
DEPARTMENT OF THE AIR FORCE AIR FORCE BASE CONVERSION AGENCY

MEMORANDUM FOR SEE DISTRIBUTION LIST

FROM: AFBCA/DA-Griffiss

Environmental Section 153 Brooks Road

Rome, NY 13441-4205

SUBJECT: Submittal – Final Three Mile Creek Feasibility Study Addendum and Long-Term Monitoring Program Outlines for Three Mile and Six Mile Creeks

- 1. Attached please find the final Three Mile Creek Feasibility Study (FS) Addendum dated July 2002 and the Long-Term Monitoring Program Outlines dated July 2002 for Three Mile and Six Mile Creeks. The final FS Addendum contains a proposed remedial action scenario that was agreed upon for Three Mile Creek including the off-base portion and pond. Also included are long-term monitoring outlines for Three Mile and Six Mile Creeks that will be incorporated into the proposed remedial actions. Please note that the proposed remedy for Six Mile Creek is outlined in the Six Mile Creek Summary Memorandum dated March 2000 that was transmitted on March 20, 2000.
- 2. With regards to the Base-Wide Wetlands Management Plan, Technical Memorandum #4, a conceptual wetlands restoration plan utilizing the Three Mile Creek Floodplain has been proposed by the Air Force. Once regulatory concerns have been addressed, a detailed wetlands restoration plan will be developed. The wetlands restoration plan will be incorporated into the proposed final remedy for Three Mile Creek and presented in the Three Mile Creek proposed plan. The implementation of the wetlands restoration plan will be performed in conjunction with the Three Mile Creek remedial action. However, should the regulatory community determine that the utilization of the Three Mile Creek Floodplain for wetlands restoration is not feasible, the Three Mile Creek proposed plan will only include the proposed remedial action.
- 3. Presently, the Three Mile Creek remedial action is scheduled to commence in the spring of 2003. To expedite the process, the draft Three Mile Creek and Six Mile Creek proposed plans are presently being developed and will contain the proposed final remedies for both creeks and the proposed wetlands restoration plan utilizing the Three Mile Creek Floodplain. As stated earlier, if the utilization of the Three Mile Creek Floodplain wetlands restoration plan is determined to be not feasible, that portion will be removed from the Three Mile Creek proposed plan prior to finalization and dissemination for public review and comment.

4. Your assistance is greatly appreciated. If you have any questions, please contact Mike Wojnas at (315) 330-2275.

MICHAEL F. MCDERMOTT BRAC Environmental Coordinator

Attachments:

- 1. Final Three Mile Creek FS Addendum
- 2. Long-Term Monitoring Plan Outlines

DISTRIBUTION:

Mr. Tim Caretti
HQ AFBCA/DA- Env Section
1700 N.Moore Street
Suite 2300
Arlington VA 22209-2802

Mr. Doug Pocze
USEPA - Region II
Federal Facilities Section
290 Broadway, 18th Floor

New York NY 10007-1866 (2 copies)

Mr. Charles Merckel
U.S. Fish & Wildlife Service
3817 Luker Road
Cortland, NY 13045 (1 copy)

Mr. Sal Ervolina, Director
Mr. Jonathan Greco, Project Manager
New York State Department of Environmental Conservation
Bureau of Eastern Remedial Action
Division of Hazardous Waste Remediation
625 Broadway
Albany NY 12233-7015 (2 copies)

Ms. Heidi Bogner
New York State Department of Environmental Conservation, Region 6
Bureau of Habitat Biologist
207 Genesee Street
Utica, NY 13501-2885 (1 copy)

(1 copy)

Ms. Christina Dowd
New York State Department of Environmental Conservation
5th Floor DFWMR
Hazardous Waste Site Evaluation Unit
625 Broadway
Albany NY 12233-7015 (1 copy)

DRAFT

OUTLINE

Prepared for:

Three Mile Creek Area of Concern Long-Term Monitoring Program Former Griffiss Air Force Base Rome, New York

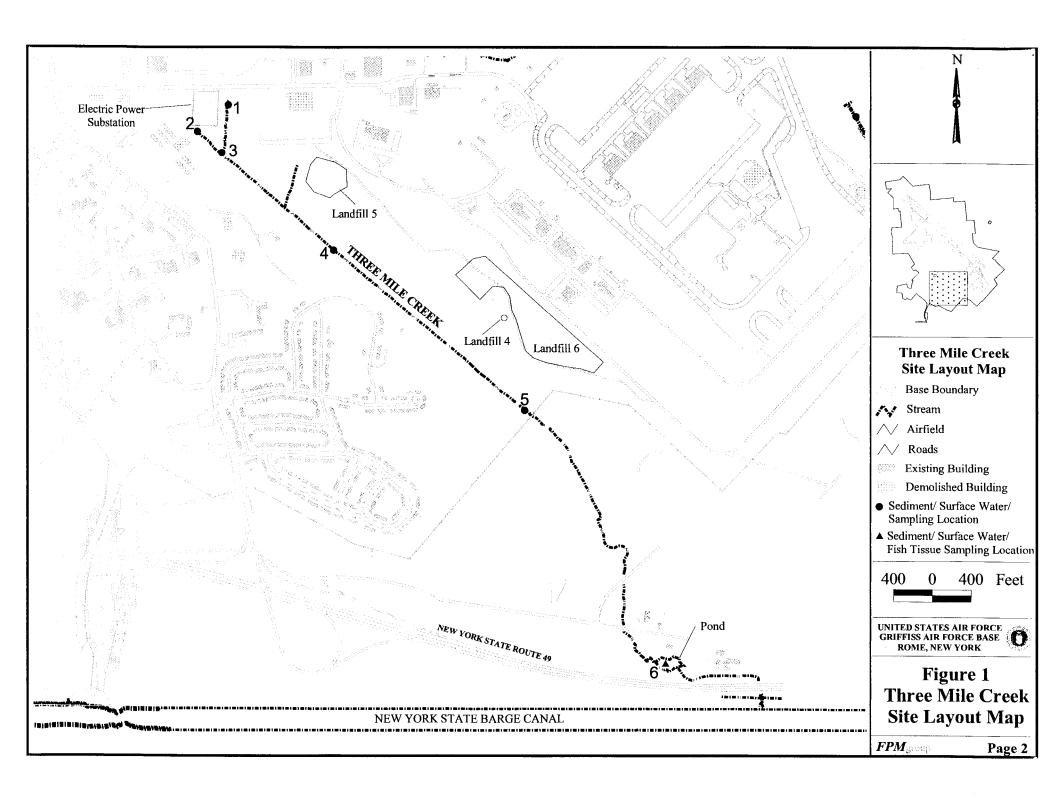
through

The Air Force Center for Environmental Excellence 3207 Sidney Brooks Brooks AFB, TX 78235-5344

Prepared by:

FPM Group, Ltd. 153 Brooks Road Rome, NY 13441

Contract No. F41624-95-D-8003 Delivery Order No. 10


Revision 0.0 July 2002

Introduction

- Extent- 10,000-ft, 10-ft wide natural stream and pond.
- Location- From two stormwater culvert outlets located at Ellsworth Road and Wright Drive southeast to the New York State Barge Canal (See Figure 1).
- Drainage- Receives run-off from Landfills 4, 5, and 6, Electric Power Substation and the south central part of the Base including floordrains.
- Receptors- Human dermal contact with surface water and sediments, human ingestion of fish, and aquatic organisms within the system and downstream of the system.

Background

- Metals analyses were performed in 1981 on samples from one upstream and one downstream location along Three Mile Creek. Results indicated 12 metals detected at these two locations.
- A preliminary study was performed in 1987 on streambed sediment, soil, surface water and groundwater samples collected from six locations. Numerous metals were detected in all six sediment samples, oil and grease were detected in four of the six sediment samples and the highest polyaromatic hydrocarbon (PAH) concentrations were detected at the upstream locations. Detected polychlorinated biphenyls (PCBs) were contributed to a ruptured transformer incident at the electric power substation in 1986. Five pesticides were also detected. Surface water, soil, and groundwater results indicated numerous metals and inorganic compounds.
- Fish tissue and sediment samples were collected in 1988 in Three Mile Creek and PCBs were detected in the sediment samples. The fish samples also contained PCBs, as well as PAHs, lead, chromium, selenium, and nickel.
- In 1995 New York State Department of Environmental Conservation (NYSDEC) collected PISCES (passive in-situ chemical extraction sample) samples from one location in Three Mile Creek. This test analyzed for PCBs and other organochlorines. PCB and DDE were detected.
- In 1997, NYSDEC collected samples from three fish species (including white sucker) for PCB tissue analysis from the off-base section of Three Mile Creek. The detected concentrations exceeded the bioaccumulation threshold (0.11 mg/kg) with an average concentration of 1.42 mg/kg and a maximum concentration of 2.1 mg/kg PCB. The exceedance caused New York State Department of Health (NYSDOH) to post a fish consumption health advisory for white sucker in Three Mile Creek.
- Remedial and Supplemental Investigations (in 1994 and 1997) collected surface water and sediment samples from Three Mile Creek and the New York State Barge Canal.
- · Surface water results revealed detections for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), metals, pesticides, herbicides, PCBs, dioxins/furans, glycols, and radionuclides.
- Sediment results reveal VOCs, SVOCs, pesticides, PCBs, and metals throughout Three Mile Creek. Based on these results, areas of remediation with concentrations exceeding site cleanup levels were identified.

Feasibility Study

- Draft Feasibility Study completed by Ecology and Environment, Inc., was submitted in January 1998.
- · Conducted an alternative analysis of remedial actions, including no action (including monitoring), institutional actions, and sediment excavation activities.
- Based on an evaluation of all alternatives, a remediation technology of sediment excavation, disposal, and clean backfill was deemed the most feasible.
- A Draft Feasibility Study Addendum was completed by Ecology and Environment, Inc. in March 2000.
- A final Feasibility Study was submitted in July 2002 during which the vertical extent of the contamination was investigated along and downstream of Three Mile Creek and cleanup recommendations were made.

Recommendations

· Implement the remedial alternative of sediment excavation, disposal, and clean backfill with annual monitoring as recommended in the Final Feasibility Study Addendum dated July 2002.

Three Mile Creek LTM Plan

The LTM program for Three Mile Creek will be implemented after Remedial Action (RA) completion and site restoration. The sampling will be performed during a period when water levels and - flows in the creek are representative for 'normal' conditions.

<u>LTM Objectives</u> – Sampling of sediment and surface water in Three Mile Creek is recommended to achieve the following objectives:

- Establish Baseline sediment concentrations six month following RA completion,
- Monitor and confirm the effectiveness of the RAs that have or will be performed at potential sources of contamination (Landfill 4, 5, and 6, the Electrical Power Substation), and
- Monitor the potential influx of contaminants from potential sources of contamination (i.e. early warning system).

<u>LTM Extent</u> – To demonstrate the absence of contaminants of concern (COCs) above Baseline¹ concentrations, annual monitoring for VOCs, SVOCs, metals, pesticides and PCBs is recommended for both sediment and surface water (see Table 1). Fish tissue samples will be collected at one location to identify the tissue contamination and potential bioaccumulation of COCs. Fish tissue samples will be collected every five years until the results of two consecutive rounds of sampling do not exceed the NYSDOH fish consumption health advisory threshold level. Larger fish will be collected for analyses as they would be expected to have higher concentrations than smaller and younger based on size and age alone. All sampling locations can be found on Figure 1 and in Table 2.

Baseline sediment samples will be collected six months following RA completion. The six month period will allow sediment backfilling to stabilize.

Table 1
Three Mile Creek LTM Sampling Rationale

Matrix	Analysis	Frequency	Rationale
Sediment/ Surface water	VOCs, SVOCs, metals, PCBs & pesticides	Annually	Monitoring of the effectiveness of the proposed RA at Three Mile Creek and adjacent potential source sites. Frequency based on relatively low flow regime and limited sediment transport.
Fish tissue	PCBs, pesticides & metals	Every five years	Monitoring of fish for PCBs, pesticides and metals is proposed to identify potential bioaccumulation of contaminants of concern.

Table 2
Three Mile Creek Sampling Locations and Analyses

Location Number	Location within	Detailed Location	Sample Matrix	No. of samples	Analyses performed	Total No.
	Three Mile Creek	Description		per location	per sample	Analyses
1	On the northern side	Appr. 30 ft south of the culvert on	Sediment	1	Full suite I and dioxins	6
	of the northern fork of TMC (Three Mile Creek)	Ellsworth Road	Surface water	1	Full suite 1	5
2	On the	Appr. 30 ft south	Sediment	1	Full suite ¹	5
	northern side of the culvert of the southern fork of TMC	of the culvert of Wright Drive	Surface water	1	Full suite ¹	5
3	In the 'fork' of TMC	Appr. 600 ft downstream of the	Sediment	1	Full suite and dioxins	6
		culvert on Ellsworth Road	Surface water	1	Full suite ¹	5
4	Downstream of Landfill 5	Appr. 1500 ft downstream of the fork in TMC	Sediment	1	Full suite and dioxins	6
		TOTA III TIVIC	Surface water	1	Full suite ¹	5

^TFull suite of analyses includes VOCs (SW 8260), SVOCs (SW 8270), metals (SW 6010B), pesticides (SW 8085) and PCBs (SW 8082).

Table 2 (Continued)
Three Mile Creek Sampling Locations and Analyses

	The Country of the Sampling Locations and Tallary Ses							
Location	Location	Detailed	Sample	No. of	Analyses	Total No.		
Number	within	Location	Matrix	samples	performed	of		
	Three Mile	Description		per	per sample	Analyses		
	Creek			location				
5	Downstream	Appr. 4200 ft	Sediment	1	Full suite 1	5		
	of Landfill 4 and 6 (i.e. upstream of Base boundary)	downstream of the fork on TMC	Surface water	1	Full suite ¹	5		
6	Off-Base pond	Appr. 1 mile southeast of base	Sediment	1	PCBs and metals	2		
		boundary	Surface water	1	PCBs and metals	2		
			Fish	3^2	PCBs,	32		
			tissue		pesticides			
					and metals			

Full suite of analyses includes VOCs (SW 8260), SVOCs (SW 8270), metals (SW 6010B), pesticides (SW 8085) and PCBs (SW 8082).

<u>LTM Re-evaluation Criteria</u> – The LTM plan will be re-evaluated annually to assess the creek conditions. Proposed re-evaluation procedures follow:

The results from sampling events will be compared to baseline concentrations which serve as
general guidelines for changes in/or releases to Three Mile Creek. If the concentration
detected exceeds two times baseline concentrations, the Air Force, in consultation with the
EPA and NYSDEC, will evaluate modifying the LTM network to identify potential causes of
concentration increases.

² Three large specimens of each species designated for sampling will be collected.

DRAFT OUTLINE

Prepared for:

Six Mile Creek Area of Concern Long-Term Monitoring Program Former Griffiss Air Force Base Rome, New York

through

The Air Force Center for Environmental Excellence 3207 Sidney Brooks Brooks AFB, TX 78235-5344

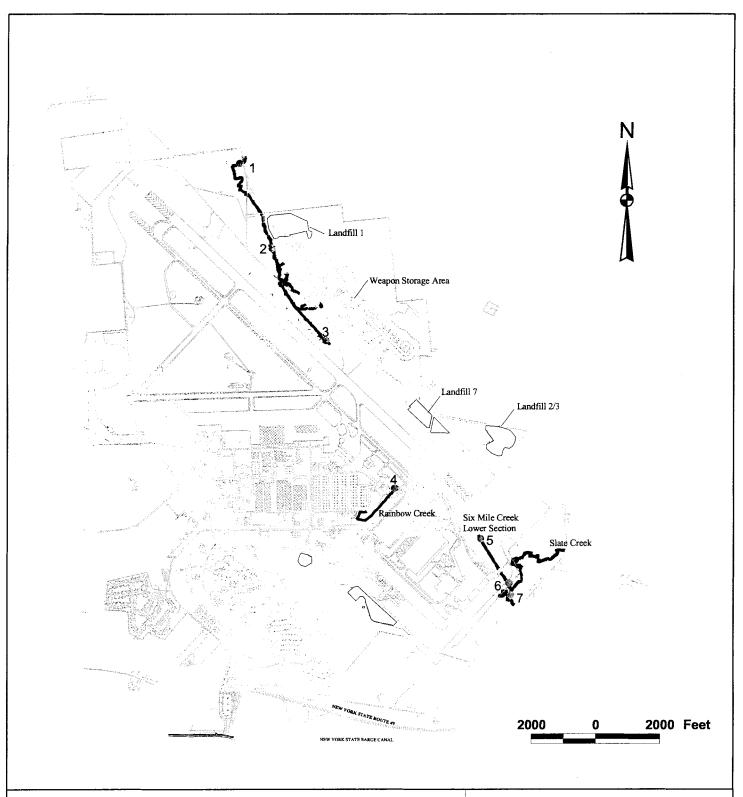
Prepared by:

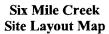
FPM Group, Ltd. 153 Brooks Road Rome, NY 13441

Contract No. F41624-95-D-8003 Delivery Order No. 10

Revision 0.0 July 2002

Introduction


- Extent- 15,600-ft natural stream, including 7,200-ft runway culvert.
- · Location- From Butternut Creek diversion ditch in the north southeast to the New York State Barge Canal (see Figure 1).
- Drainage- Receives run-off from Landfill 1, 2/3, and 7, Weapon Storage Area (WSA), WSA Landfill, runway, on-base shops, and Rainbow Creek.
- Receptors- Human dermal contact with surface water and sediments, human ingestion of fish, and aquatic organisms within the system and downstream of the system.


Background

- Metals analyses performed in 1981 at 11 locations along Six Mile Creek revealed 11 metals detected in at least one location and 12 other metals detected at one or more sampling locations.
- Fish tissue and bottom sediment samples were collected in 1988 from one upsteam and one downstream location in Six Mile Creek. Polyaromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) were detected in the downstream samples. The PAHs detections were consistent with the results from control sites from other studies. Downstream fish samples contained higher concentrations of arsenic, cadmium, iron, and manganese. Mercury and nickel were also detected.
- In 1995 New York State Department of Environmental Conservation (NYSDEC) collected PISCES (passive in-situ chemical extraction sample) samples from one location in the lower range of Six Mile Creek. This test analyzed for PCBs and other organochlorines. No contaminants were detected.
- Remedial and Supplemental Investigations (in 1994 and 1997) collected surface water, and sediment samples from Six Mile Creek, Mohawk River, and the New York State Barge Canal.
- Surface water results revealed limited, low-levels of Semi-Volatile Organic Compounds (SVOCs), metals, pesticides, cyanide and hydrogen sulfide.
- Sediment results revealed limited, low-levels of Volatile Organic Compounds (VOCs), metals, and PCBs and slightly higher levels for SVOCs and pesticides throughout Six Mile Creek.

Feasibility Study

- Draft Feasibility Study completed by Ecology and Environment, Inc. (E&E), was submitted in January 1998.
- Conducted an alternative analysis of remedial actions, including no action (including monitoring), institutional actions, and sediment excavation activities.
- The no action alternative with annual monitoring was determined to be most feasible.
- A Draft Six Mile Creek Summary Memorandum was submitted by E&E in March 2000.

Base Boundary

Roads

 \wedge

Stream

Existing Building

Airfield

Demolished Building

UNITED STATES AIR FORCE GRIFFISS AIR FORCE BASE ROME, NEW YORK

Figure 1 Six Mile Creek Site Layout Map

FPM group

Page 2

Recommendations

- · Implement no remedial actions with annual monitoring as recommended in the Draft Six Mile Creek Summary Memorandum dated March 2000.
- Design sampling program with upgradient and downgradient locations to monitor the Remedial Action (RA) effectiveness of the RAs that have /or will be performed at other AOC sites to eliminate further contamination from on-base AOC sites that were potential sources (Landfill 1, 2/3, and 7, WSA, WSA Landfill, Building 35, Pumphouse 5, and Rainbow Creek).

Six Mile Creek LTM Plan

The LTM program for the Six Mile Creek AOC will be implemented shortly after approval by regulatory agencies and it will be performed during a period when water levels and - flows in the creek are representative for 'normal' conditions.

<u>LTM Objectives</u> - Sampling of sediment and surface water in Six Mile Creek is recommended to achieve the following objectives:

- · Establish Baseline concentrations during first sampling round,
- Monitor and confirm the effectiveness of the RAs that have or will be performed at potential sources of contamination ((Landfill 1, 2/3, and 7, WSA, WSA Landfill, Building 35, Pumphouse 5, and Rainbow Creek), and
- · Monitor the potential influx of contaminants from potential sources of contamination (i.e. early warning system).

LTM Extent - Given the elevated concentrations for several COCs, annual monitoring for VOCs, SVOCs, metals, pesticides and PCBs is recommended for both sediment and surface water (see Table 1). Fish tissue samples will be collected at one location to identify the tissue contamination and potential bioaccumulation of COCs. Fish tissue samples will be collected every five years until the results of two consecutive rounds of sampling do not exceed the NYSDOH fish consumption health advisory threshold level. Larger fish will be collected for analyses as they would be expected to have higher concentrations than smaller and younger based on size and age alone. All sampling locations can be found on Figure 1 and in Table 2.

Table 1
Six Mile Creek AOC LTM Sampling Rationale

Matrix	Analysis	Frequency	Rationale
Sediment & Surface water	VOCs, SVOCs, metals, pesticides & PCBs	Annually	Monitoring the effectiveness of the RAs performed at adjacent potential source sites. Frequency based on relatively low flow regime and limited sediment transport.
Fish tissue	PCBs & metals	Every five years	Monitoring if fish for PCBs and metals is proposed to identify potential bioaccumulation of contaminants of concern.

Table 2
Six Mile Creek Sampling Locations and Analyses

Location	Upstream/	Detailed Detailed	Sample	No of	Analyses	Total
Number	Downstream	Location	Matrix	samples	performed	No of
	part of Six	description		per	per	analyses
	Mile Creek			location	samples	
1	Upstream	Slightly	Sediment	1	Full suite ¹	5
		downstream of the	Surface	1	Full suite	5
		on-Base entrance of SMC	water		-	
2	Upstream	Slightly	Sediment	1	Full suite ¹	5
		downstream of	Surface	1	Full suite ¹	5
		Landfill 1	water			
3	Upstream	Slightly upstream	Sediment	1	Full suite ¹	5
		of the culvert entrance	Surface	1	Full suite ¹	5
			water			
4	Upstream	At the entrance of	Sediment	11	Full suite ¹	5
		the culvert in	Surface	1	Full suite ¹	5
	· · · · · · · · · · · · · · · · · · ·	Rainbow Creek	water		 	
5	Downstream	Slightly	Sediment	1	Full suite ¹	5
		downstream of the	Surface	1	Full suite ¹	5
		culvert exit	water			

Full suite of analyses includes VOCs (SW 8260), SVOCs (SW 8270), metals (SW 6010B), pesticides (SW 8085) and PCBs (SW 8082).

Table 2 (continued)
Six Mile Creek Sampling Locations and Analyses

6	Downstream	Slightly	Sediment	1	Full suite	5
		downstream of the	Surface	1	Full suite	5
		Perimeter Road	water			
		underpass, north of				
		the Base boundary				
7	Downstream; off-	At the confluence	Fish	3^2	PCBs and	6
	Base	of Slate and Six	Tissue		metals	
		Mile Creek				

Full suite of analyses includes VOCs (SW 8260), SVOCs (SW 8270), metals (SW 6010B), pesticides (SW 8085) and PCBs (SW 8082).

<u>LTM Re-evaluation Criteria</u> – The LTM plan will be re-evaluated annually to assess the creek conditions. Proposed re-evaluation procedures follow:

The results from sampling events will be compared to baseline concentrations which serve as
general guidelines for changes in/or releases to Six Mile Creek. If the concentration detected
exceeds two times baseline concentrations, the Air Force, in consultation with the EPA and
NYSDEC, will evaluate modifying the LTM network to identify potential causes of
concentration increases.

² Three large specimens of each species designated for sampling will be collected.

Responses to USEPA Comments On the April 2002 Revised Three Mile Creek Feasibility Study Addendum June 18, 2002

Feasibility Study Addendum

General Comments

1) The impact of reducing or eliminating the contamination at other AOCs (Landfills 5 & 6, Hardfills 49C & 49D, and the Electrical Power Substation) which have acted as sources to Three Mile Creek (TMC) should be discussed as "source control".

Response: The text in Section 5.1 has been revised to include a statement that all the known possible sources contributing to the contamination found in Three Mile Creek have been mitigated or will undergo a Remedial Action in the near future.

Specific Comments

2) Section 1.2, Background Information, page 1-1: The statement that TMC is a "drainage ditch" should be removed. TMC was a creek prior to being channelized and should be restored to a more ecologically productive habitat after remediation.

Response: The text has been changed as requested.

Sections 2.2.5 & 2.3: Polychlorinated biphenyls should be treated collectively. Because PCBs have been detected in fish and sediments of TMC at elevated levels, they are one of the primary COPCs at the TMC Area of Concern (AOC). Similarly, total PAHs and the sums of DDT, DDD and DDE should be considered, as well as the individual COPCs (where individual criteria are available).

Response: These chemicals are discussed in the text within their chemical groups and as individual compounds. However, in terms of exceedance of screening criteria, individual compounds were examined since total criteria for these chemical groups are not always available and the mix of compounds in that group may not match the mix that is at the site. The lab analysis also gives different chemical constituents for each group, and each may have a different mode of toxicity that makes one contaminant of a group more of a concern than another. Therefore, grouping them all together may unnecessarily place concern on all PCBs and all PAHs, etc. The value in examining the COPC as individual compounds is much greater than as groups of chemicals.

4) Section 2.3.5: The document needs to be more specific regarding the scope and findings of the ecological risk assessment.

DECEIVED

02:001002UK04_02_02_00-B0925 USEPA RTCS for Final FS.DOC-7/5/2002 Responses to USEPA Comments April 2002 Revised TMC FS Addendum June 18, 2002 Page 2 of 3

Response: An elaborated scope and conclusions from the Ecological Risk Assessment has been added to the text as requested.

5) Section 2.3.6, page 2-10: The recommended range for TOC that should be used for establishing screening criteria is 0.2% - 12%, not 2.0% (NYSDEC, 1999 - Technical Guidance for Screening Contaminated Sediments, page 8, paragraph D, Item 2.).

Response: The text has been changed as requested.

Section 2.3.7, page 2-11: It should be noted that the impacts of habitat destruction as a result of remedial activities (sediment removal in the creek and access requirements) are short term impacts which are an unavoidable result of the work. However, incidental impacts to the aquatic habitat and wetlands (e.g., access roads, dewatering areas, and staging areas) should be avoided, if possible, and/or minimized to the greatest extent possible (Management Practices Federal Register/Volume 51, No. 219/Part 330.6). All areas impacted during the work will require restoration.

Response: The text has been changed as requested.

7) Figure 2-3c: The concentrations of lead and cadmium in pond sediments that are reported in the figure have not been changed to mg/kg as the figure key indicates.

Response: The TMC Pond results were removed from Figure 2-3c because they are properly illustrated on Figure 2-5a.

8) Section 4.3 and 5.1: The statement that "incidental damage to surrounding habitat in this area would likely be great..." should be deleted. As discussed above, the design for any work in TMC must meet regulations and ARARs designed to minimize unnecessary disturbance to existing habitat. Different means of accessing the stream corridor for sediment excavation should be evaluated.

Response: The text has been changed as requested.

9) Section 5.1, page 5-3, Scenarios 5 and 6: Depending upon the efficacy of the proposed remediation, promoting flooding of the wetland areas adjacent to TMC may not be recommended.

Responses to USEPA Comments April 2002 Revised TMC FS Addendum June 18, 2002 Page 3 of 3

Response: Additional work will be performed to determine whether creating the wetland is feasible. Scenarios 5 and 6 would only be implemented if agreed upon by all parties after the additional work is complete.

10) Section 5.1, page 5-4: It should be noted that long term monitoring may extend past the five year review date. Long-term monitoring should be conducted until the remedial action objectives or PRGs are met. In addition, monitoring associated with remediation of Landfills 5 and 6 will be included in the monitoring plan for TMC. This may also include surface water, sediments and biota.

Response: A Long-Term Monitoring program for Three Mile Creek is under development and will be forwarded for your review in the near future.

11) Section 5.2.1, page 5-6 & Section 5.2.3, page 5-7: As noted above, long term monitoring for the off-base portions of TMC may extend past the five year review date. It should be indicated whether surface water monitoring should include other inorganics in addition to lead.

Response: See response to Comment No. 10.

Responses to C. Dowd's (DEC F&WL) Comments On the April 2002 Revised Three Mile Creek Feasibility Study Addendum May 16, 2002

1) Section 2.2.5 Selection of Surface Water Screening Criteria - It is incorrect to compare individual biphenyl compounds to the NYS water quality standards for PCB. The standard is for total PCBs.

Response: The surface water samples in question were originally reported in the RI published by Law Environmental in 1996. While there were no PCBs detected in the samples under the PCB test methods, biphenyl compounds were detected in one sample under the SVOC analysis. While the statement is true that the NYS water quality standard is for total PCBs, each of the individual biphenyls detected in the RI sample exceeded this total, therefore, the total biphenyls also will exceed the standard. A note will be added to the text to clarify this matter.

2) Section 2.3.5 Ecological Assessment - NYSDEC disagrees with the characterization of the ecological assessment and conclusions drawn therefrom because the methods and analysis of the assessment were flawed.

Response: The discussion presented in Section 2.3.5 was taken directly from the RI, which was published by Law in 1996. A statement that NYSDEC does not concur with the characterization of the assessment and the conclusions drawn form the RI will be added to the text.

3) Section 2.3.6 Selection of Sediment Screening Criteria, pg 2-6 - Table 2-6 references EPA 1989 as the source of the 2,3,7,8 TCDD equivalency factors, however EPA 1989 is not listed in the references. In addition, the most recent World Health Organization TEFs are presented in Van den Berg et al. (1998) Toxic Equivalency Factors for PCBs, PCDDs and PCDFs for Humans and Wildlife from Environmental Health Perspectives, 106(12) 775-792.

Response: EPA 1989 will be added to the reference section. As far as the World Health Organization TEFs are concerned, for consistency purposes, the EPA TEFs that were used in the approved RI (Law 1996) were used for this report also.

4) Table 2-3a - The NYSDEC criterion for wildlife bioaccumulation of DDT applies to the sum of DDT and the daughter compounds.

Response: The NYSDEC criteria values for DDT and its daughter products (DDD and DDE) in Table 2-3a apply to the sum of DDT and its daughter products. A footnote will be added to the table. However, it should be noted that although the NYSDEC criteria were part of the screening process, the NYSDEC criterion was not used for screening DDT and its daughter products because it was not the most stringent.

Section 2.3.6 Selection of Sediment Screening Criteria, pg 2-10 - What is the reference for the upper and lower recommended percentages for total organic carbon? The NYSDEC Technical Guidance for Screening Contaminated Sediments (TGSCS) identifies a lower limit of 0.2 %, not 2.0%. The average TOC of 29.6% indicated for Landfill 6 sediments is extremely high. Were these results evaluated in laboratory QA/QC?

Response: The 2% lower limit in the table is incorrect. It will be changed to 0.2 % as stated in the comment and the data will be re-screened. The TOC values were evaluated in the laboratory QA/QC, and are believed to be accurate because the sediments were taken in a wetland with a high organic content.

6) Figure 2-3b, 2-3c and 2-5a - Please include an entry for total PAHs.

Response: These Figures were derived from other reports: Figure 2-3 was derived from RI, and 2-5 was from the SI. It is not necessary to re-tabulate the data for total PAHs from previous reports since total PAHs are presented on Figure 3-6.

7) Table 3-4a, 3-4b, 3-5 - Please include an entry for total PAHs and compare to the ER-L for total PAHs from Long and Morgan (1991) and the TGSCS which is 4 ppm.

Response: An entry for total PAHs will be added to the tables; however, the ER-L from Long and Morgan (1991) represents the sum of a select list of PAHs, not all of them. Therefore, the comparison cannot be made. The value from Long and Morgan is also an ultra-conservative number that is designated by Long and Morgan as having a low confidence value. In addition, the TGSCS value of 4 ppm was actually derived from Long and Morgan. Therefore, since the screening value does not represent total PAHs, and it has a low confidence value, a screening value for total PAHs will not be added to the table.

8) Section 4.3 and 5.1 - The statement that "incidental damage to surrounding habitat in this area would likely be great..." should be deleted. The design for any work in Threemile Creek must meet regulations and ARARs designed to minimize unnecessary disturbance to existing habitat. There has been no evaluation presented here on different means of accessing the stream corridor for the purpose of excavating sediments.

Response: The best route of entry to minimize disturbance of the existing habitat will be evaluated; however, the Creek is surrounded by habitat on all sides, therefore, some damage is unavoidable. This disturbance will be mitigated as part of the Wetland Management Plan for Griffiss. The text will be changed to clarify this matter.

Responses to C. Dowd's Comments April 2002 Revised TMC FS Addendum May 16, 2002 Page 3 of 3

9) Section 5.1 page 5-3 - Scenarios 5 and 6 which incorporate consideration of the wetland mitigation program should be eliminated from consideration. The Base-wide Wetlands Management Plan has not yet been finalized and the proposed off-site wetland mitigation is still under review by the Agencies. In addition, the wetland mitigation proposal involves promoting flooding of wetland areas adjacent to Threemile Creek. It would be unwise to do so until the efficacy of the proposed remediation can be demonstrated. In addition, limited sampling of these adjacent wetland areas has been undertaken. It would be equally unwise to proceed with the mitigation scheme until the quality of the areas to be flooded is known.

Response: The scenarios represent various possible options. A recommendation section has been added to the report to indicate the preferred alternative.

10) Section 5.1 page 5-4 - While EPA may require a five year review of post-remedial monitoring data, this does not imply that monitoring only occurs for five years. Long-term monitoring must be conducted until the remedial action objectives or PRGs are met. Post-remedial monitoring for Threemile Creek will also include benthic community monitoring to ensure that a healthy benthic community is reestablished in the stream after remediation. In addition, monitoring associated with remediation of Landfills 5 and 6 will be included in the monitoring plan for Threemile Creek. This may also include surface water, sediments and biota.

Response: It is understood that post-remedial monitoring will be conducted until remedial action objectives are met or PRGs are met. A Long-Term Monitoring program for Three Mile Creek is under development and will be forwarded for your review in the near future.

Final Three Mile Creek Feasibility Study Addendum Former Griffiss Air Force Base Rome, New York

July 2002

U.S. ARMY CORPS OF ENGINEERS Kansas City District 601 East 12th Street Kansas City, Missouri 64106

Prepared by:

ECOLOGY AND ENVIRONMENT, INC.

368 Pleasant View Drive Lancaster, New York 14086

©2002 Ecology and Environment, Inc.

ecology asset outinous cost. Teac.

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

able of Contents

Section				Page
1	Inti	oduction		1-1
	1.1			
	1.2		ormation	
	1.3	Previous Site In	vestigations	1-2
2	Ana	lytical Data	Screening	2-1
	2.1	Screening Proce	ss	2-1
			and	
		2.1.2 Applicab	ole or Relevant and Appropriate Requirements	2-1
		2.1.3 TBCs		2-2
			cific Risk Assessment	
		2.1.5 Determin	nation of Extent of Contaminated Media	2-3
	2.2	Surface Water S	creening Criteria	2-3
		2.2.1 Sampling	g and Analysis	2-3
		2.2.2 ARARs.		2-4
		2.2.3 TBCs		2-5
		2.2.4 Site Risk	Assessment	2-5
		2.2.5 Selection	of Surface Water Screening Criteria	2-5
		2.2.6 Contami:	nated Surface Water	2-6
	2.3	Sediment Screen	ning Criteria	2-7
		2.3.1 Sampling	g and Analysis	2-7
		2.3.2 ARARs		2-8
		2.3.3 TBCs		2-8
		2.3.4 Site Risk	Assessment	2-8
		2.3.5 Ecologic	al Assessment	2-8
		2.3.6 Selection	of Sediment Screening Criteria	2-10
		2.3.7 Contamin	nated Sediment Area	2-12
3	200	Three Mile	Creek Sediment Sampling	3-1
	3.1			
	3.2	Purpose of Inves	tigation	3-1
	3.3	Field Investigation	on	
			-Base Channel and Landfill 5 Tributary Sediment	
			·	3-2
		3.3.2 LF6 Wet	land Sediment Sampling	3-4

Table of Contents (Cont.)

Section			Page
		3.3.3 Off-Base TMC Pond Sediment Sampling	3-4
	3.4	Summary of Results	3-5
		3.4.1 On-Base Three Mile Creek Channel and Landfill 5	
		Tributary	
		3.4.2 Landfill 6 Wetlands	
		3.4.3 Off-Base Three Mile Creek Pond	
		3.4.4.1 On-Base TMC Channel and LF5 Tributary	
		3.4.4.2 LF6 Wetlands	
		3.4.4.3 Off-Base Pond	
4	Thr	ree Mile Creek Habitat Quality	4-1
-	4.1	On-Base Portions of Three Mile Creek	
	4.2	Off-Base Portions of Three Mile Creek	
		4.2.1 Base Boundary to the Sanitation Facility Transfer Station	
		Access Road	4-4
		4.2.2 Sanitation Facility Transfer Station Access Road to	
		NYSBC	
	4.3	Summary of Habitat Quality for Three Mile Creek	4-5
5		scription of Alternatives for Three Mile Creek	
		mediation	
		On-Base Portion of Three Mile Creek	
	5.2	Off-Base Portions of Three Mile Creek	
		5.2.1 Base Boundary to the Downstream Edge of the Pasture	
		5.2.2 Downstream Edge of Pasture to Pond	
		5.2.3 Pond to Confluence with Barge Canal	5-6
6	Des	scription of Selected Remedy	6-1
7	Ref	ferences	7-1
Appendi	x		
A	Fiel	Id Adjustments	A-1
В	Sur	rvey Data	B-1
С	Cor	mplete Analytical Data Summaries	
D	Rer	medial Investigation Sample Results	D-1

Table of Contents (Cont.)

Section		Page
E	PCB Sampling Results at Patrick Square and Drainage Swale Adjacent to Hardfill 49D	E-1
F	Cost Estimates Based on FS Addendum Scenario Development	F-1

Tist of Tables

2-2 Screening Process for Surface Water, Three Mile Creek	Table		Page
2-3a Screening Process for Organic Parameters for the Three Mile Creek Channel and the Landfill 5 Tributary Sediment Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York	2-1	· · · · · · · · · · · · · · · · · · ·	2-13
the Landfill 5 Tributary Sediment Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York	2-2	Screening Process for Surface Water, Three Mile Creek	2-14
the Landfill 5 Tributary Native Soil Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York	2-3a	the Landfill 5 Tributary Sediment Samples, Three Mile Creek, Griffiss Air	2-17
Three Mile Creek, Griffiss Air Force Base, Rome, New York	2-3b	the Landfill 5 Tributary Native Soil Samples, Three Mile Creek, Griffiss Air	2-19
Base, Rome, New York	2-4		2-21
 3-1 Sample Listing Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	2-5		2-22
3-23 Summary of Three Mile Creek, Landfill 6, and Off-site Pond Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	2-6	Dioxins and Furans in Sediment Samples, Three Mile Creek	2-23
Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	3-1	• •	3-23
Sampling, Former Griffiss Air Force Base, Rome New York	3-2	•	3-28
Landfill 5 Tributary Sediment Samples, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	3-3	• •	3-30
Tributary Native Soil Samples, Three Mile Creek 2001 Sampling, Former	3-4a	Landfill 5 Tributary Sediment Samples, Three Mile Creek 2001 Sampling,	3-31
	3-4b	Tributary Native Soil Samples, Three Mile Creek 2001 Sampling, Former	3-52

List of Tables (Cont.)

Table		Page
3-5	Summary of Positive Hits and Screening for the Landfill 6 Wetland Sediment Samples, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	3-65
3-6	Summary of Positive Hits and Screening for the Off-Base TMC Pond Sediment Samples, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York	3-67
4-1	Water Quality Field Parameters at Three Mile Creek July 15-16, 1999	4-7
5-1	Summary of Three Mile Creek Sediment Clean-up Scenarios	5-8
5-2	Summary of the Attributes of the Silt Deposits, Former Griffiss AFB	5-9

Tist of Figures

Figu	re	Page
1-1	Former Griffiss AFB Site Location Map	1-5
1-2	Three Mile Creek Base Map	1-7
2-1	Contaminants in Surface Water Exceeding Preliminary Screening Values, Upper Three Mile Creek	2-45
2-2	Contaminants in Surface Water Exceeding Preliminary Screening Values, Lower Three Mile Creek	2-47
2-3a	Remedial Investigation Sediment Sample Locations	2-49
2-3b	Remedial Investigation Sediment Sample Results, Upper Three Mile Creek	2-51
2-3c	Remedial Investigation Sediment Sample Results, Upper Three Mile Creek	2-53
2-4	Contaminants in Sediment from Additional Samples Exceeding Preliminary Screening Values, Upper Three Mile Creek	2-55
2-5	Sediment Contaminants Exceeding Preliminary Screening Values, Lower Three Mile Creek	2-57
2-5a	Contaminants in Sediment Exceeding Preliminary Screening Values, Lower Three Mile Creek (Analytical Results Only)	2-59
2-6	Cross Section of Three Mile Creek On-Base Sampling Locations Back	Pocket
2-7	Off-Base Three Mile Creek Pond Sampling Location Map	2-61
3-1	On-Base Sampling Location Map, 2001 Three Mile Creek Sampling	3-71
3-2	Aroclor 1260 Concentration Vertical Profile, Former Griffiss AFB	3-73
3-3	Total Pesticide Concentration Vertical Profile, Former Griffiss AFB	3-75
3-3a	4,4-DDD Concentration Vertical Profile, Former Griffiss AFB	3-77

List of Illustrations (Cont.)

Figui	re	Page
3-3b	4,4-DDT Concentration Vertical Profile, Former Griffiss AFB	3-79
3-3c	Total Chlordane Isomer Concentration Vertical Profile, Former Griffiss AFB	3-81
3-3d	Heptachlor and Heptachlor Epoxide Concentration Vertical Profile, Former Griffiss AFB	3-83
3-4	Total Dioxin Concentration Vertical Profile, Former Griffiss AFB	3-85
3-5a	1,2-Dichlorobenzene Concentration Vertical Profile, Former Griffiss AFB	3-87
3-5b	1,4-Dichlorobenzene Concentration Vertical Profile, Former Griffiss AFB	3-89
3-5c	Benzene Concentration Vertical Profile, Former Griffiss AFB	3-91
3-5d	Chlorobenzene Concentration Vertical Profile, Former Griffiss AFB	3-93
3-6	Total PAH Concentration Vertical Profile, Former Griffiss AFB	3-95
3-6a	Benz(a)anthracene Concentration Vertical Profile, Former Griffiss AFB	3-97
3-7	TRPH Concentration Vertical Profile, Former Griffiss AFB	3-99
3-8	Arsenic Concentration Vertical Profile, Former Griffiss AFB	3-101
3-9	Cadmium Concentration Vertical Profile, Former Griffiss AFB	3-103
3-10	Copper Concentration Vertical Profile, Former Griffiss AFB	3-105
3-11	Lead Concentration Vertical Profile, Former Griffiss AFB	3-107
3-12	Aroclor 1260 Concentration Vertical Profile, Off-Base Pond, Former Griffiss Air Force Base	3-109
3-13	Cadmium Concentration Vertical Profile, Off-Base Pond, Former Griffiss Air Force Base	3-111
3-14	Lead Concentration Vertical Profile, Off-Base Pond, Former Griffiss Air Force Base	3-113
5-1	Generalized Vertical Profile of Contaminants Exceeding Screening Criteria	5-11
5-2	Three Mile Creek Silt Deposit Investigation	5-13

List of Illustrations (Cont.)

Figure		Page
5-3	Three Mile Creek Silt Deposit Boundary	5-15
5-4	Three Mile Creek Silt Deposits	5-16

ist of Acronyms

AMSL above mean sea level

AFBCA Air Force Base Conversion Agency

AFCEE Air Force Center for Environmental Excellence

AOC Area of Concern

ARARs applicable or relevant and appropriate requirements

ASC Ecology and Environment, Inc., Analytical Services Center

BGS below ground surface

BTOCB below top of creek bed

CERCLA Comprehensive Environmental Response, Compensation, and Li-

ability Act of 1980 - Superfund

CFR United States Code of Federal Regulations

CWA Clean Water Act

1,2-DCB 1,2-dichlorobenzene

1,4-DCB 1,4-dichlorobenzene

E & E Ecology and Environment, Inc.

EPA United States Environmental Protection Agency

ERDC United States Army Engineers Research and Development

Laboratory

ER-L effects range-low

FS Feasibility Study

GPS Global Positioning System

Griffiss AFB former Griffiss Air Force Base

LAW Law Environmental, Inc.

LDR land disposal restriction

LEL lowest effect level

List of Acronyms (Cont.)

TOC total organic carbor

TRPH total recoverable petroleum hydrocarbon

TSD treatment, storage, and disposal

USACE United States Army Corps of Engineers

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

VOCs volatile organic compounds

WAD Work Authorization Directive

1 Introduction

Ecology and Environment, Inc. (E & E), under contract to the United States Army Corps of Engineers (USACE), Kansas City District, Contract No. DAC41-99-D-005, Work Authorization Directive (WAD) 04, has prepared this revised Feasibility Study (FS) Addendum document for the Three Mile Creek (TMC) Area of Concern (AOC) at the former Griffiss Air Force Base (Griffiss AFB) in Rome, New York (see Figures 1-1 and 1-2). This document summarizes the data findings of various site investigations, especially the 2001 TMC sediment sampling, and offers final recommendations for Three Mile Creek remedial planning, including a description of the recommended remedial approach.

1.1 Purpose

This revised report updates the March 2000 TMC FS addendum by incorporating the latest round of sampling data (2001 TMC sediment sampling), revising screening criteria based on regulatory updates, determining the driving factors for the clean-up of the creek, and proposing final clean-up measures.

1.2 Background Information

The TMC AOC includes the entire length of the creek from headwaters to outfall. TMC is an approximately 10,000-foot-long, 10-foot-wide creek, with water depths ranging from 2 inches to 2 feet. The headwaters of TMC originate at the points of discharge for the central portion of the base storm water collection system. These two discharge

points are located on the south side of Ellsworth Road and former Wright Drive, near the Electrical Power Substation. The creek flows to the southeast and empties into the New York State Barge Canal (NYSBC) 1 mile south of the installation. The creek channel was dredged and straightened in 1942 during the initial stages of base construction and was dredged and straightened again at least once in 1961.

The creek receives both surface water runoff and groundwater from the surrounding watershed, including the Electrical Power Substation, former Landfill 4, Landfills 5 and 6, and storm water drainage from the south-central portion of the base, which reportedly contains discharges from floor drains.

The drainage ditch located adjacent to the Hardfill 49D area to the north of Landfill 5 forms, in effect, a "tributary" to TMC, and contaminants found there reflect those found in the creek rather than those found at the landfill. This Landfill 5 drainage ditch is included in the TMC AOC and is part of this FS Addendum.

TMC is classified as a Class C stream according to the New York Code of Rules and Regulations (NYCRR) Part 701. The best usage for Class C stream waters is fishing, where waters shall be suitable for fish propagation and survival. Based on an Aquatic Habitat Assessment performed by Law Environmental, Inc., (Law) in 1993 (Law 1996), at least 12 species of fish are found in TMC. Due to the presence of polychlorinated biphenyls (PCBs) in fish tissue, the New York State Department of Health (NYSDOH) has posted a fish advisory for TMC. NYSDOH recommends that people eat no more than one meal per month of White Sucker from this creek.

The current land use for the site is public/recreational/open space and wetlands.

The future land use, defined by the Griffiss Local Development Corporation document, A

Master Reuse Strategy for Griffiss Air Force Base, Rome, New York (Griffiss Local

Development Corporation 1995), is to remain a wetland/surface water area.

1.3 Previous Site Investigations

Investigations conducted at the TMC site between 1981 and 2002 are presented below:

■ In 1981, Fred C. Hart Associates, Inc. (Hart 1982), performed an investigation that included metals analyses of two sediment samples collected from an upstream and a downstream location.

- A preliminary study of the TMC basin for sediment, soil, surface water, and groundwater was conducted in 1987 by the United States Geological Survey (USGS) (USGS 1988). Acid-extractable metals, polycyclic aromatic hydrocarbons (PAHs), PCBs, and pesticide analyses were conducted on streambed sediments from six locations. The investigation also included collection and analysis of four surface water samples, installation of 13 monitoring wells, sampling of seven wells, and collection and analysis, for metals and selected inorganic analytes, of soil cores from 12 sites near TMC.
- In 1988, the United States Fish and Wildlife Service (USFWS) conducted a study to assess the extent of contamination in both fish and sediments in TMC (USFWS 1989).
- As part of the Remedial Investigation (RI) performed for USACE between September 1993 and April 1995, Law collected 30 sediment samples from 15 locations and 12 surface water samples from 12 locations from the TMC AOC and the drainage ditch component of the Landfill 5 AOC (Law 1996). In addition, they collected benthic and drift invertebrates from four general locations to assess species abundance and numbers, and fish at four general locations to survey species diversity and numbers, and to obtain fish tissue for chemical analyses.
- In 1995 the New York Department of Environmental Conservation (NYSDEC) conducted passive in situ chemical extraction sampling (PISCES) at one location in TMC.
- In 1997 NYSDEC collected White Suckers, Creek Chub, and Pugnosed Minnow for tissue analysis from the off-base portion of TMC. Because PCB concentrations in White Suckers exceeded the threshold used by NYSDOH, a fish advisory was posted for this species at TMC.
- As part of the base-wide supplemental investigation (SI) to the RI performed by E & E in June 1997, two additional surface water and three PISCES samples were collected from TMC (E & E 1998a). Soil and leachate samples were also collected from Landfill 5. No sediment samples were collected during the 1997 SI.
- Also, in 1997, as part of a separate program, Parsons Engineering Science, Inc. performed sediment sampling for the Air Force Center for Environmental Excellence (AFCEE) at the Landfill 5 drainage ditch (Parsons 1997).
- In July 1998, additional SI samples were taken from the off-base portion of TMC (E & E 1998b). These included two surface water samples and eight sediment samples tested for Target Compound List (TCL) volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, and PCBs; organophosphorus pesticides; organochlorine herbicides; dioxins and furans; total recoverable petroleum hydrocarbons (TRPH); total organic

- carbon (TOC); Target Analyte List (TAL) metals, including mercury and hexavalent chromium; cyanide; percent solids; and radionuclides, including strontium 89 and 90, and total uranium.
- In July 1999, representatives from the Air Force Base Conversion Agency (AFBCA), USACE, NYSDEC, United States Environmental Protection Agency (EPA), USFWS, and E & E visually inspected the habitat quality of TMC (E & E 1999a).
- In November 1999, six off-base TMC pond samples were collected by E & E and were tested for TCL PCBs, cadmium, lead, TOC, and percent solids. In addition, E & E also visually surveyed and recorded (via Global Positioning System [GPS]) silt sediment deposits along a 1,500-foot section of TMC downgradient of the base boundary (E & E 2000a).
- In May and June 2001, as part of the base FSs, E & E collected 68 samples at 26 locations from the on-base portion of TMC; four samples from the top 6 inches at four locations in the Landfill 6 (LF6) wetland; and 12 samples at six locations from the off-base pond. Each sample location was vertically profiled (except the LF6 wetland) with samples to depths of 3.5 feet below creek bottom (E & E 2001a).
- In late 2001, E & E reviewed historical remedial documents related to TMC to assess past impacts on the wetlands. An assessment of potential wetland impacts was then performed using available wetland boundaries, draft remedial design documents, and historical sample results. Field verification inspections were also performed to verify current wetland boundaries (E & E 2001b, 2001c, 2002). Results of the wetlands investigation are incorporated in the recommendations presented in Section 4 of this revised FS addendum.

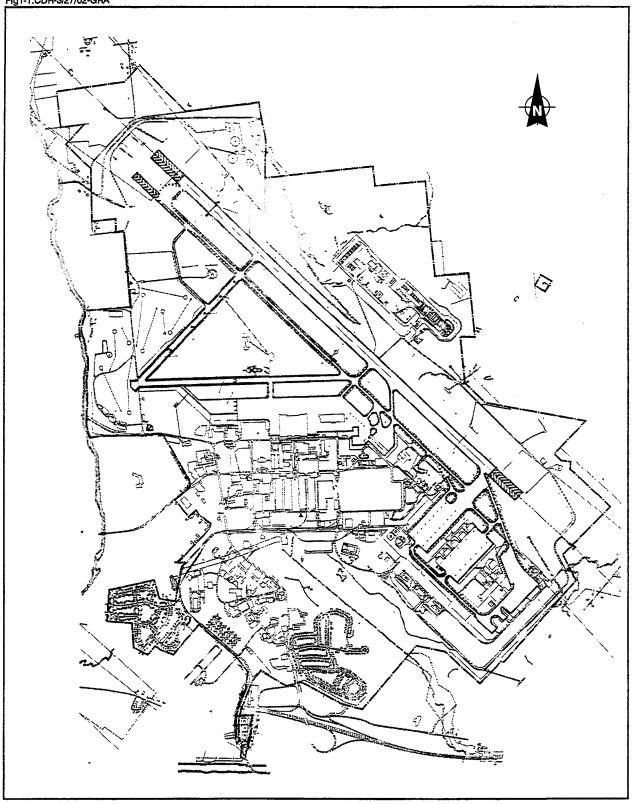
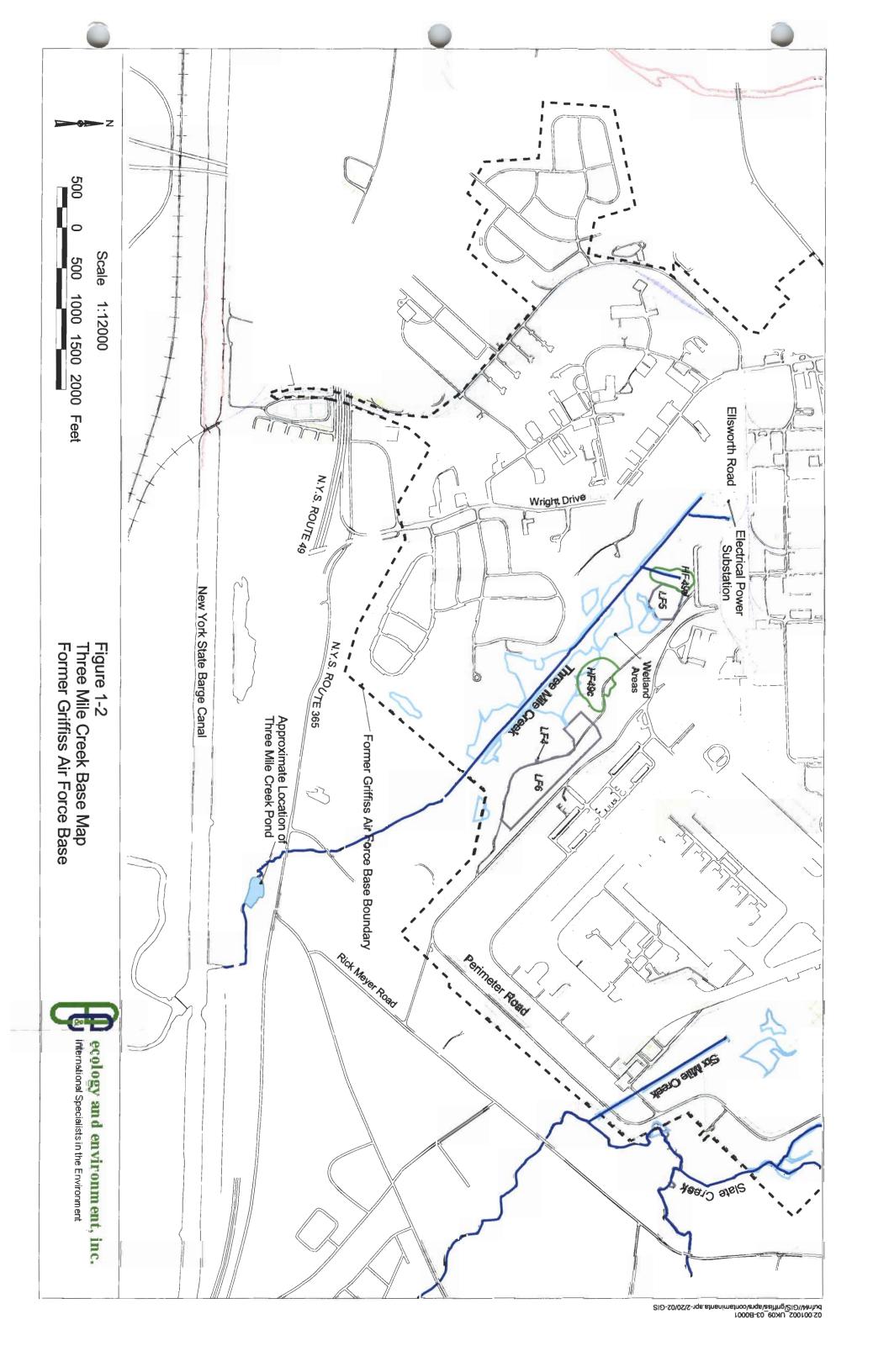



Figure 1-1 FORMER GRIFFISS AFB SITE LOCATION MAP

2

Analytical Data Screening

2.1 Screening Process

2.1.1 Background

This section addresses contamination in the surface water and sediments. Chemicals analyzed for and detected at this AOC include VOCs, SVOCs, dioxins/furans, glycols, radionuclides, pesticides, herbicides, PCBs, and inorganics. Potential recreational populations may be exposed to chemicals detected in site media through ingestion of fish and incidental ingestion of and dermal contact with sediment and surface water. Fish and benthic organisms are directly exposed to chemicals in the surface water and sediments. Other wildlife (aquatic and terrestrial) that comes into contact with the surface water, sediments, fish, or benthic organisms are also potential receptors of contamination.

Chemical-specific screening criteria were developed for each medium at this site based on an evaluation of applicable or relevant and appropriate requirements (ARARs), other criteria and guidelines to be considered (TBCs), and findings of the site-specific baseline risk assessment presented in the RI. This evaluation determines those levels at which the contaminants can be present but still be deemed protective of human health and the environment.

2.1.2 Applicable or Relevant and Appropriate Requirements

An ARAR may be either "applicable" or "relevant and appropriate." Applicable requirements are those substantive environmental protection standards, criteria, or limitations promulgated under federal or state law that specifically address a hazardous

substance, remedial action, location, or other circumstance at a Superfund site. Relevant and appropriate requirements are those substantive environmental protection requirements promulgated under federal and state law that, although not legally applicable to the circumstances at the site, address situations sufficiently similar to those encountered at the site so that their use is well-suited to the particular site.

2.1.3 TBCs

TBCs are nonpromulgated federal or state standards or guidance documents that are to be used on an "as appropriate" basis in developing screening criteria. Because they are not promulgated or enforceable, they do not have the same status as ARARs and are not considered required cleanup standards.

2.1.4 Site-Specific Risk Assessment

The Comprehensive Environmental Response, Compensation, and Liability Act of 1980-Superfund (CERCLA) requires that remedial actions be protective of human health and the environment. Health and environmental risk estimates from the site-specific risk assessment were considered in developing chemical-specific screening criteria. The United States Environmental Protection Agency (EPA) has adopted the policy that acceptable exposures to known or suspected carcinogens are generally those that represent an excess upperbound lifetime cancer risk to an individual of between 10^{-4} and 10^{-6} (40 United States Code of Federal Regulations [CFR] 300.430[E][2][i][A][2]).

This regulatory section also defines 10^{-6} as the "point of departure for determining remediation goals for alternatives when ARARs are not available or are not sufficiently protective because of the presence of multiple contaminants...or...pathways of exposure." While 10^{-6} is a point of departure for determining remedial goals, values corresponding to risks in the range of 10^{-4} to 10^{-6} are acceptable for identification of acceptable risks. The Air Force has elected to use the more conservative carcinogenic risk level of 10^{-5} to derive site-specific risk-based preliminary screening values to provide an additional level of protectiveness in evaluating this AOC. This value was selected to ensure that total risk from the site is below 10^{-4} should more than one compound be encountered at its 10^{-5} carcinogenic risk level. The site-specific human-health risk-based values are presented in the contaminant screening tables corresponding to a carcinogenic risk of 10^{-5} .

For noncarcinogens (systemic toxicants), the EPA defines acceptable exposures as those to which the human population, including sensitive subgroups, may be exposed without adverse effects during a lifetime or part of a lifetime, incorporating an adequate safety margin (40 CFR 300.430[E][2][i][A][1]). This acceptable exposure level is best approximated by a hazard index of unity (1.0). If the hazard index is less than unity, adverse effects would not be expected, while a hazard index greater than unity suggests that such an exposure may result in adverse effects.

2.1.5 Determination of Extent of Contaminated Media

Screening criteria are set by evaluating the available ARARs, TBCs, and site-specific risk values for each contaminant. In general, primary consideration is given to ARARs or site-specific risk values as preliminary screening values. If no ARARs or site-specific risk values exist for a given contaminant, then the most appropriate TBC value is selected as the preliminary screening value. These preliminary screening values are then compared to site data to identify which contaminants may be of concern. These contaminants are then reviewed to see whether the contaminants are likely due to upgradient, off-base sources. The screening criteria set by this process are then again compared to site data to identify areas that may need attention.

2.2 Surface Water Screening Criteria

2.2.1 Sampling and Analysis

Surface water samples were collected from 12 locations in Three Mile Creek (TMCSW-1 through TMCSW-12; see Figures 2-1 and 2-2) between May and July 1994 (Law 1996). VOCs, SVOCs, pesticides, herbicides, PCBs, dioxins/furans, metals, glycols, and radionuclides were detected in the surface water collected from this site. Under an SI, two surface water samples were collected on June 11, 1997, from the culvert outfall effluent (TMCSW-13 and TMCSW-14; see Figure 2-1). No contaminants exceeded detection limits in these two samples (E & E 1998a). Surface water was also collected in July 1998 from two off-base locations (TMCSW-16 and TMCSW-22) between the base boundary and the Barge Canal under this SI (see Figure 2-2). VOCs, metals, TRPH, TOC, and total uranium were detected in the samples taken from these locations (E & E 1998c).

In addition, PISCES were collected from three locations (TMCP-1 through TMCP-3) in Three Mile Creek (see Figure 2-1) and analyzed for pesticides and PCBs. Pesticides were detected in two of these samples (E & E 1998a).

While PISCES sample results were used as a screening tool for surface water contamination, they cannot be compared to surface water ARARs or TBCs, nor can they be used to develop preliminary screening values. In addition, since fish bioaccumulate contaminants more through consumption rather than through the intake of water, the PISCES samples, for the purposes of this FS, will not be used as data related to the potential uptake of contaminants by fish.

PISCES results for sample TMCP-1 were not found to exceed detection limits. PISCES samples TMCP-2 and TMCP-3 were both found to contain dieldrin, endosulfan sulfate, and gamma-BHC. The results associated with sample TMCP-3 were one order of magnitude greater than those of sample TMCP-2. In addition, 4,4-DDD was detected in sample TMCP-3, but not in sample TMPC-2. Table 2-1 shows these results.

The pesticides detected in the PISCES samples were not detected in the surface water samples taken in Three Mile Creek. This may be due to the fact that PISCES samples are time-composite samples of surface water, while surface water samples are grab samples.

2.2.2 ARARs

The intent of the water quality regulations established under the federal Clean Water Act (CWA) (33 USC 1251-1376, 40 CFR 121) and 6 NYCRR Parts 700-705 water quality regulations for surface waters is to restore and maintain the chemical, physical, and biological integrity of the nation's waters. To achieve these objectives, ambient surface water quality standards have been set. The EPA chronic values for the protection of aquatic life and human health, for consumption of organisms only, have been identified as relevant and appropriate ARARs and were chosen over acute values in order to provide a conservative approach. Three Mile Creek has been classified as a Class C stream; therefore, NYSDEC Class C surface water standards have been identified as applicable ARARs for this creek.

2.2.3 TBCs

Water quality regulations presented under 6 NYCRR, Parts 700-705, also include guidance values for some compounds in lieu of standards. These guidance values are identified TBCs for this site.

2.2.4 Site Risk Assessment

As noted above, 10⁻⁵ carcinogenic risk levels have been identified as appropriate for this site. Except for extremely low detections of one PAH, no surface water samples exceed this risk level. Human health risk values (contaminant concentrations that represent cancer risks in excess of 10⁻⁵ or a hazard index of 1) were developed for contaminants found at the site for which cancer risks or hazard indices could be calculated. These values are included in Table 2-2.

2.2.5 Selection of Surface Water Screening Criteria

Screening criteria for surface water are selected from the values presented in Table 2-2. For the surface water at the Three Mile Creek AOC, the lowest of the NYSDEC surface water standards, the EPA's National Water Quality Criteria, or the site-specific risk values were used as the candidate screening criteria. If none of these were available, New York State TBC values were used as screening criteria.

A summary of chemical-specific surface water ARARs and TBCs is presented in Table 2-2. The following is a summary of proposed screening criteria for surface water at the Three Mile Creek site:

- No VOCs were found to exceed preliminary screening values in surface waters of Three Mile Creek;
- Seven SVOCs were found to exceed preliminary screening values.
 - Hexachlorobenzene was detected above its preliminary screening value of 0.0077 micrograms per liter (μg/L) in on-site surface water sample TMCSW-1 at a concentration of 0.032 μg/L.
 - Bis(2-ethylhexyl)phthalate was also found to slightly exceed preliminary screening values in only one on-site surface water sample. The presence of this compound is probably associated with the protective gloves used for field sampling and lab analysis activities. Because laboratory or field contamination is the likely cause of the presence of this compound, bis(2-ethylhexyl)-phthalate will not be addressed further.

- Five biphenyls were detected in sample TMCSW-1. Although the screening value for PCBs is for total PCBs, it should be noted that each individual PCB detected in this sample exceeded the criterion for total PCBs; therefore, the total sample PCBs also exceeded the criterion.
- Four pesticides (alpha-chlordane, gamma-chlordane, 4,4-DDT, and malathion) were found to exceed preliminary screening values in on-site surface waters of Three Mile Creek. Both alpha- and gamma-chlordane were detected above the preliminary screening value of 0.0043 μg/L in one discrete upstream sample location (TMCSW-1) at concentrations of 0.012 and 0.014 μg/L, respectively. 4,4'-DDT was found to exceed its preliminary screening value of 0.001 μg/L in three on-site sample locations (TMCSW-4, TMCSW-5, and TMCSW-6). Concentrations for these samples were 0.078, 0.089, and 0.1 μg/L, respectively. Malathion was found to have a concentration of 0.21 μg/L in on-site surface water sample TMCSW-6, which exceeds its respective preliminary screening value of 0.1 μg/L.
- Six metals (aluminum, arsenic, iron, lead, selenium, and zinc) were found to exceed their respective preliminary screening values of 100, 1.4, 300, 6.3, 1.0, and 30 µg/L in the surface waters of Three Mile Creek. Aluminum was detected in on-site sample locations TMCSW-3 and TMCSW-6 at concentrations of 130 and 370 µg/L, respectively, as well as in both off-base sample locations at a concentration of 140 µg/L. Arsenic was detected at a concentration of 3 µg/L in on-site sample locations TMCSW-7 and TMCSW-10. Lead and selenium were each detected in only one discrete on-site sample location each (TMCSW-6 and TMCSW-1, respectively), with corresponding concentrations of 10 and 5 μ g/L. Lead was also detected at a concentration of 6.8 µg/L in off-base sample location TMCSW-22. Iron was detected in on-site sample locations TMCSW-6 and TMCSW-11 at concentrations of 590 and 500 µg/L, respectively, as well as in off-base sample location TMCSW-22 at a concentration of 330 µg/L. Zinc was detected in four on-site surface water sample locations (TMCSW-5, TMCSW-6, TMCSW-9, and TMCSW-11) at concentrations of 140, 63, 100, and 38 µg/L, respectively.

2.2.6 Contaminated Surface Water

At Three Mile Creek, contaminated surface water could pose a risk to humans and fauna through their consumption of aquatic life. However, because the headwaters of the creek are no longer contaminated and contaminated sediments are proposed for remediation, surface water will be indirectly remediated. Continued monitoring of surface water and fish can be conducted to gauge the health of the creek. Recommended monitoring is discussed in Section 5.

2.3 Sediment Screening Criteria

2.3.1 Sampling and Analysis

As part of the RI, sediment samples were collected between May 1994 and April 1995 at two depths (0 to 6 inches and 6 to 12 inches) from 15 locations below the sediment/surface water interface of Three Mile Creek (TMCSD-1 through TMCSD-12 and LF5SD-1 through LF5SD-3) (see Figures 2-3a, 2-3b, 2-3c, and 2-5). Results from this investigation are included in Appendix D (Law 1996). As part of a separate investigation (Parsons 1997), 21 sediment samples were also collected and analyzed for PCBs during a pre-design investigation at Hardfills 49A, 49B, 49C, and 49D, including 14 samples from seven locations at the open drainage swale adjacent to Hardfill 49D, three grab samples from upgradient storm drains, and four samples from upstream open drainage ditches that feed to storm drains (Patrick Square) (see Figure 2-4). The 14 samples from the drainage ditch adjacent to Hardfill 49D confirm the drainage ditch sampling results from the RI. The other areas sampled are located in the Patrick Square area, are upgradient of the Landfill 5 drainage ditch, and are outside the limits of the Three Mile Creek AOC. Results from the additional PCB sampling are included in Appendix E. These pre-design sample results, which confirm PCB contamination in the drainage ditch and do not provide any additional extent-of-contamination information, are not included in the contamination summary presented in this section. VOCs, SVOCs, pesticides, herbicides, PCBs, dioxins/furans, metals, and radionuclides were detected in the sediment samples collected from the site.

As part of the Supplemental Investigation, creek sediments were collected from eight off-base locations between the base boundary and the Barge Canal (TMCSD-15 through TMCSD-22; see Figures 2-5 and 2-5a) in July 1998. VOCs, SVOCs, pesticides, metals, dioxin/furans, TRPH, TOC, hexavalent chromium, total uranium, and radionuclides were detected in these samples (E & E 1998b).

In 1999, samples were collected from five locations in the pond in the down-stream portion of the creek (TMCSD-25 through TMCSD-28; see Figures 2-5, 2-5a, and 2-7). These samples were analyzed for PCBs, cadmium, and lead (E & E 1999a).

In May and June 2001, 68 samples were collected at 26 locations from the on-base portion of TMC (see Figure 2-6). Eleven of those locations were the same as RI sample

locations. In addition, four samples were collected from the LF6 wetland adjacent to TMC (see Figure 3-1), and 12 samples were collected from six locations from the off-base TMC pond (see Figure 2-7). The creek samples and pond samples were vertically profiled to a depth of 3.5 feet. All creek and wetland samples were tested for VOCs, SVOCs, PCBs, pesticides, metals, and TRPH (E & E 2001a). The pond samples were tested only for PCBs, cadmium, and lead. The results of this investigation are presented in Section 3.

2.3.2 ARARs

No chemical-specific ARARs were identified for sediments.

2.3.3 TBCs

The primary TBCs identified for sediments at the Three Mile Creek site are the EPA Sediment Quality Criteria, 1996; the "effects range-low" (ER-L) values from Long and Morgan (1991); the "lowest effect level" (LEL) value from Persaud and Jaagumagi (1993); and NYSDEC Technical Guidance for Screening Contaminated Sediments (January 1999). These criteria were developed to evaluate the impact of sediment contamination on aquatic life, and in some cases, impacts to humans and wildlife through bioaccumulation.

2.3.4 Site Risk Assessment

Human health risk values (contaminant concentrations that represent cancer risks in excess of 10⁻⁵ or a hazard index of 1) were developed for contaminants found at the site for which cancer risks or hazard indices could be calculated. These values are included in Tables 2-3a, 2-3b, 2-4, and 2-5.

2.3.5 Ecological Assessment

An environmental assessment was conducted for this AOC during the RI in order to evaluate the potential for adverse impacts to ecological receptors potentially exposed to contaminants present at the Three Mile Creek AOC. It should be noted that NYSDEC does not concur with the characterization presented in the ecological assessment or the conclusions drawn in the RI.

Based on the RI assessment, the potential for adverse effects is considered insignificant for the northern water snake, short-tailed shrew (except in the drainage ditch adjacent to Landfill 5), raccoon, and American woodcock, the four receptors that were quantitatively evaluated for the assessment. However, comparisons of composite wholebody fish tissue analytical results to NYSDEC ecological guidelines indicate that a potential exists for adverse effects to piscivorous wildlife from dietary exposure to PCBs, DDT, aldrin/dieldrin, and mercury. The NYSDEC fish-tissue guideline for PCBs (0.11 mg/kg fresh weight) was exceeded by the greatest margin, often by two to three orders of magnitude, in fish from Three Mile Creek. For example, the Aroclor 1260 concentration in composite creek chub samples from the creek typically exceeded 10 mg/kg fresh weight, and in several samples exceeded 25 mg/kg fresh weight. The NYSDEC fishtissue guideline for aldrin/dieldrin (0.022 mg/kg fresh weight) typically was exceeded by a factor of five in creek chub samples from the creek. In contrast, only marginal exceedances were noted for the NYSDEC fish-tissue guidelines for mercury (0.5 mg/kg fresh weight) and DDT and metabolites (0.2 mg/kg fresh weight) in creek chub samples from Three Mile Creek.

An aquatic assessment was conducted at Three Mile Creek in order to evaluate creek habitat, in situ water quality, benthic and drift macroinvertebrate communities, and fish populations. Whole body fish tissue samples were collected and analyzed for the assessment. Sediment also was collected for toxicity testing. Four locations in Three Mile Creek upstream from the base boundary were included in the assessment. The results are summarized below. Some fish tissue analytical results are described above.

Benthic macroinvertebrate populations were classified as "slightly impaired" at two downstream locations compared with the most upstream location, which was considered a reference site. However, sediment toxicity testing did not indicate that the population impairment was due to sediment chemical contamination. Instead, an evaluation of stream habitat parameters, such as substrate composition, suggests that differences in macroinvertebrate populations between upstream and downstream locations are the result of differences in habitat quality between locations.

Although no diseases were observed, fish communities in Three Mile Creek were generally found to be in "poor" condition. The RI concluded that this was also likely the result of inferior habitat quality. Due to past channelization, Three Mile Creek is linear

upstream from the base boundary and does not provide the habitat diversity found in unaltered streams with prominent pools, riffles, and meanders.

Analyses of composite whole-body fish samples indicated a spatial trend in PCB contamination in fish in Three Mile Creek. The Aroclor 1260 concentration in the fish sample collected at the most upstream location was approximately three times greater than those found in samples from the three downstream locations. This may be due to the proximity of the upstream sample location to the Electric Power Substation, where PCB transformer oil was reportedly released years ago.

In summary, the work done at Three Mile Creek during the RI identified chemical contamination in the creek from past activities at the base. However, observable adverse impacts on benthic life and fish in the creek unequivocally attributable to the contamination were not evident. In contrast, bioaccumulative chemicals, most notably PCBs, were found in fish from the creek in excess of NYSDEC fish-tissue guidelines for the protection of piscivorous wildlife. This result does not concur with the results of the wildlife risk evaluation, which do not predict risks to wildlife from bioaccumulative chemicals. However, the suite of wildlife receptors evaluated was limited, and did not include piscivorous birds, which are know to be sensitive to PCBs, DDT, and other such bioaccumulative chemicals.

2.3.6 Selection of Sediment Screening Criteria

Fish and benthic organisms are directly exposed to chemicals in surface water and sediments. Other wildlife (aquatic and terrestrial) that come into contact with the surface water, sediments, fish, or benthic organisms are also potential receptors of contamination. Therefore, the levels of contaminants found in the most recent samples were compared to chemical-specific screening criteria deemed protective of the wildlife and the environment along with site human health risk levels (see Tables 2-3a, 2-3b, 2-4, and 2-5). These criteria are based on those presented in the RI (Law 1996) and the March 2000 FS addendum (E & E 2000b). Derivation of the 2,3,7,8-TCDD equivalence value is presented in Table 2-6.

The various screening criteria were compared and the most stringent criterion for each parameter was used to evaluate the data. However, some of the screening criteria used to evaluate the organic parameters are site-specific criteria calculated based on the TOC content. Therefore, the most stringent criteria for the organic parameters for the TMC main channel, LF6 wetland, and TMC pond samples were different and were all evaluated separately. The screening processes for the organic parameters are described below and presented in Tables 2-3a and 2-3b, and 2-4. However, the screening criteria for the inorganic parameters are not based on TOC content, therefore, only one screening table was generated for all of the areas (see Table 2-5). The most stringent values for the metals are the Long and Morgan lowest effect levels (LEL) (see Table 2-5).

Screening of TMC Channel Sediments

The sediments retrieved from the on-base portion of the TMC channel and its Landfill 5 tributary were divided into two groups: the upper, loose, sediments, and the underlying, tight, native soils. Due to the very wide range of TOC concentrations detected in the samples, TOC was averaged for each group (i.e., sediments and native soils) and the screening criteria were calculated separately. The average TOC was calculated at 5.4% for the sediments and 0.5% for the native soils, which is only slightly higher than the recommended minimum of 0.2%. The most stringent criterion for each parameter was identified and used for each of the two groups. Tables 2-3a and 2-3b present the screening process for these organic parameters.

Screening of LF6 Wetland Sediments

The analytical results for the sediments samples collected from the Landfill 6 wetlands were compared to the most stringent screening criteria. The average TOC for the Landfill 6 samples was 29.6%, which is higher than the 12% maximum recommended value. Therefore, the maximum recommended TOC of 12% was used in the calculations. Table 2-4 presents the screening process for these organic parameters.

Screening of Pond Sediments

The analytical results for the sediments samples collected from the off-base TMC pond were compared to the most stringent screening criteria. The most stringent criterion for Aroclor 1620 is the Ontario LEL (see Tables 2-3a, 2-3b, and 2-4). Because the Ontario LELs are not site-specific calculated values, the average TOC for the pond samples was not used for the determination of the screening level for the pond samples.

2.3.7 Contaminated Sediment Area

Sediments in Three Mile Creek were determined to be contaminated with VOCs, SVOCs, pesticides, PCBs, metals, and dioxins/furans. Sediment samples with concentrations exceeding site screening criteria were identified throughout the length of the creek. However, the levels of these contaminants must be weighed against the habitat destruction that would be brought on by sediment excavation in the creek. Although short-term impacts on the habitat are an unavoidable result of the remedial activities (sediment removal in the creek and access requirements), incidental impacts on the aquatic habitat and wetlands (e.g., access roads, dewatering areas, and staging areas) will be avoided when possible or minimized to the greatest extent practicable. All disturbances will be mitigated as part of the Wetland Management Plan. Section 3 presents the results of previous investigations. Section 4 documents the quality of habitat of Three Mile Creek in order to weigh the need to maintain habitat quality against the need to remove contamination. The final determination of the extent of sediment requiring remediation is made in Section 5.

Table 2-1 Analytical Data Summary of the Positive Results for the PISCES Samples, Three Mile Creek

Sample No. Sample Date Sample Depth (ft)	6/20/97	TMCP-2 6/20/97 0-0	TMCP-3 6/20/97 0 - 0		
Pesticides/PCBs (8081) (μg)					
4,4-DDD	ND	ND	0.0066	J	
Dieldrin	ND	0.0066 J	0.025	J	
Endosulfan sulfate	ND	0.0088 J	0.013	J	
gamma-BHC (Lindane)	ND	0.0058 J	0.017	J	

Key:

J = Estimated concentration

ND = Not detected.

P - PISCES sample.

PCBs = Polychlorinated biphenyls.

μg = Micrograms.

E2 Guilliss.doc-07/03/02 02:001002_UK(0____02_00-B0925

Table 2-2 Screening Process for Surface Water, Three Mile Creek (concentrations in µg/L unless noted)

Pederal any Myspec but nyspec but nyspec

				NARDEC.	NARDEC_	181	ebe-	
Screening	-noJ mumixeM	Preliminary Screening	Concentration Corresponding to Site Human Health Risk Levels of 10 ⁻⁵	Class C Surface Water	Class C Surface Water	EPA WGC for Protection of	EPA AQC for Protection of	
Palue	centration	anleV	or Hazard Index of 1	Guidance	Standards	Human Health	Aquatic Life	Contaminant Volatiles
ΑN	61.0	ς		<u> </u>	a _S	2,600	<u> -</u>	1,3-Dichlorobenzene
ΑN	91.0	ς	006,ε		⁸ S	2,600		1,4-Dichlorobenzene
AN	61.0	006,82	006,82					cis-1,2-Dichloroethene
AN	2.0					<u> </u>		1,1,1-Trichloroethane
ΨN	64.0	10	679		01	IL.		Benzene
VΝ	6L'0	ς	001,62	-	Ş	21,000		Chlorobenzene
ΑN	6£.0			-			-	p-isopropyltoluene
ΑN	21.0	S.88	2,250	(B)H0. I	_	28.8		Tetrachloroethene
ΨN	þ.í	07	007,41	11.0 ^{H(B)}	0†	18		Trichloroethene
VIN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2	LLC	80.0		1 12 0		Semivolatiles
AN	\$1.0	7.8	\	CO.O		14S.0	 	1,2-Diphenylhydrazine
21000.0 21000.0	820.0	21000.0 21000.0			21000.0 21000.0	<u> </u>		2,2,3,4,4,6-Heptachlorobiphenyl
21000.0	610.0	21000.0			21000.0			2,2,3,4,6-Pentachlorobiphenyl
21000.0	220.0	21000.0	 		21000.0			2,2,4,4,5,6-Hexachlorobiphenyl
21000.0	420.0	21000.0			21000.0			2,3-Dichlorobiphenyl
₹N	6600.0	0.1	001,69	. —	η ⁰ ·Ι	008'6	— 	2,2,4,4-Tetrachlorobiphenyl lorophenol
VΝ	£10.0	0.1	006,01	_	⁴ 0.1	S.8	<u> </u>	lonahqoroldari-d,4,6
AN	6£0.0	0.1			21000.0			2-Chlorobiphenyl
ΥN	20.0	0.1	080,2	_	ч ^{0' I}	06 <i>L</i>		2,4-Dichlorophenol
AN	66000.0	LL'0	005		<u> </u>	<i>LL</i> 0.0		3,3-Dichlorobenzidine
AN	210.0	_		_	<u> </u>			Acenaphthylene
AN	40.0	000,011	000,E11	8.£	_	000,011		Anthracene
ΑN	1.0	16.0	12	€0.0		6†0'0	_	Benzo(a)anthracene
ΑN	21.0	15.0	8.0	0.0012 ^{H(B)}	_	640.0		Benzo(a)pyrene
VΝ	2.0	16.0	Z.8		_	670.0	_	Benzo(b)fluoranthene
ΥN	1.0	_	-		-			Benzo(g,h,i)perylene
ΥN	870.0	16.0	97		_	640.0		Benzo(k)tJnoranthene
ΥN	2.0	235,000	235,000			002,8	—	Benzyl butyl phthalate
ΨN	8.0	9.0	006,01		9.0	6.2		Bis (2-ethylhexyl)phthalate
VΝ	2.0	16.0	1,250		<u> </u>	61/0.0	_	Сһгуяспе
ΥN	1.0	12,000	000,141	_	_	12,000		Di-n-butylphthalate
ΑN	€0.03	16.0	4.0	-		640.0	l	Dibenz(a,h)anthracene

2 - 15

Table 2-2 Screening Process for Surface Water, Three Mile Creek (concentrations in μ g/L unless noted)

Table 2-2 Screening Pro	cess for Sur	ARARs	Three wife Cree	TBCs	ons in pgre unies	ss noteu)		
	Fede		NYSDEC b	NYSDEC b				
	EPA AQC for Protection of	EPA WQC for Protection of	Class C Surface Water	Class C Surface Water	Concentration Corresponding to Site Human Health Risk Levels of 10 ⁻⁵	Preliminary Screening	Maximum Con-	Screening
Contaminant	Aquatic Life	Human Health	Standards	Guldance	or Hazard Index of 1	Value	centration	Value
Diethyl phthalate		120,000			2,780,000	120,000	0.1	NA
Dimethyl phthalate		2,900,000			25.600	2,900,000	0.7	NA NA
Dioctyl adipate	_	14,000		0.54	25,600	25,600	0.06	NA NA
Fluorene Hexachlorobenzene		0.00077	0.00003	0.34	21,000	14,000 0.0077	0.04	NA
Hexachlorocyclopentadiene		17,000	0.0003		5,500	0.0077	0.032 0.013	0.0077
Indeno (1,1,3-cd) pyrene		0.049	0.43		5,300	0.43	0.013	NA NA
N-nitrosodiphenylamine		8.1			42,700	160	0.016	NA NA
Pentachlorophenol	13 ^d	8.2	1.0 ^h		94	0.4	0.04	NA NA
Phenanthrene		_		5		_	0.26	NA
Pyrene	_	11,000	-	4.6	8,090	8,090	0.3	NA
Pesticides	1				+	***************************************	٠ <u>٠٠٠</u> ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	
Aldicarb sulfoxide	_	-			4,060	4,060	0.69	NA
Alpha-chlordane	0.0043	0.0022	0.00002 H(B) i		189	0.0043	0.012	0.0043
Dicamba					111,000	111,000	1.9	NA
Gamma-chlordane	0.0043	0.0059	0.00002 ^{H(B)} i	-	350	0.0043	0.014	0.0043
Malathion	0.1	_	0.1		81,200	0.1	0.21	0.1
Methoxychlor	0.03	_	0.03		11,200	0.03	0.011	NA
Prometon					61,800	61,800	0.5	NA
4,4'-DDT	0.001	0.00059	0.00001 H(B)	<u> </u>	50	0.001	0.1	0.001
Inorganics								
Aluminum	. 87		100		4,040,000	100	370	100
Antimony		4,300			1,620	1,620	17	NA
Arsenic	150 ^e	0.14	150	_	288	1.4	3	1.4
Barium			_	_	283,000	283,000	110	NA
Calcium						_	872	NA
Iron	1,000		300	_		300	590	300
Lead	2.5 ^{c,e}		6.3 ^c		-	6.3	10	6.3
Magnesium			_	-		-	15,700	NA
Manganese		100			93,300	93,300	99	NA
Molybdenum					20,200	20,200	160	NA
Potassium		_		_	_		2,200	NA
Selenium	5	11,000	4.6		20,200	1.0	5	1.0
Sodium		<u> </u>					40,600	NA

Table 2-2 Screening Process for Surface Water, Three Mile Creek (concentrations in μ g/L unless noted)

		ARARs		TBCs				
	Fed	eral ^a	NYSDEC b	NYSDEC ^b				
Contaminant	EPA AQC for Protection of Aquatic Life	EPA WQC for Protection of Human Health	Class C Surface Water Standards	Class C Surface Water Guidance	Concentration Corresponding to Site Human Health Risk Levels of 10 ⁻⁵ or Hazard Index of 1	Preliminary Screening Value	Maximum Con- centration	Screening Value
Strontium	_				2,430,000	2,430,000	430	NA
Zinc	120 ^{c,e}	69,000	30 ^c	_	1,230,000	30	180	30
Radionuclides (pCi/L)								
Strontium-90	_	-					1.2	NA
Total uranium		_	<u></u>	_	_	<u> </u>	7	NA
Other Compounds								
Fluoride	_		3,411 ^c	_	_	3,411	67	NA
Glycols	_	_		500,000 ^f	8,400,000	8,400,000	170	NA
Nitrogen-nitrate		_	_	-		_	29	NA
Petroleum hydrocarbons	_	_					1,000	NA
Ammonia-Nitrogen	_				_		2,000	NA

^a USEPA National Recommended Water Quality Criteria, Volume 64 No. 77/Notices, April 1999. Continuous Concentration Criteria for the Freshwater Aquatic life Protection and Protection of Human Health for Consumption of Organism Only are listed.

- c Value based upon hardness.
- Value at pH 7.8.
- ^e Criteria for this metal is expressed as a function of water effect ration (WER), as defined in 40 CFR 131.36(c).
- Value for ethylene glycol.
- Value for sum of 1,2-,1,3-, and 1,4-dichlorobenzene.
- Value for sum of all chlorinated phenols.
- i Value for chlordane.
- Human health risk value.

Key:

- = Level has not been established.

ARARs = Applicable or relevant and appropriate requirements

EPA = Environmental Protection Agency.

 μ g/L = Micrograms per liter.

NA = Not applicable.

NYSDEC = New York State of Environmental Conservation

pCi/L = picoCurie per liter.

TBCs = Criteria and guidelines to be considered.

b NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Technical and Operational Guidance Series (1.1.1), June 1998. (the aquatic value was listed when available).

Table 2-3a Screening Process for Organic Parameters for the Three Mile Creek Channel and the Landfill 5 Tributary Sediment Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York

				TBO	Cs				
				NY	SDEC Guid	ance Values	4	Site Human	Most
	Feder	al Guidance	Values	Benthic A			mulation	Health Risk	Stringent
		Long &	Ontario	Denanc A	uane che	BIOACCO	indiador.	Levels of 10 ⁵ or Hazard	Ecological Screening
Analyte	EPA SQC	Morgan ²	Standards 3	Acute	Chronic	Wildlife	Human	Index of 1	Value ⁶
PCBs - 8082 (µg/Kg)								indux or i	70.00
Aroclor 1242	23 ^d	50	70 °	144,665,90	1.011.32	73.36	0.0419	T -	70
Aroclor 1260	23ª	50	5	144,665.90	1.011.32	73.36	0.0419	6,290	5
Total 2,3,7,8-TCDD equivaler	nt (ng/Kg)			11.1,000.70	1 .,011.55	75.50	0.0112	0,0,0	
TCDD equivalent		_	_	_		10	524		10
Pesticides - 8081A (µg/Kg)	- 				1			J	
4.4´-DDD	T -	2	8	57640°	52.4 e	52.4 °	0.524 °	331,000	2
4.4'-DDE	 	2	5	57640°	52.4 °	52.4 °	0.524 *	234,000	2
4.4'-DDT	-	1	7	57640°	52.4 °	52.4 °	0.524 °	233,000	1
Aldrin	_	<u> </u>	2	-	-	40.348	5.24	4,660	2
alpha-Chlordane b		0.5	7	73.36	1.572	0.314	0.0524	61,100	0.314
delta-BHC	 	- 0.3	-	660.24	3.144	78.6	3.144	-	3.144
Dieldrin .	52	0.02	2	- 000.24	471.6	40.35	5.24	4.960	0.02
Endosulfan I				40.872	1.572	-	-	- 4,500	1.572
Endosulfan II				40.872	1.572				1.572
Endosulfan sulfate	 			40.072	1.572	_			1.572
Endrin	20		3		209.6	41.92	41.92	315,000	3
Endrin aldehyde	-		-	-	203.0	-	-	315,000	
Endrin ketone	 			-	_	-			<u> </u>
gamma-BHC	3.7 ^d		3	660.24	3.144	78.6	3.144		3
gamma-Chlordane	3.7	0.5	7	73.36	1.572	0.314	0.0524	61,000	0.314
Heptachlor	-	- 0.5		686.44	5.24	1.572	0.0324	01,000	1.572
Heptachlor epoxide			5	686.44	5.24	1.572	0.0419		1.572
Methoxychlor	-		-	-	31.44	1.372	0.0419	11,200	31.44
					31.44	-		11,200	31.44
TCL VOCs - 8260B (µg/Kg)	940 ^d	- 1	<u>-</u>		-		15.72		940 ^d
1,2-Dichlorobenzene	340 ^d	-		6,288	628.8		13.72	94,500,000	628.8
1,2-Dichloroethane		-	-	-			36.68	94,300,000	- 020.0
1,2-Dichloroethene, Total	-	-			-		30.08		
1.4-Dichlorobenzene	350 ^d	: -		6,288	628.8	-		3,310,000	628.8
2-Butanone	- 350		-	- 0,200	-	-		3,510,000	- 028.8
	 	-	-		-	-		105,000,000	
Acetone Benzene	574	-		5,397.20	1,467.20		31.44	273,000	1,467.20
Carbon disulfide			-	3,391.20	1,407.20		31.44	105,000,000	1,407.20
	820 ^d		-	1,813.04	183.4	-		21,000,000	183.4
Chlorobenzene								, ,	103.4
Chloroform			-		-		-	<u>-</u>	
cis-1,2-Dichloroethene	3,600 ^d		-	11,108.80	1,257.60		···		1,257.60
Ethylbenzene	25 ^d			43.649.20	4.820.80		-	-	4,820,80
m,p-Xylene	43		-	43,649.20	4,820.80		-	-	4,820.80
o-Xylene Tetrachloroethene	530 ^d	-	-	43,049.20	4,820.80		41.92	-	530 ^d
	670 ^d			12,314	2,567.60		41.92		2,567.60
Toluene	0/0	-						-	2,307.00
trans-1,2-Dichloroethene	1,600 ^d	-		-	-		104.9	- 6 220 000	1,600 ^d
Trichloroethene			-		-		104.8	6,320,000	1,000
Vinyl chloride	-			- 42.640.20			3.668		4.820.80
Xylenes, Total	<u> </u>			43,649.20	4,820.80	-		-	4,820.80

Table 2-3a Screening Process for Organic Parameters for the Three Mile Creek Channel and the Landfill 5 Tributary Sediment Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York

				N	'SDEC Guida	nce Values	4	Site Human	Most
	Feder	al Guidance	Values	Benthic A	guatic Life	Bioaccu	mulation	Health Risk Levels of 10°	Stringent Ecological
Ameliate	EPA SQC 1	Long & Morgan ²	Ontario Standards 3	Acute	Chronic	Wildlife	Human	or Hazard	Screening Value 5
Analyte		Morgan	Standards	Acute	Critonic	wildille	Human	Index of 1	value
TCL SVOCs - 8270C (µg/Kg)	9,200 ^d			45.604	1.500.40			10 500 000	1.560.40
1,2,4-Trichlorobenzene	340 ^a	-	-	47,684	4,768.40	-	<u> </u>	10,500,000	4,768.40
1,2-Dichlorobenzene			-	6,288	628.8		-	94,500,000	628.8
1,3-Dichlorobenzene	1,700 ^d			6,288	628.8			-	628.8
1,4-Dichlorobenzene	350 ^d	-	-	6,288	628.8		-	3,310,000	628.8
2,4-Dimethylphenol c	-	-	-	-	26.2	-	-	21,000,000	26.2
2-Methylnaphthalene	-	70	-	15,929.60	1781.6			-	65
2-Methylphenol ^c	-	-	-		26.2	-	-	52,600,000	26.2
4-Methylphenol ^c	-	-	-	-	26.2	-	-	5,300,000	26.2
Acenaphthene	620	16	-	-	7336	620	620	63,300,000	16
Acenaphthylene	-	-	_	-	- 1	-	-	-	-
Anthracene	-	85	220	51,666.40	5,606.80	-	-	316,000,000	85
Benz(a)anthracene	-	261	320	4,925.60	628.8	-	-	109,000	261
Benzo(a)pyrene	-	430	370	-	-	-	68.12	10,900	370
Benzo(b)fluoranthene	-	-	-	-	-	-	68.12	109,000	-
Benzo(g,h,i)perylene	-	-	170	-	-		-	-	170
Benzo(k)fluoranthene	-	-	240	-	-	-	68.12	1,090,000	240
Benzoic acid	-	-	-	-	-	•	-	4.2 x 10 ⁹	
Benzyl alcohol	-	-	-	-	- 1	•	-	316,000,000	-
Bis(2-ethylhexyl)phthalate	-	-	-	-	10,453.80	-	-	5,680,000	10,453.80
Carbazole	-	-	-	-	-	•	-	3,970,000	-
Chrysene	-	384	340	-	-	-	68.12	10,900,000	340
Dibenz(a,h)anthracene	-	63.4	60	-	-	-	_	10,900	60
Dibenzofuran	2,000 ^d	-	-	-	-	-	•	4,210,000	2,000 ^d
Di-n-octyl phthalate	-	-	-		-	-	-	-	-
Fluoranthene	2,900	600	750	-	53,448			42,100,000	600
Fluorene	540 ^d	35	190	3,825.20	419.2	-	-	42,200,000	35
Indeno(1,2,3-cd)pyrene	-	•	200	-	-	-	68.12	108,000	200
Naphthalene	480 ^d	160	-	13,519.20	1,572	-	-	42,100,00	160
Phenanthrene	850	240	560	-	6,288	-	-	-	240
Phenol ^c			-	-	26.2		-	632,000,000	26.2
Ругепе	+	665	490	459,810	50,356.40	-		31,600,000	490
Total Recoverable Petroleum	n Hydrocarbons			452,010	1 20,550.70			-1,000,000	
TRPH		110001113-41	o. Her (Hg/Kg/	-		_	-		-
114 11								1	

USEPA Office of Solid Waste and Emergency Response, January 1996 interim sediment criteria value for non polar organic contaminants.

Key:

mg/Kg = Micrograms per kilogram.

PCB = Polychlorinated biphenyls.

SVOC = Sernivolatile organic compound.

SQC = Sediment quality criteria. TCB = To be considered. VOC = Volatile organic compound.

μg/Kg = Micrograms per kilogram.

- = Level has not been established

² Long & Morgan, 1991.

³ Ontario Standards - Lowest Effect Level. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, June 1994.

ANYSDEC Technical Guidance for Screening Contaminated Sediments, January 1999. This is a calculated value based on a TOC of 5.24%.

⁵ Final Screening Value represents most stringent criteria for ecological endpoints (it does not include the human bioaccumulation criteria or the site human health risk levels).

^a Screening value for total PCBs.

^b Screening values for chlordane.

^c Screening values for unchlorinated phenols.

^d Sediment quality benchmark (SQB) is listed because SQC is not available. SQBs were used in the selection of the most stringent ecological criteria only when no other federal or NYSDEC criteria were available.

^c The NYSDEC sediment criterion listed for DDT and its daughter products (DDD and DDE) applies to the sum of DDT and its daughter products.

Table 2-3b Screening Process for Organic Parameters for the Three Mile Creek Channel and the Landfill 5 Tributary Native Soil Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York

				7	BCs				
				1	YSDEC Guid	ance Value:	s ⁴	Site Human	Most
	Feder	al Guidance	Values	Benthic	Aquatic Life	Bioaccu	mulation	Health Risk Levels of 10 ⁻⁵ or	Stringent Ecological
	EPA SQC 1	Long &	Ontario Standards 3					Hazard Index of	Screening
Analyte	EPA SUC	Morgan ²	Standards	Acute	Chronic	Wildlife	Human	1	Value ⁵
PCBs - 8082 (µg/Kg)	T	1	1	T	1	<u> </u>	T	1	!
Aroclor 1242	23 ^d	50	70 ª	13,804	96.5	7	0.004	-	7
Aroclor 1260	23 ^d	50	5	13,804	96.5	7	0.004	6,290	5
Total 2,3,7,8-TCDD equiva	lent (ng/Kg)	·							
TCDD equivalent	<u> </u>	-	-	-	-	1	50	-	1
Pesticides - 8081A (µg/Kg)					·	· · · · · · · · · · · · · · · · · · ·		
4,4'-DDD	-	2	8	5500 °	5 °	5 °	0.05 °	331,000	2
4,4'-DDE	-	2	5	5500 °	5 °	5 °	0.05 °	234,000	2
4,4´-DDT	_	1	7	5500 °	5 °	5 °	0.05 °	233,000	1
Aldrin	-	-	2	-	_	3.85	0.05	4,660	2
alpha-Chlordane b	-	0.5	77	7	0.15	0.03	0.005	61,100	0.03
delta-BHC	-	-		63	0.3	7.5	0.3	-	0.3
Dieldrin	52	0.02	2	•	45	3.85	0.5	4,960	0.02
Endosulfan I	-		-	3.9	0.15	•	-	-	3.9
Endosulfan II	-	-	-	3.9	0.15	<u>.</u>	-	-	3.9
Endosulfan sulfate	-		-	-	-		-	-	-
Endrin	20	-	3	-	20	4	4	315,000	3
Endrin aldehyde	-	-	-	-	-			-	
Endrin ketone	-	-	-	•	-		-	-	•
gamma-BHC	3.7 ^d	· -	3	63	0.3	7.5	0.3	-	0.3
gamma-Chlordane	-	0.5	7	7	0.15	0.03	0.005	61,000	0.03
Heptachlor	-	-	-	65.5	0.5	0.15	0.004	-	0.15
Heptachlor epoxide	-	-	5	65.5	0.5	0.15	0.004	-	0.15
Methoxychlor		-	-	-	3	-	-	11,200	3
TCL VOCs - 8260B (µg/Kg)								······································	
1,1,2,2-Tetrachloroethane	940 ^d	-	•	-	-	-	1.5	•	940 ^d
1,2-Dichlorobenzene	340 ^d		-	600	60	•	-	94,500,000	60
1.2-Dichloroethane	-	-	-	-	-	-	3.5	-	•
1,2-Dichloroethene, Total	-	-	-	-	-	-	-	-	•
1.4-Dichlorobenzene	350 ^d	-	-	600	60	-		3,310,000	60
2-Butanone	-	_	-	-	-	-	-	-	_
Acetone	_	-	-	-	-	-	-	-	-
Benzene	57 ^d		-	515	140	_	3	273,000	140
	J,							105,000,000	140
Carbon disulfide	-	-		172	17.5				17.5
Chlorobenzene	820 ^d		-	173	17.5	-	-	21,000,000	17.5
Chloroform	-	-	-		•	-	•	-	•
cis-1,2-Dichloroethene	- 	-	•	-	-	•	-	<u> </u>	-
Ethylbenzene	3,600 ^d	-	-	1,060	120	-	-	-	120
m,p-Xylene	25 ^d	-	-	4,165	460	-	-	-	460
o-Xylene	-	-	-	4,165	460	-	-	-	460
Tetrachloroethene	530 ^d	-	-	-	-	_	4	-	530 ^d
Toluene	670 ^d	-	-	1,174	245	_	_ `	-	245
trans-1,2-Dichloroethene	-		-		-	•	-	1	
Trichloroethene	1,600 ^d	_	_	-		_	10	6,320,000	1,600 ^d
Vinyl chloride	-	-	-	-	-	-	0.35	-	-,000
Xylenes, Total	-	<u>-</u>	-	4,165	460	-	-	-	460
ANTICUCS, I CHAI				7,400	700		_		-,50

Table 2-3b Screening Process for Organic Parameters for the Three Mile Creek Channel and the Landfill 5 Tributary Native Soil Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York

TCL SVOCs - 8270C (µg/kg) 1,2,4-Trichlorobenzene 9, 1,2-Dichlorobenzene 1, 1,4-Dichlorobenzene 1, 1,4-Dichlorobenzene 2,4-Dimethylphenol 2 2-Methylnaphthalene 2-Methylphenol 4 4-Methylphenol 4 Acenaphthene 6 Acenaphthene 6 Acenaphthylene Anthracene 8 Benz(a)anthracene 8 Benzo(a)pyrene 8 Benzo(b)fluoranthene	200 ^d 340 ^d 7700 ^d 350 ^d -	Morgan ²	Values Ontario Standards ³	Acute 4,550 600 600 600	Chronic 455 60 60	Bioaccu Wildlife	Human	Health Risk Levels of 10° or Hazard Index of 1 10,500,000 94,500,000	Stringent Ecological Screening Value ⁵
TCL SVOCs - 8270C (µg/kg) 1,2,4-Trichlorobenzene 9, 1,2-Dichlorobenzene 1, 1,4-Dichlorobenzene 1, 1,4-Dichlorobenzene 2,4-Dimethylphenol 2 2-Methylphenol 2 4-Methylphenol 4 4-Methylphenol 4 Acenaphthene 6 Acenaphthene 6 Acenaphthylene Anthracene 8 Benz(a)anthracene 8 Benzo(a)pyrene 8 Benzo(b)fluoranthene	200 ^d 340 ^d 700 ^d 350 ^d - -		Standards ³	4,550 600 600	455 60	Wildlife - -	·	10,500,000	Screening Value ⁵
TCL SVOCs - 8270C (µg/kg) 1,2,4-Trichlorobenzene 9, 1,2-Dichlorobenzene 1, 1,4-Dichlorobenzene 1, 1,4-Dichlorobenzene 2,4-Dimethylphenol 2 2-Methylphenol 2 4-Methylphenol 4 4-Methylphenol 4 Acenaphthene 6 Acenaphthene 6 Acenaphthylene Anthracene 8 Benz(a)anthracene 8 Benzo(a)pyrene 8 Benzo(b)fluoranthene	200 ^d 340 ^d 700 ^d 350 ^d - -	- - - - - - 65	- - - -	600	60	-	- -		455
1,2,4-Trichlorobenzene 9, 1,2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 1,4-Dichlorobenzene 3 2,4-Dimethylphenol c 2-Methylphenol c 4-Methylphenol c 4-Methylphenol c Acenaphthene 6 Acenaphthene 6 Acenaphthylene Anthracene 8 Benz(a)anthracene 8 Benzo(a)pyrene 8 Benzo(b)fluoranthene	340 ^d 700 ^d 350 ^d	- - - 65	-	600	60	-	-		
1,2-Dichlorobenzene 3 1,3-Dichlorobenzene 1, 1,4-Dichlorobenzene 3 2,4-Dimethylphenol 2 2-Methylphenol 4 4-Methylphenol 4 Acenaphthene 6 Acenaphthene 6 Anthracene 6	340 ^d 700 ^d 350 ^d	- - - 65	-	600	60	-	-		
1,3-Dichlorobenzene 1, 1,4-Dichlorobenzene 3 2,4-Dimethylphenol c 2-Methylnaphthalene 2-Methylphenol c 4-Methylphenol c Acenaphthene 6 Acenaphthene 6 Acenaphthylene Anthracene 8 Benz(a)anthracene 8 Benzo(a)pyrene 8 Benzo(b)fluoranthene	700 ^d 350 ^d - - -	- - - 65	-	600				77,500,000 1	DII.
1,4-Dichlorobenzene 3 2,4-Dimethylphenol c 2-Methylnaphthalene 2-Methylphenol c 4-Methylphenol c Acenaphthene 6 Acenaphthene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	350 ^d	- 65	-		, OC	_	_	94,500,000	60
2,4-Dimethylphenol c 2-Methylphenol c 4-Methylphenol c 4-Methylphenol c Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-	- 65		000	60				60
2-Methylnaphthalene 2-Methylphenol c 4-Methylphenol c Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-	65	-	1			•	94,500,000	
2-Methylphenol ° 4-Methylphenol ° Acenaphthene 6 Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-				2.5	-	-	21,000,000	2.5
4-Methylphenol CAcenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-		-	1,520	170		-	-	65
Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene		•			2.5	-	-	52,600,000	2.5
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	(30	-	-	-	2.5	-	-	5,300,000	2.5
Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	520	16	-	- 1	700	-	-	63,300,000	16
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	-	-	-	-	-	-	-	-	
Benzo(a)pyrene Benzo(b)fluoranthene	-	85.3	220	4,930	535	-	-	316,000,000	85.3
Benzo(b)fluoranthene	-	261	320	470	60	-	-	109,000	60
	-	430	370	-	-	-	6.5	10,900	370
Benzo(g.h.i)pervlene	-	-	-	-	- 1		6.5	109,000	-
	-	-	170	-	-	-	-	-	170
Benzo(k)fluoranthene	-	-	240	-	-	-	6.5	1,090,000	240
Benzoic acid	-	-	-	-	-	-		4.2 x 10 ⁹	-
Benzyl alcohol	-	-	-	-	-	•	-	316,000,000	-
Bis(2-ethylhexyl)phthalate	-	-	-	-	997.5	•	-	5,680,000	399
Carbazole	-	-	-	-	-	-	-	3,970,000	-
Chrysene	-	384	340	-	-	-	6.5	10,900,000	340
Dibenz(a,h)anthracene	-	63.4	60	-	-	-	•	10,900	60
Dibenzofuran 2.	000 _q	-	-	-	-	-	-	4,210,000	2.000 ^d
Di-n-octyl phthalate	-	-	-	- [-	-	-	-	-
	900	600	750		5,100		-	42,100,000	600
Fluorene 5	40 ^d	35	190	365	40	-	-	42,200,000	35
Indeno(1,2,3-cd)pyrene	- 1	-	200		•	-	6.5	108,000	200
	80 ^d	160	-	1,290	150	-	-	42,100,00	150
Phenanthrene 8	350	240	560	- 1	600	-	-	-	240
Phenol ^c		-	_	_	2.5	-	_	632.000.000	2.5
Рутеле	- 1	665	490	43,875	4,805	-	-	31,600,000	490
Total Recoverable Petroleum Hyd	drocarbo	ns (TRPH) -	418.1M (ma/K				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

¹ USEPA Office of Solid Waste and Emergency Response, January 1996 interim sediment criteria value for non polar organic contaminants.

Key

mg/Kg = Micrograms per kilogram.

PCB = Polychlorinated biphenyls.

SVOC = Semivolatile organic compound.

SQC = Semivolatile organic compound

SQC = Sediment quality criteria.

VOC = Volatile organic compound. μg/Kg = Micrograms per kilogram.

-= Level has not been established

TBC = To be considered.

² Long & Morgan, 1991.

³ Ontario Standards - Lowest Effect Level . Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, June 1994.

⁴NYSDEC Technical Guidance for Screening Contaminated Sediments, January 1999. This is a calculated value based on a TOC of 0.2%.

⁵ Final Screening Value represents most stringent criteria for ecological endpoints (it does not include the human bioaccumulation criteria or the site human health risk levels).

^{*} Screening value for total PCBs.

^b Screening values for chlordane.

^c Screening values for unchlorinated phenols.

d Sediment quality benchmark (SQB) is listed because SQC is not available. SQBs were used in the selection of the most stringent ecological criteria only when no other federal or

^c The NYSDEC sediment criterion listed for DDT and its daughter products (DDD and DDE) applies to the sum of DDT and its daughter products.

Table 2-4 Screening Process for Organic Parameters for the Landfill 6 Sediment Samples, Three Mile Creek, Griffiss Air Force Base, Rome, New York

PCBs - 8082 (µg/Kg) Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/K) TCDD equivalent (ng/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 5,2	sac 1 A	Suidance Long & Morgan 2 50 - 2 2 1 - 1 - 1	Ontario Standards 3 5 - 8 5 7	Acute 331,296 132,000	(SDEC Guid quatic Life Chronic 2,316	Bioaccui Wildlife 168		Site Human Health Risk Levels of 10 ⁻⁵ or Hazard Index of 1	Most Stringer Ecological Screening Value ⁵
PCBs - 8082 (µg/Kg) Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/Kr) TCDD equivalent Pesticides - 8081A (µg/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	Sac 1 A	50 - 2 2 1	Ontario Standards ³ 5 8 5	Acute 331,296 132,000 '	2,316	Wildlife 168	Human 0.096	Levels of 10 ⁻⁵ or Hazard Index of 1	Ecological Screening Value ⁵
PCBs - 8082 (µg/Kg) Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/K) TCDD equivalent (ng/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 5,2	sac 1 M	50 - 2 2 1	5 - 8 5 5	331,296	2,316	168	0.096	or Hazard Index of 1	Screening Value ⁵
PCBs - 8082 (µg/Kg) Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/K) TCDD equivalent (ng/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 5,2	sac 1 M	50 - 2 2 1	5 - 8 5 5	331,296	2,316	168	0.096	index of 1	Value ⁵
PCBs - 8082 (µg/Kg) Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/K) TCDD equivalent (ng/K) Pesticides - 8081A (µg/Kg) 4,4'-DDD 4 4,4'-DDT 4 alpha-BHC 4 delta-BHC 5 Endosulfan I 6 Endosulfan II 6 Endosulfan sulfate 6 Endrin aldehyde 6 Endrin ketone 6 Heptachlor epoxide		50 - 2 2 2 1	5 - 8 5	331,296	2,316	168	0.096		1
Aroclor 1260 2 Total 2,3,7,8-TCDD equivalent (ng/K) TCDD equivalent Pesticides - 8081A (µg/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	g) - - - - -	2 2 2	- 8 5	132,000 ′	- 1			6,290	5
Total 2,3,7,8-TCDD equivalent (ng/Ki TCDD equivalent Pesticides - 8081A (µg/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	g) - - - - -	2 2 2	- 8 5	132,000 ′	- 1			0,220	
TCDD equivalent Pesticides - 8081A (µg/Kg) 4,4'-DDD 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	2 2 1	8 5	132,000 ′	- 1	24	1200		
Pesticides - 8081A (µg/Kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	2	5		······································			-	24
4,4'-DDD 4,4'-DDE 4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	2	5		, , , , , , , , , , , , , , , , , , , 				
4,4'-DDT alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	1		122 000 7	120 ′	120 ′	1.2	331,000	2
alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	·	7	132,000	120 7	120 7	1.2 7	234,000	2
alpha-BHC delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-	·		132.000 7	120 7	120 7	1.2 7	233,000	1
delta-BHC Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide				1,512	7.2	180	7.2	13,600	7.2
Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide		- 1	-	1,512	7.2	180	7.2	-	7.2
Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide	-		_	93.6	3.6	- 100	-	-	3.6
Endosulfan sulfate Endrin aldehyde Endrin ketone Heptachlor epoxide			_	93.6	3.6		-		3.6
Endrin aldehyde Endrin ketone Heptachlor epoxide	-		_	-			-		
Endrin ketone Heptachlor epoxide	-	-	_	-		-	-	-	_
Heptachlor epoxide	_			_					-
	- +		5	1.572	12	3.6	0.096	-	3.6
Methoxychlor	-				72	-		11,200	72
TCL VOCs - 8260B (µg/Kg)									
	10 ⁶	-	-	14,400	1,440	-		94,500,000	1,440
Trichloroethene 16	00 ⁶	-	-		-	_	240	6,320,000	1600 ⁶
TCL SVOCs - 8270C (μg/Kg)			•						
Acenaphthylene	-	- 1	-	-	-	-	-	-	-
Anthracene	-	85.3	220	118,320	12,840	-	-	316,000,000	85.3
Benz(a)anthracene	-	261	320	11,280	1,440	-	-	109,000	261
Benzo(a)pyrene	-	430	370	•	-	-	156	10,900	370
Benzo(b)fluoranthene	-	-	-	-	-		156	109,000	-
Benzo(g,h,i)perylene	-	-	170	-	-	-	•	-	170
Benzo(k)fluoranthene	-	-	240	-		-	156	1,090,000	240
Benzoic acid	-	-	•	-	-	-	-	4.2 x 10 ⁹	-
Benzyl alcohol	-	-	-	-	-	-	-	316,000,000	-
Carbazole	-		-	-	-	-	-	3,970,000	-
Chrysene	-	384	340	-	-	-	156	10,900,000	340
Dibenz(a,h)anthracene	-	63.4	60	-	-	- 1	-	10,900	60
Fluoranthene 29	00	600	750		122,400	- 1		42,100,000	600
Indeno(1,2,3-cd)pyrene	-		200	-	-		156	108,000	200
Phenanthrene 85	50	240	560	-	14,400	-		-	240
Pyrene	-	665	490	1053000	115,320	-	-	31,600,000	490

USEPA Office of Solid Waste and Emergency Response, January 1996 interim sediment criteria value for non polar organic contaminants.

Key:

mg/Kg = Micrograms per kilogram.

PCB = Polychlorinated biphenyls.

SQC = Sediment quality criteria.

SVOC = Semivolatile organic compound.

TBC = To be considered.

VOC = Volatile organic compound.

μg/Kg = Micrograms per kilogram.

-= Level has not been established.

² Long & Morgan, 1991.

³ Ontario Standards - Lowest Effect Level . Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, June 1994.

⁴ NYSDEC Technical Guidance for Screening Contaminated Sediments, January 1999. This is a calculated value based on a TOC of 12%.

⁵ Final Screening Value represents most stringent criteria for ecological endpoints (it does not include the human bioaccumulation criteria or the site human health risk levels).

⁶ Sediment quality benchmark (SQB) is listed because SQC is not available. SQBs were used in the selection of the most stringent ecological criteria only when no other federal or NYSDEC

⁷ The NYSDEC sediment criterion listed for DDT and its daughter products (DDD and DDE) applies to the sum of DDT and its daughter products.

Table 2-5 Screening Process for Inorganic Parameters Three Mile Creek, Griffiss Air Force Base, Rome, New York

	Sediment C	riteria for Inorganic	Analytes	
	Ontario Standards Lowest Effect Level ¹	Long & Morgan ²	Site Human Health Risk Levels of 10 ⁻⁵ or Hazard Index of 1	Final Screening Value
Metals by Method 6010B	and 7470A/71A (mg/K			
Aluminum	•	-	1,100,000	-
Arsenic	6	33	40.3	6
Barium	-	-	73,600	-
Beryllium	-	-	18.5	-
Cadmium	0.6	5	473	0.6
Calcium	-	-	-	-
Chromium	26	80	1,050,000	26
Cobalt	-	-	63,100	-
Соррег	16	70	42,000	16
Iron	20000	-	-	20000
Lead	31	35	-	31
Magnesium	-	-	-	-
Manganese	460	+	24,200	460
Mercury	2	0.15	-	0.15
Nickel	16	30	21,000	16
Potassium	-	-	-	-
Silver	-	1	5,270	1
Sodium	-	-	-	-
Thallium	-	-	-	-
Vanadium	-	-	7,380	-
Zinc	120	120	316,000	120
Hexavalent Chromium - 7	7196A (mg/Kg)			
Chromium, Hexavalent	-	_	5,170	-
Cyanide, Total - 9012A (m	ng/Kg)			
Cyanide	-	-	21,100	-
			·	

Ontario Standards - Lowest Effect Level. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, June 1994.

Key:

mg/Kg = Micrograms per kilogram.

-= Level has not been established

² Effects Range-Low (Long & Morgan 1991).

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TM	CSD-2a	TM	CSD-2b	TM	CSD-6a	TM	CSD-6b	Toxicity
Sample Date:	4/1	8/1995	4/1	8/1995	4/1	8/1995	4/1	8/1995	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	4.8	0.48	2.1	0.21	2.3	0.23	0.1
2,3,7,8-TCDD	0	0	0.97	9.7	1.3	1.3	1	1	1
2,3,4,7,8-PeCDF	NA		NA	_	NA	_	NA	<u> </u>	0.5
2,3,4,6,7,8-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8-PeCDF	1.6	0.08	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	NA		NA		NA	-	NA	_	0.5
1,2,3,7,8,9-HxCDF	NA		NA	_	NA	_	NA	-	0.1
1,2,3,7,8,9-HxCDD	1.8	0.18	0	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDF	2.5	0.25	0	O	0	0	0	O	0.1
1,2,3,6,7,8-HxCDD	3.9	0.39	0	0	0	0	0	0	0.1
1,2,3,4,7,8-HxCDF	16.7	1.67	13	1.3	4.9	0.49	0	0	0.1
1,2,3,4,7,8-HxCDD	0	o	o	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	6.3	0.06	0	0	0	0	0	o	0.01
1,2,3,4,6,7,8-HpCDF	0	o	23.5	0.24	834	8.34	9.8	0.1	0.01
1,2,3,4,6,7,8-HpCDD	0	o	54.7	0.55	23.4	0.23	24.7	0.25	0.01
1,2,3,4,6,7,8,9-OCDF	0	o	55.3	0.06	1931	1.93	21	0.02	0.001
1,2,3,4,6,7,8,9-OCDD	0	ō	77.6	0.78	227	0.23	263	0.26	0.001
Total 2,3,7,8-TCDD		2.63		13.11		12.73		1.86	
Total TCDF	9.9	o	29.5	0	10.6	0	14.1	0	0
Total TCDD	1.4	o	2.5	o	2.1	0	1.5	0	0
Total PeCDF	26	o	46.4	0	14.4	Ö	21.3	0	0
Total PeCDD	Ö	Ō	4.9	0	0	0	0	0	0
Total HxCDF	53.9	0	43	0	20.6	0	22.5	0	0
Total HxCDD	24.6	Q	17.1	o	14.5	9	14.3	0	0
Total HpCDF	65.4	0	62.6	0	21.1	0	25.8	0	0
Total HpCDD	135	0	118	0	48.9	o	53.2	O	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	ТМ	CSD-7a	TMC	SD-7b	TM	CSD-8a	TM	CSD-8b	Toxicity
Sample Date:	4/1	8/1995	4/1	8/1995	4/1	8/1995	4/1	8/1995	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	2.9	0.29	0	0	4.9	0.49	0.1
2,3,7,8-TCDD	0	0	0	0	2.2	2.2	1.3	1.3	1
2,3,4,7,8-PeCDF	NA		NA	·	NA	_	NA	_	0.5
2,3,4,6,7,8-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	2.4	0.12	0	0	0.05
1,2,3,7,8-PeCDD	NA	_	NA	_	NA	_	NA	_	0.5
1,2,3,7,8,9-HxCDF	NA	-	NA		NA	_	NA		0.1
1,2,3,7,8,9-HxCDD	2	0.2	0	0	4.2	0.42	0	0	0.1
1,2,3,6,7,8-HxCDF	0	0	0	0	3.2	0.32	0	0	0.1
1,2,3,6,7,8-HxCDD	2.8	0.28	0	0	8.1	0.81	0	0	0.1
1,2,3,4,7,8-HxCDF	0	0	4.9	0.49	15	1.5	8.8	0.88	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	1.5	0.15	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	O	0	4.2	0.04	0	0	0.01
1,2,3,4,6,7,8-HpCDF	0	0	10.4	0.1	0	0	21.6	0.22	0.01
1,2,3,4,6,7,8-HpCDD	0	0	43.7	0.44	0	0	57.6	0.58	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	23.3	0.02	0	0	49.4	0.05	0.001
1,2,3,4,6,7,8,9-OCDD	0	0	49.3	0.5	0	0	449	0.45	0.001
Total 2,3,7,8-TCDD		0.48		1.84		5.56		3.97	
Total TCDF	9.6	0	19.8	0	49.9	0	43.8	0	0
Total TCDD	1.9	0	2	0	3.9	0	4.3	0	0
Total PeCDF	33.1	0	23.2	0	62.1	0	41.3	0	0
Total PeCDD	0	0	0	0	2.2	0	0	0	0
Total HxCDF	14.8	ō	26.7	0	79.5	0	52.6	0	0
Total HxCDD	13.7	0	19.6	0	56.3	0	30.1	0	0
Total HpCDF	27.7	0	28.5	0	86.2	0	54.2	0	0
Total HpCDD	74.6	0	95.6	0	197	0	117	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TM	CSD-9a		CSD-9		CSD-15	TM	CSD-16	Toxicity
Sample Date:	4/1	18/1995	4/1	8/1995	7/	9/1998	7/9	9/1998	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	1.8	0.18	6	0.6	0	0	0	0	0.1
2,3,7,8-TCDD	0	0	2.4	2.4	0	0	0	0	1
2,3,4,7,8-PeCDF	NA	_	NA		1.5	0.75	0	0	0.5
2,3,4,6,7,8-HxCDF	0	0	5.5	0.55	1.4	0.14	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	0	O	0.05
1,2,3,7,8-PeCDD	NA	-	NA		NA		NA	_	0.5
1,2,3,7,8,9-HxCDF	NA		NA	_	0	O	0	o	0.1
1,2,3,7,8,9-HxCDD	0	0	0	O	0	0	0	0	0.1
1,2,3,6,7,8-HxCDF	0	o	0	0	1	0.1	0.92	0.09	0.1
1,2,3,6,7,8-HxCDD	o	0	0	0	1.8	0.18	0	0	0.1
1,2,3,4,7,8-HxCDF	0	o	10.6	1.06	3.1	0.31	0	o	0.1
1,2,3,4,7,8-HxCDD	o	0	0	o	0	0	0	o	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	o	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	7.8	0.08	30.1	0.3	9.5	0.1	6.9	0.07	0.01
1,2,3,4,6,7,8-HpCDD	17.8	0.18	55	0.55	22.5	0.23	12	0.12	0.01
1,2,3,4,6,7,8,9-OCDF	20.2	0.02	74	0.07	11.1	0.01	8.2	0.01	0.001
1,2,3,4,6,7,8,9-OCDD	119	0.12	428	0.43	160	1.6	76.4	0.76	0.001
Total 2,3,7,8-TCDD		0.58		5.96		3.42		1.05	
Total TCDF	15.4	0	55.1	0	12.4	0	3.7	0	0
Total TCDD	1.2	Q	3.8	0	1.3	0	2	0	0
Total PeCDF	17.1	0	72.4	0	12.9	0	0	0	0
Total PeCDD	9.6	0	6	0	0	0	0	0	0
Total HxCDF	15.4	o	68	0	15.8	o	0	o	0
Total HxCDD	7.7	0	32.8	0	9.4	0	0	0	0
Total HpCDF	19.9	0	79.8	0	18.3	0	13.6	0	0
Total HpCDD	35.9	0	119	O	41.6	0	22.6	o	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TM	CSD-17	TMC	SD-17R	TM	CSD-18	TM	CSD-19	Toxicity
Sample Date:	7/	8/1998	7/2	2/1998	7/1	8/1998	7/8/1998		Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	O	0	0	0	0	0	O	0.1
2,3,7,8-TCDD	0	0	0.51	0.51	0	0	0	0	1
2,3,4,7,8-PeCDF	0	0	2.7	1.4	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	1.1	0.11	0	0	4.5	0.45	4.2	0.42	0.1
1,2,3,7,8-PeCDF	0.73	0.04	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	NA		NA		NA	_	NA	_	0.5
1,2,3,7,8,9-HxCDF	0	0	0	o	0	O	0	0	0.1
1,2,3,7,8,9-HxCDD	1.8	0.18	2.4	0.24	5.1	0.51	3.7	0.37	0.1
1,2,3,6,7,8-HxCDF	0.93	0.09	1.6	0.16	2.8	0.28	0	o	0.1
1,2,3,6,7,8-HxCDD	1.6	0.16	o	0	0	0	2.9	0.29	0.1
1,2,3,4,7,8-HxCDF	2.3	0.23	o	0	8	0.8	7.1	0.71	0.1
1,2,3,4,7,8-HxCDD	0	o	0.99	0.099	0	0	2	0.2	0.1
1,2,3,4,7,8,9-HpCDF	0	0	1.8	0.02	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	6.8	0.07	18.5	0.19	28.5	0.29	24.8	0.25	0.01
1,2,3,4,6,7,8-HpCDD	13.6	0.14	38.5	0.39	50.8	0.51	51.1	0.51	0.01
1,2,3,4,6,7,8,9-OCDF	10.1	0.01	29	0.03	33.6	0.03	33.6	0.03	0.001
1,2,3,4,6,7,8,9-OCDD	91.8	0.92	29.5	2.95	356	3.56	340	3.4	0.001
Total 2,3,7,8-TCDD		1.95		5.989		6.43		6.18	
Total TCDF	8.7	0	20	0	34.6	O	42.1	q	0
Total TCDD	3.8	9	2.1	o	6.1	0	5.8	0	0
Total PeCDF	10.9	o	32.9	0	46.1	0	51.3	o	0
Total PeCDD	0	o	0	o	6.3	o	8.5	0	0
Total HxCDF	6.3	0	30.1	o	24.9	0	34.2	0	0
Total HxCDD	9.5	0	18.3	0	24.4	0	25.9	0	0
Total HpCDF	6.8	0	38.5	0	32.2	0	46.8	0	0
Total HpCDD	27.4	o	71.8	9	102	0	98.6	0	0

a Based on I-TEFs/89; USEPA 1989.

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TM	CSD-20	TMC	SD-20R	TM	CSD-21	TM	CSD-22	Toxicity
Sample Date:	7/	7/1998	7/2	2/1998	7/.	7/1998	7/7	7/1998	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors ^a
2,3,7,8-TCDF	1.3	0.13	0	0	0	0	0.55	0.06	0.1
2,3,7,8-TCDD	0	0	0	0	0	o	0	0	1
2,3,4,7,8-PeCDF	o	0	1.9	1	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	1.6	0.16	0	0	1.5	0.15	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0.63	0.03	0	0	0	0	0.05
1,2,3,7,8-PeCDD	NA	_	NA	_	NA	_	NA	_	0.5
1,2,3,7,8,9-HxCDF	0	0	0.24	0.02	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	o	1.4	0.14	0	0	O	0	0.1
1,2,3,6,7,8-HxCDF	o	0	1.1	0.11	1.1	0.11	O	0	0.1
1,2,3,6,7,8-HxCDD	0	o	1.3	0.13	1.8	0.18	o	0	0.1
1,2,3,4,7,8-HxCDF	3.2	0.32	0	0	1.5	0.15	O	0	0.1
1,2,3,4,7,8-HxCDD	2.6	0.26	0.5	0.05	o	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0.98	0.01	o	0	o	o	0.01
1,2,3,4,6,7,8-HpCDF	7.4	0.07	0	o	6.6	0.07	o	0	0.01
1,2,3,4,6,7,8-HpCDD	15.7	0.16	0	0	18.6	0.19	o	0	0.01
1,2,3,4,6,7,8,9-OCDF	11.2	0.01	15.7	0.16	0	0	9	0	0.001
1,2,3,4,6,7,8,9-OCDD	97.6	0.98	158	1.58	94.2	0.94	16.5	0.17	0.001
Total 2,3,7,8-TCDD		2.09		3.23		1.79		0.23	
Total TCDF	12.9	0	21	0	7.8	0	1.7	0	0
Total TCDD	3.4	0	0	0	2.7	0	0	0	0
Total PeCDF	9	0	27.9	0	13.2	o	0	0	O
Total PeCDD	0	0	0	0	0	o	0	0	0
Total HxCDF	12.7	0	20.5	0	11	o	0	o	0
Total HxCDD	7.7	0	9.3	o	12.4	o	0	o	0
Total HpCDF	13.3	0	25.1	o	10.4	0	0	0	0
Total HpCDD	33.5	0	41.4	0	34.4	0	0	0	0

a Based on I-TEFs/89; USEPA 1989.

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-22/D		SD-2A		SD-2B	LF	SSD-3A	Toxicity
Sample Date:	7/	7/1998	4/1	8/1995	4/1	8/1995	4/1	8/1995	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	8.7	0.87	63.1	6.31	2.8	0.28	0.1
2,3,7,8-TCDD	0	0	1.6	1.6	13.9	13.9	1.6	1.6	1
2,3,4,7,8-PeCDF	0	0	9	4.5	72.5	36.25	0	0	0.5
2,3,4,6,7,8-HxCDF	0	0	0	0	31.2	3.12	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	15.9	0.8	0	0	0.05
1,2,3,7,8-PeCDD	NA		NA	_	NA	_	NA	_	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	o	0	0	8.4	0.84	0	0	0.1
1,2,3,6,7,8-HxCDF	0	0	0	0	20.3	2.03	0	0	0.1
1,2,3,6,7,8-HxCDD	O	0	0	0	11.3	1.13	0	0	0.1
1,2,3,4,7,8-HxCDF	0	0	10.3	1.03	81	8.1	0	0	0.1
1,2,3,4,7,8-HxCDD	0	0			NA	_	NA	_	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	o	22.5	0.23	o	0	0.01
1,2,3,4,6,7,8-HpCDF	0	0	22.1	0.22	149	1.49	12.6	0.13	0.01
1,2,3,4,6,7,8-HpCDD	4.4	0.04	48.4	0.48	221	2.21	23.9	0.24	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	53.3	0.05	349	0.35	23.1	0.02	0.001
1,2,3,4,6,7,8,9-OCDD	13.8	0.14	353	0.35	1620	1.62	174	0.17	0.001
Total 2,3,7,8-TCDD		0.18		9.1		78.38		2.44	
Total TCDF	1.7	9	91.3	o	741	o	22.9	0	0
Total TCDD	2.6	0	3.2	o	22.6	0	1.9	o	0
Total PeCDF	0	0	134	o	985	0	35.3	0	0
Total PeCDD	0	0	0	0	10.3	0	133	o	0
Total HxCDF	0	0	61.6	0	454	0	22.3	0	0
Total HxCDD	0	0	19	٥	101	9	9.7	0	0
Total HpCDF	0	0	53.9	o	372	0	30.7	o	0
Total HpCDD	9.2	O	103	0	492	0	52.7	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	LF	5SD-3B		SD-5A		5SD-5B	LF:	SD-6A	Toxicity
Sample Date:	4/	18/1995	4/1	8/1995	4/1	B/1995	4/1	8/1995	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	13	1.3	7.7	0.77	7.9	0.79	0.1
2,3,7,8-TCDD	0	0	1.2	1.2	1.1	1.1	2.4	2.4	1
2,3,4,7,8-PeCDF	0	0	0	0	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	0	0	5.5	0.55	0	0	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	NA	_	NA	_	NA	_	NA	_	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	5	0.5	0.1
1,2,3,7,8,9-HxCDD	0	0	0	0	5	0.5	5	0.5	0.1
1,2,3,6,7,8-HxCDF	o	0	0	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDD	0	0	o	. 0	0	O	0	0	0.1
1,2,3,4,7,8-HxCDF	0	0	10.7	1.07	6.3	0.63	9.2	0.92	0.1
1,2,3,4,7,8-HxCDD	NA	_	NA	_	NA	_	NA		0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	Ô	0	0	o	0	0.01
1,2,3,4,6,7,8-HpCDF	0	0	20.8	0.208	10.5	0.105	23.6	0.236	0.01
1,2,3,4,6,7,8-HpCDD	ō	9	56	0.56	37.1	0.371	71	0.71	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	32.2	0.032	18.5	0.0185	33.7	0.0337	0.001
1,2,3,4,6,7,8,9-OCDD	30.7	0.03	340	0.34	255	0.255	554	0.554	0.001
Total 2,3,7,8-TCDD		0.03		5.26		3.7495		6.6437	
Total TCDF	2.3	0	77.7	0	65.5	o	48.5	O	0
Total TCDD	o	9	16.1	0	14.1	0	15.1	o	0
Total PeCDF	q	o	60.5	9	41	0	41.2	o	0
Total PeCDD	0	0	20	0	13.7	0	12.1	0	o
Total HxCDF	0	0	51.1	o	28.9	0	45.5	0	o
Total HxCDD	0	0	36.9	o	31.6	0	48.1	o	0
Total HpCDF	5.7	0	45.4	o	22.6	0	52	9	o
Total HpCDD	5.3	0	118	0	79.1	0	149	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.: Sample Date:		5SD-6B 18/1995		SD-1-Z3 1/2001		SD-1-Z4		SD-2-Z2	Toxicity Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	2	0.2	1	0.1	0	`	0		0.1
2,3,7,8-TCDD	o	0	0	0	0	0	0	o	1
2,3,4,7,8-PeCDF	0	0	1.8	0.9	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	0	0	1.7	0.17	0	0	0	0	0.1
1,2,3,7,8-PeCDF	o	0		0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	NA		0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	o	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	5	0.5	0	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDF	5	0.05	0	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDD	0	0	0	0	0	0	0	0	0.1
1,2,3,4,7,8-HxCDF	0	0	3	0.3	0	0	0	0	0.1
1,2,3,4,7,8-HxCDD	NA	_	0	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	0	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	5	0.05	o	0	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDD	10.1	0.101	23.1	0.231	0	0	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	0	o	0	0	0	0	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	93.5	0.0935	152	0.152	0	0	0	0	0.001
Total 2,3,7,8-TCDD		0.9945		1.853	***************************************	0		o	
Total TCDF	12.7	0	20.9	0	0	0	0	O	0
Total TCDD	2.8	0	0	0	0	0	0	0	0
Total PeCDF	8.8	0	26.1	0	0	0	0	o	0
Total PeCDD	0	0	0	o	0	0	0	0	0
Total HxCDF	8.7	0	0	0	0	0	0	0	0
Total HxCDD	8.4	0	0	o	0	o	0	0	0
Total HpCDF	7.4	o	13.5	0	0	0	0	0	0
Total HpCDD	23.1	o	50.5	0	0	0	0	9	0

a Based on I-TEFs/89; USEPA 1989.

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	LF5	SD-2-Z4	LF5	SD-3-Z2	LF5	SD-3-Z4	TMC	SD-1-Z3	Toxicity
Sample Date:	5/3	1/2001	5/3	1/2001	5/3	1/2001	6/4/2001		Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	0.7	0.07	0	0	7.5	0.75	0.1
2,3,7,8-TCDD	0	0	0.62	0.62	0	0	0.71	0.71	1
2,3,4,7,8-PeCDF	o	0	0.76	0.38	0	0	16.7	8.35	0.5
2,3,4,6,7,8-HxCDF	0	0	0.71	0.071	0	0	12.2	1.22	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	o	6.3	0.315	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	o	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	0	O	o	0	0	2.3	0.23	0.1
1,2,3,6,7,8-HxCDF	0	o	0	0	o	0	14.9	1.49	0.1
1,2,3,6,7,8-HxCDD	o	0	o	0	o	0	2.1	0.21	0.1
1,2,3,4,7,8-HxCDF	o	o	1.4	0.14	o	0	172	17.2	0.1
1,2,3,4,7,8-HxCDD	o	0	o	o	o	0	0.85	0.085	0.1
1,2,3,4,7,8,9-HpCDF	0	0	o	0	0	0	68.3	6.83	0.01
1,2,3,4,6,7,8-HpCDF	0	0	o	0	0	0	133	13.3	0.01
1,2,3,4,6,7,8-HpCDD	9	0	0	0	٥	0	18.9	0.189	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	8.7	0.0087	0	0	464	0.464	0.001
1,2,3,4,6,7,8,9-OCDD	0	0	0	0	0	0	0	0	0.001
Total 2,3,7,8-TCDD		o		1.2897	_	0		51.343	
Total TCDF	0	0	10.3	0	0	o	122	0	0
Total TCDD	0	0	0.62	0	O	0	13.2	0	0
Total PeCDF	0	0	5.4	0	0	0	202	0	0
Total PeCDD	0	0	o	0	0	0	0	0	0
Total HxCDF	o	o	8.3	o	0	0	315	0	0
Total HxCDD	0	0	0	o	0	o	12.5	0	0
Total HpCDF	0	0	7.1	Q	0	o	381	o	0
Total HpCDD	o	o	0	0	o	0	43	o	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-1-Z4	TMC	SD-2-Z3	TMCS	D-2-Z3/D	TMC	SD-2-Z4	Toxicity
Sample Date:	6/	4/2001	6/4	1/2001	6/4	1/2001	6/4	1/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	1.3	0.13	1.2	0.12	0	0	0	0	0.1
2,3,7,8-TCDD	3.3	3.3	0.92	0.92	0.81	0.81	0	0	1
2,3,4,7,8-PeCDF	2	1	2.5	1.25	3.7	1.85	0	o	0.5
2,3,4,6,7,8-HxCDF	4	0.4	2.8	0.28	4.7	0.47	0.82	0.082	0.1
1,2,3,7,8-PeCDF	0.93	0.0465	0	0	1.3	0.065	0.33	0.0165	0.05
1,2,3,7,8-PeCDD	4.1	2.05	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	o	0	0.1
1,2,3,7,8,9-HxCDD	5	0.5	1.8	0.18	3.2	0.32	0.62	0.062	0.1
1,2,3,6,7,8-HxCDF	3.5	0.35	2	0.2	3.4	0.34	0	0	0.1
1,2,3,6,7,8-HxCDD	4.5	0.45	2.9	0.29	3.5	0.35	0.7	0.07	0.1
1,2,3,4,7,8-HxCDF	10.8	1.08	12.8	1.28	26.8	2.68	2.2	0.22	0.1
1,2,3,4,7,8-HxCDD	0	0	0.98	0.098	1.3	0.13	0	0	0.1
1,2,3,4,7,8,9-HpCDF	3.7	0.37	0	0	13.4	1.34	1	0.1	0.01
1,2,3,4,6,7,8-HpCDF	74.6	7.46	38.1	3.81	38.9	3.89	10	1	0.01
1,2,3,4,6,7,8-HpCDD	62	0.62	42.5	0.425	60.6	0.606	o	0	0.01
1,2,3,4,6,7,8,9-OCDF	78.5	0.0785	61	0.061	104	0.104	12.2	0.0122	0.001
1,2,3,4,6,7,8,9-OCDD	253	0.253	351	0.351	512	0.512	100	0.1	0.001
Total 2,3,7,8-TCDD		18.088		9.265		13.467		1.6627	
Total TCDF	63.3	0	30.7	0	40	0	12.4	0	0
Total TCDD	8.9	o	3.9	0	1.5	0	0	o	0
Total PeCDF	60.6	o	42.6	0	52	0	9	o	0
Total PeCDD	11.9	0	5.5	0	0	o	0	0	0
Total HxCDF	82.2	0	58.1	0	78.4	o	11.9	0	0
Total HxCDD	57.1	o	32.3	o	21.5	0	5.3	o	0
Total HpCDF	131	0	80.4	0	102	0	20.7	. 0	o
Total HpCDD	133	o	90.7	0	121	0	26	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	CSD-3-Z3		SD-3-Z4	,	SD-5-2- Z 3	TMCS	D-5-2-Z4	Toxicity
Sample Date:	6/	4/2001	6/4	1/2001	6/	1/2001	6/1	/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	1.9	0.19	0.84	0.084	0.6	0.06	0	0	0.1
2,3,7,8-TCDD	0	0	0.4	0.4	0	0	o	0	I
2,3,4,7,8-PeCDF	3.7	1.85	2	1	2	1	0	0	0.5
2,3,4,6,7,8-HxCDF	4.2	0.42	2	0.2	2.8	0.28	0	0	0.1
1,2,3,7,8-PeCDF	0.99	0.0495	0.5	0.025	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0.84	0.42	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0	o	0.1
1,2,3,7,8,9-HxCDD	2.7	0.27	1.4	0.14	1.6	0.16	0	0	0.1
1,2,3,6,7,8-HxCDF	3	0.3	1.6	0.16	2	0.2	0	o	0.1
1,2,3,6,7,8-HxCDD	4.4	0.44	1.3	0.13	2.3	0.23	o	o	0.1
1,2,3,4,7,8-HxCDF	19.5	1.95	6.9	0.69	7.1	0.71	0	0	0.1
1,2,3,4,7,8-HxCDD	O	0	0.8	0.08	0.49	0.049	0	0	0.1
1,2,3,4,7,8,9-HpCDF	7.7	0.77	2.8	0.28	2	0.2	o	o	0.01
1,2,3,4,6,7,8-HpCDF	42.7	4.27	17.2	1.72	69	6.9	0	0	0.01
1,2,3,4,6,7,8-HpCDD	103	1.03	20.5	0.205	28	0.28	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	129	0.129	23.8	0.0238	57.2	0.0572	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	1480	1.48	163	0.163	196	0.196	٥	0	0.001
Total 2,3,7,8-TCDD		13.1485		5.3008		10.7422		0	
Total TCDF	45.7	0	32.7	0	276	0	2	0	0
Total TCDD	2.5	9	1.2	0	0.93	0	0	0	0
Total PeCDF	50.9	9	33	0	118	0	2	0	0
Total PeCDD	0	0	0	0	0.84	0	0	0	0
Total HxCDF	84.5	0	30.5	o	68.3	0	9	0	0
Total HxCDD	21.6	0	3.5	o	18.9	0	0	0	0
Total HpCDF	122	0	19.9	o	134	0	0	0	0
Total HpCDD	211	0	41.9	0	57.2	0	P	o	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-5-Z3	TMC	SD-5-Z4		SD-6-Z3	TMC	SD-6-Z4	Toxicity
Sample Date:	6/	1/2001	6/1	/2001	6/1	1/2001	6/1	/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	3.8	0.38	0	0	1.4	0.14	0	0	0.1
2,3,7,8-TCDD	1.8	1.8	0	0	0.91	0.91	0	0	1
2,3,4,7,8-PeCDF	14	7	1.7	0.85	4.1	2.05	0	0	0.5
2,3,4,6,7,8-HxCDF	17.3	1.73	3.2	0.32	4.8	0.48	0	0	0.1
1,2,3,7,8-PeCDF	7.3	0.365	O	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	0.47	0.235	1.2	0.6	0	0	0.5
1,2,3,7,8,9-HxCDF	1.3	0.13	0	0	0.41	0.041	0	0	0.1
1,2,3,7,8,9-HxCDD	7.6	0.76	1.6	0.16	3	0.3	0	0	0.1
1,2,3,6,7,8-HxCDF	16.5	1.65	2.1	0.21	3.5	0.35	0	0	0.1
1,2,3,6,7,8-HxCDD	13.6	1.36	1.8	0.18	3.7	0.37	0	0	0.1
1,2,3,4,7,8-HxCDF	115	11.5	4.8	0.48	17.8	1.78	0	O	0.1
1,2,3,4,7,8-HxCDD	2.6	0.26	0.38	0.038	1	0.1	0	0	0.1
1,2,3,4,7,8,9-HpCDF	46.5	4.65	1.4	0.14	7	0.7	0	0	0.01
1,2,3,4,6,7,8-HpCDF	171	17.1	52.2	5.22	55.4	5.54	0	0	0.01
1,2,3,4,6,7,8-HpCDD	281	2.81	34.7	0.347	60.7	0.607	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	441	0.441	41.6	0.0416	79	0.079	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	1810	1.81	215	0.215	459	0.459	0	0	0.001
Total 2,3,7,8-TCDD		53.746		8.4366		14.506		0	
Total TCDF	122	0	63	0	219	0	0.86	0	0
Total TCDD	3.6	0	0	0	1.9	0	0	0	0
Total PeCDF	238	0	71.8	0	119	0	0	0	0
Total PeCDD	O	0	1.3	0	1.2	0	0	0	0
Total HxCDF	435	0	68.3	0	94.9	0	0	0	0
Total HxCDD	39	0	23	0	10.5	0	0	0	0
Total HpCDF	551	0	100	0	122	0	0	0	0
Total HpCDD	485	0	110	0	123	0	0	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-6-Z4/D	1	D-7-1-Z2		SD-7-1-Z3	TMC	SD-7-Z2	Toxicity
Sample Date:	6/	1/2001	5/3	1/2001	5/3	1/2001	5/3	1/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors"
2,3,7,8-TCDF	O	0	6.9	0.69	0	0	0.91	0.091	0.1
2,3,7,8-TCDD	0	0	23.5	23.5	0	0	0	0	1
2,3,4,7,8-PeCDF	0	0	13.2	6.6	0	0	1.8	0.9	0.5
2,3,4,6,7,8-HxCDF	0	0	22.7	2.27	0	0	2.6	0.26	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	0	16.4	1.64	o	O	0	0	0.1
1,2,3,6,7,8-HxCDF	0	0	13.5	1.35	O	0	1.5	0.15	0.1
1,2,3,6,7,8-HxCDD	0	0	18.9	1.89	o	0	2.3	0.23	0.1
1,2,3,4,7,8-HxCDF	o	0	32	3.2	0	o	5.8	0.58	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	17.1	1.71	0	0	3.2	0.32	0.01
1,2,3,4,6,7,8-HpCDF	0	0	189	18.9	0	0	17.6	1.76	0.01
1,2,3,4,6,7,8-HpCDD	0	0	295	2.95	o	0	37.6	0.376	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	348	0.348	o	0	37.4	0.0374	0.001
1,2,3,4,6,7,8,9-OCDD	0	0	2270	2.27	0	0	312	0.312	0.001
Total 2,3,7,8-TCDD		0		67.318		0		5.0164	
Total TCDF	0	0	895	0	31.4	o	87.5	0	0
Total TCDD	0	0	46.2	0	0	0	0	0	0
Total PeCDF	0	0	788	0	17.3	0	72.7	0	0
Total PeCDD	9	0	٥	0	0	o	0	0	0
Total HxCDF	o	0	422	0	0	o	49.5	0	0
Total HxCDD	0	0	45.4	0	0	0	0	0	0
Total HpCDF	0	0	434	0	0	0	44	0	0
Total HpCDD	Ö	0	645	o	0	0	79.4	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.: Sample Date: Compound 2,3,7,8-TCDF 2,3,7,8-TCDD		SD-7-Z3 80/2001 Weighted 1.75 20.1		0/2001 Weighted		5D-8-1-Z4 0/2001		D-8-1-Z4/D	Toxicity
Compound 2,3,7,8-TCDF	17.5 20.1	Weighted 1.75	Actual		5/3	0/2001	F./0		
2,3,7,8-TCDF	17.5 20.1	1.75		Weighted			5/3	0/2001	Equivalency
	20.1		0		Actual	Weighted	Actual	Weighted	Factors ^a
2,3,7,8-TCDD		20.1		0	0	0	0	0	0.1
	16.3	20.1	0	0	0	. 0	0	0	1
2,3,4,7,8-PeCDF		8.15	1.1	0.55	0	O	0	0	0.5
2,3,4,6,7,8-HxCDF	26.2	2.62	2	0.2	0	0	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	o	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	5.5	0.55	0	0	O	0	0	0	0.1
1,2,3,7,8,9-HxCDD	14.7	1.47	0	0	o	0	0	0	0.1
1,2,3,6,7,8-HxCDF	16.1	1.61	9	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDD	18.6	1.86	1.3	0.13	o	0	0	o	0.1
1,2,3,4,7,8-HxCDF	35.7	3.57	2.4	0.24	o	o	0.25	0.025	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	o	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	0	o	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	245	24.5	20.2	2.02	0	o	0	0	0.01
1,2,3,4,6,7,8-HpCDD	304	3.04	16.1	0.161	0	o	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	616	0.616	19.8	0.0198	ō	0	0	o	0.001
1,2,3,4,6,7,8,9-OCDD	2240	2.24	132	0.132	0	0	9	o	0.001
Total 2,3,7,8-TCDD		72.076		3.4528		0		0.025	
Total TCDF	1040	0	63.8	0	o	9	9	0	0
Total TCDD	30.9	0	o	o	o	o	0	0	0
Total PeCDF	875	0	45.4	0	0	o	0	0	0
Total PeCDD	12.8	0	0	0	o	0	0	0	0
Total HxCDF	448	0	29.2	0	0	o	0.25	0	0
Total HxCDD	33.3	o	1.3	o	o	0	0	0	0
Total HpCDF	605	0	38.4	0	0	o	0	0	0
Total HpCDD	658	0	35	o	0	0	0	0	0

a Based on I-TEFs/89; USEPA 1989.

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-8-2-Z2	TMCS	D-9-1-Z2	TMC	SD-9-1-Z4	TMCS	D-9-2- Z 2	Toxicity
Sample Date:	5/3	30/2001	5/3	0/2001	5/3	0/2001	5/3	0/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	2.2	0.22	1.8	0.18	0	0	0	0	0.1
2,3,7,8-TCDD	0	0	1.3	1.3	0	Ō	0	0	1
2,3,4,7,8-PeCDF	6.6	3.3	0	0	0	0	0.46	0.23	0.5
2,3,4,6,7,8-HxCDF	13.4	1.34	3.1	0.31	0	0	0.42	0.042	0.1
1,2,3,7,8-PeCDF	0	0	1.1	0.055	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	0	3	0.3	0	0	0	0	0.1
1,2,3,6,7,8-HxCDF	7.9	0.79	2.2	0.22	0	0	0	0	0.1
1,2,3,6,7,8-HxCDD	4.9	0.49	3	0.3	0	0	0	0	0.1
1,2,3,4,7,8-HxCDF	14.3	1.43	5	0.5	0.22	0.022	0.75	0.075	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	o	0	2	0.2	0	0	Ö	0	0.01
1,2,3,4,6,7,8-HpCDF	91	9.1	21.7	2.17	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDD	51.1	0.511	41	0.41	o	0	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	110	0.11	34.8	0.0348	0	0	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	333	0.333	322	0.322	0	0	0	0	0.001
Total 2,3,7,8-TCDD		17.624		6.3018		0.022		0.347	
Total TCDF	790	0	123	0	0	0	3.3	0	0
Total TCDD	5.5	0	2.8	0	0	0	0	0	0
Total PeCDF	584	0	93.4	0	O	0	2.4	0	0
Total PeCDD	0	0	0	0	0	o	0	0	0
Total HxCDF	210	0	51.4	0	0.22	0	3.2	0	0
Total HxCDD	26.3	0	8.4	0	0	0	1	0	0
Total HpCDF	164	0	46	0	0	0	4.4	0	0
Total HpCDD	115	0	85.2	0	0	0	0	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-9-3-Z3	TMC	D-9-3-Z4	TMCS	D-9-4-Z3	TMCS	D-9-4-Z4	Toxicity
Sample Date:	5/2	29/2001	5/2	9/2001	5/2	9/2001	5/2	9/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0.4	0.04	0	0	0.4	0.04	0	0	0.1
2,3,7,8-TCDD	0.22	0.22	0	0	0.25	0.25	0	0	1
2,3,4,7,8-PeCDF	0.71	0.355	0	0	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	1.1	0.11	0	0	1.3	0.13	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0.27	0.135	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	O	0	0	0.1
1,2,3,7,8,9-HxCDD	0	0	0	0	1.2	0.12	0	0	0.1
1,2,3,6,7,8-HxCDF	0.6	0.06	0	0	0.72	0.072	0	0	0.1
1,2,3,6,7,8-HxCDD	0.83	0.083	0	0	1	0.1	0	0	0.1
1,2,3,4,7,8-HxCDF	1.6	0.16	0.2	0.02	2.4	0.24	0	0	0.1
1,2,3,4,7,8-HxCDD	0.41	0.041	0	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0.47	0.047	0	0	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	4.6	0.46	0	0	5.6	0.56	0	0	0.01
1,2,3,4,6,7,8-HpCDD	0	0	0	0	17	0.17	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	o	0	9.1	0.0091	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	0	0	0	0	95.3	0.0953	0	0	0.001
Total 2,3,7,8-TCDD		1.711		0.02		1.7864		0	
Total TCDF	21.7	0	0	0	25.5	0	0.12	0	0
Total TCDD	0.74	0	0	0	0.68	0	0.14	0	0
Total PeCDF	13.7	0	0	0	13.8	0	0	0	0
Total PeCDD	0.27	0	0	0	0	0	0.39	0	0
Total HxCDF	12.7	0	0.2	o	14.1	0	0	Ō	0
Total HxCDD	5.5	0	0	0	3.2	0	0	0	0
Total HpCDF	5.1	0	0	0	11	0	0	0	0
Total HpCDD	26.8	0	0	0	34	0	0	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMCS	D-9-4-Z4/D	TMC	SD-9-Z2	TMC	SD-9-Z4	TMCS	D-10-1-Z3	Toxicity
Sample Date:	5/2	9/2001	5/3	0/2001	5/3	0/2001	5/2	4/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	0.49	0.049	0	0	0	0	0.1
2,3,7,8-TCDD	0	0	0	0	0	0	0	0	1
2,3,4,7,8-PeCDF	0	0	0	0	0	0	0	0	0.5
2,3,4,6,7,8-HxCDF	o	0	0	0	0	0	0	0	0.1
1,2,3,7,8-PeCDF	0	0	0.3	0.015	0	0	0	0	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,7,8,9-HxCDD	0	0	0	0	0	0	o	0	0.1
1,2,3,6,7,8-HxCDF	0	0	0	0	0	0	0	0	0.1
1,2,3,6,7,8-HxCDD	0	0	0	0	0	0	0	0	0.1
1,2,3,4,7,8-HxCDF	0	o	0	0	0	0	0	0	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	0	. 0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	0	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDF	9	0	5.9	0.59	0	0	0	0	0.01
1,2,3,4,6,7,8-HpCDD	0	0	16	0.16	0	0	0	9	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	18.1	0.0181	0	0	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	o	0	111	0.111		0	0	0	0.001
Total 2,3,7,8-TCDD		0		0.9431		0		0	
Total TCDF	0	0	28.2	0	0	0	2.4	0	0
Total TCDD	0.12	0	0.25	0	0	0	0	0	0
Total PeCDF	0	0	16.9	0	O	0	1.7	0	0
Total PeCDD	0	0	0	0	0	0	0	0	0
Total HxCDF	0	0	13.8	0	0	0	0	0	0
Total HxCDD	0	o	0	0	0	0	0.81	0	0
Total HpCDF	o	o	16.8	0	o	0	0	0	0
Total HpCDD	0	0	50.4	0	0	0	o	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMCS	D-10-1-24		D-10-2-Z3	1	D-10-2- Z 4	TMCS	D-10-3-Z3	Toxicity
Sample Date:	5/2	24/2001	5/2	4/2001	5/2	4/2001	5/2	3/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors ^a
2,3,7,8-TCDF	0	0	0	0	0	0	0	0	0.1
2,3,7,8-TCDD	0	0	0	0	0	0	2	2	1
2,3,4,7,8-PeCDF	0	0	0	0	0	0	6	3	0.5
2,3,4,6,7,8-HxCDF	0	0	0	0	0	0	7	0.7	0.1
1,2,3,7,8-PeCDF	0	0	0	0	0	0	1.9	0.095	0.05
1,2,3,7,8-PeCDD	0	0	0	0	0	0	1.4	0.7	0.5
1,2,3,7,8,9-HxCDF	0	0	0	0	0	0	0.56	0.056	0.1
1,2,3,7,8,9-HxCDD	0	0	0	0	0	0	4.1	0.41	0.1
1,2,3,6,7,8-HxCDF	0	0	0	0	0	0	3.8	0.38	0.1
1,2,3,6,7,8-HxCDD	0	0	0	0	0	0	5.1	0.51	0.1
1,2,3,4,7,8-HxCDF	0	0	0	0	0	0	13.1	1.31	0.1
1,2,3,4,7,8-HxCDD	0	0	0	0	0	0	0	0	0.1
1,2,3,4,7,8,9-HpCDF	0	0	0	0	0	0	5.2	0.52	0.01
1,2,3,4,6,7,8-HpCDF	0	0	3.1	0.31	0	0	59	5.9	0.01
1,2,3,4,6,7,8-HpCDD	0	0	0	0	0	0	98.7	0.987	0.01
1,2,3,4,6,7,8,9-OCDF	0	0	0	0	0	0	74.2	0.0742	0.001
1,2,3,4,6,7,8,9-OCDD	0	0	0	0	0	0	788	0.788	0.001
Total 2,3,7,8-TCDD		0		0.31		0		17.4302	
Total TCDF	0	0	14.9	0	0	0	111	0	0
Total TCDD	0	0	0	0	0	0	5.9	0	. 0
Total PeCDF	0	0	14.8	0	0	0	113	0	0
Total PeCDD	0	0	o	0	0	0	5.5	o	0
Total HxCDF	0	O	0	o	o	O	94.1	o	0
Total HxCDD	o	o	0	0	o	0	43.8	0	0
Total HpCDF	o	0	6.5	0	o	0	132	0	0
Total HpCDD	0	0	o	0	0	0	199	0	C

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

				IILE ONE	=(9	··· <i>ə)</i>			
Sample I.D.:	TMCSI	D-10-3-Z3/D	TMCS	D-10-3-Z4	TMC	SD-10-Z3	TMC	SD-10-Z4	Toxicity
Sample Date:		23/2001		3/2001		9/2001	5/2	9/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	1.6	0.16	0	0	0.65	0.065	0.1	0.01	0.1
2,3,7,8-TCDD	1.7	1.7	0.38	0.38	0.25	0.25	0.07	0.07	1
2,3,4,7,8-PeCDF	3.7	1.85	0	0	0.53	0.265	0.07	0.035	0.5
2,3,4,6,7,8-HxCDF	4.3	0.43	0	0	0.71	0.071	0.09	0.009	0.1
1,2,3,7,8-PeCDF	0.92	0.046	0	0	0	0	0.09	0.0045	0.05
1,2,3,7,8-PeCDD	0.9	0.45	0	0	0	0	0	0	0.5
1,2,3,7,8,9-HxCDF	0.46	0.046	0	0	0	0	0.07	0.007	0.1
1,2,3,7,8,9-HxCDD	2.9	0.29	0.97	0.097	0.51	0.051	0	0	0.1
1,2,3,6,7,8-HxCDF	0	0	1.1	0.11	0.37	0.037	0.11	0.011	0.1
1,2,3,6,7,8-HxCDD	3.5	0.35	0.86	0.086	0.63	0.063	0	0	0.1
1,2,3,4,7,8-HxCDF	8.6	0.86	2.3	0.23	1.3	0.13	0.16	0.016	0.1
1,2,3,4,7,8-HxCDD	1.3	0.13	o	o	0.23	0.023	O	0	0.1
1,2,3,4,7,8,9-HpCDF	3.2	0.32	o	0	0.63	0.063	0	0	0.01
1,2,3,4,6,7,8-HpCDF	29.5	2.95	14.8	1.48	4.2	0.42	0	0	0.01
1,2,3,4,6,7,8-HpCDD	61.8	0.618	0	0	0	0	0	0	0.01
1,2,3,4,6,7,8,9-OCDF	45.2	0.0452	15.8	0.0158	o	0	0	0	0.001
1,2,3,4,6,7,8,9-OCDD	495	0.495	92.6	0.0926	0	0	0	0	0.001
Total 2,3,7,8-TCDD		10.7402		2.4914		1.438		0.1625	
Total TCDF	70.1	0	83.4	0	14.8	0	0.1	0	0
Total TCDD	3.2	0	1	0	0.38	0	0.07	0	0
Total PeCDF	70.4	0	53.5	0	10.2	0	0.16	0	0
Total PeCDD	2.1	0	0	0	0	0	0	0	0
Total HxCDF	56.9	0	25.2	0	9.3	0	0.54	0	0
Total HxCDD	29.9	0	5.7	0	2	0	0	0	0
Total HpCDF	71.4	0	27.8	0	9.4	0	0	0	0
Total HpCDD	124	0	30.8	0	0	0	0	0	0

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample I.D.:	TMC	SD-11-Z3	TMC	SD-11-Z4	LF6S	D-1-1-Z1	LF6SE)-1-1-Z1/D	Toxicity
Sample Date:	5/2	24/2001	5/2	4/2001	5/3	1/2001	5/3	1/2001	Equivalency
Compound	Actual	Weighted	Actual	Weighted	Actual	Weighted	Actual	Weighted	Factors*
2,3,7,8-TCDF	0	0	0	0	6.2	0.62	5.9	0.59	0.1
2,3,7,8-TCDD	0.85	0.85	0	0	1.3	1.3	1.3	1.3	1
2,3,4,7,8-PeCDF	2	1	0	0	7	3.5	7.4	3.7	0.5
2,3,4,6,7,8-HxCDF	2	0.2	0	0	10	1	10.9	1.09	0.1
1,2,3,7,8-PeCDF	1.9	0.095	0	0	3.5 J	0.175	4.2 J	0.21	0.05
1,2,3,7,8-PeCDD	1.2	0.6	0	0	2.3 J	1.15	2.5 J	1.25	0.5
1,2,3,7,8,9-HxCDF	O	0	0	0	0	0	0	o	0.1
1,2,3,7,8,9-HxCDD	2.8	0.28	0	0	5.7 J	0.57	6 Ј	0.6	0.1
1,2,3,6,7,8-HxCDF	1.8	0.18	. 0	0	6.2 J	0.62	6.3 J	0.63	0.1
1,2,3,6,7,8-HxCDD	8.8	0.88	0	0	5 J	0.5	5.1 J	0.51	0.1
1,2,3,4,7,8-HxCDF	9	0.9	0	0	14.2	1.42	15	1.5	0.1
1,2,3,4,7,8-HxCDD	0.64	0.064	0	0	2.4 Ј	0.24	2.3 J	0.23	0.1
1,2,3,4,7,8,9-HpCDF	4.3	0.43	0	0	3.4 J	0.34	4.6 J	0.46	0.01
1,2,3,4,6,7,8-HpCDF	13.6	1.36	0	0	41.8	4.18	37.7	3.77	0.01
1,2,3,4,6,7,8-HpCDD	45.8	0.458	0	0	57.6	0.576	60.2	0.602	0.01
1,2,3,4,6,7,8,9-OCDF	38.3	0.0383	0	0	41.4	0.0414	46	0.046	0.001
1,2,3,4,6,7,8,9-OCDD	184	0.184	0	0	273	0.273	280	0.28	0.001
Total 2,3,7,8-TCDD		7.5193		0		16.5054		16.768	
Total TCDF	57.2	ō	0	0	138 J	0	147 J	0	O
Total TCDD	0.85	0	0	0	17.3	0	16.7	0	0
Total PeCDF	22.4	0	0	0	90.2 J	0	79.2 J	0	0
Total PeCDD	1.2	o	0	0	11	0	16.6	0	0
Total HxCDF	25.2	o	0	0	80.1	0	77.4	0	0
Total HxCDD	64.6	0	0	0	56.7	0	61.2	0	0
Total HpCDF	35	o	0	0	70.6	O	66.1	o	o
Total HpCDD	94.3	o	0	o	116	o	123	0	0

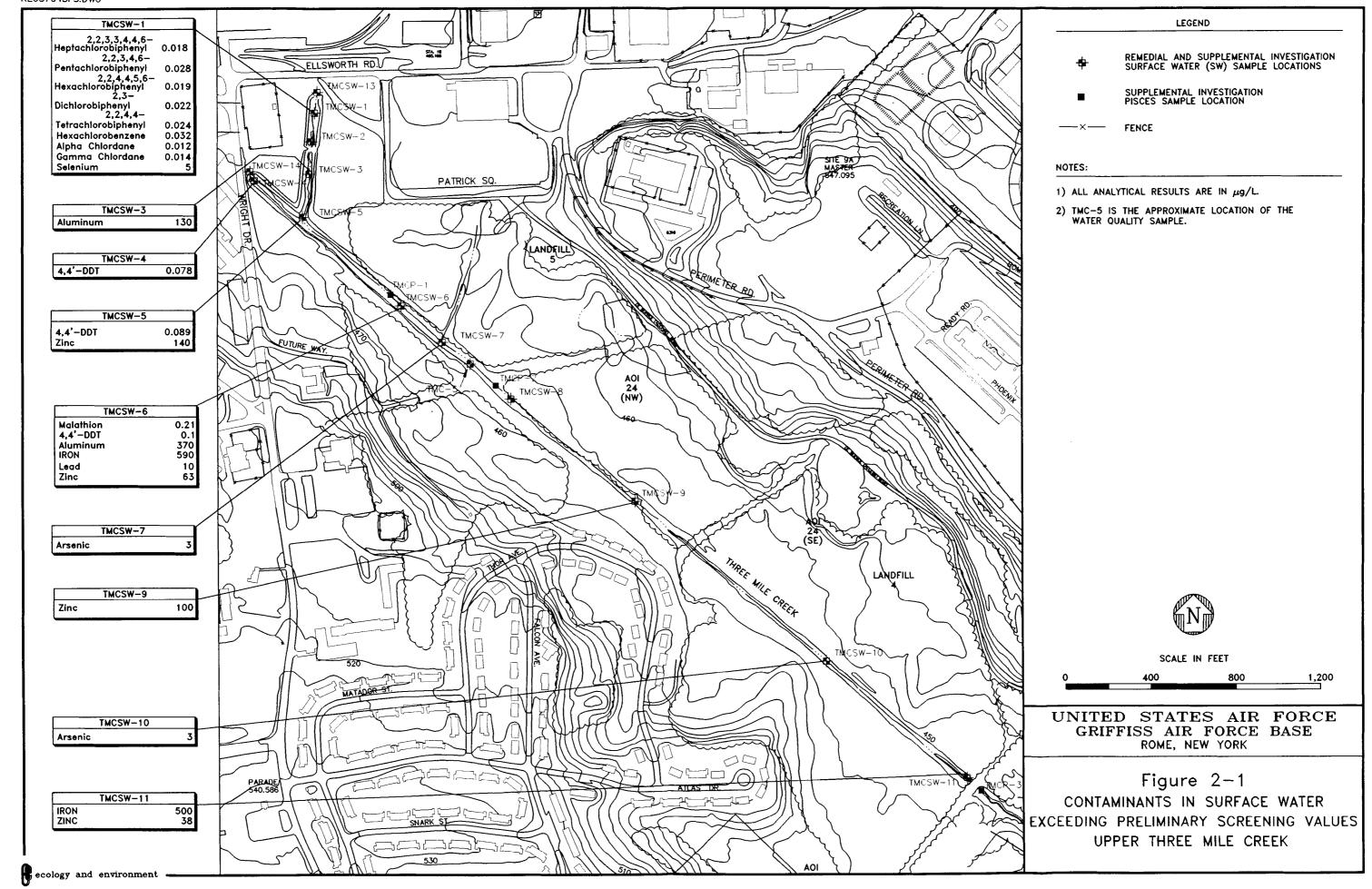
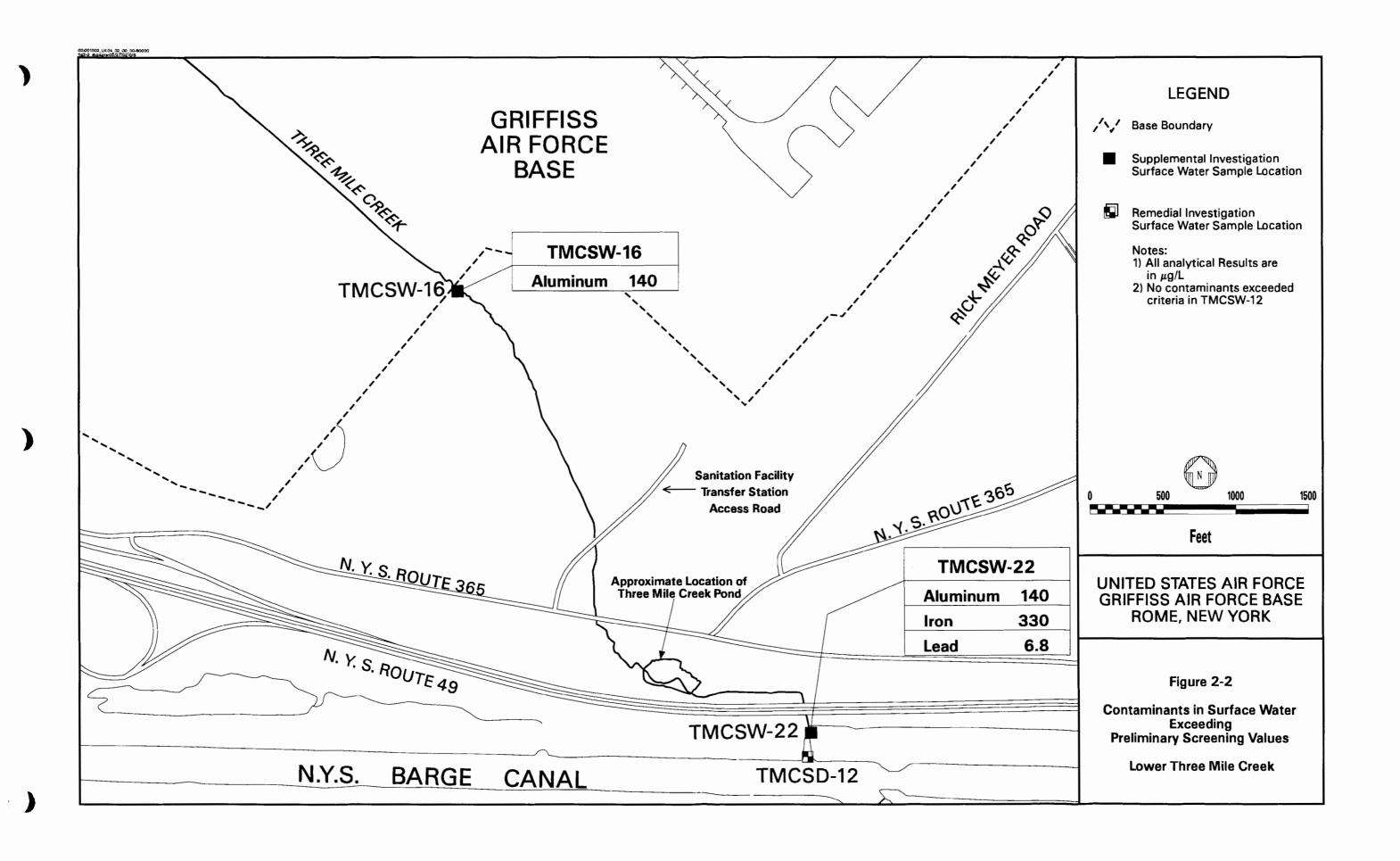

Key:

Table 2-6
DIOXINS AND FURANS IN SEDIMENT SAMPLES
THREE MILE CREEK (ng/kg)

Sample Date: 5/31 Compound Actual 2.3,7,8-TCDF 2.1 J 2,3,7,8-TCDD 0.72 J 2,3,4,7,8-PeCDF 3.7 J 2,3,4,6,7,8-HxCDF 5.9 J 1,2,3,7,8-PeCDF 1.8 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,6,7,8-HxCDD 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 0 U 1,2,3,4,6,7,8-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1 1,2,3,4,6,7,8,9-OCDD 178	72001 Weighted 0.21 0.72 1.85 0.59 0.09 0.55 0 0.34 0.32	Actual 2.5 0	0 2.5 1.66 0.15	Actual 5.1	4.9 5.9 2.77 0.62 2.25	Actual	Weighted	Equivalency Factors 0.1 1 0.5 0.1 0.05
2,3,7,8-TCDF 2.1 J 2,3,7,8-TCDD 0.72 J 2,3,4,7,8-PeCDF 3.7 J 2,3,4,6,7,8-HxCDF 5.9 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8-PDCDF 26.1	0.21 0.72 1.85 0.59 0.09 0.55 0 0.33	2.5 0 5 16.6 3 J 2.1 J 0.83 J 8.8 J	0.25 0 2.5 1.66 0.15 1.05 0.083	5.1 4.9 11.8 27.7 12.4 J 4.5	0.51 4.9 5.9 2.77 0.62 2.25	Actual	Weighted	0.1 1 0.5 0.1
2,3,7,8-TCDD 0.72 J 2,3,4,7,8-PeCDF 3.7 J 2,3,4,6,7,8-HxCDF 5.9 J 1,2,3,7,8-PeCDF 1.8 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,6,7,8-HxCDD 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HyCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.72 1.85 0.59 0.09 0.55 0 0.34	0 5 16.6 3 J 2.1 J 0.83 J 8.8 J	0 2.5 1.66 0.15 1.05 0.083	4.9 11.8 27.7 12.4 J 4.5	4.9 5.9 2.77 0.62 2.25			0.5 0.1
2,3,4,7,8-PeCDF 3.7 J 2,3,4,6,7,8-HxCDF 5.9 J 1,2,3,7,8-PeCDF 1.8 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDD 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	1.85 0.59 0.09 0.55 0 0.3	5 16.6 3 J 2.1 J 0.83 J 8.8 J	2.5 1.66 0.15 1.05 0.083	11.8 27.7 12.4 J 4.5	5.9 2.77 0.62 2.25			0.1
2,3,4,6,7,8-HxCDF 5.9 J 1,2,3,7,8-PeCDF 1.8 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 0 U 1,2,3,4,7,8-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.59 0.09 0.55 0 0.3	16.6 3 J 2.1 J 0.83 J 8.8 J	1.66 0.15 1.05 0.083	27.7 12.4 J 4.5	2.77 0.62 2.25			0.1
1,2,3,7,8-PeCDF 1.8 J 1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.09 0.55 0 0.34	3 J 2.1 J 0.83 J 8.8 J	0.15 1.05 0.083	12.4 J 4.5	0.62 2.25			
1,2,3,7,8-PeCDD 1.1 J 1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDF 24.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.55 0 0.3 0.34	2.1 J 0.83 J 8.8 J	1.05 0.083	4.5	2.25			0.05
1,2,3,7,8,9-HxCDF 0 U 1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0 0.3 0.34	0.83 J 8.8 J	0.083					
1,2,3,7,8,9-HxCDD 3 J 1,2,3,6,7,8-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.3 0.34	8.8 J		0.78 J				0.5
1,2,3,6,7,8-HxCDF 3.4 J 1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.34		0.88		0.078			0.1
1,2,3,6,7,8-HxCDD 3.2 J 1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1		77	0.00	17.1	1.71			0.1
1,2,3,4,7,8-HxCDF 7.6 1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.32	′/	0.77	13.6	1.36			0.1
1,2,3,4,7,8-HxCDD 1.2 J 1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1		7.4	0.74	15	1.5			0.1
1,2,3,4,7,8,9-HpCDF 0 U 1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.76	18.6	1.86	28.9	2.89			0.1
1,2,3,4,6,7,8-HpCDF 22.8 1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0.12	3.3 J	0.33	8.1	0.81	1		0.1
1,2,3,4,6,7,8-HpCDD 34.5 1,2,3,4,6,7,8,9-OCDF 26.1	0	5.6	0.56	12.7	1.27			0.01
1,2,3,4,6,7,8,9-OCDF 26.1	2.28	53.3	5.33	172	17.2			0.01
	0.345	78.7	0.787	192	1.92			0.01
1,2,3,4,6,7,8,9-OCDD 178	0.0261	40.7	0.0407	195	0.195			0.001
	0.178	293	0.293	1230 J	1.23	1		0.001
Total 2,3,7,8-TCDD	8.6791		17.2837		47.113			
Total TCDF 53.3 J	0	64.8 J	0	345 J	0			0
Total TCDD 5.6	0	11.5	0	27.4	0			0
Total PeCDF 56.8 J	0	55.3	0	348 J	0			0
Total PeCDD 7.3	0	14.4	0	60.3	0			0
Total HxCDF 42.1	0	81.5	0	276	0			0
Total HxCDD 31.4	0	88	0	149	0			0
Total HpCDF 42.8	Q	84.1	0	327	0			0
Total HpCDD 71	0	162	0	399	0			o


a Based on I-TEFs/89; USEPA 1989.

Key:

07/3/02 men 00/3MUECREEX/MARCH2002FS/R-665704bFS.d

OTTED BY 67/3/02 mc/GRIFFIS/ 00/3MLECRE

LEGEND

REMEDIAL INVESTIGATION SEDIMENT SAMPLE LOCATION

REMEDIAL INVESTIGATION BENTHIC MACROINVERTEBRATE SAMPLE LOCATION

NOTES:

1. ANALYITICAL RESULTS ARE IN $\mu g/kg$.

2. SOURCE: AFBCA, FEB 2001

SCALE IN FEET

400 800 1,200

UNITED STATES AIR FORCE GRIFFISS AIR FORCE BASE ROME, NEW YORK

Figure 2-3a

REMEDIAL INVESTIGATION SEDIMENT SAMPLE LOCATIONS UPPER THREE MILE CREEK

PLOTTED BUFF: = 2/02 JJK F: /GRIFFIS/KE6000/3MILECREEK/MARCH2002FS/Ke6S3mileFS.dwg

ecology and environment

TMCSD	2a (0-6*)	2b (6"-1")
ALDRIN	15.8	8
AZIMPHOS, METHYL (GUTHION)	79	-
CADMIUM	1.7	3.8
COPPER	52.5	74.3
DI BENZO(a,h) ANTHRACENE	8700	12000
FLUORANTHENE	84000	120000
LEAD	94.6	203
NICKEL	33.9	41.3
ZINC	153	207
2-METHYLMAPHTHALENE	5100	8100
ACENAPHTHENE	11000	19000
ANTHRACENE	19000	28000
BENZO(a) ANTHRACENE	51000	63000
BENZO(a) PYRENE	35000	44000
BENZO(b) FLUORANTHENS	41000	48000
BENZO(k) FLUORANTHENI	28000	39000
CHRYSENE	43000	55000
FLUORENE	12000	20000
NAPHTHALENE	15000	23000
PCB-1260	5660	2430
PCB-1254	-	1230
PHENANTHRENE	91000	120000
PYRENE	89000	100000
CHROMIUM TOTAL	_	28.4
SILVER	-	2.2
ARSENIC	_	9.9
FLUORANTHENE	84000	120000

TMCSD	3a (0-6")	3b (6"-1")
ALDRIN	12.6	6.5
AZINPHOS, METHYL (G	EUTHION)230	110
MERCURY	0.23	-
COPPER	61.4	75.2
ACENAPHTHYLENE	59	810
FLUORANTHENE	160000	99000
LEAD	141	164
NICKEL.	43.3	32.5
ZINC	145	-
2-METHYLNAPHTHALEN	VE 20000	12000
ACENAPHTHENE	31000	18000
ANTHRACENE	40000	27000
BENZO(a) ANTHRACEN	E 8900 0	51000
BENZO(a) PYRENE	6200 0	37000
BENZO(b) FLUORANTH	ENE 73000	50000
BENZO(k) FLUORANTH	ENE 49000	26000
CHRYSENE	7700 0	42000
FLUORENE	34000	25000
NAPHTHALENE	56000	36000
PCB-1260	2320	8260
PCB-1254	1500	- 1
PHENANTHRENE	190000	120000
PYRENE	140000	78000
CHROMIUM TOTAL	37	46.9
SILVER	2.9	7.6
ARSENIC	10.4	- 1
DI BENZO(a,h) ANTHR	ACENE 16000	6300
p.p-DDD	-	170
p,p-DDE	-	48.2

TMCSD	4a (0-6")	4b (6"-1')
1,2-DICHLOROBENZENE	990	-
1,4-DICHLOROBENZENE	800	-
MERCURY	0.36	-
COPPER	61.2	-
ACENAPHTHYLENE	320	-
FLUORANTHENE	11000	250
LEAD	1 6 6	60.2
NICKEL	20.9	-
ZINC	152	-
2-METHYLNAPHTHALENE	490	-
ACENAPHTHENE	1100	12
ANTHRACENE	2200	41
BENZO(a) ANTHRACENE	6800	-
BENZO(a) PYRENE	6400	120
BENZO(b) FLUORANTHENI		140
BENZO(k) FLUORANTHENI		71
CHRYSÈNE	7800	-
FLUORENE	1600	-
NAPHTHALENE	960	-
PHENANTHRENE	9400	210
PYRENE	9400	260
CHROMIUM TOTAL	40.7	-
SILVER	2.7	_
ARSENIC	19.8	-
DI BENZO(a,h) ANTHRAC		-
CADMIUM	9.5	

TMCSD	5a (0-6")	5b (6"-1")
1,2-DICHLOROBENZENE	1200	42
1,4-DICHLOROBENZENE	1600	36
MERCURY	0.22	0.2
COPPER	34.5	3 6.3
ACENAPHTHYLENE	580	280
FLUORANTHENE	21000	14000
LEAD	76. 1	110
NICKEL	22	20.4
ZINC	186	170
2-METHYLNAPHTHALENE	540	750
2-METHYLNAPHTHALENE ACENAPHTHENE ANTHRACENE	2100	2500
ANTHRACENE	3400	4000
BENZO(a) ANTHRACENE	15000	15000
BENZO(a) PYRENE	2200	2200
BENZO(b) FLUORANTHEN		9700
BENZO(k) FLUORANTHEN	E 8500	7900
CHRYSENE	14000	9700
FLUORENE	3600	3400
NAPHTHALENE	870	2100
PHENANTHRENE	15000	20000
PYRENE	28000	19000
ALDRIN	-	3.8
SILVER	1.2	1.3
DI BENZO(a,h) ANTHRAC	ENE 2100	1700
CHLOROBENZENE	72	17
PENTACHLOROPHENOL	260000	-
PCB-1260	8600	6010.

TMCSD	6a (0-6")	6b (6°-1')
1,2-DICHLOROBENZENE	340	-
1,4-DICHLOROBENZENE	160	- 1
MERCURY	-	0.34
COPPER	40.8	60.8
ACENAPHTHYLENE	130	13
FLUORANTHENE	29000	390
LEAD	121	196
NICKEL	22.6	-
ZINC	184	-
2-METHYLNAPHTHALENE		-
ACENAPHTHENE	270 0	16
ANTHRACENE	5800	56
BENZO(a) ANTHRACENE		-
	10000	-
BENZO(b) FLUORANTHEN	14000	230
BENZO(k) FLUORANTHENE	4900	130
CHRYSÈNE	13000	230
FLUORENE	330 0	-
NAPHTHALENE	3800	-
PHENANTHRENE	26000	320
PYRENE	19000	390
ALDRIN	21.4	-
CADMIUM	-	7.2
DI BENZO(a,h) ANTHRAC	ENE 1600	-
CHLOROBENZENE	16	68
p,p-DDD	-	990
PCB-1260	2820	9600
CHROMIUM TOTAL	55.4	42.1
ARSENIC	-	17.5
2,3,7,8-TCDD	-	30
BENZENE	-	4

TMCSD	7a (0-6°)	7ь (6"-1")
1,2-DICHLOROBENZENE	1600	_
1,4-DICHLOROBENZENE	1600	6800
MERCURY	0.7	0.5
COPPER	73.1	51.4
ACENAPHTHYLENE	490	_
FLUORANTHENE	17000	6400
LEAD	195	206
NICKEL	27.8	20.4
ZINC	172	-
2-METHYLNAPHTHALENE	770	_
ACENAPHTHENE	1800	660
ANTHRACENE	3600	1300
BENZO(a) ANTHRACENE		3700
BENZO(a) PYRENE	10000	2400
BENZO(b) FLUORANTHEN	E 15000	3900
BENZO(k) FLUORANTHEN		1300
CHRYSENE	_	3100
FLUORENE	2700	810
NAPHTHALENE	1400	
PHENANTHRENE	16000	5200
PYRENE	16000	5200
DIEDRIN	_	62
CADMIUM	7.2	29.4
DI BENZO(a,h) ANTHRAC		-
CHLOROBENZENE	160000	
p.p-DDD	160	950
PCB-1260	11000	-
CHROMIUM TOTAL	47.2	37.2
ARSENIC	27.9	21.2
p,p-DDT	40000	310
BENZENE	10000	2200
p,p-DDE	-	870
SILVER VINYL CHLORIDE	5.9	-
DIFLORIN	3	-
HEPTACHLOR EPOXIDE	_	62 70
PARATHION, METHYL	_	70 120
MIREX	<u>-</u>	
MIREA	_	170
		

NOTES

 All units are in ppb (ug/kg) except for inorganics, cyanide, and total glycols, which are in ppm (mg/L or mg/kg), and dioxin which is in ppt (ng/kg or pg/L).

2. Source: AFBCA, Feb 2001.

UNITED STATES AIR FORCE GRIFFISS AIR FORCE BASE ROME, NEW YORK

Figure 2-3b
REMEDIAL INVESTIGATION
SEDIMENT SAMPLE RESULTS
UPPER THREE MILE CREEK

PLOTTED BUFF: /2/02 JJK F:/GRIFFIS/KECE /3MILECREEK/MARCH2002FS/Ke6S3mileFSb.dwg

TMCSD	8a (0-6°)	8b (6"-1')
1,2-DICHLOROBENZENE	220	610
1,4-DICHLOROBENZENE	200	-
MERCURY	0.4	0.3
COPPER	67.6	126
ACENAPHTHYLENE	230	640
FLUORANTHENE	11000	8800
LEAD	205	316
NICKEL	22.9	27.5
ZINC	184	278
	360	440
ACENAPHTHENE	810	580
ANTHRACENE	1600	960
BENZO(a) ANTHRACENE	6300	7200
BENZO(a) PYRENE	4600	6100
BENZO(b) FLUORANTHENE	5400	8100
BENZO(k) FLUORANTHENE	4700	5600
CHRYSENE	5300	7100
FLUORENE	1000	830
NAPHTHALENE	680	510
PHENANTHRENE	8500	7200
PYRENE	10000	8400
CADMIUM	7.7	23.8
ARSENIC	26.7	50.2
CHLOROBENZENE	32	10
PCB-1260	6600	5600
SILVER	6.8	4.4
BENZENE	10	12
CHROMIUM TOTAL	65.8	58.8

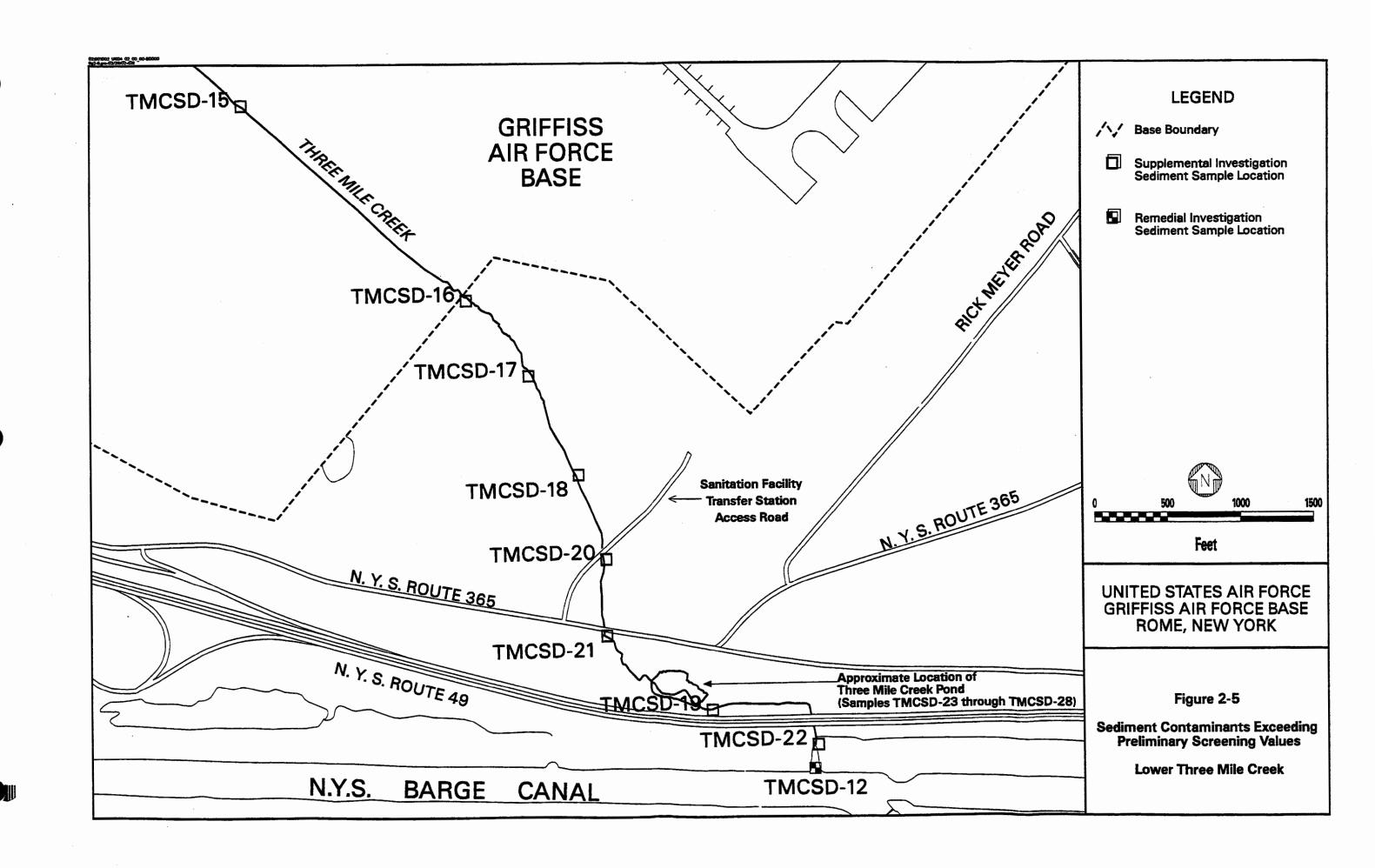
TMCSD	9a (0-6*)	9b (6*-1')
1,2-DICHLOROBENZENE	570	1700
1,4-DICHLOROBENZENE		310
MERCURY	0.42	0.29
COPPER	75.3	42
ACENAPHTHYLENE	300	
FLUORANTHENE	11000	1600
LEAD	211	91.2
NICKEL	24.6	17.5
ZINC	184	-
2-METHYLNAPHTHALENE	240	120
ACENAPHTHENE ANTHRACENE	300	100
	1100	170
BENZO(a) ANTHRACENE	3200	490
BENZO(a) PYRENE	3000	330
BENZO(b) FLUORANTHENE	5400	600
BENZO(k) FLUORANTHENE	3300	190
CHRYSENE	4300	670
FLUORENE	500	170
NAPHTHALENE	320	140
PHENANTHRENE	4000	1100
PYRENE	5600	1300
DI BENZO(a,h) ANTHRACE	NE 130	59
CHLOROBENZENE	6	-
PCB-1260	2400	330
SILVER	4	-
ARSENIC	17.7	8.9
2,3,7,8-TCDD	9.1	- 1
CADMIUM	13.3	6
CHROMIUM TOTAL	44.7	-
p,p-DDD	_	140
p,p-DDT	-	480
MANGANESE		

TMCSD	10a (0-6*)	10b (6*-1')
1,2-DICHLOROBENZENE	97	_
ACENAPHTHYLENE	82	-
FLUORANTHENE	2800	690
LEAD	36.5	40.7
ACENAPHTHENE	120	_
ANTHRACENE	340	120
BENZO(a) ANTHRACENE	1700	460
BENZO(a) PYRENE	1200	310
BENZO(b) FLUORANTHEI	NE 1700	320
BENZO(k) FLUORANTHEI	NE 920	230
CHRYSÈNE	1500	340
FLUORENE	200	-
NAPHTHALENE	87	-
PHENANTHRENE	1700	560
PYRENE	2400	280
DI BENZO(a,h) ANTHRA	CENE -	70
CHLOROBENZENE	2	10
PCB-1260	3400	1600
SILVER	1.8	-
ARSENIC	6.2	6.6
CADMIUM	1.6	-
CHROMIUM TOTAL	-	64.6

TMCSD	11a (0-6*)	11b (6*-1')
1,2-DICHLOROBENZENE	56	_
1,4-DICHLOROBENZENE	-	57
ENDRIN	36	_
ACENAPHTHYLENE	53	-
FLUORANTHENE	3300	1100
	42.2	68
NICKEL	-	27.8
2-METHYLNAPHTHALEN	E 140	-
ACENAPHTHENE	210	-
ANTHRACENE	440	130
BENZO(a) ANTHRACENE	2000	530
BENZO(a) PYRENE	1400	430
BENZO(b) FLUORANTHE	NE 1900	580
BENZO(k) FLUORANTHE	NE 1300	360
CHRYSENE	1400	470
FLUORENE	340	_
NAPHTHALENE	340	_
PHENANTHRENE	2500	740
PYRENE	2800	860
DI BENZO(a,h) ANTHRA	CENE 320	-
CHLOROBENZENE	5	4
PCB-1260	1500	1100
SILVER	_	3190
p,p-DDD	30	20
p,p-DDE	8.3	5.7

LF5SD		
ALPHA-CHLORDANE	9	_
BENZO(a) ANTHRACENE	_	150
BENZO(a) PYRENE	160	140
	120	350
CHRYSENE	230	230
COPPER	18.2	18.8
FLUORANTHENE	510	400
PARATHION, METHYL	2.9	_
PCB-1260	580	1000
PHENANTHRENE	270	210
p,p-DDE	24	25
p,p-DDT	66	_
DIELDRIN	-	8.8
ENDRIN	-	13

LF5SD	2a (0-6*)	2b (6*-1')
ALPHA-CHLORDANE	120	380
ACENAPHTHENE	140	90
ARSENIC	12.5	11.2
BENZO(a) ANTHRACENE	1100	1700
BENZO(a) PYRENE	1400	1800
BENZO(b) FLUORANTHENE	1500	3200
BENZO(k) FLUORANTHENE	1500	1300
` ` `	880	990
CHRYSENE	2300	1800
COPPER	41.2	77
FLUORANTHENE	2300	3300
	178	252
MANGANESE	1210	660
MERCURY	1	0.94
NICKEL	18.4	30.1
PCB-1260	33000	110000
PENTACHLOROPHENOL	10000	_
PHENANTHRENE	1100	1800
2.3.7.8-TCDD	22	38
1	334	319
GUTHION	-	180
CHROMIUM	_	32.6
GAMA-CHLORDANE	-	2200


LF5SD	3a (0-6*)	3b (6*-1')
ALPHA-CHLORDANE	24	_
ACENAPHTHENE	140	180
ACENAPHTHYLENE	-	100
BENZO(a) ANTHRACENE	1400	1500
BENZO(a) PYRENE	1700	1200
BENZO(b) FLUORANTHENE	2000	1700
BENZO(k) FLUORANTHENE	1600	1200
	1300	360
CHRYSENE	2500	1400
COPPER	_	18.7
FLUORANTHENE	2000	2300
	39.6	50.8
MANGANESE	476	294
MERCURY	0.29	0.26
GUTHION	_	140
PCB-1260	11000	48000
ANTHRACENE	_	360
PHENANTHRENE	1500	1600
2,3,7,8-TCDD	4.1	13

- All units are in ppb (ug/kg) except for inorganics, cyanide, and total glycols, which are in ppm (mg/L or mg/kg), and dioxin which is in ppt (ng/kg or pg/L).
- 2. Source: AFBCA, Feb 2001.

UNITED STATES AIR FORCE GRIFFISS AIR FORCE BASE ROME, NEW YORK

Figure 2-3c

REMEDIAL INVESTIGATION SEDIMENT SAMPLE RESULTS UPPER THREE MILE CREEK

TMCSD-15 ANTHRACENE
BENZO(A) PARENE
CHRYSENE
DIBENZO(A) ANTHRACENE
FLUORATHENE
FLUORATHENE
PARENE
NDENO(1,2,3-CD) PYRENE
PHENANTHENE
PYRENE
2,3,7,8-TCDD EQUIVALENT
AROCLOR 1260
LEAD 290 760 700 880 1,100 850 110 1,400 170 97777 1,300 1,700 0,0034 400 50,000

ANTHRACENE 130 BENZO(A)ANTHRACENE 430 BENZO(A)PYRENE 440 BENZO(A)PYRENE 460 BENZO(X)FILIORANTHENE 630 CHRYSENE 540 FILIORANTHENE 840 FILIORANTHENE 68
NDENO(1,2,3-CD)PYRENE

TMCSD-2	3-IL
AROCLOR 1260	2100
CADMIUM	8320
LEAD	178,000

TMCSD-24-NS	
AROCLOR 1260	1700
CADMIUM	6440
LEAD	125,000

TMCSD-25-MC

TMCSD-16	
ACENAPHTHENE ANTHRACENE BENZO(A)PARTHENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(B)FLUORANTHENE BENZO(B)FLUORANTHENE CHRYSENE FLUORENE NDENO(1,2,3—CD)PYRENE 2—METHYLMAPHTHALENE PHENANTHRENE PHENANTHRENE PYRENE 2,3,7,8—TCDD EQUIVALENT AROCLOR 1280	170 360 710 640 660 960 770 77 1,300 280 991 1,400 1,600 0,00011 400

AROCLOR 1260	1430
CADMIUM	5690
LEAD	85,700

TMCSD-26-NS		
149		
· · · · · · · · · · · · · · · · · · ·		

1130 7570 143,000

1	TMCSD-27-MC
	AROCLOR 1260 CADMIUM LEAD
]	L

TMCSD-21		
ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE CHRYSENE 2,3,7,8-TCDD EQUIVALENT AROCLOR 1250	180 97 120 89 140 140 0.0018	

TMCSD-22

270

AROCLOR 1260

TMCSD-28-OL	
824	
7860	
147,000	

TETRACHLOROETHENE	6.4
ANTHRACENE	270
BENZO(A)ANTHRACENE	810
BENZO(A)PYRENE	800
BENZOXBIFLLIORANTHENE	750
BENZO(K)FLUORANTHENE	970
CHRYSENE	900
DIBENZ(A,H)ANTHRACENE	130
FLUORANTHENE	1.700
FLUORENE	130
INDENO(1,2,3-CD)PYRENE	???????/
PHENANTHRENE	1,100
PYRENE	1.700
4.4°-DD	7.6
2.3.7.8-TCDD EQUIVALENT	0.0060
AROCLOR 1260	<i>3</i> 70

TMCSD-18	
ANTHRACENE	170
BENZO(A)ANTHRACENE	540
BENZO(A)PYRENE	570
BENZO(B)FLUORANTHENE	600
BENZO(K)FLUORANTHENE	860
CHRYSÈNE	660
DIBENZ(A,H)ANTHRACENE	92
FLUORANTHÉNE	1,100
FLUORENE	88
INDENO(1,2,3-CD)PYRENE	79
PHENANTHRENE	750
PYRENE	1,400
2.3.7.8-TCDD EQUIVALENT	0.0064
AROCLOR 1260	590
LEAD	45,000

NOTES:

1) ALL ANALYTICAL RESULTS ARE IN $\mu g/kg$, UNLESS OTHERWISE NOTED.

UNITED STATES AIR FORCE GRIFFISS AIR FORCE BASE ROME, NEW YORK

Figure 2-5a CONTAMINANTS IN SEDIMENT EXCEEDING PRELIMINARY SCREENING VALUES LOWER THREE MILE CREEK

3 2001 Three Mile Creek Sediment Sampling

3.1 Introduction

E & E performed the 2001 TMC sediment sampling field investigations between May 22, 2001, and June 5, 2001 (E & E 2001a). Samples were shipped to E & E's Analytical Services Center (ASC) located in Lancaster, New York, for all laboratory analyses except for dioxins/furans analyses, which were performed by Triangle Laboratories, located in Durham, North Carolina. Split samples were analyzed by the United States Army Engineer Research and Development Center (ERDC) Quality Assurance Laboratory, located in Omaha, Nebraska. Sample location and creek bed elevation surveys were performed by LaFave, White, and McGivern, L.S., P.C. located in Boonville, New York.

This section of the revised FS summarizes the data findings of the investigation. Recommendations for the remediation of the TMC channel and pond were developed in conjunction with the conclusions of the current wetland mitigation program being evaluated for the on-base portion of the TMC channel and floodplain. Recommendations are presented in Section 5 of this report.

3.2 Purpose of Investigation

The purpose of this investigation was to:

- Determine the type of contaminants present in the sediments in the TMC channel, off-base pond, and the LF6 wetland sediments;
- Define the vertical and lateral extent of contamination in the on-base portion of TMC channel and Landfill 5 (LF5) tributary and off-base pond; and

Determine the appropriate depth for sediment remediation.

3.3 Field Investigation

All work was performed in accordance with the May 2001 USACE-approved Field Sampling Plan (FSP) (E & E 2001d), which was an addendum to the E & E 1998 TMC channel and 1999 TMC pond FSPs (E & E 1998b and 1999c), and the 1997 SI Final Work Plan (E & E 1997a). Deviations from the FSP methodologies are documented on Field Adjustment Forms presented in Appendix A of this report. In addition, due to unforeseen difficulties encountered in the field, a number of planned sample intervals were skipped at some locations and additional samples were collected in other locations. The deviations from the planned sample intervals and locations are summarized in Table A-1 of Appendix A.

3.3.1 TMC On-Base Channel and Landfill 5 Tributary Sediment Sampling

Twenty-two sample locations were selected from the on-base portion of the creek based on the AFBCA's February 23, 2001, Additional Sediment Sampling Map, and as described in E & E's May 2001 FSP. Three distinct depth intervals were selected to be sampled at the selected locations including the 0.5- to 1.5-foot, the 1.5- to 2.5-foot, and the 2.5- to 3.5-foot intervals to supplement the 0- to 0.5-foot and 0.5- to 1.0-foot intervals sampled during the RI (Law 1996). If an interval was sampled at a location during the RI, the interval was not included in the May 2001 FSP (E & E 2001d). A total of 64 samples were planned to be collected from the TMC channel for laboratory analysis (see Table 3-1 and Figure 2-6).

During the field activities, it was discovered that the sediment core sampler was not capable of penetrating the sediments to the desired depth and it was therefore modified in the field. In addition, at several locations (see Table 3-2 and Figure 2-6) the underlying soils, consisting primarily of tight sands, were encountered beneath the sediments. Because of the underlying tight soils, the sediment core sampler did not always retrieve full recovery. Therefore, a number of planned sample intervals were either skipped or modified due to limited penetration or recovery (see Field Adjustment Form in Appendix A and Tables 1A and 2A). Table 3-1 presents a listing of the samples, includ-

ing planned, skipped, and additional samples; Table 3-2 presents a summary of the actual sample depths and matrix descriptions.

As per the FSP, all the samples were collected using dedicated acetate liners and catchers in the sampler core tube. At each location, the top 6 inches of sediment were removed and the sampler was twisted and pushed into the sediments. At some locations, resistance was encountered and the sampler was pounded to the desired depth of 3.5 feet below top of creek bed (BTOCB) using a slam bar. The depth that resistance was encountered was recorded. In some cases refusal was encountered before the 3.5-foot depth was reached. The sample location was then moved a few feet to an undisturbed area, and the process was repeated. The length of the retrieved sample was measured and then the liner was cut to specific lengths to partition samples into the desired depths. When native soils were encountered, the depth intervals were modified so that the samples were representative of the sediment and the native soil portions. All samples were submitted for TCL VOCs, SVOCs, pesticides, and PCBs; dioxins and furans; TRPH; TOC; TAL metals, including mercury and hexavalent chromium; cyanide; and percent solids (see Table 3-1) analyses using the same analytical methods and data quality objectives as those used during the RI. However, at certain locations where the gravel creek bottom was encountered, insufficient sample volume was retrieved for analysis of the full suite of parameters. Therefore, some of the planned analyses were eliminated, and only the most critical parameters were tested. The parameters were prioritized in the following order, starting with the most critical: PCBs, metals, pesticides, SVOCs, hexavalent chromium, TOC, TRPH, cyanide, then VOCs (see field adjustment form in Appendix A). The samples were tested for an abbreviated set of analyses. As previously agreed upon with the regulators and per the FSP, analyses for organophosphorus pesticides, organochlorine herbicides, and radionuclides were not performed under this investigation.

Sampling was performed between May 22 and June 5, 2001. All samples were immediately placed in a cooler with ice and they were packaged and shipped to the off-site laboratory in accordance with the procedures outlined in the FSP. All work was performed by personnel using Level D protection.

The native soils consisted of either uniformly sorted, brown tight sands, or also tight low plasticity clay with some silt and fine sand, or alternating layers of sand and clay. At 16 of the 25 sampling locations, these tight underlying native soils were readily

distinguished from the creek sediments and were sampled as a separate sample even if they were encountered at depth intervals other than the predetermined ones. The elevation where native soils were encountered varied from 441.87 feet above mean sea level (AMSL) at TMCSD-11 to 454.11 feet AMSL at LF5SD-1 (see Table 3-3 and Figure 2-6).

During the sampling activities and as per the FSP, the creek water depth in the center of the channel and the width of the creek from the top of each high water bank was measured at each sampling location. All sample locations and the elevation of the center-line of the creek channel (where accessible) were recorded by the subcontracted surveyor (see Appendix B). Table 3-3 presents the physical characteristics of the creek at each sampling location, including width of the creek, depth of water, surveyed elevation of top of creek bed (where accessible), and elevation of top of native soils, where encountered.

3.3.2 LF6 Wetland Sediment Sampling

According to the FSP, sediment samples were also collected from the 0- to 0.5-foot interval from four LF6 wetland locations (LF6SD-1-1 through LF6SD-4-1) (see Figure 3-1 and Table 3-1). LF6 wetland samples were collected on May 23 and 24, 2001, using dedicated stainless steel spoons. All LF6 samples were analyzed for TCL VOCs, SVOCs, pesticides, PCBs; dioxins and furans; TRPH; TAL metals, including hexavalent chromium and mercury; cyanide; TOC; and percent solids.

All samples were immediately placed in a cooler with ice and were packaged and shipped to the off-site laboratory in accordance with the procedures outlined in the FSP. All work was performed by personnel using Level D protection.

3.3.3 Off-Base TMC Pond Sediment Sampling

TMC goes through a small pond located south of NYS Route 365, just upstream from NYS Route 49. Sediment samples were collected from this small off-base pond on May 25 and June 5, 2001 (see Figure 2-7). The samples were collected from the approximate locations sampled in November 1999. One sample was collected immediately downstream of the inlet of the pond and one sample was collected immediately upstream of the pond outlet. The length of the pond between the inlet and outlet sampling points was then divided in two even segments. Two samples were collected inside each segment, not including the inlet and outlet samples. A near-shore and a mid-channel sample

were collected from each segment. The two near-shore samples were collected at opposite sides of the pond. The mid-channel samples were collected at the deepest point of each segment (see Table 3-1). The sampling team determined the deepest location in each segment using a weighted measuring tape and a rod. All sampling points were accessed by boat.

The November 1999 sediment samples were collected from the 0- to 0.5-foot below surface interval. Under this investigation, two depth-specific samples (1.5 to 2.5 feet and 2.5 to 3.0 feet) were collected at each location using the sediment core sampler as specified in the FSP (see Table 3-1).

In addition to the 12 original samples collected from the pond, two duplicate and split samples, one matrix spike/matrix spike duplicate (MS/MSD), and one equipment rinsate were also collected, in accordance with the 1997 QAPjP and 2001 QAPjP addendum.

The samples were collected using the sediment core sampler assembled with a dedicated acetate liner and catcher in the sampler core tube. The water depth was measured and recorded for each location (see Table 3-3). The retrieved sample was measured and the liner was cut to the appropriate lengths in order to partition the retrieved sample at the desired depth intervals. All the pond samples were analyzed for the same parameters as the 1999 SI pond samples (i.e., TCL PCBs, TAL lead and cadmium, TOC, and percent solids).

All samples were immediately placed in a cooler with ice and were packaged and shipped to the off-site laboratory in accordance with the procedures outlined in the FSP. All work was performed by personnel using Level D protection.

3.4 Summary of Results

This section discusses the findings and conclusions of the 2001 TMC sampling program. The TMC channel and pond and the Landfill 6 wetlands sediment samples were analyzed for TCL VOCs, SVOCs, pesticides; PCBs; dioxins/furans; TRPH; metals (including mercury and hexavalent chromium); cyanide; TOC; and percent solids. Summaries of the complete analytical data for all the samples collected are presented in Appendix C.

3.4.1 On-Base Three Mile Creek Channel and Landfill 5 Tributary

Summaries of the analyte concentrations detected in the TMC on-base channel and the Landfill 5 tributary sediments are presented in Table 3-4a, and native soils are presented in Table 3-4b. Positive values are in bold, shaded cells indicate values that exceed the most stringent ecological criteria, and cells that are "boxed" indicate values that exceed human health risk levels. The samples were divided into sediment and native soil and presented in separate tables because the screening criteria is dependant on TOC concentrations, and TOC was averaged for each group due to great difference between the groups. Figure 3-1 presents the sample locations. The total concentrations of PCBs, pesticides, dioxins, VOCs, PAHs, and the individual concentrations of four pesticides (4,4-DDD, 4,4-DDT, total of alpha and beta-chlordane, and total of heptachlor and heptachlor epoxide), four VOCs (1,2-dichlorobenzene [1,2-DCB], 1-4-dichlorobenzene [1,4-DCB], benzene, and chlorobenzene), one PAH (benz(a)anthracene), and four metals (arsenic, cadmium, copper, and lead) are also presented graphically as vertical profiles in Figures 3-2 through 3-10. The vertical profile figures also include the RI data from samples collected from 0- to 0.5-foot and 0.5- to 1-foot depths. However, in some cases, the 2001 sample intervals overlap the 0.5- to 1-foot RI interval. In those cases, the 2001 data is presented in the figures.

PCBs

Two PCBs (Aroclors 1242 and 1260) were detected in the 2001 samples collected from the on-base portion of the TMC channel and its Landfill 5 tributary. Aroclor 1242 was detected in one sample, TMCSD-4-Z4, at a concentration of 71.4 μg/kg, which is slightly higher than its ecological screening level of 70 μg/kg. Aroclor 1260 was detected at all the sampling locations in at least one of the depth intervals sampled during this investigation. The levels of Aroclor 1260 ranged from non-detect in 12 samples to 45,300 μg/Kg in upgradient sample TMCSD-1-Z3. The samples in which PCBs were not detected are the deepest samples at each location. All but two sediment samples and about half of the native soil samples contained Aroclor 1260 in excess of ecological screening criteria, and TMCSD-1, -2, -3, -5, and -11 contained levels in excess of the human health risk level. The ecological screening level was exceeded at all depths 0 to

3.5 feet BGS; however, the human health risk level was only exceeded between depths of 1.1 to 2.7 feet BGS.

Figure 3-2 presents a vertical profile of PCB concentrations in samples collected during both the RI and this investigation, with the lowest concentration range (shown in the figure as orange) representing PCB concentrations lower than the ecological screening level. PCBs less than 1000 µg/Kg (1 part per million [PPM]) are represented by orange, light blue, green, and light purple. Only one sample, TMCSD-5-1, in the 2.5- to 3.5-foot interval, contained PCBs at concentrations higher than 1 PPM. In general, PCB concentrations are higher in the upstream locations, with the highest concentration of 110,000 µg/Kg detected in the RI sample LF5SD-2b (at the 0.5-to 1-foot depth). Such high PCB levels were not found in any of the other samples. Since the RI was performed between September 1993 and April 1995, the RI shallow intervals have since been either buried under new sediments or have been transported and deposited downstream. Therefore, a direct comparison of shallow (0- to 1-foot interval) versus deep (1- to 3.5-foot interval) samples cannot be performed. However, a general decreasing trend in samples from both investigations is observed not only from upstream to downstream, but also with depth. In addition, the shallow RI samples contained higher concentrations than the samples collected in 2001 at deeper depths at the same location, except for sample TMCSD-11-Z3 (1.1- to 2.3-foot depth), which contained Aroclor 1260 at a concentration of 11,700 µg/Kg, which is an order of magnitude higher than those detected at the shallower intervals at this location (1,500 and 1,100 µg/Kg in the 0- to 0.5-foot and 0.5- to 1-foot depth samples, respectively). The creek bottom at this location is deep, forming a miniplunge pool from water discharging from a culvert under a dirt roadbed. The deeper water allows more sedimentation to take place, even during higher flow conditions. The high concentration of PCBs in this location is confined to the sediment portion of the creek, leaving the underlying soils relatively free of PCB contamination. Moreover, in all cases where the native soils were sampled, they were found to contain lower concentrations of PCBs than the samples collected from the sediments deposited above them, and in eight locations (LF5SD-2, LF5SD-3, TMCSD-5, -9-1, -9-4, -10, -10-2, -and -11), PCBs were not detected at all in the native soil sample portion.

Pesticides

Eighteen pesticides were detected in the on-base portion of the TMC channel and its Landfill 5 tributary during the 2001 investigation and 16 were found at concentrations exceeding the ecological screening criteria in at least one sample. None of these compounds exceeded human health risk levels. The concentrations of pesticides may be biased high where high levels of PCBs are present due to matrix interferences.

Figure 3-3 presents a vertical profile of total pesticide concentration detected in samples collected during both the RI and this investigation. Seven deep (LF5SD-2, -3, TMCSD-5-2, -9-1, -9-3, -9-4, and -10 from 2001) and five shallow (TMCSD-4, -5, -8, -9, and -10 from the RI) samples did not contain any pesticides. High total pesticide concentrations (higher than 1,000 μg/Kg) were detected in samples TMCSD-5-Z3, TMCSD-7b, TMCSD-3-Z3, LF5SD-2b, TMCSD-10-Z4, and TMCSD-6b. Although, in general, the deepest samples contain lower total pesticides concentrations, samples TMCSD-4-Z4, and -10-3-Z4 were found to have the highest concentrations at these locations. Also, the Z3 samples collected from the north tributary and location TMCSD-5 were found to have consistently higher concentrations than the rest of the samples collected at these locations. In addition, with a couple exceptions, the 0.5- to 1-foot interval samples collected from the main channel were found to have the highest concentrations.

Figures 3-3a through 3-3d present vertical profiles for selected pesticides (4,4-DDD, 4,4-DDT, total of alpha and beta-chlordane, and total of heptachlor and heptachlor epoxide). These pesticides were selected because they were found at concentrations higher than the screening criteria during this investigation and because they were also detected in both deep and the intermediate sample depths. The first range of concentrations presented in Figures 3-3a and 3-3b (shown in the figure as orange) represents levels lower than the screening criteria. The first two ranges (shown in orange and blue) in Figures 3-3c and 3-3d represent levels lower than the screening levels for the native soils (2% TOC) and sediment samples (5.4%), respectively.

Concentrations of 4,4-DDD and 4,4-DDT were detected higher than screening criteria across the whole length of the on-base portion of the creek and its tributaries. Although in most cases the deep samples contained these pesticides at concentrations lower than the screening levels, 4,4-DDD was found in the Z4 samples at concentrations exceeding the screening levels at two locations (TMCSD-2 and TMCSD-10-3), and 4,4-

DDT was found in concentrations exceeding the screening levels at six locations (TMCSD-1, TMCSD-3, TMCSD-4, TMCSD-5, TMCSD-6, and TMCSD-10-3). Similarly, total chlordanes were not detected at concentrations higher than the screening levels in most of the deep samples. They were, however, detected at concentrations higher than the screening level at four locations (TMCSD-1, TMCSD-4, TMCSD-5, and TMCSD-6). Heptachlor epoxide and epoxide were detected at a few locations during this investigation, and, with the exception of sample TMCSD-7b, they were not detected at all during the RI. The highest concentrations were detected in upstream locations, at the confluence of the two tributary channels. At location TMCSD-5-1, they were also detected in the deep sample collected from the soil layer at a depth of 2.8 to 3.5 feet BTOCB.

The following sample locations contained pesticides at concentrations higher than their screening levels in the deep sediment/soil layer: TMCSD-1 (4,4-DDT, and gammachlordane), TMCSD-2 (4,4-DDD and heptachlor), TMCSD-3 (4,4-DDT and heptachlor epoxide), TMCSD-4 (4,4-DDT, alpha-chlordane, and heptachlor epoxide), TMCSD-5 (4,4-DDT, alpha-chlordane, and heptachlor epoxide), TMCSD-5-1 (heptachlor epoxide), TMCSD-6 (4,4-DDT, alpha-chlordane, and endosulfan I), LF5SD-1 (alpha-chlordane), TMCSD-8-2 (gamma-chlordane and heptachlor epoxide), TMCSD-9 (heptachlor epoxide), TMCSD-10-2 (heptachlor epoxide and methoxychlor), TMCSD-10-3 (4,4-DDD and 4,4-DDT), and TMCSD-11 (heptachlor epoxide).

Dioxins

Dioxins were detected in 33 of the 49 samples tested (including duplicates) at concentrations ranging from 0.02 to 72.076 nanograms per kilogram (ng/Kg). Dioxins were detected at levels exceeding the ecological screening criterion of 10 ng/Kg and 1 ng/Kg for sediment and native soil, respectively, in 12 of the sediment samples analyzed. Dioxins were detected above ecological criteria in only one of the native soil samples (TMCSD-10-3-24). The human health risk levels for dioxins were not exceeded in any of the samples. The highest concentrations were detected in samples TMCSD-1-Z3, TMCSD-7-Z3, and TMCSD-7-1-Z2.

Figure 3-4 presents a vertical profile of total 2,3,7,8 tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), of which equivalent concentrations were detected in samples collected during both the RI and this investigation. In general, dioxin concentrations de-

creased both downstream and with depth. Although dioxins exceeded ecological screening criteria in the 2.5- to 3.5-foot interval in five samples, all five samples were sediment, not native soil. The highest concentrations were consistently detected in the 1.5- to 2.5-foot depth.

VOCs

Twenty-one VOCs were detected in the on-base portion of the TMC channel and its Landfill 5 tributary during the 2001 investigation. Twelve samples did not contain any VOCs at various depth intervals. The only VOCs detected at concentrations higher than ecological screening criteria are 1,2-DCB, 1-4-DCB, benzene, and chlorobenzene. No VOCs were detected above human health risk levels.

DCB compounds are target compounds for both VOCs, by Method 8260B, and SVOCs, by Method 8270C. The DCBs have high boiling points and are at the high end of the VOC purgeable range and low end of the SVOC extraction range. The base practical quantitation limit (PQL) for the VOC method is $10 \mu g/\text{Kg}$ and the base PQL for the SVOC method is $330 \mu g/\text{Kg}$. The PQLs are corrected for percent moisture and a dilution factor. The results show that the SVOCs results are consistently higher than the VOC results for the DCBs. In the five cases where DCBs were detected by the VOC method and not the SVOC method, the SVOC method samples were analyzed at a dilution and had an elevated PQL. In summary, the results indicate that the purge efficiency of the DCBs has been significantly reduced in the VOC analysis, most likely due to the high level of organic carbon in the sediments; therefore, the results reported as extractable SVOCs are more reliable.

Figure 3-5 presents a vertical profile of total VOC concentration detected in samples collected during both the RI and this investigation. The highest total VOC concentrations (higher than 100,000 ppb) were detected at location TMCSD-7 during both investigations. Upstream, most of the RI samples contained lower total VOC levels than the 2001 deeper samples collected at the same location. Nine of the 13 native soil samples collected from the main channel contained total VOCs at concentrations lower than 1 μg/Kg. Total VOC concentrations did not exceed 100 μg/Kg in any of the 2001 samples collected downstream of TMCSD-8-2, although such concentrations were detected in

the shallow RI samples TMCSD-9a and TMCSD-9b (0- to 0.5-foot and 0.5- to 1-foot depth).

Figures 3-5a through 3-5d present vertical profiles for the four VOCs detected at concentrations higher than screening levels. Since 1,2-DCB and 1,4-DCB were analyzed by both methods, the highest levels detected were used to generate these illustrations. The first two ranges (shown in orange and blue) in these figures represent concentrations lower than the screening levels for the native soils (2% TOC) and sediment samples (5.4%).

The LF5 channel and north channel samples did not contain any of the four VOCs selected (1,2-DCB, 1,4-DCB, benzene, chlorobenzene) at concentrations higher than the screening levels, except for chlorobenzene in sample LF5SD-2a. Moreover, none of the 2001 samples collected downstream of location TMCSD-7 contained these four compounds at concentrations higher than their screening levels. Benzene was detected at one location, TMCSD-7, at concentrations higher than screening levels. At that location, the two shallow samples collected during the RI and the 1.5- to 2.5-foot interval sample (Z3) collected during this investigation were found to contain very high concentrations of the four VOCs, whereas the concentrations found in the 2001 0.5- to 1.5-foot interval sample (Z2) were several orders of magnitude lower. The highest concentration of 1,2-DCB was found in sediment sample TMCSD-5-2-Z3 (1.2- to 2.7-foot depth); the highest concentration of 1,4-DCB was detected in RI sample TMCSD-7b (0.5- to 1-foot depth) and 2001 sample TMCSD-5-Z4 (2.5- to 3.5-foot depth), and the highest benzene and chlorobenzene concentrations were detected in RI sample TMCSD-7a (0- to 0.5-foot depth) and 2001 sample TMCSD-7-Z3 (1.5- to 2.4-foot depth). None of the native soil samples contained the four VOCs at concentrations higher than their screening levels.

SVOCs

Thirty-one SVOCs were detected in the on-base portion of the TMC channel and its Landfill 5 tributary during the 2001 investigation, and 26 were found at concentrations exceeding the screening criteria in at least one sample. Most of these exceedences were ecological; however, two PAHs [benzo(a)pyrene and dibenzo(a,h)anthracene] exceeded human health risk levels in four samples (TMCSD-1, -2, -3, and -5) 1.5 to 2.7 feet BGS. Seventeen samples did not contain any SVOCs at various depth intervals. SVOCs de-

tected at concentrations higher than the screening criteria include 16 PAHs (carbazole and dibenzofluorene are very similar to PAHs so they are discussed with them in this report), three unchlorinated phenol compounds, and 1,2,4-trichlorobenzene 1,2-DCB, 1,3-DCB, and 1,4-DCB compounds. The results for the 1,2-DCB and 1,4-DCB are discussed in the VOCs section.

Figure 3-6 presents a vertical profile of total PAH concentration detected in samples collected during both the RI and this investigation. The highest concentrations of total PAHs were detected in the north channel and TMCSD-5. Twelve of the 16 native soil samples contained less than 1 μ g/Kg of total PAHs. The shallow RI samples (0- to 0.5-foot depth) contained high concentrations of total PAHs. Similar concentrations were either detected in the 2001 samples collected at the same location or immediately downstream of them.

Figure 3-6a presents a vertical profile of benz(a)anthracene concentrations, with the lowest range (shown in orange) representing concentrations lower than the screening level. Benz(a)anthracene was selected for illustration because it was detected across the whole length of the on-base portion of TMC and its tributaries and has a relatively low ecological screening level. Benz(a)anthracene was detected at concentrations higher than its ecological screening level of 60 μg/Kg in four samples collected from the native soil layer (TMCSD-5-1-Z4, TMCSD-6-Z4, TMCSD-9-2-22, and TMCSD-10-3-24). Moreover, it was detected at concentrations higher than its screening level in five deep sediment samples (TMCSD-1, TMCSD-2, TMCSD-3, TMCSD-4, and TMCSD-5-1), all at the headwaters of the creek. Similar to other contaminants, a general decreasing trend is observed from upstream to downstream, with the highest concentration of this PAH found at upstream location TMCSD-5 and in the north channel.

TRPH

TRPH was detected in all 28 RI samples and 19 of the 25 2001 samples. There are no ecological or human health risk screening levels available for TRPH. Two of the 2001 samples in which TRPH was detected were collected from the native soils layer (TMCSD-5-1-Z4 and TMCSD-10-3-Z4). TRPH levels ranged from non-detectable (ND) to 10,700 mg/kg in RI sample TMCSD-6b (0.5- to 1-foot depth). The range of detected TRPH in the 0- to 0.5-foot depth interval from RI samples is 34.8 mg/kg to 9,450 mg/kg

with an average of 3,000 mg/kg. The range of detected TRPH in the 0.5- to 3.5-foot depth interval from both RI and 2001 samples is 39.3 mg/kg to 10,700 mg/kg with an average of 1,400 mg/kg. TRPH was typically detected at above-average levels in both the surface and subsurface samples near the headwaters of the creek between the north channel and the LF5 channel (although the LF5 channel had levels well below average), and below-average levels were detected downstream near the installation boundary. TRPH was not generally detected in between these two areas. Each of these areas represent areas of increased deposition along the creek. Figure 3-7 presents a vertical profile of TRPH concentrations.

Metals and Cyanide

Twenty metals were detected in the on-base portion of the TMC channel and its LF5 tributary during the 2001 investigation, including 10 that were detected at concentrations exceeding their ecological screening criteria. The metals detected at concentrations higher than ecological screening criteria included arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc. Although metals were detected in every sample, no metal levels exceeded the ecological screening criteria in 13 samples, of which eight (mostly downstream) are of native soil beneath the creek sediments. Only one metal (arsenic) exceeded the human health risk level in one sample (TMCSD-1) at a depth of 1.8 to 2.4 feet BGS.

Figures 3-8 through 3-11 show vertical profiles for arsenic, cadmium, copper, and lead concentrations from both the RI and current investigation samples. Arsenic, copper, and lead were selected for illustration because they were found in the majority of the samples at levels exceeding ecological criteria and lead is a concern for the off-base pond; cadmium was selected because it is also a contaminant of concern for the off-base pond. The lowest range shown in each figure (shown in orange) represents concentrations lower than the screening level. The distribution of the metals concentrations is sporadic, except for a general decreasing trend in concentration from shallow to deeper samples. Also, similar to other contaminants, the 1.5- to 2.5-foot depth samples at TMCSD-10-3 contained higher concentrations of arsenic, cadmium, and lead; and TMCSD-11 contained higher concentrations of arsenic and cadmium than those found in the shallower and deeper samples. In addition, the shallow sample collected from TMCSD-4 during the RI

contained higher concentrations of all four of these metals than the samples collected at deeper depths.

Arsenic, cadmium, copper, and lead levels generally exceeded ecological criteria in sediments only, not in native soils underlying the sediments. Most of the exceedences were at various depths near the headwaters and north and LF5 channels, and shallower depths further downstream. However, none of the LF5 samples contained cadmium at concentrations higher than the screening level. None of the samples collected downstream of location TMCSD-9 contained copper at concentrations higher than the ecological screening level of 16 mg/Kg. The highest copper level of 128 mg/Kg was found in sample TMCSD-8b (0.5- to 1-foot depth), collected during the RI. This location was not sampled during this investigation due to the presence of very soft, very loose, lightweight, organic materials found at this area. This material was not retrievable with the sampler and it was present everywhere between this location and TMCSD-7-1. The only other location where a similar copper concentration (97 mg/Kg) was detected was in upstream sample TMCSD-2-Z3 (1.8- to 2.4-foot depth), collected during this investigation.

Hexavalent chromium was detected in 13 of the samples at concentrations ranging from ND to 2.8 mg/Kg. One of the samples that contained hexavalent chromium was collected from the underlying soils.

Cyanide was detected in eight samples. None of the Landfill 5 samples or samples taken from downgradient of TMCSD-8-2 contained cyanide. Also, none of the native soil samples contained cyanide.

3.4.2 Landfill 6 Wetlands

Summaries of the analytical results for the Landfill 6 sediments are presented in Table 3-5.

PCBs

One PCB, Aroclor 1260, was detected in the Landfill 6 samples collected from the 0- to 0.5-foot BGS interval. PCB concentrations ranged from ND, in sample LF6SD-3-1-Z1, to 964 μ g/Kg, in sample LF6SD-4-1-Z1. In all three samples in which Aroclor 1260 was detected, it was found at concentrations exceeding its ecological screening criterion

of 5 µg/Kg. No PCBs were detected in the wetland sample above human health risk levels.

Pesticides

Twelve pesticides were detected in the Landfill 6 sediment samples. 4,4-DDD, 4,4-DDE, 4,4-DDT, endosulfan I and II, and heptachlor epoxide were found at concentrations exceeding their ecological screening criteria. The lowest concentration for five of these six pesticides was detected in sample LF6SD-3-1-Z1 (the lowest heptachlor epoxide was detected in LF6SD-4-1-Z1), and the highest concentrations were detected in sample LF6SD-4-1-Z1 (except for heptachlor epoxide). No pesticides were detected in the wetland samples above human health risk levels. The concentrations of pesticides may be biased high where high levels of PCBs were detected due to matrix interferences.

Dioxins

Concentrations of dioxins/furans detected in the Landfill 6 wetland sediment samples, ranged from 8.68 ng/kg to 47.113 ng/kg. Only one sample (LF65D-4-1-Z1) contained dioxins/furans above the screening level of 24 ng/kg.

VOCs

Two VOCs, 1,2-DCB and trichloroethene (TCE), were detected in the Landfill 6 samples. These compounds were detected in sample LF6SD-4-1-Z1 at levels lower than the ecological and human health risk screening criteria.

SVOCs

Sixteen SVOCs were detected in the Landfill 6 sediment samples. Twelve of these SVOCs, including 11 PAHs and benzoic acid, were detected at concentrations exceeding their ecological screening criteria. The PAHs detected at concentrations higher than screening criteria included anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene. All these PAHs were detected at concentrations higher than their ecological screening levels in sample LF6SD-4-1-Z1, which was also found to contain the highest concentrations of all of these PAHs except

benzo(b)pyrene. The lowest concentrations of these PAHs were found in sample LF6SD-3-1-Z1. No SVOCs were detected in wetland samples above human health risk levels.

TRPH

No TRPH were detected in any of the Landfill 6 wetland sediment samples.

Metals and Cyanide

Nineteen metals were detected in the Landfill 6 sediment samples, including 10 that were detected at concentrations exceeding their ecological screening criteria and one (arsenic) exceeding its human health risk level. The metals detected at levels higher than ecological screening criteria included arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, mercury, and zinc. All these metals were detected at concentrations higher than their ecological screening level and higher than the human health risk level for arsenic in sample LF6SD-4-1-Z1, which was also found to contain the highest concentrations of most of the metals detected. The lowest concentrations of most of the metals were found in sample LF6SD-3-1-Z1.

No hexavalent chromium was detected in any of the Landfill 6 samples. Low levels of cyanide were detected in all the samples at concentrations ranging from 0.598 mg/Kg, in LF6SD-3-1-Z1, to 1.38 mg/Kg, in LF6SD-1-1-Z1.

3.4.3 Off-Base Three Mile Creek Pond

Summaries of the analytical results for the off-base TMC pond sediments are presented in Table 3-6. Figures 3-12 through 3-14 present vertical profiles of the PCBs, cadmium, and lead concentrations detected in both the 1999 and 2001 sampling events.

PCBs

One PCB, Aroclor 1260, was detected in the pond samples collected during the 1999 and the 2001 investigations. Aroclor 1260 was detected at concentrations higher than its ecological screening criterion of 5 μ g/kg in all the samples except for sample TMCSD-26-NS-Z4, collected from the 2.5- to 3-foot depth interval, which did not contain any PCBs. Location TMCSD-26-NS exhibited the lowest concentrations of PCBs

for each of the three depth intervals. The 1999 shallow (0- to 0.5-foot depth) samples contained higher Aroclor 1260 concentrations than the deeper samples collected under this investigation, with the exception of location TMCSD-28-OL, located near the pond outlet. The highest level, 2,100 μ g/Kg, was detected in sample TMCSD-23-IL (0- to 0.5-foot interval), which was collected near the inlet of the pond. The highest concentration detected in the 2001 samples, 1,370 μ g/Kg, was found in deep sample TMCSD-OL-Z4 (2.5- to 3-foot depth), at the outlet of the pond. No PCBs were detected in pond samples above human health risk levels.

Metals

Cadmium and lead were detected at all the sample locations. Cadmium was not detected in samples TMCSD-25-MC-Z4 (2.4- to 3-foot depth), TMCSD-26-NS-Z3 (1.5- to 2.5-foot depth), and TMCSD-26-NS-Z4 (2.5- to 3-foot depth). As with the PCBs, the highest concentration of cadmium was found in shallow inlet sample TMCSD-23-IL (0- to 0.5-foot depth), and the highest concentration of lead was found in mid-channel sample TMCSD-27-MC-Z3 (1.5- to 2.5-foot depth). Location TMCSD-26 exhibited the lowest concentrations for each depth interval for both lead and cadmium.

Similar to PCB levels, cadmium concentrations at each location were highest in the shallow samples, whereas lead concentrations were highest in the middle sampling interval. Both metals were detected in concentrations higher than ecological screening levels in at least one sample at each location, with the exception of lead, which was not detected at concentrations higher than its ecological screening criterion at location TMCSD-26-NS. No metals were detected in pond samples above human health risk levels.

3.4.4 Summary and Conclusions

3.4.4.1 On-Base TMC Channel and LF5 Tributary

Multiple sediment sampling events within the on-base portion of TMC and LF5 Tributary have determined that contaminants are present throughout the creek at various concentration levels and at various depths. The sediments in the on-base portions of the creek (where full penetration was measurable) range in thickness from 0.5 feet at TMCSD-9-2 to 2.8 feet at TMCSD-5-1. Of the 25 locations sampled in 2001, native soils

were readily discernible beneath the creek sediments at 16 locations. Where native soil was encountered, the sediments averaged a thickness of 1.75 feet. Significant areas of deposition (i.e., greater than 3.5 feet thick) occur near the headwaters at TMCSD-5, representing the confluence of the north channel and the main channel; and mid-stream at TMCSD-8-1. More subtle areas of deposition (approximately 2 to 2.5 feet) occur at the confluence of the main channel and the LF5 channel; and further downstream at TMCSD-9-4 and TMCSD-11 (see Figures 2-6 and 3-1). The depositional areas at TMCSD-8-1 and TMCSD-9-4 are the result of topographic highs in the stream bottom immediately downstream of these locations causing the water to pool behind them. Beaver activity in the vicinity of TMCSD-8-1 has also caused water to back up, resulting in increased sedimentation rates. Small pools of water also intermittently form at TMCSD-9-1 due to the presence a small rise in elevation (cobbly area); and TMCSD-10-3 and TMCSD-11 due to the presence of a culvert beneath a dirt road between these two locations. Deposition also occurs in these areas as particles settle to the bottom of the pooled water.

Summary

The following points summarize the remedial investigations of the on-base TMC channel and LF5 tributary:

- PCBs were detected at all 26 RI and 2001 samples locations in at least one depth interval at levels exceeding the ecological screening criteria of 5 μg/Kg. PCBs above human health risk levels were only detected at five locations (TMCSD-1, -2, -3, -5, and -11) at depths of 1.1 to 2.7 feet BGS. The highest concentrations of PCBs occur near the headwaters (main channel, north channel, and LF5 tributary). All of the highest concentrations (i.e., greater than 10,000 μg/Kg [10 PPM]) occur in sediments no deeper than 2.5 feet. Concentrations greater than 1,000 μg/Kg (1 PPM) were only detected in sediment samples all less than 2.5 feet in depth, except for one native soil sample (TMCSD-5-1-Z4), at a depth of 2.8 to 3.5 feet.
- Pesticides were detected at all 26 RI and 2001 sample locations in at least one depth interval at levels exceeding ecological screening criteria. No pesticides exceeded human health risk levels. Ecological exceedences in the 2.5- to 3.5-foot depth interval occurred in nine samples near the headwaters (including the main channel, north channel and LF5 tributary) between TMCSD-1 and TMCSD-6; two mid-stream locations (TMCSD-8-1 and TMCSD-9); and three downstream locations near the installation boundary (TMCSD-10-2, -10-3, and -11).

- Dioxins were detected at 23 of the 26 RI and 2001 sample locations in at least one depth interval. Where detected, dioxin concentrations exceeded ecological screening criteria in 12 of the 2001 sediment samples analyzed. Dioxins exceeded ecological screening criteria in one native soil sample. No dioxins were detected above human health risk levels.
- VOCs were detected in 24 of the 26 RI and 2001 sample locations in at least one depth interval. Concentrations exceeded ecological screening criteria in 10 sediment samples near the headwaters of the creek, including the main and north channel and LF5 tributary between TMCSD-1 and -9. Exceedences in the 2.5- to 3.5-foot depth interval occurred in only one sample (TMCSD-5), at the confluence of the north and main channels. No VOCs were detected above human health risk levels.
- SVOCs were detected at all 26 RI and 2001 sample locations in at least one depth interval. Concentrations exceeded ecological screening criteria in all but one sediment sample (TMCSD-10-1) and three native soil samples. Exceedences in the 2.5- to 3.5-foot depth interval occurred in eight samples near the headwaters (main channel and north channel) between TMCSD-1 and TMCSD-5-2; and one downstream location near the installation boundary (TMCSD-10-3 [native soil]). Two PAHs (one in TMCSD-1, -2, -3, and -5; and two in TMCSD-5) were detected above human health risk levels at depths of 1.5 to 2.7 feet BGS.
- Metals were detected at all 26 RI and 2001 sample locations in at least one depth interval. Concentrations exceeded ecological screening criteria in all but four sediment samples (TMCSD-9-1, -10, -10-1, and -10-2) and seven native soil samples. Exceedences in the 2.5- to 3.5-foot depth interval occurred in eight samples near the headwaters (main channel, north channel, and LF5) between TMCSD-1 and TMCSD-5-1, and LF5SD-1 and -2; three midstream (TMCSD-8-1, -9, and -9-3); and four downstream locations near the installation boundary (TMCSD-10-2, and -10-3). Only one metal exceeded human health risk levels in the TMCSD-1 at a depth of 1.8 to 2.4 feet BGS.
- TRPHs were detected at 21 of the 26 RI and 2001 sample locations in at least one depth interval. TRPH was not detected at TMCSD-8-1, -9-2, -9-3, -9-4, and -10-1. TRPH was detected in the 2.5- to 3.5-foot depth interval in five samples near the headwaters (main channel and north channel) between TMCSD-1 and TMCSD-5-1; and one downstream location near the installation boundary (TMCSD-10-3 [native soil]) at levels ranging from 160 to 2,040 mg/Kg with an average of 650 mg/Kg.

General Conclusions

The following general conclusions can be made from the investigation of the onbase TMC channel and LF5 tributary:

- As expected, contaminant levels were highest upstream and decreased in concentration downstream. Contaminant levels also decreased with depth;
- Contaminant levels were higher in areas of obvious deposition compared to surrounding areas;
- Sediments were readily discernible underlying native soils through observations of more than half of the locations sampled. The ability to distinguish between creek sediments and underlying native soils was also enhanced by the chemical composition of the samples (i.e., the levels of TOC were significantly higher in sediment samples compared to native soils);
- The underlying native soil layer (where identified) was significantly less contaminated, and in many cases contaminant-free, than the overlying sediments; and
- Exceedences occurred in the 2.5- to 3.5-depth interval between the headwaters (main and north channel) to the LF5 tributary (including the tributary itself); intermittently mid-stream at TMCSD-8-1, -9, and -9-3; and downstream near the installation boundary at TMCSD-10-2, -10.3, and -11).

3.4.4.2 LF6 Wetlands

Samples of LF6 wetland sediment were collected on the TMC floodplain, downgradient of LF6 to the northeast of TMC, and northeast of the sediment berm along the creek bank (see Figure 3-1). All samples were collected from a depth of 0 to 0.5 foot.

Summary

The following points summarize the remedial investigations of the LF6 wetlands:

- Aroclor 1260 was detected in three of the four samples, and pesticides were detected in all four samples, all at concentrations higher than the ecological screening criteria. The highest concentrations of Aroclor 1260 and pesticides were found in sample LF6SD-4-1. None of these compounds exceeded human health risk levels;
- No dioxins, TRPH, or hexavalent chromium were detected in any of the samples;
- VOCs were only detected in LF6SD-4-1, at concentrations lower than both ecological screening criteria and human health risk levels;
- SVOCs were detected in all four of the samples at concentrations higher than the ecological screening criteria. PAHs were highest in sample LF6SD-4-1.

In addition, the highest level of benzoic acid was detected in LF6SD-3-1. None of these SVOCs exceeded human health risk levels; and

Metals were detected in all four of the samples. Ten metals were detected at concentrations exceeding ecological screening criteria and one was detected above the human health risk level. The highest concentrations of metals were detected in LF6SD-4-1. Low levels of cyanide were detected in all four samples, at concentrations ranging from 0.598 to 1.38 mg/Kg.

General Conclusions

The following general conclusions can be made from the investigation of the onbase LF6 wetlands:

- All of the sediment samples were found to contain contaminants of concern at concentrations higher than the screening criteria. As expected, the presence of the same contaminants in these samples as TMC samples indicates that flood waters from the creek are depositing contaminants on the floodplain.
- The sample with highest levels of contaminants of concern is LF6SD-4-1. This sample is close to the installation boundary, where high levels of contamination were detected in TMC (TMCSD-10-3). Based on topographic contours, when the creek floods in this area, the LF6SD-4-1 sample location is likely inundated with flood waters that transport contaminants from the creek to the floodplain.

3.4.4.3 Off-Base Pond

The off-base pond receives water from TMC and discharges it to the New York State Barge Canal. Vertical profile sediment samples were collected within the pond near the inlet, outlet, mid-channel (mid-pond), and near-shore (see Figure 2-7).

Summary

The following points summarize the remedial investigations of the off-base pond:

- PCBs were found at all locations at concentrations higher than the ecological screening criteria but below human health risk levels. The highest concentration detected in the 1999 shallow samples (0- to 0.5-foot interval) was 2,100 μg/Kg from the inlet location, and the highest concentration in the 2001 subsurface samples was 1,370 μg/Kg in the deep sample (2.5- to 3-foot interval) at the outlet location.
- Cadmium was detected at all 1999 and 2001 locations at concentrations higher than the ecological screening criteria but below the human health risk level.

As with the PCBs, the highest level was detected 1999 in the shallow inlet sample.

■ Lead was detected at all 1999 and 2001 locations at concentrations higher than the ecological screening criteria but below the human health risk level. The highest concentration was detected in the 2001 mid-channel sample at a depth of 1.5 to 2.5 feet.

General Conclusions

The following general conclusions can be made from the investigation of the offbase pond:

- Contaminants from TMC are settling to the pond bottom due to the increased water depth and lower water-flow rates. Sedimentation rates are highest near the inlet under normal flow conditions and highest near the outlet under high-flow (i.e., storm) conditions.
- Contaminants are present to depths to 3 feet at all locations tested except TMCSD-26-NS.

Table 3-1 Sample Listing Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

ANALYSES

81SSQ_MT8A- abilo8 &	4×	×	×	×	×	×	×	×	o.	×	×	×	S		(C)	×	(c.	0	o c	×	×	×	×	×	×	×	×	×	S	×	×	S	S	×	S
80109W2-mulmbsO bns bse.	1		ľ							1				ŀ			l	l		Ĺ															
OC -Lloyd Kahn	۱×	×	×	×	×	×	×	×	S	×	×	×	S	S	S	×	S.	o o	S	×	×	×	×	×	×	×	×	×	တ	×	×	တ	S	×	S
CCL PCBs -SW8082	×	×	×	×	×	×	×	×	S	×	×	×	S	S	S	×	S	00	S	×	×	×	×	×	×	×	×	×	S	×	×	S	ဇာ	×	လ
M1.214 AGE- HGRI	۱×	×	×	×	×		i			×			300	S		1		1			×	l	١.	١.		×				×		l		×	S
ASTOEWS-Sbinsy	1	×	×	×	×	×	×	×	S	×	×	×	S	S	S	×	S	တ	S	×	×	×	×	×	×	×	×	×	S	×	×	S	တ	×	S
A1747/80103W2 A3617W2 - Muimondo thelsvayel]	×	-	100	١.	×				l	J.,		ļ	1	١.		l	4	S		١.,	×	- 3		×					×		S	တ	×	S
TAL Metals/Mercury-	ľ	×	<i>:</i>	×	233			1	1000	ं						1	1		1		×	ŧ		.563			1	3	100				တ	200	
TCL Dioxins & Furans -EPA 1613B		1				99			١					1	1	1		1	1	l	×								,.				S		
A 1808W2- sebicides - SV	1					200								1					1	1									W.	-		1.3			
TCL SVOCs -SW8270C	1	1				- 10037	133			1		-		1	1	i		1	-	١.	×						×			×	×	40	S		
	136				W	231	U . 1										1		-	V.					-					-					
at Type	z	Z	z	FD	FR	Z	2	Z	Z	Z	Z										z	Z	WS	z	H	FR	Z	z	z	Z				Z	Z
P Stat	_	Ţ /	7		Τ /	Τ ,	/ T	7	S	, T	Τ ,	Τ,	S	8	S		S	S	S	_	Ţ ,	Ι,	-	, Τ	_	Ţ	1	Τ,	s ,		١١		S		S
W N				^	λ	_																λ	z	Υ.	Z	Z	Z	>	٨	_	z	_	^	^	^
<u>.</u>	ent	ent	ent	ent	ent	E	ent	ent	ent	ent	ent	ent	ent	of OC	ent	ent	ent	ent	ent	ent	ent	ent	Sediment QC	ent	ent	ent	ent	eut	ent	ent	200	ent	ent	ent	ent
Matrix	Sedimen	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment Q	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	dimer	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment Q(Sediment	Sediment	Sediment	Sedimen
	ď		٥	0)	"	Ϋ́	0)	"	0,	روا			"	Se	0,	0,	ری	3	0,	33	07	(0)	Šě	6)	"	S	3)	87	(0)	0)	Se	ری	3)		0)
pth																																			-
Sample Depth	1.8'-2.4'	2.4'-3.5'	1.5'-2.7'	3-2.7	1-2.7	.35	2.2	1-3.5		2.9'-3.5'	-2.5	-3.5				8'-3.5				1.4'-2.7	2.7'-3.5'	1.3'-2.8'	1.3'-2.8'	2.8'-3.5'	1-3.5	2.8'-3.5'	-1.5	1.5'-2.4		5'-1'1'	0.5'-1.1		Ì	1.1-2.5	
ampl	1.8	2.4	-	-	-	2.7	-	2		2.5	-	22				2.8				1.4	2.7	=	-	2.8	2.8	2.8	0.5			0.5	0.5			=	
	_	=	ᇎ	=		ᇎ	=	æ	=	_	æ	_	_	_	_	_	-8	-		₽	æ		_	ᇎ	اچ		=	ᇎ	ᇎ	31	~	,		-	,
Lab ^a	ASC/TRI	ASC/TR	ASC/TRI	ASC/TR	EBDC	ASC/TR	ASC/TR	ASC/TRI	ASC/TR	ASC/TR	ASC/TR	ASC/TRI	ASC/TRI	ASC/TR	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ERDC	ASC/TRI	ASC/TR	ASC/TR	ASC/TR	ASC/TRI	ASC/TRI	ERDC	ASC/TR	ASC/TRI	ASC/TH	ASC/TRI	ASC/TRI	ASC/TR	EBBC	ASC/TRI	ASC/TR
_	A	Ä	¥	¥	٦	۲	۲	¥	¥	¥	¥	¥	¥	¥	Ĭ	ĕ	Ä	¥	3	¥	ř	۲	¥	ř	۲	٦	¥	۲	¥	Ä	¥	Ä	۳	3	ĕ
									ļ	- [(QSN									<u>g</u>	İ	ĺ	ĺ					(GS)			ĺ	
			Ì									ĺ			Ì								ISIN S					-			NS/W	ĺ			
lber	9	4	<u></u>	ရွ	88	_	_		_	.	_		22	TMCSD-5-1-Z2 (MS/	23	77	22	TMCSD-5-2-Z2/D	TMCSD-5-2-Z2/S	23	74		TMCSD-6-Z3 (MS/MS		Ş	છ	ار		_	22	TMCSD-7-1-Z2 (MS/N	TMCSD-7-1-Z2/D	TMCSD-7-1-Z2/S	23	77
Num	7-1-	1-Z	7-Z-Z	7-7-	7.7	-2-Z	3-7	3.7	14-Z	4-Z	-5-Z	-5-Z	٩	5	5		5.2	-5-2-	5.2	5.2	-5-5	79	19-73	Ž-9	7.9 9.7	7-9-	-7-Z	7-7-	7-1-			-			÷
Sample Number	TMCSD-1-Z3	TMCSD-1-Z4	TMCSD-2-Z3	TMCSD-2-Z3/D	TMCSD-2-Z3/S	TMCSD-2-Z4	TMCSD-3-Z3	TMCSD-3-Z4	TMCSD-4-Z3	TMCSD-4-Z4	TMCSD-5-Z3	TMCSD-5-Z4	TMCSD-5-1-Z2	S	TMCSD-5-1-Z3	TMCSD-5-1-Z4	TMCSD-5-2-Z2	CSD	S	TMCSD-5-2-Z3	TMCSD-5-2-Z4	TMCSD-6-Z3	낈	TMCSD-6-Z4	TMCSD-6-Z4/D	TMCSD-6-Z4/S	TMCSD-7-Z2	TMCSD-7-Z3	TMCSD-7-Z4	S	S	잀	S	TMCSD-7-1-Z3	IMCSD-7-1-24
Sa		1	- 1	- 1	- 1	- 1	- 1		Ί.				≥	≥	Ì	Ì	≥	2	- }	- 1	- 1	- 1	- 1	- 1	- 1		≥		≥			≥	- 1		Σ
Date	6/4/2001	6/4/2001	6/4/2001	6/4/2001	6/4/2001	6/4/2001	6/4/2001	6/4/2001		6/1/2001	6/1/2001	6/1/2001	İ			6/1/2001				6/1/2001	6/1/2001	6/1/2001	6/1/2001	6/1/2001	6/1/2001	6/1/2001	5/31/2001	5/31/2001		8	5/31/2001	Ì		5/31/2001	
J	9/9	9/9	8	8	9	8	8	8		5	9	9				2			ļ	2	6/1	5	5	6	5	5	23	233		5/3	9/3			133	2
	p																																		02:001002_UK04_02_02_00-B0925 Unchanged T31_32_33.XLS-Table 3-1-7/5/2002
	TMC Channel and	<u>~</u>																																	0925 ble 3·1·
_	hann	LF5 Tributary																																	2_00-B XLS-Ta
Location	S	5 Tri																																	12_33.)
Γο	ĭ	1																																	131.
																																			02:001002_UK04_02_02_00-B0925 Jnchanged T31_32_33.XLS-Table 3
																																			85

Table 3-1 Sample Listing Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	81SSQ_MT2A- 2bilo2 %	s	တ	S	×	×	×	× :	× [[;	× 0	o >	< c:	×	×	တ	တ	လ	×	×	n c	ه اه) ×	×	s	တ	S	×	×	×	× ×	< <i>></i>	
	Lead and Cadmium-5W6010B	120					1		1	1				S						1	701												H
	TOC -Lloyd Kahn	S	S	S	×	×	×	×	×	מ	×	2	< O	×	×	S	S	S	×	×	S) C	o	×	×	S	S	S	×	×	×	×	< ×	S
	TCL PCBs -SW8082	S	S	လ	×	×	×	×	× 0	'n	K O	ر ر	< 0	×	×	S	S	S	×	×	တ	0	×	×	တ	S	တ	×	×	×	×	<	: 0
_	M1.314 A93- H9AT	S	S	S	×	×	×	×	×	n	×σ	>	< 0	×	×	S	S	S	×	×	v) c	olu	×	×	S	တ	S	×	×	×	××	×ا×	S
ANALYSES ^b	AST06W2- ShinsyO	S	တ	S	×	×	×	×	<	0	×	2 >	< 0	×	×	s	တ	S	×	×	200	٥	×	×	တ	S	S	×	×	×	×þ	(×	8
ALY:	Hexavalent chromium - SW7196A	S	တ	S	×	×	×	× ;	< 0	n)>	< 0	>	< 0	×	×	S	S	တ	×	×	n	2	×	×	တ	S	S	×	×	×	×	< ×	S
AZ	TAL Metals/Mercury- SW60108/7471A	S	S	S	×	×	× :	×	K	0 3	< 0	۶ >	co	×	×	S	S	S	×	×	٥٥	20	×	×	ဇာ	S	s	×	×	×	×Þ	۲×	8
	TCL Dioxins & Furans -EPA 1613B	S	S	S	×	×	× :	×	κ (٥	n	ր >	< 0	×	×	S	S	တ	×	×	n	2 0	×	×	S	တ	S	×	×	×	× >	×ا×	S
	TCL Pesticides -SW8081A	S	S	S	×	×	× :	× :	4	0	< 0	>	do	×	×	တ	S	တ	×	×	no	90	×	×	S	S	S	×	×	×	×þ	ز ا ×	S
	TCL SVOCs -SW8270C	S	S	လ	×	×	× :	×	۷,	0	< 0	>	< S	×	×	S	S	တ	×	×	n	טומ	×	×	တ	S	S	×	×	×	× >	×	တ
	TCL VOCS -SW8260B	S	S	S	×	×	× :	ĸ,	× c	n)	< 0) >	c	×	×	S	S	တ	×	×	no	200	×	×	S	S	S	×	×	×	× >	٠×	S
	Туре	z	z	z	z	z	2 6	Ŧ	2	<u>و</u> ع	z	z	z	z	z	FD	FH	z	z	z	z	z	z	z	z	면	FR	z	z		<u> </u>	z	z
	Stat	S	S	S	⊢	-	_ ,	- -	- 0	۱	_ 0	, -	- s	-	ı	S	S	တ	- 1	-	n	2 0.) -	<u> </u>	တ	S	S	-	-	-	- -	- -	8
	W	٨	>	≻	>	>	z :	z	- >	- >	- >	- 2	<u>-</u>	>	>	>	>	>	≻ :	- :	- >	- >	>	_	>	\	>	>	>	z	z >	- >	>
									ļ	اد																							
	Matrix	nent	Sediment	nent	Sediment	Tent.		Jen 1	Sediment		Sediment		neut	nent	nent	nent	nent	nent	nent	nen.	Heritan de la constant de la constan	Sediment	Juent	Sediment	ment	ment	ment	ment	ment	ment	Sediment	i i	Sediment
	Ma	Sediment	Sedi	Sediment	Sedii	Sediment	Sediment	Sediment	ned i		Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sedimon	S C	Sediment	Sedii	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sed	Sedi	Sedi
									10	֓֟֟֓֟֓֟֓֟֓֓֟֟֓֓֟֓֟֓֟֓֓֟֟֓֓֟֟֓֓֟֟֓֓֟֟֓֓										١													
	pth					.								_	_			-	_		1		_						10	10		مان	, \.
	Sample Depth				2.2'-2.5'	2.5'-3.5'	5	5	2	2	Ÿ	5.16		3.5	5'-1.0'				1.0'-3.5	5-1.1			5.1.1	-3.5				.5'-1.85'	5'-3	5'-3.	1.85-3.5	5.3	
	ampl				22	٥	N)	, i	5	0	3	٥	٩	100	0				-	Ö			Ö	-				0.5	1.8	8)	89	9	
			=	=	<u>_</u>	-	=	.	= =	 = =	= =		. _	=	=	~		=		= ;	= 7	: -	=	<u>_</u>	=	=		=	-			- -	-
	Lab ^a	ASC/TRI	ASC/TR	ASC/TRI	ASC/TRI	ASC/TRI	ASC IN		ASC/IH	ASCALIN	ASC/TR	ASC/TR	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TR	ERDC	ASC/TR	ASC/TRI	ASC/IR	ASC/ITE	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ERDC	ASC/TRI	ASC/TH	ASC/TR	EHDC		ASC/TRI
	1	AS	AS	AS	PS	8	~ '	" 5	2		A		S	AS	AS	AS	Ш	AS	8	2	2		AS	AS	AS	AS	Ξ	AS	AS	8	۲	(X	¥
					1													ŀ														İ	
								İ	ĺ	5	ı							Ì															
									WACD.											1	١												
	<u>.</u>					_ [وادِ	وا ۽	TMC5U-8-2-22		_			į		g	ß				_ _					Š	S/c	_		واء	2		2
	qui	.23	-24	1-Z	1-Z3	7];		7-1-	77.7	7 6	27.7	15	3 2	-24	1-Z2	1-Z2	1-Z2	1-23	7 - - -		7 0		3-Z	3-Z	4-Z	4-72	4-Z	4-Z	4-Z4	4-Z4	27 5	0-Z4	0-1-2
	de Ne	3D-8	9-Q5	9	9	٩	۾ واڄ	٥٥					9	6-0%	6-0	6-0	6-0	6	ည္ကိုင္ပ	9			0.00	6-Q	9D-9	9D-9	9-QS	6-QS	6-05			100	<u>6</u>
	Sample Number	TMCSD-8-Z3	TMCSD-8-Z4	TMCSD-8-1-Z2	TMCSD-8-1-Z3	TMCSD-8-1-Z4	T. 1005 6 1 24/U	TACCD 6 2 20	TMCSD-8-2-22	TAACED 6 2 72	TMCSD-8-2-23	TMCSD-9-72	TMCSD-9-Z3	TMCSD-9-Z4	TMCSD-9-1-Z2	TMCSD-9-1-Z2/D	TMCSD-9-1-Z2/S	TMCSD-9-1-Z3	TMCSD-9-1-Z4	IMCSD-9-2-Z2	TMCSD-9-2-23	TMCSD-9-3-72	TMCSD-9-3-Z3	TMCSD-9-3-Z4	TMCSD-9-4-Z2	TMCSD-9-4-Z2/D	TMCSD-9-4-Z2/S	TMCSD-9-4-Z3	ğ	ğ	TMCSD-9-4-24/S	TMCSD-10-Z4	TMCSD-10-1-Z2
				- 1		5 3		- 1	- 1	- 1	1	1		i .	1 6			- 1		- 1	-		1	ł				10	10		5 5	2	1. 1
	Date				5/30/2001	5/30/2001	2/30/2001	5/30/2001	0/3/05/0	100/000	2	5/30/2001		5/30/2001	5/30/2001				5/30/2001	5/30/2001			5/29/2001	5/29/2001				5/29/2001	5/29/2001 TMCSD-9-4-Z4	5/29/2001 TMCSD-9-4-Z4/D	5/29/2001	5/29/2001	
					2,	100	أة	6	ñ	1	Ö	12,5	5	5/3	150			1		ò			5/2	2/5				5/5	2/2	2/2	100	2 2	
																																	B0925
	c																																2_02_00-B0925
	Location																																2)
	의																																Q.

02:001002_UK04_02_02_00-80925 Unchanged T31_32_33.XLS-Table 3-1-7/5/2002

Table 3-1 Sample Listing Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

																																	Location	
- - -	6/4/2001 TB-4	5/30/2001 TB-3	5/29/2001 TB-2	5/24/2001 TB-1	6/4/2001 RB-4	5/30/2001 RB-3	5/29/2001 RB-2	5/23/2001 RB-1	5/31/2001 LF5SD-3-Z4	LF5SD-3-Z3	5/31/2001 LF5SD-3-Z2	5/31/2001 LF5SD-2-Z4	LF5SD-2-Z3	5/31/2001 LF5SD-2-Z2	5/31/2001 LF5SD-1-Z4	5/31/2001 LF5SD-1-Z3	5/24/2001 TMCSD-11-Z4	5/24/2001 TMCSD-11-Z3	5/23/2001 TMCSD-10-3-Z4 (MS/N	5/23/2001 TMCSD-10-3-Z4	5/23/2001 TMCSD-10-3-Z3/S	5/23/2001 TMCSD-10-3-Z3/D	5/23/2001 TMCSD-10-3-Z3	TMCSD-10-3-Z2/S	TMCSD-10-3-Z2/D	TMCSD-10-3-Z2	5/24/2001 TMCSD-10-2-Z4	5/24/2001 TMCSD-10-2-Z3	TMCSD-10-2-Z2		5/24/2001 TMCSD-10-1-Z3	TMCSD-10-1-Z2 (MS/MSD)	Date Sample Number	
ASC	ASC	ASC	ASC	ASC	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	(SD) ASC/TRI	ASC/TRI	ERDC	ASC/TRI	ASC/TRI	ERDC	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI	ASC/TRI		ISD) ASC/TRI	Lab ^a	
					H .			EI.	RI 2.3'-3.3'	2	RI 0.5'-2.3'	RI 2.3'-3.3'	R	RI 0.5'-2.3'	RI 2.4'-3.4'		RI 2.5'-3.5'	RI 1.1'-2.3'	RI 2.5'-3.5'	RI 2.5'-3.5'	0 1.5'-2.5'	RI 1.5'-2.5'	RI 1.5'-2.5'		2	A	RI 2.5'-3.5'	RI 1.1'-2.1'		N	RI 1.7'-2.2'	RI	Sample Depth	
water/QC matrix	Water/QC Matrix	Water/QC Matrix	Water/QC Matrix	Water/QC Matrix	Eqpt. Washwater	Eqpt. Washwater	Eqpt. Washwater	Eqpt. Washwater	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment QC	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment QC	Matrix	
z		١.			Ĭ ≺		~ ≺	~ ≺	 ~	 ~	z	 ~	 	z	~	 	~		z	 	z	z	~	~	~	~	 	~	Υ	~	Υ	Y	WP	
-		-	-	-	-	-	-	7	ļ	S	-	-	s	-	-	-	-	-	-		-	 	-	S	S	S	-	-	S	-	Ţ	S	Stat	
Ē	81	BI	8	H H	BB	ЯB	RB	BB	z	z	z	z	z	z	z	z	z	z	MS	z	H	Ŧ	z	Ŧ	FD	z	z	z	z	z	z	MS	Туре	
×	×	×	×	×	×	×	×	×	×	×	×	×	S	×	×	×	×	×	×	×	×	×	×	s	S	တ	×	×	S	×	×	S	TCL VOCs -SW8260B	
					×	×	×	×	×	×	×	×	S	×	×	×	×	×	×	×	×	×	×	S	S	S	×	×	S	×	×	S	TCL SVOCs -SW8270C	
						0.000	1.00	-		f	•	1		1		752			3				124			400 C					277	2.44	TCL Pesticides -SW8081A	
						1000	300			l		0						27.3		2.5					196	200			6.00	333	3.11	3,92	TCL Dioxins & Furans -EPA 1613B TAL Metals/Mercury-	-
		54.	ľ	Ž.			v			1	- :	1		•	<i>a.</i>			Ŭ5.	ajilin.	SA.			- sain		4400	Z	vain.	- 34	-37	×	0,00	4.44	SW6010B/7471A	ANALYSES
					og n		000	anya i									м.	en i	85	0.1		n. 1			33.3		02			08	222	* 1	Hexavalent chromium - SW7196A	YSE.
																- 1		i in the second	V.	- 17	n :			~~		120001							Cyanide -SW9012A TRPH -EPA 415.1M	S
											- 02							200	000				1196				000				- 1		TCL PCBs -SW8082	
1						376.		lo o e e e		,		1000						-	278827							2000			1		* 1	2	TOC -Lloyd Kahn	
							ere Sp																Š		1.7		000			۱			Lead and Cadmium -SW6010B	
		roi l		estrict	Eicheor	18.87.	wicho	pipite i	×	×	×	×	S	×	×	×	×	×		×	×	×	×	S	S	S	×	×	S	×	×	141/	% Solids -ASTM_D2216	
'	•		•	'	٠ '	•		, ;	• '	'	•	, '	•	•		1	' '		' '	•	٠ '	'	•	•			'	•	٠	•	•	•	•	

ALYSES b

Table 3-1 Sample Listing Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

												•	***	C 1 31						
Location	Date	Sample Number	Lab ^a	Sample Depth	Matrix	WP	Stat	Type	TCL VOCs -SW8260B	TCL SVOCs -SW8270C	TCL Pesticides -SW8081A	FCL Dioxins & Furans - EPA 1613B			Cyanide -SW9012A	FRPH -EPA 415.1M	CL PCBs-SW8082	TOC -Lloyd Kahn	.ead and Cadmium -SW6010B	% Solids -ASTM_D2216
LF6 Wetlands	5/24/2001	LF6SD-1-1-Z1	ASC/TRI	0-0.5'	Sediment	Ÿ	T	ΝI	X	X	Х	X	ζ.	X .	X	X	X	Х		X
	5/24/2001	LF6SD-1-1-Z1/D	ASC/TRI	0-0.5	Sediment	Ÿ	Ť	FD1	X	X	X	X	K	X		$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$		X		X
	5/24/2001	LF6SD-1-1-Z1/S	ERDC	0.0.5'	Sediment	Ÿ	T	FR1	X	Х	X	X	X	X	X	$\frac{\dot{\mathbf{x}}}{\mathbf{x}}$	X	X	11.130	X
	5/24/2001	LF6SD-2-1-Z1	ASC/TRI	0-0.5'	Sediment	Υ	Ŧ	N1	X	X	X	X	X	X	X	X	X	X		X
	5/23/2001	LF6SD-3-1-Z1	ASC/TRI	0-0.5'	Sediment	Υ	Ť	N1	X	X	Х	X	X	X	X		X			X
	5/24/2001	LF6SD-4-1-Z1	ASC/TRI	0-0.5'	Sediment		T	N1	X	X	X	X	X	X				X		X
	5/23/2001	LF6SD-4-1-Z1 (MS/MSD)	ASC/TRI	0-0.5'	Sediment QC	Y	T	MS	X	Х	X	Х	K	X		X		X		
Off-Base TMC Pond	6/5/2001	TMCSD-23-IL-Z3	ASC/TRI	1.4'-2.2'	Sediment	Ŷ	Т	N	4.02		yddid	87					X		X	Х
OII-Dase TMC Polic	6/5/2001	TMCSD-23-IL-Z3/D	ASC/TRI	1.4'-2.2'	Sediment	Y	Ť	FD	va (3)					101	1. W.	3	X		X	X
	6/5/2001	TMCSD-23-IL-Z3/S	ERDC	1.4'-2.2'	Sediment	Υ	Ŧ	FR				······································			419		X		X	X
	6/5/2001	TMCSD-23-IL-Z4	ASC/TRI	2.2'-3.0'	Sediment	Y	T	N	100	·								X	X	X
	6/5/2001	TMCSD-24-NS-Z3	ASC/TRI	1.2'-1.8'	Sediment	Υ	T	N				9					X	X	X	X
	6/5/2001	TMCSD-24-NS-Z4	ASC/TRI	1.8'-3.0'	Sediment	Υ	T	N			:	***				â	X		X	Х
	6/5/2001	TMCSD-25-MC-Z3	ASC/TRI	0.9'-1.8'	Sediment	Y	T	N	-						274	_	X			X
	6/5/2001	TMCSD-25-MC-Z4	ASC/TRI	2.4'-3.0'	Sediment	Υ	T	N			. :					- 6	X			X
	5/25/2001	TMCSD-26-NS-Z3	ASC/TRI	1.5'-2.5'	Sediment	Υ	T	N						- 33			***********	Х	X	X
		TMCSD-26-NS-Z3 (MS/MSD)	ASC/TRI		Sediment QC	Y	S	MS							1.15	- 8	S		S	
	5/25/2001		ASC/TRI	2.5'-3.0'	Sediment	Υ	T	N							0.40		X -		X	X
	5/25/2001	TMCSD-27-MC-Z3	ASC/TRI	1.5'-2.5'	Sediment	Υ	T	N		1		9.5			Server C		X	X	X	X
	5/25/2001	TMCSD-27-MC-Z3 (MS/MSD)	ASC/TRI	1.5'-2.5'	Sediment QC	N	T	MS									X	X	X	
		TMCSD-27-MC-Z3/D	ASC/TRI		Sediment	Υ	S	FR									S	s	S	s
		TMCSD-27-MC-Z3/S	ERDC		Sediment	Υ	S	FD				i i						S		S
		TMCSD-27-MC-Z4	ASC/TRI	2.5'-3.0'	Sediment	Υ	T	N				*					X	X		X
	5/25/2001		ASC/TRI	1.5'-2.5'	Sediment	Υ	T	N	4.12	i.		Š	100				X	X	X	X
	5/25/2001		ASC/TRI	1.5'-2.5'	Sediment	N	T	FD	6. A	Ý			3.5	Ź			X	X	X	X
	5/25/2001	TMCSD-28-OL-Z3/S	ASC/TRI	1.5'-2.5'	Sediment	N	T	FR	-7			34.		. K			X	X		X
		TMCSD-28-OL-Z4	ASC/TRI	2.5'-3.0'	Sediment	Υ	T	N				N	33	24				X		X
	6/5/2001	RB-5	ASC/TRI		Eqpt. Washwater	Υ	T	RB		6.			9.40	10			X		X	

ANALYSES b

02:001002_UK04_02_02_00-B0925 Unchanged T31_32_33.XLS-Table 3-1-7/5/2002

Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Sample Listing

Table 3-1

ead and Cadmium -SW6010B FOC -Lloyd Kahn LCF PCBs -SW8082 M1.214 AGE- HGRI A361 TW2 - muimordo finelavaxel ATTATVB0108WZ TAL Metals/Mercury-TOL Dioxins & Furans -EPA 1613B ICL Pesticides - SW8081A LCL SVOCs -SW8270C LCT AOC? - 2M85E0B Stat Type Š Matrix Sample Depth Lab Sample Number Date

81SSQ_MT&A- abilo2

ANALYSES

The analyses marked as "X" are the ones performed. The analyses marked as "S" are analyses scheduled but not performed (the sample was not collected or not enough volume was retrieved Key:

Triangle Laboratories performed dioxin and furan analyses only.

RB = rinsate blank ASC = E & E's Analytical Services Center Stat = Status (O= Open, T= Taken, S= Skipped)

SD = sediment sample

/S = split

SVOCs = semivolatile organic compounds

TAL = target analyte list

TB = trip blank

TCL = target compound list TOC = total organic carbon

TMC = Three Mile Creek

Eqpt. = equipment ERDC = United States Amy Engineer Research and Development Center Depth = depth interval at which sample will be collected FR = field split/replicate IL = inlet pond sample LF5 = Landfill 5 FD = field duplicate LF6 = Landfill 6 /D = duplicate

MS/MSD = matrix spike/matrix spike duplicate MC = mid-channel pond sample NS = near-shore pond sample OL = outlet pond sample N = original sample

Pest = pesticides PCB = polychlorinated biphenyls QC = quality control sample

WP = sample in work plan (Y= yes. N= no)
Z1 = 0 to 0.5 foot (actual depth recorded on table).
Z2 = 0.5 to 1 foot (actual depth recorded on table)
Z3 = 1.5 to 2.5 feet (actual depth recorded on table
Z4 = 2.5 to 3.5 feet (actual depth recorded on table

TRPH = total recoverable petroleum hydrocarbons

VOCs = volatile organic compounds TRI = Triangle Laboratories, Inc.

Table 3-2 Summary of Three Mile Creek, Landfill 6, and Off-site Pond Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	Sample Depth	
Location	R. BTOCB	Sample Description
TMC Channel and I	Landfill 5 Tributa	ry
TMCSD-1-Z3	1.8 - 2.4	Dark gray silt with 30% clay and trace rounded gravel up to 0.5 inch in diameter, sheen present
TMCSD-1-Z4	2.4 - 3.5	Dark gray very fine to coarse sand with some silt and 40% fine to medium gravel
TMCSD-2-Z3	1.5 - 2.7	0.3 feet of black to gray, fine to coarse sand and little fine gravel above 0.2 feet of black to gray sand and fine gravel
TMCSD-2-Z4	2.7 - 3.5	Gray to black fine to coarse sand and fine to medium gravel, trace silt
TMCSD-3-Z3	1.6 - 2.4	Gray/brown very fine to coarse sand with 25% rounded fine to medium gravel, and trace gray silt
TMCSD-3-Z4	2.4 - 3.5	Gray silt with 5% rounded gravel
TMCSD-4-Z4	2.9 - 3.5	Coarse sand and gravel
TMCSD-5-Z3	1.6 - 2.5	Fine gravel and sand
TMCSD-5-Z4	2.5 - 3.5	Sand and gravel mixed in a tar-like material, strong fuel odor
TMCSD-5-1-Z4	2.8 - 3.5	Medium to coarse sand and fine gravel -native soil (not sure what depth sample collected from)
TMCSD-5-2-Z3	1.4 - 2.7	Black organic muck, strong organic odor
TMCSD-5-2-Z4	2.7 - 3.5	Brown medium and fine sand and some gray clay layers (native soil), some black staining
TMCSD-6-Z3	1.3 - 2.8	Black organic muck
TMCSD-6-Z4		Brown medium sand and some coarse sand -native soil
	2.8 - 3.5	
TMCSD-7-Z2	0.5 - 1.5	Silty, clayey sediment, fuel odor
TMCSD-7-Z3	1.5 - 2.4	Black, silty, clayey sediment, fuel odor
TMCSD-7-1-Z2	0.5 - 1.1	Dark organic silty muck
TMCSD-7-1-Z3	1.1 - 2.5	Dark organic silty muck (actual recovery 0.9 feet)
TMCSD-8-Z3		Swampy area, high organic content, high water content, no cohesion, sample not retrievable
TMCSD-8-Z4		
TMCSD-8-1-Z3	2.2 - 2.5	Brown sand and silt, with not decomposed wood pieces, little scarce black staining
TMCSD-8-1-Z4	2.5 - 3.5	Brown sandy and silty sediment, with not decomposed wood pieces, little scarce black staining
TMCSD-8-2-Z2	0.5 - 0.9	Black, medium sand with little gravel
TMCSD-8-2-Z3	0.9 - 2.5	Gray gravel and little sand
TMCSD-9-Z2	0.5 - 1.6	Coarse and medium sand and fine gravel, very rooty
TMCSD-9-Z4	1.6 - 3.5	Grayish brown, uniform medium sand - native soil (0.5 feet recovered)
TMCSD-9-1-Z2	0.5' - 1.0'	Sand and fine gravel (0.5 feet recovered)
TMCSD-9-1-Z4	1.0' - 3.5'	Coarse, uniformly sized sand - native soil (1 foot recovered)
TMCSD-9-2-Z2	0.5 - 1.1	Coarse to medium sand with some fine gravel. A light, high void, low density, light brown (almost fluffy) material (not
TWC3D-7-2-22	0.5 - 1.1	sediment) was found underneath the sand, but it was not retrievable due to its consistency.
TMCSD-9-3-Z3	0.5 - 1.1	Coarse to medium sand with some fine grave! (0.5 foot maximum recovery)
TMCSD-9-3-Z4	1.1 - 3.5	Grayish brown, silty, clayey, very soft, low density sediment (0.75 foot maximum recovery)
TMCSD-9-4-Z3	0.5 - 1.85	Black organic sediment (5 inches recovered)
TMCSD-9-4-Z4	1.85 - 3.5	Gray sand with little silt - native soil (1 foot recovered)
TMCSD- 10' -Z:	0.5 - 1.65	Black, organic sediment, strong odor
TMCSD- 10' -Z4	1.65 - 3.5	Gray silt and sand - native soil (1foot recovered)
TMCSD- 10' -1-Z3	1.7 - 2.2	Silty, clayey sand, saturated, no cohesion, high water content (soupy), and gravel
TMCSD- 10' -1-Z4	2.4 - 3.5	Silty, clayey sand, wet -native soil
TMCSD- 10' -2-Z3	1.1 - 2.1	Dark, organic muck with sand and silt, with a black sheen
TMCSD- 10' -2-Z4	2.5 - 3.5	Low plasticity clay with silt and sand - native soil
TMCSD- 10' -3-Z3	1.5 - 2.5	Brown sand and silt with some gravel and some black fine material
TMCSD- 10' -3-Z4	2.5 - 3.5	Tight brown sand, moist to wet - native soil
TMCSD- 11-Z3	1.1 - 2.3	Black mainly organic muck
TMCSD- 11-Z4	2.5 - 3.5	Brown sand - native soil
LF5SD-1-Z3	1.4 - 2.4	Sand mixed with fine gravel and some muck (1 foot recovered)
LF5SD-1-Z4	2.4 - 3.4	Medium sand and fine gravel -native soil (1 foot recovered)
LF5SD-2-Z2	0.5 - 2.3	Black, clayey, organic sediment and some sand (1 foot recovered)
LF5SD-2-Z4	2.3 - 3.3	Gray medium sand - native soil
LF5SD-3-Z2	0.5 - 2.3	Some muck, dark brown (approx. 3 inches thick), and uniform medium sand (-native soil part of it)
TECOD A CO.	2.3 - 3.3	Alternating brown medium sand an gray clay layers
LF5SD-3-Z4		
LF5SD-3-Z4 LF6SD-1- 1-Z1	0' - 0.5	Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands	0' - 0.5	Black, organic, silty
LF6SD-1- 1-Z1		
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1	0' - 0.5 0' - 0.5 0' - 0.5	Black, organic, silty Black, organic, silty Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1	0' - 0.5	Black, organic, silty Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1	0' - 0.5 0' - 0.5 0' - 0.5 0' - 0.5	Black, organic, silty Black, organic, silty Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1 LF6SD-4-1-Z1	0' - 0.5 0' - 0.5 0' - 0.5 0' - 0.5	Black, organic, silty Black, organic, silty Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1 LF6SD-4-1-Z1 Off-site Three Mile (0' - 0.5 0' - 0.5 0' - 0.5 0' - 0.5	Black, organic, silty Black, organic, silty Black, organic, silty Black, organic, silty
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1 LF6SD-4-1-Z1 Off-site Three Mile (TMCSD- 23-IL-Z3	0' - 0.5 0' - 0.5 0' - 0.5 0' - 0.5 Creek Pond 1.4' - 2.2'	Black, organic, silty Black, organic, silty Black, organic, silty Black, organic, silty Dark gray clay-sized muck with some non-decomposed organic material
LF6SD-1- 1-Z1 Landfill 6 Wetlands LF6SD-2-1-Z1 LF6SD-3-1-Z1 LF6SD-4-1-Z1 Off-site Three Mile 0 TMCSD- 23-IL-Z3	0' - 0.5 0' - 0.5 0' - 0.5 0' - 0.5 Creek Pond 1.4' - 2.2' 2.2' - 3.0'	Black, organic, silty Black, organic, silty Black, organic, silty Black, organic, silty Dark gray clay-sized muck with some non-decomposed organic material Dark gray very fine to fine sand and silt with little medium to coarse sand and trace gravel (up to 0.5 inches in diameter)

Table 3-2 Summary of Three Mile Creek, Landfill 6, and Off-site Pond Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Location	Sample Depth ft. BTOCB	Sample Description
TMCSD- 25-MC-Z	2.4' - 3.0'	Gray, very fine sand and silt, trace medium to coarse sand, and non-decomposed organic material
TMCSD- 26-NS-Z3	1.5' - 2.5'	Silty sand sediment
TMCSD- 26-NS-Z4	2.5' - 3.0'	Sand
TMCSD- 27-MC-Z3	1.5' - 2.5'	Black silty muck
TMCSD- 27-MC-Z4	2.5' - 3.0'	Black silty muck
TMCSD- 28-OL-Z3	1.5' - 2.5'	Black silty muck
TMCSD- 28-OL-Z4	2.5` - 3.0`	Black silty muck

Key:

BTOCB = Below top of creek bed.

ft. = Feet.

Table 3-3 Physical Characteristics of Sampling Locations, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	Elevation *			Water Depth	Water Elevation	Channel Width	Native Soil Elevation
Location	ft. AMSL	Northing	Easting	ft. ATOCB	TL AMSL	ñ.	T. AMSL
TMC Channel and	d Landfill 5 Tr	ibutary					
TMCSD-1	453.890	1174654.984	1132524.022	1.5	455.39	10	-
TMCSD-2	451.840	1174459.682	1132508.608	0.8	452.64	5.8	-
TMCSD-3	451.510	1174284.497	1132496.696	0.25	451.76	14	
TMCSD-4	454.790	1174307.459	1132226.773	0.3	455.09	4.3	-
TMCSD-5	451.700	1174106.666	1132456.400	0.4	452.1	9	-
TMCSD-5-1	451.790	1174002.014	1132584.156	0.4	452.19	11	448.99
TMCSD-5-2	451.600	1173903.486	1132692.494	0.4	452	16	448.9
TMCSD-6	450.860	1173798.856	1132812.391	0.55	451.41	13	449.060
TMCSD-7	451.600	1173563.671	1133086.679	0.4	452	9	-
TMCSD-7-1	450.810	1173419.982	1133271.632	0.2	451.01	10	-
TMCSD-8	450.530	1173264.783	1133443.619	0.5	451.03	14	-
TMCSD-8-1	450.030	1173111.388	1133621.370	0.2	450.23	14	-
TMCSD-8-2	450.840	1172932.353	1133843.968	1.2	452.04	12	449.94
TMCSD-9	448.850	1172640.978	1134168.218	0.2	449.05	10.6	447.250
TMCSD-9-1	447.670	1172596.709	1134236.810	0.5	448.17	8.5	446.670
TMCSD-9-2	447.870	1172432.168	1134430.806	0.25	448.12	9	447.37
TMCSD-9-3	446.820	1172269.386	1134626.971	0.5	447.32	12	-
TMCSD-9-4	446.340	1172103.452	1134823.169	0.3	446.64	10	444.490
TMCSD-10	446.640	1171939.274	1135008.166	0.4	447.04	10.6 to 16 max	444.990
TMCSD-10-1	445.970	1171790.040	1135184.373	0.4	446.37	8.5	443.570
TMCSD-10-2	445.270	1171648.311	1135346.714	0.4	445.67	10.2	442.970
TMCSD-10-3	444.530	1171508.174	1135513.807	1.25	445.78	12.1	442.530
TMCSD-11	443.770	1171428.136	1135618.258	0.5	444.27	6.5	441.870
LF5SD-1	456.020	1174033.881	1133261.024	0.3	456.32	5 to 9.5 max	454.020
LF5SD-2	454.360	1173825.172	1133201.646	0.2	454.56	7 to 10.5 max	452.360
LF5SD-3	452.600	1173606.475	1133138.491	0.25	452.85	3.5 to 5 max	451.600
Landfill 6							
LF6SD-1-1	452.730	1172525.151	1134465.741	NA	NA	NA	NA
LF6SD-2-1	452.250	1172253.863	1134788.860	NA	NA	NA	NA
LF6SD-3-1	454.060	1171974.936	1135121.375	NA	NA	NA	NA
LF6SD-4-1	450.530	1171643.050	1135499.851	NA	NA	NA	NA
TMC Pond			_				
TMCSD-23-IL	NA	NA	NA	2 ^b	NA	NA	NA
TMCSD-24-NS	NA	NA	NA	1.8 ^b	NA	NA	NA
TMCSD-25-MS	NΑ	NA	NA	0.5 ^b	NA	NA	NA
TMCSD-26-NS	NA	NA	NA	1.1 ^b	NA	NA	NA
TMCSD-27-MC	NA	NA	NA	3.1 ^b	NA	NA	NA
TMCSD-28-OL	NA	NA	NA	3.9 ^b	NA	NA	NA
a Elevation of centerli	ne of creek bed.						

Key:

AMSL = Above Mean Sea Level.

ATOCB = Above top of centerline of creek bed.

BPS = below pond surface.

ft. = Feet.
IL = Inlet.

IL = Inlet.

max = Maximum.

MC = mid-channel.

NA = Not applicable.

NS = near surface.

TMC = Three Mile Creek.

- = No discernible native soil layer encountered.

^b Water depths were measured below pond surface (BPS).

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

						TMCSD-2-			
Site Human Health		Sample ID:	TMCSD-1-Z3	TMCSD-1-24	TMCSD-2-Z3	Z3/D	TMCSD-2-Z4	TMCSD-3-Z3	TMCSD-3-Z4
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):	1.8 - 2.4	2.4 - 3.5	1.5 - 2.7	1.5 - 2.7	2.7 - 3.5	1.6 - 2.4	2.4 - 3.5
or Hazard Index of 1	Ecological Criteria	Analyte Date:	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01
Total Organic Carbon	n - Lloyd Kahn (mg/	Kg)							
NA	NA	Total Organic Carbon	20500	31400	8850 J	21500 J	12800	39100	53000
TCL PCBs - 8082 (µg.	/Kg)								
NA	70	Aroclor 1242	7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U
6290	5	Aroclor 1260	45300	175	7800	7390	618	12700	702
2,3,7,8-TCDD equival	ent (ng/Kg)								
331,000	10	Total 2,3,7,8-TCDD equivalent	51.343	18.088	9.265	13.467	1.6627	13.1485	5.3008
TCL Pesticides - 808	1A (μg/Kg)								
331,000	2	4,4′-DDD	1200 U	73.1 U	183 U	84.8 NJ	16.7 NJ	394 U	80.0 U
234,000	2	4,4′-DDE	1200 U	73.1 U	183 U	173 U	33.3 U	394 U	80.0 U
233,000	1	4,4′-DDT	1590 U	14.8 NJ	244 U	231 U	44.4 U	219 NJ	12.5 NJ
4,660	2	Aldrin	1590 U	540 NJ	385 NJ	410 NJ	44.4 U	1560 NJ	38.2 NJ
61,100	0.314	alpha-Chlordane	398 U	24.4 U	61.1 U	57.8 U	11.1 U	131 U	26.7 U
NA	3.144	delta-BHC ^t	797 U	12.4 NJ	122 U	116 U	22.2 U	263 U	53.3 U
4,960	0.02	Dieldrin	1990 U	122 U	306 U	289 U	55.5 U	657 U	133 U
NA	1.572	Endosulfan I	1040 NJ	122 U	85.6 NJ	75.9 NJ	10.1 NJ	657 U	133 U
NA	1.572	Endosulfan II	1200 U	73.1 U	183 U	173 U	33.3 U	394 U	80.0 U
NA	NA	Endosulfan sulfate	679 NJ	146 U	98.6 NJ	80.0 NJ	66.6 U	218 NJ	160 U
315,000	3	Endrin	1590 U	97.4 U	244 U	231 U	44.4 U	525 U	107 U
NA	NA	Endrin aldehyde	3980 U	244 U	611 U	578 U	111 U	1310 U	267 U
NA	NA	Endrin ketone	1200 U	45.6 NJ	289 NJ	225 NJ	30.4 NJ	892 NJ	41.4 NJ
NA	3	gamma-BHC ¹	797 U	48.7 U	122 U	116 U	22.2 U	263 U	53.3 U
61,000	0.314	gamma-Chlordane	797 U	25.0 NJ	122 U	116 U	22.2 U	263 U	53.3 U
NA	1.572	Heptachlor	1200 U	73.1 U	183 U	173 U	3.53 NJ	394 U	80.0 U
NA	1.572	Heptachlor epoxide	1990 U	122 U	306 U	289 U	55.5 U	657 U	34.7 NJ
11,200	31.44	Methoxychlor	15900 U	974 U	2440 U	2310 U	444 U	5250 U	1070 U

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	tu £1.8	U 84.0	Xylenes, Total	4820.8	ΑN
LU 4.21	U 2.21	L 81.9	U 6.01	U 4.11	LU E.SI	L 86.2	Vinyl chloride	٧N	ΨN
702 T	U 60.8	J. 92.2	U 24.2	U 07.2	UU E1.0	U 84.9	Trichloroethene	009'1	6,320,000
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	LU £1.8	U 84.9	trans-1,2-Dichloroethene	1,600	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	tu £1.8	U 84.9	Toluene	9.7922	٧N
L 7.21	∩ 60.9	U 92.2	U 24.2	U 07.2	U E1.8	U 84.6	Tetrachloroethene	230	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	tu £1.8	U 84.6	o-Xylene	4820.8	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	tU £1.8	U 84.9	ənəlyX-q.m	4820.8	٧N
LU 22.0	U 60.8	J. 32.26	U 24.2	U 07.2	tu £1.8	U 84.6	Ethylbenzene	9 [.] LSZ1	٧N
LU 22.8	U 60.8	L 62.£	U 24.2	U 07.2	L 21.7	£ 60.£	ors-1,2-Dichloroethene	٧N	ΨN
L 2E.2	U 60.8	U 92.2	U 24.2	U 07.2	UU £1.8	U 84.6	Chloroform	٧N	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	L 2E.8	U 84.6	Chlorobenzene	183.4	21,000,000
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	LU £1. 8	U 84.6	Carbon disulfide	ΨN	105,000,000
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	W £1.8	U 84.9	Benzene	2.7341	273,000
12.4 UJ	U 2.2 I	8.21	U 6.01	L 72.9	LD.5.21	U 0.91	Асегопе	AN	105,000,000
LU 4.21	U 2.2 I	U 2.01	U 6.01	U 4.11	LU E.21	U 0.91	2-Butanone	AN	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	ሀ ዐፕ.Ⴧ	tu £1.8	U 84.9	1,4-Dichlorobenzene	8.828	3,310,000
LU 22.8	U 60.8	L 62.E	U 24.2	U 07.2	L 21.7	U 84.6	lstoT, enortherochicle. Lotal	٧N	٧N
LU 22.0	U 60.8	U 92.2	U 24.2	U 07.2	L £6.1	L 80.E	1,2-Dichloroethane	٧N	٧N
լ 76.8	2.14 J	2.55 J	L 9E.1	U 07.2	L 17.8	U 84.0	1,2-Dichlorobenzene	8.829	000'005'1⁄6
LU 22.0	U 60.8	U 92.2	U 24.2	ሀ 0۲.2	tU £1.8	U 84.6	1,1,2,2-Tetrachloroethane	076	٧N
								(µg/Kg)	TCL VOCs - 8260B
10/40/90	10/10/90	10/00/90	10/10/90	10/00/90	10/40/90	10/10/90	Analyte Date:		I to xabri bassel 10
2.4 - 3.5	1.6 - 2.4	2.7 - 3.5	1.5 - 2.7	1.5 - 2.7	2.4 - 3.5	1.8 - 2.4	Depth (ft):	Most Stringent	Bisk revels of 10.5
TMCSD-3-Z4	TMCSD-3-Z3	TMCSD-2-Z4	TWCSD-S-	TMCSD-2-Z3	TMCSD-1-Z4	TMCSD-1-Z3	:Ol elqms2		Site Human Health

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	TMCSD-3-Z3		1.5 - 2.7	1.5 - 2.7 1.5 - 2.7	TMCSD-1-Z4 2.4 - 3.5	TMCSD-1-Z3		tenonist2 tankl	ite Human Health ⁵⁻ 01 to alove 1 Jaic
2.4 - 3.5	4.S - 8.1 10\40\80	2.5 - 7.5 06/04/01	10/20/90	10/00/90	10/00/90	10/20/90	Depth (ft): Analyte Date:	Most Stringent Ecological Criteria	sisk Levels of 10°° Hazard Index of 1
									CL SVOCs - 8270C
U 914	∪ 0£14	344 (1	U 072£	U 0711	3820 U	ſ 18S	1,2,4-Trichlorobenzene	4.8974	10,500,000
244	U 0614	L 0.28	U OTZE	U 0711	3820 U	f 619	1,2-Dichlorobenzene	8.828	000'005'76
U 614	U 0£14	344 U	U 0725	U 0711	3820 U	L 282	1,3-Dichlorobenzene	8.828	٧N
212	U 0£14	344 N	በ ዕረያይ	U 0711	3820 U	3243	.4-Dichlorobenzene	8.828	3,310,000
U 914	U 0£14	344 U	U OTZE	U 0711	3820 U	Ω 449	² lonədqlyhəmid-4,2	2.92	21,000,000
L 7.98	DOTEI	Z80 J	C 0989	634.1	4270	r 997	2-Methylnaphthalene		ΑN
U 614	f 288	344 በ	U OTZ£	U 0711	3820 U	U 748	2-Methylphenol		52,600,000
U 614	Polie	344 N	L 0561	U 0711	3820 U	U 748	4-Methylphenol		000,005,2
2161	20200	169	10200	2040 J	0069	455.1	Acenaphthene	91	000,005,69
l idi	4430	702 l	L 0E6E	L 268	L 0501	U 748	Acenaphthylene		AN
6LS	L 0097£	0781	20300 J	£ 006Þ	007SI	689	Anthracene		316,000,000
f 116	00£72	006Z	30900	142001	19400	0901	Вепх(а)апthгасепе		000,601
162 J	45500	21503	\$\$800 J	1 0469	14400 1	f 649	Вепхо(а)ругеле	370	006'01
L £88	L 00E2E	f 0891	L 00681	f 0794	15000 1	ſ \$L9	Benzo(b)fluoranthene	VN	000'601
riiz 1	C 0+16	L 707	£890 J	19891	L 0768	J 686	Benzo(g,h,i)perylene	0/1	AN
L 707	U 0514	L 08E1	f 009\$1	L 0568	L 00711	₽80£	Benzo(k)tluoranthene		000'060'1
U 080 I	U 00401	U 298	U 0768	7940 U	U 016	U 0£31	Benzoic acid		4.2 x 10°
U 914	U 0£14	344 N	U 072£	U 0711	3820 U	N L†9	Benzyl alcohol	ΑN	316,000,000
N 61Þ	L OITI	344 N	U OTEE	U 0711	3820 U	Ω <i>L</i> †9	Bis(Հ-ethylhexyl)phthalate	8.62401	000,086,8
l sie	24000 J	1010	14300 J	L 0686	0608	£ 828	Carbazole	ΑN	000,076,ε
6251	009 +\$	0272	31500 1	T 0097T	18700	1140	Сргузепе		000,000,01
f LSI	L OELL	f 16Þ	£ 006Þ	1230.1	L 0764	592	Dibenz(a,h)anthracene	09	006'01
ſ 691	00\$17	69\$	100601	L 0£61	0278	4101	Dibenzofuran	°000,2	4,210,000
U 914	U 0£14	344 N	U 072£	U 0711	3820 U	U 748	Di-n-octyl phthalate	AN	ΑN
2020	131000	01:09	L 00777	31400 1	00\$9₽	7940	Fluoranthene	009	42,100,000
L 052	24800	LSL	12900 J	\$390 1	0SE8	f ISP	Fluorene	32	42,200,000
797	111003	1020	l opsl	T 09ST	12300	740	Indeno(1,2,3-cd)pyrene	700	108,000
L 622	41100 1	608	f 00961	76503	12400	878	Марћићаlene	160	42,100,00
0761	126000	016\$	82100 1	COOSTE	49900	3210	Рһепапіһгепе	240	AN
N 614	1360 J	344 N	ሀ ዕናሪይ	U 0/11	J 028£	U 748	Phenol 2	2.92	632,000,000
ſ 806	00966	4740	f oosle	L 007ES	L 007ES	2070	Pyrene	067	31,600,000
T.ITTI	006884	619SE	433690	7786\$1	784600	L9\$LT	Total PAHs	∀N	٧N

TWC2D-5-

Table 3-4a. Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

8.22	24.4	2.11	L'SI	1.91	£.9I	9.08	Percent Moisture	AN	٧N
								(%	Percent Molsture (wt?
f 781	059	∩ 0SÞ	1320	L89	088	633 J	НЧЯТ	∀N	ΨN
								(6	TRPH - 418.1M (mg/K
U 186.0	U &78.0	U 742.0	t 871.0	L 171.0	U £13.0	0.454 J	Суапіде	AN	21,100
								(mg/Kg)	Total Cyanide - 9012A
C 46.0	1.7	U 6.4	l 47.0	L 08.0	t 96.0	L p.1	Hexavalent Chromium		0/1 ' S
								. 196 A (mg/Kg	Hexavalent Chromit
0.89	941	8.89	224	LSI	4.86	6 P I	oniS	120	316,000
L 9.E2	62' 4 1	26.0 J	ſ <i>L</i> '6Þ	L 8.£8	18.3 J	1151	muibensV	ΑN	08£,7
U 94.0	U. &\$.0	L 07.0	U 74.0	U 24.0	U 74.0	U 67.0	muilledT	ΨN	AN
700	121	L 9.47	LEI	128	0907	018	muiboS	ΨN	AN
1210 J	ſ 609	63¢ 1	f 08S	f 06Þ	L 0982	I 097 I	Potassium	VN	AN
18.2	2.82	15.2	7.82	8.02	5.21	5.7. 4	Nickel	91	21,000
L 24.0	L 22.0	L 980.0	t 81.0	L 12.0	L 09.0	L 29.0	Mercury		∀N
S 867	l iei	C 66S	l de l	fiii	1380 1	84'1 1	Manganese	097	24,200
f 00\$L	T 0667	f 061b	f 040Þ	3090 J	£ 0862	74e0 J	Magnesium	٧N	٧N
Z'9E	801	7.92	OII	0.18	6'95	1'9\$	Lead	18	٧N
L 00722	13800 J	\$\$\$00 T	1 2500 J	f 00911	12200 J	f 00641	lron	20,000	٧N
6'9E	£.34	1,45	L'OP	9.04	8.47	0.79	Copper	91	42,000
<i>L</i> '9	3.6	b '9	1.2	1.5	ſ.T	4.01	Cobalt	٧N	001,69
7.81	8.7.6	4.02	C PP	8.25	p. Se	6.44	Сһготіит	97	000'050'1
L 0079£	78200 J	72400 J	44300 J	46300 J	£ 002E6	f 0091E	Calcium	ΨN	AN
U 11.0	U 49.0	U 11.0	1.6	5'0	6'6	S '9	Cadmium	9.0	ELÞ
0.43 J	U 11.0	£ 9£.0	0.12 U	U 01.0	U 21.0	6.1	Beryllium	٧N	18.5
լ շ.09	L 7.E.S.	£.23	1530 J	L 052	73.4 J	LIII	muinsB	ΨN	009,87
I'ÞI	6.8	12.1	8.0	1.7	13.0	5'94	Arsenic	9	40.3
0696	4550	10200	0194	3610	00191	14300	munimulA	ΑN	1,100,000
								(BX\gm) A1T\A071	√\\80108 - 2ls19M JA
10/10/90	10/00/90	10/20/90	10/00/90	10/00/90	10/70/90	10/60/90	Analyle Date:		I to xabri brassH 10
2.4 - 3.5	1.6 - 2.4	2.7 ~ 3.5	1.5 - 2.7	1.5 - 2.7	2.4 - 3.5	1.8 - 2.4	Depth (ft):	Most Stringent	Bisk revels of 10.5
TMCSD-3-Z	TMCSD-3-Z3	TMCSD-2-Z4	Z3/D LWC2D-S-	TMCSD-2-Z3	TMCSD-1-Z4	TMCSD-1-Z3	:Ol elqmeS		Site Human Health

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

U 0891	U EI S	210 U	U 4.08	LN 0.62	[N 0941	∩ 9\$Þ	Метьохусьюг	31.44	11,200
210 U	U I.40	ISANI	LN 78.E	LN 28.4	LN 964	LN S.11	Heptachlor epoxide	2 <i>L</i> S.1	AN
126 U	U 2.8£	U 2.8£	U £2.4	3,10 U	U 281	34.2 U	Нер ғасһlor	LLS.1	AN
LN 8.66	12.1 NJ	INEEL	3.02 U	J. 90.2	123 U	U 8.22	gamma-Chlordane	416.0	000,18
U 1.48	U L.SS	U 2.2.5	3.02 U	U 90.2	123 U	U 8.22	gamma-BHC ¹	3	AN
156 U	U 2.8£	U 2.8£	IN 762.0	LN E.32	IN OFSI	IN ELÞ	Endrin ketone	ΑN	AN
451 N	U 821	U 721	U 1.21	IN EP'I	N L19	U 4 II	Endrin aldehyde	ΑN	٧N
U 891	U E.12	U 0.12	U 40.8	U £1.4	U 742	U 6.24	Endrin	ε	315,000
752 U	U 0.TT	U 4.87	U 90.6	LN 09.2	J 07£	U 4.89	Endosulfan sulfate	VN	AN
126 U	U 2.8£	U S.8E	U £2.4	3.10 U	U 281	J 2.4E	Endosultan II	272.1	ΑN
210 U	U 1.48	LN 0.2E	IN 16'S	IN LE'S	IN 0.26	25.0 NJ	Endosulfan 1	STZ.1	ΑN
U 012	IN S'EE	U 7.£8	U SS.T	U 91.8	U 60£	U 0.72	Dieldrin	20.0	096'₺
U 1.48	U 7.25	U 8.85	U 20.£	J. 90.2	123 U	U 8.22	delta-BHC ¹	3.144	AN
IN 5.82	(N L'II	LN 0.5E	[N 76.2	IN LE'S	U 7.18	LN 0.25	alpha-Chlordane	415.0	001'19
U 891	U E.IZ	U 0.18	U 40.8	U £1.4	LN 6.26	U 9.84	ninblA	7	099'₺
U 891	[N 60]	U 0.12	6.72 NJ	LN EA.I	en 124	LN E9.6	4,4'-DDT	Ī	233,000
126 U	U 2.8£	U 2.8E	ሀ ៩Ⴧ.ፉ	U 01.£	U 281	J 2.4£	¢'t√DDE	7	234,000
LN 6.05	LN 6.02	LN 64.8	2.42 NJ	U 01.£	U 281	34.2 U	4't,-DDD	7	331,000
								(BA\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ICL Pesticides - 8081
ND	£28.1	14.506	10.7422	9954.8	94L'ES	SN	Total 2,3,7,8-TCDD equivalent		931,000
								ent (ng/Kg)	3,7,8-TCDD equivale
2390	1340	0681	oti	8.66	00701	£ 8.8£	Aroclor 1260	ς	0679
U 148	በ ሆያሪ	722 N	U 2.0£	U 9.02	N 886	£ 4.17	Aroclor 1242		AN
					•			,κg)	CCL PCBs - 8082 (µg/
42400	33400	00667	00787	24100	00115	72000	Total Organic Carbon		AN
							Kg)	i - Lloyd Kahn (mg/i	Total Organic Carbon
10/18/90	02/31/01	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	Analyte Date:		or Hazard Index of 1
6.5 - 2.3	1.4 - 2.4	1.3 - 2.8	7.2 - 2.7	5'2 + 3'2	1.6 - 2.5	2.9 - 3.5	Depth (ft):	Most Stringent	Hisk Fevels of 10.5
LF55D-2-Z2	LF55D-1-Z3	TMCSD-6-Z3	εz	TMCSD-5-Z4	TMCSD-5-Z3	TMCSD-4-Z4	Sample ID:		Site Human Health
			TMCSD-5-2-						
									

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	· · · · · · · · · · · · · · · · · · ·	A 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				TMCSD-5-2-			
Site Human Health		Sample ID:	TMCSD-4-Z4	TMCSD-5-Z3	TMCSD-5-Z4	Z 3	TMCSD-6-Z3	LF5SD-1-Z3	LF5SD-2-Z2
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):	2.9 - 3.5	1.6 - 2.5	2.5 - 3.5	1.4 - 2.7	1.3 - 2.8	1.4 - 2.4	0.5 - 2.3
or Hazard Index of 1		Analyte Date:	06/01/01	06/01/01	06/01/01	06/01/01	06/01/01	05/31/01	05/31/01
TCL VOCs - 8260B	(μg/Kg)								
NA	940	1,1,2,2-Tetrachloroethane	5.85 UJ	6.15 UJ	619 U	40.1 UJ	34.6 U	6.66 UJ	8.40 UJ
94,500,000	628.8	1,2-Dichlorobenzene	5.85 UJ	3.12 J	415 J	40.1 UJ	34.6 U	6.66 UJ	8.40 UJ
NA	NA	1,2-Dichloroethane	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	NA	1,2-Dichloroethene, Total	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
3,310,000	628.8	1,4-Dichlorobenzene	5.85 UJ	5.70 J	4820	40.1 UJ	34.6 U	6.66 UJ	8.40 UJ
NA	NA	2-Butanone	11.7 UJ	12.3 U	1200 U	80.2 U	69.2 U	7.66 J	7.32 J
105,000,000	NA	Acetone	11.7 UJ	12.3 U	1200 U	80.2 U	69.2 U	32.5 J	35.3 J
273,000	1467.2	Benzene	5.85 UJ	70.7	154 J	40.1 U	34.6 U	6.66 U	8.40 U
105,000,000	NA	Carbon disulfide	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
21,000,000	183.4	Chlorobenzene	5.85 UJ	45.1	28800	3430	178 J	6.66 U	8.40 U
NA	NA	Chloroform	1.78 J	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA NA	NA	cis-1,2-Dichloroethene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	1257.6	Ethylbenzene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	4820.8	m,p-Xylene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	4820.8	o-Xylene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	530	Tetrachloroethene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	2567.6	Toluene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	1,600	trans-1,2-Dichloroethene	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
6,320,000	1,600	Trichloroethene	22.1 J	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U
NA	NA	Vinyl chloride	11.7 UJ	12.3 U	1200 U	80.2 U	69.2 U	13.3 U	16.8 U
NA	4820.8	Xylenes, Total	5.85 UJ	6.15 U	619 U	40.1 U	34.6 U	6.66 U	8.40 U

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

2532	8.8922	34473	94561	78517	846410	30860	zHA9 IstoT	٧N	٧N
346 I	223 J	3940	L 0861	2110	101000	0975	Pyrene	06Þ	31,600,000
N 9SS	431 UJ	U 16£	U 184	U £26	በ 0ቱ1ረ	U 0171	Phenol 2	2.92	000,000,2£8
L 844	L ETI	4880	2440	1800	162000	3410 U	Рһспаніһгепе	240	٧N
N 9SS	tu 1£þ	88Þ	rei 1	L 618	32000	r ist	ларhthalene	091	42,100,00
332 J	tu 154	f 94¢	767 J	1220	L 00261	0861	Indeno(1,2,3-cd)pyrene	200	000,801
N 9SS	tu 154	689	304 1	£ 86£	22900	ſ 906	Fluorene	35	42,200,000
L96	0 † S	0869	0 /9 E	9310	139000	3410 N	Fluoranthene	009	42,100,000
U 988	tu 154	U 19E	U 194	U £26	U 0417	U 0171	Di-n-octyl phthalate	VΝ	AN
N 988	U 164	ESP	f \$61	232 J	21300	२५४ १	Dibenzofuran	2,000	4,210,000
L 201	tu 164	422	767 763	436.1	19900	f \$09	Dibenz(a,h)anthracene	09	006'01
S LLÞ	ſ 96I	2820	10991	0991	00/68	0717	Chrysene		000'006'01
LOLL	Ր 8՝0Հ	930	पेरा १	3341	32800	T 0911	Carbazole	ΑN	3,970,000
U 988	431 UJ	746 J	336 J	U £26	በ ዐቱነ ረ	UOILI	Bis(2-ethylhexyl)phthalate	10453.8	000'089'\$
U 988	431 M	U 19£	U 19p	U £26	U 0417	U 0171	Benzyl alcohol	ΑN	316,000,000
1400 N	tU 080 I	U 489	U 0911	7400 N	U 00081	U 062Þ	Benzoic acid	ΑN	4.2 x 10 ⁹
r pis	73¢ 1	7090	U 194	1500	32100	3160	Benzo(k)fluoranthene	740	000'060'1
£ 281	U 154	109	f 916	C 169	24600	l 180 J	Benzo(g,h,i)perylene	0/1	VΝ
£ 88Þ	742 J	LOTT	7660	1420	00867	3190	Вепzо(b)Пиогалthепе	ΑN	000'601
f 9SÞ	L ETI	2200	1530	1470	34000	3667	Benzo(a)pyrene	370	006'01
L 87E	Itt I	2740	1490 1	OSEI	0009\$	0697	Benz(a)anthracene	197	000,601
330 J	141 7	0/61	1120	0801	0069E	11301	Апіћгасепе	\$8	316,000,000
7 907	1 67 I	964	€69	L ETT	3010	£ 878	Асепарииулеле	ΑN	٧N
U 388	431 UJ	0\$\$	291 J	380 J	11000	r sls	Асепариснепе	91	000,00€,€8
U 388	431 UJ	U 16£	U 19Þ	U £26	Z390 J	U 0171	4-Methylphenol 2	26.2	5,300,000
U 388	431 UI	U 16£	Ω 19ħ	U £26	U 0417	U 0171	2-Methylphenol 2	26.2	52,600,000
N 9SS	tU 164	L 275 J	C 581	f 61p	12200	3011	2-Methylnaphthalene	\$9	AN
N 9SS	tU 1£4	J 16E	U 184	U £26	U 0417	UOITI	2,4-Dimethylphenol 2	26.2	21,000,000
N 9SS	U 154	0691	9610	0715	U 0417	UOILI	1,4-Dichlorobenzene	8.829	3,310,000
N 9SS	431 UJ	U 16£	343 J	U £26	በ 0៦፤ ረ	ሀዕነተ፤	1,3-Dichlorobenzene	8.829	VN
U 988	tu 154	SS6	00\$L	1410	U 0417	በ ዐነረ ፤	1,2-Dichlorobenzene	8.829	000'005'\$6
U 988	431 UI	f 891	£ 86£	730 J	U 0417	UOITI	1,2,4-Trichlorobenzene	4.8974	000'005'01
						· · · · · · · · · · · · · · · · · · ·		(ha\Kg)	ICL SVOCs - 8270C
10/16/90	10/18/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	Analyte Date:		t to xebril bisselt to
0.5 - 2.3	1.4 - 2.4	8.5 - 5.1	7.2 - 4.1	5'2 - 3'2	1.6 - 2.5	2.9 - 3.5	Depth (ft):	Most Stringent	Risk Levels of 10.5
LF55D-2-Z2	LF6SD-1-Z3	TMCSD-6-Z3	EZ	TMCSD-5-Z4	TMCSD-5-Z3	TMCSD-4-Z4	Sample ID:		Site Human Health

LWCSD-2-5-

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

1.14	<i>L</i> :S7	23.9	34.4	\$2.9	7.02	15.0	Percent Moisture	AN	AN
								(%	ercent Molsture (wt
U £89	1480	1470	0887	2040	149	f 89¢	нчят	AN	AN
					<u> </u>			(6)	.HPH - 418.1M (mg/K
U 828.0	U £78.0	LU 499.0	L 182.0	W 012.0	U 7£8.0	t 021.0	Cyanide	AN	21,100
			V					/ (mg/Kg)	otal Cyanide - 9012)
1.4.1	L E.1	tU 8.4	tu e.r	L 68.0	LE.1	L 9.1	Hexavalent Chromium	AN	0L1'S
		·		•				9X/gm) A3617 - mu	Hexavalent Chromi
1157	L E.94	L E01	1547	LIII	f bb t	112.1	Zinc	120	316,000
1.12	24.5	L.T.	Z'SÞ	20.5	6.22	12.0	muibensV	٧N	08£,7
U 19.0	U 42.0	U £2.0	U 22.0	U 6£.0	U £4.0	U £4.0	muilledT	ΑN	ΨN
f 201	1341	£ 9.28	597	181	SEI	140	muibo2	ΨN	ΨN
13401	Lossi	L 819	1560 J	f 0601	f 8LL	815 J	Potassium	ΑN	ΨN
14.0	13.4	191	24.4	14.4	28.5	£.9	Nickel	91	21,000
L 02.0	L 11.0	0.14 J	L 04.0	L 01.0	L EL.0	L 820.0	Mercury	21.0	ΑN
336	143	138	132	057	120	322	Manganese	097	24,200
\$200 J	f 04S4	3650 J	2810 J	L 08EL	L 0862	f 0E67	muisəngaM	VN	AN
6'19	£.91	L.148	170	991	181	9'55	besd	31	AN
32500	14300	14800	00\$87	21200	00EST	13800	lion	20,000	AN
8.62	p'91	p.9E	4.00	2.7.8	8.64	7.52	Copper	91	42,000
6.8	€'9	4.8	2.8	L'S	4.3	<i>L</i> 'E	Cobalt	ΨN	001,69
12.5	22.4	0.91	9.04	8.64	8.7.2	6.6	Chromium	97	000,020,1
f 00061	f 089Þ	18900	11400	0918	52000	32100	Calcium	ΨN	AN
U 21.0	U £1.0	0.11	4.0 4	0.72	S'I	U 11.0	Cadmium	9'0	£74
L 61.0	U £1.0	U 51.0	£7.0	ZS'0	0.24 J	U 11.0	Beryllium	AN	2.81
1.94	1.95	7.24	4.87	7.13	34.6	E'SE	Barium	ΨN	009,87
2.6	8.2	13.2	2.25	1.71	7'6	p. p	Arsenic	9	€.04
0017	0867	0585	06178	0014	0987	0005	munimulA	AN	000'001'1
	***************************************	·			•				/L Metals - 6010B/7
10/16/90	10/18/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	Analyte Date:		I to xebril braseH
6.5 - 2.3	1.4 - 2.4	1'3 - 5'8	1.4 - 2.7	2.5 - 3.5	1.6 - 2.5	5.9 - 3.5	Depth (ft):	Most Stringent	lisk Levels of 10.5
LF55D-2-Z2	EZ-1-08947	TMCSD-6-Z3	EZ.	TMCSD-5-Z4	TMCSD-5-Z3	TMCSD-4-Z4	Sample ID:		ilte Human Health

TMCSD-5-2-

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

						TMCSD-7-1-	TMCSD-7-1-	TMCSD-8-1-	TMCSD-8-1-
Site Human Health		Sample ID:	LF5SD-3-Z2	TMCSD-7-Z2	TMCSD-7-Z3	Z2	Z3	Z3	Z4
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):	0.5 - 2.3	0.5 - 1.5	1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5
or Hazard Index of 1		Analyte Date:	05/31/01	05/31/01	05/31/01	05/31/01	05/31/01	05/30/01	05/30/01
Total Organic Carbo	n - Lloyd Kahn (mg/	Kg)							
NA	NA	Total Organic Carbon	6230	25700	72100	205000	5270	211000	177000
TCL PCBs - 8082 (μg	/Kg)								
NA	70	Aroclor 1242	252 U	544 U	282 U	178 U	23.0 U	97.8 U	74.7 U
6290	5	Aroclor 1260	657	2540	997	568	30.2	107	74.7 U
2,3,7,8-TCDD equiva	lent (ng/Kg)								
331,000	10	Total 2,3,7,8-TCDD equivalent	1.2897	5.0164	72.076	67.318	ND	3.4528	ND
TCL Pesticides - 808	1A (μg/Kg)								
331,000	2	4,4'-DDD *	37.8 U	23.6 NJ	105 NJ	31.4 NJ	3.10 NJ	4.29 NJ	11.2 U
234,000	2	4,4′-DDE	37.8 U	81.7 U	42.3 U	33.3 U	3.45 U	14.7 U	11.2 U
233,000	1	4,4′-DDT	50.4 U	109 U	97.7 NJ	38.9 NJ	4.60 U	2.81 NJ	14.9 U
4,660	2	Aldrin	50.4 U	109 U	24.9 NJ	44.4 U	4.60 U	19.6 U	14.9 U
61,100	0.314	alpha-Chlordane	4.20 N.J	27.2 U	14.1 U	26.6 NJ	1.15 U	4.89 U	3.74 U
NA	3.144	delta-BHC 1	25.2 U	54.4 U	28.2 U	22.2.U	2.30 U	9.78 U	7.47 U
4,960	0.02	Dieldrin	62.9 U	136 U	70.4 U	55.5 U	5.75 U	24.4 U	18.7 U
NA	1.572	Endosulfan I	62.9 U	136 U	70.4 U	55.5 U	5.75 U	24.4 U	18.7 U
NA	1.572	Endosulfan II	37.8 U	81.7 U	42.3 U	33.3 U	3.45 U	14.7 U	3.45 J
NA	NA	Endosulfan sulfate	75.5 U	163 U	84.5 U	66.6 U	6.90 U	29.3 U	22.4 U
315,000	3	Endrin	50.4 U	109 U	56.3 U	44.4 U	4.60 U	3.82 NJ	2.89 J
NA	NA	Endrin aldehyde	40.7 NJ	272 U	141 U	111 U	2.11 NJ	48.9 U	37.4 U
NA	NA	Endrin ketone	37.8 U	160 NJ	209 NJ	33.3 U	3.45 U	14.7 U	11.2 U
NA	3	gamma-BHC ¹	25.2 U	54.4 U	28.2 U	22.2 U	2.30 U	9.78 U	7.47 U
61,000	0.314	gamma-Chlordane	2.66 NJ	18.0 NJ	12.9 NJ	4.47 NJ	0.705 NJ	9.78 U	7.47 U
NA	1.572	Heptachlor	37.8 U	81.7 U	42.3 U	33.3 U	3.45 U	4.02 NJ	11.2 U
NA	1.572	Heptachlor epoxide	62.9 U	75.0 NJ	131 NJ	13.6 NJ	1.25 NJ	24.4 U	18.7 U
11,200	31.44	Methoxychlor	504 U	1090 U	310 NJ	444 U	46.0 U	196 U	149 U

Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Table 3-4a

						TMCSD-7-1-	TMCSD-7-1	TMCSD-8-1-	TMCSD-8-1.
Site Human Health		Sample ID:	LF5SD-3-Z2	TMCSD-7-Z2	TMCSD-7-Z3	22	62	23	Z4
Risk Levels of 10 ⁵	Most Stringent	Dept	0.5 - 2.3	0.5 - 1.5	1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5
or Hazard Index of 1 Ecological Criteria	Ecological Criteria	Analyte Date:	05/31/01	05/31/01	05/31/01	05/31/01	05/31/01	05/30/01	05/30/01
TCL VOCs - 8260B (µg/Kg)	(µg/Kg)								
NA	940	1,1,2,2-Tetrachloroethane	6.41 U	6.31 UJ	257 J	10.9 UJ	5.92 UJ	25.8 U	18.6 UJ
94,500,000	628.8	1,2-Dichlorobenzene	6.41 U	5.84 J	7.08 UJ	8.15 J	17.2 J	25.8 U	18.6 UJ
NA	NA	1,2-Dichloroethane	6.41 U	6.31 U	36.9 J	4.86 J	5.92 U	25.8 U	18.6 U
NA	NA	1,2-Dichloroethene, Total	6.41 U	6.31 U	7.51 J	27.9 J	5.78 J	25.8 U	18.6 U
3,310,000	628.8	1,4-Dichlorobenzene	6.41 U	7.02 J	7.08 UJ	10.9 UJ	5.92 UJ	25.8 U	18.6 UJ
NA	NA	2-Butanone	6.21 J	7.11 J	14.2 UJ	21.9 UJ	11.8 U	32.0 J	19.9 J
105,000,000	NA	Acetone	19.9 J	28.6 J	19.4 J	57.3 J	17.5 J	134	88.8 J
273,000	1467.2	Benzene	6.41 U	54.3 J	2980 J	9.16 J	5.92 U	25.8 U	18.6 U
105,000,000	NA	Carbon disulfide	6.41 U	6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	6.55 J
21,000,000	183.4	Chlorobenzene	1.78 J	224 J	111000	32.1 J	5.31 J	30.6	18.6 U
NA	NA	Chloroform	6.41 U	6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U
NA	NA	cis-1,2-Dichloroethene	6.41 U	6.31 U	3.24 J	27.2 J	5.63 J	13.7 J	18.6 U
NA	1257.6	Ethylbenzene	6.41 U	6.31 U	17.2 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U
NA	4820.8	m,p-Xylene	6.41 U	6.31 U	5.99 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U
NA	4820.8	o-Xylene	6.41 U	6.31 U	2.88 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U
NA	530	Tetrachloroethene	6.41 U	6.31 U	7.08 UJ	10.9 UJ	5.92 UJ	25.8 U	18.6 U
NA	2567.6	Toluene	6.41 U	3.17 J	6.50 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U
NA	1,600	trans-1,2-Dichloroethene	6.41 U	6.31 U	4.30 J	10.9 UJ	5.92 U	25.8 U	18.6 U
6,320,000	1,600	Trichloroethene	6.41 U	6.31 U	7.08 UJ	10.9 UJ	2.36 J	25.8 U	18.6 U
NA	NA	Vinyl chloride	12.8 U	12.6 U	9.04 J	21.9 UJ	11.8 U	51.5 U	37.2 U
NA	4820.8	Xylenes, Total	6.41 U	6.31 U	8.87 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U

Key at the end of Table.

02 1/KO4_02_02_00.80925 13 jrv.xls - 13-4a TMC 2001 Creek Sediment - 7/5/2002

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

αN	6ttS	6.187	eetst	ES887	164619	1.7812	ZHA9 IsloT	٧N	ΨN
1210 U	[SLÞ	l es i	L OSTE	8010	20700	L E72	Pyrene	064	31,600,000
1210 U	U 00/1	372 ሀ	U SST	1400 13	ሰ ደ ነ ታ	410 10	Phenol 2	26.2	632,000,000
1210 U	r pres	լ 0.86	4780	0446	31700	164 J	Рһспапцһгепе	240	ΑN
U 0121	U 0071	372 U	3401	L OESI	£ 0969	410 10	Naphthalene	160	42,100,00
U 0121	U 0071	372 ሀ	1220 1	098\$	10501	3.48 J	Indeno(1,2,3-cd)pyrene	700	108,000
U 0121	U 0071	U STE	L 207	LOIII	f ossp	U014	Fluorene	35	42,200,000
U 0121	1270.5	ſ 491	0788	14200	21700	r 657	Fluoranthene	009	42,100,000
1210 U	U 0071	372.U	ſ STL	1400 01	413 ()	U014	Di-n-octyl phthalate	ΑN	AN
1210 U	U 0071	372 U	767 T	f 6E8	3040 I	410 U	Dibenzoluran	2,000⁴	4,210,000
U 0121	U 0071	U 27£	1041	f 0691	1520	r c'll	Dibenz(a,h)anthracene		006'01
1210 U	f S6Þ	L 1.97	f 059b	0179	f 00\$01	182 J	Chrysene	340	000,000,01
1210 U	U 0071	372 U	008	1420	f olis	U014	Carbazole	AN	3,970,000
1210 U	U 0071	372 U	f 9SI	f 647	L 972	U014	Bis(2-ethylhexyl)phthalate	8.62401	000,086,2
1210 U	U 0071	372 U	U SST	I400 UJ	413 (1	U 014	Benzyl alcohol	AN	316,000,000
3040 U	U 0/24	U 2£6	U 0281	3520 UJ	1040 U	1030 U	Benzoic acid	AN	4.2 x 10°
UOISI	L TIE	L 0.73	2810 J	48101	f 009L	148 1	Benzo(k)fluoranthene	240	000,060,1
1210 U	U 0071	U 27£	f \$66	5280 1	1200	f 9\$1	Benzo(g,h,i)perylene	0/1	ΑN
1210 U	f Its	L 1.82	39101	f oost	f 0446	I 48 J	Benzo(b)fluoranthene	٧N	000,601
1210 U	f \$9 p	ſ <i>S⁺L</i> S	33001	L OTIE	10964	L 071	Benzo(a)pyrene	370	006,01
1210 U	295 T	L 2.93	1 007E	OSLS	114001	L E91	Benz(a)anthracene	797	000,601
1210 U	₽ 96£	L T.TE	2670	2900	ſ 09ÞL	L 4.87	Anthracene		316,000,000
1210 U	L 17E	372 U	1480	L 080 I	676	0 01¢	Accnaphthylene		٧N
U 0121	U 0071	372 ሀ	£ 82Þ	L 080 I	3260 J	U 014	Асепарћићеле	91	000,005,68
1210 U	U 0071	U 27E	U &2 <i>T</i>	I400 UJ	520 1	U 014	4-Methylphenol ²		000,005,8
1210 U	U 0071	በ ሪፐይ	U &STT	I400 U1	U £14	U 014	շ-Methylphenol ^չ		52,600,000
U 0121	Մ 00/1	U STE	320 1	f \$19	1920	U014	2-Methylnaphthalene		AN
1210 U	U 0071	372 U	U SZT	1400 UJ	204 1	U014	2,4-Dimethylphenol 2		21,000,000
1210 U	U 0071	ሀ ኔፖይ	L 07£	2170	732 I	U 014	1,4-Dichlorobenzene	8.828	3,310,000
1210 U	U 0071	በ ኔፐይ	U S2T	1400 U1	U £14	∩ 01₺	1,3-Dichlorobenzene	8.828	٧N
U 0121	£36 J	100 I	1140	622 3	L 071	∩ 01₺	1,2-Dichlorobenzene	8.828	000,002,46
U 0121	U 0071	ህ <i>ኒ</i> ړ٤	U SLT	LU 0041	U E14	U 014	1,2,4-Trichlorobenzene	p.897p	000,002,01
								(h@\K@)	TCL SVOCs - 8270C
10/08/90	10/08/90	10/16/90	10/16/90	10/16/90	10/18/90	10/16/90	:eted etyle		t to xebril breseH to
2.5 - 3.5	2.2 - 2.5	1.1 - 2.5	1.1 - 8.0	1.5 - 2.4	8.1 - 8.0	0.5 - 2.3	Depth (ft):	Most Stringent	Risk Levels of 10.5
ÞΖ	£Z	εz	Z5	TMCSD-7-Z3	TMCSD-7-Z2	FE22D-3-X5	:Ol oldms2		Site Human Health
-1-0-GCOHH	-1-0-CCOUL	ALCO CONTRACTOR OF THE PARTY OF	1 / 0001111						

TMCSD-7-1- TMCSD-7-1- TMCSD-8-1- TMCSD-8-1-

Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Table 3-4a

7.57	6.08	1,91	7.22	0.15	2.82	6'77	Percent Moisture	AN	∀N
								(%	Percent Moisture (wt
1520 U	U 0902	ΩLLt	1000	1000	£ 07£	N 61S	наят	٧N	AN
								(6	7HPH - 418.1M (mg/K
U 06.1	2.55 U	U 062.0	L 674.0	L 082.0	U 686.0	U 249.0	Cyanide Cyanide	AN	21,100
		1						(mg/Kg)	AS106 - ebinsy3 istoT
U 91	N 61	U 4.4	U 8.9	U 8.č	L 26.0	U E.R	Hexavalent Chromium	AN	0/1,2
								M- 7196 A (mg/Kg)	Hexavalent Chromic
1.09	<i>\$</i> .78	L 6.1E	f 941	L ELI	Lem	L 7.EE	Sinc	150	316,000
12.2	23.5	14.9	0.74	£.24	32.0	£.11	muibeneV	ΑN	08£,7
U S.I	U 8.1	L 09.0	U 68.0	U SS.0	U 98.0	U 12.0	mvilledT	٧N	ΨN
385	ÞES	SII	L 8EI	641	Lem	ſ L'\$L	muibo2	ΨN	ΑN
830	686	1 200 J	f 0011	LOIEI	1 0E6	LOIOI	Potassium	ΨN	ΑN
2.01	15.9	2.11	2.72	23.9	0.71	€.8	Nickel	91	21,000
LU 720.0	0.084 J	L 740.0	0.46 J	L 02.0	U 11.0	L 12.0	Метсигу	\$1.0	ΑN
991	IÞI	307	544	661	112	ltt	Manganese	097	24,200
3770	3180	f 06E9	f 0559	3220 J	3400 J	L 0E94	Magnesium	ΑN	ΨN
9.4	98.0	2.01	est	182	6.rr	12.2	Lead	18	ΑN
21900	16900	12600	21400	73700	14300	10600	lron	20,000	٧N
8.02	7.56	L'SI	p. 69	72.5	S.Ep	1.71	Copper	91	42,000
ſ ľ'S	£ 0.3	8.2	S,T	Z.T	6.4	8.£	Cobalt	ΑN	001,69
5. 7	6.71	9.8	0.7€	6'SE	2.81	0.8	Сһготіпт	56	1,050,000
8550 1	L 00721	\$ 00p92	48000 l	42400 J	22100 J	L 00202	Calcium	ΨN	ΨN
U 9£.0	0.2	U 11.0	12.3 J	L 7.51	2.1.3	U £1.0	Cadmium	9.0	ELÞ
U 9£.0	U 24.0	0.12 J	U 22.0	L 89.0	t 02.0	U £1.0	Beryllium	ΑN	2.81
4.84	L*8L	1.42	€.82	2. 38	34.6	26.6	Barium	٧N	009'EL
9.4	6.91	9.9	LEI	32.8	<i>L</i> .8	6.2	Arsenic	9	€.04
0419	0727	0909	0 1 /58	0648	9965	0864	munimulA	AN	000,001,1
								(gX\pm) ATT\A074	TAL Metals - 6010B/7
10/08/90	10/02/90	10/16/90	10/16/90	02/31/01	10/16/50	10/18/90	:otsQ ofylenA		or Hazard Index of 1
2,5 - 3,5	2.2 - 2.5	1,1 - 2,5	1.1 - 8.0	1.5 - 2.4	6.1 - 6.0	0.5 - 2.3	Depth (ft):	Most Stringent	Risk Levels of 10-5
TMCSD-8-1-	TMCSD-8-1- Z3	TMCSD-7-1- SZ	TMCSD-7-1- SZ	TMCSD-7-Z3	TMCSD-7-Z2	LF5SD-3-Z2	:Ol elqms2		Site Human Health

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

			TMCSD-8-1-	TMCSD-8-2-		TMCSD-9-1-	TMCSD-9-3-	TMCSD-9-3-	TMCSD-9-4-
Site Human Health		Sample ID:		Z2	TMCSD-9-Z2	Z2	Z3	Z4	Z 3
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):		0.5 - 0.9	0.5 - 1.6	0.5 - 1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85
or Hazard Index of 1	Ecological Criteria	Analyte Date:	05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
Total Organic Carbon	ı - Lloyd Kahn (mg/								
NA	NA	Total Organic Carbon		113000	43700	33600	25500	77000	25600
TCL PCBs - 8082 (µg/	/Kg)								
NA	70	Aroclor 1242	91.6 U	29.6 U	28.1 U	23.3 U	38.0 U	49.9 U	28.6 U
6290	5	Aroclor 1260	91.6 U	17.7 J	231	259	361	49.9 U	473
2,3,7,8-TCDD equival	ent (ng/Kg)								
331,000	10	Total 2,3,7,8-TCDD equivalent	0.025	17.624	0.9431	6.3018	1.711	0.02	1.7864
TCL Pesticides - 808	1A (μg/Kg)								
331,000	2	4,4′-DDD	13.7 U	3.79 NJ	21.1 U	35.0 U	20.8 NJ	37.4 U	9.98 NJ
234,000	2	4,4'-DDE	13.7 U	4.43 U	21.1 U	35.0 U	28.5 U	37.4 U	21.5 U
233,000	1	4,4'-DDT	18.3 U	1.15 NJ	8.18 NJ	9.14 NJ	11.1 NJ	49.9 U	11.4 NJ
4,660	2	Aldrin	18.3 U	11.2 U	31.6 NJ	112 NJ	32.0 NJ	49.9 U	76.6 NJ
61,100	0.314	alpha-Chlordane	4.58 U	1.48 U	1.50 NJ	4.52 NJ	5.61 NJ	12.5 U	5.67 NJ
NA	3.144	delta-BHC	9.16 U	2.96 U	14.1 U	23.3 U	19.0 U	25.0 U	14.3 U
4,960	0.02	Dieldrin	22.9 U	7.39 U	35.1 U	58.3 U	17,3 NJ	62.4 U	35.8 U
NA	1.572	Endosulfan I	22.9 U	7.39 U	35.1 U	58.3 U	47.6 U	62.4 U	5.72 NJ
NA	1.572	Endosulfan II	13.7 U	4.43 U	21.1 U	35.0 U	28.5 U	37.4 U	21.5 U
NA	NA	Endosulfan sulfate	27.5 U	8.87 U	42.2 U	70.0 U	57.1 U	74.9 U	42.9 U
315,000	3	Endrin	4.22 J	5.91 U	28.1 U	46.7 U	38.0 U	49.9 U	28.6 U
NA	NA	Endrin aldehyde	45.8 U	14.8 U	70.3 U	117 U	60.2 NJ	125 U	65.3 NJ
NA	NA	Endrin ketone	13.7 U	2.24 NJ	15.0 NJ	23.8 NJ	16.0 NJ	37.4 U	20.9 NJ
NA	3	gamma-BHC T	9.16 U	2.96 U	14.1 U	23.3 U	19.0 U	25.0 U	5.98 NJ
61,000	0.314	gamma-Chlordane	9.16 U	2.96 U	14.1 U	23.3 U	8.79 NJ	25.0 U	9.01 NJ
NA	1.572	Heptachlor	13.7 U	4.43 U	21.1 U	35.0 U	28.5 U	37.4 U	21.5 U
NA	1.572	Heptachlor epoxide	22.9 U	7.39 U	35.1 U	58.3 U	9.05 NJ	62.4 U	25.1 NJ
11,200	31.44	Methoxychlor	183 U	59.1 U	281 U	467 U	380 U	499 U	50.6 NJ

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Sample ID:	TMCSD-8-1- Z4/D	TMCSD-8-2- Z2	TMCSD-9-Z2	TMCSD-9-1- Z2	TMCSD-9-3- Z3	TMCSD-9-3- Z4	TMCSD-9-4- Z3
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):		0.5 - 0.9	0.5 - 1.6	0.5 - 1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85
or Hazard Index of 1	Ecological Criteria	Analyte Date:	05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
TCL VOCs - 8260B	(μg/Kg)								
NA	940	1,1,2,2-Tetrachloroethane	4.88 UJ	7.25 UJ	6.96 UJ	5.97 U	10.0 U	14.0 U	7.22 U
94,500,000	628.8	1,2-Dichlorobenzene	4.88 UJ	2.84 J	6.96 UJ	5.97 U	10.0 U	14.0 U	7.22 U
NA	NA	1,2-Dichloroethane	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	NA	1,2-Dichloroethene, Total	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
3,310,000	628.8	1,4-Dichlorobenzene	4.88 UJ	7.25 UJ	6.96 UJ	5.97 U	10.0 U	14.0 U	7.22 U
NA	NA	2-Butanone	3.77 J	14.5 U	4.51 J	11.9 U	20.0 U	28.0 U	14.4 U
105,000,000	NA	Acetone	18.0 J	14.5 U	22.1 J	14.8	20.0 U	57.8	14.4 U
273,000	1467.2	Benzene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
105,000,000	NA	Carbon disulfide	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
21,000,000	183.4	Chlorobenzene	4.88 U	2.22 J	5.95 J	5.97 U	10.0 U	14.0 U	2.83 J
NA	NA	Chloroform	4.88 U	. 7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	NA	cis-1,2-Dichloroethene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	1257.6	Ethylbenzene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	4820.8	m,p-Xylene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	4820.8	o-Xylene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	530	Tetrachloroethene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	2567.6	Toluene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	1,600	trans-1,2-Dichloroethene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
6,320,000	1,600	Trichloroethene	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U
NA	NA	Vinyl chloride	9.77 U	14.5 U	13.9 U	11.9 U	20.0 U	28.0 U	14.4 U
NA	4820.8	Xylenes, Total	4.88 U	7.25 U	6.96 U	5.97 U	10.0 U	14.0 U	7.22 U

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

Site Human Health		Sample ID:	TMCSD-8-1- Z4/D	TMCSD-8-2- Z2	TMCSD-9-Z2	TMCSD-9-1- Z2	TMCSD-9-3- Z3	TMCSD-9-3- Z4	TMCSD-9-4- Z3
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):		0.5 - 0.9	0.5 - 1.6	0.5 - 1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85
or Hazard Index of 1				05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
TCL SVOCs - 8270C							00,40,0		00,20,01
10,500,000	4768.4	1.2.4-Trichlorobenzene	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
94,500,000	628.8	1,2-Dichlorobenzene	1540 U	1010 J	448 U	393 U	650 U	915 U	478 U
NA NA	628.8	1.3-Dichlorobenzene	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
3,310,000	628.8	1,4-Dichlorobenzene	1540 U	127 J	448 U	393 U	650 U	915 U	478 U
21,000,000	26.2	2,4-Dimethylphenol ²	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
NA	65	2-Methylnaphthalene	1540 U	485 U	448 U	78.9 J	650 U	915 U	478 U
52,600,000	26.2	2-Methylphenol ²	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
5,300,000	26.2	4-Methylphenol ²	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
63,300,000	16	Acenaphthene	1540 U	104 J	130 J	221 J	390 J	915 U	267 J
NA	NA	Acenaphthylene	1540 U	144 J	82.0 J	393 U	650 U	915 U	165 J
316,000,000	85	Anthracene	1540 U	371 J	425 J	514	810	915 U	1090
109,000	261	Benz(a)anthracene	1540 U	747	676 J	836 J	1140 J	915 U	1690
10,900	370	Benzo(a)pyrene	1540 U	704 J	607 J	619 J	1010 J	915 U	1310 J
109,000	NA	Benzo(b)fluoranthene	1540 U	531 J	522 J	630 J	996 J	915 U	1130 J
NA	170	Benzo(g,h,i)perylene	1540 U	674 J	197 J	194 J	349 J	915 U	419 J
1,090,000	240	Benzo(k)fluoranthene	1540 U	603 J	644 J	694 J	938 J	915 U	1330 J
4.2 x 10 ⁹	NA	Benzoic acid	3880 U	1220 U	1130 U	1970	4240	2300 U	1200 U
316,000,000	NA	Benzyl alcohol	1540 U	485 U	448 U	205 J	650 U	915 U	478 U
5,680,000	10453.8	Bis(2-ethylhexyl)phthalate	1540 U	485 U	87.3 J	393 U	650 U	915 U	478 U
3,970,000	NA	Carbazole	1540 U	163 J	209 J	305 J	351 J	915 U	471 J
10,900,000	340	Chrysene	1540 U	874	711 J	876 J	1220 J	915 U	1710
10,900	60	Dibenz(a,h)anthracene	1540 U	268 J	112 J	114 J	172 J	915 U	233 J
4,210,000	2,000 ^d	Dibenzofuran	1540 U	485 U	102 J	166 J	179 J	915 U	211 J
NA	NA	Di-n-octyl phthalate	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
42,100,000	600	Fluoranthene	1540 U	1110	1430	1820	2470	915 U	· 4330
42,200,000	35	Fluorene	1540 U	129 J	137 J	202 J	323 J	915 U	396 J
108,000	200	Indeno(1,2,3-cd)pyrene	1540 U	1290	336 J	336 J	508 J	915 U	838
42,100,00	160	Naphthalene	1540 U	126 J	136 J	182 J	117 J	915 U	140 J
NA	240	Phenanthrene	1540 U	1100	1270	1980	2640	915 U	3570
632,000,000	26.2	Phenol ²	1540 U	485 U	448 U	393 U	650 U	915 U	478 U
31,600,000	490	Pyrene	1540 U	1560	685 J	901 J	1300 J	915 U	1600
NA	NA	Total PAHs	ND	10498	8411	10668.9	14913	ND	20900

Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Table 3-4a

32.2	5.4. 4	4.12	2.91	p.92	33.2	6.77	Percent Moisture	٧N	٧N
				-				(%	Percent Molsture (wt%
U 062	1120 U	U £28	122.3	rosz	089	U 0 1 8 I	ТЯРН	VN	٧N
								(E	TRPH - 418.1M (mg/K
U 7£7.0	U 46.1	U 666.0	U 109.0	U £27.0	L 46E.0	U 22.2	Cyanide		21,100
								(mg/Kg)	Total Cyanide - 9012A
U 2.2	USI	2.8 J	U I.č	U 8.č	U 2.0	U 8 I	Hexavalent Chromium	VN	0/1'\$
								(BX\gm) A3617 - mi	Hexavalent Chromin
2.99	1.14	9.72	\$.65	2.59	103	0.99	Sinc	120	316,000
p. 6	15.8	1,11	2.11	6.12	£.04	13.4	muibeneV	٧N	08£,7
U 42.0	U I.I	U 17.0	U £4.0	U 84.0	U SS.0	U 8.1	muilledT	VN	٧N
777	795	334	L E.78	139	£9£	tSt	muibo2	٧N	٧N
S64	0151	EPL	243	978	1300	1020	muissato9	٧N	٧N
E.T	2.01	9.T	2.11	14.6	1.12	7.81	Nickel		21,000
L 820.0	U 640.0	Ł 6£0.0	L 820.0	0.038 J	0.42.J	t∪ 270.0	Мегсигу		VΝ
752	450	L67	697	443	348	6/1	Manganese	097	24,200
0297	0687	090€	4370	0889	0565	4120	Magnesium	٧N	VN
176	9.2	861	1.01	£.8£	3.28	6.4	bead	31	ΨN
11100	20200	14300	17700	17400	76800	73100	lron	20,000	VΝ
12.2	6.EI	12.5	12.4	8.13	č .85	24.6	Copper	91	42,000
7.E	L 6.4	3.5 J	6.4	S.2	1.8	f 1 [.] 9	Cobalt	٧N	001,59
240	8.6	0.14	6.2	8.11	0.82	9.6	Сһготіит	79	1,050,000
1 00E91	L 0008EL	71200 T	L 007EI	L 00222	£ 009£1	104001	Calcium	٧N	٧N
U £1.0	L 62.0	U 81.0	U 11.0	U 21.0	7'9	U 24.0	Cadmium	<u> </u>	£74
U £1.0	U 72.0	U 81.0	L 21.0	U 21.0	79.0	U &4.0	Beryllium	VN	2.81
7.02	774	5.95	2.14	45.2	128	6.09	Barium	٧N	009°EL
8.1	T.7	9.4	L't	8.8	7.02	3.6 J	SinsenA	9	£.04
4020	0029	4100	0SL9	09LS	10500	0774	munimulA	VN	000'001'1
									AL Metals - 6010B/74
02/53/04	10/67/90	10/67/90	10/08/90	10/06/90	10/08/90	10/08/90	Analyte Date:		I Hazard Index of 1 E
28.1 - 2.0	3.6 - 1.1	1.1 - 8.0	1 - 5.0	9.1 - 8.0	6.0 - 6.0	2.5 - 3.5	Depth (ft):	Most Stringent	Hisk Levels of 10.5
TMCSD-9-4-	TMCSD-9-3-	TMCSD-9-3-	TMCSD-9-1-	TMCSD-9-Z2	TMCSD-8-2-	TMCSD-8-1-	Sample ID:		Site Human Health

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

∆ 5630 U	U 871	U 371	U I.42	U 9.84	255 U	Methoxychlor	31.44	002,11
J 82£	U T.ZE	U 2.2E	IN pp.1	IN 95'I	U 6.1£	Heptachlor epoxide	LLS.1	٧N
U 791	U 7.2£	U 2.2E	U 80.4	3.49 U	U 1.91	Heptachlor	STZ.1	ΨN
(N 101	21.2 NJ	LN 8.71	IN SS'I	INTLI	LN 98.E	gamma-Chlordane	416.0	000,13
UIEI	U 8.7.1	U 9.71	U 17.2	J. 55.2	U 7.SI	gamma-BHC ¹	ε	VN
N L61	U T.EE	35.2 U	U 90.4	U 64.£	LN 6.41	Endrin ketone	٧N	٧N
U 728	U T.RE	35.2 U	U č.£I	U 9.11	U 7.£8	Endrin aldehyde	ΑN	AN
SO9 M1	U T.RE	U 2.2E	U I4.8	U 99.4	U 2.2S	Endrin	ε	315,000
U 46£	U T. SE	35.2 U	U 21.8	U 86.8	J 2.8£	Endosulfan sulfate	٧N	VΝ
U 761	U T. EE	U 2.2E	U 90.4	U 64.£	U 1.91	Endosulfan 11	STZ.1	VΝ
328 U	U 7.2E	J 2.2£	U 17.8	2.64 NJ	U 6.1£	Endosulfan l	STZ.1	٧N
328 U	EN 49.7	LN 01.8	3.62 NJ	U 28.č	U 6.1£	Dieldrin	20.0	096'₺
UISI	U 8.71	U 9.71	U 17.S	J.33 U	ሀኒኒ፣	delta-BHC 1	3,144	٧N
U 7.28	U 8.71	U 9.71	U SE.I	2.64 NJ	LN 69.1	alpha-Chlordane	0.314	001,16
U £92	U 8.7.1	U 3.71	U 14.8	U 99.4	U S.S.	Aldrin	7	099'₺
763 U	LN 2.2E	25.0 NJ	LN 9.EI	IN P'SI	6.04 NJ	4,4'-DDT	I	233,000
U 791	IN S'SI	20.5 NJ	LN ES.1	LN 254.0	U 1.91	4,4'-DDE	7	234,000
rn 6þi	LN 1.87	IN 7'79	In se's	LN 48.E	LN 18.2	4'4,-DDD	7	331,000
							(pylkg) A	CL Pesticides - 8081
£612.7	2047.01	17.4302	15.0	MD	1.438	Total 2,3,7,8-TCDD equivalent		331,000
							ent (ng/Kg)	3,7,8-TCDD equivale
11700	2120	1480	216	901	72 6	Aroclor 1260	ς	0679
UOIEI	U TZE	322 U	U 1.72	U E.ES	25.5 U	Aroclor 1242	0 <i>L</i>	AN
							Kg)	CCL PCBs - 8082 (µg/
24000	00LZS	00LLE	8420	4150	12400	Total Organic Carbon	٧N	AN
						K9)	- Floyd Kahn (mg/	Total Organic Carbon
02/24/01	02/53/01	02\53\01	02\54\01	10/62/50	10/62/90	:ejeG ejylenA		I lo xabril bisseH ic
1.1 - 2.3	1.5 - 2.5	1,5 - 2,5	1.1 - 2.1	1.7 - 2.2	89.1 - 8.0	Depth (ft):	Most Stringent	Bisk Levels of 10.5
23	G/EZ	εz	εz	£Z	εz	:Gl eldms2		Site Human Health
TMCSD-11	TMCSD-10-3-	TMC2D-10-3-	TMCSD-10-2-	TMCSD-10-1-	TMC\$D-10-			

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Sample ID:

1.1 - 2.3 05/24/01	1.5 - 2.5 05/23/01	1.5 - 2.5 05/23/01	1,1 - 2,1 05/24/01	1.7 - 2.2 05/24/01	0.5 - 1.65 0.5 - 1.65	:(1) higod :eigi eiyienA		r Hazard Index of 1
LOURTION	10/07/05	10/07/00	1007/00	10//2/04				TCL VOCs - 8260B
U 20.0	U 06.8	U 26.8	U 62.8	. n <i>LL</i> 's	U 8£.8	1,1,2,2-Tetrachloroethane	076	٧N
7'24 1	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	1,2-Dichlorobenzene	8.828	000,002,49
U 20.0	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	1,2-Dichloroethane	ΑN	AN
U 29.8	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	1,2-Dichloroethene, Total	AN	ΨN
L 00.2	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	1,4-Dichlorobenzene	8.828	3,310,000
U E.EI	U 8.71	U 6.71	U 2.E1	U 2.11	L 18.8	2-Вигапопе	AN	٧N
U E.EI	U 8.71	L 8.12	U 2.E1	U 2.11	27.25	Acetone	VΝ	000'000'501
U 20.0	U 06.8	U 26.8	U 62.8	U TT.2	U 8E.8	Benzene	2.7341	273,000
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	Carbon disulfide	ΨN	102'000'000
12.4	L 82.2	L 00.2	87.7	LSS.I	U 8£.8	Chlorobenzene	I	000,000,12
U 29.8	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	СһІогогогт		AN
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	cis-1,2-Dichloroethene		٧N
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	Ethylbenzene		٧N
U 29.8	U 06.8	U 26.8	· U 62.8	U TT.2	U 8£.8	m,p-Xylene		٧N
U 20.0	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	o-Xylene	4820.8	VΝ
U 20.0	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	Tetrachloroethene	230	٧N
U 23.3	U 06.8	U 26.8	U 62.8	U TT.8	U 8£.8	Loluene	 	ΨN
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	trans-1,2-Dichloroethene		ΨN
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	Trichloroethene		6,320,000
U E.EI	U 8.71	U 6.71	U 2.E1	U 2.11	U 8.21	Vinyl chloride	٧N	ΨN
U 29.9	U 06.8	U 26.8	U 62.8	U TT.2	U 8£.8	Xylenes, Total	4820.8	AN

εz

εz

Q/EZ

εZ

εZ

TMCSD-10- TMCSD-10-1- TMCSD-10-3- TMCSD-10-3- TMCSD-11-

εz

Site Human Health

Table 3-4a
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Sample ID:		TMCSD-10-1- Z3	TMCSD-10-2- Z3	TMCSD-10-3- Z3	TMCSD-10-3- Z3/D	TMCSD-11- Z3
Risk Levels of 10 ⁻⁵	Stant Chrismant	Depth (ft):		1.7 - 2.2	1.1 - 2.1	1.5 - 2.5	1.5 - 2.5	1.1 - 2.3
or Hazard Index of 1	Most Stringent	Analyte Date:	05/29/01	05/24/01	05/24/01	05/23/01	05/23/01	05/24/01
TCL SVOCs - 8270C (Analyte Date.	03/23/01	00/2-4/01	03/24/01	05/20/01	03/23/01	03/24/01
10,500,000	4768.4	1,2,4-Trichlorobenzene	423 U	375 U	426 U	1620 U	1120 U	174 J
94,500,000	628.8	1.2-Dichlorobenzene	423 U	375 U	426 U	1620 U	1120 U	131 J
NA NA	628.8	1.3-Dichlorobenzene	423 U	375 U	426 U	1620 U	1120 U	434 U
3,310,000	628.8	1.4-Dichlorobenzene	423 U	375 U	426 U	1620 U	1120 U	172 J
21,000,000		2,4-Dimethylphenol ²	423 U	375 U	426 U	1620 U	1120 U	434 U
NA NA	65	2-Methylnaphthalene	423 U	375 U	426 U	1620 U	1120 U	434 U
52,600,000	26.2	2-Methylphenol ²	423 U	375 U	426 U	1620 U	1120 U	434 U
5,300,000	26.2	4-Methylphenol ²	423 U	375 U	426 U	1620 U	1120 U	434 U
63,300,000	16	Acenaphthene	64.9 J	375 U	87.1 J	368 J	205 J	51.8 J
NA	NA	Acenaphthylene	423 U	76.6 J	83.2 J	519 J	415 J	111 J
316,000,000	85	Anthracene	153 J	83.8 J	257 J	1110 J	783 J	207 J
109,000	261	Benz(a)anthracene	318 J	140 J	449 J	2260 J	1530 J	351 J
10,900	370	Benzo(a)pyrene	284 J	120 J	415 J	2110	1440	334 J
109,000	NA	Benzo(b)fluoranthene	249 J	88.4 J	421 J	2400	1330	392 J
NA	170	Benzo(g,h,i)perylene	240 J	71.3 J	130 J	698 J	423 J	119 J
1,090,000	240	Benzo(k)fluoranthene	211 J	97.8 J	456 J	2340	2020	351 J
4.2 x 10 ⁹	NA	Benzoic acid	1060 U	942 U	1070 U	4070 U	2820 U	1090 U
316,000,000	NA	Benzyl alcohol	423 U	375 U	426 U	1620 U	1120 U	434 U
5,680,000	10453.8	Bis(2-ethylhexyl)phthalate	423 U	375 U	426 U	1620 U	1120 U	434 U
3,970,000	NA	Carbazole	78.9 J	375 U	131 J	563 J	349 J	89.1 J
10,900,000	340	Chrysene	340 J	158 J	470 J	2460 J	1670 J	426 J
10,900	60	Dibenz(a,h)anthracene	99.0 J	375 U	426 U	351 J	238 J	434 U
4,210,000	2,000 ^d	Dibenzofuran	423 U	375 U	426 U	1620 U	1120 U	434 U
NA	NA	Di-n-octyl phthalate	423 U	375 U	426 U	1620 U	1120 U	434 U
42,100,000	600	Fluoranthene	508	300 J	1340	7800	5250	1110
42,200,000	35	Fluorene	63.8 J	375 U	111 J	444 J	303 J	95.7 J
108,000	200	Indeno(1,2,3-cd)pyrene	464	131 J	149 J	549 J	351 J	136 J
42,100,00	160	Naphthalene	423 U	375 U	68.1 J	292 J	1120 U	434 U
NA	240	Phenanthrene	609	175 J	831	3710	2190	548
632,000,000	26.2	Phenol ²	423 U	375 U	426 U	1620 U	1120 U	434 U
31,600,000	490	Pyrene	637	237 J	513 J	2940 J	1850 J	460 J
NA	NA	Total PAHs	4319.6	1678.9	5911.4	30914	20347	4781.6

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

1.72	2.94	0.24	6.92	8.91	9.22	ercent Moisture	I AN	٧N
					•		(%	ercent Molsture (wt?
f \$5\$	f 419	f \$79	346 J	U 18Þ	N LIS	ТВРН	L VN	VN
							(6	.HPH - 418.1M (mg/Ki
U 629.0	U 026.0	U £88.0	U 829.0	U 872.0	U 213.0	Spinay) VN	21,100
							(mg/kg)	otal Cyanide - 9012A
U č.č	U 6.8	U 9.8	U 4.2	U 4,4	U 4.4	dexavalent Chromium	I VN	0/1,2
				•	· · · · · · · · · · · · · · · · · · ·		(pX/gm) A3et7 - mi	Hexavalent Chromiu
0.72	981	SEI	£.47	2.15	0.98	oniz	150	316,000
15.2	2.14	4.7.E	18.4	ĽL	2.01	muibana	V VN	08£,7
U ££.0	U £4,4	U 91.9	U 24.0	U 14.0	U 12.0	muilled	L VN	VN
U 0.4.0 U	L 9.64	U 54 U	L 1.Ep	J 2.0£	181	muibo	S VN	VN
422 J	079	LDL	f 9St	f LIÞ	785	muisssto	· VN	٧N
L.9	7.81	9.71	7.01	1.9	6.7	/ickel	1 91	21,000
L 940.0	L 242.0	L 281.0	0.039 J	L 220.0	L 220.0	Mercury .	81.0	٧N
542	334	797	242	342	SZI	ก ุยมชิมมธร ธ	097	24,200
0911	3830	3240	3920	0605	2840	Magnesium	I VN	ΨN
£.0£	0.148	8.67	4.62	9.6	5.21	peər	1 18	٧N
12000	17400	00841	12000	0988	0088	uo.	-	ΨN
U 0.22	U 9.22	U 8.24	U č.či	U 6.21	12.2	Соррег	91	42,000
6.E	\$8.2	LL.S	5.4	L.2	9.2	Jedo) VN	001,59
10.2	1.62	1.02	£.11	L'\$	9.9	muimord	97	1,050,000
12900 J	00711	10100	f 00911	12400 T	1 0STL	muioleC) VN	٧N
2.3	28.I	21.1	U 11.0	U 01.0	U £1.0	muimbe	9.0	ELÞ
0.23 J	f \$9£.0	0.348 J	U 11.0	U 01.0	U £1.0	3cryllium	I VN	2.81
34.8	4.99	0.07	7 .62	40.0	3.25	muines	I VN	009,87
2.8	L'SI	I'SI	I'S	3.5	1.5	rsenic	9	6.04
060Þ	9552	0252	3820	2910	3210	munimul/		1,100,000
								/Netals - 6010B/74
05/24/01	02/53/01	02\53\01	02/54/01	02/54/01	02\53\04	Analyte Date:		Hazard Index of 1
1.1 - 2.3	1.5 - 2.5	1.5 - 2.5	1.2 - 1.1	1.7 - 2.2	89.1 - 8.0	:(ff) rhqeQ	Most Stringent	lisk revels of 10.5
εz	Q/EZ	٤Z	εΖ	εz	εz	:Ol alqms2		dileaH nemuH ali

1WC2D-10- 1WC2D-10-1- 1WC2D-10-5- 1WC2D-10-3- 1WC2D-11-

Table 3-4a Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Sediment Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

All positive results are hold. Results that exceed the most stringent ecological screening criteria (as selected in Table 3-1a) are shaded. Results exceeding the site human health risk levels are boxed.

An average value of 5.24% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

N = Identification tentative.

NA = Criteria not applicable or not available.

ND = No dioxins and furans were detected in this sample.

ng/Kg = Nanograms per kilogram.

NS = Not sampled.

PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

TRPH = Total recoverable petroleum hydrocarbons.

SVOC = Semivolatile organic compound.

VOC = Volatile organic compound.

U = Not detected at the reported value.

μg/Kg = Micrograms per kilogram.

¹ Total Hexachlorocyclohexanes.

² Total phenols, unchlorinated.

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York
Sample ID: TMCSD-5-1- TMCSD-5-2- TMCSD-6-6-10- TMCSD-6-6-10- TMCSD-6-6-10- TMCSD-6-10- TMCSD-6-6-10- TMCSD-6-10- TM

2.3 - 3.3 05/31/01 21.20 U 21.7 U	2.3 - 3.3 05/31/01 2.2 - 3.3 0.0222 U 5.2.4 U	23.4 U D162	2.8 - 3.5 06/01/01 24.0 U 33.4 ND	ND 2330 0 2330 0 2320 0 2320 0 2320 0	24 2.7 - 3.5 06/01/01 23.2 U 23.2 U 23.2 U	10/10/90 06/01/01 06/01/01 0999 0999 0999 0999 0999	Total Organic Carbon Aroclor 1242 Naphthalene	sdnivalent (ng/Kg) 2 3 3/Kg)	
U 0212	U 0222 U 4.22	U 0162	2340 U	2320 U	23.00 U	0641 \(\Omega\) 66\$	Kg) Total Organic Carbon Aroclor 1242 Naphthalene	edulvalent (ng/Kg) 3 3/Kg) NA NA NA NA NA NA NA NA NA NA NA NA NA	Total Organic Carbo NA TCL PCBs - 8082 (µg - 6290 6290 Total 2,3,7,8-TCDD
U 7.12	72.4 U	U 4.62	24.0 U	23.3 U	U 2.5.2 U 2.5.2	06/1 \(\Omega\) 66\$	Total Organic Carbon Aroclor 1242 Naphthalene	yKg) 2 5 5 7 8 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	NA TCL PCBs - 8082 (µg - 6290 Total 2,3,7,8-TCDD
U 7.12		L E. el	7.66	6'77	U 2.£2	0641	Иарћилајеле	28 S Squivalent (ng/Kg)	- 6290 Total 2,3,7,8-TCDD
		L E. el	7.66	6'77	U 2.£2	0641	Иарћилајеле	S oquivalent (ng/Kg)	Total 2,3,7,8-TCDD
U 7.12	U 4.22							quivalent (ng/Kg)	Total 2,3,7,8-TCDD
		UN	UN	L UN	UN	214	tasleviuse (Id2)T		
		I UN I	UN	I UN I	UIV.	1 21/1	taplevinos (IC/T)	L L	I VN
ND	ND	au.		an I	ИD	SN	TCDD equivalent		·
				1.0,0			Judy,,		TCL Pesticides - 808
3.25	U 8E.E	LN 624.0	U 03.£	U 64.E	U 64.£	U 8.47	4,4'-DDD	7	331,000
U 25.E	U 3E.E	U I S.E	U 08.£	3.49	U 64.£	U 8.47	4,4'-DDE	7	234,000
U 55.4	U 84.4	U 89.4	U 08.4	LN SI.I	U 89.4	U 7.99	4,4'-DDT	ī	233,000
U 55.4	U 84.4	U 89.4	U 08.4	U 99.4	U 89.4	N L 66	niplA	7	099'\$
U 80.1	1.12 U	IN 462.0	LN EOS.0	IN 285.0	U 91.1	U 6.42	alpha-Chlordane delta-BHC ¹	£0.0	001,16
0.17.2	U 42.2	2.34 U	2.400	2.33 U	2.32 U	U 6.64	Dieldrin	5.0	98 V
U IA.2	U 09.8	U 28.2	U 00.8	U 28.2	U 18.2	11251	ļ	20.0 9.£	096'\$
U 14.2	U 09.2	U 28.2	U 00.8	·	U 18.2 U 94.£	U 25.1	Endosulfan I		AN
3.23 U	U 36.6 U 27.0	U 12.5 U 20.7	J. 05.7	U 64.£	U 76.8	U 0 8 1	Endosulfan II Endosulfan sulfate	6.£	AN AN
U 02.6 U ££.4	U 84.4	U 89.4	U 08.4	U 99.4	U 20.4	U 7.99	Endrin Endrin	ε	313,000
U 8.01	U 2.11	U 7.11	U 0.21	U 9,11	U 9.11	U 945	Endrin aldehyde	٧N	VN apptor a
3.25 U	U 9£.£	U 12.£	U 09.£	IN 1.41	U 64.£	35.2 NJ	Endrin ketone	ΨN	ΨN
U 71.2	2.24 U	2.34 U	J.40 U	D 5.33 U	J.32.U	U 6.64	gamma-BHC ¹	6.0	ΨN
U 71.2	2.24 U	U 46.2	J.40 U	D.33 U	U 25.2	U 6.94	gamma-Chlordane	€0.0	000'19
J. 25.E	U 9£.£	U 12.£	U 09.£	J 64.E	U 64.£	U 8.b7	Heptachlor	\$1.0	VN
U 14.2	U 09.8	U &8.8	U 00.8	U 28.8	U 18.2	LN 891	Heptachlor epoxide	61.0	VN
U E.E4	U 8.44	U 8.64	U 0.84	U 9.84	U 2.94	Ո Հ66	Меньохусью		11,200

Table 3-4b Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

111 2 11 11 11 11 11 11 11 11 11 11 11 1			Sample ID: TMCSD.R-1.	TMCSDE		Thans			
Sue numan neamh		Sample	- 1-2-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			10000M			
Risk Levels of 10 ⁻³				67	1 MCSD-6-24	74/0	LF55D-1-24	LF55D-2-Z4	LF5SD-3-Z4
or Hazard Index of	Most Stringent	Depth (ft):	(): 2.8 - 3.5	2.7 - 3.5	2.8 - 3.5	2.8 - 3.5	2.4 - 3.4	2.3 - 3.3	2.3 - 3.3
•	ĬĬ.	Analyte Date:		06/01/01	06/01/01	06/01/01	05/31/01	05/31/01	05/31/01
TCL VOCs - 8260B (µg/Kg)	(µg/Kg)								
NA	940	1,1,2,2-Tetrachloroethane	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
94,500,000	09	1,2-Dichlorobenzene	6.14 U	3.85 J	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	NA	1,2-Dichloroethane	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	NA	1,2-Dichloroethene, Total	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
3,310,000	09	1,4-Dichlorobenzene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	NA	2-Butanone	12.3 U	11.8 U	12.0 U	11.8 U	U 8.11	11.6 U	11.0 U
105,000,000	NA	Acetone	12.3 U	11.8 U	12.0 U	11.8 U	10.7 J	10.8 J	7.35 J
273,000	140	Benzene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
105,000,000	NA	Carbon disulfide	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
21,000,000	17.5	Chlorobenzene	6.14 U	3.24 J	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	NA	Chloroform	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	NA	cis-1,2-Dichloroethene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	120	Bthylbenzene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	460	m,p-Xylene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	S.78 U	5.49 U
NA	460	o-Xylene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	530	Tetrachloroethene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U
NA	245	Toluene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	S.78 U	5.49 U
NA	NA	trans-1,2-Dichloroethene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	S.78 U	5.49 U
6,320,000	0091	Trichloroethene	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	S.78 U	5.49 U
NA	NA	Vinyl chloride	12.3 U	11.8 U	12.0 U	11.8 U	11.8 U	11.6 U	11.0 U
NA	460	Xylenes, Total	6.14 U	5.89 U	5.98 U	5.89 U	5.92 U	5.78 U	5.49 U

Key at the end of Table.

02:001002_UK04_02_02_00-B0925 T34a_34b_55 revxlt - 3-4b TMC 2001 Creek Naive Soil - 7/5/2002

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		San	nple ID:	TMCSD-5-1-			TMCSD-6-			
Risk Levels of 10 ⁻⁵				Z 4	Z 4	TMCSD-6-Z4	Z4/D	LF5SD-1-Z4		LF5SD-3-Z4
or Hazard Index of			pth (ft):	2.8 - 3.5	2.7 - 3.5	2.8 - 3.5	2.8 - 3.5	2.4 - 3.4	2.3 - 3.3	2.3 - 3.3
1	Ecological Criteria	Analyte	Date:	06/01/01	06/01/01	06/01/01	06/01/01	05/31/01	05/31/01	05/31/01
TCL SVOCs - 82700										
10,500,000	455	1,2,4-Trichlorobenzene		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
94,500,000	60	1,2-Dichlorobenzene		1140 U	60.3 J	359 U	361 U	378 U	340 U	332 U
NA	60	1,3-Dichlorobenzene		1140 U	344 U	359 U	361 U	378 U	340 U	- 332 U
3,310,000	60	1,4-Dichlorobenzene		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
21,000,000	2.5	2,4-Dimethylphenol ²		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
NA	65	2-Methylnaphthalene		938 J	344 U	359 U	361 U	378 U	340 U	332 U
52,600,000	2.5	2-Methylphenol ²		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
5,300,000	2.5	4-Methylphenol ²		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
63,300,000	16	Acenaphthene		1830	344 U	359 U	361 U	378 U	340 U	332 U
NA	NA	Acenaphthylene		791 J	344 U	359 U	361 U	378 U	340 U	332 U
316,000,000	85.3	Anthracene		4370	344 U	359 U	361 U	378 U	340 U	332 U
109,000	60	Benz(a)anthracene		6520	344 U	359 U	361 U	378 U	340 U	332 U
10,900	370	Benzo(a)pyrene		5250 J	344 U	359 U	361 U	378 U	340 U	332 U
109,000	NA	Benzo(b)fluoranthene		6090 J	344 U	359 U	361 U	378 U	340 U	332 U
NA	170	Benzo(g,h,i)perylene		1590 J	344 U	359 U	361 U	378 U	340 U	332 U
1,090,000	240	Benzo(k)fluoranthene		3950 J	344 U	359 U	361 U	378 U	340 U	332 U
4.2 x 10 ⁹	NΑ	Benzoic acid		2880 U	866 U	903 U	909 U	950 U	855 U	834 U
316,000,000	NA	Benzyl alcohol		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
5,680,000	399	Bis(2-ethylhexyl)phthalate		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
3,970,000	NA	Carbazole		2600	344 U	359 U	361 U	378 U	340 U	332 U
10,900,000	340	Chrysene		6470	344 U	359 U	361 U	378 U	340 U	332 U
10,900	60	Dibenz(a,h)anthracene		1160 J	344 U	359 U	361 U	378 U	340 U	332 U
4,210,000	2000	Dibenzofuran		1730	344 U	359 U	361 U	378 U	340 U	332 U
NA	NA	Di-n-octyl phthalate		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
42,100,000	600	Fluoranthene		14900	344 U	359 U	361 U	378 U	340 U	332 U
42,200,000	35	Fluorene		2000	344 U	359 U	361 U	378 U	340 U	332 U
108,000	200	Indeno(1,2,3-cd)pyrene		3530	344 U	359 U	361 U	378 U	340 U	332 U
42,100,00	150	Naphthalene		2730	344 U	359 U	361 U	378 U	340 U	332 U
NA	240	Phenanthrene		15500	344 U	359 U	361 U	378 U	340 U	332 U
632,000,000	2.5	Phenol ²		1140 U	344 U	359 U	361 U	378 U	340 U	332 U
31,600,000	490	Pyrene		6170	344 U	359 U	361 U	378 U	340 U	332 U
NA	NA	Total PAHs		88119	ND	ND	ND	ND	ND	ND

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Sample ID:	TMCSD-5-1-			TMCSD-6-			
Risk Levels of 10 ^{.5}			Z 4	Z 4	TMCSD-6-Z4	Z4/D	LF5SD-1-Z4	LF5SD-2-Z4	LF5SD-3-Z
or Hazard Index of	•	Depth (ft):		2.7 - 3.5	2.8 - 3.5	2.8 - 3.5	2.4 - 3.4	2.3 - 3.3	2.3 - 3.3
1	Ecological Criteria	Analyte Date:	06/01/01	06/01/01	06/01/01	06/01/01	05/31/01	05/31/01	05/31/01
TAL Metals - 6010B	//7470A/71A (mg/Kg)								
1,100,000	NA	Aluminum	5420	4670	4580	4380	4240	6510	3510
40.3	6	Arsenic	7.0	3.5	2.5	2.6	8.8	2.4	2.5
73,600	NA	Barium	33.3	21.1	16.9	15.1	10.5	20.5	14.3
18.5	NA	Beryllium	0.19 J	0.11 U	0.12 U	0.11 U	0.10 U	0.19 J	0.10 U
473	0.6	Cadmium	0.12 U	0.11 U	0.12 U	0.11 U	0.10 U	0.11 U	0.10 U
NA	NA	Calcium	22300	18000	19600	17400	12900 J	24000 J	22900 J
1,050,000	26	Chromium	25.5	5.2	5.1	4.8	4.5	6.7	4.0
63,100	NA	Cobalt	4.5	3.9	3.7	3.4	3.2	4.7	3.2
42,000	16	Copper	35.7	12.3	10.6	11.1	8.7	19.1	9.1
NA	20000	Iron	14600	11100	10500	10000	9730	15100	8480
NA '	31	Lead	92.6	3.7	3.5	3.1	3.1	4.2	2.4
NA	NA	Magnesium	3840 J	5950 J	5940 J	5220 J	4250 J	8190 J	4780 J
24,200	460	Manganese	284	327	260	247	178	726	364
NA	0.15	Mercury	0.087 J	0.017 UJ	0.020 UJ	0.019 UJ	0.017 U	0.018 U	0.019 U
21,000	16	Nickel	14.0	8.1	7.6	7.0	7.0	10.1	5.6
NA	NA	Potassium	1070 J	1110 Ј	1070 J	1020 J	947 J	1250 J	794 J
NA	NA	Sodium	122	91.5 J	96.5 J	86.6 J	77.8 J	116	88.1 J
NA	NA	Thallium	0.48 U	0.44 U	0.47 U	0.45 U	0.41 U	0.45 U	0.41 U
7,380	NA	Vanadium	22.3	9.7	9.8	9.2	8.2	11.5	7.8
316,000	120	Zinc	82.1 J	21.0 J	19.9 J	19.1 J	21.0 J	29.4 J	15.5 J
Hexavalent Chromi	lum - 7196A (mg/Kg)								
5,170	NA	Hexavalent Chromium	5.3 UJ	4.3 UJ	4.5 UJ	5.9 U J	5.5 U	4.2 U	4.9 U
Total Cyanide - 901	2A (mg/Kg)								
21,100	NA	Cyanide	0.617 UJ	0.574 UJ	0.625 UJ	0.602 UJ	0.584 U	0.569 U	0.553 U
Г R PH - 418 .1М (mg	/Kg)								
NA	NA	TRPH	209 J	482 U	490 U	486 U	476 U	464 U	446 U
Percent Molsture (wt%)						<u> </u>		
	NA NA	Percent Moisture	21.3	·	· y ···· · · · · · · · · · · · · · · · ·				

Table 3-4b Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

U 7.E4	U 6.54	U 7.24	U 9.64	U 6.74	U 8.84	U L'14	1	Меthохусьюг	ε	002,11
U 34.8	U 88.8	U 46.8	U 02.8	U 86.8	LN ES.1	LN OET.O		Heptachlor epoxide	81.0	AN
3.28	U 22.£	3.20 U		U 62.E	U 99.E	UELE		Heptachlor Heptachlor	21.0	VN VN
			IN 996'0				ļ		\$1.0	000,15
U 81.2	J.35 U	2.14 U	U 84.2	U 95.2	2.44 U	LN 055.0		gamma-Chlordane		
U 81.2	2.35 U	2.14 U	U 84.2	U 95.2	2.44 U	U 60.2		gamma-BHC ¹	€.0	۷N
J. 82.£	J. SS. E	J. 02.£	LN 64.7	U 62.£	U 99.£	U £1.£		Endrin ketone	٧N	VN
U 6.01	U 7.11	U 7.01	12.4 U	12.0 U	U 2.21	U 4.01		Endrin aldehyde	ΑN	ΨN
U 7£.4	U 69.4	U 72.4	U 96.4	U 67.4	LN 20.1	ሀ / ፤. ፉ		Endrin	ε	315,000
U SS.8	U 40.7	U 14.0	U 44.7	U 81.7	U EE.T	U 92.9		Endosulfan sulfate	٧N	ΨN
3.28 U	3.52 U	J. 02.£	U 2T.£	U 62.£	U 99.£	U EL.E		Endosulfan II	6.£	٧N
U 94.8	U 38.2	U 4£.2	IN SIL'O	U 86.2	U 11.6	U 22.2		Endosulfan l	9.£	ΑN
U 94.2	U 98.2	U 4£.2	2.12 NJ	U 86.8	U 11.9	U 22.2		Dieldrin	20.0	096'₺
J.18 U	D.35.U	2.14 U	LN 362.0	U 6£.2	2.44 U	U 60.S		delta-BHC	6.0	٧N
U 60.1	U 71.1	U 70.1	LN 776.0	U 02.1	U.22.1	U 40.1		alpha-Chlordane	60.03	001,10
U 7£.4	U 69.4	U 72.4	U 2.41	U 67.4	U 88.4	U 71.4		Aldrin	7	099'₺
U TE.A	U 69.4	U 72.4	2.82 NJ	U 67.4	U 88.4	LN 612.0		d'd、-DD.L	Ī	233,000
J. 82.£	3.52 U	J. 02.E	J. 27. E	U 62.£	U 99.£	U EI.E		4'4DDE	7	234,000
3.28 U	3.52 U	3.20 U	IN SS'P	U 62.£	U 99.£	LN 26.1		4'4DDD	7	331,000
			· ·						81A (µg/Kg)	TCL Pesticides - 80
0.1625	ИD	ND	745.0	220.0	ND	SN		TCDD equivalent	I	AN
									equivalent (ng/Kg)	Total 2,3,7,8-TCDD
U 8.12	U 2.52	21.4 U	911	U 6.ES	2,43	f 6'41		Naphthalene	Ş	0679
U 8.12	U 2.52	U 4.12	U 8.p2	U 6.62	74'4 N	U 6.02		Aroclor 1242	58	-
t			 	I	1		· · · · · · · · · · · · · · · · · · ·		g/Kg)	TCL PCBs - 8082 (µ
0822	U 07£2	7340 U	0897	7490 U	0897	0677		Total Organic Carbon	٧N	AN
			•				•	(6)	ou - Lloyd Kahn (mg/	Total Organic Carbo
10/67/90	02/53/01	02/53/04	10/08/90	10/08/90	02/30/01	10/08/90	Date:	Analyte	Ecological Criteria	3
1.65 - 3.5	1'82 - 3'2	1.85 - 3.5	1.1 - 8.0	1-3.5	1.6 - 3.5	0.9 - 2.5	Depth (ft):		Most Stringent	or Hazard Index of
ÞΖ	Q/bZ	ÞΖ	zz	ÞΖ	TMCSD-9-Z4	£Z				Flak Levels of 10.5
TMCSD-10-	TMCSD-9-4-			TMCSD-9-1-		TWCSD-8-5-	Sample ID:			Site Human Health
									(6)	

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Sample	ID: TMCSD-8-2-	TM000 0 74	TMCSD-9-1-		TMCSD-9-4-		TMCSD-10-
Risk Levels of 10 ⁻⁵				TMCSD-9-Z4	Z4	Z2	Z4	Z4/D	24
or Hazard Index of	Most Stringent	Depth		1.6 - 3.5	1 - 3.5	0.5 - 1.1	1.85 - 3.5	1.85 - 3.5	1.65 - 3.5
]	Ecological Criteria	Analyte D	ate: 05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
TCL VOCs - 8260B	T.,, T	1		T					
NA	940	1,1,2,2-Tetrachloroethane	5.26 UJ	6.00 UJ	6.24 U	6.29 U	5.87 U	5.81 U	5.48 UJ
94,500,000	60	1,2-Dichlorobenzene	5.26 UJ	6.00 UJ	6.24 U	6.29 U	5.87 U	5.81 U	5.48 UJ
NA	NA	1,2-Dichloroethane	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	NA	1,2-Dichloroethene, Total	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
3,310,000	60	1,4-Dichlorobenzene	5.26 UJ	6.00 UJ	6.24 U	6.29 U	5.87 U	5.81 U	5.48 UJ
NA	NA	2-Butanone	10.5 U	12.0 U	12.5 U	12.6 U	11.7 U	11.6 U	11.0 U
105,000,000	NA	Acetone	10.5 U	11.0 J	7.52 J	12.6 U	11.7 U	11.6 U	11.0 U
273,000	140	Benzene	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
105,000,000	NA	Carbon disulfide	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
21,000,000	17.5	Chlorobenzene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	NA	Chloroform	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	NA	cis-1,2-Dichloroethene	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	120	Ethylbenzene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	460	m,p-Xylene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	460	o-Xylene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NΛ	530	Tetrachloroethene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	245	Toluene	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	NA	trans-1,2-Dichloroethene	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
6,320,000	1600	Trichloroethene	5.26 U	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U
NA	NA	Vinyl chloride	10.5 U	12.0 U	12.5 U	12.6 U	11.7 U	11.6 U	11.0 U
NΛ	460	Xylenes, Total	5.26 UJ	6.00 U	6.24 U	6.29 U	5.87 U	5.81 U	5.48 U

Table 3-4b Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

City Unman Donlin			-	TMCSD 8.2		TMCSD.0.1	TMCCDOS	THICEDOA	THICEDOA	TAICED 40
Site namen ream. Risk Levels of 10 ⁻⁵			Sample ID:	Z3 Z3	TMCSD-9-Z4	Z4	Z2	Z4	Z4/D	Z4
or Hazard Index of	Most Stringent		Depth (ft):	0.9 - 2.5	1.6 - 3.5	1 - 3.5	0.5 - 1.1	1,85 - 3.5	1.85 - 3.5	1,65 - 3.5
-	Ecological Criteria	Analyte	Date:	05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
TCL SVOCs - 8270C (µg/Kg)										
10,500,000	455	1,2,4-Trichlorobenzene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
94,500,000	09	1,2-Dichlorobenzene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
NA	09	1,3-Dichlorobenzene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
3,310,000	09	1,4-Dichlorobenzene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
21,000,000	2.5	2,4-Dimethylphenol ²		356 U	394 U	385 U	405 U	383 U	387 U	369 U
NA	65	2-Methylnaphthalene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
52,600,000	2.5	2-Methylphenol		356 U	394 U	385 U	405 U	383 U	387 U	369 U
5,300,000	2.5	4-Methylphenol 2		356 U	394 U	385 U	405 U	383 U	387 U	369 U
63,300,000	16	Acenaphthene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
NA	NA	Acenaphthylene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
316,000,000	85.3	Anthracene		356 U	394 U	385 U	57.8 J	383 U	387 U	369 U
109,000	09	Benz(a)anthracene		356 U	394 U	385 U	114 J	383 U	387 U	369 U
10,900	370	Benzo(a)pyrene		356 U	394 U	385 U	101 J	383 U	387 U	369 U
109,000	NA	Benzo(b)fluoranthene		356 U	394 U	385 U	92.0 J	383 U	387 U	369 U
NA	170	Benzo(g,h,i)perylene		356 U	394 U	385 U	70.3 J	383 U	387 U	369 U
1,090,000	240	Benzo(k)fluoranthene		356 U	394 U	385 U	78.0 J	383 U	387 U	369 U
4.2×10^{9}	NA	Benzoic acid		N 968	0 166	N 696	1020 U	964 U	973 U	928 U
316,000,000	NA	Benzyl alcohol		356 U	394 U	385 U	405 U	383 U	387 U	369 U
5,680,000	399	Bis(2-ethylhexyf)phthalate	0	356 U	394 U	385 U	405 U	383 U	387 U	369 U
3,970,000	NA	Carbazole		356 U	394 U	385 U	405 U	383 U	387 U	369 U
10,900,000	340	Chrysene		356 U	394 U	385 U	122 J	383 U	387 U	369 U
10,900	09	Dibenz(a,h)anthracene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
4,210,000	2000	Dibenzofuran		356 U	394 U	385 U	405 U	383 U	387 U	369 U
NA	NA	Di-n-octyl phthalate		356 U	394 U	385 U	405 U	383 U	387 U	369 U
42,100,000	009	Fluoranthene		48.0 J	394 U	385 U	194 J	383 U	387 U	369 U
42,200,000	35	Fluorene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
108,000	200	Indeno(1,2,3-cd)pyrene		356 U	394 U	385 U	149 J	383 U	387 U	369 U
42,100,00	150	Naphthalene		356 U	394 U	385 U	405 U	383 U	387 U	369 U
NA	240	Phenanthrene		70.4 J	394 U	385 U	226 J	383 U	387 U	369 U
632,000,000	2.5	Phenol 2		356 U	394 U	385 U	405 U	383 U	387 U	369 U
31,600,000	490	Pyrene		52.8 J	394 U	385 U	212 J	383 U	387 U	369 U
NA	NA	Total PAHs		171.2	QN QN	ND	1416.1	ND	ND	QN

Key at the end of Table.

7K04_02_02_00-B0925 J5 rev.xls - 3-4b TMC 2001 Creek Native Soil - 7/5/2002

Table 3-4b Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soll Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

12.4	LI	1.91	8.12	6.91	61	72.8	Percent Moisture	٧N	٧N
								(%)	Percent Moisture (w
Ω LSÞ	U 284	Ω LLV	212 U	Ω 66⊅	Ω \$6\$	U 9£4	ТКРН	AN	٧N
							-	(đ)	Npm) M1.814 - H9AT
U \$28.0	U 672.0	U 48č.0	U ££9.0	U 816.0	U 113.0	0.524 U	Cyanide	AN	21,100
					·			A (mg/Kg)	Total Cyanide - 9012
U S.2	U 0.8	Ω <i>L</i> 7	U 8.č	U 6.4	U 6.8	L £8.0	Hexavalent Chromium	٧N	071,8
_								m - 7196A (mg/Kg)	Hexavalent Chromlu
0.62	7.81	S .91	6.44	E.TI	4.91	S.4.S	Sinc	150	316,000
€.8	2.8	S.T	2.6	0.8	č. 8	1.81	muibensV	٧N	08£,7
U 94.0	U &4.0	U 24.0	U / 4.0	U 64.0	U 44.0	2.1	muilledT	AN	AN
LIII	L 8.£8	L 0.49	176	L 0.18	L 1.26	701	muiboS	AN	AN
928	106	8 <i>LL</i>	0£7	0901	† 96	0591	Potassium	AN	AN
p.8	0.8	8.9	S.T	6.8	S.T	5.81	Nickel	91	21,000
tU 210.0	t U 610.0	tU 810.0	U 610.0	tu 120.0	เ ሀ የ10.0	U 210.0	Mercury	61.0	AN
423	585	ELE	304	243	SIE	LL8	Manganese	097	24,200
0569	00†9	0409	4310	0988	0089	00411	Magnesium	٧N	AN
7.8	1.£	5.5	2.11	L.2	8.£	9.6	Lead	18	AN
11300	10200	10300	10400	8410	11200	27300	lron	20000	AN
4.61	14.1	6.6	L'6	4.7	54.9	8.EE	Copper	91	42,000
7.8	3.4	E.E	9.6	E.E	3.4	6.7	Cobalt	٧N	001,£3
2.2	€.9	6.4	0.2	5.4	L.p	3.11	Сһғотінт	76	1,050,000
L 00122	L 00251	L 00281	L 00671	14200 J	L 00661	L 00862	Calcium	ΑN	∀N
U 11.0	U 11.0	U 01.0	U 21.0	U 21.0	U 11.0	U 460.0	Cadmium	9.0	ELÞ
L 91.0	L 21.0	L 11.0	L 21.0	U 21.0	U 11.0	L 9E.0	Beryllium	ΑN	2.81
26.5	8.02	£.02	2.82	E.T2	31.0	T.41.	muins8	AN	009,87
2.4	8.2	ε.ε	6.2	L £8.0	8.41	\$'01	Arsenic	9	40.3
0687	4560	0704	3860	4020	4310	10200	munimulA	AN	000,001,1
								(gX\Qm) A1\\A0\\4	NB0109 - elsteM JA1
02/53/01	02\53\01	02\58\01	10/02/90	02/30/01	10/08/90	10/08/90	Analyte Date:	Ecological Criteria	
3.6 - 39.1	1.85 - 3.5	1.85 - 3.5	1.1 - 8.0	1 - 3.5	1.6 - 3.5	9.2 - 9.6	Depth (ft):	Most Stringent	to xebul bressH 10
ÞΖ	Q/bZ	ÞΖ	22	ÞΖ	TMCSD-9-Z4	εz	and and and		Bisk Fevels of 10.5
TMCSD-10-	TMCSD-9-4-	TMCSD-9-4-	TMCSD-9-2-	TMCSD-9-1-		TMCSD-8-2-	:Ol aloms2	(0)	Site Human Health

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health			Sample ID:	TMCSD-10-1-	TMCSD-10-2-	TMCSD-10-3-	TMCSD-11-
Risk Levels of 10 ⁻⁵				Z 4	Z 4	Z 4	Z 4
or Hazard Index of	Most Stringent		Depth (ft):	2.4 - 3.5	2.5 - 3.5	2.5 - 3.5	2.5 - 3.5
1	Ecological Criteria	Analyte	Date:	05/24/01	05/24/01	05/23/01	05/24/01
Total Organic Carbo	on - Lloyd Kahn (mg						
NA	NA	Total Organic Carbon		3310	2540	23300	2450 U
TCL PCBs - 8082 (µ	g/Kg)						
-	28	Aroclor 1242		23.8 U	22.0 U	24.1 U	24.2 U
6290	5	Naphthalene		8.58 J	22.0 U	152	24.2 U
Total 2,3,7,8-TCDD	equivalent (ng/Kg)						
NA	1	TCDD equivalent		ND	ND	2.4914	ND
TCL Pesticides - 80	81A (μg/Kg)						
331,000	2	4,4´-DDD		3.57 U	3.30 U	190 NJ	3.63 U
234,000	2	4,4′-DDE		3.57 U	3.30 U	241 U	3.63 U
233,000	1	4,4′-DDT		0.943 NJ	4.40 U	2240 NJ	4.83 U
4,660	2	Aldrin		4.76 U	4.40 U	121 U	4.83 U
61,100	0.03	alpha-Chlordane		1.19 U	1.10 U	121 U	1.21 U
NA	0.3	delta-BHC ¹		2.38 U	2.20 U	121 U	2.42 U
4,960	0.02	Dieldrin		5.95 U	5.49 U	241 U	6.04 U
NA	3.9	Endosulfan I		5.95 U	5.49 U	241 U	6.04 U
NA	3.9	Endosulfan II		3.57 U	3.30 U	241 U	3.63 U
NA	NA	Endosulfan sulfate		7.14 U	6.59 U	241 U	7.25 U
315,000	3	Endrin		4.76 U	4.40 U	241 U	4.83 U
NA	NA	Endrin aldehyde		11.9 U	11.0 U	241 U	12.1 U
NA	NA	Endrin ketone		3.57 U	3.30 U	241 U	3.63 U
NA	0.3	gamma-BHC 1		2.38 U	2.20 U	121 U	2.42 U
61,000	0.03	gamma-Chlordane		2.38 U	2.20 U	121 U	2.42 U
NA	0.15	Heptachlor		3.57 U	3.30 U	241 U	3.63 U
NA	0.15	Heptachlor epoxide		5.95 U	1.41 J	241 U	3.07 J
11,200	3	Methoxychlor		47.6 U	32.3 J	1210 U	48.3 U

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health			Sample ID:	TMCSD-10-1-	TMCSD-10-2-	TMCSD-10-3-	TMCSD-11-
Risk Levels of 10 ⁻⁵				Z 4	Z4	Z4	Z 4
or Hazard Index of	Most Stringent		Depth (ft):	2.4 - 3.5	2.5 - 3.5	2.5 - 3.5	2.5 - 3.5
1	Ecological Criteria	Analyte	Date:	05/24/01	05/24/01	05/23/01	05/24/01
TCL VOCs - 8260B ((μg/Kg)						
NA	940	1,1,2,2-Tetrachloroethan	e	5.95 UJ	5.68 UJ	6.39 U	5.98 U
94,500,000	60	1,2-Dichlorobenzene		5.95 UJ	5.68 UJ	1.88 J	5.98 U
NA	NA	1,2-Dichloroethane		5.95 U	5.68 U	6.39 U	5.98 U
NA	NA	1,2-Dichloroethene, Tota	1	5.95 U	5.68 U	6.39 U	5.98 U
3,310,000	60	1,4-Dichlorobenzene		5.95 UJ	5.68 UJ	6.39 U	5.98 U
NA	NA	2-Butanone		11.9 U	11.4 U	12.8 U	12.0 U
. 105,000,000	NA	Acetone		11.9 U	11.4 U	28.5	12.0 U
273,000	140	Benzene		5.95 U	5.68 U	6.39 U	5.98 U
105,000,000	NA	Carbon disulfide		5.95 U	5.68 U	6.39 U	5.98 U
21,000,000	17.5	Chlorobenzene		5.95 U	5.68 U	6.39 U	5.98 U
NA	NA	Chloroform		5.95 U	5.68 U	6.39 U	5.98 U
NA	NA	cis-1,2-Dichloroethene		5.95 U	5.68 U	6.39 U	5.98 U
NA	120	Ethylbenzene		5.95 U	5.68 U	6.39 U	5.98 U
NA	460	m,p-Xylene		5.95 U	5.68 U	6.39 U	5.98 U
NA	460	o-Xylene		5.95 U	5.68 U	6.39 U	5.98 U
NA	530	Tetrachloroethene		5.95 U	5.68 U	6.39 U	5.98 U
NA	245	Toluene		5.95 U	5.68 U	6.39 U	5.98 U
NA	NA	trans-1,2-Dichloroethene		5.95 U	5.68 U	6.39 U	5.98 U
6,320,000	1600	Trichloroethene		5.95 U	5.68 U	6.39 U	5.98 U
NA	NA	Vinyl chloride		11.9 U	11.4 U	12.8 U	12.0 U
NA	460	Xylenes, Total		5.95 U	5.68 U	6.39 U	5.98 U

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sample ID:	TMCSD-10-1-	TMCSD-10-2-	TMCSD-10-3-	TMCSD.11.
Risk Levels of 10 ⁻⁵			Sample ID.	Z4	Z4	Z4	Z4
or Hazard Index of	Most Stringent		Depth (ft):	2.4 - 3.5	2.5 - 3.5	2.5 - 3.5	2.5 - 3.5
1	Ecological Criteria	Analyte	Date:	05/24/01	05/24/01	05/23/01	05/24/01
TCL SVOCs - 82700							
10,500,000	455	1,2,4-Trichlorobenzene		379 U	350 U	415 U	378 U
94,500,000	60	1,2-Dichlorobenzene		379 U	350 U	141 J	378 U
NA	60	1,3-Dichlorobenzene		379 U	350 U	415 U	378 U
3,310,000	60	1,4-Dichlorobenzene		379 U	350 U	415 U	378 U
21,000,000	2.5	2,4-Dimethylphenol ²		379 U	350 U	415 U	378 U
NA	65	2-Methylnaphthalene		379 U	350 U	415 U	378 U
52,600,000	2.5	2-Methylphenol ²		379 U	350 U	415 U	378 U
5,300,000	2.5	4-Methylphenol ²		379 U	350 U	415 U	378 U
63,300,000	16	Acenaphthene	-	379 U	350 U	415 U	378 U
NA	NA	Acenaphthylene		379 U	350 U	90.6 J	378 U
316,000,000	85.3	Anthracene		379 U	350 U	129 J	378 U
109,000	60	Benz(a)anthracene		379 U	350 U	184 J	378 U
10,900	370	Benzo(a)pyrene		379 U	350 U	189 J	378 U
109,000	NA	Benzo(b)fluoranthene		379 U	350 U	160 J	378 U
NA	170	Benzo(g,h,i)perylene		379 U	350 U	139 J	378 U
1,090,000	240	Benzo(k)fluoranthene		379 U	350 U	192 J	378 U
4.2 x 10 ⁹	NA	Benzoic acid		954 U	880 U	1040 U	952 U
316,000,000	NA	Benzyl alcohol		379 U	350 U	415 U	378 U
5,680,000	399	Bis(2-ethylhexyl)phthalat	ie	379 U	350 U	415 U	378 U
3,970,000	NA	Carbazole	····	379 U	350 U	415 U	378 U
10,900,000	340	Chrysene		379 U	350 U	247 J	378 U
10,900	60	Dibenz(a,h)anthracene		379 U	350 U	73.1 J	378 U
4,210,000	2000	Dibenzofuran		379 U	350 U	415 U	378 U
NA	NA	Di-n-octyl phthalate		379 U	350 U	415 U	378 U
42,100,000	600	Fluoranthene		379 U	350 U	476	378 U
42,200,000	35	Fluorene		379 U	350 U	415 U	378 U
108,000	200	Indeno(1,2,3-cd)pyrene		379 U	350 U	258 J	378 U
42,100,00	150	Naphthalene		379 U	350 U	415 U	378 U
NA	240	Phenanthrene		379 U	350 U	240 J	378 U
632,000,000	2.5	Phenol ²		379 U	350 U	415 U	378 U
31,600,000	490	Pyrene		379 U	350 U	314 J	378 U
NA	NA	Total PAHs		ND	ND	2691.7	ND

Key at the end of Table.

Table 3-4b
Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		mer Grilliss Air Ford	-	•	TMCSD-10-2-	TMCSD-10-3-	TMCSD-11.
Risk Levels of 10 ⁻⁵			Sample ID.	Z4	Z4	Z4	Z4
or Hazard Index of	Most Stringent		Depth (ft):	2.4 - 3.5	2.5 - 3.5	2.5 - 3.5	2.5 - 3.5
1	Ecological Criteria	Analyte	Date:	05/24/01	05/24/01	05/23/01	05/24/01
	/7470A/71A (mg/Kg)				00121,01	40/25/07	30/E-1/01
1,100,000	NA NA	Aluminum		3950	3950	3380	2710
40.3	6	Arsenic		4.8	3.4	6.84	1.8
73,600	NA	Barium		46.6	37.4	29.3	27.3
18.5	NA	Beryllium		0.092 J	0.11 U	0.640 U	0.093 U
473	0.6	Cadmium		0.061 U	0.11 U	0.793 U	0.093 U
NA	NA	Calcium		15900 J	21600 J	11000	10800 J
1,050,000	26	Chromium		4.3	4.7	6.86	3.2
63,100	NA	Cobalt		3.4	3.5	3.41	2.4
42,000	16	Copper		11.8 U	13.1 U	15.8 U	6.8
NA	20000	Iron		10700	11500	10100	7160
NA	31	Lead		3.8	3.5	16.4	2.2 U
NA	NA	Magnesium		6110	6770	4540	3300
24,200	460	Manganese		400	461	256	190
NA	0.15	Mercury		0.019 UJ	0.018 UJ	0.0640 UJ	0.019 UJ
21,000	16	Nickel		6.9	7.1	7.40	5.2
NA	NA	Potassium		490 J	608 J	529	367 J
NA	NA	Sodium		26.7 J	33.1 U	128 U	27.1 U
NA	NA	Thallium		0.24 U	0.46 U	5.12 U	0.37 U
7,380	NA	Vanadium		7.7	7.5	9.80	5.2
316,000	120	Zinc		21.8	22.7	29.0	16.1
Hexavalent Chromi	um - 7196A (mg/Kg)						
5,170	NA	Hexavalent Chromium		4.7 U	4.4 U	4.8 U	4.9 U
Total Cyanide - 901	2A (mg/Kg)						
21,100	NA	Cyanide		0.595 U	0.558 U	0.616 U	0.616 U
TRPH - 418.1M (mg	/Kg)		1 				
NA	NA	TRPH		481 U	455 U	160 J	493 U
Percent Moisture (v	vt%)						
NA	NA	Percent Moisture		16.8	12.1	21.9	18.8

Table 3-4b Summary of Positive Hits and Screening for Three Mile Creek Channel and Landfill 5 Tributary Native Soil Samples Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

All positive results are bold. Results that exceed the most stringent ecological screening criteria (as selected in Table 3-1b) are shaded. Results exceeding the site human health risk levels are boxed.

An average value of 0.5% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

N = Identification tentative.

NA = Criteria not applicable or not available.

ND = No dioxins and furans were detected in this sample.

ng/Kg = Nanograms per kilogram.

NS = Not sampled.

PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

TOC = Total organic carbon.

TRPH = Total recoverable petroleum hydrocarbons.

SVOC = Semivolatile organic compound.

VOC = Volatile organic compound.

U = Not detected at the reported value.

 $\mu g/Kg = Micrograms per kilogram.$

¹ Total Hexachlorocyclohexanes.

² Total phenols, unchlorinated.

Table 3-5
Summary of Positive Hits and Screening for the Landfill 6 Wetland Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Samp	le ID: LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
Risk Levels of 10 ⁻⁵	Most Stringent	Depti	n (ft): 0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
or Hazard index of 1	Ecological Criteria		Date: 5/24/2001	5/24/2001	5/24/2001	5/23/2001	5/23/2001
TOC - Lloyd Kahn (mg/		Annayio	5010. 6/24/2001	5/24/2001	3/24/2001	0/20/2001	5/23/2001
NA NA	NA NA	Total Organic Carbon	372000	403000	363000	47700	125000
TCL PCBs - 8082 (μg/K		Total Organic Carbon	372000	40,000	303000	47700	145000
6,290	5	Aroclor 1260	92.6	49.4 U	102	30.7 U	964
Total 2,3,7,8-TCDD equ		Triodici 1200		42.4 0	102	30.7 0	704
NA I	24	TCDD equivalent	16.5054	16.768	8.6791	17.2837	47.113
TCL Pesticides - 8081A			70000	201.00	0.0771	17,2037	7/1227
331.000	2	4,4'-DDD	7.73 U	7.42 U	14.3 NJ	3.07 U	81.8 U
234,000	2	4,4'-DDE	19.1 NJ	17.6 J	6.35 NJ	4.59	114 NJ
233,000	1	4.4'-DDT	16.2 NJ	13.9 J	16.5 NJ	3.07 U	172 NJ
13,600	7.2	alpha-BHC	1.81 NJ	2.65 J	8.98 U	0.154 J	40.9 U
NA	7.2	delta-BHC	0.932 NJ	1.17 J	5.99 U	1.54 U	40.9 U
NA	3.6	Endosulfan I	12.9 U	12.4 U	8.88 NJ	3.07 U	81.8 U
NA	3.6	Endosulfan II	4.72 N.I	7.42 U	8.98 U	3.07 U	81.8 U
NA	NA	Endosulfan sulfate	3.00 NJ	14.8 U	2.79 NJ	3.07 U	81.8 U
NA	NA	Endrin aldehyde	16.2 NJ	24.7 U	16.6 NJ	0.398 J	81.8 U
NA	NA	Endrin ketone	7.73 U	7.42 U	2.23 N.J	3.07 U	81.8 U
NA	3.6	Heptachlor epoxide	12.9 U	12.4 U	8.68 NJ	1.07 J	111 NJ
11,200	72	Methoxychlor	103 U	98.9 U	120 U	10.3 J	409 U
TCL VOCs - 8260B (μg	/Kg)					·	
94,500,000	1,440	1,2-Dichlorobenzene	13.2 UJ	12.8 UJ	15.3 UJ	7.81 UJ	7.04 J
6,320,000	1,600	Trichloroethene	13.2 U	12.8 U	15.3 U	7.81 U	5.44 J
TCL SVOCs - 8270C (µ	g/Kg)					<u> </u>	1
NA	NA	Acenaphthylene	2560 U	2450 U	299 Ј	483 U	1130 J
316,000,000	85.3	Anthracene	2560 U	2450 U	233 J	483 U	1260 J
109,000	261	Benz(a)anthracene	2560 U	2450 U	387 J	483 U	2140
10,900	370	Benzo(a)pyrene	2560 U	2450 U	481 J	61.1 J	2460
109,000	NA	Benzo(b)fluoranthene	2560 U	2450 U	763 J	75.9 J	2580
NA	170	Benzo(g,h,i)perylene	2560 U	2450 U	165 J	483 U	1010 J
1,090,000	240	Benzo(k)fluoranthene	2560 U	2450 U	496 J	483 U	2700
4.2 x 10 ⁹	NA	Benzoic acid	8120	6020 J	2970	33600	5050 U
316,000,000	NA	Benzyl alcohol	2560 U	2450 U	984 U	561	2010 U
3,970,000	NA	Carbazole	2560 U	2450 U	984 U	483 U	390 J
10,900,000	340	Chrysene	341 J	348.J	578 J	78.3 J	2960
10,900	60	Dibenz(a,h)anthracene	2560 U	2450 U	984 U	483 U	577 J
42,100,000	600	Fluoranthene	741 3	764 J	1430	179 J	5920
108,000	200	Indeno(1,2,3-cd)pyrene	2560 U	2450 U	984 U	483 U	1220 J
NA	240	Phenanthrene	337 J	350 J	521 J	90.3 J	2670
31,600,000	490	Pyrene	347 J	352 J	735 J	65.3 J	2660
NA	NA	Total PAHs	1766	1814	6088	549.9	29677

Key at the end of Table.

Table 3-5
Summary of Positive Hits and Screening for the Landfill 6 Wetland Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health		Sample ID:	LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
Risk Levels of 10 ⁻⁵	Most Stringent	Depth (ft):	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
or Hazard Index of 1	Ecological Criteria	Analyte Date:	5/24/2001	5/24/2001	5/24/2001	5/23/2001	5/23/2001
TAL Metals - 6010B/74			2111122				
1,100,000	NA	Aluminum	9990	10600	16800	12100	8780
40.3	6	Arsenic	11.1	12.5	18.5	10.6	53.8
73,600	NA	Barium	1250	1400	1080	124	144
18.5	NA	Beryllium	0.27 J	0.26 J	0.79 J	0.455 J	0.876 J
473	0.6	Cadmium	3.8	2.5	4.6	0.672 U	22.2
NA	NA	Calcium	20700 J	22900 J	23400 J	1180	4440
1,050,000	26	Chromium	12.5	12.8	20.6	13.4	37.8
63,100	NA	Cobalt	3.6 J	3.8 J	6.1	13.3	9.90
42,000	16	Copper	142	134	118	51.2	93.0
NA	20000	Iron	8500	8870	12700	15900	24400
NA	31	Lead	116	108	116	54.3	188
NA	NA	Magnesium	1130	1200	2050	2590	1750
24,200	460	Manganese	567	596	626	403	678
NA	0.15	Mercury	0.68 J	0.48 J	0.72 J	0.381	0.804
21,000	16	Nickel	15.0	15.0	17.8	13.6	23.7
NA	NA	Potassium	584 J	518 J	696 J	830	1060
5,270	1	Silver	0.47 U	0.51 U	0.58 U	1.34 U	0.810 J
7,380	NA	Vanadium	34.1	35.5	41.3	34.6	38.9
316,000	120	Zinc	303	285	226	97.8	211
Hexavalent Chromium	- 7196A (mg/Kg)						
5,170	NA	Hexavalent Chromium	11 U	9.7 U	12 U	5.9 U	8.4 U
Total Cyanide - 9012A	(mg/Kg)						
21,100	NA	Cyanide	1.38 J	1.07 J	0.750 J	0.598 J	0.747 J
TRPH - 418.1M (mg/Kg	3)						
-	NA	TRPH	1060 U	1030 U	1240 U	634 U	842 U
Percent Molsture (wt%	6)						
NA	NA	Percent Moisture	62.2	61.1	67.8	36.9	52.5

Notes: All positive results are typed in bold. Results that exceed the most stringent ecological screening criteria (as selected in Tables 3-2 and 3-3) are shaded. Results exceeding the site human health risk levels are boxed.

An average value of 12% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

N = Identification tentative.

NA = Criteria not applicable or not available.

PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

TOC = Total organic carbon.

TRPH = Total recoverable petroleum hydrocarbons.

SVOC = Semivolatile organic compound.

VOC = Volatile organie compound.

U = Not detected at the reported value.

 $\mu g/Kg = Micrograms per kilogram.$

Key at the end of Table.

02:001

_02_02_00-B0925 v.xls - T3-5 TMC 2001 LF6 - 7/5/2002

Table 3-6
Summary of Positive Hits and Screening for the Off-Base TMC Pond Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health Risk Levels of 10 ⁻⁵ or Hazard Index of 1	Most Stringent Ecological Criteria	Depth (ft):	0.0.5	TMC-SD-23-IL-Z3 1.4 - 2.2 6/5/2001	TMC-SD-23-IL-Z4 2.2 - 3 6/5/2001	TMC-SD-24NS 0.0.5 11/9/1999	TMC-SD-24-NS-Z3 1.2 - 1.8 8/5/2001	TMC-SD-24-NS-Z4 1.8 - 3 6/5/2001
Total Organic Car	bon by Method Lloy	d Kalın (mg/Kg)						
NA	NA	Total Organic Carbon	134000	33500 J	12600	60800	104000	65200
PCBs by Method 8	3082 (μg/Kg)							
6,290	5	Aroclor 1260	2100	184	145	1700	142	618
Metals by Method	6010B (mg/Kg)						The second resources of the contract of the co	
473	0.6	Cadmium	178	7.0 J	1.9 J	125	8.1 J	11.9 J
NA	31	Lead	8.32	91.7	30.4	6.44	172	170
Percent Moisture	(wt%)							
NA	NA	Percent Moisture	62.4	68.7	45.1	63.1	74.5	31

^a The most stringent criteria were used. For Aroclor 1260, the Ontario Standards lowest effect level (June 1994) as shown in Tables 3-1a and 3-1b was used. For the Notes.

All positive results are bold. Results that exceed the most stringent ecological screening criteria are shaded. Results exceeding the site human health risk levels are hoxed.

An average value of 5.59% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

NA = Criteria not available.

PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

U = Not detected at the reported value.

 $\mu g/Kg = Micrograms per kilogram.$

Table 3-6
Summary of Positive Hits and Screening for the Off-Base TMC Pond Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health Risk Levels of 10 ⁵ or Hazard Index of 1	Most Stringent Ecological Criteria	Depth (ft):	0.0.5	TMC-SD-25MC/D 0.0.5 11/9/1999	TMC-SD-25-MC-Z3 0.9 - 1.8 6/5/2001	TMC-SD-25-MC-Z3/D 1.4 - 2.2 6/5/2001	TMC-SD-25-MC-Z4 2.4 - 3 6/5/2001	TMC-SD-26NS 0.0.5 11/9/1999	TMCSD-26-NS-Z3 1.5 - 2.5 5/25/2001
Total Organic Car	rbon by Method Lloy	d Kahn (mg/Kg)							
NA	NA	Total Organic Carbon	28000 J	8340 J	133000	75100 J	6990	43200	25100
PCBs by Method	8082 (μg/Kg)								
6,290	5	Aroclor 1260	1430	1320	489	403	123	149	12.0 J
Metals by Method	6010B (mg/Kg)								
473	0.6	Cadmium	85.7	76.5	8.5 J	4.8 J	0.92 U	26.5	1.1 U
NA	31	Lead	5.69	4.76	175	82.2	15.7	1.70	15.9
Percent Moisture	(wt%)								
NA	NA	Percent Moisture	50.6	49.3	60.2	61.0	27.4	34.7	27.5

^a The most stringent criteria were used. For Aroclor 1260, the Ontario Standards lowest effect level (June 1994) as shown in Tables 3-1a and 3-1b was used. For the Notes

All positive results are bold. Results that exceed the most stringent ecological screening criteria are shaded. Results exceeding the site human health risk levels are boxed.

An average value of 5.59% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

NA = Criteria not available.

PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

U = Not detected at the reported value.

μg/Kg = Micrograms per kilogram.

Table 3-6
Summary of Positive Hits and Screening for the Off-Base TMC Pond Sediment Samples
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Site Human Health Risk Levels of 10 ⁵ or Hazard Index of 1	Most Stringent Ecological Criteria		ample ID: 1 Depth (ft): Date:	TMCSD-26-NS-Z4 2.5 - 3 5/25/2001	TMC-SD-27MC 0.0.5 11/9/1999	TMCSD-27-MC-Z3 1.5 - 2.5 5/25/2001	TMCSD-27-MC-Z4 2.5 - 3 5/25/2001
Total Organic Car	bon by Method Lloy	d Kalııı (mg/Kg)					
NA	NA	Total Organic Carb	on	13100	63200	124000	14800
PCBs by Method 8	082 (μg/Kg)						
6,290	5	Aroclor 1260		25.3 U	1130	549	253
Metals by Method	6010B (mg/Kg)						#
473	0.6	Cadmium		0.082 U	143	9.9	2.4
NA	31	Lead		2.6	7.57	189	51.1
Percent Moisture	(wt%)						The second secon
NA	NA NA	Percent Moisture		21.5	61.7	72.2	35.8

^a The most stringent criteria were used. For Aroclor 1260, the Ontario Standards lowest effect level (June 1994) as shown in Tables 3-1a and 3-1b was used. For the Notes

All positive results are bold. Results that exceed the most stringent ecological screening criteria are shaded. Results exceeding the site human health risk levels are boxed.

An average value of 5.59% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

NA = Criteria not available.

PCB = Polychlorinated biplienyls.

TAL = Target Analyte List.

TCL = Target Compound List.

U = Not detected at the reported value.

μg/Kg = Micrograms per kilogram.

Table 3-6
Summary of Positive Hits and Screening for the Off-Base TMC Pond Sediment Samples
Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

Site Human Health Risk Levels of 10 ⁵ or Hezard Index of 1	Most Stringent Ecological Criteria		ole ID: th (It): Date:	TMC-SD-28OL 0.0.5 11/9/1999	TMCSD-28-OL-Z3 1.5 - 2.5 5/25/2001	TMCSD-28-OL-Z3/D 1.5 - 2.5 5/25/2001	TMCSD-28-OL-Z4 2.5 - 3 5/25/2001
Total Organic Car	bon by Method Lloy	d Kahn (mg/Kg)					
NA	NA	Total Organic Carbon		51000	56800	56300	64500
PCBs by Method 8	3082 (μg/Kg)						
6,290	5	Aroclor 1260		824	379	437	1370
Metals by Method	6010B (mg/Kg)						
473	0.6	Cadmium		147	5.7	6.3	11.0
NA	NA 31 Lead			7.86	155	155	133
Percent Moisture	(wt%)						
NA	NA	Percent Moisture		53.8	48.7	46.3	42.5

^a The most stringent criteria were used. For Aroclor 1260, the Ontario Standards lowest effect level (June 1994) as shown in Tables 3-1a and 3-1b was used. For the Notes

All positive results are bold. Results that exceed the most stringent ecological screening criteria are shaded. Results exceeding the site human health risk levels are boxed.

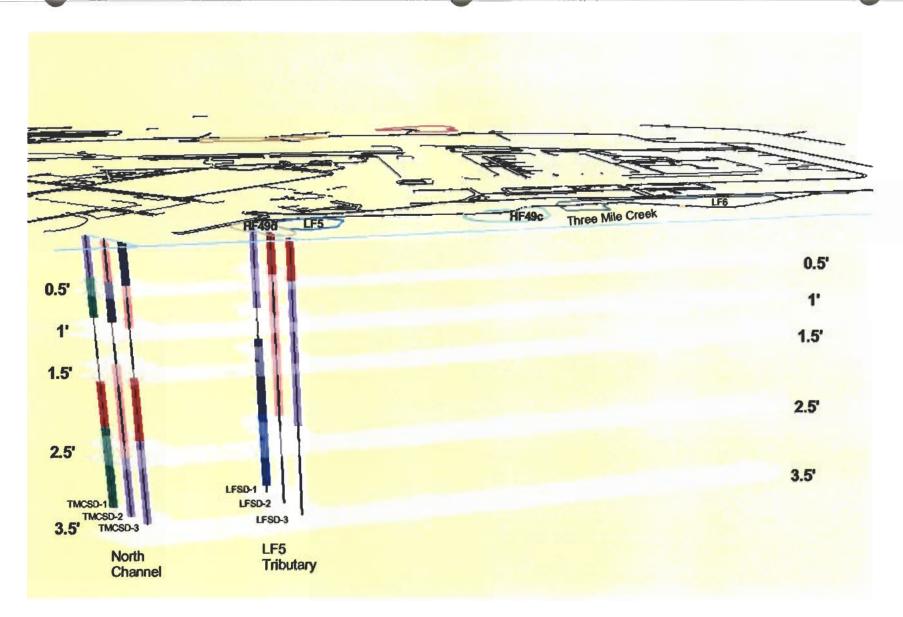
An average value of 5.59% TOC was used in the calculation of the criteria, where necessary.

Key:

J = Estimated value.

mg/Kg = Micrograms per kilogram.

NA = Criteria not available.


PCB = Polychlorinated biphenyls.

TAL = Target Analyte List.

TCL = Target Compound List.

U = Not detected at the reported value.

 μ g/Kg = Micrograms per kilogram.

Aroclor 1260 (ppb)

- O ND
- ND 1 (Below the screening level for both sediment and native soil samples)
- **1** 100
- **100 500**
- **500 1000**
- 1000 5000
- 5000 10000
- **10000 50000**

Depths Not to Scale

> 50000

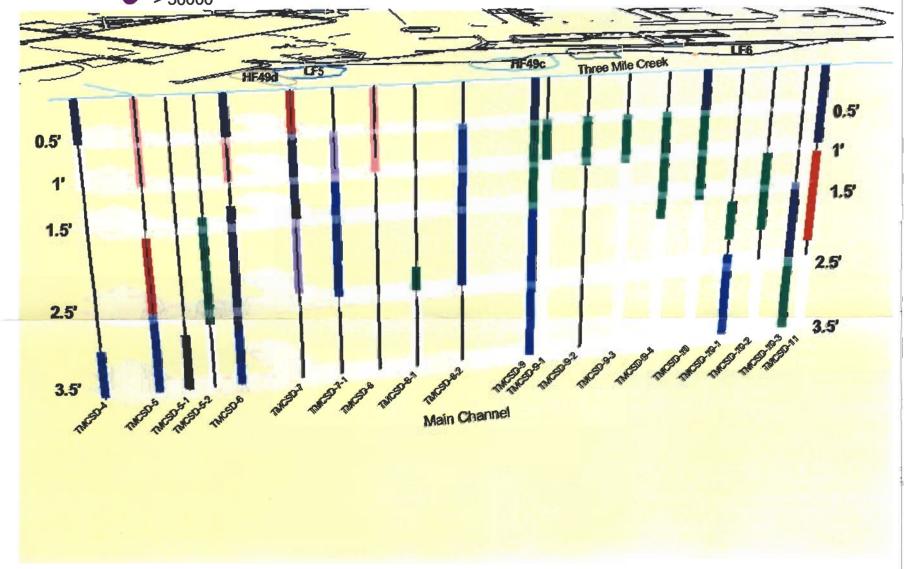
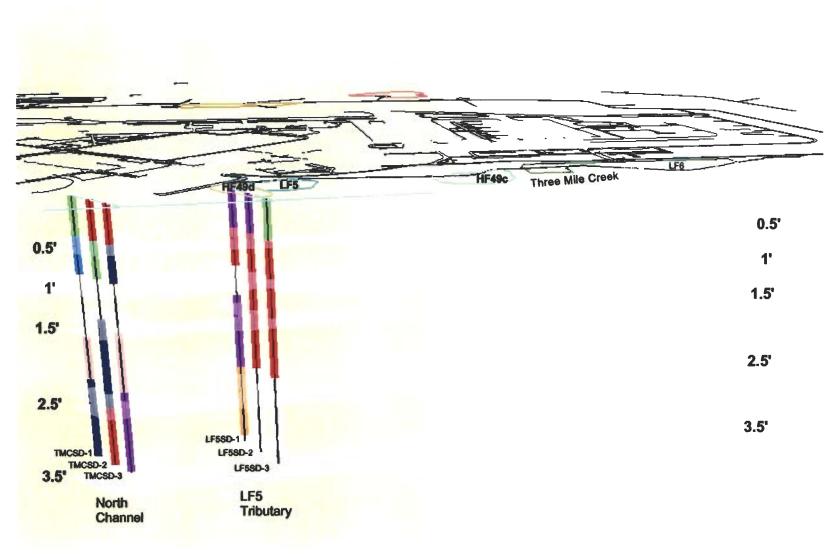



Figure 3-2 Aroclor 1260 Concentration Vertical Profile Former Griffiss AFB

Total Pesticides (ppb)

O ND

ND - 1

1 - 20

20 - 34

34 - 100

100 - 205205 - 900

> 900

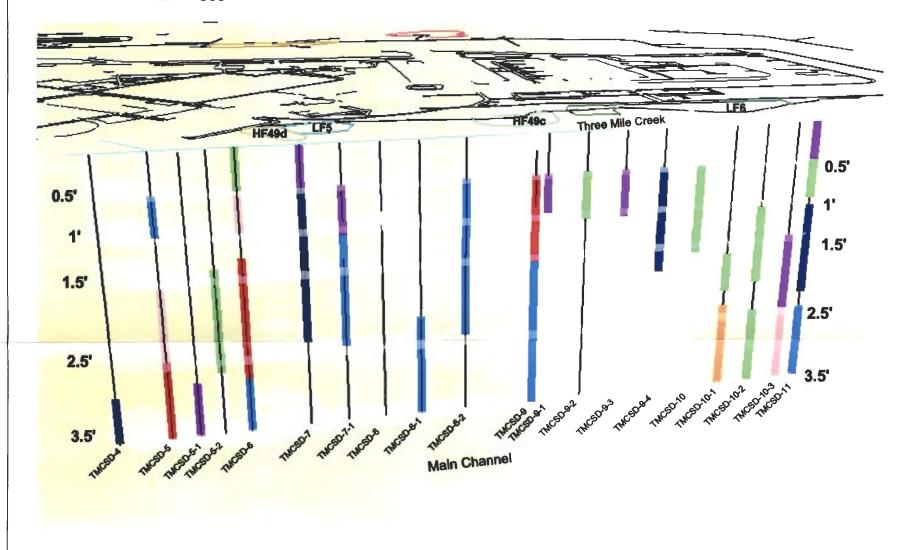
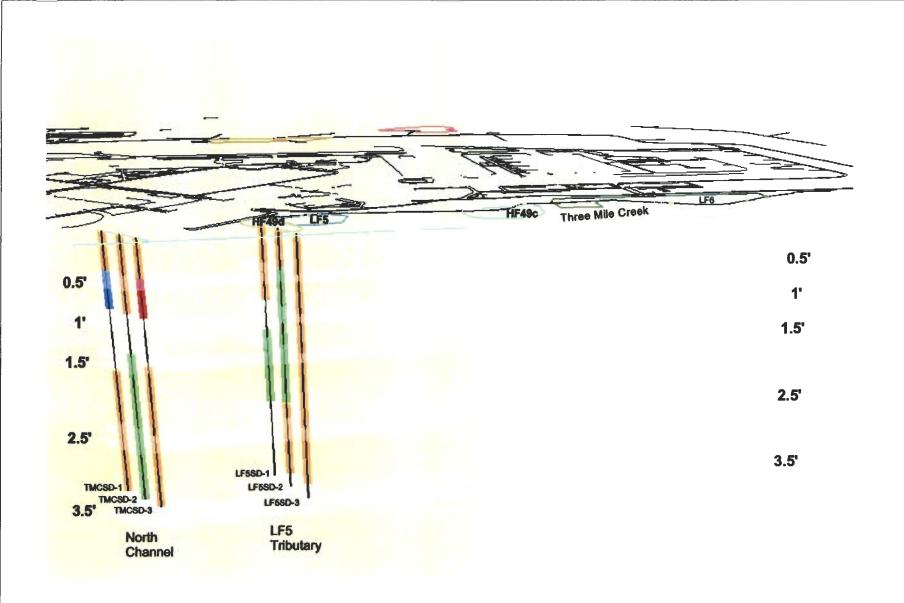



Figure 3-3 Total Pesticide Concentration Vertical Profile Former Griffiss AFB

4,4 - DDD (ppb)

O ND

ND - 2 (Below the screening level for both sediment and native soil samples)

2-10

20-100

100-200

> 200

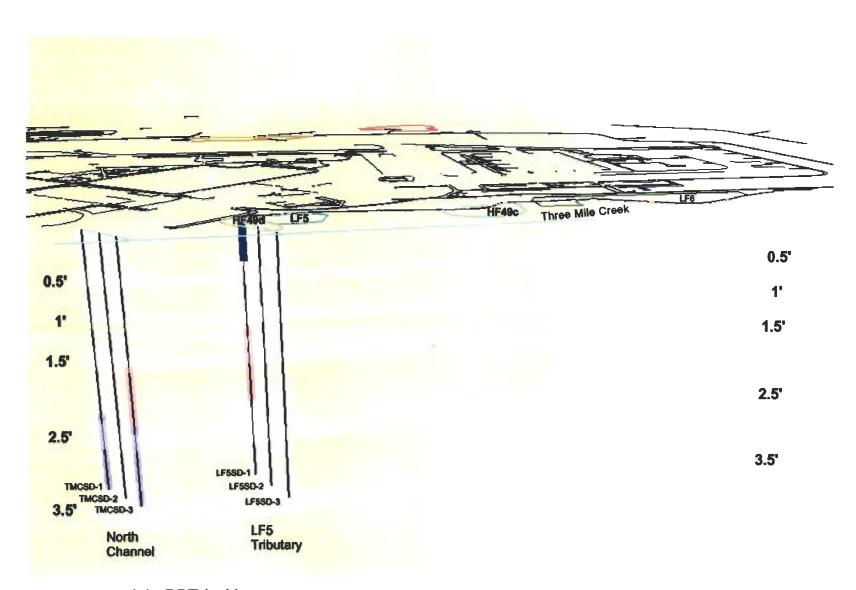



Figure 3-3a 4,4 - DDD Concentration Vertical Profile Former Griffiss AFB

4,4 - DDT (ppb)

O ND

ND - 1 (Below the screening level for both sediment and native soil samples)

1-5

5 - 10

10 - 30

30 - 100

100 - 500

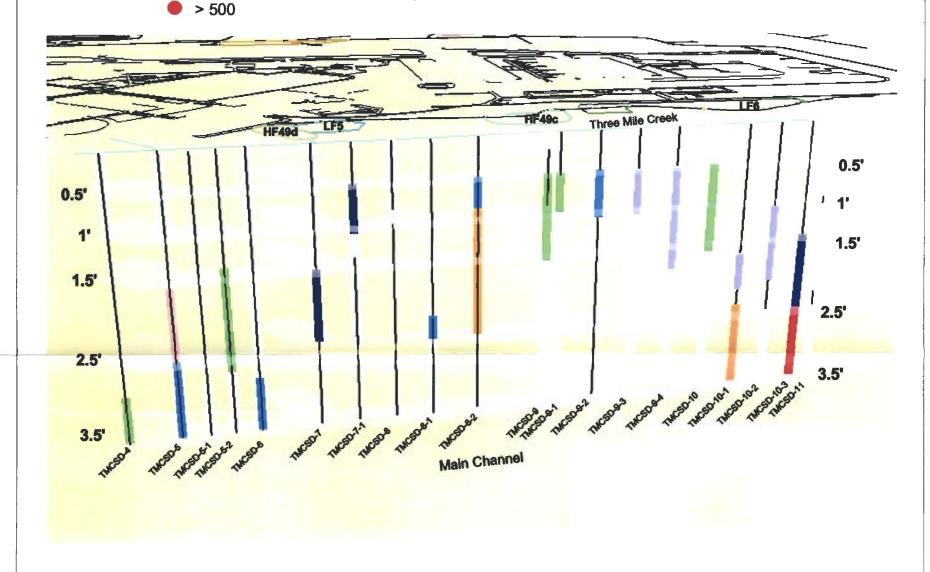
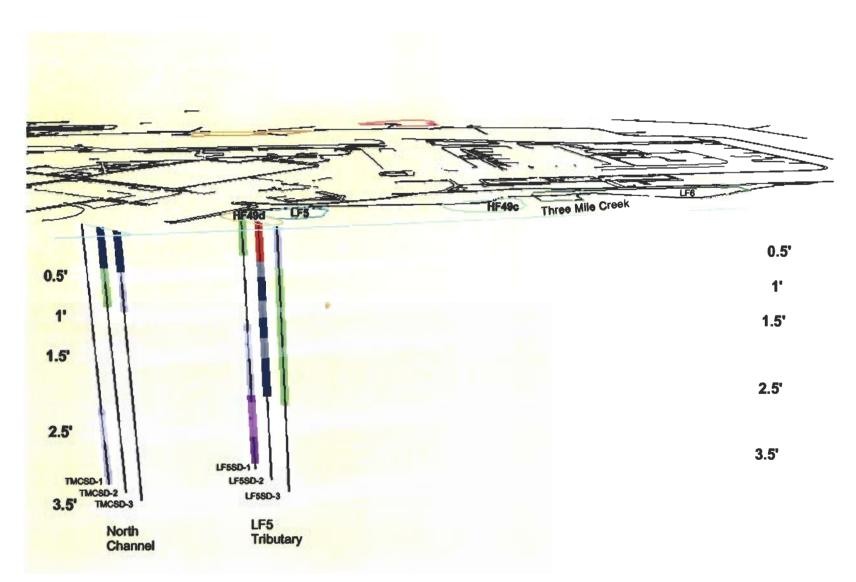



Figure 3-3b 4,4 - DDT Concentration Vertical Profile Former Griffiss AFB

Total Chlordane Isomer (ppb)

O ND

ND - 0.12 (Below the screening level for native soil samples)

0.12 - 0.314 (Below the screening level for sediment samples)

0.314 - 3

9 3 - 12

12 - 30

0 30 - 65

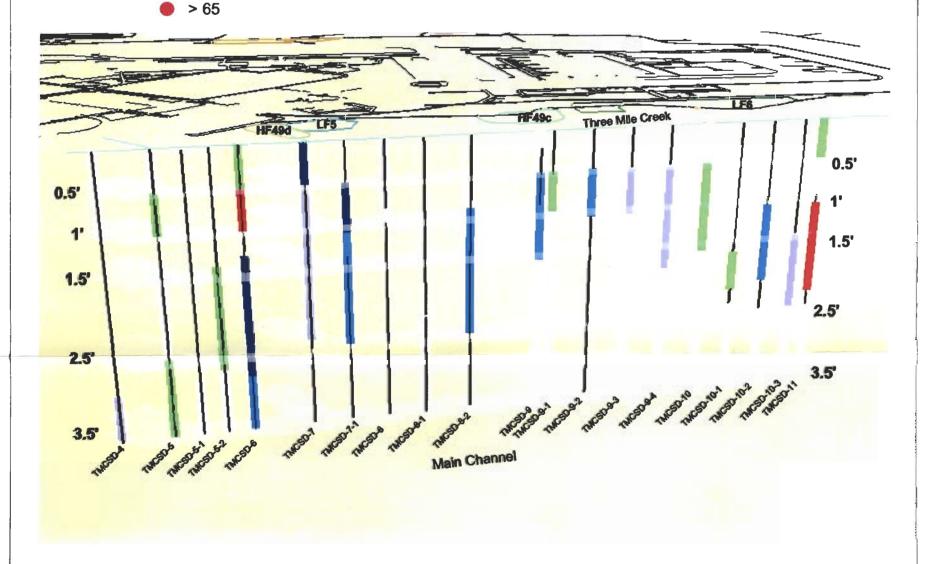
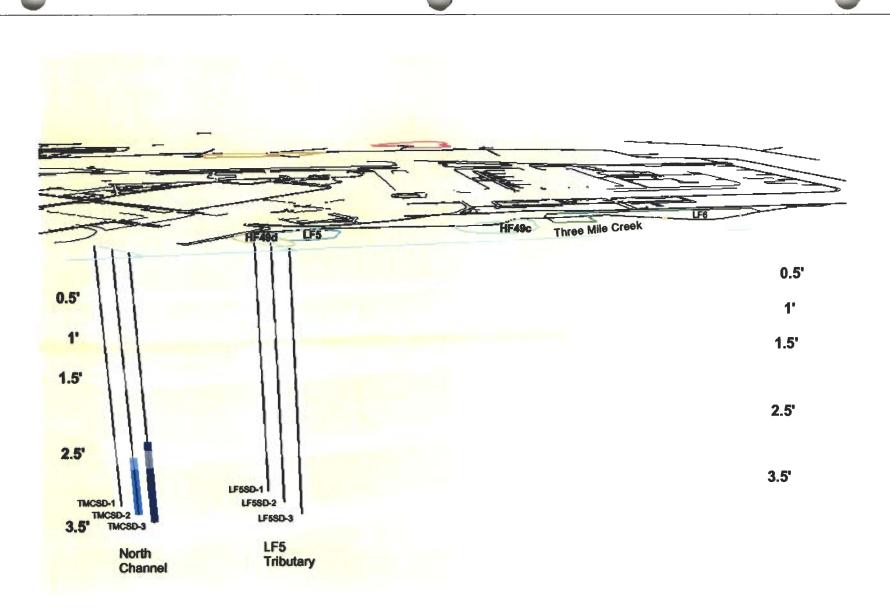



Figure 3-3c Total Chiordane Isomer Concentration Vertical Profile Former Griffiss AFB

Heptachlor and Heptachlor Epoxide (ppb)

O ND

ND - 0.6 (Below the screening level for native soil samples)

0.6 - 1.572 (Below the screening level for sediment samples)

1.572 - 5

9 5 - 15

15 - 100> 100

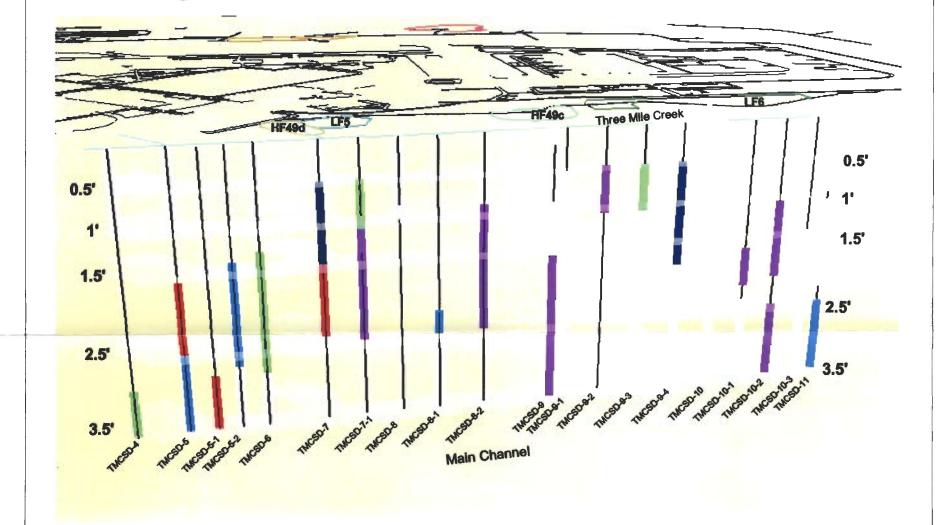
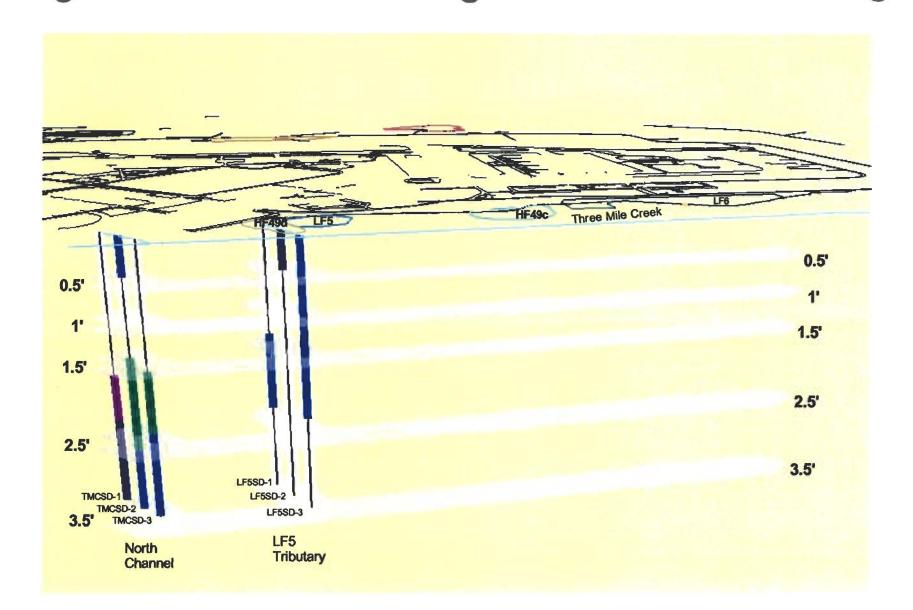



Figure 3-3d Heptachlor and Heptachlor Epoxide Concentration Vertical Profile Former Griffiss AFB

Total 2,3,7,8 TCDD equivalent (ng/Kg)

- O ND
- ND 1 (Below the screening level for both sediment and native soil samples)
- 1-7
- **7** 15
- **15 22**
- **22 40**
- > 40

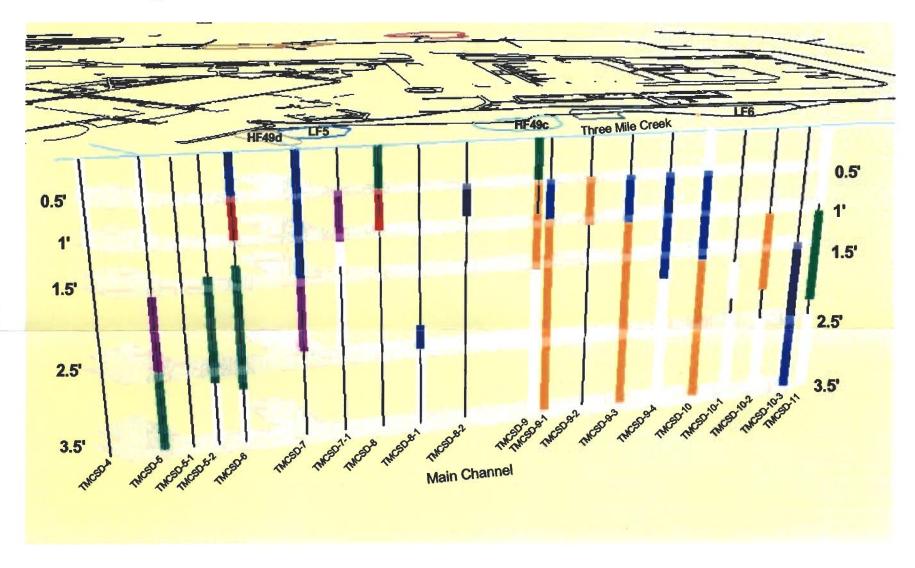
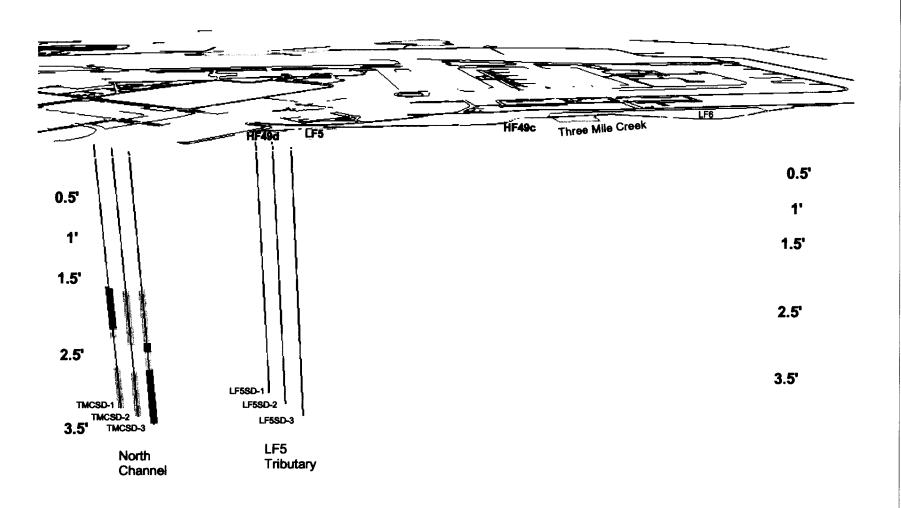



Figure 3-4 Total Dioxin Concentration Vertical Profile Former Griffiss AFB

1,2-Dichlorobenzene (ppb)

O ND

ND - 240 (Below the screening level for native soil samples)

240 - 628.8 (Below the screening level for sediment samples)
 628.8 - 1000

1000 - 1500

> 1500

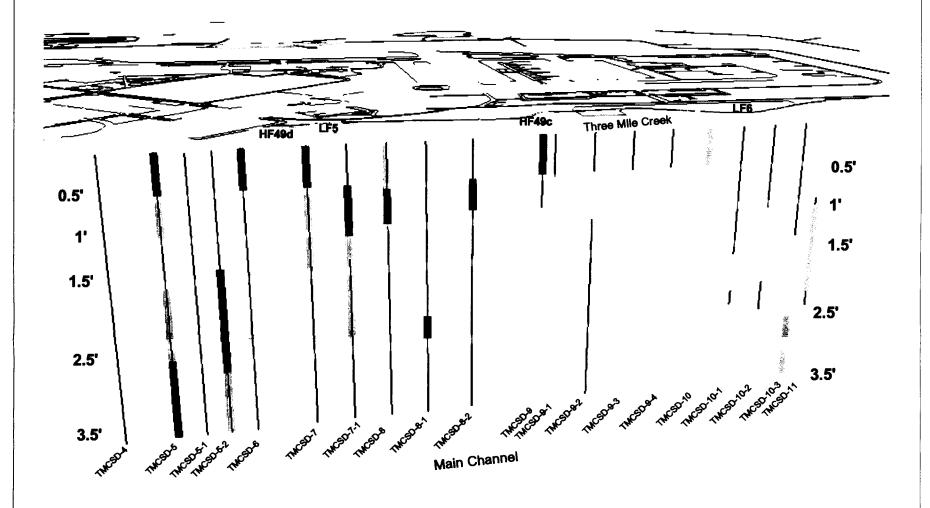


Figure 3-5a 1,2-Dichlorobenzene Concentration Vertical Profile Former Griffiss AFB

1,4-Dichlorobenzene (ppb)

- O ND
- ND 240 (Below the screening level for native soil samples)
- 240 628.8 (Below the screening level for sediment samples)
- 628.8 1500
- **1500 4000**
- > 4000

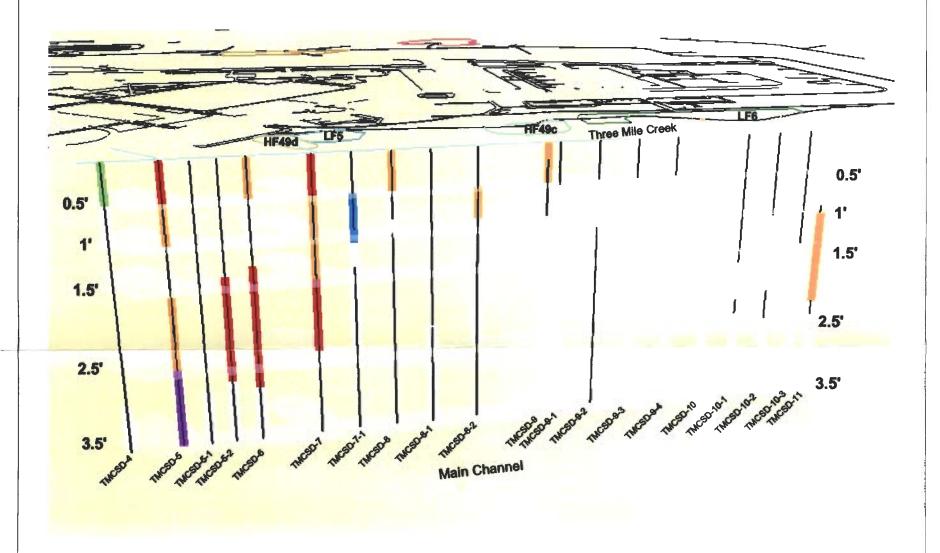
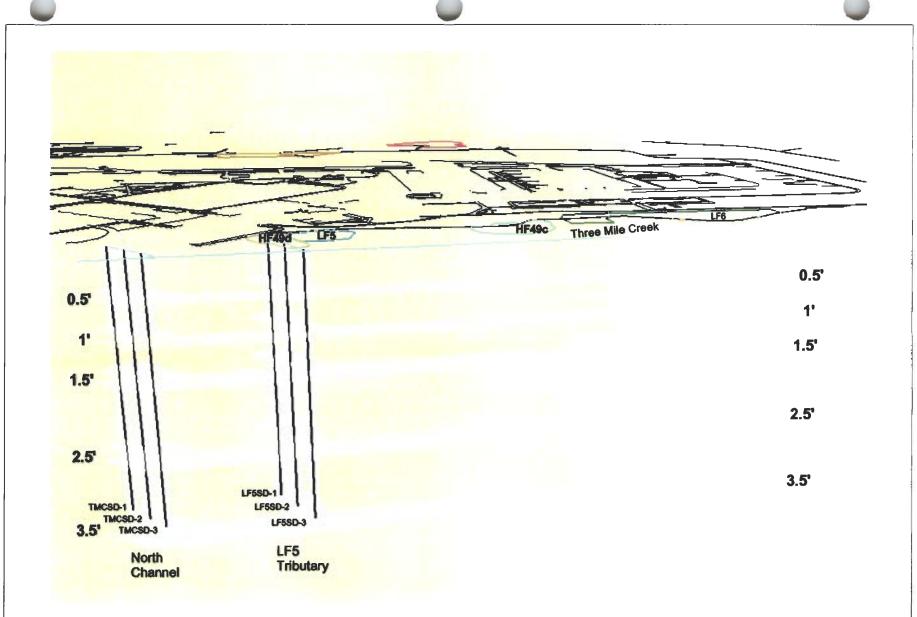



Figure 3-5b 1,4-Dichlorobenzene Concentration Vertical Profile Former Griffiss AFB

Benzene (ppb)

O ND

ND - 100 (Below the screening level for native soil samples)

100 - 500 (Below the screening level for sediment samples)

9 500 - 1467.2

> 1467.2

Depths Not to Scale

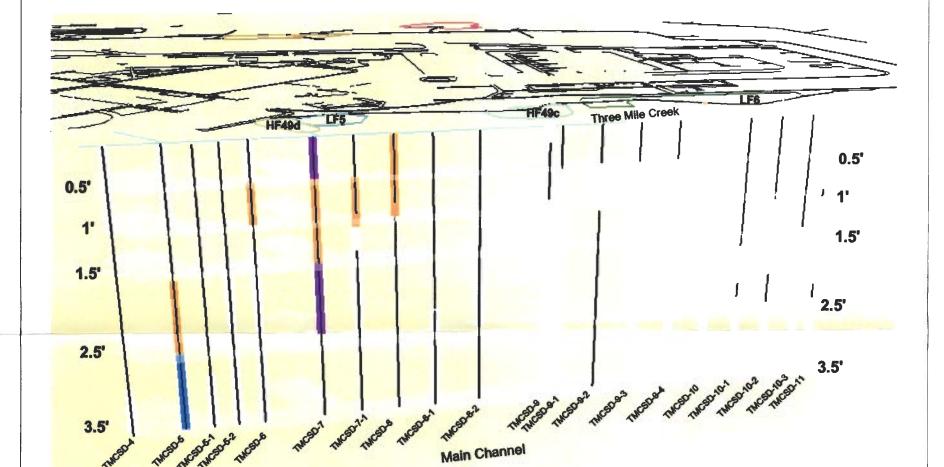
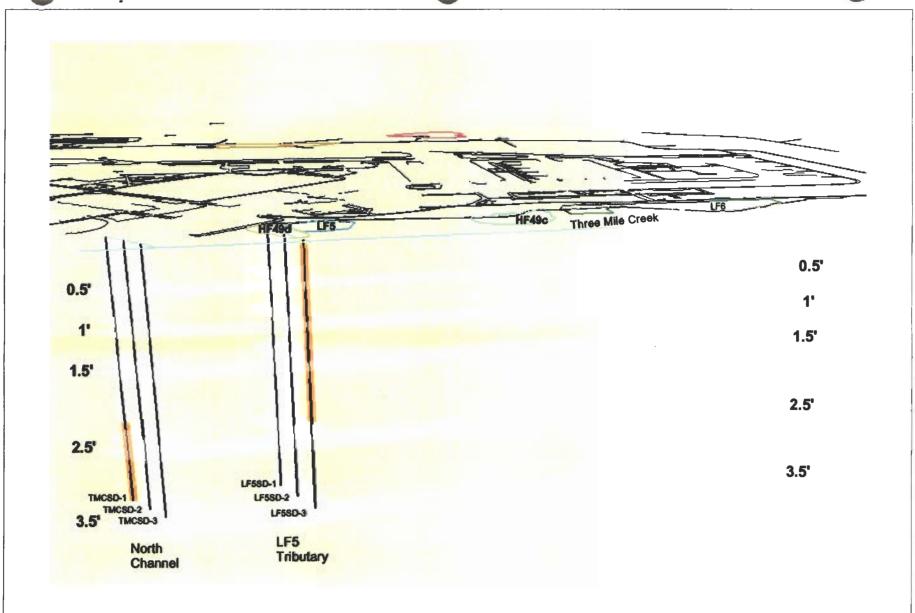



Figure 3-5c Benzene Concentration Vertical Profile Former Griffiss AFB

Chlorobenzene (ppb)

- O ND
- ND 70 (Below the screening level for native soil samples)
- 70 183.4 (Below the screening level for sediment samples)
- **183.4 3500**
- **3500 35000**
- > 35000

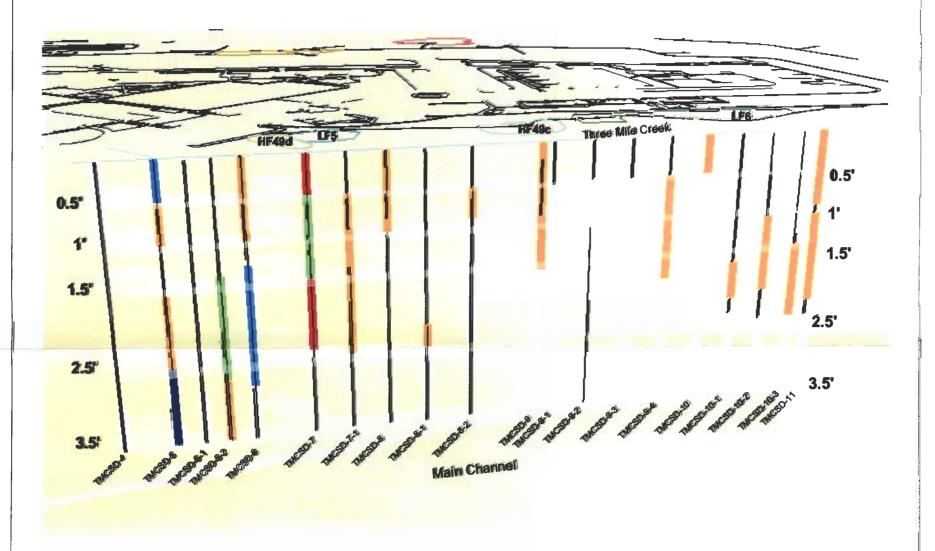



Figure 3-5d Chlorobenzene Concentration Vertical Profile Former Griffiss AFB

Total PAHs (ppb)

O ND

ND - 1

1 - 2000

2000 - 10000

10000 - 2200022000 - 80000

80000 - 500000

> 500000

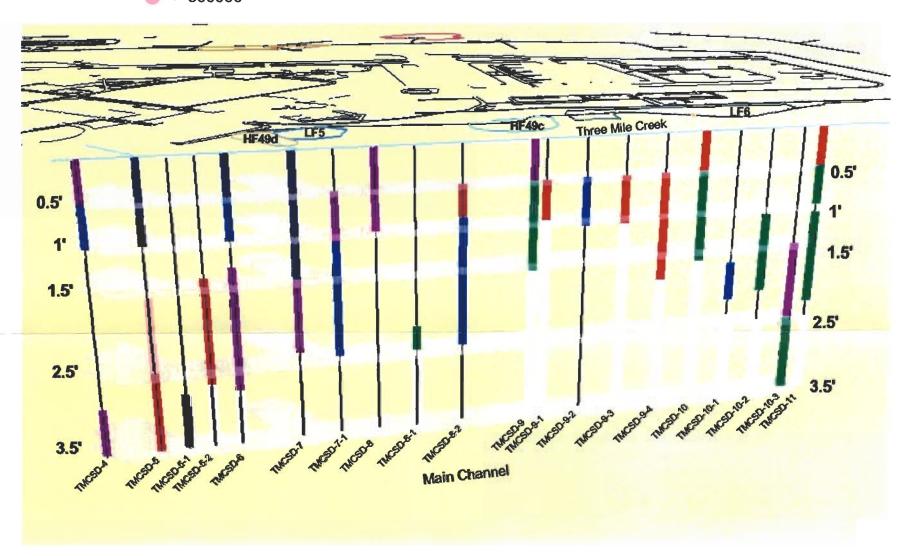
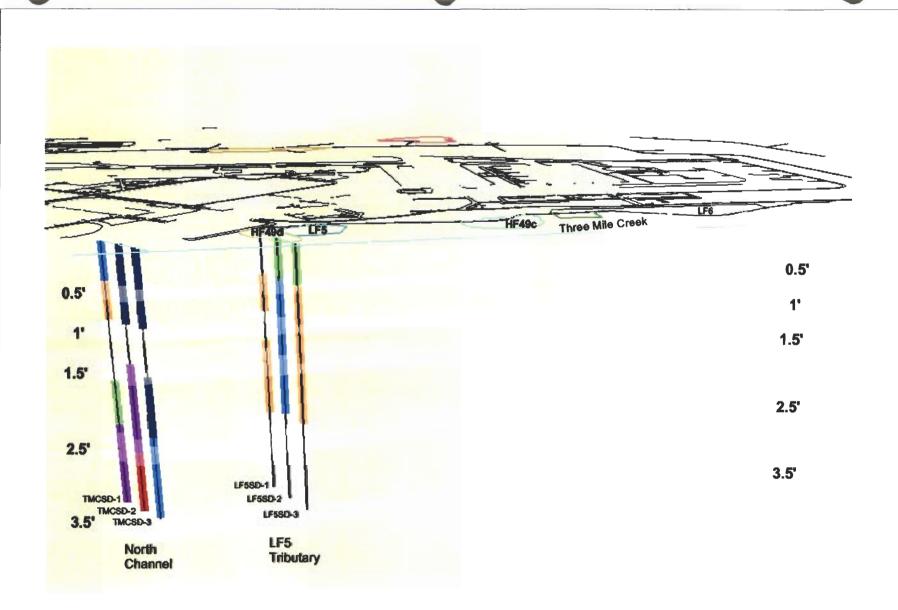



Figure 3-6 Total PAH Concentration Vertical Profile Former Griffiss AFB

Benz(a)anthracene (ppb)

- O ND
- ND 230 (Below the screening level for both sediment and native soil samples)
- **230 1000**
- **1000 2100**
- **2100 7500**
- **7500 40000**
- >40000

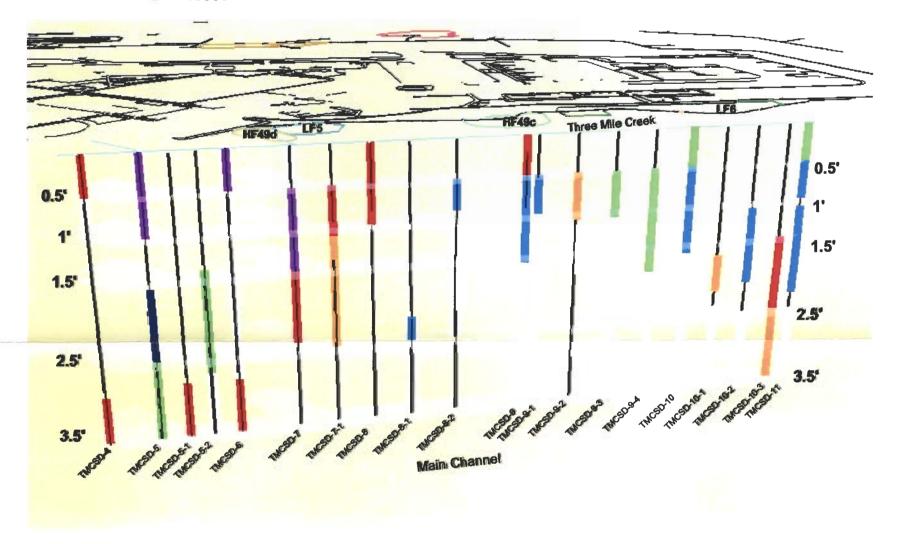
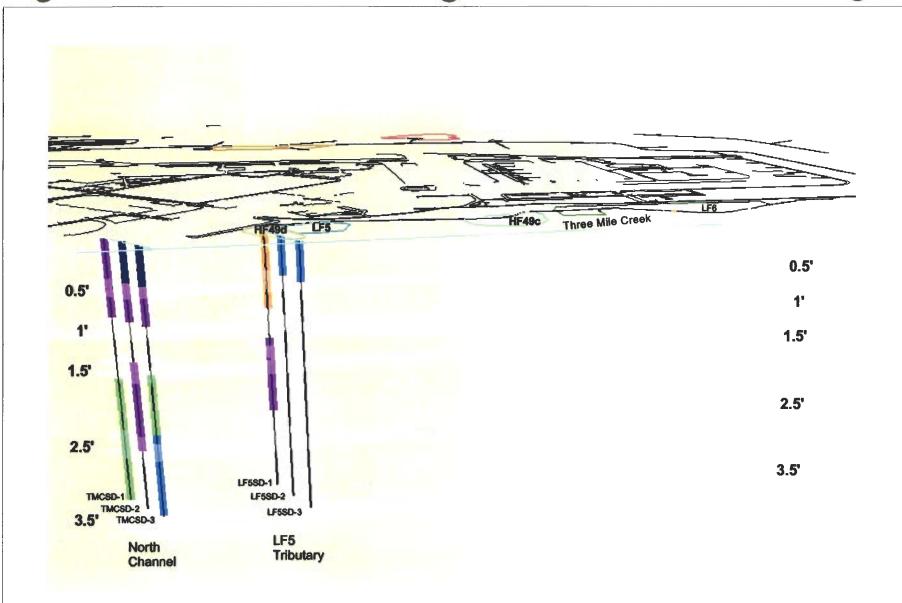



Figure 3-6a Benz(a)anthracene Concentration Vertical Profile Former Griffiss AFB

TRPH (ppm)

- O ND
- ND 100 (Below the screening level for both sediment and native soil samples)
- **100 500**
- **500 1000**
- **1000 5000**
- **5000 15000**

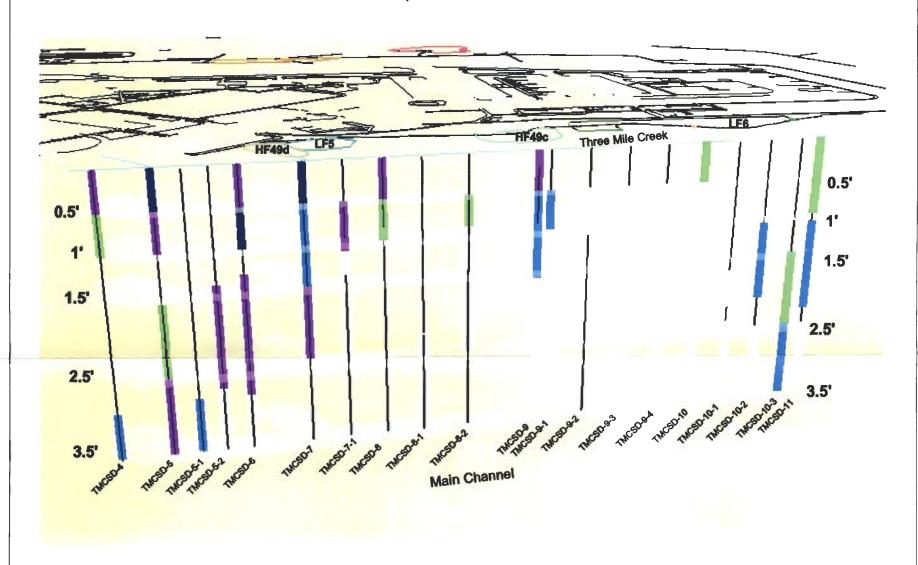
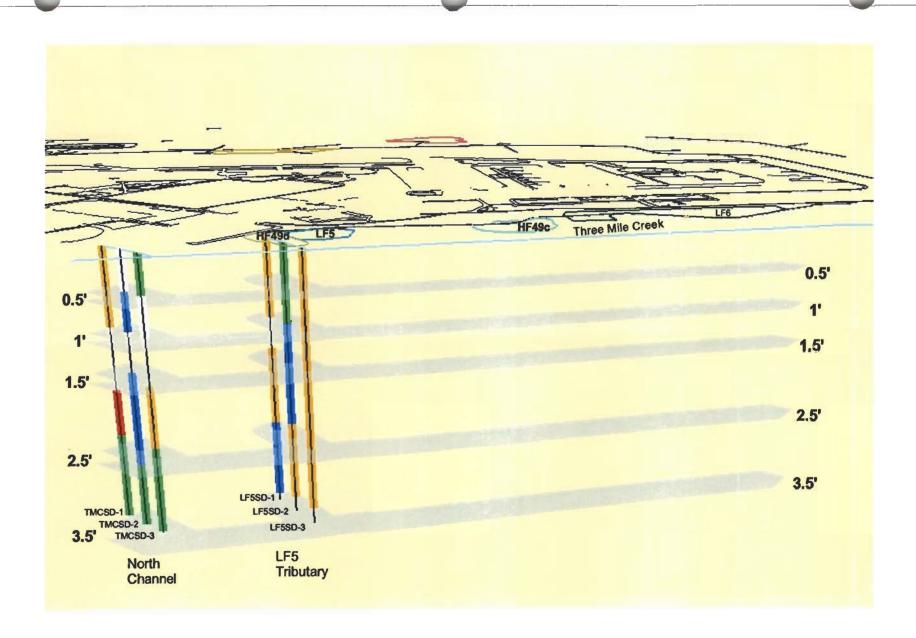



Figure 3-7 TRPH Concentration Vertical Profile Former Griffiss AFB

Arsenic (ppm)

O ND

ND- 6 (Below the screening level for sediment and native soil samples)

6 - 10

1 - 20

> 20

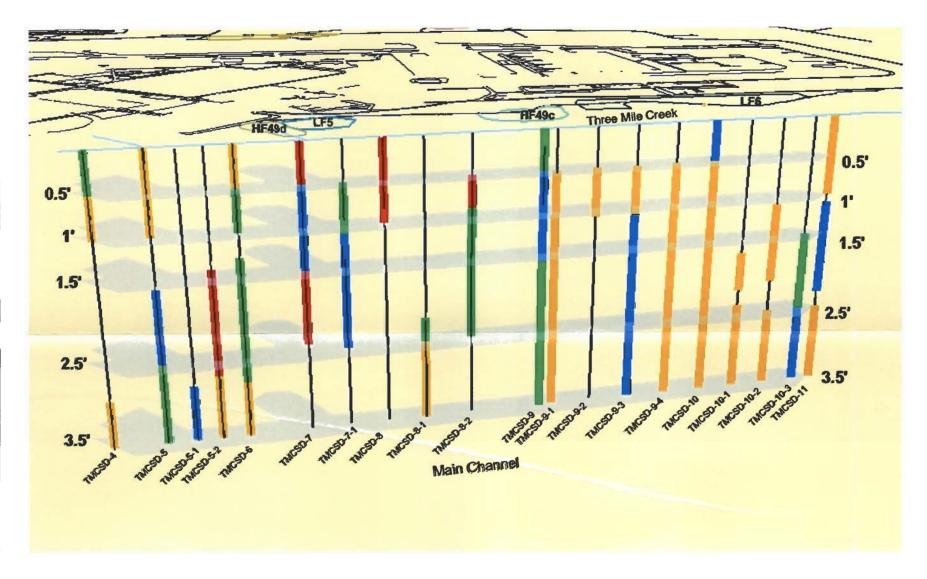
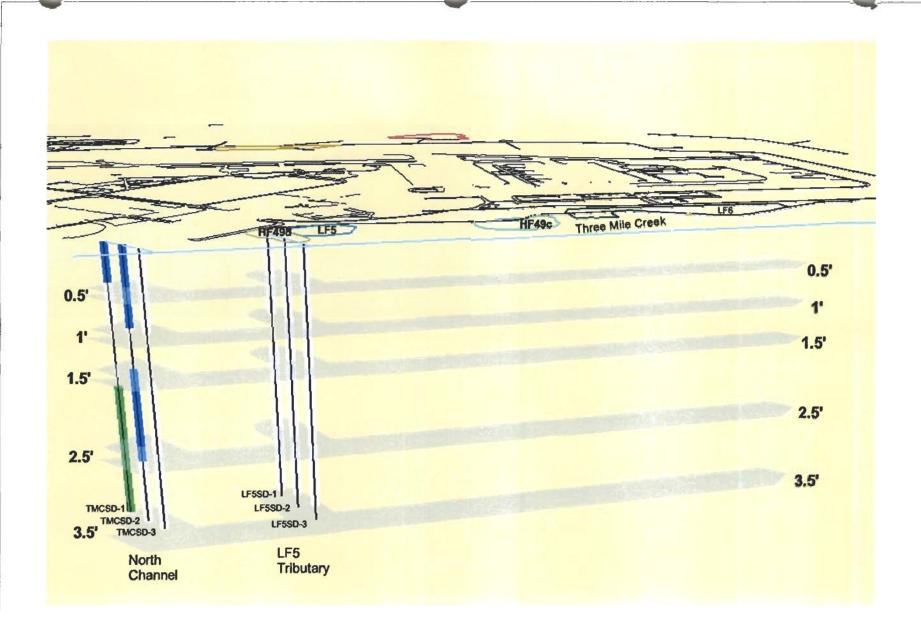



Figure 3-8 Arsenic Concentration Vertical Profile Former Griffiss AFB

Cadmium (ppm)

- O ND
- ND 0.6 (Below the screening level for sediment and native soil samples)
- 0.6 4
- 4 10
- > 10

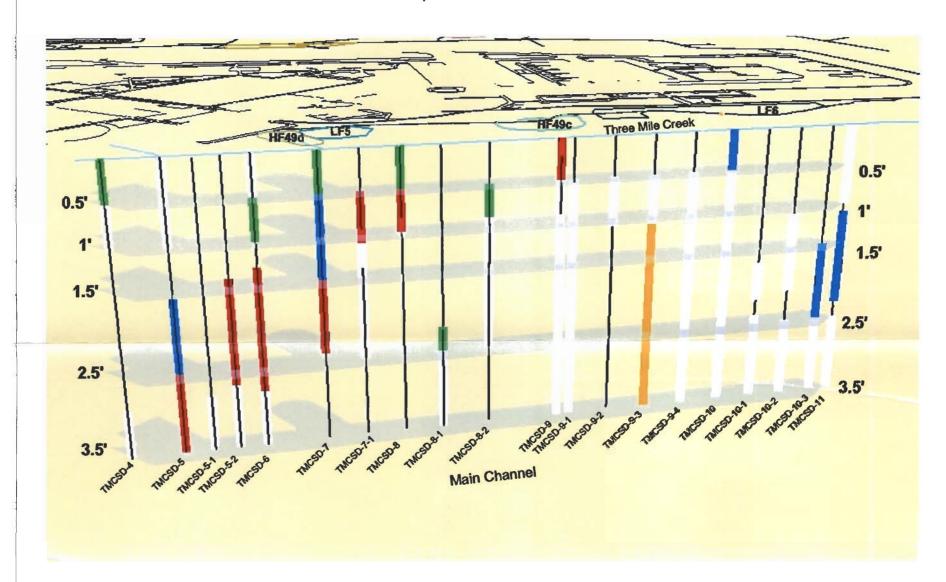
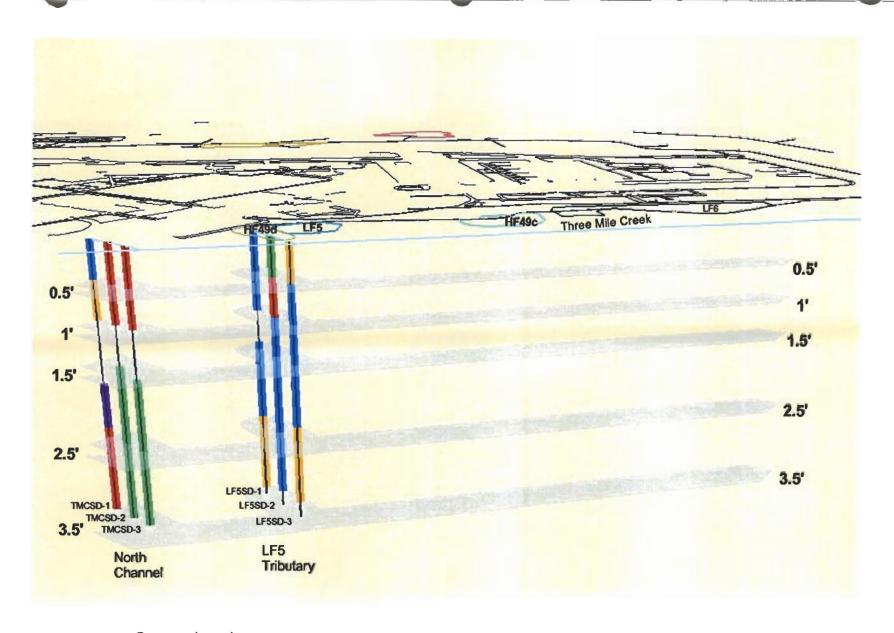



Figure 3-9 Cadmium Concentration Vertical Profile Former Griffiss AFB

Copper (ppm)

- O ND
- ND 16 (Below the screening level for sediment and native soil samples)
- 16 32
- **32 50**
- 9 50 80
- **>** 80

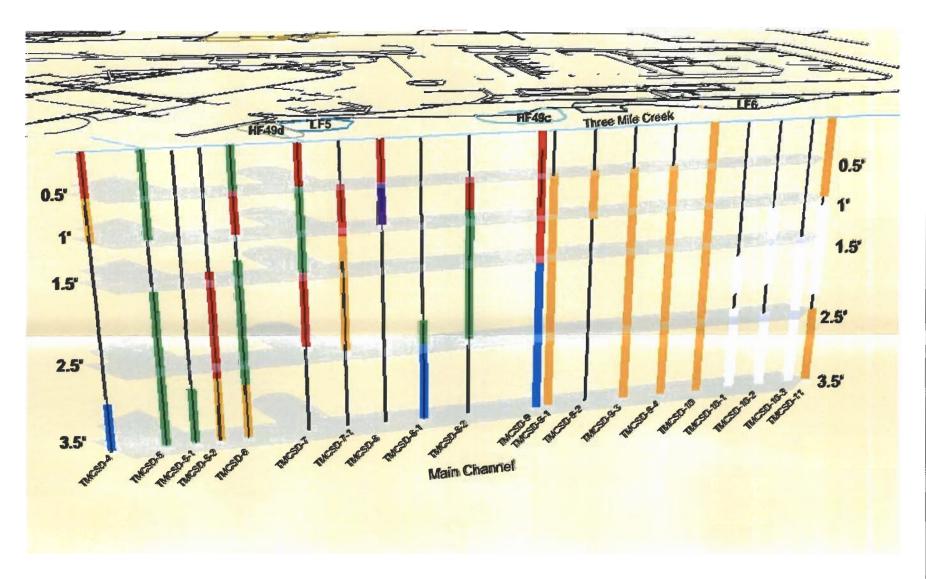
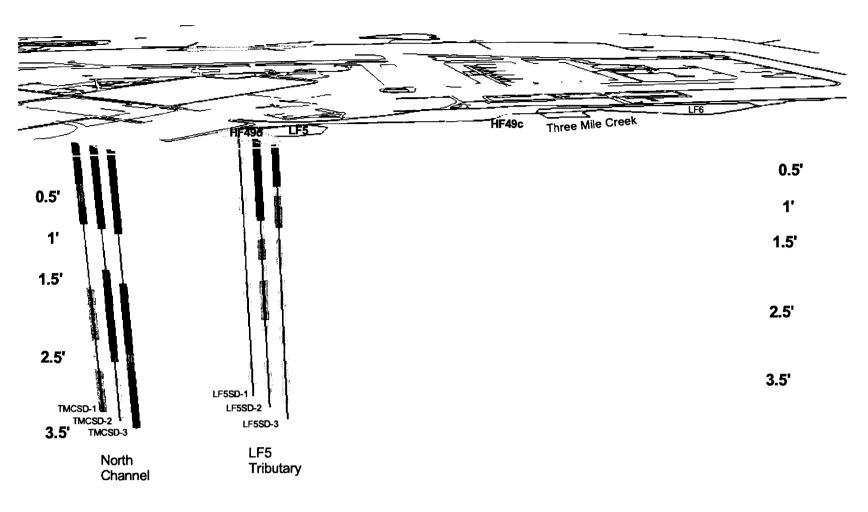



Figure 3-10 Copper Concentration Vertical Profile Former Griffiss AFB

Lead (ppm)

O ND

ND - 31 (Below the screening level for sediment and native soil samples)

31 - 50

50 - 80

80 - 120

120 -200

200 - 320

> 320

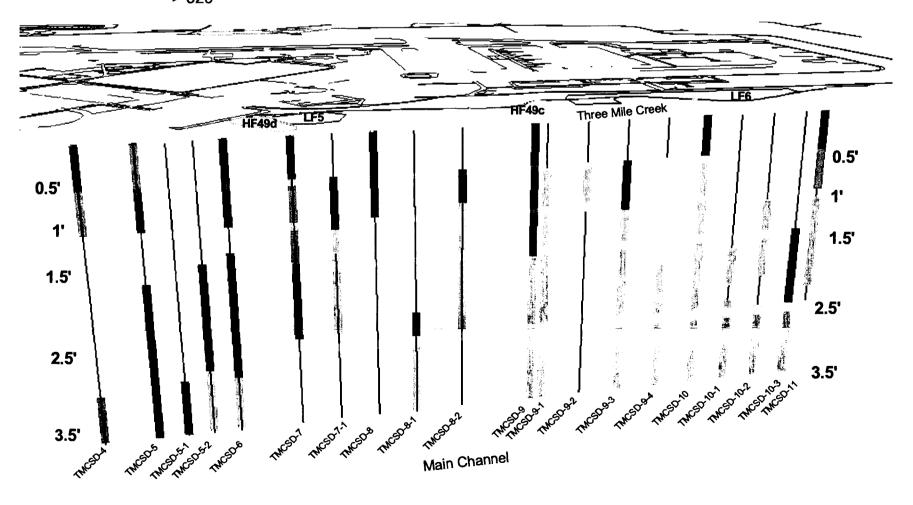
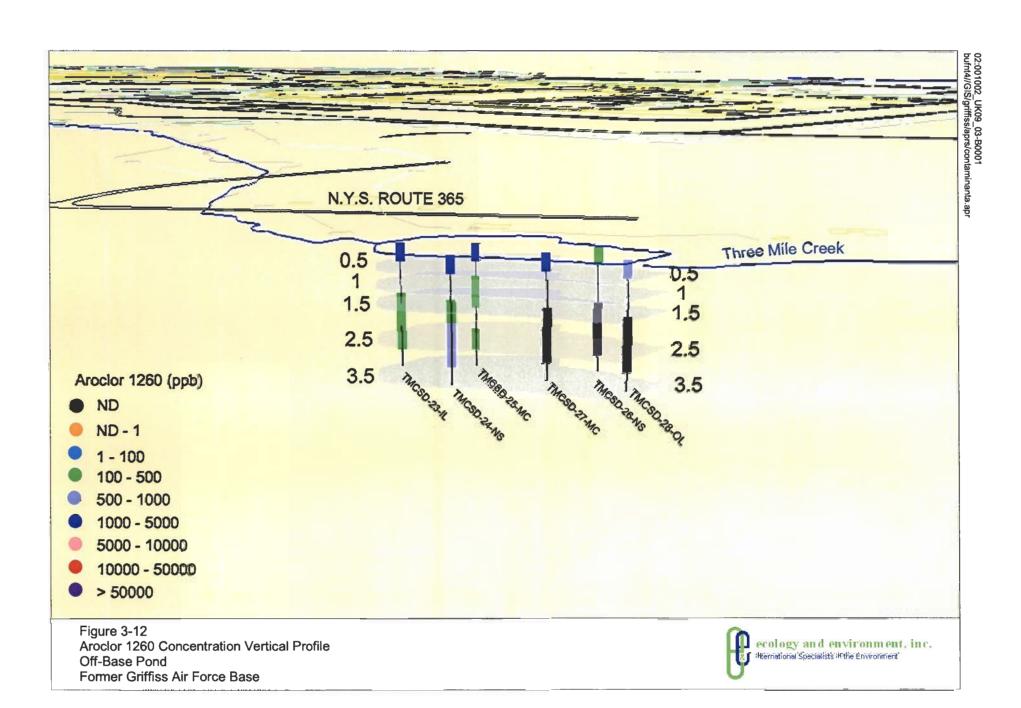
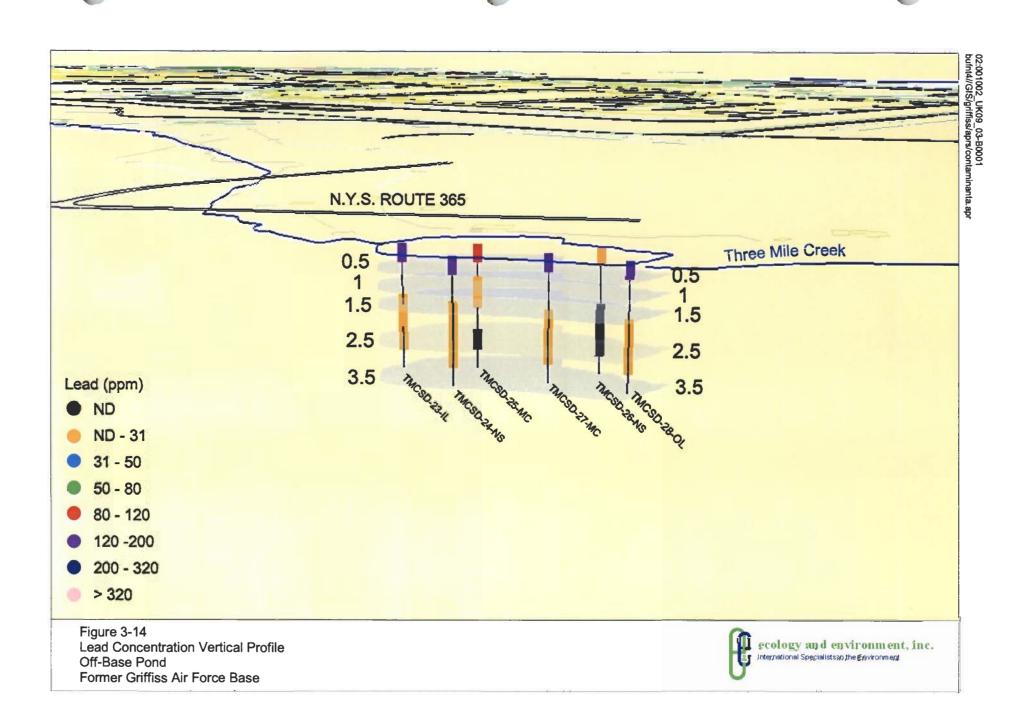




Figure 3-11 Lead Concentration Vertical Profile Former Griffiss AFB

Three Mile Creek Habitat Quality

In the previous section, areas of sediment and surface water were identified that exceed screening values. However, such exceedences do not necessarily warrant remedial action, especially considering that such remedial action would directly adversely impact the habitat they are meant to protect. The health of the environment in Three Mile Creek and the quality of its habitat were studied in both the RI and in a separate post-FS reviews. The environmental evaluation performed for this AOC during the RI evaluated the potential for adverse impacts to ecological receptors potentially exposed to contaminants present at the Three Mile Creek AOC. Based on this assessment, potential for adverse effects was considered insignificant for the northern water snake, short-tailed shrew (except in the drainage ditch adjacent to Landfill 5), raccoon, and American woodcock. However, comparisons of composite whole-body fish tissue analytical results to NYSDEC ecological guidelines indicated that a high potential exists for adverse effects due to exposure to PCBs, DDT, aldrin/dieldrin, and mercury (Law 1996).

Also as part of the RI, an aquatic assessment was performed at Three Mile Creek in order to evaluate creek habitat, in situ water quality, benthic and drift macroinvertebrate communities, and fish populations. Whole-body fish tissue samples were collected and analyzed during this assessment. Sediment was also collected for toxicity testing. Benthic macroinvertebrate populations were classified as "slightly impaired" at two downstream locations (TMCBE-2 and TMCBE-4) (see Figure 2-3a), exhibiting a lower quality of habitat than the reference location. Although no diseases were observed, fish communities were also found to be in "poor" condition. With the exception of a single sample (from location TMCBE-2) which indicated moderate toxicity, the sediment toxic-

4

ity test results did not indicate the presence of chemicals in sediments at concentrations toxic to aquatic life. Analyses of composite whole-body fish tissue indicated a spatial trend in PCB distribution, with Aroclor 1260 concentrations in tissues from samples collected at location TMCFS-1 approximately three times greater than those found from the other three downstream locations. Fish tissue data collected by NYSDEC in 1997 confirms the presence of PCBs in Three Mile Creek fish. Concentrations of three of six detected metals were greatest in the lower reaches of the creek. This investigation showed that some impacts on the environment have resulted from the contamination at Three Mile Creek, but that the impacts varied with location. Not only do the observed impacts vary with location, but the quality of habitat at Three Mile Creek varies with location along the creek. To better describe the quality of the habitat in these areas, the Air Force Base Conversion Agency (AFBCA), USACE, NYSDEC, EPA, and the USFWS agreed to jointly visually inspect and review the habitat quality of each section of Three Mile Creek. The habitat quality of the creek is a critical factor in determining whether intrusive measures of remedial action (i.e., sediment excavation) would be appropriate for the areas where sediment sampling results exceeded screening criteria.

The habitat review was conducted on July 15, 1999, and was documented in trip reports by E & E and the USFWS (E & E 1999a). The habitat review walk focused largely on the off-site segment of the creek, extending from the base boundary to the NYSBC. A brief walkover of Three Mile Creek was also conducted on-site.

In late 2001, as part of a basewide wetlands mitigation program, E & E reviewed all historical documents regarding work performed on or around Three Mile Creek, with emphasis on wetland delineations and the presence or absence of contamination (E & E 2001). Following the historical data review, E & E certified wetland specialists field-verified the historical wetland delineations. Recommendations discussed in Section 5 regarding this report incorporate plans for wetland mitigation along Three Mile Creek.

4.1 On-Base Portions of Three Mile Creek

The on-base portion of the stream is characterized as a channelized, straight, sluggish stream with primarily sandy and cobbly substrate. Considerable amounts of mucky, fine sediment have accumulated in deeper pools and behind obstructions and debris (beaver) dams. The onsite portion of the stream extends for about 5,000 feet from

its origin at the outfall of two large (60- and 72-inch diameter) storm drains just off the substation at Ellsworth Road to the base boundary. The highest levels of contamination have been found in sediment taken near the headwaters of the stream channel and the Landfill 5 (LF5) tributary feeding into the channel along the first 1,000 to 1,500 feet of Three Mile Creek. The stream originates in a developed area of poor surrounding habitat quality, but enters an extensive forested/wetland area within 500 feet or so downstream of the point of origin. Within the forest/wetland, extending to the base boundary, surrounding habitat quality is high. The forest/wetland consists of a diversity of secondary growth and mature trees, supporting abundant wildlife including wild turkey, deer, raccoon, songbirds, ducks, and herons.

About 1,500 feet downstream from the origin of Three Mile Creek, the stream enters a wide, emergent wetland at a point where several large steam pipes cross the stream immediately downstream of LF5. Until recently, a beaver dam was located just downstream from the pipeline crossing. The formerly flooded area has many standing and fallen dead trees. Numerous frogs, minnows, and dragonflies were observed at this location. Stream data collection station TMC-5 (see Figure 5-1) was located within this wetland area.

Downstream of this wetland, the sediments are relatively thin (1 to 2 feet thick); however, a large amount of sediment accumulation was observed just upstream of the dirt road at the base boundary. The stream is also bordered on both sides by a berm of dredge spoils several feet high in this area, extending to the base boundary. The area around the creek supports a number of large eastern cottonwood trees. USFWS personnel observed that the disturbance of this area during remedial activities would not be of great concern, since it has already been disturbed by the dredging activities and the vegetation consists of typical upland plant species. USFWS also suggested the possibility of improving the habitat by removing the berm to provide an opportunity for the stream to spread. This was also subsequently recommended by E & E during the recent wetland mitigation program (E & E 2001).

Habitat survey station TMC-4 (see Figure 2-1) was located several hundred feet upstream from the base boundary in the forested stream segment, just upstream from the extensive area of fine sediment accumulation.

4.2 Off-Base Portions of Three Mile Creek

For discussion purposes, the off-base portion of Three Mile Creek is divided into two stream segments, each approximately 2000 feet in length. The first segment extends from the base boundary to an access road for a sanitation facility transfer facility; and the second segment extends from that access road to NYSBC (see Figure 2-5).

4.2.1 Base Boundary to the Sanitation Facility Transfer Station Access Road

Three Mile Creek was accessed near the southern base boundary at the culvert where it is crossed by a dirt road. The creek was inspected downstream approximately 2,000 feet to the sanitation facility transfer station access road. Water quality and aquatic habitat conditions were evaluated at two stations in this stream segment (TMC-1 and TMC-2) (see Figure 5-2). Water quality parameters (pH, dissolved oxygen, conductivity, temperature, turbidity) were measured using a Horiba U10 water quality meter. The measurements are summarized in Table 4-1.

This portion of the stream is characterized as a small, sandy-bottomed, meandering stream, with mostly sluggish flow. In the shallower, faster-moving portions of the stream (riffles and runs), the creek bottom consisted almost entirely of sand, with a few cobbles and larger rocks. Mucky sediment fines were found up to a foot or two deep in depositional pools and bends, and behind debris dams. Overall, there is little available substrate for benthic macroinvertebrates, and only a few small minnows and frogs were observed in the stream.

The surrounding land use is early successional field or maintained fields for about the first 1,000 feet downstream from the site boundary, with some small fringing emergent wetlands. Early successional field vegetation is primarily forbs found in reverting agricultural areas, including goldenrods, asters, milkweeds, and similar species. Downstream, the creek flows through a recently-mowed field and passes through a second culvert beneath a farm road. This area is apparently used for hay production. At the edge of the pastureland, another 500 or so feet downstream, Three Mile Creek enters a wide wetland area, with dense riparian vegetation consisting of small trees and shrubs, extending for another 1,000 feet downstream. There was evidence that portions of this area had

been flooded by past beaver activity and an apparently abandoned beaver lodge was present near the creek.

No waterfowl (ducks or herons) were observed in this stream segment, but there were numerous tracks and signs of wildlife including raccoon, beaver, deer, and songbirds. The early successional field and mowed field provide limited habitat value for wildlife; however, the shrub/forested wetlands and former beaver area appear to provide relatively high-quality habitat that is largely undisturbed by human activity. There was no obvious evidence of gross contamination noted in the stream surface water or sediment, through color, texture, or odor.

4.2.2 Sanitation Facility Transfer Station Access Road to NYSBC

The remaining 2,000 feet of the downstream portion of Three Mile Creek consists of several small, distinct segments of varied habitat. Between the transfer station access road and New York State (NYS) Route 365, the stream is bordered by small trees and shrubs, similar to, but less open than, the forested wetland located just upstream.

Downstream of NYS Route 365, Three Mile Creek enters a short stretch (about 100 feet) of shallow, fast-flowing high-quality stream habitat. The substrate consists of large rocks, cobbles, and gravel, supporting an abundance of benthic invertebrates including caddisflies, amphipods, and crayfish. The streamside vegetation consists of trees and shrubs. Many minnows and small fish were observed in this area.

The stream then meanders through a short segment of open field and empties into a small pond just upstream from NYS Route 49. The pond appeared to be stagnant, with abundant algae, and ringed by cattails.

An aquatic habitat survey was conducted and water quality field parameters were measured at a third station, TMC-3 (see Figure 5-2), located in the open field just upstream from the pond. At this location, the substrate was dominated by cobble and gravel; numerous minnows and small fish were observed.

4.3 Summary of Habitat Quality for Three Mile Creek

Overall, water quality in Three Mile Creek is adequate to support aquatic life, as summarized by the field parameters shown in Table 4-1. Dissolved oxygen ranged from 8.2 to 9.5 milligrams per liter (mg/L) and was probably near saturation. The relatively

alkaline pH of 7.1 to 7.4 is well within the recommended range of 6.5 to 9 for surface water bodies (EPA 1999). The conductivity of Three Mile Creek ranged from 770 to 980 microSiemens per centimeter (µS/cm), which is a normal level for freshwater. The stream water was relatively clear, as indicated by the low turbidity readings (i.e., less than 10 NTUs). With the exception of a slight decrease in conductivity, there was no readily apparent change in water quality from near the stream origin (TMC-5) (see Figure 2-1) to the last survey point just upstream from NYS Route 49 (TMC-3) (see Figure 5-2).

In terms of features of the aquatic habitat such as substrate conditions, flow, channel alteration, and deposition, the aquatic habitat is of relatively low quality in many sections on-site. The aquatic habitat has greater quality off-base, primarily due to the presence of a natural channel and increasing prevalence rocky/gravelly substrate downstream from the base boundary. However, the quality of the surrounding habitat varies with land use and does not necessarily increase off-base. On-site portions of Three Mile Creek include wetland and forested habitat that support abundant wildlife. The stream is an important resource for wildlife both on-site and off-base as a source of food and drinking water. The best route of entry to minimize disturbance of the existing habits will be evaluated. All disturbances will be mitigated as part of the Wetland Management Plan.

Table 4-1 Water Quality Field Parameters at Three Mile Creek July 15-16, 1999

	,,				
Station	Temp (°C)	DO (mg/L)	pH (s.u.)	Conductivity (µS/cm)	Turbidity (NTUs)
Three Mile C	reek				
TMC-1	14.3	8.2	7.4	795	10
TMC-2	14.6	8.6	7.4	780	7
TMC-3	16.0	9.5	7.1	770	3
TMC-4	14.9	8.4	7.3	920	3
TMC-5	17.4	9.2	7.2	980	10

Key:

°C = Degrees centigrade. DO = Dissolved oxygen.

μs/cm = MicroSiemens per centimeter.

mg/L = Milligrams per liter.

NTUs = Nephelometric turbidity units.

s.u. = Standard units.

	-

5 Description of Alternatives for Three Mile Creek Remediation

Based on the findings of the habitat review walk and the analytical data collected during the RI, SI, and other investigations, the following remedial approach is presented for various sections of the creek.

5.1 On-Base Portion of Three Mile Creek

The on-base portion of Three Mile Creek contains the highest levels of sediment contamination, although it also contains some high-quality surrounding habitat. Generally, this contamination is greatest along the first 1,000 to 1,500 feet of the main channel and the entire north channel and LF5 channel. Approximately 500 feet from the origin, the creek enters a forest/wetland, extending to the base boundary, with a surrounding ecosystem that provides valuable habitat for wildlife, including reptiles, amphibians, mammals, and birds. However, the high concentrations of VOCs, SVOCs, pesticides, PCBs, metals, and dioxins/furans found in sediment throughout this portion of the creek warrant excavation of the creek sediments. Once these contaminated sediments are removed, a significant portion of the risks to human health and the environment would also be removed. Therefore, it is recommended that the entire on-base portion of Three Mile Creek to be excavated.

Since the contamination exceeds screening criteria to depths greater than 3.5 feet and has entered into the underlying native soils at several locations (see Figure 5-1), six

These scenarios are based on the following generalizations and assumptions:

- The average on-base creek width is 10 feet (with a range of 3.5 to 16 feet);
- The average on-base sediment thickness is 2.4 feet (with a range of 0.5 to >3.5 feet);
- The total on-base creek length (including the north channel, main channel, and LF5 channel) is 5,600 feet, resulting in an estimated volume of 5,000 cubic yards of creek sediments;
- The dredge spoils (berms) on either side of the on-base creek banks are 3 feet high, 5 feet wide, and 1,500 feet long, resulting in 1,700 cubic yards of material;
- Contaminants including VOCs, SVOCs, PCBs, pesticides, dioxins, and metals exceeded screening criteria in sediments at multiple depth intervals in the onbase portion of the creek. Most of the contamination was detected in the sediments, with a few localized areas of contaminated native soils beneath the sediments. The contaminants with widespread distribution above screening criteria that are driving the sediment cleanup include PCBs, SVOCs, PAHs, and metals. The distribution, including areal and vertical extent, of these contaminants (in excess of screening criteria) was very similar with the following exceptions:
 - At location TMCSD-9-3 arsenic concentrations detected above screening criteria at the sampling locations extend to 3.5 feet below creek bottom, whereas PCBs and pesticide concentrations above screening criteria extend only 1 foot below creek bottom; and
 - Pesticides at TMCSD-10-2 and TMCSD-11 are above screening criteria at 3.5 feet below creek bottom, but PCBs and PCBs and arsenic, respectively, are above screening criteria only to depths of 2 feet below creek bottom.

Based on this information the following cleanup scenarios are proposed for consideration:

- Scenario 1: Excavate to native soils along the entire length of the on-base portion of the creek and backfill with clean soils to original grade;
- Scenario 2: Excavate to native soils along the entire length of the on-base portion of the creek, excavate localized areas of contaminated native soils, and backfill with clean soils to original grade;

- Scenario 3: Excavate to a uniform depth of 2.5 feet below creek bottom and backfill with clean soils to original grade;
- Scenario 4: Excavate to a uniform depth of 2.5 feet below creek bottom, excavate localized areas of remaining contaminated sediments/native soils, and backfill with clean soils to original grade;
- Scenario 5: Same as Scenario 1 (excavate to native soils along the entire length of the on-base portion of the creek and backfill with clean soils to original grade), except remove only 1 foot of sediment between TMCSD-8 and TMCSD-10-2 because 2 to 3 feet of clean soil will be placed over the entire area to raise the original elevation as part of the wetland mitigation program;
- Scenario 6: Same as Scenario 3 (excavate to a uniform depth of 2.5 feet below creek bottom and backfill with clean soils to original grade), except remove only 1 foot of sediment between TMCSD-8 and TMCSD-10-2 because 2 to 3 feet of clean soil will be placed over the entire area to raise the original elevation as part of the wetland mitigation program.

A summary of the specifics of each of the scenarios is presented in Table 5-1. Costs associated with these scenarios are rough estimates based on the following assumptions:

- 1. 3.5 feet of sediments will be excavated throughout the pond area.
- 2. Sediment processing consists of draining on a temporary staging area.
- 3. 10% of the dredged material will be considered hazardous, 90% non-hazardous.
- 4. 30% swell of in-place material due to dredging.
- 5. The staging area will be temporary cover over unexcavated area for draining soil.
- 6. Volumes for dredging scenarios 1 through 6 are based on the specific depths and start and end stations in Table 5-1.
- 7. Volumes for dredging the off-base stream and pond areas are based on the TMC FS addendum dated 3/2000.
- 8. The haul road will be a 30-foot-wide cleared and grubbed area beside the creek.

9. All work will be completed under one project.

These costs do not include the five-year annual sampling of the creek and pond. The rough estimate to perform this monitoring is \$275,794. A summary of estimated costs is presented in Appendix F.

In summary, most of the remaining contamination (if any) will be at least 2.5 feet below creek bottom in all scenarios, except for eight locations in scenario 1 (where contaminants will be at 0.5 foot at one location, 1 foot at two locations, 1.5 feet at three locations, and 2 feet at two locations); and four locations in scenario 5 (where contaminants will be at 1 foot at one location, 1.5 feet at two locations, and 2 feet at two locations). Scenarios 2 and 4 result in the removal of all contamination (based on the available sampling data to date). Scenarios 5 and 6 leave the most contaminants in place, and scenarios 1 and 3 leave a conservative amount of contaminants in place.

The removal of the 1,700 cubic yards of dredge spoils along the on-base portion of the creek bank (berms) will be performed regardless of which scenario is selected.

Monitoring of the creek's main channel, north channel, and LF5 channel will be continued, including the collection of water quality data (temperature, dissolved oxygen, pH, conductivity, turbidity) and environmental samples (surface water and fish tissue) for laboratory analysis. A comprehensive Long-term Monitoring Plan for Three Mile Creek is under development and will be provided under separate cover. Surface water samples will be collected annually and analyzed for SVOCs, PCBs, cadmium, lead, mercury, silver, and zinc. Fish tissue samples will be collected annually and analyzed for PCBs. This annual sampling will continue for five years to determine whether the removal action has reduced contamination in the creek, thereby lessening impacts on fish.

5.2 Off-Base Portions of Three Mile Creek

5.2.1 Base Boundary to the Downstream Edge of the Pasture

Concentrations of VOCs, SVOCs, PCBs, metals, and dioxins/furans exceed screening criteria in this portion of the creek; however, the levels of contamination and number of contaminants are generally less than the on-base portion of Three Mile Creek. The early successional field and mowed field provide limited habitat value for wildlife. This part of the stream is easily accessed and, except for the small pockets of fringing

emergent wetlands, there would be little incidental damage to the habitat. Because concentrations in this portion are low, wholesale excavation of sediments is not warranted. However, because it is possible to remove sediments with only limited damage to habitat, it is recommended that contaminant hot spots be excavated.

Contaminant hot spots are identified not by sample analyses but by substrate composition. The sediment contaminants of concern adsorb more significantly to fine silty depositional deposits, and much less on sandy substrates characteristic of faster-moving sections of the stream. The portion of Three Mile Creek between the base boundary and the downstream edge of the pastureland was generally a narrow, sandy bottom, meandering stream, with mostly low flow. In the shallower, faster-moving portions, the creek bottom consisted almost entirely of sand, with a few cobbles and boulders. Fine silty sediments up to 2 feet deep were found in depositional pools and bends and behind debris dams (see Figure 5-2).

A GPS survey was performed to identify and quantify the areas of this reach of Three Mile Creek where fine, silty sediments have accumulated. The upstream and downstream ends of the silt deposits were surveyed and marked with stakes and flagging tape (Figure 5-3). The approximate width and depth of the silt deposits were measured in the field using a measuring tape and/or a rod (see Figure 5-4 and Table 5-2). A GPS receiver (ProMark-X by Magellan) was used to survey the linear morphology of the creek and the upstream and downstream edges of each silt deposit. Upon completion of the field investigation the survey data were downloaded for map generation (see Figure 5-2).

Excavation of the specific silt deposits identified on Figures 5-3 and 5-4 is recommended for this portion of Three Mile Creek. Once these areas are excavated, the majority of contamination in this portion of the creek will be removed, and the risks to human health and the environment will also be reduced while not greatly disturbing the surrounding habitat.

Based on the dimensions of the silt deposits shown on Figure 5-4, the estimated total volume of silt deposit excavations in this portion of Three Mile Creek is 80 cubic yards. The estimated cost of this removal is provided in Table 5-1.

Continued monitoring of the creek will include the collection of water quality data (temperature, dissolved oxygen, pH, conductivity, and turbidity) and environmental samples (surface water and fish tissue) for laboratory analysis. As stated earlier, a compre-

hensive Long-term Monitoring Plan for Three Mile Creek is under development and will be provided under separate cover. Surface water samples will be collected annually and analyzed for SVOCs, PCBs, and lead. Fish tissue samples will be collected annually and analyzed for PCBs. This annual sampling would continue for five years to determine whether the removal action has reduced contamination in the creek, thereby lessening impacts on fish.

5.2.2 Downstream Edge of Pasture to Pond

Downstream of the pasture edge to the pond, contaminant levels were considerably lower. Wetland habitat in this section is more extensive, less accessible, and more vulnerable to physical damage from remedial activities. For example, the maximum level of Aroclor 1260 in sediment was 590 µg/kg and the maximum PAH concentrations were 11,000 µg/kg (the highest PAH sample was an anomalous high sample taken immediately adjacent to the Transfer Station Access Road). The nature of the surrounding habitat in this portion of Three Mile Creek varied, but was in general of high quality. Based on the high quality of habitats, the relative inaccessibility of the creek, and the reduced concentrations of contaminants, direct remedial action is not recommended for this portion of Three Mile Creek.

5.2.3 Pond to Confluence with Barge Canal

In contrast to the areas immediately upstream from it, the pond showed elevated levels of PCBs, cadmium, and lead. This is consistent with the pond acting as a depositional area. Because of these elevated levels and the accessibility of the pond without major habitat disruption, pond sediments are recommended for removal. Based on an approximated pond area of 56,400 square feet and an estimated 3.5 feet of contamination across the entire pond, approximately 7,300 cubic yards of sediment would be excavated from the pond.

Downstream of the pond (as characterized by sample TMC SD-22), contaminant concentrations again decrease. Thus, this segment need not be addressed by the sediment removal program.

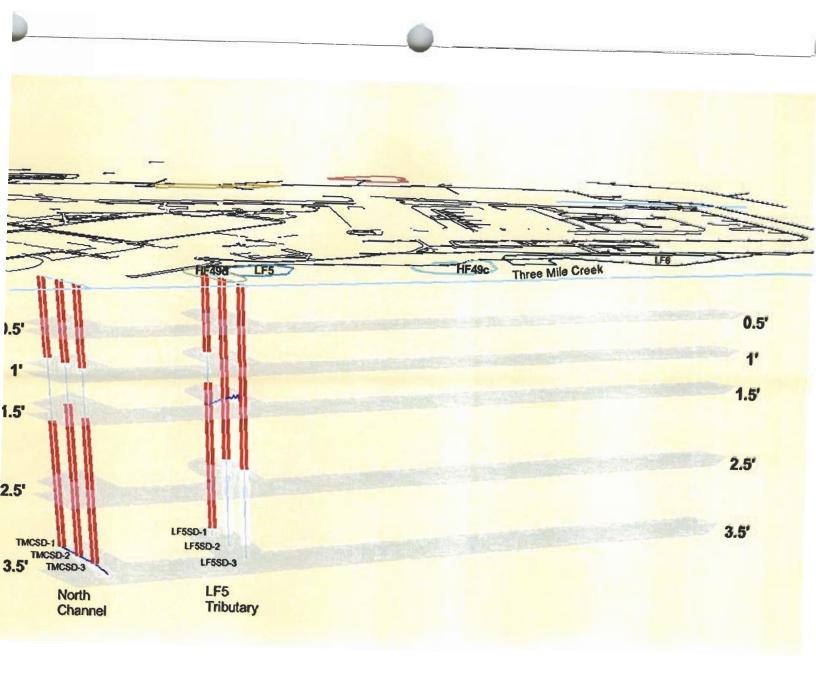
Following excavation, surface water and fish tissue would be monitored for the same contaminants and same frequency as described for the pasture segment in Section 5.2.1.

Table 5-1 Summary of Three Mile Creek Sediment Clean-up Scenarios

Table 5-		ry of Three Mile Creek Se		an-up Scenari		
	Depth of		Estimated		Type of	
	Removal		Volume of		Contaminants	
	(ft below	and the state of the state of	Removal	Contaminants	Remaining	
Scenario	creek	Start and End Station for	(yds³ in	Remaining	Above	Estimated
No.	bottom)	Removal	place)	(% Volume)	Criteria	Cost
		el, North Channel, and LF5 Cha		4.0	1 avia a - nan	00 450 500
1	2	LF5SD-1 to LF5SD-3	5950	18	SVOCs; PCBs;	\$2,463,500
1	3	LF5SD-3 to TMCSD-7			Pesticides;	
	4	TMCSD-1 to TMCSD-5-1			Metals; and	
	3	TMCSD-5-1 to TMCSD-7-1			TRPH	
	4	TMCSD-7-1 to TMCSD-8-2				İ
	2	TMCSD-8-2 to TMCSD-10				
	2.5	TMCSD-10 to TMCSD-10-2				
	2	TMCSD-10-2 to TMCSD-11				
2	4 to 2.5	LF5SD-1 to LF5SD-2	6850	Negligible		\$2,783,300
	2.5	LF5SD-2 to TMCSD-7				
	4	TMCSD-1 to TMCSD-6				
	3	TMCSD-6 to TMCSD-8-2				
	4	TMCSD-8-2 to TMCSD-9-1				,
	2	TMCSD-9-1 to TMCSD-10		•		
ŀ	4	TMCSD-10 to TMCSD-11				
3	2.5	Entire on-base portion of	5200	28	VOCs;	\$2,163,400
		creek	0_00		SVOCs; PCBs;	4_,100,100
					pesticides;	
					Dioxins;	
					Metals; and	l
					TRPH	
4	4 to 2.5	LF5SD-1 to LF5SD-2	6800	Negligible		\$2,782,000
7	2.5	LF5SD-2 to TMCSD-7	0800	regugiote		\$2,702,000
1	4	TMCSD-1 to TMCSD-6				j
	2.5	TMCSD-1 to TMCSD-0 TMCSD-6 to TMCSD-8-2				
	4	TMCSD-8 to TMCSD-8-2 TMCSD-8-2 to TMCSD-9-1				
	2.5	TMCSD-8-2 to TMCSD-9-1 TMCSD-9-1 to TMCSD-10				
	1					
	4	TMCSD-10 to TMCSD-11	4075	41	VOC	1 007 000
5	2	LF5SD-1 to LF5SD-3	4275	41	VOCs;	1,827,800
j	3	LF5SD-3 to TMCSD-7			SVOCs; PCBs;	
	4	TMCSD-1 to TMCSD-5-1			Pesticides;	
	3	TMCSD-5-1 to TMCSD-7-1			Dioxins;	
]	4	TMCSD-7-1 to TMCSD-8	ŀ		Metals; and	
	1	TMCSD-8 to TMCSD-10-2			TRPH	
	2	TMCSD-10-2 to TMCSD-11	2555		7100	1.545.000
6	2.5	LF5SD-1 to TMCSD-7	3575	51	VOCs;	1,545,300
	2.5	TMCSD-1 to TMCSD-8			SVOCs; PCBs;	
	1	TMCSD-8 to TMCSD-10-2			Pesticides;	
	2.5	TMCSD-10-2 to TMCSD-11			Dioxins;	
[[Metals; and	
					TRPH	
	lain Channe					
1	3' above	Remove berms entirely on	1700	Negligible		\$702,500
	creek	both creek banks along the				
	bank	last 1500 feet of the on-base				Ì
		portion of the creek				
		el Silt Deposits			r	
1	Variable	Variable	80	Negligible		\$80,213

Table 5-1 Summary of Three Mile Creek Sediment Clean-up Scenarios

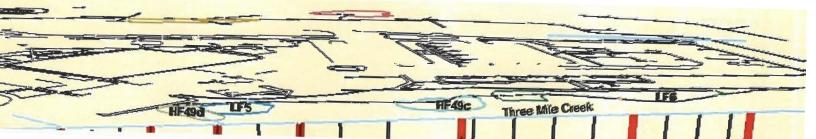
		7				
	Depth of		Estimated		Type of	
	Removal		Volume of		Contaminants	
	(ft below		Removal	Contaminants	Remaining	
Scenario	creek	Start and End Station for	(yds³ in	Remaining	Above	Estimated
No.	bottom)	Removal	place)	(% Volume)	Criteria	Cost
Off-Base F	ond					
1	3.5	Entire Pond	7300	Negligible		\$2,934,800

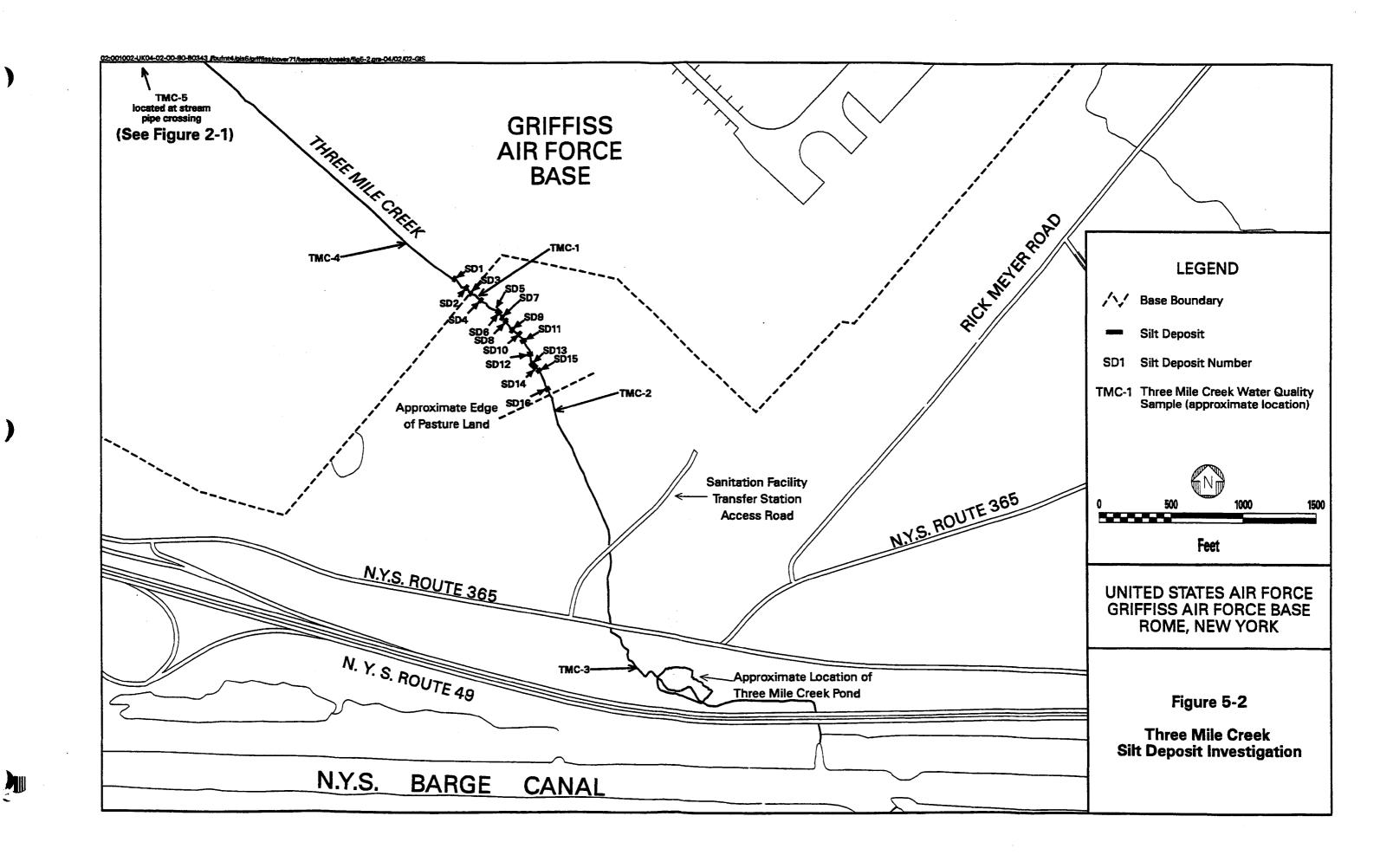

Table 5-2 Summary of the Attributes of the Silt Deposits, Former Griffiss AFB

Silt Deposit	Width (ft)	Length (ft)	Depth (ft, unless noted)
SD1	23.5	16	
SD2	6	25	1
SD3	5.8	1	1 inch
SD4	3	8	1
SD5	2.8	14	1
SD6	1.5	9.25	0.5
SD7	3	6.58	1.5
SD8	6	11	1.5
SD9	1-3.5	19	
SD10	9	21	1-2
SD11	12.7	25	2
SD12	1 (average) 5 (maximum)	47.4	1-2
SD13	5.3	9.4	1
SD14	2-5	12.6	4 inches
SD15	2	19.3	
SD16	7	25.3	2

Key:

ft = Feet.


SD = Silt deposit.



Contaminants

- O ND
- Contaminants detected above screening criteria
- Sediment/Native Soil Boundary

Depths Not to Scale

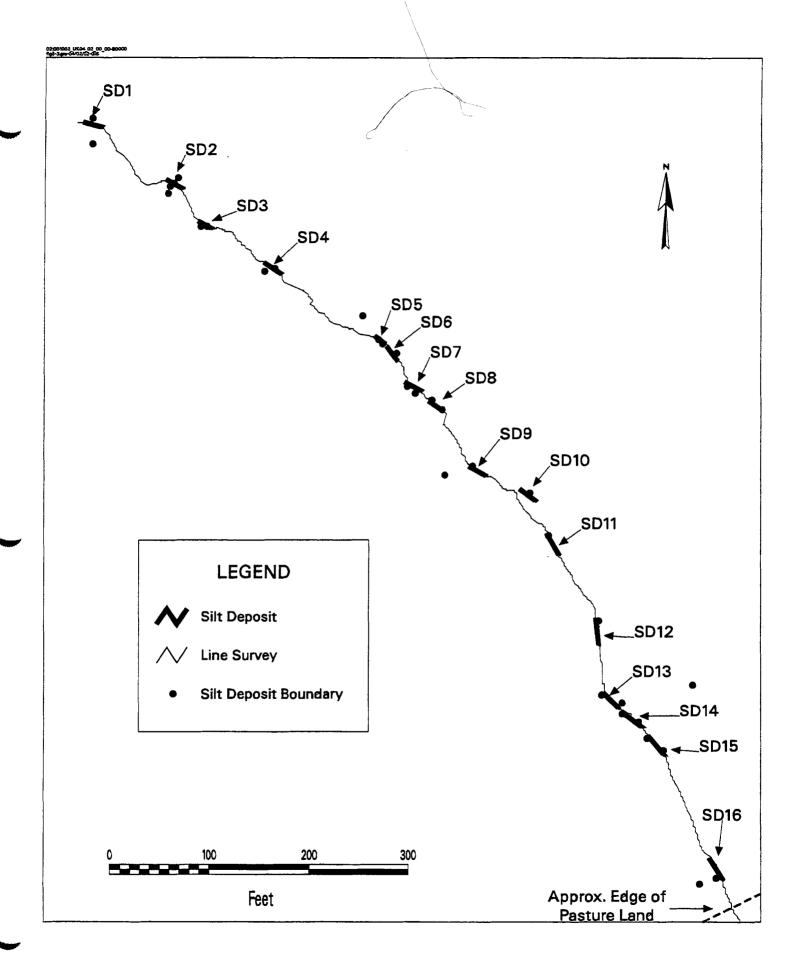


Figure 5-3: Three Mile Creek Silt Deposit Boundary

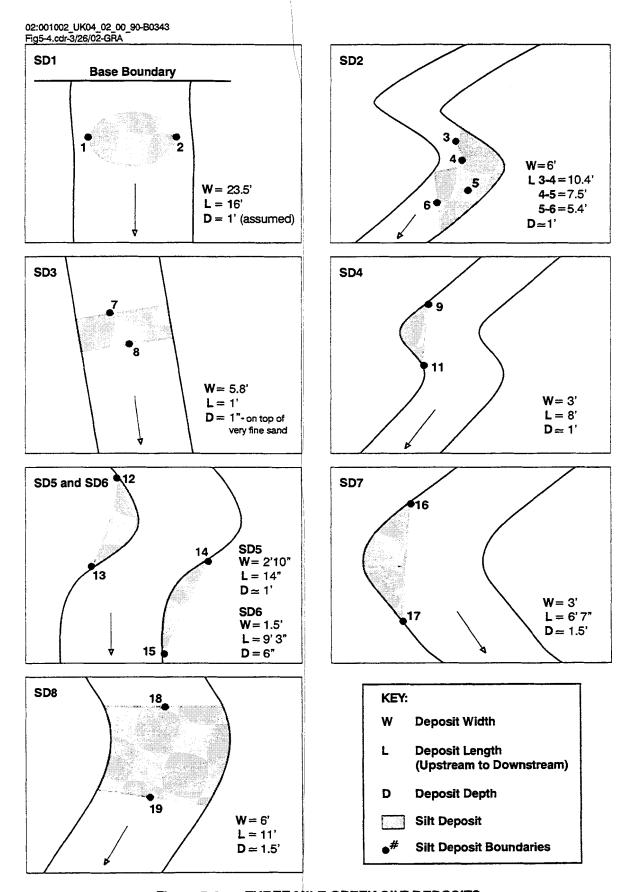


Figure 5-4 THREE MILE CREEK SILT DEPOSITS

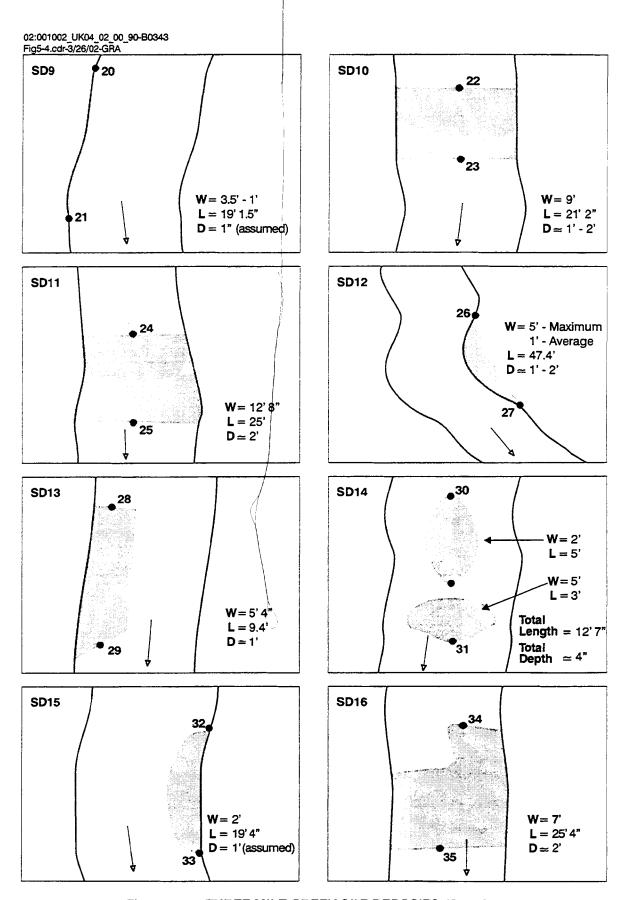


Figure 5-4 THREE MILE CREEK SILT DEPOSITS (Cont.)

6

Description of Selected Remedy

Final Recommendations

Based on the alternatives presented in Section 5, Scenario 4 is recommended for the cleanup of the on-base portion of TMC. Cleanup of the off-base portion of the creek and pond will be performed as described in Section 5. In order to implement Scenario 4, certain factors need further consideration. These factors include removal of creek bottom sediments and replacement of streambed material with suitable materials to restore the physical state of the remediated area. Under Scenario 4, TMC bottom sediments will be removed from the channel to a depth of 2.5 feet below the center of the current creek bottom and at greater depths in hot spot areas to ensure removal of the highest percentage of contaminants (see Figure 2-6). Three areas of additional hot spot removal are located in the main channel between the following points: TMCSD-4 and TMCSD-7; TMCSD-8-1 and TMCSD-9-1; and TMCSD-10 and TMCSD-11. Additional hot spot removal also will be performed along the entire north channel between TMCSD-1 and TMCSD-5 and in the LF5 channel between LF5SD-1 and LF5SD-2. The limit of excavation in these hot spot areas will be 4 feet below the current creek bottom. Table 5-1 outlines the depths of excavations under Scenario 4. Once this removal has been completed, it will be necessary to restore the conditions that existed in TMC before the removal by backfilling with clean material. Restoration of the physical state of the channel with this fill material is important for several reasons, which are described below. While the backfilling of bedding material would minimize exposure to any remaining isolated, low-level contamination, the primary function of the backfilling would be to maintain the ecological integrity of the creek and adjacent floodplain.

Functionality of the channel is vitally important for the TMC floodplain. The hydrology and ecology of the creek have already been impacted by dredging activities conducted to facilitate storm water drainage from GAFB. If bedding materials are not replaced following remediation, the remnant "creek" would be further reduced to just a deep drainage channel, offering significantly less habitat functionality. This could result in further cutting of the channel, which may alter the creek's characteristics and increase flow, which would, in turn, impact downstream areas.

In addition to restoring the functional state of the channel, it will be necessary to restore the habitat that currently exists in the channel and the surrounding floodplain area. Without replacing the streambed material, the flooding of the banks that currently support adjacent wetland communities will not occur. Increased flow resulting from elimination of the flood storage capacity of the adjacent on-site wetlands could result in impacts on downstream areas. Within the floodplain itself, reduction of the flooding regime would further alter a system that historically contained a larger extent of wetlands. The reduction in wetland extent seems to reflect existing impacts. While a conversion from wetland communities to more upland communities would still provide for wildlife habitat, the overall community structure would change, eliminating species that currently utilize the area and introducing additional species that may not currently use the area.

Other factors include adherence to wetland rules and guidelines that pertain to the surrounding floodplain area. If the excavated channel remains and no fill is added to restore its physical state, natural flooding and overflow into wetland areas in the floodplain will not occur. This would lead to an alteration in the hydrologic inputs into surrounding wetland areas and may result in a net loss of wetland area. While the remedial action falls under a Nationwide Wetland Permit, the AFBCA has undertaken a basewide wetland management plan with the intent of adhering to the substantive requirements of USACE permitting. Therefore, any impact involving a net loss of wetland area would require off-site wetland mitigation.

The backfilling of material would also eliminate any exposure to residual contamination that may be left in place in former hot spot areas. Under Scenario 4, the hot spot areas would be excavated to a depth potentially greater than 3.5 feet below the center

of the creek bottom to remove the highest levels of contamination. However, it is reasonable to assume that some residual contamination may remain in the sediments; without backfilling, local wildlife could have direct exposure to this residual contamination. In order to minimize any future exposure, a minimum backfill of approximately 2 feet of bedding material would be needed.

The creek channel should be backfilled with materials that would provide quality habitat for returning aquatic species and would not be impacted by future erosive flows in the stream. These materials would include sand and gravel to restore the bottom substrate of the channel and may include a mix of small cobbles and larger rocks to provide stability to the remediated area and habitat for returning aquatic species that were displaced during the remediation.

In addition to excavation, source control is also a key factor in the restoration process for TMC and its surrounding habitats. The primary source of contamination to TMC was its headwaters. Originally TMC was a forested headwater drainage with a meandering channel. After construction of the base, the creek was straightened and deepened to accomodate storm water discharges from the central portion of the base (E & E 2002). When the base was active, this storm water contained contaminants not only from vehicular traffic but also chemicals placed in floor drains and sumps from processes conducted in buildings within the drainage area of the creek. These processes are no longer being conducted, and investigations and cleanups are currently ongoing (e.g., the plugging of various floor drains, decommissioning of various drywells, and the cleanup of the paint booth sump at OTH-305 in Building 305). In addition, the creek also receives runoff and groundwater from the surrounding watershed, including Landfills 5 and 6, Hardfills 49c and 49d, and the Electrical Power Substation. The impact of reducing or eliminating the contamination at the other sites within the TMC drainage basin (i.e., the planned capping of Landfills 5 and 6; the removal and consolidation of construction and demolition debris from Hardfills 49c and 49d; and the removal of PCB-contaminated soils in the vicinity of the Electrical Power Substation) that have acted as sources to TMC are also adding to the source control measures.

Details of the Implementation of the Selected Remedy

The selected remedial approach involves excavation of sediments, which would be transported to and disposed of in Lanfill 6 (prior to capping) or an off-base treatment, storage, and disposal (TSD) facility capable of accepting the excavated material. TCLP sediment samples will be collected from selected location within the creek, representing high, medium, and low PCB and pesticide concentrations and high metals concentrations. These samples will be collected in July 2002 to help predetermine the fate of the excavated material (i.e., whether it will be disposed of on site or off site). In addition, proper disposal characterization sampling also will be performed during the removal actions to verify the disposal methods. In the event that contaminated sediments fail toxicity characteristic leaching procedure (TCLP) tests or exceed 50 mg/kg PCBs, treatment to meet characteristic waste land disposal restrictions (LDRs) or PCB LDR treatment standards would be required prior to disposal. TCLP sediment samples will be collected from selected locations within the creek representing high, medium, and low PCB and pesticide concentrations, and high metals concentrations. These samples will be collected in July 2002 to help predetermine the fate of the excavated material (i.e., whether it will be disposed of on site or off site).

Excavation would require a site preparation program that includes implementation of the following tasks:

- Clearing and grubbing of designated areas surrounding the sediment areas to be excavated;
- Construction of a decontamination pad for decontaminating excavation equipment; and
- Construction of a staging area for dewatering and temporary storage of excavated sediments.

Clearing and grubbing of the site would involve clearing designated areas of vegetation and shrubs around the creek in order to make the excavation area accessible. A decontamination pad would be constructed on site. Liquids generated during decontamination would be captured and properly treated or disposed of.

Excavated material would be stored temporarily on-site in a designated staging area constructed of an impermeable liner, surface water controls, a leachate collection system, and a cover.

Excavation would be conducted using conventional earth-moving equipment such as backhoes, bulldozers, scrapers, and dump trucks.

Excavated material would be placed at the on-site staging area for temporary storage, dewatering, and characterization prior to disposal. Actual dewatering techniques would be evaluated during the remedial design phase, but could be as simple as allowing excess moisture to drain from the sediment placed in the temporary staging area, or removing excess water with a filter press. The effluent from the dewatering process would be transported off-base for treatment/disposal. All excavated areas would then be backfilled with clean soil and properly restored.

Based on the results of the disposal characterization sampling, the excavated sediments would be hauled to Landfill 6 or the nearest TSD facility capable of accepting the waste. The primary transport vehicle would be a 20-cubic yard, lined dump trailer with a tarpaulin cover. Weight restrictions may require that less volume be transported per trip.

Post-removal monitoring of surface water and fish tissue would be conducted in accordance with an approved Long-term Monitoring Plan that is under development and will be issued under separate cover. This monitoring would quantify the effectiveness of the removal action on water quality and environmental health.

7 References

Ecology and Environment, Inc. (E & E), 1997a, Final Work Plan for the Supplemental Investigation of Areas of Concern at the Former Griffiss Air Force Base.
, 1997b, Quality Control Summary Report for the Supplemental Investigation of 10 Areas of Concern (AOCs) at the Former Griffiss Air Force Base.
, 1998a, Final Report for the Supplemental Investigation of Areas of Concern (AOCs) at the Former Griffiss Air Force Base.
, 1998b, Three Mile Creek/Six Mile Creek Field Sampling Plan Addendum to
the 1997 Final Work Plan for the Supplemental Investigations of Areas of Concern at the Former Griffiss Air Force Base.
, 1998c, Final Three Mile Creek/ Six Mile Creek Letter Report, Former Griffiss Air Force Base.
, 1999a, Three Mile Creek Habitat Review Trip Report.
, 1999b, Draft Feasibility Study Report, Griffiss Air Force Base, Rome, New York.
, 1999c, Three Mile Creek Field Sampling Plan Addendum to the 1997 Final Work Plan for the Supplemental Investigations of Areas of Concern at the Former Griffiss Air Force Base.
, 2000a, Three Mile Creek Off-site Remediation Field Sampling Report, Griffiss Air Force Base, Rome, New York.
, 2000b, Three Mile Creek Feasibility Study Addendum, Former Griffiss Air Force Base, Rome, New York.

- , 2001a, Draft Three Mile Creek 2001 Sediment Sampling Technical Memorandum, Former Griffiss Air Force Base, Rome, New York. _, 2001b, Technical Memorandum #1, Work Plan for the Development of Base-wide Wetlands Management Plan, Former Griffiss Air Force Base, Rome. New York. _, 2001c, Technical Memorandum #3, Draft Results of Wetland Fieldwork, Former Griffiss Air Force Base, Rome, New York. , 2001d, Field Sampling Plan Addendum for 2001 Three Mile Sediment Sampling, Former Griffiss Air Force Base, Rome, New York. , 2002, Technical Memorandum #4, Past and Future CERCLA Base-wide Wetlands Impacts and Three Mile Creek: Current Status, Former Griffiss Air Force Base, Rome, New York. Griffiss Local Development Corporation (GLDC), 1995, A Master Reuse Strategy for Griffiss Air Force Base, Rome, New York, Phase Two - Building the Foundation for Scenario Development, Rome, New York. Hart, 1982, Addendum to the Final Report for the Hazardous Waste Site Investigation Planning Documents, Griffiss Air Force Base, Rome, New York, Fred C. Hart Associates, Inc., January 1982. Law Environmental, Inc., (Law), 1996, United States Air Force, Griffiss Air Force Base New York, Draft Final Report, Volume 11, Remedial Investigation, Three Mile Creek Area of Concern, Law Environmental, Inc., Kennesaw, Georgia, December 1996. _, 1994, RI Technical Memorandum No. 15: Fish Tissue Analyses, Griffiss Air Force Base, Rome, New York, Law Environmental, Inc., Kennesaw, Georgia, December 1996.
- Long, E.R., and L.G. Morgan, 1991, The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National States and Trends Program, National Oceanic Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52, NOAA National Oceanic Service, Seattle, Washington.
- New York State Code of Rules and Regulations (NYCRR), 1998, 6 NYCRR Parts 700-705, Water Quality Standards, Albany, New York.
- New York State Department of Environmental Conservation, 1999, Technical Guidance for Screening Contaminated Sediments, Division of Fish, Wildlife and Marine Services, January 25.

- Parsons, 1997, Letter Report for PCB Sampling at Patrick Square and Drainage Swale Adjacent to Hardfill 49d, Griffiss Air Force Base, Rome, New York, Parsons Engineering Science, Inc., Liverpool, New York, April 1997.
- Persaud, D., and R. Jaagumagi, 1993, Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, Ontario Ministry of the Environment, Queen's Printer for Ontario.
- ______, 1994, Reprint of the Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, Ontario Ministry of the Environment, Queen's Printer for Ontario.
- United States Code of Federal Regulations (CFR), 1994, 40 CFR 121, Washington, D.C., July 1, 1994.
- _____, 1994, 40 CFR 300, Washington, D.C., July 1, 1994.
- United States Environmental Protection Agency (EPA), 1989, Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and Dibenzofurans (CDDS and CDFs) and 1989 update, EPA/625/3-89/016.
- ______, 1996, Ecotox Thresholds, Intermittent Bulletin Volume 3, Number 2, USEPA Office of Solid Waste and Emergency Response, January, 1996.
- ______, 1998, Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs) and 1989 update. EPA/625/3-89/016.
- _____, 1999, National Recommended Water Quality Criteria Correction.
- United States Fish and Wildlife Service (USFWS), 1989, Contaminants in Fish and Sediment from Six Mile and Three Mile Creeks, U.S. Department of the Interior, Fish and Wildlife Service.
- United States Geological Survey (USGS), 1988 Preliminary Investigations of Sediment and water Quality in the Three Mile Creek Basin, U.S. Department of the Interior Geological Survey, August 1989.

A Field Adjustments

	2001 Three Mile Creek Sediment Sampling Former Griffiss AFB Field Adjustment Form No. 1					
To: Mr. Douglas I USEPA - Reg Federal Facili 290 Broadwa New York, Ne Fax: (212) 6 Office: (212 6	yion 2 ties Section y w York 10007 337-3256	Mr. Jonathan Greco NYSDEC Bureau of Eastern Remedial Action 50 Wolf Road Albany, New York 12233-7010 Fax: (518) 457-8990 Office: (518) 457-3976				
From: Mr. Michael Mc AFBCA 153 Brooks Rd Rome, NY 13 Fax: (315) Office: (315)	oad 441-4105 330-4062	Date: 5/25/01 Time: 1200				
Site: Three Mile Creek		PSP addendum Page: 5				

Need for Field Adjustment

The first attempts at recovering core samples from the creek bottom presented poor recovery. Of the 3-foot sleeve section (which was intended to sample depths of 0.5 to 3.5 feet after excavating 0.5 feet of sediment), only 2 to 2.5 feet of sediment was recovered. The upper 0.5 to one foot of the sleeve was either found empty or consisted of primarily water and loose sediment material. This is apparently due to two factors: the upper foot of sediment is primarily water which may hinder the movement of solid material into that section during driving of the sampler; or from compression of the sediment/soil during the driving of the sampler into the ground.

This situation was discussed among E & E's field crew (Lea Angelaki and Greg Jones), E & E's quality assurance officer/chemist (Marcia Galloway), the USACE representative (Ron Johnsen), the AFBCA representative (Mike Wojnas), the EPA representative (Jennifer Flannery of EPA's contractor Gannett-Fleming), and the Fish and Wildlife representative (Charlie Merckel). It was agreed to collect the bottom-most foot of recovered sample and assign it to the 3.5-to-2.5-foot interval and to collect next foot of sediment and assign it to the 2.5-to-1.5-foot interval. In the cases where there was little to no recovery in the upper portion of the sleeve, then no 0.5-to-1.5-foot interval sample would be collected from that location (note, this interval was only to be collected from about half the planned sample locations). If sufficient material is present in the 0.5-to-1.5-foot section, then E & E will collect a sample if so designated by the sampling plan. In order to properly analyze the samples, the sample must contain less than 30% moisture. If the laboratory receives a sample with a water layer (thus reducing the sample volume), then they will decant the water and analyze the solids using the following priority:

PCBs, Metals, Pesticides, SVOCs, Hexavalent chromium, TOC, TPRH, Cyanide, VOCs.

The above description applies for the situation where all observed core recovery is sediment material (i.e. darker, material, not lighter-color, denser, sandy soil). When there is a visual distinction between native sand/soil and sediment material, the following applies:

If the core sample shows a clear distinction between native sand/soil and sediment material, then one sample of the native sand/soil and one sample of the sediment directly above it will be collected. The precise lengths within the core sample (which would be traceable to real elevations in the field) must be recorded for the visually apparent soil and sediment segments. If more than one foot of sediment material is present above native sand/soil, and if the FSP calls for two upper (Z2 and Z3) samples (i.e. corresponding to the 0.5-1.5 and 1.5-2.5 intervals) then two sediment samples should be taken in addition to the 2.5-3.5 foot native sand/soil sample. If less than one foot of sediment ifs observed, then only one sample will be taken of the sediment regardless of the FSP designation. Likewise, if the native soil is present at a shallow depth (for example throughout the bottom two foot of the core sleeve) then E & E will not sample more than one foot of native soil and will only collect samples above and below the soil/sediment interface. In no case shall E & E mix samples of native soil and sediment.

This approach was agreed upon by all parties present at the site as listed above.

AFBCA and USACE also agreed that due to the need for slam-bar driving of the corer sample into the sediment (due to unforeseen resistance) and subsequent difficulties in removal, a third field person would be used on the project to assist in this operation.

Prepared by:	Organization:	Date:
Jon Sundquist	E & E	5/24/01
Approved by:	Organization: USACE	Date:

Table 1A

Summary of TMC On-Base Portion and Landfill 6 Wetland Sediment Sample Locations As of 4 June 2001

Former Griffiss AFB, Rome, New York

Sample Depth			III J. ROIRS, I.C. TOIR		
	(ft below creek bottom)		om)	·	
Sample	0-0.5	0.5-1.5	1.5-2.5	2.5-3.5	Notes
Location	(Z1)	(Z2)	(Z3)	(Z4)	
TMCSD-1			X		The sample depth intervals were adjusted.
					Z3 represents the 1.8-to-2.4 ft depth.
				<u> </u>	Z4 represents the 2.4-to-3.5 ft depth.
TMCSD-2			X		The sample depth intervals were adjusted.
				1	Z3 represents the 1.5-to-2.7 ft depth.
					Z4 represents the 2.7-to-3.5 ft depth.
TMCSD-3			X	X	The sample depth intervals were adjusted.
i					Z3 represents the 1.6-to-2.4 ft depth.
					Z4 represents the 2.4-to-3.5 ft depth.
TMCSD-4			X	X	No Z3 was recovered. Very poor recovery was obtained due to
					the gravel present in the creek. Exact Z4 interval sampled not
					determined (approximate depth 2.9-to-3.5 ft).
					There was not enough sample retrieved for dioxin analysis.
TMCSD-5			X	X	The Z3 sample depth interval was adjusted to the 1.6-to-2.5 ft
				•	depth.
TMCSD-5-1	1	X	X	X	No Z2 and Z3 were recovered. Very poor recovery was
Ì			į		obtained due to the gravel present in the creek. Exact Z4
1					interval sampled not determined (approximate depth 2.8-to-3
					ft). There was not enough sample retrieved for dioxin analysis.
TMCSD-5-2		X	X		No Z2 was recovered and the sample depth intervals were
					adjusted.
	İ			ł	Z3 represents the 1.4-to-2.7 ft depth.
					Z4 represents the 2.7-to-3.5 ft depth.
TMCSD-6			X		The sample depth intervals were adjusted.
					Z3 represents the 1.3-to-2.8 ft depth.
		٠		1	Z4 represents the 2.8-to-3.5 ft depth.
TMCSD-7		X	X		Refusal above 3.5 ft after several attempts, therefore, no Z4
		(Not in			sample. Z2 (0.5-to-1.5 ft depth) was collected because of
		plan)		1	visible staining of the Z2 sediments and difference in lithology
		• 1			between Z2 and Z3 (1.5-to-2.4 ft depth).
TMCSD-7-1		X	X		No Z4 recovery, high water content ("soupy") sample was
					pouring out of the sampler bottom during several attempts.
					Sample depth intervals were adjusted.
				1	Z2 represents the 0.5-to-1.1 ft depth.
	}				Z3 represents the 1.1-to-2.5 ft depth.
TMCSD-8			X		Sample was not retrieved during any of the attempts, therefore
					no sample collected.
TMCSD-8-1		X	X		No Z2 was recovered and the Z3 sample depth interval was
					adjusted to the 2.2-to-2.5 ft depth.

Table 1A Summary of TMC On-Base Portion and Landfill 6 Wetland Sediment Sample Locations As of 4 June 2001

Former Griffiss AFB, Rome, New York

	Sample Depth				
	(ft below creek bottom)		om)		
Sample Location	0-0.5 (Z1)	0.5-1.5 (Z2)	1.5-2.5 (Z3)	2.5-3.5 (Z4)	Notes
TMCSD-8-2		X	X		No Z4 recovery, refusal at 2.5 ft after several attempts,
					therefore, no Z4 sample.
					The sample depth intervals were adjusted.
				1	Z2 represents the 0.5-to-0.9 ft depth.
					Z3 represents the 0.9-to-2.5 ft depth.
TMCSD-9		X	X	X	Stake missing. Installed Stake 85 ft upstream of SD-9-1. This
		(Not in			location was selected because it offered access to sediment; this
		plan)			part of the creek bed is covered mainly by cobble and gravel.
		•			Sediment was recovered at this location along with native
	1				sediment; therefore, it was sampled even though it was not in
					the plan. Need to decide if we want to keep this sample. Native
1					sand started at 1.5 ft, however, only recovered 1 ft of sand.
					Therefore, the recovered sand was assumed to be a combination
					of Z3 and Z4, but sample labeled as Z4. The sample depth
					intervals were adjusted.
					Z2 represents the 0.5-to-1.6 ft depth.
	1				No Z3 recovery.
<u> </u>					ZA represents the 1.6-to-3.5 ft depth.
TMCSD-9-1		X	X	X	No Z3 recovery. Native sand started at 1.5 ft, however, only
					recovered 1 ft of sand. Therefore, the recovered sand was
					assumed to be a combination of Z3 and Z4, but sample labeled
					as Z4.
					Z2 represents the 0.5-to-1 ft depth.
					Z4 represents the 1-to-3.5 ft depth.
TMCSD-9-2		X	X	X	Soft, light, whip-cream like organic substance, high water
					content, in Z3 and Z4 interval. No Z3 or Z4 recovery.
					recovery after several attempts.
					Z2 depth interval was adjusted to the 0.5-to-1.1 ft depth.
TMCSD-9-3		X	X		Soft, light, whip-cream like organic substance, high water
				1	content, above and below a sand layer. Sampled in Z4 interval.
					Sample depth intervals were adjusted.
					Z3 represents the 0.5-to-1.1 ft depth.
					Z4 represents the 1.1 -to-3.5 ft depth.
TMCSD-9-4		X	X		No Z2 recovery
					Sample depth intervals were adjusted.
			ŀ		Z3 represents the 0.5-to-1.85 ft depth.
					Z4 represents the 1.85 -to-3.5 ft depth.
TMCSD-10			X		Moved 73 ft upstream due to gravel.
1					Sample depth intervals were adjusted.
					Z3 represents the 0.5-to-1.65 ft depth.
<u>L</u>					Z4 represents the 1.65 -to-3.5 ft depth.

Table 1A Summary of TMC On-Base Portion and Landfill 6 Wetland Sediment Sample Locations As of 4 June 2001

Former Griffiss AFB, Rome, New York

	(ft	Sampl below cr	e Depth reek bott	om)	
Sample	0-0.5	1	1.5-2.5	1	Notes
Location	(Z1)	(Z2)	(Z3)	(Z4)	
TMCSD-10-1		X	X	X	No Z2 recovery. The sample depth intervals were adjusted.
			ŀ		Z3 represents the 1.7-to-2.2 ft depth.
					Z4 represents the 2.4 -to-3.5 ft depth.
TMCSD-10-2		X	X	X	No Z2 recovery.
					Z3 adjusted to the 1.1-to-2.1 ft depth.
TMCSD-10-3		X	X	X	No Z2 recovery.
TMCSD-11			X	X	Z3 adjusted to the 1.1-to-2.3 ft depth.
LF5SD-1			X	X	The sample depth intervals were adjusted.
					Z3 represents the 1.4-to-2.4 ft depth.
	ļ				Z4 represents the 2.4 -to-3.4 ft depth
LF5SD-2		X	X	X	No distinction between Z2 and Z3 sediment, and not enough
		(Not in		1	recovery therefore only 2 samples were recovered. The bottom
		Plan)			part was different so it was called Z4 (2.3 -to-3.3 ft depth), the
					top was called Z2 and it covers the 0.5-to-2.3 ft depth.
LF5SD-3		X	X	X	No distinction between Z2 and Z3 sediment, and not enough
		(Not in			recovery therefore only 2 samples were recovered. The bottom
		Plan)			part was different so it was called Z4 (2.3 -to-3.3 ft depth), the
					top was called Z2 and it covers the 0.5-to-2.3 ft depth.
LF6SD-1-1	X				
LF6SD-2-1	X				
LF6SD-3-1	X				
LF6SD-4-1	X				

Key:

X = Sample required. X = Sample collected.

> LF5 = Landfill 5. LF6 = Landfill 6.

RI = Remedial Investigation.
TMC = Three Mile Creek.
SD = Sediment sample.

Summar			nent Sample Locations New York
	Sample (ft below po	_	
Sample Location	1.5-2.5 (Z3)	2.5-3.0 (Z4)	Notes
TMCSD-23-IL	Х	Х	The sample depth intervals were adjusted. Z3 represents the 1.4-to-2.2 ft depth. Z4 represents the 2.2-to-3.0 ft depth.
TMCSD24-NS	X	X	The sample depth intervals were adjusted. Z3 represents the 1.2-to-1.8 ft depth. Z4 represents the 1.8-to-3.0 ft depth.
TMCSD-25-MC	Х	X	The sample depth intervals were adjusted. Z3 represents the 0.9-to-1.8 ft depth. Z4 represents the 1.8-to-3.0 ft depth.
TMCSD-26-NS	X	X	
TMCSD-27-MC	X	X	
TMCSD-28-OL	X	X	

X	=	Sample required.
X	=	Sample collected.

IL = Inlet.

MC = Mid-channel.

NS = Near shore.

TMC = Three Mile Creek.

SD = Sediment sample.

B Survey Data

3-3

ECOLOGY AND ENVIRONMENT, INC. TEST LOCATIONS THREE MILE CREEK, GAFB ROME, NY PREPARED BY: LAFAVE WHITE MCGIVERN LS PC DATED MAY 24, 2001 DATA REVISED 7/19/2001

NEW YOR	K STATE PLAIN C	OORDINATES-NAD	83 FEET /	VERTICAL NGVD 1	929	2001
PT. NO.	<u>NORTHING</u>	<u>EASTING</u>	ELEV.	<u>DESCRIPTION</u>	<u>REMARKS</u>	DATE
4001	1171790.040	1135184.373	445.97	TMCSD-10-1	ELEV. BOTTOM CL STREAM	21-May
4002	1171648.311	1135346.714	445.27	TMCSD-10-2	ELEV. BOTTOM CL STREAM	21-May
4003	1171508.174	1135513.807	444.53	TMCSD-10-3	ELEV. BOTTOM CL STREAM	21-May
*4100	1171939.274	1135008.166	446.64	TMCSD-10	ELEV. BOTTOM CL STREAM / MOVED TO CL STREAM	21-May
*4101	1174654.058	1132532.647	455.21	TMCSD-1	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4102	1174458.884	1132513.247	454.46	TMCSD-2	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4103	1174283.296	1132500.601	452.95	TMCSD-3	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4104	1174307.459	1132226.773	454.79	TMCSD-4	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4105	1174109.611	1132463.280	453.17	TMCSD-5	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4106	1173808.846	1132818.828	453.15	TMCSD-6	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4107	1173567.017	1133090.874	452.79	TMCSD-7	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
*4108	1173264.783	1133443.619	450.53	TMCSD-8	ELEV. BOTTOM CL STREAM / MOVED TO CL STREAM	23-May
*4109	1172976.073	1133805.458	453.41	TMCSD-9	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	21-May
*4111	1171428.136	1135618.258	443.77	TMCSD-11	ELEV. BOTTOM CL STREAM / MOVED TO CL STREAM	21-May
*4201	1174036.056	1133256.530	456.51	LF5SD-1	ELEV. AT WATER LINE / AT BANK	23-May
*4202	1173828.005	1133191.297	459.41	LF5SD-2	ELEV. AT WATER LINE / AT BANK	23-May
*4203	1173604.175	1133142.173	453.26	LF5SD-3	ELEV. AT GRADE AT STAKE / NOT WATER EDGE	23-May
4501	1174002.014	1132584.156	451.79	TMCSD-5-1	ELEV. BOTTOM CL STREAM	23-May
4502	1173907.804	1132698.361	452.55	TMCSD-5-2	ELEV. AT WATER LINE / AT BANK	23-May
4601	1172525.151	1134465.741	452.73	LF6SD-1-1	ELEV. AT GRADE / BASE OF STAKE	21-May
4602	1172253.863	1134788.860	452.25	LF6SD-2-1	ELEV. AT GRADE / BASE OF STAKE	21-May

TEST LOCATIONS THREE MILE CREEK, GAFB ROME, NY PREPARED BY: LAFAVE WHITE MCGIVERN LS PC DATED MAY 24, 2001 DATA REVISED 7/19/2001

4604 1171643.050 1135499.851 450.53 LF6SD-4-1 ELEV. AT GRADE / BAS 4701 1173419.982 1133271.632 450.81 TMCSD-7-1 ELEV. BOTTOM CL STF 4801 1172932.353 1133843.968 450.84 TMCSD-8-2 ELEV. BOTTOM CL STF 4902 1172432.168 1134430.806 447.87 TMCSD-9-2 ELEV. BOTTOM CL STF 4902 1172269.386 1134626.971 446.82 TMCSD-9-3 ELEV. BOTTOM CL STF 4904 1172103.452 1134823.169 446.34 TMCSD-9-4 ELEV. BOTTOM CL STF	ELEV. AT GRADE / BASE OF STAKE ELEV. BOTTOM CL STREAM ELEV. AT WATER LINE / AT BANK ELEV. BOTTOM CL STREAM
1133271.632 450.81 TMCSD-7-1 1133623.510 452.16 TMCSD-8-1 1133843.968 450.84 TMCSD-8-2 1134236.810 447.67 TMCSD-9-1 1134430.806 447.87 TMCSD-9-2 1134626.971 446.82 TMCSD-9-3 1134823.169 446.34 TMCSD-9-4	ELEV. BOTTOM CL STREAM ELEV. AT WATER LINE / AT BANK ELEV. BOTTOM CL STREAM
1133623.510 452.16 TMCSD-8-1 1133843.968 450.84 TMCSD-8-2 1134236.810 447.67 TMCSD-9-1 1134430.806 447.87 TMCSD-9-2 1134626.971 446.82 TMCSD-9-3 1134823.169 446.34 TMCSD-9-4	ELEV. AT WATER LINE / AT BANK ELEV. BOTTOM CL STREAM
1133843.968 450.84 TMCSD-8-2 1134236.810 447.67 TMCSD-9-1 1134430.806 447.87 TMCSD-9-2 1134626.971 446.82 TMCSD-9-3 1134823.169 446.34 TMCSD-9-4	ELEV. BOTTOM CL STREAM
1172596.709 1134236.810 447.67 TMCSD-9-1 1172432.168 1134430.806 447.87 TMCSD-9-2 1172269.386 1134626.971 446.82 TMCSD-9-3 1172103.452 1134823.169 446.34 TMCSD-9-4	
1172432.168 1134430.806 447.87 TMCSD-9-2 1172269.386 1134626.971 446.82 TMCSD-9-3 1172103.452 1134823.169 446.34 TMCSD-9-4	1-9-1 ELEV. BOTTOM CL STREAM
1172269.386 1134626.971 446.82 TMCSD-9-3 1172103.452 1134823.169 446.34 TMCSD-9-4	9-9-2 ELEV. BOTTOM CL STREAM 21-May
1134823.169 446.34 TMCSD-9-4	9-9-3 ELEV. BOTTOM CL STREAM 21-May
	1-9-4 ELEV. BOTTOM CL STREAM 21-May
+ - PREDETERMINED COORDINATES	

5

ECOLOGY AND ENVIRONMENT, INC. TEST LOCATIONS THREE MILE CREEK, GAFB ROME, NY PREPARED BY: LAFAVE WHITE MCGIVERN LS PC DATED MAY 24, 2001 DATA REVISED 7/19/2001

NEW YOR	K STATE PLAIN C	CORDINATES-NAC	83 FEET /	VERTICAL NGVD 1	929	2001
PT. NO.	<u>NORTHING</u>	EASTING	ELEV.	<u>DESCRIPTION</u>	REMARKS	DATE
POINTS R	ELOCATED BY RI	EQUEST, PICK CL S	STREAM OF	POSITE PREVIOUS	SLY SET STAKE	
401	1174654.984	1132524.022	453.89	TMCSD-1	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
402	1174459.682	1132508.608	451.84	TMCSD-2	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
403	1174284.497	1132496.696	451.51	TMCSD-3	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
405	1174106.666	1132456.400	451.70	TMCSD-5	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
406	1173798.856	1132812.391	450.86	TMCSD-6	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
407	1173563.671	1133086.679	451.60	TMCSD-7	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
409	1172640.978	1134168.218	448.85	TMCSD-9	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
411	1174033.881	1133261.024	456.02	LF5SD-1	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
422	1173825.172	1133201.646	454.36	LF5SD-2	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
433	1173606.475	1133138.491	452.60	LF5SD-3	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
452	1173903.486	1132692.494	451.60	TMCSD-5-2	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
481	1173111.388	1133621.370	450.03	TMCSD-8-1	ELEV BOTTOM CL STREAM / OPPOSITE SET STAKE	18-Jul
*4104	1174307.459	1132226.773	454.79	TMCSD-4	ELEV. AT GRADE AT STAKE / CL STREAM	23-May
						1
* . PERD	ETERMINED COO	RDINATES				

C Complete Analytical Data Summaries

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

		0		THANK (44	*****	THIRDD A TAN	THISON A.T.	THOOD A	TITOON O. T.	THOOR AND	*************	*****	****
		Sample ID:	TMCSD-1-Z3			TMCSD-2-Z3/D							
A matrida	•	Depth: Date:	1.8 - 2.4	2.4 - 3.5 06/04/01	1.5 - 2.7	1.5 - 2.7 05/04/01	2.7 - 3.5 06/04/01	1.6 - 2.4	2.4 - 3.5	2.9 - 3.5 06/01/01	1.6 - 2.5	2.5 - 3.5	2.8 - 3.5
Analyte	Туре	Date:	060401	00/04/01	OWNER	000001	000001	000-201	0000401	OSOTIOI	06/01/01	05/01/01	06/01/01
PCBs by Method 8082 (µg/Kg)				1 10 - 11	100011								
Aroclor 1016		 	7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U	22.8 U	988 U	20.6 U	499 U
Aroclor 1221		├	15900 U	97.4 U	2440 U	2310 U	222 U	5250 U	267 U	45.6 U	1980 U	41.3 U	997 U
Aroclor 1232			7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U	22.8 U	988 U	20.6 U	499 U
Aroclor 1242		ļI	7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U	71.4 J	988 U	20.6 U	499 U
Aroclor 1248		 	7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U	22.8 U	988 U	20.6 U	499 U
Aroclor 1254		 	7970 U	48.7 U	1220 U	1160 U	111 U	2630 U	133 U	22.8 U	988 U	20.6 U	499 U
Aroclor 1260			45300	175	7800	7390	618	12700	702	38.8 J	10700	33.8	1790
Decachlorobiphenyl	Surr		0 %	117 %	0%	0 %	116%	0%	128 %	67 %	0%	72 %	99 %
Tetrachloro-m-xylene	Surr	<u> </u>	0 %	118 %	0%	0%	115 %	0 %	137 %	0%	0%	72 %	75 %
Pesticides by Method 8081A (μg/Kg)												
4,4′-DDD			1200 U	73.1 U	183 U	84.8 NJ	16.7 NJ	394 U	80.0 U	34.2 U	185 U	3.10 U	74.8 U
4,4'-DDE			1200 U	73.1 U	183 U	173 U	33.3 U	394 U	80.0 U	34.2 U	185 U	3.10 U	74.8 U
4,4'-DDT			1590 U	14.8 NJ	244 U	231 U	44.4 U	219 NJ	12.5 NJ	9.63 NJ	471 NJ	1.43 NJ	99.7 U
Aldrin			1590 U	540 NJ	385 NJ	410 NJ	44.4 U	1560 NJ	38.2 NJ	45.6 U	95.9 NJ	4.13 U	99.7 U
alpha-BHC			1200 U	73.1 U	183 U	173 U	33.3 U	394 U	80.0 U	34.2 U	185 U	3.10 U	74.8 U
alpha-Chlordane		1	398 U	24.4 U	61.1 U	57.8 U	11.1 U	131 U	26.7 U	25.0 NJ	61.7 U	5.37 NJ	24.9 U
beta-BHC			1590 U	97.4 U	244 U	231 U	44.4 U	525 U	107 U	45.6 U	247 U	4.13 U	99.7 U
delta-BHC			797 U	12.4 NJ	122 U	116 U	22.2 U	263 U	53.3 U	22.8 U	123 U	2.06 U	49.9 U
Dieldrin			1990 U	122 U	306 U	289 U	55.5 U	657 U	133 U	57.0 U	309 U	5.16 U	125 U
Endosulfan 1			1040 NJ	122 U	85.6 NJ	75.9 NJ	10.1 NJ	657 U	133 U	25.0 NJ	35.0 NJ	5.37 NJ	125 U
Endosulfan 11			1200 U	73.1 U	183 U	173 U	33.3 U	394 U	80.0 U	34.2 U	185 U	3.10 U	74.8 U
Endosulfan sulfate			679 NJ	146 U	98.6 NJ	80.0 NJ	66.6 U	218 NJ	160 U	68.4 U	370 U	2.60 NJ	150 U
Endrin			1590 U	97.4 U	244 U	231 U	44.4 U	525 U	107 U	45.6 U	247 U	4.13 U	99.7 U
Endrin aldeliyde			3980 U	244 U	611 U	578 U	111 U	1310 U	267 U	114 U	617 U	1.43 NJ	249 U
Endrin ketone			1200 U	45.6 NJ	289 NJ	225 NJ	30.4 NJ	892 NJ	41.4 NJ	473 NJ	1540 NJ	26.3 NJ	35.2 NJ
gamma-BHC			797 U	48.7 U	122 U	116 U	22.2 U	263 U	53.3 U	22.8 U	123 U	2.06 U	49.9 U
gamma-Chlordane			797 U	25.0 NJ	122 U	116 U	22.2 U	263 U	53.3 U	22.8 U	123 U	2.06 U	49.9 U
Heptachlor			1200 U	73.1 U	183 U	173 U	3.53 NJ	394 U	80.0 U	34.2 U	185 U	3.10 U	74.8 U
Heptachlor epoxide			1990 U	122 U	306 U	289 U	55.5 U	657 U	34.7 NJ	11.2 NJ	439 NJ	4.85 NJ	168 NJ
Methoxychlor			15900 U	974 U	2440 U	2310 U	444 U	5250 U	1070 U	456 U	1760 NJ	29.0 NJ	997 U
Toxaphene			39800 U	2440 U	61 10 U	5780 U	1110 U	13100 U	2670 U	1140 U	6170 U	103 U	2490 U
Decachlorobiphenyl	Surr	1	0 %	0 %	0 %	0%	170 %	0 %	0%	91 %	0 %	93 %	0 %
Tetrachloro-m-xylene	Surr	1	0 %	0 %	0 %	0 %	114 %	0 %	0 %	117 %	0 %	54 %	0 %

Table C.1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

		Sample ID:	TMCSD-1-23	TMCSD-1-24	TMCSD-2-23	TMCSD-2-23/D	TMCSD-2-24	TMCSD-3-Z3	TMCSD-3-24	TMCSD-4.74	TMCSD-5-23	TMCSD-5-74	TMCSD-5-1-24
Andre	Tvne		1.8 - 2.4 06/04/01	2.4 - 3.5									2.8 - 3.5
(µg/Kg)													
1,1,1-Trichloroethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	6.15 U	0619	6.14 U
1,1,2,2-Tetrachloroethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 UJ	0 619	6.14 U
1,1,2-Trichloroethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.60.9	6.22 UJ	5.85 UJ	6.15 U	0619	6.14 U
1,1-Dichloroethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 O	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
1,1-Dichloroethene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	6.15 U	019 U	6.14 U
1,2-Dichlorobenzene			9.48 U	8.71 J	5.70 U	1.39 J	2.55 J	2.14.)	8.97 J	5.85 UJ	3.12 J	415 J	6.14 U
1,2-Dichlorocthane			3.08 J	1.93	5.70 U	5.45 U	3.50.0	0.000	0.22.03	5.85 UJ	0.13 0	0190	0.14 U
1,2-Dichloroeuche, 10ta			0 48 11	11111	1100.5	5.45.11	11 76 5	0.00.0	6 22 111	110.00.0	0.130	11017	6.14.0
1,2-Dichlordhangene			0 48 11	613111	5.7011	5.45.11	5 26 11	0.00.0	6.22.03	2.00.00	0.130	0190	6.14.0
1.3-Dichlorohenzene			9 48 11	613111	5.7011	5.4511	11965	11 60 9	622.11	111 58 5	107.5	4830	0.14 0
2-Butanone			U 0.91	12.3 UJ	11.4 U	U 6.01	10.5 U	12.2 U	12.4 UJ	11.7 UI	12.3 U	120011	12.11
2-Chloroethyl vinyl ether			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
2-Hexanone			19.0 U	12.3 UJ	11.4 U	U 6:01	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
4-Methyl-2-pentanone			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
Acetone			19.0 U	12.3 UJ	9.57 J	10.9 U	15.8	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
Benzene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	70.7	154 J	6.14 U
Bromodichloromethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	U 619	6.14 U
Bromoform			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	O 60'9	6.22 UJ	5.85 UJ	6.15 U	0 619	6.14 U
Bromomethane			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	LU 7.11	12.3 U	1200 U	12.3 U
Carbon disulfide			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	U 619	6.14 U
Carbon tetrachloride			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	0 6 I 9	6.14 U
Chlorobenzene			9.48 U	8.32 J	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	45.1	28800	6.14 U
Chloroethane			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
Chloroform			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	2.32 J	1.78 J	6.15 U	0619	6.14 U
Chloromethane			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
cis-1,2-Dichloroethene			3.09 J	7.12 J	5.70 U	5.45 U	3.59 J	0.00 U	6.22 UJ	5.85 UJ	6.15 U	0 619	6.14 U
cis-1,3-Dichloropropene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
Dibromochloromethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	6.15 U	0619	6.14 U
Ethylbenzene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	6.09 U	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
m,p-Xylene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.60.9	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
Methylene chloride			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
o-Xylene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	0619 U	6.14 U
Styrene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	0 619 U	6.14 U
Tetrachloroethene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	16.7 J	5.85 UJ	6.15 U	0 619 U	6.14 U
Toluene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	6.22 UJ	5.85 UJ	6.15 U	0 619	6.14 U
trans-1,2-Dichloroethene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	6.09 U	6.22 UJ	5.85 UJ	6.15 U	0 619 U	6.14 U
trans-1,3-Dichloropropene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.60.9	6.22 UJ	5.85 UJ	6.15 U	0 619	6.14 U
Trichloroethene			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.00 U	205 J	22.13	6.15 U	0619	6.14 U
Trichlorofluoromethane			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.60.9	6.22 UJ	5.85 UJ	6.15 U	0619	6.14 U
Vinyl acetate			19.0 U	12.3 UJ	11.4 U	10.9 U	10.5 U	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
Vinyl chloride			5.98 J	12.3 UJ	11.4 U	10.9 U	6.18 J	12.2 U	12.4 UJ	11.7 UJ	12.3 U	1200 U	12.3 U
Xylenes, Total			9.48 U	6.13 UJ	5.70 U	5.45 U	5.26 U	0.09 U	6.22 UJ	5.85 UJ	6.15 U	619 U	6.14 U
1,2-Dichtoroethanc-d4	Surr		72 %	164 %	98 %	101 %	102 %	101%	192 %	98 %	100 %	98 %	99 %
4-Bromofluorobenzene	Surr		151 %	207 %	112 %	108 %	113 %	% OII	107 %	131 %	120 %	117%	110 %
Dibromofluoromethane	Sur		107 %	194%	% 601	300 %	% III	% III	231 %	% 60I	% III &	100 %	104 %
Toluene-d8	Sur		144 %	9,071	104 %	103%	9, 601	103 %	9, 081	% 611	9, 901	9/%	101

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

I hree Mile Creek 2001 Sampi	ing, rom	er Gritiiss A	r Force Base, n	one, New 10	TK			~					
		Sample ID:	TMCSD-1-23	TMCS0-1-74	TMCSD-2-23	TMCSD-2-23/D	TMCSD-2-74	TMCSD-3-73	TMCSD-2-74	TMCSD-4-74	TMC50-5-73	THCSD-5-74	TMCSD.5.1.74
		Depth:	1.8 - 2.4	2.4 - 3.5	1.5 - 2.7	1.5 - 2.7	2.7 - 3.5	1.6 - 2.4	2.4 - 3.5	2.9 - 3.5	1.6 - 2.5	2.5 - 3.5	2.8 - 3.5
Analyte	Type	Date:	06/04/01	06/04/01	06/04/01	06/04/01	06/01/01	06/04/01	06/04/01	05/01/01	06/01/01	06/01/01	08/01/01
Semivolatiles by Method 82700											***************************************	0001101	0.01701
1,2,4-Trichlorobenzene	(Marka)	11	587 J	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	230 J	1140 U
1,2-Dichlorobenzene			619 J	3820 U	1170 U	3570 U	85.0 J	4130 U	544	1710 U	7140 U	1410	1140 U
1,3-Dichlorobenzene	·	 	282 J	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
1,4-Dichlorobenzene		 	324 J	3820 U	1170 U	3570 U	344 U	4130 U	512	1710 U	7140 U	5140	1140 U
2,4,5-Trichlorophenol		 	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
2,4,6-Trichlorophenol	+	 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2,4-Dichlorophenol	╅──	╁╌┈╌┧	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2,4-Dimethylphenol		╁	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2,4-Dinitrophenol	 	<u> </u>	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2,4-Dinitrophenol		 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2,6-Dinitrotoluene	 	├┈──	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2-Chloronaphthalene	 	 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2-Chlorophenol	+	 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
2-Methylnaphthalene		 	266 J	4270	937 J	6860 J	280 J	13700	89.7 J	304 J	12200	419 J	938 J
2-Methylphenol	+	 	647 U	3820 U	1170 U	3570 U	344 U	882 J	419 U	1710 U	7140 U	953 U	1140 U
2-Nitroaniline		 	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
2-Nitrophenol	 	 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
3,3'-Dichlorobenzidine		+	1290 U	7640 U	2340 U	7130 U	688 U	8250 U	838 U	3410 U	14300 U	1910 U	2290 U
3-Nitroaniline		1	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
4,6-Dinitro-2-methylphenol		+	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
4-Bromophenyl phenyl ether		 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
4-Chloro-3-methylphenol		 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
4-Chloroaniline	 		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
4-Chlorophenyl phenyl ether	- 		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
4-Methylphenol	+	 	647 U	3820 U	1170 U	1330 J	344 U	3110 J	419 U	1710 U	2390 J	953 U	1140 U
4-Nitroaniline	 	·	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
4-Nitrophenol		 	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
Acenaphthene	 	1	425 J	6900	2040 J	10200 J	641	20200	216 J	575 J	17000	380 J	1830
Acenaphthylene		1	647 U	1030 J	895 J	3930 J	205 J	4430	141 J	528 J	3010 J	773 J	791 J
Anthracene	+	1	689	12700	4900 J	20300 J	1670	37900 J	579	1130 J	36900	1080	4370
Benz(a)anthracene	╅		1060	19400	14500 J	30600 J	2900	57300	911 J	2690	56000	1350	6520
Benzo(a)pyrene		1	679 J	14400 J	6340 J	22800 J	2150 J	42500	762 J	2990	34000	1470	5250 J
Benzo(b)fluoranthene	+	 	675 J	12600 J	7640 J	18900 J	1680 J	32300 J	883 J	3190	29800	1450	6090 J
Benzo(g,h,i)perylene	+	 	383 J	6970 J	1550 J	5860 J	707 J	9140 J	211 J	1150 J	24600	691 J	1590 J
Benzo(k)fluoranthene	+	 	708 J	11700 J	6330 J	15600 J	1380 J	4130 U	707 J	3160	32100	1260	3950 J
Benzoic acid	+	1	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
Benzyl alcohol		1	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Bis(2-chloroethoxy)methane	 		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Bis(2-chloroethyl)ether	 	-	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Bis(2-chloroisopropyl)ether	 	 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Bis(2-ethylhexyl)phthalate		 	647 U	3820 U	1170 U	3570 U	344 U	1710 J	419 U	1710 U	7140 U	953 U	1140 U
Butyl benzyl phthalate		1	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Carbazole			528 J	8090	3830 J	14300 J	1010	24000 J	315 J	1160 J	32800	334 J	2600
Chrysene	+	1	1140	18700	14600 J	31200 J	2720	54600	952 J	4440	53700	1660	6470
Dibenz(a,h)anthracene	 	 	265 J	4970 J	1230 J	4900 J	491 J	7730 J	157 J	605 J	16600	436 J	1160 J
Dibenzofuran	+	 	410 J	6720	1930 J	10900 J	569	21500	169 J	541 J	21300	232 J	1730
Diethyl phthalate		 	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Dictiff pinname			<u> </u>									1	

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Trives wite Oreck 2001 Sample	31		or or or Bulloo, it	ome, new re	· ·								
		Sample ID:	TMCSD-1-23	TMCSD-1-Z4	TMCSD-2-Z3	TMCSD-2-Z3/D	TMCSD-2-Z4	TMCSD-3-Z3	TMCSD-3-Z4	TMCSD-4-Z4	TMCSD-5-73	TMCSD-5-74	TMCSD-5-1-74
		Depth:	1.8 - 2.4	2.4 - 3.5	1.5 - 2.7	1.5 - 2.7	2.7 - 3.5	1.6 - 2.4	2.4 - 3.5	2.9 - 3.5	1.6 - 2.5	2.5 - 3.5	2.8 - 3.5
Analyte	Type	Date:	06/04/01	06/04/01	06/04/01	05/04/01	06/04/01	06/04/01	06/04/01	06/01/01	06/01/01	06/01/01	06/01/01
Dimethyl phthalate		ĺ	647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Di-n-butyl phthalate			647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Di-n-octyl phthalate			647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Fluoranthene			2940	46500	31400 J	77700 J	6040	131000	2050	3410 U	139000	3370	14900
Fluorene			451 J	8350	2290 J	12900 J	757	24800	260 J	906 J	22900	398 J	2000
Hexachlorobenzene			647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Hexachlorobutadiene	 		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Hexachlorocyclopentadiene	†		1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
Hexachloroethane	†		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U		
Indeno(1,2,3-cd)pyrene	 		740	15300	1560 J	7540 J	1020	11100 J	262 J			953 U	1140 U
Isophorone	 		647 U	3820 U	1170 U	3570 U	344 U	4130 U	419 U	1980	19500 J	1550	3530
Naphthalene	 		828	12400	2650 J	19600 J	809	41100 J		1710 U	7140 U	953 U	1140 U
Nitrobenzene	 		647 U	3820 U	7.00				229 J	251 J	32000	819 J	2730
N-Nitrosodimethylamine	 		647 U	3820 U	1170 U 1170 U	3570 U 3570 U	344 U 344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
	 							4130 U	419 U	1710 U	7140 U	953 U	1140 U
N-Nitrosodi-n-propylamine	1		647 U 647 U	3820 U 3820 U	1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
N-Nitrosodiphenylamine	 	I			1170 U	3570 U	344 U	4130 U	419 U	1710 U	7140 U	953 U	1140 U
Pentachlorophenol	ļ	 	1630 U	9610 U	2940 U	8970 U	865 U	10400 U	1050 U	4290 U	18000 U	2400 U	2880 U
Phenanthrene	ļ	ļ	3210	49900	31500 J	82100 J	5910	156000	1970	3410 U	162000	1800	15500
Phenol	ļ	 	647 U	3820 U	1170 U	3570 U	344 U	1360 J	419 U	1710 U	7140 U	953 U	1140 U
Pyrene	 		2070	23700 J	23700 J	37500 J	4740	99600	908 J	5260	101000	2110	6170
2,4,6-Tribromophenol	Surr		57 %	73 %	82 %	93 %	63 %	82 %	65 %	81 %	69 %	90 %	56 %
2-Fluorobiphenyl	Surr	L	81 %	81 %	88 %	95 %	78 %	91 %	73 %	85 %	80 %	80 %	92 %
2-Fluorophenol	Surr		67 %	71.96	70 %	91 %	59 %	84 %	63 %	60 %	75 %	52 %	53 %
Nitrobenzene-d5	Surr		78 %	76 %	89 %	98 %	74 %	94 %	71 %	89 %	80 %	125 %	79 %
Phenol-d5	Surr		66 %	70 %	63 %	93 %	54 %	85 %	62 %	66 %	84 %	58 %	49 %
Terphenyl-d14	Surr	L	63 %	60 %	47 %	56 %	39 %	50 % J	34 %	49 %	68 %	59 %	36 %
Metals by Method 6010B and 74	70A/71A (n	ng/Kg)											
Aluminum	<u> </u>		14300	16100	3610	4610	10500	4220	9630	5000	4860	7100	5420
Antimony	<u> </u>		0.60 U	0.35 U	0.31 U	0.35 U	0.32 U	0.34 U	0.34 U	0.32 U	0.33 U	0.29 U	0.36 U
Arsenic			46.5	13.0	7.1	6.8	12.1	5.9	14.1	4.4	9.2	17.1	7.0
Barium			111 J	73.4 J	230 J	1530 J	65.3 J	23.7 J	60.2 J	35.3	34.6	61.7	33.3
Beryllium			1.9	0.12 U	0.10 U	0.12 U	0.36 J	0.11 U	0.43 J	0.11 U	0.24 J	0.52	0.19 J
Cadmium			6.5	9.9	2.9	3.1	0.11 U	0.64 U	0.11 U	0.11 U	1.5	27.0	0.12 U
Calcium	1		31600 J	93200 J	46300 J	44300 J	25400 J	28500 J	39700 J	32100	25600	8160	22300
Chromium			44.7	35.4	25.8	44.3	20.4	37.8	18.7	9.9	27.8	43.8	25.5
Cobalt	†	<u>-</u>	10.4	7.1	3.1	5.1	6.4	3.6	6.7	3.7	4.3	5.7	4.5
Copper	<u> </u>		97.0	74.8	40.6	40.7	34.1	46.3	36.9	22.7	49.8	37.2	35.7
Iron	† i	 	17900 J	12200 J	11600 J	12500 J	26800 J	13800 J	22700 J	13800	15300	21200	14600
Lead	<u> </u>		56.1	56.9	81.0	110	26.7	108	36.2	55.6	181	156	92.6
Magnesium			2460 J	7980 J	3090 J	4070 J	4190 J	2990 J	7500 J	2930 J	2980 J	2380 J	
Manganese	 		84.1 J	1280 J	111 J	134 J	599 J	131 J	298 J	322	120	2380 J 250	3840 J
Nickel	 		27.4	15.5	20.8	28.7	15.2	28.2					284
Potassium	 		1260 J	2860 J	490 J	28.7 580 J	934 J	28.2 609 J	18.2 1210 J	9.3 812 J	28.5 778 J	14.4	14.0
Selenium	 		1.6 U	0.94 U	0.84 U	0.93 U	0.87 U	0.90 U	0.91 U	0.86 U		1090 J	1070 J
Silver	 		0.40 UR	0.94 U 0.23 UR	0.84 U 0.21 UR	0.93 UR	0.87 U 0.22 UR	0.90 U 0.22 UR			0.87 U	0.78 U	0.96 U
Sodium	1		810	2060	128	0.23 UK 137			0.23 UR	0.21 UR	0.22 UR	0.19 UR	0.24 UR
Thallium	 		0.79 U	0.47 U	0.42 U	0.47 U	74.6 J	127	200	140	135	181	122
Vanadium			112 J	18.3 J			0.70 J	0.45 U	0.46 U	0.43 U	0.43 U	0.39 U	0.48 U
					83.8 J	49.7	26.0 J	62.4 J	23.6 J	12.0	55.9	20.5	22.3
Zinc	 		149	98.4	157	22	68.8	146	68.0	112 J	144 J	111.7	82.
Mercury 📞	I	1	0.65 J	0.60 J	0.21 J	0.18	0.086 J	0.22 J	0.42 J	0.028 J	0.23 J	0.10 J	0.087

Table C-1 Cneek 2001 Sampling, Former Griffles Are Three Mile Creek Channel and Landilli 5 Tributary, Three Mile Creek Channel and Landilli 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

													nig/Kg = Microgranu per kilogram.
					•						ong	been diluted	UR = Data rejected.
											ovari yam baye		U = Mot detected at the reported value.
											very. Zeto %		M = 1 dentification tentative.
											cates a surrogate of the a unit of	ibni "nu2" w buuoquoo	J = Estimated value.
												Note:	Қей:
21.3	\$2.8	T.02	0.21	8.22	24.4	2.11	L'S I	1.91	£.91	9.08	†		Percent Moisture
							· · · · · · · · · · · · · · · · · · ·	<u> </u>	L				Percent Molature (wt%)
709 J	5040	179	f 89¢	L 781	059	U 024	1320	L89	088	633 1			Petroleum Hydrocarbons, TR
	**************************************			L				•	•				(mg/Kg)
UU 713.0	U 012.0	W 7£8.0	0.150 J	U 185.0	U 273.0	U 742.0	L 871.0	L 171.0	U E13.0	0.454.0			Cyanide
												(mg/Kg)	Cyanide, Total by Method 9012A
LU E.2	t 68.0	L E.1	19.1	1 46.0	1.7	U 6.4	[\$L'0	L 08.0	t 96.0	[þ.]			Chromium, Hexavalent
		•		•	•		• · · · · · · · · · · · · · · · · · · ·				uð\Kð)	n) A8817 b	Hexavalent Chromium by Methor
0999	24100	00115	J2000	23000	39100	12800	215001	1 0288	31400	202000			Total Organic Carbon
											իր (ուց/Kg)	Lloyd Ka	Total Organic Carbon by Method
10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/1/0/90	10/1/0/90	:elsQ	1kbe	olylanA
5.8 - 3.5	\$'2 ~ 3'2	1.6 - 2.5	2.6 - 3.5	54-32	1.6 - 2.4	2.5 - 7.5	1.5 - 2.7	1.5 - 2.7	2.4 - 3.5	1.8 - 2.4	Deply:		
TMCSD-5-1-Z4	TMCSD-5-Z4	TMCSD-5-Z3	NC-1- GSOWI	TMCSD-3-Z4	1MC\$0-3-Z3	1MCSD-2-Z4	TMCSD-2-Z3/D	TMCSD-2-Z3	TMCSD-1-ZA	1MCSD-1-Z3	Sample ID:		
													wdwaa raaz yaara awy aayr

pg/Kg = Micrograms per kilogram.

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

etrachloro-m-xylene	пиг		96 IS	% 68	% LS	% 68	% 88	% I <i>L</i>	% L8	960	% 98	% 9L	96 18
ecachlorobiphenyl	Sur		% 78	103 %	96 011	93 %	% 06	% 9L	96 96	% 0	% L6	25 %	96 78
охарлепе			UISI	וופח	UOLZI	וופת	120 U	U 0821	Ω <i>L</i> II	4510 U	UZII	1260 U	U 801
ι ετροχής τη στη στη στη στη στη στη στη στη στη			U 4.03	U 2.34	210 N	U 9.94	U 0.84	UEIS	U 8.94	U 0891	U 8.pp	20¢ N	U E.E.
eptachlor epoxide			LN 78.€	U 18.č	12.4 NJ	U 28.2	U 00.8	U 1.40	U 28.2	210 U	U 09.2	U 6.29	U IA.2
еріясі і ері			U £2.4	J 64.£	U S.8E	U 64.E	U 09.£	U 2.8£	U 12.E	136 U	U 9£.£	U 8.7£	J. 22.E
amma-Chlordane			J. 20.E	2.32 U	IN EE.T	J.33 U	J. 04.2	12.1 NJ	J.34 U	LN 8.EE	7.24 U	2.66 NJ	U 71.2
amma-BHC			J. 20.£	U 25.2	D 2.2.U	D.55.2	J.40 U	U 7.22	7.34 U	U I.48	J.24 U	U 2.22	U 71.2
ndrin ketone			LN 762.0	J 64.£	U 2.8E	14.1 NJ	U 09.£	U 2.8£	U 12.£	136 U	U 9£.£	U 8.7£	U ZS.E
ndrin aldehyde			U 1,21	U 9.11	U 721	U 9.11	U 0.21	128 U	U 7.11	U 124	U 2.11	LN 7.04	U 8.01
ninbn	1		U \$0.8	U 89.4	U 0.12	U 99.4	U 08.4	U E,12	U 89.4	U 891	U 84.4	U 4.02	U ££.4
ndosulfan sulfate			U 90.6	U 76.6	U 4.87	U 66.8	U 02.7	U 0.TT	U 20.7	727 N	U 27.0	U &.er	U 02.8
II neilusobn			U £2.4	U 64.£	U 2.8E	U 64.E	U 09.£	U 2.8E	U 12.£	126 U	U 3E.E	U 8.7.£	U SS.E
l neitusobn			IN 79.2	U 18.č	32.0 NJ	U 282.0	U 00.0	U 1.48	U 28.2	210 U	U 09.8	U 6.28	U 14.2
icldrin			U SS.T	U 18.č	U 7.E3	U 28.č	U 00.8	IN S.EE	U 28.2	210 U	U 09.8	U 6.29	U IA.2
SHa-BHC			J. 20.E	U 25.2	U 2.25 U	2.33 U	J.40 U	U T.25.	J.34 U	U 1.48	2,24 U	U 2.2.2	U 71.2
sta-BHC			U \$0.8	U 29.4	U 0.12	U 99.4	U 08.4	U E.12	U 89.4	U 851	U 84.4	U 4.02	U ££.4
pha-Chlordane			LN 79.2	U 91.1	32.0 NJ	US82.01	LN E02.0	(N L'11	UN 462.0	28.5 NJ	U.S.I.1	4.20 NJ	U 80.1
рһа-ВНС			U £2.4	U 64.£	U 2.8E	U 64.E	U 09.£	U 2.8E	U 12.E	136 U	U 9£.£	U 8.7.E	3,25 U
ninbl			U 40.8	U 29.4	U 0.12	U 99.4	U 08.4	U E.IZ	U 89.4	U 891	U 84.4	U 4.02	U ££.4
4DDL			LN 2T.0	U 29.4	U 0.12	LISNJ	U 08.4	(N 701	U 89.4	U 891	U 84.4	U 4.02	U ££.4
4DDE			U EZ.A	U 64.£	U 2.8E	U 64.E	U 09.£	U č.8£	U 12.E	U 92 I	U 9£.£	U 8.7£	J. 25. U
4,-DDD			2.42 NJ	J. 64. £	LN 64.8	U 64.E	U 09.£	LN 6.02	U 624.0	1N 6.0E	U 9E.E	U 8.7£	3.23 U
gu) A1808 boritsM yd aebiciiae	(6)/Kg)					L							
etrachloro-m-xylene	Sur		% 9¢	% 06	% 801	% 68	% 76	% LL	% 06	% 0	% 98	% 16	96 98
ecachtorobiphenyl	шng		% †9	% 96	96911	% 06	% 96	% 98	96 76	% 0	96 76	% 901	% 88
roclor 1260			011	U 2.ES	1230	24.9	4.55	1340	l 6.91	2590	22.4 U	LS9	U 7.12
rocior 1254			U 2.0E	73.2 U	722 N	U E.ES	24.0 U	U rsc	U 4.62	U 148	U 4.22	727 U	U 7.12
roclor 1248			U 2.0E	U 2.62	722 N	U E.ES	U 0.4.0	U rsz	U 4.ES	841 N	75.4 U	727 U	U 7.12
roclor 1242			U 2.0£	U 2.62	722 N	U E.ES	U 0.4.0	U rsz	U 4.£2	U 148	75.4 U	727 N	U 7.12
rocior 1232			U 2.0E	U 2.62	722 N	U E.ES	74.0 U	U rsz	U 4.62	U 148	U 4.22	727 N	U 7.12
roclor 1221			U 4.08	U 2.34	0 012	U 9.84	U 0.84	UEIS	U 8.84	U 0851	U 8.44	204 N	U E.EA
rocior 1016			30.2	U 2.22	722 N	U E.ES	74.0 U	Ursz	U 4.E2	841 N	72.4 U	ารราก	U T.12
CBs by Method 8082 (vg/Kg)			I		L	L		. 		L	***************************************		
oiylenA	Type	Date:	10/10/90	10/10/90	10/10/90	10/10/90	10/10/90	10/16/50	HEEL	1JEEL	10/16/50	10/16/90	10/16/90
		Ospin:		5.5 - 7.5	1.3 - 2.8	2.8 - 3.5	2.8 - 3.5	1.4-2.4	2.4 - 3.4	0.5 - 2.3	2.3 - 3.3	0.5 - 2.3	23-33
			TMCSD-S-2-Z3	TACSD-5-2-Z4			QVS-8-QSOMT						

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffitss Air Force Base, Rome, New York

						1 0 0 0 0 0 1 E	Carre o document	1 666 4 4939	74) W3221	1 E 6 C 0 20	1 5560 5 74	FEED 9 70	16 6 00 9 3
		Sample ID:	Sample ID: IMCSD-5-2-23	IMC50-5-2-24	1MC3D-6-23	I MUSU-0-ES		57-1-00cm				r.e.nee.r	L COSTORAGE
Ansiya	, and	Depth: Date:	1.4 - 2.7	2.7 - 3.5	1.3 - 2.8	2.8 - 3.5	2.8 - 3.5	05/21/01	2.4 - 3.4 #REF!	0.5 - 2.3	2.3 - 3.3 05/31/01	0.5 - 2.3	2.3 - 3.3 05/31/01
(ug/Kg)													
1,1,1-Trichloroethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,1,2,2-Tetrachlorocthane			40.1 UJ	5.89 U	34.6 U	5.98 U	5.89 U	6.66 UJ	5.92 U	8.40 UJ	5.78 U	6.41 U	5.49 U
1,1,2-Trichloroethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,1-Dichloroethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,1-Dichloroethene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,2-Dichlorobenzene			40.1 UJ	3.85 J	34.6 U	5.98 U	5.89 U	6.66 UJ	5.92 U	8.40 UJ	5.78 U	6.41 U	5.49 U
1,2-Dichloroethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,2-Dichloroethene, Total			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,2-Dichloropropane			40.1 U	N 68'S	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,3-Dichlorobenzene			40.1 UJ	O 68.8	34.6 U	5.98 U	5.89 U	6.66 UJ	5.92 U	8.40 UJ	5.78 U	6.41 U	5.49 U
1,4-Dichlorobenzene			40.1 UJ	O 68.8	34.6 U	S.98 U	2.89 U	6.66 UJ	5.92 U	8.40 UJ	5.78 U	6.41 U	5.49 U
2-Butanone			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	7.66 J	U 8.11	7.32 J	11.6 U	6.21 J	11.0 U
2-Chloroethyl vinyl ether			80.2 U	11.8 U	69.2 U	12.0 U	U 8.11	13.3 U	U 8.11	U 8.91	U 9'11	12.8 U	11.0 U
2-Hexanone			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	U 8'91	11.6 U	12.8 U	U 0.11
4-Methyl-2-pentanone			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
Acetone			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	32.5 J	10.7 J	35.3 J	10.8 J	16.61	7.35 J
Benzene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Bromodichloromethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Bromoform			40.1 U	5.89 U	34.6 U	S.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Bromomethane			80.2 U	11.8 U	69.2 U	12.0 U	U 8.11	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
Carbon disulfide			40.1 U	2.89 U	34.6 U	S.98 U	S.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Carbon tetrachloride			40.1 U	5.89 U	34.6 U	5.98 U	S.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Chlorobenzene			3430	3.24 J	178 J	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	1.78 J	5.49 U
Chloroethane			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
Chloroform			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Chloromethane			80.2 U	11.8 U	69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
cis-1,2-Dichloroethene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
cis-1,3-Dichloropropene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Dibromochloromethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Ethylbenzene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
m,p-Xylene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Methylene chloride			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	9.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
o-Xylene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Styrene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	9.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Tetrachloroethene			40.1 U	S.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Toluene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
trans-1,2-Dichloroethene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
trans-1,3-Dichloropropene			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	6.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Trichloroethene			40.1 U	S.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Trichlorofluoromethane			40.1 U	5.89 U	34.6 U	5.98 U	5.89 U	0.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
Vinyl acetate			80.2 U	U8.11	69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
Vinyl chloride			80.2 U	11.8 U	.69.2 U	12.0 U	11.8 U	13.3 U	11.8 U	16.8 U	11.6 U	12.8 U	11.0 U
Xylenes, Total			40.1 U	5.89 U	34.6 U	2.98 U	5.89 U	9.66 U	5.92 U	8.40 U	5.78 U	6.41 U	5.49 U
1,2-Dichloroethane-d4	Sur		111 %	100 %	112 %	99 %	103 %	102 %	98 %	% 66	101 %	102 %	103 %
4-Bromofluorobenzene	Surr		416%	100 %	200 %	102 %	% 00I	123 %	114%	128 %	104 %	118%	119 %
Dibromofluoromethane	Surr		111%	104 %	109 %	104 %	104 %	105 %	102 %	103 %	104 %	105 %	105 %
Toluene-d8	Sur		114%	98 %	104 %	90 %	97 %	115%	901	109 %	101 %	107 %	106 %

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Semple ID:	TMCSD-5-2-Z3	TMCCD 5.2.74	Turen s.72	THICKE & TA	THICKE & TAID	LECCO 4 35	Lecen 4 #4	LECCH OF	1 2 2 2 2 2 2 2 2	15555 2 22	
Analyte	Time	Depth: Date:	1.4 - 2.7 06/01/01	2.7 - 3.5 06/01/01	1.3 - 2.8 06/01/01	2.8 - 3.5 08/01/01	TMCSD-6-Z4/D 2.8 + 3.5 06/01/01	1.4 - 2.4	2.4 - 3.4	0.5 - 2.3	2.3 - 3.3	0.5 - 2.3	2.3 - 3.3
Semivolatiles by Method 8270C	Type (unlike)	Daio.	0001101	00/01/01	06/01/01	08/01/01	06/01/01	05/31/01	#REFI	#REF!	05/31/01	05/31/01	05/31/01
1,2,4-Trichlorobenzene	VP9/NY/		398 J	344 U	168 J	359 U	361 U	421.111	270 11	55(1)			1
1,2-Dichlorobenzene	 		7500	60.3 J	955	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
1.3-Dichlorobenzene	 		243 J	344 U	391 U	359 U	361 U	431 UJ 431 UJ	378 U	556 U	340 U	410 U	332 U
1,4-Dichlorobenzene	 	·	3610	344 U	1690	359 U	361 U	431 UJ 431 UJ	378 U	556 U	340 U	410 U	332 U
2,4,5-Trichlorophenol	 		1160 U	866 U	984 U	903 U	909 U	431 UJ 1080 UJ	378 U 950 U	556 U	340 U	410 U	332 U
2,4,6-Trichlorophenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	1400 U 556 U	855 U	1030 U	834 U
2,4-Dichlorophenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U 340 U	410 U	332 U
2,4-Dimethylphenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U			332 U
2,4-Dinitrophenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U 340 U	410 U	332 U
2,4-Dinitrotoluene	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
2,6-Dinitrotoluene	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
2-Chloronaphthalene	+		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
2-Chlorophenol			461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U		332 U
2-Methylnaphthalene	 	·	185 J	344 U	275 J	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
2-Methylphenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
2-Nitroaniline	 	 	1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U		332 U
2-Nitrophenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	1030 U 410 U	834 U
3,3'-Dichlorobenzidine	 		922 U	689 U	783 U	718 U	723 U	862 UJ	755 U	1110 U	680 U		332 U
3-Nitroaniline	 		1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	819 U 1030 U	663 U 834 U
4,6-Dinitro-2-methylphenol	 	 	1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	834 U
4-Bromophenyl phenyl ether	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	
4-Chloro-3-methylphenol		[461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U		332 U
4-Chloroaniline	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
4-Chlorophenyl phenyl ether	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U 410 U	332 U 332 U
4-Methylphenol	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
4-Nitroaniline	· 		1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	834 U
4-Nitrophenol	 		1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	834 U
Acenaphthene			291 J	344 U	550	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Acenaphthylene	· · · · · · · · · · · · · · · · · · ·		693	344 U	796	359 U	361 U	129 J	378 U	206 J	340 U	410 U	332 U
Anthracene	 		1120	344 U	1970	359 U	361 U	141 J	378 U	330 J	340 U	78.4 J	332 U
Benz(a)anthracene	 	l	1490 J	344 U	2740	359 U	361 U	144 J	378 U	378 J	340 U	163 J	332 U
Benzo(a)pyrene	†		1230	344 U	2200	359 U	361 U	173 J	378 U	456 J	340 U	170 J	332 U
Benzo(b)fluoranthene	 		2660	344 U	1770 J	359 U	361 U	245 J	378 U	488 J	340 U	148 J	332 U
Benzo(g,h,i)perylene	 		376 J	344 U	601	359 U	361 U	431 UJ	378 U	185 J	340 U	156 J	332 U
Benzo(k)fluoranthene	 	 	461 U	344 U	2090	359 U	361 U	234 J	378 U	514 J	340 U	136 J	332 U
Benzoic acid	 		1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	
Benzyl alcohol	1		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	834 U 332 U
Bis(2-chloroethoxy)methane	1		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Bis(2-chloroethyl)ether	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	
Bis(2-chloroisopropyl)ether			461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Bis(2-ethylhexyl)phthalate	 	<u> </u>	339 J	344 U	246 J	359 U	361 U	431 UJ	378 U	556 U	340 U		332 U
Butyl benzyl phthalate	 	 	461 U	344 U	391 U	359 U	361 U	431 UJ 431 UJ	378 U	556 U	340 U	410 U	332 U
Carbazole			441 J	344 U	930	359 U	361 U	70.8 J	378 U	110 J	340 U	410 U	332 U
Chrysene	 	 	1660 J	344 U	2820	359 U	361 U	70.8 J 196 J	378 U	477 J	340 U	410 U	332 U
Dibenz(a,h)anthracene	 		293 J	344 U	455	359 U	361 U	431 UJ	378 U	102 J	340 U	182 J	332 U
Dibenzofuran	 		195 J	344 U	453	359 U	361 U	431 UJ	378 U	556 U	340 U	77.7 J	332 U
Diethyl ply' 'nte	 		461 U	344 U	391 U	3570	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

Three Mile Creek 2001 Sample	119,1 01111		1 (0100 0000, 10	Omo, non Tork									dhuilli dhe e
		Sample ID:	TMCSD-5-2-Z3	TMCSD-5-2-24	TMCSD-6-Z3	TMCSD-6-Z4	TMCSD-6-Z4/D	LF5SD-1-Z3	LF5SD-1-Z4	LF5SD-2-Z2	LF5SD-2-Z4	LF5SD-3-22	LF5SD-3-24
		Depth:	1.4 - 2.7	2.7 - 3.5	1.3 - 2.8	2.8 - 3.5	2.8 - 3.5	1.4 - 2.4	2.4 - 3.4	0.5 - 2.3	2.3 - 3.3	0.5 - 2.3	2.3 - 3.3
Analyte	Type	Date:	06/01/01	06/01/01	06/01/01	08/01/01	06/01/01	05/31/01	#REF!	#REF!	05/31/01	05/31/01	05/31/01
Dimethyl phthalate			461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Di-n-butyl phthalate	<u> </u>		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Di-n-octyl phthalate	·		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Fluoranthene			3670	344 U	6380	359 U	361 U	540	378 U	967	340 U	259 J	332 U
Fluorene	 	1	304 J	344 U	659	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Hexachlorobenzene		1	461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Hexachlorobutadiene	-		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Hexachlorocyclopentadiene			1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	834 U
Hexachloroethane	<u> </u>		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Indeno(1,2,3-cd)pyrene	 		267 J	344 U	476 J	359 U	361 U	431 UJ	378 U	225 J	340 U	348 J	332 U
Isophorone		1	461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Naphthalene	t		251 J	344 U	488	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Nitrobenzene	 		461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
N-Nitrosodimethylamine			461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
N-Nitrosodi-n-propylamine			461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
N-Nitrosodiphenylamine	 	j	461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Pentachlorophenol	 		1160 U	866 U	984 U	903 U	909 U	1080 UJ	950 U	1400 U	855 U	1030 U	834 U
Phenanthrene	 		2440	344 U	4880	359 U	361 U	173 J	378 U	448 J	340 U	164 J	332 U
Phenol	 	 	461 U	344 U	391 U	359 U	361 U	431 UJ	378 U	556 U	340 U	410 U	332 U
Pyrene	 		1980 J	344 U	3940	359 U	361 U	223 J	378 U	349 J	340 U	273 J	332 U
2,4,6-Tribromophenol	Surr		97 %	52 %	104 %	76 %	60 %	99 %	67 %	50 %	64 %	39 %	71 %
2-Fluorobiphenyl	Surr		103 %	81 %	100 %	84 %	96 %	83 %	78 %	88 %	66 %	72 %	91 %
2-Fluorophenol	Surr	1	68 %	55 %	58 %	73 %	58 %	73 %	57 %	47 %	54 %	42 %	60 %
Nitrobenzene-d5	Suit		116%	76 %	110 %	82 %	87 %	92 %	74 %	77 %	67 %	61 %	85 %
Phenol-d5	Surr	1	61 %	54 %	53 %	77 %	58 %	68 %	62 %	45 %	61 %	43 %	59 %
Temhenyl-d14	Surr	f	55 %	85 %	52 % J	84 %	88 %	57 %	79 %	30 %	70 %	51 %	79 %
Metals by Method 6010B and 74	1	na/Ka)		1 05 /5	<u> </u>		1 20 %	<u> </u>	L	130 10	1 70 2	31 70	1970
Aluminum	1	i j	8490	4670	5850	4580	4380	7930	4240	7100	6510	4980	3510
Antimony	 	1	0.39 U	0.33 U	0.39 U	0.35 U	0.34 U	0.40 U	0.31 U	0.46 U	0.33 U	0.38 U	0.30 U
Arsenic	 		24.2	3.5	13.2	2.5	2.6	5.8	8.8	9.2	2.4	2.9	2.5
Barium		· · · · · · · · · · · · · · · · · · ·	78.4	21.1	45.2	16.9	15.1	39.1	10.5	49.1	20.5	26.6	14.3
Beryllium	 	 	0.73	0.11 U	0.13 U	0.12 U	0.11 U	0.13 U	0.10 U	0.19 J	0.19 J	0.13 U	0.10 U
Cadmium	 	 	40.4	0.11 U	11.0	0.12 U	0.11 U	0.13 U	0.10 U	0.15 U	0.193 0.11 U	0.13 U	0.10 U
Calcium		 	11400	18000	18900	19600	17400	4680 J	12900 J	19000 J	24000 J	20200 J	22900 J
Chromium	 	 	40.6	5.2	19.0	5.1	4.8	22.4	4.5	12.5	6.7	6.0	4.0
Cobalt	 	 	8.5	3.9	4.8	3.7	3.4	6.3	3.2	5.9	4.7	3.8	3.2
Copper	 	 	60.4	12.3	39.4	10.6	11.1	16.4	8.7	26.8	19.1	17.1	9.1
Iron	 	 	28500	11100	14800	10500	10000	14300	9730	22500	15100	10600	8480
Lead		 	170	3.7	84.7	3.5	3.1	19.3	3.1	61.9	4.2		
	 	 	2810 J	5950 J	3650 J	5940 J	5220 J	4540 J	4250 J	5200 J	8190 J	12.2 4630 J	2.4
Magnesium	 	-	132	3930 3	138	260	247	143	178	339			4780 J
Manganese Nickel	 		24.4	8.1	16.1	7.6	7.0	13.4	7.0	14.0	726 10.1	8.3	364 5.6
	 	 	1260 J	1110 J	618 J	1070 J	1020 J	15.4 1550 J	947 J	1340 J	10.1 1250 J		
Potassium	 	 	1.0 U	0.88 U	1.1 U	0.94 U	0.90 U					1010 J	794 J
Selenium	 	 	0.26 UR	0.88 U 0.22 UR	0.26 UR	0.24 UR	0.90 U 0.23 UR	1.1 U 0.27 U	0.82 U	1.2 U	0.89 U	1.0 U	0.81 U
Silver	 	 	0.26 UR 265			96.5 J	0.23 UR 86.6 J		0.21 U	0.30 U	0.22 U	0.25 U	0.20 U
Sodium	 			91.5 J	85.6 J	1		134 J	77.8 J	102 J	116	74.7 J	88.1 J
Thatlium		 	0.52 U	0.44 U	0.53 U	0.47 U	0.45 U	0.54 U	0.41 U	0.61 U	0.45 U	0.51 U	0.41 U
Vanadium	 	_	45.2	9.7	27.7	9.8	9.2	24.5	8.2	21.1	11.5	11.3	7.8
Zinc	 		124 J	21.0 J	103 J	19.9 J	19.1 J	49.3 J	21.0 J	112 J	29.4 J	33.7 J	15.5 J
Mercury	1		0.40 J	0.017 UJ	0.14 J	0.020 UJ	0.019 UJ	0.11 J	0.017 U	0.20 J	0.018 U	0.21 J	0.019 U

001002_UK02_02_00_90-B0925 APC_Tables.XLS-TMC 2001 Sampling Table C-1-3/27/02

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Analyte	Type	Sample ID: Depth: Date:	TMCSD-5-2-Z3 1.4 - 2.7 06/01/01	TMCSD-5-2-24 2.7 + 3.5 06/01/01	TMCSD-6-Z3 1.3 • 2.8 06/01/01	TMCSD-8-Z4 2.8 - 3.5 06/01/01	TMCSD-6-Z4/D 2.8 - 3.5 08/01/01	LF5SD-1-Z3 1.4 + 2.4 05/31/01	LF5SD-1-Z4 2.4 + 3.4 #REF!	LF5SD-2-Z2 0.5 • 2.3 #REF!	LF5SD-2-Z4 2.3 - 3.3 05/31/01	LF5SD-3-Z2 0.5 - 2.3 05/31/01	LF5SD-3-24 2.3 - 3.3 05/31/01
Total Organic Carbon by Meth	od Lloyd Ka	hn (mg/Kg)											
Total Organic Carbon			78700	2300 U	49900	2320 U	2340 U	33400	2310 U	42400	2220 U	6230	2120 U
Hexavalent Chromium by Met	10d 7196A (1	ng/Kg)											
Chromium, Hexavalent			7.3 UJ	4.3 UJ	4.8 UJ	4.5 UJ	5.9 UJ	1.3 J	5.5 U	1.4 J	4.2 U	5.3 U	4.9 U
Cyanide, Total by Method 901:	2A (mg/Kg)												
Cyanide			0.281 J	0.574 UJ	0.664 UJ	0.625 UJ	0.602 UJ	0.673 U	0.584 U	0.828 U	0.569 U	0.642 ป	0.553 U
(mg/Kg)													
Petroleum Hydrocarbons, TR			2880	482 U	1470	490 U	486 U	1480	476 U	683 U	464 U	519 U	446 U
Percent Moisture (wt%)													
Percent Moisture			34.4	17.0	23.9	18.4	17.7	25.7	16.0	41.4	13.8	22.9	10.4

Key: N = Identification tentative.

J = Estimated value.

"Surr" indicates a surrogate compound with a unit of

U = Not detected at the reported value. indicates surrogate may have

percent recovery. Zero % been diluted out.

UR = Data rejected.

mg/Kg = Micrograms per kilogram. μg/Kg = Micrograms per kilogram.

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

							****				TMCSD-8-2-		
						TMCSD-7-1-Z3			TMCSD-8-1-Z4/D		23	TMCSD-9-Z2	
		Depth:		1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5	2.5 - 3.5	0.5 - 0.9	0.9 - 2.5	0.5 - 1.6	1.6 - 3.5
Analyte	Type	Date:	05/31/01	05/31/01	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01
PCBs by Method 8082 (µg/K	<u> </u>									· · · · · · · · · · · · · · · · · · ·		,	
Aroclor 1016			544 U	282 U	178 U	23.0 U	97.8 U	74.7 U	91.6 U	29.6 U	20.9 U	28.1 U	24.4 U
Aroclor 1221			1090 U	563 U	355 U	46.0 U	196 U	149 U	183 U	59.1 U	41.7 U	56.2 U	48.8 U
Aroclor 1232		 	544 U	282 U	178 U	23.0 U	97.8 U	74.7 U	91.6 U	29.6 U	20.9 U	28.1 U	24.4 U
Aroclor 1242		 	544 U	282 U	178 U	23.0 U	97.8 U	74.7 U	91.6 U	29.6 U	20.9 U	28.1 U	24.4 U
Aroclor 1248		ļ	544 U	282 U	178 U	23.0 U	97.8 U	74.7 U	91.6 U	29.6 U	20.9 U	28.1 U	24.4 U
Aroclor 1254			544 U	282 U	178 U	23.0 U	97.8 U	74.7 U	91.6 U	29.6 U	20.9 U	28.1 U	24.4 U
Aroclor 1260			2540	997	568	30.2	107	74.7 U	91.6 U	17.7 J	17.9 J	231	64.2
Decachlorobiphenyl	Surr		0%	130 %	107 %	81 %	98 %	102 %	88 %	105 %	105 %	103 %	94 %
Tetrachloro-m-xylene	Surr		0%	33 %	87 %	81 %	85 %	89 %	78 %	89 %	94 %	92 %	82 %
Pesticides by Method 8081A	(μg/Kg)												
4,4′-DDD		1	23.6 NJ	105 NJ	31.4 NJ	3.10 NJ	4.29 NJ	11.2 U	13.7 U	3.79 NJ	1.95 NJ	21.1 U	3.66 U
4,4′-DDE			81.7 U	42.3 U	33.3 U	3.45 U	14.7 U	11.2 U	13.7 U	4.43 U	3.13 U	21.1 U	3.66 U
4,4′-DDT		<u> </u>	109 U	97.7 NJ	38.9 NJ	4.60 U	2.81 NJ	14.9 U	18.3 U	1.15 NJ	0.519 NJ	8.18 NJ	4.88 U
Aldrin			109 U	24.9 NJ	44.4 U	4.60 U	19.6 U	14.9 U	18.3 U	11.2 U	4.17 U	31.6 NJ	4.88 U
alpha-BHC			81.7 U	42.3 U	33.3 U	3.45 U	14.7 U	11.2 U	13.7 U	4.43 U	3.13 U	21.1 U	3.66 U
alpha-Chlordane		<u> </u>	27.2 U	14.1 U	26.6 NJ	1.15 U	4.89 U	3.74 U	4.58 U	1.48 U	1.04 U	1.50 NJ	1.22 U
beta-BHC			109 U	56.3 U	44.4 U	4.60 U	19.6 U	14.9 U	18.3 U	5.91 U	4.17 U	28.1 U	4.88 U
delta-BHC			54.4 U	28.2 U	22.2 U	2.30 U	9.78 U	7.47 U	9.16 U	2.96 U	2.09 U	14.1 U	2.44 U
Dieldrin			136 U	70.4 U	55.5 U	5.75 U	24.4 U	18.7 U	22.9 U	7.39 U	5.22 U	35.1 U	6.11 U
Endosulfan l			136 U	70.4 U	55.5 U	5.75 U	24.4 U	18.7 U	22.9 U	7.39 U	5.22 U	35.1 U	6.11 U
Endosulfan II			81.7 U	42.3 U	33.3 U	3.45 U	14.7 U	3.45 J	13.7 U	4.43 U	3.13 U	21.1 U	3.66 U
Endosulfan sulfate		1	163 U	84.5 U	66.6 U	6.90 U	29.3 U	22.4 U	27.5 U	8.87 U	6.26 U	42.2 U	7.33 U
Endrin			109 U	56.3 U	44.4 U	4.60 U	3.82 NJ	2.89 J	4.22 J	5.91 U	4.17 U	28.1 U	1.05 NJ
Endrin aldehyde			272 U	141 U	111 U	2.11 NJ	48.9 U	37.4 U	45.8 U	14.8 U	10.4 U	70.3 U	12.2 U
Endrin ketone			160 NJ	209 NJ	33.3 U	3.45 U	14.7 U	11.2 U	13.7 U	2.24 NJ	3.13 U	15.0 NJ	3.66 U
gamma-BHC			54.4 U	28.2 U	22.2 U	2.30 U	9.78 U	7.47 U	9.16 U	2.96 U	2.09 U	14.1 U	2.44 U
gamma-Chlordane			18.0 NJ	12.9 NJ	4.47 NJ	0.705 NJ	9.78 U	7.47 U	9.16 U	2.96 U	0.330 NJ	14.1 U	2.44 U
Heptachlor			81.7 U	42.3 U	33.3 U	3.45 U	4.02 NJ	11.2 U	13.7 U	4.43 U	3.13 U	21.1 U	3.66 U
Heptachlor epoxide	T		75.0 NJ	131 NJ	13.6 NJ	1.25 NJ	24.4 U	18.7 U	22.9 U	7.39 U	0.730 NJ	35.1 U	1.23 NJ
Methoxychlor			1090 U	310 NJ	444 U	46.0 U	196 U	149 U	183 U	59.1 U	41.7 U	281 U	48.8 U
Toxaphene		1	2720 U	1410 U	1110 U	115 U	489 U	374 U	458 U	148 U	104 U	703 U	122 U
Decachlorobiphenyl	Surr		0 %	362 %	124 %	90 %	85 %	91 %	84 %	136 %	99 %	158 %	99 %
Tetrachloro-m-xylene	Surr	1	0 %	71 %	88 %	81 %	87 %	87 %	82 %	94 %	100 %	109 %	86 %

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffliss Air Force Base, Rome, New York

	Sa	Sample (D: TMCSD-7-Z2 TMCSD-7-Z3	TMCSD-7-23	TMCSD-7-1-22	TMCSD-7-1-23	TMCSD-8-1-Z3	TMCSD-8-1-23 TMCSD-8-1-24	TMCSD-8-1-74D	TMCSD-8-2-72	TMCSD-8-2-	TMCSD.9.79 TMCSD.9.74	TMCSD.9.74
	•	Depth: 0.5 - 1.5	1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5	2.5 - 3.5	0.5 - 0.9	0.9 - 2.5	0.5 - 1.6	1.6 - 3.5
Analyte	Type	Date: 05/31/01	05/31/01	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	05/30/01	02/30/01	05/30/01	05/30/01
1,1,1-Trichloroethane		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	U 9'81	4.88 U	7.25 U	5.26.11	11 96 9	11009
1,1,2,2-Tetrachloroethane		6.31 UJ	257 J	IO 6.01	5.92 UJ	25.8 U	18.6 UJ	4.88 UJ	7.25 UJ	5.26 UJ	LO 96.9	6.00 UJ
1,1,2-Trichloroethane		6.31 U	7.08 UJ	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96.0	0.00.9
1,1-Dichloroethane		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	D 96.9	0.00 U
I,I-Dichloroethene		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	6.00 U
1,2-Dichlorobenzene		5.84 J	7.08 UJ	8.15 J	17.2 J	25.8 U	18.6 UJ	4.88 UJ	2.84 J	5.26 UJ	6.96 UJ	6.00 UJ
1,2-Dichloroethane		6.31 U	36.9 J	4.86 J	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	0.00 U
1,2-Dichloroethene, 10tal		6.31 U	7.51.3	27.9 J	5.78 J	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	6.96 U	6.00 U
1,2-Dichloropropane	-	6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	6.96 U	0.00 U
1,3-Dichlorobenzene	+	6.31 UJ	7.08 UJ	10.9 UJ	5.92 UJ	25.8 U	18.6 UJ	4.88 UJ	7.25 UJ	5.26 UJ	6.96 UJ	6.00 UJ
1,4-Dichlorobenzene	+	7.02 J	7.08 UJ	10.9 UI	5.92 UJ	25.8 U	18.6 UJ	4.88 UJ	7.25 UJ	5.26 UJ	6.96 UJ	6.00 UJ
2-Butanone		7.11.3	14.2 UJ	21.9 UJ	11.8 U	32.0 J	19.9 J	3.77 J	14.5 U	10.5 U	4.51 J	12.0 U
2-Chloroethyl vinyl ether		12.6 U	14.2 UJ	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
2-Hexanone		12.6 U	14.2 UJ	21.9 UJ	11.8 UJ	51.5 U	37.2 U	9.77 U	14.5 U	10.5 UJ	13.9 U	12.0 U
4-Methyl-2-pentanone		12.6 U	14.2 UJ	21.9 UJ	11.8 UJ	51.5 U	37.2 U	9.77 U	14.5 U	10.5 UJ	13.9 U	12.0 U
Acetone		28.6 J	19.4 J	57.3 J	17.5 J	134	88.8 J	18.0 J	14.5 U	10.5 U	22.1 J	11.0 J
Benzene		54.3 J	2980 J	9.16 J	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	6.00 U
Bromodichloromethane		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	0.00.9
Bromoform		6.31 U	7.08 UJ	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96 U	0.00 U
Вготоплетане		12.6 U	14.2 UJ	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
Carbon disulfide		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	6.55 J	4.88 U	7.25 U	5.26 U	0.96.D	0.00 U
Carbon tetrachloride		6.31 U	7.08 UJ	IO 6:01	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	0.00.9
Chlorobenzene		224 J	111000	32.1 J	5.31 J	30.6	18.6 U	4.88 U	2.22 J	5.26 UJ	5.95 J	0.00.9
Chloroethane		12.6 U	14.2 UJ	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
Chloroform		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	0.00 U
Chloromethane		12.6 U	14.2 UJ	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
cis-1,2-Dichloroethene		6.31 U	3.24 J	27.2 J	5.63 J	13.7 J	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	0.00.9
cis-1,3-Dichloropropene		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96.0	0.009
Dibromochloromethane		6.31 U	7.08 UJ	IO.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96 U	0.00 U
Ethylbenzene		6.31 U	17.2 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96.0	0.00.0
m,p-Xylene		6.31 U	5.99 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96.U	0.00 U
Methylene chloride	+	0.31 U	7.08 0.7	10.9 0.1	0.26.0	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	6.96 U	6.00 U
o-Xylene	+	0.31 0	7.08 11	10.9 0.1	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96 U	0.00 U
aryiene	1	0100	10 00.7	10.5 0.1	3.92 UJ	0 0.62	18.0 0	4.66 U	0.62.7	5.26 UJ	0.96 U	0.00.0
1 etrachloroethene		0.31.0	7.08 0.1	10.9 0.1	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	6.96 U	6.00 U
Lotuche		3.17.3	6.301	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	6.96 U	6.00 U
trans-1,2-Dichloroethene		6.31 U	4.30 J	I0.9 UI	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	6.96 U	6.00 U
trans-1,3-Dichloropropene		6.31 U	7.08 UJ	10.9 UJ	5.92 (1)	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96 U	6.00 U
Trichloroethene		6.31 U	7.08 UJ	10.9 UJ	2.36 J	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	6.00 U
Trichlorofluoromethane		6.31 U	7.08 UJ	10.9 UJ	5.92 U	25.8 U	18.6 U	4.88 U	7.25 U	5.26 U	0.96 U	6.00 U
Vinyl acetate	-	12.6 U	14.2 UJ	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
Vinyl chloride	1	12.6 U	9.04 J	21.9 UJ	11.8 U	51.5 U	37.2 U	9.77 U	14.5 U	10.5 U	13.9 U	12.0 U
		6.31 U	8.87 J	10.9 UJ	5.92 UJ	25.8 U	18.6 U	4.88 U	7.25 U	5.26 UJ	0.96.U	6.00 U
	Starr	100%	102 %	114%	116 %	114%	106 %	122 %	102 %	101 %	105%	% 10I
	Surr	132 %	98 681	120%	137 %	% 801	143 %	124 %	144 %	165 %	131 %	129 %
oromethane	Sur	% COI	102 %	132 %	123 %	% 601	104 %	111 %	107 %	109 %	103 %	103 %
Toluenc-d8	Surr	113%	150%	151%	143 %	103 %	117%	106 %	123 %	141 %	107 %	114%

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tribulary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

					*****	THOSO 34 33	T41000 0 4 77	711000 0 4 T4	711000 A 4 7150	711000 0 0 70	TMCSD-8-2-	*****	****
									TMCSD-8-1-Z4/D		23	TMCSD-9-Z2	
Analyte	Type	Depth: Date:	0.5 - 1.5 05/31/01	1.5 - 2.4 05/31/01	0.5 - 1.1 05/31/01	1.1 - 2.5 05/31/01	2.2 - 2.5 05/30/01	2.5 - 3.5 05/30/01	2.5 - 3.5 05/30/01	0.5 - 0.9 05/30/01	0.9 - 2.5 05/30/01	0.5 - 1.6 05/30/01	1.6 - 3.5 05/30/01
Semivolatiles by Method 82700		, outer	04.01101			VV V 1101							
,2,4-Trichlorobenzene	7 7 7		413 U	1400 UJ	725 U	372 U	1700 ป	1210 U	1540 U	485 U	356 U	448 U	394 U
,2-Dichlorobenzene			170 J	952 J	1140	100 J	536 J	1210 U	1540 U	1010 J	356 U	448 U	394 U
,3-Dichlorobenzene			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
1,4-Dichlorobenzene	1		235 J	2170	370 J	372 U	1700 U	1210 U	1540 U	127 J	356 U	448 U	394 U
2,4,5-Trichlorophenol			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
2,4,6-Trichlorophenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2,4-Dichlorophenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2,4-Dimethylphenol			204 J	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2,4-Dinitrophenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2,4-Dinitrotoluene			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2,6-Dinitrotoluene			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2-Chloronaphthalene			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2-Chlorophenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2-Mcthylnaphthalene			1920	614 J	350 J	372 U	1700 U	.1210 U	1540 U	485 U	356 U	448 U	394 U
2-Methylphenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
2-Nitroaniline			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
2-Nitrophenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
3,3'-Dichlorobenzidine			826 U	2800 UJ	1450 U	744 U	3390 U	2420 U	3090 U	970 U	713 U	895 U	788 U
3-Nitroaniline			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
4,6-Dinitro-2-methylphenol			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
4-Bromophenyl phenyl ether			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
4-Chloro-3-methylphenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
4-Chloroaniline			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
4-Chlorophenyl phenyl ether			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
4-Methylphenol			250 J	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
4-Nitroaniline			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
4-Nitrophenol			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
Acenaphthene			3560 J	1080 J	458 J	372 U	1700 U	1210 U	1540 U	104 J	356 U	130 J	394 U
Acenaphthylene			949	1080 J	1480	372 U	371 J	1210 U	1540 U	144 J	356 U	82.0 J	394 U
Anthracene			7460 J	2900	2670	37.7 J	396 J	1210 U	1540 U	371 J	356 U	425 J	394 U
Benz(a)anthracene		1	11400 J	5750	3700 J	69.5 J	395 J	1210 U	1540 U	747	356 U	676 J	394 U
Benzo(a)pyrene			7960 J	5170 J	3300 J	57.5 J	465 J	1210 U	1540 U	704 J	356 U	607 J	394 U
Benzo(b)fluoranthene			9470 J	4500 J	3610 J	58.1 J	541 J	1210 U	1540 U	531 J	356 U	522 J	394 U
Benzo(g,h,i)perylene			1500	2580 J	995 J	372 U	1700 U	1210 U	1540 U	674 J	356 U	197 J	394 U
Benzo(k)fluoranthene			7600 J	4810 J	2810 J	67.0 J	517 J	1210 U	1540 U	603 J	356 U	644 J	394 U
Benzoic acid			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
Benzyl alcohol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Bis(2-chloroethoxy)methane		1	413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Bis(2-chloroethyl)ether	_		413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Bis(2-chloroisopropyl)ether		1	413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Bis(2-ethylhexyl)phthalate			279 J	479 J	156 J	372 U	1700 U	1210 U	1540 U	485 U	356 U	87.3 J	394 U
Butyl benzyl phthalate	1	T	413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Carbazole		1	5170 J	1450	800	372 U	1700 U	1210 U	1540 U	163 J	356 U	209 J	394 U
Chrysene		1	10500 J	6210	4650 J	76.1 J	495 J	1210 U	1540 U	874	356 U	711 J	394 U
Dibenz(a,h)anthracene	 		1250	1690 J	704 J	372 U	1700 U	1210 U	1540 U	268 J	356 U	112 J	394 U
Dibenzofuran		1	3940 J	839 J	294 J	372 U	1700 U	1210 U	1540 U	485 U	356 U	102 J	394 U
Diethyl phthalate		1	413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

i nree Mile Creek 2001 Sampii		er arminoo i	iii Torce Base	s, mome, nen	TOIK								
		Sample ID:	TMCSD-7-22	TMCSD-7-73	TMCSD-7-1-72	TMCSD-7-1-23	THCSD-8-1-72	TUCSCL8.1.74	TMCSD-8-1-Z4/D	THACK 0 2 72	TMCSD-8-2- 23	THECON O TO	******
		Depth:		1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 • 3.5	2.5 • 3.5			TMCSD-9-Z2	
Analyte	Type	Date:		05/31/01	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	0.5 + 0.9 05/30/01	0.9 - 2.5 05/30/01	0.5 - 1.6	1.6 - 3.5
Dimethyl phthalate	, , <u>, , , , , , , , , , , , , , , , , </u>		413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U		05/30/01	05/30/01
Di-n-butyl phthalate			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U 356 U	448 U	394 U
Di-n-octyl phthalate	 		413 U	1400 UJ	725 J	372 U	1700 U	1210 U	1540 U			448 U	394 U
Fluoranthene	 		27700	14500	8820					485 U	356 U	448 U	394 U
Fluorene			4550 J	1110 J	702 J	167 J	1270 J	1210 U	1540 U	1110	48.0 J	1430	394 U
Hexachlorobenzene			413 U	1110 J		372 U	1700 U	1210 U	1540 U	129 J	356 U	137 J	394 U
Hexachlorobutadiene					725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Hexachlorocyclopentadiene		<u> </u>	1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
Hexachloroethane			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Indeno(1,2,3-cd)pyrene			1430 J	5860	1220 J	372 U	1700 U	1210 U	1540 U	1290	356 U	336 J	394 U
Isophorone			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Naphthalene	ļ		6360 J	1230 J	340 J	372 U	1700 U	1210 U	1540 U	126 J	356 U	136 J	394 U
Nitrobenzene			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
N-Nitrosodimethylamine	ļ	ļ	413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
N-Nítrosodi-n-propylamine			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
N-Nitrosodiphenylamine			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Pentachlorophenol			1040 U	3520 UJ	1820 U	935 U	4270 U	3040 U	3880 U	1220 U	896 U	1130 U	991 U
Phenanthrene			31200	9470	4780	96.0 J	524 J	1210 U	1540 U	1100	70.4 J	1270	394 U
Phenol			413 U	1400 UJ	725 U	372 U	1700 U	1210 U	1540 U	485 U	356 U	448 U	394 U
Pyrene			20700	8010	3750 J	153 J	475 J	1210 U	1540 U	1560	52.8 J	685 J	394 U
2,4,6-Tribromophenol	Surr		89 %	78 %	56 %	66 %	95 %	101 %	88 %	34 %	42 %	51 %	38 %
2-Fluorobiphenyl	Surr		106 %	79 %	82 %	64 %	82 %	94 %	82 %	77 %	81 %	94 %	72 %
2-Fluorophenol	Surr		53 %	86 %	41 %	45 %	48 %	53 %	51 %	61 %	61 %	71 %	53 %
Nitrobenzene-d5	Surr		94 %	101 %	67 %	60 %	87 %	88 %	77 %	70 %	69 %	85 %	62 %
Phenol-d5	Sur		40 %	82 %	38 %	49 %	48 %	55 %	52 %	59 %	61 %	69 %	53 %
Terphenyl-d14	Surr		50 %	61 %	31 %	73 %	50 %	54 %	44 %	71.96	84 %	44 %	77 %
Metals by Method 6010B and 747	70A/71A (n	ng/Kg)								\			
Aluminum			5300	8790	8540	6060	7270	6170	7220	10200	10500	5760	4310
Antimony			0.42 U	0.41 U	0.67 U	0.33 U	1.4 U	1.1 U	1.4 U	0.39 U	0.28 U	0.36 U	0.33 U
Arsenic			8.7	32.8	13.7	6.6	19.9	4.6	3.6 J	20.7	10.5	8.8	14.8
Barium			34.6	86.5	58.3	24.1	78.7	46.4	60.9	128	24.7	45.2	31.0
Beryllium			0.20 J	0.68 J	0.22 U	0.12 J	0.45 U	0.36 U	0.45 U	0.67	0.36 J	0.12 U	0.11 U
Cadmium			2.1 J	12.7 J	12.3 J	0.11 U	5.0	0.36 U	0.45 U	6.2	0.094 U	0.12 U	0.11 U
Calcium			22100 J	45400 J	48000 J	26400 J	12700 J	8220 J	10400 J	13600 J	29800 J	22500 J	19900 J
Chromium			18.5	35.9	37.0	8.6	17.9	7.5	9.6	28.0	11.5		
Cobalt			4.3	7.2	7.5	5.8	6.0 J	5.1 J	6.I J	8.1	7.9	11.8	4.7
Copper			43.5	72.5	69.4	15.7	32.7	20.8	24.6	58.5	33.8	5.2	3.4
Iron			14300	23200	21400	15600	16900	21900	23100	26800		61.8	24.9
Lead			77.9	182	153	10.2	38.0	4.6	4.9	85.6	27300	17400	11500
Magnesium			3400 J	3220 J	6550 J	6390 J	3180	3770			9.6	38.3	3.8
Manganese			112	199	244	307	141		4150	5950	11700	6880	6800
Manganese Nickel			17.0	23.9	27.2			166	179	348	877	443	315
			930 J	1310 J	1100 J	11.2	12.9 939	10.5	13.7	21.1	18.6	14.6	7.5
Potassium			1.1 U	1.1 U	1.8 U	1200 J 0.87 U		830	1050	1300	1650	826	964
Selenium				0.27 UR			3.6 U	2.9 U	3.6 U	1.0 U	0.75 U	0.96 U	0.88 U
Silver	<u> </u>		0.28 UR		0.45 UR	0.22 UR	0.90 UR	0.73 UR	0.90 UR	0.26 UR	0.19 UR	0.24 UR	0.22 UR
Sodium	<u> </u>		113 J	179	138 J	115	534	385	454	363	102	139	95.1 J
Thallium			0.56 U	0.55 U	0.89 U	0.60 J	1.8 U	1.5 U	1.8 U	0.52 U	1.2	0.48 U	0.44 U
Vanadium			32.0	45.3	47.0	14.9	23.5	12.2	13.4	40.3	18.1	21.9	8.5
Zinc			113 J	173 J	176 J	31.9	87.4	60.1	66.0	103	54.5	93.5	19.4
Mercury V			0.11J	0.20 J	0.46 J	0.047	0.084 J	0.057 UJ	0.075 UJ	0.42 J	0.015 UJ	0.038 1	0.017 UJ

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

											TMCSD-8-2-		
		Sample ID:	TMCSD-7-Z2	TMC5D-7-Z3	TMCSD-7-1-Z2	TMCSD-7-1-23	TMCSD-8-1-23	TMCSD-8-1-Z4	TMCSD-8-1-Z4/D	TMCSD-8-2-Z2	23	TMCSD-9-Z2	TMCSD-9-Z4
		Depth:	0.5 - 1.5	1.5 - 2.4	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5	2.5 - 3.5	0.5 - 0.9	0.9 - 2.5	0.5 - 1.6	1.6 - 3.5
Analyte	Type	Date:	05/31/01	05/31/01	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01
otal Organic Carbon by Metho	d Lloyd Ka	hn (mg/Kg)											
Total Organic Carbon			25700	72100	205000	5270	211000	177000		113000	4490	43700	2680
lexavalent Chromium by Meth	od 7196A (r	ng/Kg)								***************************************			·
Chromium, Hexavalent			0.92 J	5.8 U	9.8 U	4.4 U	19 U	16 U	18 U	6.2 U	0.83 J	5.8 U	5.9 U
Cyanide, Total by Method 9012.	A (mg/Kg)									·	-		
Cyanide			0.689 U	0.280 J	0.479 J	0.590 U	2.55 U	1.90 U	2.22 U	0.394 J	0.524 U	0.723 U	0.611 U
mg/Kg)													
Petroleum Hydrocarbons, TR			370 J	1600	1060	477 U	2060 U	1520 U	1810 U	680	436 U	250 J	494 U
Percent Moisture (wt%)													
Percent Moisture			28.2	31.0		16.1	80.6	73.7	77.9		8.27	29.4	19.0

J = Estimated value.

"Surr" indicates a surrogate compound with a unit of percent recovery. Zero %

N = Identification tentative.

U = Not detected at the reported value. indicates surrogate may have been diluted out.

UR = Data rejected.

mg/Kg = Micrograms per kilogram. μg/Kg = Micrograms per kilogram.

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

					TMCSD-9-2-								
				TMCSD-9-1-Z4	Z2					TMCSD-9-4-Z4/D			
		Depth:	0.5 - 1	1 - 3.5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85	1.85 - 3.5	1.85 - 3.5	0.5 - 1.65	1.65 - 3.5	1.7 - 2.2
Analyte	Туре	Date:	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/24/01
PCBs by Method 8082 (µg/Kg	9)	,							· · · · · · · · · · · · · · · · · · ·				
Aroclor 1016			23.3 U	23.9 U	24.8 U	38.0 U	49.9 U	28.6 U	21.4 U	23.5 U	25.5 U	21.8 U	23.3 U
Aroclor 1221			46.7 U	47.9 U	49.6 U	76.1 U	99.8 U	57.2 U	42.7 U	46.9 U	51.0 U	43.7 U	46.6 U
Aroclor 1232		L	23.3 U	23.9 U	24.8 U	38.0 U	49.9 U	28.6 U	21.4 U	23.5 U	25.5 U	21.8 U	23.3 U
Aroctor 1242		L	23.3 U	23.9 U	24.8 U	38.0 U	49.9 U	28.6 U	21.4 U	23.5 U	25.5 U	21.8 U	23.3 U
Aroclor 1248		<u> </u>	23.3 U	23.9 U	24.8 U	38.0 U	49.9 U	28.6 U	21.4 U	23.5 U	25.5 U	21.8 U	23.3 U
Aroclor 1254		LL	23.3 U	23.9 U	24.8 U	38.0 U	49.9 U	28.6 U	21.4 U	23.5 U	25.5 U	21.8 U	23.3 U
Aroclor 1260			259	23.9 U	116	361	49.9 U	473	21.4 U	23.5 U	256	21.8 U	106
Decachlorobiphenyl	Surr	<u> </u>	102 %	98 %	101 %	107 %	100 %	111 %	99 %	115 %	88 %	108 %	95 %
Tetrachloro-m-xylene	Surr		61 %	93 %	91 %	90 %	93 %	83 %	87 %	97 %	78 %	97 %	88 %
Pesticides by Method 8081A	(µg/Kg)												
4,4′-DDD			35.0 U	3.59 U	4.55 NJ	20.8 NJ	37.4 U	9.98 NJ	3.20 U	3.52 U	5.84 NJ	3.28 U	3.84 NJ
4,4'-DDE			35.0 U	3.59 U	3.72 U	28.5 U	37.4 U	21.5 U	3.20 U	3.52 U	19.1 U	3.28 U	0.435 NJ
4,4'-DDT			9.14 NJ	4.79 U	2.82 NJ	11.1 NJ	49.9 U	11.4 NJ	4.27 U	4.69 U	6.04 NJ	4.37 U	15.4 NJ
Aldrin			112 NJ	4.79 U	14.2 U	32.0 NJ	49.9 U	76.6 NJ	4.27 U	4.69 U	25.5 U	4.37 U	4.66 U
alpha-BHC			35.0 U	3.59 U	3.72 U	28.5 U	37.4 U	21.5 U	3.20 U	3.52 U	19.1 U	3.28 U	3.49 U
alpha-Chlordane			4.52 NJ	1.20 U	0.977 NJ	5.61 NJ	12.5 U	5.67 NJ	1.07 U	1.17 U	1.93 NJ	1.09 U	2.64 NJ
beta-BHC			46.7 U	4.79 U	4.96 U	38.0 U	49.9 U	28.6 U	4.27 U	4.69 U	25.5 U	4.37 U	4.66 U
delta-BHC			23.3 U	2.39 U	0.596 NJ	19.0 U	25.0 U	14.3 U	2.14 U	2.35 U	12.7 U	2.18 U	2.33 U
Dieldrin			58.3 U	5.98 U	2.12 NJ	17.3 NJ	62.4 U	35.8 U	5.34 U	5.86 U	31.9 U	5.46 U	5.82 U
Endosulfan 1			58.3 U	5.98 U	0.715 NJ	47.6 U	62.4 U	5.72 NJ	5.34 U	5.86 U	31.9 U	5.46 U	2.64 NJ
Endosulfan II			35.0 U	3.59 U	3.72 U	28.5 U	37.4 U	21.5 U	3.20 U	3.52 U	19.1 U	3.28 U	3.49 U
Endosulfan sulfate			70.0 U	7.18 U	7.44 U	57.1 U	74.9 U	42.9 U	6.41 U	7.04 U	38.2 U	6.55 U	6.98 U
Endrin			46.7 U	4.79 U	4.96 U	38.0 U	49.9 U	28.6 U	4.27 U	4.69 U	25.5 U	4.37 U	4.66 U
Endrin aldehyde			117 U	12.0 U	12.4 U	60.2 NJ	125 U	65.3 NJ	10.7 U	11.7 U	63.7 U	10.9 U	11.6 U
Endrin ketone			23.8 NJ	3.59 U	7.49 NJ	16.0 NJ	37.4 U	20.9 NJ	3.20 U	3.52 U	14.9 NJ	3.28 U	3.49 U
gamma-BHC			23.3 U	2.39 U	2.48 U	19.0 U	25.0 U	5.98 NJ	2.14 U	2.35 U	12.7 U	2.18 U	2.33 U
gamma-Chlordane			23.3 U	2.39 U	2.48 U	8.79 NJ	25.0 U	9.01 NJ	2.14 U	2.35 U	3.56 NJ	2.18 U	1.17 NJ
Heptachlor			35.0 U	3.59 U	0.966 NJ	28.5 U	37.4 U	21.5 U	3.20 U	3.52 U	19.1 U	3.28 U	3.49 U
Heptachlor epoxide			58.3 U	5.98 U	6.20 U	9.05 NJ	62.4 U	25.1 NJ	5.34 U	5.86 U	31.9 U	5.46 U	1.56 NJ
Methoxychlor			467 U	47.9 U	49.6 U	380 U	499 U	50.6 NJ	42.7 U	46.9 U	255 U	43.7 U	46.6 U
Toxaphene			1170 U	120 U	124 U	951 U	1250 U	715 U	107 U	117 U	637 U	109 U	116 U
Decachlorobiphenyl	Surt		292 %	106 %	112 %	111 %	117 %	224 %	94 %	99 %	87 %	91 %	112 %
Tetrachloro-m-xylene	Surr		134 %	97 %	102 %	107 %	87 %	115 %	90 %	96 %	79 %	88 %	94 %

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

				TMCSD-9-2-								
	Sample ID:	₹.	TMCSD-9-1-24		TMCSD-9-3-23	TMCSD-9-3-24	TMCSD-9-4-Z3	MCSD-9-4-24 1	TMCSD-9-3-23 TMCSD-9-3-24 TMCSD-9-4-23 TMCSD-9-4-24 TMCSD-9-4-24D TMCSD-10-23 TMCSD-10-24 TMCSD-10-1-23	TMCSD-10-Z3	1MCSD-10-Z4	TMCSD-10-1-Z3
Analyte	Type Date:	0.5 - 1	1 - 3.5	0.5 - 1.1 05/30/01	0.5 - 1.1	1.1 - 3.5 05/28/01	0.5 - 1.85	1.85 - 3.5 05/29/01	1.85 - 3.5	0.5 - 1.65 05/29/01	1.65 - 3.5 05/28/01	1.7 - 2.2 05/24/01
1,1,1-Trichloroethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,1,2,2-Tetrachloroethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 UJ	5.77 U
1,1,2-Trichloroethane		5.97 U	6.24 U	6.29 U	10:0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,1-Dichloroethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,1-Dichloroethene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,2-Dichlorobenzene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 UJ	5.77 U
1,2-Dichlorocthane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,2-Dichloroethene, Total		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,2-Dichloropropane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
1,3-Dichlorobenzene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 UJ	5.77 U
1,4-Dichlorobenzene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 UJ	5.77 U
2-Butanone		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	8.81 J	11.0 U	11.5 U
2-Chloroethyl vinyl ether		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	12.8 U	11.0 U	11.5 U
2-i-lexanone		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	12.8 U	11.0 U	11.5 U
4-Methyl-2-pentanone		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	U.7.11	11.6 U	12.8 U	U 0.11	11.5 U
Acetone		14.8	7.52 J	12.6 U	20.0 U	57.8	14.4 U	11.7 U	11.6 U	52.2	11.0 U	11.5 U
Benzene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Bromodichloromethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	S.77 U
Вготобот		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Bromomethane		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	U 2 11	11.6 U	12.8 U	U 0.11	11.5 U
Carbon disulfide		5.97 U	6.24 U	6.29 U	10:0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Carbon tetrachloride		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	S.77 U
Chlorobenzene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	2.83 J	5.87 U	5.81 U	6.38 U	5.48 U	1.55 J
Chloroethane		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	U 7.11	11.6 U	12.8 U	11.0 U	11.5 U
Chloroform		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Chloromethane		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	12.8 U	U 0.11	11.5 U
cis-1,2-Dichloroethene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
cis-1,3-Dichloropropеле		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Dibromochloromethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	S.77 U
Ethylbenzene		S.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
m.p-Xylene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Methylene chloride		5.97 U	0.24 0	0.29	10.0 U	14.0 U	7.22.U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
o-Xylene		0.97.0	6.24 U	0.29 U	0.00	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Stylene		2.6.5	0.57	0.62.0	10.0	1.00	7.00	3.07.0	3.61 0	0.38 U	5.48 U	5.77 U
l etrachioroethene		0.76.6	0.24 U	0.29	10.0 0	14.0 0	0 2Z/	0.87 U	5.81 U	6.38 U	5.48 U	5.77 U
loluene		3.97.0	0.24 U	0.29 U	10.0 U	14.0 U	7.22.0	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
trans-1,2-Dichiorocthene		3.97.0	0.24 U	0.67.0	10.0 0	14.0 U	7.22.0	0.870	5.81 U	6.38 U	5.48 U	5.77 U
trans-1,3-Dichloropropene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Trichloroethene		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Trichlorofluoromethane		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
Vinyl acetate		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	12.8 U	11.0 U	11.5 U
Vinyl chloride		11.9 U	12.5 U	12.6 U	20.0 U	28.0 U	14.4 U	11.7 U	11.6 U	12.8 U	11.0 U	11.5 U
		5.97 U	6.24 U	6.29 U	10.0 U	14.0 U	7.22 U	5.87 U	5.81 U	6.38 U	5.48 U	5.77 U
	Surr	101 %	103 %	% 66	94 %	105 %	% 0%	95 %	97 %	% 16	92 %	94 %
	Sur	105 %	106 %	110 %	106 %	98 %	113 %	102 %	101 %	114%	150 %	122 %
pronxethane	Surr	103 %	900	103 %	% 66	102 %	97.96	% TOI	100 %	96 %	102 %	103 %
Toluene-d8	Surr	101%	% 101	102 %	105 %	106 %	106 %	104 %	101 %	104 %	126 %	% 601

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	Sample ID: TMCSD-9-1-22 TMCSD-9-1	1 MC 5 L-Y-1-C4		1MCSD-9-23	TMCSD-9-3-Z3 TMCSD-9-3-Z4 TMCSD-9-4-Z3 TMCSD-9-4-Z4	1MCSD-9-4-23		# MC50-8-4-24/D	1MCSU-10-73	TAICSD-10-Z4 TMCSD-10-1-Z	(MOSIOE REPORT
Analyle	Depth: 0.5 - 1 Date: 05/30/01	1.3.5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85				1.65 - 3.5	1.7 - 2.2
thod 8270C (µg											
1,2,4-Trichlorobenzene	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
1,2-Dichlorobenzene	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	N 69E	375 U
1,3-Dichlorobenzene	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	N 69E	375 U
1,4-Dichlorobenzene	393 U	385 U	405 U	D 089	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2,4,3-1 inchiorophenol	19311	38511	40511	11089	0 00057	47811	38311	38711	42311	11 096	375 11
2.4-Dichlorophenol	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	0.696	375 U
2,4-Dimethylphenol	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2,4-Dinitrophenol	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2,4-Dinitrotoluene	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2,6-Dinitrotoluene	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2-Chloronaphthalene	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2-Chlorophenol	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	N 69E	375 U
2-Methylnaphthalene	78.9 J	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2-Methylphenol	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
2-Nitroaniline	D 686	0.696	1020 U	1640 U	2300 U	1200 U	964 U	973 U	1060 U	928 U	942 U
2-Nitrophenol	393 U	385 U	405 U	089 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
3,3'-Dichlorobenzidine	786 U	771 U	811 U	1300 U	1830 U	0.926 U	U 191	774 U	845 U	738 U	749 U
3-Nitroaniline	D 686	069 U	1020 U	1640 U	2300 U	1200 U	964 U	973 U	1060 U	928 U	942 U
4,6-Dinitro-2-methylphenol	N 686	N 696	1020 U	1640 U	2300 U	1200 U	964 U	973 U	1060 U	928 U	942 U
4-Bromophenyl phenyl ether	393 U	385 U	405 U	089 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
4-Chloro-3-methylphenol	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
4-Chloroaniline	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
4-Chlorophenyi phenyl ether	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
4-Methylphenol	393 U	3850	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
4-Nitroaniline	0.686	0.696	1020 U	1640 U	2300 U	1200 U	264 U	973 U	1000	928 U	942 U
4-Introphenol	0.880	38511	1020 0	1040	23000	12000	204.0	207.11	1000	0.826	0.442.0
Acenaphticae	1777	385 11	405 0	390.1	913.0	1 391	363 U	36/ 0	423.11	369.0	37.5 U
Acenaphuyiene	0.6%6	38511	4030	0.000	0.11	1000	363.0	307.0	423.0	360 11	10.03
Denz(a) anthrocare	1 988	38511	1141	1140 1	11510	691	3831	38711	181	36011	140.1
Benzo(alnyrene	1619	385 U	101	1010 J	915 U	1310.1	383 U	38711	284 J	11 696	1201
Benzo(b)fluoranthene	630 J	385 U	92.0 J	1966	915 U	1130 J	383 U	387 U	249 J	369 U	88.4 J
Benzo(g,h,i)perylene	194 J	385 U	70.3 J	349 J	915 U	419 J	383 U	387 U	240 J	369 U	71.3 J
Benzo(k)fluoranthene	694 J	385 U	78.0 J	938 J	915 U	1330 J	383 U	387 U	211.5	369 U	97.8 J
Benzoic acid	1970	N 696	1020 U	4240	2300 U	1200 U	964 U	973 U	1000 U	928 U	942 U
Benzyl alcohol	205 J	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Bis(2-chloroethoxy)methane	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Bis(2-chlorocthyl)ether	393 U	385 U	405 U	020 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Bis(2-chloroisopropyl)ether	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Bis(2-ethylhexyl)phthalate	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Butyl benzyl phthalate	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Carbazole	305 J	385 U	405 U	351 J	915 U	471 J	383 U	387 U	78.9 J	N 69E	375 U
Chrysene	876 J	385 U	122 J	1220 J	915 U	1710	383 U	387 U	340 J	369 U	158 J
Dibenz(a,h)anthracene	114)	385 U	405 U	172 J	915 U	233 J	383 U	387 U	99.0 J	369 U	375 U
Dibenzofuran	1007	365 U	405 U	1/97	915.0	1117	363 U	387.0	423 U	369.0	375.0
Diemyi prinadae	2000	V 500	20.00	200	7.0.2	1100	2 000	2,100	2 (34	0 /00	2616

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffles Air Force Base, Rome, New York

Three Mile Creek 2001 Sampl	ing, romi	ar armines A	ii i oice base,	Nome, New 10	TMCSD-9-2-								
		Sample ID:	TMCSD-9-1-Z2	TMCSD-9-1-Z4	Z2	TMCSD-9-3-Z3	TMCSD-9-3-Z4	TMCSD-9-4-Z3	TMCSD-9-4-Z4	TMCSD-9-4-Z4/D	TMCSD-10-23	TMCSD-10-Z4	TMCSD-10-1-7
		Depth:	0.5 - 1	1 - 3.5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.65	1.85 - 3.5	1.85 - 3.5	0.5 - 1.65	1.65 - 3.5	1.7 - 2.2
Analyte	Type	Date:	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/28/01	05/29/01	05/24/01
Dimethyl phthalate			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Di-n-butyl phthalate			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Di-n-octyl phthalate		·	393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Fluoranthene			1820	385 U	194 J	2470	915 U	4330	383 U	387 U	508	369 U	300 J
Fluorene			202 J	385 U	405 U	323 J	915 U	396 J	383 U	387 U	63.8 J	369 U	375 U
Hexachlorobenzene			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Hexachlorobutadiene			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Hexachlorocyclopentadiene			989 U	969 U	1020 U	1640 U	2300 U	1200 U	964 U	973 U	1060 U	928 U	942 U
Hexachloroethane			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Indeno(1,2,3-cd)pyrene			336 J	385 U	149 J	508 J	915 U	838	383 U	387 U	464	369 U	131 J
Isophorone			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Naphthalene			182 J	385 U	405 U	117 J	915 U	140 J	383 U	387 U	423 U	369 U	375 U
Nitrobenzene			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
N-Nitrosodimethylamine			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
N-Nitrosodi-n-propylamine			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
N-Nitrosodiphenylamine			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Pentachlorophenol			989 U	969 U	1020 U	1640 U	2300 U	1200 U	964 U	973 U	1060 U	928 U	942 U
Phenanthrene			1980	385 U	226 J	2640	915 U	3570	383 U	387 U	609	369 U	175 J
Phenol			393 U	385 U	405 U	650 U	915 U	478 U	383 U	387 U	423 U	369 U	375 U
Pyrene			901 J	385 U	212 J	1300 J	915 U	1600	383 U	387 U	637	369 U	237 J
2,4,6-Tribromophenol	Surr		39 %	60 %	38 %	46 %	54 %	71 %	47 %	42 %	40 %	59 %	107 %
2-Fluorobiphenyl	Surr		86 %	79 %	82 %	93 %	85 %	83 %	83 %	82 %	83 %	79 %	84 %
2-Fluorophenol	Surr		67 %	50 %	64 %	65 %	44 %	49 %	63 %	66 %	64 %	76 %	78 %
Nitrobenzene-d5	Surr		79 %	70 %	72 %	77 %	70 %	79 %	70 %	73 %	71 %	74 %	81 %
Phenol-d5	Surr		64 %	50 %	63 %	65 %	42 %	49 %	64 %	64 %	63 %	81 %	77 %
Terphenyl-d14	Surr		38 %	82 %	71 %	42 %	64 %	37 %	99 %	92 %	76 %	74 %	62 %
Metals by Method 6010B and 74	470A/71A (r	ng/Kg)										<u> </u>	
Aluminum	1	1	6750	4020	3860	4100	6700	4050	4070	4260	3210	4890	2910
Antimony			0.32 U	0.37 U	0.35 U	0.53 U	0.81 U	0.40 U	0.31 U	0.33 U	0.38 U	0.34 U	0.31 U
Arsenic			4.7	0.83 J	2.9	4.6	7.2	1.8	3.3	2.8	3.1	2.4	3.2
Barium	1		41.5	27.3	28.2	56.5	274	50.7	20.3	20.8	35.6	26.5	40.0
Beryllium			0.15 J	0.12 U	0.12 J	0.18 U	0.27 U	0.13 U	0.11 J	0.12 J	0.13 U	0.16 J	0.10 U
Cadınium			0.11 U	0.12 U	0.12 U	0.18 U	0.29 J	0.13 U	0.10 U	0.11 U	0.13 U	0.11 U	0.10 U
Calcium			13700 J	14200 J	17900 J	21500 J	238000 J	16300 J	18200 J	16500 J	7250 J	22100 J	15400 J
Chromium			5.9	4.5	5.0	41.0	9.8	240	4.3	6.3	6.6	5.5	4.7
Cobalt			4.9	3.3	3.0	3.5 J	4.9 J	3.7	3.3	3.4	2.6	3.7	2.7
Copper			12.4	7.4	9.7	12.5	13.9	12.2	9.9	14.1	12.2	13.4	12.9 U
Iron	1		17700	8410	10400	14300	20500	11100	10300	10500	8800	11300	8860
Lead			10.1	2.7	11.2	138	2.6	921	3.3	3.1	15.5	3.7	9.6
Magnesium			4370	5560	4310	3060	7890	4670	6070	6400	2840	6350	5090
Manganese			269	243	304	297	420	237	373	383	125	423	345
Nickel			11.2	6.9	7.5	7.6	10.2	7.3	6.8	8.0	7.9	8.4	6.1
Potassium			543	1060	730	743	1510	495	778	901	482	836	417 J
Selenium			0.85 U	0.98 U	0.93 U	1.4 U	2.2 U	1.1 U	0.84 U	0.89 U	1.0 U	0.91 U	0.83 U
Silver			0.21 UR	0.24 UR	0.23 UR	0.35 UR	0.54 UR	0.27 UR	0.21 UR	0.22 UR	0.25 UR	0.23 UR	0.21 UR
Sodium			87.3 J	81.0 J	126	334	562	222	94.0 J	83.8 J	181	111 J	30.2 U
Thallium			0.43 U	0.49 U	0.47 U	0.71 U	1.1 U	0.54 U	0.42 U	0.45 U	0.51 U	0.46 U	0.41 U
Vanadium			11.5	8.0	9.2	11.1	15.8	9.4	7.5	8.2	10.2	8.3	7.7
Zinc			46.5	17.3	44.9	57.6	41.1	66.2	19.5	18.7	56.0	23.0	31.2
Mercury			0.028 J	0.021 UJ	0.019 UJ	0.039 J	0.043 UJ	0.028 J	0.016 UJ	0.019 UJ	0.025 J	0.015 UJ	0.022 J
001002 UK02 02 00_90-B0925									·			· · · · · · · · · · · · · · · · · · ·	1

001002_UK02_02_00_90-B0925

APC_Tables.XLS-TMC 2001 Sampling Table C-1-3/27/02

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

					TMCSD-9-2-								
		Sample IO:	TMCSD-9-1-Z2	TMCSD-9-1-Z4	22	TMCSD-9-3-23	TMCSD-9-3-Z	4 TMCSD-9-4-Z	3 TMCSD-9-4-Z4	TMCSD-9-4-Z4/D	TMCSD-10-Z3	TMCSD-10-Z4	TMCSD-10-1-Z
		Depth:		1 - 3.5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85	1.85 - 3.5	1.85 - 3.5	0.5 - 1.65	1.65 - 3.5	1.7 - 2.2
Analyte	Type	Date:	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/29/01	05/24/01
Total Organic Carbon by	Method Lloyd Ka	hn (mg/Kg)											
Fotal Organic Carbon			33600	2490 U	2580	25500	77000	25600	2340 U	2370 U	12400	2280	4120
Hexavalent Chromium by	Method 7196A (r	ng/Kg)											
Chromium, Hexavalent			5.1 U	4.9 U	5.8 U	2.8 J	12 U	5.2 U	4.7 U	6.0 U	4.4 U	5.2 U	4.4 U
Cyanide, Total by Method	9012A (mg/Kg)												
Cyanide			0.601 U	0.618 U	0.633 U	0.999 U	1.34 U	0.737 U	0.584 U	0.579 U	0.615 U	0.554 U	0.578 U
(mg/Kg)													
Petroleum Hydrocarbons, T	R		152 J	499 U	512 U	823 U	1120 U	590 U	477 U	482 U	517 U	457 U	481 U
Percent Molsture (wt%)													
Percent Moisture				19.9	21.8	51.4	64.4	32.2	16.1	17.0	22.6	12.4	16.8

Note:

J = Estimated value.

"Surr" indicates a surrogate compound with a unit of percent recovery. Zero %

U = Not detected at the reported value. indicates surrogate may have

been diluted out.

UR = Data rejected.

N = Identification tentative.

mg/Kg = Micrograms per kilogram. μg/Kg = Micrograms per kilogram.

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	•			•						
		Sample ID: T	MCSD-10-1-24	TMCSD-10-2-23	TMCSD-10-2-24	TMCSD-10-3-23	ID: TMCSD-10-1-24 TMCSD-10-2-23 TMCSD-10-2-24 TMCSD-10-3-23 TMCSD-10-3-23D TMCSD-10-3-24	TMCSD-10-3-Z4	TMCSD-11-23	TMCSD-11-24
Analyte	Туре	Depth: Date:	2.4 - 3.5 05/24/01	1.1 - 2.1 05/24/01	2.5 - 3.5 05/24/01	1.5 - 2.5 05/23/01	1.5 - 2.5 05/23/01	2.5 - 3.5 05/23/01	1.1 - 2.3 05/24/01	2.5 - 3.5
PCBs by Method 8082 (ug/Kg)										
Aroclor 1016			23.8 U	27.1 U	22.0 U	352 U	357 U	24.1 U	1310 U	24.2 U
Aroclor 1221			47.6 U	54.1 U	44.0 U	704 U	713 U	48.3 U	2630 U	48.3 U
Aroclor 1232			23.8 U	27.1 U	22.0 U	352 U	357 U	24.1 U	1310 U	24.2 U
Aroclor 1242			23.8 U	27.I U	22.0 U	352 U	357 U	24.1 U	1310 U	24.2 U
Aroclor 1248			23.8 U	27.1 U	22.0 U	352 U	357 U	24.I U	1310 U	24.2 U
Aroclor 1254			23.8 U	27.1 U	22.0 U	352 U	357 U	24.1 U	1310 U	24.2 U
Aroclor 1260			8.58 J	216	22.0 U	1480	2120	152	11700	24.2 U
Decachlorobiphenyl	Surr		97 %	% 96	% 101	127 %	128 %	% 66	% 0	8 16
Tetrachloro-m-xylene	Surr		% 88	% 06	94 %	95 %	% 101	85 %	%0	85 %
Pesticides by Method 8081A (ug/Kg)	Kg)									
4,4'-DDD			3. <i>57</i> U	5.35 NJ	3.30 U	64.4 NJ	76.1 NJ	190 NJ	149 NJ	3.63 U
4,4'-DDE			3.57 U	1.23 NJ	3.30 U	20.5 NJ	15.5 NJ	241 U	U 161	3.63 U
4,4'-DDT			0.943 NJ	13.6 NJ	4.40 U	25.0 NJ	32.5 NJ	2240 NJ	263 U	4.83 U
Aldrin			4.76 U	5.41 U	4.40 U	U 97LI	17.8 U	121 U	263 U	4.83 U
alpha-BHC			3.57 U	4.06 U	3.30 U	U 9.71	17.8 U	121 U	197 U	3.63 U
alpha-Chlordane			1.19 U	1.35 U	1.10 U	17.6 U	17.8 U	121 U	65.7 U	1.21 U
beta-BHC			4.76 U	5.41 U	4.40 U	17.6 U	17.8 U	121 U	263 U	4.83 U
delta-BHC			2.38 U	2.71 U	2.20 U	17.6 U	17.8 U	121 U	131 U	2.42 U
Dieldrin			5.95 U	3.62 NJ	5.49 U	6.10 NJ	7.64 NJ	24I U	328 U	6.04 U
Endosulfan 1			5.95 U	0.77.0	5.49 U	35.2 U	35.7 U	241 U	328 U	6.04 U
Endosulfan II			3.57 U	4.06 U	3.30 U	35.2 U	35.7 U	241 U	U 161	3.63 U
Endosulfan sulfate			7.14 U	8.12 U	6.59 U	35.2 U	35.7 U	241 U	394 U	7.25 U
Endrin			4.76 U	5.41 U	4.40 U	35.2 U	35.7 U	241 U	209 NJ	4.83 U
Endrin aldehyde			11.9 U	13.5 U	11.0 U	35.2 U	35.7 U	241 U	0.720	12.1 U
Endrin ketone			3.57 U	4.06 U	3.30 U	35.2 U	35.7 U	241 U	U 761	3.63 U
ganma-BHC			2.38 U	2.71 U	2.20 U	17.6 U	17.8 U	121 U	131 U	2.42 U
gamma-Chlordane			2.38 U	1.55 NJ	2.20 U	17.8 NJ	21.2 NJ	121 U	104 NJ	2.42 U
Heptachlor			3.57 U	4.06 U	3.30 U	35.2 U	35.7 U	241 U	U 161	3.63 U
Heptachlor epoxide			5.95 U	1.44 NJ	1.41 J	35.2 U	35.7 U	241 U	328 U	3.07 J
Methoxychlor			47.6 U	54.1 U	32.3 J	176 U	178 U	1210 U	2630 U	48.3 U
Toxaphene			119 U	135 U	110 U	N 188	892 U	6030 U	0220 U	121 U
Decachlorobiphenyl	Sur		92 %	104 %	97 %	137 %	125 %	%0	96.0	% 101 %
Tetrachloro-m-xylene	Sur		87 %	% 68	87.7%	% 101	% 98 *	% 0	% 0	84 %

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampiling, Former Grifflss Air Force Base, Rome, New York

Analyte Type (ug/Kg) 1,1.1-Trichlorocthane 1,1.2-Trichlorocthane 1,1.2-Trichlorocthane 1,1-Dichlorocthane 1,2-Dichlorocthane 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 1,2-Dichlorocthene 2-Dichlorocthyl	Depth: Date:	2.4 - 3.5 05/24/01 5.95	05/24/01	2.5-3.5 05/24/01	1.5 - 2.5 05/23/01	th: 2.4-3.5 1.1-2.1 2.5-3.5 1.5-2.5 1.5-2.5 2.5-3.5 te: 0524/01 0523/01 0523/01 0523/01	2.5 - 3.5 05/23/01	1.1 - 2.3 05/24/01 6.65 U	2.5 - 3.5 05/24/01 5.98 U
ane yial		11505	11 02 /				11 50 /	U 59.9	5.98 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		11505						O 59'9	5.98 U
1,1,2,2-Tetrachlorocthane 1,1,2-Trichlorocthane 1,1-Dichlorocthane 1,2-Dichlorocthane 1,2-Dichlorocthane 1,2-Dichlorocthane 1,2-Dichlorocthane 1,3-Dichloropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chlorocthyl vinyl ether 2-Hexanone		2222	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	2 2012	
1.1.2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropane 1.3-Dichloropane 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 UJ	6.59 U	5.68 UJ	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1.1-Dichlorocthane 1.1-Dichlorocthane 1.2-Dichlorocthane 1.2-Dichlorocthane 1.2-Dichloropane 1.2-Dichloropane 1.3-Dichloropenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 2-Butanone 2-Chlorocthyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1.2-Dichlorobenzene 1,2-Dichlorocathane 1,2-Dichloropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chlorocutyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1,2-Dichlorocthane 1,2-Dichlorocthene, Total 1,2-Dichloropene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chlorocthyl vinyl ether 2-Hexanone		5.95 UJ	6.59 U	5.68 UJ	8.95 U	8.90 U	1.88 J	2.54 J	5.98 U
1,2-Dichloroethene, Total 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	0.39 U	0.65.U	5.98 U
1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 UJ	0.59 U	5.68 UJ	8.95 U	N 06:8	U 9E.39	6.65 U	5.98 U
2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone		5.95 UJ	U 62.9	5.68 UJ	8.95 U	8.90 U	0.39 U	2.00 J	5.98 U
2-Chloroethyl vinyl ether 2-Hexanone		U 6:11	13.2 U	11.4 U	U 6.7.1	17.8 U	12.8 U	13.3 U	12.0 U
2-Hexanone		U 6:11	13.2 U	11.4 U	U 6:71	17.8 U	12.8 U	13.3 U	12.0 U
		U6:11	13.2 U	11.4 U	17.9 U	17.8 U	12.8 U	13.3 U	12.0 U
4-Methyl-2-pentanone		U 6.11	13.2 U	11.4 U	17.9 U	17.8 U	12.8 U	13.3 U	12.0 U
Acetone		U 6:11	13.2 U	11.4 U	21.8 J	17.8 U	28.5	13.3 U	12.0 U
Benzene		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Bromodichloromethane		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Bronnoform		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	0.39 U	6.65 U	5.98 U
Bromomethane		U 6:11	13.2 U	11.4 U	U 6.71	17.8 U	12.8 U	13.3 U	12.0 U
Carbon disulfide		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	0.39 U	6.65 U	5.98 U
Carbon tetrachloride		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	6.39 U	0.65 U	5.98 U
Chlorobenzene		5.95 U	7.78	5.68 U	S:00 J	5.58 J	6.39 U	12.4	5.98 U
Chloroethane		U 6.11	13.2 U	11.4 U	U 6.71	U 8.71	12.8 U	13.3 U	12.0 U
Chloroform		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	6.39 U	0.65 U	5.98 U
Chloromethane		11.9 U	13.2 U	11.4 U	U 6.71	U 8.7.1	12.8 U	13.3 U	12.0 U
cis-1,2-Dichloroethene		5.95 U	0.59 U	5.68 U	8.95 U	0.06.8	0.39 U	6.65 U	5.98 U
cis-1,3-Dichloropropene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Dibromochloromethane		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	0.39 U	6.65 U	5.98 U
Ethylbenzene		5.95 U	6.59 U	5.68 U	8.95 U	N 06:8	O 6E'9	0.65 U	5.98 U
m,p-Xylene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Methylene chloride		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
o-Xylene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Styrene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Tetrachloroethene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Toluene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
trans-1,2-Dichloroethene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	0.39 U	0.65 U	5.98 U
trans-1,3-Dichloropropene		5.95 U	6.59 U	5.68 U	8.95 U	8.90 U	O 6E'9	0.65 U	5.98 U
Trichloroethene		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	6.39 U	0.65 U	5.98 U
Trichlorofluoromethane		5.95 U	U 62.9	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
Vinyl acetate		11.9 U	13.2 U	11.4 U	17.9 U	17.8 U	12.8 U	13.3 U	12.0 U
Vinyl chloride		11.9 U	13.2 U	11.4 U	17.9 U	17.8 U	12.8 U	13.3 U	12.0 U
Xylenes, Total		5.95 U	0.59 U	5.68 U	8.95 U	8.90 U	6.39 U	6.65 U	5.98 U
1,2-Dichloroethane-d4 Surr		92 %	93 %	92 %	% %	94 %	94%	97.76	94 %
		134 %	113%	138 %	117%	118%	118%	124 %	103 %
oromethane		103 %	102 %	101 %	% 66	% 86	% 66	104 %	101 %
Toluene-do Sur		114%	% 601	123 %	10%	111%	110%	113%	104 %

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	TMCSD-10-1-Z4	TMCSD-10-2-Z3	TMCSD-10-2-Z4	TMCSD-10-3-23	TMCSD-10-3-Z3/D	TMCSD-10-3-Z4	TMCSD-11-Z3	TMCSD-11-Z4
		Depth:	2.4 - 3.5	1.1 - 2.1	2.5 - 3.5	1.5 - 2.5	1.5 - 2.5	2.5 - 3.5	1.1 - 2.3	2.5 - 3.5
Analyte	Type	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01	05/23/01	05/24/01	05/24/01
Semivolatiles by Method 8270C	(μg/Kg)									
1,2,4-Trichlorobenzene	<u></u>	<u> </u>	379 U	426 U	350 U	1620 U	1120 U	415 U	174 J	378 U
1,2-Dichlorobenzene			379 U	426 U	350 U	1620 U	1120 U	141 J	131 J	378 U
1,3-Dichlorobenzene			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
1,4-Dichlorobenzene			379 U	426 U	350 U	1620 U	1120 U	415 U	172 J	378 U
2,4,5-Trichlorophenol			954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
2,4,6-Trichlorophenol		l	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2,4-Dichlorophenol	<u></u>		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2,4-Dimethylphenol		<u> </u>	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2,4-Dinitrophenol		<u> </u>	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2,4-Dinitrotoluene	<u> </u>		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2,6-Dinitrotoluene			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2-Chloronaphthalene		I	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2-Chlorophenol			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2-Methylnaphthalene			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2-Methylphenol			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
2-Nitroaniline			954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
2-Nitrophenol			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
3,3'-Dichlorobenzidine			759 U	853 U	700 U	3230 U	2240 U	831 U	867 U	757 U
3-Nitroaniline			954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
4,6-Dinitro-2-methylphenol			954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
4-Bromophenyl phenyl ether			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
4-Chloro-3-methylphenol			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
4-Chloroaniline			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
4-Chlorophenyl phenyl ether	1		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
4-Methylphenol	i		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
4-Nitroaniline			954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
4-Nitrophenol	1		954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
Acenaphthene	1		379 U	87.1 J	350 U	368 J	205 J	415 U	51.8 J	378 U
Acenaphthylene			379 U	83.2 J	350 U	519 J	415 J	90.6 J	111 J	378 U
Anthracene			379 U	257 J	350 U	1110 J	783 J	129 J	207 J	378 U
Benz(a)anthracene	-		379 U	449 J	350 U	2260 J	1530 J	184 J	351 J	378 U
Benzo(a)pyrene	1		379 U	415 J	350 U	2110	1440	189 J	334 J	378 U
Benzo(b)fluoranthene			379 U	421 J	350 U	2400	1330	160 J	392 J	378 U
Benzo(g,h,i)perylene	1		379 U	130 J	350 U	698 J	423 J	139 J	119 J	378 U
Benzo(k)fluoranthene		†****** †	379 U	456 J	350 U	2340	2020	192 J	351 J	378 U
Benzoic acid		† · · · · · · †	954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	952 U
Benzyl alcohol	1 -		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Bis(2-chloroethoxy)methane	 	1	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Bis(2-chloroethyl)ether	†	 	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Bis(2-chloroisopropyl)ether	 	† 	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Bis(2-ethylhexyl)phthalate	1	† l	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Butyl benzyl phthalate	T	† -	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Carbazole	 	 	379 U	131 J	350 U	563 J	349 J	415 U	89.1 J	378 U
Chrysene	+	 	379 U	470 J	350 U	2460 J	1670 J	247 J	426 J	378 U
Dibenz(a,h)anthracene	 	 	379 U	426 U	350 U	351 J	238 J	73.1 J	434 U	378 U
Dibenzofuran	 	11	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
Diethyl phthalate	+	 	379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U

Table C-1
Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Dis-buty phthalise	Titlee Wille Creek 2001 Sample	ng, r onn			iome, new rork						
Commonty philable Common			Sample ID:	TMCSD-10-1-Z4	TMCSD-10-2-Z3	TMCSD-10-2-Z4	TMCSD-10-3-Z3	TMCSD-10-3-Z3/D	TMCSO-10-3-Z4	TMCSD-11-Z3	TMCSD-11-74
Analysis											
Dissorbeyt published 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U Dissorbeyt published 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U Dissorbeyt published 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U Dissorbeyt published 379 U 426 U 350 U 760 U 120 U 415 U 434 U 378 U Dissorbeyt published 379 U 426 U 350 U 760 U 320 U 1620 U 1120 U 415 U 434 U 378 U Dissorbeyt published 379 U 1111 U 350 U 760 U 120 U 415 U 434 U 378 U 1620 U 1120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 120 U 415 U 434 U 378 U 1620 U 1620 U 120 U 415 U 434 U 378 U 1620 U 1620 U 120 U 415 U 434 U 378 U 1620 U 1620 U 120 U 415 U 434 U 378 U 1620 U 1620 U 120 U 415 U 434 U 378 U 1620 U 1620 U 1620 U 1620 U 1620 U 415 U 434 U 378 U 1620 U 461 U 4	Analyte	Type									
Dis-buty phthalse	Dimethyl phthalate			379 U	426 U	350 U					
Dis-escryphalmine	Di-n-butyl phthalate	1			426 U	350 U	1620 U	1120 U	415 U		
Placementene	Di-n-octyl phthalate			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
Fillumene	Fluoranthene	1		379 U	1340	350 U	7800	5250	476	1110	
Heast-bloroberozene	Fluorene	1		379 U	111 J	350 U	444 J	303 J	415 U	95.7 J	
Heachbrokoudendees	Hexachlorobenzene			379 U	426 U	350 U	1620 U	1120 U	415 U		
Hear-bloocyclepenslatiene	Hexachlorobutadiene			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
Heachtorechane	Hexachlorocyclopentadiene	1		954 U	1070 U	880 U	4070 U	2820 U	1040 U	1090 U	
Independ (1.23-cd)pygrone 379 U 149 J 350 U 549 J 351 J 258 J 136 J 378 U 378 U 378 U 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U	Hexachloroethane			379 U	426 U	350 U	1620 U		415 U	434 U	378 U
Sophorone	Indeno(1,2,3-cd)pyrene			379 U	149 J	350 U	549 J	351 J	258 J	136 J	
Naphthalene	Isophorone	1		379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
N-Nicrosodin-propylminic 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U N-Nicrosodin-propylminic 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 178 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 3710 C 1040 U 1090 U 952 U 548 378 U 746 U 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 426 U 350 U 2940 I 1830 I 314 I 460 I 378 U 426 U 350 U 2940 I 1830 I 314 I 460 I 378 U 426 U 350 U 2940 I 1830 I 314 I 460 I 378 U 426 U 350 U 426 U 103 5 U 99 % 65 % 97 % 97 % 97 % 97 % 97 % 97 % 97 % 9	Naphthalene	1		379 U	68.1 J	350 U	292 J	1120 U	415 U	434 U	
N-Nitrosodimethylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 378 U 10 N-Nitrosodimethylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 10 N-Nitrosodiphenylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U 10 N-Nitrosodiphenylamine 954 U 1070 U 880 U 4070 U 2820 U 1040 U 1090 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 1040 U 952 U 1040 U 952 U 1040 U 952 U 1040 U 952 U 1040 U 952 U 952 U 1040 U 952 U 9	Nitrobenzene			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	378 U
N-Nitrosodiphenylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U N-Nitrosodiphenylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 434 U 378 U N-Nitrosodiphenylamine 954 U 1070 U 880 U 4070 U 2820 U 1040 U 1090 U 952 U 952 U 954 U 1070 U 880 U 4070 U 2820 U 1040 U 1090 U 952 U 952 U 954 U 1070 U 880 U 4070 U 1120 U 415 U 434 U 378 U 952 U 954 U 1070 U 880 U 4070 U 1120 U 415 U 434 U 378 U 954 U 1070 U 880 U 370 U 1120 U 115 U 415 U 434 U 378 U 954 U 1070 U 1120 U 115 U 415 U 434 U 378 U 954 U 1070 U 1120 U 115 U 415 U 434 U 378 U 954 U 1070 U 1120 U 115 U 415 U 434 U 378 U 954 U 1070 U 1120 U 115 U 105 U 105 U 105 U 105 U 105 U 105 U 1120 U 105 U 10	N-Nitrosodimethylamine	1		379 U	426 U	350 U					
N-Nitroschaptenylamine 379 U 426 U 350 U 1620 U 1120 U 415 U 343 U 378 U 378 U 1070 U 881 U 1070 U 880 U 4070 U 2820 U 1040 U 1090 U 952 U 96 Pentachlorophenol 954 U 1070 U 881 350 U 3710 2190 240 U 548 378 U 378 U 379 U 513 U 350 U 370 U 1120 U 415 U 434 U 378 U 378 U 379 U 513 U 350 U 2040 U 1850 U 314 U 460 U 378 U 24,6-Tritromophenol 379 U 513 U 350 U 2040 U 1850 U 314 U 460 U 378 U 24,6-Tritromophenol Surr 70 % 95 % 87 % 103 % 99 % 65 % 97 % 91 % 24,6-Tritromophenol Surr 85 % 73 % 66 % 78 % 79 % 79 % 79 % 75 % 83 % 22-Trucorobjahord Surr 85 % 73 % 66 % 78 % 99 % 65 % 97 % 91 % 22-Trucorobjahord Surr 85 % 73 % 66 % 78 % 79 % 79 % 79 % 75 % 83 % 82 % 103 % 104 M 104	N-Nitrosodi-n-propylamine			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
Pentachlorophenol 954 U 1070 U 880 U 4070 U 2820 U 1040 U 1090 U 592 U	N-Nitrosodiphenylamine			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
Phenshirece 379 U 831 350 U 3710 2190 240 J 548 378 U 750 U	Pentachlorophenol	1		954 U	1070 U	880 U	4070 U	2820 U			
Phenol	Phenanthrene			379 U	831	350 U	3710	2190	240 J	548	
Pyrene	Phenol			379 U	426 U	350 U	1620 U	1120 U	415 U	434 U	
24.6-Tribromophenol Surr 10 % 95 % 87 % 103 % 99 % 65 % 97 % 91 %	Pyrene	1		379 U	513 J	350 U					
Sur	2,4,6-Tribromophenol	Surr		70 %	95 %	87 %	103 %	99 %	65 %	97 %	
Nitrobenzene-d5 Surr 85 % 73 % 63 % 84 % 85 % 69 % 78 % 84 % 84 % 85 % 69 % 78 % 84 % 84 % 85 % 69 % 78 % 84 % 85 % 66 % 67 % 80 % 71 % 61 % 70 % 82 % 82 % 82 % 84 % 93 % 62 % 52 % 9 48 % 9 53 % 40 % 79 % 82 % 82 % 84 % 93 % 62 % 52 % 9 48 % 9 53 % 40 % 79 % 82 % 82 % 84 % 93 % 62 % 52 % 9 48 % 9 53 % 40 % 79 % 82 % 82 % 84 % 93 % 62 % 52 % 9 48 % 9 53 % 40 % 79 % 82 % 82 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 84 % 9 % 9 % 84 % 9 % 9 % 84 % 9 % 9 % 84 % 9 % 9 % 84 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 % 9 %	2-Fluorobiphenyl	Surr		85 %	73 %	66 %	78 %	79 %	79 %	75 %	83 %
Prenot-d5	2-Fluorophenol	Surr		88 %	65 %	65 %	26 %	26 %	60 %	72 %	83 %
Rephenyl-d14	Nitrobenzene-d5	Surr		85 %	73 %	63 %	84 %	85 %	69 %	78 %	84 %
Metals by Method 6010B and 7470A71A (mg/Kg) 3950 3820 3950 5330 5330 3380 4090 2710	Phenol-d5	Surr		85 %	66 %	67 %	80 %	71 %	61 %	70 %	82 %
Aluminum 3950 3820 3950 5320 5330 3380 4090 2710 Antimony 0.18 U 0.34 U 0.34 U 1.54 U 1.11 U 1.28 U 0.25 U 0.28 U Arsenic 4.8 5.1 3.4 15.1 15.7 6.84 8.2 1.8 Barium 46.6 59.4 37.4 70.0 66.4 29.3 34.8 27.3 Beryllium 0.092 J 0.11 U 0.11 U 0.348 J 0.365 J 0.640 U 0.23 J 0.093 U Cadmium 0.061 U 0.11 U 0.11 U 1.15 1.85 0.793 U 2.3 0.093 U Calcium 15900 J 11600 J 21600 J 10100 11700 11000 15900 J 10800 J Chobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8	Terphenyl-d14	Surr		84 %	39 %	62 %	52 % J	48 % J	53 %	40 %	79 %
Antimony 0.18 U 0.34 U 0.34 U 1.54 U 1.11 U 1.28 U 0.25 U 0.28 U Arsenic 4.8 5.1 3.4 15.1 15.7 6.84 8.2 1.8 Barium 46.6 59.4 37.4 70.0 66.4 29.3 34.8 27.3 0.093 U 0.28 U 0.28 U 0.092 U 0.11 U 0.11 U 0.34 U 0.365 U 0.365 U 0.640 U 0.23 U 0.093 U 0.091 U 0.11 U 0.11 U 0.11 U 0.34 U 0.365 U 0.640 U 0.23 U 0.093 U 0.091 U 1.5900 U 11600 U 1.5900 U 1.5900 U 1.5900 U 1.5900 U 1.5900 U 1.5900 U 1.5900 U 1.500	Metals by Method 6010B and 74	70A/71A (r	ng/Kg)						·		
Arsenic 4.8 5.1 3.4 15.1 15.7 6.84 8.2 1.8 Barium 46.6 59.4 37.4 70.0 66.4 29.3 34.8 27.3 Beryllium 0.092 J 0.11 U 0.11 U 0.348 J 0.365 J 0.640 U 0.23 J 0.093 U Caldrium 15900 J 11600 J 21600 J 10100 11700 11000 15900 J 10800 J Chromium 4.3 11.3 4.7 20.1 23.1 6.86 10.2 3.2 Cobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 111.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Ufrom 10700 12000 11500 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 9.490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Stolum 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.71 U Vanadium 17.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Aluminum	T .		3950	3820	3950	5320	5330	3380	4090	2710
Barium	Antimony			0.18 U	0.34 U	0.34 U	1.54 U	1.11 U	1.28 U	0.25 U	0.28 U
Beryllium	Arsenic			4.8	5.1	3.4	15.1	15.7	6.84	8.2	1.8
Cadmium 0.061 U 0.11 U 0.11 U 1.15 1.85 0.793 U 2.3 0.093 U Calcium 15900 J 11600 J 21600 J 10100 11700 11000 15900 J 10800 J Chromium 4.3 11.3 4.7 20.1 23.1 6.86 10.2 3.2 Cobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel	Barium			46.6	59.4	37.4	70.0	66.4	29.3	34.8	27.3
Cadmium 0.061 U 0.11 U 0.11 U 1.15 1.85 0.793 U 2.3 0.093 U Calcium 15900 J 11600 J 21600 J 10100 11700 11000 15900 J 10800 J Chromium 4.3 11.3 4.7 20.1 23.1 6.86 10.2 3.2 Cobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel	Beryllium			0.092 J	0.11 U	0.11 U	0.348 J	0.365 J	0.640 U	0.23 J	0.093 U
Chromium 4.3 11.3 4.7 20.1 23.1 6.86 10.2 3.2 Cobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490J 456J 608 J 747 620 529 422J 367 J Selenium 0.49 U <	Cadmium			0.061 U	0.11 U	0.11 U	1.15	1.85	0.793 U	2.3	
Cobalt 3.4 4.5 3.5 5.72 5.84 3.41 3.9 2.4 Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Silver 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Sodium 0.1	Calcium			15900 J	11600 J	21600 J	10100 .	11700	11000	15900 J	10800 J
Copper 11.8 U 15.5 U 13.1 U 42.8 U 52.6 U 15.8 U 22.0 U 6.8 Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR	Chromium	Ī .		4.3	11.3	4.7	20.1	23.1	6.86	10.2	3.2
Iron 10700 12000 11500 17800 17400 10100 12000 7160 Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U	Cobalt	1		3.4	4.5	3.5	5.72	5.84	3.41	3.9	2.4
Lead 3.8 29.4 3.5 73.8 84.0 16.4 30.3 2.2 U Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U	Copper			11.8 U	15.5 U	13.1 U	42.8 U	52.6 U	15.8 U	22.0 U	6.8
Magnesium 6110 3920 6770 3540 3830 4540 4460 3300 Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2 <	Iron			10700	12000	11500	17800	17400	10100	12000	7160
Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Lead			3.8	29.4	3.5	73.8	84.0	16.4	30.3	2.2 U
Manganese 400 247 461 262 334 256 245 190 Nickel 6.9 10.7 7.1 17.6 18.7 7.40 9.7 5.2 Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Magnesium	T		6110	3920	6770	3540	3830	4540	4460	3300
Potassium 490 J 456 J 608 J 747 620 529 422 J 367 J Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Manganese	I		400	247	461	262	334		245	
Selenium 0.49 U 0.90 U 0.91 U 9.24 U 6.64 U 7.68 U 0.66 U 0.75 U Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Nickel			6.9	10.7	7.1	17.6	18.7	7.40	9.7	5.2
Silver 0.12 UR 0.22 UR 0.23 UR 1.54 UR 1.11 UR 1.28 UR 0.17 UR 0.19 UR Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Potassium			490 J	456 J	608 J	747	620	529	422 J	367 J
Sodium 26.7 J 43.1 J 33.1 U 154 U 49.6 J 128 U 24.0 U 27.1 U Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Selenium			0.49 U	0.90 U	0.91 U	9.24 U	6.64 U	7.68 U	0.66 U	0.75 U
Thallium 0.24 U 0.45 U 0.46 U 6.16 U 4.43 U 5.12 U 0.33 U 0.37 U Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Silver			0.12 UR	0.22 UR	0.23 UR	1.54 UR		1.28 UR	0.17 UR	0.19 UR
Vanadium 7.7 18.4 7.5 37.4 41.2 9.80 15.2 5.2	Sodium	L					154 U	49.6 J	128 U	24.0 U	27.1 U
	Thallium			0.24 U	0.45 U	0.46 U	6.16 U		5.12 U	0.33 U	0.37 U
7. 4	Vanadium			7.7	18.4		37.4	41.2	9.80	15.2	5.2
	Zinc			21.8	74.3	22.7	7 5	136	29.0	57.0	16.1
Mercury 0.019 UJ 0.039 J 0.018 UJ 5J 0.242 J 0.0640 UJ 0.046 J 0.019 UJ	Mercury			0.019 UJ	0.039 J	0.018 UJ	jJ	0.242 J	0.0640 UJ	0.046 J	0.019 UJ

001002_UK02_02_00_90-B0925 APC_Tables.XLS-TMC 2001 Sampling Table C-1-3/27/02

Table C-1 Complete Analytical Data Summary for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Analyte	Туре	Sample ID: Depth: Date:	TMCSD-10-1-Z4 2.4 - 3.5 05/24/01	TMCSD-10-2-23 1.1 - 2.1 05/24/01	TMCSD-10-2-Z4 2.5 - 3.5 05/24/01	TMCSD-10-3-Z3 1.5 - 2.5 05/23/01	TMCSD-10-3-Z3/D 1.5 - 2.5 05/23/01	TMCSD-10-3-Z4 2.5 - 3.5 05/23/01	TMCSD-11-Z3 1.1 - 2.3 05/24/01	TMCSD-11-Z4 2.5 - 3.5 05/24/01
Total Organic Carbon by Metho	d Lloyd Ka	hn (mg/Kg)								
Total Organic Carbon			3310	8450	2540	37700	52700	23300	24000	2450 U
Hexavalent Chromium by Meth	od 7196A (i	ng/Kg)								
Chromium, Hexavalent			4.7 U	5.4 U	4.4 U	6.6 U	6.9 U	4.8 U	5.5 U	4.9 U
Cyanide, Total by Method 9012	A (mg/Kg)									
Cyanide			0.595 U	0.658 U	0.558 U	0.883 U	0.920 U	0.616 U	0.659 U	0.616 U
(mg/Kg)										
Petroleum Hydrocarbons, TR			48 I U	346 J	455 U	625 J	617 J	160 J	434 J	493 U
Percent Moisture (wt%)									7	
Percent Moisture	T		16.8	26.9	12.1	45.0	46.2	21.9	27.1	18.8

J = Estimated value.

"Surr" indicates a surrogete compound with a unit of

N = Identification tentative.

percent recovery. Zero % U = Not detected at the reported value. indicates surrogate may have

UR = Data rejected.

been diluted out.

mg/Kg = Micrograms per kilogram.

μg/Kg = Micrograms per kilogram.

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffies Air Force Base, Rome, New York

							(1)	Type	Analyte Furan by Method	han alvoid
1 T.SE	ſ L'SÞ	12.4 J	t 0.04	l 7.0£	L E.E3	155	l			Total TCDF
2.1	2.5	U 0.1	č.1	l 6.£	6.8	2.51				Total TCDD
t 0.EE	6.08	t 0.9	52.0	45.6	t 9.09	707				Total PeCDF

163	1480	001	215	156	523	U 7.88	[1,2,3,4,6,7,8,9-OCDD]
8.52	671	12.2	101	10.13	2.87	†9†	1,2,3,4,6,7,8,9-OCDF
2.02	103	U 4.21	5.05	42.5	0.25	6.81	1,2,3,4,6,7,8-HpCDD
2.71	7.24	0.01	9.86	1.8£	9.47	133	1,2,3,4,6,7,8-HpCDF
2.8 3	L'L	L 00.1	4.81	U 6.4	L T.E	6.89	1,2,3,4,7,8,9-HpCDF
1 08.0	U 0.2	U 0.2	ι ε. <u>1</u>	L 86.0	U 0.2	t 28.0	1,2,3,4,7,8-HxCDD
6.9	2.91	2.2	8.92	18.21	8.01	7/1	1,2,3,4,7,8-HxCDF
l E.1	[p.p	t 07.0	l e.e	2.91	l S.A	2.1 J	1,2,3,6,7,8-HxCDD
£ 9.1	3.0.1	tU 0.2	l 4.E	2.01	l č.£	6.41	1,2,3,6,7,8-HxCDF
[4.]	L L.S	L 29.0	3.2.1	L 8.1	L 0.2	2.31	1,2,3,7,8,9-HxCDD
Ω67	U 0.2	U 0.8	U 0.2	U 6.4	U 0.2	U 0.2	1,2,3,7,8,9-HxCDF
U 6.4	U 0.2	U 0.2	U 0.2	U 6.4	L I.4	U 0.2	1,2,3,7,8-PeCDD
t 02.0	l 66.0	ι εε.0	l E.1	U 6.4	ι εθ.0	€.0	1,2,3,7,8-PeCDF
2.0 J	4.2.1	l 28.0	ſ <i>L'</i> Þ	2.8 J	4.01	12.2	5'3' 4 '9'1'8-H ^x CDE
2.0 J	ι r.ε	U 0.2	ſ <i>Γ</i> .ε	2.5 J	2.0 J	<i>L</i> '91	2,3,4,7,8-PeCDF
l 04.0	U 0.1	U 0.1	t 18.0	26.0	ε.ε	l 17.0	7.3,7,8-TCDD
l \$8.0	6.1	U 0.1	U 0.1	2.1	£.1	S.T	2,3,7,8-TCDF
6.14	211	0.92	121	L'06	133	43.0	Total HpCDD
6.61	122	7.02	102	4.08	151	18£	Total HpCDF
2.€	21.6	5.2	21.5	32.3	I.TZ	12.5	Total HxCDD
30.5	2.48	6.11	⊅. 87	1.88	2.28	312	Total HxCDF
U 6.4	U 0.2	U 0.8	U 0.8	2.2	6.11	U 0.8	Total PeCDD
t 0.EE	6.08	t 0.e	0.22	45.6	t 9.09	707	Total PeCDF
2.1	2.5	U 0.1	2.1	3.9 1	6.8	2.£1	Total TCDD
32.7 J	ſ L'SÞ	12.4 J	l 0.04	1 7.0£	l E.E3	155	Total TCDF
		·					Dioxin and Furan by Method 1613B (ng/Kg)

Table C-1A Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

									
		Sample ID:	TMCSD-1-Z3	TMCSD-1-Z4	TMCSD-2-Z3	TMCSD-2-Z3/D	TMCSD-2-Z4	TMCSD-3-Z3	TMCSD-3-Z4
		Depth:	1.8 - 2.4	2.4 - 3.5	1.5 - 2.7	1.5 - 2.7	2.7 - 3.5	1.6 - 2.4	2.4 - 3.5
Analyte	Type	Date:	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01	06/04/01
13C12-2,3,7,8-TCDF	IS		92.2 %	101 %	69.4 %	85.3 %	84.7 %	82.6 %	87.2 %
13C12-2,3,7,8-TCDD	IS		81.3 %	84.3 %	84.3 %	96 %	94.1 %	91.1 %	71.8 %
13C12-2,3,4,7,8-PeCDF	IS		.70.7 %	65.9 %	61.5 %	77.5 %	94.8 %	61.6 %	66.7 %
13C12-2,3,4,6,7,8-HxCDF	IS		111 %	96.2 %	58.1 %	81.8 %	103 %	78.3 %	98.3 %
13C12-1,2,3,7,8-PeCDF	IS		80.1 %	71.6 %	87.1 %	90.3 %	96 %	78.2 %	77.8 %
13C12-1,2,3,7,8-PeCDD	IS		74.6 %	64.9 %	76.4 %	82.6 %	93.5 %	66.4 %	72.1 %
13C12-1,2,3,7,8,9-HxCDF	IS		99.1 %	94.6 %	81.1 %	97.5 %	106 %	91.3 %	89.2 %
13C12-1,2,3,6,7,8-HxCDF	IS		109 %	118 %	107 %	114 %	117 %	121 %	94.2 %
13C12-1,2,3,6,7,8-HxCDD	IS		107 %	97.5 %	85.8 %	98 %	108 %	94.9 %	102 %
13C12-1,2,3,4,7,8-HxCDF	IS		109 %	120 %	109 %	119 %	120 %	125 %	94.1 %
13C12-1,2,3,4,7,8-HxCDD	IS		102 %	100 %	85.6 %	99.3 %	111%	94.7 %	101 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		62.2 %	53.4 %	54.2 %	60.6 %	84.7 %	49.5 %	65.3 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		87.7 %	71.8 %	72.8 %	78.6 %	97.6 %	69.4 %	83.1 %
13C12-1,2,3,4,6,7,8-HpCDD	IS		68.7 %	58.8 %	54.1 %	63.3 %	91.4 %	52 %	73.3 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		40.5 %	30.3 %	27.9 %	32.8 %	68.1 %	24.7 %	58.4 %
Kev.	Note:	<u> </u>		L	I	L			

Note:

J = Estimated value.

"IS" indicates a internal standard with a unit of percent recovery.

N = Identification tentative.

U = Not detected at the reported value.

ng/Kg = nanograms per kilogram.

Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Table C-1A

	Sample ID:	TMCSD-5-Z3	TMCSD-5-Z4	TMCSD-5-2-Z3	TMCSD-5-2-Z4	TMCSD-6-Z3	TMCSD-6-Z4	TMCSD-6-24/D
Analyte Type	Depth: Date:	1.6 - 2.5 06/01/01	2.5 - 3.5 06/01/01	1.4 - 2.7 06/01/01	2.7 - 3.5 06/01/01	1.3 - 2.8 06/01/01	2.8 - 3.5 06/01/01	2.8 - 3.5 06/01/01
Dioxin and Furan by Method 1613B (ng/Kg)	(b)							
Total TCDF		122 J	63.0 J	276 J	2.0 J	219 J	0.86 J	1.0 U
Total TCDD		3.6	1.0 UJ	0.93 J	0.9 U	1.9	1.0 U	1.0 U
Total PeCDF		238	71.8	118 J	2.0 J	1 19 J	4.9 U	4.9 U
Total PeCDD		4.1 U	1.3	0.84	4.7 U	1.2	4.9 U	4.9 U
Total HxCDF		435	68.3	68.3	0.77 U	94.9	0.31 U	0.29 U
Total HxCDD		39.0	23.0	18.9	4.7 U	10.5	4.9 U	4.9 U
Total HpCDF		551	100	134	0.94 U	122	1.2 U	4.9 U
Total HpCDD		485	110	57.2	4.7 U	123	0.55 U	4.9 U
2,3,7,8-TCDF		3.8	1.0 U	0.60 J	U 6.0	1.4 J	1.0 U	1.0 U
2,3,7,8-TCDD		1.8	1.0 U	1.1 U	0.9 U	0.91	U 0.1	1.0 U
2,3,4,7,8-PeCDF		14.0	1.7.1	2.0 J	4.7 U	4.1 J	4.9 U	4.9 U
2,3,4,6,7,8-HxCDF		17.3	3.2 J	2.8 J	4.7 U	4.8 J	4.9 U	4.9 U
1,2,3,7,8-PeCDF		7.3	5.0 U	5.6 U	4.7 U	4.8 U	4.9 U	4.9 U
1,2,3,7,8-PeCDD		4.1 U	0.47 J	0.84 J	4.7 U	1.2 J	4.9 U	4.9 U
1,2,3,7,8,9-HxCDF		1.3 J	5.0 U	5.6 U	4.7 U	0.41 J	4.9 U	4.9 U
1,2,3,7,8,9-HxCDD		7.6 J	1.6 J	1.6 J	4.7 U	3.0 J	4.9 U	4.9 U
1,2,3,6,7,8-HxCDF		16.5	2.1 J	2.0 J	4.7 U	3.5 J	4.9 U	4.9 U
1,2,3,6,7,8-HxCDD		13.6	1.8 J	2.3 J	4.7 U	3.7 J	4.9 U	4.9 U
1,2,3,4,7,8-HxCDF		115	4.8 J	7.1	4.7 U	17.8 J	4.9 U	4.9 U
1,2,3,4,7,8-HxCDD		2.6 J	0.38 J	0.49 J	4.7 U	1.0 J	4.9 U	4.9 U
1,2,3,4,7,8,9-HpCDF		46.5	1.4 J	2.0 J	4.7 U	7.0 J	4.9 U	4.9 U
1,2,3,4,6,7,8-HpCDF		171	52.2	0.69	4.7 U	55.4 J	4.9 U	4.9 U
1,2,3,4,6,7,8-HpCDD		281	34.7	28.0	4.7 U	60.7	4.9 U	4.9 U
1,2,3,4,6,7,8,9-OCDF		441	41.6	57.2	9.4 U	79.0 J	0.7 U	9.7 U
1,2,3,4,6,7,8,9-OCDD		1810	215	961	9.4 U	459 J	0.7 U	9.7 U

Table C-1A Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	TMCSD-5-Z3	TMCSD-5-Z4	TMCSD-5-2-Z3	TMCSD-5-2-Z4	TMCSD-6-Z3	TMCSD-6-Z4	TMCSD-6-Z4/D
		Depth:	1.6 - 2.5	2.5 - 3.5	1.4 - 2.7	2.7 - 3.5	1.3 - 2.8	2.8 - 3.5	2.8 - 3.5
Analyte	Type	Date:	06/01/01	06/01/01	06/01/01	06/01/01	06/01/01	06/01/01	06/01/01
13C12-2,3,7,8-TCDF	IS		93.7 %	67.5 %	107 %	75.3 %	93.5 %	76.6 %	73.4 %
13C12-2,3,7,8-TCDD	IS		96.9 %	61.7 %	103 %	75.8 %	93.5 %	77.6 %	71.5 %
13C12-2,3,4,7,8-PeCDF	1S		72.3 %	48.9 %	101 %	77.8 %	86 %	83.6 %	78.5 %
13C12-2,3,4,6,7,8-HxCDF	IS		80.9 %	69.6 %	114 %	104 %	93 %	102 %	101 %
13C12-1,2,3,7,8-PeCDF	IS		79.3 %	48.6 %	101 %	78.9 %	92.1 %	79.7 %	76.3 %
13C12-1,2,3,7,8-PeCDD	IS		78.4 %	45.6 %	106 %	79.2 %	88.4 %	84.9 %	80.6 %
13C12-1,2,3,7,8,9-HxCDF	IS		99.1 %	66.6 %	115 %	99.6 %	102 %	104 %	99.7 %
13C12-1,2,3,6,7,8-HxCDF	IS		120 %	78.6 %	120 %	109 %	104 %	103 %	105 %
13C12-1,2,3,6,7,8-HxCDD	IS		98.7 %	67.7 %	107 %	99 %	93 %	97.8 %	97.9 %
13C12-1,2,3,4,7,8-HxCDF	IS		124 %	82.9 %	127 %	109 %	111 %	107 %	106 %
13C12-1,2,3,4,7,8-HxCDD	IS		113 %	70.2 %	116 %	111 %	101 %	105 %	110 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		56.1 %	40.5 %	94.4 %	87.8 %	87 %	99.1 %	99.2 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		76 %	54.8 %	114 %	103 %	101 %	109 %	109 %
13C12-1,2,3,4,6,7,8-HpCDD	IS		57.1 %	45.5 %	99.4 %	97.7 %	90.7 %	105 %	105 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		23.7 %	21.8 %	70.2 %	70 %	69.8 %	90.2 %	104 %

J = Estimated value.

"IS" indicates a internal standard with a unit of percent recovery.

N = Identification tentative.

U = Not detected at the reported value.

ng/Kg = nanograms per kilogram.

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	LF5SD-1-Z3	LF5SD-1-Z4	LF5SD-2-Z2	LF5SD-2-Z4	LF5SD-3-Z2	LF5SD-3-Z4	TMCSD-7-Z2	TMCCD 7.72
		Depth:		2.4 - 3.4	0.5 - 2.3	2.3 - 3.3	0.5 - 2.3	2.3 - 3.3	0.5 - 1.5	1.5 - 2.4
Analyte	Type	Date:		05/31/01	05/31/01	05/31/01	#REFI	05/31/01	05/31/01	05/31/01
73,000,70	i yine							00/01/01	00/01/01	00/01/01
Dioxin and Furan by Method	l 1613B (ng/k	(g)		· · · · · · · · · · · · · · · · · · ·			···-			
Total TCDF			20.9 J	0.9 U	1.3 U	0.90 U	10.3 J	1.2 U	87.5 J	1040 J
Total TCDD			1.0 U	0.9 U	1.3 U	1. 0 U	0.62	1.0 U	1.0 U	30.9
Total PeCDF			26.1 J	4.5 U	6.3 U	5.2 U	5.4	4.8 U	72.7 J	875 J
Total PeCDD			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	5.1 U	12.8
Total HxCDF			19.4 U	4.5 U	6.3 U	5.2 U	8.3	4.8 U	49.5 J	448 J
Total HxCDD			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	2.3 U	33.3
Total HpCDF			13.5	4.5 U	6.3 U	5.2 U	7.1	4.8 U	44.0	605
Total HpCDD			50.5	4.5 U	6.3 U	5.2 U	23.0 U	4.8 U	79.4	658
2,3,7,8-TCDF			1.00	0.9 U	1.3 U	1.0 U	0.70 J	1.0 U	0.91	17.5
2,3,7,8-TCDD			1.0 U	0.9 U	1.3 U	1.0 U	0.62 J	1.0 U	1.0 UJ	20.1
2,3,4,7,8-PeCDF			1.8 J	4.5 U	6.3 U	5.2 U	0.76 J	4.8 U	1.8 J	16.3
2,3,4,6,7,8-HxCDF			1.7 J	4.5 U	6.3 U	5.2 U	0.71 J	4.8 U	2.6 J	26.2
1,2,3,7,8-PeCDF			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	5.1 U	4.9 U
1,2,3,7,8-PeCDD			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	5.1 U	4.9 U
1,2,3,7,8,9-HxCDF			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	5.1 U	5.5 J
1,2,3,7,8,9-HxCDD			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	5.1 UJ	14.7
1,2,3,6,7,8-HxCDF			5.1 UJ	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	1.5 J	16.1
1,2,3,6,7,8-HxCDD			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	2.3 J	18.6
1,2,3,4,7,8-HxCDF			3.0 J	4.5 U	6.3 U	5.2 U	1.4 J	4.8 U	5.8 J	35.7
1,2,3,4,7,8-HxCDD			5.1 U	4.5 U	6.3 UJ	5.2 U	4.2 U	4.8 U	5.1 U	4.9 U
1,2,3,4,7,8,9-HpCDF			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	3.2 J	4.9 U
1,2,3,4,6,7,8-HpCDF			5.1 U	4.5 U	6.3 U	5.2 U	4.2 U	4.8 U	17.6	245
1,2,3,4,6,7,8-HpCDD			23.1	4.5 U	6.3 U	5.2 U	9.7 U	4.8 U	37.6	304
1,2,3,4,6,7,8,9-OCDF			10.2 U	9.0 U	12.6 U	10.4 U	8.7	9.7 U	37.4	616
1,2,3,4,6,7,8,9-OCDD			152	9.0 U	12.6 U	10.4 U	70.8 U	9.7 U	312	2240

Table C-1A Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

Analyte	•	Depth:	LF5SD-1-Z3 1.4 - 2.4 05/31/01	LF5SD-1-Z4 2.4 - 3.4 05/31/01	0.5 - 2.3 05/31/01	LF5SD-2-Z4 2.3 - 3.3 05/31/01	LF5SD-3-Z2 0.5 - 2.3 #REF!	LF5SD-3-Z4 2.3 - 3.3 05/31/01	TMCSD-7-Z2 0.5 - 1.5 05/31/01	TMCSD-7-Z3 1.5 - 2.4 05/31/01
13C12-2,3,7,8-TCDF	Type	Date.	95.2 %	71.9 %	82.3 %	77.5 %	82.7 %	74 %	62.3 %	65.9 %
13C12-2,3,7,8-TCDD	IS		88.7 %	75 %	82.6 %	73.9 %	78.8 %	71.9 %	69.3 %	65.5 %
13C12-2,3,4,7,8-PeCDF	IS		54.6 %	59.6 %	59.7 %	69.3 %	64 %	65.6 %	51.4 %	32.3 %
13C12-2,3,4,6,7,8-HxCDF	IS		111 %	90.1 %	102 %	95.1 %	91.8 %	91.2 %	52 %	57.9 %
13C12-1,2,3,7,8-PeCDF	IS		59.3 %	61.1 %	64.2 %	71.2 %	65.6 %	68.1 %	65.7 %	40.3 %
13C12-1,2,3,7,8-PeCDD	IS		50.9 %	60.8 %	60.5 %	67.7 %	61 %	67.5 %	60.2 %	36.1 %
13C12-1,2,3,7,8,9-HxCDF	IS		104 %	79.9 %	89.2 %	91.1 %	88.8 %	87.2 %	69.3 %	71.5 %
13C12-1,2,3,6,7,8-HxCDF	IS		120 %	99.6 %	111%	100 %	97.2 %	98.8 %	84.5 %	92.1 %
13C12-1,2,3,6,7,8-HxCDD	IS		105 %	97.3 %	106 %	94.4 %	88 %	91.8 %	71.4 %	78.4 %
13C12-1,2,3,4,7,8-HxCDF	IS		123 %	94.2 %	104 %	102 %	99.6 %	99.2 %	87.9 %	97.8 %
13C12-1,2,3,4,7,8-HxCDD	IS		108 %	108 %	117 %	100 %	96.8 %	101 %	76.5 %	81.7 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		60.7 %	59.9 %	59.7 %	70.8 %	63.4 %	67.4 %	47.8 %	48.7 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		73.9 %	73.3 %	74.4 %	83.8 %	73.8 %	80.2 %	63.6 %	56.9 %
13C12-1,2,3,4,6,7,8-HpCDD	IS		62.1 %	75.9 %	78.4 %	78.7 %	70.9 %	75.2 %	49 %	51.4 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		35.4 %	50.4 %	53.2 %	55.4 %	49.4 %	53 %	25.4 %	31.3 %

J = Estimated value.

"IS" indicates a internal standard with a unit of percent recovery.

N = Identification tentative.

U = Not detected at the reported value.

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Depth:	0.5 - 1.1	TMCSD-7-1-Z3	2.2 - 2.5	2.5 - 3.5	TMCSD-8-1-Z4/D 2.5 - 3.5	0.5 - 0.9	0.5 - 1.6
Analyte	Type	Date:	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01
Dioxin and Furan by Method	1613B (ng/l	(g)							
Total TCDF			895 J	31.4 J	63.8 J	1.6 U	2.0 U	790 J	28.2 J
Total TCDD			46.2	1.0 U	2.8 U	1.6 U	2.0 U	5.5	0.25
Total PeCDF			788 J	17.3 J	45.4 J	7.9 U	10.0 U	584 J	16.9 J
Total PeCDD			4.8 U	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
Total HxCDF			422 J	6.0 U	29.2	7.9 U	0.25	210	13.8 J
Total HxCDD			45.4	5.0 U	1.3	7.9 U	10.0 U	26.3	0.83 U
Total HpCDF			434	5.0 U	38.4	7.9 U	10.0 U	164	16.8
Total HpCDD			645	5.0 U	35.0	7.9 U	10.0 U	115	50.4
2,3,7,8-TCDF			6.9	1.0 UJ	2.8 U	1.6 U	2.0 U	2.2	0.49 J
2,3,7,8-TCDD			23.5	1.0 U	2.8 U	1.6 U	2.0 U	1.0 U	1.0 U
2,3,4,7,8-PeCDF			13.2	5.0 UJ	1.1 J	7.9 U	10.0 U	6.6	5.2 U
2,3,4,6,7,8-HxCDF			22.7	5.0 U	2.0 J	7.9 U	10.0 U	13.4	5.2 U
1,2,3,7,8-PeCDF			4.8 U	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	0.30 J
1,2,3,7,8-PeCDD		·	4.8 U	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
1,2,3,7,8,9-HxCDF			4.8 U	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
1,2,3,7,8,9-HxCDD			16.4	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
1,2,3,6,7,8-HxCDF			13.5	5.0 U	13.9 UJ	7.9 U	10.0 U	7.9	5.2 U
1,2,3,6,7,8-HxCDD			18.9	5.0 U	1.3 J	7.9 U	10.0 U	4.9 J	5.2 U
1,2,3,4,7,8-HxCDF			32.0	5.0 UJ	2.4 J	7.9 U	0.25 J	14.3	5.2 U
1,2,3,4,7,8-HxCDD			4.8 U	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
1,2,3,4,7,8,9-HpCDF			17.1	5.0 U	13.9 U	7.9 U	10.0 U	5.0 U	5.2 U
1,2,3,4,6,7,8-HpCDF		1	189	5.0 UJ	20.2	7.9 U	10.0 U	91.0	5.9
1,2,3,4,6,7,8-HpCDD			295	5.0 U	16.1	7.9 U	10.0 U	51.1	16.0
1,2,3,4,6,7,8,9-OCDF			348	10.0 U	19.8 J	15.8 U	20.0 U	110	18.1
1,2,3,4,6,7,8,9-OCDD		 	2270 J	30.4 U	132	15.8 UJ	20.0 U	333	111

Table C-1A Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

			TMCSD-7-1-Z2	TMCSD-7-1-Z3			TMCSD-8-1-Z4/D		
		Depth:	0.5 - 1.1	1.1 - 2.5	2.2 - 2.5	2.5 - 3.5	2.5 - 3.5	0.5 - 0.9	0.5 - 1.6
Analyte	Type	Date:	05/31/01	05/31/01	05/30/01	05/30/01	05/30/01	05/30/01	05/30/01
3C12-2,3,7,8-TCDF	IS		83.2 %	89.9 %	99.4 %	86.1 %	78.6 %	73.1 %	84.7 %
3C12-2,3,7,8-TCDD	IS		76.9 %	86.5 <i>%</i>	91.7 %	81.7 %	74.2 %	76.5 %	83.1 %
3C12-2,3,4,7,8-PeCDF	18		44.6 %	81.3 %	80.1 %	72.6 %	67.1 %	51.1 %	72.9 %
13C12-2,3,4,6,7,8-HxCDF	IS		81.1 %	92.6 %	102 %	113 %	114 %	86 %	85 %
13C12-1,2,3,7,8-PeCDF	IS		51.3 %	82.4 %	79 %	77.5 %	73.2 %	56.3 %	78 %
3C12-1,2,3,7,8-PeCDD	IS		46.8 %	81.9 %	78 %	74.2 %	67.2 %	53.3 %	78.4 %
13C12-1,2,3,7,8,9-HxCDF	IS	·	87.5 %	95.4 %	99.8 %	109 %	102 %	87.7 %	91.8 %
13C12-1,2,3,6,7,8-HxCDF	IS		107 %	101 %	108 %	120 %	117 %	103 %	102 %
13C12-1,2,3,6,7,8-HxCDD	IS		93 %	95.6 %	101 %	111 %	106 %	89.6 %	89 %
13C12-1,2,3,4,7,8-HxCDF	IS		111 %	104 %	105 %	113 %	107 %	109 %	106 %
13C12-1,2,3,4,7,8-HxCDD	IS		96.2 %	101 %	103 %	110 %	113 %	97.7 %	98.9 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		59.6 %	83.5 %	77.4 %	91.3 %	89.4 %	51.2 %	67.5 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		68.4 %	92.7 %	96.2 %	108 %	97.9 %	67.6 %	85 %
13C12-1,2,3,4,6,7,8-HpCDD	1S		61.6 %	87.7 %	77.6 %	91.5 %	82.3 %	55.4 %	71.6 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		39.9 %	72.8 %	49.1 %	64.5 %	55.7 <i>%</i>	32.5 %	45.9 %

J = Estimated value.

N = Identification tentative.

"IS" indicates a internal standard with a unit of percent recovery.

U = Not detected at the reported value.

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	TMCSD-9-Z4	TMCSD-9-1-72	TMCSD-9-1-Z4	TMCSD-9-2-Z2	TMCSD-9-3-Z3	TMCSD-9-3-Z4	TMCSD-9-4-Z3
		Depth:		0.5 - 1	1 - 3.5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85
Analyte	Туре	Date:	05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
	9///								
Dioxin and Furan by Metho	d 1613B (ng/k	(g)							
Total TCDF			1.0 U	123 J	1.0 U	3.3 J	21.7 J	1.2 U	25.5 J
Total TCDD		<u> </u>	1.0 U	2.8	1.0 U	0.8 U	0.74	1.2 U	0.68
Total PeCDF			5.2 U	93.4 J	5.2 U	2.4	13.7 J	5.8 U	13.8 J
Total PeCDD			5.2 U	5.1 U	5.2 U	4.2 U	0.27	5.8 U	2.8 U
Total HxCDF			5.2 U	51.4 J	0.22	3.2	12.7	0.20	14.1
Total HxCDD			5.2 U	8.4	5.2 U	1.0	5.5	5.8 U	3.2
Total HpCDF			5.2 U	46.0	5.2 U	4.4	5.1	0.25 U	11.0
Total HpCDD			5.2 U	85.2	5.2 U	9.9 U	26.8	5.8 U	34.0
2,3,7,8-TCDF			1.0 U	1.8	1.0 U	0.8 UJ	0.40 J	1.2 U	0.40 J
2,3,7,8-TCDD			1.0 U	1.3	1.0 U	0.8 UJ	0.22 J	1.2 U	0.25 J
2,3,4,7,8-PeCDF			5.2 U	5.1 U	5.2 U	0.46 J	0.71 J	2.8 U	2.8 UJ
2,3,4,6,7,8-HxCDF			5.2 U	3.1 J	5.2 U	0.42 J	1.1 j	5.8 U	1.3 J
1,2,3,7,8-PeCDF			5.2 U	1.1 J	5.2 U	4.2 U	2.8 UJ	5.8 U	2.8 U
1,2,3,7,8-PeCDD			5.2 U	5.1 U	5.2 U	4.2 U	0.27 J	5.8 U	2.8 U
1,2,3,7,8,9-HxCDF			5.2 U	5.1 U	5.2 U	4.2 U	2.8 U	5.8 U	2.8 U
1,2,3,7,8,9-HxCDD			5.2 U	3.0 J	5.2 U	4.2 U	2.8 UJ	5.8 U	1.2 J
1,2,3,6,7,8-HxCDF			5.2 U	2.2 J	5.2 U	4.2 U	0.60 J	5.8 U	0.72 J
1,2,3,6,7,8-HxCDD			5.2 U	3.0 J	5.2 U	4.2 U	0.83 J	5.8 U	1.0 J
1,2,3,4,7,8-HxCDF			5.2 U	5.0 J	0.22 J	0.75 J	1.6 J	0.20 J	2.4 J
1,2,3,4,7,8-HxCDD			5.2 U	5.1 U	5.2 U	4.2 U	0.41 J	5.8 U	2.8 U
1,2,3,4,7,8,9-HpCDF			5.2 U	2.0 J	5.2 U	4.2 U	0.47 J	5.8 U	2.8 U
1,2,3,4,6,7,8-HpCDF			5.2 U	21.7	5.2 U	4.2 U	4.6 J	5.8 U	5.6
1,2,3,4,6,7,8-HpCDD			5.2 U	41.0	5.2 U	5.1 U	13.3 U	5.8 U	17.0
1,2,3,4,6,7,8,9-OCDF			10.3 U	34.8	10.4 U	8.5 U	6.8 U	11.6 U	9.1
1,2,3,4,6,7,8,9-OCDD			10.3 U	322	10.4 U	36.5 U	80.1 U	11.6 UJ	95.3

Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Table C-1A

Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID: "	TMCSD-9-Z4	TMCSD-9-1-Z2	TMCSD-9-1-Z4	TMCSD-9-2-Z2	TMCSD-9-3-Z3	TMCSD-9-3-Z4	TMCSD-9-4-Z3
		Depth:	1.6 - 3.5	0.5 - 1	1 - 3,5	0.5 - 1.1	0.5 - 1.1	1.1 - 3.5	0.5 - 1.85
Analyte	Type	Date:	05/30/01	05/30/01	05/30/01	05/30/01	05/29/01	05/29/01	05/29/01
13C12-2,3,7,8-TCDF	IS		98.8 %	% EL	% 6'06	103 %	26 96	76.5 %	104 %
13C12-2,3,7,8-TCDD	SI		96.8 %	65.3 %	% L'06	% 101	86.2 %	74.4 %	108 %
13C12-2,3,4,7,8-PeCDF	IS		82.3 %	61.6 %	83.7 %	% 68	88.2 %	85.6 %	101 %
13C12-2,3,4,6,7,8-HxCDF	IS		112 %	72.2 %	% 801	97.7%	89.2 %	84.4 %	93.3 %
13C12-1,2,3,7,8-PeCDF	SI		76.8 %	63.4 %	80.8 %	89.3 %	93.5 %	82.6 %	109 %
13C12-1,2,3,7,8-PeCDD	IS		81.2 %	% 99	89.4 %	91.5 %	83.3 %	81.7 %	94 %
13C12-1,2,3,7,8,9-HxCDF	IS		104 %	82.1 %	% 101	107 %	106 %	95.8 %	113 %
13C12-1,2,3,6,7,8-HxCDF	IS		89.8 %	90.4 %	111 %	103 %	111 %	94.3 %	122 %
13C12-1,2,3,6,7,8-HxCDD	IS		103 %	86.2 %	% 5 01	101 %	91.1%	85.5 %	104 %
13C12-1,2,3,4,7,8-HxCDF	IS		85.7 %	95.3 %	% 801	101 %	118 %	96.8 %	129 %
13C12-1,2,3,4,7,8-HxCDD	IS		105 %	90.7 %	% 601	104 %	95.8 %	90.7 %	101 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		76.9 %	53.9 %	89.6 %	88.8 %	66.1 %	65 %	65.4 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		79.5 %	% 9.99	102 %	% 5'96	74.4 %	70.6 %	77.2 %
13C12-1,2,3,4,6,7,8-HpCDD	SI		84.1 %	58 %	92.5 %	87.7 %	65.1 %	68.8 %	66.4 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		55 %	32.1 %	% 89	60.3 %	34.9 %	40.4 %	33.6 %
	1								

Key:

J = Estimated value.

"IS" indicates a internal standard with a unit of

N = Identification tentative.

percent recovery.

U = Not detected at the reported value.

Table C-1A

Complete Analytical Data for Dioxins/Furans for Samples from theThree Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

	Sample ID: 7	TMCSD-9-4-Z4	ple ID: TMCSD-9-4-Z4 TMCSD-9-4-Z4/D	TMCSD-10-Z3	TMCSD-10-Z4	TMCSD-10-1-23 TMCSD-10-1-24	IMCSD-10-1-Z4
Anglide	Depth:	1.85 - 3.5	1.85 - 3.5	0.5 - 1.65	1,65 - 3.5	1.7 - 2.2	2.4 - 3.5
Divisional Eurap by Method 1613B (nation)							
Total TCDF		0.12	0.6 U	14.8 J	0.10	2.4 J	1.0 U
Total TCDD		0.14	0.12	0.38	0.07	1.0 U	1.0 U
Total PeCDF		2.9 U	3.0 U	10.2 J	0.16	1.7	4.9 U
Total PeCDD		0.39	3.0 U	3.0 U	2.8 U	4.9 U	4.9 U
Total HxCDF		2.9 U	3.0 U	9.3 J	0.54	1.1 U	4.9 U
Total HxCDD		2.9 U	3.0 U	2.0	2.8 U	0.81	4.9 U
Total HpCDF		2.9 U	3.0 U	9.4	0.29 U	2.2 U	4.9 U
Total HpCDD		2.9 U	3.0 U	17.0 U	2.8 U	10.5 U	0.79 U
2,3,7,8-TCDF		0.6 UJ	0.6 U	0.65	0.10 J	1.0 U	1.0 U
2,3,7,8-TCDD		0.6 U	0.6 U	0.25 J	0.07 J	1.0 U	1.0 U
2,3,4,7,8-PeCDF		2.9 U	3.0 U	0.53 J	0.07 J	4.9 U	4.9 U
2,3,4,6,7,8-HxCDF		2.9 U	3.0 U	0.71 J	f 60'0	4.9 U	4.9 U
1,2,3,7,8-PeCDF		2.9 U	3.0 U	3.0 UJ	f 60:0	4.9 U	4.9 U
1,2,3,7,8-PeCDD		2.9 U	3.0 U	3.0 UJ	2.8 U	4.9 U	4.9 U
1,2,3,7,8,9-HxCDF		2.9 U	3.0 U	3.0 U	0.07 J	4.9 U	4.9 U
1,2,3,7,8,9-HxCDD		2.9 U	3.0 U	0.51 J	2.8 U	4.9 U	4.9 U
1,2,3,6,7,8-HxCDF		2.9 U	3.0 U	0.37 J	0.11 J	4.9 U	4.9 U
1,2,3,6,7,8-HxCDD		2.9 U	3.0 U	0.63 J	2.8 U	4.9 U	4.9 U
1,2,3,4,7,8-HxCDF		2.9 UJ	3.0 U	1.3 J	0.16 J	4.9 U	4.9 U
1,2,3,4,7,8-HxCDD		2.9 U	3.0 U	0.23 J	2.8 U	4.9 U	4.9 U
1,2,3,4,7,8,9-HpCDF		2.9 U	3.0 U	0.63 J	2.8 U	4.9 U	4.9 U
1,2,3,4,6,7,8-HpCDF		2.9 U	3.0 U	4.2 J	2.8 U	4.9 U	4.9 U
1,2,3,4,6,7,8-HpCDD		2.9 U	3.0 U	8.5 U	2.8 UJ	5.3 U	4.9 U
1,2,3,4,6,7,8,9-OCDF		5.8 U	0.0 U	5.7 U	5.6 U	9.8 U	9.8 U
1,2,3,4,6,7,8,9-OCDD		5.8 U	6.0 U	57.0 U	5.6 U	31.4 U	9.8 U

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from theThree Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

e ID: TMCSD-9-4-Z4 pth: 1.85 - 3.5 Pate: 05/29/01 80.1 % 81 % 86.7 % 80 %	1.85 - 3.5 05/29/01 89.5 % 90.5 % 102 %	TMCSD-10-23 0.5 - 1.65 05/29/01 92.8 % 98.5 %	1.65 - 3.5 05/29/01 79.4 % 83.5 %	1.7 - 2.2 05/24/01 83.7 %	2.4 - 3.5 05/24/01 74.5 %
80.1 % 81 % 86.7 %	05/29/01 89.5 % 90.5 %	05/29/01 92.8 %	05/29/01 79.4 %	05/24/01	05/24/01
80.1 % 81 % 86.7 %	89.5 % 90.5 %	92.8 %	79.4 %	.,	
81 % 86.7 %	90.5 %			83.7 %	74.5 %
86.7 %	 	98.5 %	83 5 %		, , , ,
	102 %		ע כיכט ן	82.5 %	71.6 %
80 %		107 %	103 %	78.1 %	68.6 %
00 /0	90.5 %	82.8 %	82.4 %	99.5 %	88.2 %
93.3 %	108 %	115 %	114 %	74.6 %	65.8 %
89.5 %	102 %	106 %	102 %	80.7 %	70 %
89.3 %	106 %	113 %	99.8 %	96.4 %	87.5 %
96.1 %	109 %	109 %	94.3 %	103 %	88.1 %
85.7 %	98.3 %	101 %	91.8 %	98 %	84.9 %
93.8 %	109 %	114 %	94.8 %	94.9 %	84.9 %
84.3 %	97.2 %	98.6 %	96.2 %	99.7 %	87 %
65 %	80.1 %	87.3 %	86.7 %	96.2 %	82.4 %
69.1 %	82.5 %	88.9 %	83.3 %	99.5 %	86.3 %
73.9 %	87.1 %	85.2 %	92.9 %	93.3 %	77.5 %
45.7 %	56.4 %	56.5 %	70.2 %	83.3 %	66.5 %
	89.3 % 96.1 % 85.7 % 93.8 % 84.3 % 65 % 69.1 % 73.9 %	89.3 % 106 % 96.1 % 109 % 85.7 % 98.3 % 93.8 % 109 % 84.3 % 97.2 % 65 % 80.1 % 69.1 % 82.5 % 73.9 % 87.1 %	89.3 % 106 % 113 % 96.1 % 109 % 109 % 85.7 % 98.3 % 101 % 93.8 % 109 % 114 % 84.3 % 97.2 % 98.6 % 65 % 80.1 % 87.3 % 69.1 % 82.5 % 88.9 % 73.9 % 87.1 % 85.2 %	89.3 % 106 % 113 % 99.8 % 96.1 % 109 % 109 % 94.3 % 85.7 % 98.3 % 101 % 91.8 % 93.8 % 109 % 114 % 94.8 % 84.3 % 97.2 % 98.6 % 96.2 % 65 % 80.1 % 87.3 % 86.7 % 69.1 % 82.5 % 88.9 % 83.3 % 73.9 % 87.1 % 85.2 % 92.9 %	89.3 % 106 % 113 % 99.8 % 96.4 % 96.1 % 109 % 109 % 94.3 % 103 % 85.7 % 98.3 % 101 % 91.8 % 98 % 93.8 % 109 % 114 % 94.8 % 94.9 % 84.3 % 97.2 % 98.6 % 96.2 % 99.7 % 65 % 80.1 % 87.3 % 86.7 % 96.2 % 69.1 % 82.5 % 88.9 % 83.3 % 99.5 % 73.9 % 87.1 % 85.2 % 92.9 % 93.3 %

Note:

J = Estimated value.

"IS" indicates a internal standard with a unit of

N = Identification tentative.

percent recovery.

U = Not detected at the reported value.

Table C-1A
Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		A ! . ! B . :					TMCSD-10-3-		
						TMCSD-10-3-Z3/D	Z4	TMCSD-11-Z3	TMCSD-11-Z4
Analytė	Tuna	Depth: Date:	1.1 - 2.1 05/24/01	2.5 - 3.5 05/24/01	1.5 - 2.5 05/23/01	1.5 - 2.5 05/23/01	2.5 - 3.5 05/23/01	1.1 - 2.3 05/24/01	2.5 - 3.5
Analyte	Туре	But.	03/E-4/61	GGENGT	03/23/01	V3/23/U1	U3/Z3/UT	U5/24/U1	05/24/01
Dioxin and Furan by Method	1613B (ng/k	(g)							
Total TCDF			14.9 J	1.0 U	111 J	70.1 J	83.4 J	57.2 J	1.0 U
Total TCDD			1.0 U	1.0 U	5.9 J	3.2	1.0	0.85	1.0 U
Total PeCDF			14.8 J	4.9 U	113 J	70.4	53.5 J	22.4 J	4.9 U
Total PeCDD			5.0 U	4.9 U	5.5 J	2.1	5.0 U	1.2	4.9 U
Total HxCDF			7.7 U	4.9 U	94.1	56.9	25.2	25.2	4.9 U
Total HxCDD			5.0 U	4.9 U	43.8	29.9	5.7	64.6	4.9 U
Total HpCDF			6.5	4.9 U	132 J	71.4	27.8	35.0	4.9 U
Total HpCDD			19.4 U	4.9 U	199	124	30.8	94.3	4.9 U
2,3,7,8-TCDF			1.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U
2,3,7,8-TCDD			1.0 U	1.0 U	2.0	1.7	0.38 J	0.85 J	1.0 U
2,3,4,7,8-PeCDF			5.0 U	4.9 U	6.0	3.7 J	5.0 UJ	2.0 J	4.9 U
2,3,4,6,7,8-HxCDF			5.0 U	4.9 U	7.0	4.3 J	5.0 U	2.0 J	4.9 U
1,2,3,7,8-PeCDF			5.0 U	4.9 U	1.9 J	0.92 J	5.0 U	1.9 J	4.9 U
1,2,3,7,8-PeCDD			5.0 U	4.9 U	1.4 J	0.90 J	5.0 U	1.2 J	4.9 U
1,2,3,7,8,9-HxCDF			5.0 U	4.9 U	0.56 J	0.46 J	5.0 U	4.9 U	4.9 U
1,2,3,7,8,9-HxCDD			5.0 U	4.9 U	4.1 J	2.9 J	0.97 J	2.8 J	4.9 U
1,2,3,6,7,8-HxCDF			5.0 U	4.9 U	3.8 J	5.0 UJ	1.1 J	1.8 J	4.9 U
1,2,3,6,7,8-HxCDD			5.0 U	4.9 U	5.1	3.5 J	0.86 J	8.8	4.9 U
1,2,3,4,7,8-HxCDF			5.0 U	4.9 U	13.1	8.6	2.3 J	9.0	4.9 U
1,2,3,4,7,8-HxCDD			5.0 U	4.9 U	5.0 UJ	1.3 J	5.0 U	0.64 J	4.9 U
1,2,3,4,7,8,9-HpCDF			5.0 U	4.9 U	5.2	3.2 J	5.0 U	4.3 J	4.9 U
1,2,3,4,6,7,8-HpCDF			3.1 J	4.9 U	59.0 J	29.5	14.8	13.6	4.9 U
1,2,3,4,6,7,8-HpCDD			9.8 U	4.9 U	98.7	61.8	13.4 U	45.8	4.9 U
1,2,3,4,6,7,8,9-OCDF			9.9 U	9.8 U	74.2	45.2	15.8	38.3	9.7 U
1,2,3,4,6,7,8,9-OCDD			79.7 U	9.8 U	788	495	92.6	184	9.7 U

Table C-1A Complete Analytical Data for Dioxins/Furans for Samples from the Three Mile Creek Channel and Landfill 5 Tributary, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Analyte	Type	Depth:	MCSD-10-2-Z3 1.1 - 2.1 05/24/01	TMCSD-10-2-Z4 2.5 - 3.5 05/24/01	TMCSD-10-3-Z3 1.5 - 2.5 05/23/01	TMCSD-10-3-Z3/D 1.5 - 2.5 05/23/01	TMCSD-10-3- Z4 2.5 - 3.5 05/23/01	TMCSD-11-Z3 1.1 - 2.3 05/24/01	TMCSD-11-Z4 2.5 - 3.5 05/24/01
13C12-2,3,7,8-TCDF	IS		59.9 %	68.1 %	99.2 %	109 %	96.6 %	69.9 %	70.5 %
13C12-2,3,7,8-TCDD	IS		68.9 %	67.5 %	88.1 %	94.2 %	83.9 %	75.5 %	68.2 %
13C12-2,3,4,7,8-PeCDF	IS		54.1 %	63.2 %	83.7 %	99.1 %	79.7 %	58.4 %	66.5 %
13C12-2,3,4,6,7,8-HxCDF	IS		48.7 %	80.3 %	93.3 %	103 %	80.8 %	64.3 %	86.4 %
13C12-1,2,3,7,8-PeCDF	IS		62.6 %	59.7 %	93.9 %	100 %	79.6 %	65.2 %	61.8 %
13C12-1,2,3,7,8-PeCDD	IS		64.1 %	62.7 %	87.2 %	99.7 %	78.1 %	64 %	67.4 %
13C12-1,2,3,7,8,9-HxCDF	IS		70.6 %	77.1 %	105 %	108 %	96.6 %	74.3 %	79.9 %
13C12-1,2,3,6,7,8-HxCDF	IS		83.1 %	72.8 %	114 %	114 %	100 %	89.3 %	81.1 %
13C12-1,2,3,6,7,8-HxCDD	IS		76.1 %	78 %	107 %	110 %	85.5 %	79.9 %	82.6 %
13C12-1,2,3,4,7,8-HxCDF	IS		75.8 %	69.1 %	114 %	117 %	101 %	84.6 %	77.7 %
13C12-1,2,3,4,7,8-HxCDD	IS		77.9 %	77.3 %	100 %	107 %	81 %	80 %	80.7 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		76.6 %	72.7 %	92.6 %	101 %	59.3 %	74.3 %	74 %
13C12-1,2,3,4,6,7,8-HpCDF	IS		84.7 %	77.1 %	102 %	108 %	71.6 %	81.7 %	80.2 %
13C12-1,2,3,4,6,7,8-HpCDD	IS		69.7 %	72.7 %	96.1 %	108 %	57.6 %	67.2 %	71.8 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		55.7 %	64.5 %	83.2 %	96.7 %	29.5 %	50.4 %	57.9 %

J = Estimated value.

N = Identification tentative.

U = Not detected at the reported value.

"IS" indicates a internal standard with a unit of percent recovery.

Table C-2
Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

				,			A CONTRACTOR OF THE CONTRACTOR
		Sample ID:	LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
		Depth:	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Analyte	Туре	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01
	Type			WORL 1, O 1	00/154/101	00/20/01	03/20/01
PCBs by Method 8082 (µg/Kg)							
Aroclor 1016			51.5 U	49.4 U	59.9 U	30.7 U	205 U
Aroclor 1221			103 U	98.9 U	120 U	61.4 U	409 U
Aroclor 1232			51.5 U	49.4 U	59.9 U	30.7 U	205 U
Aroclor 1242			51.5 U	49.4 U	59.9 U	30.7 U	205 U
Aroclor 1248			51.5 U	49.4 U	59.9 U	30.7 U	205 U
Aroclor 1254			51.5 U	49.4 U	59.9 U	30.7 U	205 U
Aroclor 1260			92.6	49.4 U	102	30.7 U	964
Decachlorobiphenyl	Surr		111 %	87 %	98 %	94 %	140 %
Tetrachloro-m-xylene	Surr		84 %	91 %	81 %	83 %	119 %
Pesticides by Method 8081A (µg/h	(a)						
4,4'-DDD	\ <u>\\</u>		7.73 U	7.42 U	14.3 NJ	3.07 U	81.8 U
4,4′-DDE	- 		19.1 NJ	17.6 J	6.35 NJ	4.59	114 NJ
4,4′-DDT	 		16.2 NJ	,13.9 J	16.5 NJ	3.07 U	172 NJ
Aldrin	 	1	10.3 U	9.89 U	12.0 U	1.54 U	40.9 U
alpha-BHC	 	† <u> </u>	1.81 NJ	2.65 J	8.98 U	0.154 J	40.9 U
alpha-Chlordane		†	2.58 U	2.47 U	2.99 U	1.54 U	40.9 U
beta-BHC	1		10.3 U	9.89 U	12.0 U	1.54 U	40.9 U
delta-BHC		1	0.932 NJ	1.17 J	5.99 U	1.54 U	40.9 U
Dieldrin		1	12.9 U	12.4 U	15.0 U	3.07 U	81.8 U
Endosulfan I			12.9 U	12.4 U	8.88 NJ	3.07 U	81.8 U
Endosulfan II	 		4.72 NJ	7.42 U	8.98 U	3.07 U	81.8 U
Endosulfan sulfate			3.00 NJ	14:8 U	2.79 NJ	3.07 U	81.8 U
Endrin	†	1	10.3 U	9.89 U	12.0 U	3.07 U	81.8 U
Endrin aldehyde	1		16.2 NJ	24.7 U	16.6 NJ	0.398 J	81.8 U
Endrin ketone	1	t	7.73 U	7.42 U	2.23 NJ	3.07 U	81.8 U
gamma-BHC	1		5.15 U	4.94 U	5.99 U	1.54 U	40.9 U
gamma-Chlordane	1		5.15 U	4.94 U	5.99 U	1.54 U	40.9 U
Heptachlor	1	<u> </u>	7.73 U	7.42 U	8.98 U	3.07 U	81.8 U
Heptachlor epoxide	 		12.9 U	12.4 U	8.68 NJ	1.07 J	111 NJ
Methoxychlor		 	103 U	98.9 U	120 U	10.3 J	409 U
Toxaphene	1		258 U	247 U	299 U	76.8 U	2050 U

Table C-2 Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands, Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

Analyte	Туре	Sample ID: Depth: Date:	LF6SD-1-1-Z1 0 - 0.5 05/24/01	LF6SD-1-1- 2 1/D 0 - 0.5 05/24/01	UF6SD-2-1-Z1 0 - 0.5 05/24/01	LF6SD-3-1-Z1 0 - 0.5 05/23/01	LF6SD-4-1-Z1 0 - 0.5 05/23/01
Decachlorobiphenyl	Surr		118%	176 %	115 %	581 %	0 %
Tetrachloro-m-xylene	Surr		74 %	84 %	75 %	88 %	0 %
Volatile Organic Compounds b	v Method 826	0B (µa/Ka)					
1,1,1-Trichloroethane	1	J	13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,1,2,2-Tetrachloroethane			13.2 UJ	12.8 UJ	15.3 UJ	7.81 UJ	10.4 UJ
1,1,2-Trichloroethane			13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
1,1-Dichloroethane			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,1-Dichloroethene			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,2-Dichlorobenzene			13.2 UJ	12.8 UJ	15.3 UJ	7.81 UJ	7.04 J
1,2-Dichloroethane			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,2-Dichloroethene, Total			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,2-Dichloropropane			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
1,3-Dichlorobenzene			13.2 UJ	12.8 UJ	15.3 UJ	7.81 UJ	10.4 UJ
1,4-Dichlorobenzene			13.2 UJ	12.8 UJ	15.3 UJ	7.81 UJ	10.4 UJ
2-Butanone			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
2-Chloroethyl vinyl ether			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
2-Hexanone			26.5 UJ	25.6 UJ	30.6 UJ	15.6 U	20.8 UJ
4-Methyl-2-pentanone			26.5 UJ	25.6 UJ	30.6 UJ	15.6 U	20.8 UJ
Acetone			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
Benzene			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Bromodichloromethane			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Bromoform			13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
Bromomethane			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
Carbon disulfide			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Carbon tetrachloride			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Chlorobenzene			13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
Chloroethane			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
Chloroform ·			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Chloromethane			26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
cis-1,2-Dichloroethene			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
cis-1,3-Dichloropropene			13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
Dibromochloromethane			13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ

Table C-2
Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		and the state of t				
	Sample ID:	LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
	Depth:	0 - 0.5	0 - 0.5	$0 \cdot 0.5$	0 - 0.5	0 - 0.5
Type	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
		13.2 U	12.8 U	15.3 U	7.81 U	5.44 J
		13.2 U	12.8 U	15.3 U	7.81 U	10.4 U
		26.5 UJ	25.6 UJ	30.6 UJ	15.6 UJ	20.8 UJ
		26.5 U	25.6 U	30.6 U	15.6 U	20.8 U
		13.2 UJ	12.8 UJ	15.3 UJ	7.81 U	10.4 UJ
Surr		94 %	108 %	91%	99 %	113 %
Surr		134 %	140 %	135 %	135 %	116 %
Surr		106 %	113 %	103 %	104 %	122 %
Surr		144 %	145 %	139 %	125 %	145 %
n/Ka\		,				
g/Kg)		2560 U	2450 U	984 U	483 U	2010 U
						2010 U
	i					2010 U
<u> </u>						2010 U
t						5050 U
 						2010 U
						2010 U
 						2010 U
t		2560 U	2450 U			2010 U
1		2560 U	2450 U			2010 U
t		2560 U	2450 U	L		2010 U
†		2560 U	2450 U	L		2010 U
1		2560 U	2450 U	<u> </u>	483 U	2010 U
	Surr Surr	Surr Surr Surr Surr	Type Date: 05/24/01 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 UJ 13.2 U 13.2 U 13.2 U 13.2 U 13.2 U 26.5 UJ 26.5 UJ 26.5 UJ Surr 94 % Surr 134 % Surr 106 % Surr 144 % 9/Kg) 2560 U 2560 U 2560 U 2560 U 2560 U 2560 U 2560 U 2560 U 2560 U	Type Date: 05/24/01 05/24/01 13.2 UJ	Type Date: 05/24/01 05/24/01 05/24/01 13.2 UJ	Type Delt: 0 - 0.5

Table C-2
Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		0					
		·	LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
		Depth:	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Analyte	Type	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01
2-Methylnaphthalene	<u> </u>		2560 U	2450 U	984 U	483 U	2010 U
2-Methylphenol	ļ	ļ	2560 U	2450 U	984 U	483 U	2010 U
2-Nitroaniline	<u> </u>		6440 U	6170 U	2470 U	1210 U	5050 U
2-Nitrophenol			2560 U	2450 U	984 U	483 U	2010 U
3,3'-Dichlorobenzidine			5120 U	4910 U	1970 U	965 U	4010 U
3-Nitroaniline			6440 U	6170 U	2470 U	1210 U	5050 U
4,6-Dinitro-2-methylphenol			6440 U	6170 U	2470 U	1210 U	5050 U
4-Bromophenyl phenyl ether			2560 U	2450 U	984 U	483 U	2010 U
4-Chloro-3-methylphenol			2560 U	2450 U	984 U	483 U	2010 U
4-Chloroaniline			2560 U	2450 U	984 U	483 U	2010 U
4-Chlorophenyl phenyl ether			2560 U	2450 U	984 U	483 U	2010 U
4-Methylphenol			2560 U	2450 U	984 U	483 U	2010 U
4-Nitroaniline			6440 U	6170 U	2470 U	1210 U	5050 U
4-Nitrophenol			6440 U	6170 U	2470 U	1210 U	5050 U
Acenaphthene			2560 U	2450 U	984 U	483 U	2010 U
Acenaphthylene			2560 U	2450 U	299 J	483 U	1130 J
Anthracene			2560 U	2450 U	233 J	483 U	1260 J
Benz(a)anthracene			2560 U	2450 U	387 J	483 U	2140
Benzo(a)pyrene			2560 U	2450 U	481 J	61.1 J	2460
Benzo(b)fluoranthene			2560 U	2450 U	763 J	75.9 J	2580
Benzo(g,h,i)perylene			2560 U	2450 U	165 J	483 U	1010 J
Benzo(k)fluoranthene			2560 U	2450 U	496 J	483 U	2700
Benzoic acid			8120	6020 J	2970	33600	5050 U
Benzyl alcohol			2560 U	2450 U	984 U	561	2010 U
Bis(2-chloroethoxy)methane			2560 U	2450 U	984 U	483 U	2010 U
Bis(2-chloroethyl)ether			2560 U	2450 U	984 U	483 U	2010 U
Bis(2-chloroisopropyl)ether			2560 U	2450 U	984 U	483 U	2010 U
Bis(2-ethylhexyl)phthalate	1		2560 U	2450 U	984 U	483 U	2010 U
Butyl benzyl phthalate		<u> </u>	2560 U	2450 U	984 U	483 U	2010 U
Carbazole			2560 U	2450 U	984 U	483 U	390 J
Chrysene			341 J	348 J	578 J	78.3 J	2960
Dibenz(a,h)anthracene			2560 U	2450 U	984 U	483 U	577 J
Dibenzofuran			2560 U	2450 U	984 U	483 U	2010 U

Table C-2
Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	LF6SD-1-1-Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-Z1	LF6SD-3-1-Z1	LF6SD-4-1-Z1
		Depth:	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Analyte	Type	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01
Diethyl phthalate			2560 U	2450 U	984 U	483 U	2010 U
Dimethyl phthalate			2560 U	2450 U	984 U	483 U	2010 U
Di-n-butyl phthalate			2560 U	2450 U	984 U	483 U	2010 U
Di-n-octyl phthalate			2560 U	2450 U	984 U	483 U	2010 U
Fluoranthene			741 J	764 J	1430	179 J	5920
Fluorene			2560 U	2450 U	984 U	483 U	2010 U
Hexachlorobenzene			2560 U	2450 U	984 U	483 U	2010 U
Hexachlorobutadiene			2560 U	2450 U	984 U	483 U	2010 U
Hexachlorocyclopentadiene			6440 U	6170 U	2470 U	1210 U	5050 U
Hexachloroethane			2560 U	2450 U	984 U	483 U	2010 U
Indeno(1,2,3-cd)pyrene			2560 U	2450 U	984 U	483 U	1220 J
Isophorone			2560 U	2450 U	984 U	483 U	2010 U
Naphthalene			2560 U	2450 U	984 U	483 U	2010 U
Nitrobenzene			2560 U	2450 U	984 U	483 U	2010 U
N-Nitrosodimethylamine			2560 U	2450 U	984 U	483 U	2010 U
N-Nitrosodi-n-propylamine			2560 U	2450 U	984 U	483 U	2010 U
N-Nitrosodiphenylamine			2560 U	2450 U	984 U	483 U	2010 U
Pentachlorophenol			6440 U	6170 U	2470 U	1210 U	5050 U
Phenanthrene			337 J	350 J	521 J	90.3 J	2670
Phenol			2560 U	2450 U	984 U	483 U	2010 U
Pyrene			347 J	352 J	735 J	65.3 J	2660
2,4,6-Tribromophenol	Surr		95 %	102 %	121 %	72 %	89 %
2-Fluorobiphenyl	Surr		62 %	68 %	71 %	88 %	78 %
2-Fluorophenol	Surr		61 %	65 %	70 %	66 %	65 %
Nitrobenzene-d5	Surr		63 %	68 %	80 %	83 %	69 %
Phenol-d5	Surr		68 %	70 %	73 %	66 %	73 %
Terphenyl-d14	Surr		40 %	40 %	56 %	40 %	46 %

Mercury

Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands, Table C-2

0 - 0°5 10/63/90	0 - 0.5 0 - 0.5	0 - 0.5 05/24/01	0 - 0.5 02/24/01	0 - 0'2 0 - 0'2	Depth: Date:	Type	olylanA
12-1-b-08941	1Z-1-8-05947	FE65D-2-1-Z1	G/12-1-1-2947	LF65D-1-1-Z1	Sample ID:		

186.0 l 27.0 l 84.0 l 83.0 977 117 8,76 285 303 ouiZ 41.3 6.8€ 35.5 MuibanaV 34.6 1.48 U 24.8 U TE.2 U.2.1 MuilledT U 0.1 U \$6.0 U 7.E8 U 8.47 Ulla U \$61 U 7.89 muibo2 t 018.0 U 12.0 Silver J.34 U U 82.0 U 74.0 Selenium U 3.21 U 30.8 U E.2 U 1.S U 6.1 1812 1090 Potassium 930 f 969 284 J 7.52 9.51 8.71 0.21 0.21 Nickel 849 403 979 965 **L9**\$ Manganese 0571 Magnesium 7290 2020 1700 1130 881 54.3 911 801 resq 911 24400 00651 12700 0788 Iron 9500 Copper 93.0 51.2 134 811 145 ₹ 8.£ 06.6 E.EI 1.9 ₹ 9.€ Cobalt 3.7.5 13.4 9.02 8.21 2.21 Chromium 0444 1180 **73400 1** 22900 J L 00702 Calcium 2.22 2.5 U 272.0 9.4 **muimbs**D 8.£ L 978.0 l 224.0 l 67.0 0.26 J l 72.0 Beryllium 144 154 1080 1400 1250 Barium 8.52 12.5 9.01 **č.81** 1.11 Arsenic U 11.2 J.34 U U 88.0 $U \Gamma \Gamma$ U IT.0 **vnomina** 0878 12100 00891 1000 munimulA 0666 Metals by Method 6010B and 7470A/1A (mg/Kg)

408.0

Table C-2
Complete Analytical Data Summary for Sediment Samples from the Landfill 6 Wetlands,
Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID: Depth:	LF6SD-1-1-Z1 0 - 0.5	LF6SD-1-1-Z1/D 0 - 0.5	LF6SD-2-1-Z1 0 - 0.5	LF6SD-3-1-Z1 0 - 0.5	LF6SD-4-1-Z1 0 - 0.5
Analyte	Туре	Date:	05/24/01	05/24/01	05/24/01	05/23/01	05/23/01
Total Organic Carbon by Metho	d Lloyd Kahr	ı (ma/Ka)					
Total Organic Carbon			372000	403000	363000	47700	125000
Hexavalent Chromium by Metho Chromium, Hexavalent Cyanide, Total by Method 9012		/Kg)	11 U	9.7 U	12 U	5.9 U	8.4 U
Cyanide			1.38 J	1.07 J	0.750 J	0.598 J	0.747 J
Petroleum Hydrocarbons, TR by	y Method 418	.1M (mg/Kg)					
Petroleum Hydrocarbons, TR			1060 U	1030 U	1240 U	634 U	842 U
Percent Molsture (wt%)							
Percent Moisture			62.2	61.1	67.8	36.9	52.5
							J

Note:

J = Estimated value.

N = Identification tentative.

compound with a unit of percent recovery. Zero %

"Surr" indicates a surrogate

U = Not detected at the reported value.

indicates surrogate may

mg/Kg = Micrograms per kilogram.

have been diluted out.

 μ g/Kg = Micrograms per kilogram.

Complete Analytical Data for Dioxin/Furans for Sediment Samples from the Landfill 6 Wetlands, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York Table C-2A

	Sample ID:	LF6SD-1-1- Z1	LF6SD-1-1-Z1/D	LF6SD-2-1-21	LF6SD-3-1-Z1	LF6SD-4-1-Z1
Analyte	Depth:	0 - 0.5 05/24/01	0 - 0.5	0 - 0.5	0 - 0.5 05/23/01	0 - 0.5 05/23/01
Dioxin and Furan by Method 1613B (ng	B (ng/Kg)					
Total TCDF		138 J	147 J	53.3 J	64.8 J	345 J
Total TCDD		17.3	16.7	5.6	11.5	27.4
Total PeCDF		90.2 J	79.2	56.8 J	55.3	348 J
Total PeCDD		11.0	16.6	7.3	14.4	60.3
Total HxCDF		80.1	77.4	42.1	81.5	276
Total HxCDD		56.7	61.2	31.4	88.0	149
Total HpCDF		70.6	66.1	42.8	84.1	327
Total HpCDD		116	123	0.17	162	399
2,3,7,8-TCDF		6.2	5.9	2.1	2.5	5.1
2,3,7,8-TCDD		1.3	1.3	0.72 J	1.0 UJ	4.9
2,3,4,7,8-PcCDF		7.0	7.4	3.7 J	5.0	11.8
2,3,4,6,7,8-HxCDF		10.0	10.9	5.9 J	16.6	27.7
1,2,3,7,8-PeCDF		3.5 J	4.2 J	1.8 J	3.0 J	12.4 J
1,2,3,7,8-PeCDD		2.3 J	2.5 J	1.1 J	2.1 J	4.5
1,2,3,7,8,9-HxCDF		5.9 U	5.7 U	5.0 U	0.83 J	0.78 J
1,2,3,7,8,9-HxCDD		5.7 J	6.0 J	3.0 J	8.8 J	17.1
1,2,3,6,7,8-HxCDF		6.2 J	6.3 J	3.4 J	7.7	13.6
1,2,3,6,7,8-HxCDD		5.0 J	5.1 J	3.2 J	7.4	15.0
1,2,3,4,7,8-HxCDF		14.2	15.0	7.6	18.6	28.9
1,2,3,4,7,8-HxCDD		2.4 J	2.3 J	1.2 J	3.3 J	8.1
1,2,3,4,7,8,9-HpCDF		3.4 J	4.6 J	5.0 U	5.6	12.7
1,2,3,4,6,7,8-HpCDF		41.8	37.7	22.8	53.3	172
1,2,3,4,6,7,8-HpCDD		57.6	60.2	34.5	78.7	192
1,2,3,4,6,7,8,9-OCDF		41.4	46.0	26.1	40.7	195
1,2,3,4,6,7,8,9-OCDD		273	280	178	293	1230 J
13C12-2,3,7,8-TCDF IS		65.1 %	90.4 %	69.4 %	94.4 %	86.1 %
13C12-2,3,7,8-TCDD IS	70	67.5 %	82 %	72 %	94.8 %	89.6%
13C12-2,3,4,7,8-PeCDF IS		56.1 %	68.6 %	65.3 %	% 96	87.9 %
13C12-2,3,4,6,7,8-HxCDF IS		75.7 %	86.6%	82 %	86.8 %	78.5 %
13C12-1,2,3,7,8-PeCDF 1S		59.2 %	70.2 %	62.6 %	94.9 %	90.4 %
13C12-1,2,3,7,8-PeCDD IS		59.5 %	71 %	67.3 %	95.4 %	% 9.96

Table C-2A Complete Analytical Data for Dioxin/Furans for Sediment Samples from the Landfill 6 Wetlands, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Analyte	Type	Sample ID: Depth: Date:	LF6SD-1-1- Z1 0 - 0.5 05/24/01	LF6SD-1-1-Z1/D 0 - 0.5 05/24/01	LF6SD-2-1-Z1 0 - 0.5 05/24/01	LF6SD-3-1-Z1 0 - 0.5 05/23/01	LF6SD-4-1-Z1 0 - 0.5 05/23/01
13C12-1,2,3,7,8,9-HxCDF	IS		79.4 %	93.4 %	86.8 %	111 %	96.6 %
13C12-1,2,3,6,7,8-HxCDF	1S		91.8 %	104 %	87 %	105 %	84.7 %
13C12-1,2,3,6,7,8-HxCDD	IS		80.3 %	91 %	83.1 %	86.8 %	86.5 %
13C12-1,2,3,4,7,8-HxCDF	IS		86.4 %	98 %	82.4 %	91.6 %	85.5 %
13C12-1,2,3,4,7,8-HxCDD	IS		85.9 %	95 %	87.7 %	84.4 %	89.3 %
13C12-1,2,3,4,7,8,9-HpCDF	IS		74.4 %	88 %	78.7 %	90.5 %	74.6 %
13C12-1,2,3,4,6,7,8-HpCDF	18		84.1 %	98.7 %	84.4 %	78.2 %	72.2 %
13C12-1,2,3,4,6,7,8-HpCDD	IS		69 %	79.5 %	73.3 %	81.5 %	82.1 %
13C12-1,2,3,4,6,7,8,9-OCDD	IS		54.8 %	60.3 %	58.6 %	60.1 %	75.7 %

Note:

J = Estimated value.

"IS" indicates a internal standard with a unit of percent recovery.

N = Identification tentative.

U = Not detected at the reported value.

Table C-3 Complete Analytical Data Summary for Sediment Samples from the Three Mile Creek Off-Base Pond, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

		Sample ID:	TMCSD-23-IL-Z3	TMCSD-23-IL-Z3/D	TMCSD-23-IL-Z4	TMCSD-24-NS-Z3	TMCSD-24-NS-Z4	TMCSD-25-MC- Z3
Analyte	Туре	Depth: Date:	1.4 - 2.2 06/05/01	1.4 - 2.2 06/05/01	2.2 - 3 06/05/01	1.2 - 1.8 06/05/01	1.8 - 3 06/05/01	0.9 - 1.8 06/05/01
PCBs by Method 8082 (µg/Kg)								
Aroclor 1260	T		184	403	145	142	618	489
Aroclor 1254			49.8 U	49.9 U	27.2 U	62.9 U	181 U	76.9 U
Aroclor 1248			49.8 U	49.9 U	27.2 U	62.9 U	181 U	76.9 U
Aroclor 1242			49.8 U	49.9 U	27.2 U	62.9 U	181 U	76.9 U
Aroclor 1232			49.8 U	49.9 U	27.2 U	62.9 U	181 U	76.9 U
Aroclor 1221			99.7 U	99.9 U	54.4 U	126 U	361 U	154 U
Aroclor 1016			49.8 U	49.9 U	27. 2 U	62.9 U	181 U	76.9 U
Tetrachloro-m-xylene	Surr		98 %	98 %	105 %	95 %	103 %	97 %
Decachlorobiphenyl	Surr		99 %	89 %	100 %	83 %	97 %	88 %
Metals by Method 6010B and 74	170A/71A (µ	rg/L)						
Lead			91.7	82.2	30.4	172	170	175
Cadmium			7.0 J	4.8 J	1.9 J	8.1 J	11.9 J	8.5 J
Total Organic Carbon by Metho	d Lloyd Ka	hn (mg/Kg)						
Total Organic Carbon			33500 J	75100 J	12600	104000	65200	133000
Percent Molsture (wt%)								
Percent Moisture			60.2	61.0	27.4	68.7	45.1	74.5
Key:	Note:	<u> </u>		<u> </u>	l			

J = Estimated value.

"Surr" indicates a surrogate compound with a unit of percent recovery. Zero %

U = Not detected at the reported value. mg/Kg = Micrograms per kilogram.

indicates surrogate may

 μ g/Kg = Micrograms per kilogram.

have been diluted out.

Table C-3
Complete Analytical Data Summary for Sediment Samples from the Three Mile Creek Off-Base Pond,
Three Mile Creek 2001 Sampling, Former Grifflss Air Force Base, Rome, New York

			TMCSD-25-MC-					
		Sample ID:	Z4	TMCSD-26-NS-Z3	TMCSD-26-NS-Z4		TMCSD-27-MC-Z4	TMCSD-28-OL-Z
		Depth:	2.4 - 3	1.5 - 2.5	2.5 - 3	1.5 - 2.5	2.5 - 3	1.5 - 2.5
Analyte	Type	Date:	06/05/01	05/25/01	05/25/01	05/25/01	05/25/01	05/25/01
PCBs by Method 8082 (µg/Kg)								
Aroclor 1260			123	12.0 J	25.3 U	549	253	379
Aroclor 1254			28.7 U	27.1 U	25.3 U	73.4 U	29.3 U	37.1 U
Aroclor 1248			28.7 U	27.1 U	25.3 U	73.4 U	29.3 U	37.1 U
Aroclor 1242			28.7 U	27.1 U	25.3 U	73.4 U	29.3 U	37.1 U
Aroclor 1232			28.7 U	27.1 U	25.3 U	73.4 U	29.3 U	37.1 U
Aroclor 1221			57.4 U	54.1 U	50.5 U	147 U	58.6 U	74.3 U
Aroclor 1016			28.7 U	27.1 U	25.3 U	73.4 U	29.3 U	37.1 U
Tetrachloro-m-xylene	Surr		93 %	86 %	90 %	93 %	85 %	95 %
Decachlorobiphenyl	Surr		92 %	88 %	95 %	98 %	92 %	102 %
Metals by Method 6010B and 74	70A/71A (µ	rg/L)						
Lead			15.7	15.9	2.6	189	51.1	155
Cadmium			0.92 U	1.1 U	0.082 U	9.9	2.4	5.7
Total Organic Carbon by Metho	d Lloyd Ka	ıhn (mg/Kg)						
Total Organic Carbon			6990	25100	13100	124000	14800	56800
Percent Moisture (wt%)								
Percent Moisture			31.0	27.5	21.5	72.2	35.8	48.7
V	Note:	.L.,		_L,_,	L	<u> </u>		

Note:

J = Estimated value.

"Surr" indicates a surrogate compound with a unit of percent recovery. Zero % indicates surrogate may

have been diluted out.

U = Not detected at the reported value. mg/Kg = Micrograms per kilogram.

 $\mu g/Kg = Micrograms per kilogram.$

Table C-3 Complete Analytical Data Summary for Sediment Samples from the Three Mile Creek Off-Base Pond, Three Mile Creek 2001 Sampling, Former Griffiss Air Force Base, Rome, New York

Туре	Depth:	1.5 - 2.5	TMCSD-28-OL-Z- 2.5 - 3 05/25/01
(g)			
		437	1370
		36.8 U	343 U
		36.8 U	343 U
		36.8 U	343 U
		36.8 U	343 U
		73.6 U	685 U
		36.8 U	343 U
Surr		91 %	94 %
Surr		97 %	114 %
id 7470Α/71Α (μ	g/L)	155	133
		6.3	11.0
ethod Lloyd Ka	hn (mg/Kg)	56300	64500
		46.3	42.5
			
	Surr Surr	Type Date:	Type Date: 05/25/01 (g)

U = Not detected at the reported value.

percent recovery. Zero %

mg/Kg = Micrograms per kilogram.

indicates surrogate may

 $\mu g/Kg = Micrograms per kilogram.$

have been diluted out.

	•	•
Þ	·O	Table

Decachlorobiphenyl

10/90/90	10/10/90	10/08/90	10/67/90	02/53/01	:Apth: Date:	Type	elylsnA	
ୱ ∙ଷଧ	17-88	6-88	S-8H	1-88	Sample ID:			
					4 1 6			
			'sə	ntrol Sampl	d Quality Co	ummary for Fie	Rigidal Supplete Supplemental Data Supplemental Supplemen	O

Tetrachloro-m-xylene	пu2	% † 8	% † \$	% 7 9	% £6	% †L
Aroclor 1016		U 008.0	U 002.0	U 00è.0	U 7660.0	U 7660.0
Aroclor 1221		U 00.1	U 00.1	U 00.1	U 279.0	U &Y6.0
Aroclor 1232		U 002.0	U 002.0	U 008.0	U 071.0	U 071.0
Aroclor 1242		U 008.0	U 002.0	U 002.0	U 0060.0	U 0060.0
8421 roloorA		U 00č.0	U 008.0	U 00č.0	U 974.0	U 974.0
Aroclor 1254		U 002.0	U 008.0	U 002.0	U 041.0	U 041.0
Aroclor 1260		U 002.0	U 002.0	U 002.0	U 22£.0	U 225.0
PCBs by Method 8082 (vg/L)						

% £8

пиS

% 08

% 88

% **†**†

% Ot

Decachlorohiphenyl	Tiu2	% LL	% L7	% ES	% 88	SN
Tetrachloro-m-xylene	ring	% 08	% \$ 9	% 18	% 06	SN
d,-DDD		U 0080.0	U 0080.0	U 0080.0	U 0060.0	SN
d'dDDE		U 0020.0	U 0050.0	U 0080.0	U 001.0	SN
tq.4DDT		U 0080.0	U 0050.0	U 0020.0	U 001.0	SN
niıblA		U 0250.0	8840.0	0160.0	U 0070.0	SN
alpha-BHC		U 0250.0	U 0250.0	U 0250.0	U 0040.0	SN
alpha-Chlordane		U 0250.0	U 0250.0	U 0250.0	U 0090.0	SN
реіз-ВНС		U 0250.0	U 0250.0	U 0250.0	U 0050.0	SN
delta-BHC		U 0250.0	U 0250.0	U 0250.0	U 0000.0	SN
Dieldrin		U 0020.0	U 0080.0	U 0080.0	U 001.0	SN
Endosultan I		U 0020.0	U 0080.0	U 0080.0	U 0080.0	SN
Endosultan II		U 0020.0	U 0050.0	U 0080.0	U 081.0	SN
Endosultan sultate		U 0020.0	U 0050.0	U 0080.0	U 004.0	SN
Endrin		U 0020.0	U 00c0.0	U 0080.0	U 001.0	SN
Endrin aldehyde		U 0020.0	U 00c0.0	U 0020.0	U 00£.0	SN
Endrin ketone		U 0020.0	U 0020.0	U 0020.0	U 002.0	SN
gamma-BHC		U 0250.0	U 0250.0	U 0820.0	U 00400.0	SN
gamma-Chlordane		U 0250.0	U 02S0.0	U 0250.0	U 0020.0	SN
Нергасијог		U 0250.0	U 0250.0	U 0250.0	U 001.0	SN
Heptachlor epoxide		U 0250.0	U 0250.0	U 0250.0	U 001.0	SN
Метһохусһіог		U 025.0	U 025.0	U 025.0	U 00.1	SN
Тохарћепе		U 00.1	U 00.1	U 00.1	J 00.£	SN
Pesticides by Method 8081A (u	(7/6					-

Table C-4

Complete Analytical Data Summary for Field Quality Control Samples

Complete Analytical Data Sun	nmary for Fig	d Quality Co	ontrol Samp	les,			
		Sample ID:	RB-1	RB-2	RB-3	DD 4	nn r
			no-t			RB-4	RB-5
Annista		Depth:		nr mains	ar innini	00104104	00/05/04
Analyto	Type	Date:	05/23/01	05/29/01	05/30/01	06/04/01	06/05/01
Volatile Organic Compounds by	Method 8260	B (μg/L)					
Xylenes, Total			5.00 U	5.00 U	5.00 U	0.868 U	NS
Vinyl chloride			10.0 U	10.0 U	10.0 U	0.351 U	NS
Vinyl acetate			10.0 U	10.0 U	10.0 U	0.486 U	NS
Trichlorofluoromethane			5.00 U	5.00 U	5.00 U	0.373 U	NS
Trichloroethene			5.00 U	5.00 U	5.00 U	0.781 U	NS
trans-1,3-Dichloropropene			5.00 U	5.00 U	5.00 U	0.428 U	NS
trans-1,2-Dichloroethene			5.00 U	5.00 U	5.00 U	0.478 U	NS
Toluene			5.00 U	5.00 U	5.00 U	0.487 U	NS
Tetrachloroethene			5.00 U	5.00 U	5.00 U	0.646 U	NS
Styrene			5.00 U	5.00 U	5.00 U	0.276 U	NS
o-Xylene			5.00 U	5.00 U	5.00 U	0.302 U	NS
Methylene chloride			5.00 U	5.00 U	5.00 U	0.543 U	NS
m,p-Xylene			5.00 U	5.00 U	5.00 U	0.651 U	NS
Ethylbenzene			5.00 U	5.00 U	5.00 U	0.349 U	NS
Dibromochloromethane			5.00 U	5.00 U	5.00 U	0.244 U	NS
cis-1,3-Dichloropropene			5.00 U	5.00 U	5.00 U	0.394 U	NS
cis-1,2-Dichloroethene			5.00 U	5.00 U	5.00 U	0.427 U	NS
Chloromethane			10.0 U	10.0 U	10.0 U	0.326 U	NS
Chloroform			5.00 U	5.00 U	5.00 U	0.273 U	NS
Chloroethane			10.0 U	10.0 U	10.0 U	3.65 U	NS
Chlorobenzene			5.00 U	5.00 U	5.00 U	0.866 U	NS
Carbon tetrachloride			5.00 U	5.00 U	5.00 U	1.04 U	NS
Carbon disulfide			5.00 U	5.00 U	5.00 U	0.255 U	NS
Bromomethane			10.0 U	10.0 U	10.0 U	1.06 U	NS
Bromoform			5.00 U	5.00 U	5.00 U	0.516 U	NS
Bromodichloromethane			5.00 U	5.00 U	5.00 U	0.309 U	NS
Benzene			5.00 U	5.00 U	5.00 U	0.316 U	NS
Acetone			10.0 U	10.0 U	10.0 U	1.17 U	NS
4-Methyl-2-pentanone			10.0 U	10.0 U	10.0 U	0.361 U	NS
2-Hexanone			10.0 U	10.0 U	10.0 U	0.458 U	NS
2-Chloroethyl vinyl ether			10.0 U	10.0 U	10.0 U	0.454 U	NS
2-Butanone			10.0 U	10.0 U	10.0 U	0.985 U	NS
1,4-Dichlorobenzene			5.00 U	5.00 U	5.00 U	0.304 U	NS

•	•
c	ذ
(- 0
3	ō
í	

Sample ID: BB-1				• 655			
		Sample ID:	RB-1	RB-2	RB-3	RB-4	RB-5
		Depth:	•				
Analyte	Type	Date:	05/23/01	05/29/01	05/30/01	06/04/01	06/05/01
1,3-Dichlorobenzene			5.00 U	5.00 U	5.00 U	0.263 U	SN
1,2-Dichloropropane			5.00 U	5.00 U	5.00 U	0.289 U	SN
1,2-Dichloroethene, Total			5.00 U	5.00 U	5.00 U	0.888 U	SN
1,2-Dichloroethane			5.00 U	5.00 U	5.00 U	0.283 U	SN
1,2-Dichlorobenzene			5.00 U	5.00 U	5.00 U	0.400 U	SN
1,1-Dichloroethene			5.00 U	5.00 U	5.00 U	0.287 U	SN
1,1-Dichloroethane			5.00 U	5.00 U	5.00 U	0.635 U	SN
1,1,2-Trichloroethane			5.00 U	5.00 U	5.00 U	0.378 U	SN
1,1,2,2-Tetrachloroethane			5.00 U	5.00 U	5.00 U	0.409 U	NS
1,1,1-Trichloroethane			5.00 U	5.00 U	5.00 U	0.355 U	SN
Toluene-d8	Surr		101 %	100 %	100 %	100 %	SN
Dibromofluoromethane	Surr		% 86	% 66	% 86	107 %	SN
4-Bromofluorobenzene	Surr		% 96	93 %	94 %	% 16	NS
1,2-Dichloroethane-d4	Surr		% 96	95 %	94 %	% 201	SN
Semivolatiles by Method 8270C (µg/L)	r)						
Pyrene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Phenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
Phenanthrene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Pentachlorophenol			50.0 U	50.0 U	50.0 U	20.0 U	SN
N-Nitrosodiphenylamine			10.0 U	10.0 U	10.0 U	U 0.01	SN
N-Nitrosodi-n-propylamine			10.0 U	10.0 U	10.0 U	10.0 U	SN
N-Nitrosodimethylamine			10.0 U	10.0 U	10.0 U	U 0.01	SN
Nitrobenzene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Naphthalene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Isophorone			10.0 U	10.0 U	10.0 U	10.0 U	SN
Indeno(1,2,3-cd)pyrene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Hexachloroethane			10.0 U	10.0 U	10.0 U	U 0.01	SN
Hexachlorocyclopentadiene			50.0 U	50.0 U	50.0 U	20.0 U	SN
Hexachlorobutadiene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Hexachlorobenzene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Fluorene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Fluoranthene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Di-n-octyl phthalate			10.0 U	10.0 U	10.0 U	U 0.01	SN
Di-n-butyl phthalate			10.0 U	10.0 U	10.0 U	10.0 U	NS
Dimeth thalate			10.0 U	10.01	10.0 U	10.0 U	SN

C-56

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples.

	Sam	Sample ID:	RB-1	RB-2	RB-3	RB-4	RB-5
		Depth:			,	,	
Diethyl phthalofe	Туре	Date	10.01	10.01	10.01	10.011	U6/05/01
Dibenzofuran			10.0 U	10.0 U	10.0 U	U 0.01	SN
Dibenz(a,h)anthracene			10.0 U	10.0 U	10.0 U	10.0 U	NS
Chrysene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Carbazole			10.0 U	10.0 U	10.0 U	10.0 U	SN
Butyl benzyl phthalate			10.0 U	10.0 U	10.0 U	10.0 U	NS
Bis(2-ethylhexyl)phthalate			10.0 U	10.0 U	10.0 U	10.0 U	NS
Bis(2-chloroisopropyl)ether			10.0 U	10.0 U	10.0 U	10.0 U	NS
Bis(2-chloroethy1)ether			10.0 U	10.0 U	10.0 U	10.0 U	NS
Bis(2-chloroethoxy)methane			10.0 U	10.0 U	10.0 U	10.0 U	NS
Benzyl alcohol			10.0 U	10.0 U	10.0 U	10.0 U	SN
Benzoic acid			150 U	150 U	N 051	N 051	SN
Benzo(k)fluoranthene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Benzo(g,h,i)perylene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Benzo(b)fluoranthene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Benzo(a)pyrene			10.0 U	10.0 U	10.0 U	10.0 U	NS
Benz(a)anthracene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Anthracene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Acenaphthylene			10.0 U	10.0 U	10.0 U	10.0 U	SN
Acenaphthene			10.0 U	10.0 U	10.0 U	10.0 U	SN
4-Nitrophenol			50.0 U	50.0 U	50.0 U	50.0 U	NS
4-Nitroaniline			50.0 U	50.0 U	50.0 U	50.0 U	SN
4-Methylphenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
4-Chlorophenyl phenyl ether			10.0 U	10.0 U	10.0 U	10.0 U	NS
4-Chloroaniline			10.0 U	10.0 U	10.0 U	10.0 U	SN
4-Chloro-3-methylphenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
4-Bromophenyl phenyl ether			10.0 U	10.0 U	10.0 U	10.0 U	NS
4,6-Dinitro-2-methylphenol			50.0 U	50.0 U	50.0 U	50.0 U	SN
3-Nitroaniline			50.0 U	50.0 U	50.0 U	50.0 U	SN
3,3'-Dichlorobenzidine			20.0 U	20.0 U	20.0 U	20.0 U	SN
2-Nitrophenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
2-Nitroaniline			50.0 U	50.0 U	50.0 U	50.0 U	SN
2-Methylphenol			10.0 U	10.0 U	10.0 U	10.0 U	NS
2-Methylnaphthalene			10.0 U	10.0 U	10.0 U	10.0 U	SN
2-Chlorophenol			10.0 U	10.0 U	10.0 U	10.0 U	NS

001002_UK02_02_00_90-B0925 APC_Tables.XLS-TMC 2001 Sampling Table C-4-3/27/02

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples,	y for Fle	d Quality Co	ontrol Samp	es,			
		Sample ID:	RB-1	RB-2	HB-3	RB-4	RB-5
		Depth:	•	•		•	٠
Analyle	Type	Date:	05/23/01	05/29/01	05/30/01	06/04/01	06/05/01
2-Chloronaphthalene			10.0 U	10.0 U	10.0 U	10.0 U	SN
2,6-Dinitrotoluene			10.0 U	10.0 U	10.0 U	10.0 U	SN
2,4-Dinitrotoluene			10.0 U	10.0 U	10.0 U	10.0 U	NS
2,4-Dinitrophenol			50.0 U	50.0 U	50.0 U	50.0 U	SN
2,4-Dimethylphenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
2,4-Dichlorophenol			10.0 U	10.0 U	10.0 U	10.0 U	SN
2,4,6-Trichlorophenol			10.0 U	10.0 U	10.0 U	10.0 U	NS
2,4,5-Trichlorophenol			50.0 U	50.0 U	S0.0 U	50.0 U	NS
1,4-Dichlorobenzene			10.0 U	10.0 U	10.0 U	10.0 U	SN
1,3-Dichlorobenzene			10.0 U	10.0 U	10.0 U	10.0 U	NS
1,2-Dichlorobenzene			10.0 U	10.0 U	10.0 U	10.0 U	SN
1,2,4-Trichlorobenzene			10.0 U	10.0 U	10.0 U	U 0.01	SN
Terphenyl-d14	Surr		% 06	93 %	% 68	% L8	SN
Phenol-d5	Surr		82 %	62 %	61 %	% OL	SN
Nitrobenzene-d5	Surr		88 %	20 %	% L9	% 08	SN
2-Fluorophenol	Surr		81%	29 %	28 %	% 79	SN
2-Fluorobiphenyl	Surr		84 %	84 %	83 %	84 %	SN
2,4,6-Tribromophenol	Surr		% 68	28 %	28 %	% 8 <i>L</i>	SN

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples.

Metals by Method 6010B and 7470A/71A (µg/L) Zinc Vanadium Thallium Sodium Silver Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper	Sample ID: Depth: Date:	22.0 1.0 U 4.3 U 391 U 9.9 U	15.4 1.0 U 4.3 U 1.7 U 9.9 U 17.9 U	5.6 J 1.0 U 4.3 U 391 U 2.3 U 9.9 U	A.3 U 33.2 U	NS NS NS NS NS NS NS NS NS NS NS NS NS N
Anaiyte by Method 601 in n in im ese ese ium		22.0 1.0 U 4.3 U 391 U 0.90 U	15.4 1.0 U 4.3 U 391 U 1.7 U 9.9 U 17.9 U	5.6 J 1.0 U 4.3 U 391 U 2.3 U 9.9 U	4.7 J 1.0 U 4.3 U 391 U 3.2 U	06/05/01 NS NS NS NS NS NS NS NS NS N
Analyte by Method 601 n n m m m m m m m m m m m m m m m m m		22.0 1.0 U 4.3 U 391 U 9.90 U	15.4 1.0 U 4.3 U 391 U 1.7 U 9.9 U 17.9 U	5.6 J 1.0 U 4.3 U 391 U 2.3 U 9.9 U	4.7 J 1.0 U 4.3 U 391 U 3.2 U	NS NS NS NS NS NS NS
by Method 601 Im In Im Im Im Im Im Im Im Im Im Im Im Im Im		22.0 1.0 U 4.3 U 391 U 0.90 U	15.4 1.0 U 4.3 U 391 U 1.7 U 9.9 U 17.9 U	5.6 J 1.0 U 4.3 U 391 U 2.3 U 9.9 U	4.7 J 1.0 U 4.3 U 391 U 3.2 U	NS NS NS NS NS NS NS NS NS NS NS NS NS N
n n n n n n n n n n n n n n n n n n n		22.0 1.0 U 4.3 U 391 U 0.90 U	15.4 1.0 U 4.3 U 391 U 1.7 U 9.9 U 17.9 U	5.6 J 1.0 U 4.3 U 391 U 2.3 U 9.9 U	4.7 J 1.0 U 4.3 U 391 U	NS NS NS NS NS NS NS NS NS NS NS NS NS N
Vanadium Thallium Sodium Silver Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper		1.0 U 4.3 U 391 U 0.90 U	1.0 U 4.3 U 391 U 1.7 U 9.9 U 17.9 U	1.0 U 4.3 U 391 U 2.3 U 9.9 U	1.0 U 4.3 U 391 U 3.2 U	S S S S
Thallium Sodium Silver Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper		4.3 U 391 U 0.90 U 9.9 U	4.3 U 391 U 1.7 U 9.9 U 17.9 U 2.7 U	4.3 U 391 U 2.3 U 9.9 U	4.3 U 391 U 3.2 U	N N N N
Sodium Silver Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper		391 U 0.90 U 9.9 U	391 U 1.7 U 9.9 U 17.9 U 2.7 U	391 U 2.3 U 9.9 U	391 U 3.2 U	SN SN SN
Silver Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper		0.90 U 9.9 U	1.7 U 9.9 U 17.9 U 2.7 U	2.3 U 9.9 U	3.2 U	SN
Selenium Potassium Nickel Manganese Magnesium Lead Iron Copper		0.6 U	9.9 U 17.9 U 2.7 U	9.9 U		SZ
Potassium Nickel Manganese Magnesium Lead Iron Copper			17.9 U 2.7 U	17911	0.6 U	?
Manganese Magnesium Lead Iron Copper		U 6.71	2.7 U) ::-	17.9 U	SN
Manganese Magnesium Lead Iron		2.7 U	•	2.7 U	2.7 U	SN
Magnesium Lead Iron Copper		0.93 J	1.7 J	O 09'0	0.60 U	SN
Iron Copper		21.1 U	21.1 U	21.1 U	21.1 U	SN
Copper		2.1 J	5.7	2.1 U	2.1 U	2.0 U
Copper		14.9 J	U 1.11	U 1.11	11.1 U	SN
1,7,7		108	7.9 U	3.9 U	0.8 U	SN
COURIL		0.60 U	0.60 U	O 09:0	0.60 U	SN
Chromium		0.80 U	2.2 J	1.5 J	2.2 J	SN
Calcium		71.2 U	N 809	Ω 0ει	57.2 U	SN
Cadmium		4.4 U	0.40 U	0.40 U	0.40 U	0.20 U
Beryllium		0.10 U	0.10 U	U 01.0	0.10 U	SN
Barium		1.8 J	1.5 U	1.6 U	2.3 U	SN
Arsenic		4.4 U	12.3 U	5.2 U	4.4 U	NS
Antimony		4.1 U	4.1 U	4.1 U	4.1 U	SN
Aluminum		8.5 U	20.6 J	8.5 U	8.5 U	SN
Mercury		0.10 U	0.10 U	0.10 U	0.10 U	SN

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples,

	Samp	Sample ID:	RB-1	RB-2	RB-3	RB-4	RB-5
	<u>α</u>	Depth:	*		٠		•
Analyte	Туре	Date:	05/23/01	05/29/01	05/30/01	06/04/01	06/05/01
Hexavalent Chromium by Method 7196A (mg/L)	A (ma/L)						
Chromium, Hexavalent	1		0.01 U	0.01 U	0.01 U	0.0I U	NS
Cyanide, Total by Method 9012A (mg/L)							
Cyanide			0.01 U	0.01 U	0.01 U	0.01 U	NS
Petroleum Hydrocarbons, TR by Method 418.1M (mg/L)	d 418.1M (mg/	(1					
Petroleum Hydrocarbons, TR		=	2.0 U	2.0 U	2.0 U	2.0 U	NS
Dioxin and Furan by Method 1613B (pg/L)	/L)						
			10.2 UJ	10.3 U	10.0 U	10.0 U	SN
Total TCDD			10.2 UJ	10.3 U	10.0 U	10.0 U	NS
Total PeCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	SN
Total PeCDD			51.0 UJ	51.5 U	50.0 U	50.0 U	SN
Total HxCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
Total HxCDD			51.0 UJ	51.5 U	20.0 U	50.0 U	SN
Total HpCDF			51.0 UJ	3.6	50.0 U	0.9	SN
Total HpCDD			51.0 UJ	51.5 U	20.0 U	52.0	SN
2,3,7,8-TCDF			10.2 UJ	10.3 U	10.0 U	10.0 U	NS
2,3,7,8-TCDD			10.2 UJ	10.3 U	10.0 U	10.0 U	NS
2,3,4,7,8-PeCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
2,3,4,6,7,8-HxCDF			51.0 UJ	51.5 U	20.0 U	50.0 U	NS
1,2,3,7,8-PeCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,7,8-PeCDD			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,7,8,9-HxCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,7,8,9-HxCDD			51.0 UJ	51.5 U	50.0 U	50.0 U	SN
1,2,3,6,7,8-HxCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
		İ					

Table C-4

Complete Analytical Data Summary for Field Quality Control Samples.

Complete Analysida Data Can							
		Sample ID:	AB-1	RB-2	RB-3	RB-4	RB-5
		Depth:					•
Analyte	Type	Date:	05/23/01	05/29/01	05/30/01	06/04/01	06/05/01
1,2,3,6,7,8-HxCDD			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,4,7,8-HxCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,4,7,8-HxCDD			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,4,7,8,9-HpCDF			51.0 UJ	51.5 U	50.0 U	50.0 U	NS
1,2,3,4,6,7,8-HpCDF			51.0 UJ	51.5 U	50.0 U	6.0 J	NS
1,2,3,4,6,7,8-HpCDD			51.0 UJ	51.5 U	50.0 U	31.8 J	NS
1,2,3,4,6,7,8,9-OCDF			102 UJ	103 U	100 U	16.9 J	NS
1,2,3,4,6,7,8,9-OCDD			7.3 J	17.2 J	100 U	181 J	NS
13C12-2,3,7,8-TCDF	IS		103 %	42.7 %	54.9 %	57.6 %	NS
13C12-2,3,7,8-TCDD	IS		103 %	59.5 %	53.3 %	55.8 %	NS
13C12-2,3,4,7,8-PeCDF	IS		120 %	73 %	47.6 %	53.2 %	NS
13C12-2,3,4,6,7,8-HxCDF	IS		110 %	50.2 %	72.1 %	68.6 %	NS
13C12-1,2,3,7,8-PeCDF	IS		108 %	81.5 %	46.2 %	51 %	NS
13C12-1,2,3,7,8-PeCDD	IS		112 %	78.6 %	48.1 %	57.3 %	NS
13C12-1,2,3,7,8,9-HxCDF	IS		120 %	63.8 %	63.3 %	66.6 %	NS
13C12-1,2,3,6,7,8-HxCDF	IS		106 %	86.6 %	68.9 %	63.3 %	NS
13C12-1,2,3,6,7,8-HxCDD	IS		107 %	74 %	70.1 %	67.5 %	NS
13C12-1,2,3,4,7,8-HxCDF	IS		102 %	84 %	65.3 %	62.3 %	NS
13C12-1,2,3,4,7,8-HxCDD	IS		106 %	73.6 %	68.6 %	67.5 %	NS
13C12-1,2,3,4,7,8,9-HpCDF	IS		133 %	94.3 %	56.7 %	65.9 %	NS
L		<u> </u>		<u> </u>	·	L	<u> </u>

Key:

J = Estimated value.

NS = Not sampled for the method.

U = Not detected at the reported value.

mg/L = Milligrams per liter.

pg/L = Picrograms per liter.

Note:

"Surr" indicates a surrogate

compound and "IS"

indicates a internal standard.

These compounds have a

unit of percent recovery.

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples,

	Design.				
Analyte	Type Date:	05/23/01	05/29/01	05/30/01	06/04/01
Volatile Organic Compounds by Method 8260B (µg/L)	ethod 8260B (<i>ug/</i> L.)				
Xylenes, Total		5.00 U	5.00 U	5.00 U	0.868 U
Vinyl chloridc		10.0 U	10.0 U	10.0 U	0.351 U
Vinyl acetate		10.0 U	10.0 U	10.0 U	0.486 U
Trichlorofluoromethane		5.00 U	2:00 U	5.00 U	0.373 U
Trichloroethene		5.00 U	5.00 U	5.00 U	0.781 U
trans-1,3-Dichloropropene		5.00 U	5.00 U	5.00 U	0.428 U
trans-1,2-Dichloroethene		5.00 U	5.00 U	5.00 U	0.478 U
Toluene		5.00 U	5.00 U	5.00 U	0.487 U
Tetrachloroethene		5.00 U	5.00 U	5.00 U	0.646 U
Styrene		5.00 U	5.00 U	5.00 U	0.276 U
o-Xylene		5.00 U	5.00 U	5.00 U	0.302 U
Methylene chloride		5.00 U	5.00 U	5.00 U	0.543 U
m,p-Xylene		5.00 U	5.00 U	5.00 U	0.651 U
Ethylbenzene		5.00 U	5.00 U	5.00 U	0.349 U
Dibromochloromethane		5.00 U	5.00 U	5.00 U	0.244 U
cis-1,3-Dichloropropene		5.00 U	5.00 U	5.00 U	0.394 U
cis-1,2-Dichloroethene		5.00 U	5.00 U	5.00 U	0.427 U
Chloromethane		10.0 U	U 0.01	10.0 U	0.326 U
Chloroform		5.00 U	2.00 U	5.00 U	0.273 U
Chloroethane		10.0 U	10.0 U	10.0 U	3.65 U
Chlorobenzene		5.00 U	5.00 U	5.00 U	0.866 U
Carbon tetrachloride		5.00 U	5.00 U	5.00 U	1.04 U
Carbon disulfide		5.00 U	2.00 U	5.00 U	0.255 U
Bromomethane		10.0 U	10.0 U	10.0 U	1.06 U
Bromoform		5.00 U	5.00 U	5.00 U	0.516 U
Bromodichloromethane		5.00 U	5.00 U	5.00 U	0.309 U
Benzene		5.00 U	5.00 U	5.00 U	0.316 U
Acetone		10.0 U	10.0 U	10.0 U	1.17 U
4-Methyl-2-pentanone		10.0 U	10.0 U	10.0 U	0.361 U
2-Hexanone		10.0 U	10.0 U	10.0 U	0.458 U
2-Chloroethyl vinyl ether		10.0 U	10.0 U	10.0 U	0.454 U
2-Butanone		10.0 U	10.0 U	10.0 U	0.985 U
1,4-Dichtrobenzene		5.00 U	5.00 Ų	5.00 U	0.304 U

001002_UK02_02_00_90-B0925 APC_Tables.XLS-TMC 2001 Sampling Table C-4-3/27/02

Table C-4 Complete Analytical Data Summary for Field Quality Control Samples,

		Sample ID:	TB-1	TB-2	TB-3	TB-4
		Depth:	•	•	•	,
Analyte	Type	Date:	05/23/01	05/29/01	05/30/01	06/04/01
			5.00 U	5.00 U	5.00 U	0.263 U
			5.00 U	5.00 U	5.00 U	0.289 U
,2-Dichloroethene, Total			5.00 U	2:00 U	5.00 U	0.888 U
			5.00 U	5.00 U	5.00 U	0.283 U
			5.00 U	S:00 U	5.00 U	0.400 U
			5.00 U	S.00 U	5.00 U	0.287 U
			5.00 U	5.00 U	5.00 U	0.635 U
			5.00 U	5.00 U	5.00 U	0.378 U
,1,2,2-Tetrachloroethane			5.00 U	5.00 U	2.00 U	0.409 U
			5.00 U	5.00 U	2:00 U	0.355 U
	Surr		% 001	% 001	% 101	% 101
Oibromofluoromethane	Surr		% 66	% 66	% 86	% 601
4-Bromofluorobenzene	Surr		% 96	% 96	94 %	% 56
	Sur		95 %	% 56	% 56	% 601

D Remedial Investigation Sample Results (Source: Law 1996)

Table 5.1: Detection of Analytes in Surface Water Samples
Threemile Creek Remedial Investigation
Criffits Alt Force Base, Reme, New York

1	9.0.0.1	25.25 25.25	Sample I.D.	TMCSW-1	TMCSW-1	TMCSW-1	TMCSW~2	TMC-SW-2	TMCSW-2	TMCSW-3	TMC-SW-3	TMCSW-5	TMCSW-4	TMCSW-01
0.00	0.00	0.00	mple Date	16-13-61	07-12-94	11-04-94	05-13-94	07-12-94	11-06-94	05-13-94	07-12-94	11-06-94	05-12-94	05-12-94
100	0.00	0.00	* * * * * * * * * * * * * * * * * * *											
0.01	0.00	0.01	E1110J); PFA 524.2											
100	0.00	0.00	1 - Trichloroethane	. 0.1	1		1710			13700			1130	
0.50	0.50	0.50	~Dichlorobenzene	0.51	ţ		0.193			0 5 11				7
1	0.00	0.50	-Dichlorohenzene	0.50			1 7 10							200
0.50	0.055	0.550 0.650											0.00	0.50
0.51	0.50	0.50	0.000				0 0			0.00			0.50	0.50
0.01	0.011 0.021 0.021 0.021 0.021 0.021 0.022 0.023	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	lorocenzene	0 0			0 00						0.S C	0,5 U
0.00	0.01	0.00	-1,2-Dichloroothene	0.18.1		! t	0.19 J			0.12 J			0.5 U	0.5 U
0.001 0.0024 0.0	0.51	0.01	Cymene	0.5 U		:	0.39 J			0.5 U			1150	1130
1,	1.	1,	achiomethylene (PCE)	1150		1	1 200			1 3300			9 .	
0.024 0.024	0.0014 0.	0.0241	Abranahadan (TO)			1	7 6.0			5000			U.12 J	0.12 J
0.000	0.00241	0.00241	dibitocinyicae (10.E)	<u>:</u>	ł ?	1	?			6.93			0.50	0.5 0
0.0001 0.	0.021	0.001												
00000	0.00241	0.0231	(TEOD): 12PA 525.1											
00000	0.00241	0.0001 0.	MI-VOLATILIS: (MAL)											
00000	0.000	0.0001	Dishensihadrarine		17000	•	ļ	11 70			:: 03.0			
0000 00000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	Taplicayiayatazme	1	0.024 J	1	1	0.0	1	ŀ	D 65'0		I I	1
00000 000000 0000000000000000000000000	000001	00000000000000000000000000000000000000	3,3,4,4,6-Ileptrechlorobiphenyl	1	0.018 J	i t	1	3.1	1	1	28		1	1
00021 00021	0.00001	0.0001	3.4.6 -Pentachlorohipbeay	1	0.028 J	1		11 13		,				
00021 00020	0.0221	00000000000000000000000000000000000000	4.4' S.6'- Herschlorobinberni	1	10100	1							1	1
00000000000000000000000000000000000000	0.0221	0.0021	the first and an income of the first		2 6 10 0) ; ;		1	•			1
0.00221	0.00021 0.0002	410	4,4 ~ I drachiorotyphenyl	! !	0.024 J	1		9.1.S		! ! .	2			1
000091	100001 1000001 1000001 1000001 1000001 1000001 100001 100001 100001 100001 100001 100001 100001 100001 1000	00000000000000000000000000000000000000	Dichlor objpherry!	I F	0.022 J	1		3.1 C		1	2			
120	00011	00011	5-Trichloronhenol	1	3 66000	1		9.10			11.5			
00000000000000000000000000000000000000	100 0.000	100 100	(-Thichtorenhenol	. 1	1,5100	1		11.01						
0.000	6.000	0.002	1 th the contract		1 0000						2			
0.0001 0.0011 0.0012 0.0013 0.	0.0021	0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.00221	Diction of the case		6 600	i J		3:			G :			
00000 000001 000000	0011	00000000000000000000000000000000000000	hicrotophemy		0.02 J	1		0 1.8			2			
000131	00131	00131 00151 00051 000	-Dichlorobenzidine	1	0.0009	1		30			210			
0.0013	0.0221	0.001	naphthylene	1	0.015 J	1		20			= 5			
00001 00001	0001	00001	a Chlordane	1	0.012 \$			4 11			5			
0.001 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022 0.0	0.000	0.000			1 100						2			
0.000 0.000	0.000	0.000	Hi sociale	1	1000	t i		Coord			6 /000			
0.0023	00031	0.0021	zo(a)aninracene	1	0.03	:		0.19 U			0.19 U			
00001 1 00001 2 0 00001 3 0 0 00001 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00011	00011	zo(a)pyrene	1	0.023 J			0.6 U			0.003			
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	1	2 0023 1	zo(b)fluoranthene	1	0.011 J			O 69.0			0.007			
90221	0.020 0.40	2	zo(e.b.) perylene		3.0			3.0			2.0			
3.4	3.4	3.4	of by fluoranthene		0.028.1	1		0.411			1170			
3.40 0.024 0.024 1.007 0.0	4.9 UR 3.4 U	3.40	lben rid nh tha late	1	11.5	1								
3.4 U	3.40 3.40	4.9 UR 4.0 UR 4.0 UR		ı	2	1		2			2			
340	23.40	240	~ isnymeryi)ndipale		t F			!			1			
0.099	0.0081	0.0281	-Ehylberyl)phthalate		3.4 U	;		3.4 U			3.4 U			
10.990 10.70	20	10 007 1	2010	1	0.028 1	•		0.21 U			1 100 0			
2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	2007 0.007 1.007 1.007 1.007 1.007 1.0014 1.001	2001 2001 2001 2001 2001 2001 2001 2001	nate hlomibracene	1	11 000			-						
2. 0.07 J	2 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	20	at an interest					-			2			
5 U	5 U	2	yppinale	:	2.0) I		20			2 10			
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	5 U	ethylphthalate	1	0.07 J	1		0.047 J			0.03			
\$ 0.014	3 U	\$\frac{3}{5}\triangle \frac{1}{2}\triangle \frac{1}	-butylphthalate	1	5.13	1		0.5						
0014	0014	2 U		•	1	1		1.5						
0.001 1.2 UJ 1.2 UJ 1.2 UJ 1.2 UJ 1.2 UJ 1.3 UJ 1.4 UJ 1.9 UJ	200 000 000 000 000 000 000 000 000 000	0.014	relies Chinalian		2 7 7 7	Ì		2 5) : 			
0.00323	0.003	0.013		1	1000	:		· ;			0 0			
0.003 J	0013	0.013	achiorobenzene	!	0.032 J	1		0 1.0			0.7 C			
12UJ 12UJ 05U 05U 05U 05U 05U 05U 05U 05U 05U 05U 05U 05U 05U 05U 19 UJ 19 UJ 19 UJ 19 UJ 01UJ	12 UJ 12 UJ 12 UJ 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 19 UJ 19 UJ 19 UJ 19 UJ 05 UJ -	12 UJ 12 UJ 12 UJ 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 05 U 19 UJ 19 UJ 19 UJ 19 UJ 011 J -	achlorocyclopentacliene	1	0.013 J	1		O 680			0.68 U			
20013 0.0015 0.50 0.50 0.0015 0.001	20	2 U 0.011	nof1.2,3editorrene	1	1.2 UJ	!		12 UJ			112 111			
2 U - 2 U -	2 U 2.00 4.0	20		1	2 0000			1130			1			
2 U 2 2 U 2 2 U 2 2 U 2 2 U 2	2 U - 19	2 U - 2 U -			1 7100	1		֭֓֞֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֡֓֡֓֡						
2 U - 2 U -	2 U 2 U	2 U 0.034	Airtosoaphenyihanine (1)	1	0.010	l i					4			
20 0.11 0.15 0.004	2 U 0.11 0.15 0.11 0.11 0.004 0.004 0.004 0.004 0.004 2.U 2.U 2.U 2.U 0.4 U 5.UR 0.4 U 5.6 UR	2U 0.11 0.015 0.016 0.016 0.016 0.016 0.017 -	achlorophenol		0.024 J	1 1		1.9 UJ			1.9 U			
2 U 2	2U 2U 2U 2U 2U 2U 49 UR 0.4U 5.0 W 0.4U 5.6 UR 0.4U 5.	2U 0.036J 0.017J 0.014J 2U 2 2U 2 2U 2 2U 2U 2U 2U 2U 2U 2U 2U	18athrene	1	0.11 J	ļ		0.13 J			0.11.1			
	2U 2U 2U 2U 2U 4.9 UR 0.4 U 5.0 R 0.4 U 5.6 U 5.6 U 5.6	2U 2U 2U 2U 49 UR 0.4U 5 UR 0.4U 5.6 UR 0.4U 5.6 UR		;	0.038.1	;		0.017.3			1 7100			
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2U 2U 2U 2U 49UR 0.4U 5.6UR 0.4U 5.6UR	2U 2U 2U 2U 2U 49 UR 0.4U 5 UR 0.4U 5.6 UR												
	2U 2U 2U 2U 2U 49UR 04U 5UR 04U 56UR	2U 2U 2U 2U 2U 49 UR 0.4U 5UR 0.4U 5.6 UR 0.4U 5.6 UR	THOD: EFA 515.1											
2U 1U 2U	2U 2U 2U 2U 49 UR 0.4U 0.11 0.4U 5.6 UR	2U 2U 2U 2U 49UR 0.4U 5UR 0.4U 5.6UR	TICIDES/FCB COMPOUNDS; (MCL)											•
	4.9 UR 0.4 U 0.1 1 0.4 U 5.6 UR	4.9 UR 0.4 U 0.1 0.4 U 5.6 UR	mba	2 U	•		3 U							
all of all of	4.9 UR 0.4 U 5 UR 0.4 U 0.1)	4.9 UR 0.4 U 0.1												7
ditor	4.9 UR 0.4 U 0.1) 0.4 U 0.1	4.9 UR 0.4 U 0.1 J 0.4 U	THOD: EFA 507											
THE STATE OF THE S	4.9 UR 0.4 U 0.1 J 0.4 U	4.9 UR 0.4 U 0.1 1 0.4 U	TICEDES/PCB COMPOUNDS: (Mg/L)											
			et Ott	40 170	i	1170	911.5		:					

2588-0211.11F

Men of a

120402

Table 5.1: Detection of Analytes in Surface Water Samples Three mile Cycek Remedial Investigation Griffite Air Forto Base, Rome, New York

Sumple I.D.	TMCSW-1	1MC-SW-1	TMCSW-1	TMCSW-2	TMC-SW-2	TMCSW-2	TIMESW-5	TMC-SW-3	TMCSW-3	TMCSW-4	TMCSW-01
Sample Date	05-13-94	07-12-94	11-04-94	05-13-94	07-12-94	11-06-94	05-13-94	07-12-94	11-06-94	05-12-94	05-12-94
SE AN CONTRA											
PESTICIDES/FCB COMPOUNDS: (146/L.) Malathloa	0.18 UJ	1	1	0.18 UJ	1		0.17 UJ			0.2 UJ	0.2 UJ
p,p'-DIDT	0.045 U	1	1	0.046 U		t t	0.045 U	1	:	0.094	0.078
MITTIOD: HPA 531.1 PISTICEDES/PCB COMPOUNDS: (Ma/L)											
Aldicarb sulforde	0.4 ()	1	1	0.4 0.1	1	1	0.4 U	1	1	0.69 J	0.29 J
MUTALS: (mgL) Aluminum (3005/6010)	U 60:0	!	1	D 60:0	1	1	0.13	1	1	0.09 U	D. 60.0
Antimony (3005/7041)	0.006 U	1	1	U 9000	1 1	1	0.006 U	1	1	0.017	0.006 U
Arsenic (3020/7060) Bacteria (300/7060)	0.003 U	J) I	0.003 0.0	1 1) [0.003	1 1	1 l 1 l	0.003 U	0.003 U
Caldum (3005/6010)	8.69	1))	70.5	t	1	84.1	1	() (55.1	55.7
Iron (3005/6010)	0.04 (1	B (1	1 1	0.076	1 1	1 1	0.058	t 1 1 1	1 1	0.04 U	0.066
Magnestum (3005/6010)	7.6		1	1.1	t 1		10.1	1 1	1 1	6.4	6.4
Manganese (3005/6010)	U 2000	1	1	0.008	1		0.01	1	1	0.005 U	0.005 U
Molybdenum (3005/6010)	80.0) 1 1	1 I	0.16	1 1	; ;	0.16	1 1	1 1	0.05 U	0.05
Forassium (3020/7740)	0.003	i I	. 1	0.003	1 1		0.003 U	1 1		0.003 U	0.003 U
Sodium (3005/6010)	36	1	i	36	!		31.5	1		14.4	14.5
Strontium (3005/6010)	0.13	† † † ;	1 (0.14	1 (3 (7 (0.16	1 1	1 :	0.11	0.12
Cutc(sws)win)		i i			1)	C700	1		100	670'0
WIT CHIMISTRY: (mg/l.)							Ş			Ş	
I of all Hardness NA A Surfections	0.028	1 1	1 1	0.025 U	1 1	1 1	0.025 U	1 1	; ; ; ;	100	. 113600
Ammonia Mitrogen	0.05 U	1	ì	0.05 U	1	1	0.05 U	1	1	0.14	0.054
Nitrite Nitrogen		1 1	1	0.02 U	1	1	0.02 U	!	1	0.02 U	0.02
Total Recoverable Petroleum Hydrocarbons (418.1)	o	1	t 1	0.48 UJ	1		0.58	!	!	0.25 UJ	- ;
Non-Filterable Residue (100°C) Filterable Residue (160°C)	763 263	! ! ! !	i ! i i	176	1 ;	1 1	326	!!	1 1	183	178
MITTER DE NA STORY APC AL											
TOTAL GLYCOLS: (mg/L)				•			;	,			
Initial Analysis	0.05 U	r 	1 1	0.05 U	i i	! ! ! !	0.05 U	1 1	t i	0.05 U	0.05 U
											ì
RADIONUCLIDES: (pcVL) Strondim 90	0.1	1	1	ΩΙ	1		U		1	111	11
Total Uranium	1.0		1	10		1	6+/-3	2	-	T T	4+1-2
(i) = Duplicate of TMCSW -4 (05-12-94) (2) = Duplicate of TMCSW -4 (06-26-94) (4) = Duplicate of TMCSW -4 (07-12-94) (5) = Duplicate of TMCSW -4 (11-07-94) (6) = Duplicate of TMCSW -11 (05-10-94) (7) = Duplicate of TMCSW -11 (06-26-94) (7) = Duplicate of TMCSW -11 (07-12-94) (8) = Duplicate of TMCSW -11 (07-12-94) (9) = Duplicate of TMCSW -11 (10-12-94)	14g/L = midrograms per liter mg/L = milligrams per liter pC//L = plocardes per liter J = Estimated R = Rejected U = Malyte not detected UJ = Estimated concentration = Analyte not analyzed	ugL = mlacog ams per liter mgL = militigans per liter pC.L = plocanies per liter J = Estimated V = Abalyte not detected UJ = Estimated concentration possibly biased low = Analyte not analyzed	oly blased low							·	

E

E

2568-0211.11F

Table 5.1: Detection of Analytes in Surface Water Samples Throemile Creek Remedial Investigation Griffits Air Force Base, Rome, Now York

E. (Legil) Signal of the myl phemy	07-12-94 	07-12-94 0.58 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 8.0 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8 U 8	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		05-12-94 0.0075 J 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	07-12-94 	66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05-12-94 0.065 J 0.5 U 0.049 J 0.15 J 0.15 J 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.38 U 7.8 U
### Start ### St		0.58 U 7.59 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00			0.58 U 2.58 U 2.58 U 2.58 U 2.58 U 2.58 U 2.58 U 2.58 U 2.58 U 2.50 U 2.
athere ene ene ene ene ene ene ene ene ene		0.58 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U			0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00	0.05 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23			0.58 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.9 U 7.9 U
and the control of th		0.58 U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U 7.5 U U			0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00	0.00 U 0.			0.58 U 7.8 B U 7.8 B U 7.8 U 7.8 U 9.90 U 9.
athene (TCE) (0.88 U 7.90 U 7.90 U 7.90 U 7.90 U 7.90 U 7.90 U 8.00 U 8.00 U 8.00 U			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.58 U 7.5 E U
cthene ct (TCE) ct (T		0.58 U 7.59 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.58 U 7.58 U 7.58 U 7.58 U 7.58 U 7.58 U 7.58 U 7.58 U 7.58 U 7.50 U 7.
ethene eth CE) (ITCE) 23.3.1 23.4.1 23.5.		0.58 U 7.59 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.051 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.58 T T T T T T T T T T T T T T T T T T T
ethene (TCE) 525.1 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 525.1 State (TCE) 526.1 State		0.58 U 7.50 U 7.			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.64 L L L L L L L L L L L L L L L L L L L			0.58 U 2.58 U 2.58 U 4.58 U 4.50 U 4.
c (PCE) (TCE		0.58 U 7.9 UR 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.61 U 6.21 U 6.		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.58 U 7.8 U 7.8 U 7.8 U 7.8 U 4.5 U 4.5 U 4.5 U 4.5 U 4.5 U 4.5 U 4.5 U 4.5 U 4.5 U 6.5 U 7.5 U 6.5 U 7.5 U
(TCE) S25.1 S25.1 S25.1 Sable Sa		0.56 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U 7.50 U			0.50 0.56 0.65 0.65 0.65 0.65 0.65 0.65	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	0.58 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.9 U 7.9 U 7.0 U
e (PCE) 11ES; (LegL.) 22ine		0.58 U 7.50 U 7.50 U 7.50 U 7.50 U 8.50 U 7.50 U 8.50 U 8.50 U			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.61 U 8.2 R 8.2 U 8.2 U 8.2 U 8.2 U 8.2 U		0.00 0.41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.58 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.9 U
525.1 14.52. [LagL] 225.6 225.6 225.6 225.6 225.7 2		0.58 U 7.9 UR 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U			9	0.64 U 6.2 R 8.2 U 8.2 U 8.2 U 8.2 U		111111	0.58 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 1.1 U
1.555.1 1.555. (Let L.) state of the control of t	0.58 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 8 U 5 U 5 U 5 U 6 U 5 U 7.9 U 7.0 U	0.58 U 7.5 UR 7.5 U 7.5 U 7.5 U 7.5 U 1.2 U 0.59 UJ 7.5 U				0.61 U 6.21 R 8.21 U 8.21 U 8.21 U		111111	0.58 U 7.8 R 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 7.9 U
azine azine azine azine azine azine azine azineshenyi arincishenyi ari	0.58 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 1.2 U 0.015 I 5 U 5 U 5 U 5 U 6 U 7.0 U 7	0.58 U 7.5 UR 7.5 U 7.5 U 7.5 U 7.5 U 1.2 U 0.99 UJ 7.5 U				0.61 U 6.2 R 6.2 U 8.2 U 8.2 U 8.2 U		11111	0.58 U 7.8 R 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 1.2 U
azine placation ubiphrayi indianotokiphrayi and and and and and and and and and and	0.58 U 7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 8 U 5 U 5 U 5 U 5 U 6 U 5 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7 U 7	0.58 U 7.5 U R 7.5 U U R 7.5 U R 5.0 U			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.61 U 6.2 R 6.2 U 8.2 U 8.2 U 5.2 U		111111	0.58 U 7.8 R 7.8 U 7.8 U 7.8 U 7.8 U 7.8 U 4.9 U 1.1 U
ptacklorobiphenyl	7.9 U 7.9 U 7.9 U 7.9 U 7.9 U 8.0 U 5 U 5 U 5 U 5 U 6 U 8 U	75 UR 75 U 75 U 75 U 75 U 75 U 75 U 75 U			1 1 1 1 1 1 1 1	25 25 25 25 25 25 25 25 25 25 25 25 25 2		11111	7.8 C 7.8 C 7.8 C 7.8 C 7.8 C 7.8 C 7.8 C
alonotiphenyl control phenyl U 7.9 U 7.9 U 7.9 U 7.9 U 1.2 U 0.015 J 5 U 5 U 5 U 5 U	0 87 0 87 0 87 0 87 0 80 0 80 0 87 0 8		!!!{!!!!!!!	1 1 1 1 1 1 1	8.2 U 8.2 U 8.2 U 8.2 U 5.2 U		1 1 1 1	7.8 U 7.8 U 7.8 U 7.8 U 7.8 U	
consisting the constraint of t	7.9 U 7.9 U 7.9 U 1.2 U 0.00151 7.9 U 5 U 5 U 5 U 5 U 6 U 6 U	0.87 0.87 0.121 0.89 UJ 7.8 U		1 [1 1 1 1 1	8.2 U 8.2 U 8.2 U 8.2 U		[7.8 U 7.8 U 4.9 U 1.1 U 0.98 UJ
rotokiphenyl enyl enyl enyl enyl elyl elyl elyl	7.5 U 7.9 U 1.2 U 0.0013 J 7.9 U 5 U 5 U 5 U 5 U 6 U 6 U	0.67 5.00 10.20 0.89 0.67 0.67 0.50			1 1 1 1 1	8.2 U 8.2 U 5.2 U		; ; 1 ;	78 U 78 U 73 U 13 U 098 UJ
each ceach can be caused as a second control of the cause can be caused as a second can be cause	7.9 U 1.2 U 0.015 J 1.9 U 5 U 5 U 5 U 5 U	7.5.0 0.89.0 0.80.0 0.80.0 0.80.0			1111	8.2 U 5.2 U		1	7.8 U 1.7 U 0.98 UJ
etaol etaol ol displace siding etaol con etaol e	0.012 0.0121 0.0121 7.9 U 5 U 5 U 5 U 6 0.0043	200 170 170 170 170 170 170 170 170 170 1		1	: : :	5.2 U			4.9 U 1.2 U 0.98 UJ
edoi oldine tidine cae cae cae tide dipate phibalate	5.00 1.20 1.20 5.00 5.00 5.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00	25.0 20.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.0			i (1 0			1.2 U 0.98 UJ
idine didine coe coe coe coe coe coe coe coe coe co	5 U S U S U S U S U S U S U S U S U S U	2000		1111	1	1.2.0			0.98 0.1
idine tene ene ene ene ene did did did	5 U 5 U 5 U 5 U	200		1 1 1	1	3.0			
te ene ene ene ene ene ene ene ene ene e	5 U 5 U 0.004 J	20.5		1 1	;	52.0		1 1	7.00
ste cne cne cne cne cne cne cne cne cne cn	5 U 0.004 J			! !	t i	\$2 U			1.04
thene tene tene tene tene tene tene tene	0.004 J	2		I I	1	5.2 U		i	4.9 U
bene				 	į	2.1 C			0.038 J
tene	0.19.0	0.19.0		l L	j j	0.2 U			0.19 C
	0 900	0 96.0		 	2 (5 1	0.01 0		î I	0.12 J
	S	SU		1	l i	5.2 U			1 1200
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4 U	0.4 U		1	I i	0.41 U			0.078 1
1 1 1	3.0	20		1	1	S U			3 U
11	!	} !		1 1	1	1			1
1	3.4 U	3,4 U		1	1	3.4 U			3.4 U
	0.0079 J	0.21 0		1	1 1	0.22.0			0.12 J
acene	0.5%	116		ł :	1 1	2 5			0.98 U
Dimethylohthalate	2.5	2.5	 	1 1	: 1	11 6 8			0.024 J
1	o s	2.5		1	1	25			
1	S U	s u		1	.1	5.2 U			1 7000
Chlordane	S U	S U		;	1	5.2 U			4.017
1 1	O 69:0	0.69 U		;	I I	0.72 U	1	1	D 69 O
r	U 180	0.87 U		1	1	O 16'0	1	1	0.86 U
1	1.2 UJ	1.2 UJ		1	. !	1.2 UJ	1		0.091
:	0 S O	0.5 U		ł 1		0.52 U	1	t t	0.49 U
lamine (1)	2 5	0.5		1 !			1	ŀ	3.9 U
! 1	121	1.00		i 1		7:			1.9 U
Pyrene	0.031 J	0 S	1 1		: 1	0.028.1) ;	1 1	0.26)
		· •				2000		,	0.3
METHOD: RPA 515.1			•						
Namba	;	i i	Į.	t t	1.9.1	i i	1	2 U	ţ
METHOD: 1P A 507 PISTICIDESPER COMPOUNDS: (med.)									
Prometon 5 UR 5 UR	1	1 1	0.5	0.5	5.6 UR	1	0.4 U	5.6 UR	1

Table 5.1: Detection of Analytes in Surface Water Samples
Threemile Crook Remedial Inremigation
Griffits Air Force Base, Rome, New York

				•	THE PART PARTS	DAME, ACCRE, NOW					
Sample I.D.	TMCSW-4	(2) TMCSW 4 01	TMC-SW-4	TMC-SW-4-01 TMCSW-4	1 TMCSW-4	(4) TMCSW-01	TMCSW-5	TMC-SW-5	TMCSW-5	TMCSW-6	TMC-SW-6
Sample Date	06-26-94	66-26-94	07-12-94	07-12-94	11-07-94	11-07-94	05-12-94	07-12-94	11-06-94	05-12-94	07-12-94
METHOD: RPA 506 PROTICIDASPCE COMPOUNDS: (uell.)											
Mulathlon p.pDDT	1 1, 1 1	; ; ; ;	1 1	1.1	1 1	! 1	0.2 UJ 0.089	!!		0.21 J 0.1	i : 1 1
METHOD: BFA 531.1 PESTICEDESECS COMPOUNDS: (MEL.) Addient sulferide		. 1	. }	1	1	i t	0.29 J		. !	0.4 UJ	
MPTALS: (mgT.)							,000			•	
Aluminum (3005/6010) Antimory (3005/7041)	1 1	t (; ; ; ;	1 1	† 1 1 †	 	0.005	 1	1 1	0.37	ł
Arsenic (3020/7060)	1	1	1		1	1	0.003 U	1	1	0.003 U	1
Barium (3005/6010)	1	1 1	1	; 1	1	1	0.028	1 .	1.	0.028	1 1
Calcium (3005/6010)	1 1	! I	1 1	i 1	; (1 	8/2	} (1 1 1 1	67.4	1
Lead (3020/7060)	1 1 1 1	1 1	1 1	1	1	 	0.002 U	i [1 1	0.0	1 1
Magnesium (3005/6010)	i i	1		3 1	1	1	113	1	ŀ	9.1	;
Manganese (3005/6010)	1	:		1	1	1	0.02	;	1	0.091	1
Molytdeaum (3003/6010)	1 1	1 1	} 1	i i	1 1	1 1	0.05	; I) 	60:0 V	1 1
Forestum (3002/0019) Selenium (3020/7740)	1	I		1 1	l t	: I	0.003 U		 	0.003 U	! !
Sodium (3005/6010)	i I	;	i	3 7	!	i	36.8	1	1	30.8	!
Stromium (3005/6010)		1	i · I	1	1	1	0.16	;	1	0.14	1
Zinc (3005/6010)	1	1	;	1	1	i i	0.14	1	j 1	0.063	1
OWET CHEMISTRY: (mpl.)											
Total Hardness	1	t I	1	1 1	;	1	246	1	1 1	201	
MBAS - Surfacents	1	1	1	1	!	ľ	0.026	;	l l	0.079	1
Ammonia Nitrogen	ı	1	t I	1	1	1	0.21	1	;	1.6	
Nimite Mitrogen	2 1			! 1	i l	1	0.02 U	i i,	!	0.029	
Total Recoverable Petroleum Hydrocarbons (415.1)			1 !	1 1	1 : } :	1	0.00		1	0.42	
Non-Friderable Residue (100°C)	t 1	1 1	1 i	1 1	1 1 1 1	 	֓֞֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֡֓֡֓	1 (1 i	= 2	i
ringlante resinne (100 c)		li i		1		1	•		i	107	
METHOD: NYSDOH APC-44 TOTAL GLYCOLS: (mg/L)				• •			11 300				
Initial Analysis	1 1	! (• I	t 1	1 1	1 1	0.03 0	1 1	1 1	0.17	1
Continuency Agentain										600	
RADIONUCLIDES: (PCVI.)										:	
Strontium 90	1 1	f (1 1) ()	l 1	1 1	7+1-4	} 	1 1	101	1 .
Total Uranium	noff = microscane nee liker	il					6-1+1			7-/+4	1
(1) = Duplicate of TMCSW -4 (05 - 26 - 94) (3) = Duplicate of TMCSW -4 (07 - 12 - 94)	mg/L = milligrams per liter pCi/L = piccouries per liter	ns per liter les per liter									
(4) = Duplicate of TMCSW -4 (11-07-94)	J = Estimated R = Rejected										
(6) = Duplicate of Inform (65-56-94) (6) = Duplicate of Information (66-26-94)	U = Analyte not detected	in a majorem. 11. = Estimated concentration modelly biased low	to traced low								
(s) = Duplicate of TMCSW -11 (07-22-94) (o) = Duplicate of TMCSW -11 (11-04-94)	= Analyte not analyzed	od sandyzed						·			

Table 5.1: Detection of Analytes in Surface Water Samples Threesadie Creak Resectial Investigation Griffits Air Force Base, Rome, New York

Sample I.D.	TMCSW-6	TMCSW-7	TMC-SW-7	TMCSW-7	TMCSW-8	TMCSW-8	TMCSW-8	TMCSW-8.	TMCSW-9	TMCSW-9	TMCSW-9
Sample Date	11-06-94	05-12-94	07-12-94	11-05-94	05-11-94	06-26-94	07-22-94	11-05-94	05-11-94	06-26-94	07-22-94
METHOD: EPA 524.2											
VOLATILIS: (MET.)											
1,1,1 - Trichloricethans	1	0.096 J	1	1	0.5 U			1	0.045 J		1
1,3 - Dichlorobenzene	1	0.50	1	1	0.50		t i	I	0.5 U		1
Bentene	1 1	0.50	; i	1 1	0.057 J			1	0.05 J		1
Chlombenzene	1	0.73		: 1	0.00		1 1	j :	0.44		! 1
os-1.2-Dichloroshene		0.513	;	1	0.510			1 1	0.73		1
p-Omene		U \$ 0		1	050		1	l j	2.50		, 1
tetrachloroethylene (PCE)	,	0.058 J	1	1	0.5 U	;	;	1	0.50	1	1 1
Trichloroethylene (TCE)	1	0.49 J		1	0.44 J		1	i i	0.37 J		3
MPTHOD: 11PA 525 1											
SETTL-VOI-TIES: (MEA.)											
1,2-Diphenylbydrazine	;	1	0.59 U	1	0.69 UR	1	1	10 U	0.66 UR	1	1
2,2,3,3,4,4,6 - Heptachlorobiphenyi	1	1	€	: t	9.4 UR	!	i i	D 1.0	8.9 U.R	!	
2.2',3',4,6-Peutachlorobiphenyl]	; 	11 8	1	9.4 UR		1	0.1 U	8.9 UR	1	!
2,2',4,4',5,6'-Hexachlorobiphenyl	1		0.8	1	9.4 UR	1	1 2	O.1 U	8.9 UR	1	ł
2,2,4,4" - Torrachlorobiphenyl		t I	9 C	;	9.4 UR	1	1	0.1 13	8.9 UR	1	1
2.3-Dichlorobipheny	1 7	1 2	n 8	1	9.4 UR	1	1 1	0.1 U	8.9 UR	1	1
2,4,5-Trichlorophenol	1	1	o s	1,	S.9 UR	1	1	20 C	S.6 UR	1	1
2,4,6-Trichlorophenol		I 1	1.2 U	1	1.4 UR	t i	!	20 C	1.3 UR	1	i
2,4-Dichlorophenol	!	1	I O	1	12 UR	1	!	10 01	1.1 UR	1	ŀ
2-Chlurchiphenyl	1 1		.	1	9.4 UR	1	1	0.1 U	8.9 UR	1	1
3,3'-Dichlorobenzidine	:	1	25	ī t	S.9 UR	!	1	200	5.6 UR	1	1
Acenaphtaylene	f t			1	2.9 UK	!	l I	0.50	5.6 UR	!	1
appa-Chlorume				1	3.9 UK	1 2	I I	0.2.0	5.6 UR	1	1
Denze acene Denze/elenthrecene			1 61 0	1 1	2.4 U.A.	1 :	1 1	6.00	2.2 OK	1	! J
Benzo(a)mrene			0.59 U	1	AC 55.0	l !	! ! !)	; ;	AU 12.0	1 :	1
Benzof b) duoranthene	1	!	0.66 U	1	0.78 UR	1	: 1	0.2 J	0.73 UR	1 1	1 1
Ben20(gh.j)perylene			s u	1	5.9 UR	1	1	0.1 J	5.6 UR	t	;
Benzo(k) fluoranhene			0.4 U	1	0.47 UR	1	1	0.07 J	0.44 UR	:	1
Butylbeazylphthalate			S U	1	0.15 R	1	1	0.2 J	0.066 R	1	1
bis(2-Bhylhexyl)adipate			1 3	i t	1 (!	1	0.06 J	!	1	1
bis(2-Ethylbexyl)phthalate			3.40	1	0.46 R	;	1	0.8 J	0.68 R	1	:
Chysene		2 1	0.770		0.22 UK	1	t ,	0.2 J	0.23 UR	1	i j
Distributed and same according to the contract of the contract			100	1 1	40 4.0 C	!	1	500	1.1 UR	;	:
Demoty Indiana			11.5	1 1	A C20.0	1	1	7 100	X /70'0	1	į,
Dimentiplination The Land International] 1	2 27	1 1	1 1	1 1 0	3,0 OK	i	;
Fluorene			0.011 J	i	S.9 UR	1	1	1 200	84118	1 1	l r
gamma - Chlordane			SU	1	S.9 U.R	1	!	0.2 U	5.6 UR		{
Herachlorobenzene		1	0.7 U	1	0.62 UR	l I	1	0.5 U	0.78 UR	1	
Hemethorogydopentadiene		1	0.88 U	1	I UR	!	1	0.5 U	0.98 UR	1	1
Indeno(1,2,3 - ad)pyrene	1	1	1.2 UJ	1	1.4 UR	1	J F	0.1 J	13 UR	ļ	1
Methorychlor	i i	ŀ	0.50	l i	0.59 UR	1	i 1	U 2.0	0.56 UR	!	1
N-Nitrosodphenylamine(1)	1 1	1 1	 	1 1	4.7 CE	1	1 1	100	4.4 UR	1	1
Februarity and Phenanthrene	1 1	1 1	1.30	1 1	KO 7:7	i 1	1 1	0.04	2.1 UR	ŀ	1
Prime		1	1 9100	 	0.01 R	1 1] 1 : [17.0	A 020.0	1	!
			•		; ;	I I	ı I	;	40100	! !	1
METHOD: EPA 515.1 PHSTICTDESPCB COMPOUNDS: (MAL)											
Dicamba	1	2.0	1	1	1	1	2 U	i I	!	1	2 U
METHOD: UP A 507 PESTICIDES/PCB COMPOUNDS: (MGL)		alty							ļ		
romaon	0.4.0	3.6 UR	!	0.14 J	1	4.9 UR	!	0.4 U	5.9 UR	5.1 UR	

2586-0211 11F

Table 5.1: Detection of Analytes in Surface Water Samples Threemile Creek Remedial Investigation Oriffits Air Force Base, Rome, New York

Sample I.D.	1MCSW-6	TMCSW-7	TMC-SW-7	TMCSW-7	TMCSW-8	TMCSW-8	TMCSW-8	TMCSW-8	TMCSW-9	TMCSW-9	TMCSW-9
Sample Date	1106-94	05-12-94	07-12-94	11-05-94	03-11-94	06-26-94	07-22-94	11-05-94	05-11-94	06-26-94	07-22-94
METHOD: FPA 506 PESTICEDUS/FCB COMPOUNDS: (1967).) Madalidon p.p ¹ – DDT	1 1 1 1	0.2 UJ 0.051 U	1 1 1	1 1	0.16 UJ 0.046 U	1 1	1 1	! !	0.18 UJ 0.046 U	; ;	1 1
METHOD: PPA 531.1 PESTICEDESFCB COMPOUNDS: (144/E.) Addiearb sulfende		0.4 UJ	1	. !	0.13 J	;	1	1	0.4 UJ	† 5	!
MITALS: (mg/L) Ahimhum (1005/60/0)	. 1	11 00 0	1	1	11 60 0		!	1	1 60		
Antimony (3006/7041)	. [0.006 U		1	0.006	1 1	; [; [0.000 U 900.0) i	! ! !
Arsenic (3020/7060) Barlum (300/06010)	1 1	0.003	1 1	[1 1	0.003 U	1 1 1 1	 	t 1	0.003 U		
Caldum (3005/6010)	1	82.6		1	81.8	!!		i 1	67	 	
Jron (3005/6010)	1 1	0.5	 	1 1 1 1	0.076	1 .		1	0.14	1	1
Magnesium (3005/6010)	1 1	123		; (12.9	7 F	1 1	1 I	13.3	1 1 1 1	
Manganese (3005/6010)	1	0.035	1	1	0.041			1	0.049	1	
Molybdenum (3005/6010)	r	0.05 U		!	900			1	0.05 U	1	
Potassium (3003/6010)	2 I	1.7	, (1 ,1 1 9	1.6	} :		t 	1:7	1	!
Sodium (3005/6010)	. 1	37.6		: 1	37.2			1 1	37.2	1 (()	
Strondum (3005/6010)	1	0.17	ļ	1	0.18			ŀ	0.18	l l	
Zlnc(3005/6010)	1	O.01 U	1	1	0.01 U			1	0.1	1 1	
WEI CHEMISTRY: (mpl.)											
Octobal Hardness	1	254	1	1	259	1	!	1	157	1	
MBAS - Surfactable	1	0.025 U	1	1	0.025 U	1		1	0.025 U	1	
Ammonia Mittogen	k ·	7		ł	5.1	1.	1	1	0.29	!	
Nitrite Nitrogen		0.02 U		l t	0.02 U	l I	!	1	0.02 U	ŧ	
Non-Ethership Bedding (1917)	;	0.22.0	!!	! 	0.23 U	1	1	1	0.25 U	t I	
Fixerable Residue (180°C)	:) 	14.	+ J ; 1		349 :			1 1	288	1 F 1 F	1 1
METHOD; NYSDOH APC-44					-						
TOTAL GLYCOLS: (mg/L) Initial Analysis	1	0.05 U	1		0.05 U				0.05 U		
Confirmatory Analysis	1	f	;	1	1	1	!	I I	!	ł	ļ
RADIONUCLIDES: (PC/L)		2	!		=				•		
Total Uranium	1	n I	1 4	1	DI DI	1 1	l I	1 1	3+/-2]	1 1
(1) = Duplicate of TMCSW - 4 (05 - 12 - 94) (2) = Duplicate of TMCSW - 4 (06 - 26 - 94) (3) = Duplicate of TMCSW - 4 (07 - 12 - 94) (4) = Duplicate of TMCSW - 11 (07 - 10 - 94) (5) = Duplicate of TMCSW - 11 (06 - 10 - 94) (7) = Duplicate of TMCSW - 11 (06 - 26 - 94) (7) = Duplicate of TMCSW - 11 (07 - 12 - 94) (8) = Duplicate of TMCSW - 11 (07 - 12 - 94) (9) = Duplicate of TMCSW - 11 (07 - 12 - 94)	μgL = micrograms per ther mgL = milligrams per liter pC/L = piccourtes per liter I = Estimated V = Rejected U = Analyte not detected UI = Estimated concentration	ugL = micrograms per liter mgL = milligrams per liter pCM = plocouries per liter I = Estimated U = Analyse not detected UI = Estimated concentration possibly blased low = Analyte not malyzed	bly blased low								

Table 5.1: Detection of Analytes in Surface Water Samples Threemile Creek Remedial Investigation Griffias Air Force Base, Rome, New York

iz e	보면 또	.	.	.	z 3	< 6	7 12	: =	93	3	<u> </u>	<u> </u>	<u>,</u>	Į.	<u>ი</u> ა	Z . S	ŗ	, i		ă	Æ	# :	6 ≥_≥		D بر	2	, در	ر د	بر د	נק נ	در	بر	. ب	- la	K	-	j a	نو.	Ω.	C	Be	- :		 	ស្ត	. 51	1
METHOD: UPA 507 PESTICIDES/CCB COMPOUNDS: (##/L) Prometon	MRTHOD: EPA 515.1 PLISTICEDES/PCB COMPOUNDS: (HAL) Dicamba	Pyrens	henanthrene	Pentachiomphenol	N = Nitrosofishenvlamine (1)	Indeno(1,2,3 - on)pyrene	Hexaculor ocyclopen radiene	Texachlorobenzene	zmma-Chlordane	Fluorene	Di-n-butylphibalaic	Dimethylphthalate	Diethyfphthalate	Dibenz(a,h)ambracene	hrysene	e/ 2 - Phytheryt inhthalate	arytoenzyputomate	enzo(x)nuorannene	Benzo(gh,i)perylene	Benzo(b)fluoranthene	Benzo(a)pyrene	Benzo(a)anibracene	Anthracene	Acebapataytene	3'-Dichlorobenzidine	-Chlorobipheayl	4 - Dictilorophenol	4.6 - Thichlorophenol	3 - Lichioromphenyi	2',4,4'-Terechlorobiphenyl	2'.4,4',5,6'-Hexachlorotiphenyl	2:3:4,6-Pentachlorobiphenyl	2',3,3',4,4',6-11eptachlorobiphenyl	SEMI - VOLA (ILLIS: (#8/i.)	MITHOD: HAY S25.1	induol centylede (10.13)	reinachloroeibyiene (PCE)	p-Cymene	dis-1,2-Dichloroschene	Chlorobenzene	Benzene	4-Dichlorobenzene	1-Dichlorobenzene	METHOD: EPA 52A.2 VOLATILES: (Heft.)	Sample Date	Sample I.D.	
n) 	0.2 J	0.09	0.4 U	500	0.03.5	25	0.50	0.2 U	0.50	0.07 J	. 0.5 U	f 1:0	U C.0,	0.09 J		2.2	0.00	0.06 J	0.08 J	0.06 J	0.08 J	2.0	25	3.5	. 0.1 U	10 01	200	\$ E		0.1 U	O 1.0	יס ר	. 1011		1	· i		1	1	t		ł 1		11-03-94	TMCSW-9	
1 1	!	5.6 UR	0.016 R	2.1 UR	4.4 UR		0.90 OA	0.76 UR	S.6 UR	5.6 UR	0.15 R	5.6 UR	0.018 R	1.1 UR	0.23 UR	0 15 R	0.027 7	0.44 0.8	5.6 UR	0.73 UR	0.66 UR	0.21 UR	22118	3.0 UK	5.6 UR	8.9 UR	1.1 UR	1308	4 5 1 K	8.9 UR	8.9 UR	. 8.9 UR	8.9 UR	0 66 118		0.41	050	. 05 U	0 Z U	0.38 J	0.23 J	פצט	0.511		. 05-11-94	IMCSW-10	
A IIB	! !	;	ŀ	1	r ! 1 (1 1	1	1	t t	1	ŧ 1	[1	1 1	1	1	1 1	: I : I]	1 1	1		1 I		1 1	1	ī.	1 1	1 1	1	1	1 3	1			1	i	:		5 í		r	• • •		06-26-94	TMCSW-10	
I I	2 U	į.	1	l i	l 1	: :	· 1	1	:	1	1	1	1 1	t (1	t	! ! i !		1	1	1	1	: !	· •	!	I I	i i	† 4 † 1	1 1	i i	t I	I L	I I	ľ		. !	1	1	: 1	I	•	I I			07-22-94	JMCSW-10	
0 44	!	0.0 4 J	CO 2.0	0.4	5 5 5	0.4 03		0.50	0.2 0.3	05 UJ	0.04 J	ED 570	LD 5:0	£0	0. 2 UJ	- 5	2 111	2.0	0.5 UJ	0.04 J	0.2 UJ	51 CE			200	67 CJ	10 UJ	5 5	5.1	01 CJ	0.1 UJ	0.1 UJ	01 13	10 111		:	1	1	1 6			1			11-05-94	TMCSW-10	
I I	;	! !																																		050	0.5 0	0.5 U	0.5 U	O 2.0	0.5 U	200			05-10-94	TMCSW-11	
ŝ	1	1		1	1 F		! !		1	ŀ	i I	1] }	1 i	1			ı	1	1	1	ı		1		t					ı					05.0	050	0.5 U	0.5 U	0.Z U	0 20	250		: •	05-10-94	JMCSW-01	
	1			I	: I	!	;		1	1	1	!	i I	i I					1	1		1			!!						; [1	t i	!		!	:	!	i,	:	1	ı (i		06-26-94	TMCSW-11	
	<u> </u>	!	1 ;	1	1 1		1	,	ı	:		,		1			i !	1	1			1 1		ı	1	1	1 :		ı	ı	1	1	1 1											٠	06-26-94	(6) (9)	
	t t	1 1	# 		1	:	1	i i	! !	1	t 1	;	1	1 ·	1	t 1	;	;	l 1	1	1 1	t t		!	1	1	i 1	1	1	:	1 1	1	! ! ! !			: 1		1 t	1	; 1	2 1 6 (: 1	! !		07-12-94	I TMC-SW-II	
	1 1	1° 1	ı	!	1	1	ı	ļ	1	!	;	! !	6	J F	!!	!	1	f	:	!	1 1	. !	;	! !	:	1 :	: ! : !	!	i	1	!	1 1	ı !			1 1	ł			1					07-12-94	(7) TMC-SW-01	

2588-0211.11F

3

Ì

Table 5.1: Detection of Analytes in Surface Water Samples Threemile Creak Remedial Investigation Griffits Ale Force Base, Rome, New York

N. F. F. S.

Sample Date	05-11-94 0.18 UJ 0.046 U 0.4 UJ 0.090 U	06 - 26 - 26 - 26 - 26 - 26 - 26 - 26 -		11-05-94	05-10-94	05-10-94	06-26-94	06-26-94	07-12-94	
		11 111								07-12-94
		11 111								
OMPOUNDS: (AST.)	3 5 6 6									
### ### ##############################	0.4 UJ 0.09 U 0.006 U	1 . 111	 	1 1	0.046 U	0.046 UJ	ł I	[]] [1 	1 #
VECTOD SET CONTOUNDS: (we/L.) Vidicar's sulfoxide VECTALS: (me/L.) Altminum (3005/6010) Antimony (3005/7041) Antimony (3005/7041) Antimony (3005/70010) Calchum (3005/6010) Calchum (3005/6010)	0.4 UJ 0.000 U 0.000 U	1 . 111								
\(\frac{\text{discarb sulfocide}}{\text{discarb sulfocide}}\) \(\frac{\text{discarb S. (mgL)}}{\text{diminum (3005/6010)}}\) \(\frac{\text{discarb sulfocide}}{\text{discarb sulfocide}}\)	0.4 UJ 0.09 U 0.006 U	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					٠			
Minimum (3005/6010) Aluminum (3005/6010) Arsuit (3007/604)	0.00 U 0.006 U	. 1 1 1	i	1	0.4 UJ	0.4 UJ	1	l t	1	1
Auminum (3005/6010) Arstin (3005/7011) Arstin (3005/7001)	D 600 0	1 1 1								
Antimony (3005/7041)	D 900 C	1 I 1 I	1	1	O.09 U	O 60'0	1	1]	!
Arenic (3020/7060) –	5	!!	!	1	0.006 U	0.006 U	1	ì	!	1
Janum (3003/6010)			!	:	0.003 U	0.003 U	1	1 1	1	:
- around (accolouid)	0.00	1	1	1	0.11	0.11	1	1		1
From (40) \$(A)	6 5	1 t		1 1	13.21	78.0	1 (1 (] 	: 1	I I
Lead (3020/7060)	. 0.002 U	1		1	0.002 U	0.002 U		 	1 1	1 1
Magnesium (3005/6010)	15.4	1		1 1	15.4	15.7	1	1		; !
Manganese (3005/6010)	990'0	l t	1	!	1/0.0	0.074	1	1	1	1
Molybdenum (3005/6010)	0.05 U	1		1	0.07	0.05 U	:	1 1	1	1
Potrasium (3005/6010)	1.7	1		į 1	1.6	1.6	1	1	1	1
Selenium (30.00) / 1/40)	900	1 -1		t 1	0.003 0.003	3000	t i	1 (1 1	t I
Southern (3000/0010)		1 1		1 1	39.0	\$ F C	i i	0 1 0 1	t †	f 1
Zinc(3005/6010)	910:0	1		1 1	0.011	0.038	1	1	1	i
C Comp. (Antalwatta) Taya								Ş		
Total Hardness	265	l I	ŀ	1	251	253	1	1	1 ,	ŧ
IBAS - Surfactants	0.025 U	i,		1	0.025 U	0.025 U		1	l i	!
Ammonia Nitrogen – –	9.1	1	!	1	1.8	0.05 TJ	1	l 1	;	;
Nitrite Mitrogen	0.02 U	t t		1	0.02 U	0.02 U	1	!	:	1 1
	0.25.0	h i	! 	t (0.23 U	0.38	1 :	ļ	1	1
Filterable Residue (180°C)	**	; ;		1 1	345	350	 	1 1	1 1	1 1 1 1
METHOD: NYSDOH APC:-44										
TOTAL GLYCOLS: (med.)										
Ibinal Analysis Confirmatory Analysis	0 000	1 1	1 I	 	0.00	0.00	t ; 1	1 1 1 1	 	i i
RADIONUCLIDES: (PC/II.)										
	01	1	1	1	בּ	n 1	E. T.	į	l I	i i
Total Urnnium					3.0	3.0	1			1
= Duplicate of TMCSW −4 (05 − 12 − 94) = Duplicate of TMCSW −4 (06 − 26 − 94) = Duplicate of TMCSW −4 (07 − 12 − 94) = Duplicate of TMCSW −1 (11 −07 −94) = Duplicate of TMCSW −1 (105 −10 −94) = Duplicate of TMCSW −1 (05 −10 −94) = Duplicate of TMCSW −1 (05 −10 −94)	ugL = micrograms per liter mgL = milliganns per liter pCML = plocouries per liter 1 = Estimated R = Rejected U = Analyte not detected UJ = Estimated UJ = Estimated	y bissed low								
= Duplicate of TMCSW -11 (07-22-94) = Duplicate of TMCSW -11 (11-04-94)	= Analyte not malyzed	•								

Table 5.1: Detection of Analytes in Surface Water Samples Threemile Creek Remedial Investigation Griffits Air Force Base, Rome, New York

METHOD: ET 534.2 VOLATILLES: [1987]. 1.1. — Tindorochare 1.3 — Dichlorochare 1.4. — Dichlorochare 1.4. — Dichlorochare 1.5. — Dichlorochare 1.5. — Dichlorochare 1.6. — Dichlorochare 1.6. — Dichlorochare 1.7. — Dichlor	11 TM(SW -01)	TACSW - 11 11 - 04 - 94	TACSW - 02 11-04-94 11-04-94 11-04-94 10 04 04 10 0	05-10-94 05-10-94 05-10-94 05-05-05-05-05-05-05-05-05-05-05-05-05-0	TMC-8W-12	7MC-SW-12	TMCSW-12 07-22-94	TMCSW-12
The A 524.2 The A 524.2 St. (442ff.) Total hard Borneaue Forneaue 1 1 1 1 1 1 1 1 1 1	10 01 01 01 01 01 01 01 01 01 01 01 01 0	26 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1	03-01-01-01-01-01-01-01-01-01-01-01-01-01-	86 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11 11 11 11	07-22-94	11-04-94	
c (ate care a ca		0.000 0.000	1111111 822222 11111111 822222	00000000000000000000000000000000000000			1111	
the first in the control of the cont		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1111111 822222 11111111 822222	00000000000000000000000000000000000000			1 1 1 1	
the engly are a second are a se		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					: 1 1 1	
cor obtable with the property of the property			25525 111111	000000 1111111111111111111111111111111			1 1 1	
c of the full.) of oblique mylic in the cry		8 0 10 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000			1	
the erry! of objective to the control of the contr		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111 822222 11111 822222	DDDD :::::::::				
(cine)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111 82222 202222				1	
c (berti.) or obsphenyl herry		11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000			;	
or objectively lighterny length lengt		1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200000	D			!	
tee Color of the C		0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97555	D [] [] [] [] []			1	
or object.) from the myl hermyl ate ate from the myl	11111	00 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			1 1 1 1	1	
	11111	10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1111111		1 1 1 1		
E E E	11111	20 10 0 10 0 10 0 10 0 10 0 10 0 10 0 1		1111111		1 1 1 1		
		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			1 1 1 1		•
billor oblighenyl	11111		6666		117111	1 1	1 1	
Se se se se se se se se se se se se se se	1 1 1 1 1		3555		1 7 1 1 1	1 ;	!!!	
se different sidate con sidate co	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		555	7 7 7 7 7	: : : :	;	1 1	
is also the cryitate of the cryitate of the cryitate of the critical and critical a		20 10 88 81 10 10 10 10 10 10 10 10 10 10 10 10 10		111	1 (,		
diene e salare e sala				!!!	1	! !	,	
		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 5	1		ļ	•	20 02
	. !	10 OI	50 CT	1	1	1	1	20 03
			10 01	;	1	1	1	10 OI
v <u>e</u>		671 173	0.1 UJ	ì	1	1	i	0.1 0
	. !	, CU	s on	1	1	1	į	e s un
thene thene thene thene thene that thene t		0.5 UJ	0.5 UJ	ł	1	1	1	0.5 UJ
alate " 1 1 1 1 1 1 1 1 1	•	0.2 UJ	0.2 UJ	!	1	!	;	0.2 UJ
alate alate diene	•	0.5 UJ	0.5 UJ	1	1	;	1	0.5 UJ
alate alate		0.1 UJ	0.1 UJ	1	1.		!	0.1 UJ
diene diene	1	0.2 UJ	0.2 UJ	1	!	t I	1	0.2 UJ
alate " alate diene " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0.2 UJ	0.2 UJ	1 . 1	1	1	1	0.2 UJ
pate te te te te te te te te te te te te t	1	0.5 U	0.5 UJ	t I	!	t I	;	0.5 0.5
		0.2 UJ	0.2 UJ	!	!	1	1	0.20
	1	0.04 J	0.04 3	1	:	1 1	1 1	
	1	m 2	3 2	1 1	1 1	1 1	1 1	
Hene		0.0	0.7 111	1,1	1		,	0.2 UJ
liene	1 1		1110	;	1	•	;	0.3 UJ
ate e e e e e e e e e e e e e e e e e e		6.5	5 6		1	1	1	0.5 U
nte		0.511	0.5 UJ	ţ	!	1	,	0.5 U
diene		0.05 1	0.04 J	1	1	;	1	U 2.0
nadiene	'	0.5 UJ	0.5 UJ	1	;	1	1	0.5 UJ
. r	:	0.2 UJ	0.2 UJ	1	1	1	;	0.2 UJ
1	'	0.5 UJ	0.5 UJ	;	1	1	1	0.5 U
	,	0.5 UJ	0.5 UJ	;	1	ļ.	:	0.50 0.50
1		0.4 U	0.4 0.1	1	;	1 1	1	0.40
•		10 5 0	0.5 0.5	t 1			1 1	
lamine (1)		1000	10.05	1 1	1 1		1	04.17
lenol		0.4 0.9		1 4			1 3	1110
ithrene			10.50	1	1	;	!	10 20
Pyrene	ı		2					3
METHOD: FF A 515.1 PESTICIDES/PCB COMPOUNDS: (MAL)							;	
Dicamba	2 U 2 U	;	! !	1	i		2.0	1
METHOD: UP A 507								
Prometon -	:	0.4 U	0.4 U	. !	4.9 UR	1	ŀ	0.4 U

The Control of the Co

Table 5.1: Detection of Analytes in Sprince Water Samples Throemile Creek Remedial Investigation Griffias Air Force Base, Rome, New York

Sample LD.	TMCSW-11	(8) TMCSW-01	TMCSW-11	(9) TMCSW-02	TMCSW-12	TMCSW12	TMC-SW-12	TMCSW-12	TMCSW-1
								1MC3W-12	IMC3M-I
mple Date	07 - 22 - 94	07-22-94	11-04-94	11-04-94	051094	06-26-94	07-12-94	07-22-94	11-04-94
HIHOD: EPA 508									
PSTICIDES/PCB COMPOUNDS; (pg/L)					0.18 UJ				
alathlon p'-DDT	~ -				0.046 UJ				
p -DD1					0.040				
ETHOD: EPA 531.1 STICIDES/FCB COMPOUNDS: (µg/L)	•								
dicarb sulforide					0.25 J	- -			
etals: (mg/l)									
uminum (3005/6010)					0.09 U				
timony (3005/7041)					U 600,0				
senic (3020/7060)					0.003 U				
rium (3005/6010)					0.088				
lcium (3005/6010)					67.4				
m (3005/6010)	· - -		`- -		0.24				
vd`(3020/7060)					0.002	·			
gnesium (3005/6010)		,			13.8				
inganese (3005/6010)					0.099	,	· - -		
olybdenum (3005/6010)		·			0.06		-,		
lassium (3005/6010)	'	~ -			1.5				
lenium (3020/7740)				~ ~	0.003 U				
dium (3005/6010)					33.9				
ontium (3005/6010)		-·-			0.38		- -		
ne (3005/6010)	· - -				0.018	~ -			
ET CHEMISTRY: (mg/L)				;					
tal Hardness		~ -			226				
BAS — Surfactants					0.025 U				
nmonia Nitrogen					0.05 U				
rite Nitrogen			- -		0.02 U				
tal Recoverable Petroleum Hydrocarbons (418.1)					0.25 U				
on-Pherable Residue (103°C)					4 U				
terable Residue (180°C)					329				
ETHOD: NYSDOH APC-44									
OTAL GLYCOLS; (mg/L)			*		0.05 **				
tial Analysis					0.05 U				
onfirmatory Analysis	,								
ADIONUCLIDES: (pCVL)	•			• .					
ontium 90				.,	1.2 + / -0.7				
otal Uranium					3 U				

^{(1) =} Duplicate of TMCSW-4 (05-12-94) (2) = Duplicate of TMCSW-4 (06-26-94) (3) = Duplicate of TMCSW-4 (07-12-94)

PREPARED/DATE: CLC 8/14/95 CHECKED/DATE: KLA 8/16/95

^{(3) =} Duplicate of TMCSW-4 (17-12-94) (4) = Duplicate of TMCSW-4 (11-07-94) (5) = Duplicate of TMCSW-11 (05-10-94) (6) = Duplicate of TMCSW-11 (06-26-94) (1) = Duplicate of TMCSW-11 (07-12-94) (8) = Duplicate of TMCSW-11 (17-22-94) (9) = Duplicate of TMCSW-11 (11-04-94)

ng/L = micrograms per liter mg/L = milligrams per liter

pCi/L = picocuries per liter

J = Estimated

R = Rejected

U = Analyte not detected

UI = Estimated concentration possibly biased low

^{-- =} Analyte not analyzed

Table 5.2: Detection of Analytes in Surface-Water Samples - Spring 1995 Threemile Creek Remedial Investigation Griffius Air Porce Base, Rome, New York

Sample I.D.	TMCSW-3	(1) TMCSW-3-01	TMCSW-11	(2) TMCSW-11-01	TMCSW-12
Sample Date	04-08-95	04-08-95	04-08-95	04-08-95	04-08-95
WET CHEMISTRY (mg/L): Pluoride (340.2)	0.062 J	0.067 J	0.053 J	0.06 J	

^{(1) =} Duplicate of TMCSW-3 (2) = Duplicate of TMCSW-11

PREPARED/DATE: CLC 8/14/95 CHECKED/DATE: KLA 8/16/94

⁽L) = Lancaster Laboratories, Inc.
mg/L = milligrams per Liter
J = Estimated concentration
-- = Analyte not analyzed

Table 5.3: Frequency of Detection and Exceedance of Potential ARARs or TBCs for Surface—Water Samples
Threemile Creek Remedial Investigation
Griffiss Air Force Base, New York

			Comparison to AR		Comparison to	Background
		Range of	Prequency of	Most	Prequency of	Backgrou
	Frequency of	Detected	Detection Above	Stringent	Detection Above	Screening
Parameter	Detection	Concentrations	Most Stringent	Criterion	Background	Concentration
Volatiles (µg/L)						
1.1.1 - Trichloroethane	7/12	0.045 J - 0.2 J	0	18,000	'	NA
1.3 - Dichlorobenzene	1/12	0.19 J	0	5		NA
1.4 - Dichlorobenzene	3/12	0.05 J - 0.16 J	0	5		NA
Benzene	5/12	0.049 J - 0.49 J	0	0.66		NA
Chlorobenzene	6/12	0.06 J - 0.79	0	· 5		NA
p-Cymene (p-Isopropyltoluene)	1/12	0.39 J		NA		NA
Tetrachloroethylene (PCE)	4/12	$0.055 \mathrm{J} - 0.12 \mathrm{J}$	0	0.8		NA
Trichloroethylene (TCE)	9/12	0.37 J - 1.4	0	2.7		NA
cis-1,2-Dichloroethylene	3/12	0.12 J - 0.19 J	3	0.033		NA
Semi-Volatiles (##/L)						
1,2 - Diphenylhydrazine	1/12	0.024 J	0	0.042		NA
2,2,3,3,4,4,6-Heptachlorobiphenyl	1/9	0.018 J	1	0.0000006		NA
2.2.3.4.6-Pentachlorobiphenyl	1/12	0.028 J	1	0.0000006		NA
2,2,4,4,5,6 - Hexachlorobiphenyl	1/12	0.019 J	1	0.0000006		NA
2,2,4,4-Tetrachlorobiphenyl	1/12	0.024 J	1	0.0000006		NA
2.3-Dichlorobiphenyl	1/12	0.022 J	1	0.0000006		NA
2,4,5-Trichlorophenol	1/12	0.0099 J	0	1.0		NA
2,4.6-Trichlorophenol	1/12	0.013 J	0	1.0		NA
2,4 - Dichlorophenol	2/12	0.015 J - 0.039 J	0	1.0		NA
2-Chlorobiphenyi	1/12	0.02 J		NA		NA
3,3' - Dichlorobenzidine	1/12	0.00099 J		NA		NA
Acenaphthylene	1/12	0.015 J	1	0.0028		NA
Anthracene	6/12	0.004 J - 0.04 J	6	0.0028		NA.
Benzo(a)anthracene	3/12	0.03 J - 0.1	3	0.0028		NA NA
Benzo(a)pyrene	5/12	0.003 J - 0.12 J	5	0.0028	·	NA.
Benzo(b)fluoranthene	6/12	0.007 J - 0.2 J	6	0.0028		NA NA
Benzo(ghi)perylene	3/12	0.031 J - 0.1 J	3	0.0028		NA.
Benzo(k)fluoranthene	4/12	0.028 J - 0.078 J	4	0.0028		NA
Benzyl butyl phthalate	4/12	0.04 J - 0.2 J		NA		NA NA
Bis(2-ethylhexyl)phthalate	2/12	0.6 J - 0.8 J	2	0.6		NA 🕶
Chrysene	6/12	0.0079 J - 0.2 J	6	0.0028		NA NA
Di-n-butyl phthalate	4/12	0.04 J - 0.1 J		NA		NA NA
Dibenzo(a,h)anthracene	1/12	0.03 J		NA		NA NA
Diethyl phthalate	6/12	0.024 J - 0.1 J	0	350,000		NA NA
Dimethyl phthalate	4/12	0.03 J - 0.07 J	Ō	313,000		NA
Dioctyl adipate	1/12	0.06 J		NA		NA NA
Fluorene	3/12	0.011 J - 0.04 J	3	0.003		NA NA
Hexachlorobenzene	1/12	0.032 J	ī	0.00072		NA NA
Hexachlorocyclopentadiene	1/12	0.013 J	ō	0.45		NA NA
Indeno(1,2,3-cd)pyrene	3/12	0.05 J - 0.1 J	3	0.0028		∼ NA
N-Nitrosodiphenylamine	1/12	0.016 J	0	4.9		NA NA
Pentachlorophenoi	2/12	0.024 J - 0.04 J	0 .	0.4		NA NA
Phenanthrene	9/12	0.09 J - 0.26 J	9	0.0028		NA NA
Ругеле	10/12	0.014 J - 0.3 J	10	0.0028		NA NA
(-a	~ \					
Pesticides/Herbicides/PCBs (μz Aldicarb Sulfoxide	<u>/1.)</u> 4/12	0.13 J - 0.69 J		NA		NA
alpha - Chlordane	1/12	0.012 J	1	0.002		NA NA
gamma - Chlordane	1/12	0.014 J	· i	0.002	,	NA NA
p,p' - DDT	3/12	0.089 - 0.1	3	0.001		NA NA
Dicamba	1/12	1.9 J		NA		NA NA
Malathion	1/12	0.21 J	1	0.1		
	1/12	0. 01 1 J	0	0.03		NA
Methoxychlor Prometon	3/13	0.1 J - 0.5		NA		NA NA
Metals (mg/L)	2/10	0.008 0.22	^	0.1		.
Aluminum	3/12	0.095 - 0.37	2	0.1		NA
Antimony	1/12	0.017	0	0.146		NA
Arsenic	2/12	0.003	2	0.0000022		NA
Barium	10/12	0.02 J - 0.11	0	1,000		NA
Calcium	12/12	55.7 - 87.2		NA		NA
Iron	11/12	0.058 - 0.59	2	0.3		NA
Lead	6/12	0.002 - 0.01	6	0.001		NA
Magnesium	12/12	6.4 - 15.7	·	NA		NA -
Manganese	10/12	0.008 - 0.099	5	0.05		NA
Molybdenum	8/12	0.05 - 0.16		NA		NA

Table 5.3: Prequency of Detection and Exceedance of Potential ARARs or TBCs for Surface - Water Samples
Threemile Creek Remedial Investigation Griffits Air Porce Base, New York

			Comparison to ARA	ARs and TBCs	Comparison to	Background
Parameter	Frequency of Detection	Range of Detected Concentrations	Frequency of Detection Above Most Stringent	Most Stringent Criterion	Prequency of Detection Above Background	Background Screening Concentration
Datasias	12/12	1.3 - 2.2		NA		NA
Potassium	1/12	0.005	1	0.001		NA.
Selenium	12/12	14.5 - 40.6		NA.		NA NA
Sodium Strontium	12/12	0.12 - 0.43		NA.		NA.
Zinc	9/12	0.01 - 0.18	3	0.045		NA
Givcols (mg/L)						
Total Glycols	1/12	0.17	0	500	· 	NA
Radionuclides (pCi/L)						
Strontium - 90	1/12	1.2	~-	NA		NA
Uranium, Total	5/12	3 – 7	~~	NA		NA
Wet Chemistry (mg/L)						
Pinoride	2/14	$0.06 \mathrm{J} - 0.067 \mathrm{J}$	0	1.099		NA
Hardness (as CaCO3)	12/12	169 - 265		NA .		NA
Methylene Blue Active Substance	4/12	0.026 - 0.079		NA		NA
Nitrogen, Ammonia (as N)	8/12	0.14 - 2		NA		NA
Nitrogen, Nitrite	1/12	0.029	0	0.1		NA
Petroleum Hydrocarbons	5/12	0.42 - 1		NA		NA
Suspended Solids	13/24	11 - 356		NA		NA

ARAR = Applicable or Relevant and Appropriate Requirement TBC = To Be Considered Criteria

mg/L = milligrams per liter

mg/kg = milligrams per kilogram

μg/L = micrograms per liter μg/kg = micrograms per kilogram

NA - Not available or not applicable

J - Estimated concentration

PREPARED/DATE: KLA 8/195 CHECKED/DATE: LAS 8/1095

Table 5.4; Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffias Air Force Base, Rome, New York

Sample I.D.	TMCSD-1a	TMCSD-1b	TMCSD-1b	TMCSD -2a	TMCSD-2a	TMCSD-2b	TMCSD-2b	TMCSD-3a	TMCSD-3a	TMCSD-5b	TMCSD-3
ample Date	05-13-94	05-13-94	11-04-94	05-13-94	11-06-94	05-13-94	11-07-94	05-13-94	11-07-94	05~13-94	11-07-94
ample Depth	(05')	(.5-1')	(.5–1')	(0~.5')	(0-5)	(.5~1')	(.5–1')	(05')	(20)	(.5~1')	(.5-1')
ETHOD: SW-846 8240							•				
VOLATILES: (µe/kg)											
,1,2,2-Tetrachloroethane	6 U	6 U		6 U		7 U		6 U		7 U	
Benzene	6 U	6 U		6 U		7 Ü		6 Ü		7 Ŭ	
	6 Ü	6 U		6 U		7 Ŭ		6 U			
Chlorobenzene										1 U	
khylbenzene	6 U	6 U		6 U		7 U		6 U		7 U	
'oluene	6 U	6 U		6 U		7 U		0.7 J		7 U	
,2-Dichloroethane (Total)	· 6 U	6 U	- ~	6 U		7 U		6 U		ว บ	
richloroethylene (TCE)	6 U	6 U		6 U		7 U		1 J		3 Ј	
/inyl chlorkie	12 U	12 U		13 U		13 U		13 U		15 U	
#ETHOD: SW-546 8270	•	•									
EMI-VOLATILES: (µg/kg)	2000 U	390 U		4400 U		4300 U		****			
,2-Dichlorobenzene								2200 U		. 2500 U	
,2 – Diphenylhydrazine	10000 U	1900 U	•	21000 U		21000 U	` 	10000 U		12000 U	
,2,4-Trichlorobenzene	2000 U	390 U		18000 U **		4300 U		2200 U		2500 U	
.4-Dichlorobenzene	2000 U	390 U		18000 U **		4300 TJ		2200 U		2500 U	
4-Dimethylphenol	2000 U	390 U		4400 U		4300 Ù		1300 J		2500 U	
-Mahyinaphthalene	2000 U	390 U		5100 J **		8100 J **		20000 J **		12000 J **	
-Methylphenoi	2000 U	. 390 U		4400 U		4300 U		22000 U **		2500 U	
		390 U		4400 U		4300 U		2700			
– Mahyiphanoi	2000 U									1300 J	
Acenaphthene	84 J	390 U		11000 J **		19000 **		31000 **		18000 **	
Acenaphthylene	2000 U	27 J		18000 U **		17000 U **		22000 U **		810 J	
inthracene	240 J	29 J		19000 **		28000 **		40000 **		27000 **	
enzoic acid	10000 U	1900 U		21000 U		21000 U		10000 U		12000 U	
enzo(a)anthracene	750 J	130 J		51000 **		63000 **		89000 **		\$1000 **	
	570 J	150 J		35000 **		44000 **		62000 **		37000 **	
lenzo(a)pyrene				41000 **		48000 **		73000 **			
leazo(b)fluoramhene	690 J	250 J								50000 **	
enzo(ghl)perylene	2000 tJ	390 U		19000 **		20000 **		29000 **		9900 J **	
enzo(k)Buorambene	560 J	150 J		28000 **		39000 **		49000 **		28000 **	
lenzyl butyl phthalate	2000 U	390 U		4400 U		4300 U		2200 U		2500 U	- ~-
Bis(2-chloroethyl) ether	2000 U	390 U		4400 U		4300 U		2200 U		2500 U	
lis(2-ethylhexyl) phthalate	860 J	220 J		900 J		600 J		800 J		2500 U	<i>-</i>
	680 J	180 J		43000 **		55000 **		77000 **		42000 **	
Chrysene,	2000 U	390 U		10000 J ••		16000 J **		32000 **			
Dibenzofuran										21000 **	
Henzo(a,h)anthracene	2000 U	390 U		8700 J **		12000 J **		16000 J **		6300 J **	-
Juoranthene	1300 J	240 J		84000 **		120000 **		160000 **		99000 **	·
Juorene	2000 U	390 U		12000 J **		20000 **		34000 **		25000 **	
ndeno(1,2,3 cd)pyrene	2000 U	390 U	·	22000 **		29000 **		40000 **		16000 **	
Vaphthalene	2000 U	390 U		15000 J **		23000 **		56000 **		36000 **	
	2000 U	390 U		4400 U		4300 U		2200 U		2500 U	
V-nitrosodiphenylamine				91000 **		120000 **					
henanthrene	1100 J	140 J						190000 **		120000 **	
henol	2000 U	390 U		4400 U		370 J		220 1 ••		66Q J	- -
yrene .	1200 J	230 J		89000 **		100000 **		140000 **		78000 **	
METHOD: SW-846 8080				•.							
PESTICIDES/PCBS COMPOUNDS: (#g/kg)											
	16 U	9.8 J		220 R	41 U	220 R	40 U	430 R	40 U	500 R	170
,4'-DDD											
,4'-DDE	10 J	8.8 J		200 R	41 U	220 R	40 U	430 R	40 U	500 R	48.2 J
,4'-DDT	16 U	16 U		220 R	41 U	220 R	40 U	430 R	40 U	500 R	51 U
Idrin	· 8.4 U	8 U		320 R	15.6 J	150 R	8 J·	200 R	12.6 J	250 R	6.5 J
lpha-Chlordane	8.4 U	8 U		120 R	7.1 🕽	110 R	11.4 J	220 R	6.9 J	260 R	15.9 J
amma – Chlordane	8.4 U	8 U		120 R	37	110 R	20 U	220 R	26	260 R	26 t)
pieldriu	12 J	16 U		220 R	41 U	220 R	40 U	430 R	40 U	500 R	51 U
					21 U						
lpha-Endosulfan	8.4 U	8 U		120 R		110 R	20 U	220 R	21 U	260 R	26 U
indosulfan sulfate	16 U	16 U	~ ~	220 R	41 U	220 R	40 U	430 R	40 U	500 R	51 U
ladria .	16 U	16 U		220 R	41 U	220 R	40 U	430 R	40 U	500 R	51 U
Lept nchlor epoxide	8.4 U	8 U		120 R	21 U	110 R	20 U	220 R	21 U	260 R	26 U
IHC (Hetachlorocyclohetane) Isomers	8.4 U	8 U		120 R		110 R		220 R		260 R	200
lelia-BHC	8.4 U	8 U		120 R	21 U	110 R	20 U	220 R	21 U		
	8.4 U	8 U		120 R	21 U	110 R	20 U 4.1 J	220 R 220 R	7.5 J	260 R 260 R	26 U
beta-BHC	8.4 H	7.17	- -								4.5 J

Table 5.4: Detection of Analytes in Sediment Samples Throomile Creek Remedial Investigation Griffies Air Force Base, Rome, New York

						Gnilli	N VE LOLCO RIVE	, Kame, New Yor	K . ,			
Sample	ID.	TMCSD-ta	TMCSD-ib	TMCSD~1b	TMCSD-2a	TMCSD-2a	TMCSD-2b	TMCSD-2b	TMCSD-3a	TMCSD-3a	TMCSD-3b	TMCSD-3
ample	Date	05-13-94	05-13-94	11-04-94	05-13-94	11-06-94	05-13-94	11-07-94	05-13-94	11-07-94	05-13-94	11-07-94
Sample !	Dopth	· (0 – .5°)	(.5-1')	(.5-1')	(0-5')	(05')	(.5-1')	(.5-1')	(05')	(0~.5')	(.5-1')	(.5~1')
Mirox		8.4 U	8 U		120 R		110 R		220 R			
Ethyl par	athion	16 U	16 U		220 R		220 R		430 R		260 R 500 R	
Methyl p		16 U	16 U		220 R		220 R		430 R		500 R	
Propachi		160 U	160 U	` _ <u>-</u> -	2200 R		2200 R		4300 R		5000 R	
PCB-12		160 U	160 U		2200 R	410 U	2200 R	1230	4300 R	1500	5000 R	510 U
CB -12		. 520	350		21000 R	5660	14000 R	2430	36000 R	2320	29000 R	8260
	XD: SW-846 8140											
	TDES/PCBS COMPOUNDS: (µg/kg)	250 *15	210.0	20.11	70 T		240 717		***			
	s—methyl (Guthion)	250 tij	240 R	70 U	79 J		260 UJ		230 J		110 J	
Conmuc		250 111	240 R	600 U	270 UJ		25 J		8.8 J		310 UJ	
ensulfo		410 113	390 R	200 U	16 J		26 J		13.3		17 J	
enthlor		200 UJ	190 R	50 U	8.7 J		4.3 J		6.7 J		1.5 J	
leviopt	101	280 UJ	270 R	40 U	320 UJ		300 UJ		300 U.I		350 UJ	
horate		. 410 UJ	390 R	100 U	450 UJ		3.3 J		3.3 J		1 J	
tonnel	•	160 UJ	150 R	100 tT	180 UJ		170 UJ		170 UJ		200 UJ	
tiropho	•	160 UJ	150 R	100 U	13 J		170 UJ	- -	170 UJ		200 UJ	
richlor		330 UJ	· 320 R	100 U	370 UJ		173		9.7 J		5 1	
	DD: SW-846 8150 DDES/PCBS COMPOUNDS: (µg/kg)				•			•		÷		
	P (Silver)	4.5 U	4.3 U		4.7 3		8.4 J		5.8 J		7.4	
,4,5= 1, ,4-D	· (ourse)	50 U	48 U		54 U		51 (1)		53 U		7.4 4.8 J	
	•	. 76 U	4.6 J		8.6 J		16 J	~-	9.1 3			
dapon		25 U	4.6 J 24 U		24 J	. ==	10 J 40 J		26 U		94 U	
	Dackhid)										31 U	
olcambe		4.5 U	4.3 U		'4.9 UJ		4,7 UJ		4.8 U		5.6 TJ	
ichlore	pprop	25 U	24 U		27 U		26 UJ		26 U		31 U	
	DD: EPA 1613A				.e							
DIOXII 2,3,7,8-	VS: (og/kg) TCDD	0.81 U	0.76 U	- -	1.8 U	1.5	1.1 U	0.77 J	1.8 UJ		17 U	,
	S: (mg/kg)	3140	1570		. 1930		2920 J		2750			
	im (3050/6010)	2440									2910	
	(3050/7060)	1.4	1.1		5 J		9.9	~ -	10.4 J		11.2 U	
	(305()6010)	7.8	49.4		23.6		104		19.7		43.3	
	n (3050/6010)	0.37 U	0.37 U		0.39 U		0.4 U		0.38 U		0.44 U	
	m (3060/6010)	3.2	1.2 U		1.7		3.6		1.3 U		1.4 U	
`alcium	(3050/6010)	42800	48200		20100		35400		41 500	• • • •	17900	
hromiv	um (3050/6010)	23.5	6.6		21.2		28.4		37		46.9	
	3050/6010)	2.6	2.1		2.7		3.8		3.7		5.1	
	(3050/6010)	21.8	11.1		52.5		74.3		61.4		75.2	
	im, Hexavalent (7195)	0.6	0.91		0.91		0,6	~ -	2 J		2.4	
	50/6010)	9550	9690		11400		13100		12100		14300	
		92.8	40,2		94,6 J		203		141	==		
	250/7421)	2390	2350		1970		203 3230		2470		164	
	um (3050/6010)										1860	
	ese (3050/6010)	165	146		77.9		90.4		107		86.6	
	(7471)	0.1 U	0.11 U		0.11 U		0.11 U		0.23		0.14 U	
	enum (3050/7480)	6.2 U	6.1 U		9.1		6.8 U		10.2 J		7.3 U	
	3050/6010)	16.7	13.4		33.9		41.3	- -	43.3		32.5	
	m (3050/6010)	263	225		233	 .	354		327	- -	313	
lickel (:		1.2 U	1.2 U		1.3 U		2.2		2.9	·	7.6	<u>-</u> -
ickel (: otassiu							251		245		337	
lickel (: otassiu ilver (3	050/6010)		206		206						221	
lickel (: otassiu ilver (3 odium	050/6010) (3050/6010)	194	206 50 8		· 206 42 S T				641 .		(7.1	
Vickel (: Potassiu Silver (3 Sodium Strontiu	050/6010) (3050/6010) m (3050/7780)	194 54.3	59.8		42.5 J		72.8		65.1		57.2	
Nickel (: Potassiu Silver (3 Sodium Strontiu Thalliun	050/6010) (3050/6010) m (3050/7780) n (3050/7841)	194 54.3 0.36 U	59.8 0.36 U	==			72.8 0.41 U		0.39 UJ		0.45 U	
Nickel () Potassiu Silver (3 Sodium Strontiu Thalliun Vanadiu	050/6010) (3050/6010) m (3050/7780)	194 54.3	59.8		42.5 J		72.8					

Table 5.4: Detection of Analytes in Sediment Samples Throughle Creek Remedial Investigation Griffiss Air Porce Base, Rome, New York

Sample I.D.	TMCSD-1a	TMCSD-1b	TMCSD-1b	TMCSD-2a	TMCSD-2a	TMCSD-2b	TMCSD~2b	TMCSD-3a	TMCSD-3a	TMCSD-3b	TMCSD -36
Sample Date	05-13-94 (0- <i>5</i> ')	05-13-94	11-04-94	05-13-94 (05')	11-06-94	05-13-94	11-07-94	05-13-94	11-07-94	05-13-94	11-07-94
Sample Depth	(0-5)	(5-1')	(3-1)	(05)	(05)	(.5-1')	(5-1')	(0-5')	(0 → .5°)	(.5–1')	(.5–1')
WET CHEMISTRY: (mg/kg)											
% Moisure (160.3)	19	18	18	25	19.5	26	16.5	24	17.8	32	35.1
eachable Total Organic Carbon (9060)	200 U	200 U		200 U		200 U		200 U		200 U	
Petroleum Hydrocarbons (418.1)	1330	1390		9450		3090		5890		3840	
ADIONUCLIDES: (pCVg)										•	
trontium 89	0.1 U	0.15+/-0.08		0.11+/-0.07		0.09+/-0.07		0.09+/-0.07		0.10+/~0.07	
trontium 90	5.47+/-0.2	0.1 U		0.1 U	_'_	0.1 U		0.1 U		0.1 U	
Cotal Uranium	0.18+/-0.04	0.21 +/-0.04		0.16+/-0.04		0.20+/0.04		0.05+/0.03		0.09+/0.03	

Note: Results reported on a dry weight basis

μg/kg = micrograms per kilogram mg/kg = milligrams per kilogram

ng/kg = nanograms per kilogram

D = Diluted

J = Estimated

R = Rejected

U = Analyte not detected at listed concentration

UJ = Estimated concentration possibly biased low

W = Compound not detected by comparing extracted ion profile against NIST library

-- = Analyte not analyzed

** = Results presented are from a diluted sample

*** = Results presented are from a reinjection and reanalysis

⁽¹⁾ Duplicate of TMCSD-4a (05-12-94)
(2) Duplicate of TMCSD-4a (11-07-94)
(3) Duplicate of TMCSD-9a (05-11-94)
(4) Duplicate of TMCSD-9a (11-07-94)
(5) Duplicate of TMCSD-11a
(6) CrVI Sample fraction re-collected on 5/27/94

Table 5.4: Detection of Analytes is Sediment Samples Threemile Creek Remedial Investigation Griffies Air Force Base, Rome, New York

							ue, Rome, New 1					
amplé l.D.	TMCSD-4a	(1) TMCSD -01	TMCSD-48	(2) TMCSD -01	TMCSD-4b	TMCSD-46	TMCSD-5a	TIMCSED -5a	TMCSD-5b	TMCSD-5b	TMCSD-6a	TMCSD-
ample Date ample Depth	05-12-94 (05')	05-12-94 (05')	11-07-94 (05')	11-07-94	05-12-94 (.5-1')	11-07-94 (.5-1')	05-12-94 (05')	11-07-94	05-12-94	11-07-94	05-12-94	11-07-94
	(0-2)	(03)	(05)	(05)	(.3-1)	(3-1)	(05)	(05')	(.5–1')	(.5-1')	(05')	(05')
(P.1110D; 8W~846 8240 (OLATILES: (µg/kg)											•	
1,2,2 - Terachloroethane	6 U	10 U			6 U		6 U					
enzene	6 0	10 U			6 U	~-	6 U		า บ า บ		9 11	
Thlorobenzene	6 U	10 U	·		6 U		72		17	-==	9 U	
hylbenzene	6 U	10 U			6 U		΄6 U		່າ ບ		· 16 9 U	
oluene	6 U	10 U			6 U		6 U		7 U		9 U	
2-Dichloroethane (Total)	6 U	10 U			6 U		6 U		7 U		9 U	
richloroethylene (TCE)	6 U	10 U			2 3		6 U		วับ		9 0	
inyl chloride	13 U	20 U			13 U		13 U		13 U		18 U	
41F1HOD: SW-846 8270				•								
PMI-VOLATUPS: (µg/tg)				1								
2 – Dichlorobenzene	410 U ***	990			400 U ***		1200 J **		42 J		490 R	
,2-Diphenylhydrazine	2000 U ***			,	2000 UJ ***		2300 U		2100 U		2400 R	
,2,4 - Trichlorobenzene	410 U ***			:	5 400 U ***		480 U		440 U		490 R	
,4-Dichlorobenzene	410 (1)		~ -	,	400 U ***		1600 J ••		36 J		490 R	
,4-Dimethylphenol	410 (1 ***				400 U ***		210 J		190 J		490 R	
- Mahyinaphthalene	410 1) ***				400 U ***		640 J **		750 J ••	 -	380 R	
-Methylphenol	410 U ***	410 U			400 U ***		480 U		100 J	·	490 R	
-Methylphenol	15 J ***	410 U			400 U ***		480 U		440 U		490 R	
cenaphthene	9] ***	1100 J **			12 J ***		2100 J **		2500 J **		930 R	
cenaphthylene	60) ***	320 J **		- -	400 TJ ***		280 J ••		280 J		490 R	
nthracene enzoic acid	51***	2000 U			41 J •••		3400 J **	~ -	4000 3 **		1300 R	
enzo(a)anthracene	410 UJ ***				200 UJ ***		2300 U 15000 **		2100 U		2400 R	
enzo(a)pyrene	160 J ***	6400 **			120 J • • •		2200 J ••		15000 E		3100 R	
enzo(b)Auoranthene	190 1 ***	8600 **			140 J •••		14000 **		2200 J •• 9700 ••		500 R	
enzo(spli)perylene	140 J ***	2500 **			400 J ***		4100 J **		2700 J **		2300 R	
enzo(k)fluoramhene	99 1 ***	5800 **			71 7 ***		8500 **		7900 **		770 R	
enzyl butyl phthalate	540 J ***	410 U			20 J •••		480 U		440 U		1700 R	
is(2-chlonethyl) ether	410 U ***	410 U			400 TJ ***		100 J		440 U		490 R	
is(2 – ethylbexyl) phthalate	540 J •••	620 J **			1700 J ***		1300 1 **		1100 J **	- -	490 R 64 J	
hrysepe	180 J • • •	7800 **			400 UJ ***		14000 **		9700 E		2200 R	
benzofuran	410 U ***	790 J **		:	400 U ***		1700 J **		2200 J • •		970 R	
ibenzo(a,h)anthracene	410 U ***	970 J **			400 UJ ***		2100 J **		1700 J **		450 J	
luoranthene	350 J * * *	11000 **			250 1 ***		21000 **		14000 **		4600 R	
luorens	410 U ***	1600 J **			400 UJ ***		3600 J **		3400 J **		1300 R	
ideno(1,2,3 - od pyrene	: 410 U ***	2700 **		1	400 UJ ***		4100 J **		3200 J **		860 R	
Japhthalene	410 U ***	960 J **			400 U ***		870 J **		2100 J **		1000 R	
-nitrosodiphenylamine	' 410 U •••	220 J		:	400 UJ ***		220 J		440 U		490 R	
henanthrene	260 J •••	9400 **			210 J ***		15000 **		20000 **		7400 R	
henol	410 U ***	410 U			400 U ***		390 J		440 U		490 R	
yren e	430 J ***	9400 **			260 J •••		28000 **		19000 **		6400 R	
ARTHOD: SW -846 8080												
ESTICIDES/PCBS COMPOUNDS: (µg/kg)	41 U	12 U		-	40 U		47 U		40 10			
4-DDE	41 U	12 U			40 U		47 U		43 R	41 U	49 R	42 U
4'-DDT	41 U	12 U			40 U		47 U		43 R 43 R	41 17	49 R	42 U
drin .	21 U	6.1 U			21 U		24 U		43 R 22 R	41 U	49 R	42 T
pha-Chlordane	21 U	6.1 U			21 U		24 U		22 R 22 R	3.8 J	25 R	21.4 J
mma—Chlordane	21 U	6.1 U			21 U		24 U		22 R 22 R	7.7 J	· 25 R	4,6 J
ieldria	41 U	. 12 U			40 U		47 U		22 R 43 R	21 U 41 U	25 R	28 U
pha – Endosulfan	21 U	6.1 U			21 U		24 U		43 R 22 R		49 R	42 U
ndosulfan sulfate	41 U	12 U			40 U		47 U		22 K 43 R	21 U	25 R	22 U
ndrin	41 U	12 U			40 U	~ -	47 U		43 R 43 R	41 U	49 R	42 U
leptachlor epoxide	21 U	6.1 U			21 U		24 U			41 U	49 R	42 U
	21 U	6.1 U			21 U		24 U		22 R 22 R	21 U	25 R	22 U
HC (Respensive control of the Harmonian Company of the Harmonian Compan							74 17	~ •	77 4			
HC (Herachlorocycloherane) Isomers elta – BHC	21 U	6.1 U			21 U		24 Ú		22 R	21 U	25 R 25 R	22 U

Table 5.4: Detection of Analytes in Sediment Samples Threewile Creek Remedial Investigation Griffies Air Force Base, Rome, New York

Sample I.D.	TMCSD-4a	TMCSD~01	TMCSD-4a	TMCSD-01	TMCSD-4b	TMCSD -4b	TMCSD-5a	TMCSD~5a	TMCSD-5b	TMCSD-5b	TMCSD -6a	TMCSD-6
Sample Date	05-12-94	05-12-94	11-07-94	11-07-94	05-12-94	11-07-94	05-12-94	11-07-94	05-12-94	11-07-94	05-12-94	11-07-94
ample Depth	(0~.5')	(0→. 5 °)	(0-5')	(05*)	(.5–1')	(.5-1')	(05')	(0-5')	(.5-1')	(.5–1')	(05')	(05')
lirex	21 U	6.1 U			21 U		24 U		22 R		25 R	
thyl parathion	41 U	12 U		`	40 U	~	47 U		· 43 R		49 R	
lethyl parathion	41 U ·	12 U			40 U		47 U		43 R	. 	49 R	
ropachlor	410 U	120 U		- -,	400 U		470 U	·	430 R		490 R	
CB-1254	410 U	120 U		<u>-</u> -	400 U		470 U		430 R	410 U	490 R	650 U
CB - 1260	410 U	2600		- -	400 U		8600		26000 R	6010	5400 R	2820
PTITOD: SW-846 8140				•								
ESTICIDES/PCBS COMPOUNDS: (##/kg)					n							
zinphos-methyl (Guthion)	250 R	5.8 R	80 U	100 U	250 R	100 U	290 R	70 U	260 R	70 U	90 R	80 U
oumanhos	250 R	18 R	600 U	1000 U	250 R 400 R	900 U 300 U	290 R 470 R	600 U 200 U	260 R 430 R	600 U	32 R	600 U
ensulfathion	410 R	590 R	300 U	400 U	200 R					200 U	490 R	300 U
enthion	200 R 280 R	280 R	50 U 40 U	90 U 70 U	200 R 280 R	70 U 50 U	230 R 330 R	50 U 30 U	210 R 300 R	50 U 40 U	18 R 340 R	50 U
levinphos		410 R	100 U	70 U 200 U	400 R	200 U	470 R	100 U	300 R 430 R	100 U		90 U
horate	410 R	590 R	100 U	200 U	400 R 160 R	200 U	470 R 190 R	100 U	430 R 170 R	100 U	1.5 R	100 U
tonnel	160 R	230 R	100 U	200 U	160 R	200 U	190 R 190 R	100 U	170 R	100 U	190 R	110 J
ilrophos	160 R	230 R 480 R	100 U	200 U	100 K	200 U	390 R	100 U	350 R	100 U	190 R 400 UJ	100 U
richlorona c	330 R	400 K	100 0	200 0	330 K	200 0	390 K	100 0	330 K	100 0	490 UJ	100 U
ABINOD: SW-846 8150							•					
PSTICIDES/PCBS COMPOUNDS: (µg/kg)	4.5 Ù	6.6 U			S		5.2 U		4.7 U		22 J	
4,5—TP (Silvex)	49 U	72 V			48 U		57 U		52 U		59 UJ	
4-D	75 U	110 U			73 U		86 Ú		78 U	·	89 UJ	
alapon	25 U	36 U			24 U		27 J		26 U		6.7 3	
CPA (Dacthal)	1.5 U	3.8 J			4.4 U	~ ~	5.2 U		4.7 U		5.4 UJ	
icamba Ichloroprop	25 U	35 J		,	24 U		28 U		7.6 J		30 UJ	
4ETHOD: EPA 1613A	•											
OIOKINS: (ng/kg)				;					•			
3,7,8 - TCDD	0.24 U.	0.71 U			3.3 U		0.78 U		1.1 U		1.9	
APTALS: (mg/kg)					2010		2/40		2750		,	
duminum (3050/6010)	1960 J	6070 19.8			2010		2630 4.6		2750 4.4		3390	
usenic (3050/7060)	1.1				101		4.6 19.4		32.4		5 38.2	
arlum (3050/6010)	61.8	91.5			0,38 U		0.38 U		0.4 U			
eryllium (3050/6010)	0.39 U	0.58 U			1.3 U		1.2 U		1.3 U		0.52 U	
admium (3050/6010)	1.3 UJ	9.5			28300		20600		20700		1.7 U	
alcium (3050/6010)	27400 J	9870		= =	26300 5.8		24.6		23.4		24800	
hromium (3050/6010)	9	40.7 4.4			3.4		24.6		3.1		55.4	
obali (3050/6010)	2.3				10.5		2.6 34.5		36.3		3.4	
opper (3050/6010)	11.7 J	61.2			2.1		0.68		30.3		40.8	
hromium, Hexavalent (7195)	2.8	1 16000			8710		10200		9590		11000	
ron (3050/6010)	7720:	166			60.2		76.1		110		11800	
ead (3050/7421)	59.8·J				1710		2140		2220		121	
Ingnesium (3050/6010)	1720 :	2600			135		101		94.7		3170	
Ianganese (3050/6010)	118:	158			0,12 U		0.22		94.7 0.2		94.7	
fercury (7471)	0.13 ·U	0.36 9.7 U			6.12 0		6.2 U	·	6.7 บ		0.16 U	
Iolybdenum (3050/7480)	6.5.U				5.5		22		20.4		8.6 U	
Takel (3050/6010)	4.8 J 265 J	20.9 704			3.3 245		334		20.4 344		22.6	
olassium (3050/6010)		704 2.7			13 U		1.2		1.3		400	
liver (3050/6010)	1.3 U		·		213		1.2		240		1.7 U	
odium (3050/6010)	209;	471			213 46		40.3		36.5		287	
trontium (3050/7780)	45.6	58.2			0.39 U		40.3 0.39 U		0.39 U		43.4	
hallum (30507841)	0.39 U	0.6 U									0.52 U	
/anadium (3050/6010)	6.1 J	63.4		; 	7.3		42.4		38.7		43.6	
inc (3050/6010)	82.9	\ 152			73.1		(155)		170		(184)	

(1) Duplicate of TMCSD-4a (05-12-94) (2) Duplicate of TMCSD-4a (11-07-94)

(3) Duplicate of TMCSD -9a (05-11-94)

(4) Duplicate of TMCSD-9a (11-07-94) (5) Durlicate of TMCSD-11a

(6) CrVI Sample fraction re-collected on 5/27/94

Note: Results reported on a dry weight basis

µg/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ng/kg = nanograms per kilogram

pCi/g = planauries per gram

D = Diluiod

J = Estimated

R = Rejected

U = Analyte not detected at listed concentration

III = Estimated concentration possibly biased low

W = Compound not detected by comparing extracted ion profile against NIST library

-- = Analyte not analyzed

** = Results presented are from a diluted sample

••• = Result's presented are from a reinjection and reanalysis

Grifffas Air Porce Base, Rome, Now York
Three mile Creek Remodial Investigation
SORPRES MODIFIES AT REPURENT TO DISTRIBUTE IF COMME

\$1107

10 10 10 10 10 10 10 10	• • • • • • • • • • • • • • • • • • • •	TACSD-65	The CSD - 6b	Low Level TMCSD-7a	lowal wal dr-cisanar	AT-CESOMIT	TMCSD-84	TMCSD-84	LWCZD-8P	LNG2D-8P	TACSD -94	(5) TMCSD-01
Hybridical charge 20 21 21 22 23 24 24 24 24 24 24										(1-5)	(,5-0) 02-11-64	(.5-0) 96-11-50
According to 20 20 20 20 20 20 20 2	(¥1/44) :SAT											
10 10 10 10 10 10 10 10	цтвалогостряте										USI	n 9
10 10 10 10 10 10 10 10	·										ດ້ະເ	ný
10 21 20 21 21 21 21 21											15.	n 9
17 17 17 17 17 17 17 17	200										12.0	n 9
10 10 10 10 10 10 10 10	(IEDT) anadisoro										11 CI	Ω 9
10 21 20 20 21 20 20 20										- -	וזנו	U 9
12 12 13 14 15 15 15 16 17 17 17 17 17 17 17											12 U 13 U	1211
Hargin checked 10 10 17 17 17 17 17 17							- ÷-				0.67	U 21 .
											. \$10 J	450 1 •••
Margine chorder 10 10 10 10 10 10 10 1						·					3900 Π •••	5800 Ω ••
10 10 10 10 10 10 10 10	chlorobenzene										••• N 009	•• N 06\$
12 12 13 14 15 15 15 15 15 15 15	огобецгеце										••• Ω 009	150 l •••
											••• Ω 009	•• 1) 065
											240 1	•• U 068
12 13 14 15 15 16 17 18 18 18 18 18 18 18											••• Ω 009	•• U 068
Part Part											••• A 009	•• U 068
10											300 1 •••	300 1 •••
Second S											300 1 •••	310 1 •••
	pp at										1100 ***	••• t 055
	ហេតុសាស									==	3500 Ω ···	2400 ···
	MICUC .									·	3000 1 •••	•• N 06\$
10 10 10 10 10 10 10 10	luoranibene										*** 00Þ\$	3400
)benylene										130 1 •••	280 J •••
											3300 •••	••• 0091
\$\frac{1}{2}\congression(\frac										~ ~	••• A 009	•• U 068
Secondary Seco										~ ~	••• A 009	•• U 098
		1400 1 ***		•• U 001E	1300 ***		10001		U 001		3800 J ***	•• U 00δ
				•• U 001E							4300 ***	*** Z600
	thin.										300 1 •••	•• N 06\$
State Stat	rp)entpracene										••• n 009	•• ∩ 06S
	ota										11000	••• 004
headplot aborder 1000 10											\$00 1 ***	320 1 •••
## deplot obordide and of the control of the contro											520 1	(1 065
## deplot eboxide 30 0 37 0 70 17 0 70 17 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											930 A •••	220 1 ***
Part Part											*** 0007	*** 006Z
Part Part	272										••• A 009	•• fl 06\$
### Character 120 240 25											••• 0095	••• 005€
	0808 3N8 - WZ : C											
#-DDE 59U 63U 670 12U 14U 670 14U 670 14U 670 14U 670 14U 670 14U 670 14U 670 14U 670 14U 670 12U 67U 67U 67U 67U 67U 67U 67U 67U 67U 67	DES/FCBS COMPOUNDS: (PAKE)	. 000		031	V>0		1101	•				
											0 21	U 9£
Approximate Approximate											ט גו	U 9£
par-Chlordene 240 45 710 730 par-Chlordene 300 450 120 140 desultantials 300 430 240 120 140 desultantials 300 430 130 140 desultantials 300 320 130 140 desultantials 300 320 130 140 desultantials 300 320 100 140 desultantials <t< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>וז נו</td><td>U 9£</td></t<>	,										וז נו	U 9£
Control Cont											U f.a	10 OZ
O C C C C C C C C C											U 5.8	30 U
hat-Endoswifing 30 U 32 U 21 U 63 U 12 U 14 U desinting 39 U 63 U 30 U 12 U 14 U drin 12 U 14 U Description td=""><td>amniome</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>30 fl</td></td<>	amniome											30 fl
U b l U 2 l U c l <td< td=""><td>neglizopi</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U 2.1 U 2.3</td><td>U 96</td></td<>	neglizopi										U 2.1 U 2.3	U 96
Upl U21 050 Ucb U021 U20 secondary operation											U 51	36 N 30 N
Uer - Ued Or Uee Uoc seatilor epoxide	AMUTA T										U 21	U 98
	e epoziqe										U 1.0	70 I
	radiorocydoherane) Isomers	U OE		U SE	160		U & 8		U ይ Γ	- -,	U 2,8	0 OZ
13 n 169 17 n 169 160 17 n		U 0E		រប ប	U IS.		U £.8		ሀ ይ.୮		17 5.3	20 U

Table 5.4: Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffies Air Force Base, Rome, New York

TMCSD-6b 05-12-94 (.5-1') 30 U 59 J1 59 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	70 U 600 U 200 U 100 U 100 U	1 Low Level 1 M(CSI) - 7a 05 - 12 - 94 (0 - 5') 32 U 63 U 63 U 630 U 11000 380 UJ 91 J 630 UJ 440 UJ 630 UJ 250 UJ 250 UJ 6.7 J	100 Level 1MCSD-7b 05-12-94 (.5-1') 170 45 120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R 210 R 440 R	80 U 600 U 300 U 100 U 100 U 100 U	17MCSD - 8a 05-11-94 (0-5') 6.3 U 12 U 12 U 120 U 120 U 1600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R 500 R	TMCSD-8a 11-05-94 (05) 80 U 600 U 300 U 50 U 19 J 100 U 100 U	7MCSD - 8b 05-11-94 (.5-1') 7.3 U 14 U 14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	**TMCSD-86** 11-05-94 (.5-1')	7MCSD -9a 05-11-94 (05') 6.2 U 12 U 12 U 120 U 120 U 2400 J 360 R 360 R 360 R 420 R	39 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U
(.5-1') 30 U 59 J! 59 U 590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	(.5-1')	32 U 63 U 63 U 630 U 630 U 11000 380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ	(.5-1') 170 45 120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	(.5-1') 80 U 600 U 300 U 50 U 100 U 100 U	6.3 U 12 U 12 U 120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	(05)	7.3 U 14 U 14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R	(.5-1') 80 U 600 U 300 U 50 U	(05') 6.2 U 12 U 12 U 120 U 120 U 2400 J 360 R 360 R 360 R 290 R	(05') 20 U 39 U 390 U 390 U 390 U 250 R 13 R 410 R 200 R
30 U 59 JI 59 U 590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R	70 U 600 U 200 U 50 U 40 U 100 U 100 U	32 U 63 U 630 U 630 U 630 U 11000 380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ	170 45 120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	80 U 600 U 300 U 300 U 40 U 100 U	6.3 U 12 U 120 U 120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	7.3 U 14 U 14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 390 U 40 U	(05') 6.2 U 12 U 12 U 120 U 120 U 2400 J 360 R 360 R 360 R 290 R	(05') 20 U 39 U 390 U 390 U 390 U 250 R 13 R 410 R 200 R
59 J1 590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R	70 U 600 U 200 U 50 U 100 U 100 U	63 U 630 U 630 U 11000 380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	45 120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	80 U 600 U 500 U 500 U 100 U 100 U	12 U 12 U 120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	14 U 14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 390 U 40 U	12 U 12 U 120 U 120 U 2400 J 360 R 360 R 600 R 690 R	39 U 39 U 390 U 390 U 390 U 250 R 13 R 410 R 200 R
59 J1 590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R	70 U 600 U 200 U 50 U 40 U 100 U 100 U	63 U 630 U 630 U 11000 380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	45 120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	80 U 600 U 500 U 500 U 100 U 100 U	12 U 12 U 120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	14 U 14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 390 U 40 U	12 U 12 U 120 U 120 U 2400 J 360 R 360 R 600 R 690 R	39 U 39 U 390 U 390 U 390 U 250 R 13 R 410 R 200 R
59 U 590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R	70 U 600 U 200 U 50 U 40 U 100 U 100 U	63 U 630 U 630 U 11000 380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	120 58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	80 U 600 U 500 U 500 U 100 U 100 U	12 U 120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 300 U 19 J 100 U	14 U 140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 390 U 40 U	12 U 120 U 120 U 2400 J 360 R 360 R 600 R	39 U 390 U 390 U 390 U 250 R 13 R 410 R
590 U 590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	70 U 600 U 200 U 50 U 40 U 100 U 100 U 100 U	630 U 630 U 11000 380 UJ 91 J 630 UJ 440 UJ 630 UJ 250 UJ 250 UJ	58 J 410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R 210 R	80 U 600 U 300 U 50 U 40 U 100 U	120 U 120 U 6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	140 U 140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 300 U 50 U 40 U	120 U 120 U 2400 J 360 R 360 R 600 R 290 R	390 U 390 U 390 U 250 R 13 R 410 R 200 R
590 U 9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	70 U 600 U 200 U 50 U 40 U 100 U 100 U 100 U	630 U 11000 380 UJ 91 J 630 UJ 440 UJ 630 UJ 250 UJ 250 UJ	410 U 410 U 330 R 74 J 540 R 260 R 380 R 540 R 210 R	80 U 600 U 300 U 300 U 50 U 40 U 100 U	8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	140 U 5600 32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 300 U 50 U	120 U 2400 J 360 R 360 R 600 R 290 R	390 Ü 390 Ü 250 F 13 F 410 F 200 F
9600 160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	70 U 600 U 200 U 50 U 40 U 100 U 100 U 100 U	380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	330 R 74 J 540 R 260 R 380 R 540 R 210 R 210 R	80 U 600 U 300 U 50 U 40 U 100 U 100 U	6600 8.3 R 15 R 610 R 300 R 430 R 610 R 240 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 390 U 50 U 40 U	360 R 360 R 360 R 600 R 290 R	390 Ú 250 F 13 F 410 F 200 F
160 R 86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	70 U 600 U 200 U 50 U 40 U 100 U 100 U 100 U	380 UJ 91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	330 R 74 J 540 R 260 R 380 R 540 R 210 R 210 R	80 U 600 U 300 U 50 U 40 U 100 U 100 U	8.3 R 15 R 610 R 300 R 430 R 610 R 240 R	80 U 600 U 300 U 50 U 19 J 100 U	32 R 23 R 700 R 340 R 490 R 700 R	80 U 600 U 300 U 50 U 40 U	360 R 360 R 600 R 290 R	250 E 13 E 410 E 200 E
86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	600 U 200 U 50 U 40 U 100 U 100 U 100 U	91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	74 J 540 R 260 R 380 R 540 R 210 R 210 R	600 U 300 U 50 U 40 U 100 U 100 U	15 R 610 R 300 R 430 R 610 R 240 R	600 U 300 U 50 U 19 J 100 U	23 R 700 R 340 R 490 R 700 R	600 U 300 U 50 U 40 U	360 R 600 R 290 R	13 F 410 F 200 F
86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	600 U 200 U 50 U 40 U 100 U 100 U 100 U	91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	74 J 540 R 260 R 380 R 540 R 210 R 210 R	600 U 300 U 50 U 40 U 100 U 100 U	15 R 610 R 300 R 430 R 610 R 240 R	600 U 300 U 50 U 19 J 100 U	23 R 700 R 340 R 490 R 700 R	600 U 300 U 50 U 40 U	360 R 600 R 290 R	13 F 410 F 200 F
86 R 590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	600 U 200 U 50 U 40 U 100 U 100 U 100 U	91 J 630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	74 J 540 R 260 R 380 R 540 R 210 R 210 R	600 U 300 U 50 U 40 U 100 U 100 U	15 R 610 R 300 R 430 R 610 R 240 R	600 U 300 U 50 U 19 J 100 U	23 R 700 R 340 R 490 R 700 R	600 U 300 U 50 U 40 U	360 R 600 R 290 R	13 F 410 F 200 F
590 R 290 R 410 R 590 R 230 R 230 R 6.8 J	200 U 50 U 40 U 100 U 100 U 100 U 100 U	630 UJ 300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	540 R 260 R 380 R 540 R 210 R 210 R	900 U 50 U 40 U 100 U 100 U 100 U	610 R 300 R 430 R 610 R 240 R	300 U 50 U 19 J 100 U 100 U	700 R 340 R 490 R 700 R	300 U 50 U 40 U	600 R 290 R	410 E 200 E
290 R 410 R 590 R 230 R 230 R 6.8 J	50 U 40 U 100 U 100 U 100 U 100 U	300 UJ 440 UJ 630 UJ 250 UJ 250 UJ	260 R 380 R 540 R 210 R 210 R	50 U 40 U 100 U 100 U 100 U	300 R 430 R 610 R 240 R 240 R	50 U 19 J 100 U 100 U	340 R 490 R 700 R	50 U 40 U	290 R	200 I
410 R 590 R 230 R 230 R 6.8 J 57 J 72 R	40 U 100 U 100 U 100 U 100 U	440 UJ 630 UJ 250 UJ 250 UJ	380 R 540 R 210 R 210 R	40 U 100 U 100 U 100 U	430 R 610 R 240 R 240 R	19 J 100 U 100 U	490 R 700 R	40 U		
590 R 230 R 230 R 6.8 J 57 J 72 R	100 U 100 U 100 U 100 U	630 UJ 250 UJ 250 UJ	540 R 210 R 210 R	100 U 100 U 100 U	610 R 240 R 240 R	100 U 100 U	700 R		420 B	
230 R 230 R 6.8 J 57 J 72 R	100 U 100 U 100 U	250 UJ 250 UJ	210 R 210 R	100 U 100 U	. 240 R 240 R	100 U	700 R			
230 R 230 R 6.8 J 57 J 72 R	100 U 100 U 100 U	250 UJ 250 UJ	210 R 210 R	100 U 100 U	. 240 R 240 R	100 U		100 U	600 R	410 P
230 R 6.8 J 57 J 72 R	100 U 100 U	250 UJ	210 R	100 U	240 R		280 R	100 U	240 R	
6.8 J 57 J 72 R	100 U					100 U	280 R			160 F
57 J 72 R				•		100 U	580 R	100 U 100 U	240 R 490 R	160 F 340 F
57 J 72 R						• • • •			470 K	340 1
72 R										
72 R		4 A TT	••		4411					
	0.06 U	6.9 17	10		6.8 U	~ -	16 J		6.6 UJ	4.5 (
110 R	0.2 U	76 U	67 U	, 	5 3		85 U	. , - -	72 U J	50 L
	' 1 U	120 U	14 J		21 J		130 U	- -	110 1)]	76 t
36 R	0.02 U	36 U	33 U		37 U		42 U		36 UJ	25 L
6.5 R	0.06 U	6.9 U	6.1 U		6.8 U		7.7 U	·	6.6 UJ	
36 R	0.2 U	29 J	' 17 J		101		27 J			4.5 U
30 K	. 0.2 0	29 J	17,		101		273		36 UJ	25 U
30		6.6	2.4	~	8		. 33		9.1	7.6
5170		4010	6690		5430		9560		6850 J	1840
17.5		27.9	21.2		26.7		50.2		17.7 J	1.1
38.7		73,7	95.8		95.7		165		108	
0.48	:	0.55 U	0.52		0.68 U					58.3
						• -	1.2		0.7 ป	0.36 t
7.2		7.2 .	29.4		7,7		23.8		13.3 J	1.2 U
									21700	37900
42.1		47.2	37.2		65.8		58,8			6
4.7		7	: 6.7		6.8		11.7			1.7
60.8		73.1	51.4							
										11,4
										0.78
										7000
									211 J	46.9
									3110	1630
70.8		80.7	222		119	<u></u>	236			126
0.34		0.78	0.5				0.3			0.3
						·				7.6
								•		6.1
									768 J	267
									4	1.2 (
									558 J	199
		61	74		87.1		119			
39.2		0.58 U	0.53 U							44.6
39.2 0.49 U										0. 3 6 U
0.49 U										5.8
0.49 U 35.1		172	143		184		278		184 J	69.5
	13900 42.1 4.7 60.8 1.2 17900 196 1970 70.8 0.34 . 8 U 14.3 483 1.6 U 325 39.2 0.49 U	13900 42.1 4.7 60.8 1.2 17900 196 1970 70.8 0.34 8 U 14.3 483 1.6 U 325 39.2 0.49 U 35.1	13900 15900 42.1 47.2 4.7 7 60.8 73.1 1.2 1.9 17900 15500 196 195 1970 1980 70.8 80.7 70.4 0.78 8 U 9.2 U 14.3 27.8 483 350 1.6 U 5.9 325 322 39.2 61 0.49 U 0.58 U 35.1 82.3	13900 15900 13000 42.1 47.2 37.2 4.7 7 6.7 60.8 73.1 51.4 1.2 1.9 0.94 17900 15500 22100 196 195 206 1970 1980 1990 70.8 80.7 222 0.34 0.78 0.5 8 U 9.2 U 8.6 U 14.3 27.8 20.4 483 350 792 1.6 U 5.9 1.7 U 325 322 366 39.2 61 74 0.49 U 0.58 U 0.53 U 35.1 82.3 51	13900 15900 13000 42.1 47.2 37.2 4.7 7 6.7 60.8 73.1 51.4 1.2 1.9 0.94 17900 15500 22100 196 195 206 1970 1980 1990 1970 1980 1990 1970 8 80.7 222 0.34 0.78 0.5 8 U 9.2 U 8.6 U 14.3 27.8 20.4 14.3 27.8 20.4 14.3 350 792 1.6 U 5.9 1.7 U 325 322 366 39.2 61 74 0.49 U 0.58 U 0.53 U 35.1 82.3 51	13900 15900 13000 14600 42.1 47.2 37.2 65.8 4.7 7 6.7 6.8 60.8 73.1 51.4 67.6 1.2 1.9 0.94 2.4 17900 15500 22100 19100 196 195 206 206 1970 1980 1990 1870 70.8 80.7 222 119 0.34 0.78 0.5 0.4 8 U 9.2 U 8.6 U 11.3 U 14.3 27.8 20.4 22.9 483 350 792 519 1.6 U 5.9 1.7 U 6.8 325 322 366 448 39.2 61 74 87.1 0.49 U 0.58 U 0.53 U 0.69 U 35.1 <t< td=""><td>13900 15900 13000 14600 42.1 47.2 37.2 65.8 4.7 7 6.7 6.8 60.8 73.1 51.4 67.6 1.2 1.9 0.94 2.4 17900 15500 22100 19100 196 195 206 206 1970 1980 1990 1870 70.8 80.7 222 119 0.34 9.2 0.86 0 11.3 0 8 U 9.2 U 8.6 U 11.3 U 14.3 27.8 20.4 22.9 483 350 792 519</td><td>13900 15900 13000 14600 20000 42.1 47.2 37.2 65.8 58.8 4.7 7 6.7 6.8 11.7 60.8 73.1 51.4 67.6 11.2 1.2 1.9 0.94 2.4 0.41 U 17900 15500 22100 19100 31000 196 195 206 206 316 1970 1980 1990 1870 2700 70.8 80.7 222 119 238 0.34 80.7 222 11.3 U 0.3 8 U 9.2 U 8.6 U 11.3 U 10.1 U 14.3 27.8 20.4 22.9</td><td>13900 15900 13000 14600 20000 42.1 47.2 37.2 65.8 58.8 4.7 7 6.7 6.8 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 1126 1.2 1.9 0.94 2.4 0.41 U 1.2 1.9 0.94 2.4 0.41 U 1.9 0.9 2.2 0.6 2.06 31000 1.970 1.980 1.990 1870</td><td>13900 15900 13000 14600 20000 21700 42.1 47.2 37.2 65.8 58.8 44.7 J 4.7 7 6.7 6.8 11.7 6.3 J 60.8 73.1 51.4 67.6 126 75.3 J 1.2 1.9 0.94 2.4 0.41 U 0.68 17900 15500 22100 19100 31000 18000 J 196 195 206 206 316 211 J 1970 1980 1990 1870 2700 3110 70.8 80.7 222 119 238 167 0.34 0.78 0.5 0.4 0.3 0.42 8 U 9.2 U 8.6 U 11.3 U 10.1 U 11.7 U 14.3 27.8 20.4 22.9 27.5 24.6 J 483 350 792 519 1100 768 J 1.6 U 5.9 1.7 U 6.8 4.4 4 325 322 366 448 411 558 J 39.2 61 74 87.1 119 83.2 0.49 U 0.58 U 0.53 U 0.69 U 0.8 0.71 U 35.1 82.3 51 77.3 62.8 72 J</td></t<>	13900 15900 13000 14600 42.1 47.2 37.2 65.8 4.7 7 6.7 6.8 60.8 73.1 51.4 67.6 1.2 1.9 0.94 2.4 17900 15500 22100 19100 196 195 206 206 1970 1980 1990 1870 70.8 80.7 222 119 0.34 9.2 0.86 0 11.3 0 8 U 9.2 U 8.6 U 11.3 U 14.3 27.8 20.4 22.9 483 350 792 519	13900 15900 13000 14600 20000 42.1 47.2 37.2 65.8 58.8 4.7 7 6.7 6.8 11.7 60.8 73.1 51.4 67.6 11.2 1.2 1.9 0.94 2.4 0.41 U 17900 15500 22100 19100 31000 196 195 206 206 316 1970 1980 1990 1870 2700 70.8 80.7 222 119 238 0.34 80.7 222 11.3 U 0.3 8 U 9.2 U 8.6 U 11.3 U 10.1 U 14.3 27.8 20.4 22.9	13900 15900 13000 14600 20000 42.1 47.2 37.2 65.8 58.8 4.7 7 6.7 6.8 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 11.7 60.8 73.1 51.4 67.6 1126 1.2 1.9 0.94 2.4 0.41 U 1.2 1.9 0.94 2.4 0.41 U 1.9 0.9 2.2 0.6 2.06 31000 1.970 1.980 1.990 1870	13900 15900 13000 14600 20000 21700 42.1 47.2 37.2 65.8 58.8 44.7 J 4.7 7 6.7 6.8 11.7 6.3 J 60.8 73.1 51.4 67.6 126 75.3 J 1.2 1.9 0.94 2.4 0.41 U 0.68 17900 15500 22100 19100 31000 18000 J 196 195 206 206 316 211 J 1970 1980 1990 1870 2700 3110 70.8 80.7 222 119 238 167 0.34 0.78 0.5 0.4 0.3 0.42 8 U 9.2 U 8.6 U 11.3 U 10.1 U 11.7 U 14.3 27.8 20.4 22.9 27.5 24.6 J 483 350 792 519 1100 768 J 1.6 U 5.9 1.7 U 6.8 4.4 4 325 322 366 448 411 558 J 39.2 61 74 87.1 119 83.2 0.49 U 0.58 U 0.53 U 0.69 U 0.8 0.71 U 35.1 82.3 51 77.3 62.8 72 J

Table 5.4; Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffiss Air Force Base, Rome, New York

Sample I.D.		TMCSD-6b	TMCSD-6b	Low Level TMCSD-7a	Low Level TMCSD -7b	TMCSD-76	TMCSD-8a	TMCSD-8a	TMCSD-8b	TMCSD-86	TMCSD-9a	(3) TMCSD -01
Sample Date Sample Depth		05-12-94 (.5-1')	11 -07 -94 (5-1')	05-12-94 (05')	05-12-94 (-5-1')	11-05-94 (.5~1')	05-11-94 (05')	11-05-94 (05')	05-11-94 (.5-1')	11-05-94 (.5-1')	05-11-94 (0~.5')	05-11-94 (05')
WET CHEMISTRY; (mg/kg) & Moisure (160.3) Leachable Total Organic Carbon (9060) Petroleum Hydrocarbons (418.1)	٠	39 954 10700	17.8	48 1220 8610	43 1060 10600	21.4	56 1370 1570	22.7 	52 2530 691	21.1	59 665 2650 J	7 200 U 930
LADIONUCLIDES: (pCi/g) frontium 89 fromium 90 'ctal Uranium		0.1 U 0.1 U 0.08+/-0.05	 	0.1 U 0.1 U 0.05 U	0.1 U 0.1 U 0.08+/0.05	 	0.1 U 0.1 U 0.06+/-0.03	 	0.1 U 0.1 U 0.23+/-0.04		0.1 U 0.1 U 0.05 U	0.1 U 0.1 U 0.08+/-0.03

(1) Duplicate of TMCSD-4a (05-12-94)

(2) Duplicate of TMCSD-4a (11-07-94) (3) Duplicate of TMCSD-9a (05-11-94)

(4) Duplicate of TMCSD-9n (11-07-94)

(5) Duplicate of TMCSD-11a

(6) CrVI Sample fraction re-collected on 5/27/94

Note: Results reported on a dry weight basis

με/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ng/kg = nanograms per kilogram

pCi/g = picocarics per gram

D = Diluted

J = Estimated

R = Rejected

U = Analyte not detected at listed concentration

UJ = Estimated concentration possibly biased low

W = Compound not detected by comparing extracted ion profile against NIST library

-- = Analyte not analyzed

•• = Results presented are from a diluted sample

*** = Results presented are from a reinjection and reanalysis

No 5.4: Detection of Analytes in Sedimont Sample. Throughle Creek Remedial Invistigation Criffics Air Porce Rase, Rome, New York

											;
Sample I.D.	IMCSD-9	(*) TMCSD -02	TMCSD-96	TMCSD-96	TMCSD-10a	TMCSD-10a	TMCSD-106	TMCSD-106	TMCSD-11s	(5) TMCSD-01	TMCSD-11b
Sample Date Sample Dept h	11-08-94 (05)	11-07-94 (05')	05-11-9	11-08-94	05-11-94 (0-5')	11-05-94 (05')	05-11-94 (5-11)	11-05-94	05-10-94	05-10-94	05-10-94
METHOD: SW - 546 6240 VOY ATH PE: 1,/b-1											
1,1,2,2-Terrachloroethane	j Î	1	0.9		N 9	1	12 U		11 6	111	=
Benzene	1	1	19 Y		0.0	l	12 U		D 6	10) 8
Ethylbenzene .]]	I I I I	9 9) 1] t	10.1 12.U		2.0	7.0	7:
Toluene		1	0.9			!	12 U		D 6	7.0	2 20
1,2 - Dichlor wethane (Total)	1	1	D 9			, ,	12.0		D 6	7.0	n e
Artemor octuyrene (15.15) Vinyl chloride		i i i i	D 21	1 I 1 I	0 61	1 I 1 I	12 U 24 U	!	D 61	7.0	D 97
MATHEMAN. CO									;)	2
SPAT-VOLATITES; (uefte)											
1,2-Dichlor obenzene	1	!	390 UR	1	97 J	1	720 U •••	l t	630 U	\$10.0	1100
1,2 Diphenylhydrazine	1	1	1900 UR	1	2700 U	1	3500 11 ***	t I		2500 U	2500 U
1,7,4 — Inchlorobenzene	t 1	1	390 UR	1 :	2002	;	720 U •••	l I	630 U	310 U	220 U
2.4 - Dimethylphenol		1 1	100 001	1 1	0.000	1 (5 (720 0	1	2000	310 17	\$20 U
2-Mothybaphthalene	1		390 UR		260 U	i ;	120 11 000	i 1	930 0	2015	520 U
2-Methylphenol	!	ì,	390 UR		S60 U	1	720 U ***	l (O 069	140 Y	220 0
4 - Mathylphenol	i i	4 !	390 UR		260 U	1	720 U •••	1	O 009	510 U	S20 U
Aceaphibene	!	1 :	390 UR		120 1	;	720 U •••	1	210 J	210 J	220 U
Anthracene			390 UR		340 F	1 1	130 100	\$ 1 1 1	630 U		220 U
Benzolc acid	i ;	1 4	1900 UR		2700 U	1	3500 U •••	3 3	3100 C	2500 U	130 J
Benzo, a) nothracene	!!	1	390 UR		1700	1	460 J •••	1	2000	1500	230
Benzo, a)pyrene Benzo, hillioranihene	1 (1 1	390 UR	; ;	200	1	310 J •••	1 1	5	1300	430 J
Benzol ghi)perylene	1		390 UR		370 J	! 1	190 1 ***	1 1	\$20.1	270.1	280
Benzo(k)fluoranthene	1	!	380 R		920	1	230 J ***	1	1300	1200	360 1
Benzyl butyl phthalate	1	1	390 UR		260 U	1	720 U •••	1	030 U	210 U	520 U
Bis(2 - cholberty) ciner Ris(2 - cholberty) phthalate	1 1 1 1	! # } 1	350 CK		0 000	1 1	720 0	1 1	030 C	200 U	520 U
Chrysene	t I	1	390 UR		28.5	! 	340 J ***	1 1	143.0	2 8 E	220 C
Dihenzofumn	l I	1	390 UR		D 098	1	720 U •••	1	630 U	1061	11065
Dibenzo(a,h) anthracene	! !	1	390 UR		260 U	1	70 J •••	1	320 J	510 17	220 C
Fluomathene	1	1	390 UR		2800	1	690 1 •••	1 1	3300	3100	81
Indeno(1,2,3 - od pyrene		. 1	390 UR		440 J	1 1	220 1	! !	200	310 ()	520 U
Naphibalene	1	1	390 UR		87 J	1	720 U ***	!	160 J	340 J	\$20 C
N-nitrosodiphenylamine	i I	1	390 UR	!	D 095	1	720 U •••	! !	630 U	210 U	\$20.0
Frencherene	i (i i	390 UR		240 17) 	360)	1 1	2500	2300	740
Pyrene	1	1 1	390 UR		2400	1 .l. 1	680 1	! ! ! ;	2800	2200	250 0
METHOD: SW - 846 8080											•
PRSTICEDPS/PCBS COMPOUNDS: (#E/K)			;		;						
4.4DDE	1 1	! [140	1 i	5 5	4: 1 1: 4	212	1 1	30 1	28	20
44"-DDT	1	1	480	1	2 2	1 1	140	1 1	200	, n	17.c
Aldría	ì	;	4.1 U		S.7 U	1	7.5 U	1	4.9 U	4.8 U	7.97 1.97
alpha - Chlordane	1 	1 1	7 ; O :		5.7 U	1	7.5 U	:	6.9	5.9	121
Dieldrin	1 1	! T	7		2 =	1 f	2.2	l (!	4.9 U	7.8 U	4.6 U
alpha – Endosulfan	1	1 1 .	4.10		S.7 U	t 1	7.5 U	1	2.4 3	2.6 J	1 6 1
Endosulfag sulfate	1	7	2		ם ב	ţ	140	1	U 2.6	93 U	016
Endin Herrschlor enmide	t 1	f	⊃ : • •		0 5	l I	140	1	10 S 6	36	0.6
BHC (Herachlorocyclohorane) Isomers	1 1	! !	. 1		5.7 U	l }	750	; ; ; ;	4.9 U		197
delta-BIIC	,	1	4.1 U	i I	S.7 U	t I	750	1	3.43	6. 4. 6. 83.	0.4
Dela- HHC	1 1 ·	1	4.1 U	!	8.7 U	t t	750	1	4.9 U	1.8 U	4,6 U
3.7 1700 8830											

2586-0211.11F

E

E

Table 5.4: Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffiss Air Force Base, Rome, New York

Sample I.D.	TMCSD-9a	TMCSD-02	TMCSD-9b	·TMCSD-9b	TMCSD-10a	TMCSD-10a	TMCSD-10b	TMCSD~10b	TMCSD-11a	(5) TMCSD -01	TMCSD-11b
Samplo Date	11-08-94	11-07-94	05-11-9	11-08-94	05-11-94	11-05-94	05-11-94	11-05-94	05-10-94	05-10-94	05-10-94
Sample Depth	(05')	(0-3')	(.5–1')	(.5–1')	(05')	(05')	(.5-1')	(.5~t')	(05')	(05')	(.5–1')
Mirα			4.1 U		5.7 U		7.5 U	~ -	4.9 U	4.8 U	4.6 U
Murca Ethyl parathion			8 Ü		11 U	~ -	14 U		9.5 U	9.3 U	9 U
etnyi parathion Methyl parathion			8 U	~ -	11 0		14 U		9.5 U	9.3 U	9 U
			. 80 U	·	110 U		140 U		95 U	93 U	90 U
Propaction			80 U		110 U		140 U		95 U	93 U	901)
PCB-1254			330		3400		1600		1500 J	1500	1100
PCB-1260			330		3400		1000		1500 3	1300	1100
METHOD: SW-846 8140 PESTICIDES/PCBS COMPOUNDS: (µg/kg)											
Azinphos-methyl (Guthion)	70 U	100 U	240 R	80 U	330 R	80 U	440 R	70 U	290 UJ	390 R	270 UJ
Coumanhos	600 U	1000 U	240 R	600 U	4 R	700 U	1.5 R	600 U	290 UJ	540 R	270 UJ
Pensulation	200 U	500 U	400 R	300 U	550 R	300 U	730 R	200 U	480 UJ	8.5 R	450 UJ
	50 U	90 U	190 R	30 U	270 R	50 U	350 R	30 U	230 UJ	220 R	220 UJ
Fenthion	40 U	70 U	280 R	40 U	380 R	40 U	510 R	40 U	330 UJ	320 R	310 UJ
Mevinphos		200 U	400 R	100 U	550 R	100 U	730 R	100 U	480 UJ	460 R	
Phorate	100 U					_		100 U			450 UJ
Ronnel	100 U	200 U 200 U	160 R	100 U 100 U	220 R 220 R	100 U 100 U	290 R 290 R	100 U	190 UJ	180 R	180 UJ
Stirophos	100 U		160 R						190 UJ	180 R	180 UJ
Trichloronate	100 U	200 U	330 R	100 U	450 R	100 U	590 R	100 U	390 UJ	380 R	370 UJ
MRTTIOD: SW-846 8150											
PESTICIDES/PCBS COMPOUNDS: (µg/kg)	•		4.8 3		3.1 J		, 7.9 TJ		5.2 U	Sυ	4.9 U
2,4,5 - TP (Silva)			4.8 U		3.1 J 67 U		87 U		3.2 U 58 U	3 U	
2,4-D											54 U
Оајароп	·	÷-	31 J		10 J		19 J		87 U	84 U	82 U
DCPA (Dacihal)	,		24 U	- ~	. 34 U		43 U		29 0	28 U	27 U
Dicamba	'	·	4.4 TJ		6.1 U		7.9 U		5.2 U	5 U	4.9 U
Dichloroprop	- -		24 U		34 U		43 U		29 U	28 U	27 U
METHOD: EPA 1613A				•							
DIOXINS: (ng/kg)	•	•									
2,3,7,8-TCDD			1.4 U		1.2 U		1.1 U		0.65 U	0.71 U	0.41 U
METALS: (mg/kg)											
Aluminum (3050/6010)			7440		3030		3510		3030	2880	2070
Arsenic (3050/7060)			8.9	·	6.2		6.6		3.3	3.5	3.5
Barium (3050/6010)	~ ~		69.1	_ 	48.2		168		33.6	27.6	38.1
Beryllium (3050/6010)			0.36		0.54		0.75 U		0.57 U	0.46 17	0.48 U
Cadmium (3050/6010)			6		1.6		2.5 U		1.9 U	1.5 U	1.6 U
Calcium (3050/6010)			17300	·	19400		117000		9530	8560	8870
Chromium (3050/6010)			24.9		25.2		64.6		10.7	8.8	25.2
Cobalt (3050/6010)			7.2		3.9		3.5		3.4	3.1	1.8
Copper (3050/6010)			42		11		14.6		16	13	10.4
			0.24 U		0.73		1.9		1.8	1.2	2.7
Chromium, Hexavalent (7195)			19100		9330	~	11500		8400	8220	5810
Iron (3050/6010)			91.2		36.5		40,7		42.2	33.5	, 68
Lend (3050/7421)			5400		2390		4150		2960	3000	1800
Magnesium (3050/6010)			461		135		293		2900 181	193	
Manganese (3050/6010)			0.29		0.12 U		0.22 U		0.18 U	0.13 U	141 0.15 U
Mercury (7471)			0.29 6 U		6.7 U		12.6 U		9.5 U		
Molybdenum (3050/7480)										7.7 U	. 8 U
Nickel (3050/6010)			17.5		8.6		. 9.8		10.7	8.3	27.8
Potassium (3050/6010)			950		408		492		530	459	285
Silver (3050/6010)			1.2 U	,	1.8		2.5 U		1,9 U	1.5 U	3190
Sodium (3090/6010)			298	·	260		462		309	248	283
Strontium (3050/7780)			51.2		67.8		237		25.4	21	28.2
Thallium (3050/7841)	_ 3		0.36 U	~ -	0.41 U		0.71 U		0.59 U	0,46 U	0.48 U
Vanadium (3050/6010)			31		14.3		15.1		17.4	14	44.3
			99.2		63.6		67.7		104	66.7	63.8
Zinc (3050/6010)											

Table 5.4: Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffiss Air Porce Base, Rome, New York

		(4)								(5)	
ample ID.	TMCSD ~9a	TMCSD -02	TMCSD -96	TMCSD-9b	TMCSD-10a	TMCSD-10a	TMCSD-10b	TMCSD-10b	TMCSD~[1e	TMCSD-01	TMCSD-11b
ample Date	11-08-94	11-07-94	05-11-9	11-08-94	05-11-94	11-05-94	05-11-94	11-05-94	05-10-94	05-10-94	05-10-94
ample Depth	(0-5')	(05')	(.5-1')	(.5-1')	(0-5')	(0-5')	(5~1')	(.5–1')	(0-5')	(05')	(.5-1')
VET CHEMISTRY: (mg/kg)											
Moisure (160.3)	19.3	57.2	20	20.9	25	23.7	60	17.7	. 48.4	35.2	37.7
eachable Total Organic Carbon (9060)			798	· 	651		559		1010	788	1090
troleum Hydrocarbons (418.1)			1820		531		349		649	602	754
ADIONUCLIDES: (pCl/g)											
trontium 89			0.1 U		0.1 U		0.1 U		0.15+/-0.10	0.1 U	0.1 U
rontum 90		~ ~	0.L U		0.1 U		0.1 T		0.1 U	U 1.0	0.1 U
otal Uranium			0.05+/0.03		0.07 + /-0.03		0.48+/~0.06		0.23+/0.11	0.14 +/-0.	10 0.18+/-0.10

(1) Duplicate of TMCSD-4a (05-12-94)

(2) Duplicate of TMCSD-4a (11-07-94) (3) Duplicate of TMCSD-9a (05-11-94)

(3) Duplicate of TMCSD-9a (11-07-94) (5) Duplicate of TMCSD-1a (6) CYVI Sample fraction re-collected on 5/27/94

Note: Results reported on a dry weight basis

με/kg = micrograms per kilogram mg/kg = milligrams per kilogram

ng/kg = nanograms per kilogram
pCi/g = picocurics per gram
D = Dilluted

J = Estimated

R = Rejected

U = Analyte not detected at listed concentration
UI = Estimated concentration possibly biased low

W = Compound not detected by computing extracted

ion profile against NIST library
-- = Analyte not analyzed

** = Results presented are from a diluted sample

*** = Results presented are from a reinjection and reanalysis

Table 5.4: Detection of Analytes in Sediment Samples Threemile Creek Remedial Investigation Griffies Air Force Base, Rome, New York

ample I.D.	TMCSD-12a	TM CSD -12a	TMCSD-12b	(6) TMCSD~12b	TMCSD-12
ample Date	05-10-94	11-04-94	05-10-94	05-27-94	11-04-94
ampie Depth	(0,5')	(05')	(.5~1')	·(.5-1 ¹)	(.5-1')
IPTHOD: SW-546 8240					
OLATILES: (pelle)					
1,2,2-Tetrachloroethane	7 U		6 U	·	
enzene	7 U		6 U		
hlorobenzene	7 U	-	6 U		
Ihylbenzene	ุ 7 บ		6 U		
oluene .	7 U		6 U		- ~
,2-Dichloroethane (Total)	7 U		6 U		
richloroethylene (TCE)	7 U		6 U		
inyl chloride	14 U	-	12 U		
ARTHOD: SW-846 8270					
EMI-VOLATUES: (µg/kg)					
,2 - Dichlorobenzene	480 U		400 U	- -	
,2 – Diphenylhydrazine	2300 U		· 2000 U		
2.4-Trichlorobenzene	480 U		400 U		
4-Dichlorobenzene	480 U		400 U		
4-Dimethylphenol	480 U	. 	400 U		
-Methylnaphthalene	480 13		400 U		
-Mahylphenol	480 U.,		400 U		
-Methylphenol	350 U		400 U		
loenaphthene	480 U		400 U	- -	~ ~
cepaphthylene	- 480 U		400 U	- -	
nthracene	480 U		400 U		
enzole acid	2300 U		2000 U		
enzo(a)anthracene	81 U		400 U		
enzo(a)pyrene	480 tJ		400 U		
enzo(b)fluoramhene	. 100 ป		400 U		
enzo(ghi)perylene	480 U		400 U		
enzo(k)fluoranthene	73 U		400 U		
enzyi butyi phthalate	480 U		'40 U		- ~
ls(2-chloroethyl) ether	480 ()		100 U		
lis(2 – ethylbexyl) phthalate	480 U		400 U		
hrysene	92 U		400 U	, , , , , , ,	
lbenzohran	480 U		400 U		
ribenzo(a,h)anthracene	480 U		400 U	,	
Juoranthene	160 U		400 U		
luorene	480 U		400 U		
ndeno(1,2,3-cd)pyrene	480 U		400 U	:	
aphthalene	480 U		400 U		
I-nitrosodiphenylamine	480 U.		400 U	,	
henanthrene	89 U		400 U		
henol	480 U 480 U		400 U 400 U		
утеде	40U U		4UV U		
AETHOD: SW-846 8060 PESTICIDES/PCBS COMPOUNDS: (##/kg)					•
4'-DDD	· 8.2 U		7.6 U		
4'-DDE	8.2 U		7.6 U		
4-DDT	8.2 U		7.6 U		
ldrin	4.2 U		3.9 U		
pha - Chlordane	4.2 U		3.9 U		- ~
mma-Chlordane	4.2 U		3.9 U		
leldrin	8.2 U		7.6 U	· - -	
pha – Endosulfan	4.2 U		3.9 U		
ndosulfan sulfate	8.2 U		7.6 U	. = =	
ndrip ndozonku zmisie	8.2 U		7.6 U		
eptachlor epoxide	4.2 U		3.9 U		
epractior epositie HC (Hetachlorocyclohecane) Isomers	4.2 U		3.9 U		
elia-BHC	4.2 U		3.9 U		
			VI		

Table 5.4: Detection of Analytes in Sodiment Samples Threemile Crook Remedial Investigation Griffits Air Force Base, Rone, New York

	TMCSD-12a	TMCSD-12a	TMCSD-12b	1MCSD-126	TMCSD-126
Sample Date Sample Depth	05-10-94	11-04-94	05-10-94	05-27-94	11-04-94
			· ·	:	· •
Miror	4.2 U	1	3.9 U	1	1
Ethyl parathion	8.2 U	1	7.6 U	! !	!
Methyl parathion	6.2 U	1	7.6 U) I
Propaction	92.0	ı.	2 2	;	1
PCB-1254	82 (1	ì i	2 2	1 1	1
PCB-1260	82 U	1	76 U) (1
METEROD: 6W - 144 8140					
PROTECTION OF THE CONTRACT OF					
ESTIMINATION CONTROLLES (PRICE)	;				
Azinphos-methyl (Guthion)	250 U	1	230 C	•	•
Couragabos	250 U	1	230 U	1	1
Fensulfathion	410 17	;	380 U	1	1
Genthion	11 000	1	180 11	1	1
במעותטו	200	1	200	1	1
Mewnphos	0 097	•	0 007	1	1
horate	410 1)	;	380 ()	į	1 1
Ronnel	160 U	1	150 U	1	1
Stironhos	11 091		150 1	;	1
l'richloronale	330 0	ı	310 U	1	1
MILTHOID: SW - 646 8150	•				
PESTÍCIDES/PCBS COMPOUNDS: (44/14)					
2.4.5-TP (Silver)	A 7	U 200	4.2 R	. 1	0.06 U
2.4-10	e e e	0.11	46 R	1	0.3 U
Dalanon	27.		20.2	1	1
DCDA (Drata)	47.0	1 600	2 2	,	0.00
Diam's	4 7 7	11 100	72 7	1	1 700
Acamos	4 7	2.60	4 7 7	1 :	200
tramotopico.	4 ·		¥ (7	i i	0 00
MITHOD: EPA 1613A					
DIOXINS: (ag/kg)					
178-TCDD	0111	ı	11010	!	1
MRTAI S: (me/he)					
Aliminia (100/60/010)	50		4030	1000	
duminum (3030/0010)	070		4 0.	oke -	
Arsenic (3050/7060)	7.	1	0.0	<u>?:</u>	1
Barium (3050/6010)	52.7	1	30.1	. 29.4	!
Beryllium (3050/6010)	0.43 U	;	0.38 U	0.36 U	
"dmlum (3050)/6010)	1411	1	1101	11.711	
	977				
Calcium (3030/0010)	2500	t Į	0.70	00 i	1
Chromium (3050/6010)	4.7	t I	7.6	7.3	1
Cobalt (3050/6010)	4.6	1	3.6	3.8	1
Conner (30%0)/6010)	14.2		8.4	111	1
	11 93 0		0.06.11		i
aromum, rickavalent (7193)	0000	!	0.00	0.00	1
ron (3050/6010)	13300	ţ	10400	07.70	,
Lead (3050/7421)	31.6	1	8.61	17.3	;
Magnestum (3050/6010)	2300	1	1660	1830	1
Vancanese (3050/6010)	885	1	704	225	1
	11710				
werenty (1471)		1			1
Moyodenum (3000/1460)	0 77	•	2	2 7 9	,
Nickel (3050/6010)	19.4	1	17.7	13.6	1
Potassium (3050/6010)	548	!	394	9 92	1
Silver (3050/6010)	1.4 U	1	1.2 U	130	!
Codium (109)(6010)	336	1	717	181	1
		1		5	!
Stroit (SUSU) (SUSU)	7:41	1	0.01		!
Dallium (3030/1641)	0.40	I 1	0.30	0.30	: •
/anadium (300/6010)	18.4	1	18.4	13.6	1

Sample I.D.	TMCSD-12a	TMCSD-12s	TMCSD-126	(6) TMCSD-126	TMCSD-126
Sample Date Sample Depth	05-10-94 (05')	11-04-94 (05')	05-10-94	05-27-94	11-04-94
WET CHIMESTRY: (mg/kg) % Moisture (160.3) Leachable Total Organic Carbon (9060) Petroleum Hydrocarbons (418.1)	32.7 379 208	24.7	20.3 . 200 U 87.8	18.2	20.5
RADIONUCI IDES. (PCM) Strontium 69 Strontium 90 Teal Uranium	. 0.1 U 0.1 U 0.05	111	U.1.0 U.1.0 U.19+/-0.11		1 1 1

Note: Results reported on a dry weight basis ngkg = milligams per kilogram ngkg = nanograms per kilogram pCVg = plocaries per gram D = Ditated µg/kg = micrograms per kilogram (1) Duplicate of TMCSD - 4a (05-12-94)
(2) Duplicate of TMCSD - 5a (11-07-94)
(3) Duplicate of TMCSD - 9a (05-11-94)
(4) Duplicate of TMCSD - 7a (11-07-94)
(5) Duplicate of TMCSD - 11a
(6) CTVI Sample fraction re-collected on 5/27/94

J = Estimated

U = Analyze not detected at listed concentration
UJ = Estimated concentration possibly blased low
W = Compound not detected by comparing extracted
lon profile against NIST library
-- a Analyze not snalyzed.

•• e Results presented are from a diluted sample

PREPARED/DATE: CLC 8/14/95 CHECKED/DATE: KLA 8/16/95

Table 5.5: Detection of Analytes in Sediment Samples — Spring 1995
Threemilo Creek Remedial Investigation
Griffiss Air Porce Base, Rome, New York

Sample I.D.	TMCSD-3a	TMCSD-6a	TMCSD-9a	(1) TMCSD-9a-01	TMCSD-9b	TMCSD-10b	TMCSD-11a	(2) TMCSD-11a-0
Sample Date	04-09-95	04-09-95	04-09-95	04-09-95	04-09-95	04-09-95	04-09-95	04-09-95
Sample Depth	(05')	(0-5')	(05')	(05')	(.5-1')	(.5-1')	(05')	(05')
METHOD: SW-846 8270					•			
SEMI~VOLATILES: (##/kg)								
1,2,4 - Trichlorobenzene	400 U	130 J	490 U	480 U	470 U	410 U	440 U	450 U
1,2 – Dichlorobenzene	400 U	340 J	79 J	58 J	1700	410 U	440 U	56 J
1,4 – Dichlorobenzene	400 U	160 J	7 7 J	58 J	310 J	410 U	440 U	57 J
2.4 – Dimethylphen ol	98 J	100 J	490 U	480 U	470 U	410 U	440 U	450 U
! – Methylnaph thalene	1300	1500	63 J	56 J	120 J	410 U	440 U	450 U
! - Mcthylphen ol	59 J	520 U	490 U	480 U	470 U	410 U	440 U	450 U
l – Methylphenol	220 _. J	240 J	490 U	480 U	470 U	410 U	440 U	450 U
Acenaphthene	1900	2700	130 J	100 J	100 J	410 U	94 J	79 J
Accnaphthylene	59 J	130 J	490 U	480 U	470 U	410 U	440 U	450 U
Anthracene	4400	5800 .	33Ó J	240 J	170 J	410 U	210 J	190 J
Benzo (a) anthracene	5900	12000 J	1000	670	490	64 J	590	590
Benzo (a) pyrene	4500	10000 J	890	590 .	330 J	63 J	530	540
Benzo (b) fluoranthene	5700	14000 J	1300	800	600	410 U	760	710
Benzo (ghi) perylene	2400	4800 J	420 J	300 J	190 J	410 U	270 3	290 J
Benzo (k) fluoranthene	2200	4900 J	480 J	290 J	190 մ	410 U	290 J	240 J
Benzoic acid	2100 U	2700 U	2500 U	2500 U	2400 U	2100 U	2300 U	66 J
is (2-ethylhexyl) phthalate	290 J	810 J	210 J	130 J	130 J	150 J	350 J	250 J
Butyl benzyl phthalate	. 400 U	240 J	490 U	480 U	470 U	410 U	440 U	450 U
Carbazole	3000	3600	190 J	150 J	140 J	410 U	. 120 J	110 J
Thrysene ·	5800	13000 J	1100	750	670	71 J	650	660
li – n – butyl phthalate	400 U	71 J	490 U	480 U	470 U	410 U	440 U	450 U
li – n – octyl phtbalate	400 U	72 J	490 U	480 U	470 U	410 U	440 U	450 U
Dibenz (a,h) anthracene	820	1600 J	130 J	90 J	59 J	410 U	440 U	100 J
Dibenzofuran	2200	2800	120 J	97 J	81 J	410 U	80 J	69 J
luoranthene	14000	29000	2100	1600	1600	150 J	1200	1300
Juorene	2900	3300	200 J	150 J	170 J	410 U	130 J	120 J
ndeno (1,2,3 -cd) pyrene	2800	5900	530	360 J	180 J	410 U	330 J	340 J
Vaphthalene	3500	3800	130 J	110 J	140 J	410 U	74 3	65 J
henanthrene	15000	26000	1500	1100	1100	100 J	940	870
утере	8400	19000	1800	1200	1300	110 J	1200	1000
WET CHEMISTRY: (mg/kg)						·		
% Moisture (160.3)	18.3	36.9	32.2	31.7	29.3	18.7	24.8	26.3

Note: Results reported on a dry weight basis
\(\mu g/kg = \text{micrograms per kilogram} \)
\(mg/kg = \text{milligrams per kilogram} \)
\(J = \text{Estimated concentration} \)
\(U = \text{Analyte not detected} \)

PREPARED/DATE: CLC 8/14/95 CHECKED/DATE: KLA 8/16/95

^{(1) =} Duplicate for TMCSA-9a (2) = Duplicate for TMCSA-11a

SAMPLE I.D.	TMCSD-2a	TMCSD -2b	TMCSD-64	TMCSD-6b	TMCSD-7a	TMCSD-7b	TMCSD-8a	TMCSD-8b	TMCSD -9a	(1) TMCSD -9a01
Sample Date	04-18-95	04 ~ 18 - 95	04-18-95	04-18-95	04-18-95	041895	04-18-95	04-18-95	04-18-95	04-18-95
Sample Depth	(0 – .5')	(.5 1')	(0~.5')	(.5 – 1')	(05')	(.5 – 1')	(05')	(.5-1')	(05')	(05')
METHOD: EPA 1613a										
DIOXINS AND FURANS: (pg/kg)		. •								
2,3,7,8 - TCDD	0.9 U	0.97	1.3	1	1.2 U	0.99 U	2.2	1,3	0.98 U	2.4
1,2,3,4,7,8-HxCDD	1.8 U	4.9 U	4.9 U	, 5 U	2 U	4.9 U	1.5	5 U	4.9 UJ	.5 U
1,2,3,6,7,8 - HxCDD	3.9	4.9 U	4.9 U	5 U	2.8	4.9 U	8.1	5 U	4.9 U	5 U
1,2,3,7,8,9 - HxCDD	· 1.8 J	4.9 U	4.9 U	5 U	2 J	4.9 U	4.2 J	5 U	4.9 U	5 U
1,2,3,4,6,7,8 -HpCDD	67.2 UJ	54.7	23.4	24.7	35.5 UJ	43.7	102 UJ	57.6	17.8 J	\$\$ J
OCDD	799 UJ	776	227	263	383 UJ	493	774 UJ	449	119 J	428 J
2,3,7,8-TCDF	4,9 TJ	4.8	2.1	2.3	3.5 UJ	2.9	8.1 UJ	4.9	1.8	6
1,2,3,7,8-PeCDF	1.6	4.9 U	4.9 U	5 U	1.1 U	4.9 L T	2.4	5 U	4.9 UJ	5 U
1,2,3,4,7,8-HxCDF	16.7	13	4.9	S U	5.3 U	4.9	15	8.8	4.9 U	10.6
1,2,3,6,7,8-HxCDF	2.5	· 4.9 U	4.9 U	5 ប	1.4 U	4.9 U	3.2	5 U	4.9 UJ	5 U
2.3.4.6.7.8-HxCDF	4.7 Us -	4.9 U	4.9 U	5 U	5.5 U	4.9 U	7,3 UJ	5 U	4,9 U	5.5
1,2,3,4,6,7,8-11pCDF	25.1 UJ	23.5	834	9.8	12.1 UJ	10.4	35.7 UJ	21.6	7.8 J	30.1 J
1,2,3,4,7,8,9 -HpCDF	6.3	4.9 U	4.9 U	5 U	1.9 U	4.9 U	4.2	5 U	4.9 UJ	5 U
OCDF	67.7 UJ	55.3	1931	21	20.5 UJ	23.3	82.2 UJ	49.4	20.2 J	74 J
TOTAL TODD	1.4	2.5	2.1	1.5	1.9	2	3.9	4.3	1.2	3.8
TOTAL PeCDD	1.3 U	4.9	4.9 U	' 5 U	1.5 U	4.9 U	2.2	5 U	9.6 E	6
TOTALIIxCDD	24.6	. 17.1	14.5	14.3	13.7	19.6	56.3	30.1	7.7 3	32.8 J
TOTAL HpCDD	135	118	48.9	53.2	74.6	95.6	197	117	35.9 J	119 J
TOTAL TCDF	9.9	29.5	10.6	· 14.1	9.6	19.8	49.9	43.8	15.4 J	55.1 J
TOTAL PeCDF	26	46.4	14.4	, 21.3	33.1 J	23.2	62.1	41.3	17.1 J	72.4 J
TOTAL HICDF	53.9	43	20.6	22.5	14.8	26.7	79.5	52.6	15.4 J	68 J
GTOTAL 11pCDF	65.4	62.6	21.1	25.8	27.7	28.5	86.2	54.2	19.9 J	79.8 J

(1) = Duplicate of TMCSD-9a

Note: Results reported on a dry weight basis

E = Triangle's EMPC stag - all PCDF peaks that are significantly influenced by the presence of DPE peaks are quantitated with EMPC values, regardless of the isotopic abundance ratio. These EMPC values are most likely overestimated due to the DPE yeontribution to the peak area.

J = Estimated concentration

[1] = Estimated concentrations possibly biased low

U = Analyte not detected

PREPARED/DATE: CLC 8/14/95 CHECKED/DATE: KLA 8/16/95

2588-0211.11

Table 5.7: Frequency of Detection and Exceedance of Potential TBCs for Sediment Samples
Threemile Creek Remedial Investigation
Griffiss Air Porce Base, New York

	_		Comparison to AR.	ARs and TBCs	Comparison to	Background
		Range of	Frequency of	Most	Prequency of	Background
	Prequency of	Detected	Detection Above	Stringent	Detection Above	Screening
Parameter	Detection	Concentrations	Most Stringent	Criterion	Background	Concentration
olatiles (µg/kg)						
enzene	5/24	4 J - 10,000 D	5	0.6*		NA
	13/24	2 J - 160,000 D	12	3.5*		
hlorobenzene		•				NA
thytbenzene	1/24	9 J		NA		NA
oluene	1/24	0.7 J		NA		NA
2-Dichloroethene (Total)	1/24	5 J		NA		NA
richloroethylene (TCE)	4/24	1 J - 3 J	0	2.0*		NA
inyl chloride	1/24	3 J	1	0.07*		NA
emi – Volatiles (μg/kg)						
2 - Dichlorobenzene	12/28	42 J - 1,700	8	12*		NA
	1/22	5 J	0	0.58*	~~	
2 - Diphenylhydrazine						NA
2.4 - Trichlorobenzene	2/28	130 J - 180 J	0	91*		NA
4 - Dichlorobenzene	11/28	36 J - 5,600	7	12*		NA
- Methylnaphthalene	16/28	63 J _. — 20,000 J	15	70		NA
- Methylphenol (o-Cresol)	2/28	59 J - 100 J		NA		NA
4 - Dimethylphenol	7/28	98 J + 1.300 J		NA	·	NA
- Methylphenol (p-Cresol)	. 4/28	220 J - 2,700		'NA		NA
cenaphthene	22/28	12 J - 31,000	16	16	-,-	NA NA
•	14/28	13 J - 810 J	12	44		
cenaphthylene						NA
nthracene	25/28	29 J - 40,000	22	85		NA
enzo(a)anthracene	22/28	64 J - 89,000	22	1.3*	~-	NA
enzo(a)pytene	25/28	63 J - 62,000	25	1.3*	~-	NA
enzo(b)fluoranthene	25/28	140 J - 73,000	25	1.3*		NA
enzo(ghi)perylene	21/28	190 J - 29,000	- -	NA		NA
enzo(k)fluoranthene	25/28	71 J - 49,000	25	1.3*		NA
enzoic acid	3/28	5 J - 66 J		NA		NA
	3/28	20 J - 540 J		NA		NA
enzyl butyl phthalate	1/28	100 J		0.03*		-
s(2 -chloroethyl) ether			1			NA
s(2—ethylhexyl) phthalate	21/29	64 J - 3,800 J	18	199.5*		NA
arbazole	5/6	120 J - 3,600		NA		NA
hrysene '	24/28	71 J - 77,000	24	1.3*	· 	NA
i – n – butyl phthalate	. 1/28	71 J		NA		NA
i-n-octylphthalate	1/28	72 J	 ,	NA		NA
ibenzo(a,h)anthracene	17/29	59 J - 16,000 J	16	63.4	~-	NA
ibenzofuran	16/28	80 J - 32,000	 -	NA.	, ,	NA
uoranthene	26/28	150 J - 160,000	22	600	- -	NA
•	18/28	130 J - 34,000	18	19		
uorene			· ·			NA
deno(1,2,3-cd)pyrene	20/28	180 J - 40,000	20	1.3•		NA
- Nitrosodiphenylamine	2/28	2 20 J		NA		NA
i phthalene	18/28	74 J - 56.000	14	160	~-	NA
ntachlorophenol	1/28	260.000	1	400	~ ~	NA
enanthrene	26/28	100 J - 190,000	23	240	~-	NA
enoi	4/28	370 J - 660 J	4	0.5*		NA NA
rene	26/28	110 J - 140,000	22	66	** **	NA NA
esticides/Herbicides/PCBs (μg/kg) 4 - D (Dichlorophenoxyscetic acid)	2/24	4.8 J - 5 J		NA		NA
4.5 - T (Silvex)	11/25	3.1 J - 57 J		ÑΑ		NA NA
	8/24	9.8 J - 990				
- DDD			8	0.01*		NA
- DDE	5/24	5.7 J - 870	5	0.01*	~-	NA
- DDT	2/24	310 - 480	2	0.01		· NA
drin	6/24	3.8 J - 21.4 J	6	0.1*	~-	NA
oha — Chiordane	10/24	2.2 J - 240	10	0.001*	~-	NA
mma - Chlordane	3/24	10 J - 37	3	0.001*	~-	NA
oumaphos	4/26	8.8 J - 91 J		NA	~-	NA
alapon	9/24	4.6 J - 31 J		NA		NA NA
CPA (Dacthal)	4/24	6.7 J - 40 J		NA.		NA NA
		3.8 J				
camba	1/24			NA		NA
chloroprop	6/24	7.6 J - 35 J		NA		NA
eldrin	2/24	12 J - 62	2	0.1		NA
oha – Endosulfan	1/24	2.4 J	1	0.03*		NA
idosulfan sulfate	1/24	120		NA		NA
	2/24	36 - 540	2	0.8*		NA
idrin .	- D-					
_				NA		NΔ
nsulfothion	4/25	13 J - 26 J		NA NA		NA NA
_			 3	NA NA 0.001*		NA NA NA

Table 5.7: Frequency of Detection and Exceedance of Potential TBCs for Sediment Samples
Threemile Creek Remedial Investigation
Griffiss Air Force Base, New York

*			Comparison to ARA	ARs and TBCs	Comparison to	Background
		Range of	Frequency of	Most	Prequency of	Background
	Frequency of	Detected	Detection Above	Stringent	Detection Above	Screening
Parameter	Detection	Concentrations	Most Stringent	Criterion	Background	Concentration
BHC (Hexachlorocyclohexane) Isomers	1/18	160	1	0.06*		N7.4
	3/24	4.1 J <i>- 7.5</i> J	1	0.06*		NA
eta - BHC						NA
elta - BHC	1/24	3.4 J	1	0.06*		NA
Mevinphos	1/25	19 J		NA		NA
direx	1/18	170	1	0.07*	~-	NA
thyl - Parathion	1/18	45	1	0.003*		NA
nethyl - Parathion	1/24	120	1	0.003*		NA
CB-1254 (Arochior 1254)	2/24	1.230 - 1.500	2	0.0008*		. NA
CB-1260 (Arochlor 1260)	19/24	330 - 11,000	19	0.0008*		NA NA
•	3/25	1 J - 3.3 J		NA NA		
horate	1/18	58 J				NA
ropachlor				NA		NA
onnel	1/24	110 J		NA:		NA
tirofos, (Tetrachlorvinphos)	1/24	13 J	· ·	NA		NA
richloronate	5/26	5 J – 17 J		NA		NA
ietais (mg/kg)						
duminum	25/25	1,570 - 9,560		NA		NT A
						NA
rsenic	24/25	1 - 50.2	. 12	6	, 	NA
arium	25/25	7.8 - 168		NA		NA
eryläum	5/25	0.36 - 1.2		NA		NA
admium	12/25	1.6 - 29.4	12	0.6	 .	NA
alcium	25/25	1,430 - 117,000		NA		NA
hromium. Hexavalent	21/25	0.38 - 3		NA		NA
hromium, Total	25/25	5.8 - 65.8	12	26		
	25/25	1.8 - 11.7				NA
obalt .				NA		NA
opper	25/25	8.4 - 126	16	16		NA
OD	25/25 _.	5,810 - 31,000		NA.		NA
ad	25/25	17.3 - 316	23	31		NA
agnesium	25/25	1,660 - 5,400		NA		NA
anganese	25/25	70.8 - 885	2	460		NA
ercury	11/25	0.2 - 0.78	11	0.15		NA NA
•	3/25	6.3 - 10.2 J				
olybdenum				NA		NA
ickel	25/25	5.5 - 43.3	18	16		NA
otassium	25/25	225 - 1.100		NA		NA
lver	12/25	1.2 - 3.190	. 12	1,	-	NA
odium	25/25	181 - 558 J		NA		NA
rontium	25/25	6 - 237		NA		NA
hallium	1/25	0.8		NA		NA NA
	25/25	7.3 - 97				
anadium				NA		NA
inc	25/25	63.6 - 278	14	120		NA
ioxins (ng/kg)						
3,7,8 — TCDD	9/26	0.77 J - 33	9	0.0002*		NA
ioxins and Furans (ng/kg) (Spring,	1995. Resamplin	•) ·				
2,3,4,6,7,8 - HpCDD	6/9	23.4 - 57.6		NA		. NA
2,3,4,6,7,8 - HpCDF	6/9	9.8 - 834		NA		NA
_*	2/9	4.2 - 6.3				
2.3,4,7,8,9 — HpCDF				NA		NA
2.3.4.7.8 - HxCDD	1/9	1.5		NA		NA
2,3,4,7,8 - HxCDF	7/9	4.9 - 16.7		NA		NA
2,3,6,7,8 - HxCDD	3/9	2.8 - 8.1		NA	- - '	NA
2,3,6,7,8 - HxCDF	2/9	2.5 - 3.2		NA		NA
2,3,7,8,9 - HxCDD	3/9	1.8 J - 4.2 J		NA		NA
2.3.7.8 - PeCDF	2/9	1.6 - 2.4		NA		NA NA
	1/9	5.5		•		
3,4,6,7,8 - HxCDF				NA		NA
3,7,8 - TCDD	6/8	0.97 - 2.4	, 6 ,	0.0002*		NA
3,7,8 – TCDF	6/9	2.1 - 6		NA		NA
	9/9	48.9 - 197	 ·	NA		NA
OTAL HPCDD	9/9	21.1 - 86.2		NA		NA
				NA		NA NA
OTAL HpCDF	9/9					
OTAL H _P CDF OTAL H _X CDD	9/9 9/9	13.7 - 56.3 14.8 - 79.5		N/A		A T.A
DTAL HPCDF DTAL HxCDD DTAL HxCDF	9/9	14.8 - 79.5		NA NA		NA NA
OTAL HPCDF OTAL HxCDD OTAL HxCDF OTAL OCDD	9/9 6/9	14.8 - 79.5 227 - 776		NA.		NA
OTAL HPCDF OTAL HxCDD OTAL HxCDF OTAL OCDD OTAL OCDF	9/9 6/9 6/ 9	14.8 - 79.5 227 - 776 21 - 1.931	 	NA NA		
OTAL HPCDF OTAL HxCDD OTAL HxCDF OTAL OCDD OTAL OCDF	9/9 6/9 6/9 3/9	14.8 - 79.5 227 - 776	 2-	NA.		NA
OTAL HpCDD OTAL HpCDF OTAL HxCDD OTAL HxCDF OTAL OCDD OTAL OCDD OTAL OCDF OTAL OCDF OTAL PeCDD OTAL PeCDD	9/9 6/9 6/ 9	14.8 - 79.5 227 - 776 21 - 1.931	 	NA NA		NA NA
OTAL HPCDF OTAL HxCDD OTAL HxCDF OTAL OCDD OTAL OCDF OTAL PeCDD	9/9 6/9 6/9 3/9	14.8 - 79.5 227 - 776 21 - 1.931 2.2 - 9.6 E		NA NA NA		NA NA NA

Table 5.7: Frequency of Detection and Exceedance of Potential TBCs for Sediment Samples Threemile Creek Remedial Investigation Griffiss Air Force Base, New York

			Comparison to AR	ARs and TBCs	Comparison to	Background .
Parameter	Prequency of Detection	Range of Detected Concentrations	Erequency of Detection Above Most Stringent	Most Stringent Criterion	Prequency of Detection Above Background	Background Screening Concentration
Lalameter	Detection	Совесцианова	Wost Stringen	CITICITOR	Dacaground	Concentration
Radionuclides (pCi/kg)						
Strontium -89	7/24	0.09 - 0.15		NA		NA
Strontium -90	3/24	0.18 - 5.47		NA		NA
Uranium, Total	23/24	0.05 - 0.5		NA		NA
Wet Chemistry (mg/kg)	•					
Moisture, Percent	52/52	7 - 60		NA		NA
Petroleum Hydrocarbons	24/24	87.8 - 10.700		NA		NA
Total Organic Carbon	14/24	379 - 2,530		NA		NA

^{*} Criterion expressed as µg per g organic carbon (µg/g oc); results normalized using sample—specific total organic carbon results prior to comparison. ARAR = Applicable or Relevant and Appropriate Requirement
TBC = To Be Considered Criteria

mg/L = milligrams per liter mg/kg = milligrams per kilogram

μg/L = micrograms per liter

μg/kg = micrograms per kilogram

NA - Not available or not applicable

J - Estimated concentration

PREPARED/DATE: KLA 8/1/95 CHECKED/DATE: LAS 8/10/95

E PCB Sampling Results at Patrick Square and Drainage Swale Adjacent to Hardfill 49D (Source: Parsons 1997)

. .						T					•	
FORMER SHIFF	ISS AFB	SAMPLE ID:	SSP\$01-1	SSPS02-1	SDPS07-1	SDPS01-1	SDPS02-1	SDPS03-1	SDPS04-1	SDPS05-1	SDPS06~1	SDPS08-1
PATRICK SQUAR	RE	DEPTH:	0~.5'	0~.5'	05'	0~.5'	0⊶.5'	05'	05'	0∽.5'	0~.5'	05'
SOIL BORING A	NALYTICAL DATA	LABID:	D95-9417-8	D96-9417-9	D96-9417-3	D08-0417~4	D96-9417-5	D96-9417-6	D95-9417-7	D96-9417-1	D96-9417-2	D96-9417-10
		SOURCE:	INCR	INCR	INCR	INCA	INCH	INCR	INCR	INCR	INCR	INCR
ļ	•	SDG;	0417	9417	9417	9417	9417	9417	9417	9417	0417	0417
{		MATRIX:	SOIL	SOIL	SOIL.	SOIL	SOIL	SOIL.	SOIL,	SOIL	SOIL	soil l
		SAMPLED:	8/22/96	8/22/96	8/22/96	8/22/96	8/22/96	8/22/06	8/22/96	8/22/06	8/22/98	0/23/98
CAS NO.	COMPOUND	UNITS:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	PESTICIDES / PCDs											
12674-11-2	PCB 1016		0.02 U	0.02 U	0,02 U	0.02 U	0.02 U	0.02 U	0.31 U	0.02 U	0.02 U	0.02 U
11104-28-2	PCB 1221		0.03 U	0.03 U	0.03 U	0.03 U	0.04 U	0.03 U	0.47 U	0.03 U	0.04 U	0,04 U
11141-16-5	PCB 1232	j	U 80.0	0.08 U	0.07 U	0.07 U	0.07 U	U 50,0	0.93 U	0.07 U	0.08 U	0.07 U
53469-21-9	PCB 1242	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.31 U	0.02 U	0.02 U	0.07 F
12072-29-6	PCB 1248	i	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.31 U	0.02 U	0.02 U	0.02 U
11007~60-1	PCB 1254	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.31 U	0.02 U	0.02 U	0.02 U
11096-82-5	PCB 1260		0.03 F	0.01 U	0.08 F	0,08 F	0.34 F	0,02 F	4.52	: 0.04 F	0.11 F	0.08 F
	PESTICIDE / PCB 6			Y	ł	1		Į.	1	l		
	Decachiloroblphenyl		26 %	67 %	57 %	41 %	25* %	70 %	58 %	30 %	(%	41 %
877-09-8	2,4,5,0 - Tetrachtoro		50 %	95 %	90 %	66 %	62 %	60 %	89 %	47 %	1 %	69 %
4	CONVENTIONAL PA	MAMETERS			1		1				1]
PCTMOIST	Moisture, percent	l	95.6 %	93.1 %	90.3 %	88.8 %	83.1 %	91.8 %	64.2 %	88.8 %	79 %	81.7 %

FORMER GRIFF	ISS AFB	SAMPLE ID:	SDPS00-IMS1	SDPS08-IMSD1	SDPS08-1MS2	SDPS00-1MSD2	SDPS00-1MS3	SDPS00-1MSD3	SDPS08-1MS4	SDPS08-IMSD4	SDPS08-1DUP	SDPS08-2
PATRICK SQUAR	RE	DEPTH;	05'	0~.5'	05	0,5'	0~.5'	05'	0-,5'	0∽.5'	0~0'	1-1.5'
SOIL BORING A	NALYTICAL DATA	LABID:	D96-9417-21	D96-9417-22	D96-9417-24	D96-9417-25	D96~9417-27	D96-9417-28	D98-9417-30	D96~9417-31	D96-9417-12	D96-9417-11
l .		SOURCE:	INCR	INCR	INCR	INCA	INCR	INCR	INCR	INCA	INCR	INCR
		SDG:	9417	9417	9417	9417	9417	9417	9417	9417	9417	9417
t		MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL.	SOIL	SOIL	SOIL	SOIL	SOIL
1		SAMPLED:	8/23/96	8/23/96	8/23/96	8/23/96	8/23/98	8/23/98	8/23 /96	8/23/96	8/23/96	8/23/96
CAS NO.	COMPOUND	UNITS:	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery	mg/Kg	mg/Kg
	PESTICIDES / PCBs											
12074-11-2	PCB 1016		62 %	83 %	ļ	,		1		ſ	0.02 U	0.02 U
11104-28-2	PCB 1221			1	Ì	Į.	52 %	44 %			0.04 U	0.04 U
11141-10-5	PCB 1232	į		}		j		i e	24 %	48 %	0.07 U	(U 80.0
53469-21-9	PCB 1242				88 %	64 %		l I			0.13 F	0.02 U
12672-29-6	PCB 1248			[58 %	50 %		[.	ი.02 U	0.02 U
11007~69-1	PCB 1254			1	80 %	83 %	Ì	ì			0.02 U	0.02 U
11000-82-5	PCB 1260		42 %	59 %	ł	ì		,		(0.1 F	0.39 F
	PESTICIDE / PCB SU	ROGATES.			1		}					
DECACHLORO	Decachloroblphenyl		40 %	44 %	46 %	50 %	42 %	25* %	57 %	34 %	45 %	57 %
	2,4,5,6 - Tetrachloro -		52 %	62 %	89 %	72 %	55 %	45 %	79 %	67 %	75 %	75 %
1	CONVENTIONAL PAR	WANTERS		1	\		1	1		Ì]
PCTMOIST	Moisture, percent			<u> </u>	L	l		<u></u>		<u> </u>	84.3 %	79.3 %

Values outside of contract required QC limits,
 D - Surregate compound diluted out.

FORMER GRIFF	ISS AFB	SAMPLE ID:	SDPS09-1	SDPS09-2	SDPS10-1	SDPS10-2	SDP\$11-1	SDPS11-2	SDPS12-1	SDPS12 - 1MS1	SDPS12-1MSD1	SDPS 12 - 1MS2
PATRICK SQUA	RE	DEPTH:	05'	11.5'	05'	1-1.5'	0∽.5'	1-1.5'	0-,5'	0-,5'	05'	05
SOIL BORING A	NALYTICAL DATA	LABID:	D98~9417-13	D96-9417-14	D98-9417-15	D96-9417-16	D96-9417-17	D98-9417-18	D96-9420-2	D96-9420-10	D96-9420-11	D96-9420-13
		SOURCE:	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCA
l		SDG:	9417	9417	9417	9417	9417	9417	0420	9420	9420	9420
		MATRIX:	SOIL	SOIL	SOIL.	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	8/23/96	8/23/98	8/23/06	8/23/96	8/23/96	8/23/96	8/23/96	8/23/95	8/23/98	8/23/96
CAS NO.	COMPOUND	UNITS:	mg/Kg	mg/Kg	mg/Kg	nig/Kg	mg/Kg	mg/Kg	mg/Kg	% Recovery	% Recovery	% Recovery
	PESTICIDES / PCBs										· · · · · · · · · · · · · · · · · · ·	
	PCB 1016		0.03 U	0.06 U	0.03 U	0.65 U	0.9 ∪	0.02 U	0.05 U	04 %	0 %	
11104-28-2	PCB 1221		0.04 U	0.1 U	0.04 U	0.97 U	1.35 U	0.03 U	0.07 U			
11141-16-5	PCB 1232		0.09 U	0.2 U	0.08 U	1.94 U	2.7 U	0.07 U	0.15 U	ļ		
53469-21-9	PCB 1242		0.03 U	0,08 U	0.03 U	0,65 U	0. 9 U	0.02 U	0,05 U	l		0*%
12672-29-6	PCB 1248		0.03 U	0.08 U	0.03 U	0.65 U	0.9 U	0.02 U	0.05 U			
11097691	PCB 1254		0.03 U	0.08 U	0.03 U	0.65 U	0.9 U	0.02 U	0.05 U			0*%
11095-82-5	PCB 1260		0.23 F	0.16 F	0.15 F	6.94 F	8.94 F	0.08 F	65.07 F	. 510 %	580 %	l l
1	PESTICIDE / PCB SU	RROGATES:								`		
DECACHLORO	Decachloroblphenyl		51 %	79 %	63 %	108 %	68 %	88 %	D	D	ם	a
877-09-8	2,4,5,6-TetracHoro-		76 %	94 %	88 %	112 %	95 %	96 %	D	0	۵	ا م
1	CONVENTIONAL PAR	AMETERS		1			Ì	,		ļ		
PCTMOIST	Moisture, percent		66.4 %	30.4 %	71.1 %	81.8 %	44.5 %	86.8 %	40.6 %	l		

FORMER GRIFF	ISS AFB	SAMPLE ID:	SDPS12-1MSD2	SDPS12-1MS3	SDPS12 - 1MSD3	SDPS12-1MS4	SDPS12-1MSD4	SDPS12-1DUP	SDPS12-2	SDPS13-1	SDPS13-2	SDP\$14-1
PATRICK SQUAL	RE	DEPTH:	0~.5'	0~.5'	0⊶.5'	0~.5'	0~.5'	00,	1-1.5'	05'	1-1.5	0→,5'
SOIL BORING A	NALYTICAL DATA	LABID:	D96-9420-14	D96-9420-16	D06-0420-17	D96-9420-19	D96-9420-20	D96-9420-1	D96-9420-3	D96-9420-4	D98-9420-5	D96-9420-6
		SOURCE:	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCR	INCR
1		SDG:	9420	9420	9420	9420	9420	9420	9420	9420	9420	9420
1		MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Į.		SAMPLED:	8/23/96	8/23/96	8/23/98	8/23/96	8/23/98	8/23/96	8/23/06	8/23/96	8/23/98	8/23/96
CAS NO.	COMPOUND	UNITS:	% Recovery	% Recovery	% Recovery	% Recovery	% Recovery	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	PESTICIDES / PCOs											
12674-11-2	PCB 1016							0.04 U	0.02 U	0.06 U	0.04 U	0.07 U
11104-28-2	PCB 1221			0* %	0 %			0.06 U	0.03 U	0.09 U	0.08 U	0.1 U
11141-16-5	PCB 1232					0*%	0* %	0.11 U	0.07 U	0.19 U	0.12 U	0.21 U
53469-21-9	PCB 1242		0*%					0.04 U	0.02 U	0,06 U	0.04 U	0.07 U
12072-29-6	PCB 1248			0* %	0*%			0.04 U	0,02 U	0.06 U	0.04 U	0.07 U
11007-69-1	PCB 1254		0*%					0.04 U	0.02 U	0.06 U	0.04 U	0.07 U
11095-82-5	PCB 1260				1			51.58 F	0.05 F	2.61 F	0.02	0.23
	PESTICIDE / PCB SUI	ROGATES										1
	Decadaloroblphenyl		ם ו	D	D	Ð	D	D	94 %	78 %	81 %	94 %
877-09-8	2,4,5,6 Tetrachloro-	meta-xylene	D	D	D	D	D	D	93 %	92 %	91 %	108 %
	CONVENTIONAL PAR	METERS			İ							1
	Moisture, percent		L		<u></u>			52.3 %	87.1 %	31,6 %	52.1 %	28.9 %

^{• --} Values outside of contract required QC limits.

D -- Surragete compound diluted out.

										·	•	
FORME FF	ISS AFB	SAMPLE ID:	SDPS14~2	BLK	BLK1660LCS	BL12148LCS	BLK4254LCS	BLK1232LCS	BLK	BLK1660LCS	BLK4254LCS	BLK2148LCS
PATRICK SQUA	RE	DEPTH:	1 1.5'	00'	0-0'	0-0,	0-0,	0-0'	0~0,	0-0,	0-0'	0~0'.
SOIL BOTTING A	NALYTICAL DATA	LABID:	D98-9420-7	D96-9417-19	D96-9417-20	D96-9417-26	D96-9417-23	D96-9417-29	D96-9420-8	D96-9420-9	D96-9420-12	D96-9420-15
i		SOURCE:	INCR	INCR	INGR	INCR	INCR	INCR	INCR	INCR	INCR	INCR
		SDG:	9420	0417	0417	0417	0417	0417	9420	9420	9420	9420
		MATIEX:	SOIL.	SOIL	SOIL	SOIL	SOIL	SOIL	SOII.	SOIL	SOIL	SOIL
		SAMPLED:	8/23/90	8/28/90	8/20/90	8/28/96	8/28/96	8/28/96	8/28/96	8/28/96	8/28/90	8/28/96
CAS NO.	COMPOUND	UNITS:	mg/Kg	mg/Kg	% flecovery	% Recovery	% Recovery	% Recovery	mg/Kg	% Recovery	% Recovery	% Recovery
	PESTICIDES / PCBs											
12674-11-2	PCB 1016		0.02 U	0.02 U	81 %	1	1		0.02 U	93 %	1	l
11104-28-2	PCB 1221	ì	0.04 U	0.03 U	1	74 %	ļ	}	0.03 U	ł		82 %
11141165	PCB 1232	i	0.07 U	0.06 U	i	ļ	i	41 %	0.06 U	}	į	l
53469~21~0	PCB 1242		0.02 U	0.02 ∪	1	Ì	88 %	1	0.02 U	1	80 %	ł
12672-29-6	PCB 1248		0.02 U	0.02 U	1	76 %	}	ļ	0.02 U	ł		86 %
11007-00-1	PCB 1254	1	0.02 U	0.02 U		1	86 %	ì	0.02 U	l	88 %	1
11098-82-5	PCB 1260		0.01 U) 0.01 U	85 %	[1		0.01 U	90 %	}	1
Į.	PESTICIDE / PCB 6	UNROGATES		i]	1		1		1		į
DECACHLORO	Decachloroblphenyl		89 %	93 %	91 %	91 %	95 %	93 %	88 %	100 %	76 %	93 %
877-09-8	2,4,5,6-Tetraction		100 %	71 %	83 %	83 %	89 %	83 %	98 %	104 %	97 %	95 %
	CONVENTIONAL PA	NAMETERS:		Į.	1	1	1	ì		Į.	1	
PCTMOIST	Moisture, percent		81.8 %	l		l	L	I			I	

FORMER GRIFF	ISS AFB	SAMPLE ID:	BLK1202LCS	DLK	LCS	BLK
PATRICK SQUA	RE	DEPTH:	0-0,	0-0'	0-0	0~0,
SOIL BOITING A	NALYTICAL DATA	LABID: SOURCE: SDG: MATRIX: SAMPLED:	D98942018 INCR 9420 SOIL 8/28/96	D96-9417-32 INCR 9417 SOIL 8/30/96	D96-9417-33 INCR 9417 SOIL 8/30/96	D96-9420-21 INCR 9420 SOIL 8/30/96
CAS NO.	COMPOUND	UNITS:	% Recovery	*	%	*
12674-11-2 11104-28-2 11141-10-5 53469-21-9 12672-20-0 11097-69-1	PESTICIDES / PC6s PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254		44 %			
11096-82-5 DECACHLORO 877-09-8 PCTMOIST	PCB 1260 PEBTICIDE / PCB 8 Decachloroblphenyl 2,4,5,6 - Tetrachloro CONVENTIONAL P/ Moisture, percent	-meta-xylene	81 % 94 %	95.3 %	67.3 %	81.4%

Values outside of contract required QC limits,
 D - Surrogate compound diluted out.

Cost Estimates Based on FS Addendum Scenario Development

F

Scenario 1: Excavate to native soils along the entire length of the on-base portion of the creek and backfill with clean soils to original grade;

Est By: J. Fazzolari

Date: 29-Mar

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				77,900	Includes bonding and equip. mob.
Clearing and Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	5950	CY	1.97	11,700	
Material Handling and Staging	Includes dewatering		LS	40000		Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	7700	CY	3.14	24,200	(assume 30% swell - R022-250, 10
Transportation	Dump truck <200 mi	800	EA	715	572,000	CY dump truck))
Disposal	Landfill Haz Bulk	800	CY	154	123,200	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	7000	CY	102.85	720,000	Assume 90% will be non-hazardous
Fill mat'l	Clay or till - material	5950	CY	5.89	35,000	
Backfill	Spread dumped mat'l - no compaction	5950	CY	1.54	9,200	
Seeding	utility mix hydroseed	150	MSF	56.65	8,500	
Demobilization	estimated at 5%				77,900	
Subtotal					1,713,800	
Contingency (15%)					257,070	
Subtotal	LA de inichestic (OFO()				1,970,870	
Engineering, Legal, and Total	a Administrative (25%)				492,718 2,463,588	
Overall Cost in \$ / in-pla	ace CY removed				414	

Scenario 2: Excavate to native soils along the entire length of the on-base portion of the creek, and excavate localized areas of contaminated native soils, and backfill with clean soils to original grade;

Est By: J. Fazzolari

Date: Revised 7/3/02

	· · · · · · · · · · · · · · · · · · ·			Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				88000	Includes bonding and equip. mob.
Clearing and						
Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	6850	CY	1.97	13,500	
Material Staging	Includes dewatering		LS	40000	40,000	Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	8900	CY	3.14	27,900	
Transportation	Dump truck <200 mi	900	EA	715	643,500	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	900	CY	154	138,600	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	8000	CY	102.85	823,000	Assume 90% will be non- hazardous
Fill mat'l	Clay or till - material	6850	CY	5.89	40,300	
Backfill	Spread dumped mat'l - no compaction	6850	CY	1.54	10,500	
Seeding	utility mix hydroseed	150	MSF	56.65	8,500	
Demobilization	estimated at 5%				88,000	
Subtotal					1,936,000	
Contingency (15%	%)				290,400	
Subtotal					2,226,400	
	al, and Administrative (25%)				556,600	
Total					2,783,000	
Overall Cost in \$	/ CY removed				406	

Est By: J. Fazzolari Date: 29-Mar

Scenario 3: Excavate to a uniform depth of 2.5 feet below creek bottom, and backfill with clean soils to original grade;

				Unit	Total					
Task Name		Qty	Unit	Cost	Cost	Assumptions				
Mobilization	estimated at 5%				68400	Includes bonding and equip. mob.				
Clearing and Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200					
Excavation	Backhoe 1 1/2 yd	5200	CY	1.97	10,200					
	Includes dewatering		LS	40000	40,000	Temporary pads, gravity draining and possibly bulking				
Loading	Backhoe 1 1/2 yd	6800	CY	3.14	21,400					
Transportation	Dump truck <200 mi	700	EA	715	500,500	(assume 30% swell - R022-250, 10 CY dump truck))				
Disposal	Landfill Haz Bulk	700	CY	154	107,800	Assume 10% will be hazardous				
Disposal	Landfill Non-Haz Bulk	6100	CY	102.85	627,000	Assume 90% will be non- hazardous				
Fill mat'l	Clay or till - material	5200	CY	5.89	30,600					
Backfill	Spread dumped mat'l - no compaction	5200	CY	1.54	8,000					
Seeding	utility mix hydroseed	150	MSF	56.65	8,500					
Demobilization	estimated at 5%				68,400					
Subtotal					1,505,000					
Contingency (159	%)				225,750					
Subtotal					1,730,750					
Engineering, Leg Total	al, and Administrative (25%)		432,688 2,163,438							
Overall Cost in \$	/ CY removed				416					

Scenario 4: Excavate to a uniform depth of 2.5 feet below creek bottom, and excavate localized areas of remaining contaminated sediments/native soils, and backfill with clean soils to original grade;

Est By: J. Fazzolari

Date: Revised 7/3/02

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				88000	Includes bonding and equip. mob.
Clearing and						
Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	6800	CY	1.97	13,400	·
Material Staging	Includes dewatering	1	LS	40000	40,000	Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	8800	CY	3.14	27,600	
Transportation	Dump truck <200 mi	900	EA	715	643,500	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	900	CY	154	138,600	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	8000	CY	102.85	823,000	Assume 90% will be non- hazardous
Fill mat'l	Clay or till - material	6800	CY	5.89	40,100	
Backfill	Spread dumped mat'l - no compaction	6800	CY	1.54	10,500	
Seeding	utility mix hydroseed	150	MSF	56.65	8,500	
Demobilization	estimated at 5%				88,000	
Subtotal					1,935,400	
Contingency (15%))				290,310	
Subtotal					2,225,710	
	, and Administrative (25%)				556,428	
Total					2,782,138	
Overall Cost in \$ /	CY removed				409	

Est By: J. Fazzolari

Date: 29-Mar Scenario 5: Same as Scenario 1 (Excavate to native soils along the entire length of the on-base portion of the creek and backfill with clean soils to original grade), except remove only 1-foot of sediment between TMCSD-8 and TMCSD-10-2 due to the addition of 2- to 3-feet of clean soil to be placed over the entire area to raise the original elevation as part of the wetland mitigation program;

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				57800	57800 Includes bonding and equip. mob.
Clearing and Grubbing	(30' wide, length of creek)	3	3 Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	4275 CY	СУ	1.97	8,400	
Material Staging	Includes dewatering	1	S	40000	40,000	Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	5600 CY	CY	3.14	17,600	
Transportation	Dump truck <200 mi	600 EA	EA	715	429,000	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	600 CY	ζ	154	92,400	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	5000 CY	CY	102.85	514,000	514,000 Assume 90% will be non-hazardous
Fill mat'l	Clay or till - material	4275 CY	CΥ	5.89	25,200	
Backfill	Spread dumped mat'l - no compaction	4275 CY	Cζ	1.54	6,600	
Seeding	utility mix hydroseed	150	150 MSF	56.65	8,500	
Demobilization	estimated at 5%				57,800	
Subtotal Contingency (15%) Subtotal	(9)				1,271,500 190,725 1,462,225	
Engineering, Lega Total	Engineering, Legal, and Administrative (25%) Total				365,556 1,827,781	
Overall Cost in \$ / CY removed	/ CY removed				428	

Scenario 6: Same as Scenario 3 (excavate to a uniform depth of 2.5 feet below creek bottom, and backfill with clean soils to original grade), except remove only 1-foot of sediment between TMCSD-8 and TMCSD-10-2 due to the addition of 2- to 3-feet of clean soil to be placed over the entire area to raise the original elevation as part of the wetland mitigation program

Est By: J. Fazzolari

Date: 29-Mar

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				48900	Includes bonding and equip. mob.
Clearing and Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	3575	CY	1.97	7,000	
Material Staging	Includes dewatering	1	LS	40000	40,000	Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	4600	CY	3.14	14,400	
Transportation	Dump truck <200 mi	500	EA	715	357,500	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	500	CY	154	77,000	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	4200	CY	102.85	432,000	Assume 90% will be non- hazardous
Fill mat'l	Clay or till - material	3575	CY	5.89	21,100	
Backfill	Spread dumped mat'l - no compaction	3575	CY	1.54	5,500	
Seeding	utility mix hydroseed	150	MSF	56.65	8,500	
Demobilization	estimated at 5%				48,900	
Subtotal					1,075,000 161,250	
Contingency (15%) Subtotal					1,236,250	
Engineering, Legal, and	Administrative (25%)				309,063	
Total	(20,00)				1,545,313	
Overall Cost in \$ / CY re	emoved				432	

Est By: J. Fazzolari

Date: 1-Apr

Dredge Deposits - Berms

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				22700	
Clearing and Grubbing	(30' wide, length of creek)	2	Acre	4730	14,200	Added area to clear on the opposite side of creek
Clearing and Grubbing	(30 wide, letigat of creek)		Acre	4/30	14,200	opposite side of creek
Excavation	Backhoe 1 1/2 yd	1700	CY	1.97	3,300	
				22222	00.000	Temporary pads, gravity draining
Material Staging	Includes dewatering		LS	20000		and possibly bulking
Loading	Backhoe 1 1/2 yd	2200	CY	3.14	6,900	/
Transportation	Dump truck <200 mi	220	EA	715	157,300	(assume 30% swell - R022-250, 10 CY dump truck))
Dianosal	Landfill Haz Bulk	200	CV	151	22.000	Aggume 400/ will be because
Disposal	Landin haz buk	220	CT	154	33,900	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	2000	CY	102.85	206,000	Assume 90% will be non- hazardous
Бюроса	Clay mat'l 300' haul, no	2000	 ` 	102.00	200,000	Assume top 1' of clay on site will
Grading	compaction	1500	CY	2.83	4,200	be graded
						Included in cost for one of
Seeding	utility mix hydroseed	150	MSF	56.65	<u></u>	scenarios 1-6
Demobilization	estimated at 5%				22,700	
Subtotal					499,700	
Contingency (15%)					74,955	
Subtotal					574,655	
Engineering, Legal, and	Administrative (25%)				143,664	
Total	7.a				718,319	
Overall Cost in \$ / CY re	emoved				423	

Est By: Date:

Off-Base portion of Creek: Excavate select portions of creek to specified depths from the base property line to the pond.

				Unit	Total	
Task Name		Qty	Unit	Cost	Cost	Assumptions
Mobilization	estimated at 5%				2500	Assume work is completed in same contract as one of scenarios 1-6. If not, will be significantly higher.
Clearing and Grubbing	(30' wide, length of creek)	3	Acre	4730	14,200	
Excavation	Backhoe 1 1/2 yd	80	CY	1.97	200	
Material Staging	Includes dewatering		LS	10000	10,000	Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	100	CY	3.14	300	
Transportation	Dump truck <200 mi	10	EA	715	7,200	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	10	CY	154	1,500	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	100	CY	102.85	10,000	Assume 90% will be non-hazardous
Fill mat'l	Clay or till - material	80	CY	5.89	500	
Backfill	Spread dumped mat'l - no compaction	80	CY	1.54	100	
Seeding	utility mix hydroseed	120	MSF	56.65	6,800	
Demobilization	estimated at 5%				2,500	
Subtotal					55,800	
Contingency (15%)					8,370	
Subtotal					64,170	
Engineering, Legal, and	Administrative (25%)				16,043	
Total					80,213	
Overall Cost in \$ / CY re	moved				1003	

Est By: J. Fazzolari Date: 1-Apr

Downstream edge of pasture to Pond: Excavate 3.5 feet of sediment throughout pond.

				Unit		
Task Name		Qty	Unit	Cost	Total Cost	Assumptions
Mobilization	estimated at 5%				92100	
Clearing and Grubbing	(30' wide, length of creek)	1	Acre	4730	4,700	
Excavation	Backhoe 1 1/2 yd	7300	CY	1.97	14,400	
Material Staging	Includes dewatering		LS	40000		Temporary pads, gravity draining and possibly bulking
Loading	Backhoe 1 1/2 yd	9500	CY	3.14	29,800	
Transportation	Dump truck <200 mi	950	EA	715	679,300	(assume 30% swell - R022-250, 10 CY dump truck))
Disposal	Landfill Haz Bulk	950	CY	154	146,300	Assume 10% will be hazardous
Disposal	Landfill Non-Haz Bulk	8500	CY	102.85	874,000	Assume 90% will be non-hazardous
Fill mat'l	common earth - material	7300	CY	5.56	40,600	
Backfill	Spread dumped mat'l - no compaction	7300	CY	1.54	11,200	
Seeding	utility mix hydroseed	30	MSF	56.65	1,700	
	Includes stream diversion and continual dewatering/holding/					Assumes one day excavtaor for stream diversion and 30 gpm of air stripper/filtration treatment for pond for
Pond Dewatering	treatment	1	LS	15400	· · · · · · · · · · · · · · · · · · ·	one month
Demobilization	estimated at 5%	<u>.L</u>	<u> </u>		92,100	<u> </u>
Subtotal Contingency (15%) Subtotal					2,041,600 306,240 2,347,840	
Engineering, Legal, and Total				586,960 2,934,800		
Overall Cost in \$ / CY re	emoved			***************************************	402	

Est By: J. Fazzolari Date: 1-Apr

Annual Cost of monitoring stream for water quality and fish tissue for a five year period.

	Qty	Unit	Unit		
	-	- Unit	Cost	Total Cost	Assumptions
22 sampling locations per year or five years	22	EA	120	2,700	Assumed same locationas as in FS
same sampling locations	22	EA	220	4,900	
same sampling locations	22	СҮ	75	1,700	
same sampling locations	22	LS	580	12,800	
same sampling locations	22	CY	105	2,400	includes Cd, Pb, Hg, Ag, Zn
3 sample locations	22	EA	75	1,700	Assumed same locations as in FS
same fish sampling locations	22	EA	120	2,700	
same fish sampling locations	22	EA	45	1,000	
ive sample collection events	5	days	1200		Assume 2 person crew for five days each year, including field parameters
Five sample collection events	2	EA	100		Assume two coolers shipped each year of sampling
dministrative (25%)				36,100 5,415 41,515 10,379 51,894 \$275,794	
3	ame sampling locations ame sampling locations ame sampling locations sample locations ame fish sampling locations ame fish sampling locations ive sample collection events ive sample collection events	ame sampling locations 22 ame sampling locations 22 ame sampling locations 22 ame sampling locations 22 sample locations 22 ame fish sampling locations 22 ame fish sampling locations 22 ive sample collection events 5 ive sample collection events 2	ame sampling locations 22 EA ame sampling locations 22 CY ame sampling locations 22 CY ame sampling locations 22 CY sample locations 22 EA ame fish sampling locations 22 EA ame fish sampling locations 22 EA ame fish sampling locations 22 EA ame fish sampling locations 22 EA ame fish sampling locations 22 EA ame fish sampling locations 22 EA ame fish sample collection events 5 days ive sample collection events 2 EA	ame sampling locations 22 EA 220 ame sampling locations 22 CY 75 ame sampling locations 22 LS 580 ame sampling locations 22 CY 105 sample locations 22 EA 75 ame fish sampling locations 22 EA 120 ame fish sampling locations 22 EA 120 ame fish sampling locations 22 EA 45 ive sample collection events 5 days 1200 ive sample collection events 2 EA 100	ame sampling locations 22 EA 220 4,900 ame sampling locations 22 CY 75 1,700 ame sampling locations 22 LS 580 12,800 ame sampling locations 22 CY 105 2,400 sample locations 22 EA 75 1,700 ame fish sampling locations 22 EA 120 2,700 ame fish sampling locations 22 EA 120 6,000 ive sample collection events 5 days 1200 6,000 ive sample collection events 2 EA 100 200 36,100 5,415 41,515 10,379 51,894

Summary Scenario		1		2	3	4	71	5	6
Volume of Sediment on								1277	
base in channel	1	5,950	•	7,250	5,200	7,225		4,275	3,575
Estimated Cost	\$	2,463,588	\$	2,872,269	\$ 2,163,438	\$ 2,871,838	\$	1,827,781	\$ 1,545,313
Berms	\$	718,319	\$	718,319	\$ 718,319	\$ 718,319	\$	718,319	\$ 718,319
Off-Base portion	\$	80,213	\$	80,213	\$ 80,213	\$ 80,213	\$	80,213	\$ 80,213
pond	\$	2,934,800	\$	2,934,800	\$ 2,934,800	\$ 2,934,800	\$	2,934,800	\$ 2,934,800
	\$	275,794	\$	275,794	\$ 275,794	\$ 275,794	\$	275,794	\$ 275,794
Total	\$	6,472,712	\$	6,881,394	\$ 6,172,562	\$ 6,880,962	\$	5,836,906	\$ 5,554,437
Total Volume Excavated (including berms, off base,									
and pond)		15,030		16,330	14,280	16,305		13,355	12,655
Cost per YD	\$	431	\$	421	\$ 432	\$ 422	\$	437	\$ 439

Assumptions:

- 1. Assume 3.5 feet of excavation depth throughout pond area
- 2. Assume sediment processing consists of draining on temporary staging area.
- 3. Assume 10% of dredged material will be considered hazardous, 90% non-hazardous
- 4. Assume 30% swell of in-place material due to dredging
- 5. Assume staging area will be temporary cover over unexcavated area for draining soil
- 6. Volumes for dredging scenarios1-6 based on memo dated 3/25/02 from G. Florentino
- 7. Volumes for dredging of off-base stream and pond based on FS addendum dated 3/2000
- 8. Assume haul road will be 30' wide cleared and grubbed area beside creek
- 9. Assume all work will be completed under one project