

February 9, 2023

Mr. Scott Deyette
Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation, BURC
625 Broadway
Albany, New York 12233-7014

**RE:** National Grid Former Manufactured Gas Plant Site

Anthony Street, Watertown, New York Annual Groundwater Monitoring Report

Dear Mr. Deyette:

Enclosed for your review is the 2022 Annual Groundwater Monitoring Report for the NG Watertown Former MGP Site.

Groundwater and Environmental Services, Inc., (GES) OM&M contractor for National Grid, conducts all long-term OM&M activities at the site. Quarterly site inspections were conducted in 2022 (March, June, September and December). The site is generally in good shape and in compliance. There were detections of BTEX and/or PAH in all five monitoring wells sampled.

If you have any questions, then please feel free to contact me at 315.428.5652.

Very truly yours,

for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer National Grid

Cc: Devin T. Shay – Groundwater and Environmental Services, Inc.

National Grid

# Annual Groundwater Monitoring Report



National Grid Watertown (Anthony Street) Former MGP Site Anthony Street, Watertown NY13601

February 2023

Version 1





### **Annual Groundwater Monitoring Report**

National Grid Watertown (Anthony St.) Former MGP Site Anthony Street Watertown, NY 13601

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:

Groundwater & Environmental Services, Inc. 6780 Northern Boulevard, Suite 100 East Syracuse, NY 13057 TEL: 800-220-3069 www.gesonline.com

GES Project: 0603324.136010.221

Date:

February 9, 2023

Devin T. Shay, PG

Program Manager / Principal Hydrogeologist



## **Table of Contents**

| 1 | In  | troduction                                       | . 1 |
|---|-----|--------------------------------------------------|-----|
| 2 | Aı  | nnual Groundwater Monitoring                     | . 1 |
|   | 2.1 | Objectives                                       | . 1 |
|   | 2.2 | Groundwater Well Gauging                         | . 1 |
|   | 2.3 | Groundwater Well Sampling and Analytical Results | .2  |
| 3 | Q   | uarterly Site-Wide Inspections                   | .2  |
| 4 | R   | ecommendations                                   | .3  |

# **Figures**

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Contour Map

Figure 4 – Groundwater Analytical map

## **Tables**

Table 1 – Groundwater Monitoring Well Gaguing Data

Table 2 - Groundwater Analytical Data

# **Appendices**

Appendix A – Field Inspection Reports

Appendix B - Well Sampling Field Data

Appendix C – Data Usability Summary Report



### 1 Introduction

This Annual Groundwater Monitoring Report presents results from the activities conducted at the Watertown (Anthony Street) former non-owned manufactured gas plant (MGP) site located in Watertown, New York (the Site). A site location map is presented on **Figure 1**, and a site map is presented as **Figure 2**. The work summarized in this report is conducted in accordance with the Site Management Plan (SMP) for the Site, which was approved by the New York State Department of Environmental Conservation (NYSDEC) on March 17, 2017.

A detailed discussion of the annual monitoring activities and results is presented below.

# 2 Annual Groundwater Monitoring

### 2.1 Objectives

The objectives of the June 2022 groundwater monitoring activities were to:

- Obtain groundwater elevation data from monitoring wells in the vicinity of the Site to evaluate groundwater flow direction and velocity, and compare the results with historical groundwater flow conditions.
- Obtain analytical data to assess potential changes in groundwater quality at the Site and compare the results to the Class GA groundwater standards and guidance values presented in the NYSDEC document entitled, "Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1), reissued June 1998 and amended April 2000 and June 2004.

### 2.2 Groundwater Well Gauging

The June 8, 2022 groundwater monitoring field activities were conducted by GES. Prior to collecting groundwater samples, static fluid level measurements were collected from MW-1, MW-2, MW-3, MW-3R, MW-4E, MW-5R, MW-6R and MW-7R. Water levels were measured to the nearest 0.01 foot using an electronic oil-water interface probe to determine the depth from a surveyed mark on the top of the inner polyvinyl chloride (PVC) well casing to the groundwater within the well.

The fluid level measurements obtained from each monitoring well were converted to groundwater elevations using the surveyed well elevations. The calculated groundwater elevations for each monitoring well are listed in **Table 1**, and are depicted on **Figure 3**. **Table 1** also includes groundwater elevation measurements obtained during previous groundwater monitoring events.

Groundwater generally flows to the north-northwest from the Site toward the Black River. Groundwater elevations ranged from 422.15 feet above sea level (asl; well MW-7R) to 439.30 feet asl (well MW-2). Field data from the gauging event is presented in **Appendix B**.



## 2.3 Groundwater Well Sampling and Analytical Results

Groundwater samples were collected by GES from five (5) monitoring wells on June 8, 2022 (including MW-2, MW-4R, MW-5R, MW-6R and MW-7R). Low-flow sampling techniques were used to purge groundwater from each monitoring well prior to collecting groundwater samples. Field parameters (consisting of turbidity, temperature, pH, conductivity, oxidation reduction potential [ORP], and dissolved oxygen) were measured approximately every 5 to 10 minutes during well purging, and the depth to water was monitored throughout the pumping process to minimize drawdown within the well. Well purging activities continued at each well until the field parameters stabilized and the turbidity of the water in the wells was reduced to less than 50 nephelometric turbidity units (NTUs). Groundwater field data is presented in **Appendix B**.

Following purging, groundwater samples were collected. The groundwater samples were bottled and shipped to Pace Analytical for laboratory analysis for Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX; EPA Method 8260C), Semi-Volatile Polycyclic Aromatic Hydrocarbons (PAHs; EPA Method 8270D), and total cyanide (EPA Method 9012B). Quality assurance/quality control (QA/QC) samples, including a field duplicate, matrix spike, and duplicate matrix spike were also submitted for laboratory analysis. The laboratory analytical results for the groundwater samples were reported using NYSDEC Analytical Services Protocol (ASP) Category B data deliverable packages to facilitate data validation.

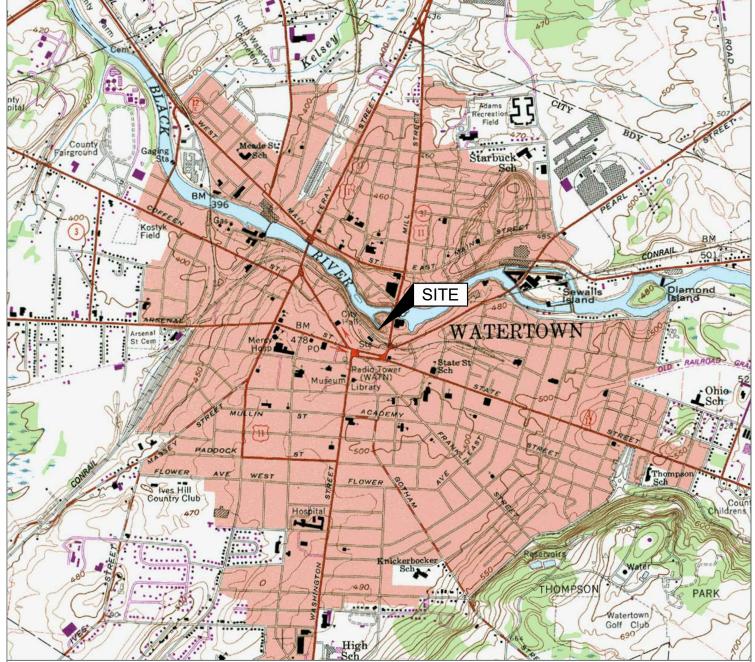
Purge water generated during the sampling activities was collected in 5-gallon buckets and transferred into 55-gallon steel drums for characterization prior to offsite treatment/disposal in accordance with applicable regulations.

Analytical results from the laboratory analysis report are summarized in **Table 2** and compared to the Class GA groundwater standards and guidance values presented in TOGS 1.1.1. VOC exceedances are bolded on **Table 2** and further shown on **Figure 4**. The Data Usability Summary Report (DUSR) is included in **Appendix C**.

There were BTEX and/or PAH detections in all the monitoring wells sampled. BTEX, acenaphthene, and naphthalene were detected above the regulatory criteria in one or more samples. Cyanide was detected in monitoring wells MW-2, MW-4R, MW-5R, MW-6R, and MW-7R. As shown on **Table 2**, in general, BTEX, PAHs, and total cyanide detected in groundwater during the June 2022 sampling event are lower or consistent compared to previous sampling results.

# 3 Quarterly Site-Wide Inspections

The quarterly site-wide inspections were completed on March 29, June 8, September 29, and December 15, 2022. The Site Inspection Forms are presented in **Appendix A**. In general, the Site is in compliance.

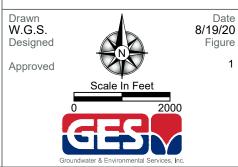



## 4 Recommendations

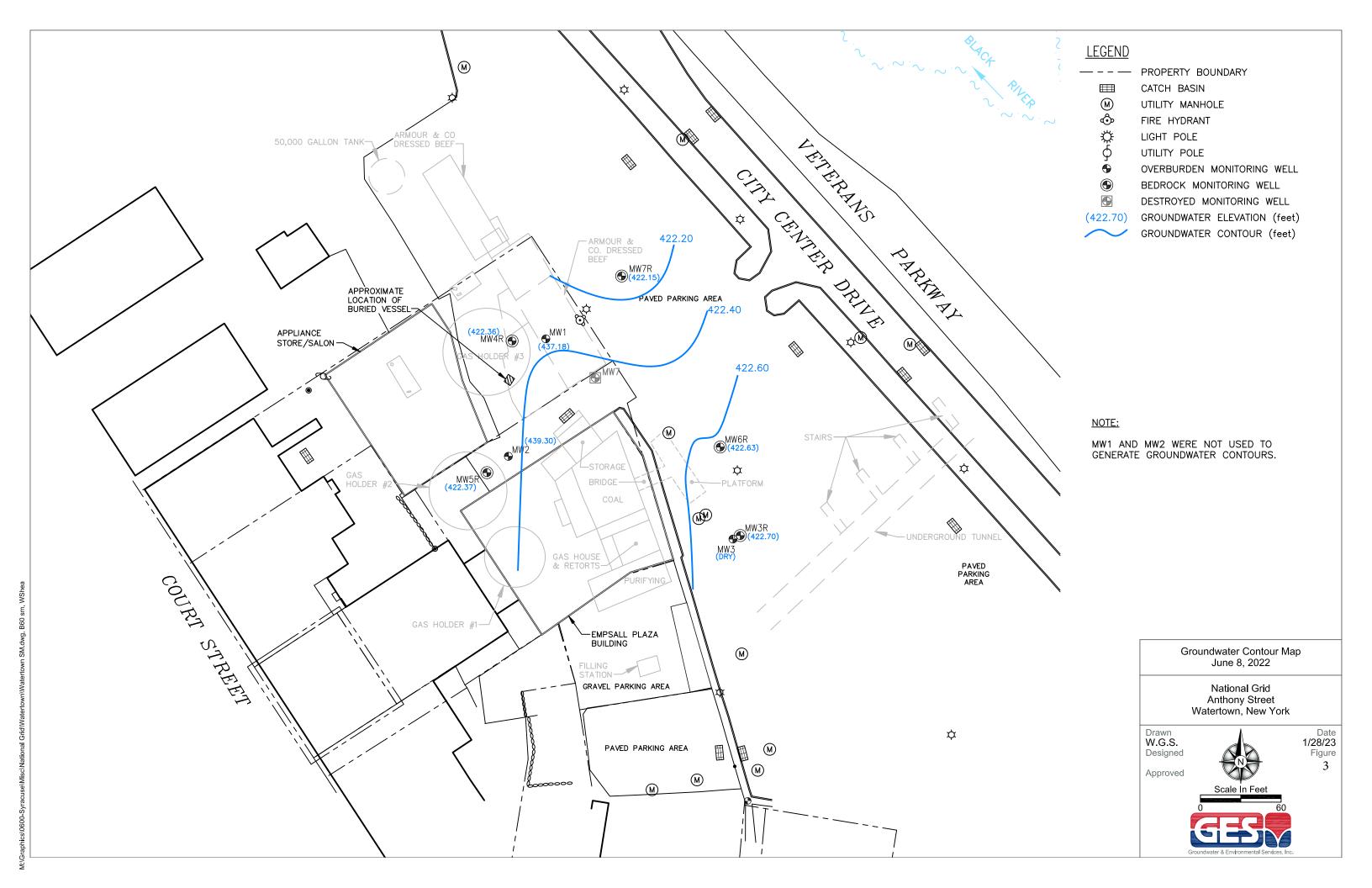
At this time, National Grid recommends continuing the annual monitoring activities. The next annual groundwater sampling event would be in the Summer 2023. Annual site-wide inspections are required; however, for internal security purposes, National Grid will continue to conduct quarterly site-wide inspections.



# **Figures**




Source: USGS 7.5 Minute Series Topographic Quadrangle, 1982 Watertown, New York Contour Interval = 10'




#### Site Location Map

National Grid Anthony Street Watertown, New York









Annual Groundwater Monitoring Report National Grid Watertown (Anthony Street) Former MGP Site Anthony St. Watertown, New York



# **Tables**



Table 1

Groundwater Monitoring Well Gauging Data

| Well ID | Well Type &<br>Diameter    | Top of Inner<br>Casing Elevation | Depth To Well<br>Bottom | Well Bottom<br>Elevation | Screen Elevation | Depth To Water<br>(12/14/15 | Groundwater<br>Elevation<br>(12/14/15) | Depth To Water<br>(08/11/20) | Groundwater<br>Elevation<br>(08/11/20) | Depth To Water<br>(06/23/21) | Groundwater<br>Elevation<br>(06/23/21) | Depth To Water<br>(06/08/22) | Groundwater<br>Elevation<br>(06/08/22) |
|---------|----------------------------|----------------------------------|-------------------------|--------------------------|------------------|-----------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|----------------------------------------|
| MW-1    | Flushmount; PVC;<br>2-inch | 444.62                           | 8.50                    | 436.12                   | 3.00 - 8.00      | 7.47                        | 436.92                                 | 7.11                         | 437.51                                 | 7.45                         | 437.17                                 | 7.44                         | 437.18                                 |
| MW-2    | Flushmount; PVC;<br>2-inch | 444.60                           | 8.50                    | 436.10                   | 3.00 - 8.00      | 6.00                        | 438.35                                 | 5.68                         | 438.92                                 | 5.52                         | 439.08                                 | 5.30                         | 439.30                                 |
| MW-3    | Flushmount; PVC;<br>2-inch | 445.39                           | 8.70                    | 436.69                   | 3.20 - 8.20      | 7.25                        | 438.40                                 | DRY                          | -                                      | 5.74                         | 439.65                                 | DRY                          | -                                      |
| MW-3R   | Flushmount; PVC;<br>2-inch | 445.48                           | 24.40                   | 421.08                   | 14.40 - 24.00    | 22.81                       | 422.52                                 | 22.82                        | 422.66                                 | 22.82                        | 422.66                                 | 22.78                        | 422.70                                 |
| MW-4R   | Flushmount; PVC;<br>2-inch | 444.76                           | 50.00                   | 394.76                   | 20.00 - 40.00    | 23.11                       | 421.22                                 | 22.28                        | 422.48                                 | 22.39                        | 422.37                                 | 22.40                        | 422.36                                 |
| MW-5R   | Flushmount; PVC; 2-inch    | 444.60                           | 50.00                   | 394.60                   | 20.00 - 40.00    | 22.02                       | 422.04                                 | 22.00                        | 422.60                                 | 22.30                        | 422.30                                 | 22.23                        | 422.37                                 |
| MW-6R   | Flushmount; PVC;<br>2-inch | 445.16                           | 50.00                   | 395.16                   | 18.00 - 40.00    | 22.56                       | 421.69                                 | 22.57                        | 422.59                                 | 22.56                        | 422.60                                 | 22.53                        | 422.63                                 |
| MW-7R   | Flushmount; PVC;<br>2-inch | 443.60                           | 45.00                   | 398.60                   | 18.00 - 40.00    | 21.45                       | 421.67                                 | 21.40                        | 422.20                                 | 21.48                        | 422.12                                 | 21.45                        | 422.15                                 |



#### **Groundwater Analytical Data**

MW-1

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/27/05 | 09/08/10 | 06/25/13 | 12/15/15 | 08/11/20 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|
| ВТЕХ                   |                                      |       | ND       | ND       | ND       | ND       | ND       |
| Benzene                | 1                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Ethylbenzene           | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Toluene                | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Total Xylenes          | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| SVOCs                  |                                      |       | ND       | ND       | 6.8 J    | ND       | 0.95     |
| Acenaphthene           | 20                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Acenaphthylene         |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Anthracene             | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       | ND       | 0.86 J   | ND       | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       | ND       | 0.79 J   | ND       | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       | ND       | 1.1 J    | ND       | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       | ND       | 0.78 J   | ND       | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Fluorene               | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Naphthalene            | 10                                   | μg/L  | ND       | ND       | ND       | ND       | 0.95     |
| Phenanthrene           | 50                                   | μg/L  | ND       | ND       | 0.77 J   | ND       | ND       |
| Pyrene                 | 50                                   | μg/L  | ND       | ND       | 1.2 J    | ND       | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | 744      | 596      | 210      | 31       | 150      |

#### Notes:

J

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

Ε = Results exceeded calibration range

= Compound quantitated using a secondary dilution D

= Analyte was detected at a concentration less than the laboratory reporting limit ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.

= values indicate exceedance of the NYSDEC AWQS Bolded



#### **Groundwater Analytical Data**

MW-2

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/27/05 | 10/15/08 | 09/08/10 | 06/25/13 | 12/14/15 | 08/11/20 | 06/23/21 | 06/08/22 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|----------|
| BTEX                   |                                      |       | 4.0 J    | 5.5 J    | 4.2      | 2.8      | 1.4      | 3.2      | 1.1      | 1.6      |
| Benzene                | 1                                    | μg/L  | 4.0 J    | 4.3      | 2.4      | 2.8      | 1.4      | 3.2      | 1.1      | 1.6      |
| Ethylbenzene           | 5                                    | μg/L  | ND       | 0.90 J   | ND       | ND       | ND       | ND       | ND       | ND       |
| Toluene                | 5                                    | μg/L  | ND       | ND       | 1.8      | ND       | ND       | ND       | ND       | ND       |
| Total Xylenes          | 5                                    | μg/L  | ND       | 0.30 J   | ND       | ND       | ND       | ND       | ND       | ND       |
| SVOCs                  |                                      |       | ND       | 4.3 J    | 2.4 J    | ND       | ND       | 1.3      | 1.1      | 0.50     |
| Acenaphthene           | 20                                   | μg/L  | ND       |
| Acenaphthylene         |                                      | μg/L  | ND       |
| Anthracene             | 50                                   | μg/L  | ND       |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       |
| Fluorene               | 50                                   | μg/L  | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       |
| Naphthalene            | 10                                   | μg/L  | ND       | 4.3 J    | 2.4 J    | ND       | ND       | 1.3      | 1.1      | 0.50     |
| Phenanthrene           | 50                                   | μg/L  | ND       |
| Pyrene                 | 50                                   | μg/L  | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | 98       | 90       | 127 J    | 61       | 50       | 70       | 43       | 52       |

#### Notes:

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

Ε = Results exceeded calibration range

= Compound quantitated using a secondary dilution D

= Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



#### **Groundwater Analytical Data**

MW-3R

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/15/08 | 09/08/10 | 06/23/13 | 12/14/15 | 08/11/20 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|
| втех                   |                                      |       | ND       | ND       | ND       | ND       | ND       |
| Benzene                | 1                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Ethylbenzene           | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Toluene                | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Total Xylenes          | 5                                    | μg/L  | ND       | ND       | ND       | ND       | ND       |
| SVOCs                  |                                      |       | ND       | ND       | ND       | ND       | 1.1      |
| Acenaphthene           | 20                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Acenaphthylene         |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Anthracene             | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Fluorene               | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Naphthalene            | 10                                   | μg/L  | ND       | ND       | ND       | ND       | 1.1      |
| Phenanthrene           | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Pyrene                 | 50                                   | μg/L  | ND       | ND       | ND       | ND       | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | 2.5 J    | ND       | 5.2 J    | 5.5 J    | ND       |

#### Notes:

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



Table 2

#### Groundwater Analytical Data MW-4R

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/16/08 | 09/07/10 | 06/26/13 | 12/14/15 | 08/11/20 | 06/23/21 | 06/08/22 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|
| втех                   |                                      |       | 2,239    | 769      | 23.8     | 7.2 J    | 2.1      | 57.0     | 87.8     |
| Benzene                | 1                                    | μg/L  | 1,200    | 670 D    | 22       | 7.2 J    | 2.1      | 55.5     | 79.8     |
| Ethylbenzene           | 5                                    | μg/L  | 510      | 51       | 1.8      | ND       | ND       | 1.5      | 4.5      |
| Toluene                | 5                                    | μg/L  | 49       | 6.6      | ND       | ND       | ND       | ND       | ND       |
| Total Xylenes          | 5                                    | μg/L  | 480      | 41       | ND       | ND       | ND       | ND       | 3.5      |
| SVOCs                  |                                      |       | 443 J    | 16.89 J  | ND       | ND       | 1.14     | 2.3      | 1.9      |
| Acenaphthene           | 20                                   | μg/L  | 4.3 J    | ND       | ND       | ND       | ND       | ND       | ND       |
| Acenaphthylene         |                                      | μg/L  | ND       |
| Anthracene             | 50                                   | μg/L  | ND       |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       |
| Fluorene               | 50                                   | μg/L  | 1.3 J    | ND       | ND       | ND       | ND       | ND       | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       |
| Naphthalene            | 10                                   | μg/L  | 430      | 16       | ND       | ND       | 1.0      | 2.3      | 1.8      |
| Phenanthrene           | 50                                   | μg/L  | 6.9 J    | 0.89 J   | ND       | ND       | 0.14     | ND       | 0.12     |
| Pyrene                 | 50                                   | μg/L  | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | ND       | ND       | 11       | 13       | 19       | 12       | 19       |

#### Notes:

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



#### **Groundwater Analytical Data**

MW-5R

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/15/08 | 09/08/10 | 06/23/13 | 12/15/15 | 08/11/20 | 06/23/21 | 06/08/22 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|
| втех                   |                                      |       | 20,300   | 12,800   | 27,100   | 8,340    | 29,290   | 17,900   | 29,040   |
| Benzene                | 1                                    | μg/L  | 3,800    | 4,200 D  | 6,600 D  | 3900     | 4,370    | 3,350    | 7,760    |
| Ethylbenzene           | 5                                    | μg/L  | 2,000    | 2,100 D  | 3,500 D  | 740      | 4,350    | 3,250    | 4,460    |
| Toluene                | 5                                    | μg/L  | 9,700    | 3,600 D  | 11,000 D | 2600     | 13,200   | 6,720    | 10,400   |
| Total Xylenes          | 5                                    | μg/L  | 4,800    | 2,900 D  | 6,000 D  | 1100     | 7,370    | 4,580    | 6,420    |
| SVOCs                  |                                      |       | 1,927 J  | 2,461 J  | 3,598 J  | 2,231 J  | 7.647    | 3,158    | 4.637    |
| Acenaphthene           | 20                                   | μg/L  | 70 J     | 74       | 74 J     | 62 DJ    | 78.1     | 82.2     | 102      |
| Acenaphthylene         |                                      | μg/L  | 69 J     | 26       | 56 J     | 17 J     | 46.3     | 27.1     | ND       |
| Anthracene             | 50                                   | μg/L  | 11 J     | 4.7      | 5.5 J    | ND       | 4.4      | 3.8      | 4.2      |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       | 1.0 J    | ND       | 0.66 J   | 0.92     | 0.85     | 0.71     |
| Fluorene               | 50                                   | μg/L  | 41 J     | 29       | 32 J     | 21 J     | 29.1     | 27.8     | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       |
| Naphthalene            | 10                                   | μg/L  | 1,700    | 2,300 D  | 3,400 D  | 2,200 D  | 7,460    | 2,990    | 4,530    |
| Phenanthrene           | 50                                   | μg/L  | 36 J     | 26       | 30 J     | 20 J     | 27.8     | 25.2     | ND       |
| Pyrene                 | 50                                   | μg/L  | ND       | 0.71 J   | ND       | 0.56 J   | 0.74     | 0.70     | 0.55     |
| Inorganics             |                                      |       |          |          |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | 98       | ND       | 180      | 89       | 86       | 96       | 92       |

#### Notes:

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



#### **Groundwater Analytical Data**

MW-6R

|                        | NYSDEC TOGS 1.1.1<br>Guidance Values | Units | 10/16/08 | 09/08/10 | 06/25/13 | 12/15/15 | 08/11/20 | 06/23/21 | 06/08/22 |
|------------------------|--------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|
| ВТЕХ                   |                                      |       | ND       | ND       | 0.52 J   | ND       | ND       | ND       | ND       |
| Benzene                | 1                                    | μg/L  | ND       |
| Ethylbenzene           | 5                                    | μg/L  | ND       |
| Toluene                | 5                                    | μg/L  | ND       | ND       | 0.52 J   | ND       | ND       | ND       | ND       |
| Total Xylenes          | 5                                    | μg/L  | ND       |
| SVOCs                  |                                      |       | ND       | ND       | ND       | ND       | 8.58     | 3.4      | 1.7      |
| Acenaphthene           | 20                                   | μg/L  | ND       | ND       | ND       | ND       | 0.20     | ND       | ND       |
| Acenaphthylene         |                                      | μg/L  | ND       | ND       | ND       | ND       | 0.12     | ND       | ND       |
| Anthracene             | 50                                   | μg/L  | ND       | ND       | ND       | ND       | 0.28     | ND       | ND       |
| Benzo(a)anthracene     | 0.002                                | μg/L  | ND       |
| Benzo(a)pyrene         | ND                                   | μg/L  | ND       |
| Benzo(b)fluoranthene   | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | 0.14     | ND       | ND       |
| Benzo(g,h,i)perylene   |                                      | μg/L  | ND       |
| Benzo(k)fluoranthene   | 0.002                                | μg/L  | ND       |
| Chrysene               | 0.002                                | μg/L  | ND       | ND       | ND       | ND       | 0.19     | ND       | ND       |
| Dibenz(a,h)anthracene  |                                      | μg/L  | ND       |
| Fluoranthene           | 50                                   | μg/L  | ND       | ND       | ND       | ND       | 0.38     | ND       | ND       |
| Fluorene               | 50                                   | μg/L  | ND       | ND       | ND       | ND       | 0.59     | ND       | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                                | μg/L  | ND       |
| Naphthalene            | 10                                   | μg/L  | ND       | ND       | ND       | ND       | 3.7      | 3.4      | 1.7      |
| Phenanthrene           | 50                                   | μg/L  | ND       | ND       | ND       | ND       | 2.4      | ND       | ND       |
| Pyrene                 | 50                                   | μg/L  | ND       | ND       | ND       | ND       | 0.58     | ND       | ND       |
| Inorganics             |                                      |       |          |          |          |          |          |          |          |
| Cyanide, Total         | 200                                  | μg/L  | ND       | ND       | ND       | ND       | ND       | ND       | 10       |

#### Notes:

Results are presented in units of micrograms per liter (µg/L).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



#### **Groundwater Analytical Data**

MW-7R

|                        | NYSDEC TOGS 1.1.1 Guidance Values | Units | 10/16/08 | 09/07/10 | 06/25/13 | 12/15/15 | 08/11/20 | 06/23/21 | 06/08/22 |
|------------------------|-----------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|
| ВТЕХ                   |                                   |       | ND       |
| Benzene                | 1                                 | μg/L  | ND       |
| Ethylbenzene           | 5                                 | μg/L  | ND       |
| Toluene                | 5                                 | μg/L  | ND       |
| Total Xylenes          | 5                                 | μg/L  | ND       |
| SVOCs                  |                                   |       | ND       | ND       | ND       | ND       | 2.4      | 1.0      | 0.97     |
| Acenaphthene           | 20                                | μg/L  | ND       |
| Acenaphthylene         |                                   | μg/L  | ND       |
| Anthracene             | 50                                | μg/L  | ND       |
| Benzo(a)anthracene     | 0.002                             | μg/L  | ND       |
| Benzo(a)pyrene         | ND                                | μg/L  | ND       |
| Benzo(b)fluoranthene   | 0.002                             | μg/L  | ND       |
| Benzo(g,h,i)perylene   |                                   | μg/L  | ND       |
| Benzo(k)fluoranthene   | 0.002                             | μg/L  | ND       |
| Chrysene               | 0.002                             | μg/L  | ND       |
| Dibenz(a,h)anthracene  |                                   | μg/L  | ND       |
| Fluoranthene           | 50                                | μg/L  | ND       |
| Fluorene               | 50                                | μg/L  | ND       |
| Indeno(1,2,3-cd)pyrene | 0.002                             | μg/L  | ND       |
| Naphthalene            | 10                                | μg/L  | ND       | ND       | ND       | ND       | 2.4      | 1.0      | 0.97     |
| Phenanthrene           | 50                                | μg/L  | ND       |
| Pyrene                 | 50                                | μg/L  | ND       |
| Inorganics             |                                   |       |          |          |          |          |          |          |          |
| Cyanide, Total         | 200                               | μg/L  | 3.1 J    | ND       | ND       | 30       | ND       | ND       | 12       |

#### Notes:

Results are presented in units of micrograms per liter ( $\mu g/L$ ).

E = Results exceeded calibration range

D = Compound quantitated using a secondary dilution

J = Analyte was detected at a concentration less than the laboratory reporting limit

ND (<#) = Not detected above laboratory reporting limit. # represents the laboratory reporting limit.



# **Appendix A – Field Inspection Reports**

# Site Management Plan Inspection Form Anthony Street Former MGP Site Watertown New York

| Date:       | 12/15/2022 | Watertown, New York | Time:    | 8:45      |
|-------------|------------|---------------------|----------|-----------|
| Technician: | KL         |                     | Weather: | Cloudy 27 |

| G                                                                                       | eneral Site | Wid | e Cor | nditions |           |
|-----------------------------------------------------------------------------------------|-------------|-----|-------|----------|-----------|
| Any signs of ground-intrusive activities?                                               | YES         |     |       | NO       | COMMENTS: |
| Any soil disturbance regardless of quantity/extent?                                     | YES         |     |       | NO       | COMMENTS: |
| Any surface erosion?                                                                    | YES         |     |       | NO       | COMMENTS: |
| Any settlement?                                                                         | YES         |     |       | NO       | COMMENTS: |
| Bare or sparsely-vegetated areas?                                                       | YES         |     |       | NO       | COMMENTS: |
| Excessive cracking or missing pavement?                                                 | YES         |     |       | NO       | COMMENTS: |
| Any other conditions affecting the thickness or the integrity of the soil cover system? | YES         |     |       | NO       | COMMENTS: |
| Any repairs, maintenace or corrective actions since the last inspection?                | YES         |     |       | NO       | COMMENTS: |
| Have the front lawns been mowed?                                                        | YES         |     |       | NO       | COMMENTS: |
| Conditon of the asphalt pavement                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the front sidewalks?                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the building foundations?                                                   | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Are the requirements of the SMP being met?                                              | YES         |     |       | NO       | COMMENTS: |
| Are there any needed changes?                                                           | YES         |     |       | NO       | COMMENTS: |
| Are the site records complete and up to date?                                           | YES         |     |       | NO       | COMMENTS: |

| Site Monitoring Wells |                 |    |  |  |  |  |
|-----------------------|-----------------|----|--|--|--|--|
| Well ID.              | Location Secure |    |  |  |  |  |
| MW-1                  | YES             | NO |  |  |  |  |
| MW-2                  | YES             | NO |  |  |  |  |
| MW-3                  | YES             | NO |  |  |  |  |
| MW-3R                 | YES             | NO |  |  |  |  |
| MW-4R                 | YES             | NO |  |  |  |  |
| MW-5R                 | YES             | NO |  |  |  |  |
| MW-6R                 | YES             | NO |  |  |  |  |
| MW-7R                 | YES             | NO |  |  |  |  |

# Site Management Plan Inspection Form Anthony Street Former MGP Site

| Date:       | 9/29/2022 | Watertown, New York | Time:    | 7:30             |
|-------------|-----------|---------------------|----------|------------------|
| Technician: | KL        |                     | Weather: | Partly Cloudy 48 |

| G                                                                                       | eneral Site | Wid        | e Cor | nditions |           |
|-----------------------------------------------------------------------------------------|-------------|------------|-------|----------|-----------|
| Any signs of ground-intrusive activities?                                               | YES         |            |       | NO       | COMMENTS: |
| Any soil disturbance regardless of quantity/extent?                                     | YES         |            |       | NO       | COMMENTS: |
| Any surface erosion?                                                                    | YES         |            |       | NO       | COMMENTS: |
| Any settlement?                                                                         | YES         |            |       | NO       | COMMENTS: |
| Bare or sparsely-vegetated areas?                                                       | YES         |            |       | NO       | COMMENTS: |
| Excessive cracking or missing pavement?                                                 | YES         |            |       | NO       | COMMENTS: |
| Any other conditions affecting the thickness or the integrity of the soil cover system? | YES         |            |       | NO       | COMMENTS: |
| Any repairs, maintenace or corrective actions since the last inspection?                | YES         |            |       | NO       | COMMENTS: |
| Have the front lawns been mowed?                                                        | YES         |            |       | NO       | COMMENTS: |
| Conditon of the asphalt pavement                                                        | GOOD        | FA         | MR    | POOR     | COMMENTS: |
| Conditon of the front sidewalks?                                                        | GOOD        | F.A        | ΝR    | POOR     | COMMENTS: |
| Conditon of the building foundations?                                                   | GOOD        | F <i>F</i> | MR    | POOR     | COMMENTS: |
| Are the requirements of the SMP being met?                                              | YES         |            |       | NO       | COMMENTS: |
| Are there any needed changes?                                                           | YES         |            |       | NO       | COMMENTS: |
| Are the site records complete and up to date?                                           | YES         |            |       | NO       | COMMENTS: |

| Site Monitoring Wells |                 |    |  |  |  |
|-----------------------|-----------------|----|--|--|--|
| Well ID.              | Location Secure |    |  |  |  |
| MW-1                  | YES             | NO |  |  |  |
| MW-2                  | YES             | NO |  |  |  |
| MW-3                  | YES             | NO |  |  |  |
| MW-3R                 | YES             | NO |  |  |  |
| MW-4R                 | YES             | NO |  |  |  |
| MW-5R                 | YES             | NO |  |  |  |
| MW-6R                 | YES             | NO |  |  |  |
| MW-7R                 | YES             | NO |  |  |  |

# Site Management Plan Inspection Form Anthony Street Former MGP Site

| Date:       | 6/8/2022 | Watertown, New York | Time:    | 8:00             |
|-------------|----------|---------------------|----------|------------------|
| Technician: | KL       |                     | Weather: | Partly Cloudy 60 |

| G                                                                                       | eneral Site | Wid | e Cor | nditions |           |
|-----------------------------------------------------------------------------------------|-------------|-----|-------|----------|-----------|
| Any signs of ground-intrusive activities?                                               | YES         |     |       | NO       | COMMENTS: |
| Any soil disturbance regardless of quantity/extent?                                     | YES         |     |       | NO       | COMMENTS: |
| Any surface erosion?                                                                    | YES         |     |       | NO       | COMMENTS: |
| Any settlement?                                                                         | YES         |     |       | NO       | COMMENTS: |
| Bare or sparsely-vegetated areas?                                                       | YES         |     |       | NO       | COMMENTS: |
| Excessive cracking or missing pavement?                                                 | YES         |     |       | NO       | COMMENTS: |
| Any other conditions affecting the thickness or the integrity of the soil cover system? | YES         |     |       | NO       | COMMENTS: |
| Any repairs, maintenace or corrective actions since the last inspection?                | YES         |     |       | NO       | COMMENTS: |
| Have the front lawns been mowed?                                                        | YES         |     |       | NO       | COMMENTS: |
| Conditon of the asphalt pavement                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the front sidewalks?                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the building foundations?                                                   | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Are the requirements of the SMP being met?                                              | YES         |     |       | NO       | COMMENTS: |
| Are there any needed changes?                                                           | YES         |     |       | NO       | COMMENTS: |
| Are the site records complete and up to date?                                           | YES         |     |       | NO       | COMMENTS: |

| Site Monitoring Wells |                 |    |  |  |  |
|-----------------------|-----------------|----|--|--|--|
| Well ID.              | Location Secure |    |  |  |  |
| MW-1                  | YES             | NO |  |  |  |
| MW-2                  | YES             | NO |  |  |  |
| MW-3                  | YES             | NO |  |  |  |
| MW-3R                 | YES             | NO |  |  |  |
| MW-4R                 | YES             | NO |  |  |  |
| MW-5R                 | YES             | NO |  |  |  |
| MW-6R                 | YES             | NO |  |  |  |
| MW-7R                 | YES             | NO |  |  |  |

# Site Management Plan Inspection Form Anthony Street Former MGP Site

| Date:       | 3/29/2022 | Watertown, New York | Time:    | 8:00     |
|-------------|-----------|---------------------|----------|----------|
| Technician: | KL        |                     | Weather: | Sunny 20 |

| G                                                                                       | eneral Site | Wid | e Cor | nditions |           |
|-----------------------------------------------------------------------------------------|-------------|-----|-------|----------|-----------|
| Any signs of ground-intrusive activities?                                               | YES         |     |       | NO       | COMMENTS: |
| Any soil disturbance regardless of quantity/extent?                                     | YES         |     |       | NO       | COMMENTS: |
| Any surface erosion?                                                                    | YES         |     |       | NO       | COMMENTS: |
| Any settlement?                                                                         | YES         |     |       | NO       | COMMENTS: |
| Bare or sparsely-vegetated areas?                                                       | YES         |     |       | NO       | COMMENTS: |
| Excessive cracking or missing pavement?                                                 | YES         |     |       | NO       | COMMENTS: |
| Any other conditions affecting the thickness or the integrity of the soil cover system? | YES         |     |       | NO       | COMMENTS: |
| Any repairs, maintenace or corrective actions since the last inspection?                | YES         |     |       | NO       | COMMENTS: |
| Have the front lawns been mowed?                                                        | YES         |     |       | NO       | COMMENTS: |
| Conditon of the asphalt pavement                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the front sidewalks?                                                        | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Conditon of the building foundations?                                                   | GOOD        | FA  | AIR   | POOR     | COMMENTS: |
| Are the requirements of the SMP being met?                                              | YES         |     |       | NO       | COMMENTS: |
| Are there any needed changes?                                                           | YES         |     |       | NO       | COMMENTS: |
| Are the site records complete and up to date?                                           | YES         |     |       | NO       | COMMENTS: |

| Site Monitoring Wells |                 |    |  |  |
|-----------------------|-----------------|----|--|--|
| Well ID.              | Location Secure |    |  |  |
| MW-1                  | YES             | NO |  |  |
| MW-2                  | YES             | NO |  |  |
| MW-3                  | YES             | NO |  |  |
| MW-3R                 | YES             | NO |  |  |
| MW-4R                 | YES             | NO |  |  |
| MW-5R                 | YES             | NO |  |  |
| MW-6R                 | YES             | NO |  |  |
| MW-7R                 | YES             | NO |  |  |



# **Appendix B – Well Sampling Field Data**

| Well ID | Sample? | Well Size | DTW   | DTP | DTB   | Comments         |
|---------|---------|-----------|-------|-----|-------|------------------|
| MW-1    | Yes     | 2"        | 7:44  |     | 7.85  |                  |
| MW-2    | Yes     | 2"        | 5.30  |     | 7.30  |                  |
| MW-3    | Yes     | 2"        | DRY   |     | 5.76  | historically dry |
| MW-3R   | Yes     | 2"        | 22.79 |     | 23.30 |                  |
| MW-4R   | Yes     | 2"        | 22.40 |     | 44.80 | MS/MSD           |
| MW-5R   | Yes     | 2"        | 22-23 |     | 44.45 | Field Duplicate  |
| MW-6R   | Yes     | 2"        | 22.52 |     | 45.00 |                  |
| MW-7R   | Yes     | 2"        | 21.45 |     | 45.05 |                  |

**DTW** -depth to water

DTP -depth to product

DTB -depth to bottom

|                                   |                          | Date: 6/9/22                                                                                                   |
|-----------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Sampling Personnel:               | h                        |                                                                                                                |
| Job Number: 0603275-1360          | )10-221                  | Weather: Pc 60                                                                                                 |
| Well Id. MW-1                     |                          | Time In: 09:45 Time Out:                                                                                       |
|                                   |                          |                                                                                                                |
| Well information                  |                          |                                                                                                                |
|                                   | TOC Other                | Well Type: Flushmount Stick-Up                                                                                 |
| Depth to Water:                   | (feet) 7-49              | Well Locked: Yes No No                                                                                         |
| Depth to Bottom:                  | (feet) 7.85              | Measuring Point Marked: Yes No No                                                                              |
| Depth to Product:                 | (feet)                   | Well Material: PVC SS Other:                                                                                   |
| Length of Water Column:           | (feet) Or 4              | Well Diameter: 1" 2" Other:                                                                                    |
| Volume of Water in Well:          | (gal) 6.065              | Comments:                                                                                                      |
| Three Well Volumes:               | (gal) 0.19V              |                                                                                                                |
|                                   |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
| Purging Information               |                          |                                                                                                                |
| Furging information               |                          | Conversion Factors                                                                                             |
| Purging Method:                   | Bailer Peristaltic Grund | fos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID                                                                       |
| Tubing/Bailer Material:           | ·                        | lyethylene of                                                                                                  |
| Sampling Method:                  |                          | water 0.04 0.16 0.66 1.47                                                                                      |
| Average Pumping Rate:             | (ml/min) 2-2:            | 1 gallop=3.785L=3785mL=1337cu. feet                                                                            |
| Duration of Pumping:              | (min) 20                 |                                                                                                                |
| Total Volume Removed:             | (gal) 2 Did well go dry' | ? Yes No                                                                                                       |
|                                   |                          |                                                                                                                |
| Horiba U-52 Water Quality Me      | ter Used? Yes No No      |                                                                                                                |
|                                   |                          |                                                                                                                |
| Time DTW                          | Temp pH QRP              | Conductivity Turbidity DO TDS                                                                                  |
| (feet)                            | (fnV)                    | (mS/cm) (NTU) (mg/L) (g/L)                                                                                     |
| 09:00                             |                          |                                                                                                                |
| 00:05                             |                          |                                                                                                                |
| 06:10                             |                          |                                                                                                                |
| 09:15                             |                          |                                                                                                                |
| 09:20                             |                          |                                                                                                                |
| 00.20                             |                          |                                                                                                                |
| 09.30                             |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
|                                   |                          |                                                                                                                |
| O-marling Information.            |                          | $\neg \neg \neg \neg x \cup y \cup \neg x \cup y \cup x \cup y \cup x \cup y \cup x \cup x \cup x \cup x \cup$ |
| Sampling Information:             | // /                     |                                                                                                                |
|                                   | SVOC BALL'S              | 100ml ambers Yes No                                                                                            |
| EPA SW-846 Method 8270            | SVOC PAH'S               | 3 - 40 ml vials Yes No                                                                                         |
| EPA SW-846 Method 8260            | VOC's BTEX               | 1 - 250 ml plastic Yes No                                                                                      |
| EPA SW-846 Method 9012            | Total Cyanide            |                                                                                                                |
|                                   | n Duntinata V Na P       | Shipped: Pace Courier Pickup                                                                                   |
| Sample ID: MW-1-062               |                          | Drop-off Albany Service Center                                                                                 |
| Sample Time:                      | MS/MSD? Yes No           |                                                                                                                |
| Comments/Notes:                   |                          | Laboratory: Pace Analytical                                                                                    |
|                                   |                          | Greensburg, PA <sub>Page 8 of 2</sub>                                                                          |
| \\svrrmt88-vm3\syracuse-01\Dashbo | ard\Planning\898691.xlsm |                                                                                                                |

|                                                        |                                                                 |                         |                                     |                   |                                                  | / /                                                   |                                                               |                       |
|--------------------------------------------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------|-------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-----------------------|
| Sampling Person                                        | onnel:                                                          | El you                  |                                     | <u> </u>          | Date: 6/                                         | 8/22                                                  |                                                               |                       |
| Job Number:                                            | 0603275-13                                                      | •                       | ·                                   |                   | Weather:                                         | 55° Park                                              | 4 cloudy                                                      | ·<br>                 |
| Well Id.                                               | MW-3R                                                           |                         |                                     |                   | Time In: c                                       | 945                                                   | Time Out:                                                     | <u>1000</u>           |
|                                                        |                                                                 |                         |                                     |                   |                                                  | ······································                |                                                               |                       |
| Well Info                                              | rmation                                                         |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         | TOC                                 | Other             | Well Type:                                       |                                                       | nmount S<br>Yes                                               | tick-Up<br>No         |
| Depth to Water                                         |                                                                 | (feet)                  | 22.78<br>23.30                      |                   | Well Locked<br>Measuring Po                      |                                                       | Yes                                                           | No                    |
| Depth to Produ                                         |                                                                 | (feet)                  | 23.30                               |                   | Well Materi                                      |                                                       | SSOthe                                                        | er:                   |
| Length of Water                                        |                                                                 | (feet)                  | .52                                 |                   | Well Diame                                       | rter: 1"[                                             | 2" \ Othe                                                     | er:                   |
| Volume of Wat                                          |                                                                 | (gal)                   | -08                                 |                   | Comments                                         |                                                       |                                                               |                       |
| Three Well Vo                                          | lumes:                                                          | (gal)                   | ,24                                 |                   |                                                  | <del> </del>                                          |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       | <u></u>                                                       |                       |
|                                                        |                                                                 |                         | <del></del>                         |                   |                                                  |                                                       |                                                               |                       |
| Purging In                                             | formation                                                       |                         |                                     |                   |                                                  |                                                       | Conversion F                                                  | actors                |
| Purging Metho                                          | nd.                                                             |                         | iler Perista                        | altic Grund       | fos Pump                                         | gal/ft.                                               | 1" ID 2" ID                                                   | 4" ID 6" ID           |
| Tubing/Bailer I                                        |                                                                 | <b>-</b> I              | ion Stainless                       | <del>- 1</del>    | yethylene                                        | of                                                    |                                                               |                       |
| Sampling Meth                                          |                                                                 |                         | iler Perista                        | <del>- &gt;</del> | fos Pump                                         | water                                                 | 0.04 0.16                                                     | 0.66   1.47           |
| Average Pump                                           |                                                                 | (ml/min)                |                                     |                   |                                                  | 1 gali                                                | on=3.785L=3785m                                               | L=1337cu. feet        |
| Duration of Pu                                         |                                                                 | (min)                   |                                     |                   | <u> </u>                                         | <del></del>                                           |                                                               |                       |
| Total Volume                                           | Removed:                                                        | (gal)                   |                                     | Did well go dry?  | Yes X No                                         |                                                       |                                                               |                       |
| Horiba U-52 V                                          | Vater Quality N                                                 | Meter Used?             | ,                                   | res No 🗌          |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
| Time                                                   | DTW                                                             | Temp                    | pН                                  | ORP               | Conductivity                                     | Turbidity                                             | DO                                                            | TDS                   |
|                                                        | (feet)                                                          | (°C)                    |                                     | (mV)              | (mS/cm)                                          | (NTU)                                                 | (mg/L)                                                        | (g/L)                 |
| 11                                                     |                                                                 |                         |                                     | 1                 | 1                                                |                                                       |                                                               |                       |
|                                                        |                                                                 | <u> </u>                |                                     | <u> </u>          | <del>                                     </del> |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        |                                                                 |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
|                                                        | formation                                                       |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
| Sampling In                                            | formation:                                                      |                         |                                     |                   |                                                  |                                                       |                                                               |                       |
| Sampling In                                            |                                                                 | SVC                     | OC PAH's                            |                   |                                                  | 2 - 100ml am                                          | bers Yes                                                      | No                    |
| Sampling In                                            | 46 Method 8270                                                  |                         | OC PAH's                            |                   |                                                  | 2 - 100ml am<br>3 - 40 ml via                         |                                                               | <del>[ ]</del>        |
| Sampling In<br>EPA SW-8<br>EPA SW-8                    |                                                                 | voc                     | -                                   |                   |                                                  |                                                       | als Yes                                                       | No No                 |
| Sampling In<br>EPA SW-8<br>EPA SW-8                    | 46 Method 8270<br>346 Method 8260                               | voc                     | l Cyanide                           |                   |                                                  | 3 - 40 ml via<br>1 - 250 ml pla                       | als Yes<br>estic Yes                                          | No No                 |
| Sampling In:  EPA SW-8  EPA SW-8  EPA SW-8  Sample ID: | 46 Method 8270<br>346 Method 8260                               | VOC<br>Tota             | c's BTEX<br>I Cyanide<br>Duplicate? | Yes No            | S                                                | 3 - 40 ml via<br>1 - 250 ml pla<br>hipped: F          | als Yes<br>astic Yes<br>Pace Courier Picl                     | No No No              |
| Sampling In<br>EPA SW-8<br>EPA SW-8                    | 46 Method 8270<br>346 Method 8260<br>346 Method 9012            | VOC<br>Tota             | l Cyanide                           | Yes No Yes No     | S                                                | 3 - 40 ml via<br>1 - 250 ml pla<br>hipped: F<br>Drop- | als Yes ustic Yes Pace Courier Picl off Albany Servic         | No No No Cup E Center |
| Sampling In:  EPA SW-8  EPA SW-8  EPA SW-8  Sample ID: | 46 Method 8270<br>346 Method 8260<br>346 Method 9012<br>MW-3R-0 | O VOC<br>2 Tota<br>0622 | c's BTEX<br>I Cyanide<br>Duplicate? | Yes No            | 3                                                | 3 - 40 ml via<br>1 - 250 ml pla<br>hipped: F          | als Yes astic Yes Pace Courier Picl off Albany Servic Pace An | No No No Cup E Center |

| Anthony Street, Watertown New York                                                                                                                                                                                     |                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Personnel:                                                                                                                                                                                                    | Date: 6/8/27                                                                                                                                                                       |
| Job Number: 0603275-136010-221                                                                                                                                                                                         | Weather: 62                                                                                                                                                                        |
| Well Id. MW-2                                                                                                                                                                                                          | Time In: 0-55 Time Out:                                                                                                                                                            |
| Wolfied.                                                                                                                                                                                                               |                                                                                                                                                                                    |
| Well InformationTOCOtherDepth to Water:(feet)20.405-30Depth to Bottom:(feet)7.30                                                                                                                                       | Well Type: Flushmount Stick-Up Well Locked: Yes Measuring Point Marked: Yes Well Material: PVC SS Other:                                                                           |
| Depth to Product: (feet)  Length of Water Column: (feet)  Volume of Water in Well: (gal)  Three Well Volumes: (gal) 3-32                                                                                               | Well Material: PVC SS Other: Well Diameter: 1" 2" Other:                                                                                                                           |
| Tubing/Bailer Material: Teflon Stainless St. Polye                                                                                                                                                                     | Conversion Factors   gal/ft.   1" ID   2" ID   4" ID   6" ID   of water   0.04   0.16   0.66   1.47   1 gallon=3.785L=3785mL=1337cu. feet   Yes   No                               |
| Time DTW Temp pH ORP (feet) (°C) (mV)                                                                                                                                                                                  | Conductivity Turbidity DO TDS (g/L) (mS/cm) (NTU) (mg/L) (g/L)  0.000 167 172 7-29 0-313 0.471 37.0 7-23 0.366 0.466 10-1 7-41 0-323 0.467 5.0 7.18 0.303 0.468 3.0 6.49 0.304     |
| Sampling Information:  EPA SW-846 Method 8270 SVOC PAH's  EPA SW-846 Method 8260 VOC's BTEX  EPA SW-846 Method 9012 Total Cyanide'  Sample ID: MW-2-0622 Duplicate? Yes No Sample Time: MS/MSD? Yes No Comments/Notes: | 2 - 100ml ambers Yes No 3 - 40 ml vials Yes No No 1 - 250 ml plastic Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA |

|                                                                                                                                  |                                          |                             |                  |                              | C. 100                                           |                                                                |                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|------------------|------------------------------|--------------------------------------------------|----------------------------------------------------------------|------------------------------------|--|
| Sampling Personnel: Pcker                                                                                                        | 400                                      |                             | <del></del>      | Date: //                     | 9/12                                             | 44 44 1                                                        |                                    |  |
| Job Number: 0603275-136010-221                                                                                                   |                                          |                             |                  | Weather: 67 Partly Cloudy    |                                                  |                                                                |                                    |  |
| Well ld. MW-3                                                                                                                    |                                          |                             | Time In: 🐧       | 2944                         | Time Out:                                        | 0945                                                           |                                    |  |
|                                                                                                                                  |                                          |                             |                  |                              |                                                  |                                                                |                                    |  |
| Well Information                                                                                                                 |                                          |                             |                  |                              |                                                  | <b>\</b>                                                       |                                    |  |
|                                                                                                                                  |                                          | TOC                         | Other            | Well Type:                   |                                                  | <del>(</del> )                                                 | tick-Up                            |  |
| Depth to Water:                                                                                                                  | (feet)                                   |                             |                  | Well Locked                  |                                                  | Yes<br>Yes                                                     | No No                              |  |
| Depth to Bottom:                                                                                                                 | (feet)                                   | 5/16                        |                  | Measuring Po<br>Well Materia | r r                                              | <del></del>                                                    | L                                  |  |
| Depth to Product: Length of Water Column:                                                                                        | (feet)                                   |                             |                  | Well Diame                   | *                                                | 2" Othe                                                        |                                    |  |
| Volume of Water in Well:                                                                                                         | (gal)                                    |                             |                  | Comments:                    |                                                  |                                                                |                                    |  |
| Three Well Volumes:                                                                                                              | (gal)                                    |                             |                  |                              |                                                  |                                                                |                                    |  |
|                                                                                                                                  |                                          |                             |                  |                              | <del>-,</del>                                    | ·                                                              |                                    |  |
|                                                                                                                                  |                                          |                             |                  |                              | <del></del>                                      |                                                                |                                    |  |
| Purging Information                                                                                                              |                                          |                             |                  |                              | <del></del>                                      |                                                                |                                    |  |
|                                                                                                                                  | _                                        | <del></del>                 | N 21             | _                            |                                                  | Conversion F                                                   | actors<br>4" ID 6" ID              |  |
| Purging Method:                                                                                                                  | Bailer                                   | <del></del>                 | <del>/  </del>   | os Pump                      | gal/ft.                                          | 1 10 2 10                                                      | 4 10 6 10                          |  |
| Tubing/Bailer Material:                                                                                                          | Teflon                                   | <del></del>                 |                  | ethylene<br>os Pump          | of<br>water                                      | 0.04 0.16                                                      | 0.66 1.47                          |  |
| Sampling Method: Average Pumping Rate:                                                                                           | Bailer<br>(ml/min)                       | Penstani                    | Glullar          | os i ump                     |                                                  | on=3.785L=3785m                                                |                                    |  |
| Duration of Pumping:                                                                                                             | (min)                                    |                             |                  |                              |                                                  |                                                                |                                    |  |
| Total Volume Removed:                                                                                                            | (gal)                                    |                             | Did well go dry? | Yes 🔀 No                     |                                                  |                                                                |                                    |  |
| Horiba U-52 Water Quality Me                                                                                                     |                                          | <del></del>                 | s No             |                              |                                                  |                                                                |                                    |  |
| HOURS 0-32 Water Granty IN                                                                                                       | eter Osca:                               | , 0                         |                  |                              |                                                  |                                                                |                                    |  |
|                                                                                                                                  |                                          |                             |                  |                              |                                                  |                                                                |                                    |  |
|                                                                                                                                  |                                          | На                          |                  | Conductivity                 | Turbidity                                        | DO                                                             | TDS                                |  |
| Time DTW                                                                                                                         | Temp                                     | рН                          | ORP<br>(mV)      | Conductivity (mS/cm)         | Turbidity<br>(NTU)                               | DO<br>(mg/L)                                                   | TDS<br>(g/L)                       |  |
|                                                                                                                                  |                                          | рН                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | рН                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | рН                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | рН                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | рН                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW (feet)                                                                                                                  | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW                                                                                                                         | Temp                                     | pH                          | ORP              | 1 1                          |                                                  | 1                                                              | i !                                |  |
| Time DTW (feet)  Sampling Information:                                                                                           | Temp<br>(°C)                             |                             | ORP              | 1 1                          | (NTU)                                            | (mg/L)                                                         | (g/L)                              |  |
| Time DTW (feet)  Sampling Information:                                                                                           | Temp<br>(°C)                             | PAH's                       | ORP              | 1 1                          | (NTU)                                            | bers Yes                                                       | (g/L)                              |  |
| Sampling Information:  EPA SW-846 Method 8270 EPA SW-846 Method 8260                                                             | Temp<br>(°C)                             | PAH's<br>BTEX               | ORP              | 1 1                          | (NTU)                                            | bers Yes                                                       | (g/L)                              |  |
| Time DTW (feet)  Sampling Information:                                                                                           | Temp<br>(°C)                             | PAH's<br>BTEX               | ORP              | 1 1                          | 2 - 100ml aml<br>3 - 40 ml via                   | bers Yes                                                       | (g/L)                              |  |
| Sampling Information:  EPA SW-846 Method 8270 EPA SW-846 Method 9012                                                             | Temp<br>(°C)<br>SVOC<br>VOC's<br>Total C | PAH's<br>BTEX               | ORP              | (mS/cm)                      | 2 - 100ml aml<br>3 - 40 ml via<br>1 - 250 ml pla | bers Yes als Yes astic Yes                                     | (g/L)                              |  |
| Sampling Information:  EPA SW-846 Method 8270 EPA SW-846 Method 9012                                                             | Temp<br>(°C)<br>SVOC<br>VOC's<br>Total C | PAH's<br>BTEX<br>yanide     | ORP<br>(mV)      | (mS/cm)                      | 2 - 100ml aml<br>3 - 40 ml via<br>1 - 250 ml pla | bers Yes                                                       | (g/L)                              |  |
| Time DTW (feet)  Sampling Information:  EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA SW-846 Method 9012  Sample ID: MW-3-06 | SVOC<br>VOC's<br>Total C                 | PAH's BTEX yanide uplicate? | ORP<br>(mV)      | (mS/cm)                      | 2 - 100ml aml<br>3 - 40 ml via<br>1 - 250 ml pla | bers Yes als Yes astic Yes Pace Courier Pick off Albany Servic | (g/L)  No No No No No Cup e Center |  |

\\svrrmt88-vm3\syracuse-01\Dashboard\Planning\898691.xkm

|                                  |                   |                    |                    | Detail 1     | 18/22                                          |                  |                |  |
|----------------------------------|-------------------|--------------------|--------------------|--------------|------------------------------------------------|------------------|----------------|--|
| Sampling Personnel: //           |                   | <u> </u>           |                    | Date:        | Gmy 62                                         | <u> </u>         | <u>,,</u>      |  |
| Job Number: 0603275-136010-221   |                   |                    |                    |              |                                                |                  |                |  |
| Well Id. MW-4R                   |                   |                    |                    | Time In:     | 17:10                                          | Time Out:        |                |  |
|                                  |                   |                    |                    |              |                                                |                  |                |  |
| Well Information                 | . т               | -oc (              | Other              | Well Type:   | Flush                                          | nmount S         | tick-Up        |  |
| D-th to Wotor                    | (feet) 22-        |                    | Other              | Well Locke   | d:                                             | Yes              | No             |  |
| Depth to Water: Depth to Bottom: |                   | 4.80               |                    | Measuring P  |                                                | Yes              | No             |  |
| Depth to Product:                | (feet)            |                    |                    | Well Mater   | · · · · · · · · · · · · · · · · · · ·          | SS Othe          |                |  |
| Length of Water Column:          | (feet) 22         | 2                  |                    | Well Diame   | , ici.                                         | 2" \Othe         | ai             |  |
| Volume of Water in Well:         | (gal) 3.          | 50                 |                    | Comments     | its:                                           |                  |                |  |
| Three Well Volumes:              | (gal) /0-         | 75                 |                    |              |                                                |                  |                |  |
|                                  |                   |                    |                    |              |                                                |                  |                |  |
| Duraling Information             |                   |                    |                    |              |                                                |                  |                |  |
| Purging Information              |                   |                    |                    |              |                                                | Conversion F     |                |  |
| Purging Method:                  | Bailer            | Peristaltic        |                    | os Pump      | gal/ft.                                        | 1" ID   2" ID    | 4" ID 6" ID    |  |
| Tubing/Bailer Material:          | Teflon            | Stainless St.      | <del>.  </del>     | yethylene    | of                                             | 0.04   0.16      | 0.66   1.47    |  |
| Sampling Method:                 | Bailer            | Peristaltic        | Grund <sup>a</sup> | fos Pump     | water                                          | on=3.785L=3785m  |                |  |
| Average Pumping Rate:            |                   | <u> </u>           |                    |              | 1 gain                                         | 0(1-3.703L-0700H | 10010411001    |  |
| Duration of Pumping:             |                   | 20 Di              | id well go dry?    | Yes No.      |                                                |                  |                |  |
| Total Volume Removed:            |                   |                    |                    | 100          | <del>5</del> '                                 |                  |                |  |
| Horiba U-52 Water Quality Mo     | eter Used?        | Yes                | No                 |              |                                                |                  |                |  |
|                                  |                   |                    | ODD                | Conductivity | Turbidity                                      | DO               | TDS            |  |
| Time DTW                         | Temp              | pH                 | ORP<br>(mV)        | (mS/cm)      | (NTU)                                          | (mg/L)           | (g/L)          |  |
| (feet) (72.93                    | (°C)              | 6-54               | 36                 | 3.06         | 79                                             | 1. 8             | 1.96           |  |
| 19 20 23.51                      | 13.84             | 77                 | 3                  | 3.2          | 4.9                                            | 0.87             | 2-00           |  |
| 06:15 Dy Us                      | 13.01             | 7.43               | -36                | 3.13         | 2.                                             | 0.63             | 1.99           |  |
| 09:30 25:07                      | 12-49             | 7.42               | -55                | 2.61         | 6-5                                            | 0.67             | 1-6-           |  |
| 1935 25.16                       | 12.68             | 7-26               | -44                | 2-19         | 127                                            | 079              | 1.37           |  |
| 09:40 2030                       | 13.23             | <u> 7.08</u>       | -90                | 07-0-J       | 1/0 =                                          | 12 62            | 1-32           |  |
| 09:45 20.99                      | 13.20             | 7-00               | -129               | 2-0-         | 1 70 5                                         | 0: 23            | <del>/3/</del> |  |
|                                  | -                 | <u> </u>           |                    |              | <u>†                                      </u> |                  |                |  |
|                                  |                   |                    |                    |              |                                                |                  |                |  |
|                                  |                   |                    |                    |              |                                                | <u> </u>         |                |  |
|                                  |                   |                    |                    |              |                                                |                  |                |  |
| Sampling Information:            |                   |                    |                    |              |                                                |                  |                |  |
|                                  |                   |                    |                    |              |                                                | t                |                |  |
| EPA SW-846 Method 8270           | SVOC P            |                    |                    |              | 6 - 100ml am                                   |                  | s No No        |  |
| EPA SW-846 Method 8260           |                   |                    |                    |              | 9 - 40 ml via<br>3 - 250 ml pla                |                  |                |  |
| EPA SW-846 Method 9012           |                   |                    |                    |              | o - Zou iii pi                                 | 20110            | - كا ```لكا    |  |
|                                  | W-4R-MSD-06       | plicate?           | Yes No D           | <b>7</b>     | Shipped:                                       | Pace Courier Pic | ckup 🔀         |  |
| Sample ID: MW-4R-0               |                   | plicate?<br>S/MSD? | Yes No             | 7            |                                                | off Albany Servi | ce Center      |  |
| Sample Time:                     |                   |                    |                    |              | Laboratory:                                    | Pace A           | nalytical      |  |
| Comments/Notes:                  |                   |                    |                    |              | Laboratory.                                    |                  | ourg, PA       |  |
| \\syrrmt88-vm3\syracuse-01\Dashb | oard\Planning\898 | 3691.xlsm          |                    | <u>L</u>     |                                                |                  | Page 12 of     |  |

| Anthony Street,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                        |                                                  |                                               |                                                  |                              |                                                            |                                                                        |                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|--|
| Sampling Personnel: Pake 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                                                  |                                               |                                                  | Date: 6/8/22                 |                                                            |                                                                        |                                        |  |
| Job Number: 0603275-136010-221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                  |                                               |                                                  | Weather: 67 Suny             |                                                            |                                                                        |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               |                                                  | Time In: 10/8 Time Out: 1/00 |                                                            |                                                                        |                                        |  |
| Well Id.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MW-6R                                                                                          |                                                  |                                               |                                                  |                              |                                                            |                                                                        |                                        |  |
| Well Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rmation                                                                                        |                                                  |                                               |                                                  |                              |                                                            |                                                                        | ck-Up                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               | Other                                            | Well Type:                   |                                                            | mount Sti                                                              | No No                                  |  |
| Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r:                                                                                             |                                                  | 2252                                          |                                                  | Well Locked                  |                                                            | Yes                                                                    | No                                     |  |
| Depth to Botton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m:                                                                                             | (feet)                                           | 45.00                                         |                                                  | Measuring Po                 | - T                                                        | SSOthe                                                                 |                                        |  |
| Depth to Produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                  |                                               | Well Diameter: 1" 2" Other:                      |                              |                                                            |                                                                        |                                        |  |
| Length of Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                  |                                               |                                                  | Comments:                    | · _                                                        |                                                                        |                                        |  |
| Volume of Wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                                                  | 10.79                                         |                                                  |                              |                                                            |                                                                        |                                        |  |
| Three Well Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iumes:                                                                                         | (gal)                                            | 70.77                                         |                                                  |                              |                                                            |                                                                        |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               |                                                  |                              |                                                            |                                                                        |                                        |  |
| Purging In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | formation                                                                                      |                                                  |                                               |                                                  |                              | <del></del>                                                | Conversion Fa                                                          | otore                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               |                                                  |                              | <del> </del>                                               | 1" ID 2" ID                                                            | 4" ID 6" ID                            |  |
| Purging Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | od:                                                                                            | Bailer                                           | Peristaltic                                   | <del>/                                    </del> | s Pump                       | gal/ft.                                                    | 1 10 2 10                                                              | 7 10 0 10                              |  |
| Tubing/Bailer Material: Teflon Stainless St. Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               |                                                  | ethylene                     | of<br>water                                                | 0.04   0.16                                                            | 0.66   1.47                            |  |
| Sampling Method: Bailer Peristaltic Grund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                  |                                               |                                                  | s Pump[                      |                                                            | n=3.785L=3785ml                                                        | <del></del> _i                         |  |
| Average Pum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | (ml/min)                                         | 200                                           |                                                  |                              | <u> </u>                                                   |                                                                        |                                        |  |
| Duration of Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                | (min)                                            | <u>36                                    </u> | oid well go dry?                                 | Yes No                       | <b>\</b>                                                   |                                                                        |                                        |  |
| Total Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | (gal)                                            |                                               |                                                  |                              | <del>_</del>                                               |                                                                        |                                        |  |
| Horiba U-52 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vater Quality N                                                                                | leter Used?                                      | Yes                                           | No.                                              |                              |                                                            |                                                                        |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                  |                                               | LOPP                                             | Conductivity                 | Turbidity                                                  | DO                                                                     | TDS                                    |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DTW                                                                                            | Temp                                             | pН                                            | ORP                                              | (mS/cm)                      | (NTU)                                                      | (mg/L)                                                                 | (g/L)                                  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (feet)                                                                                         | (°C)                                             | 2.39                                          | (mV)                                             | 5.09                         | 57.7                                                       | 2.71                                                                   | 3.21                                   |  |
| 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 14.68                                            |                                               | 89                                               | 5.26                         | 41.2                                                       | 0.00                                                                   | 3.32                                   |  |
| 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 13.54                                            | 2.36<br>2.38                                  | -52                                              | 5.05                         | 18.3                                                       | 0.00                                                                   | 3.18                                   |  |
| 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.59                                            | 7.38                                          | -53                                              | 4.81                         | 8.9                                                        | 0.00                                                                   | 3.08                                   |  |
| /035_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2252                                                                                           | 12.51                                            |                                               |                                                  |                              |                                                            |                                                                        |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102-7                                                                                          | 17 70                                            | 241                                           | 1 -22                                            | 4.37                         | 2.4                                                        | 0.14                                                                   | 2.78                                   |  |
| 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.30                                            | 7.41                                          | 28                                               |                              | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28<br>57                                         | 4.37<br>3.41<br>3.13         |                                                            | 0.14<br>2.11<br>3.01                                                   | 2.78                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | <del>                                     </del> | 7.47<br>7.47<br>7.50                          | 28                                               | 3.41                         | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28                                               | 3.41                         | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28                                               | 3.41                         | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28                                               | 3.41                         | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28                                               | 3.41                         | <u> 5,3</u>                                                | 2.11                                                                   | 2.28                                   |  |
| 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.52                                                                                          | 12.40                                            | 2.47                                          | 28                                               | 3.41                         | 5.3<br>4.5                                                 | 3.01                                                                   | 2.28<br>2.18<br>2.00                   |  |
| 1045<br>1050<br>Sampling Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Da. 52<br>Da. 52                                                                               | 12.40                                            | 7.47                                          | 28                                               | 3.41                         | 5.3<br>4.5                                                 | 2.11<br>3.01<br>bers Yes                                               | 2.28<br>2.18<br>2.00                   |  |
| Sampling In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nformation:                                                                                    | 12.40<br>12,68                                   | 7.47                                          | 28                                               | 3.41                         | 2 - 100ml am<br>3 - 40 ml via                              | bers Yes                                                               | 2.28<br>2.18<br>2.00                   |  |
| Sampling Ir  EPA SW-I  EPA SW-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.52<br>22.52<br>nformation:<br>846 Method 8270<br>846 Method 826                             | 12.40<br>12,68<br>3 SVOC<br>0 VOC's              | 7.47<br>7.50                                  | 28                                               | 3.41                         | 5.3<br>4.5                                                 | bers Yes                                                               | 2.29<br>2.18<br>2.00                   |  |
| Sampling Ir  EPA SW-I  EPA SW-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.52<br>22.52<br>nformation:<br>846 Method 8270<br>846 Method 826<br>846 Method 901           | 12.40<br>12,68<br>0 SVOC<br>0 VOC's<br>2 Total C | PAH's BTEX Eyanide                            | 28 57                                            | 3.41                         | 2 - 100ml am<br>3 - 40 ml via<br>1 - 250 ml pla            | bers Yes                                                               | 2.28<br>2.18<br>2.00                   |  |
| Sampling Ir  EPA SW-I  EPA | 22.52<br>22.52<br>nformation:<br>846 Method 827<br>846 Method 826<br>846 Method 901            | 12.40<br>12,68<br>0 SVOC<br>0 VOC's<br>2 Total C | PAH's BTEX Eyanide Duplicate?                 | 28<br>57<br>Yes No                               | 3.4/<br>3./3                 | 2 - 100ml am<br>3 - 40 ml via<br>1 - 250 ml pla            | bers Yes als Yes astic Yes                                             | 2.29<br>2.18<br>2.00<br>No<br>No<br>No |  |
| Sampling Ir  EPA SW-EPA SW-EPA SW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.52<br>22.52<br>nformation:<br>846 Method 827<br>846 Method 826<br>846 Method 901            | 12.40<br>12,68<br>0 SVOC<br>0 VOC's<br>2 Total C | PAH's BTEX Eyanide                            | 28 57                                            | 3.4/<br>3./3                 | 2 - 100ml am<br>3 - 40 ml via<br>1 - 250 ml pla<br>hipped: | bers Yes als Yes astic Yes Pace Courier Pic                            | 2.29 2.18 2.50  Solve No Solve Center  |  |
| Sampling Ir  EPA SW-I  EPA | 22.52<br>22.52<br>nformation:<br>846 Method 8276<br>846 Method 826<br>846 Method 901<br>MW-6R- | 12.40<br>12,68<br>0 SVOC<br>0 VOC's<br>2 Total C | PAH's BTEX Eyanide Duplicate?                 | 28<br>57<br>Yes No                               | 3.4/<br>3./3                 | 2 - 100ml am<br>3 - 40 ml via<br>1 - 250 ml pla            | bers Yes als Yes astic Yes Pace Courier Pic off Albany Service Pace Ar | 2.29 2.18 2.50  Solve No Solve Center  |  |

 $\verb|\syrrmt88-vm3\syracuse-01|Dashboard\Planning\898691.x|sm|$ 

| Anthony Street                                                 | , vvaloriowii i v                                                    |                                   | · .                                                      | ···                                              |                         |                |                                                    |                  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------|----------------|----------------------------------------------------|------------------|--|
| Sampling Pers                                                  | Date: 6/8/22                                                         |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
| Sampling Personnel: Pclus Lyan  Job Number: 0603275-136010-221 |                                                                      |                                   |                                                          |                                                  | Weather: Coudy 65       |                |                                                    |                  |  |
| Well Id. MW-7R                                                 |                                                                      |                                   |                                                          |                                                  | Time In: 🔗              | 55             | Time Out:                                          | 0935             |  |
| vveiria.                                                       | 1110                                                                 |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
| Well Info                                                      | rmation                                                              |                                   |                                                          |                                                  |                         |                | <b>6</b>                                           |                  |  |
|                                                                |                                                                      |                                   | TOC                                                      | Other                                            | Well Type:              |                | <b>(</b> → )                                       | Stick-Up         |  |
| Depth to Wate                                                  | r:                                                                   |                                   | 1.45                                                     |                                                  | Well Locked             |                | Yes                                                | No               |  |
| Depth to Botto                                                 |                                                                      | (feet)                            | 45.05                                                    |                                                  | Measuring Po            | 7              | Yes X<br>SS Oth                                    | No               |  |
| Depth to Produ                                                 |                                                                      | (feet)                            | 77 /                                                     |                                                  | Well Materia Well Diame |                | 2" Oth                                             |                  |  |
| Length of Wat                                                  |                                                                      | (feet)                            | 23.6                                                     |                                                  | Comments:               |                |                                                    | ···              |  |
| Three Well Vo                                                  |                                                                      |                                   | 1.32                                                     |                                                  |                         |                |                                                    |                  |  |
| Thiee well ve                                                  | numes.                                                               | ( <u>gui)</u>                     | 7. <u>0a</u>                                             |                                                  |                         |                |                                                    |                  |  |
|                                                                |                                                                      |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
| Purging Ir                                                     | nformation                                                           |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
|                                                                |                                                                      |                                   | ·····                                                    | S                                                |                         |                | Conversion F                                       |                  |  |
| Purging Metho                                                  | od:                                                                  | Bailer                            | Peristaltic                                              | <del>-                                    </del> | os Pump                 | gal/ft.        | 1" ID   2" ID                                      | 4" ID 6" ID      |  |
| Tubing/Bailer Material: Teflon Stainless St. Polyethylene Of   |                                                                      |                                   |                                                          |                                                  |                         | 0.04 0.16      | 0.66   1.47                                        |                  |  |
| <del></del>                                                    | Sampling Method: Bailer Peristation Guidios Pully 3705 pt 4237cu for |                                   |                                                          |                                                  |                         |                | <u> </u>                                           |                  |  |
| Average Pum                                                    |                                                                      |                                   | 300                                                      |                                                  |                         | 1 gan          | 311-0.7-002-07-001.                                |                  |  |
| Duration of Pu                                                 | · · · · · · · · · · · · · · · · · · ·                                | (min)                             | _ <u></u>                                                | id well go dry?                                  | Yes No                  | X              |                                                    |                  |  |
| Total Volume                                                   |                                                                      | (gal)                             |                                                          | ``                                               | 19910                   | 21             |                                                    |                  |  |
| Horiba U-52 V                                                  | Water Quality M                                                      | leter Used?                       | Yes                                                      | No∐_                                             |                         |                |                                                    |                  |  |
|                                                                |                                                                      | T                                 |                                                          | ORP                                              | Conductivity            | Turbidity      | DO                                                 | TDS              |  |
| Time                                                           | DTW<br>(feet)                                                        | Temp<br>(°C)                      | pН                                                       | (mV)                                             | (mS/cm)                 | (NTU)          | (mg/L)                                             | (g/L)            |  |
| 0900                                                           | 21.46                                                                | 13.12                             | 6.65                                                     | 211                                              | 4.01                    | 4.4            | 6.19                                               | 2.56             |  |
| 0905                                                           | 21.47                                                                | 12,56                             | 6.98                                                     | 208                                              | 4.10                    | 2.5            | 3.24                                               | 2.63             |  |
| 07/0                                                           | 21.46                                                                | 11.95                             | 2.12                                                     | 203                                              | 4.17                    | 1.4            | 3./3                                               | 2.67             |  |
| 0915                                                           | 21.46                                                                | 12.08                             | 7.19                                                     | 196                                              | 4.16                    | 0.5            | 3.00                                               | 2.66             |  |
| 0920                                                           | 21.46                                                                | 12.06                             | 2.24                                                     | 190                                              | 4.15                    | 0.4            | 2.93                                               | G. 2.66          |  |
| 0925                                                           | 21.46                                                                | 12.08                             | 7,27                                                     | 185                                              | 4.14                    | 0.7            | 2.69                                               | 2.65             |  |
| 0730                                                           | 21.46                                                                | 11.93                             | 2,30                                                     | 183                                              | 4.14                    | 0.8            | 2.61                                               |                  |  |
|                                                                |                                                                      | -                                 |                                                          | <del>                                     </del> |                         |                |                                                    |                  |  |
|                                                                | <del> </del>                                                         |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
|                                                                |                                                                      |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
| <u> </u>                                                       |                                                                      |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
| Sampling In                                                    | formation:                                                           |                                   |                                                          |                                                  |                         |                |                                                    |                  |  |
|                                                                |                                                                      |                                   |                                                          |                                                  |                         |                |                                                    | <b>~</b>         |  |
| <b>!</b> ]                                                     |                                                                      | SVOC                              | PAH's                                                    |                                                  |                         | 2 - 100ml am   |                                                    | s No             |  |
| EPA SW-8                                                       | 346 Method 8270                                                      |                                   | EPA SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No |                                                  |                         |                |                                                    |                  |  |
| II.                                                            |                                                                      | ) VOC's                           |                                                          |                                                  |                         | 4 050          |                                                    |                  |  |
| EPA SW-                                                        |                                                                      | ) VOC's                           |                                                          |                                                  |                         | 1 - 250 ml pla |                                                    | s No             |  |
| EPA SW-l                                                       | 846 Method 8260<br>846 Method 9012                                   | ) VOC's<br>2 Total C <sub>1</sub> | /anide                                                   | Van Na N                                         | 71 ev                   | ·              | stic Ye                                            |                  |  |
| EPA SW-l<br>EPA SW-l<br>Sample ID:                             | 846 Method 8260<br>846 Method 9012<br>MW-7R-0                        | VOC's Total Cy                    | /anide<br>uplicate?                                      | Yes No                                           | Sr Sr                   | nipped: I      |                                                    | kup 🔀            |  |
| EPA SW-l                                                       | 846 Method 8260<br>846 Method 9012<br>MW-7R-0                        | VOC's Total Cy                    | /anide                                                   | Yes No Yes No                                    | St                      | nipped: I      | stic Ye Pace Courier Pic off Albany Service        | kup<br>ce Center |  |
| EPA SW-l<br>EPA SW-l<br>Sample ID:                             | 846 Method 8260<br>846 Method 9012<br>MW-7R-0                        | VOC's Total Cy                    | /anide<br>uplicate?                                      | $\vdash$                                         | Sr                      | nipped: I      | stic Ye Pace Courier Pic off Albany Servic Pace Ar | kup<br>ce Center |  |

# CHAIN-OF-CUSTODY / Analytical Request Document

| ·                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |                        |               |                                                  |                                                  |               |            |        |                  |                                                  |        |                |                                              |              |      |          |          |          | 1        |               |              |                          | ;              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|------------------------|---------------|--------------------------------------------------|--------------------------------------------------|---------------|------------|--------|------------------|--------------------------------------------------|--------|----------------|----------------------------------------------|--------------|------|----------|----------|----------|----------|---------------|--------------|--------------------------|----------------|
| to a                                    | Section 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Section                                                                                   | _                      |               |                                                  |                                                  |               |            |        |                  |                                                  |        |                |                                              |              |      |          |          |          | ją v s   | CEN           | :CY          |                          |                |
| ion A<br>ired Client Information:       | Required Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Invoke      | Invoice Information:  [Attention: Accounts Payable vis email at ges-envoices@getonine.com |                        |               |                                                  |                                                  |               |            |        |                  |                                                  |        |                | _                                            |              |      |          |          |          |          |               |              |                          |                |
| seny: GES - Syrecise                    | (GES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                           |                        |               |                                                  |                                                  |               |            | ll     | ⟨ NPO            | €S                                               | ! °s   | ROU            | ₩                                            | ATEF         | ś ), | CHINE    | UNG V    | VATER    |          | - (           |              |                          |                |
|                                         | dshay@gesonime.com<br>Report To: Tim Beaumoré (GES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Company Name Goundwater & Environmental Services, Inc.                                    |                        |               |                                                  |                                                  |               |            | 1      |                  |                                                  | - R    |                |                                              |              | -    | OTHE     | :R       |          |          |               |              |                          |                |
| iss: 6780 Northern Brid, Sulle 100      | meaumont@gesonine.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -           | Address, 6780 Northern Bird, Suite 100, East Syracuse, HY 13057                           |                        |               |                                                  |                                                  |               |            | l      | ;" US1           |                                                  |        | _              |                                              |              |      |          |          | ٢        | 1 1      | :             |              |                          |                |
| Syrecuse, New York 13057                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                                                           |                        |               |                                                  |                                                  |               |            | 1      |                  | S                                                | &      |                | 1                                            | G            | × ,  |          | •        | ·        |          | - }           |              |                          |                |
| Durchase Order No.:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           | Pace Cruste Reference. |               |                                                  |                                                  |               |            |        | 1 1              | LOCA                                             | TION   |                |                                              | •            | : o  | H F      | 3C       | T" ¥     | , Ta     | HEK           | <del>-</del> |                          |                |
|                                         | Project Name: National Grid - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stectown    | Pace P                                                                                    | roject Manager.        | Rachel Christ | PAF                                              |                                                  |               |            |        |                  |                                                  | 1 1    |                |                                              |              | _    |          |          | 7        | 77       | 7             | 77           | ///                      | /              |
| I. 500.226,3059 Fax None                | Anthony St. Wetertown NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                           |                        |               | Annuai                                           | GWS                                              |               |            |        |                  |                                                  |        | Filtered (     | ASH)                                         |              |      |          |          |          | #        |               | /-//         | 11                       | $\leftarrow$   |
| reted Due Date/TAT: Standard            | Project Number:<br>0603275-136010-221-1106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Pace P                                                                                    | rošie 🖭                |               |                                                  |                                                  |               |            |        |                  |                                                  | -      | Requests       | <u>.                                    </u> |              |      |          |          | / /      | //       | ( )           | '///         | []]                      | - 1            |
|                                         | Wand Marie Lodge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           | _                                                                                         | COLL                   | ECTED         |                                                  |                                                  | 1             |            | Pres   | ervativ          | ¥3                                               | -1     | Analysis:      |                                              |              |      |          | 1        | //       | //       | $\mathcal{L}$ | ///          | //                       | - 1            |
| Section D Required Client Information   | NAMES OF THE PARTY | 1 1.        | . l                                                                                       |                        |               |                                                  |                                                  |               |            |        |                  | l 1                                              |        | i              |                                              |              |      |          | Ι.       | //       | Ι,       | //            | ///          | //                       | -              |
| SAMPLE ID                               | BOLINGS  Simulating marings  War 1227  War 122 | 18          | 1                                                                                         |                        |               |                                                  | NO.                                              |               | 1          | 11     | l                | 11                                               | 11     | ľ              |                                              |              |      | -/       | 1        | 77       | / /      | 77            | '//          | /                        | - 1            |
| One Character per box.<br>(A-Z, 0-97,-) | EDIADUS B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 13        | 3 L                                                                                       |                        | nkan .        |                                                  | 5                                                | 22            | H          |        | 1                |                                                  |        |                |                                              |              |      | /        | 7        | //       | //       | //.           | / / /        | ′                        | - [            |
| Samples IDs MUST BE UNIQUE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ا يا        | 2                                                                                         | rig gradti             | <del> </del>  |                                                  | 00                                               | 3             |            |        |                  | 1                                                | 1      |                |                                              |              | ,    | / /      | //       | 1.       | //       | //            | 77           |                          | 1              |
| j                                       | -w -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MATRIX CODE | 3                                                                                         | 1                      | 1             |                                                  | 1                                                | CONTAMERS     |            | 11     | ı                | 11                                               | } 1    |                |                                              |              | -/   | 1.       | //       | / /      | //       | 7.            | //           |                          | - 1            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ě           | 1                                                                                         |                        | 1             |                                                  | 2                                                | 10F Cc        |            |        | ĺ                | 11                                               | 1      |                |                                              |              | / /  | [z]      | <u>.</u> | //       | //.      | / /           |              |                          | 1              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ≨   §     | [ ]                                                                                       | 1                      |               |                                                  | EAMPLE TEMP AY COLLECTION                        | ¥             | 1          |        | ı                |                                                  |        |                |                                              | _/           |      |          | 7,       | //       | //       | 7.            | /            |                          | - 1            |
|                                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M S         | <u>.</u>                                                                                  |                        | 1             | 1                                                | 3                                                | i i           | 1.1        |        | 1                | 11                                               |        | k              |                                              |              | 93   | 7.37     | 1        | //       |          | //            |              | Pace 1                   | roject         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1                                                                                         |                        | 1             | (                                                | 7                                                | •             | Ę          | } {    | 1_               | 0 3                                              |        | }              | 1                                            | ري /         | ر از | 1        | //       | //       | / /      | 7             |              | N                        | AD LO.         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ).        | • [                                                                                       |                        | 1             | 1                                                |                                                  | i             | <b>E</b> S | ξ      | 5   §            | O'S'a                                            | 1 ž    | <b>i</b>       | $_{L}$                                       | 5/s          | 74   | 4        | 4        | 4        | 4        | 4-            | _            |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | DAT                                                                                       | E TWE                  | DATE          | TIME                                             |                                                  | -             | الجا       |        |                  |                                                  | I      |                |                                              | _            | 1    | -        | 7        | T        | L        | 1             |              |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |                        | 40 W          |                                                  |                                                  | -             | 2.         | 77     | 3] [             | +                                                |        | <b>}</b> ——    | -1                                           | 1            | T    |          | 7        | П        | T        | T             |              | - /                      | - 1            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                                                           |                        | 1177          | 11:30                                            | K                                                |               | 2          | Ш      | 3 1              | Н                                                | 1      |                | -4                                           | 1 2          | ++   | +        | ╅        | +-       | _        | +             |              |                          | $\neg$         |
| MW-2-0622                               | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT C        | 3                                                                                         |                        | 70121         | 11.7.62                                          |                                                  | -             | 2          | +      | 3 .              | ₩                                                | 4      |                | _                                            | 4            | ##   | #        | #        | 17       | +        | -             |              |                          |                |
| MW-3-0626                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | we l        | _                                                                                         |                        |               | <b> </b>                                         | -                                                | <u> </u>      | 17         | 11     | $\perp$          |                                                  | J      |                | -                                            | ٠,           | +    | 4        | 4-       | +1       |          | T             |              |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WT C        |                                                                                           |                        | <del></del>   |                                                  | _                                                |               | <b>!</b>   | 1      | <del>31 ·</del>  | <del>}                                    </del> | ╈      | 1              |                                              | , ,          | П    |          | Т        |          |          | 1             |              |                          |                |
| MVV-3R-0922                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _                                                                                         |                        |               | 09:4                                             | 7 1                                              | 6_            | 2          | 11     | 3 1              | ₩                                                | ╄      | <u> </u>       | -+                                           | 4            | +    | $\vdash$ | -†-      | ┪        | $\vdash$ | +             |              |                          |                |
| MW-4R-0622                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wr c        | 3.                                                                                        |                        |               | 79:45                                            | 7                                                |               | ,          | 11     | 3 1              | L                                                | L      | 1              |                                              | 3 2          | 1    | Н        | +        | -        | ╟╫       | 4             |              |                          |                |
| MW-4R-MS-00                             | 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wr c        | 3_                                                                                        |                        | <b> </b>      | ring                                             | 4-1                                              | 1             | 1-1        | 17     | 3 ,              | П                                                | 1      | i              | - 1                                          | 3 2          | 1 1  | L        | _L       |          | Ш        | 1             |              |                          |                |
| MW-4R-MSD-0622                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wr          | , 1                                                                                       |                        |               | 09:K                                             | <b> </b>                                         |               | 2          | ╌╂╼┼   | <del>"</del> [ • | 1-1                                              | 十      | 1              |                                              | 3 2          | π.   | П        | Т        | 7        | П        |               |              |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 7                                                                                         |                        |               | 10:45                                            |                                                  | - 6           | 2          | 44     | 3 1              | 1 +                                              | +      | <del>-</del>   | $\dashv$                                     | +            | +    | H        | +        | +-       | Н        |               |              |                          |                |
| MW-5R-062                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT C        |                                                                                           |                        |               | 10:50                                            |                                                  | 6             | 2          | 11     | 3 1              | Ш                                                |        | <u> </u>       |                                              | 3 2          | 41   | 1-4      | 4        |          | H        | 4             |              |                          | 1              |
| MW-6R-062                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT C        | 3                                                                                         |                        | <del></del>   | 10.72                                            | 1                                                | 1             | ,          | П      | Π.               | TI                                               |        | •              | - 1                                          | 3 2          | 2 1  |          |          | .1       | Ш        | 1             |              |                          |                |
| MW-7R-062                               | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wrl o       | 3                                                                                         |                        |               | 01:3                                             | ╌                                                | -             | 2          |        | 4                | 11                                               | +      | 1              | $\neg$                                       |              | 2 1  | П        | П        | Т        | П        | 4             |              |                          |                |
|                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT C        | 3                                                                                         |                        |               | <b> </b>                                         | $\coprod Z$                                      | - 6           | 2          | 44     | 3 1              | +                                                | ╬      | 1              | -+                                           | 7            | +    | 1-1      | 1        | +        | ++       | -1-           |              |                          |                |
| FD-0622                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |                        | 7             | 10:20                                            | U                                                | 2             | 11         |        | 3                | ╧                                                | 1      | <u> </u>       | -                                            | 3            | 4    | 1-4      | $\dashv$ | +        | ╀        |               |              |                          |                |
| Trip Blanks                             | 3 <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WT C        | 3                                                                                         |                        |               | 7 7 7 97                                         | <del>                                     </del> |               | П          | $\top$ |                  | 11                                               |        | 1              | - 1                                          | -            | 1    |          | П        | L        |          |               |              |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wrla        | 3                                                                                         |                        |               | <del>                                     </del> |                                                  | 1-            | ╁╌╂        | +-1    |                  | 11                                               | 1      |                |                                              | T            | Т    | П        | П        | $\top$   | TI       | 1             |              |                          |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wr          | 3                                                                                         |                        | t             | 1                                                | <u> </u>                                         | ŧ             | Ш          |        |                  | 11                                               | _1_    | <u> </u>       |                                              |              | è    |          |          | are      | 50       | M 174 I       | E CONI       | MION                     | 9              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           | er arec are.           | 7.            | _7×.€                                            | 7-WE                                             | ACCE          | == ==      | EY 'A≓ | F.L.A            | C14                                              |        |                |                                              |              |      | -        |          | <u> </u> | 34       | mr L          |              |                          |                |
| nal Comments:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | —                                                                                         |                        |               | 18/22                                            | 111                                              |               |            |        |                  |                                                  |        |                |                                              | -1           |      |          | •        |          | 1        |               | ₹            | ₹                        | ž.             |
|                                         | COOLERS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12          |                                                                                           |                        | <u> </u>      | 17/11                                            | 46                                               | <del>40</del> |            |        |                  |                                                  |        |                |                                              | 1            |      |          | Г        |          | T        |               | \$           | ₹                        | ₹              |
| LES WILL ARRIVE IN                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           |                        |               | L                                                | <u> </u>                                         |               |            |        |                  |                                                  |        |                |                                              | -+           |      |          | ╌        |          | +-       | -+            | <u>``</u>    | <u>₹</u>                 | N.             |
| <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                                                                                           |                        |               | 1                                                | 1                                                |               |            |        |                  |                                                  |        |                |                                              | _            |      |          | ┞.       |          | 1-       | _             |              |                          |                |
| send reports to: dshay@gesonline.com, t | ibeaumoni@gesonine.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L           |                                                                                           |                        |               | <del> </del>                                     | 1-                                               | 1             |            |        |                  |                                                  |        |                | -                                            | - 1          |      |          | l        |          | ţ        | 1             | ₹            | ₹                        | ž.             |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |                        |               | <u> </u>                                         |                                                  |               |            |        |                  |                                                  |        |                |                                              |              |      |          |          | <b>.</b> | , 1      | 5             | Ì            | t t                      |                |
| Honogesonline com, ges@equisonline      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |                        | NAME AND      |                                                  |                                                  |               |            |        |                  |                                                  |        |                |                                              |              |      |          |          |          | 4 3      | 5             | ř.           | Custody<br>Sealed Cooler | Samples Intact |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           | FRINT IN               | EAN           | 1 46                                             |                                                  |               |            |        |                  |                                                  |        |                |                                              |              |      |          |          |          | 4        | ii du         | Received     | S S                      | 를              |
| FIC EDD NAME:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           | SCHOOL SEC             | BANGLEB       |                                                  |                                                  |               |            |        | P                | ATE 5-07                                         | ed (Wi | ر<br>ایک       | -9-                                          | 7            |      |          |          |          | 1        | ~ {           | ě į          | å                        | ā              |
| Annual Internation 28351 FOEDD.         | zin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                           |                        |               |                                                  |                                                  | _             |            |        |                  |                                                  | A      | <del>77/</del> | 4                                            | <del>/</del> |      |          |          |          |          |               |              |                          |                |



# **Appendix C – Data Usability Summary Report**



701 N Main St. Suite 201 • Blacksburg, Virginia 24060 • (866) 756 0788

January 27, 2023

Devin Shay Groundwater & Environmental Services, Syracuse 6780 Northern Blvd., Suite 100 East Syracuse, NY 13057.

RE: Data Usability Summary Report for National Grid: Watertown, NY Site Data Package Pace Analytical Job No. 30496911

Groundwater & Environmental Services, Inc. (GES) reviewed one data package (Laboratory Project Number 30496911) from Pace Analytical Services, LLC in Greensburg, PA., for the analysis of groundwater samples collected on June 8, 2022 from monitoring wells located at the National Grid: Watertown, NY Site. Five aqueous samples and a field duplicate were analyzed for volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and Cyanide. Methodologies utilized were those of the USEPA SW846 methods 8260C/8270D/9012B, with additional QC requirements of the NYSDEC ASP.

The data were reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate: (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes

The items listed above which show deficiencies were discussed within the text of this narrative.

All of the other items were determined to be acceptable for the DUSR level review.



In addition, method and QC criteria specified in the NYSDEC ASP were implemented. All data are considered valid and acceptable except those analytes that have been qualified as unusable "R" (unreliable).

**Table 1. Validation Qualifiers** 

| Sample ID | Qualifier         | Analyte                                       | Reason for qualification |  |  |  |  |  |
|-----------|-------------------|-----------------------------------------------|--------------------------|--|--|--|--|--|
|           | J-                | Cyanide                                       | Low MS Recovery          |  |  |  |  |  |
| MW-4R     | J                 | Ethylbenzene, Xylene,<br>(Total) and o-Xylene | MS/MSD recovery high     |  |  |  |  |  |
| MW-2      |                   | -                                             |                          |  |  |  |  |  |
| MW-4R     | J- (detects)      | All SVOCs except                              | Missed hold time         |  |  |  |  |  |
| MW-6R     | UJ- (non-detects) | otherwise qualified                           | Wissed hold time         |  |  |  |  |  |
| MW-7R     |                   | _                                             |                          |  |  |  |  |  |
| MW-2      |                   |                                               |                          |  |  |  |  |  |
| MW-4R     |                   |                                               | Method blank detection   |  |  |  |  |  |
| MW-5R     | J+                | Naphthalene                                   |                          |  |  |  |  |  |
| MW-6R     |                   |                                               | High LCS recovery        |  |  |  |  |  |
| MW-7R     |                   |                                               |                          |  |  |  |  |  |

In summary, sample results were usable as reported, with qualifications and exceptions listed in Table 1.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

# BTEX Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times were met and instrumental tune fragmentations were within acceptance ranges.

There were no positive detections in the blanks. Surrogate and internal standard recoveries were within required limits.

Calibration standards show acceptable responses within analytical protocol and validation action limits.

MS/MSD recoveries were high for all analytes except benzene. Relative percent differences (RPD) were within laboratory and EPA criteria. Positive detections of ethylbenzene, xylenes (total), and o-xylene are qualified as estimated with a possible high bias.

The blind field duplicate correlations MW-5R, where applicable, fall below the EPA recommended 30% for aqueous duplicate samples.

# PAHs by EPA8270D/NYSDEC ASP

Holding times were met with the exception of the following samples:

- MW-2
- MW-4R
- MW-6R



# • MW-7R

Detections in these samples are qualified as estimated with a possible low bias.

Samples were diluted due to high levels of non-target analytes. Elevated reporting limits are used by the laboratory:

- FD-0622
- MW-5R

Instrumental tune fragmentations were within acceptance ranges. Surrogate recoveries were within analytical and validation criteria.

Blanks show no contamination with the following exception:

• Naphthalene was reported in the method blank at 1.4 µg/L.

Compounds that reported naphthalene at less than 5 times the blank are qualified as estimated with a possible high bias.

Calibration standards show acceptable responses within analytical protocol and validation action limits.

LCS recoveries and RPDs were reported within acceptable ranges, with the exception of a high recovery of naphthalene, likely due to the same source as the method blank contamination. All naphthalene detections are qualified as estimated with a possible high bias.

MS/MSD recoveries for naphthalene associated with MW-4R were outside laboratory specifications. This compound is already qualified due to previous blank and LCS noncompliance.

The blind field duplicate correlations MW-5R, where applicable, fall below the EPA recommended 30% for aqueous duplicate samples. The exception to this is a detection of acenaphthylene in the duplicate at  $50.2 \,\mu\text{g/L}$  where the corresponding analyte in the original was reported as non-detect. The reporting limit in the original sample was above  $51.2 \,\mu\text{g/L}$ , elevated due to dilution. The data in the field duplicate is not qualified.

# **Total Cyanide by 9012B/ NYSDEC ASP**

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were found acceptable for the validated samples, with the flowing exceptions:

• Low recovery of cyanide in the MS and MSD prepared from the sample MW-4R. Low recoveries indicate a possible low bias. Cyanide is qualified as estimated with a possible low bias in MW-4R.



Calibration standard responses were compliant. Blanks show no detections above the reporting limits. The laboratory spikes and duplicates of total cyanide show acceptable recoveries and/or correlations.

The blind field duplicate correlations MW-5R, where applicable, fall below the EPA recommended 30% for aqueous duplicate samples.

# Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Bonnie Janowiak, Ph.D.

Principal Environmental Chemist, NRCC Certified

Sjantwick

701 N Main St

Blacksburg, VA 24060



# **VALIDATION DATA QUALIFIER DEFINITIONS**

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.



# Sample Summaries and Laboratory Case Narratives



# **SAMPLE SUMMARY**

Project: National Grid - Watertown, NY

Pace Project No.: 30496911

| Lab ID      | Sample ID      | Matrix | Date Collected | Date Received  |
|-------------|----------------|--------|----------------|----------------|
| 30496911001 | MW-2-0622      | Water  | 06/08/22 11:30 | 06/09/22 09:40 |
| 30496911002 | MW-4R-0622     | Water  | 06/08/22 09:45 | 06/09/22 09:40 |
| 30496911003 | MW-4R-MS-0622  | Water  | 06/08/22 09:45 | 06/09/22 09:40 |
| 30496911004 | MW-4R-MSD-0622 | Water  | 06/08/22 09:45 | 06/09/22 09:40 |
| 30496911005 | MW-5R-0622     | Water  | 06/08/22 10:45 | 06/09/22 09:40 |
| 30496911006 | MW-6R-0622     | Water  | 06/08/22 10:50 | 06/09/22 09:40 |
| 30496911007 | MW-7R-0622     | Water  | 06/08/22 09:30 | 06/09/22 09:40 |
| 30496911008 | FD-0622        | Water  | 06/08/22 00:00 | 06/09/22 09:40 |
| 30496911009 | Trip Blanks    | Water  | 06/08/22 10:28 | 06/09/22 09:40 |

# **REPORT OF LABORATORY ANALYSIS**



Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

# **General Information:**

8 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

MW-2-0622 (Lab ID: 30496911001)MW-4R-0622 (Lab ID: 30496911002)

• MW-6R-0622 (Lab ID: 30496911006)

• MW-7R-0622 (Lab ID: 30496911007)

# Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

# Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

# **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

# Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: 511851

B: Analyte was detected in the associated method blank.

- BLANK for HBN 511851 [OEXT/471 (Lab ID: 2480901)
  - Naphthalene

# **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 511851

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 2480902)
  - Naphthalene

# **REPORT OF LABORATORY ANALYSIS**



Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

# Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 511851

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30496911002

R1: RPD value was outside control limits.

• MSD (Lab ID: 2480904)

Naphthalene

QC Batch: 512937

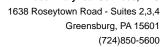
A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

# **Additional Comments:**

**Analyte Comments:** 

QC Batch: 511851

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.


- FD-0622 (Lab ID: 30496911008)
  - Fluorene
  - Phenanthrene
- MW-5R-0622 (Lab ID: 30496911005)
  - Acenaphthylene
  - Fluorene
  - Phenanthrene

QC Batch: 512937

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- MW-2-0622 (Lab ID: 30496911001)
  - 2-Methylnaphthalene
  - Acenaphthene
  - Acenaphthylene
  - Anthracene
  - Benzo(k)fluoranthene
  - Benzo(g,h,i)perylene
  - Benzo(a)anthracene
  - Benzo(b)fluoranthene
  - Benzo(a)pyrene
  - Chrysene
  - Dibenz(a,h)anthracene
  - Fluorene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Naphthalene
  - Phenanthrene
  - Pyrene

# **REPORT OF LABORATORY ANALYSIS**





Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

Analyte Comments: QC Batch: 512937

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- MW-4R-0622 (Lab ID: 30496911002)
  - 2-Methylnaphthalene
  - Acenaphthene
  - Acenaphthylene
  - Anthracene
  - Benzo(k)fluoranthene
  - Benzo(g,h,i)perylene
  - Benzo(a)anthracene
  - Benzo(b)fluoranthene
  - Benzo(a)pyrene
  - Chrysene
  - Dibenz(a,h)anthracene
  - Fluorene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Naphthalene
  - Phenanthrene
  - Pyrene
- MW-6R-0622 (Lab ID: 30496911006)
  - 2-Methylnaphthalene
  - Acenaphthene
  - Acenaphthylene
  - Anthracene
  - Benzo(k)fluoranthene
  - Benzo(g,h,i)perylene
  - Benzo(a)anthracene
  - Benzo(b)fluoranthene
  - Benzo(a)pyrene
  - Chrysene
  - Dibenz(a,h)anthracene
  - Fluorene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Naphthalene
  - Phenanthrene
  - Pyrene
- MW-7R-0622 (Lab ID: 30496911007)
  - 2-Methylnaphthalene
  - Acenaphthene
  - Acenaphthylene
  - Anthracene
  - Benzo(k)fluoranthene
  - Benzo(g,h,i)perylene

# **REPORT OF LABORATORY ANALYSIS**



Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

Analyte Comments: QC Batch: 512937

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- MW-7R-0622 (Lab ID: 30496911007)
  - Benzo(a)anthracene
  - Benzo(b)fluoranthene
  - Benzo(a)pyrene
  - Chrysene
  - Dibenz(a,h)anthracene
  - Fluorene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Naphthalene
  - Phenanthrene
  - Pyrene

# **REPORT OF LABORATORY ANALYSIS**



Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

# **General Information:**

9 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

# **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

# Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

# **Continuing Calibration:**

All criteria were within method requirements with any exceptions noted below.

# **Internal Standards:**

All internal standards were within QC limits with any exceptions noted below.

# Surrogates:

All surrogates were within QC limits with any exceptions noted below.

# Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

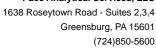
# **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

# Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 511163


A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30496911002

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2477937)
  - Ethylbenzene
  - Toluene
  - m&p-Xylene
  - o-Xylene

# **Additional Comments:**

# **REPORT OF LABORATORY ANALYSIS**





Project: National Grid - Watertown, NY

Pace Project No.: 30496911

Method: EPA 9012B

Description: 9012B Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

**Date:** June 21, 2022

# **General Information:**

8 samples were analyzed for EPA 9012B by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### **Hold Time:**

The samples were analyzed within the method required hold times with any exceptions noted below.

# Sample Preparation:

The samples were prepared in accordance with EPA 9012B with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

# **Laboratory Control Spike:**

All laboratory control spike compounds were within QC limits with any exceptions noted below.

# Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 511848

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30496911002

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MSD (Lab ID: 2480894)
  - Cyanide

# **Additional Comments:**

This data package has been reviewed for quality and completeness and is approved for release.

# **REPORT OF LABORATORY ANALYSIS**