2000	23.3	25.0	-6.7	20.0
Vinyl acetate	Ave	0.6841	0.7303		133	125	6.8	20.0
2,2-Dichloropropane	Ave	0.3780	0.3157		20.9	25.0	-16.5	20.0
cis-1,2-Dichloroethene	Ave	0.3962	0.3571	0.1000	22.5	25.0	-9.9	20.0
2-Butanone (MEK)	Ave	0.1755	0.2046	0.1000	146	125	16.6	20.0
Chlorobromomethane	Ave	0.2073	0.1889		22.8	25.0	-8.9	20.0
Tetrahydrofuran	Ave	0.1215	0.1371		141	125	12.8	20.0
Chloroform	Ave	0.6213	0.5721	0.2000	23.0	25.0	-7.9	20.0
1,1,1-Trichloroethane	Ave	0.5024	0.4553	0.1000	22.7	25.0	-9.4	20.0
Cyclohexane	Ave	0.5271	0.4936	0.1000	23.4	25.0	-6.4	20.0
Carbon tetrachloride	Ave	0.4491	0.4198	0.1000	23.4	25.0	-6.5	20.0
1,1-Dichloropropene	Ave	0.4623	0.4213		22.8	25.0	-8.9	20.0
Benzene	Ave	1.323	1.242	0.5000	23.5	25.0	-6.1	20.0
1,2-Dichloroethane	Ave	0.4859	0.4670	0.1000	24.0	25.0	-3.9	20.0
Trichloroethene	Ave	0.3478	0.3180	0.2000	22.9	25.0	-8.6	20.0
Methylcyclohexane	Ave	0.5658	0.5127	0.1000	22.7	25.0	-9.4	20.0
1,2-Dichloropropane	Ave	0.3234	0.3148	0.1000	24.3	25.0	-2.7	20.0
Dibromomethane	Ave	0.2396	0.2263	0.1000	23.6	25.0	-5.6	20.0
Bromodichloromethane	Ave	0.4604	0.4531	0.2000	24.6	25.0	-1.6	20.0
2-Chloroethyl vinyl ether	Ave	0.2052	0.2351		143	125	14.6	20.0
cis-1,3-Dichloropropene	Ave	0.4909	0.5331	0.2000	27.1	25.0	8.6	20.0
4-Methyl-2-pentanone (MIBK)	Ave	0.7650	0.8217	0.1000	134	125	7.4	20.0

APPENDIX E

WELL INSPECTION FORMS

SITE NAME:	Rose Vall	ey Landfill						
JOB#:	11176716							
DATE:	10/16/201	3						
TIME:	14:12							
WELL ID:	MW-03							
		E	XTERIOR INSPECTION					
PROTECTIVE	E CASING:	OK, stick-up						
LOCK/HASP:	ОК							
HINGE/ LID:	ОК							
WELL PAD:	ОК							
BOLLARDS:	None							
LABEL/ID:	None	None						
OTHER:	Thick veg	Thick vegetation surrounding well.						
			NTERIOR INSPECTION					
WELL RISER		ОК	NTERIOR INSPECTION					
ANULAR SPA		OK OK	NTERIOR INSPECTION					
ANULAR SPA WELL CAP:	ACE:	OK OK	NTERIOR INSPECTION					
ANULAR SPA WELL CAP: WATER LEV	ACE: EL:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEV DEPTH TO B	ACE: EL:	OK OK	NTERIOR INSPECTION HARD/SOFT BOTTOM Soft					
ANULAR SPA WELL CAP: WATER LEV	ACE: EL:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEV DEPTH TO B	ACE: EL:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEV DEPTH TO B OTHER:	ACE: EL: OTTOM:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEV DEPTH TO B	ACE: EL: OTTOM:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEV DEPTH TO B OTHER:	ACE: EL: OTTOM:	OK OK OK 2.84						
ANULAR SPA WELL CAP: WATER LEVI DEPTH TO B OTHER:	ACE: EL: OTTOM:	OK OK OK 2.84	HARD/SOFT BOTTOM Soft	C. Sund				

SITE NAME:	Rose Vall	ey Landfill						
JOB#:	11176716							
DATE:	10/16/201	3						
TIME:	13:18							
WELL ID:	MW-4							
			EXTERIOR INSPECTION					
PROTECTIVE	CASING:	OK, stick-up						
LOCK/HASP:	ок							
HINGE/ LID:	ок							
WELL PAD:	ОК							
BOLLARDS:	None							
LABEL/ID:	None							
OTHER:								
WELL RISER		OK	INTERIOR INSPECTION					
ANULAR SPA		ОК						
WELL CAP:	IOL.	OK						
WATER LEVE	EL:	2.50						
DEPTH TO B		17.54	HARD/SOFT BOTTOM Soft					
OTHER:	- 1							
COMMENTS:								
COMMENTS.								
COMMENTO.								
				Λ				
	INSPECTO	R: Jim Sha	signature approval:					

SITE NAME:	Rose Vall	ey Landfill		
JOB#:	11176716			
DATE:	10/16/201	3		
TIME:	11:43			
WELL ID:	MW-16			
		E	XTERIOR INSPECTION	
PROTECTIVE	CASING:	OK, stick-up		
LOCK/HASP:	ОК	-		
HINGE/ LID:	ОК			
WELL PAD:	ОК			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			NTERIOR INSPECTION	
WELL RISER		OK		
ANULAR SPA	CE:	ОК		
WELL CAP:	<u></u>	OK OK		
WATER LEVE		3.01	HARRIAGET ROTTON O 4	
OTHER:	OTTOM:	11.62	HARD/SOFT BOTTOM Soft	
OTTILIT.	-			
COMMENTS:				
SIGNATURE	INISDECTO	p. / 111	'/ SIGNATURE APPROVAL.	
LOCK KEY #			SIGNATURE APPROVAL:	C. Dural

SITE NAME:	Rose Vall	ey Landfill					
JOB#:	11176716	6					
DATE:	10/15/201	13					
TIME:	16:10						
WELL ID:	SW-01S						
			EXTERIOR INSPECTION				
PROTECTIVE	CASING:	OK, stick-up					
LOCK/HASP:	ОК	The first section of the first					
HINGE/ LID:	ОК						
WELL PAD:	ОК						
BOLLARDS:	None						
LABEL/ID:	None						
OTHER:							
			INTERIOR INSPECTION				
WELL RISER:		ОК					
ANULAR SPA	CE:	ОК					
WELL CAP:		ОК					
WATER LEVE	L:	19.55					
DEPTH TO BO	оттом:	28.39	HARD/SOFT BOTTOM Hard				
OTHER:							
COMMENTS:							
SIGNATURE I	NSPECTOR	R: Im Ilh	SIGNATURE APPROVAL:	C. Dune			
LOCK KEY#							

SITE NAME:	Rose Vall	ey Landfill					
JOB#:	11176716						
DATE:	10/15/201	3					
TIME:	15:00						
WELL ID:	SW-01D						
			V-1-03-090-21-11-11-12-12-12-1				
			EXTERIOR INSPECTION				
PROTECTIVE	CASING:	OK, stick-up					
LOCK/HASP:	ОК						
HINGE/ LID:	ОК						
WELL PAD:	ОК						
BOLLARDS:	None						
LABEL/ID:	None						
OTHER:							
			INTERIOR INSPECTION				
WELL RISER:		ОК					
ANULAR SPA	CE:	ОК					
WELL CAP:		ОК					
WATER LEVE	L:	67.89					
DEPTH TO BO	оттом:	83.87	HARD/SOFT BOTTOM Soft				
OTHER:							
COMMENTS:							
SIGNATURE I	NSPECTOR	R: Tim Ilk	SIGNATURE APPROVAL:	C. Jusef			
LOCK KEY#		· ·		()			

SITE NAME:	Rose Valley Landfill						
JOB#:	11176716						
DATE:	10/15/201	3					
TIME:	12:39						
WELL ID:	SW-02S						
			EXTERIOR INSPECTION				
PROTECTIVE	CASING:	OK, stick-up					
LOCK/HASP:	ОК						
HINGE/ LID:	ОК						
WELL PAD:	ОК						
BOLLARDS:	None						
LABEL/ID:	None						
OTHER:							
			INTERIOR INSPECTION				
WELL RISER	:	ОК					
ANULAR SPA		ОК					
WELL CAP:		OK					
WATER LEVE	EL:	12.40					
DEPTH TO B	оттом:	20.04	HARD/SOFT BOTTOM Soft				
OTHER:							
COMMENTS:							
_		1 00					
			SIGNATURE APPROVAL:	C. Dusel			
LOCK KEY #	224	16					

SITE NAME:	Rose Valle	ey Landfill		
JOB#:	11176716			
DATE:	10/15/201	3		
TIME:	13:57			
WELL ID:	SW-02D			
			EXTERIOR INSPECTION	
PROTECTIVE	CASING:	OK, stick-up		
LOCK/HASP:	ОК			
HINGE/ LID:	ОК			
WELL PAD:	OK			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
			NTERIOR INSPECTION	
WELL RISER:		OK OK		
ANULAR SPA	CE:	OK OK		
WELL CAP: WATER LEVE	1.	OK 70.42		
DEPTH TO BO		79.19	HARD/SOFT BOTTOM Sof	it
COMMENTS:	-			
	io io	/ 11		C.A.D.
SIGNATURE I	NSPECTO 224		SIGNATURE APPROVAL:	- Sign

SITE NAME:	Rose Vall	ey Landfill		
JOB#:	11176716			
DATE:	10/15/201	3		
TIME:	11:37			
WELL ID:	SW-03S			
			EXTERIOR INSPECTION	
PROTECTIVE	E CASING:	OK, flush moun		
LOCK/HASP:		OK, Ilusii Illoui		
HINGE/ LID:	OK			
WELL PAD:	ОК			
BOLLARDS:	None			
LABEL/ID:	None			
OTHER:				
WELL BIOER			INTERIOR INSPECTION	
WELL RISER		OK OK		
ANULAR SPA WELL CAP:	ICE:	OK OK		
WATER LEVE	=1.4	12.96		
DEPTH TO B		18.81	HARD/SOFT BOTTOM Soft	
OTHER:	OTTOWN.	10.01	TIVILE POOL TECHNOLOGY	
O ITILITY.				
COMMENTS:				
SIGNATURE	INSPECTO	R: Tim Sth	SIGNATURE APPROVAL:	C. Dunel
LOCK KEY#				1

SITE NAME:	Rose Vall	ey Landfill				
JOB#:	11176716	(
DATE:	10/16/2013 10:18					
TIME:						
WELL ID:	SW-04S					
			EXTERIOR INSPECTION			
PROTECTIVE	E CASING:	OK, flush moun	it			
LOCK/HASP:	ОК	-				
HINGE/ LID:	ОК					
WELL PAD:	ОК					
BOLLARDS:	None					
LABEL/ID:	None					
OTHER:						
			INTERIOR INSPECTION			
WELL RISER	:	OK				
ANULAR SPA	ACE:	ОК				
WELL CAP:		ОК				
WATER LEVE	EL:	3.35				
DEPTH TO B	ОТТОМ:	8.20	HARD/SOFT BOTTOM Hard			
OTHER:						
COMMENTS:	-					
4-				A		
They was	Control of Life A.	1 000				
			SIGNATURE APPROVAL:	C. Dung		
LOCK KEY #	224	46		()		

SITE NAME:	Rose Vall	ey Landfill				
JOB#:	11176716					
DATE:	10/16/201	10/16/2013				
TIME:	9:10					
WELL ID:	SW-04D					
			EXTERIOR INSPECTION			
PROTECTIVE	CASING:	OK, flush mour				
LOCK/HASP:	ОК	-				
HINGE/ LID:	ОК					
WELL PAD:	ОК					
BOLLARDS:	None					
LABEL/ID:	None					
OTHER:						
			INTERIOR INSPECTION			
WELL RISER:		ОК				
ANULAR SPA	CE:	OK				
WELL CAP:		OK_				
WATER LEVE	L:	8.4 psi = 19.38	ft above measuring point			
DEPTH TO BO	OTTOM:	84.42	HARD/SOFT BOTTOM Soft			
OTHER:						
No.		1.52				
COMMENTS:	Artesian v	well.				
				h		
CICNATURE	NEDECTO	D. 1. 000	A CIONATUDE ADDDOVAL			
			SIGNATURE APPROVAL:	C Dung		
LOCK KEY#	224	+0		()		

APPENDIX F LANDFILL INSPECTION FORM

ROSE VALLEY LANDFILL SITE - POST CLOSURE

NYSDEC SITE NO. 6-22-017

INSPECTION LOG SHEET

Date:	october	16,	2013	

Inspector: Chuck Puse

Weather: Sunny

Signature: ___

Temperature: ~ 60° F

Company: URS Coop

Type: Winter Spring Summer Fall (Circle One)

Item Inspected	Maintenance Needed (Y/N)	Comments	Inspector's Initials
Drainage Channel	N	goal shape	<u>CD</u>
Groundwater Monitoring Wells	N	sprayed wa-40 into all M. well locks.	CD.
Perimeter Access Road	4	Significant evosion is occurring in gravel acon road which lands to contril	CA
Vegetative Cover	4	Mowing should be scheduled for June 2014	CO.
Repaired Vegetation	N	NIA	CD.
Final Cover Layers (Cap Settlement, etc.)	N	good condition	CD.
Gas Vents	N	good condition	
Fence and Gates	N	Gates were repaired Summer 2013	CD.
Other Items: (Specify) access Road on top of	Y	evosion is occurring and fabric has been expend	<u>co.</u>
Other Items: (Specify) site Jeney Barriers enterna	y	repositioned and welded formal total	ao.

Install New barners. 120LF to restrict ATU access

1

prevent evosion from ATV traffic

CD.

TABLE 2

LANDFILL CAP AND SITE STORMWATER MANAGEMENT SYSTEM

MINIMUM CHECKLIST FOR ROUTINE INSPECTIONS

Component	Item	Number/Location/ Area Checked	Condition
Cap Grading	Obvious subsidences, depressions, or cracks Nove Evidence of ponded water Nove Stressed vegetation Powe Signs of erosion occurring at a localized change in grade Evidence of Breaching of toe Nove Animal burrows Nove Other:	entire cap was inspected	owin evosion of concerning is located worth of cap between the worth Detention fond and the ATV hill Took photos. We was and July + Oct. 2013. This need to he manifored - whill be difficult to repair
Cap Vegetation and Repaired Vegetation	Areas of sparse, dead, or missing vegetation Abule Small rill erosion No Animal burrows No Other:	entire	cop was moved in sury zo 13. Very good stand of green vegetation, will beld many in surezoly
Drainage Channel	Missing or displaced stones Woody vegetation growing in the stones or grass cover	all channels were imperted	Minor wood of brush gnowing through stones in drainage channel
GW Monitoring Wells	Condition of lock and cover Signs of damage to casing or collar Condition of weep hole from casing Evidence of tampering Other:	All Manitoring wells were incoected - see M-well impation forms	WD-40 All locks- 10 Mixells were Sorryles-and water feuel measurament, were made

Fences, Gates and Perimeter Access Road	Cutting or bending of fence fabric No Missing locks, hinges, etc. from gates gates maked Motorbike or snowmobile tracks Shotgun shell casings No Beer cans or other trash Other signs of access or vandalism Condition of access road surface Other:	Fence gates were do mayel by vandals and repair of 7/2/18 by URS subcontake Brady Few re Co.	Some tire tracks from ATV riding observed on Landfill access read - recent c+D and track disposal - see photos
Gas Vent	Integrity of pipes and joints Plumbness and differential settlement Obstruction of vents by bird, insect or animal nests Corrosion or deterioration of pipes or supports Localized browning of vegetation Other:	spot checked several gas vents	good condition

APPENDIX G

2013 INTERMITTENT MAINTENANCE

CONSTRUCTION REPORTS AND PHOTO LOGS

PERIODIC INSPECTION REPORT **DATE: Wed., July 10, 2013**

ROSE VALLEY LANDFILL NYSDEC SITE No. 6-22-017

Overcast **TEMPERATURE:** 80's SKIES: WIND: Still PRECIPITATION: Light Rain

Periodic site visit to observe and document the following:

1. General cap conditions and mowing which is occurring today.

URS arrives on-site at 10:15 A.M. Meet with Michael Mason of the NYSDEC.

The NYSDEC and I conducted an inspection of the landfill during mowing by Marcy Excavation Services (MES). During the inspection of the landfill, the NYSDEC and URS observed the following:

- Multiple erosion rills, approximately 12 inches deep and up to 12-inched wide were observed along the main access road entering the site from Rose Valley Road.
- Trash and asphalt have been illegally dumped near the jersey barriers along Military Road (Photos 1 and 2). Several tires have also been illegally dumped in the ravine north of the landfill along Military Road (Photo 3). Trespassers have removed the double swing gate panels from the gate located at the southwest corner of the landfill to gain access for all terrain vehicles (ATV) riding. One gate panel was found lying in the grass next to the gate opening (Photo 4). The second gate panel was found lying up against the northern perimeter fence (Photo 7).
- Multiple erosion rills, approximately 10 inches deep, were discovered along the access road on top of the landfill (Photos 5 and 6), and also along the access road west of the landfill (Figure 13).
- With the exception noted below, the cap and storm water management system appear to be in excellent condition. The stone lining of the swales and down-chutes is exceptionally clean, with no evidence of high flows at all. No leaf litter or other debris is present in the channel lining.
- As noted initially during the August 9, 2012 site inspection and observed during this current inspection, the diversion channel around the north side of the landfill is head cutting, so that there is now an approximately 6-foot high vertical discontinuity in the channel bottom at about the mid-point of the landfill. There appears to be no significant change to the extent of the head cutting since the August 9, 2012 site inspection.
- It appears that the head cutting has been stopped by the geotextile that underlay the downstream end of the channel armor, of which a length of about 10 feet has failed. It is unclear if this equilibrium will persist as the geotextile degrades. It is also unclear, even assuming that the head cutting has stopped, if the adjacent sides of the landfill will hold during run-off events. It was observed that the north bank of the channel appears to be eroding. Thus, the erosion is occurring on the side of the channel away from the landfill. If the head cutting continues, there could be significant erosion of and damage to the landfill cap. The situation can be monitored by noting the tree in the center of Photo 11.

Based upon the observations during this inspection, URS recommend the following corrective actions be taken:

- The addition and grading of crushed stone to the main access road from Rose Valley Road to maintain access to the site.
- The addition and grading of crushed stone to the access road on top of the landfill.
- The replacement and securing of the double swing gate panels from the gate located at the southwest corner of the landfill.
- The placement of jersey barriers across the access road at the western access gate to the landfill to inhibit ATV traffic. The ATV traffic has caused erosion rills to form on the access road.
- The grading of the access road west of the landfill.
- The repair of the diversion channel around the north side of the landfill.

PHOTO LOG - SEE ATTACHED 17 IMAGES.

PREPARED BY:	Chuck Dusel	TITLE:	Project Manager
FREFARED DI.	CHUCK DUSEI	IIILLL,	r roject ivranager

Photo 1: 07-10-13 Trash dumped on the northern side of the Jersey barrier between the barrier and Military Road.

Photo 2: 07-10-13 Trash and asphalt dumped along Military Road near the Jersey barrier.

Photo 3: 07-10-13 Tires continue to be discarded in ravine along Military Road. The NYSDEC had removed and disposed of several hundred discarded tires from this location. Note that the tires are slightly covered by silt and sand.

Photo 4: 07-10-13 The double swing gate located at the southwest corner of the landfill was removed. One side of the gate was found lying in the grass to the side of the gate opening.

Photo 5: 07-10-13 Looking northeast at top of landfill. Erosion rills approximately 10 inches deep are forming on the access road on top of the landfill.

Photo 6: 07-10-13 Looking southwest at top of landfill. Erosion rills approximately 10 inches deep are forming on the access road on top of the landfill.

Photo 7: 07-10-13 The double swing gate located at the southwest corner of the landfill was removed. One side of the gate was found lying against the western perimeter fence (center of picture).

Photo 8: 07-10-13 Looking downslope and east along the southern boundary of the landfill at the south stormwater detention pond.

Photo 9: 07-10-13 Looking west from the bottom of the landfill near the north stormwater management pond at a portion of the final cover that Marcy did not mow. Note that this is the area in which there were two slides during construction. Given the steepness of the slope, this area should be minimally maintained, only to correct any erosion that may occur (none was noted) and to remove woody vegetation.

Photo 10: 07-10-13 Marcy Excavation Services mowing the cap.

Photo 11: 07-10-13 Looking north at the approximate location of erosion (to the right of the tree) along the northern edge of the landfill.

Photo 12: 07-10-13 Looking north along the western perimeter fence and vandalism barrier.

Photo 13: 07-10-13 Looking east towards top of landfill. Traffic from all-terrain vehicles are causing erosion rills to form on the access road.

Photo 14: 07-10-13 Looking northeast at main all-terrain vehicle recreation area/hill in background.

Photo 15: 07-10-13 Camp fire locations were discovered near the main all-terrain vehicle recreation area/hill.

Photo 16: 07-10-13 Temporary shelter located at top of all-terrain vehicle recreation area/hill.

Photo 17: 07-10-13 Looking south across the landfill from on top of the all-terrain vehicle recreation area/hill.