

January 25, 2021

Mr. Scott Deyette
Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation, BURC
625 Broadway
Albany, New York 12233-7014

RE: National Grid Former Manufactured Gas Plant Site

Anthony Street, Watertown, New York Annual Groundwater Monitoring Report

Dear Mr. Deyette:

Enclosed for your review is the Annual Groundwater Monitoring Report for the NG Watertown Former MGP Site, for calendar year 2020.

Groundwater and Environmental Service, Inc., (GES) OM&M contractor for National Grid, conducts all long-term OM&M activities at the site. Site inspections were conducted in August and December of 2020. The site is generally in good shape and in compliance. There were detections of BTEX and/or PAH in all seven monitoring wells sampled.

If you have any questions, then please feel free to contact me at 315.428.5652.

Very truly yours,

for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer National Grid

Cc: Devin T. Shay – Groundwater and Environmental Services, Inc.

National Grid

Annual Groundwater Monitoring Report

National Grid Watertown (Anthony Street) Former MGP Site Anthony Street, Watertown NY13601

January 2021

Version 1

Annual Groundwater Monitoring Report

National Grid Watertown (Anthony St.) Former MGP Site Anthony Street Watertown, NY 13601

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:

Groundwater & Environmental Services, Inc. 5 Technology Place, Suite 4
East Syracuse, NY 13057
TEL: 800-220-3069
www.gesonline.com

GES Project: 0603200.136010.221

Date: January 25, 2021

Devin T. Shay, PG

Program Manager / Principal Hydrogeologist

Table of Contents

1	Int	troduction	. 1
2	Ar	nnual Groundwater Monitoring	. 1
	2.1	Objectives	. 1
	2.2	Groundwater Well Gauging	. 1
	2.3	Groundwater Well Sampling and Analytical Results	. 2
3	Qı	uarterly Site-Wide Inspections	. 2
		ecommendations	

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Contour Map

Figure 4 – Groundwater Analytical map

Tables

Table 1 – Groundwater Monitoring Well Gaguing Data

Table 2 - Groundwater Analytical Data

Appendices

Appendix A – Field Inspection Reports

Appendix B - Well Sampling Field Data

Appendix C – Data Usability Summary Report

1 Introduction

This Annual Groundwater Monitoring Report presents results from the activities conducted at the Watertown (Anthony Street) former non-owned manufactured gas plant (MGP) site, located in Watertown, New York (the Site). A site location map is presented on Figure 1, a site map is presented as Figure 2. The annual monitoring activities summarized herein are performed in accordance with the Site Management Plan for the site, prepared by Arcadis, and approved by the New York State Department of Environmental Conservation (NYSDEC) on March 17, 2017.

A detailed discussion of the annual monitoring activities and results is presented below.

2 Annual Groundwater Monitoring

2.1 Objectives

The objectives of the August 2020 groundwater monitoring activities were to:

- Obtain groundwater elevation data from monitoring wells in the vicinity of the site to evaluate groundwater flow direction, and compare the results with historical groundwater flow conditions.
- Obtain analytical data to assess potential changes in groundwater quality at the site and compare the results to the Class GA groundwater standards and guidance values presented in the NYSDEC document entitled, "Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1), reissued June 1998 and amended April 2000 and June 2004.

2.2 Groundwater Well Gauging

The August 11, 2020 groundwater monitoring field activities were conducted by GES. Prior to collecting groundwater samples, static fluid level measurements were collected from MW-1, MW-2, MW-3R, MW-4E, MW-5R, MW-6R and MW-7R. Water levels were measured to the nearest 0.01 foot using an electronic oil-water interface probe to determine the depth from a surveyed mark on the top of the inner polyvinyl chloride (PVC) well casing to the groundwater within the well.

The fluid level measurements obtained from each monitoring well were converted to groundwater elevations using the surveyed well elevations. The calculated groundwater elevations for each monitoring well are listed in Table 1, and are depicted on Figure 3. Table 1 also includes groundwater elevation measurements obtained during previous groundwater monitoring events.

Groundwater generally flows to the north-northwest from the Site toward the Black River. Groundwater elevations ranged from 422.20 feet above sea level (asl; well MW-7R) to 438.92 feet asl (well MW-2). Field data from the gauging event is presented in Appendix B.

2.3 Groundwater Well Sampling and Analytical Results

Groundwater samples were collected by GES from seven (7) monitoring wells on August 11, 2020 (including MW-1, MW-2, MW-3R, MW-4E, MW-5R, MW-6R and MW-7R). Low-flow sampling techniques were used to purge groundwater from each monitoring well prior to collecting groundwater samples. Field parameters (consisting of turbidity, temperature, pH, conductivity, oxidation reduction potential [ORP], and dissolved oxygen) were measured approximately every 5 to 10 minutes during well purging, and the depth to water was monitored throughout the pumping process to minimize drawdown within the well. Well purging activities continued at each well until the field parameters stabilized and the turbidity of the water in the wells was reduced to less than 50 nephelometric turbidity units (NTUs). Groundwater field data is presented in Appendix B.

Following purging, groundwater samples were collected. The groundwater samples were bottled and shipped to Pace Analytical for laboratory analysis for Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX; EPA Method 8260C), Semi-Volatile Polycyclic Aromatic Hydrocarbons (PAHs; EPA Method 8270D), as well as total cyanide (EPA Method 9012B). Quality assurance/quality control (QA/QC) samples, including a field duplicate, matrix spike, and duplicate matrix spike were also submitted for laboratory analysis. The laboratory analytical results for the groundwater samples were reported using NYSDEC Analytical Services Protocol (ASP) Category B data deliverable packages to facilitate data validation.

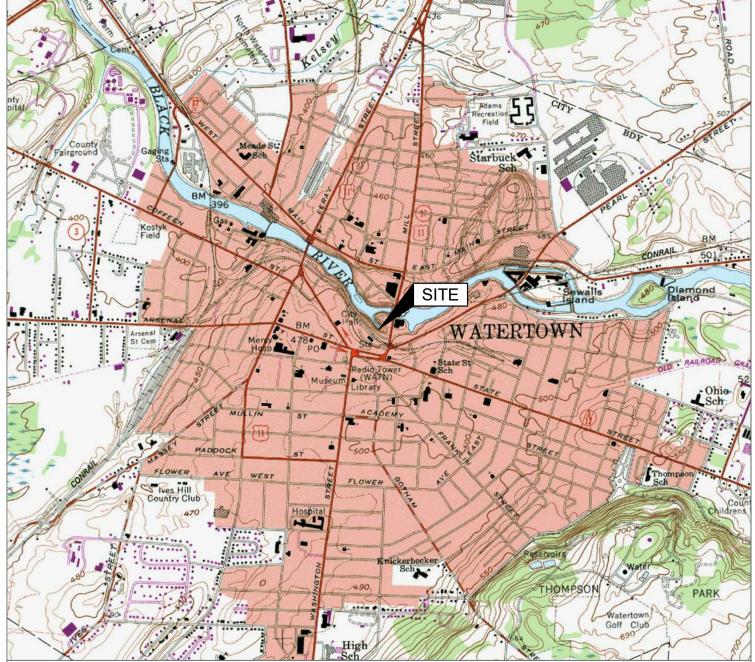
Purge water generated during the sampling activities was collected in 5-gallon buckets and transferred into 55-gallon steel drums for characterization prior to offsite treatment/disposal in accordance with applicable regulations.

Analytical results from the laboratory analysis report are summarized in Table 2 and compared to the Class GA groundwater standards and guidance values presented in TOGS 1.1.1. VOC exceedances are bolded on Table 2 and further shown on Figure 4. The Data Usability Summary Report (DUSR) is included in Appendix C.

There were BTEX and/or PAH detections in all the monitoring wells sampled. BTEX, acenaphthene, benzo(b)fluoranthene, chrysene, and naphthalene were detected above the regulatory criteria in one or more samples. Cyanide was detected in monitoring wells MW-1, MW-2, MW-4R, and MW-5R.

3 Quarterly Site-Wide Inspections

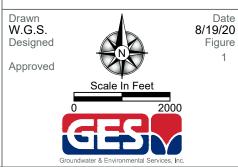
The quarterly site-wide inspections were started on August 11, 2020. A site inspection was also completed on December 10, 2020. The Site Inspection Forms are presented in Appendix A. In general, the Site is in compliance.



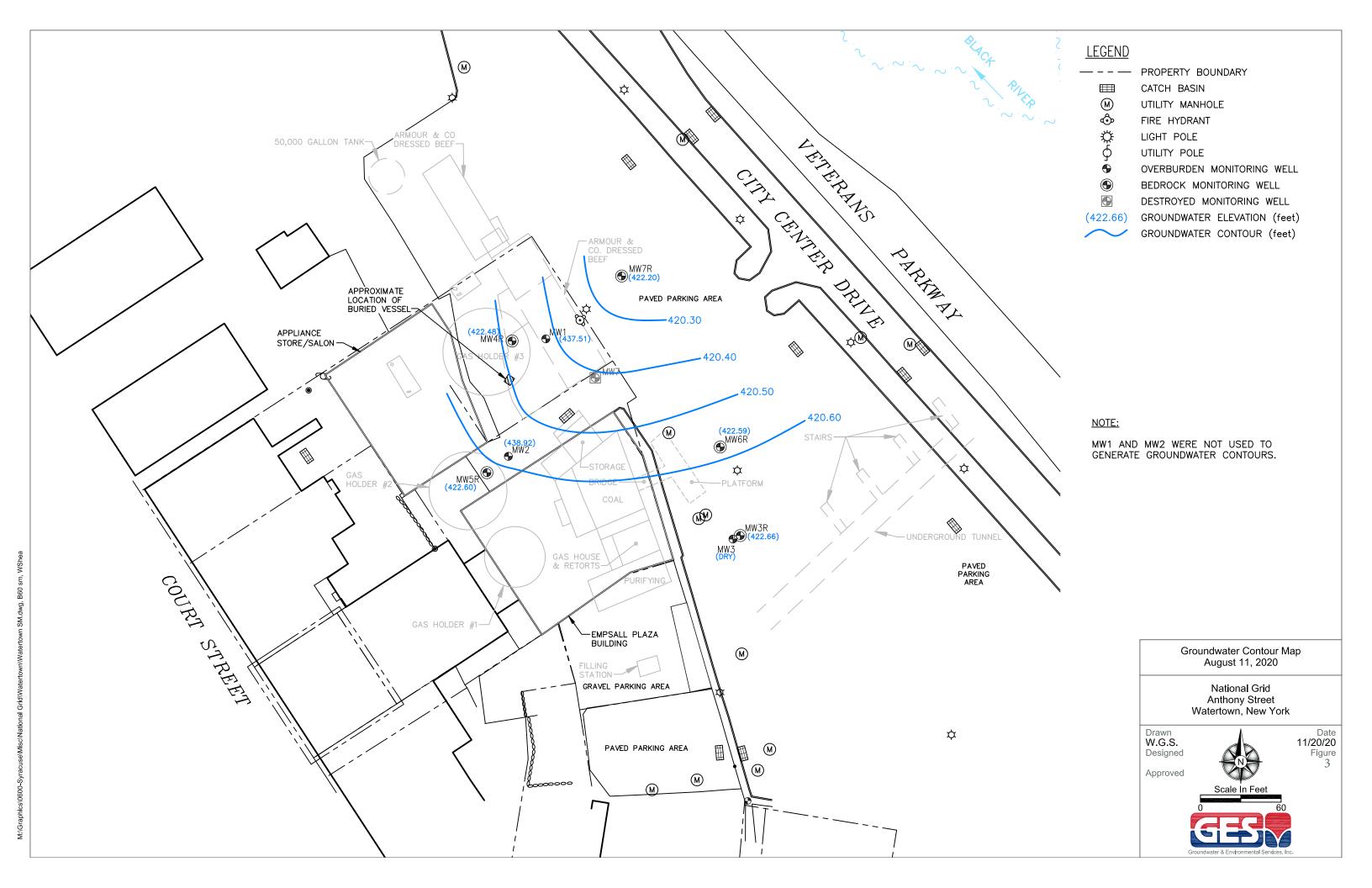
4 Recommendations

At this time, National Grid recommends continuing the annual monitoring activities. The next annual groundwater sampling event would be in the Summer 2021. Annual site-wide inspections are required; however, for internal security purposes, National Grid will continue to conduct quarterly site-wide inspections.

Figures



Source: USGS 7.5 Minute Series Topographic Quadrangle, 1982 Watertown, New York Contour Interval = 10'



Site Location Map

National Grid Anthony Street Watertown, New York

Annual Groundwater Monitoring Report National Grid Watertown (Anthony Street) Former MGP Site Anthony St. Watertown, New York

Tables

Table 1

Groundwater Monitoring Well Gauging Data

Well ID	Well Type & Diameter	Top of Inner Casing Elevation	Depth To Well Bottom	Well Bottom Elevation	Screen Elevation	Depth To Water (12/14/15	Groundwater Elevation (12/14/15)	Depth To Water (08/11/20)	Groundwater Elevation (08/11/20)
MW-1	Flushmount; PVC; 2-inch	444.62	8.50	436.12	3.00 - 8.00	7.47	436.92	7.11	437.51
MW-2	Flushmount; PVC; 2-inch	444.60	8.50	436.10	3.00 - 8.00	6.00	438.35	5.68	438.92
MW-3	Flushmount; PVC; 2-inch	445.39	8.70	436.69	3.20 - 8.20	7.25	438.40	DRY	-
MW-3R	Flushmount; PVC; 2-inch	445.48	24.40	421.08	14.40 - 24.00	22.81	422.52	22.82	422.66
MW-4R	Flushmount; PVC; 2-inch	444.76	50.00	394.76	20.00 - 40.00	23.11	421.22	22.28	422.48
MW-5R	Flushmount; PVC; 2-inch	444.60	50.00	394.60	20.00 - 40.00	22.02	422.04	22.00	422.60
MW-6R	Flushmount; PVC; 2-inch	445.16	50.00	395.16	18.00 - 40.00	22.56	421.69	22.57	422.59
MW-7R	Flushmount; PVC; 2-inch	443.60	45.00	398.60	18.00 - 40.00	21.45	421.67	21.40	422.20

Groundwater Analytical Data

MW-1

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/27/05	09/08/10	06/25/13	12/15/15	08/11/20
втех			ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND
Ethylbenzene	5	μg/L	ND	ND	ND	ND	ND
Toluene	5	μg/L	ND	ND	ND	ND	ND
Total Xylenes	5	μg/L	ND	ND	ND	ND	ND
SVOCs			ND	ND	6.8 J	ND	0.95
Acenaphthene	20	μg/L	ND	ND	ND	ND	ND
Acenaphthylene		μg/L	ND	ND	ND	ND	ND
Anthracene	50	μg/L	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	μg/L	ND	ND	0.86 J	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	0.79 J	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	1.1 J	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	0.78 J	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	ND
Fluorene	50	μg/L	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	ND	ND	ND	ND	0.95
Phenanthrene	50	μg/L	ND	ND	0.77 J	ND	ND
Pyrene	50	μg/L	ND	ND	1.2 J	ND	ND
Inorganics							
Cyanide, Total	200	μg/L	744	596	210	31	150

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-2

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/27/05	10/15/08	09/08/10	06/25/13	12/14/15	08/11/20
BTEX			4.0 J	5.5 J	4.2	2.8	1.4	3.2
Benzene	1	μg/L	4.0 J	4.3	2.4	2.8	1.4	3.2
Ethylbenzene	5	μg/L	ND	0.90 J	ND	ND	ND	ND
Toluene	5	μg/L	ND	ND	1.8	ND	ND	ND
Total Xylenes	5	μg/L	ND	0.30 J	ND	ND	ND	ND
SVOCs			ND	4.3 J	2.4 J	ND	ND	1.3
Acenaphthene	20	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthylene		μg/L	ND	ND	ND	ND	ND	ND
Anthracene	50	μg/L	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	50	μg/L	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	ND	4.3 J	2.4 J	ND	ND	1.3
Phenanthrene	50	μg/L	ND	ND	ND	ND	ND	ND
Pyrene	50	μg/L	ND	ND	ND	ND	ND	ND
Inorganics								
Cyanide, Total	200	μg/L	98	90	127 J	61	50	70

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

= Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-3R

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/15/08	09/08/10	06/23/13	12/14/15	08/11/20
втех			ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND
Ethylbenzene	5	μg/L	ND	ND	ND	ND	ND
Toluene	5	μg/L	ND	ND	ND	ND	ND
Total Xylenes	5	μg/L	ND	ND	ND	ND	ND
SVOCs			ND	ND	ND	ND	1.1
Acenaphthene	20	μg/L	ND	ND	ND	ND	ND
Acenaphthylene		μg/L	ND	ND	ND	ND	ND
Anthracene	50	μg/L	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	ND
Fluorene	50	μg/L	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	ND	ND	ND	ND	1.1
Phenanthrene	50	μg/L	ND	ND	ND	ND	ND
Pyrene	50	μg/L	ND	ND	ND	ND	ND
Inorganics							
Cyanide, Total	200	μg/L	2.5 J	ND	5.2 J	5.5 J	ND

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-4R

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/16/08	09/07/10	06/26/13	12/14/15	08/11/20
втех			2,239	769	23.8	7.2 J	2.1
Benzene	1	μg/L	1,200	670 D	22	7.2 J	2.1
Ethylbenzene	5	μg/L	510	51	1.8	ND	ND
Toluene	5	μg/L	49	6.6	ND	ND	ND
Total Xylenes	5	μg/L	480	41	ND	ND	ND
SVOCs			443 J	16.89 J	ND	ND	1.14
Acenaphthene	20	μg/L	4.3 J	ND	ND	ND	ND
Acenaphthylene		μg/L	ND	ND	ND	ND	ND
Anthracene	50	μg/L	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	ND
Fluorene	50	μg/L	1.3 J	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	430	16	ND	ND	1.0
Phenanthrene	50	μg/L	6.9 J	0.89 J	ND	ND	0.14
Pyrene	50	μg/L	ND	ND	ND	ND	ND
Inorganics							
Cyanide, Total	200	μg/L	ND	ND	11	13	19

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

= Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-5R

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/15/08	09/08/10	06/23/13	12/15/15	08/11/20
втех			20,300	12,800	27,100	8,340	29,290
Benzene	1	μg/L	3,800	4,200 D	6,600 D	3900	4,370
Ethylbenzene	5	μg/L	2,000	2,100 D	3,500 D	740	4,350
Toluene	5	μg/L	9,700	3,600 D	11,000 D	2600	13,200
Total Xylenes	5	μg/L	4,800	2,900 D	6,000 D	1100	7,370
SVOCs			1,927 J	2,461 J	3,598 J	2,231 J	7,647
Acenaphthene	20	μg/L	70 J	74	74 J	62 DJ	78.1
Acenaphthylene		μg/L	69 J	26	56 J	17 J	46.3
Anthracene	50	μg/L	11 J	4.7	5.5 J	ND	4.4
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	1.0 J	ND	0.66 J	0.92
Fluorene	50	μg/L	41 J	29	32 J	21 J	29.1
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	1,700	2,300 D	3,400 D	2,200 D	7,460
Phenanthrene	50	μg/L	36 J	26	30 J	20 J	27.8
Pyrene	50	μg/L	ND	0.71 J	ND	0.56 J	0.74
Inorganics							
Cyanide, Total	200	μg/L	98	ND	180	89	86

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

= Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-6R

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/16/08	09/08/10	06/25/13	12/15/15	08/11/20
втех			ND	ND	0.52 J	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND
Ethylbenzene	5	μg/L	ND	ND	ND	ND	ND
Toluene	5	μg/L	ND	ND	0.52 J	ND	ND
Total Xylenes	5	μg/L	ND	ND	ND	ND	ND
SVOCs			ND	ND	ND	ND	8.58
Acenaphthene	20	μg/L	ND	ND	ND	ND	0.20
Acenaphthylene		μg/L	ND	ND	ND	ND	0.12
Anthracene	50	μg/L	ND	ND	ND	ND	0.28
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	0.14
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	0.19
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	0.38
Fluorene	50	μg/L	ND	ND	ND	ND	0.59
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	ND	ND	ND	ND	3.7
Phenanthrene	50	μg/L	ND	ND	ND	ND	2.4
Pyrene	50	μg/L	ND	ND	ND	ND	0.58
Inorganics							
Cyanide, Total	200	μg/L	ND	ND	ND	ND	ND

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

= Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Groundwater Analytical Data

MW-7R

	NYSDEC TOGS 1.1.1 Guidance Values	Units	10/16/08	09/07/10	06/25/13	12/15/15	08/11/20
втех			ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND
Ethylbenzene	5	μg/L	ND	ND	ND	ND	ND
Toluene	5	μg/L	ND	ND	ND	ND	ND
Total Xylenes	5	μg/L	ND	ND	ND	ND	ND
SVOCs			ND	ND	ND	ND	2.4
Acenaphthene	20	μg/L	ND	ND	ND	ND	ND
Acenaphthylene		μg/L	ND	ND	ND	ND	ND
Anthracene	50	μg/L	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	μg/L	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		μg/L	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	μg/L	ND	ND	ND	ND	ND
Chrysene	0.002	μg/L	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene		μg/L	ND	ND	ND	ND	ND
Fluoranthene	50	μg/L	ND	ND	ND	ND	ND
Fluorene	50	μg/L	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	μg/L	ND	ND	ND	ND	ND
Naphthalene	10	μg/L	ND	ND	ND	ND	2.4
Phenanthrene	50	μg/L	ND	ND	ND	ND	ND
Pyrene	50	μg/L	ND	ND	ND	ND	ND
Inorganics							
Cyanide, Total	200	μg/L	3.1 J	ND	ND	30	ND

Notes:

Results are presented in units of micrograms per liter ($\mu g/L$).

Е = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

= Analyte was detected at a concentration less than the laboratory reporting limit ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

Appendix A – Field Inspection Reports

Site Management Plan Inspection Form Anthony Street Former MGP Site Watertown, New York

Date:	12/10/2020	Watertown, New York	Time:	9:30
echnician:	KL		Weather:	Cloudy 38

	General Site Wide Conditions								
Any signs of ground-intrusive activities?	YES			NO	COMMENTS:				
Any soil disturbance regardless of quantity/extent?	YES			NO	COMMENTS:				
Any surface erosion?	YES			NO	COMMENTS:				
Any settlement?	YES			NO	COMMENTS:				
Bare or sparsely-vegetated areas?	YES			NO	COMMENTS:				
Excessive cracking or missing pavement?	YES			NO	COMMENTS:				
Any other conditions affecting the thickness or the integrity of the soil cover system?	YES			NO	COMMENTS:				
Any repairs, maintenace or corrective actions since the last inspection?	YES			NO	COMMENTS:				
Have the front lawns been mowed?	YES			NO	COMMENTS:				
Conditon of the asphalt pavement	GOOD	FA	NR.	POOR	COMMENTS:				
Conditon of the front sidewalks?	GOOD	F <i>A</i>	AIR.	POOR	COMMENTS:				
Conditon of the building foundations?	GOOD	F.A	ΝR	POOR	COMMENTS:				
Are the requirements of the SMP being met?	YES		NO		COMMENTS:				
Are there any needed changes?	YES			NO	COMMENTS:				
Are the site records complete and up to date?	YES			NO	COMMENTS:				

Site Monitoring Wells							
Well ID.	Location Secure						
MW-1	YES	NO					
MW-2	YES	NO					
MW-3	YES	NO					
MW-3R	YES	NO					
MW-4R	YES	NO					
MW-5R	YES	NO					
MW-6R	YES	NO					
MW-7R	YES	NO					

General Comments:

Site Management Plan Inspection Form Anthony Street Former MGP Site

Date:	8/11/2020	Watertown, New York	Time:	12:45
Technician:	KL/BH		Weather:	Sunny 85

- C	General Site	Wide	e Con	nditions	
Any signs of ground-intrusive activities?	YES			NO	COMMENTS:
Any soil disturbance regardless of quantity/extent?	YES			NO	COMMENTS:
Any surface erosion?	YES			NO	COMMENTS:
Any settlement?	YES			NO	COMMENTS:
Bare or sparsely-vegetated areas?	YES			NO	COMMENTS:
Excessive cracking or missing pavement?	YES			NO	COMMENTS: Near MW-1
Any other conditions affecting the thickness or the integrity of the soil cover system?	YES			NO	COMMENTS:
Any repairs, maintenace or corrective actions since the last inspection?	YES		NO		COMMENTS:
Have the front lawns been mowed?	YES			NO	COMMENTS:
Conditon of the asphalt pavement	GOOD	FA	NR.	POOR	COMMENTS:
Conditon of the front sidewalks?	GOOD	FA	ΝR	POOR	COMMENTS:
Conditon of the building foundations?	GOOD	FA	ΝIR	POOR	COMMENTS:
Are the requirements of the SMP being met?	YES			NO	COMMENTS:
Are there any needed changes?	YES			NO	COMMENTS:
Are the site records complete and up to date?	YES			NO	COMMENTS:

Site Monitoring Wells						
Well ID.	Location	Secure				
MW-1	YES	NO				
MW-2	YES	NO				
MW-3	YES	NO				
MW-3R	YES	NO				
MW-4R	YES	NO				
MW-5R	YES	NO				
MW-6R	YES	NO				
MW-7R	YES	NO				

General Comments:

All well bolts partially or fully stripped. Recommend replace all.

Appendix B – Well Sampling Field Data

Sample Time:

Comments/Notes:

MS/MSD?

Pace Analytical

Greensburg, PA

Laboratory:

	Date: 6/91/20
Sampling Personnel:	
Job Number: 0603200-136010-221	
Well Id. MW-2	Time In: / Time Out:
Well Information TOC Other Depth to Water: (feet) 5.68	Well Type: Flushmount Stick-Up Well Locked: Yes No
Deptit to vvater.	Measuring Point Marked: Yes No
Depth to Bottom: (feet) 7 50 Depth to Product: (feet)	Well Material: PVC SS Other:
Length of Water Column: (feet) 1-62	Well Diameter: 1" 2" Other:
Volume of Water in Well: (gal) , 259	Comments:
Three Well Volumes: (gal) 3777	
Purging Information	Conversion Factors
Burging Method: Bailer Peristaltic Grund	
Purgiting Metriod.	gal/ft. 1"10 2"10 4 10 6 10
Tubing/Bailer Waterial.	dfos Pump water 0.04 0.16 0.66 1.47
Sampling Method: Bailer Peristaltic Grund Average Pumping Rate: (ml/min)	1.galion=3.785L=3785mL=1337cu. feet
Duration of Pumping: (min) 37	
Total Volume Removed: (gal) Did well go dry	? Yes No
Total Volume Hemotes:	— -
Horiba U-52 Water Quality Meter Used? Yes No No	
Time DTW Temp pH ORP	Conductivity Turbidity DO TDS
THIE COLO	(mS/cm) (NTU) (mg/L) (g/L)
(icci)	0.743 127 1-70 0.291
10.03	0.464 86.0 Q-12 0.303
10.10 6.20 19.36 8.09 -323	0.48 9.8 1.71 0.315
	0.410 1260 1-52 0.300
10 10 32 0 34 0 32	0.450 19.9 1.42 0.295
13 20 6 32 19 29 8.05 -2.59	0.444 6.8 1.43 0.280
14:31 10:37 19:29 6:07 -25	0.443 10.2 1.49 0.282
10.39 0.321	
Sampling Information:	
EPA SW-846 Method 8270 SVOC PAH's	4 - 1 liter ambers Yes No
EPA SW-846 Method 8260 VOC's BTEX	6 - 40 ml vials Yes No
EPA SW-846 Method 9012 Total Cyanide	2 - 250 ml plastic Yes No
Field Duplicate-0820	D Chianadi Dana Cauriar Bioleun
Sample ID: MW-2-0820 Duplicate? Yes 190	Shipped: Pace Courier Pickup Drop-off Albany Service Center
Sample Time: 10,35 MS/MSD? Yes No	
Comments/Notes:	Laboratory: Pace Analytical
Commentariolog.	Greensburg, PA

Time In: OGUS Time Out: OGIO No No No No No No No No Other: Well Locked: Yes No No Weasuring Point Marked: Yes Other: Well Material: PVC SS Other: Well Diameter: 1" 2" Other: Comments: Torring Out: OGIO Measuring Point Marked: Yes Other: Well Diameter: 1" 2" Other: Comments: Torring Out: OGIO No Other: Well Type: Flushmount Stick-Up No No Other: Well Alearial: PVC SS Other: Comments: Tefino Stainless St. Peristaltic Grundfos Pump Polyethylene Grundfos Pump Information Torring Out: OGIO No Other: Other Torring Out: OGIO No No Other:	70,100,100				Date: 08/1	120		
Time In:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000 426040 221			Weather: 80°	Suam		
TOC Other Well Type: Flushmount Yes No No No Measuring Point Marked: Yes No Other: Inct: (feet) S.95 Well Material: PVC SS Other: Comments: Well Diameter: 1" 2" Other: Comments: Well Diameter: 1" 2" Other: Comments: Well Diameter: 1" 1" 10 2" 10 4" 10 6" 10 of Water (Imin) Well Grundfos Pump Polyethylene Grundfos Pump Polyethylene Grundfos Pump Polyethylene Grundfos Pump Polyethylene Grundfos Pump Did water (Imin) Water (Imin) Umping: (I	fell ld. MW-3	200-136010-221				•	Time Out: 🗢	710
TOC Other Well Locked: Yes No No No No No No No N				<u> </u>				
TOC Other Type Well Ty								
Well Locked: Yes No No No No No No No N	Well Information			Other	Well Type:	Flushn	nount Stic	k-Up
Measuring Point Marked: Yes Other: Other: Well Material: PVC SS Other: Other: Column: (feet)				Other			Yes	No No
Well Material: PVC SS Other:	epth to Water:					t Marked:	Yes	No
Well Diameter: 1" 2" Other: Comments: Other: Comments: Other: Comments: Other: Comments: Other: Othe	epth to Bottom:	(feet)	5.95				SSOther	·
Comments	epth to Product:						2" Other	:
Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Peristaltic Grundfos Pump Polyethylene Stainless St. Peristaltic Grundfos Pump Stainless St. Peristaltic Grundfos Pump Indicate Indic	ength of Water Colur	nn: (feet)			· ·	<u> </u>		
Information Conversion Factors gal/ft. 1" ID 2" ID 4" ID 6" ID of water 0.04 0.16 0.66 1.47	olume of Water in W	ell: (gal)			00			
Material: Teflon Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Polyethylene Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Polyethylene	hree Well Volumes:	(gal)						
Material: Teflon Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Peristaltic Stainless St. Polyethylene Stainless St. Polyethylene Stainless St. Polyethylene Stainless St. Peristaltic Stainless St. Polyethylene								
umping: (min) Did well go dry? Yes No Water Quality Meter Used? Yes No DTW Temp pH ORP Conductivity Turbidity DO TDS (m)() (mS/cm) (NTU) (mg/L) (g/L)	Purging Method: Tubing/Bailer Materia Sampling Method:	l: E	eflon Stainless St.	Poly	rethylene	gal/ft. of water	1" ID 2" ID 0.04 0.16	4" ID 6" ID 0.66 1.47
PREMOVED: (gal) Did well go dry? Yes No Water Quality Meter Used? Yes No DTW Temp PH ORP Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L)	Average Pumping Ra		7			·		
Water Quality Meter Used? Yes No ORP Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L)	Duration of Pumping Total Volume Remov		 	Did well go dry?	Yes No			
DTW Temp pH ORP Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L)				No C				· .
DTW Temp pH ORP Conductivity Turbidity (g/L) (mS/cm) (NTU) (mg/L) (g/L)	Horiba U-52 Water (uality Meter Used	. · · · · · · · · · · · · · · · · · · ·	3 K Z 11.0 L J				
DTW Temp pr (mS/cm) (NTU) (mg/L) (g/L)				T ODD	I Conductivity I	Turbidity	DO	TDS
(feet) (*C) (IIIV) (IIIV)	111110		pH pH		1	-	(mg/L)	(g/L)
	(f	eet) (°C)		(1114)				
								ļ <u>.</u>
								<u> </u>
		1					ļ <u> </u>	
			1					
]			<u> </u>	
				1	1 1		<u> </u>	
,								

	- 24				Date: 95/11	120		
ampling Person					Weather: 🏽	DOF SAI	ing	
ob Number:	0603200-1360	010-221		 	Time In: 💁		Time Out: 19	xo5
Vell Id. N	NW-3R				THIRD III.			
Well Inform	nation				181 H T. mai	Fluch	mount Stic	ck-Up
				Other	Well Type: Well Locked:		Yes	No
Depth to Water:			87		Measuring Poi		Yes	No
Depth to Bottom		(feet) 23	3,30		Well Materia		SSOther	:
Depth to Produc	t:	(feet)	116		Well Diamete		2" Other	·
ength of Water	Column:		<u>.48</u>		Comments:		<u> </u>	Ì
Volume of Wate			08					
Three Well Volu	imes:	(gal) O	24					
Purging Inf	ormation						Conversion Fa	ctors
			<u> </u>	Crundfe	os Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Purging Method	d:	Bailer	Peristaltic		ethylene	of		
Tubing/Bailer N		Teflon	Stainless St.		os Pump	water	0.04 0.16	0.66 1.47
Sampling Meth	od:	Bailer	Peristaltic	△ Grundi	00 1 Grip		n=3.785L=3785ml	_=1337cu. feet
Average Pump	ing Rate: 160	(ml/min)				<u> </u>		-
Duration of Put	mping: 3C			id well go dry?	Yes No	<u>X</u>]		
Total Volume F	Removed: 1.	5 (gal)			163[1,00],	<u>ان م</u>		
Horiba U-52 W	ater Quality Mo	eter Used?	Yes	⊠ No 🔲			<u> </u>	
TIONDA O 02 11								
Time 1	DTW	Temp	pН	ORP	Conductivity	Turbidity	DO	TDS
Time	(feet)	(°C)	'	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L) 1.03
0930	27.84	29.47	6.86	143	1.61	0.0	6.60	
0935	22.84	27.22	6.77	182	1.58	0.0	5.48	1.01
0940	22.85	25.51	6.76	202	1.60	1000	5.49	1.03
0945	22.84	23.19	6.75	212	163	620	5.74	1.04
0950	22.84	23.23	6.73	216	1.61	315	5.56	1.02
	C - 3 U L -	<u> </u>						
0055	77.84	23.99	6.73	22	1.59	161		A 08H
0955	22.84	23 49 25 39	6.75	220	1.54	170	4.81	0.984
1000	22.85	23.49	6.75		1.54			0.984
0955			6.75		1.54			0.984
0955			6.75		1.54			0.984
0955			6.75		1.54			0.984
0955			6.75		1.54			0.984
0955	22.85		6.75		1.54			0.984
0955	22.85		6.75		1.54	170	4.81	0.984
Sampling Ir	ZZ-85	25.39	6.75		1.54		4.81	0.984 ss No
Sampling Ir	ZZ-SS Information: 846 Method 8270	25.39 svoc	6.75 PAH's		1.54	2 - 1 liter am 3 - 40 ml v	thers Ye ials Ye	0.98H
Sampling Ir EPA SW-	2Z. \$5 nformation: 846 Method 8270 846 Method 826	25. 39 svoc voc's	PAH's BTEX		1.54	2 - 1 liter am	thers Ye ials Ye	0.984 ss No
Sampling Ir EPA SW-	ZZ-SS Information: 846 Method 8270	25. 39 svoc voc's	6.75 PAH's		1.54	2 - 1 liter am 3 - 40 ml v	abers Ye ials Ye lastic Ye	0.984 0.984 0.984
Sampling Ir EPA SW- EPA SW- EPA SW-	2Z. S 5 Information: 846 Method 827 846 Method 826 846 Method 901	25. 39 SVOC VOC's Total C	PAH's BTEX Eyanide	720	1.54	2 - 1 liter am 3 - 40 ml v 1 - 250 ml p	abers Ye ials Ye lastic Ye	o 984
Sampling Ir EPA SW- EPA SW- EPA SW- Sample ID:	2Z. S S Information: 846 Method 8276 846 Method 826 846 Method 901	25. 39 SVOC VOC's Total C	PAH's BTEX Cyanide Ouplicate?	Yes No	1.54	2 - 1 liter am 3 - 40 ml v 1 - 250 ml p	abers Ye ials Ye lastic Ye	o 984
Sampling Ir EPA SW- EPA SW-	2Z. S S Information: 846 Method 8276 846 Method 826 846 Method 901	25. 39 SVOC VOC's Total C	PAH's BTEX Eyanide	720	1.54	2 - 1 liter am 3 - 40 ml v 1 - 250 ml p Shipped:	abers Ye ials Ye lastic Ye Pace Courier Pi p-off Albany Servi	es No
Sampling Ir EPA SW- EPA SW- EPA SW- Sample ID:	2Z. 95 Information: 846 Method 8270 846 Method 826 846 Method 901 MW-3R-	25. 39 SVOC VOC's Total C	PAH's BTEX Cyanide Ouplicate?	Yes No	1.54	2 - 1 liter am 3 - 40 ml v 1 - 250 ml p	abers Ye ials Ye lastic Ye Pace Courier Pi o-off Albany Servi	o.984

	211/-2
Sampling Personnel:	Date: O(U/A)
Job Number: 0603200-136010-221	Weather: Smy 87
Well ld. MW-4R	Time In: 10150 Time Out:
Well Information	
TOC Other	Well Type: Flushmount Stick-Up Stick-Up
Depth to Water: (feet) 22.26	Well Locked: Yes No
Depth to Bottom: (feet) 44-80	Measuring Point Marked: Yes No No Other:
Depth to Product: (feet)	Well Material: PVC SS Other:
Length of Water Column: (feet) 22-57 Volume of Water in Well: (gal) 3-(e0)	Comments:
Volume of Water in Well: (gal) 3-60 Three Well Volumes: (gal) 10.80	Comments.
Titlee vven volunes. (gai) 70 . 00	
Purging Information	
	Conversion Factors
Purging Method: Bailer Peristaltic Grund	ffos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bailer Material: Teflon Stainless St. Po	lyethylene of
Sampling Method: Bailer Peristaltic Grund	tros Pump water 0.04 0.16 0.66 1.47
Average Pumping Rate: (ml/min)	1 gallon=3.785L=3785mL=1337cu. feet
Duration of Pumping: (min) 30	
Total Volume Removed: (gal) 2 Did well go dry'	? Yes No
Horiba U-52 Water Quality Meter Used?	V
	Conductivity Turbidity DO TDS
Time DTW Temp pH ORP	Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L)
Time DTW Temp pH ORP (feet) (°C) (mV)	
Time DTW Temp pH ORP (feet) (°C) (mV)	(mS/cm) (NTU) (mg/L) (g/L)
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.46 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:05 22.67-16.44 8.58 -257	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.49 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.46 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:05 22.67-16.44 8.58 -257	(mS/cm) (NTU) (mg/L) (g/L) 2.04 269 1-84 1-42 2.33 14.7 3.17 1.41 2.96 2.99 4-16 1.93
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.49 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.49 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 269 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-99 4-16 1-93 3.26 13.7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8.09 -247- 11:00 22.83 22.48 8.31 -252- 11:00 23.18 15.87 8.38 -277- 11:10 23.18 15.87 8.33 -278 11:20 25.34 15.97 8.27 -279 11:25 26.52 15.97 8.27 -263	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-98 4-16 1-93 3.26 13-7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.49 20.93 8-09 -247 11:00 22.83 22.48 8.31 -252 11:00 23.16 15.87 8.38 -277	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.41 2-96 2-98 4-16 1-93 3.26 13-7 1-15 2-05
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.46 20.93 8-09 -247- 11:00 22.83 32.48 8.31 -252- 11:00 23:16 15.87 8.38 -277- 11:10 23:16 15.87 8.33 -278- 11:20 35.34 16.94 8.27 -276- 11:25 36.52 16.94 8.27 -276- 11:30 35.34 16.94 8.27 -263 44:30 -263	(ms/cm) (NTU) (mg/L) (g/L) 2.04 269 1-84 1-42 2.33 14.7 3.17 1.11 2-96 2-98 4-16 1-93 3.26 13.7 1-15 2-08 3.26 11-4 0-87 2-09 3-20 11-4 0-38 2-24 2-56 16 9 0-59 1-63
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.46 20.93 8-09 -247- 11:00 22.83 22.46 8.31 -2.52- 11:00 23.46 15.87 8.38 -2.77- 11:10 23.46 15.87 8.33 -2.78- 11:20 25.34 15.94 8.27 -2.76- 11:25 24.98 15.87 8.33 -2.78- 11:20 25.34 15.94 8.27 -2.76- 11:25 26.52 15.94 8.57 -26.3 M:30 Sampling Information: EPA SW-846 Method 8270 SVOC PAH's	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 3.35 14.7 3.17 1.11 2.96 2.99 4.16 1.93 3.26 13.7 1.15 2.09 3.26 11.4 0.37 2.09 2.56 16 9 0.59 1.63
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.49 20.93 8-09 -2.41 11:00 22.83 32.48 8.31 -2.52 11:00 23.48 15.89 8.38 -2.77 11:10 23.48 15.89 8.33 -2.78 11:20 25.34 15.99 8.27 -2.78 11:20 25.34 15.99 8.27 -2.78 11:20 25.34 15.99 8.27 -2.78 11:25 36.52 16.99 8.27 -2.70 11:25 36.52 16.99 8.67 -2.63 H:30 Supplied Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.35 14-7 3.17 1.41 2.96 2-97 4-16 1.93 3.26 13-7 1-15 2-07 3.26 11-4 0-37 2.09 2-56 16 9 0-59 1-63 2-1 liter ambers Yes No
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.46 20.93 8-09 -247- 11:00 22.83 22.46 8.31 -2.52- 11:00 23.46 15.87 8.38 -2.77- 11:10 23.46 15.87 8.33 -2.78- 11:20 25.34 15.94 8.27 -2.76- 11:25 24.98 15.87 8.33 -2.78- 11:20 25.34 15.94 8.27 -2.76- 11:25 26.52 15.94 8.57 -26.3 M:30 Sampling Information: EPA SW-846 Method 8270 SVOC PAH's	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 3.35 14.7 3.17 1.11 2.96 2.99 4.16 1.93 3.26 13.7 1.15 2.09 3.26 1.4 0.37 2.09 2.56 16 9 0.59 1.63
Time DTW Temp pH ORP (feet) (°C) (mV) 10:55 72.48 20.93 8-09 -2.47 11:00 22.83 22.48 8.31 -2.52 11:00 23.16 15.87 8.38 -2.77 11:10 23.16 15.87 8.38 -2.77 11:10 23.16 15.87 8.33 -2.78 11:20 25.34 15.94 8.27 -2.79 11:20 25.34 15.94 8.27 -2.79 11:25 26.52 15.92 8.57 -26.3 41:36 Sampling Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA SW-846 Method 9012 Total Cyanide	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 2.33 14.7 3.17 1.17 2.96 2.99 4.16 1.93 3.26 13.7 1.15 2.09 3.26 1.4 0.37 2.09 3.20 11.4 0.38 2.09 2-56 16 9 0.59 1.63 2-1 liter ambers Yes No No No 1.250 ml plastic Yes No No
Time DTW Temp pH ORP	(mS/cm) (NTU) (mg/L) (g/L) 2.04 26.9 1-84 1-42 3.33 14.7 3.17 1.18 3.26 13.7 1.15 2.09 3.26 1.4 0.37 2.09 3.20 11.4 0.37 2.09 2-56 16 9 0.59 1.63 2-1 liter ambers Yes No No 1.250 ml plastic Yes No
Time DTW Temp pH ORP (feet) (°C) (mV) 10:35 72:46 20:93 8:09 -2:47 11:00 22:83 22:46 8:31 -2:57 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:38 -2:77 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 11:10 23:16 15:87 8:31 -2:57 7:77 11:10 23:16 15:87 8:31 -2:57 7:77 11:10 23:16 15:87 8:57 -2:77 11:10 23:16 15:87 7:77 8:57 -2:77 11:10 23:16 15:87 7:77 8:57 -2:77 11:10 23:16 15:87 15:87 15:87 15:87 15:87 11:10 23:16 23:17 23:77 15:87	(mS/cm) (NTU) (mg/L) (g/L) 2-04 269 1-84 1-42 3-35 14-7 3-17 1-17 2-96 2-99 4-16 1-93 3-26 13-7 1-15 2-09 3-26 11-4 0-37 2-09 2-56 16 9 0-59 1-63 2-1 liter ambers Yes No 3-40 ml vials Yes No 1-250 ml plastic Yes No Shipped: Pace Courier Pickup

Anthony Street, Watertown New York	64:160
Sampling Personnel: Date:	8/11/20
Job Number: 0603200-136010-221 Weather:	Simy 80'
Time in:	OGOCT Time Out:
Well Id. MW-5R	
Well Information TOC Other Well Typ Depth to Water: (feet) 22-00 Well Loc Depth to Bottom: (feet) 44-48 Well Loc Depth to Product: (feet) Well Well Mar Length of Water Column: (feet) 22-45 Well Dia Volume of Water in Well: (gal) 3-59 Comment Three Well Volumes: (gal) 10-7-3	ked: Yes No No Point Marked: Yes Other: Other: Other:
Three ven volumes.	
Purging Method: Purging Method: Tubing/Bailer Material: Sampling Method: Bailer Peristaltic Stainless St. Polyethylene Pe	Conversion Factors gal/ft. 1" ID 2" ID 4" ID 6" ID of water 0.04 0.16 0.66 1.47 1 gallon=3.785L=3785mL=1337cu. feet
	TDC I
Time DTW Temp pH ORP Conductive (feet) (°C) (°C) (mV) (mS/cm) (mS/cm) (mV) (mS/cm) (mV) (mS/cm) (mS/cm) (mV) (mS/cm) (mS/cm) (mV) (mS/cm) (mS/cm) (mV) (mS/cm) ((NTU) (mg/L) (g/L) 3 9-3 2-40 0.407 5 6.3 2.29 0.435 2 4-3 2.22 0.394 0 3-0 2-32 0.297 1 3-3 2.07 0.274 2 3.0 1.85 0.269
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA SW-846 Method 9012 Total Cyanide Sample ID: MW-5R-0820 Duplicate? Yes No Sample Time: MS/MSD? Yes No Sometimes Notes:	2 - 1 liter ambers Yes No 3 - 40 ml vials Yes No 1 - 250 ml plastic Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical


		York				. 100		
Sampling Pers	onnel: 50k					11/20_		
	0603200-1360)10-221	· .		Weather: 50	"E Sunm)	
Job Number:					Time In: 10	10	Time Out: 10	355
Well Id.	MW-6R							
Well Info	ormation	7		other	Well Type:	Flushm	nount Stic	k-Up
			roc <u>c</u> 2 57	7.1101	Well Locked:		Yes	No
Depth to Wate			45.0		Measuring Poir	nt Marked:	Yes	No.
Depth to Botto		(feet)	NP		Well Material:	PVC		
Depth to Prod	uct:		2.43		Well Diamete	r: 1"	2"MOther:	
Length of Wa	ter Column:		3.6		Comments:			ll l
Volume of Wa	ater in Well:) · §					
Three Well V	olumes:	(gal) \ C	20.5					
Purging Purging Meth Tubing/Balle		Bailer Teflon	Peristaltic	Poly	os Pump ethylene os Pump	gal/ft. of water	0.04 0.16	4" ID 6" ID 0.66 1.47
Sampling Me	ethod:	Bailer	Peristaltic	Granan	79 T G. 11.15	1 gailo	n=3.785L=3785mL	=1337cu. feet
Average Pur	mping Rate: 2 <i>တ</i>	(ml/min)				<u> </u>		 }
Duration of I	U	(min)		id well go dry?	Yes No	₹]		\\
Total Volum	e Removed:	Z (gal)				-		ļ.
Horiba U-52	Water Quality Mo	eter Used?	Yes					
						1 1 1 1 1	DO	TDS
Time	T DTW T	Temp	рН	ORP	Conductivity	Turbidity	(mg/L)	(g/L)
111116	(feet)	(°C)	İ	(mV)	(mS/cm)	(NTU)	5.01	1.95
1020	22.58	27.70	7.03	-168	3.02	679	j.45	2.23
1025		20.90	7.05	-43	3.46	230	0.85	2.29
1020	22.60	21.48	7.03	-13	3.58	154	0.68	2.33
1035	22.60	70.74	7.04	-14	3.64	ויכי		
1035		20.74					l ത. 5 9	しているちょ
	27 600		7.08	-/8	3.68	104	0.59	2,35
1040	22.60	70.16		-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60		7.08		3.68	104		
1040	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60 27.60 27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4	0.59	2.33
1045	27.60	20.16 20.15	7.08	-12	3, 65	104 \$2.4 67.9	0.65	2,33
1045 1045 1056	27.60 27.60 27.60 27.60	20.16 20.15 19.81	7.08 7.12 7.14	-12	3, 65	104 82.4 67.5	c. 59 c. 6 5 bers Ye	2 , 3 3 2 , 3 3
Sampling	27.60 27.60 27.60 27.60 g Information:	20.16 20.15 19.81	7.08 7.12 7.14	-12	3, 65	104 82.4 67.5 2-1 liter am 3-40 ml vi	bers Ye	2 . 3 3 2 . 3 3 8 No
Sampling EPA S' EPA S	27.60 27.60 27.60 27.60 27.60 3 Information: W-846 Method 8270 W-846 Method 8270	20.16 20.15 19.81	7.08 7.12 7.14 PAH'S	-12	3, 65	104 82.4 67.5	bers Ye	2 . 3 3 2 . 3 3 8 No
Sampling EPA S' EPA S	27.60 27.60 27.60 27.60 g Information:	20.16 20.15 19.81	7.08 7.12 7.14	-12	3.68 3.63	१०५ ९ट . ५ ६ ट . ५ 2 - 1 liter am 3 - 40 ml vi 1 - 250 ml pl	bers Yeals Yeastic Years	2 . 3 3 2 . 3 3 No No No No
Sampling EPA S' EPA S	27.60 27.60 27.60 27.60 27.60 27.60 W-846 Method 827 W-846 Method 827 W-846 Method 901	20.16 20.15 19.81 0 SVOC 0 VOC's 12 Total 0	PAH's BTEX Cyanide Duplicate?	-12 -3 Yes No	3.68 3.63	2 - 1 liter am 3 - 40 ml vi 1 - 250 ml pl	bers Ye	2 , 3 3 2 , 3 3 No No No No
Sampling EPA S EPA S Sample II	27.60 27.60 27.60 27.60 27.60 27.60 27.60 37.846 Method 827 37.846 Method 827 37.846 Method 827 37.846 Method 901	20.16 20.15 19.81 0 SVOC 50 VOC's 12 Total C	PAH's BTEX Cyanide	-12	3.68 3.63	2 - 1 liter am 3 - 40 ml vi 1 - 250 ml pl	bers Ye als Ye astic Ye Pace Courier Pin-off Albany Servi	Z . 33 Z . 33 No No No No No Ckup Ice Center
Sampling EPA S EPA S EPA S Sample II	27.60 27.60 27.60 27.60 27.60 27.60 3 Information: W-846 Method 827 W-846 Method 901 W-846 Method 901 D: MW-6R-me: 10.50	20.16 20.15 19.81 0 SVOC 50 VOC's 12 Total C	PAH's BTEX Cyanide Duplicate?	-12 -3 Yes No	3.68 3.63	2 - 1 liter am 3 - 40 ml vi 1 - 250 ml pl	bers Yeastic Yeastic Years Courier Pictor Albany Service Pace A	Z , 3 3 Z , 3 3 Z , 3 3 Z , 3 3 Z , 3 3 Z , 3 Z
Sampling EPA S EPA S EPA S Sample II	27.60 27.60 27.60 27.60 27.60 27.60 27.60 37.846 Method 827 37.846 Method 827 37.846 Method 827 37.846 Method 901	20.16 20.15 19.81 0 SVOC 50 VOC's 12 Total C	PAH's BTEX Cyanide Duplicate?	-12 -3 Yes No	3.68 3.63	2 - 1 liter am 3 - 40 ml vi 1 - 250 ml pl	bers Yeastic Yeastic Years Courier Pictor Albany Service Pace A	Z . 33 Z . 33 No No No No No Ckup Ice Center

Anthony Street,												
Sampling Perso	onnel: 54				Date: og/u/	20						
Job Number:	0603200-13	6010-221		 -	Weather: %	of sunny						
		0010			Time In: W	0	Time Out:	1200				
Well Id.	MW-7R		<u></u>									
Well Info	rmation											
vven milo	Imadon		TOC	Other	Well Type:	Flush	ımount 🔀 🤇 S	tick-Up				
Depth to Water	<u> </u>	(feet)	2148		Well Locked: Yes No No							
Depth to Water		(1-17)	15.05		Measuring Point Marked: Yes No No							
Depth to Produ		(feet)	NP	Well Material: PVC SS Other:								
Length of Wate		(feet) 2	3.57		Well Diamet	er: 1"[2"Oth	er:				
Volume of Wa		(gal) 3.			Comments:			Į.				
Three Well Vo	lumes:	(gal)	.4	<u> </u>								
			<u> </u>									
		 	- 		<u> </u>			1				
Purging Ir	formation						Conversion F	actors				
					D		1" ID 2" ID	4" ID 6" ID				
Purging Metho		Bailer	Peristaltic	_	os Pump rethylene	gal/ft. of	1 10 12 10					
Tubing/Bailer		Teflon	Stainless St.	- 	os Pump	water	0.04 0.16	0.66 1.47				
Sampling Met		Bailer	Peristaltic	Grundi	os Pulip[]	<u> </u>	n=3.785L=3785n					
Average Pum				-								
Duration of Pu		` '		oid well go dry?	Yes No	9 Λ						
Total Volume	Tterrioved.	(34.7)			1001.00_							
Horiba U-52 V	Vater Quality M	leter Used?	Yes	No∐_								
							- BO	TDS				
Time	DTW	Temp	pH	ORP	Conductivity	Turbidity	DO (mg/L)	(g/L)				
	(feet)	(°C)	<u> </u>	(mV)	(mS/cm)	(NTU) 154	(mg/L) 3.67	2.20				
1125	21.52	79,95	7.72	103	3. 56	128	1.11	2.27				
1130	21.51	27.17	7.65	100		97.Z	0.88	2.39				
1135	71.51	25.62	7.58	90	3.76	87.1	0.72	2-41				
1140	21.51		7.58	69	3.80	78.3	0.67	2.43				
1145	21.51	25.10 24.91	7.59	62	3.81	73.5	0.61	2.43				
1150	21.51	z4.88	7.60	58	3.82	72.1	0.57	2.44				
1155	21.51	2-1,00	+									
			-			· · · · · · · · · · · · · · · · · · ·						
Sampling	oformation:											
Sampling I	nformation:											
) SVOC	PAH's			2 - 1 liter ami	pers Ye	es No				
EPA SW-	846 Method 8270	_	PAH's BTEX			2 - 1 liter ami 3 - 40 ml via	als Ye	es No 🗌				
EPA SW-	846 Method 8270 -846 Method 826	0 VOC's	BTEX				als Ye	*				
EPA SW-	846 Method 8270	0 VOC's				3 - 40 ml via 1 - 250 ml pla	als Ye	es No No				
EPA SW- EPA SW- EPA SW-	846 Method 8270 -846 Method 826	0 VOC's 2 Total C	BTEX	Yes No	S	3 - 40 ml via 1 - 250 ml pla nipped:	als Ye astic Ye Pace Courier Pi	es No No Ckup				
EPA SW- EPA SW- EPA SW- Sample ID:	846 Method 8270 846 Method 826 846 Method 901 MW-7R-	0 VOC's 2 Total C	BTEX Cyanide	Yes No Yes No	- }i	3 - 40 ml via 1 - 250 ml pla nipped:	als Ye	es No No Ckup				
EPA SW- EPA SW- EPA SW- Sample ID: Sample Time	846 Method 8270 846 Method 826 846 Method 901 MW-7R-	0 VOC's 2 Total C	BTEX Cyanide Ouplicate?		- }i	3 - 40 ml via 1 - 250 ml pla nipped:	als Ye astic Ye Pace Courier Pi off Albany Serv	es No No Ckup				
EPA SW- EPA SW- EPA SW- Sample ID:	846 Method 8270 846 Method 826 846 Method 901 MW-7R-	0 VOC's 2 Total C	BTEX Cyanide Ouplicate?		- }i	3 - 40 ml via 1 - 250 ml pla nipped: Drop-	als Ye astic Ye Pace Courier Pi off Albany Serv Pace A	es No No No Ckup				

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

tion A	Section B		Section C															P	age;	1 of 1	
	Required Project Information:		Immics Informati	on.								,							صحم		
	Report To: Devin Shay (GES) dehay@gesonline.com		Atheritor: Accor	ıntı Payable								4						4749	EHS (
idress: 5 Technology Place, Suite 4	Report To: Tim Beaumons (GES) theseumons@gesonline.com	•	Company Name	Grounde	& Envi	onnertal Ge	releas, Iric					41	MPD) ROUN	TAY	R	HINKINK	WATER		
set Syracuse, New York 13057	Contraction in Figure 2 and 1		Address 5 Tech	nology Place	a, Susa 4,	End Syracus	ie, NY 130	67 				-	UST	SiT	RCRA	-		THER			_
maii To: dahay@geeoniine.com	Purchase Order No.:		Pace Quote Ref		- 1-1-							-	LOGA		=	,		L ſ		ř.	
hone: 600,220,3089 Fee: None 4051	Project Name National Grid - Wa Anthony St, Watertown NY	tertown	Page Project Me	mager Rach	Chiner	nnual G	ws					-	Filtered (OH ::	ж " 777	n 1	ER	,
tequested Due DeterTAT: Standard	Project Number: 0603200-136010-221-1108		Page Profile #.			Attition -		- 1		Preserv	****	1	Requests				Τ,	44	44	//,	Д
Section D Required Clerk Information SAMPLE ID One Character per box. (A-Z, 0-97) IDE MUST BE UNIQUE	Made Monte Codes MATRES Secretaria di res Secretaria di re Secretaria	MATTER CODE SAMPLE TYPE CHORMS CHOOMP	COMPORTER STATE	COLLECT	DATE	TIME 17	SAMPLE TEMP AT COLLECTION	no-contrains		COR COR	HOH GS-SO	Mehre	Analysis		8/1					Proce Proc	Hect.
MW-1-082	n	WT G		E	444	7		147	I.	Π,	1,1	11	1-	$\neg \neg$	2 1 	+-1	┵	$\downarrow \downarrow$			
MW-1-MS-0		wr c		_	100			3	2		1.1	11	┿╌	-1-1	2 1	44	- -	$\perp 1$			7
		wr G			4	11:25	_		1	1	1,1	1 +	╁	- 3	311	4	$\perp \perp$	\perp			7
MW-1-MSD-0		WT G				0-35			Ľ	╅╁	'}` }-	╅┼	 	- 3	2 1	\perp	Ш				7
MW-2-082		WT G						8	-	1-1	7+	++	‡=	-++	94	4	\Box				-
(fe) MIVI 082		wt G				10 K	<u> </u>	6	-	╁┼	44	11	4_	3	2 1	T		71			=-
MW-3R-08		WT G				11:25		Ð	2	+	<u> </u>	11		_ 3	2 1	1	\Box				
MW-4R-08		WT G				<i>?9:5</i> 5		-6	2	11	3 1	Ш		3	2 1	\top	H	++			
MW-5R-08	20	-				10:50	F	6	2	H	3 1	11	T	3	2 1	1	╁┼╴	11			
MW-6R-08	20	WT G				1:55		6	2	T	3 1	П	7	3	 	\vdash	╂╂╾	┝╌╅╌┫			
MW-7R-08	20	WT G					-	6	1,1	17	3 1	77	1-		1	┞╌┼╌	╀┼	\vdash			
FD-0820		WT G			17	12:25	-	2	11	11	,	+	╅—	- 13	2 1	╌┠	╁┼	$\vdash \vdash \vdash$			1
Trip Blank	s	WT G		-	₩/-	16.2	1	<u> </u>	╁┼	++	"	╌┼╌┤		3	1	\vdash	Ц.	Ш	 _		٦
		WT 0			<u>v</u>		—-		╁╌┠╌	╅┩			4_	$-\bot$	11	Ш	$\perp \perp$		1		
		WT G								L.i				l_		11					_
Additional Comments:		1,714					1.45											SAMP	LE COND	TIONS	
	COOLERS.	1			-67	MZU	12.4								1	П		T-	3	₹ I	ξ
SAMPLES WILL ARRIVE IN		7				•	['	1.							1			1-	3	3	× ×
Please send reports to: dshay@gesonline.com, t	heaumont/Orgesonline.com														1			+	* ·	₹	*
															1			+	3	<u>}</u>	₹
NERegron@gesonline.com, nes@equisonlins	()				٠٠.														++	· · ·	
SPECIFIC EDD NAME:			1786	12 %	ジル	<i>.</i>	1,6	(1)	_									ž	aved on	Con	를
NGWatertown-Isboumber,28351.EQEDD	.zip		===	72	e lesi						ye	23	To long	ク				T∎mptn	50 E	Custody Sealed Coo	Sept
						1								V	,						لــــــــــ

Appendix C – Data Usability Summary Report

Groundwater & Environmental Services, Inc.

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

November 4, 2020

Devin Shay Groundwater & Environmental Services, Syracuse 5 Technology Place, Suite 4 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid: Watertown, NY Site Data Package Pace Analytical Job No. 30377041

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30377041) from Pace Analytical Services, LLC in Greensburg, PA., for the analysis of groundwater samples collected on August 11, 2020 from monitoring wells located at the National Grid: Watertown, NY Site. Seven aqueous samples and a field duplicate were analyzed for volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and Cyanide. Methodologies utilized were those of the USEPA SW846 methods 8260C/8270D/9012B, with additional QC requirements of the NYSDEC ASP.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate: (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies were discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.

The data validation was performed according to the guidelines in the USEPA National Functional Guidelines for Organic Superfund Methods Data Review, National Functional Guidelines for Inorganic Superfund Methods Data Review and the NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation, dated December 2010. In addition, method and QC criteria specified in the NYSDEC ASP were implemented. All data are considered valid and acceptable except those analytes that have been qualified as unusable "R" (unreliable).

Table 1. Validation Qualifiers

Sample ID	Qualifier	Analyte	Reason for qualification
MW-1	UJ	Benzo(a)anthracene Benzo(a)pyrene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene	RPD exceeds maximum
	J-	Cyanide	Low MS Recovery
MW-3R MW-4R MW-7R	UJ- (non-detects) J- (detects)	All PAHs	Low Surrogate Recovery
MW-1 MW-3R MW-4R	R	Naphthalene	Concentrations are < 2x positive blank concentration
MW-5R	J	Phenanthrene	RPD exceeds criteria

In summary, sample results were usable as reported, with exceptions listed in Table 1.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

BTEX Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges. There were no positive detections in the blanks. Surrogate and internal standard recoveries were within required limits.

Calibrations standards show acceptable responses within analytical protocol and validation action limits.

MS/MSD recoveries and relative percent differences (RPD) were within laboratory and EPA criteria.

The blind field duplicate correlations MW-5R, where applicable, fall within guidance limits, with the exception of phenanthrene, whose RPD at 34.1% exceeds the EPA recommended 30% for aqueous duplicate samples. Phenanthrene is qualified as an estimated detect.

Data Usability Report – October 2020 National Grid Watertown, NY Site

PAHs by EPA8270D/NYSDEC ASP

Holding times were met. Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation criteria with the exception of Terphynyl-d14 in the following samples:

- MW-3R
- MW-4R
- MW-7R

All samples were re-extracted and re-analyzed with corroborating results. Data from the initial analyses is reported.

The method blank (1983197) also reported Terphynyl-d14 below criteria. The only detection reported in the method blank is naphthalene, and associated samples have been qualified per EPA guidance. All other PAHs were non-detect in the method blank, and the low level

Blanks show no contamination. Calibrations standards show acceptable responses within analytical protocol and validation action limits.

LCS recoveries and RPDs were reported within acceptable ranges.

Multiple MS/MSD RPDs associated with MW-1 were outside laboratory specifications. None of the compounds was reported above RL in the sample, and is qualified as estimated non-detect.

The blind field duplicate correlations MW-5R, where applicable, fall within guidance limits.

Total Cyanide by 9012B/ NYSDEC ASP

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples, with the flowing exceptions:

• Low recovery of cyanide in the MSD prepared from the sample MW-1. Low recoveries indicate a possible low bias.

Calibration standard responses were compliant. Blanks show no detections above the reporting limits. The laboratory spikes and duplicates of total cyanide show acceptable recoveries and/or correlations.

The blind field duplicate correlations MW-5R, where applicable, fall within guidance limits.

<u>Data Package Completeness</u>

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Senior Project Chemist

701 N Main St

Blacksburg, VA 24060

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- **J-** The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- **J**+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- **UJ** The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Sample Summaries and Laboratory Case Narratives

SAMPLE SUMMARY

Project: National Grid - Watertown, NY

Pace Project No.: 30377041

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30377041001	MW-1-0820	Water	08/11/20 12:40	08/12/20 10:10
30377041002	MW-1-MS-0820	Water	08/11/20 11:25	08/12/20 10:10
30377041003	MW-1-MSD-0820	Water	08/11/20 11:25	08/12/20 10:10
30377041004	MW-2-0820	Water	08/11/20 10:35	08/12/20 10:10
30377041005	MW-3R-0820	Water	08/11/20 10:10	08/12/20 10:10
30377041006	MW-4R-0820	Water	08/11/20 11:25	08/12/20 10:10
30377041007	MW-5R-0820	Water	08/11/20 09:55	08/12/20 10:10
30377041008	MW-6R-0820	Water	08/11/20 10:50	08/12/20 10:10
30377041009	MW-7R-0820	Water	08/11/20 11:55	08/12/20 10:10
30377041010	FD-0820	Water	08/11/20 00:01	08/12/20 10:10
30377041011	TRIP BLANK	Water	08/11/20 12:25	08/12/20 10:10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid - Watertown, NY

Pace Project No.: 30377041

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: August 25, 2020

General Information:

10 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 409808

S0: Surrogate recovery outside laboratory control limits.

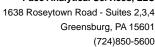
- BLANK (Lab ID: 1983197)
 - Terphenyl-d14 (S)

SR: Surrogate recovery was below laboratory control limits. Results may be biased low.

- MW-3R-0820 (Lab ID: 30377041005)
 - Terphenyl-d14 (S)
- MW-4R-0820 (Lab ID: 30377041006)
 - Terphenyl-d14 (S)
- MW-7R-0820 (Lab ID: 30377041009)
 - Terphenyl-d14 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


QC Batch: 409808

B: Analyte was detected in the associated method blank.

- BLANK for HBN 409808 [OEXT/418 (Lab ID: 1983197)
 - Naphthalene

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid - Watertown, NY

Pace Project No.: 30377041

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: August 25, 2020

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 409808

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30377041001

R1: RPD value was outside control limits.

- MSD (Lab ID: 1983200)
 - Benzo(a)anthracene
 - Benzo(a)pyrene
 - Benzo(k)fluoranthene
 - Dibenz(a,h)anthracene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene

Additional Comments:

Analyte Comments:

QC Batch: 409808

1c: This sample was re-extracted past the method required holding time. Surrogate recovery in the re-extract was acceptable and the re-extract results were comparable to the original results. The original, in hold, results are reported.

- MW-3R-0820 (Lab ID: 30377041005)
 - Terphenyl-d14 (S)
- MW-4R-0820 (Lab ID: 30377041006)
 - Terphenyl-d14 (S)
- MW-7R-0820 (Lab ID: 30377041009)
 - Terphenyl-d14 (S)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: National Grid - Watertown, NY

Pace Project No.: 30377041

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: August 25, 2020

General Information:

11 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

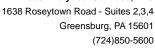
Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: National Grid - Watertown, NY

Pace Project No.: 30377041

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: August 25, 2020

General Information:

10 samples were analyzed for EPA 9012B by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9012B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 409779

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30377041001,30377179013

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 1983109)
 - Cvanide
- MSD (Lab ID: 1983110)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS