On-Base Groundwater AOCs Monitoring Program Former Griffiss Air Force Base Rome, New York

## MONITORING REPORT (Annual 2009)



Contract No. F41624-03-D-8601 Delivery Order No. 0027

> Revision 0.0 August 2009



Engineering and Environmental Science



FPM Group, Ltd. FPM Engineering Group. P.C. formerly Fanning, Phillips and Molnar

#### **MEMORANDUM**

153 Brooks Road Rome, NY 13441 315/336-7721 FAX 315/336-7722

Date: August 4, 2009

To: See Distribution List

From: FPM Group, Ltd.

Re: Monitoring Report On-Base Groundwater AOCs 2009 Annual Former Griffiss Air Force Base, Rome, New York Contract No. F41624-03-D-8601-0027 Revision 0.0 August 2009

On behalf of the Air Force Real Property Agency (AFRPA), through the Air Force Center for Engineering and the Environment (AFCEE) Performance-Based Contract (PBC) for Long-Term Monitoring (LTM) and Remedial Action-Operations (RA-O), FPM Group, Ltd. is pleased to submit the above-referenced report. This report is being distributed in accordance with the attached distribution list.

This version of the report incorporates data through March 2009.

If you have any questions or require additional information, please feel free to contact Cathy Jerrard, AFRPA Project Engineer, at 315-356-0810 ext. 204 or myself at 315-336-7721 ext. 202, or by e-mail at g.atik@fpm-group.com.

Very truly yours,

Gaby A. Atik, P.E. Director, Regional Operations

Enc.

cc: Michael McDermott, AFRPA-Griffiss (4 hard copies and 2 CDs) Sean Eldredge, BAH (1 CD)

#### **DISTRIBUTION:**

Mr. Douglas Pocze U.S. EPA Region II Federal Facilities Section 290 Broadway, 18<sup>th</sup> Floor New York, NY 10007-1866

(2 hard copies)

Ms. Heather Bishop, Project Manager NYS Department of Environmental Conservation Bureau of Eastern Remedial Action Division of Hazardous Waste Remediation, 11<sup>th</sup> Floor 625 Broadway Albany, NY 12233-7015 (2 hard copies and 1 CD)

Mr. Gregory Rys NYS Department of Health 5665 NYS Route 5 Herkimer, NY 13350

(1 hard copy)



### 2009 ANNUAL MONITORING REPORT

**Prepared for:** 

Building 35 AOC (SS-60) On-Base Groundwater AOC Former Griffiss Air Force Base Rome, NY

through

The Air Force Center for Engineering and the Environment 3300 Sydney Brooks Brooks AFB, TX 78235-5112

**Prepared by:** 

FPM Group, Ltd. 153 Brooks Road Rome, NY 13441

Contract No. F41624-03-D-8601 Delivery Order No. 0027

> Revision 0.0 August 2009

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page ii

This page is intentionally left blank.

**Monitoring Report On-Base Groundwater AOC Program** Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 **Revision 0.0** August 2009 Page iii

#### **TABLE OF CONTENTS**

| 21 | LCI. | ION                                            | PAGE |
|----|------|------------------------------------------------|------|
| 1  |      | INTRODUCTION                                   | 1-1  |
|    | 1.1  | GROUNDWATER MONITORING APPROACH                | 1-2  |
|    | 1.1  | .1 Groundwater Monitoring Background           | 1-2  |
|    | 1.1  |                                                |      |
| 2  |      | ENVIRONMENTAL SETTING                          | 2-1  |
|    | 2.1  | PHYSIOGRAPHY AND TOPOGRAPHY                    | 2-1  |
|    | 2.2  | GEOLOGY                                        | 2-1  |
|    | 2.3  | HYDROLOGY                                      | 2-1  |
|    | 2.4  | CLIMATE                                        |      |
| 3  |      | BUILDING 35 AOC (SS-60)                        |      |
|    | 3.1  | SITE LOCATION AND HISTORY                      |      |
|    | 3.2  | HYDROGEOLOGICAL SETTING                        |      |
|    | 3.3  | SUMMARY OF PREVIOUS INVESTIGATIONS             |      |
|    | 3.4  | BUILDING 35 GROUNDWATER SAMPLING PLAN          |      |
|    | 3.5  | GROUNDWATER SAMPLING RESULTS 2002 THROUGH 2009 |      |
|    | 3.6  | CONCLUSIONS AND MONITORING RECOMMENDATIONS     |      |
| 4  |      | REFERENCES                                     | 4-1  |

#### LIST OF FIGURES

(provided in Appendix A)

| Figure 1-1 | Base Location Map                    |
|------------|--------------------------------------|
| Figure 1-2 | On-Base Groundwater AOC Location Map |
|            |                                      |

Figure 3-1 Building 35 AOC Site Location Map

GEOTION

#### LIST OF TABLES

(provided in Appendix A)

- Building 35 Initial Groundwater Monitoring Sample Analysis Summary Table 3-1
- Table 3-2 Building 35 Site Field Activity Summary
- Table 3-3 Building 35 Groundwater Sampling Results, March 2002 through March 2009 **Sampling Rounds**
- Building 35 Proposed Groundwater Sampling and Analysis Plan Table 3-4

DACE

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page iv

#### LIST OF APPENDICES

#### **APPENDIX**

| On-base Groundwater AOCs Figures and Tables |                                                          |
|---------------------------------------------|----------------------------------------------------------|
| Daily Chemical Quality Control Reports      | (electronic copy on CD only)                             |
| Validated Data                              | (electronic copy on CD only)                             |
| Raw Lab Data                                | (electronic copy on CD only)                             |
|                                             | Daily Chemical Quality Control Reports<br>Validated Data |

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page v

#### LIST OF ACRONYMS AND ABBREVIATIONS

| AFB              | Air Force Base                                                          |
|------------------|-------------------------------------------------------------------------|
| AFCEE            | Air Force Center for Engineering and the Environmental                  |
| AOC              | Area of Concern                                                         |
| bgs              | below ground surface                                                    |
| COC              | Contaminant of Concern                                                  |
| CQCR             | Chemical Quality Control Report                                         |
| DCE              | dichloroethylene/dichloroethene                                         |
| DO               | Delivery Order                                                          |
| E&E              | Ecology and Environment, Inc.                                           |
| FPM              | FPM Group, Ltd.                                                         |
| ft               | feet                                                                    |
| HRC <sup>®</sup> | Hydrogen Release Compound                                               |
| HWSA             | Hazardous Waste Storage Area                                            |
| LAW              | LAW Engineering and Environmental Services, Inc.                        |
| LTM              | long term monitoring                                                    |
| LUC              | land use control                                                        |
| MSL              | mean sea level                                                          |
| NYSBC            | New York State Barge Canal                                              |
| NYSDEC           | New York State Department of Environmental Conservation                 |
| ОНМ              | OHM Remediation Services Corporation                                    |
| PCB              | polychlorinated biphenyl                                                |
| PCE              | tetrachloroethylene/perchloroethylene/tetrachloroethene/perchloroethene |
| POC              | Point of compliance                                                     |
| QAPP             | Quality Assurance Project Plan                                          |
| RCRA             | Resource Conservation and Recovery Act of 1976                          |
| RI               | Remedial Investigation                                                  |

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page vi

#### LIST OF ACRONYMS AND ABBREVIATIONS (cont'd.)

SI Supplemental Investigation **SVOC** semi-volatile organic compound TCE trichloroethylene/trichloroethene total organic carbon TOC USEPA United States Environmental Protection Agency VC Vinyl Chloride VOC volatile organic compound μg/L micrograms per liter

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 1-1

#### **1 INTRODUCTION**

FPM Group, Ltd. (FPM), under contract with the Air Force Center for Engineering and the Environment (AFCEE), is conducting a groundwater monitoring program at several sites associated with the On-Base Groundwater Contamination Area of Concern (AOC) at the former Griffiss Air Force Base (AFB), New York (see Figure 1-1 in Appendix A). The monitoring program will be conducted in accordance with provisions of the Basic Contract # F41624-03-D-8601 and Delivery Order (DO) #0027.

The purpose of the program is to monitor the presence of contaminants of concern (COCs), assess the potential for migration of the COCs, identify statistically valid groundwater trends, and establish an early warning, monitoring well system for assuring compliance with potential COC receptors.

Data evaluation and report preparation for the On-Base Groundwater AOC groundwater monitoring program includes an annual report. The monitoring program will also be reviewed periodically to revise sampling location and/or sampling frequencies for optimal functioning. This annual groundwater monitoring report includes collection, analysis, and reporting of COCs for the following On-Base Groundwater Area of Concern:

• SS-60: Building 35 AOC

Closure was recommended for the following site in the April 2008 Annual On-base Groundwater AOCs Monitoring Report (FPM, April 2009) and no samples were collected after September 2008:

• ST-06: Building 101 AOC

Closure was recommended for the following site in the August 2007 Semi-annual On-base Groundwater AOCs Monitoring Report (FPM, August 2007) and no samples were collected after March 2007:

• FT-30: Fire Protection Training Area

As part of the performance based contract, it should be noted that the following sites were previously sampled under long-term monitoring (LTM), and No Further Sampling was proposed in November 2004 Groundwater Monitoring Report (FPM, November 2004) and sampling has ended.

- SS-23: Building 20 AOC
- DP-12: Building 301 AOC
- SS-17: Lot 69 AOC

The SD-52: Nosedocks/ Apron 2 Chlorinated Plume site is being sampled under another project.

The location of the On-Base Groundwater AOC can be viewed in Figure 1-2 in Appendix A. Groundwater samples were collected from the Building 35 AOC and analyzed for the COCs as identified during previous investigations. Both existing data and the information from new sampling are utilized for overall performance evaluation.

Reference is made to the AFCEE Quality Assurance Project Plan (QAPP), Version 3.1 (AFCEE, August 2001) or later, with project-specific variances. The QAPP together with the Field Sampling Plan form the Sampling and Analysis Plan.

#### 1.1 GROUNDWATER MONITORING APPROACH

#### 1.1.1 Groundwater Monitoring Background

To illustrate how this groundwater monitoring program will operate, the following highlights the overall objectives, components, and constraints of the groundwater monitoring program.

The objectives of groundwater monitoring are:

- 1. To continue refining the conceptual site model for groundwater flow so that the predictions regarding the fate and transport of COCs are accurate;
- 2. To provide data regarding groundwater and surface water elevations needed to evaluate groundwater flow and surface water/groundwater interactions which control the fate and transport of COCs;
- 3. To establish an early warning monitoring system for the protection of potential receptors prior to completion of exposure pathways;
- 4. To evaluate COC degradation due to remedial action or natural attenuation processes; and
- 5. To collect data that support attainment of regulatory requirements and site closure.

Typical components of a groundwater monitoring system include:

- 1. One or more upgradient well(s) representative of background conditions;
- 2. Monitoring wells that track the COC migration or degradation trend; and
- 3. Point-of-compliance (POC) well(s) located downgradient of the plume or contaminated area in unimpacted groundwater (downgradient background).

Constraints associated with a groundwater monitoring system include:

- 1. All monitoring wells must be screened in the same hydrogeologic unit as the COC plume or known/probable groundwater pathway from a potential source;
- 2. Downgradient monitoring wells must be located to detect unexpected variations in groundwater quality as efficiently as possible (i.e., with respect to groundwater migration rates and downgradient flow direction);

- 3. POC wells must be located upgradient from the potential receptors to provide sufficient early warning; and
- 4. Regulatory requirements must be taken into account.

Given the above objectives and constraints, the design of a monitoring system considers the following tasks:

- 1. Selecting water-level observation wells and water quality monitoring wells from existing monitoring wells and piezometers, or selecting locations for new wells, depending on the evaluation of existing data (i.e., well logs, water-level measurements, proximity to natural flow boundaries, trends and uncertainties in the existing data) and the specific intended and distinct role of that monitoring point;
- 2. Providing a statistical evaluation of water-level elevation data for groundwater flow direction, existing COC concentrations, and groundwater chemistry to predict long-term trends;
- 3. Identifying performance evaluation criteria (e.g., statistical tests), including appropriate analysis methods for evaluating data variations or closure attainment;
- 4. Identifying water quality sampling frequency at each monitoring point both for
  - a. understanding the trends of COCs and/or their indicator analytes, and
  - b. minimizing the costs and maximizing the benefits of the program;
- 5. Identify physical and chemical parameters (e.g., transport and attenuation properties) for the COCs; and
- 6. Periodically assessing the groundwater monitoring well network for possible decommissioning of monitoring wells from the program.

#### 1.1.2 Purpose of Groundwater Monitoring Program

The groundwater monitoring plan has identified sampling locations that will best detect groundwater COCs that are known to exist at the Building 35 AOC, and track their transport over time to support a decision for continued monitoring, remedial measures, or site closure. The monitoring program will use historic data and new information from annual sampling rounds at specified existing monitoring wells.

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 1-4

This page is intentionally left blank.

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 2-1

#### 2 ENVIRONMENTAL SETTING

#### 2.1 PHYSIOGRAPHY AND TOPOGRAPHY

The former Griffiss AFB is located in the city of Rome in Oneida County, New York (refer to Figure 1-1 in Appendix A). The former Base lies within the Mohawk Valley between the Appalachian plateau and the Adirondack Mountains. A rolling plateau northeast of the former Base reaches an elevation of 1300 feet (ft) above mean sea level (MSL). The New York State Barge Canal (NYSBC) and the Mohawk River valley south of the former Base lie below 430 ft above MSL. The topography across the former Base is relatively flat with elevations ranging from 435 ft above MSL in the southwest portion to 595 ft above MSL in the northwest portion of the former Base.

#### 2.2 GEOLOGY

Unconsolidated sediments at the former Griffiss AFB consist primarily of glacial till with minor quantities of clay and sand and significant quantities of silt and gravel. The thickness of these sediments range from 0 ft in the northeast portion to more than 130 ft in the southern portion of the former Base. The average thickness of the unconsolidated sediments is 25 to 50 ft in the central portion and 100 to 130 ft in the south and southwest portions of the former Base. The bedrock beneath the former AFB generally dips from the northeast to the southwest and consists of Utica Shale, a gray and black carbonaceous unit with a high/medium organic content (LAW Engineering and Environmental Services, Inc. [LAW], December 1996).

#### 2.3 HYDROLOGY

The shallow water table aquifer lies within the unconsolidated sediments, where depth to groundwater ranged from just below ground surface (bgs) to 59 ft bgs during the June 2003 synoptic Basewide water-level measurement of wells. Groundwater across the former Base generally flows from the topographic high in the northeast to the Mohawk River and the NYSBC to the south. Several creeks, drainage culverts, and sewers (mostly acting as drains for shallow groundwater), intercept surface water runoff.

A comprehensive description of regional and local geology, hydrogeology, lithology, and hydrology for the former Griffiss AFB was given in Section 4 of the Baseline Study (FPM, July 2000), in the Remedial Investigation (RI) (LAW, December 1996), and in the Supplemental Investigation (SI) prepared by Ecology and Environment, Inc. [E&E] (E&E, July 1998). A detailed site description and the hydrology for the Building 35 AOC are presented in the site-specific section.

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 2-2

#### 2.4 CLIMATE

The former Griffiss AFB experiences a continental climate characterized by warm, humid, moderately wet summers and cold winters with moderately heavy snowfalls. The mean annual precipitation is 45.25 inches, which includes the mean annual snowfall of 97.7 inches. The annual evapotranspiration rate is 23 inches. The average temperature during the winter season is 20 degrees Fahrenheit; temperatures during the spring, summer, and fall vary from 31 to 81 degrees Fahrenheit. The prevailing winds are from the southwest, with an average wind speed of 5 knots.

The former Griffiss AFB is located in a region prone to acid precipitation; the annual average pH of precipitation recorded for 2007 at the three closest stations ranged from 4.54 to 4.63. Fluctuations in pH have an inverse correlation to precipitation, such that lower pH levels correlate with higher amounts of precipitation (NOAA, National Oceanic and Atmospheric Administration, Annual 2007).

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 3-1

#### 3 BUILDING 35 AOC (SS-60)

#### 3.1 SITE LOCATION AND HISTORY

Building 35 was located in the southeast-central section of the base (Figure 1-2 in Appendix A), near an area that was used for outside storage of drums and scrap material during the 1940s. An unknown quantity of drums and transformers were also stored in this area during the late 1960s and 1970s. Site closure was a requirement under the Building 35 Resource Conservation and Recovery Act (RCRA) Hazardous Waste Storage permit and the closure activities were performed in the late 1990s (OHM Remediation Services Corporation [OHM], July 1997).

The former Hazardous Waste Storage Area (HWSA) was located in the southwest corner of Building 35 and was approximately 30 by 50 feet in area. Although a hazardous waste inventory is not available for the area, the area was assumed to contain waste associated with aircraft maintenance activities such as corrosion control painting, degreasing, and routine engine, wheel and tire services. There is no record of any spills at the HWSA.

The former polychlorinated biphenyl (PCB) storage area was located in the northwest corner of Building 35 and occupied an approximate area of 37 by 46 feet. Inspection reports indicate that PCB items were stored in the area since at least 1985. Also, a spill in the PCB area was recorded on October 25, 1991, when approximately one quart of transformer oil leaked from a damaged terminal onto part of a wooden pallet and a 2-inch diameter spot on the concrete floor. The oil was tested and was reported below 5 ppm PCBs. Base records also report a small PCB spill on March 16, 1995, which reportedly happened when a PCB-containing transformer was moved from the containment area within Building 35. The spill area, approximately 20 square feet, was properly remediated.

#### 3.2 HYDROGEOLOGICAL SETTING

Building 35, approximately 1 acre in size, is currently a parking lot for Birnie Bus Service, Inc. The site has a topographic relief of 3 to 4 ft. The soils are predominantly composed of silty, fine to coarse sands with gravel.

Surface water drainage from the site enters a shallow drainage swale, which leads to a drainage ditch informally referred to as Rainbow Creek, and ultimately Six Mile Creek.

During the Building 35 RCRA closure activities, groundwater elevations were recorded in May and July 1998. The depth to groundwater was approximately 6.9 to 7.2 ft bgs (approximately 456.4 –456.1 ft MSL). Groundwater contours created during the Building 35 closure report show the groundwater flow direction to be northeast (OHM, April 2000). This groundwater flow direction was confirmed during the March 2002, March 2003, and June 2004 sampling rounds.

The latest groundwater contours for the June 2004 sampling round are provided on Figure 3-1 in Appendix A.

#### 3.3 SUMMARY OF PREVIOUS INVESTIGATIONS

Closure activities for the HWSA and PCB areas in association with RCRA New York State Department of Environmental Conservation (NYSDEC) Permit #6-3-13-00063/00020-0 were conducted by OHM in 1996 in accordance with Closure Plans approved by the NYSDEC in 1995. The Closure Plans were designed to ensure that the Building 35 storage areas would require no further maintenance after clean closure, and threats to human health and the environment would be minimized or eliminated. The closure activities included the collection of pre-closure wipe samples from each storage area and surface soil samples (0 to 1 ft bgs) from the outside perimeter of the building. Twelve surface soil samples were analyzed for PCBs, and all twelve samples indicated elevated concentrations of PCBs above the recommended action level of 1 ppm (OHM, July 1997).

An extensive soil investigation was conducted from January to March 1997 to delineate the extent of contaminated soil in the vicinity of Building 35 above cleanup levels, which were established at 1 ppm in surface soil and 10 ppm in subsurface soil to meet USEPA and NYSDEC guidelines. A total of 140 Geoprobe<sup>®</sup> borings were installed in both the surface and subsurface soils surrounding Building 35, including three borings conducted underneath the building floor. Soil samples were analyzed for total PCBs in the field using a gas chromatograph with an electron capture detector. In addition, eight groundwater samples were collected during the Geoprobe<sup>®</sup> activities, and were analyzed for total PCBs, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), pesticides, and metals (OHM, July 1997).

Results indicated widespread PCB contamination throughout the subsurface soils and also indicated possible groundwater contamination. Soil detections for PCBs ranged from non-detectable levels to 3,079 ppm. Several hot spots were identified during the investigation, with PCB concentrations above regulatory action levels down to the 6 to 7 ft depth interval. No correlation was found between PCB concentration and sample depth, nor between PCB concentration and distance from the building, indicating that the contamination may have been due to numerous sources, or the result of using fill at the site which potentially contained PCBs (OHM, July 1997).

Of the eight groundwater samples collected, seven indicated PCB concentrations above the PCB action level (0.1 micrograms per liter [ $\mu$ g/L]). The highest total PCB concentration (210  $\mu$ g/L) was reported from sample B035-GW05, located near the southeast corner of Building 35. No VOCs or SVOCs were detected above regulatory action levels, but two pesticides, dieldrin and endrin, and several metals were detected at concentrations above action levels. Two chlorinated VOCs were also reported above detection limits at B035-GW07, total 1,2-dichloroethylene (DCE) at 5  $\mu$ g/L, and vinyl chloride at 1  $\mu$ g/L. Results indicated that previous waste storage

Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 3-3

activities had potentially impacted the local groundwater conditions, but were inconclusive because the Geoprobe<sup>®</sup> samples collected were characterized with high suspended solids content, which is associated with higher concentrations of pesticides and metals due to the adsorption of these contaminants to fine particulates (OHM, July 1997).

A remedial action was conducted in 1997 to demolish Building 35, excavate, transport, and dispose of PCB-contaminated soil and debris, and backfill the area with clean soil after analysis of confirmation samples. In total, approximately 24,414 tons of PCB-contaminated soil/concrete were removed. An estimated 20,078 tons were disposed of off-site as non-hazardous soil/concrete, and 4,336 tons as hazardous soil (IT, May 1999).

In Spring 1998, OHM installed four groundwater monitoring wells within the Building 35 area to characterize groundwater conditions and to determine the local groundwater flow direction. B035MW-4 is located near the intersection of two storm drains within the site boundaries – one 66-inch storm drain running from the northwest to the southeast near the southwest corner of Building 36 and one 30-inch drain running perpendicular from the southwest to the 66-inch drain – to assess any impacts the storm drains might have on groundwater flow. B035MW-3 is located near the highest concentration of PCBs detected in the soil samples, which was the same location with the highest PCB concentration in groundwater samples collected with the Geoprobe<sup>®</sup>. B035MW-1 and -2 were positioned to monitor areas southwest and north of Building 35, respectively. The total depth of each well is approximately 14 ft bgs.

Two groundwater monitoring rounds were conducted in May and July 1998, when samples were submitted for PCBs, VOCs, SVOCs, pesticides, and metals analyses. Results indicated two VOCs – vinyl chloride and total 1,2-DCE (including both the cis and trans isomers) – at levels above NYS Class GA Groundwater Standards in B035MW-4; total 1,2-DCE only was reported above the NYS Groundwater Standard in B035MW-3 (8  $\mu$ g/L). Concentrations were reported up to 6  $\mu$ g/L and 42  $\mu$ g/L for vinyl chloride and 1,2-DCE, respectively, both in B035MW-4. No PCBs were reported above the detection limit during either sampling round (1  $\mu$ g/L [2  $\mu$ g/L for arochlor-1221 only] for May 1998 and 0.06  $\mu$ g/L for July 1998) (OHM, April 2000).

In addition, during the two groundwater sampling rounds, several metals were reported at levels above NYS Groundwater Standards, including iron, manganese, sodium, lead, antimony, copper, zinc, chromium, arsenic, and thallium. Samples were collected using a disposable bailer and were submitted unfiltered for total metals analysis.

In accordance with the closure requirements under the RCRA Permit for Building 35, threats to human health and the environment have been minimized or eliminated (i.e., source areas have been removed). The Air Force plans to monitor, under the On-Base Groundwater Contamination AOC, residual groundwater contamination for the COCs on an annual basis with a joint review by NYSDEC, USEPA, and the AFRPA after 5 years; this intention was approved by NYSDEC

in a letter dated December 8, 1999 (OHM, April 2000). The site will be included in the next 5-year review which is scheduled for 2010.

#### 3.4 BUILDING 35 GROUNDWATER SAMPLING PLAN

The original sample analysis summary, which has since been updated / modified, is provided in Table 3-1 in Appendix A. The site features and existing monitoring wells are illustrated in Figure 3-1 in Appendix A.

#### 3.5 GROUNDWATER SAMPLING RESULTS 2002 THROUGH 2009

FPM performed annual groundwater sampling in March 2002, March 2003, June 2004, March 2005, March 2006, April 2007, April 2008, and March 2009. Additional sampling was performed in December 2008 and February 2009. This additional sampling was performed to assess groundwater conditions before and after the Newman's Zone<sup>®</sup> injection, which was performed on December 10<sup>th</sup>, 2008. In March 2002, the groundwater at the Building 35 site was monitored for VOCs (SW8260 AFCEE QAPP 3.1 List), SVOCs (SW8270 AFCEE QAPP 3.1 List), and total and dissolved metals (SW6010 AFCEE QAPP 3.1 List plus lead and mercury). Total metals analysis was performed on groundwater that contained suspended solids and dissolved metals (SW6010 afcee QAPP 3.1 List plus lead and mercury). Total metals analyses were performed on the groundwater after filtration removed the suspended solids. The recommendations in the Revised On-Base Groundwater Report (FPM, November 2004) were implemented during the March 2005 sampling round, and included only one well (B035MW-04) which was sampled for a short list of VOCs only.

The field activities summary table is provided in Table 3-2 in Appendix A. The daily Chemical Quality Control Reports (CQCRs) are attached in Appendix B. The validated lab data are attached in Appendix C and the raw lab data are attached in Appendix D. The analytical results for compounds detected in the groundwater (GW) at the Building 35 AOC are shown in Table 3-3 in Appendix A. Please note that no SVOCs were reported above the detection limits.

In order to increase the readability of the report, all discussion of past sampling rounds has been eliminated. Detailed descriptions of past sampling rounds can be found in the Annual 2008 Monitoring Report (FPM, April 2009). The discussion of site activities has been preserved to inform the reader of pertinent information.

In December 2008, baseline sampling was performed to assess the groundwater conditions before the planned Newman Zone<sup>®</sup> injection.

#### December 2008:

Monitoring well B035MW-4 was the only well sampled in December 2008 prior to the Newman Zone<sup>®</sup> injection. Analyses were performed for chlorinated ethenes only for VOCs, and alkalinity, chloride, nitrate, sulfate, and total organic carbon (TOC) for groundwater chemistry.

• VOC exceedance: 18.4 µg/L for cis-1,2-DCE in monitoring well B035MW-4.

The VOC results were similar to those reported in previous sampling rounds: one exceedance for cis-1,2-DCE at 18.4  $\mu$ g/L and detections of perchloroethylene (PCE), trichloroethylene (TCE), trans-1,2-DCE, and vinyl chloride (VC) which were all below their respective NYSDEC Class GA Groundwater Standards (Table 3-3 in Appendix A). Groundwater chemistry analyses have not been performed before, therefore no comparison can be made.

The Newman Zone<sup>®</sup> injection was performed on December 10<sup>th</sup>, 2008. A weight of 1,000 pounds of Newman Zone<sup>®</sup> (a proprietary vegetable oil emulsion with lactate) was injected on December 10<sup>th</sup>, 2008. This Newman Zone<sup>®</sup> was injected in a 5% solution which resulted in a total injection volume of 2,360 gallons. Afterwards, a backflush was performed with 250 gallons of drinking water to increase the area of influence.

Injection performance monitoring was performed in February 2009 to evaluate the effectiveness of the Newman Zone<sup>®</sup> injection.

#### February 2009:

Monitoring well B035MW-4 was the only well sampled in February 2009. Analyses were performed for chlorinated ethenes only for VOCs, and alkalinity, chloride, nitrate, sulfate, and TOC for groundwater chemistry.

• VOC exceedance: 16.4 µg/L for cis-1,2-DCE in monitoring well B035MW-4.

The VOC results were similar to those reported in previous sampling rounds: one exceedance for cis-1,2-DCE at 16.4  $\mu$ g/L and detections of PCE, TCE, trans-1,2-DCE, and VC which were all below their respective NYSDEC Class GA Groundwater Standards (Table 3-3 in Appendix A). Groundwater chemistry results were different from the past sampling round; chloride increased, sulfate decreased and TOC increased from December 2008 to February 2009.

#### March 2009:

Monitoring well B035MW-4 was the only well sampled in the March 2009 sampling round. Analyses were performed for chlorinated ethenes only for VOCs, and alkalinity, chloride, nitrate, sulfate, and TOC for groundwater chemistry.

The VOC results were similar to those reported in previous sampling rounds: one exceedance for cis-1,2-DCE at 17.4  $\mu$ g/L and detections of PCE, TCE, trans-1,2-DCE, and VC which were all below their respective NYSDEC Class GA Groundwater Standards (Table 3-3 in Appendix A). Groundwater chemistry results were similar to the February 2009 results.

• VOC exceedance:  $17.4 \,\mu$ g/L for cis-1,2-DCE in monitoring well B035MW-4.

The December 2008 sampling round was performed to assess the groundwater conditions before the Newman Zone<sup>®</sup> injection. The February 2009 sampling round was performed to assess the groundwater conditions after the Newman Zone<sup>®</sup> injection. The Newman Zone<sup>®</sup> injection was recommended in the 2008 Annual Monitoring Report (FPM, April 2009). Newman Zone<sup>®</sup> is a proprietary emulsion of soybean oil in water with surfactants, which is injected in the subsurface as a carbon source to enhance biological breakdown of chlorinated hydrocarbons.

The VOC results for the February 2009 and March 2009 sampling rounds (after injection) are similar to the results from the April 2008 and December 2008 sampling rounds (before injection); one exceedance is reported for cis-1,2-DCE (between 12.0 and 18.4  $\mu$ g/L) and detections below NYS Class GA Groundwater Standards are reported for PCE, TCE, trans-1,2-DCE, and VC.

In the groundwater chemistry results, some changes for chloride, sulfate and TOC are reported between the samples collected before the Newman Zone<sup>®</sup> injection and after: chloride results sharply increased after the injection sulfate decreased, and TOC increased. The increase in chloride detections is likely the result of the injection, as drinking water was used to dilute the Newman Zone<sup>®</sup> material to a 5-percent solution and drinking water is treated with chlorine. The sulfate decrease is the result of the Newman Zone<sup>®</sup> injection. The Newman Zone<sup>®</sup> material is a soybean oil emulsion and is injected as a carbon source to enhance natural attenuation. According to the Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents (AFCEE, August 2004), highly reducing environments due to high levels of carbon (Type 1 Environment) typically are characterized by low concentrations of dissolved oxygen, nitrate and sulfate. The sulfate level decreased from 13 mg/L before the injection to 1.4 mg/L after. The TOC increase is also a direct result of the Newman Zone<sup>®</sup> injection. This results in a carbon source injected to enhance natural attenuation. This results in a carbon increase in the injection zone which then results in higher TOC levels in the samples after injection. The TOC level increased from 2.0 mg/L before injection to 9.2 mg/L after.

#### 3.6 CONCLUSIONS AND MONITORING RECOMMENDATIONS

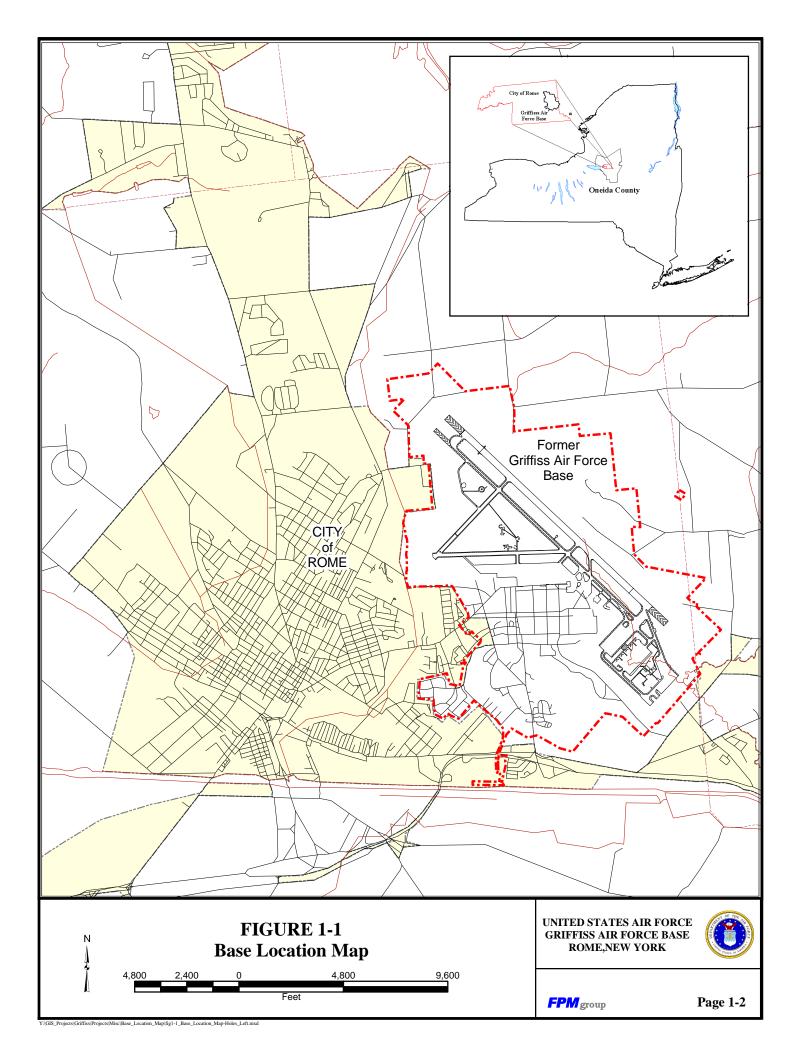
At the time of sampling (three months after injection, the Newman Zone<sup>®</sup> injection has not shown a significant effect; little or no change was reported for the chlorinated solvent concentrations at the Building 35 AOC site. A small influence from the Newman Zone<sup>®</sup> injection was reported for groundwater chemistry, but the ultimate goal of all VOC concentrations below NYSDEC Class GA Groundwater Standards has not yet been achieved.

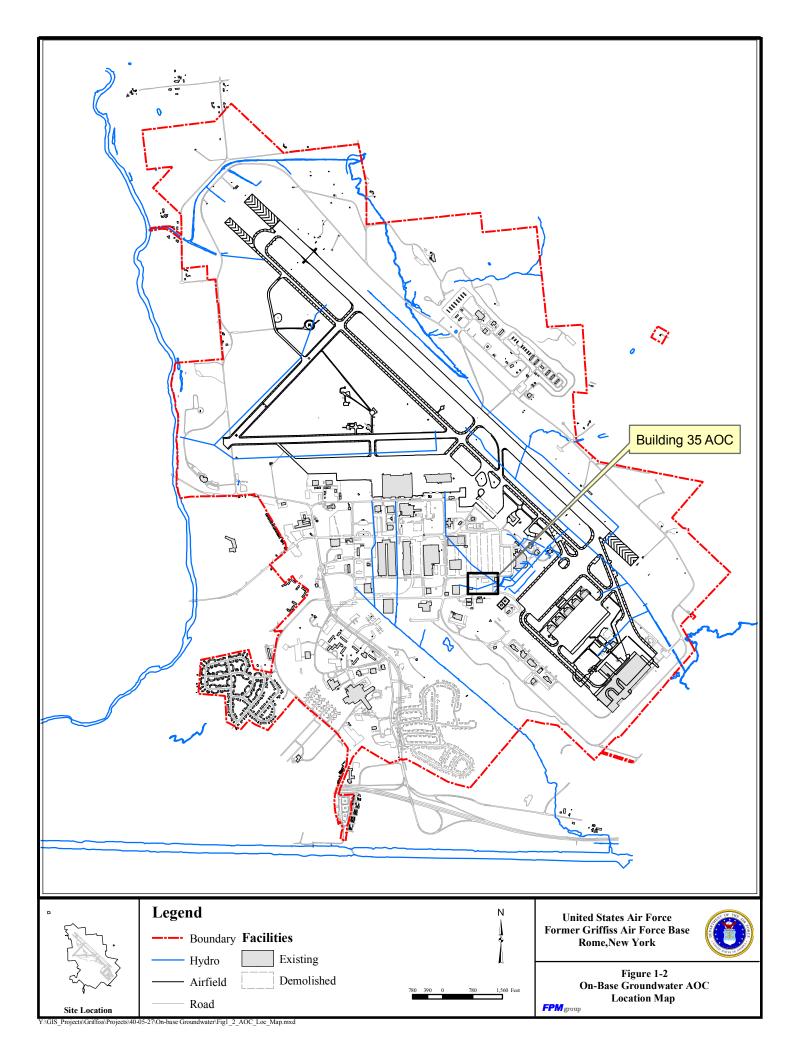
Enhanced bioremediation is a process that typically requires several years to see its full effect. No additional action is recommended at this time. Monitoring will continue on an annual basis at monitoring well B035MW-4. Table 3-4 in Appendix A shows the historical and proposed groundwater sampling and analysis plan.

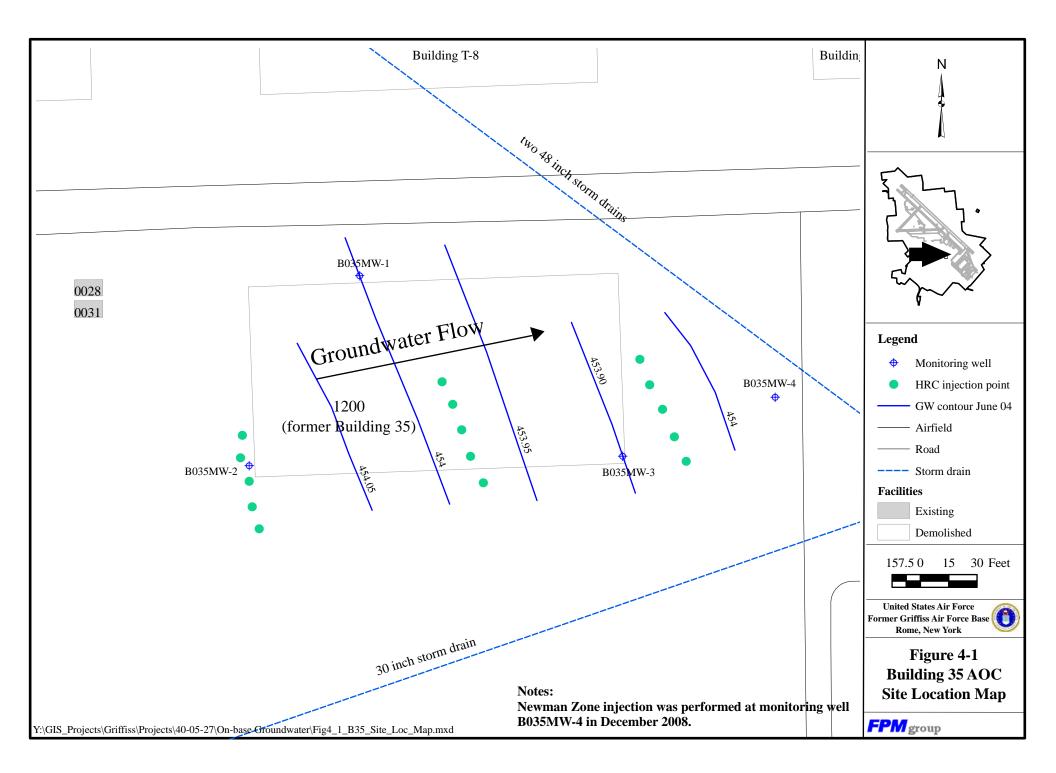
Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 4-1

#### **4 REFERENCES**

- Air Force Center for Environmental Excellence, Quality Assurance Project Plan, Version 3.1, August 2001.
- Air Force Center for Environmental Excellence, Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Final, August 2004.
- Ecology and Environment, Inc., Final Report for Supplemental Investigation of Areas of Concern, Former Griffiss Air Force Base, July 1998 (G-103A).
- FPM Group Ltd., Draft Monitoring Report, On-Base Groundwater AOCs, Revision 1.0, November 2004 (G-353).
- FPM Group Ltd., Draft April 2008 Annual On-base Groundwater AOCs Monitoring Report, Rev. 0.0, April 2009.
- FPM Group, Ltd., Draft Report, AOC Long-Term Monitoring Baseline Study, Griffiss Air Force Base, Revision 1.0, July 2000 (G-208).
- FPM Group Ltd., Monitoring Report (Spring 2007), On-Base Groundwater AOCs, Revision 0.0, August 2007 (G-353).
- IT Corporation, Final Closure Report, Interim Remedial Action, Building 35 Area, former Griffiss Air Force Base, Rome, New York, May 1999.
- LAW Engineering and Environmental Services, Inc., Draft Final Primary Report, Remedial Investigation at Griffiss Air Force Base, December 1996 (G-018).
- NOAA National Oceanic and Atmospheric Administration. National Atmospheric Deposition Program/National Trends Network, 2007 Annual & Seasonal Data Summary for site NY52, NY29, NY20. Printed 11/13/2008
- OHM Remediation Services Corporation, Remedial Investigation Results and Action Plan for the Building 35 and 36 Closure Area at the former Griffiss Air Force Base, Rome, New York, July 1997.
- OHM Remediation Services Corporation, Final Building 35 Closure Report, former Griffiss Air Force Base, Rome, New York, April 2000.


Monitoring Report On-Base Groundwater AOC Program Former Griffiss AFB Contract # F41624-03-D-8601/Delivery Order #0027 Revision 0.0 August 2009 Page 4-2


This page is intentionally left blank.


Appendix A Groundwater Monitoring Sampling Results: Figures and Tables This page is intentionally left blank.

Figures

This page is intentionally left blank.







Tables

This page is intentionally left blank.

| Sampling<br>Locations                        | Screen<br>Interval<br>Depth<br>(ft MSL)                          | Sampling Rationale                                                                       | Target<br>Analytes/EPA<br>Method<br>Numbers                                                                                                                                  | # of<br>Samples <sup>1</sup> | Sampling<br>Frequency | Evaluation Criteria                                                                                                                                                                         |
|----------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B035MW-1<br>B035MW-2<br>B035MW-3<br>B035MW-4 | 449.2 - 459.2<br>449.2 - 459.2<br>449.0 - 459.0<br>449.3 - 459.3 | Upgradient<br>Crossgradient<br>Potential Source Area<br>Downgradient of potential source | VOCs – (AFCEE<br>QAPP 3.1 List) /<br>SW8260.<br>SVOCs –<br>(AFCEE QAPP<br>3.1 List) /<br>SW8270.<br>Total and<br>Dissolved Metals<br>– (AFCEE QAPP<br>3.1 List) /<br>SW6010. |                              | Annually              | If downgradient wells do<br>not exhibit exceedances of<br>NYS Groundwater<br>Standards for two<br>successive monitoring<br>events, evaluate<br>monitoring frequency and<br>number of wells. |

 Table 3-1

 Building 35 Initial Groundwater Monitoring Sample Analysis Summary

Notes:

<sup>1</sup> Please refer to the FSP for details concerning the number of QA/QC samples and their locations. At least one MS/MSD and two field duplicates were collected per SDG; one equipment blank per day and one ambient blank per day; one trip blank per cooler containing VOCs

| Autority Dunning 55 Site Field Activity Summary                       |                                                                                                                                                                                                                                                                                                              |                                                                    |  |  |  |  |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Activity                                                              | Rationale                                                                                                                                                                                                                                                                                                    | Analytical<br>Parameters                                           |  |  |  |  |  |  |
| Confirmation of<br>groundwater flow<br>direction.                     | The groundwater flow direction and elevation was<br>confirmed using the existing and newly installed<br>monitoring wells.                                                                                                                                                                                    | <u>VOCs</u> – (Specified<br>COC Short List) /<br>SW8260            |  |  |  |  |  |  |
| Sampling of four on-site monitoring wells.                            | Annual sampling was started in March 2002 for VOCs,<br>SVOCs and total and dissolved metals. SVOC and<br>metals sampling was discontinued after July 2004.<br>Three sampling locations (B035MW-01, -02, and -03)<br>were discontinued also due to the lack of<br>detections/exceedances related to the site. | <u>COCs</u> - PCE, TCE,<br>cis-1,2-DCE, trans-<br>1,2-DCE, and VC. |  |  |  |  |  |  |
| HRC <sup>®</sup> injection at the Building 35 AOC.                    | HRC <sup>®</sup> was injected in December 2005 at the Building 35 AOC in a 50-ft wall with 5 injection points. HRC <sup>®</sup> was injected from 20 to 10 ft bgs at a rate of 8 pounds of product per foot.                                                                                                 |                                                                    |  |  |  |  |  |  |
| 2 <sup>nd</sup> HRC <sup>®</sup> injection at the<br>Building 35 AOC. | HRC <sup>®</sup> was injected in August 2006 at the Building 35<br>AOC in two 50-ft walls with 5 injection points. HRC <sup>®</sup><br>was injected from 20 to 10 ft bgs at a rate of 8 pounds<br>of product per foot.                                                                                       |                                                                    |  |  |  |  |  |  |
| Newman Zone <sup>®</sup> injection at the Building 35 AOC.            | 1,000 pounds of Newman Zone <sup>®</sup> (a proprietary vegetable oil emulsion with lactate) was injected on 10 December 2008 in monitoring well B035MW-4 at the Building 35 AOC.                                                                                                                            |                                                                    |  |  |  |  |  |  |

Table 3-2Building 35 Site Field Activity Summary

| Sample Location          | NYSDEC    | B035MW-1    |           |             |           |             |           |
|--------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| Sample ID                | GW        | B035M0115AA |           | B035M0115BA |           | B035M0115CA |           |
| Date of Collection       | Standards | 3/12/02     |           | 3/11/03     |           | 6/9/04      |           |
| Sample Depth (ft BTOIC)  | (µg/L)    | 15          |           | 15          |           | 15          |           |
| VOCs (µg/L)              |           |             |           |             |           |             |           |
| acetone                  | 5         |             | U         | U           |           | U           |           |
| trichloroethylene (TCE)  | 5         | 0           | .48 F     | 0.48 F      |           | 0.82 F      |           |
| cis-1,2-dichloroethylene | 5         |             | 2.2       | 2.4         |           | 3.5         |           |
| vinyl chloride           | 2         |             | U         | 0           | ).33 F    | 0.33 F      |           |
| SVOCs (µg/L)             |           |             |           |             |           |             |           |
| No SVOCs were detected.  |           |             |           |             |           |             |           |
| Metals (µg/L)            |           | Total       | Dissolved | Total       | Dissolved | Total       | Dissolved |
| aluminum                 |           | 233         | U         | 43.0 F      | U         | U           | U         |
| arsenic                  | 25        | U           | 5.4 F     | U           | U         | U           | U         |
| barium                   | 1,000     | 47.6        | 35.8      | 33.7 F      | 33.3 F    | 78.0        | 73.2      |
| calcium                  |           | 122,000     | 95,600    | 90,600      | 94,400 B  | 188,000     | 178,000   |
| chromium                 | 50        | U           | U         | U           | 1.1 F     | U           | U         |
| copper                   | 200       | U           | 4.5 F     | U           | 1.3 F     | 3.6 F       | U         |
| iron**                   | 300       | 451         | U         | 42.3 F      | U         | 65.0 F      | U         |
| magnesium                |           | 10,400      | 9,660     | 8,270       | 8,830 B   | 19,400      | 19,000    |
| manganese**              | 300       | 2,200       | U         | 1800 B      | 1,670     | 3,370       | 3,220     |
| nickel                   | 100       | U           | U         | U           | U         | 1.8 F       | U         |
| potassium                |           | 2,120       | 1,940     | 1900        | 1,940 B   | 2,630 F     | 2,880 F   |
| selenium                 | 10        | U           | 29.4      | U           | U         | U           | U         |
| sodium                   | 20,000    | 34,100      | 31,700    | 29,000      | 30,700    | 112,000     | 111,000   |
| zinc                     |           | U           | U         | U           | 4.2 F     | 7.5 F       | U         |

#### Table 3-3 Building 35 Groundwater Sampling Results March 2002 through March 2009 Sampling Rounds

Notes:

BTOIC - below top of inner casing.

B - The analyte was also reported in a blank associated with this sample.

F - Analyte was positively identified but the associated numerical value is below the RL.

M - Matrix effect was present.

U - Analyte analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

-- Indicates no NYS GA Groundwater Standard.

\*\* - The NYS Groundwater Standard of 500  $\mu g/L$  applies to the sum of iron and manganese.

- Indicates an exceedance of the NYS Groundwater Standard.

| Sample Location          | NYSDEC    | B035MW-2    |           |             |           |             |           |
|--------------------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| Sample ID                | GW        | B035M0215AA |           | B035M0215BA |           | B035M0215CA |           |
| Date of Collection       | Standards | 3/12/02     |           | 3/11/03     |           | 6/9/04      |           |
| Sample Depth (ft BTOIC)  | (µg/L)    | 15          |           | 15          |           | 15          |           |
| VOCs (µg/L)              |           |             |           |             |           |             |           |
| acetone                  | 5         |             | U         | U           |           | 1.4 F       |           |
| trichloroethylene (TCE)  | 5         | (           | ).48 F    | 0.33 F      |           | U           |           |
| cis-1,2-dichloroethylene | 5         |             | 0.58      | (           | 0.73      | 1.2         |           |
| vinyl chloride           | 2         |             | U         |             | U         | U           |           |
| SVOCs (µg/L)             |           |             |           |             |           |             |           |
| No SVOCs were detected.  |           |             |           |             |           |             |           |
| Metals (µg/L)            |           | Total       | Dissolved | Total       | Dissolved | Total       | Dissolved |
| aluminum                 |           | 238         | U         | 58.5 F      | U         | 57.4 F      | U         |
| arsenic                  | 25        | U           | 4.9 F     | U           | U         | U           | U         |
| barium                   | 1,000     | 38.1        | 21.5      | 27.1 F      | 20.0 F    | 26.2 F      | 19.5 F    |
| calcium                  |           | 83,200      | 68,300    | 80,400      | 83,000 B  | 75,400      | 69,600    |
| chromium                 | 50        | U           | U         | U           | 1.0 F     | U           | U         |
| copper                   | 200       | U           | 2.8 F     | 1.9 F       | 4.2 F     | 4.2 F       | 2.8 F     |
| iron**                   | 300       | 515         | U         | 168 F       | U         | U           | U         |
| magnesium                |           | 6,790       | 6,640     | 6,790       | 7,250 B   | 7,920       | 7,660     |
| manganese**              | 300       | 3,530       | 615       | 2,990 B     | 1,510     | 2,340       | 423       |
| nickel                   | 100       | U           | 1.9 F     | U           | U         | 1.8 F       | U         |
| potassium                |           | 1,660       | 1,570     | 1,490       | 1,540 B   | 1,440       | 1,290     |
| selenium                 | 10        | U           | 25.4      | U           | U         | U           | U         |
| sodium                   | 20,000    | 89,100      | 86,800    | 65,700      | 71,200    | 47,200      | 36,600    |
| zinc                     |           | U           | U         | U           | 3.1 F     | U           | U         |

# Table 3-3 (Continued)Building 35 Groundwater Sampling ResultsMarch 2002 through March 2009 Sampling Rounds

Notes:

BTOIC - below top of inner casing.

B - The analyte was also reported in a blank associated with this sample.

F - Analyte was positively identified but the associated numerical value is below the RL.

M - Matrix effect was present.

U - Analyte analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

-- Indicates no NYS GA Groundwater Standard.

\*\* - The NYS Groundwater Standard of 500  $\mu\text{g/L}$  applies to the sum of iron and manganese.

- Indicates an exceedance of the NYS Groundwater Standard.

| Sample Location            | NYSDEC    |             |           |        |           |        |           |
|----------------------------|-----------|-------------|-----------|--------|-----------|--------|-----------|
| Sample ID                  | GW        | B035M0315AA |           | B0351  | M0315BA   | B0351  | M0315CA   |
| Date of Collection         | Standards |             |           | 3/     | /11/03    | 6/9/04 |           |
| Sample Depth (ft BTOIC)    | (µg/L)    |             | 15        |        | 15        |        | 15        |
| VOC (µg/L)                 |           |             |           |        |           |        |           |
| acetone                    | 5         |             | U         |        | U         |        | U         |
| tetrachloroethylene (PCE)  | 5         |             | U         |        | U         |        | U         |
| trichloroethylene (TCE)    | 5         |             | U         |        | U         |        | U         |
| cis-1,2-dichloroethylene   | 5         | 0           | .23 F     | C      | ).54 ♦    | C      | 0.88 F    |
| trans-1,2-dichloroethylene | 5         |             | U         |        | U         |        | U         |
| vinyl chloride             | 2         |             | U         | 0.     | .24 F♦    |        | U         |
| SVOCs (µg/L)               |           |             |           |        |           |        |           |
| No SVOCs were detected.    |           |             |           |        |           |        |           |
| Metals (µg/L)              |           | Total       | Dissolved | Total  | Dissolved | Total  | Dissolved |
| aluminum                   |           | 1,280       | U         | 259 ♦  | U         | 277    | U         |
| arsenic                    | 25        | U           | U         | U      | U         | U      | U         |
| barium                     | 1,000     | 42.0        | 15.2      | 24.7 F | 19.8 F♦   | 32.9 F | 29.6 F    |
| calcium                    |           | 31,300      | 31,000    | 37,600 | 38,600 B♦ | 52,000 | 53,200    |
| chromium                   | 50        | 2.2 F       | U         | U      | U         | U      | U         |
| copper                     | 200       | U           | 2.6 F     | U      | 2.5 F♦    | 4.2 F  | 3.0 F     |
| iron**                     | 300       | 1,400       | U         | 255 ♦  | U         | 324    | U         |
| magnesium                  |           | 3,290       | 3,040     | 4,000  | 4180 B♦   | 5,640  | 5,900     |
| manganese**                | 300       | 2,080       | 1.1 F     | 339 B  | 0.60 F♦   | 227    | 11.3      |
| molybdenum                 |           | U           | U         | U      | 1.9 F     | U      | U         |
| nickel                     | 100       | 1.6 F       | U         | U      | U         | U      | U         |
| potassium                  |           | 871         | 437 F     | 703 F  | 628 F♦    | 941 F  | 801 F     |
| selenium                   | 10        | U           | 7.4 F     | U      | 5.3 F     | U      | U         |
| sodium                     | 20,000    | 4,950       | 4,860     | 6,150  | 6,310 ♦   | 11,300 | 11,500    |
| vanadium                   |           | 3.4 F       | U         | U      | U         | 0.90 F | U         |
| zinc                       |           | 8.5 F       | U         | 8.5 F  | 1.1 F     | U      | U         |

### Table 3-3 (Continued) **Building 35 Groundwater Sampling Results** March 2002 through March 2009 Sampling Rounds

Notes:

BTOIC - below top of inner casing.

B - The analyte was also reported in a blank associated with this sample.

F - Analyte was positively identified but the associated numerical value is below the RL.

M - Matrix effect was present.

U - Analyte analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

-- Indicates no NYS GA Groundwater Standard.

♦ - Concentrations are from duplicate sample, which was greater than the original sample.

\*\* - The NYS Groundwater Standard of 500  $\mu$ g/L applies to the sum of iron and manganese. — - Indicates an exceedance of the NYS Groundwater Standard.

### Table 3-3 (Continued) **Building 35 Groundwater Sampling Results** March 2002 through March 2009 Sampling Rounds

|                            | 1         |         |           |        | March 2   | 2002 1111 | ougn Marc | h 2009 Samp | 0        |         |           |          |           |           |
|----------------------------|-----------|---------|-----------|--------|-----------|-----------|-----------|-------------|----------|---------|-----------|----------|-----------|-----------|
| Sample Location            | ┥         |         |           | i      |           | r         |           |             | B035MW-4 | l       | 1         | L        | L         | 1         |
| Sample ID                  | NYSDEC    | B035M   | I0415AA   | B03M   | [0415BA   | B035N     | A0415CA   |             |          |         | B035M0416 |          | B035M0416 | B035M0416 |
|                            | GW        |         |           |        |           |           |           | DA          | EA       | FA      | GA        | HA<>     | GB        | HA        |
| Date of Collection         | Standards | 3/1     | 2/02      | 3/1    | 11/03     | 6         | /9/04     | 3/29/05     | 3/24/06  | 4/18/07 | 4/8/08    | 12/10/08 | 2/26/09   | 3/24/09   |
| Sample Depth (ft<br>BTOIC) | (µg/L)    |         | 15        |        | 15        |           | 15        | 15          | 15       | 16      | 16        | 16       | 16        | 16        |
| VOC (µg/L)                 |           |         |           |        |           |           |           |             | •        |         | -         | •        | •         |           |
| acetone                    | 5         |         | U         |        | U         | 1         | l.8 F     | N/A         | N/A      | N/A     | N/A       | N/A      | N/A       | N/A       |
| tetrachloroethylene (PCE)  | 5         | 0       | 0.84      | (      | 0.82      | 0         | .81 F     | 0.63        | 0.66     | 0.42 F  | 0.320 F   | 0.520 F  | 0.590 F   | 0.620 F   |
| trichloroethylene (TCE)    | 5         | 0.      | 75 ♦      | 0      | ).55      | 0         | .97 F     | 0.28 F      | 0.35 F   | 0.35 F  | 0.250 F   | 0.450 F  | 0.510 F   | 0.520 F   |
| cis-1,2-dichloroethylene   | 5         |         | 21        |        | 18        |           | 32        | 7.8         | 9.3      | 13.9    | 12.0      | 18.4     | 16.4      | 17.4      |
| trans-1,2-dichloroethylene | 5         | 0.3     | 87 F♦     | 0.     | 22 F      | 0         | .69 F     | U           | U        | 0.39 F  | 0.310 F   | 0.360 F  | 0.400 F   | 0.380 F   |
| vinyl chloride             | 2         | 0       | 0.75      | 0      | ).54      |           | 1.1       | 0.45 F      | 0.55     | 0.88 F  | 0.560 F   | 0.670 F  | 0.550 F   | 1.11      |
| SVOCs (µg/L)               |           |         |           |        |           |           |           |             |          |         |           |          |           |           |
| No SVOCs were detected.    |           |         |           |        |           |           |           |             |          |         |           |          |           |           |
| Wet Chemistry Data (mg/    | Ĺ)        |         |           |        |           |           |           |             |          | •       |           |          | •         |           |
| Alkalinity                 |           | Ν       | N/S       | 1      | N/S       |           | N/S       | N/S         | N/S      | N/S     | N/S       | 280      | 290       | 280       |
| Chloride                   | 250       | Ν       | N/S       | 1      | N/S       |           | N/S       | N/S         | N/S      | N/S     | N/S       | 2.4      | 60 J      | 73        |
| Nitrogen, Nitrate          | 10        | Ν       | N/S       | 1      | N/S       |           | N/S       | N/S         | N/S      | N/S     | N/S       | U        | U         | U         |
| Sulfate                    | 250       | Ν       | N/S       | 1      | N/S       |           | N/S       | N/S         | N/S      | N/S     | N/S       | 13       | 1.4       | 2.7       |
| TOC                        |           | Ν       | N/S       | 1      | N/S       |           | N/S       | N/S         | N/S      | N/S     | N/S       | 2.0      | 9.2       | 8.2       |
| Metals (µg/L)              |           | Total   | Dissolved | Total  | Dissolved | Total     | Dissolved |             |          |         |           |          |           |           |
| aluminum                   |           | 143 F   | U         | 215    | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| arsenic                    | 25        | U       | 6.9 F♦    | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| barium                     | 1,000     | 211     | 174       | 96.0   | 92.6      | 394       | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| calcium                    |           | 93,100♦ | 60,600 M  | 90,900 | 91,200 B  | 81,000    | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| chromium                   | 50        | U       | U         | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| copper                     | 200       | U       | 2.3 F     | U      | 1.6 F     | 5.7 F     | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| iron**                     | 300       | 187     | U         | 242    | U         | 80.0 F    | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| magnesium                  |           | 9,250   | 9,000     | 7,540  | 7,840 B   | 12,100    | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| manganese**                | 300       | 625     | U         | 364 B  | 11.9      | 1,170     | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| molybdenum                 |           | U       | U         | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| nickel                     | 100       | U       | U         | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| potassium                  |           | 1,130   | 1,110     | 1,280  | 1200 B    | 1,380     | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| selenium                   | 10        | U       | 25.4 ♦    | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| sodium                     | 20,000    | 42,000  | 40,600    | 25,000 | 25,700    | 22,000    | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| vanadium                   |           | U       | U         | U      | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| zinc                       |           | U       | U         | 4.5 F  | U         | U         | N/S       | N/S         | N/S      | N/S     | N/S       | N/S      | N/S       | N/S       |
| Notes:                     |           |         |           |        |           |           |           |             |          |         |           |          |           |           |

Notes:

BTOIC - below top of inner casing.

B - The analyte was also reported in a blank associated with this sample.

F - Analyte was positively identified but the associated numerical value is below the RL.

J - The analyte was positively identified, the quantity is an estimate. M - Matrix effect was present.

N/A - Not analyzed.

N/S - Not sampled.

U - Analyte analyzed for, but not detected. The associated numerical value is at or below the method detection limit.

-- Indicates no NYS GA Groundwater Standard.

• - Concentrations are from duplicate sample, which was greater than the original sample. \*\* - The NYS Groundwater Standard of 500  $\mu$ g/L applies to the sum of iron and manganese.

- Indicates an exceedance of the NYS Groundwater Standard.

<>- Sample is not included in the annual sampling round, sample was collected to monitor ground water before Newman Zone injection.

| Sampling<br>Locations | Sampling Rationale                   | Target Analytes /<br>Method Numbers                                                                                           | Sampling<br>Frequency | Evaluation Criteria /<br>Modification<br>Justification                                                                                                                                                                                  |  |  |  |  |  |
|-----------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| B035MW-4              | Downgradient of potential source     | <u>VOCs</u> – (Specified<br>COC Short List) /<br>SW8260<br><u>COCs</u> - PCE, TCE,<br>cis-1,2-DCE, trans-<br>1,2-DCE, and VC. | Annual                | Continue to verify the cis-<br>1,2- DCE attenuation.<br>Analysis for VOCs<br>(chlorinated ethenes short<br>list only) will occur<br>annually, after which the<br>results will be evaluated to<br>assess future monitoring<br>frequency. |  |  |  |  |  |
|                       | Recommended LTM Network Changes None |                                                                                                                               |                       |                                                                                                                                                                                                                                         |  |  |  |  |  |

| Table 3-4                                                   |
|-------------------------------------------------------------|
| Building 35 Proposed Groundwater Sampling and Analysis Plan |
|                                                             |

| Historical LTM Network Changes |                                  |                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                | July 2004                        |                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Analysis / Frequency Changes   |                                  |                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| B035MW-4                       | Downgradient of potential source | <u>VOCs</u> – (Specified<br>COC Short List) /<br>SW8260<br><u>COCs</u> - PCE, TCE,<br>cis-1,2-DCE, trans-<br>1,2-DCE, and VC. | Annual       | Continue in the monitoring<br>network to verify the<br>attenuation of cis-1,2-DCE.<br>Analysis for VOCs<br>(chlorinated ethenes shortlist<br>only) will occur for four<br>rounds, after which the<br>results will be evaluated to<br>assess future monitoring<br>frequency.<br>Discontinue sampling for<br>SVOCs since no detections<br>have been reported in any<br>sampling round. Discontinue<br>metals sampling at the<br>Building 35 Site since none<br>of the reported exceedances<br>can be attributed specifically<br>to the site. |  |  |  |  |  |  |  |
|                                | Removed                          | l Sampling Location                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| B035MW-1                       | Upgradient                       |                                                                                                                               | Discontinued | Discontinue sampling based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| B035MW-2                       | Crossgradient                    |                                                                                                                               | from annual  | on no reported exceedances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| B035MW-3                       | Potential Source Area            |                                                                                                                               | basis.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

# Table 3-4 (Continued)Building 35 Proposed Groundwater Sampling and Analysis Plan

Appendix B Daily Chemical Quality Control Reports This page is intentionally left blank.

### **Daily Chemical Quality Control Report**

Project/Delivery Order Number: F41624-03-D-8601-0027 Date: 12/10/08

Project Name/Site Number: Griffiss Landfills Sites sampling (Landfill 6) and Site Building 35.

Weather conditions: Temperature: 54 Average barometric reading: 29.9 Wind direction and speed: Southwest 7.0 mph Significant wind changes: None.

General description of tasks completed: Bladder pump sampling at Site Landfill 6 (TMCMW-9) and Site Building 35 (B035MW-4). Surface water sampling at Site Landfill 6 (LF6SW-1, -2, -3, and LF6WT-01). Leachate sampling at Site Landfill 6 (LF6LH-1 and -2).

Explain any departures from the SAP or deviations from approved procedures during the day's field activities: None.

Explain any technical problems encountered in the field or field equipment/field analytical instrument malfunction: None.

Corrective actions taken or instructions obtained from AFCEE personnel: No corrective actions necessary.

Sampling shipment completed: √ Yes □ No LSL Courier.

DCQCR Prepared by: Niels van Hoesel, FOM

Date: 12 December 2008

CQCC Signature: Concoldia van Hoese Date: 12/14/08

**ATTACHMENTS:** 

| Checklist               | Daily Chemical Quality Control Report Attachments |
|-------------------------|---------------------------------------------------|
| $\overline{\mathbf{v}}$ | ✓ Field sampling forms                            |
|                         | ✓ Equipment Calibration Log                       |
|                         | ✓ Copies of COCs                                  |
|                         | ✓ SDG Table (See accompanying COCs)               |
| $\sim$                  | ✓ Daily Health and Safety Meeting Form            |

### WELL PURGING & SAMPLING FORM (LOW FLOW)

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.05.2                                                                                    | •                                             |                                                                                                                                                  | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | impled by:                                                                                                                  | - 3* Ir                                                                                                                                                      | -                                                                                                          |                                                                                              |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|
| Location a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>40.05.2</b><br>and Site Cod                                                             | le (SIT                                       | TEID):                                                                                                                                           | B35 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INTECT                                                                                                                      | rion of                                                                                                                                                      | CRATIO                                                                                                     | 10                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ( <b>LOCID</b> ): _                                                                        |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              |                                                                                                            |                                                                                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              | -                                                                                                          |                                                                                              |                       |
| Date (LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GDATE): _                                                                                  |                                               |                                                                                                                                                  | VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             | ICA IN /                                                                                                                                                     |                                                                                                            |                                                                                              |                       |
| <u>CASING VOLU</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>JME INFORMAT</u>                                                                        | <u>'ION;</u>                                  |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              |                                                                                                            |                                                                                              |                       |
| Casing ID (inch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            | 1.0                                           | 1.5 2                                                                                                                                            | .0 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0 4.0                                                                                                                     | 4.3 5                                                                                                                                                        | 0 60                                                                                                       | 7.0 8.0                                                                                      |                       |
| Unit Casing Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne (A) (gal/ft)                                                                            | 0.04                                          | 0.09 0.                                                                                                                                          | 16 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.37 0.65                                                                                                                   | 0.75 1                                                                                                                                                       | .0 15                                                                                                      | 2.0 2.6                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              |                                                                                                            |                                                                                              |                       |
| PURGING INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                          |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              |                                                                                                            | Γ                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pth (B) (TOTDEPT                                                                           |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nal)                                                                                                                        |                                                                                                                                                              | ¢ .                                                                                                        | Γ                                                                                            |                       |
| Measured Water Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | evel Depth (C) (STA                                                                        | ATDEP)                                        | 9.10                                                                                                                                             | £fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h                                                                                                                           | ~                                                                                                                                                            | <u>+</u>                                                                                                   |                                                                                              |                       |
| Length of Static W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /ater Column (D) = _                                                                       | (B)                                           | =                                                                                                                                                | fi (o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ptional)                                                                                                                    |                                                                                                                                                              | B<br>ELEV                                                                                                  | I<br>ATION                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h (fl): 15                                                                                 |                                               | (-)                                                                                                                                              | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             | H2O                                                                                                                                                          |                                                                                                            | ELEV)                                                                                        |                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nng/Sampling                                                                               |                                               |                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                                                                                                                              |                                                                                                            |                                                                                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            | (prov                                         | nde range)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | STATIC                                                                                                                                                       |                                                                                                            |                                                                                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              |                                                                                                            |                                                                                              |                       |
| Comments (re De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | epth during purging/s                                                                      | sampling):                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | ELEVATIO                                                                                                                                                     | N                                                                                                          |                                                                                              |                       |
| Comments (re De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | epth during purging/s                                                                      | sampling):                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              | И                                                                                                          | MEAN<br>SEA                                                                                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                               |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                                                                                                                              | N                                                                                                          |                                                                                              |                       |
| Purge Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e and Metho                                                                                | od: BL                                        | ADDEI                                                                                                                                            | R PUMP_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                                                              | N                                                                                                          | SEA                                                                                          |                       |
| Purge Date<br>Physical A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e and Metho<br>Appearance/(                                                                | od: BL<br>Comm                                | ADDEI<br>ents:                                                                                                                                   | R PUMP_<br>clene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                              | N                                                                                                          | SEA                                                                                          |                       |
| Purge Date<br>Physical A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            | od: BL<br>Comm                                | ADDEI<br>ents:                                                                                                                                   | R PUMP_<br>clene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                              | N<br>                                                                                                      | SEA                                                                                          |                       |
| Purge Date<br>Physical A<br>Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e and Metho<br>Appearance/(<br>Ferrous Iron                                                | od: BL<br>Commo<br>n (mg/)                    | ADDEI<br>ents:<br>L):                                                                                                                            | R PUMP_<br>clene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                              | N                                                                                                          | SEA                                                                                          |                       |
| Purge Date<br>Physical A<br>Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)                                    | od: BL<br>Commo<br>n (mg/)                    | ADDEI<br>ents:<br>L):                                                                                                                            | R PUMP_<br>clene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                                                                              | × 10%                                                                                                      | SEA<br>LEVEL                                                                                 |                       |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)                                    | od: BL<br>Commo<br>n (mg/)<br>ENTS:           | ADDEI<br>ents:                                                                                                                                   | R PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | elevatio<br>Oden                                                                                                                                             | ± 10%                                                                                                      | SEA                                                                                          | Flow Rate             |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br>± 0.1                                                                                                                   | R PUMP<br>داد هد<br>± 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp.                                                                                                                       | ELEVATIO<br>edun<br>± 10%                                                                                                                                    | ± 10%                                                                                                      |                                                                                              |                       |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V            | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br>± 0.1<br>pH<br><b>5.9 7</b>                                                                                             | t 3%<br>عند 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp.<br>(F or C)<br>10.47                                                                                                  | ± 10%<br>Turbidity<br>(NTU)<br><b>FI.9</b>                                                                                                                   | ± 10%<br>D.O.<br>(mg/L)<br>to.\$\$                                                                         | ± 10mV<br>ORP<br>(mV)                                                                        | Flow Rate             |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br>± 0.1<br>pH<br><u>\$.9</u> 7<br><u>\$.9</u> 7                                                                           | EC<br>(mS/cm)<br>6 . 2<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Тетр.<br>(F or C)<br>10.47<br>11.17                                                                                         | ELEVATIO<br>edua<br>± 10%<br>Turbidity<br>(NTU)<br>§ 1.9<br>6 3.4                                                                                            | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$                                                               | ± 10mV<br>ORP<br>(mV)<br>2 5 1                                                               | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br><u>± 0.1</u><br>pH<br><u>5.97</u><br><u>5.97</u><br><u>5.95</u>                                                         | t 3%<br>EC<br>(mS/cm)<br>C . 2<br>C 4. 9<br>C 4. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp.<br>(F or C)<br>10.47<br>71.17<br>68.60                                                                                | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br><b>§ 1.9</b><br><b>6 3.4</b><br><b>6 5.3</b>                                                                      | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.\$\$                                                     | ± 10mV<br>ORP<br>(mV)<br>251<br>275                                                          | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br>± 0.1<br>pH<br><u>5.97</u><br><u>5.97</u><br><u>5.95</u><br><u>6.02</u>                                                 | ± 3%<br>± 3%<br>EC<br>(mS/cm)<br>G.2<br>G.2<br>G.4.8<br>G.4.8<br>G.4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.<br>(F or C)<br>10.47<br>71.17<br><b>£1</b> .60<br>11.66                                                               | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br>G 1.9<br>C 3.4<br>C 5.3<br>So.8                                                                                   | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.\$\$<br>6.\$4<br>5.47                                    | ± 10mV<br>DRP<br>(mV)<br>2€4<br>2.75<br>2.69                                                 | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>II 34<br>II 35<br>II 37<br>II 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:<br>L):<br>± 0.1<br>pH<br>5.97<br>5.99<br>5.99<br>6.02<br>6.02<br>6.02                                                             | EC<br>(mS/cm)<br>C . 2<br>C | Temp.<br>(F or C)<br>10.47<br>71.17<br><b>£5.</b> 60<br>11.64<br>11.64                                                      | ELEVATIO<br>edua<br>Turbidity<br>(NTU)<br>G 1.9<br>G 3.4<br>G 5.3<br>So.4<br>H 7.3                                                                           | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.\$4<br>5.47<br>4.\$\$                                    | ± 10mV<br>ORP<br>(mV)<br>2\$4<br>251<br>2.75<br>2.69<br>2.50                                 | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>II 34<br>II 3 | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEN<br>ents:<br>L):<br>$\pm 0.1$<br>pH<br>5.97<br>5.97<br>5.97<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02                                         | ± 3%         ± 3%         EC         (mS/cm)         65.2         64.9         64.9         64.9         64.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | тетр.<br>(F or C)<br>10.47<br>71.17<br><b>61</b> .60<br>11.66<br>11.41<br>11.23                                             | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br>= 1.9<br>- 6 3.4<br>- 7.3<br>- 4 4.6 | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.\$\$<br>5.47<br>4.\$\$<br>5.57                           | ± 10mV<br>ORP<br>(mV)<br>2 \$4<br>2 \$1<br>2.7 \$<br>2.69<br>2.5 ¢<br>2.3 \$                 | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>1134<br>1134<br>1134<br>1135<br>1137<br>1135<br>1137<br>1135<br>1137<br>1137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEI<br>ents:                                                                                                                                   | EC<br>(mS/cm)<br>65.2<br>67.6<br>67.0<br>63.0<br>63.0<br>63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | тетр.<br>(F or C)<br>10.47<br>71.17<br><b>£f</b> .60<br>11.66<br>11.41<br>11.23<br>11.18                                    | ELEVATIO<br>edua<br>t 10%<br>Turbidity<br>(NTU)<br>G 1.9<br>C 3.4<br>C 5.3<br>So.4<br>4 7.3<br>4 7.6<br>72.6                                                 | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.\$\$<br>6.\$\$<br>7.5\$<br>5.47<br>4.5\$<br>5.55<br>3.65 | ± 10mV<br>ORP<br>(mV)<br>2\$4<br>251<br>2.75<br>2.69<br>2.50                                 | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>1134<br>1135<br>1137<br>1137<br>1137<br>1137<br>1137<br>1137<br>1137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEN<br>ents:<br>L):<br>$\pm 0.1$<br>pH<br>5.97<br>5.97<br>5.97<br>6.00<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02<br>6.10<br>6.12<br>6.14         | EC<br>(mS/cm)<br>65.2<br>63.0<br>63.0<br>63.7<br>63.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | тетр.<br>(F or C)<br>10.47<br>71.17<br><b>£f</b> .60<br>11.66<br>11.41<br>11.23<br>11.18<br>11.18                           | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br>F 1.9<br>C 3.4<br>C 5.3<br>So.4<br>4 7.3<br>4 7.4<br>4 7.6<br>4 7.8                                               | ± 10%<br>D.O.<br>(mg/L)<br>10.55<br>8.55<br>C.14<br>5.47<br>4.55<br>5.55<br>3.65<br>3.65                   | ± 10mV<br>ORP<br>(mV)<br>2 \$ 4<br>2 \$ 1<br>2 7 \$<br>2 6<br>2 5 6<br>2 3 6<br>2 2 4<br>2 4 | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>1134<br>1134<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1134<br>1137<br>1137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEN<br>ents:<br>L):<br>$\pm 0.1$<br>pH<br>5.97<br>5.97<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02<br>6.10<br>6.12<br>6.12<br>6.14 | E PUMP_<br><u>cleme</u><br><u>t</u> 3%<br>EC<br>(mS/cm)<br><u>C5.2</u><br><u>C4.8</u><br><u>C4.8</u><br><u>C4.8</u><br><u>C4.8</u><br><u>C4.8</u><br><u>C4.0</u><br><u>C3.7</u><br><u>C3.7</u><br><u>C3.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temp.       (F or C)       10.47       71.17       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br>GI.9<br>C 3.4<br>C 5.3<br>So.4<br>4 7.3<br>4 4.0<br>72.6<br>41.8<br>39.1                                          | ± 10%<br>D.O.<br>(mg/L)<br>10.\$\$<br>8.\$\$<br>6.19<br>5.47<br>4.55<br>5.57<br>3.65<br>3.47<br>3.35       | ± 10mV<br>ORP<br>(mV)<br>284<br>251<br>273<br>269<br>256<br>238<br>224<br>214<br>214<br>206  | Flow Rate<br>(mL/min) |
| Purge Date<br>Physical A<br>Dissolved<br>FIELD MI<br>Allowable<br>Time<br>1134<br>1135<br>1137<br>1137<br>1137<br>1137<br>1137<br>1137<br>1137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e and Metho<br>Appearance/(<br>Ferrous Iron<br>EASUREM)<br>Range:<br>Depth to V<br>(ft BTO | od: BL<br>Common<br>n (mg/)<br>ENTS:<br>Water | ADDEN<br>ents:<br>L):<br>$\pm 0.1$<br>pH<br>5.97<br>5.97<br>5.97<br>6.00<br>6.02<br>6.02<br>6.02<br>6.02<br>6.02<br>6.10<br>6.12<br>6.14         | EPUMP_<br><u>cleme</u><br><u>t</u> 3%<br>EC<br>(mS/cm)<br><u>C5.2</u><br><u>C4.9</u><br><u>C4.9</u><br><u>C4.9</u><br><u>C4.9</u><br><u>C4.0</u><br><u>C5.0</u><br><u>C3.7</u><br><u>C3.7</u><br><u>C3.7</u><br><u>C3.7</u><br><u>C3.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | тетр.<br>(F or C)<br>10.47<br>71.17<br><b>£f</b> .60<br>11.66<br>11.41<br>11.23<br>11.18<br>11.18                           | ELEVATIO<br>= 10%<br>Turbidity<br>(NTU)<br>F 1.9<br>C 3.4<br>C 5.3<br>So.4<br>4 7.3<br>4 7.4<br>4 7.6<br>4 7.8                                               | ± 10%<br>D.O.<br>(mg/L)<br>10.55<br>8.55<br>C.14<br>5.47<br>4.55<br>5.55<br>3.65<br>3.65                   | ± 10mV<br>ORP<br>(mV)<br>2 \$ 4<br>2 \$ 1<br>2 7 \$<br>2 6<br>2 5 6<br>2 3 6<br>2 2 4<br>2 4 | Flow Rate<br>(mL/min) |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

| Page |   | of |
|------|---|----|
| ~    | - |    |

### WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: 40-05-27                             | Sampled by: Ju/c_s                                                                                                                                                                         |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location and Site Code (SITEID):              | LEG                                                                                                                                                                                        |
| Well No. (LOCID):                             | Well Diameter (SDIAM): 2"                                                                                                                                                                  |
| Date (LOGDATE): 12/16/08                      | Weather: <u>Snow/35</u>                                                                                                                                                                    |
| * _ #                                         |                                                                                                                                                                                            |
| CASING VOLUME INFORMATION:                    |                                                                                                                                                                                            |
|                                               | .2         3.0         4.0         4.3         5.0         6.0         7.0         8.0           .2         0.37         0.65         0.75         1.0         1.5         2.0         2.6 |
|                                               | <u>.2</u> 0.37 0.65 0.75 1.0 1.5 2.0 2.6                                                                                                                                                   |
| PURGING INFORMATION:                          |                                                                                                                                                                                            |
| Measured Well Depth (B) (TOTDEPTH)            |                                                                                                                                                                                            |
| Measured Water Level Depth (C) (STATDEP) 2.29 |                                                                                                                                                                                            |
| Length of Static Water Column (D) = = = (D)   | _ fl. (optional)                                                                                                                                                                           |
| Pump Intake Depth (6):                        |                                                                                                                                                                                            |
| Depth during Purging/Sampling:ft              |                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                            |
| Comments (re: Depth during purging/sampling): | ELEVATION MEAN                                                                                                                                                                             |
|                                               | SEA<br>LEVEL                                                                                                                                                                               |
| Purge Date and Method: BLADDER PUN            |                                                                                                                                                                                            |
| Physical Appearance/Comments:                 | lear/no adal                                                                                                                                                                               |
| Dissolved Ferrous Iron (mg/L):                |                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                            |
| FIELD MEASUREMENTS:                           |                                                                                                                                                                                            |
|                                               | $\frac{\pm 10\%}{C} = \frac{\pm 10\%}{Temp.} = \frac{\pm 10\%}{Turbidity} = \frac{\pm 10\%}{D.O.} = \frac{\pm 10mV}{ORP}$                                                                  |
|                                               | CTemp.TurbidityD.O.ORPFlow Rate(dm)(F or C)(NTU)(mg/L)(mV)(mL/min)                                                                                                                         |
| 1501, 2.67 5.33 0.                            | 33 7.6 47 6.84 205 100 min                                                                                                                                                                 |
| 1505 5.19 0.1                                 | 32 7.4 0.7 5.05 2.06 1                                                                                                                                                                     |
|                                               | 32 7.4 0.0 4.79 206                                                                                                                                                                        |
|                                               |                                                                                                                                                                                            |
| 1517 5.19 0.1                                 | 32 7.4 0.0 4.41 207                                                                                                                                                                        |
|                                               |                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                            |
| Sample Time: 1526 Sample ID:                  | TALCALOUD LA                                                                                                                                                                               |
| · ····································        | THE                                                                                                                                                    |

- E - k

/

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_\_

# WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: <u>40-05-27</u>                                                                                                                                      | Sampled by:                                     | Jus /c                                  | · •                |      |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------|------|-----|
| Location and Site Code (SITEID):                                                                                                                              | LF6                                             |                                         |                    |      |     |
| Well No. (LOCID): LF6TMC SU - I                                                                                                                               | Well Diamete                                    | r (SDIAM)                               |                    |      |     |
| Date (LOGDATE): 12/11/08                                                                                                                                      | Weather:                                        | Rain/ 4                                 | 6"                 |      |     |
| CASING VOLUME INFORMATION:                                                                                                                                    |                                                 | /                                       |                    |      |     |
| Casing ID (inch)         1.0         1.5         2.0         2.2           Unit Casing Volume (A) (gal/fl)         0.04         0.09         0.16         0.2 | 4.0                                             | 4.3 5.0                                 | 6.0                | 7.0  | 8.0 |
|                                                                                                                                                               | 0.37 0.65                                       | 0.75 10                                 | 1.5                | 2.0  | 2.6 |
| Measured Water Level Depth (C) (STATDEP)ft.                                                                                                                   | optional)<br>ft. (optional)<br>H <sub>2</sub> ( | C<br>C<br>D<br>D<br>STATIC<br>ELEVATION | B<br>ELEV/<br>(MPE |      |     |
| Purge Date and Method: BLADDER PUMI                                                                                                                           | GR.                                             | AR                                      |                    | LEVE | аL. |
| District A                                                                                                                                                    | clear/no                                        |                                         |                    |      |     |
| Dissolved Ferrous Iron (mg/L):                                                                                                                                |                                                 | 00105                                   |                    |      |     |
|                                                                                                                                                               |                                                 |                                         |                    |      |     |

# FIELD MEASUREMENTS:

Ŷ

)

à.

| Range:<br>Depth to Water | $\pm 0.1$                   | $\pm 3\%$                           |                                                           | ± 10%                                                                        | ± 10%                                                                                                                                  | $\pm 10 \text{mV}$                                                                                                                                                                                           |                                                                                                                                                                                                                                              |
|--------------------------|-----------------------------|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | PT                          |                                     |                                                           |                                                                              |                                                                                                                                        | ORP                                                                                                                                                                                                          | Flow Rate                                                                                                                                                                                                                                    |
|                          | 130                         |                                     |                                                           |                                                                              | (mg/L)                                                                                                                                 | (mV)                                                                                                                                                                                                         | (mL/min)                                                                                                                                                                                                                                     |
|                          | 3.38                        | 80.4                                | 6.5                                                       | 47.4                                                                         | 10.37                                                                                                                                  | 232                                                                                                                                                                                                          |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          | :                           |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           | ·                                                                            |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          |                             |                                     |                                                           |                                                                              |                                                                                                                                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                          | Depth to Water<br>(ft BTOC) | Depth to Water pH<br>(ft BTOC) 5.38 | Depth to Water<br>(ft BTOC) pH EC<br>(mS/cm)<br>5.38 50.4 | Depth to Water<br>(ft BTOC) pH EC Temp.<br>(mS/fm) (F or C)<br>5.38 50.4 6.3 | Depth to Water<br>(ft BTOC)     pH     EC<br>(mS/fm)     Temp.<br>(F or C)     Turbidity<br>(NTU)       5.38     §0.4     6.3     47.4 | Depth to Water<br>(ft BTOC)         pH         EC<br>(mS/fm)         Temp.<br>(F or C)         Turbidity<br>(NTU)         D.O.<br>(mg/L)           5.38         \$0.4         6.3         47.4         10.37 | Depth to Water<br>(ft BTOC)         pH         EC<br>(mS/fm)         Temp.<br>(F or C)         Turbidity<br>(NTU)         D.O.<br>(mg/L)         ORP<br>(mV)           5.38         \$0.4         6.3         47.4         10.37         23x |

Sample Time: 1030 Sample ID: LF6 SWOIOLKA

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2^+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_ of \_\_\_

# WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: <u>46 - 6</u>                                                                                                                                                                                                                | 5-27            | _ Sampled by               | : Jules      |                                                  |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|--------------|--------------------------------------------------|------------|
|                                                                                                                                                                                                                                       | ode (SITEID):   |                            |              |                                                  |            |
| Well No. (LOCID):                                                                                                                                                                                                                     | LEGTACSH-2      | Well Diame                 | ter (SDIAM): |                                                  |            |
| Date (LOGDATE):                                                                                                                                                                                                                       | 12/11/18        | Weather:                   | Ram/3        | ٢.                                               |            |
| CASING VOLUME INFORMA                                                                                                                                                                                                                 | <u>ATION:</u>   |                            |              |                                                  |            |
| Casing ID (inch)                                                                                                                                                                                                                      | 1.0 1.5 2.0     | 2.2 3.0 4.0                | 4.3 5.0      | 6.0 7.0                                          |            |
| Unit Casing Volume (A) (gal/ft)                                                                                                                                                                                                       | 0.04 0.09 0.16  | 0.2 0.37 0.65              |              | 1.5 2.0                                          | 8.0<br>2.6 |
| PURGING INFORMATION<br>Measured Well Depth (B) (TOTDE<br>Measured Water Level Depth (C) (S'<br>Length of Static Water Column (D) =<br>Pump Intake Depth (fi):<br>Depth during Purging/Sampling:<br>Comments (re: Depth during purging | TATDEP)         | fl. (optional)             |              | B<br>ELEVATION<br>(MPELEV)<br>MEA<br>SEA<br>LEVI | 4          |
| Purge Date and Meth                                                                                                                                                                                                                   | od: BEADDER PUN | <sup>#P</sup> <b>G_R</b> ; | AB           | LUYI                                             | 3L         |
| Purge Date and Meth<br>Physical Appearance,<br>Dissolved Economy I                                                                                                                                                                    | /Comments:C     | lear/no m                  | lor          |                                                  |            |
| Dissolved Ferrous Iro                                                                                                                                                                                                                 | >n (mg/L):      |                            |              |                                                  |            |

# FIELD MEASUREMENTS:

ż

)

ì

| Allowable   |                             | $\pm 0.1$         | ± 3%          |                   | ±10%               | ± 10%           | 1 10               |                       |
|-------------|-----------------------------|-------------------|---------------|-------------------|--------------------|-----------------|--------------------|-----------------------|
| Time        | Depth to Water<br>(ft BTOC) | pН                | EC<br>(mS/em) | Temp.<br>(F or C) | Turbidity<br>(NTU) | D.0.            | $\pm 10 \text{mV}$ | Flow Rate<br>(mL/min) |
| 1045        |                             | 5:24              |               | 4.9               | 5965               | (mg/L)<br>/0.54 | (mV)<br>245        |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
|             |                             |                   |               |                   |                    |                 |                    |                       |
| Sample Time | : 1045 Samp                 | le ID: _ <b>L</b> | F6SW02        | OIKA              | ·                  | <u>-</u> 1      |                    |                       |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{24}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

# WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: <u>40-6</u>                                                                                                                                                                                                                                | 5-2    | 7       |        | 2                   | Sample               | d by:          | 1                 | ule .        |     |     |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|---------------------|----------------------|----------------|-------------------|--------------|-----|-----|------------|
| Location and Site Co                                                                                                                                                                                                                                | ode (S | ITEID   | ):     |                     | L                    | F6             |                   |              |     |     |            |
| Well No. (LOCID):                                                                                                                                                                                                                                   |        | 6 M     | : 5W - |                     | Well D               | iamete         | r (SDI            | AM):         |     |     |            |
| Date (LOGDATE):                                                                                                                                                                                                                                     |        | 12/14   | 108    |                     | Weathe               |                |                   |              | 40. |     |            |
| CASING VOLUME INFORMA                                                                                                                                                                                                                               | TION:  |         |        |                     |                      |                |                   | /            |     |     |            |
| Casing ID (inch)                                                                                                                                                                                                                                    | 1.0    | 1.5     | 2.0    | 2.2                 | 3.0                  | 4.0            | 4.3               | 5.0          | 6.0 | 7.0 |            |
| Unit Casing Volume (A) (gal/ft)                                                                                                                                                                                                                     | 0.04   | 0.09    | 016    | 0.2                 | 0.37                 | 0.65           | 0.75              | 1.0          | 1.5 | 2.0 | 8.0<br>2.6 |
| PURGING INFORMATION:<br>Measured Well Depth (B) (TOTDEH<br>Measured Water Level Depth (C) (S <sup>-</sup><br>Length of Static Water Column (D) =<br>Pump Intake Depth (fi).<br>Depth during Purging/Sampling:<br>Comments (re: Depth during purging | (P     | (C)     | (b)    | f. (opt<br>f.<br>f. | ional)<br>(optional) | H <sub>2</sub> | o<br>STA<br>ELEVA |              |     | ME. |            |
| Purge Date and Meth                                                                                                                                                                                                                                 |        |         |        | UMP_                | - lea                | PAI            | ß                 |              |     | LEV | EL         |
| Physical Appearance,                                                                                                                                                                                                                                | /Com   | ments:  |        | 6                   | =lead                | Ino            | ada               | $\checkmark$ |     |     |            |
| Dissolved Ferrous Irc                                                                                                                                                                                                                               | on (m  | g/L): _ |        |                     |                      |                |                   |              |     |     |            |
|                                                                                                                                                                                                                                                     |        |         |        |                     |                      |                |                   |              |     |     |            |

# FIELD MEASUREMENTS:

i

)

ì

| Allowable   |                    | <u>± 0.1</u> | ± 3%    |          | ±10%      | ± 10%  | ±10mV |           |
|-------------|--------------------|--------------|---------|----------|-----------|--------|-------|-----------|
| Time        | Depth to Water     | pH           | EC      | Temp.    | Turbidity | D.0.   | ORP   | Flow Rate |
|             | (ft BTOC)          |              | (mS/gm) | (F or C) | (NTU)     | (mg/L) | (mV)  | (mL/min)  |
| 1100        |                    | 6.27         | 71.2    | 6. Z     | 61.4      | 10. Z  | 137   |           |
|             |                    |              |         |          |           |        | ·     |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    | :            |         |          |           |        |       |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    |              |         |          | · · ·     |        |       |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    |              |         |          |           |        |       |           |
|             |                    |              |         |          |           |        |       |           |
| Sample Time | : <b>1166</b> Samp | le ID:       | F6 SW O | 311K4    |           |        |       |           |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_\_

# WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: <u>40</u>                                                                                                                                                                                         | -05-27                                    | _ 5    | Sample | d by:                | <u>J</u> · | -100          |                                               |     |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|--------|----------------------|------------|---------------|-----------------------------------------------|-----|-----|-----|
| Location and Site Co                                                                                                                                                                                       | ode (SITEID                               | ):     |        |                      | LPG        |               | 12.3                                          |     |     |     |
| Well No. (LOCID):<br>Date (LOGDATE):                                                                                                                                                                       |                                           | Well D | iamete | Rain/35°             |            |               |                                               |     |     |     |
| CASING VOLUME INFORM                                                                                                                                                                                       |                                           |        |        |                      | ····       |               | <u>r/                                    </u> | 2   |     |     |
| Casing ID (inch)                                                                                                                                                                                           | 1.0 1.5                                   | 2.0    | 2.2    | 3.0                  | 4.0        | 4.3           | 5.0                                           | 6.0 | 7.0 | 8.0 |
| Unit Casing Volume (A) (gal/ft)                                                                                                                                                                            | 0.04 0.09                                 | 016    | 0.2    | 0.37                 | 0.65       | 0.75          | 1.0                                           | 1.5 | 2.0 | 2.6 |
| Measured Well Depth (B) (TOTDE<br>Measured Water Level Depth (C) (S<br>Length of Static Water Column (D)<br>Pump Intake Depth (fi):<br>Depth during Purging/Sampling:<br>Comments (re: Depth during purgin | (B) (C)<br>(provide range<br>g/sampling): | =(D);  | ĥ      | ional)<br>(optional) | Hyt        | STA'<br>ELEVA |                                               |     | ME, | A   |
| Purge Date and Meth                                                                                                                                                                                        |                                           |        |        | (                    | S-RJ       | IB            |                                               |     | LEV | EL  |
| Physical Appearance                                                                                                                                                                                        |                                           | C_     | leas   | -/no_                | odor       | /             |                                               |     |     |     |
| Dissolved Ferrous Ire                                                                                                                                                                                      | on (mg/L): _                              |        |        | /                    |            |               |                                               |     |     |     |

# FIELD MEASUREMENTS:

ê

Ì

Ì

| Allowable   |                    | ± 0.1  | ± 3%    |          | ±10%        | ± 10%  | ±10mV |           |
|-------------|--------------------|--------|---------|----------|-------------|--------|-------|-----------|
| Time        | Depth to Water     | pН     | EC      | Temp.    | Turbidity   | D.0.   | ORP   | Flow Rate |
|             | (ft BTOC)          |        | (mS/em) | (F or C) | (NTU)       | (mg/L) | (mV)  | (mL/min)  |
| 1130        |                    | 5.68   | 6.53    | 7.8      | 12.8        | 8.63   | 56    |           |
|             |                    |        |         |          |             |        | -26   |           |
|             |                    |        |         |          |             |        |       |           |
|             |                    | :      |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
| ·           |                    |        |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
|             |                    |        |         |          |             |        |       |           |
| Sample Time | : <u>1136</u> Samp | le ID: | LF6     | LHOIDI   | <u>&lt;</u> |        |       |           |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

## WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: 40-05-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampled by: SJU/CS                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location and Site Code (SITEID):                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F6                                                                                                                                                                   |
| Well No. (LOCID):                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Date (LOGDATE): _/2//4/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |
| CASING VOLUME INFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
| Casing ID (inch) 1.0 1.5 2.0 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0 4.0 4.3 5.0 6.0 7.0 80                                                                                                                                           |
| Unit Casing Volume (A) (gal/ft) 0.04 0.09 0.16 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0         4.0         4.3         5.0         6.0         7.0         8.0           0.37         0.65         0.75         1.0         1.5         2.0         2.6 |
| PURGING INFORMATION:         Measured Well Depth (B) (NOTDEPTH)         ft         Measured Water Level Depth (C) (STATDEP)         ft         Length of Static Water Column (D)         B         (C)         Purrp Intake Depth (fi):         Depth during Purging/Sampling:         (provide range)         Comments (re: Depth during purging/sampting):         Purge Date and Method:         BLADDER PUMP         Physical Appearance/Comments:         Dissolved Ferrous Iron (mg/L): | t. (optional)<br>H,O<br>B<br>ELEVATION<br>(MPELEV)<br>D<br>STATIC<br>ELEVATION<br>MEAN<br>SEA<br>LEVEL                                                               |

# FIELD MEASUREMENTS:

 $\hat{r}$ 

ļ

Ì

£

| Allowable   |                | ± 0.1 | ± 3%    |          | ±10%      | ± 10%  | ± 10mV |           |
|-------------|----------------|-------|---------|----------|-----------|--------|--------|-----------|
| Time        | Depth to Water | pН    | EC      | Temp.    | Turbidity | D.0.   | ORP    | Flow Rate |
|             | (ft BTOC)      |       | (mS/em) | (F or C) | (NTU)     | (mg/L) | (mV)   | (mL/min)  |
| 1330        |                | 6.87  | 34.6    | 1.9      | 992       | 10.93  | -12    |           |
|             |                |       |         |          |           |        |        |           |
|             |                |       |         |          | <u> </u>  |        |        |           |
|             |                |       |         |          |           |        |        |           |
|             |                |       |         |          |           |        |        |           |
|             |                |       |         |          |           |        |        |           |
|             |                |       |         |          |           |        |        |           |
|             |                |       |         |          |           |        |        |           |
|             |                | _     |         |          |           |        |        |           |
| Sample Time |                |       | 54      |          |           |        |        |           |

Sample Time: 133 Sample ID: LF6LH020 KA

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{24}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_\_

## WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project: <u>40-</u>                                                                                                                                                                                                                    | 5      | Sampled by:        |       |                        |            |      |              |     |        |                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|-------|------------------------|------------|------|--------------|-----|--------|------------------|-----|
| Location and Site Co                                                                                                                                                                                                                   | de (S  | ITEID              | ):    |                        | <u>F6</u>  |      |              |     |        |                  |     |
| Well No. (LOCID):                                                                                                                                                                                                                      | ·L     | .F6 U              | 1-1   | Well Diameter (SDIAM): |            |      |              |     |        |                  |     |
| Date (LOGDATE):                                                                                                                                                                                                                        |        | 10/                | 8     |                        | Weathe     | r: 🔼 | Snou         | 1/3 | Z*     |                  |     |
| CASING VOLUME INFORMA                                                                                                                                                                                                                  | TION:  |                    |       |                        |            |      |              | /•  |        |                  |     |
| Casing ID (inch)                                                                                                                                                                                                                       | 1.0    | 1.5                | 2.0   | 2.2                    | 3.0        | 4.0  | 4.3          | 5.0 | 6.0    | 7.0              | 8.0 |
| Unit Casing Volume (A) (gal/ft)                                                                                                                                                                                                        | 0.04   | 0.09               | 0_16  | 0.2                    | 0.37       | 0.65 | 0.75         | 10  | 1.5    | 2.0              | 2.6 |
| PURGING INFORMATION:<br>Measured Well Depth (B) (TOTDE:<br>Measured Water Level Depth (C) (S'<br>Length of Static Water Column (D)<br>Pump Intake Depth (ft):<br>Depth during Purging/Sampling:<br>Comments (re: Depth during purging) | (B)    | (C)<br>rovide rank | (D)   | fi                     | (optional) | H1   | STA<br>ELEV/ |     |        | VATION<br>PELEV) | A   |
| Purge Date and Meth                                                                                                                                                                                                                    | nod: E | BLADI              | JER P | UMP_                   | (          | 521  | HS_          |     |        |                  |     |
| Physical Appearance                                                                                                                                                                                                                    | /Com   | ments:             | (     | Cleo                   | ~/no       | od   | 01           |     | ······ |                  |     |
| Dissolved Ferrous Ir                                                                                                                                                                                                                   | on (m  | g/L): _            |       |                        |            |      |              |     |        |                  |     |

### FIELD MEASUREMENTS:

1 i

ļ

ì

| Allowable   | Range:         | ± 0.1  | ± 3%   |          | ± 10%     | ± 10%  | ±10mV |           |
|-------------|----------------|--------|--------|----------|-----------|--------|-------|-----------|
| Time        | Depth to Water | pН     | EC     | Temp.    | Turbidity | D.0.   | ORP   | Flow Rate |
|             | (ft BTOC)      |        | (mS/m) | (F or C) | (NTU)     | (mg/L) | (mV)  | (mL/min)  |
| 1430        |                | 5.67   | 44.2   | 2.2      | 6.4       | 10.66  | 200   |           |
|             |                |        |        |          |           |        |       |           |
|             |                |        |        |          |           |        |       |           |
|             |                | :      |        |          |           |        |       |           |
|             |                |        |        |          |           |        |       |           |
|             |                |        |        |          |           |        |       |           |
|             |                |        |        |          | •         |        |       |           |
|             |                |        |        |          |           |        |       |           |
|             |                | _      |        |          |           |        |       |           |
|             |                |        |        |          |           |        |       |           |
| L           |                |        |        |          |           |        |       |           |
| Sample Time | : 1430 Samp    | le ID: | FGWT   | 610K     | 4         |        |       |           |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{24}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_\_

# **Equipment Calibration Log**

Instrument Name: Moniba FPM #1

Model Number:

|    | Date    | First Standard<br>Concentration | First Standard<br>Reading                    | Second Standard<br>Concentration      | Second Standard<br>Reading | Comments   |
|----|---------|---------------------------------|----------------------------------------------|---------------------------------------|----------------------------|------------|
| [  | 6-9-08  | 4                               | 3.99                                         | -                                     |                            |            |
|    | 1-10-08 | 4.00                            | 3.49                                         |                                       |                            |            |
|    | 6-12-00 | 4.00                            |                                              |                                       |                            |            |
|    | 6-17-09 |                                 | <b>3.19</b><br>4,00                          | 4.00                                  | 4.00                       | FPM1       |
|    | 6-18-0  |                                 | 3.97                                         | 4.00                                  | 4.00                       | - <u> </u> |
|    | ANBO    | 2                               |                                              |                                       |                            |            |
|    | 9-16-06 | 4.00                            | 3.99                                         |                                       |                            | ·          |
|    | 9-17-08 | 4.00                            | 3.99                                         |                                       |                            |            |
|    | 9-18-08 | 4.00                            | 4.00                                         |                                       |                            | ·          |
| ĸ  | 112408  | 4,00                            | 4,00                                         |                                       |                            |            |
| 07 | 171646A | 400                             | 3.44                                         |                                       |                            |            |
|    | 12/90   |                                 | 3.94                                         | 4.00                                  | 4.00                       |            |
|    | 12/10   | 4.00                            | 3.88                                         | 4.00                                  | 3.98                       |            |
|    | 12/11   | 4:00                            | 3.98                                         | 4.00                                  | 3.99                       |            |
|    |         |                                 |                                              |                                       |                            |            |
|    |         |                                 |                                              |                                       |                            |            |
|    |         |                                 |                                              | · · ·                                 |                            |            |
|    |         |                                 | · · · ·                                      |                                       |                            | <u>_</u> , |
|    |         |                                 | <u>.                                    </u> |                                       |                            |            |
|    |         |                                 |                                              |                                       | ·                          |            |
|    |         |                                 |                                              |                                       |                            |            |
|    |         |                                 |                                              |                                       |                            |            |
|    |         |                                 |                                              |                                       |                            |            |
|    |         |                                 |                                              | · · · · · · · · · · · · · · · · · · · |                            |            |

# **Equipment Calibration Log**

Instrument Name: Horiba FPM #2

Model Number:

| First Standard<br>Concentration | First Standard<br>Reading                                                                     | Second Standard<br>Concentration                                                                                                                                                                                                                                                                                                                  | Second Standard<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments                                                                                                                                                                                                                                                                 |
|---------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.00                            | 4.00                                                                                          |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
| 4.00                            | 4.00                                                                                          |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
| 4.00                            | 3.98                                                                                          |                                                                                                                                                                                                                                                                                                                                                   | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |
|                                 | 3.97                                                                                          | 4.00                                                                                                                                                                                                                                                                                                                                              | 3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |
| 4.00                            | 3.96                                                                                          | 4.00                                                                                                                                                                                                                                                                                                                                              | 9.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FPM-1                                                                                                                                                                                                                                                                    |
|                                 | 3.96                                                                                          | 4.00                                                                                                                                                                                                                                                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FPM-1<br>FPM-2                                                                                                                                                                                                                                                           |
| 4.00                            | 3.99                                                                                          |                                                                                                                                                                                                                                                                                                                                                   | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                          |
| 4.00                            | 3.96                                                                                          | 4.00                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
| 4.00                            | 4.00                                                                                          |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · <u>-</u> <u>-</u>                                                                                                                                                                                                                                                      |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          |
|                                 | Concentration<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00 | Concentration         Reading           4.00         4.00           4.00         4.00           4.00         4.00           4.00         3.6%           4.00         3.6%           4.00         3.6%           4.00         3.97           4.00         3.97           4.00         3.97           4.00         3.96           4.00         3.96 | Concentration         Reading         Concentration           4.00         4.00           4.00         4.00           4.00         4.00           4.00         4.00           4.00         4.00           4.00         3.6%           4.00         3.6%           4.00         3.6%           4.00         3.9%           4.00         3.9%           4.00         3.9%           4.00         3.9%           4.00         3.9%           4.00         3.9%           4.00         3.9%           4.00         3.9% | ConcentrationReadingConcentrationReading $4.00$ $4.00$ $4.00$ $8.00$ $4.00$ $4.00$ $4.00$ $3.99$ $4.00$ $3.98$ $7.00$ $3.99$ $4.00$ $3.99$ $4.00$ $3.99$ $4.00$ $3.96$ $4.00$ $3.99$ $4.00$ $3.96$ $4.00$ $4.00$ $4.00$ $3.96$ $4.00$ $4.00$ $4.00$ $3.99$ $4.00$ $4.00$ |

| AFCEE | IN OF CUSTODY RECORD |
|-------|----------------------|
| •     | CHAIN 0              |

COC#: \_1\_ SDG#: \_202\_ Cooler ID: \_A\_

| -                                                    |                                                                      |                         |                               | 1                  |                                                   | <b>—</b>    | 1. |                                              | _                                                                                         |                                                                                                                                                         | _                    |                           |   |                       |                         |                                        |         |
|------------------------------------------------------|----------------------------------------------------------------------|-------------------------|-------------------------------|--------------------|---------------------------------------------------|-------------|----|----------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---|-----------------------|-------------------------|----------------------------------------|---------|
| Send Results to: Niels van Hoesel                    | FPM Group<br>153 Brooks Road                                         | Rome, NY 13441          | Phone: (315) 336-7721 Ext 205 |                    | Comments                                          |             |    | nperature:                                   |                                                                                           |                                                                                                                                                         |                      |                           |   | Date:                 | Time:                   | Date:                                  |         |
| Send Result                                          |                                                                      |                         | 1                             | ted                | k nadapace)<br>8 oz glass (zero                   | -           |    | Cooler Temperature:                          |                                                                                           |                                                                                                                                                         |                      |                           |   | #3 Released by: (Sig) | Company Name:           | #3 Received by: (Sig)                  |         |
| moline                                               |                                                                      |                         |                               | Analyses Requested | 40 mL vials (HCL)<br>Alkalinity <sup>nole 4</sup> | -           |    |                                              |                                                                                           |                                                                                                                                                         |                      |                           |   | ⊢                     |                         | t                                      | ļ       |
| e 35 sai                                             |                                                                      |                         | h                             | alvses             | Vlog Jm 022                                       | -           |    |                                              |                                                                                           |                                                                                                                                                         |                      |                           |   | Date: 12/10/08        | 51.21                   | 12/10/21                               |         |
| Buildin                                              |                                                                      | <                       |                               | Ā                  | 40 mL vial (HCI)                                  | ω           |    |                                              |                                                                                           |                                                                                                                                                         |                      |                           |   | Date: 1               | Time:                   | Date: /2                               |         |
| Project Name: Griffiss AFB Site Building 35 sampline | Hoesel                                                               |                         | W llo                         | P                  | No. of<br>Containers                              | 9           |    |                                              | 0.                                                                                        | E                                                                                                                                                       |                      |                           |   | A                     |                         |                                        |         |
| fiss AF                                              | Sampler Name: Niels van Hoesel                                       | .,                      |                               |                    | File/UnFile.                                      | Unf.        |    |                                              | APP 4                                                                                     | lorofor                                                                                                                                                 |                      |                           |   | 1 play                | 14                      | lou Di                                 |         |
| e: Grif                                              | ne: Ni                                                               |                         | Sampler Signature:            |                    | Preservative                                      | HCI         |    |                                              | CEE O                                                                                     |                                                                                                                                                         |                      |                           | - | Pw                    | Company Name: FPM Group | face                                   |         |
| t Nam                                                | er Nan                                                               |                         | er Sigr                       |                    | SACODE                                            | z           |    |                                              | ith AF                                                                                    | oride a                                                                                                                                                 |                      |                           |   | (Sig)                 | EPW                     | (Sig)                                  | ŀ       |
| Projec                                               | Sampl                                                                |                         | Sampl                         |                    | 2BD/2ED                                           | 0/0         |    |                                              | Ince w                                                                                    | TE ONLY                                                                                                                                                 |                      |                           |   | #2 Released by: (Sig) | y Name                  | #2 Received by: (Sig)                  | ;       |
| F                                                    | L                                                                    |                         |                               |                    |                                                   | m           |    |                                              | omplia                                                                                    | E, VII                                                                                                                                                  |                      |                           |   | 42 Relea              | Compan                  | 12 Recei                               |         |
|                                                      |                                                                      | 200                     |                               |                    | ХІЯТАМ                                            | MG          |    |                                              | d in c                                                                                    |                                                                                                                                                         |                      |                           |   |                       |                         | -                                      | ľ       |
|                                                      |                                                                      | )437-0                  |                               |                    | Time                                              | 1150        |    |                                              | nducte                                                                                    |                                                                                                                                                         |                      |                           |   |                       |                         | Date: 12/10/08                         |         |
|                                                      |                                                                      | Tel: (315)437-0200      |                               |                    | 2008                                              | 12/10 1 50  |    | OTY:                                         | to be co                                                                                  | VLFAT                                                                                                                                                   |                      |                           |   | Date:                 | Time:                   | Date:                                  |         |
|                                                      | Life Science Laboratories, Inc.<br>5000 Brittonfield Pkwy, Suite 200 | 4Y 13057 To             |                               |                    | Location ID<br>(LOCID)                            | B035MW04    | ,  | Receipt at Laboral                           | ments: Analyses                                                                           | 6 CHLORIDE, SI                                                                                                                                          |                      |                           |   |                       |                         | 'an Hoesel                             |         |
| Ship to: Pamela Titus                                | Life Science Laboratories, Inc.<br>5000 Brittonfield Pkwy, Suite 3   | East Syracuse, NY 13057 | Carrier: LSL courier.         |                    | Field Sample ID                                   | B035M0416HA |    | Sample Condition Upon Receipt at Laboratory: | Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 4.0 | Note 1: VUC: Interiou 3 w 3200: Larget CUCS: FCE, I CE, UCE, VIDYI Chloride and Chloroform<br>Note 2: Anions: SW9056 CHLORIDE, SULFATE AND NITRATE ONLY | Note 3: TOC: SW9060. | Note 4: Alkalinity: 310.1 |   | #I Released by: (Sig) | Company Name:           | #1 Received by: (Sig) Niels van Hoesel | C Phy C |

<u>MATRIX</u> WG = Ground water WQ = Water Quality Control Matrix SO = Soil

<u>SMCODE</u> B = Bailer

G = Grab (only for EB). NA = Not Applicable (only for AB/TB) PP = Peristaltic Pump BP = Bladder Pump SP = Submersible Pump SS = Split spoon

TB = Trip Blank EB = Equipment Blank FD = Field Duplicate MS = Matrix Spike Duplicate SD = Matrix Spike Duplicate <u>SACODE</u> N = Normal Sample AB = Ambient Blank

Time:

Company Name:

10,12

Time:

15/

Company Name:

Time: 1020

Company Name: FPM Group Ltd

# CHAIN OF CUSTODY RECORD AFCEE

COC#: \_1\_ SDG#: \_201\_ (Open/Closed) Cooler ID#: \_A\_

| Ship to: Pamela Titus<br>Life Science I              | Pamela Titus<br>Life Science Laboratories, Inc.                                                                                        |                       |                         |                    | Pr             | oject 7<br>mpler       | Project Name: G<br>Sampler Name: | Griffiss<br>Justin     | Project Name: Griffiss AFB LF6 LTM<br>Sampler Name: Justin Damann          | LTM                                                            | •                                                                      |                    | Send                                     | Results                                  | to: Niel<br>FPN       | Send Results to: Niels van Hoesel<br>FPM Group Ltd.  | besel<br>Ltd.                               |                                |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|----------------|------------------------|----------------------------------|------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|--------------------|------------------------------------------|------------------------------------------|-----------------------|------------------------------------------------------|---------------------------------------------|--------------------------------|
| 5000 Britte<br>East Syraci                           | 5000 Brittonfield Pkwy, Suite 200<br>East Syracuse, NY 13057 T                                                                         | )0<br>Tel: (31        | 0<br>Tel: (315)437-0200 | )200               |                | _                      |                                  |                        | Muis un                                                                    | Horal                                                          | for                                                                    |                    |                                          |                                          | 153<br>Ron            | 153 Brooks Road<br>Rome, NY 13441                    | Road<br>3441                                |                                |
| Carrier: LSL courier.                                | er.                                                                                                                                    |                       |                         |                    | Sa             | mpler                  | Sampler Signature:               | ture:                  | In all                                                                     | N,                                                             | 1                                                                      |                    |                                          |                                          | Phoi                  | ne: (315)                                            | 336-77:                                     | Phone: (315) 336-7721 Ext. 205 |
|                                                      |                                                                                                                                        |                       |                         |                    |                |                        |                                  | V                      |                                                                            |                                                                | Analyses                                                               | Analyses requested | pa                                       |                                          |                       |                                                      |                                             |                                |
| Field Sample ID                                      | LocID                                                                                                                                  | Date<br>2008          | Time                    | XIATAM             | ZWCODE         | SACODE                 | # of Containers                  | VOCs <sup>note 1</sup> | tals, Hardness <sup>note 2</sup> )<br>ML poly (HNO <sub>3</sub> )          | ) mL poly (HNO <sub>3</sub> )<br>0 mL poly (HNO <sub>3</sub> ) | Phenols <sup>nole 3</sup><br>L amber (H <sub>2</sub> SO <sub>4</sub> ) | 250 mL poly        | 2 mΓ boly (H₂SO₄)<br>[3' COD' TKN note 5 | TOC <sup>note 6</sup><br>0 mL vial (HCL) | BOD <sup>Nole 7</sup> | Alkalinity <sup>Note 8</sup><br>glass (no headspace) | Cyanide <sup>note 9</sup><br>oz poly (NaOH) | Comments                       |
|                                                      |                                                                                                                                        |                       |                         |                    | _              | _                      |                                  |                        | юМе                                                                        | 52(                                                            | T                                                                      | ¥                  |                                          | 4                                        |                       |                                                      | 8                                           |                                |
| TMCM0919KA                                           | TMCMW-9                                                                                                                                | 12/10                 | 1520                    | МG                 | BP             | 0                      | 0/0 11                           | 6                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | 1                                        | 1                                        | 1                     | -                                                    | •                                           |                                |
| LF6SW0101KA                                          | LF6TMCSW-1                                                                                                                             | 12/10                 | 1030                    | WS                 | IJ             | N 0                    | 0/0                              | 3                      | 1                                                                          | 1                                                              | I                                                                      | 1                  | 1                                        | 1                                        | 1                     | -                                                    | •                                           |                                |
| LF6SW0201KA                                          | LF6TMCSW-2                                                                                                                             | 12/10                 | 1045                    | ws                 | IJ             | 0<br>Z                 | 0/0                              | m                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | 1                                        | 1                                        | 1                     | 1                                                    | •                                           |                                |
| LF6SW0301KA                                          | LF6TMCSW-3                                                                                                                             | 12/10                 | 1100                    | ws                 | Ð              | N 0                    | 0/0 11                           | 3                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | 1                                        | 1                                        | -                     | -                                                    | ı                                           |                                |
| LF6LH0101KA                                          | RV-LF6LH-1                                                                                                                             | 12/10                 | 1130                    | МG                 | IJ             | N 0                    | 11 0/0                           | 3                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | -                                        | 1                                        | 1                     | -                                                    | •                                           |                                |
| LF6LH0201KA                                          | RV-LF6LH-2                                                                                                                             | 12/10                 | 1330                    | ЪМ                 | IJ             | 0<br>N                 | 0/0                              | 3                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | 1                                        | 1                                        | 1                     | -                                                    |                                             |                                |
| LF6WT0101KA                                          | WT-LF6WT-1                                                                                                                             | 12/10                 | 1430                    | МG                 | ъ              | 0<br>N                 | 0/0                              | ß                      | 1                                                                          | 1                                                              | 1                                                                      | 1                  | I                                        | 1                                        | 1                     | -                                                    |                                             |                                |
| 121008KE                                             | FIELDQC                                                                                                                                | 12/10                 | 1600                    | δM                 | BP             | EB 0.                  | 0/0                              | 3                      | 1                                                                          | 1                                                              | 1                                                                      | -                  | 1                                        | 1                                        | 1                     |                                                      | ,                                           |                                |
| 121008KF                                             | FIELDQC                                                                                                                                | 12/10                 | 1530                    | δM                 | NA             | AB 0,                  | 0/0 3                            | 3                      |                                                                            | •                                                              | ,                                                                      | •                  | ,                                        | 1                                        | ı                     | •                                                    |                                             |                                |
| 121008KR                                             | FIELDQC                                                                                                                                | 12/10                 | 0945                    | δM                 | NA .           | TB 0.                  | 0/0 3                            | m                      | ,                                                                          | •                                                              | •                                                                      | ,                  | т                                        |                                          | •                     | •                                                    | •                                           |                                |
| Sample Condition L                                   | Sample Condition Upon Receipt at Laboratory:                                                                                           | atory:                |                         |                    |                |                        |                                  |                        |                                                                            |                                                                |                                                                        |                    |                                          | ooler ter                                | Cooler temperature:   | ţ,                                                   |                                             |                                |
| Special Instructions<br>Note 1: VOCs: SW82           | Special Instructions/Comments: Parameter List: (According to AF0<br>Note 1: VOCs: SW8260 AFCEE QAPP 4.0 List + NYS Part 360 Baseline I | er List:<br>.ist + NY | (Accor<br>'S Part 3     | ding to<br>60 Base | AFC<br>Bline P | CEE QAP<br>Parameters. | APP 4<br>ers.                    | .0 and N               | CEE QAPP 4.0 and NYSDEC Landfill Part 360 Baseline Parameters' Parameters. | andfill F                                                      | <sup>3</sup> art 360                                                   | Baseline           | : Parame                                 | ters)                                    | -                     |                                                      |                                             |                                |
| Note 2: Metals: SW6010 A<br>Note 3: Phenols: SW9065. | Note 2: Metals: SW6010 AFCEE QAPP 4.0 List (total). Hardness: 130.2.<br>Note 3: Phenols: SW9065.                                       | LISI (100             | al), Haro               | ness: I.           | 30.2.          |                        |                                  |                        |                                                                            |                                                                |                                                                        |                    |                                          |                                          |                       |                                                      |                                             |                                |

| Note 4:<br>Note 5:<br>Note 6:<br>Note 7:<br>Note 8:<br>Note 9:<br>Note 9: | Note 4: Anions: SW9056, TDS: 160.1, | Note 5: NH3: 350.2, COD: 410.4, TKN: 351.2. | Note 6: TOC: SW9060. | Note 7: BOD: 405.1. | Note 8: Alkalinity: 310.1 | Note 9: Cyanide: SW9012. | Note 10: Metals: SW6010 AFCEE QAPP 4.0 List (Dissolved). |
|---------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|----------------------|---------------------|---------------------------|--------------------------|----------------------------------------------------------|
|                                                                           | Note 4:                             | Note 5:                                     | Note 6:              | Note 7:             | Note 8:                   | Note 9:                  | Note 10:                                                 |

| NOLE IU: METAIS: SWOULU AFLEE QAPP 4.0 LIST (LISSOIVED) | . U LIST (LISSOIVED). | /                                 |                                     |                                      |       |
|---------------------------------------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------------------|-------|
|                                                         |                       | / /                               |                                     |                                      |       |
| #I Released by (Sig)                                    | Date.                 | #2 Released by (Sig) // AMUDUN    | Date: 12/10/08 #3 Released by (Sig) | #3 Released by (Sig)                 | Date  |
| Company Name                                            | Time.                 | Company Name FPM Group Ltd        | Time: 17, 22                        | Company Name:                        | Time. |
| #I Received by (Sig) Niels van Hoesel                   | Date:: 12/3/08        | #2 Received by (Sig) fand Port US | Date / a/11/09                      | Date / w/11/ 01 #3 Received by (Sig) | Date- |
| Company Name: FPM Group Ltd                             | Time: 1000            |                                   | Time 10:15                          | Company Name                         | Tíme: |
|                                                         |                       |                                   |                                     |                                      |       |

|                    | <u>SACODE</u><br>N = Normal Sample |             | <u>SMCODF</u><br>B = Bailer           | 5              | <u>MATRIX</u><br>WG = Ground water    |
|--------------------|------------------------------------|-------------|---------------------------------------|----------------|---------------------------------------|
| y Name             | Time /U:/5 Compan                  | 5           | Company Name C                        | Time: 1000     | Company Name: FPM Group Ltd           |
| ived by (Sig) Date | Date '/a/11/of #3 Received by      | Jan Marillo | Date: : 12/3/08 #2 Received by: (Sig) | Date:: 12/3/08 | #I Received by (Sig) Niels van Hoesel |

| <u>SMCODE</u><br>B = Bailer        | G = Grab (only for EB).           | NA = Not Applicable (only for AB/TB) | PP = Peristaltic Pump | BP = Bladder Pump | $SP \approx Submersible Pump$ | SS = Split Spoon |
|------------------------------------|-----------------------------------|--------------------------------------|-----------------------|-------------------|-------------------------------|------------------|
| <u>MATRIX</u><br>WG = Ground water | WQ = Water Quality Control Matrix | SO = Soil                            |                       |                   |                               |                  |

| AB = Ambient Blank | TB = Trip Blank | EB = Equipment Blank | FD = Field Duplicate | MS = Matrix Spike | SD = Matrix Spike Duplicate |
|--------------------|-----------------|----------------------|----------------------|-------------------|-----------------------------|
|--------------------|-----------------|----------------------|----------------------|-------------------|-----------------------------|

| <b>Daily Health and Safety Meeting Form</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date: 12/10/08 Time: 8:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Location: FPM office (garage)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weather Conditions: 40 5 Cold dropping temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Meeting Type: Daily Health and Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Personnel Present:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Joke Pratt Caleb Smith Josh Wensel Peter Conglians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Visitors Present:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Visitor Training:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PPE Required: Modified D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Possible risks, injuries, concerns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| chip trip fall. Snow/ sheet/ Thin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Anticipated Releases to Environment (if so, describe and detail response action/control measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| implemented):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Property Damage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description (include sequence of events describing step by step how incident happened):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analysis for and Indexed time f() and (Decentral Decentral Decentr |
| Analysis for, and Implementation of Corrective/Preventative Procedure to Prevent Future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Occurrences (to be formulated by SSHO + FOM, approved by PM, and SSHO implemented):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Report made by (Name): Wiels Van Moerel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SSHP Organization Title: Site Safety and Health Officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### **Daily Chemical Quality Control Report**

Project/Delivery Order Number: F41624-03-D-8601-0027 Date: 02/26/09

Project Name/Site Number: Griffiss Petroleum Spills Sites sampling (Site Building 35).

Weather conditions: Average temperature: 50 Average barometric reading: 30.2 Wind direction and speed: East-southeast 2.3 mph Significant wind changes: None.

General description of tasks completed: Bladder pump sampling at Site Building 35 (B035MW-4).

Explain any departures from the SAP or deviations from approved procedures during the day's field activities: None.

Explain any technical problems encountered in the field or field equipment/field analytical instrument malfunction: None.

Corrective actions taken or instructions obtained from AFCEE personnel: No corrective actions necessary.

Sampling shipment completed: √ Yes □ No LSL Courier.

DCQCR Prepared by: Niels van Hoesel, FOMDate: 27 February 2009CQCC Signature:Concordia P. mitoaselDate:222#/09

ATTACHMENTS:

| Checklist | Daily Chemical Quality Control Report Attachments |
|-----------|---------------------------------------------------|
| V         | ✓ Field sampling forms                            |
|           | ✓ Equipment Calibration Log                       |
|           | ✓ Copies of COCs                                  |
|           | ✓ SDG Table (See accompanying COCs)               |
|           | ✓ Daily Health and Safety Meeting Form            |

| Page     | of |  |
|----------|----|--|
| <u> </u> |    |  |

### WELL PURGING & SAMPLING FORM (LOW FLOW)

| Location a                                                                        | 40 · 05<br>and Site Code (SI                                          | TEID):                            |                     | ampled by  | : <u>PC</u>      | JP                   |                      |                                              |     |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|---------------------|------------|------------------|----------------------|----------------------|----------------------------------------------|-----|
| Well No.                                                                          | (LOCID): <b>6</b> 3.5                                                 | nw-4                              | <u> </u>            | Vell Diame | ter (SDIAN       | <b>(</b> ): <u>2</u> |                      |                                              |     |
| Date (LO                                                                          | GDATE): <u>2-</u>                                                     | 26-09                             | W                   | eather:    | 36 .             | overcash             | _                    |                                              |     |
| <u>CASING VOLL</u>                                                                | <u>JME INFORMATION:</u>                                               |                                   |                     |            |                  |                      |                      |                                              |     |
| Casing ID (inch)                                                                  | 1.0                                                                   | 15 2.                             | 0 2.2               | 3.0 4.0    | 43               | 5.0 6.0              | 70 80                | _                                            |     |
| Unit Casing Volum                                                                 | ne (A) (gal/ft) 0 04                                                  | 0.09 0.1                          | 16 0.2              | 0.37 0.65  |                  | 1.0 1.5              | 2.0 2.6              |                                              |     |
| Measured Water L<br>Length of Static W<br>Pump Intake Depth<br>Depth during Purgi | pph (B) (TOTDEPTH)evel Depth (C) (STATDEP)fater Column (D) =(B)n (ft) | (C)                               | fl.<br>fi (o<br>ft  | ptional)   | H <sub>2</sub> O | 1 1                  | ATION<br>SLEV)       |                                              |     |
| FIELD ME                                                                          | e and Method: Bl<br>ppearance/Comn<br>Ferrous Iron (mg<br>EASUREMENTS | LADDER<br>nents: <u>ب</u><br>/L): | e PUMP_<br>0<br>1.7 | anged      | fliw f           |                      | MEAN<br>SEA<br>LEVEL | Rowal Ro<br>milk wh<br>smalls /<br>If RC sol | the |
| Allowable                                                                         |                                                                       | <u>± 0.1</u>                      | <u>± 3%</u>         |            | ± 10%            | ±10%                 | $\pm 10 mV$          | _                                            | •   |
| Time                                                                              | Depth to Water<br>(ft BTOC)                                           | рН                                | EC                  | Temp.      | Turbidity        |                      | ORP                  | Flow Rate<br>(mL/min)                        |     |
| 1100                                                                              |                                                                       | 700                               | (mS/cm)             |            |                  | (mg/L)               | (mV)                 |                                              |     |
| 1/02                                                                              |                                                                       | 7.58<br>8.87                      | <u>43.4</u><br>77.7 | 6.5        | >991             | 3.94                 | 76<br>- 58           | 200                                          |     |
|                                                                                   |                                                                       | 9 14                              | 79.4                | 7.0        | 156              | 1.02                 | -82                  | +                                            |     |
| 1104                                                                              |                                                                       | 9.27                              | 79.7                | 7./        | 118              | 0.76                 | - /00                |                                              |     |
| 1108                                                                              |                                                                       | 9.31                              | 79.3                | 7.1        | 94.9             | 0.77                 | -108                 |                                              |     |
| 110                                                                               |                                                                       | 9.35                              | 78.8                | 7.1        | 76.5             | 0.18                 | -119                 |                                              |     |
| 1/12                                                                              |                                                                       | 9.36                              | 78.8                | 7.1        | 74.1             | 0.66                 | -120                 |                                              | 1   |
| 1114                                                                              |                                                                       | 1.36                              | 78.8                | 2.1        | 70.9             | D.64                 | -124                 |                                              |     |
| Sample Time                                                                       | : <b>//20</b> Samp                                                    | e ID: <u>Bo</u>                   | 35m04               | 1668       |                  |                      |                      |                                              |     |

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

Page \_\_\_\_ of \_\_\_\_

1

# **Equipment Calibration Log**

Instrument Name: Moniba FPM #1

Model Number:

| Date     | First Standard<br>Concentration | First Standard<br>Reading | Second Standard<br>Concentration | Second Standard<br>Reading | Comments |
|----------|---------------------------------|---------------------------|----------------------------------|----------------------------|----------|
| 6-9-08   | - 4                             | 3.99                      | -                                |                            |          |
| 1-1000   | 4.00                            | 3.49                      |                                  |                            |          |
| 6-12-00  | 4.00                            | 3.19                      |                                  |                            |          |
| 6-17-09  | 4.60                            | 4.00                      | 4.00                             | 4.00                       | FPM1_    |
| 6-180    |                                 | 3.97                      | 4.00                             | 4.00                       |          |
| AMBA     | ?                               |                           |                                  |                            |          |
| 9-16-06  | 4,00                            | 3.99                      |                                  |                            |          |
| 9-17-08  | 4.00                            | 3.99                      |                                  |                            |          |
| 9-18-08  | 4.00                            | 4.00                      |                                  |                            |          |
| 112408   | 4.00                            | 4,00                      |                                  |                            |          |
| 5 YHALAA | 400-                            | 344                       |                                  |                            |          |
| 12/90    | 4.00                            | 3.94                      | 4.00                             | 4.00                       |          |
| 12/10    | 4.00                            | 3.88                      | 1.00                             | 3.98                       |          |
| 12/11    | 4.00                            | 3.98                      | 4.00                             | 3.99                       |          |
| 12/12    | 4.00                            | 3.81                      | 4.00                             | 3.98                       |          |
| 12/15    | 4.00                            | 3.96                      | 4.00                             | 3.99                       |          |
| 12/16    | 400                             | 3 68                      | 4.00                             | 3.18                       |          |
| 12/17    | 4.00                            | 3.97                      | 4.00                             | 318                        |          |
| 15(12    | 4100                            | 3.97                      | 4.70                             | 4.00                       |          |
| 17/23    | 4.00                            | 3.99                      | 4.00                             | 4.00                       |          |
| 2-25     | 4.00                            | 4.01                      |                                  |                            |          |
|          |                                 |                           |                                  |                            |          |
|          |                                 |                           |                                  |                            |          |
|          |                                 |                           | L                                | ll                         |          |

| AFCEE | AIN OF CUSTODY RECORD |
|-------|-----------------------|
|       | CHAIN                 |

COC#: \_1\_ SDG#: \_215\_ Cooler ID: \_A\_

| Ship to: Pamela Titus<br>Life Science Laboratories, Inc.<br>5000 Brittonfield Pkwy, Suite :<br>East Syracuse, NY 13057                               | . Inc.                                                                        | 00<br>Tel: (315)437-0200 | 37-02(                                | 0                                                                                                                                                                     | Pro                                                             | Project Name: Griffiss AFB Site I<br>Sampler Name: Niels van Hoesel                                                                                                                | ne: Grit<br>me: Ni | fiss AF<br>iels van     | Project Name: Griffiss AFB Site Building 35 sampling<br>Sampler Name: Niels van Hoesel | uildin<br>A                     | g 35 sar                                                                                                                                                                                                                                                                                                                                             | npling                                                                                                                                                                   | Sei C                                                    | I Result | Send Results to: Niels van Hoesel<br>FPM Group<br>153 Brooks Road<br>Rome, NY 1344 | esel<br>Road<br>344 i         |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|----------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------|------------------------------------------------------------------------------------|-------------------------------|----------|
| Carrier: LSL courier.                                                                                                                                |                                                                               |                          |                                       |                                                                                                                                                                       | San                                                             | Sampler Signature:                                                                                                                                                                 | mature             |                         | - And                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | $\square$                                                |          | Phone: (315)                                                                       | Phone: (315) 336-7721 Ext 205 |          |
|                                                                                                                                                      |                                                                               |                          |                                       |                                                                                                                                                                       |                                                                 |                                                                                                                                                                                    |                    |                         |                                                                                        |                                 | A                                                                                                                                                                                                                                                                                                                                                    | Analyses Requested                                                                                                                                                       | Reque                                                    | sted     |                                                                                    |                               | [        |
| Field Sample ID                                                                                                                                      | Location ID<br>(LOCID)                                                        | Date 2009                | Time                                  | MATRIX                                                                                                                                                                | ZWCODE                                                          | ZVCODE                                                                                                                                                                             | Рессегуаціуе       | רע¤ניור.<br>דיור/טיניור | No. of<br>Containers                                                                   | VOCS Nore I<br>40 mL vial (HCI) | <sup>2 ston</sup> , snoinA<br>Ylog Jm 022                                                                                                                                                                                                                                                                                                            | TOC <sup>note3</sup><br>40 mL vials (HCL)<br>Alkalinity <sup>note4</sup>                                                                                                 | k oz glass (zero                                         |          | Cor                                                                                | Comments                      |          |
| B035M0416GB                                                                                                                                          | B035MW04                                                                      | 2/26 1120                |                                       | MG I                                                                                                                                                                  | 0<br>B                                                          | N 0/0                                                                                                                                                                              | HCI                | I Unf.                  | 7                                                                                      | 3                               | -                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                        | -                                                        |          |                                                                                    |                               |          |
| Samule Condition [Inon Receipt at ] aboratory                                                                                                        | Receipt at Laborato                                                           |                          |                                       |                                                                                                                                                                       |                                                                 |                                                                                                                                                                                    |                    |                         |                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | Ŭ                                                        | oler Te  | Cooler Temperature:                                                                |                               |          |
| Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 4.0                                                            | ments: Analyses to                                                            | o be con                 | ducted                                | in com                                                                                                                                                                | pliance                                                         | with A                                                                                                                                                                             | FCEE               | QAPP 4                  | 0.1                                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                          |          |                                                                                    |                               | <u> </u> |
| Note 1: VOC: method SW 8260: Target COCs: PCE, TCE, DCE, Vinyl Chloride and Chloroform.<br>Note 2: Anions: SW9056 CHLORIDE, SULFATE AND NITRATE ONLY | V 8260: Target CO<br>CHLORIDE, SU                                             | Cs: PCE                  | AND                                   | NITR/                                                                                                                                                                 | Vinyl (                                                         | NLY                                                                                                                                                                                | and Cl             | hlorofoi                | Ē                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                          |          |                                                                                    |                               |          |
| Note 3: TOC: SW9060.                                                                                                                                 |                                                                               |                          |                                       |                                                                                                                                                                       |                                                                 |                                                                                                                                                                                    |                    |                         |                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                          |          |                                                                                    |                               |          |
| Note 4: Alkalinity: 310.1.                                                                                                                           |                                                                               |                          |                                       |                                                                                                                                                                       |                                                                 |                                                                                                                                                                                    |                    |                         |                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                          |          |                                                                                    |                               | _        |
|                                                                                                                                                      |                                                                               |                          |                                       |                                                                                                                                                                       |                                                                 |                                                                                                                                                                                    | 4                  |                         | 160                                                                                    |                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                          |          |                                                                                    |                               |          |
| #1 Released by: (Sig)                                                                                                                                |                                                                               | Dale:                    |                                       | #2 F                                                                                                                                                                  | teleased                                                        | #2 Released by: (Sig)                                                                                                                                                              | III.               | in fills                | 1                                                                                      | Date: 2                         | 2/26/09                                                                                                                                                                                                                                                                                                                                              | #3 R                                                                                                                                                                     | #3 Released by: (Sig)                                    | : (Sig)  |                                                                                    | Date:                         | _        |
| Company Name:                                                                                                                                        |                                                                               | Time:                    |                                       | Соп                                                                                                                                                                   | pany N                                                          | Company Name: FPM                                                                                                                                                                  | Cipoug             | el la                   | W                                                                                      | Time:                           | 11:43                                                                                                                                                                                                                                                                                                                                                | Com                                                                                                                                                                      | Company Name:                                            | :e:      |                                                                                    | Time:                         |          |
| #1 Received by: (Sig) Niels van Hoesel                                                                                                               | an Hoesel                                                                     | Date: 2/21/09            | 21/09                                 |                                                                                                                                                                       | eceived                                                         | #2 Received by: (Sig)                                                                                                                                                              | Taul               | 1 tou                   | 39                                                                                     | Date: 7                         | 10/04                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                        | #3 Received by: (Sig)                                    | r: (Sig) |                                                                                    | Date:                         | _        |
| Company Name: FPM Group Ltd                                                                                                                          | ) Ltd                                                                         | Time: 10200              | 0200                                  | Con                                                                                                                                                                   | Company Name:                                                   | îme:                                                                                                                                                                               |                    | 7                       |                                                                                        | Time:                           | 1:43                                                                                                                                                                                                                                                                                                                                                 | Сош                                                                                                                                                                      | Company Name:                                            | <u>ن</u> |                                                                                    | Time:                         |          |
| <u>MATRIX</u><br>WG = Ground water<br>WQ = Water Quality<br>SO = Soil                                                                                | MATRIX<br>WG = Ground water<br>WQ = Water Quality Control Matrix<br>SO = Soil | *                        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | SMCODE<br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (o)<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon | Applica<br>Applica<br>taltic Pa<br>der Pun<br>tersible<br>spoon | SMCODE<br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (only for AB/TB)<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon | y for AB           | (/TB)                   |                                                                                        |                                 | $\begin{array}{l} \begin{array}{l} \textbf{SACODE} \\ \textbf{N} = \textbf{Norm} \\ \textbf{AB} = \textbf{Amt} \\ \textbf{AB} = \textbf{Amt} \\ \textbf{TB} = \textbf{Trip} \\ \textbf{EB} = \textbf{Equi} \\ \textbf{ED} = \textbf{Field} \\ \textbf{MS} = \textbf{Matr} \\ \textbf{MS} = \textbf{Matr} \\ \textbf{SD} = \textbf{Matr} \end{array}$ | SACODE<br>N = Normal Sample<br>AB = Ambient Blank<br>TB ± Trip Blank<br>EB = Equipment Blank<br>FD = Field Duplicate<br>MS = Matrix Spike<br>SD = Matrix Spike Duplicate | aple<br>Mank<br>Mank<br>Mank<br>icate<br>ike<br>ke Dupli | cate     |                                                                                    |                               |          |

| Date:                                                                                                      |      |
|------------------------------------------------------------------------------------------------------------|------|
| Location: FPM office (garage)                                                                              |      |
| Weather Conditions: 40° Joudy                                                                              |      |
| Meeting Type: Daily Health and Safety                                                                      |      |
| Personnel Present:<br>John Prott Peter Compliano                                                           |      |
| Visitors Present:                                                                                          |      |
| Visitor Training:                                                                                          |      |
| PPE Required: Modified D                                                                                   |      |
| Possible risks, injuries, concerns:                                                                        |      |
| slip hip fall. buses at sampling tocotion                                                                  |      |
| Anticipated Releases to Environment (if so, describe and detail response action/control meas implemented): | ures |
| Property Damage:                                                                                           |      |
| hoe                                                                                                        |      |
| Description (include sequence of events describing step by step how incident happened):                    |      |
| Analysis for, and Implementation of Corrective/Preventative Procedure to Prevent Future                    |      |
| Occurrences (to be formulated by SSHO + $FOM$ , approved by $PM$ , and $SSHO$ implemented):                |      |
|                                                                                                            |      |
| Report made by (Name): News con Horsel                                                                     |      |
| SSHP Organization Title: Site Safety and Health Officer                                                    |      |
|                                                                                                            |      |

# Daily Health and Safety Meeting Form

### **Daily Chemical Quality Control Report**

Project/Delivery Order Number: F41624-03-D-8601-0027 Date: 03/24/09

Project Name/Site Number: Griffiss Petroleum Spills Sites sampling (Site Buildings 35 and 786).

Weather conditions: Average temperature: 29 Average barometric reading: 30.5 Wind direction and speed: North-northwest 2.1 mph Significant wind changes: None.

| General  | description of tasks | completed:   | Bailer sampling  | at Site Building | 786 (786MW-1, -2, - |
|----------|----------------------|--------------|------------------|------------------|---------------------|
| 15, -16, | -31, and 786TW-11    | ). Bladder p | oump sampling at | Site Building 3. | 5 (B035MW-4).       |

Explain any departures from the SAP or deviations from approved procedures during the day's field activities: None.

Explain any technical problems encountered in the field or field equipment/field analytical instrument malfunction: None.

Corrective actions taken or instructions obtained from AFCEE personnel: No corrective actions necessary.

Sampling shipment completed:  $\sqrt{\text{Yes}}$   $\square$  No LSL Courier.

DCQCR Prepared by: Niels van Hoesel, FOM

Date: 26 March 2009

CQCC Signature: \_\_\_\_\_ Date: \_\_\_\_\_

### ATTACHMENTS:

| Checklist | Daily Chemical Quality Control Report Attachments |
|-----------|---------------------------------------------------|
|           | ✓ Field sampling forms                            |
|           | ✓ Equipment Calibration Log                       |
|           | ✓ Copies of COCs                                  |
|           | ✓ SDG Table (See accompanying COCs)               |
|           | ✓ Daily Health and Safety Meeting Form            |

| Page of |
|---------|
|---------|

### WELL PURGING & SAMPLING FORM (LOW FLOW)

| Project:                                                             | 40-05-3                     | 17                                   | S                                                                                                                                                        | ampled by                | r: _ Kin                                      | lines                                            |                                                                           |            |  |  |
|----------------------------------------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|------------|--|--|
| Location                                                             | and Site Code (S            | ITEID):                              |                                                                                                                                                          | 35                       |                                               | 1.100                                            |                                                                           |            |  |  |
|                                                                      | (LOCID): <u>B</u>           |                                      |                                                                                                                                                          |                          |                                               | 2                                                | <u>.                                    </u>                              |            |  |  |
|                                                                      | )GDATE): 3                  |                                      |                                                                                                                                                          |                          |                                               | M): <u>3</u>                                     |                                                                           |            |  |  |
|                                                                      | (GDATE):                    | 24                                   |                                                                                                                                                          | Veather:                 | Stin/                                         | 400                                              |                                                                           |            |  |  |
| <u>CASING VOL</u>                                                    | UME INFORMATION:            |                                      |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
| Casing ID (inch)                                                     |                             | 15                                   | 2.0 2.2                                                                                                                                                  | 30 40                    | 4.3                                           | 50 6.0                                           |                                                                           |            |  |  |
| Unit Casing Volu                                                     | ume (A) (gal/fi) 0 04       | 0.09                                 | 0.16 0.2                                                                                                                                                 | 0.37 0.6                 |                                               | 10 <u>1.5</u>                                    | 70 80<br>2.0 26                                                           | -          |  |  |
|                                                                      | CORMATION:                  |                                      | A (optio                                                                                                                                                 | nal)                     |                                               |                                                  | <b>∓</b>                                                                  | _          |  |  |
|                                                                      | Level Depth (C) (STATDEP)   |                                      |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
| Length of Static V                                                   | Water Column (D) =(B)       | =                                    | Ĥ (o                                                                                                                                                     | ptional)                 | $\sim$                                        | В                                                |                                                                           |            |  |  |
| Pump Intake Dept                                                     | uh (ft)6                    | -                                    | (D)                                                                                                                                                      |                          | н,о                                           |                                                  | ATION<br>ELEV)                                                            |            |  |  |
| Depth during Purg                                                    | ging/Sampling               |                                      | î                                                                                                                                                        |                          |                                               | í                                                |                                                                           |            |  |  |
| Comments (re. D                                                      |                             | ovide range)                         |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
| Comments (re Depth during purging/sampling) STATIC<br>ELEVATION      |                             |                                      |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
|                                                                      | MEAN SEA                    |                                      |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
| Purge Dat                                                            | e and Method: B             | LADDE                                | R PUMP                                                                                                                                                   | 3-21                     | 1-09                                          |                                                  | LEVEL                                                                     |            |  |  |
| Physical A                                                           | Dpearance/Comr              | nents                                | 1000                                                                                                                                                     | V I un                   | es 1                                          | - aran                                           | 6143                                                                      | -          |  |  |
| Dissolved                                                            | Ferrous Iron (mg            | /L):                                 | 2.0                                                                                                                                                      | 2 10 0                   | <u> </u>                                      | Forge                                            |                                                                           | -yec       |  |  |
|                                                                      |                             |                                      |                                                                                                                                                          | - My                     | <u> </u>                                      |                                                  |                                                                           |            |  |  |
| FIELD M                                                              | EASUREMENTS                 |                                      |                                                                                                                                                          |                          |                                               |                                                  |                                                                           |            |  |  |
| Allowable<br>Time                                                    |                             | $\pm 0.1$                            | <u>+ 3%</u>                                                                                                                                              |                          | ± 10%                                         | <u>± 10%</u>                                     | $\pm 10 mV$                                                               |            |  |  |
|                                                                      | Depth to Water<br>(ft BTOC) | pH                                   | EC                                                                                                                                                       | Temp.                    | Turbidity                                     | D.0.                                             | ORP                                                                       | Flow Rate  |  |  |
| 149                                                                  |                             | 7.37                                 | (mS/cm)                                                                                                                                                  | (F or C)                 | (NTU)                                         | (mg/L)                                           | (mV)                                                                      | (mL/min)   |  |  |
| 1421                                                                 |                             | 100                                  |                                                                                                                                                          | 1.2                      | 5.                                            | 12.69                                            | -27                                                                       | <u>aco</u> |  |  |
| 11 (3 45                                                             |                             | 11,50                                | XX                                                                                                                                                       |                          |                                               |                                                  |                                                                           |            |  |  |
| 1423                                                                 |                             | 140                                  | 88.5                                                                                                                                                     | 1.5                      | 3.0                                           | 1.5                                              |                                                                           | <u> </u> - |  |  |
| 1425                                                                 |                             | 740                                  | 37.2<br>35.5                                                                                                                                             | 7.3                      | 74                                            | 1.104                                            | 31                                                                        |            |  |  |
| 1425                                                                 |                             | 740<br>7.47<br>7.42                  | 87.2                                                                                                                                                     | 7.3                      | 84<br>55                                      | 1.104                                            |                                                                           |            |  |  |
| 425                                                                  |                             | 740                                  | 87.2                                                                                                                                                     | - 5                      | 74                                            | 1.56                                             | -31<br>-36<br>-40                                                         |            |  |  |
| 425                                                                  |                             | 7.40<br>7.42<br>7.42<br>7.44<br>7.44 | 87.2<br>85.5<br>84.9<br>84.9<br>84.9<br>84.9<br>8<br>84.9<br>8<br>8<br>8<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9 | 7.3                      | ×4<br>55<br>39                                | 1.104<br>1.136<br>1.136<br>1.187<br>1.54<br>1.47 | -36<br>-40<br>-40<br>-40                                                  |            |  |  |
| 4254                                                                 |                             | 74077.47                             | 87.2<br>85.5<br>84.9<br>87.6<br>82.6<br>82.7                                                                                                             | 7.3<br>7.3<br>7.1<br>7.2 | x 4<br>5 5<br>3 9<br>1 1<br>x 0<br>x 1        | 1.104<br>1.156<br>1.181<br>1.54<br>1.47          | -31<br>-40<br>-40<br>-40<br>-40                                           |            |  |  |
| 425<br>1427<br>1427<br>1427<br>1427<br>1427<br>1427<br>1427<br>1427  |                             | 7.40<br>7.42<br>7.42<br>7.44<br>7.44 | 87.2<br>85.5<br>84.9<br>87.6<br>87.6<br>87.6<br>87.6<br>87.6<br>87.7<br>87.7                                                                             | 77.1                     | × 4<br>5 5<br>3 9<br>1 1<br>2 0<br>2 1<br>3 4 | 1.54<br>1.56<br>1.54<br>1.54<br>1.44<br>0.50     | -31<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-40<br>-54 |            |  |  |
| 14257<br>1427<br>1427<br>1427<br>1427<br>1427<br>1427<br>1427<br>142 |                             | 74077.47                             | 87.2<br>85.5<br>84.9<br>87.6<br>82.6<br>82.7                                                                                                             | 77.17.2                  | x 4<br>5 5<br>3 9<br>1 1<br>x 0<br>x 1        | 1.104<br>1.156<br>1.181<br>1.54<br>1.47          | -31<br>-40<br>-40<br>-40<br>-40                                           |            |  |  |

hig is

121-0-1

1442

Note: Maintain a flow rate of 200-500 mL/min during purging. Purge a minimum of 1L between readings. Collect samples at a flow rate between 100-250 mL/min. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

7.2

0.4

1.20

-67

5

80.8

7.56

,

### WELL PURGING & SAMPLING FORM

| Project:                                                                                                                                                                         | 40-05-                                                                            | 27       | Sa      | mpled by:  |                     |         |            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|---------|------------|---------------------|---------|------------|--|--|
| Location ar                                                                                                                                                                      | nd Site Code (SI                                                                  | FEID):   |         |            |                     |         |            |  |  |
| Well No. (I                                                                                                                                                                      | LOCID):                                                                           | 186 MW - | W       | ell Diamet | or (SDIAM           | n. 2"   |            |  |  |
|                                                                                                                                                                                  |                                                                                   |          | A       |            |                     |         |            |  |  |
| Date (LOG                                                                                                                                                                        | <b>(DATE):</b> <u>3</u> – 7                                                       | x7-0     | W W     | eather:    |                     |         |            |  |  |
| CASING VOLUN                                                                                                                                                                     | 1E INFORMATION:                                                                   |          |         |            |                     |         |            |  |  |
| Casing ID (inch)                                                                                                                                                                 | 1.0                                                                               | 1.5 2.0  | 0 2.2   | 3.0 4.0    | 4.3 5.              | 0 6.0   | 7.0        |  |  |
| Unit Casing Volume                                                                                                                                                               | (A) (gal ft) 0.04                                                                 | 0.09 0.1 | 6 0.2   | 0.37 0.65  | 0.75 1.             | 0 1.5   | 2.0 2.6    |  |  |
| Measured Water I                                                                                                                                                                 | RMATION:<br>epth (B) (TOTDEPTH)<br>.evel Depth (C) (STATE<br>Vater Column (D) =(B | )EP)     | 4. 9/   | n. h       |                     | B       |            |  |  |
| Casing Water Vol                                                                                                                                                                 | ume (E) = x                                                                       | (D) =    | 2.4 gal |            | STATIC<br>ELEVATION |         | EV)        |  |  |
| Minimum Purge Volume = $1.3$ gal (3 well volumes)       MEAN<br>SEA<br>LEVEL         Purge Date and Method: $5a_1b_f - 3-34-02$ Physical Appearance/Comments: $Clear / ho color$ |                                                                                   |          |         |            |                     |         |            |  |  |
| Purge Date                                                                                                                                                                       | and Method:                                                                       | 50       | u let   | / 3-       | 24-00               | 1       |            |  |  |
| Physical A                                                                                                                                                                       | opearance/Comn                                                                    | nents:   | Clear   | / nó       | extor               | •       |            |  |  |
| FIELD ME                                                                                                                                                                         | ASUREMENTS                                                                        | :        |         |            |                     |         |            |  |  |
| Allowable                                                                                                                                                                        |                                                                                   | ± 0.1    |         | ±1°C       |                     |         |            |  |  |
| Time                                                                                                                                                                             | Volume                                                                            | pH       | EC      | Temp.      | Turbidity           |         | ORP        |  |  |
| 127                                                                                                                                                                              | Removed (gal)                                                                     | (m. 7    | (mS/cm) | (F or C)   | (NTU)               | (mg/L)  | (mV)       |  |  |
| 1002                                                                                                                                                                             |                                                                                   | 5.26     | 24.6    | 6.9        | 5512                | SIST    | 12         |  |  |
| 1002                                                                                                                                                                             | <u> </u>                                                                          | 6.04     | 7710    | 718        | 331                 | KIKI-   | $\Delta T$ |  |  |
| 1000                                                                                                                                                                             |                                                                                   | io CT    | 54      | The second | 751                 | 6.7     | 43         |  |  |
|                                                                                                                                                                                  |                                                                                   | 60       | 38.6    | O Th       | 23.9                | 5 Miles | 20         |  |  |
| 1012                                                                                                                                                                             |                                                                                   | 43       | 28.0    | 211-       | IE I                | 5.10    |            |  |  |
| 15                                                                                                                                                                               |                                                                                   | 7.19     | 36.0    | 80         | 21.10               | 517     | ~ 7        |  |  |
| 1017                                                                                                                                                                             | X                                                                                 | 723      | Kia     | 811.       | 34                  | 4.18    | -9         |  |  |
|                                                                                                                                                                                  |                                                                                   |          |         | 9,         | 3                   |         |            |  |  |
|                                                                                                                                                                                  |                                                                                   |          |         | , ii ;     | ***                 |         |            |  |  |
| Sample Time                                                                                                                                                                      | : 1019 Sam                                                                        | ole ID:  | 786M    | 0115P/     | t                   |         |            |  |  |

0

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2*}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

| Page | of |
|------|----|
|      |    |

|                               | 40-05-                                                                                               | · xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sa                                            | mpled by:                       | UL_                               | 1KM         |              |          |
|-------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------|-------------|--------------|----------|
| Location a                    | und Site Code (SI                                                                                    | ГЕID): _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 'B                                          | - 74                            |                                   |             |              |          |
| Well No. (                    | (LOCID): Wi-                                                                                         | T86MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2 W                                          | ell Diamet                      | er (SDIAN                         | <b>I</b> ): | 4            |          |
|                               | GDATE): 3                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                 | (                                 |             |              |          |
|                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                             |                                 |                                   |             |              |          |
| <u>CASING VOLU</u>            | ME INFORMATION:                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                 |                                   |             |              |          |
| Casing ID (inch)              | 1.0                                                                                                  | 1.5 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | 3.0 4.0                         |                                   | .0 6.0      | 7.0          |          |
| Unit Casing Volun             | ne (A) (gal ft) 0.04                                                                                 | 0.09 0_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 02                                          | 0.37 0.65                       | 0.75 1                            | .0 15       | 2.0          | 2.6      |
| PURGING INFO                  | ORMATION:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | <b></b> _                       |                                   | A           |              |          |
|                               | Depth (B) (TOTDEPTH)                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.41.                                         | ň                               | c l                               | <b>† †</b>  |              |          |
|                               | Level Depth (C) (STATE                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                             |                                 |                                   | ,           |              |          |
|                               | Water Column (D) = $(B)$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                 |                                   | B<br>ELEVA1 | TION         |          |
|                               | (B                                                                                                   | I) (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D)                                           |                                 |                                   | (MPEL       |              |          |
| Casing Water Vo               | plume (E) = x                                                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,2 mal                                      |                                 |                                   |             |              |          |
|                               | (A)                                                                                                  | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>E</u>                                      |                                 | STATIC                            | <u> </u>    |              |          |
| Minimum Purge                 | Volume = 33,8 ga                                                                                     | al (3 well volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mes)                                          |                                 | ELEVATION                         |             | MEAN         |          |
| _                             |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | -                               | I                                 |             | SEA<br>LEVEL |          |
| Purge Date                    | e and Method:                                                                                        | bi bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uler                                          | 3-2                             | 4-09                              |             |              |          |
| Physical A                    | ppearance/Comn                                                                                       | ients:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cloud                                         | c1/n                            | é 03.                             | C           |              |          |
|                               |                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                 |                                   |             |              |          |
|                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                 |                                   |             |              |          |
| FIELD MI                      | EASUREMENTS                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | . 100                           |                                   |             |              |          |
| FIELD MI<br>Allowable         | EASUREMENTS<br>Range:                                                                                | $\pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                 | T                                 |             |              | <u> </u> |
| FIELD MI                      | EASUREMENTS<br>Range:<br>Volume                                                                      | 5:<br><u>± 0.1</u><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC                                            | Temp.                           | Turbidity                         |             | OR           | _        |
| FIELD MI<br>Allowable         | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | 5:<br><u>± 0.1</u><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC<br>(mS/cm)                                 |                                 | (NTU)                             | (mg/L)      | OR<br>(m     | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | 5:<br><u>± 0.1</u><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC                                            | Temp.<br>(F or C)               |                                   |             |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | 5:<br><u>± 0.1</u><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC<br>(mS/cm)                                 | Temp.<br>(F or C)               | (NTU)<br>449.0                    | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | + 0.1<br>pH<br>b1 - 3<br>b1 - 3<br>b1 - 0<br>b1 - 2<br>b1 - 2 | EC<br>(mS/cm)<br>23-4<br>25-7                 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | 5:<br><u>± 0.1</u><br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC<br>(mS/cm)<br>23.4<br>25.7<br>26.6<br>27.0 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>449.0                    | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>0<br>13<br>18<br>34<br>34<br>34                  | + 0.1<br>pH<br>b1 - 3<br>b1 - 3<br>b1 - 0<br>b1 - 2<br>b1 - 2 | EC<br>(mS/cm)<br>23-4<br>25-7                 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)                                                     | + 0.1<br>pH<br>b1 - 3<br>b1 - 3<br>b1 - 0<br>b1 - 2<br>b1 - 2 | EC<br>(mS/cm)<br>23.4<br>25.7<br>26.6<br>27.0 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>0<br>13<br>18<br>34<br>34<br>34<br>34<br>35<br>8 | ± 0.1<br>pH<br>01/5<br>6.2k<br>6.2k<br>6.2k<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC<br>(mS/cm)<br>23.4<br>25.7<br>26.6<br>27.0 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>0<br>13<br>18<br>34<br>34<br>34<br>34<br>35<br>8 | ± 0.1<br>pH<br>01/5<br>6.2k<br>6.2k<br>6.2k<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC<br>(mS/cm)<br>23.4<br>25.7<br>26.6<br>27.0 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |
| FIELD MI<br>Allowable<br>Time | EASUREMENTS<br>Range:<br>Volume<br>Removed (gal)<br>0<br>13<br>18<br>34<br>34<br>34<br>34<br>35<br>8 | ± 0.1<br>pH<br>01/5<br>6.2k<br>6.2k<br>6.2k<br>7.25<br>7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC<br>(mS/cm)<br>23.4<br>25.7<br>26.6<br>27.0 | Temp.<br>(F or C)<br>3,6<br>4,0 | (NTU)<br>44.9.0<br>29.99<br>633.0 | (mg/L)      |              | _        |

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

3

¥.

ÿ

| Project:           | 40-05-                  | 27              | Sa                      | mpled by:         | JW                 | KM              |              |       |
|--------------------|-------------------------|-----------------|-------------------------|-------------------|--------------------|-----------------|--------------|-------|
|                    | and Site Code (SI       |                 |                         |                   |                    |                 |              |       |
|                    | (LOCID): <u></u>        |                 |                         |                   |                    | 1): ·           | <u> </u>     |       |
|                    | GDATE): <u> </u>        |                 |                         |                   | 25-1               |                 | ł            |       |
| 2000 (200          |                         |                 |                         |                   | <u></u>            | 2011            |              |       |
| <u>CASING VOLU</u> | ME INFORMATION:         |                 |                         |                   |                    |                 |              |       |
| Casing ID (inch)   | 1.0                     | 1.5 2.0         |                         | 3.0 4.0           | 4.3 5              | 5.0 6.0         | 7.0          | ]     |
| Unit Casing Volun  | ne (A) (gal ft) 0.04    | 0.09 0.1        | 6 0.2                   | 0.37 0.65         | 0.75 1             | 1.0 1.5         | 2.0 2.6      |       |
| PURGING INFO       |                         |                 |                         |                   |                    |                 |              |       |
|                    | Depth (B) (TOTDEPTH)    | -               | 3 11                    | _                 | Ţ                  | [▲ ▲            |              |       |
| Measured Well I    | Depth (B) (TOTDEPTH)    |                 | 1/5                     | h.                | Ì                  |                 |              |       |
| Measured Water     | Level Depth (C) (STATI  | DEP)            | <u>1.6)</u><br>111.06   | .fi. p~           |                    | B               |              |       |
| Length of Static   | Water Column (D) =(E    |                 | = <u> 4[[1]]</u><br>(D) | _ ftH,0           | ı III              | ELEVAT<br>(MPEL |              |       |
|                    |                         |                 | 975                     |                   |                    |                 |              |       |
| Casing Water Vo    | blume(E) = (A) x        | (D) = -         | gal                     |                   |                    |                 |              |       |
|                    | 20                      |                 |                         |                   | ELEVATION          | <b></b>         | MEAN         |       |
| Minimum Purge      | Volume = <u>30</u> g    | al (3 well volu | mes)                    | -                 |                    |                 | SEA<br>LEVEL |       |
| Purge Date         | e and Method:           | ba              | ler                     | / 3/              | 12410              | G               |              |       |
| Physical A         | -<br>oppearance/Comr    | nents:          | clear                   | 1 51.             | ellini             | potro           | odarl        | sheen |
| 1 11 j 01 0 01 1 1 | .pp our un oo, o o mi   |                 | <u>o au</u>             |                   | Ju                 |                 |              |       |
|                    | EASUREMENTS             |                 |                         |                   |                    |                 |              |       |
| Allowable          |                         | ± 0.1           | ± 5%                    | ±1°C              |                    |                 |              |       |
| Time               | Volume<br>Removed (gal) | pH              | EC<br>(mS/cm)           | Temp.<br>(F or C) | Turbidity<br>(NTU) |                 | ORP (mV)     |       |
| 1055               |                         | 6.85            | 115.2                   | 3.3               | 27.5               | (mg/L)          | (mV)<br>58   |       |
| 1057               | 12                      | 6.67            | 16.9                    | 35                | 40.0               | 3.17            | 66           |       |
| 1059               | 18                      | 0.65            | 17.6                    | 3.7               | 4.9                | 1.35            | 60           |       |
| 1101               | 24                      | U.T.T.          | 17.6                    | 317               | 57                 | 10.48           | 47           |       |
| 110-3              | 30                      | 10.87           | 17.3                    | 3.7               | 5.6                | 6.96            | 42           |       |
| 1104               | 31                      | 6.86            | H.4                     | 38                | 4.4                | 7,20            | 39           |       |
|                    |                         |                 |                         |                   |                    |                 | <u> </u>     |       |
|                    |                         |                 |                         |                   |                    |                 | <u> </u>     |       |
|                    |                         |                 |                         |                   |                    |                 |              |       |
| Sample Time        | e: 107 Sam              | ple ID:         | 186M15                  | 509 PA            |                    |                 |              |       |

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2^{\circ}}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

| -J                                                                                                                                     | Project: 40-05-27 Sampled by: Jul KIM                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------|----------------|--|--|--|--|--|--|
| Location and Site Code (SITEID): $\underline{B} = 786$                                                                                 |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| Well No. (LOCID): $\frac{1}{16} - \frac{786}{100} \frac{16}{16}$ Well Diameter (SDIAM): $\frac{11}{16}$                                |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| Date (LOGDATE): $-\frac{3}{24}$ Weather: $\frac{300}{300}$                                                                             |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
|                                                                                                                                        |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| CASING VOLUME INFORMATION:                                                                                                             |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| Casing ID (inch)         10         15         2.0         2.2         3.0         4.0         4.3         5.0         6.0         7.0 |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| Unit Casing Volun                                                                                                                      | ne (A) (gal ft) 0.04                                                 | 0.09 0.1                                                              | 6 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.37 0.65                                            | 0.75 1.                                       | .0 1.5                          | 2.0 2.6        |  |  |  |  |  |  |
| PURGING INFO                                                                                                                           | ORMATION:                                                            |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—</b> —                                           |                                               |                                 |                |  |  |  |  |  |  |
| Manageral Wall I                                                                                                                       |                                                                      | . 2                                                                   | 3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                               | <b>↑ ↑</b>                      |                |  |  |  |  |  |  |
| Mansurad Water                                                                                                                         |                                                                      |                                                                       | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | а.<br>а.                                             |                                               |                                 |                |  |  |  |  |  |  |
| Longth of Statio                                                                                                                       | Weber Celumn (D) =                                                   | DEF)                                                                  | - 18.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                               | B<br>B<br>ELEVAI                | LION           |  |  |  |  |  |  |
| Lengui or Static                                                                                                                       | Depth (B) (TOTDEPTH<br>· Level Depth (C) (STAT<br>Water Column (D) = | (B) (C)                                                               | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н. н <sub>2</sub> с                                  |                                               | (MPEL                           |                |  |  |  |  |  |  |
|                                                                                                                                        |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| Casing water we                                                                                                                        | (E) = (A)                                                            | (D)                                                                   | <u>res</u> gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | STATIC                                        |                                 |                |  |  |  |  |  |  |
| Minimum Purga                                                                                                                          | Volume = 36.15                                                       | gal (3 wall volu                                                      | mach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | ELEVATION                                     |                                 | MEAN           |  |  |  |  |  |  |
| winninum ruige                                                                                                                         |                                                                      | gai (5 weii voiu                                                      | ines)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                    | /                                             |                                 | - SEA<br>LEVEL |  |  |  |  |  |  |
| Purge Date                                                                                                                             | e and Method:                                                        | haile                                                                 | r/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5- au-                                               | 09                                            |                                 |                |  |  |  |  |  |  |
|                                                                                                                                        |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               | - wiel                          | + PP+          |  |  |  |  |  |  |
| Physical Appearance/Comments: <u>le qui Acodoro-Stight PE</u> tro                                                                      |                                                                      |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| , njorour r                                                                                                                            |                                                                      |                                                                       | FIELD MEASUREMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| FIELD M                                                                                                                                | EASUREMENT                                                           |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                               |                                 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT                                                           | ± 0.1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Turbidity                                     |                                 | OPP            |  |  |  |  |  |  |
| FIELD M                                                                                                                                | EASUREMENT<br>Range:<br>Volume                                       | ± 0.1                                                                 | EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temp.                                                | Turbidity<br>(NTU)                            |                                 | ORP<br>(mV)    |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT                                                           | ± 0.1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Turbidity<br>(NTU)                            | D.O.<br>(mg/L)                  | ORP<br>(mV)    |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | ± 0.1                                                                 | EC<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp.<br>(F or C)                                    | -                                             | (mg/L)                          |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp.<br>(F or C)                                    | (NTU)<br>30.5                                 |                                 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp.<br>(F or C)                                    | (NTU)<br>30.5                                 | (mg/L)                          |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp.<br>(F or C)<br>5.9<br>3.5<br>3.8<br>4.0<br>4.0 | (NTU)<br>30.5<br>34.0<br>14.4<br>35.0<br>33.0 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS | Temp.<br>(F or C)                                    | (NTU)<br>30.5<br>34.0<br>19.9                 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS | Temp.<br>(F or C)<br>5.9<br>3.5<br>3.8<br>4.0<br>4.0 | (NTU)<br>30.5<br>34.0<br>14.4<br>35.0<br>33.0 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS | Temp.<br>(F or C)<br>5.9<br>3.5<br>3.8<br>4.0<br>4.0 | (NTU)<br>30.5<br>34.0<br>14.4<br>35.0<br>33.0 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREMENT<br>Range:<br>Volume                                       | $\pm 0.1$<br>pH                                                       | EC<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS | Temp.<br>(F or C)<br>5.9<br>3.5<br>3.8<br>4.0<br>4.0 | (NTU)<br>30.5<br>34.0<br>14.4<br>35.0<br>33.0 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |
| FIELD MI<br>Allowable<br>Time<br>145<br>147<br>(149<br>151<br>153<br>155                                                               | EASUREMENT<br>Range:<br>Volume<br>Removed (gal)                      | ± 0.1<br>pH<br>6, 19<br>6, 96<br>7.47<br>7.47<br>7.70<br>7.78<br>7.80 | EC<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS/cm)<br>(mS | Temp.<br>(F or C)<br>3.9<br>3.8<br>4.0<br>4.0<br>4.0 | (NTU)<br>30.5<br>34.0<br>14.4<br>35.0<br>33.0 | (mg/L)<br>10.46<br>6.00<br>3.51 |                |  |  |  |  |  |  |

)

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2^+}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

|                                                                                                                                          | 40-05-                                                             | JT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sa                                                    | Sampled by: <u>Jw Km</u>                                                                       |                                               |                                                    |                               |   |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------|---|--|--|--|--|--|--|
| Location a                                                                                                                               | nd Site Code ( <b>SI</b> '                                         | TEID):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | B-754                                                                                          |                                               |                                                    |                               |   |  |  |  |  |  |  |
|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | Well Diameter (SDIAM): 2"                                                                      |                                               |                                                    |                               |   |  |  |  |  |  |  |
|                                                                                                                                          | GDATE): <u>3</u> -                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| (                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| CASING VOLUME INFORMATION:                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| Casing ID (inch)         1.0         1.5         2.0         2.2         3.0         4.0         4.3         5.0         6.0         7.0 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| Unit Casing Volum                                                                                                                        | e (A) (gal ft) 0.04                                                | 0.09 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 0.2                                                 | 0.37 0.65                                                                                      | 0.75 1                                        | 0 1.5                                              | 2.0 2.6                       | 5 |  |  |  |  |  |  |
| PURGING INFO                                                                                                                             | RMATION                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               | A                                                  |                               |   |  |  |  |  |  |  |
|                                                                                                                                          | Depth (B) (TOTDEPTH)                                               | 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.58                                                  |                                                                                                |                                               | <b>† †</b>                                         |                               |   |  |  |  |  |  |  |
| Mancurad Watar                                                                                                                           | Level Depth (C) (STATE                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 05                                                 | 0                                                                                              |                                               |                                                    |                               |   |  |  |  |  |  |  |
|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               | B<br>B<br>ELEVAT                                   | TION                          |   |  |  |  |  |  |  |
| congui of Stane                                                                                                                          | Water Column (D) =(B                                               | i) (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D)                                                   | H-C                                                                                            |                                               | (MPEL                                              | -                             |   |  |  |  |  |  |  |
| Casing Water Vo                                                                                                                          | (E) = (A) x                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,70 val                                              |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
|                                                                                                                                          |                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                                                                | STANC                                         | _ <b>v</b>                                         |                               |   |  |  |  |  |  |  |
| Minimum Purge                                                                                                                            | Volume = -5.05 ga                                                  | il (3 well volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mes)                                                  |                                                                                                | ELEVATION                                     |                                                    | MEAN                          |   |  |  |  |  |  |  |
|                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | -                                                                                              |                                               |                                                    | SEA<br>LEVEL                  |   |  |  |  |  |  |  |
| Purge Date and Method: bailey 13124/09                                                                                                   |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| Purge Date                                                                                                                               | and Method:                                                        | Physical Appearance/Comments: Cloudy / No ador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                |                                               |                                                    |                               |   |  |  |  |  |  |  |
| Purge Date<br>Physical A                                                                                                                 | ppearance/Comn                                                     | nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | loude                                                 | × 1 m                                                                                          | odor                                          |                                                    |                               |   |  |  |  |  |  |  |
| Physical A                                                                                                                               | ppearance/Comn                                                     | nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | loude                                                 | j / wa                                                                                         | odor                                          |                                                    |                               |   |  |  |  |  |  |  |
| Physical A                                                                                                                               | ppearance/Comn<br>EASUREMENTS                                      | nents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cour                                                  | j. / Wi                                                                                        | odor                                          |                                                    |                               |   |  |  |  |  |  |  |
| Physical A<br>FIELD MI                                                                                                                   | ppearance/Comn<br>EASUREMENTS<br>Range:<br>Volume                  | $\begin{array}{c} \text{hents:} \\ \pm 0.1 \\ \text{pH} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 5%<br>EC                                            | ±1°C<br>Temp.                                                                                  | Turbidity                                     | D.O.                                               | ORP                           |   |  |  |  |  |  |  |
| Physical A<br>FIELD MI<br>Allowable<br>Time                                                                                              | ppearance/Comn<br>EASUREMENTS<br>Range:                            | $\frac{\pm 0.1}{\text{pH}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 5%<br>EC<br>(mS/cm)                                 | ±1°C<br>Temp.<br>(F or C)                                                                      | Turbidity<br>(NTU)                            | D.O.<br>(mg/L)                                     |                               |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comn<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\frac{\pm 0.1}{\text{pH}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 5%<br>EC<br>(mS/cm)                                 | ±1°C<br>Temp.<br>(F or C)                                                                      | Turbidity<br>(NTU)                            | D.O.<br>(mg/L)                                     | ORP<br>(mV)                   |   |  |  |  |  |  |  |
| Physical A<br>FIELD MI<br>Allowable<br>Time                                                                                              | ppearance/Comn<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \begin{array}{c} \pm 0.1 \\ \hline pH \\ \hline 0.77 \\ \hline 0.77 \\ \hline 0.77 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 5%<br>EC<br>(mS/cm)<br>23,5<br>23,3                 | $\pm 1^{\circ}C$ Temp.<br>(F or C) $\overline{1,2}$ $\overline{2,3}$                           | Turbidity<br>(NTU)<br>716.0<br>363.0          | D.O.<br>(mg/L)                                     | ORP<br>(mV)<br>40<br>47       |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comn<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \begin{array}{c} \pm 0.1 \\ \hline pH \\ \hline 0.7 \\ \hline 0.7 \\ \hline 0.7 \\ \hline 0.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 5%<br>EC<br>(mS/cm)<br>23.5<br>23.3<br>22.9         | $\pm 1^{\circ}C$ Temp.<br>(F or C) $7,2$ $7,9$ $7,9$                                           | Turbidity<br>(NTU)<br>716.0<br>363.0<br>571.0 | D.O.<br>(mg/L)<br>10, 15<br>10, 15                 | ORP<br>(mV)<br>40<br>47<br>48 |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comn<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \begin{array}{c} \pm 0.1 \\ \hline pH \\ \hline 0.77 \\ \hline 0.77 \\ \hline 0.77 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 5%<br>EC<br>(mS/cm)<br>23,5<br>23,3                 | $\pm 1^{\circ}C$ Temp.<br>(F or C) $\overline{1,2}$ $\overline{2,3}$                           | Turbidity<br>(NTU)<br>716.0<br>363.0<br>571.0 | D.O.<br>(mg/L)                                     | ORP<br>(mV)<br>40<br>47       |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \text{hents:} \\ \pm 0.1 \\ \text{pH} \\ \text{o.17} \\ \text$ | + 5%<br>EC<br>(mS/cm)<br>23.5<br>73.3<br>22.9<br>22.9 | $\pm 1^{\circ}C$ Temp.<br>(F or C)<br>$\overline{1,2}$<br>$\overline{7,9}$<br>$\overline{8,0}$ | Turbidity<br>(NTU)<br>716.0<br>363.0          | D.O.<br>(mg/L)<br>10, 34<br>10, 15<br>9, 46<br>134 | ORP<br>(mV)<br>40<br>47<br>48 |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \text{hents:} \\ \pm 0.1 \\ \text{pH} \\ \text{o.17} \\ \text$ | + 5%<br>EC<br>(mS/cm)<br>23.5<br>73.3<br>22.9<br>22.9 | $\pm 1^{\circ}C$ Temp.<br>(F or C)<br>$\overline{1,2}$<br>$\overline{7,9}$<br>$\overline{8,0}$ | Turbidity<br>(NTU)<br>716.0<br>363.0<br>571.0 | D.O.<br>(mg/L)<br>10, 34<br>10, 15<br>9, 46<br>134 | ORP<br>(mV)<br>40<br>47<br>48 |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \text{hents:} \\ \pm 0.1 \\ \text{pH} \\ \text{o.17} \\ \text$ | + 5%<br>EC<br>(mS/cm)<br>23.5<br>73.3<br>22.9<br>22.9 | $\pm 1^{\circ}C$ Temp.<br>(F or C)<br>$\overline{1,2}$<br>$\overline{7,9}$<br>$\overline{8,0}$ | Turbidity<br>(NTU)<br>716.0<br>363.0<br>571.0 | D.O.<br>(mg/L)<br>10, 34<br>10, 15<br>9, 46<br>134 | ORP<br>(mV)<br>40<br>47<br>48 |   |  |  |  |  |  |  |
| FIELD ME<br>Allowable<br>Time                                                                                                            | ppearance/Comm<br>EASUREMENTS<br>Range:<br>Volume<br>Removed (gal) | $\begin{array}{c} \text{hents:} \\ \pm 0.1 \\ \text{pH} \\ \text{o.17} \\ \text$ | + 5%<br>EC<br>(mS/cm)<br>23.5<br>73.3<br>22.9<br>22.9 | $\pm 1^{\circ}C$ Temp.<br>(F or C)<br>$\overline{1,2}$<br>$\overline{7,9}$<br>$\overline{8,0}$ | Turbidity<br>(NTU)<br>716.0<br>363.0<br>571.0 | D.O.<br>(mg/L)<br>10, 34<br>10, 15<br>9, 46<br>134 | ORP<br>(mV)<br>40<br>47<br>48 |   |  |  |  |  |  |  |

Sample Time: 122 Sample ID: 786M3113 PA

λ

Ī

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2^{\circ}}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

| Page | ot | f |
|------|----|---|
|      |    |   |

| Project:                                                                                                                               | Sa                                       | Sampled by: |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-----------|---------|---------|-------------|------|-------------|--------|-------------------|-----------------------|-------------------------|--|--|--|--|
| Location a                                                                                                                             |                                          | 186 786     |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
| Well No. (                                                                                                                             |                                          |             |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
| Date (LOC                                                                                                                              |                                          |             |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
|                                                                                                                                        | JDAIE).                                  | 2-2-        | 1 1       |         |         | camer.      |      | <u>5v /</u> | Juv    |                   |                       |                         |  |  |  |  |
| CASING VOLU                                                                                                                            | CASING VOLUME INFORMATION:               |             |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
| Casing ID (inch)         1.0         1.5         2.0         2.2         3.0         4.0         4.3         5.0         6.0         7 |                                          |             |           |         |         |             |      |             |        |                   | 7,0                   |                         |  |  |  |  |
| Unit Casing Volum                                                                                                                      | ne (A) (gal ft)                          | 0.04        | 0.09      | 0.16    | 02      | 0.37        | 0.65 | 0.75        | 1.0    | 1.5               | 2 0                   | 2.6                     |  |  |  |  |
| PURGING INFO<br>Measured Well I<br>Measured Water<br>Length of Static                                                                  | Depth (B) ( <b>TOT</b><br>Level Depth (C | C) (STATI   | DEP)      | _ (     | .70     | _ft.        | н,о  |             | B      | ELEVA<br>(MPEL    |                       |                         |  |  |  |  |
| Casing Water Vo<br>Minimum Purge<br>Purge Date                                                                                         | Volume =                                 | <u>7</u> ¤  | al (3 wel | l volum | ies)    |             | 2    |             | •      |                   | MEAI<br>— SEA<br>LEVE | L                       |  |  |  |  |
| Purge Date<br>Physical A                                                                                                               | ppearance                                | e/Comr      | nents:    |         | Jon     | ay/         | P=   | en          | nde    | Y                 |                       |                         |  |  |  |  |
| FIELD MI<br>Allowable                                                                                                                  | EASUREN<br>Range:                        | AENTS       |           |         | ± 5%    | <u>+1°(</u> | 5    |             |        |                   |                       |                         |  |  |  |  |
| Time                                                                                                                                   | Volu                                     |             | pł        |         | EC      | Tem         | ·    | Turbidit    |        | ).O.              |                       | RP                      |  |  |  |  |
| 912 G                                                                                                                                  | Removed                                  |             | 614       |         | (mS/cm) | (For        |      |             | (m<br> | $\frac{g/L}{2}$   | (m                    | $\overline{\mathbf{V}}$ |  |  |  |  |
| 950                                                                                                                                    | .75                                      |             | 7.2       | 7       | 18.9    | 15.5        | _    | W7.3        | 5      | <u>7 F</u><br>3 X | 10                    | ά –                     |  |  |  |  |
| 952                                                                                                                                    | 1.25                                     |             | 7.3       | Ϋ́      | 17.9    | 5.3         | >    | 100.0       | 41     | 15                | X                     | 0                       |  |  |  |  |
| 953                                                                                                                                    | 475                                      | 515         | 7.0       | 28      | 17.7    | 51          |      | 134.0       | 4.1    | 61                | 7                     |                         |  |  |  |  |
| 954                                                                                                                                    | 1.7                                      | 5           | 7.        | 18      | 17:5    | 5.0         |      | 68.7        | 4,0    | 48                | 6-                    | <u>}</u>                |  |  |  |  |
|                                                                                                                                        |                                          |             |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |
|                                                                                                                                        |                                          | -           | -         |         |         |             | _    |             | -      | -                 |                       |                         |  |  |  |  |
|                                                                                                                                        |                                          | _           |           |         | _       |             | _    |             | -      |                   |                       |                         |  |  |  |  |
|                                                                                                                                        |                                          |             | 1         |         | -       | <u> </u>    | -    |             |        |                   |                       |                         |  |  |  |  |
| Sample Tim                                                                                                                             | Sample Time: 757 Sample ID: 7867107PA    |             |           |         |         |             |      |             |        |                   |                       |                         |  |  |  |  |

Note: Attempt to get at least 5 sets of field measurements during purging. Sample may be collected after 3 to 5 well volumes have been removed and parameters have stabilized. Sample may be collected after 6 well volumes if parameters do not stabilize. VOC and gas sensitive (e.g. alkalinity,  $Fe^{2^{\circ}}$ ,  $CH_4$ ,  $H_2S$ ) parameters should be sampled first.

# Equipment Calibration Log

Instrument Name: Hunh + 2

Model Number:

| Date     | First Standard<br>Concentration | First Standard<br>Reading | Second Standard | Second Standard<br>Reading | Comments |
|----------|---------------------------------|---------------------------|-----------------|----------------------------|----------|
| 3 10-10  | 4.0                             | 3.95<br>4 01<br>3.98      | 4-0             | 01.00                      |          |
| 3-2304   | 4.0                             | 4 01                      |                 |                            |          |
| 3-14-51  | <u>4.0</u><br>4.0               | 3.98                      | 40              | 3.94                       |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
| ļ        |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          | <u>_</u>                        |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
|          |                                 |                           |                 |                            |          |
| <u> </u> |                                 |                           |                 |                            |          |
|          |                                 |                           |                 | <u> </u>                   |          |
|          |                                 |                           |                 |                            |          |

| AFCEE | AIN OF CUSTODY RECORD |
|-------|-----------------------|
|       | CHAIN                 |

COC#: \_1\_ SDG#: \_209\_ Cooler ID: \_A\_

Project Name: Griffiss AFB Site Building 35 sampling Send Results to: Niels van Hoesel

Ship to: Pamela Titus

|                                                                                             |                               |                    |                                                              |              |                                              | _                                                                                         |                                                                                         |                                             |                      |                           |                       |                        |                   |                                        |                             |                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------|-------------------------------|--------------------|--------------------------------------------------------------|--------------|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|----------------------|---------------------------|-----------------------|------------------------|-------------------|----------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPM Group<br>153 Brooks Road<br>Rome, NY 13441                                              | Phone: (315) 336-7721 Ext 205 | equested           | ineadspace)                                                  |              | Cooler Temperature:                          |                                                                                           |                                                                                         |                                             |                      |                           |                       | (JIC)                  | y Name: Time:     | #3 Received by: (Sig) Date:            | y Name: Time:               | e<br>nk<br>lank<br>tte<br>Duplicate                                                                                                                                                |
|                                                                                             |                               | Analyses Requested | 40 mL vial (HCl)<br>Anions, <sup>note 2</sup><br>250 mL poly | 3 1 2 1      |                                              |                                                                                           |                                                                                         |                                             |                      |                           | 0011014               | 3/24/09                | 111               | Date: 3 /2 4/0 9 #3 Recei              | ne: / 🏷 🎜 🦯 Company Name:   | SACODE<br>N = Normal Sample<br>AB ≈ Ambient Blank<br>TB ≃ Trip Blank<br>EB = Equipment Blank<br>FD ≈ Field Duplicate<br>MS = Matrix Spike<br>SD = Matrix Spike Duplicate           |
| Sampler Name: Niels van Hoesel                                                              |                               |                    | Fill/UnFill.<br>Containers<br>Containers                     | Unf. 7       |                                              | APP 4.0                                                                                   | oroform.                                                                                |                                             |                      |                           | 1.                    | Date:                  | Itd/ Time:        | Var Dat                                | Time:                       | B)                                                                                                                                                                                 |
| e: Niels                                                                                    | ature:                        |                    |                                                              | HCI 1        |                                              | CEE Q4                                                                                    | nd Chlo                                                                                 |                                             |                      |                           |                       | DN MIL                 | GroupJLtg         | 71                                     | LA/                         | SMCODE<br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (only for AB/TB)<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon |
| r Nam                                                                                       | Sampler Signature:            |                    | SACODE                                                       | z            |                                              | ith AF(                                                                                   | oride a                                                                                 | Y.                                          |                      |                           | 10:01                 | (gic)                  | FPN :             | (Sig)                                  |                             | B).<br>s (only f                                                                                                                                                                   |
| Sample                                                                                      | Sample                        |                    | 2BD/2ED                                                      | 0/0          |                                              | ance w                                                                                    | ldl Chl                                                                                 | E ONLY                                      |                      |                           | Land Land             | #2 Nelcascou oy: (alg) | Company Name: FPM | #2 Received by: (Sig)                  | Company Name:               | SMCODE<br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (of<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon              |
| 107                                                                                         | <b>4</b> 1                    |                    | SMCODE                                                       | m            |                                              | omplia                                                                                    | E, Vin                                                                                  | <b>FRAT</b>                                 |                      |                           | the Deler             | 47 VCIC                | Compan            | #2 Rece                                | Compan                      | SMCODE<br>B = Bailer<br>G = Grab (only for F<br>NA = Not Applicabl<br>PP = Peristaltic Pum<br>BP = Bladder Pump<br>SP = Submersible P<br>SS = Split spoon                          |
| 1200                                                                                        |                               |                    | MATRIX                                                       | 3/24 1447 WG |                                              | ed in c                                                                                   | CE, DC                                                                                  | ND NI                                       |                      |                           | ŀ                     | 1                      |                   |                                        |                             | SMCODEB = BailerG = Grab (cNA = Not /PP = PeristBP = BladdSP = SubmSS = Split s                                                                                                    |
| )437-0                                                                                      |                               |                    |                                                              | 1447         |                                              | onduct                                                                                    | CE, TC                                                                                  | TEAD                                        |                      |                           |                       |                        |                   | Date: 2/22/09                          | Time: 10200                 |                                                                                                                                                                                    |
| 0<br>Tel: (315)437-0200                                                                     |                               |                    | Date<br>2(N)9                                                | 3/24         | lory:                                        | to be c                                                                                   | DCs: P                                                                                  | ULFA                                        |                      |                           |                       | nalie:                 | Time:             | Date:                                  | Time                        | .×:                                                                                                                                                                                |
| , Inc.<br>Suite 20                                                                          |                               |                    | Location ID<br>(LOCID)                                       | B035MW04     | Receipt at Labora                            | nments: Analyses                                                                          | W 8260: Target C(                                                                       | Anions: SW9056 CHLORIDE, SULFATE AND NITRAT |                      | 1.                        |                       |                        |                   | van Hoesel                             | ıp Ltđ                      | MATRIX<br>WG = Ground water<br>WQ = Water Quality Control Matrix<br>SO = Soil                                                                                                      |
| Life Science Laboratories, Inc.<br>5000 Brittonfield Pkwy. Suite<br>East Syracuse, NY 13057 | Carrier: LSL courier.         |                    | Field Sample ID                                              | B035M0416HA  | Sample Condition Upon Receipt at Laboratory: | Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 4.0 | Note 1: VOC: method SW 8260: Target COCs: PCE, TCE, DCE, Vinyl Chloride and Chloroform. | Note 2: Anions: SW905                       | Note 3: TOC: SW9060. | Note 4: Alkalinity: 310.1 | #1 Delanard L., (Cia) | # I Keicasen by: (Sig) | Company Name:     | #1 Received by: (Sig) Niels van Hoesel | Company Name: FPM Group Ltd | <u>MATRIX</u><br>WG = Ground water<br>WQ = Water Quality<br>SO = Soil                                                                                                              |

| Ship to: Pamela Titus                                                                        | SI                                                                                                                                                                                   |                            |                                                                                                                         | 4                               | Project Name: Griffiss AFB Building 786 Sampling | ame: Gr        | iffiss AI                                                                       | Build                                                                                              | line 786                                                                                             | Samplic              | ы<br>1                        | Send Results to: Niels van Hoesel             |              |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-----------------------------------------------|--------------|
| Life Science<br>5000 Brittor<br>East Syracus                                                 | Laboratories, Inc.<br>ield Pkwy, Suite 20<br>, NY 13057                                                                                                                              | el: (315)                  | 00<br>Tel: (315)437-0200                                                                                                |                                 | Sampler Name: Daniel Baldyga                     | Vame: I        | Daniel Balo                                                                     | aldyga                                                                                             | a bund for                                                                                           |                      | ρ                             | FPM Group<br>153 Brooks Road<br>Rome NY 13441 |              |
| Carrier: LSL courier.                                                                        |                                                                                                                                                                                      |                            |                                                                                                                         | N N                             | Sampler Signature:                               | ignatur        |                                                                                 | marca                                                                                              | 2                                                                                                    |                      |                               | Phone: (315) 336-7721 ext. 205                | 721 ext. 205 |
|                                                                                              |                                                                                                                                                                                      |                            |                                                                                                                         |                                 |                                                  |                | 1                                                                               | D                                                                                                  |                                                                                                      | Analyse              | Analyses Requested            | tested                                        |              |
| Field Sample ID                                                                              | Location ID (LOCID)                                                                                                                                                                  | Date<br>2009               | Time                                                                                                                    | ХІЯТАМ                          | SMCODE                                           | 2BD/2ED        | SACODE                                                                          | Preservative                                                                                       | Filt./UnFilt.                                                                                        | No. of<br>Containers | VOCs Note 1<br>(HCI preserv.) | Comments                                      |              |
| 786M0115PA                                                                                   | 786MW-1                                                                                                                                                                              | 3/24                       | 1019                                                                                                                    | ÐM                              | m                                                | 0/0            | z                                                                               | HCI                                                                                                | Unf.                                                                                                 | m                    | m                             |                                               |              |
| 786M0209PA                                                                                   | 786MW-2                                                                                                                                                                              | 3/24                       | 1049                                                                                                                    | ВМ                              | m                                                | 0/0            | z                                                                               | HCI                                                                                                | Unf.                                                                                                 | m                    | m                             |                                               |              |
| 786M1509PA                                                                                   | WL-786MW-15                                                                                                                                                                          | 3/24                       | 1107                                                                                                                    | ВМ                              | ß                                                | 0/0            | z                                                                               | HCI                                                                                                | Unf.                                                                                                 | ю                    | m                             |                                               |              |
| 786M1605PA                                                                                   | WL-786MW-16                                                                                                                                                                          | 3/24                       | 1207                                                                                                                    | DM                              | ш                                                | 0/0            | z                                                                               | HCI                                                                                                | Unf.                                                                                                 | ę                    | m                             |                                               |              |
| 786M3113PA                                                                                   | WL-786MW-31                                                                                                                                                                          | 3/24                       | 1229                                                                                                                    | ВМ                              | в                                                | 0/0            | z                                                                               | HCI                                                                                                | Unf.                                                                                                 | m                    | ς<br>ε                        |                                               |              |
| 786T1107PA                                                                                   | PH-786TW-11                                                                                                                                                                          | 3/24                       | 0957                                                                                                                    | МG                              | В                                                | 0/0            | z                                                                               | HCL                                                                                                | Unf                                                                                                  | m                    | 5                             |                                               |              |
| 032409PE                                                                                     | FIELDQC                                                                                                                                                                              | 3/24                       | 1530                                                                                                                    | дw                              | В                                                | 0/0            | EB                                                                              | HCI                                                                                                | Unf.                                                                                                 | ę                    | т                             |                                               |              |
| 032409PF                                                                                     | FIELDQC                                                                                                                                                                              | 3/24                       | 1235                                                                                                                    | ðм                              | NA                                               | 0/0            | AB                                                                              | HCI                                                                                                | Unf.                                                                                                 | m                    | e                             |                                               |              |
| 032409PR                                                                                     | FIELDQC                                                                                                                                                                              | 3/24                       | 2060                                                                                                                    | ЪМ                              | NA                                               | 0/0            | TB                                                                              | HCI                                                                                                | Unf.                                                                                                 | e                    | З                             |                                               |              |
| Sample Condition U                                                                           | Sample Condition Upon Receipt at Laboratory:                                                                                                                                         | tory:                      |                                                                                                                         |                                 |                                                  |                |                                                                                 |                                                                                                    |                                                                                                      |                      |                               | Cooler Temperature:                           |              |
| Special Instructions/<br>Note 1: VOCs – EPA                                                  | Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 4.0 Note 1: VOCs – EPA Superfund TCL (Full List) including naphthalene and all STARS analytes. | to be coi<br>I List) in    | nducted in<br>cluding ne                                                                                                | t complia                       | nce with<br>le and all                           | AFCEE<br>STARS | CAPP analyte                                                                    | 4.0<br>S.                                                                                          |                                                                                                      |                      |                               |                                               |              |
| #1 Released by: (Sig)                                                                        |                                                                                                                                                                                      | Date:                      |                                                                                                                         | #2 Relea                        | #2 Released by: (Sig)                            |                | a above                                                                         |                                                                                                    | Date: 3/24/00                                                                                        | 00/7                 | #3 Rele                       | #3 Released by: (Sig)                         |              |
| Company Name:                                                                                |                                                                                                                                                                                      | Time:                      |                                                                                                                         | Company                         | Company Name: FPW                                |                | Groub Zdd                                                                       |                                                                                                    | Time:                                                                                                | -                    | Compa                         | Company Name: Time:                           | Ü            |
| #1 Received by: (Sig) Niels van Hoesel                                                       | iels van Hoesel                                                                                                                                                                      | Date: 2                    | Date: 2/28/09                                                                                                           | #2 Recei                        | #2 Received by: (Sig.)                           | 1              | No.                                                                             | 5                                                                                                  | Date: 3                                                                                              | 100                  | #3 Reci                       | #3 Received by: (Sig) Date:                   | 23           |
| Company Name: FPM Group Ltd                                                                  | Group Ltd.                                                                                                                                                                           | Time: 1000                 | 1000                                                                                                                    | Company Name:                   | y Name:                                          | Ň              | 2                                                                               |                                                                                                    | Time: /                                                                                              | 32                   | Compa                         | Company Name: Time:                           | e:           |
| <u>MIATRIX</u><br>WG = Ground water<br>WQ = Water Quality<br>SO = Soil<br>WS = Surface water | <u>MATRIX</u><br>WG = Ground water<br>WQ = Water Quality Control Matrix<br>SO = Soil<br>WS = Surface water                                                                           | BB = 0<br>PP = 0<br>PP = 0 | <u>SMICODE</u><br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (only for AB/TB)<br>PP = Peristatic Pump | (or EB),<br>cable (only<br>Pump | for AB/TE                                        | -              | AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>AB<br>A | <u>SACODE</u><br>N = Normal Sample<br>AB = Ambient Blank<br>TB = Trip Blank<br>EB = Equipment Blan | <u>SACODE</u><br>N = Normal Sample<br>AB = Ambient Blank<br>EB = Equip Blank<br>EB = Equipment Blank |                      |                               |                                               |              |

CHAIN OF CUSTODY RECORD AFCEE

G = Grab (only for EB). NA = Not Applicable (only for AB/TB) PP = Peristatic Pump BP = Bladder Pump SP = Submersible Pump SS = Split Spoon

AB = Ambient Blank TB = Trip Blank EB = Equipment Blank FD = Field Duplicate MS = Matrix Spike SD = Matrix Spike Duplicate

# Time: 8:45 Location: FPM office (garage) Weather Conditions: 40 5 Sunny Meeting Type: Daily Health and Safety Personnel Present: Katring mothic Josh Wensel \_\_\_\_\_ Visitors Present: Visitor Training: \_\_\_\_\_ PPE Required: Modified D Possible risks, injuries, concerns: wind brunn Sun burn Anticipated Releases to Environment (if so, describe and detail response action/control measures *implemented*): none Property Damage: Description (include sequence of events describing step by step how incident happened): Analysis for, and Implementation of Corrective/Preventative Procedure to Prevent Future Occurrences (to be formulated by SSHO + FOM, approved by PM, and SSHO implemented): Howel Report made by (Name): Web (ron SSHP Organization Title: Site Safety and Health Officer

# **Daily Health and Safety Meeting Form**

Appendix C Validated Data This page is intentionally left blank.

# FPM-GROUP Data Verification and Usability Report GRIFFISS AIR FORCE BASE Site Griffiss AFB Building 35 Water Sampling Contract No. F41624-03-D-8601

# FPM Project No. 40-05-27

# LSL Job # 0812087

| Laboratory:          | Life Sciences Laboratories, Inc.                           |
|----------------------|------------------------------------------------------------|
| Sample Matrix:       | Water                                                      |
| Number of Samples:   | 1                                                          |
| Analytical Protocol: | AFCEE QAPP, Version 4.0, with AFCEE-approved lab variances |
| Data Reviewer:       | Connie van Hoesel                                          |
| Sample Date:         | December 10, 2008                                          |

# LIST OF DATA VERIFICATION SAMPLES

This verification report pertains to the following environmental samples and corresponding QC samples:

| Sample ID   | Date     | QC Samples | Date |
|-------------|----------|------------|------|
| B035M0416HA | 12/10/08 |            |      |

Notes:

Refer to attached chain-of-custody for detailed sampling information and sample specific analyses requested. HA – Primary environmental samples

### DELIVERABLES

The data deliverable report was per requirements of the AFCEE QAPP 4.0 and approved variances. The report consisted of the following major sections: lab attachment letter, case narrative, chain-of-custody, lab qualifier definitions, analytical results (sheet 2) based on analytical batch, calibration summaries, method blank summaries, laboratory control sample summaries, matrix spike/matrix spike duplicate summaries, holding time forms, performance checks, surrogate and internal standard recoveries, as applicable.

# ANALYTICAL METHODS

The analytical test methods and QA/QC requirements used for the groundwater sample analysis was per methods as specified in the AFCEE Quality Assurance Project Plan, Version 4.0 and AFCEE approved laboratory variances. The analytical methods employed included SW-846: Volatile Organic Compounds (VOC) by Method SW8260B (short list), Anions (chloride and sulfate only) by Method SW9056, Total Organic Carbon (TOC) by Method SW9060, and Alkalinity by Method SM 2320 B. Nitrate was derived from the difference between Nitrate-nitrite via Method 353.2 and nitrite by Method SM 4500-NO2 B.

# **VERIFICATION GUIDANCE**

The analytical work was performed by Life Sciences Laboratories, Inc. in accordance with the Air Force Center for Environmental Excellence (AFCEE), Quality Assurance Project Plan (QAPP), Version 4.0, with AFCEE-approved laboratory variances. The data was verified according to the protocols and QC requirements of the respective analytical methods and of the QAPP Version 4.0. For data usability purposes all values were further evaluated, including positive and non-detect results that were qualified "Q" according to the QAPP. The data usability analysis was based on the reviewer's professional judgment and on an assessment of how this data would fare with respect to the U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for Organic (and Inorganic) Data Review (February 1994), and the AFCEE QAPP, Version 4.0.

# **QA/QC CRITERIA**

The following QA/QC criteria were reviewed, as applicable and available:

- Method detection limits and reporting limits (MDL, RL)
- Holding times, sample preservation and storage
- MS tune performance
- Initial and Continuing calibration summaries
- Second source calibration verification summary
- Method blanks
- Ambient, equipment, and trip blanks (as applicable)

- Field duplicate results
- Surrogate spike recoveries
- Internal standard areas counts and retention times
- Laboratory control samples (LCS)
- Results reported between MDL and RL (F-flag)
- Sample storage and preservation
- Data system printouts
- Qualitative and quantitative compound identification
- Chain-of-custody (COC)
- Case narrative and deliverables compliance

The items listed above were in compliance with AFCEE QAPP and USEPA criteria and protocols <u>with exceptions discussed in the text below</u>. The data have been verified according to the procedures outlined above and qualified accordingly.

### **GENERAL NOTES:**

### MISSING SAMPLES

None. All samples documented on the chain of custody were received by the laboratory. However, the collection time for sample B035M0416HA was not documented on the chain of custody, but was verified per email that it was collected at 11:50 a.m. on 12/10/08.

### **BLANKS**

Whenever blanks, including method, ambient, equipment, and trip, contained low levels of contaminants (between MDL and RL), the laboratory and/or data verifier qualified the subject results with an "F" flag. Since no qualification of associated field samples are required for blanks less than half the RL, no further action was taken in such instances.

# VOLATILE ORGANIC COMPOUNDS (VOCs)

• There were no exceedances for VOCs.

# WET CHEMISTRY ANALYSES

- Due to instrument malfunction, the laboratory sent the nitrate samples to another LSL laboratory for analysis via Method 353.2. This was done in an effort to analyze the nitrate samples within holding time and to avoid the need for reanalysis. The laboratory consulted FPM prior to executing this alternative analysis. Using professional judgment, Method 353.2 was deemed a reasonable alternative, and no further corrective action was deemed necessary. Nitrate results were derived by calculation: the nitrate-nitrite result minus the nitrite result.
- The following blank sample analyses indicated blank contaminants present at concentrations equal to or greater than half the reporting limit (RL). The Blank ID, detected contaminant, and concentration are listed.

| Blank ID               | Analyte  | Concentration (mg/L) | Reporting Limit<br>(mg/L) | Samples<br>Affected                                                    |
|------------------------|----------|----------------------|---------------------------|------------------------------------------------------------------------|
| ICB, ICAL<br>1495      | Chloride | 0.52                 | 1.0                       | None, all associated<br>results greater than 5x<br>blank concentration |
| MB-16250,<br>ICAL 1495 | Chloride | 0.52                 | 1.0                       | None, all associated<br>results greater than 5x<br>blank concentration |
| CCB1, ICAL<br>1495     | Chloride | 0.52                 | 1.0                       | None; not associated with any field sample results                     |
| CCB2, ICAL<br>1495     | Chloride | 0.52                 | 1.0                       | None, all associated<br>results greater than 5x<br>blank concentration |
| CCB3, ICAL<br>1495     | Chloride | 0.52                 | 1.0                       | None; not associated with<br>any field sample results                  |
| CCB4, ICAL<br>1495     | Chloride | 0.52                 | 1.0                       | None; not associated with any field sample results                     |

The purpose of laboratory, equipment or trip blank analysis is to determine the existence and magnitude of contamination resulting from lab or field activities. If contamination is found in blanks the associated sample results for these analytes may be considered suspect. As per the QAPP, based on the blank contaminants present above the RL, results for the specific analytes in the associated environmental samples are qualified with a "B" flag. However, in accordance with the EPA National Functional Guidelines and consistent with AFCEE QAPP Version 4.0, the "B" flag is **not** applied for sample results that are greater than five times (5x) the blank concentration. Thus the "B" flag is only applied to those samples for which the sample result is positive and less than five times (5x) the blank concentration.

**<u>Corrective Action</u>**: "B" flags were not applied to the associated field sample results, since the associated field sample results were more than 5x the associated blank concentrations.

# DATA USABILITY RESULTS

# VOCs

Based on the evaluation of all information in the analytical data groups, the results of the samples for VOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# Wet Chemistry

Based on the evaluation of all information in the analytical data groups, the wet chemistry results are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# AFCEE SUMMARY

All data in Job # 0812087 are valid and usable with qualifications as noted in the data review.

Signed: Concordia van Hoesel

Date: 2/22/09

# **ATTACHMENTS**

- Chain-of-Custody
- Laboratory's Case Narrative
- Definition of AFCEE Data Qualifiers
- Definition of USEPA Data Qualifiers
- Qualified final data verification results on annotated Lab Sheet 2s

#### AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #;            | <u>R15859</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA | 0812087-001A |
|-------------|--------------|

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature: Pamela J. Titus Name: **Project Manager** Title: Date: AFCEE FORM O-1 Page 1 of 1

QAPP 4.0

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method | : <u>SW8260B</u>                | Preparatory Method     | :                   | AAB #:         | <u>R15859</u>    |
|-------------------|---------------------------------|------------------------|---------------------|----------------|------------------|
| Lab Name:         | Life Science Laboratorles, Inc. | Contract #:            |                     |                |                  |
| Field Sample ID:  | B035M0416HA                     | Lab Sample ID:         | <u>0812087-001A</u> | Matrix:        | Groundwater      |
| % Solids:         | <u>Q</u>                        | Initial Calibration ID | : <u>1442</u>       | File ID:       | <u>J7669.D</u>   |
| Data Received:    | <u>11-Dec-08</u>                | Date Extracted:        |                     | Date Analyzed: | <u>16-Dec-08</u> |
| Concentration Uni | ts (ug/L or mg/Kg dry weight):  | <u>ua/L</u>            |                     | Sample Size:   | ՠԼ               |

| tis-1,2-Dichloroethene   | 0.100 | 1.00 | 18.4  | 1   |  |
|--------------------------|-------|------|-------|-----|--|
| Tetrachloroethene        | 0.100 | 1.00 | 0.520 | 1   |  |
| trans-1,2-Dichloroethene | 0.100 | 1.00 | 0.360 | 1   |  |
| Trichloroethene          | 0.100 | 1.00 | 0.450 | 1   |  |
| Vinyt chloride           | 0.330 | 1.00 | 0.670 | 1 1 |  |

|                       |     |          | li san na san sa |
|-----------------------|-----|----------|------------------------------------------------------|
| 1,2-Dichloroethane-d4 | 106 | 72 - 119 |                                                      |
| 4-Bromofluorobenzane  | 97  | 76 - 119 |                                                      |
| Toluene-d8            | 99  | 81 - 120 |                                                      |

| 1,4-Dichlorobenzene-d4 | 382445          | 278829 - 1115316  |
|------------------------|-----------------|-------------------|
| Chlorobenzena-d5       | 590545          | 373282 - 1493128  |
| Fluorobenzene          | <b>161</b> 1835 | 1006889 - 4027556 |

Comments:

QAPP 4.0

· .

Page 1 of 1

UNA 2/22/09

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9056</u>                   | AAB #:            | <u>R16250</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories. Inc. | Contract Number.  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA | 0812087-001B |  |
|-------------|--------------|--|

Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

an

| Name:  | Pamela J. Titus |  |
|--------|-----------------|--|
| Title: | Project Manager |  |

Date:

AFCEE FORM W-1

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | SW9056                     |                     | AAB #:     | R16250 | )              |             |
|---------------------|----------------------------|---------------------|------------|--------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                | Contract#: |        |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:      | 0812087-   | 001B   | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Celibration | ID: 1495   |        |                |             |
| Date Received:      | 11-Dec-08                  | Data Prepared:      |            |        | Date Analyzed: | 06-Jan-09   |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L             |            |        |                |             |

|                  | 建丁建設 |     |    |   |  |
|------------------|------|-----|----|---|--|
| Chloride         | 0.52 | 1.0 | 24 | 1 |  |
| Sulfate (as SO4) | 0.44 | 1.0 | 13 | 1 |  |

Comments:

QAPP 4.0

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9060</u>                   | AAB #:            | <u>R15897</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories. Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | EPM Group     |

|             | and the second |
|-------------|------------------------------------------------------------------------------------------------------------------|
| B035M0416HA | 0812087-001C                                                                                                     |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

Vamelej 1/22/0 Date:

Pamela J. Titus Name:

Title: Project Manager

QAPP 4.0

AFCEE FORM W-1

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:         | SW9060                     |                         | AAB #:           | R1589 | 7              |             |
|----------------------------|----------------------------|-------------------------|------------------|-------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc. Co                 | ntract #:        |       |                |             |
| Fleid Sample ID:           | B035M0416HA                | Lab Sample ID:          | <b>08</b> 12087- | 001C  | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration ID: | 1458             |       |                |             |
| Date Received:             | 11-Dec-08                  | Date Prepared:          |                  |       | Date Analyzed: | 19-Dec-08   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight) | ): mg/L                 |                  |       |                |             |

| Total Organic Catheo |      |     |     |   |                                 |
|----------------------|------|-----|-----|---|---------------------------------|
| Total Organic Carbon | 0.40 | 1.0 | 2.0 | 1 | <u>م الم 1998</u> م من مع دور م |

Comments:

QAPP 4.0

AFCEE FORM W-2

Page 1 of 1

WA 122/29

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>ŞM 2320 B</u>                | AAB #:            | <u>R15894</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories. Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA | 0812087-001D    |
|-------------|-----------------|
| B035M0416HA | 0812087-001DDUP |

| Comme | nts |
|-------|-----|
|-------|-----|

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| S | ia | nal | ur | e |
|---|----|-----|----|---|

Camelof

| Name:  | Pamela J. Titus |
|--------|-----------------|
| Title: | Project Manager |

Date:

QAPP 4.0

AFCEE FORM W-1

AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

η,

| Analytical Method:         | SM 2320 B                  |                        | AAB #:      | R15894 |                |             |
|----------------------------|----------------------------|------------------------|-------------|--------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc.                   | Contract #: |        |                |             |
| Fleid Sample ID:           | B035M0416HA                | Lab Sample ID:         | 0812087-0   | 001D   | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration II | D: 0        |        |                |             |
| Date Received:             | 11-Dec-08                  | Date Prepared:         |             |        | Date Analyzed: | 21-Dec-08   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight) | : mg/L                 |             |        |                |             |

|                    |    | Hindri 🗧 |     |   | 是 大学 一 一 日 |
|--------------------|----|----------|-----|---|------------|
| kalinity, as CaCO3 | 10 | 10       | 280 | 1 |            |

Wit 1/2/09

Comments:

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>E353.2</u>                   | AAB #:            | <u>R15895</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA | 0812087-001B |
|-------------|--------------|

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detalled above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | - Samelet. Liker | Name:  | Pamela J. Titus |  |
|------------|------------------|--------|-----------------|--|
| Date:      | 1/2.2/09         | Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | E353.2                     |                     | AAB #:      | R15895       |                |             |
|---------------------|----------------------------|---------------------|-------------|--------------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                | Contract #: |              |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:      | 0812087-0   | 001 <b>B</b> | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration | ID: 0       |              |                | •           |
| Date Received:      | 11-Dec-08                  | Date Prepared:      |             | [            | Date Analyzed: | 21-Dec-08   |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L              |             |              |                |             |

|                          |       |       |       | Statistics |   |
|--------------------------|-------|-------|-------|------------|---|
| Nitrogen, Nitrate (as N) | 0.050 | 0.050 | 0.050 | 1          | U |

.

.

Comments:

UNA 12/09

# FPM-GROUP Data Verification and Usability Report GRIFFISS AIR FORCE BASE Site Griffiss AFB Building 35 Water Sampling Contract No. F41624-03-D-8601

# FPM Project No. 40-05-27

# LSL Job # 0903143

| Laboratory:          | Life Sciences Laboratories, Inc.                           |
|----------------------|------------------------------------------------------------|
| Sample Matrix:       | Water                                                      |
| Number of Samples:   | 1                                                          |
| Analytical Protocol: | AFCEE QAPP, Version 4.0, with AFCEE-approved lab variances |
| Data Reviewer:       | Connie van Hoesel                                          |
| Sample Date:         | March 24, 2009                                             |

# LIST OF DATA VERIFICATION SAMPLES

This verification report pertains to the following environmental samples and corresponding QC samples:

| Sample ID   | Date    | QC Samples | Date |
|-------------|---------|------------|------|
| B035M0416HA | 3/24/09 |            |      |

Notes:

Refer to attached chain-of-custody for detailed sampling information and sample specific analyses requested. HA – Primary environmental samples

### DELIVERABLES

The data deliverable report was per requirements of the AFCEE QAPP 4.0 and approved variances. The report consisted of the following major sections: lab attachment letter, case narrative, chain-of-custody, lab qualifier definitions, analytical results (sheet 2) based on analytical batch, calibration summaries, method blank summaries, laboratory control sample summaries, matrix spike/matrix spike duplicate summaries, holding time forms, performance checks, surrogate and internal standard recoveries, as applicable.

# ANALYTICAL METHODS

The analytical test methods and QA/QC requirements used for the soil sample analysis was per methods as specified in the AFCEE Quality Assurance Project Plan, Version 4.0 and AFCEE approved laboratory variances. The analytical methods employed included SW-846: Volatile Organic Compounds (VOC) by Method SW8260B (short list), Total Organic Carbon (TOC) by Method SM 5310 B, Total Alkalinity by Method SM 2320 B, and Anions (chloride, nitrate, and sulfate only) by Method SW9056.

# **VERIFICATION GUIDANCE**

The analytical work was performed by Life Sciences Laboratories, Inc. in accordance with the Air Force Center for Environmental Excellence (AFCEE), Quality Assurance Project Plan (QAPP), Version 4.0, with AFCEE-approved laboratory variances. The data was verified according to the protocols and QC requirements of the respective analytical methods and of the QAPP Version 4.0. For data usability purposes all values were further evaluated, including positive and non-detect results that were qualified "Q" according to the QAPP. The data usability analysis was based on the reviewer's professional judgment and on an assessment of how this data would fare with respect to the U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for Organic (and Inorganic) Data Review (February 1994), and the AFCEE QAPP, Version 4.0.

# **QA/QC CRITERIA**

The following QA/QC criteria were reviewed, as applicable and available:

- Method detection limits and reporting limits (MDL, RL)
- Holding times, sample preservation and storage
- MS tune performance
- Initial and Continuing calibration summaries
- Second source calibration verification summary
- Method blanks
- Ambient, equipment, and trip blanks (as applicable)
- Field duplicate results
- Surrogate spike recoveries

- Internal standard areas counts and retention times
- Laboratory control samples (LCS)
- Results reported between MDL and RL (F-flag)
- Sample storage and preservation
- Data system printouts
- Qualitative and quantitative compound identification
- Chain-of-custody (COC)
- Case narrative and deliverables compliance

The items listed above were in compliance with AFCEE QAPP and USEPA criteria and protocols <u>with exceptions discussed in the text below</u>. The data have been verified according to the procedures outlined above and qualified accordingly.

# GENERAL NOTES:

### MISSING SAMPLES

None. All samples documented on the chain of custody were received by the laboratory.

### **BLANKS**

Whenever blanks, including method, ambient, equipment, and trip, contained low levels of contaminants (between MDL and RL), the laboratory and/or data verifier qualified the subject results with an "F" flag. Since no qualification of associated field samples are required for blanks less than half the RL, no further action was taken in such instances.

# VOLATILE ORGANIC COMPOUNDS (VOCs)

• There were no exceedances for VOCs.

# WET CHEMISTRY ANALYTES

• According to the case narrative, sample B035M0416HA was analyzed at a dilution of 1:2 for anions (chloride, nitrate, and sulfate). The dilution results only are reported and are used in data verification as representing original results.

# DATA USABILITY RESULTS

# VOCs

Based on the evaluation of all information in the analytical data groups, the results of the samples for VOCs are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# WET CHEMISTRY ANALYTES

Based on the evaluation of all information in the analytical data groups, the results of the samples for wet chemistry analytes are highly usable with the data qualifiers as noted. Using the verification approach as presented above, the results for all above samples are 100% usable.

# AFCEE SUMMARY

All data in Job # 0903143 are valid and usable with qualifications as noted in the data review.

Signed: Concordin van Hoesel

Date: 4/23/09

# **ATTACHMENTS**

- Chain-of-Custody
- Laboratory's Case Narrative
- Definition of AFCEE Data Qualifiers
- Definition of USEPA Data Qualifiers
- Qualified final data verification results on annotated Lab Sheet 2s

# AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #:            | <u>R16810</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |
|                    |                                 |                   |               |

| Fed Sacple P |              |
|--------------|--------------|
| B035M0416HA  | 0903143-001C |

#### Comments:

0

..... \_\_\_\_\_ \_ \_

\_\_\_\_

| I certify this data package is in compliance with the terms and conditions of the contract, both technically and |
|------------------------------------------------------------------------------------------------------------------|
| for completeness, for other than the conditions detailed above. Release of the data contained in this            |
| hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the         |
| Laboratory Manager's designee, as verified by the following signature.                                           |

| Signature: | Danuelf. Sikes | Name:  | Pamela J. Titus |  |
|------------|----------------|--------|-----------------|--|
| Date:      | 4/9/09         | Title: | Project Manager |  |
| .0         | AFCEF FORM     | 10-1   | Page 1 of 1     |  |

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method | : <u>SW8260B</u>                | Preparatory Method:     | :            | AAB #:         | <u>R16810</u>    |
|-------------------|---------------------------------|-------------------------|--------------|----------------|------------------|
| Lab Name:         | Life Science Laboratories, Inc. | Contract #:             |              |                |                  |
| Field Sample ID:  | B035M0416HA                     | Lab Sample ID:          | 0903143-001C | Matrix:        | Groundwater      |
| % Solids:         | Q                               | initial Calibration ID: | <u>1527</u>  | File ID:       | <u>J8948.D</u>   |
| Date Received:    | <u>25-Mar-09</u>                | Date Extracted:         |              | Date Analyzed: | <u>27-Mar-09</u> |
| Concentration Uni | ts (ug/L or mg/Kg dry weight):  | <u>ug/L</u>             |              | Sample Size:   | <u>_mL</u>       |

| Analyte                  |       |       | Concentration | Eliuson Co |     |
|--------------------------|-------|-------|---------------|------------|-----|
| Chloroform               | 0.100 | 0.500 | 0.100         | 1          | U   |
| cis-1,2-Dichloroethene   | 0.100 | 1.00  | 17.4          | 1          |     |
| Tetrachloroethene        | 0.100 | 1.00  | 0.620         | 1          | l F |
| trans-1,2-Dichloroethene | 0.100 | 1.00  | 0.380         | 1          | F.  |
| Trichloroethene          | 0.100 | 1.00  | 0.520         | 1          | F   |
| Vinyl chloride           | 0.330 | 1.00  | 1.11 /        | 1          |     |

| Surrogate A Qualifier |     |          |  |  |  |  |  |
|-----------------------|-----|----------|--|--|--|--|--|
| 1,2-Dichloroethane-d4 | 105 | 72 - 119 |  |  |  |  |  |
| 4-Bromofluorobenzene  | 88  | 76 - 119 |  |  |  |  |  |
| Toluene-d8            | 105 | 81 - 120 |  |  |  |  |  |

| A TINBEITHAI Std       | rea Counts | Area Coum Limits |  |
|------------------------|------------|------------------|--|
| 1,4-Dichlorobenzene-d4 | 700267     | 269046 - 1076184 |  |
| Chlorobenzene-d5       | 851897     | 373660 - 1494642 |  |
| Fluorobenzana          | 2229089    | 939074 - 3756298 |  |

Comments:

- ---

QAPP 4.0

\_

- -

Page 1 of 1

ent 4/23/29

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9060</u>                   | AAB #:            | <u>R16854</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA | 0903143-001D |
|-------------|--------------|

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

Date:

Banulij. Alglog ditur

| Name:  | Pamela J. Titus |
|--------|-----------------|
| Title: | Project Manager |

AFCEE FORM W-1

### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | SW9060                   | •                       | AAB #:     | R16864         |             |  |
|---------------------|--------------------------|-------------------------|------------|----------------|-------------|--|
| Lab Name:           | Life Science Laboratorie | es, inc. Ce             | ontract #: |                |             |  |
| Field Sample ID:    | B035M0416HA              | Lab Sample ID:          | 0903143-0  | 01D Matrix:    | Groundwater |  |
| % Solids:           | 0                        | Initial Calibration ID: | 1537       |                |             |  |
| Date Received:      | 25-Mar-09                | Date Prepared:          |            | Date Analyzed: | 02-Apr-09   |  |
| Concentration Units | (mg/L or mg/kg dry weig  | iht): mg/L              |            |                |             |  |

|                      |      | in the second se |     |   |  |
|----------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
| Total Organic Carbon | 0.35 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2 | 1 |  |

ENA

Comments:

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SM 2320 B</u>                       | AAB #:            | <u>R16819</u> |
|--------------------|----------------------------------------|-------------------|---------------|
| Lab Name:          | <u>Life Science Laboratories, Inc.</u> | Contract Number:  |               |
| Base/Command:      |                                        | Prime Contractor: | FPM Group     |

|             | 心下心 alle的 道莱利·马尔 |
|-------------|------------------|
| B035M0416HA | 0903143-001A     |

Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: |  |
|------------|--|

Somelef Situr 419109

| Pamela J. Titus |  |
|-----------------|--|
| Project Manager |  |
|                 |  |

Date:

QAPP 4.0

AFCEE FORM W-1

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

.

| Analytical Method:  | SM 2320 B                  |                       | AAE     | 3 <b>#</b> : | R1681 | 9              |             |
|---------------------|----------------------------|-----------------------|---------|--------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                  | Contrac | :1 #:        |       |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:        | 09      | 03143-0      | 01A   | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Callbration I | D: 0    |              |       |                |             |
| Date Received:      | 25-Mar-09                  | Date Prepared:        |         |              |       | Date Analyzed: | 30-Mar-09   |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                |         |              |       |                |             |

|                      |    |    |     |   | 巇 |
|----------------------|----|----|-----|---|---|
| Alkalinity, as CaCO3 | 10 | 10 | 280 | 1 |   |

CMA 4/23/09

Comments:

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9056</u>                          | AAB #:            | <u>R16776</u> |
|--------------------|----------------------------------------|-------------------|---------------|
| Lab Name:          | <u>Life Science Laboratories. Inc.</u> | Contract Number:  |               |
| Base/Command:      |                                        | Prime Contractor: | EPM Group     |

| B035M0416HA | 0903143-001B    |
|-------------|-----------------|
| B035M0416HA | 0903143-001BDUP |
| B035M0416HA | 0903143-001BMS  |
| B035M0416HA | 0903143-001BMSD |

### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

Date:

| Name:  | Pamela J. Titus |
|--------|-----------------|
| Title: | Project Manager |

QAPP 4.0

AFCEE FORM W-1

#### AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:         | SW9056                     |                        | AAB #:     | R16776 | 6              |             |
|----------------------------|----------------------------|------------------------|------------|--------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc. C                 | ontract #: |        |                |             |
| Field Sample ID:           | B035M0416HA                | Lab Sample ID:         | 0903143-4  | 001B   | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration ID | 1528       |        |                |             |
| Date Received:             | 25-Mar-09                  | Date Prepared:         |            |        | Date Analyzed: | 25-Mar-09   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight  | :): mg/L               |            |        |                |             |

| Chloride         | 0.20  | 2.0  | 73    | 2 |   |
|------------------|-------|------|-------|---|---|
| Nitrate (as N)   | 0.020 | 0.20 | 0.020 | 2 | U |
| Sulfate (as SO4) | 0.20  | 2.0  | 2.7   | 2 |   |

ent 1/23/09

Comments:

Appendix D Raw Lab Data This page is intentionally left blank.



Friday, January 30, 2009

Niels van Hoesel FPM Group 153 Brooks Road Rome, NY 13441

TEL:

Project:GRIFFISS AFB - BUILDING 35RE:Analytical Result

Order No.: 0812087

Dear Niels van Hoesel:

Life Science Laboratories, Inc. received 1 sample(s) on 12/11/2008 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

ame

Pamela J. Tritus Project Manager

# Pam Titus

From: van Hoesel, Niels [n.vanhoesel@fpm-group.com]

Sent: Thursday, December 11, 2008 10:58 AM

To: Pam Titus

Subject: RE: bottle order for B781

Hi Pam,

You will see that the time for the B35 sample is missing. That should be 1150. Do you need a revised COC to replace the one Paul has with the coolers? Or can you just write 1150 in that box?

Thanks

Niels D.L. van Hoesel Field Operations Manager

**FPM** group 153 Brooks Road Rome, NY 13441 Phone: (315) 336-7721 ext. 205 Fax: (315) 336-7722

From: Pam Titus [mailto:titusp@lsl-inc.com] Sent: Thursday, December 11, 2008 10:46 AM To: van Hoesel, Niels Subject: RE: bottle order for B781

Thank you!

From: van Hoesel, Niels [mailto:n.vanhoesel@fpm-group.com] Sent: Thursday, December 11, 2008 10:31 AM To: Pam Titus Subject: RE: bottle order for B781

Hi Pam,

Here are the COCs for all the samples we have collected so far.

Thanks

Niels D.L. van Hoesel Field Operations Manager

**FPM** group 153 Brooks Road Rome, NY 13441 Phone: (315) 336-7721 ext. 205 Fax: (315) 336-7722

From: Pam Titus [mailto:titusp@lsl-inc.com] Sent: Thursday, December 11, 2008 10:00 AM To: van Hoesel, Niels Subject: RE: bottle order for B781

Niels - I may have overlooked the Bldg 781 labels. If they were sent, they would have been together with LF6

# Laboratory Report

# Project Management Case Narrative

# INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from FPM, for the Griffiss AFB-Building 35-Rome, NY project.

# CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The cooler(s) were received intact. When the cooler(s) were received by the laboratory, the sample custodian(s) opened and inspected the shipment(s) for damage and custody inconsistencies. Chains of custody documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

Discrepancies noted upon receipt were recorded on the sample receipt checklist in the chain of custody section of the report .The temperature of the cooler was -1.2°C.

# METHODOLOGY

The following methods were used to perform the analyses:

| PARAMETER                   | METHOD             | REFERENCE |
|-----------------------------|--------------------|-----------|
| Volatile Organics           | SW8260B            | 1         |
| Anions – Ion Chromatography | EPA300.0, Rev. 2.1 | 2         |
| TOC                         | SW9060             | 1         |
| Total Alkalinity            | SM2320B            | 3         |
| Nitrate                     | EPA353.2, Rev.2.0  | 2         |
| Nitrate-nitrite             | EPA353.2, Rev.2.0  | 2         |
| Nitrite                     | SM4500-NO2B        | 3         |

- 1) <u>Test Methods for Evaluating Solid Wastes</u>, SW-846 Third Edition, Final Update III, December 1996 (including the QC requirements specified in AFCEE 4.0 + variances).
- 2) <u>Methods for the Determination of Inorganic Substances in Environmental Samples</u>, EPA/600/R-93/100, August 1993.
- 3) <u>Standard Methods for the Examination of Water and Wastewater</u>, 18<sup>th</sup> Edition, 1992

# QUALITY CONTROL

QA/QC results are summarized in the Laboratory Report.

# RAW DATA

The raw data is not requested for this report. Life Science Laboratories, Inc. will keep the raw data on file.

Total # of pages in this report:

Client: Project/Order: Work Order #: , Methodology: FPM Griffiss AFB – Building 35 0812087 8260B

Analyzed/Reviewed by (Initials/Date):

Supervisor/Reviewed by (Initials/Date):

QA/QC Review (Initials/Date):

File Name:

G:\Narratives\MSVoa\0812087msvnar.doc

# **GC/MS Volatile Organics**

The GC/MS Volatile instruments are equipped with a Restek Rtx-VMS, 40 m x 0.18 mm ID capillary column (MS01 & MS03), Restek Rtx-502.2, 105 m x 0.53 mm ID capillary column (MS02), and Restek Rtx-VMS, 60 m x 0.25mm ID capillary column (MS04), and a Vocarb 3000 adsorbent trap.

There were no excursions to note. All QC results were within established control limits.

# **Holding Times and Sample Preservation**

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of  $\leq 2$ :

# Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

# Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

# **Internal Standards**

All internal standard areas met method and/or project specific QC criteria.

# Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

# **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

# Wet Chemistry Case Narrative

1-14-09 mg

Client ID: Project/Order: Work Order #: Methodology: FPM Griffiss AFB – Building 35 0812087 Total Organic Carbon – SW9060 Alkalinity as CaCO3 – SM 2320 B Nitrate (as N) – EPA 353.2\* Nitrate-nitrite (as N) – EPA 353.2 Nitrite (as N) – SM 4500-NO2 B

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials): 1-14-04 m

QA/QC Review (Date/Initials):

Wet Chemistry

# Holding Times

All samples were prepared and analyzed within the method and/or QAPP specified holding times.

# Laboratory Control Sample

All spike recoveries met method and/or project specified QC criteria.

# Sample Duplicate

All sample duplicate RPD data met method and/or project specific QC criteria.

# Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

# **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

# Miscellaneous

\*The nitrate result is a calculation from the differences of nitrate-nitrite minus the nitrite concentration.

# Wet Chemistry Case Narrative

Client ID: Project/Order: Work Order #: Methodology: FPM Griffiss AFB – Building 35 0812087 Anions-Ion Chromatography EPA 300.0

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

Spr Jk 1/30/09

MP

Wet Chemistry

Holding Times All samples were prepared and analyzed within the method and/or QAPP specified holding times.

Laboratory Control Sample All spike recoveries met method and/or project specified QC criteria.

Calibrations All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks All preparation blanks met method and/or project specific QC criteria.

C:\Documents and Settings\pricharddj\Local Settings\Temporary Internet Files\OLKF8\0900073(0812087) IC Narr (3).doc

# Life Science Laboratories, Inc.

Date: 30-Jan-09

| CLIENT:<br>Project:<br>Lab Order: | FPM Group<br>Griffiss AFB - Building 35<br>0812087 |            | Work Order Sa   | mple Summary  |
|-----------------------------------|----------------------------------------------------|------------|-----------------|---------------|
| Lab Sample ID                     | Client Sample ID                                   | Tag Number | Collection Date | Date Received |
| 0812087-001A                      | B035M0416HA                                        | B035MW04   | 12/10/2008      | 12/11/2008    |
| 0812087-001B                      | B035M0416HA                                        | B035MW04   | 12/10/2008      | 12/11/2008    |
| 0812087-001C                      | B035M0416HA                                        | B035MW04   | 12/10/2008      | 12/11/2008    |
| 0812087-001D                      | B035M0416HA                                        | B035MW04   | 12/10/2008      | 12/11/2008    |

# Life Science Laboratories, Inc.

30-Jan-09

|                |                            | ······                 |             |                                     |                     |               |
|----------------|----------------------------|------------------------|-------------|-------------------------------------|---------------------|---------------|
| Lab Order:     | 0812087                    |                        |             |                                     |                     |               |
| <b>Client:</b> | FPM Group                  |                        |             |                                     | DATES REPORT        | RT            |
| Project:       | Griffiss AFB - Building 35 | ling 35                |             |                                     |                     |               |
| Sample ID      | Client Sample ID           | Collection Date        | Matrix      | Test Name                           | TCLP Date Prep Date | Analysis Date |
| 0812087-001A   | B035M0416HA                | 12/10/2008 11:50:00 AM | Groundwater | Volatile Organic Compounds by GC/MS |                     | 12/16/2008    |
| 0812087-001B   |                            |                        |             | Inorganic aníons by IC              |                     | 1/6/2009      |
| ·              |                            |                        |             | Nitrate-nitrite (as N)              |                     | 12/21/2008    |
|                |                            |                        |             | Nitrite (as N)                      |                     | 12/12/2008    |
|                |                            |                        |             | Nitrogen, Nitrate (As N)            |                     | 12/21/2008    |
| 0812087-001C   |                            |                        |             | Totat Organic Carbon                |                     | 12/19/2008    |

12/21/2008

Alkalinity, as CaCO3

0812087-001D

-

# **Chain of Custody**

# **External Chain of Custody**

| CHAIN OF CUSTODY RECORD<br>COC#: _1_SDG#: _202_ Cooler ID: _A_ | Ship to: Pamela TitusProject Name: Griffiss AFB Site Building 35 samplingSend Results to: Niels van HoeselLife Science Laboratories, Inc.Sampler Name: Niels van HoeselFPM Group5000 Brittonfield Pkwy, Suite 200153 Brooks Road153 Brooks RoadEast Syracuse, NY 13057Tel: (315)437-0200NY 1341 | Carrier: LSL courier. Sampler Signature: MM June Phone: (315) 336-7721 Ext 205 | Analyses Requested | انجار المالي الحدد المالي ا | B035M0416HA B035MW04 [12/10 WG B 0/0 N HCl Unf. 6 3 1 1 1 1 0 | Sample Condition Upon Receipt at Laboratory: Sard, Pucked of Sard, Condition Upon Receipt at Laboratory: Sard, Pucked of Sard, Condition Upon Receipt at Laboratory: Sard, Pucked of Sard, Sa |  | Note 1: VOC: method SW 8260: Target COCs: PCE, TCE, DCE, Vinyl Chloride and Chloroform.<br>Note 2: Anions: SW9056 CHLORIDE, SULFATE AND NITRATE ONLY | Note 3: TOC: SW9060. |  | #1 Released by: (Sig) Date: #2 Released by: (Sig) MMMMM Date: 12/10/08 #3 Released by: (Sig) Date: Date: | Croug Ltd A. Time: 18.45 Company Name: | Sig) Hand Include Date: 12/14/05 #3 Received by: (Sigl H Hill | Company Name: FPM Group Ltd Time: 1020 Company Name: LG Time: /0;/5 Company Name 2.0 Time: /400 | MATRIXSMCODESACODEWG = Ground waterB = BailerN = Normal SampleWQ = Water Quality Control MatrixG = Grab (only for EB).N = Normal SampleWQ = Water Quality Control MatrixNA = Not Applicable (only for AB/TB)TB = Ambient BlankPP = Peristaltic PumpPP = Peristaltic PumpEB = Equipment BlankPP = Submersible PumpSD = Split spoonSD = Split spoonSD = Split spoonSD = Matrix Spike Duplicate |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|----------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|----------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

AFCEE

# Life Science Laboratories, Inc.

| Client Name: FPM                                        | ſ                 | Date and Time Received: | 12/11/2008 |
|---------------------------------------------------------|-------------------|-------------------------|------------|
| Work Order Number 0812087                               | 1                 | Received by: ads        |            |
| IN/                                                     | 1)/11/08          | Reviewed by:            | ifti 08    |
| Matrix: Carrier name                                    | e: <u>Courier</u> |                         |            |
| Shipping container/cooler in good condition?            | Yes 🗹             | No Not Present          |            |
| Custody seals intact on shipping container/cooler?      | Yes 🗹             | No Not Present          |            |
| Custody seals intact on sample bottles?                 | Yes               | No Not Present          |            |
| Chain of custody present?                               | Yes 🗹             | No                      |            |
| Chain of custody signed when relinquished and received? | Yes 🗹             | No                      |            |
| Chain of custody agrees with sample labels?             | Yes 🔽             | No                      |            |
| Samples in proper container/bottle?                     | Yes 🗹             | No                      |            |
| Sample containers intact?                               | Yes 🔽             | No                      |            |
| Sufficient sample volume for indicated test?            | Yes 🔽             | No                      | ·          |
| All samples received within holding time?               | Yes 🔽             | No                      |            |
| Container/Temp Blank temperature in compliance?         | Yes 🔽             | Νο                      |            |
| Water - VOA vials have zero headspace?                  | Yes 🔽             | No 🗌 No VOA vials sul   | omitted    |
| Water - pH acceptable upon receipt?                     | Yes 🔽             | No Not Applicable       |            |

| pН              | <u>Preservative</u>  | pH Acceptable          | Sample ID | Volume of Preservative added in Lab. |
|-----------------|----------------------|------------------------|-----------|--------------------------------------|
| >12             | NaOH                 | Yes 🗌 N 🗌 NA 🔽         |           |                                      |
| <2              | HNO3                 | Yes 🗌 N 🗌 NA 🗹         |           |                                      |
| <2              | HSO4                 |                        |           |                                      |
| <2              | 1:1 HCL              | Yes <b>I</b> N □ NA□ ( | 10C)      |                                      |
| 5- <del>9</del> | Pest/PCBs (608/8081) | Yes 🗌 N 🛄 NA 🗹         |           |                                      |
|                 |                      |                        |           |                                      |

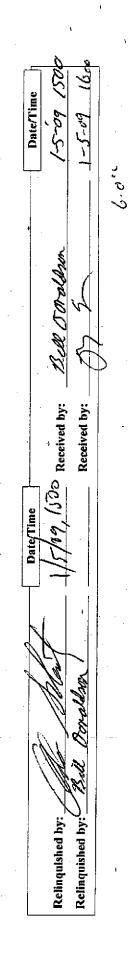
# Comments:

Time of sample collection not recorded on COC.

# Corrective Action::

Sample collected at 11:50 am on 12/10, per client email to pjt on 12/11/2008.

FAX: (315) 437-0377 Life Science Laboratories, Inc. 5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057 TEL: (315) 437-0200


Life Science Laboratories, Inc.

Subcontractor:

**CHAIN-OF-CUSTODY** 

0900073 LSL\_BL

|                  |                            |             |                 |             |          |    | Reg | Requested Tests |  |  |
|------------------|----------------------------|-------------|-----------------|-------------|----------|----|-----|-----------------|--|--|
| Client Sample ID | Client Sample ID Sample ID | Matrix      | Collection Date | Bottle Type | 8W9056   |    |     |                 |  |  |
| B035M0416HA      | 0812087-001B Groundwater   | Groundwater | 12/10/08 11:50  | PE-250ML    | <b>~</b> | 00 |     |                 |  |  |



AFCEE 4.0 deliverables. Include OC data. HOLD TIME UP: 1/7/09 at 11:50 A.M. Please analyze for Chloride and Sulfate.

Comments:

|                                               |           | Sar                   | mple Co        | Sample Control Record | ord     |                |                        |
|-----------------------------------------------|-----------|-----------------------|----------------|-----------------------|---------|----------------|------------------------|
| Sample ID                                     | Frac      | Frac Client Sample ID | Removed<br>By  | Date and Time Removed | Removed | Analysis       | Date and Time Returned |
| (1×17087-60)                                  | Ŷ         |                       | R              | 12/12/08              | 7:0     | Noz            | 2/12 8.20              |
| 0812087 - 001                                 | H         | -                     | Т.<br>Т.       | 12/16/08              | 12:00   | 8260           | NC                     |
| 100-222                                       | <u> </u>  |                       | 0              | 12/19/08              | 10:35   | ter            | 12/19/05 16:00         |
| 100 - Color                                   | 6         |                       | PH.            | BIBIOS                | N50     | ALK7           | 2 21 10/16 U           |
| 100000                                        | 2 4       |                       | 17             | 2010101               | 1050    | NG 100         | 12/101 10 1030         |
| 0819081-20190                                 |           |                       |                |                       |         |                |                        |
| *                                             |           |                       |                |                       |         |                |                        |
|                                               |           |                       |                |                       |         |                |                        |
|                                               | <br>      |                       |                |                       |         |                |                        |
|                                               |           |                       | <br>. <u>.</u> | ·                     |         |                |                        |
|                                               |           |                       |                |                       | ÷       |                |                        |
|                                               |           |                       |                |                       |         | - <del>-</del> |                        |
|                                               | <br>      |                       |                |                       |         |                |                        |
|                                               |           |                       |                | 7                     |         |                |                        |
|                                               |           |                       | 4.             |                       |         |                |                        |
|                                               | -         | -                     |                |                       |         |                |                        |
|                                               | Ohadaa    | on tro                |                | •                     |         | •              | •                      |
| G:/Q/Q/Q/IDTms/GeneralLaboratory/Sign out.vis | טומוטיאיט |                       | •              |                       |         | •              | •                      |

Client/Project FDM 0812087

· · · · ·

# **Analytical Results**

# AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #:            | <u>R15859</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

 Field Sample ID
 Lab Sample ID

 B035M0416HA
 0812087-001A

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Camelel Liker | Name:  | Pamela J. Titus |  |
|------------|---------------|--------|-----------------|--|
| Date:      | 1/22/09       | Title: | Project Manager |  |
| 1          | AFCEE FOR     | M O-1  | Page 1 of 1     |  |

QAPP 4.0

# AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method | : <u>SW8260B</u>                | Preparatory Method     | :             | AAB #:         | <u>R15859</u>    |
|-------------------|---------------------------------|------------------------|---------------|----------------|------------------|
| Lab Name:         | Life Science Laboratories, Inc. | Contract #:            |               |                |                  |
| Field Sample ID:  | B035M0416HA                     | Lab Sample ID:         | 0812087-001A  | Matrix:        | Groundwater      |
| % Solids:         | <u>0</u>                        | Initial Calibration ID | : <u>1442</u> | File ID:       | <u>J7869.D</u>   |
| Date Received:    | <u>11-Dec-08</u>                | Date Extracted:        |               | Date Analyzed: | <u>16-Dec-08</u> |
| Concentration Uni | its (ug/L or mg/Kg dry weight): | <u>µg/L</u>            |               | Sample Size:   | <u>_mL</u>       |

| Analyte                  | MOL   | RL   | Concentration | Dilution | Continu                               | Qualifier |
|--------------------------|-------|------|---------------|----------|---------------------------------------|-----------|
| cis-1,2-Dichloroethene   | 0.100 | 1.00 | 18.4          | 1        |                                       |           |
| Tetrachloroethene        | 0.100 | 1.00 | 0.520         | 1        |                                       | F         |
| trans-1,2-Dichloroethene | 0.100 | 1.00 | 0.360         | 1        | · · · · · · · · · · · · · · · · · · · | F         |
| Trichloroethene          | 0.100 | 1.00 | 0.450         | 1        |                                       | F .       |
| Vinyl chloride           | 0.330 | 1.00 | 0.670         | 1        |                                       | F         |

| Surrogate             | Recovery | Control Limits       | Qualifier:                             |
|-----------------------|----------|----------------------|----------------------------------------|
| 1,2-Dichloroethane-d4 | 106      | 72 - 119             |                                        |
| 4-Bromofluorobenzene  | 97       | 7 <del>6</del> - 119 |                                        |
| Toluene-d8            | 99       | 81 - 120             | ······································ |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 382445      | 278829 - 1115316  |           |
| Chlorobenzene-d5       | 590545      | 373282 - 1493128  |           |
| Fluorobenzene          | 1611835     | 1006889 - 4027556 |           |

Comments:

QAPP 4.0

¢

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9056</u>                   | AAB #:            | <u>R16250</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample D | Lab Sample ID |
|----------------|---------------|
| B035M0416HA    | 0812087-001B  |

# Comments:

----

| I certify this data package is in compliance with the terms and conditions of the contract, both technically and |
|------------------------------------------------------------------------------------------------------------------|
| for completeness, for other than the conditions detailed above. Release of the data contained in this            |
| hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the         |
| Laboratory Manager's designee, as verified by the following signature.                                           |

\_. . . .

\_\_\_\_^ · · \_\_\_\_

\_\_\_\_\_

| Signature: | Caneld Jikes | Name:  | Pamela J. Titus |  |
|------------|--------------|--------|-----------------|--|
| Date:      | 1/29/09      | Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:         | SW9056                 |                         | AAB #:     | R16250         |             |
|----------------------------|------------------------|-------------------------|------------|----------------|-------------|
| Lab Name:                  | Life Science Laborator | ries, Inc. Co           | ontract #: |                |             |
| Field Sample ID:           | B035M0416HA            | Lab Sample ID:          | 0812087-0  | 001B Matrix:   | Groundwater |
| % Solids:                  | 0                      | Initial Calibration ID: | 1495       |                |             |
| Date Received:             | 11-Dec-08              | Date Prepared:          |            | Date Analyzed: | 06-Jan-09   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry we  | ight): mg/L             |            |                |             |

| Analyte          | MOL  | RL  | Somentration | Ollution | Qualifier |
|------------------|------|-----|--------------|----------|-----------|
| Chloride         | 0.52 | 1.0 | 24           | 1        |           |
| Sulfate (as SO4) | 0.44 | 1.0 | 13           | 1        |           |

Comments:

AFCEE FORM W-2

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9060</u>                   | AAB #:            | <u>R15897</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM_Group     |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

Vamelef. Sites 1/22/05 Date:

Pamela J. Titus Name:

Title: **Project Manager** 

QAPP 4.0

AFCEE FORM W-1

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | SW9060                     |                        | AAB #:      | R1589 | 7              |             |
|---------------------|----------------------------|------------------------|-------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc. C                 | Contract #: |       |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:         | 0812087-    | 001C  | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration ID | : 1458      |       |                |             |
| Date Received:      | 11-Dec-08                  | Date Prepared:         |             |       | Date Analyzed: | 19-Dec-08   |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                 |             |       |                |             |

| Anglera              | MOL  | BL I | <b>Contention</b> | Dibution | Qualiter |
|----------------------|------|------|-------------------|----------|----------|
| Total Organic Carbon | 0.40 | 1.0  | 2.0               | 1        |          |

Comments:

QAPP 4.0

AFCEE FORM W-2

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SM 2320 B</u>                | AAB #:            | <u>R15894</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample ID | Lab SampladD    |
|-----------------|-----------------|
| B035M0416HA     | 0812087-001D    |
| B035M0416HA     | 0812087-001DDUP |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Pamelop- Jetter | Name:  | Pamela J. Titus |  |
|------------|-----------------|--------|-----------------|--|
| Date:      | 1/22/09         | Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:         | SM 2320 B                  |                         | AAB #:     | R15894 | 4              |             |
|----------------------------|----------------------------|-------------------------|------------|--------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, | Inc. Ce                 | ontract #: |        |                |             |
| Field Sample ID:           | B035M0416HA                | Lab Sample ID:          | 0812087-   | 001D   | Matrix:        | Groundwater |
| % Solids:                  | 0                          | Initial Calibration ID: | 0          |        |                |             |
| Date Received:             | 11-Dec-08                  | Date Prepared:          |            |        | Date Analyzed: | 21-Dec-08   |
| <b>Concentration Units</b> | (mg/L or mg/kg dry weight) | : mg/L                  |            |        |                |             |

| Anapre               | MDL |    |     |   | Qualifier |
|----------------------|-----|----|-----|---|-----------|
| Alkalinity, as CaCO3 | 10  | 10 | 280 | 1 |           |

Comments:

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>E353.2</u>                   | AAB #:            | <u>R15895</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| B035M0416HA     | 0812087-001B  |
|-----------------|---------------|
| Field Sample ID | Leb Sample ID |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: |  |  |
|------------|--|--|
|------------|--|--|

| - Comelet. Litur | Name   |
|------------------|--------|
| 1/22/09          | Title: |

\_

| ame: | Pamela J. Titus |  |  |  |
|------|-----------------|--|--|--|
| tle: | Project Manager |  |  |  |

Date:

AFCEE FORM W-1

Page 1 of 1

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | E353.2                     |                       | AAB #:      | R15895 | 5              |             |
|---------------------|----------------------------|-----------------------|-------------|--------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc.                  | Contract #: |        |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:        | 0812087-0   | D01B   | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration I | <b>D:</b> 0 |        |                | · .         |
| Date Received:      | 11-Dec-08                  | Date Prepared:        |             |        | Date Analyzed: | 21-Dec-08   |
| Concentration Units | (mg/L or mg/kg dry weight  | t): mg/L              |             |        |                |             |

| Analyte                  | MOL   | R     | Sentennen | Dilution | Cuanner |
|--------------------------|-------|-------|-----------|----------|---------|
| Nitrogen, Nitrate (as N) | 0.050 | 0.050 | 0.050     | 1        | U       |

Comments:

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>E353.2</u>                   | AAB #:            | <u>R15907B</u> |
|--------------------|---------------------------------|-------------------|----------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |                |
| Base/Command:      |                                 | Prime Contractor: | FPM Group      |

| Field Sample ID | Lab Sample 10 |
|-----------------|---------------|
| B035M0416HA     | 0812087-001B  |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Yonelop, Situr | Name:  | Pamela J. Titus |
|------------|----------------|--------|-----------------|
| Date:      | 1/22/09        | Title: | Project Manager |

QAPP 4.0

AFCEE FORM W-1

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:    | E353.2                       |                       | AAB #:      | R15907B |               |             |
|-----------------------|------------------------------|-----------------------|-------------|---------|---------------|-------------|
| Lab Name:             | Life Science Laboratories, I | nc.                   | Contract #: |         |               |             |
| Field Sample ID:      | B035M0416HA                  | Lab Sample ID:        | 0812087-0   | 01B     | Matrix:       | Groundwater |
| % Solids:             | 0                            | Initial Calibration I | D: 1464     |         |               |             |
| Date Received:        | 11-Dec-08                    | Date Prepared:        |             | Da      | ate Analyzed: | 21-Dec-08   |
| Concentration Units ( | ng/L or mg/kg dry weight):   | mg/L                  |             |         |               |             |

| Apalyte                | MDL    | RL    | Concentration | Dilution | Qualifier |
|------------------------|--------|-------|---------------|----------|-----------|
| Nitrate-nitrite (as N) | 0.0074 | 0.050 | 0.022         | 1        | F         |

Comments:

QAPP 4.0

AFCEE FORM W-2

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SM 4500-NO2 B</u>            | AAB #:            | <u>R15779</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Exit Sangerp | Lab Semple ID |
|--------------|---------------|
| B035M0416HA  | 0812087-001B  |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Comelet. Ficher |
|------------|-----------------|
| Date:      | 1/22/09         |

2

| Name:  | Pamela J. Titus |
|--------|-----------------|
| Title: | Project Manager |

QAPP 4.0

AFCEE FORM W-1

# AFCEE WET CHEM ANALYSES DATA SHEET 2 RESULTS

| Analytical Method:  | SM 4500-NO2 B              |                        | AAB #:     | R1577 | 9              |             |
|---------------------|----------------------------|------------------------|------------|-------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | Inc. C                 | ontract #: |       |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:         | 0812087-   | 001B  | Matrix:        | Groundwater |
| % Solids:           | 0                          | Initial Calibration ID | : 1347     |       |                |             |
| Date Received:      | 11-Dec-08                  | Date Prepared:         |            |       | Date Analyzed: | 12-Dec-08   |
| Concentration Units | (mg/L or mg/kg dry weight) | : ma/L                 |            |       |                |             |

| a Anatyze      | MOL   | 81    | Concentration | Dilution | Cualifier |
|----------------|-------|-------|---------------|----------|-----------|
| Nitrite (as N) | 0.010 | 0.020 | 0.010         | 1        | U         |

# Comments:

OAPP 4.0

AFCEE FORM W-2

# **Quality Control Results**

# **GC/MS Volatile Organics Data**

# AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

| Analytical Method:      | <u>8260B</u>                    | AAB #:                                    | <u>R15738</u> |
|-------------------------|---------------------------------|-------------------------------------------|---------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:                               |               |
| Instrument ID:          | <u>MS03_10</u>                  | Date of Initial Calibration:              | 05-DEC-08     |
| Initial Calibration ID: | <u>1442</u>                     | Concentration Units (ug/L or mg/kg): ug/L |               |

SEE ATTACHED

Comments:

Method : C:\HPCHEM\1\METHODS\JD05VOCW.M (RTE Integrator) Title: VOC's w/Restek Rtx-VMS, 0.18 mm x 40 m, 1.0 dfLast Update: Fri Dec 26 10:11:08 2008 1CAL 1442 Response via : Initial Calibration Calibration Files 2.0 0.5 =J7706.D 1.0 =J7707.D =J7708.D 10 =J7709.D 20 =J7711.D 30 =J7712.D 0.5 1.0 2.0 10 20 30 Avq %RSD Compound \_\_\_\_\_ Fluorobenzene -----ISTD-----ISTD-----1) I Dichlorodifluoromet 0.344 0.319 0.320 0.374 0.408 0.401 0.367 2) 10.60 3) PChloromethane0.3570.3700.3730.3790.3800.3640.3673.264) CPVinyl chloride0.2240.2310.2150.2330.2370.2350.2293.285)Bromomethane0.2690.2340.2120.2220.2210.2318.75 0.269 0.234 0.212 0.222 0.221 0.231 5) Bromomethane 0.173 0.178 0.180 0.189 0.193 0.190 0.185 4.16 6) Chloroethane Trichlorofluorometh 0.353 0.356 0.361 0.386 0.388 0.385 0.373 4.12 7) 8) CPM 1,1-Dichloroethene 0.242 0.229 0.224 0.243 0.249 0.249 0.240 4.18 Carbon disulfide 0.726 0.670 0.676 0.752 0.762 0.760 0.729 5.54 9) 1,1,2-Trichloro-1,2 0.242 0.258 0.250 0.266 0.268 0.267 0.259 3.85 10) Methyl iodide0.1430.1680.2160.3270.3400.3400.26833.11Acrolein0.0300.0270.0290.0310.0320.0310.0306.06 11)12) Methylene chloride 0.323 0.278 0.272 0.269 0.268 0.265 0.277 7.7413) 0.053 0.051 0.044 0.046 0.045 0.044 0.046 9.03 14) Acetone trans-1,2-Dichloroe 0.264 0.253 0.243 0.261 0.264 0.265 0.259 3.13 15) Methyl acetate 0.127 0.125 0.123 0.128 0.129 0.126 0.126 1.81 16) 3.74 Methyl tert-Butyl e 0.579 0.561 0.580 0.610 0.617 0.618 0.596 7) 1,1-Dichloroethane 0.445 0.438 0.424 0.451 0.453 0.452 0.445 2.36 18) P Acrylonitrile0.0490.0530.0570.0620.0630.0630.058Vinyl acetate0.2960.2880.2950.3140.3110.3240.309 9.46 19) 5.52 20) cis-1,2-Dichloroeth 0.274 0.282 0.281 0.302 0.306 0.308 0.294 4.86 21) 2,2-Dichloropropane 0.404 0.364 0.356 0.377 0.382 0.387 0.379 4.19 22) Bromochloromethane 0.117 0.116 0.120 0.128 0.128 0.128 0.123 4.37 23) 0.417 0.394 0.395 0.430 0.443 0.443 0.423 5.20 Cyclohexane 24) 0.460 0.431 0.430 0.449 0.448 0.445 0.443 2.39 25) CP Chloroform Carbon tetrachlorid 0.262 0.269 0.274 0.312 0.326 0.328 0.300 10.11 26) 1,1,1-Trichloroetha 0.379 0.365 0.366 0.393 0.398 0.398 0.385 3.88 27) 0.068 0.066 0.067 0.071 0.070 0.069 0.068 2.71 2-Butanone 28) 1,1-Dichloropropene 0.319 0.328 0.325 0.353 0.359 0.358 0.343 5.22 29) 1.113 1.132 1.132 1.188 1.202 1.198 1.163 3.10 30) M Benzene 1,2-Dichloroethane- 0.231 0.232 0.235 0.247 0.242 0.240 0.237 2.40 31) S 1,2-Dichloroethane 0.272 0.278 0.281 0.294 0.293 0.289 0.284 2.79 32) Methylcyclohexane 0.383 0.377 0.372 0.407 0.412 0.415 0.397 4.7833) Trichloroethene0.2880.2780.2670.2890.2930.2900.285Dibromomethane0.1260.1340.1330.1440.1430.1420.137 3.30 34) M 4.59 35) 1,2-Dichloropropane 0.239 0.247 0.251 0.263 0.259 0.260 0.254 3.37 36) CP Bromodichloromethan 0.278 0.272 0.279 0.311 0.322 0.325 0.301 7.98 37) 2-Chloroethylvinyl 0.057 0.064 0.069 0.075 0.068 0.061 0.064 10.60 38) cis-1,3-Dichloropro 0.347 0.351 0.362 0.403 0.412 0.416 0.387 8.23 39) 0.659 0.671 0.671 0.736 0.746 0.754 0.712 5.91 40) CPM Toluene 10.39 0.106 0.124 0.144 0.136 0.138 0.130 4-Methyl-2-pentanon 41) trans-1,3-Dichlorop 0.271 0.277 0.287 0.327 0.337 0.344 0.312 10.30 42) 1,1,2-Trichloroetha 0.155 0.162 0.164 0.175 0.176 0.176 0.169 4.99 43) a) 12-26-08

Response Factor Report #3MS10

(#) = Out of Range ### Number of calibration levels expeeded format ### () 12-26-08 Page 1 JD05VOCW.M Fri Dec 26 11:16:25 2008

| Response ractor Report Tombro                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method : C:\HPCHEM\1\METHODS\JD05VOCW.M (RTE Integrator)<br>Title : VOC's w/Restek Rtx-VMS, 0.18 mm x 40 m, 1.0 df<br>Last Update : Fri Dec 26 10:11:08 2008<br>Response via : Initial Calibration |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                |
| Cali<br>0.5<br>10                                                                                                                                                                                  | bration Files<br>=J7706.D 1.0<br>=J7709.D 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =J7<br>=J7                                                                                                                                                                                | 7707.D<br>7711.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                           | 2.0<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =J7708<br>=J7712                                                                                                                                                                                            | 8.D<br>2.D                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                |
|                                                                                                                                                                                                    | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                          | 30                                                                                                                                                                                                 | Avg                                                                                                                                                                                                | %RSD                                                                                                                                                                           |
| 44)                                                                                                                                                                                                | 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.094                                                                                                                                                                                     | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.081                                                                                                                                                                                                       | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.105                                                                                                                                                                                                       | 0.105                                                                                                                                                                                              | 0.094                                                                                                                                                                                              | 13.17                                                                                                                                                                          |
| 48)<br>49)<br>50)<br>51)<br>52) PM<br>53) CP<br>54)<br>55)<br>56)                                                                                                                                  | Chlorobenzene-d5<br>Toluene-d8<br>Tetrachloroethene<br>Dibromochloromethan<br>1,3-Dichloropropane<br>1,2-Dibromoethane<br>1-Chlorohexane<br>Chlorobenzene<br>Ethylbenzene<br>1,1,1,2-Tetrachloro<br>(m+p)-Xylene<br>o-Xylene<br>Styrene<br>Bromoform                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.435\\ 0.909\\ 0.427\\ 0.772\\ 1.949\\ 3.161\\ 0.517\\ 1.212\\ 1.069\\ 1.454\\ 0.232 \end{array}$                                                                      | $\begin{array}{c} 0.476 \\ 0.901 \\ 0.465 \\ 0.788 \\ 1.914 \\ 3.086 \\ 0.543 \\ 1.211 \\ 1.121 \\ 1.476 \\ 0.226 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.479\\ 0.900\\ 0.470\\ 0.779\\ 1.884\\ 3.023\\ 0.537\\ 1.207\\ 1.145\\ 1.551\\ 0.232 \end{array}$                                                                                        | $\begin{array}{c} 0.574 \\ 0.949 \\ 0.526 \\ 0.878 \\ 2.027 \\ 3.478 \\ 0.622 \\ 1.410 \\ 1.346 \\ 1.994 \\ 0.300 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.618<br>0.955<br>0.529<br>0.917<br>2.059<br>3.665<br>0.655<br>1.473<br>1.409<br>2.148<br>0.326                                                                                                             | 0.636<br>0.954<br>0.530<br>0.944<br>2.075<br>3.730<br>0.677<br>1.497<br>1.437<br>2.219<br>0.340                                                                                                    | 0.554<br>0.932<br>0.497<br>0.864<br>2.005<br>3.411<br>0.607<br>1.361<br>1.283<br>1.872<br>0.287                                                                                                    | $   \begin{array}{r}     16.07 \\     2.90 \\     8.58 \\     9.61 \\     4.56 \\     9.22 \\     12.27 \\     10.71 \\     12.90 \\     19.51 \\     19.48 \\   \end{array} $ |
| 64) P<br>65)                                                                                                                                                                                       | 1,4-Dichlorobenzene<br>Isopropylbenzene<br>Bromofluorobenzene<br>Bromobenzene<br>n-Propylbenzene<br>1,1,2,2-Tetrachloro<br>2-Chlorotoluene<br>1,3,5-Trimethylbenz<br>1,2,3-Trichloroprop<br>trans-1,4-Dichloro-<br>4-Chlorotoluene<br>tert-Butylbenzene<br>1,2,4-Trimethylbenz<br>sec-Butylbenzene<br>p-Isopropyltoluene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,2-Dibromo-3-chlor<br>Hexachlorobutadiene<br>1,2,4-Trichlorobenz<br>Naphthalene<br>1,2,3-Trichlorobenz | 3.594<br>1.182<br>0.991<br>4.121<br>0.726<br>2.759<br>2.829<br>0.625<br>2.766<br>2.475<br>2.688<br>3.312<br>2.705<br>1.653<br>1.672<br>2.463<br>1.512<br>0.110<br>0.279<br>0.791<br>1.403 | 3.591<br>1.229<br>1.039<br>3.953<br>0.832<br>2.850<br>2.755<br>0.616<br>0.089<br>2.655<br>2.407<br>2.699<br>3.159<br>2.654<br>1.671<br>1.634<br>2.137<br>1.559<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.265<br>0.281<br>0.265<br>0.281<br>0.281<br>0.265<br>0.281<br>0.265<br>0.281<br>0.265<br>0.281<br>0.265<br>0.281<br>0.265<br>0.281<br>0.281<br>0.285<br>0.281<br>0.285<br>0.281<br>0.285<br>0.285<br>0.281<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0 | 3.543<br>1.186<br>1.039<br>3.957<br>0.828<br>2.788<br>2.788<br>2.788<br>2.788<br>2.788<br>2.788<br>2.788<br>2.788<br>2.702<br>3.048<br>2.572<br>1.712<br>1.594<br>2.149<br>1.586<br>0.276<br>0.751<br>1.485 | 3.867<br>1.162<br>1.034<br>4.302<br>0.858<br>2.904<br>2.991<br>0.622<br>0.130<br>2.909<br>2.211<br>2.767<br>2.998<br>2.478<br>1.802<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.692<br>1.820 | 3.887<br>1.123<br>1.006<br>4.415<br>0.815<br>2.987<br>3.062<br>0.645<br>0.645<br>0.137<br>2.785<br>2.309<br>2.841<br>3.121<br>2.528<br>1.812<br>1.700<br>1.926<br>1.676<br>0.103<br>0.240<br>0.771<br>1.771 | 3.913<br>1.126<br>0.997<br>4.498<br>0.804<br>2.954<br>3.137<br>0.624<br>0.142<br>2.847<br>2.357<br>2.919<br>3.247<br>2.659<br>1.813<br>1.715<br>1.978<br>1.698<br>0.109<br>0.250<br>0.779<br>1.748 | 3.761<br>1.163<br>1.017<br>4.248<br>0.810<br>2.886<br>2.965<br>0.624<br>0.122<br>2.791<br>2.349<br>2.801<br>3.177<br>2.623<br>1.761<br>1.678<br>2.100<br>1.634<br>0.106<br>0.259<br>0.772<br>1.610 | 4.66<br>3.34<br>1.99<br>5.60                                                                                                                                                   |

Response Factor Report #3MS10

(#) = Out of Range ### Number of calibration levels exceeded format ### JD05VOCW.M Fri Dec 26 11:16:27 2008 Page 2

|      |               | . Ře                                  | esponse Factor                                   | Report        | #3MS10                          |           |      |
|------|---------------|---------------------------------------|--------------------------------------------------|---------------|---------------------------------|-----------|------|
|      | Title<br>Last | e : VOC's w/Re<br>Update : Fri Dec 20 | 1\METHODS\JD09<br>stek Rtx-VMS,<br>11:18:01 2008 | 0.18 mm       | (RTE Integrato<br>x 40 m, 1.0 d | or)<br>lf |      |
|      | Respo         | onse via : Initial Ca                 | alibration                                       |               |                                 |           |      |
|      | Calib         | oration Files                         |                                                  |               |                                 |           |      |
|      | 40            | =J7713.D                              | =                                                |               | =                               |           |      |
|      |               | =                                     | =                                                |               | =                               |           |      |
|      |               | Compound                              | 40                                               |               |                                 | Avg       | %RSD |
|      |               |                                       |                                                  |               |                                 |           |      |
| 1 \  | т             | Fluorobenzene                         |                                                  | <b>-</b> ISTI | )                               |           |      |
| 2)   | Ŧ             | Dichlorodifluoromet                   | 0.401                                            |               |                                 |           |      |
| 2)   |               | Chloromethane                         |                                                  |               |                                 |           |      |
| 4)   | ב<br>סיק      | Vinyl chloride                        | 0.228                                            |               |                                 |           |      |
| 5)   | Сr            | Bromomethane                          | 0.226                                            |               |                                 |           |      |
| 6)   |               | Chloroethane                          |                                                  |               |                                 |           |      |
| 7)   |               | Trichlorofluorometh                   |                                                  |               |                                 |           |      |
| 8)   | CPM           | 1,1-Dichloroethene                    |                                                  |               |                                 |           |      |
| 9)   |               | Carbon disulfide                      | 0.758                                            |               |                                 |           |      |
| 10)  |               | 1,1,2-Trichloro-1,2                   | 0.265                                            |               |                                 |           |      |
| 11)  |               | Methyl iodide                         | 0.339                                            |               |                                 |           |      |
| 12)  |               | Acrolein                              | 0.032                                            |               |                                 |           |      |
| 13)  |               | Methylene chloride                    |                                                  |               |                                 |           |      |
| 14)  |               | Acetone                               | 0.042                                            |               |                                 |           |      |
| 15)  |               | trans-1,2-Dichloroe                   |                                                  |               |                                 | _         |      |
| 16)  |               | Methyl acetate                        | 0.124                                            |               |                                 |           |      |
| 1.7) |               | Methyl tert-Butyl e                   | 0.605                                            |               |                                 |           |      |
| _⊥8) |               | 1,1-Dichloroethane                    | 0.449                                            |               |                                 | •         |      |
| 19)  |               | Acrylonitrile                         | 0.062                                            |               |                                 |           |      |
| 20)  |               | Vinyl acetate                         | 0.335                                            |               |                                 |           |      |
| 21)  |               | cis-1,2-Dichloroeth                   | 0.304                                            |               |                                 |           |      |
| 22)  |               | 2,2-Dichloropropane                   |                                                  |               |                                 |           | •    |
| 23)  |               | Bromochloromethane                    | 0.126                                            |               |                                 |           |      |
| 24)  |               | Cyclohexane                           | 0.442                                            |               |                                 | •         |      |
| 25)  | CP            | Chloroform                            | 0.440                                            |               |                                 |           |      |
| 26)  |               | Carbon tetrachlorid                   | 0.329                                            |               |                                 |           |      |
| 27)  |               | 1,1,1-Trichloroetha                   |                                                  |               |                                 |           |      |
| 28)  |               | 2-Butanone                            | 0.067                                            |               |                                 |           |      |
| 29)  |               | 1,1-Dichloropropene                   | 0.357                                            |               |                                 |           |      |
| 30)  |               | Benzene                               | 1.173                                            |               |                                 |           |      |
| 31   |               | 1,2-Dichloroethane-                   | 0.235                                            |               |                                 |           |      |
| 32)  |               | 1,2-Dichloroethane                    | 0.283                                            |               |                                 |           |      |
| 33)  | )             | Methylcyclohexane                     | 0.414                                            |               | 5.<br>1                         |           |      |
| 34)  | M             | Trichloroethene                       | 0.289                                            |               |                                 |           |      |
| 35)  | )             | Dibromomethane                        | 0.139                                            |               |                                 |           |      |
| 36)  | CP            | 1,2-Dichloropropane                   | 0.259                                            |               |                                 |           |      |
| 37)  | }             | Bromodichloromethan                   |                                                  |               |                                 |           |      |
| 38   | )             | 2-Chloroethylvinyl                    | 0.056                                            |               |                                 |           |      |
| 39   |               | cis-1,3-Dichloropro                   |                                                  |               |                                 |           |      |
| 40   | ) CPM         | Toluene                               | 0.743                                            |               |                                 |           |      |
| 41   | )             | 4-Methyl-2-pentanon                   |                                                  |               |                                 |           |      |
| 42   | )             | trans-1,3-Dichlorop                   | 0.341                                            |               |                                 |           |      |
| 43   | )             | 1,1,2-Trichloroetha                   | . 0.172                                          |               |                                 | -         |      |
|      |               |                                       |                                                  |               |                                 |           |      |
|      |               |                                       |                                                  |               |                                 |           |      |

(#) = Out of Range ### Number of calibration levels exceeded format ### JD05VOCW.M Fri Dec 26 11:18:09 2008 Page 1 Response Factor Report #3MS10

|            |              | , <u> </u>                                 |                    |                                       |     |      |
|------------|--------------|--------------------------------------------|--------------------|---------------------------------------|-----|------|
|            | Titl<br>Last |                                            | estek H<br>5 11:18 |                                       |     |      |
|            | Cali         | bration Files                              |                    |                                       |     |      |
|            |              | =J7713.D                                   | .=                 | =                                     |     |      |
|            |              | =                                          | =                  | =                                     |     |      |
|            |              | Compound                                   | 40                 |                                       | Avg | %RSD |
| 44)        |              | 2-Hexanone                                 | 0.102              | · · · · · · · · · · · · · · · · · · · |     |      |
| 45>        | I            | Chlorobenzene-d5                           |                    | ISTD                                  |     |      |
| 46)        | S            | Toluene-d8                                 | 2.663              | ISTD                                  |     |      |
| 47)        |              | Tetrachloroethene                          | 0.769              |                                       |     |      |
| 48)        |              | Dibromochloromethan                        |                    |                                       |     |      |
| 49)<br>50) |              | 1,3-Dichloropropane<br>1,2-Dibromoethane   |                    |                                       |     |      |
| 51)        |              | 1-Chlorohexane                             | 0.967              |                                       |     |      |
| 52)        |              | Chlorobenzene                              |                    |                                       |     |      |
| 53)        | CP           | Ethylbenzene                               | 3.734              |                                       |     |      |
| 54)        |              | 1,1,1,2-Tetrachloro                        |                    |                                       |     |      |
|            |              | (m+p)-Xylene                               | 1.521              |                                       |     |      |
|            |              |                                            | 1.456<br>2.265     |                                       |     |      |
|            | P            | Bromoform                                  | 0.354              |                                       |     |      |
|            |              |                                            |                    | -                                     |     |      |
|            | I            | 1,4-Dichlorobenzene                        | -d                 | ISTD                                  |     |      |
| 0)         |              | Isopropylbenzene                           |                    |                                       |     |      |
| •          | S            | Bromofluorobenzene                         |                    |                                       |     |      |
| 62)        |              | Bromobenzene<br>n-Propylbenzene            | 4 489              |                                       |     |      |
|            |              | 1,1,2,2-Tetrachloro                        |                    |                                       |     |      |
| 65)        |              |                                            | 2.958              |                                       |     |      |
| 66)        |              | 1,3,5-Trimethylbenz                        | 3.195              |                                       |     |      |
| 67)        |              | 1,2,3-Trichloroprop                        | 0.620              |                                       |     |      |
| 68)        |              | trans-1,4-Dichloro-                        |                    |                                       |     |      |
| 69)        |              | 4-Chlorotoluene                            | 2.867              |                                       |     |      |
| 70         |              | tert-Butylbenzene<br>1,2,4-Trimethylbenz   | 2.442              |                                       |     |      |
| 71)<br>72) |              | sec-Butylbenzene                           | 3.351              |                                       |     |      |
| 73)        |              | p-Isopropyltoluene                         |                    | -                                     |     |      |
| 74)        |              | 1,3-Dichlorobenzene                        |                    |                                       |     |      |
| 75)        |              | 1,4-Dichlorobenzene                        | 1.739              |                                       |     |      |
| 76)        |              | n-Butylbenzene                             | 2.058              |                                       |     |      |
| 77)        |              | 1,2-Dichlorobenzene                        |                    |                                       |     |      |
| 78)        |              | 1,2-Dibromo-3-chlor                        |                    |                                       |     |      |
| 79)<br>80) |              | Hexachlorobutadiene<br>1,2,4-Trichlorobenz |                    |                                       |     |      |
| 81)        |              | Naphthalene                                | 1.761              |                                       |     |      |
| 82)        |              | 1,2,3-Trichlorobenz                        |                    |                                       |     |      |
|            |              |                                            |                    |                                       |     |      |

(#) = Out of Range ### Number of calibration levels exceeded format ### JD05VOCW.M Fri Dec 26 11:18:11 2008 Page 2

#### AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

| Analytical Method: | <u>SW8260B</u>                | AAB #:                               | <u>R15738</u> |
|--------------------|-------------------------------|--------------------------------------|---------------|
| Lab Name:          | Life Science Laboratories, In | Contract Number:                     |               |
| Instrument ID:     | <u>MS03_10</u>                | Initial Calibration ID:              | <u>1442</u>   |
| Second Source ID:  | 2SRC-15738                    | Concentration Units (mg/L or mg/kg): | <u>µg/L</u>   |

| Analyte                  | Expected | Found | %D Q |
|--------------------------|----------|-------|------|
| 1,2-Dichloroethane-d4    | 10       | 9.74  | -2.6 |
| 4-Bromofluorobenzene     | 10       | 9.91  | -0.9 |
| cis-1,2-Dichloroethene   | 10       | 9.94  | -0.6 |
| Tetrachloroethene        | 10       | 10.2  | 1.5  |
| Toluene-d8               | 10       | 10.1  | 1.3  |
| trans-1,2-Dichloroethene | 10       | 10.1  | 1.2  |
| Trichloroethene          | 10       | 9.97  | -0.3 |
| Vinyl chloride           | 10       | 11    | 9.8  |

Comments:

QAPP 4.0

AFCEE FORM 0-4

# AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION - GC/MS ANALYSIS

| Analytical Method: | <u>SW8260B</u>                | AAB #:                  | MS03 10 081216 |
|--------------------|-------------------------------|-------------------------|----------------|
| Lab Name:          | Life Science Laboratories, In | Contract Number:        |                |
| nstrument ID:      | <u>MS03_10</u>                | Initial Calibration ID: | <u>1442</u>    |
| ICV ID:            | CCV #1 ID: <u>C(</u>          | <u>2V-15859</u>         | CCV #2 ID;     |

|                          |       | CC CC                                                                                                           | V #1 | CCV                   | #2 <b>1</b> 1 |
|--------------------------|-------|-----------------------------------------------------------------------------------------------------------------|------|-----------------------|---------------|
| Analyte                  | RF %D | RF                                                                                                              | %D   | RF                    | 20 <b>0</b>   |
| Vinyl chloride #         |       |                                                                                                                 | . 10 | ATT THE A             |               |
| 1,2-Dichloroethane-d4    |       | and the second                                                                                                  | -1.7 |                       | ~             |
| 4-Bromofluorobenzene     |       | a series dela della d | -7.6 | and the second second | · · ·         |
| cis-1,2-Dichloroethene   |       | Contraction of the                                                                                              | -1.0 |                       |               |
| Tetrachloroethene        |       |                                                                                                                 | -4.5 |                       |               |
| Toluene-d8               |       | the second                                                                                                      | -2.5 |                       |               |
| trans-1,2-Dichloroethene |       | and the states                                                                                                  | -2.7 |                       |               |
| Trichloroethene          |       |                                                                                                                 | -5.6 |                       |               |

\* SPCCs # CCCS

Comments:

QAPP 4.0

AFCEE FORM O-5A

Page 1 of 1

#### AFCEE ORGANIC ANALYSES DATA SHEET 7 BLANKS

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:           | <u>R15859</u>   |
|-------------------------|---------------------------------|------------------|-----------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract Number: |                 |
| Units:                  | <u>µg/L</u>                     | Method Blank ID: | <u>MB-15859</u> |
| Initial Calibration ID: | <u>1442</u>                     | File ID:         | <u>J7857.D</u>  |

| cis-1,2-Dichloroethene   | 0.100 | 1.00 | U |
|--------------------------|-------|------|---|
| Tetrachloroethene        | 0.100 | 1.00 | U |
| trans-1,2-Dichloroethene | 0.100 | 1.00 | U |
| Trichloroethene          | 0.100 | 1.00 | U |
| Vinyl chloride           | 0.330 | 1.00 | U |

| Surrogate             | Recovery | Control Limits | <b>Salifier</b> |
|-----------------------|----------|----------------|-----------------|
| 1,2-Dichloroethane-d4 | 104      | 72 - 119       |                 |
| 4-Bromofluorobenzene  | 100      | 76 - 119       |                 |
| Toluene-d8            | 101      | 81 - 120       |                 |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 404531      | 278829 - 1115316  |           |
| Chlorobenzene-d5       | 623013      | 373282 - 1493128  |           |
| Fluorobenzene          | 1728139     | 1006889 - 4027556 | •         |

Comments:

#### AFCEE ORGANIC ANALYSES DATA SHEET 8 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW8260B</u>                  | AAB #:                  | <u>R15859</u>  |
|---------------------|---------------------------------|-------------------------|----------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |                |
| LCS ID:             | <u>LCS-15859</u>                | Initial Calibration ID: | <u>1442</u>    |
| Concentration Units | (mg/L or mg/kg): <u>µg/L</u>    | File ID:                | <u>J7853 D</u> |

Analyte Expected Found %R ControlLimits Q cis-1,2-Dichloroethene 10 9.61 96 72 - 126 Tetrachloroethene 10 9.26 93 66 - 128 trans-1,2-Dichloroethene 10 9.38 94i 63 - 137 Trichloroethene 10 9.03 90 70 - 127 Vinyl chloride 10 11.1 111 50 - 134

| Surrogate             | Recovery | -Control Limits and | Qualifier |
|-----------------------|----------|---------------------|-----------|
| 1,2-Dichloroethane-d4 | 99       | 72 - 119            |           |
| 4-Bromofluorobenzene  | 96       | 76 - 119            |           |
| Toluene-d8            | 99       | 81 - 120            |           |

| Internal Std .         | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 506913      | 278829 - 1115316  |           |
| Chlorobenzene-d5       | 675841      | 373282 - 1493128  |           |
| Fluorobenzene          | 1847480     | 1006889 - 4027556 |           |

Comments:

### AFCEE ORGANIC ANALYSES DATA SHEET 10 HOLDING TIMES

| Analytical Method | I: <u>SW8260B</u> |                |                  | AAB               | #:      | <u>R15859</u> | <u>)</u>         |                           |                      |   |
|-------------------|-------------------|----------------|------------------|-------------------|---------|---------------|------------------|---------------------------|----------------------|---|
| Lab Name:         | Life Science Labo | pratories, Inc | <u>.</u>         | Cont              | ract #: |               |                  |                           |                      |   |
| Field Sample ID   | Lab Sample D      |                | Date<br>Received | Date<br>Extracted |         |               | Date<br>Analyzed | Max.<br>Holding<br>Time A | Time<br>Held<br>Anal | 9 |
| B035M0416HA       | 0812087-001A      | 10-Dec-08      | 11-Dec-08        | 16-Dec-08         |         |               | 16-Dec-08        | 14                        | 6.3                  |   |

Comments:

QAPP 4.0

AFCEE FORM O-10

Page 1 of 1

# AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SW8260B</u>                  |
|--------------------|---------------------------------|
| Lab Name:          | Life Science Laboratories, Inc. |
| Instrument (D #:   | MS03 10                         |

Calibration ID: 1442

AAB#:

Contract #:

| Field Sample ID/Std ID/<br>Blank1D/QC Sample ID | Lab<br>Sample ID. | Date Analysis | Time Analysis<br>Started | Date Analysis<br>Completed | Time Analysis |
|-------------------------------------------------|-------------------|---------------|--------------------------|----------------------------|---------------|
| TB120508A3                                      | TB120508A3        | 05-Dec-08     | 9:15                     | 05-Dec-08                  | 10:52         |
| ICAL 0.5 ppb                                    | ICAL 0.5 ppb      | 05-Dec-08     | 10:52                    | 05-Dec-08                  | 11:24         |
| ICAL 1.0 ppb                                    | ICAL 1.0 ppb      | 05-Dec-08     | 11:24                    | 05-Dec-08                  | 11:56         |
| ICAL 2.0 ppb                                    | ICAL 2.0 ppb      | 05-Dec-08     | 11:56                    | 05-Dec-08                  | 12:28         |
| ICAL 10 ppb                                     | ICAL 10 ppb       | 05-Dec-08     | 12:28                    | 05-Dec-08                  | 13:00         |
| ICAL 20 ppb                                     | ICAL 20 ppb       | 05-Dec-08     | 13:00                    | 05-Dec-08                  | 13:32         |
| ICAL 30 ppb                                     | ICAL 30 ppb       | 05-Dec-08     | 13:32                    | 05-Dec-08                  | 14:03         |
| ICAL 40 ppb                                     | ICAL 40 ppb       | 05-Dec-08     | 14:03                    | 05-Dec-08                  | 15:28         |
| 2SRC-15738                                      | 2SRC-15738        | 05-Dec-08     | 15:28                    | 05-Dec-08                  | 15:28         |
| TB121608A3                                      | TB121608A3        | 16-Dec-08     | 9:20                     | 16-Dec-08                  | 9:52          |
| CCV-15859                                       | CCV-15859         | 16-Dec-08     | 9:52                     | 16-Dec-08                  | 10:24         |
| LCS-15859                                       | LCS-15859         | 16-Dec-08     | 10:24                    | 16-Dec-08                  | 12:41         |
| MB-15859                                        | MB-15859          | 16-Dec-08     | 12:41                    | 16-Dec-08                  | 19:04         |
| B035M0416HA                                     | 0812087-001A      | 16-Dec-08     | 19:04                    | 16-Dec-08                  | 19:04         |

Comments:

QAPP 4.0

AFCEE FORM O-11

Page 1 of 1

#### AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:               | MS03 10 081205A          |
|-------------------------|---------------------------------|----------------------|--------------------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:          |                          |
| Instrument ID:          | MS03_10                         | Injection Date/Time: | 12/5/2008 9:15:00 AM     |
| Initial Calibration ID: | <u>1442</u>                     | File ID:             | C:\HPCHEM\1\DATA\J7705.D |
| Compound:               | <u>SW8260B</u>                  | Sample ID:           | TB120508A3               |

| Mass | 👘 🔔 Ion Abundance Criteria                     | Abundance Q |
|------|------------------------------------------------|-------------|
| 50   | 15 - 40% of m/z 95                             | 20.9        |
| 75   | 30 - 60% of m/z 95                             | 55.1        |
| 95   | Base peak, 100% relative abundance             | 100         |
| 96   | 5 - 9% of m/z 95                               | 7.5         |
| 173  | Less than 2% of m/z 174                        | 0           |
| 174  | Greater than 50% of m/z 95                     | 60.3        |
| 175  | 5 - 9% of m/z 174                              | 8.3         |
| 176  | Greater than 95% but less than 101% of m/z 174 | 99.8        |
| 177  | 5 - 9% of m/z 176                              | 7.4         |

#### AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:               | MS03_10_081216B          |
|-------------------------|---------------------------------|----------------------|--------------------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:          |                          |
| Instrument ID:          | <u>MS03_10</u>                  | Injection Date/Time: | 12/16/2008 9:20:00 AM    |
| Initial Calibration ID: | 1442                            | File ID:             | C:\HPCHEM\1\DATA\J7851.D |
| Compound:               | <u>SW8260B</u>                  | Sample ID:           | TB121608A3               |

| Mass | Ion Abundance Criteria                         | - % Relative |
|------|------------------------------------------------|--------------|
| 50   | 15 - 40% of m/z 95                             | 16.7         |
| 75   | 30 - 60% of m/z 95                             | 47.0         |
| 95   | Base peak, 100% relative abundance             | 100          |
| 96   | 5 - 9% of m/z 95                               | 6.9          |
| 173  | Less than 2% of m/z 174                        | 0.5          |
| 174  | Greater than 50% of m/z 95                     | 81.1         |
| 175  | 5 - 9% of m/z 174                              | 7.3          |
| 176  | Greater than 95% but less than 101% of m/z 174 | 98.4         |
| 177  | 5 - 9% of m/z 176                              | 7.0          |

.

# **Anions Data**

j.

AFCEE WET CHEM ANALYSES DATA SHEET 3-10 INITIAL MULTIPOINT CALIBRATION

| Analytical Method:      | <u>SWV9056</u>                         | AAB #:                               | <u>R16250</u>    |
|-------------------------|----------------------------------------|--------------------------------------|------------------|
| Lab Name:               | <u>Life Science Laboratories. Inc.</u> | Contract #:                          |                  |
| Instrument ID:          | <u>Dignex IC2</u>                      | Date of Initial Calibration:         | <u>05-Jan-09</u> |
| Initial Calibration ID: | 1495                                   | Concentration Units (mg/L or mg/kg): | <u>mg/L</u>      |

|         |          |       | _             |
|---------|----------|-------|---------------|
| σ       |          |       | 4             |
| -       | 0.997    | 0.998 |               |
| STD 10  | 0        | 0     |               |
| STD 8   | 0        | 0     |               |
| 5TD 8   | 0        | 0     | -             |
| sm?     | 0        | 0     | - <br>•       |
| STD 6   | 100      | 100   |               |
| STD 6   | 20       | 20    | 3             |
| 510 ¥   | 20       | 5     | 3             |
| STD 3   | 10       | 9     | 2             |
| STD 2   | 2        | ç     |               |
| STO 1   | 1        |       | -             |
|         |          |       |               |
| Anaivte |          |       | 504)          |
|         | Chloride |       | Sultate (as S |

r = correlation coefficient

Comments:

Ì

# AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9056</u>                  |            |             | AAB #:              |            | <u>R16250</u> |
|--------------------|--------------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc | <u>.</u>   | ÷           | Contract #:         |            |               |
| Instrument ID:     | Dionex IC2                     |            |             | Initial Calibration | D:         | <u>1495</u>   |
| 2nd Source ID:     | <u>ICV</u>                     | CCV #1 ID: | <u>CCV1</u> |                     | CCV #2 ID: | <u>CCV2</u>   |

•

| Analytem         | 2nd Sor<br>W<br>Expected | ince Califor<br>enfication<br>Found | anon<br>%D | C<br>Expected | entinuing C<br>Found 1 | alibration<br>%D | Found 2 | 9<br>%8 |
|------------------|--------------------------|-------------------------------------|------------|---------------|------------------------|------------------|---------|---------|
| Chloride         | 50.0                     | 47.2                                | -5.7       | 10.0          | 9.55                   | -4.5             | 9.57    | -4.3    |
| Sulfate (as SO4) | 50.0                     | 47.2                                | -5.6       | 10.0          | 9.67                   | -3.3             | 9.82    | -1.8    |

Comments:

QAPP 4.0

#### AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9056</u>              |            |             | AAB #:              |            | <u>R16250</u> |
|--------------------|----------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |             | Contract #:         |            |               |
| Instrument ID:     | Dionex IC2                 |            |             | Initial Calibration | D:         | <u>1495</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: | <u>CCV3</u> |                     | CCV #2 ID: | <u>CCV4</u>   |

| Analyze          | 2nd Se   | ource Calib<br>Verification | ration |                  | Continuing | Calibration is  | erification     | 0    |
|------------------|----------|-----------------------------|--------|------------------|------------|-----------------|-----------------|------|
|                  | Expected | Found                       | 34%D   | Expected<br>10.0 | Found 1    | % <b>D</b> _4 7 | Found 2<br>9.53 |      |
| Chloride         | 50.0     | 47.2                        | -0.7   | 10.0             | 9.00       |                 | 0.00            |      |
| Sulfate (as SO4) | 50.0     | 47.2                        | -5.6   | 10.0             | 9.75       | 2.5             | 9.80            | -2.0 |

۰

Comments:

QAPP 4.0

| Analytical Method:  | <u>\$W9056</u>                  | AAB #:                  | <u>R16250</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | s (mg/L or mg/kg): <u>ma/l</u>  | -                       |               |
| Calibraton Blank ID | : <u>ICB</u>                    | Initial Calibration ID: | <u>1495</u>   |
| Method Blank ID:    | <u>MB-16250</u>                 | Initial Calibration ID: | <u>1495</u>   |

| Analyte          | Calibration<br>Blank | Method Blank | RL D |
|------------------|----------------------|--------------|------|
| Chloride         | 0.52                 | 0.52         | 1.0  |
| Sulfate (as SO4) | 0.44                 | 0.44         | 1.0  |

Comments:

QAPP 4.0

\_

.

| Analytical Method:  | <u>SW9056</u>                 | AAB #:                  | <u>R16250</u> |
|---------------------|-------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Ir | ic. Contract Number:    |               |
| Concentration Units | : (mg/L or mg/kg): <u>m</u>   | <u>g/L</u>              |               |
| Calibraton Blank ID | : <u>CCB1</u>                 | Initial Calibration ID: | <u>1495</u>   |
| Method Blank ID:    | <u>MB-16250</u>               | Initial Calibration ID: | <u>1495</u>   |

| Analyte          | Calibration<br>Blank Me | thod Blank | at a c |
|------------------|-------------------------|------------|--------|
| Chloride         | 0.52                    | 0.52       | 1.0    |
| Sulfate (as SO4) | 0.44                    | 0.44       | 1.0    |

Comments:

.....

- C

| Analytical Method:  | <u>SW9056</u>             |               | AAB #:                  | <u>R16250</u> |             |
|---------------------|---------------------------|---------------|-------------------------|---------------|-------------|
| Lab Name:           | Life Science Laboratories | <u>, Inc.</u> | Contract Number:        |               |             |
| Concentration Units | s (mg/L or mg/kg):        | <u>mg/L</u>   |                         |               |             |
| Calibraton Blank ID | CCB2                      |               | Initial Calibration ID: |               | <u>1495</u> |
| Method Blank ID:    | MB-16250                  |               | Initial Calibration ID: |               | <u>1495</u> |

| Analyte          | Calibration<br>Blank | Method Blank | RLZQ |
|------------------|----------------------|--------------|------|
| Chloride         | 0.52                 | 0.52         | 1.0  |
| Sulfate (as SO4) | 0.44                 | 0.44         | 1.0  |

Comments:

QAPP 4.0

-----

| Analytical Method:  | <u>\$W9056</u>                  | AAB #:                  | <u>R16250</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | s (mg/L or mg/kg): <u>mg/L</u>  |                         |               |
| Calibraton Blank ID | : <u>CCB3</u>                   | Initial Calibration ID: | <u>1495</u>   |
| Method Blank ID:    | <u>MB-16250</u>                 | Initial Calibration ID: | <u>1495</u>   |

| Analyte          | Calibration | od Blank | RL  |
|------------------|-------------|----------|-----|
| Chloride         | 0.52        | 0.52     | 1.0 |
| Sulfate (as SO4) | 0.44        | 0.44     | 1.0 |

Comments:

\_\_\_\_

QAPP 4.0

----

AFCEE FORM W-5

-----

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16250</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | s (mg/L or mg/kg): <u>mg/L</u>  |                         |               |
| Calibraton Blank ID | : <u>CCB4</u>                   | Initial Calibration ID: | <u>1495</u>   |
| Method Blank ID:    | <u>MB-16250</u>                 | Initial Calibration ID: | <u>1495</u>   |

| Abalyte          | Calibration<br>Blank | Method Blank | RL Q |
|------------------|----------------------|--------------|------|
| Chloride         | 0.52                 | 0.52         | 1.0  |
| Sulfate (as SO4) | 0.44                 | 0.44         | 1.0  |

.

Comments:

AFCEE FORM W-5

\_. ....

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16250</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-16250                       | Initial Calibration ID: | <u>1495</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte          | Expected | Found | %R - | Control Limits Q |
|------------------|----------|-------|------|------------------|
| Chloride         | 50       | 47.2  | 94   | 85 - 115         |
| Sulfate (as SO4) | 50       | 47.2  | 94   | 85 - 115         |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SW9056</u>                   | AAB #:      | <u>R16250</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| Field Sample ID | Lab Sample 1D | Date<br>Collected | Date<br>Received | Date<br>Analyzed | Max<br>Holding<br>Time | Hatte<br>Hatte<br>(days) | 6 |
|-----------------|---------------|-------------------|------------------|------------------|------------------------|--------------------------|---|
| B035M0416HA     | 0812087-001B  | 10-Dec-08         | 11-Dec-08        | 06-Jan-09        | 28                     | 26.7                     |   |

Comments:

.....

QAPP 4.0

AFCEE FORM W-8

. ... --

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SW9056</u>                   |             |
|--------------------|---------------------------------|-------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |
| Instrument ID #:   | Dionex IC2                      |             |

| Field Sample ID/Std ID |              | Date Analyses | Time Analyses<br>Started | Date Analyses<br>Completed | Time Analyses<br>Completed |
|------------------------|--------------|---------------|--------------------------|----------------------------|----------------------------|
| Blank D/QQ Sample II   | D Sample ID  | Started       |                          | in guilt and all           |                            |
| CAL STD 1              | CAL STD 1    | 05-Jan-09     | 17:16                    | 05-Jan-09                  | 17:34                      |
| CAL STD 2              | CAL STD 2    | 05-Jan-09     | 17:34                    | 05-Jan-09                  | 17:51                      |
| CAL STD 3              | CAL STD 3    | 05-Jan-09     | 17:51                    | 05-Jan-09                  | 18:09                      |
| CAL STD 4              | CAL STD 4    | 05-Jan-09     | 18:09                    | 05-Jan-09                  | 18:26                      |
| CAL STD 5              | CAL STD 5    | 05-Jan-09     | 18:26                    | 05-Jan-09                  | 18:44                      |
| CAL STD 6              | CAL STD 6    | 05-Jan-09     | 18:44                    | 05-Jan-09                  | 19:02                      |
| ICV                    | ICV          | 05-Jan-09     | 19:02                    | 05-Jan-09                  | 19:02                      |
| LCS-16250              | LCS-16250    | 05-Jan-09     | 19:02                    | 05-Jan-09                  | 19:19                      |
| ICB                    | ICB          | 05-Jan-09     | 19:19                    | 05-Jan-09                  | 19:19                      |
| MB-16250               | MB-16250     | 05-Jan-09     | 19:19                    | 05-Jan-09                  | 19:54                      |
| CCV1                   | CCV1         | 05-Jan-09     | 23:08                    | 05-Jan-09                  | 23:26                      |
| CCB1                   | CCB1         | 05-Jan-09     | 23:26                    | 06-Jan-09                  | 3:14                       |
| CCV2                   | CCV2         | 06-Jan-09     | 3:14                     | 06-Jan-09                  | 3:32                       |
| CCB2                   | CCB2         | 06-Jan-09     | 3:32                     | 06-Jan-09                  | 3:50                       |
| B035M0416HA            | 0812087-001B | 06-Jan-09     | 3:50                     | 06-Jan-09                  | 4:42                       |
| CCV3                   | CCV3         | 06-Jan-09     | 4:42                     | 06-Jan-09                  | 5:00                       |
| ССВЗ                   | CCB3         | 06-Jan-09     | 5:00                     | 06-Jan-09                  | 8:48                       |
| CCV4                   | CCV4         | 06-Jan-09     | 8:48                     | 06-Jan-09                  | 9:06                       |
| CCB4                   | CCB4         | 06-Jan-09     | 9:06                     | 06-Jan-09                  | 9:06                       |

Comments:

# **TOC DATA**

| AFCEE | WET CHEM ANALYSES DATA SHEET 3-10 | INITIAL MULTIPOINT CALIBRATION |
|-------|-----------------------------------|--------------------------------|
|-------|-----------------------------------|--------------------------------|

| Analytical Method:      | <u>SW9060</u>                   | AAB #:                               | <u>R15897</u>    |
|-------------------------|---------------------------------|--------------------------------------|------------------|
| Lab Name:               | Life Science Laboratories. Inc. | Contract #:                          |                  |
| Instrument ID:          | TOC-5000A                       | Date of Initial Callbration:         | <u>19-Dec-08</u> |
| Initial Calibration ID: | <u>1458</u>                     | Concentration Units (mg/L or mg/kg): | <u>mg/L</u>      |
| Analyte                 |                                 | o III                                |                  |

| Ø        |       |         |
|----------|-------|---------|
|          | 8     |         |
| 1        | 6666. | fficier |
| 0        | Ö     | Coel    |
| 10       | 0     | elation |
|          |       | corre   |
|          | ۵.    | <br> -  |
|          |       |         |
| 001      | 0     |         |
|          |       |         |
|          | 0     |         |
| 22       |       |         |
| 9.0      | 0     |         |
| 20       |       |         |
|          | 0     |         |
|          |       |         |
|          | 20    |         |
|          | 2     |         |
| 50       | 0     |         |
|          | ÷     |         |
|          |       |         |
| ЩS       | -     |         |
|          |       |         |
|          | 0     |         |
|          |       |         |
|          |       |         |
|          |       |         |
| <b>W</b> | Ę     |         |
| ÅR       | Carb  |         |
|          | ganic |         |
|          | al Or |         |
|          | Iot   |         |
|          |       |         |

QAPP 4.0

#### AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9060</u>              |            |             | AAB #:              |            | <u>R15897</u> |
|--------------------|----------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |             | Contract #:         |            |               |
| Instrument ID:     | TOC-5000A                  |            |             | Initial Calibration | ID:        | <u>1458</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: | <u>CCV1</u> |                     | CCV #2 ID: | CCV2          |

| Analyte              | Expected | ce Cattorat<br>fication<br>dund | *201<br>*20 | C<br>xpected | entraint)<br>Found | neutration<br>9%0 | e III eltor<br>Folhi d |     | Q |
|----------------------|----------|---------------------------------|-------------|--------------|--------------------|-------------------|------------------------|-----|---|
| Total Organic Carbon | 10.0     | 10.4                            | 4.0         | 10.0         | 10.6               | 6.2               | 10.5                   | 5.2 |   |

Comments:

OAPP 4.0

| Analytical Method:   | <u>SW9060</u>             |               | AAB #:                  | <u>R15897</u> |             |
|----------------------|---------------------------|---------------|-------------------------|---------------|-------------|
| Lab Name:            | Life Science Laboratories | <u>. Inc.</u> | Contract Number:        |               |             |
| Concentration Units  | (mg/L or mg/kg):          | <u>mg/L</u>   |                         |               |             |
| Calibraton Blank ID: | <u>ICB</u>                |               | Initial Calibration ID: |               | <u>1458</u> |
| Method Blank ID:     | <u>MB-R15897</u>          |               | Initial Calibration ID: |               | <u>1458</u> |

Comments:

QAPP 4.0

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R15897</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |
| Calibraton Blank ID: | CCB1                            | Initial Calibration ID: | <u>1458</u>   |
| Method Blank ID:     | MB-R15897                       | Initial Calibration ID: | <u>1458</u>   |

| Total Organic Carbon | 0.37  | 0.40         | 1.0  |
|----------------------|-------|--------------|------|
| Anabyte              | Blank | Method Blank | RL 0 |

Comments:

QAPP 4.0

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R15897</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>ma/L</u>    |                         |               |
| Calibraton Blank ID: | CCB2                            | Initial Calibration ID: | <u>1458</u>   |
| Method Blank ID:     | MB-R15897                       | Initial Calibration ID: | <u>1458</u>   |

| Total Organic Carbon | 0.13                 | 0.40         | 1.0 |   |
|----------------------|----------------------|--------------|-----|---|
| Analyte              | Calibration<br>Blank | Method Blank | RL. | Q |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:    | <u>SW9060</u>                   | AAB #:                  | <u>R15897</u> |
|-----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:             | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:               | LCS-R15897                      | Initial Calibration ID: | <u>1458</u>   |
| Concentration Units ( | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Anapte               | Expected | Found |     |          |  |
|----------------------|----------|-------|-----|----------|--|
| Total Organic Carbon | 10       | 10.2  | 102 | 90 - 110 |  |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDI<del>NG</del> TIMES

| Analytical Method: | <u>SW9060</u>                   | AAB #:      | <u>R15897</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| B035M0416HA     | 0812087-001C  | 10-Dec-08 | 11-Dec-08 | 19-Dec-08 | 28             | 9.2    |    |
|-----------------|---------------|-----------|-----------|-----------|----------------|--------|----|
|                 |               | Collected | Received  | Analyzed  | Time<br>(days) | (days) |    |
| Field Sample (B | Lap Sample 10 | Date      | Date      | Date      | Holding        | Heid   | Q. |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Contract #:

| Analytical Method: | <u>SW9060</u>                   |
|--------------------|---------------------------------|
| Lab Name:          | Life Science Laboratories, Inc. |

Instrument ID #:

<u>TOC-5000A</u>

| Field Sample ID/Sto<br>Blank ID/QC Samp |              | Date Apatyses | Timere rehyses<br>Started | Completed | Correlation |
|-----------------------------------------|--------------|---------------|---------------------------|-----------|-------------|
| SO                                      | SO           | 19-Dec-08     | 11:55                     | 19-Dec-08 | 12:05       |
| S1                                      | S1           | 19-Dec-08     | 12:05                     | 19-Dec-08 | 12:19       |
| S10                                     | S10          | 19-Dec-08     | 12:19                     | 19-Dec-08 | 12:34       |
| S20                                     | S20          | 19-Dec-08     | 12:34                     | 19-Dec-08 | 12:55       |
| ICV                                     | ICV          | 19-Dec-08     | 12:55                     | 19-Dec-08 | 13:04       |
| ICB                                     | ICB          | 19-Dec-08     | 13:04                     | 19-Dec-08 | 13:14       |
| MB-R15897                               | MB-R15897    | 19-Dec-08     | 13:14                     | 19-Dec-08 | 13:26       |
| LCS-R15897                              | LCS-R15897   | 19-Dec-08     | 13:26                     | 19-Dec-08 | 14:22       |
| CCV1                                    | CCV1         | 19-Dec-08     | 15:20                     | 19-Dec-08 | 15:29       |
| CCB1                                    | CCB1         | 19-Dec-08     | 15:29                     | 19-Dec-08 | 17:08       |
| B035M0416HA                             | 0812087-001C | 19-Dec-08     | 17:08                     | 19-Dec-08 | 17:17       |
| CCV2                                    | CCV2         | 19-Dec-08     | 17:41                     | 19-Dec-08 | 17:50       |
| CCB2                                    | CCB2         | 19-Dec-08     | 17:50                     | 19-Dec-08 | 18:02       |
| LCSD-R15897A                            | LCSD-R15897A | 19-Dec-08     | 18:02                     | 19-Dec-08 | 19:48       |
| CCV3                                    | CCV3         | 19-Dec-08     | 19:48                     | 19-Dec-08 | 19:57       |
| CCB3                                    | CCB3         | 19-Dec-08     | 19:57                     | 19-Dec-08 | 19:57       |

Comments:

# Total Alkalinity Data

| Analytical Method:   | SM 2320 B                       | AAB #:                  | <u>R15894</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |
| Calibraton Blank ID: |                                 | Initial Calibration ID: | <u>0</u>      |
| Method Blank ID:     | MB-R15894                       | Initial Calibration ID: | Q             |

| Anatyte              | Calibration<br>Blank | Method Blank |    | a |
|----------------------|----------------------|--------------|----|---|
| Alkalinity, as CaCO3 |                      | 10           | 10 |   |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

.

| Analytical Method:  | <u>SM 2320 B</u>                | AAB #:                  | <u>R15894</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R15894                      | Initial Calibration ID: | <u>0</u>      |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Found | la Ringer al River | Et al Links |  |
|----------------------|----------|-------|--------------------|-------------|--|
| Alkalinity, as CaCO3 | 50       | 48    | 96                 | 90 - 110    |  |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SM 2320 B</u>                | AAB #:      | <u>R15894</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| Field Sample ID            | LabSample 10                                    | Date<br>Collected | Cate      | Dans<br>Analyzod       | Heat<br>Helding<br>Tinte<br>(days) | Time<br>Held<br>(days) | 3 |
|----------------------------|-------------------------------------------------|-------------------|-----------|------------------------|------------------------------------|------------------------|---|
| B035M0416HA<br>B035M0416HA | 0812087-001D<br>0812087-001D<br>0812087-001DDUP | 10-Dec-08         | 11-Dec-08 | 21-Dec-08<br>21-Dec-08 | 14<br>14                           | 10.5<br>10.5           |   |

Comments:

OAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SM 2320 B</u>                |             |
|--------------------|---------------------------------|-------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |
| Instrument ID #:   | pH meter                        |             |

| Field Sample ID/Std ID/ | Eab<br>Sample 10 | Date Analyses<br>Slarted | Tiole Analyses<br>Started | Date Analyses<br>Completen | Hime Andreas<br>Completed |
|-------------------------|------------------|--------------------------|---------------------------|----------------------------|---------------------------|
| LCS-R15894              | LCS-R15894       | 21-Dec-08                | 0:00                      | 21-Dec-08                  | 0:00                      |
| MB-R15894               | MB-R15894        | 21-Dec-08                | 0:00                      | 21-Dec-08                  | 0:00                      |
| B035M0416HA             | 0812087-001DDUP  | 21-Dec-08                | 0:00                      | 21-Dec-08                  | 0:00                      |
| B035M0416HA             | 0812087-001D     | 21-Dec-08                | 0:00                      | 21-Dec-08                  | 0:00                      |

Comments:

QAPP 4.0

| 5000 Brittonfield Parkway, Suite 200                                |                                |                                                                                                           | ŧ                    |                            |                                                                                        |                              |                                |                    | ·<br>·<br>·                                                                       |                           | ANALI LICAL VC SUMMAN I NEL UNI |             |
|---------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------------------------------------------------------------------------|------------------------------|--------------------------------|--------------------|-----------------------------------------------------------------------------------|---------------------------|---------------------------------|-------------|
| East Syracuse, NY 13057                                             | d Parkway, S<br>NY 13057       | uite 200<br>(315) 437-0200                                                                                |                      |                            |                                                                                        |                              | Method:<br>Work Order:         |                    | SM 18-20 2320 B<br>0812087                                                        | 20 B                      |                                 |             |
| CLIENT: FPN                                                         | FPM Group                      |                                                                                                           |                      |                            |                                                                                        |                              | Project:                       |                    | Griffiss AFB - Building 35                                                        | Building                  | 35                              |             |
| Sample ID: 0812087-001DDUP<br>Client ID: B035M0416HA<br>Instrument: | 0812087-001DDUP<br>B035M0416HA | SampType: DUP<br>Batch ID: R15894 I<br>ColumnID:                                                          | TestCode:<br>Method: | ALKT 2320B<br>SM 18-20 232 | IB Units: mg/L<br>232                                                                  | Ϋ́Α                          | Prep Date:<br>Analysis Date: 1 | 12/21/2008         | RunNo:<br>SeqNo:                                                                  |                           | 15894<br>413894                 |             |
| Analyte                                                             |                                | QC Sample<br>Result                                                                                       | PQL                  | SPK Added                  | Parent<br>Sample<br>Result                                                             | %REC 1                       | LowLimit HighLimit             |                    | RPD Ref Val                                                                       | %RPD                      | RPDLimit                        | Qual        |
| Atkalinity, as CaCO3                                                | 80<br>                         | 284                                                                                                       | 10                   |                            |                                                                                        |                              |                                |                    | 584                                                                               |                           | <b>2</b>                        |             |
| Qualifiers: B<br>ND                                                 |                                | Analyte detected in the associated Method Blank<br>Not Detected at the Practical Quantitation Limit (PQL) | ık<br>(t (PQL)       | E Value e<br>R RPD e       | Value exceeds the instrument calibration range<br>RPD exceeds accepted precision limit | t calibration f<br>ion limit | ange                           | J Analy<br>S Spike | Analyte detected below the PQL<br>Spike Recovery outside accepted recovery limits | v the PQL<br>e accepted r | ecovery lim                     | its         |
| Date:                                                               |                                | Not Detected at the MDC of KL<br>14-Jan-09                                                                |                      |                            |                                                                                        |                              |                                |                    |                                                                                   |                           |                                 | Page 2 of 2 |

# Nitrate-Nitrite Nitrogen Data

|                                                                              | R15907B            |                                        | 21-Dec-08                    | <u>mg/L</u>                          |                                                                 |           |
|------------------------------------------------------------------------------|--------------------|----------------------------------------|------------------------------|--------------------------------------|-----------------------------------------------------------------|-----------|
| 2                                                                            | AAB #:             | Contract #:                            | Date of Initial Calibration: | Concentration Units (mg/L or mg/kg): | StD:0     StD:0       0     0       1 = correlation coefficient | ·         |
| AFCEE<br>WET CHEM ANALYSES DATA SHEET 3-10<br>INITIAL MULTIPOINT CALIBRATION |                    | نان                                    |                              |                                      | S104     S104     S104       0.1     0.25     0.5     1     2   | •<br>•    |
|                                                                              | E353.2             | <u>Life Science Laboratories, Inc.</u> | <u>AA3</u>                   | 1464                                 |                                                                 |           |
|                                                                              | Analytical Method: | Lab Name:                              | Instrument ID:               | Initial Calibration ID:              | Nitrate-nitrite (as N)                                          | Comments: |

| Analytical Method: | <u>E353.2</u>              |            |             | AAB #:              |            | <u>R15907</u> |
|--------------------|----------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |             | Contract #:         |            |               |
| Instrument ID:     | <u>AA3</u>                 |            |             | Initial Calibration | ID:        | <u>1464</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: | <u>CCV1</u> | <u>.</u> .          | CCV #2 ID: | <u>CCV2</u>   |

| Analyte                | 2nd Sc<br>V<br>Expected | ernication<br>Found | ration<br>%D | Expected | Continuing Ca | Noration Ve<br>VeD | nficebon<br>ound 2 |     |
|------------------------|-------------------------|---------------------|--------------|----------|---------------|--------------------|--------------------|-----|
| Nitrate-nitrite (as N) | 1.00                    | 0.999               | -0.1         | 1.00     | 1.01          | 1.2                | 1.02               | 1.6 |

Comments:

QAPP 4.0

| Analytical Method: | <u>E353.2</u>                 |            |             | AAB #:              |            | <u>R15907</u> |
|--------------------|-------------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, in | <u>nc.</u> |             | Contract #:         |            |               |
| Instrument ID:     | <u>AA3</u>                    |            |             | Initial Calibration | ID:        | <u>1464</u>   |
| 2nd Source ID:     | ICV                           | CCV #1 ID: | <u>çcva</u> | <u>}</u>            | CCV #2 ID: | CCV4          |

| Analyte                | 2mi S | surca Calib<br>Certification<br>Foliati | rabion<br>%D | Expected | Continum<br>Found 1 | Calibration | Verification<br>Found 2 | 9<br>767 |
|------------------------|-------|-----------------------------------------|--------------|----------|---------------------|-------------|-------------------------|----------|
| Nitrate-nitrite (as N) | 1.00  | 0.999                                   | -0.1         | 1.00     | 1.0                 | 2 1.6       | 1.01                    | 1.3      |

Comments:

QAPP 4.0

| Analytical Method: | <u>E353.2</u>                |            |             | AAB #:              |            | <u>R15907</u> |
|--------------------|------------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, I | nc.        |             | Contract #:         |            |               |
| Instrument ID:     | <u>AA3</u>                   |            |             | Initial Calibration | ID:        | <u>1464</u>   |
| 2nd Source ID:     | ICV                          | CCV #1 ID: | <u>CCV5</u> | i                   | CCV #2 ID: | <u>CCV6</u>   |

| Analyte                | 20d So<br>Expected | Found | bon<br>Kapite | Cor<br>coected E | tinuing Cal |     |      | <b>e</b><br>76 - 1 |
|------------------------|--------------------|-------|---------------|------------------|-------------|-----|------|--------------------|
| Nitrate-nitrite (as N) | 1.00               | 0.999 | -0.1          | 1.00             | 1.01        | 1.3 | 1.00 | 0.4                |

Comments:

QAPP 4.0

| Analytical Method: | <u>E353.2</u>                |            |             | AAB #:              |            | <u>R15907</u> |
|--------------------|------------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, I | nc.        |             | Contract #:         |            |               |
| Instrument ID:     | <u>AA3</u>                   |            |             | Initial Calibration | D:         | <u>1464</u>   |
| 2nd Source ID:     | ICV                          | CCV #1 ID: | <u>CCV7</u> |                     | CCV #2 ID: | <u>CCV8</u>   |

| Analyte                | 2nd Sc | erfication | ation |      | Continuing | Calibration  | Verification |      | 9 |
|------------------------|--------|------------|-------|------|------------|--------------|--------------|------|---|
| Nitrate-nitrite (as N) | 1.00   | 0.999      | -0.1  | 1.00 | 1.02       | 706.7<br>1.9 | 0.998        | -0.2 |   |

Comments:

QAPP 4.0

| Analytical Method:   | E353.2                     |             | AAB #:                  | <u>R15907B</u> |             |
|----------------------|----------------------------|-------------|-------------------------|----------------|-------------|
| Lab Name:            | Life Science Laboratories, | Inc.        | Contract Number:        |                |             |
| Concentration Units  | (mg/L or mg/kg):           | <u>ma/L</u> |                         |                |             |
| Catibraton Blank ID: | ICB                        |             | Initial Calibration ID: |                | <u>1464</u> |
| Method Blank ID:     | MB-R15907B                 |             | Initial Calibration ID: |                | <u>1464</u> |

| Adatyte                | Calibration | Method Blank | R     | Q |
|------------------------|-------------|--------------|-------|---|
| Nitrate-nitrite (as N) | 0.0026      | 0.0074       | 0.050 |   |

Comments:

QAPP 4.0

| Analytical Method:   | <u>E353.2</u>                 | AAB #:                  | <u>R15907B</u> |
|----------------------|-------------------------------|-------------------------|----------------|
| Lab Name:            | Life Science Laboratories, In | c. Contract Number:     |                |
| Concentration Units  | (mg/L or mg/kg): m            | <u>g/L</u>              |                |
| Calibraton Blank ID: | CCB1                          | Initial Calibration ID: | <u>1464</u>    |
| Method Blank ID:     | MB-R15907B                    | Initial Calibration ID: | <u>1464</u>    |

| Nitrate-nitrite (as N) | 0.0027                 | 0.0074       | 0.050 |
|------------------------|------------------------|--------------|-------|
| Analyie                | Calibration =<br>Blank | Method Blank | RL Q  |

Comments:

QAPP 4.0

| Analytical Method:   | <u>E353.2</u>                         | AAB #:                  | R15907B     |
|----------------------|---------------------------------------|-------------------------|-------------|
| Lab Name:            | Life Science Laboratories, Inc.       | Contract Number:        |             |
| Concentration Units  | ( <b>mg/L or mg/kg)</b> ; <u>mg/L</u> |                         |             |
| Calibraton Blank ID: | CCB2                                  | Initial Calibration ID: | <u>1464</u> |
| Method Blank ID:     | MB-R15907B                            | Initial Calibration ID: | 1464        |
|                      |                                       | -                       |             |

| Nitrate-nitrite (as N) | 0.0097               | 0.0074       | 0.050 |
|------------------------|----------------------|--------------|-------|
| Analyte                | Calibration<br>Blank | Method Elank | R     |

Comments:

OAPP 4.0

| Analytical Method:   | <u>E353.2</u>                   | AAB #:                  | R15907B     |
|----------------------|---------------------------------|-------------------------|-------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |             |
| Concentration Units  | (mg/L or mg/kg): <u>mg/L</u>    |                         |             |
| Calibraton Blank ID: | <u>CCB3</u>                     | Initial Calibration ID: | <u>1464</u> |
| Method Blank ID:     | MB-R15907B                      | Initial Calibration ID: | <u>1464</u> |

| Nitrate-nitrite (as N) | 0.0072               | 0.0074       | 0.050 |   |
|------------------------|----------------------|--------------|-------|---|
| Analyte                | Calibration<br>Blank | Method Blank | RL    | d |

Comments:

QAPP 4.0

| Analytical Method:   | <u>E353.2</u>                   | AAB #:                  | <u>R15907B</u> |
|----------------------|---------------------------------|-------------------------|----------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |                |
| Concentration Units  | (mg/L or mg/kg): mg/l           | L                       |                |
| Calibraton Blank ID: | CCB4                            | Initial Calibration ID: | <u>1464</u>    |
| Method Blank ID:     | MB-R15907B                      | Initial Calibration ID: | 1464           |

| Nitrate-nitrite (as N) | 0.011                 | 0.0074       | 0.050  |
|------------------------|-----------------------|--------------|--------|
| Analyte                | Galitization<br>Blank | Method Blank | RL . C |

Comments:

QAPP 4.0

| Analytical Method:   | <u>E353.2</u>                   | AAB #:                  | <u>R15907B</u> |
|----------------------|---------------------------------|-------------------------|----------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |                |
| Concentration Units  | (mg/L or mg/kg): mg/L           |                         |                |
| Calibraton Blank ID: | CCB5                            | Initial Calibration ID: | <u>1464</u>    |
| Method Blank ID:     | MB-R15907B                      | Initial Calibration ID: | <u>1464</u>    |

| Nitrate-nitrite (as N) | 0.011 | 0.0074       | 0.050 |  |
|------------------------|-------|--------------|-------|--|
| Analyte                | Blank | Method Blank | R     |  |

Comments:

QAPP 4.0

| Analytical Method:   | <u>E353.2</u>                   | AAB #:                  | <u>R15907B</u> |
|----------------------|---------------------------------|-------------------------|----------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |                |
| Concentration Units  | (mg/L or mg/kg): mg/l           | L                       |                |
| Calibraton Blank ID: | <u>CCB6</u>                     | Initial Calibration ID: | <u>1464</u>    |
| Method Biank ID:     | MB-R15907B                      | Initial Calibration ID: | <u>1464</u>    |

| Analyte                | Calibration<br>Blank | Method Blank | RL    |  |
|------------------------|----------------------|--------------|-------|--|
| Nitrate-nitrite (as N) | 0.014                | 0.0074       | 0.050 |  |

Comments:

QAPP 4.0

| Analytical Method:   | E353.2                          | AAB #:                  | <u>R15907B</u> |
|----------------------|---------------------------------|-------------------------|----------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |                |
| Concentration Units  | (mg/L or mg/kg): mg/L           |                         |                |
| Calibraton Blank ID: | <u>CCB7</u>                     | Initial Calibration ID: | <u>1464</u>    |
| Method Blank ID:     | MB-R15907B                      | Initial Calibration ID: | <u>1464</u>    |

| thalyte                | Calibration<br>Blank | Method Blank | RI RI |  |
|------------------------|----------------------|--------------|-------|--|
| Nitrate-nitrite (as N) | 0.015                | 0.0074       | 0.050 |  |

Comments:

QAPP 4.0

| Analytical Method:         | <u>E353.2</u>                   | AAB #:                  | <u>R15907B</u> |             |
|----------------------------|---------------------------------|-------------------------|----------------|-------------|
| Lab Name:                  | Life Science Laboratories, Inc. | Contract Number:        |                |             |
| <b>Concentration Units</b> | (mg/L or mg/kg): mg/L           |                         |                |             |
| Calibraton Blank ID:       | <u>CCB8</u>                     | Initial Calibration ID: |                | <u>1464</u> |
| Method Blank ID:           | MB-R15907B                      | Initial Calibration ID: |                | <u>1464</u> |

| Nitrate-nitrite (as N) | 0.016                | 0.0074       | 0.050 |  |
|------------------------|----------------------|--------------|-------|--|
| Analyte                | Calibration<br>Blank | Method Stank | B     |  |

Comments:

OAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:    | <u>E353.2</u>                   | AAB #:                  | <u>R15907B</u> |
|-----------------------|---------------------------------|-------------------------|----------------|
| Lab Name:             | Life Science Laboratories, Inc. | Contract #:             |                |
| LCS ID:               | LCS-R15907B                     | Initial Calibration ID: | <u>1464</u>    |
| Concentration Units ( | (mg/L or mg/kg): <u>mg/L</u>    |                         |                |

| Analyte                | Expected | Found |     | Control Linness | C I |
|------------------------|----------|-------|-----|-----------------|-----|
| Nitrate-nitrite (as N) | 1        | 0.997 | 100 | 90 - 110        |     |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>E353.2</u>                   | AAB #:      | <u>R15907B</u> |
|--------------------|---------------------------------|-------------|----------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |                |

| B035M0416HA     | 0812087-001B  | 10-Dec-08 | 11-Dec-08        | 21-Dec-08 | 28     | 11.0           |   |
|-----------------|---------------|-----------|------------------|-----------|--------|----------------|---|
|                 |               |           |                  |           | (dava) |                |   |
| Field Sample ID | Lab Sample ID | Collected | Date<br>Received | Date      | Hatana | Heid<br>(days) | 0 |
|                 |               |           |                  |           |        |                |   |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Contract #:

| Analytical Method: | <u>E353.2</u>                   |
|--------------------|---------------------------------|
| Lab Name:          | Life Science Laboratories, Inc. |

<u>AA3</u>

Instrument ID #:

| Field Sample ID/Std10 | Lab 🚽        | Date Analyses | a hoyanarsa | Gale Analyses | Time Analyses |
|-----------------------|--------------|---------------|-------------|---------------|---------------|
| Blank ID/QC Sample ID | Sample ID    | Started       | Started     | Completed     | i iconolear   |
| Cal. 2.0              | Cal. 2.0     | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 1.0              | Cal. 1.0     | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 0.5              | Cal. 0.5     | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 0.25             | Cal. 0.25    | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 0.1              | Cal. 0.1     | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 0.05             | Cal. 0.05    | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| Cal. 0.0              | Cal. 0.0     | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| ICV                   | ICV          | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| ICB                   | ICB          | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCV1                  | CCV1         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCB1                  | CCB1         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCV2                  | CCV2         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCB2                  | CCB2         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCV3                  | CCV3         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCB3                  | CCB3         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCV4                  | CCV4         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCB4                  | CCB4         | 21-Dec-08     | 12:57       | 21-Dec-08     | 12:57         |
| CCV5                  | CCV5         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCB5                  | CCB5         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCV6                  | CCV6         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCB6                  | CCB6         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| MB-R15907B            | MB-R15907B   | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| LCS-R15907B           | LCS-R15907B  | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| B035M0416HA           | 0812087-001B | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCV7                  | CCV7         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCB7                  | CCB7         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCV8                  | CCV8         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCB8                  | CCB8         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCV9                  | CCV9         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |
| CCB9                  | CCB9         | 21-Dec-08     | 12:58       | 21-Dec-08     | 12:58         |

Comments:

### Nitrite Data

٠

| AFCEE | WET CHEM ANALYSES DATA SHEET 3-10 | INITIAL MULTIPOINT CALIBRATION |
|-------|-----------------------------------|--------------------------------|
|-------|-----------------------------------|--------------------------------|

| R15779             |                                 | 22-Aug-08                    | <u>mg/L</u>                          |
|--------------------|---------------------------------|------------------------------|--------------------------------------|
| AAB #:             | Contract #:                     | Date of Initial Calibration: | Concentration Units (mg/L or mg/kg): |
|                    |                                 |                              |                                      |
| SM 4500-NO2 B      | Life Science Laboratories, Inc. | GENESYS 20                   | <u>1347</u>                          |
| Analytical Method: | Lab Name:                       | Instrument ID:               | Initial Calibration ID:              |

| din ka                            |         | ר          |
|-----------------------------------|---------|------------|
| a                                 |         |            |
|                                   |         |            |
|                                   | 5       | <b>1</b>   |
|                                   | 0.9997  | ficier     |
|                                   | 0       | coefi      |
|                                   | 0       | tion       |
| 121210<br>12121<br>12121<br>12121 |         | relat      |
| 6                                 |         | = correlat |
|                                   | 0       | · Ĕ        |
|                                   |         |            |
| D) i ter                          | ~       |            |
| 51                                | -       |            |
|                                   |         |            |
| 2911)<br>22<br>2311<br>2411       | 0.2     |            |
|                                   |         |            |
| 0                                 | ÷       |            |
| S                                 | Ö       |            |
|                                   |         |            |
| 10 H E Z                          | 0.08    |            |
| Control of                        |         |            |
|                                   | z       |            |
|                                   | 0.0     |            |
|                                   |         |            |
|                                   | 0.02    |            |
|                                   |         |            |
| R                                 | 5       |            |
|                                   | 0.0     |            |
|                                   |         |            |
|                                   | 0       |            |
|                                   |         |            |
|                                   |         |            |
|                                   |         |            |
|                                   |         |            |
| 01                                |         |            |
| len b                             |         |            |
|                                   |         |            |
|                                   | N SE    |            |
|                                   | ite (as |            |
|                                   | L.      |            |
|                                   |         |            |

Comments:

AFCEE FORM W-3 10

I

| Analytical Method: | <u>SM 4500-NO2 B</u>       |              | AAB #:         |            | <u>R15779</u> |
|--------------------|----------------------------|--------------|----------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.         | Contract #:    |            |               |
| Instrument ID:     | GENESYS 20                 |              | Initial Calibr | ation ID:  | <u>1347</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: 🤇 | CCV1           | CCV #2 1D: | CCV2          |

| Analyte        | Zhu So | urce Calito<br>erification<br>Forme | ation<br>%D | Expected |        | Calibration | Mer fi canor<br>Epund 2 |      | p. |
|----------------|--------|-------------------------------------|-------------|----------|--------|-------------|-------------------------|------|----|
| Nitrite (as N) | 0.100  | 0.0939                              | -6.1        | 0.100    | 0.0961 | -3.9        | 0.0964                  | -3.6 |    |

Comments:

QAPP 4.0

| Analytical Method:   | <u>SM 4500-NO2 B</u>            | AAB #:                  | <u>R15779</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |
| Calibraton Blank ID: | ICB                             | Initial Calibration ID: | <u>1347</u>   |
| Method Blank ID:     | <u>MB-R15779</u>                | Initial Calibration ID: | <u>1347</u>   |

| Nitrite (as N) | -0.0013              | 0.010        | 0.020 |   |
|----------------|----------------------|--------------|-------|---|
| Analyte        | Calibration<br>Elank | Method Blank | RI I  | 9 |

Comments:

QAPP 4.0

| Analytical Method:   | SM 4500-NO2 B                   | AAB #:                  | <u>R15779</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L. or mg/kg): <u>mg/L</u>   |                         |               |
| Calibraton Blank ID: | CCB1                            | Initial Calibration ID: | <u>1347</u>   |
| Method Blank ID:     | <u>MB-R15779</u>                | Initial Calibration ID: | <u>1347</u>   |

Comments:

QAPP 4.0

| Analytical Method:    | SM 4500-NO2 B                   | AAB #:                  | <u>R15779</u> |
|-----------------------|---------------------------------|-------------------------|---------------|
| Lab Name: <u>I</u>    | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units ( | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |
| Calibraton Blank ID:  | CCB2                            | Initial Calibration ID: | <u>1347</u>   |
| Method Blank ID:      | MB-R15779                       | Initial Calibration ID: | <u>1347</u>   |

| Nitrite (as N)      | -0.00099    | 0.010 | 0.020 |  |
|---------------------|-------------|-------|-------|--|
| And Andrew Contract | Gallbration |       |       |  |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:    | <u>SM 4500-NO2 B</u>            | AAB #:                  | <u>R15779</u> |
|-----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:             | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:               | LCS-R15779                      | Initial Calibration ID: | <u>1347</u>   |
| Concentration Units ( | mg/L or mg/kg): <u>mg/L</u>     |                         |               |

| Analyse        | Expected | Found  | 201 | entrance springe |  |
|----------------|----------|--------|-----|------------------|--|
| Nitrite (as N) | 0.1      | 0.0936 | 94  | 90 - 110         |  |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SM 4500-NO2 B</u>            | AAB #:      | <u>R15779</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |
|                    |                                 |             |               |

| B035M0416HA     | 0812087-001B  | 10-Dec-08 | 11-Dec-08 | 12-Dec-08 | 2       | 1.8  |  |
|-----------------|---------------|-----------|-----------|-----------|---------|------|--|
|                 |               |           |           |           |         |      |  |
| Field Sample ID | Lab Sample ID | Date      | Date      | Date      | Holding | Heid |  |

Comments:

QAPP 4.0

.

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SM 4500-NO2 B</u> |
|--------------------|----------------------|
|--------------------|----------------------|

| Lab Name:        | Life Science Laboratories, Inc. | Contract #: |
|------------------|---------------------------------|-------------|
| Instrument ID #: | GENESYS 20                      |             |

| Field Sample (D/Std ID<br>Plank (D/QC Sample ID |              |           | Trace Analyses | Proste Analysis |                   |
|-------------------------------------------------|--------------|-----------|----------------|-----------------|-------------------|
|                                                 |              | Started   | Starfeet       | Conport         | Complete          |
| 0.01mg/L                                        | 0.01mg/L     | 22-Aug-08 | 14:33          | 22-Aug-08       | 14:34             |
| 0.02mg/L                                        | 0.02mg/L     | 22-Aug-08 | 14:34          | 22-Aug-08       | 14:36             |
| 0.0mg/L                                         | 0.0mg/L      | 22-Aug-08 | 14:36          | 22-Aug-08       | 14:3 <del>6</del> |
| 0.04mg/L                                        | 0.04mg/L     | 22-Aug-08 | 14:36          | 22-Aug-08       | 14:36             |
| 0.08mg/L                                        | 0.08mg/L     | 22-Aug-08 | 14:36          | 22-Aug-08       | 14:37             |
| 0.1mg/L                                         | 0.1mg/L      | 22-Aug-08 | 14:37          | 22-Aug-08       | 14:37             |
| 0.2mg/L                                         | 0.2mg/L      | 22-Aug-08 | 14:37          | 22-Aug-08       | 14:37             |
| ICV                                             | ICV          | 12-Dec-08 | 7:40           | 12-Dec-08       | 7:40              |
| ICB                                             | ICB          | 12-Dec-08 | 7:40           | 12-Dec-08       | 7:40              |
| MB-R15779                                       | MB-R15779    | 12-Dec-08 | 7:40           | 12-Dec-08       | 7:40              |
| LCS-R15779                                      | LCS-R15779   | 12-Dec-08 | 7:40           | 12-Dec-08       | 7:54              |
| CCV1                                            | CCV1         | 12-Dec-08 | 7:59           | 12-Dec-08       | 7:59              |
| CCB1                                            | CCB1         | 12-Dec-08 | 7:59           | 12-Dec-08       | 8:02              |
| B035M0416HA                                     | 0812087-001B | 12-Dec-08 | 8:02           | 12-Dec-08       | 8:03              |
| CCV2                                            | CCV2         | 12-Dec-08 | 8:03           | 12-Dec-08       | 8:04              |
| CCB2                                            | CCB2         | 12-Dec-08 | 8:04           | 12-Dec-08       | 8:04              |

Comments:

QAPP 4.0

. .

.



Thursday, March 12, 2009

Niels van Hoesel FPM Group 153 Brooks Road Rome, NY 13441

TEL:

Project: GRIFFISS AFB - BUILDING 35 RE: Analytical Result

Order No.: 0902124

Dear Niels van Hoesel:

Life Science Laboratories, Inc. received 1 sample(s) on 2/26/2009 for the analyses presented in the following report.

Very truly yours, Life Science Laboratories, Inc.

Julas Jam

Pamela J. Titus Project Manager

# **Laboratory Report**

#### **Project Management Case Narrative**

#### INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from FPM, for the Griffiss AFB-Building 35-Rome, NY project.

#### CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The cooler(s) were received intact. When the cooler(s) were received by the laboratory, the sample custodian(s) opened and inspected the shipment(s) for damage and custody inconsistencies. Chains of custody documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

There were no discrepancies noted upon receipt. The temperature of the cooler was 1.6°C.

#### METHODOLOGY

The following methods were used to perform the analyses:

| PARAMETER            | METHOD  | REFERENCE |
|----------------------|---------|-----------|
| Volatile Organics    | SW8260B | 1         |
| Total Organic Carbon | SW9060  | I         |
| Alkalinity as CaCO3  | SM2320B | 2         |
| Anions               | SW9056  | 1         |

- 1) <u>Test Methods for Evaluating Solid Wastes</u>, SW-846 Third Edition, Final Update III, December 1996 (including the QC requirements specified in AFCEE 4.0 + variances).
- 2) <u>Standard Methods for the Examination of Water and Wastewater</u>, 18<sup>th</sup> Edition, 1992

#### QUALITY CONTROL

QA/QC results are summarized in the Laboratory Report.

#### **RAW DATA**

The raw data is not requested for this report. Life Science Laboratories, Inc. will keep the raw data on file.

Total # of pages in this report:

Client: Project/Order: Work Order #: Methodology:

FPM Griffiss AFB – Building 35 0902124 8260B

Analyzed/Reviewed by (Initials/Date):

Supervisor/Reviewed by (Initials/Date):

QA/QC Review (Initials/Date):

File Name:

G:\Narratives\MSVoa\0902124msvnar.doc

#### **GC/MS Volatile Organics**

The GC/MS Volatile instruments are equipped with a Restek Rtx-VMS, 40 m x 0.18 mm ID capillary column (MS01), Restek Rtx-502.2, 105 m x 0.53 mm ID capillary column (MS02), Restek Rtx-502.2, 60 m x 0.25 mm ID capillary column (MS03) and Restek Rtx-VMS, 60 m x 0.25 mm ID capillary column (MS04), and a Vocarb 3000 adsorbent trap.

There were no excursions to note. All QC results were within established control limits.

#### **Holding Times and Sample Preservation**

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of < 2.

#### Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

#### **Surrogate Standards**

All surrogate standard recoveries met method and/or project specific QC criteria.

#### **Internal Standards**

All internal standard areas met method and/or project specific QC criteria.

#### Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

#### **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

#### Wet Chemistry Case Narrative

3-5-09 m

3-5-04

Client ID: Project/Order: Work Order #: Methodology: FPM Griffiss AFB – Building 35 0902124 Total Organic Carbon – SW9060 Alkalinity as CaCO3 – SM 2320 B Anions – SW9056

Analyzed/Reviewed by (Date/Initials):

Supervisor/Reviewed by (Date/Initials):

QA/QC Review (Date/Initials):

Wet Chemistry

#### **Holding Times**

All samples were prepared and analyzed within the method and/or QAPP specified holding times.

#### Laboratory Control Sample

All spike recoveries met method and/or project specified QC criteria.

#### MS/MSD AND MS/MSD RPD

All spike recovery and RPD data met method and/or project specific QC criteria.

#### Sample Duplicate

All sample duplicate RPD data met method and/or project specific QC criteria.

#### Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

#### **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

I:\WC\_Narrative\0902124 FPM\_Griffiss\_bld35\_wc.doc

#### Life Science Laboratories, Inc.

| CLIENT:<br>Project:<br>Lab Order: | FPM Group<br>Griffiss AFB - Building 35<br>0902124 | 5          | Work Order Sa   | mple Summary  |
|-----------------------------------|----------------------------------------------------|------------|-----------------|---------------|
| Lab Sample ID                     | Client Sample ID                                   | Tag Number | Collection Date | Date Received |
| 902124-001A                       | B035M0416GB                                        | B035MW04   | 2/26/2009       | 2/26/2009     |
| 902124-001B                       | B035M0416GB                                        | B035MW04   | 2/26/2009       | 2/26/2009     |
| 0902124-001C                      | B035M0416GB                                        | B035MW04   | 2/26/2009       | 2/26/2009     |
| )902124-001D                      | B035M0416GB                                        | B035MW04   | 2/26/2009       | 2/26/2009     |

......

.\_\_\_\_\_

Date: 12-Mar-09

# Life Science Laboratories, Inc.

.

| Lab Order:<br>Client:<br>Project: | 0902124<br>FPM Group<br>Griffiss AFB - Building 35 | ding 35                |        |                                     | DATES REPORT        |               |
|-----------------------------------|----------------------------------------------------|------------------------|--------|-------------------------------------|---------------------|---------------|
| Sample ID                         | Client Sample ID                                   | <b>Collection Date</b> | Matrix | Test Name                           | TCLP Date Prep Date | Analysis Date |
| 0902124-001A                      | B035M0416GB                                        | 2/26/2009 11:20:00 AM  | Water  | Volatile Organic Compounds by GC/MS |                     | 2/27/2009     |
| 0902124-001B                      |                                                    |                        |        | Inorganic anions by IC              |                     | 2/27/2009     |
|                                   |                                                    |                        |        | Inorganic anions by IC              |                     | 2/27/2009     |
| 0902124-001C                      |                                                    |                        |        | Total Organic Carbon                |                     | 3/4/2009      |
|                                   |                                                    |                        |        | Total Organic Carbon                |                     | 3/4/2009      |
|                                   |                                                    |                        |        | Total Organic Carbon                |                     | 3/4/2009      |
| 0902124-001D                      |                                                    |                        |        | Alkalinity, as CaCO3                |                     | 3/1/2009      |

## **External Chain of Custody**

|                                                                                                                                                     |                                                                               |                          |               |                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                            | 5               |                               |                                                                    |            | 5                                             | 4                                                                                                                                                                        |                                                                                                                                                                                           | Ö            | C#: _1_ SDG#:                                                                       | COC#: _1_ SDG#: _215_ Cooler ID:   | $\mathbf{v}_{\mathbf{r}}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|--------------------------------------------------------------------|------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------|------------------------------------|---------------------------|
| Ship to: Pamela Titus<br>Life Science Laboratories, Inc.<br>5000 Brittonfield Pkwy, Suite 200<br>East Syracuse, NY 13057 Tr                         | atories, Inc.<br>kwy, Suite 200<br>13057 Tel                                  | )0<br>Tel: (315)437-0200 | 437-02        | 0                                                                                                                                                                     | Pr                                                                                   | oject N                                                                                                                                                                                    | ame: G<br>Jame: | riffiss /<br>Niels v          | Project Name: Griffiss AFB Site  <br>Sampler Name: Niels van Hoese | e Build    | ling 35                                       | Project Name: Griffiss AFB Site Building 35 sampling<br>Sampler Name: Niels van Hoesel                                                                                   |                                                                                                                                                                                           | nd Resu      | Send Results to: Niels van Hoesel<br>FPM Group<br>153 Brooks Road<br>Rome, NY 13441 | Hoesel<br>up<br>ks Road<br>Y 13441 |                           |
| Carrier: LSL courier.                                                                                                                               |                                                                               |                          |               |                                                                                                                                                                       | Sa                                                                                   | Sampler Signature:                                                                                                                                                                         | ignatu          | re: Z                         |                                                                    |            | $\left\  \right\ $                            |                                                                                                                                                                          |                                                                                                                                                                                           |              | Phone: (31                                                                          | Phone: (315) 336-7721 Ext 205      | 05                        |
|                                                                                                                                                     |                                                                               |                          |               |                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                            |                 |                               |                                                                    |            |                                               | Analy                                                                                                                                                                    | Analyses Requested                                                                                                                                                                        | lested       |                                                                                     |                                    |                           |
| Field Sample ID                                                                                                                                     | Location ID<br>(LOCID)                                                        | Date<br>2009             | Time          | XIATAM                                                                                                                                                                | ZWCODE                                                                               | CISS CISS CISS CISS CISS CISS CISS CISS                                                                                                                                                    | <b>SACODE</b>   | Preservative<br>Filt./UnFilt. | to oN                                                              | VOCs Note1 | 40 mL vial (HCI)<br>Anions, <sup>note 2</sup> | 250 mL vials (HCL)<br>TOC <sup>nole3</sup>                                                                                                                               | Alkalinity <sup>note 4</sup><br>8 oz glass (zero<br>headspace)                                                                                                                            | ( J          |                                                                                     | Comments                           |                           |
| B035M0416GB B0                                                                                                                                      | B035MW04                                                                      | 2/26                     | 1120          | МG                                                                                                                                                                    | в                                                                                    | 0/0                                                                                                                                                                                        | H<br>Z          | HCI Unf.                      | f. 7                                                               | 3          | 1                                             | 7                                                                                                                                                                        |                                                                                                                                                                                           |              |                                                                                     |                                    |                           |
| Sample Condition Upon Receipt at Laboratory.                                                                                                        | ceipt at Laborate                                                             | iyi                      |               |                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                            |                 |                               |                                                                    |            |                                               |                                                                                                                                                                          |                                                                                                                                                                                           | Cooler 1     | Cooler Temperature:                                                                 |                                    |                           |
| Special Instructions/Comments: Analyses to be conducted in compliance with AFCEE QAPP 4.0                                                           | ents: Analyses to                                                             | o be col                 | nducte        | d in co                                                                                                                                                               | mplian                                                                               | ce with                                                                                                                                                                                    | AFCE            | E QAP                         | P 4.0<br>~                                                         |            |                                               |                                                                                                                                                                          |                                                                                                                                                                                           |              |                                                                                     |                                    |                           |
| Note 1: VOC: method SW 8260: Target COCs: PCE, TCE, DCE, Vmyl Chloride and Chloroform.<br>Note 2: Anions: SW9056 CHLORIDE, SULFATE AND NITRATE ONLY | S260: Target CU<br>CHLORIDE, SU                                               | Cs: PC<br>JLFAT          | EAN           |                                                                                                                                                                       | , viny<br>RATE                                                                       | <b>ONLY</b>                                                                                                                                                                                | de and          | Chloro                        | torm.                                                              |            |                                               |                                                                                                                                                                          |                                                                                                                                                                                           |              |                                                                                     |                                    |                           |
| Note 3: TOC: SW9060.                                                                                                                                |                                                                               |                          |               |                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                            |                 |                               |                                                                    |            |                                               |                                                                                                                                                                          |                                                                                                                                                                                           | ,            |                                                                                     |                                    |                           |
| Note 4: Alkalinity: 310.1.                                                                                                                          |                                                                               |                          |               |                                                                                                                                                                       |                                                                                      |                                                                                                                                                                                            |                 |                               |                                                                    |            |                                               |                                                                                                                                                                          |                                                                                                                                                                                           |              |                                                                                     |                                    |                           |
| #1 Released by: (Sig)                                                                                                                               |                                                                               | Date:                    |               | #                                                                                                                                                                     | Releas                                                                               | #2 Released by: (Sig)                                                                                                                                                                      | 1               | 1400                          | Strat C                                                            | Date:      | : 2/26/09                                     |                                                                                                                                                                          | #3 Released by: (Sig)-                                                                                                                                                                    | by: (Sig)-   | Taul the                                                                            | Date: 2/24/09                      | A                         |
| Company Name:                                                                                                                                       | -                                                                             | Time:                    | -             |                                                                                                                                                                       | ompany                                                                               | Company Name: FPM                                                                                                                                                                          | Ľ               | th Jando                      | 11                                                                 | Time:      |                                               | -                                                                                                                                                                        | Company Name:                                                                                                                                                                             | ame:         | 7 650                                                                               | Time: // 33                        |                           |
| #1 Received by: (Sig) Niels van Hoesel                                                                                                              | i Hoesel                                                                      | Date:                    | Date: 2/21/09 |                                                                                                                                                                       | Receiv                                                                               | #2 Received by: (Sig)                                                                                                                                                                      | (g) 1a          | 10                            | oult                                                               | Date:      | $\sim$                                        | 2                                                                                                                                                                        | #3 Received by: (Sig                                                                                                                                                                      | l by: (Sig)  | A HAW                                                                               | 2/210                              | 09                        |
| Company Name: FPM Group Ltd                                                                                                                         | Jtd                                                                           | Time:                    | Time: 10200   |                                                                                                                                                                       | Company Name:                                                                        | Name:                                                                                                                                                                                      | <b>`</b>        | 5                             | 1                                                                  | Time:      | c //: 4.3                                     |                                                                                                                                                                          | Company Name:                                                                                                                                                                             | ame          | ULSLBL                                                                              | Time: '/43                         | 0                         |
| <u>MATRIX</u><br>WG = Ground water<br>WQ = Water Quality<br>SO = Soil                                                                               | MATRIX<br>WG = Ground water<br>WQ = Water Quality Control Matrix<br>SO = Soil | ×                        |               | <u>SMCODE</u><br>B = Bailer<br>G = Grab (only for EF<br>NA = Not Applicable<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pur<br>SS = Split spoon | <u>DE</u><br>er<br>b (only<br>ot Appl<br>ristaltic<br>adder P<br>bmersil<br>lit spoo | <u>SMCODE</u><br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (only for AB/TB)<br>PP = Peristalitic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon | anly for        | AB/TB)                        | _                                                                  |            | S W H H H H H H H H H H H H H H H H H H       | <b>SACODE</b><br>N = Normal Sample<br>AB = Ambient Blank<br>TB = Trip Blank<br>EB = Equipment Blan<br>FD = Field Duplicate<br>MS = Matrix Spike D<br>SD = Matrix Spike D | <b>SACODE</b><br>N = Normal Sample<br>AB = Ambient Blank<br>IB = Trip Blank<br>EB = Equipment Blank<br>FD = Field Duplicate<br>MS = Matrix Spike Duplicate<br>SI = Matrix Spike Duplicate | k<br>plicate |                                                                                     |                                    |                           |

AFCEE

16° conice

### Life Science Laboratories, Inc.

### Sample Receipt Checklist

| Client Name: FPM                                        |                          | Date and Time Received:     | 2/26/2009       |
|---------------------------------------------------------|--------------------------|-----------------------------|-----------------|
| Work Order Number: 0902124                              |                          | Received by: pt             |                 |
| Checklist completed by:                                 | [09                      | Reviewed by:                | 2/26/69<br>Date |
| Delivery Method                                         | d: <u>Hand Delivered</u> |                             |                 |
| Shipping container/cooler in good condition?            | Yes 🔽                    | No 🗌 Not Present 🗌          |                 |
| Custody seals intact on shipping container/cooler?      | Yes 🗹                    | No Not Present              |                 |
| Custody seals intact on sample bottles?                 | Yes                      | No 🗌 Not Applicable 🗹       |                 |
| Chain of custody present?                               | Yes 🔽                    | No                          |                 |
| Chain of custody signed when relinquished and received? | Yes 🔽                    | No                          |                 |
| Chain of custody agrees with sample labels?             | Yes 🗹                    | No 🗔                        |                 |
| Samples in proper container/bottle?                     | Yes 🔽                    | Νο                          |                 |
| Sample containers intact?                               | Yes 🗹                    | No                          |                 |
| Sufficient sample volume for indicated test?            | Yes 🔽                    | No 🗔                        |                 |
| All samples received within holding time?               | Yes 🗸                    | No                          |                 |
| Container/Temp Blank temperature in compliance?         | Yes 🗹                    |                             |                 |
| Water - VOA vials have zero headspace?                  | Yes 🗹                    | No 🗌 No VOA vials submitted |                 |
| Water - pH acceptable upon receipt?                     | Yes 🔽                    | No 💭 Not Applicable 🗌       |                 |

Sample ID

| рH  | Preservative         | pH Acceptable  |
|-----|----------------------|----------------|
| >12 | NaOH                 | Yes 🗌 N 🗌 NA 🗹 |
| <2  | HNO3                 | Yes 🗌 N 🛄 NA 🗹 |
| <2  | HSO4                 | Yes 🗌 N 🛄 NA 🗹 |
| <2  | 1:1 HCL              | Yes 🗹 N 🗌 NA 🗌 |
| 5-9 | Pest/PCBs (608/8081) | Yes 🗋 N 🗍 NA 🗹 |

Volume of Preservative added in Lab.

Comments:

Corrective Action:

## **Analytical Results**

### AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #:            | <u>R16559</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample ID | Lab Sample ID |
|-----------------|---------------|
| B035M0416GB     | 0902124-001A  |

#### Comments:

 $\sim$ 

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Danielef. Siker | Name:  | Pamela J. Titus |  |
|------------|-----------------|--------|-----------------|--|
| Date:      | 3/12/119        | Title: | Project Manager |  |
| QAPP 4.0   | AFCEE FO        | RM 0-1 | Page 1 of 1     |  |

### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: | SW8260B                         | Preparatory Method     | :                   | AAB #:         | <u>R16559</u>  |
|--------------------|---------------------------------|------------------------|---------------------|----------------|----------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #:            |                     |                |                |
| Field Sample ID:   | B035M0416GB                     | Lab Sample ID:         | <u>0902124-001A</u> | Matrix:        | <u>Water</u>   |
| % Solids:          | Q                               | Initial Calibration ID | : <u>1515</u>       | File ID:       | <u>J8715.D</u> |
| Date Received:     | <u>26-Feb-09</u>                | Date Extracted:        |                     | Date Analyzed: | 27-Feb-09      |
| Concentration Uni  | ts (ug/L or mg/Kg dry weight):  | <u>µg/L</u>            |                     | Sample Size:   | <u>10 mL</u>   |

| Analyte                  | MDL   | RL   | Concentration | Dilution | Confirm Qualifier |
|--------------------------|-------|------|---------------|----------|-------------------|
| cis-1,2-Dichloroethene   | 0.100 | 1.00 | 16.4          | 1        |                   |
| Tetrachloroethene        | 0.100 | 1.00 | 0.590         | 1        | F                 |
| trans-1,2-Dichloroethene | 0.100 | 1.00 | 0.400         | 1        | F                 |
| Trichloroethene          | 0.100 | 1.00 | 0.510         | 1        | F                 |
| Vinyl chloride           | 0.330 | 1.00 | 0.550         | 1        | F                 |

| Surrogate             | Recovery | Control Limits | Qualifier |
|-----------------------|----------|----------------|-----------|
| 1,2-Dichloroethane-d4 | 99       | 72 - 119       |           |
| 4-Bromofluorobenzene  | 93       | 76 - 119       |           |
| Toluene-d8            | 93       | 81 - 120       |           |

| Internal Std           | Area Counts | Area Count Limits Qualifier |
|------------------------|-------------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 389559      | 210140 - 840560             |
| Chlorobenzene-d5       | 743703      | 363092 - 1452366            |
| Fluorobenzene          | 2017980     | 1001210 - 4004840           |

### Comments:

\_\_\_\_\_

)

-----

-----

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9060</u>                   | AAB #:            | <u>R16585</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample II | Lab Sample ID   |
|-----------------|-----------------|
| B035M0416GB     | 0902124-001C    |
| B035M0416GB     | 0902124-001CMS  |
| B035M0416GB     | 0902124-001CMSD |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Damely Fitur |
|------------|--------------|
| Date:      | 3/12/09      |

7

| Name:  | Pamela J. Titus |  |
|--------|-----------------|--|
| Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

Page 1 of 1

| Analytical Method:  | SW9060                     |                         | AAB #:     | R1658 | 5              |           |
|---------------------|----------------------------|-------------------------|------------|-------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | Inc. Ce                 | ontract #: |       |                |           |
| Field Sample ID:    | B035M0416GB                | Lab Sample ID:          | 0902124-0  | 001C  | Matrix:        | Water     |
| % Solids:           | 0                          | Initial Calibration ID: | 1518       |       |                |           |
| Date Received:      | 26-Feb-09                  | Date Prepared:          |            |       | Date Analyzed: | 04-Mar-09 |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                  |            |       |                |           |

| Analyte              | MDL  | RL  | Concentration |   | Gualifier |
|----------------------|------|-----|---------------|---|-----------|
| Total Organic Carbon | 0.80 | 2.0 | 9.2           | 2 |           |

Comments:

AFCEE FORM W-2

\_\_\_\_

\_\_\_\_\_

Page 1 of 3

| Analytical Method:  | SW9060                     |                         | AAB #:     | R16585 | i              |           |
|---------------------|----------------------------|-------------------------|------------|--------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | Inc. Co                 | ontract #: |        |                |           |
| Field Sample ID:    | B035M0416GB                | Lab Sample ID:          | 0902124-0  | 001CMS | Matrix:        | Aqueous   |
| % Solids:           | 0                          | Initial Calibration ID: | 1518       |        |                |           |
| Date Received:      | 26-Feb-09                  | Date Prepared:          |            |        | Date Analyzed: | 04-Mar-09 |
| Concentration Units | (mg/L or mg/kg dry weight) | ): mg/L                 |            |        |                |           |

| Analyto              | MDL 🖗 | BL - | Concentration | Dilution | Qualifier |
|----------------------|-------|------|---------------|----------|-----------|
| Total Organic Carbon | 0.800 | 2.00 | 18.4          | 2        |           |

Comments:

AFCEE FORM W-2

Page 2 of 3

| Analytical Method:  | SW9060                     |                         | AAB #: R     | 16585          |           |
|---------------------|----------------------------|-------------------------|--------------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | inc. Cor                | ntract #:    |                |           |
| Field Sample ID:    | B035M0416GB                | Lab Sample ID:          | 0902124-0010 | CMSD Matrix:   | Aqueous   |
| % Solids:           | 0                          | Initial Calibration ID: | 1518         |                |           |
| Date Received:      | 26-Feb-09                  | Date Prepared:          |              | Date Analyzed: | 04-Mar-09 |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L                 |              |                |           |

| Analyte              | MDL   | RL   | Concentration | Dilution | Qualifier |
|----------------------|-------|------|---------------|----------|-----------|
| Total Organic Carbon | 0.800 | 2.00 | 18.4          | 2        |           |

Comments:

\_ .. ..-

AFCEE FORM W-2

\_\_\_\_\_

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Lab Name:     | Life Science Laboratories, Inc. | Contract Number:  |           |
|---------------|---------------------------------|-------------------|-----------|
| Base/Command: |                                 | Prime Contractor: | FPM Group |

| Field Sample IB | Lab Sample ID   |
|-----------------|-----------------|
| B035M0416GB     | 0902124-001D    |
| B035M0416GB     | 0902124-001DDUP |

### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: |  |
|------------|--|

Samely. Sther 3/12/09 N T

| lame: | Pamela J. Titus |
|-------|-----------------|
| ïtle: | Project Manager |

Date:

AFCEE FORM W-1

Page 1 of 1

QAPP 4.0

| Analytical Method:                                   | SM 2320 B                  |                         | AAB #:     | R16544 | 4              |           |
|------------------------------------------------------|----------------------------|-------------------------|------------|--------|----------------|-----------|
| Lab Name:                                            | Life Science Laboratories, | Inc. Co                 | ontract #: |        |                |           |
| Field Sample ID:                                     | B035M0416GB                | Lab Sample ID:          | 0902124-0  | 001D   | Matrix:        | Water     |
| % Solids:                                            | 0                          | Initial Calibration ID: | 0          |        |                |           |
| Date Received:                                       | 26-Feb-09                  | Date Prepared:          |            |        | Date Analyzed: | 01-Mar-09 |
| Concentration Units (mg/L or mg/kg dry weight): mg/L |                            |                         |            |        |                |           |

| Analyte              | MOL | RL | Concentration | Dliution | Qualifier |
|----------------------|-----|----|---------------|----------|-----------|
| Alkalinity, as CaCO3 | 10  | 10 | 290           | 1        |           |

Comments:

\_\_\_\_

\_\_\_\_\_

-------

### AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9056</u>                   | AAB #:            | <u>R16538</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample ID | Lab Sample ID  |
|-----------------|----------------|
| B035M0416GB     | 0902124-001B   |
| B035M0416GB DL  | 0902124-001BDL |

### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

|            | C , e ,       |        |                 |  |
|------------|---------------|--------|-----------------|--|
| Signature: | Samlet Sitter | Name:  | Pamela J. Titus |  |
|            |               | Title: | Project Manager |  |
| Date:      | 3/12/09       |        |                 |  |

QAPP 4.0

AFCEE FORM W-1

Page 1 of 1

.

| Analytical Method:  | SW9056                     |                         | AAB #:    | R16538       | }              |           |
|---------------------|----------------------------|-------------------------|-----------|--------------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | Inc. Co                 | ntract #: |              |                |           |
| Field Sample ID:    | B035M0416GB                | Lab Sample ID:          | 0902124-  | 001 <b>B</b> | Matrix:        | Water     |
| % Solids:           | 0                          | Initial Calibration ID: | 1509      |              |                |           |
| Date Received:      | 26-Feb-09                  | Date Prepared:          |           |              | Date Analyzed: | 27-Feb-09 |
| Concentration Units |                            |                         |           |              |                |           |

| Analyte          | MOL   | RL  | Concentration | Dilution | Qualifier |
|------------------|-------|-----|---------------|----------|-----------|
| Chloride         | 0.099 | 1.0 | 60            | 1        | J         |
| Nitrate (as N)   | 0.015 | 1.0 | 0.015         | 1        |           |
| Sulfate (as SO4) | 0.20  | 1.0 | 1.4           | 1        | <u> </u>  |

Comments:

| Analytical Method:  | SW9056                     |                        | AAB #:      | R16538 | 3              |           |
|---------------------|----------------------------|------------------------|-------------|--------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | Inc. C                 | Contract #: |        |                |           |
| Field Sample ID:    | B035M0416GB DL             | Lab Sample ID:         | 0902124-0   | 001BDL | Matrix:        | Water     |
| % Solids:           | 0                          | Initial Calibration ID | ): 1509     |        |                |           |
| Date Received:      | 26-Feb-09                  | Date Prepared:         |             |        | Date Analyzed: | 27-Feb-09 |
| Concentration Units | (mg/L or mg/kg dry weight  | ): mg/L                |             |        |                |           |

| Analyte  | MOL  | - RL | Concentration | Diution | Qualifier |
|----------|------|------|---------------|---------|-----------|
| Chloride | 0.50 | 5.0  | 61            | 5       |           |

Comments:

# **Quality Control Results**

## **GC/MS Volatile Organics Data**

### AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION

| Analytical Method:      | <u>8260B</u>                    | AAB #:                              |               |
|-------------------------|---------------------------------|-------------------------------------|---------------|
| Lab Name:               | Life Science Laboratories, inc. | Contract #:                         |               |
| Instrument ID:          | <u>MS03_10</u>                  | Date of Initial Calibration:        | 27-FEB-09     |
| Initial Calibration ID: | <u>1515</u>                     | Concentration Units (ug/L or mg/kg) | : <u>ug/L</u> |

SEE ATTACHED

Comments:

Response Factor Report #3MS10

| Calibration Files<br>0.5 =J8701.D 1.0 =J8702.D 2.0 =J8703.D<br>10 =J8704.D 20 =J8705.D 30 =J8706.D<br>Compound 0.5 1.0 2.0 10 20 30 Avg %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %RSD<br>−                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dichlorodifluoromet 0.308 0.305 0.399 0.311 0.326 0.265 0.288 0.278         a.           3) P         Chloromethane         0.320 0.290 0.223 0.263 0.265 0.288 0.278         s.           4) CP         Vinyl chloride         0.138 0.140 0.150 0.145 0.144 0.147 0.144 2.           5) Bromomethane         0.210 0.185 0.165 0.173 0.192 0.186 8.           6) Chloroethane         0.198 0.205 0.196 0.191 0.190 0.197 0.196 8.           7) Trichlorofluorometh 0.314 0.313 0.311 0.313 0.331 0.323 0.233 0.226 0.234 0.           8) CPM 1,1-Dichloroethene         0.240 0.273 0.234 0.233 0.233 0.226 0.241 0.           9) Carbon disulfide         0.782 0.738 0.748 0.735 0.746 0.755 0.751 2.           10) 1,1,2-Trichloro-1,2 0.245 0.241 0.243 0.242 0.243 0.242 0.           11) Methyl iodide         0.006 0.112 0.165 0.253 0.267 0.274 0.202 144           12) Acrolein         0.028 0.030 0.029 0.030 0.029 0.029 0.029           13) Methylene chloride         0.309 0.304 0.281 0.258 0.254 0.259 0.274 8.           14) Acetone         0.163 0.151 0.141 0.140 0.140 0.140 0.146 6           15) Methyl acetate         0.163 0.151 0.141 0.040 0.045 0.046 0.045 1.           16) Methyl acetate         0.163 0.151 0.141 0.140 0.140 0.146 6           17) trans-1,2-Dichloroet 0.251 0.245 0.252 0.252 0.250 1.         1           18) P         1,1-Dichloroethane 0.469 0.446 0.452 0.449 0.451 0.361 0.366 0.312 0.312 0.316 0.316 0.316 0.312 0.326 0.312 0.312 | $ \begin{array}{c} 830\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8230\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\ 8352\\$ |

(#) = Out of Range ### Number of calibration levels exceeded format J227VOCW.M Fri Feb 27 10:26:51 2009 ### 2-27-09 (lli

Page 1

Response Factor Report #3MS10

| Method : C:\HPCHEM\1\METHODS\J227VOCW.M (RTE Integrator)<br>Title : VOC's w/Restek Rtx-502.2, 0.25 mm x 60 M, 1.4 df<br>Last Update : Fri Feb 27 10:26:13 2009<br>Response via : Continuing Calibration |                                              |                                   |                        |            |       |                  |                                       |         |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|------------------------|------------|-------|------------------|---------------------------------------|---------|--------------|
| 0 5                                                                                                                                                                                                     | Dration Files<br>=J8701.D 1.0<br>=J8704.D 20 | =J8<br>=J8                        | 702.D<br>705.D         | 2.<br>30   |       | =J8703<br>=J8706 |                                       |         |              |
|                                                                                                                                                                                                         | Compound                                     |                                   |                        |            |       |                  |                                       |         |              |
| 44)                                                                                                                                                                                                     | 2-Hexanone                                   |                                   | 0.078                  | 0.083 (    | 0.103 | 0.110            | 0.111                                 | 0.100   | 15.14        |
|                                                                                                                                                                                                         | all weaks and dE                             |                                   |                        |            | ISTD  |                  |                                       |         |              |
| 45) I                                                                                                                                                                                                   | Chlorobenzene-d5<br>Toluene-d8               | 2 717                             | 2 611                  | 2 541 2    | 2.514 | 2.557            | 2.584                                 | 2.586   | 2.54         |
| 10/ 0                                                                                                                                                                                                   | m                                            | A 633                             | 0 640                  | 0 619 0    | 0.616 | 0.620            | 0.634                                 | 0.628   | 1.54         |
| 47)                                                                                                                                                                                                     | Tetrachloroethene<br>Dibromochloromethan     | 0 252                             | 0 374                  | 0 357 1    | 0.428 | 0.480            | 0.504                                 | U.431   | 16.71        |
| 48)                                                                                                                                                                                                     | 1,3-Dichloropropane                          | A 967                             | <u> </u>               | 0 968 9    | 0.957 | U.747            | 0.205                                 | 0.200   | 1.21         |
| 49)                                                                                                                                                                                                     | 1,3-Dibremoothane                            | 0 4 6 9                           | $() \land \land \land$ | 12 4 / 0 1 | 0.400 | 0.420            | V. 190                                |         | 2.67         |
|                                                                                                                                                                                                         | 1,2-Dibromoethane                            | 0 000                             | 0 825                  | 0 831      | 0.897 | 0.940            | 0.95/                                 | 0.889   | 7.87         |
| 51)                                                                                                                                                                                                     | 1-Chlorohexane                               | 1 000                             | 1 042                  | 1 816      | 1 836 | 1.899            | 1.944                                 | 1.0/0   | 2.59         |
|                                                                                                                                                                                                         | Chlorobenzene<br>Ethylbenzene                | 2 064                             | 2 115                  | 2 128      | 3.258 | 3.443            | 3.489                                 | 3.290   | 5.84         |
| 53) CP                                                                                                                                                                                                  | Ethylbenzene<br>1,1,1,2-Tetrachloro          | A 4E0                             | 0 460                  | 0 450      | 0.497 | 0.541            | 0.563                                 | 0.500   | 11.13        |
| 54)                                                                                                                                                                                                     | (m,m) Yilone                                 | 1 140                             | 1.145                  | 1.201      | 1.284 | 1.353            | 1.384                                 | 1.274   | 8.89         |
| 55)                                                                                                                                                                                                     | (m+p)-Xylene<br>o-Xylene                     | 1 100                             | 1 160                  | 1 138      | 1.235 | 1.299            | 1.334                                 | 1.200   | 8.14         |
| 56)                                                                                                                                                                                                     |                                              |                                   |                        |            |       |                  |                                       |         | 14.43        |
| 5/)<br>FQ) D                                                                                                                                                                                            | Styrene<br>Bromoform                         | 0.134                             | 0.139                  | 0.151      | 0.186 | 0.223            | 0.248                                 | 0.192   | 27.70        |
| 58) P                                                                                                                                                                                                   |                                              |                                   |                        |            |       |                  |                                       |         |              |
| 59) I                                                                                                                                                                                                   | 1,4-Dichlorobenzene                          | -d                                |                        |            | ISTD- |                  |                                       |         |              |
| )<br>(0)                                                                                                                                                                                                |                                              |                                   |                        |            |       |                  |                                       |         | 1.99<br>9.25 |
| 61) S                                                                                                                                                                                                   | Isopropylbenzene<br>Bromofluorobenzene       |                                   |                        |            |       |                  |                                       |         | 9.25<br>3.40 |
| 62)                                                                                                                                                                                                     |                                              |                                   |                        |            |       |                  |                                       |         | 2.38         |
| 63)                                                                                                                                                                                                     |                                              |                                   | 4 077                  | 1 014      | 4 801 | 4.990            | 5.096                                 | 4.7/0   | 2.30<br>3.19 |
| 64) P                                                                                                                                                                                                   | n-Propylbenzene<br>1,1,2,2-Tetrachloro       |                                   |                        |            |       |                  |                                       |         | 4.34         |
| 65)                                                                                                                                                                                                     |                                              |                                   |                        |            |       |                  |                                       |         | 2.04         |
| 66)                                                                                                                                                                                                     |                                              | 1                                 | 2 265                  | 2 254      | 3.366 | 3.424            | 3.499                                 | ⊃4⊥o    | 6.49         |
| 67)                                                                                                                                                                                                     | 1,2,3-Trichloroprop                          | 0.945                             | 0 869                  | 0 001      | 0.040 | 0.002            |                                       | +       | 21.88        |
| 68)                                                                                                                                                                                                     | trans-1,4-Dichloro                           |                                   |                        |            |       |                  |                                       |         | 3.50         |
| 69)                                                                                                                                                                                                     | 4-Chlorotoluene                              | <u> </u>                          | 3.103                  | 3.000      | 3.038 | 2.992            | 2 368                                 | 2 489   | 6.95         |
| 70)                                                                                                                                                                                                     | tert-Butylbenzene                            | 2.745                             | 2.647                  | 2.593      | 2.295 | 2.329            | 2.500                                 | 3 189   | 2.93         |
| 71)                                                                                                                                                                                                     | tert-Butylbenzene<br>1,2,4-Trimethylben      | z 3.281                           | 3,260                  | 3.213      | 3.010 | 3.296            | 3 381                                 | 3.517   |              |
| 72)                                                                                                                                                                                                     | sec-Butylbenzene                             | 3.875                             |                        | 4 5 7 7    |       | 2.591            |                                       |         | 8.57         |
| 73)                                                                                                                                                                                                     | p-Isopropyltoluene                           | 3.135                             | 3.065                  | 3.040      | 1 010 | 1 854            | 1 884                                 | 1.828   |              |
| 74)                                                                                                                                                                                                     | p-Isopropyltoluene<br>1,3-Dichlorobenzen     | e 1.782                           | 1.809                  | 1,777      | 1 679 | 5 1 720          | 1.747                                 | 1.717   | 1.93         |
| 75)                                                                                                                                                                                                     | 1,4-Dichlorobenzen                           |                                   |                        |            |       | 5 2.104          |                                       |         |              |
| 76)                                                                                                                                                                                                     | n-Butylbenzene<br>1,2-Dichlorobenzen         |                                   |                        |            |       |                  |                                       |         |              |
| 77)                                                                                                                                                                                                     |                                              | $\rightarrow \alpha$ $\pi \alpha$ | 1 0 0 4 4              |            |       |                  | · · · · · · · · · · · · · · · · · · · |         |              |
| 78)                                                                                                                                                                                                     |                                              |                                   |                        |            |       |                  |                                       |         |              |
| 79)                                                                                                                                                                                                     | Hexachlorobutadien<br>1,2,4-Trichloroben     | $\mathbf{e}$ 0.20                 |                        |            |       |                  |                                       |         |              |
| 80)                                                                                                                                                                                                     |                                              |                                   |                        |            |       |                  |                                       |         |              |
| 81)                                                                                                                                                                                                     | Naphthalene<br>1,2,3-Trichlorober            | 7 0 469                           | 2 0 535                | 0.601      | 0.58  | 8 0.567          | 0.574                                 | 4 0.559 | 8.03         |
| 82)                                                                                                                                                                                                     | 1,2,3-ILLCHIOLODEL                           |                                   |                        |            |       |                  |                                       |         |              |

.

### Response Factor Report #3MS10

|     | Metho<br>Title<br>Last<br>Respo | d : C:\HPCHEM\<br>: VOC's w/Re<br>Update : Fri Feb 27<br>nse via : Initial Ca | stek Rtx-<br>10:57:28 | \J227VOCW.M (RTE<br>502.2, 0.25 mm x<br>2009 | Integrator<br>60 M, 1.4 ( | )<br>df  |          |
|-----|---------------------------------|-------------------------------------------------------------------------------|-----------------------|----------------------------------------------|---------------------------|----------|----------|
|     |                                 | ration Files                                                                  |                       | _                                            |                           |          |          |
|     | 40                              | =J8707.D                                                                      | =                     | =                                            |                           |          |          |
|     |                                 | =                                                                             | -                     |                                              |                           |          |          |
|     |                                 | Compound                                                                      | 40                    |                                              |                           | Avg      | %RSD<br> |
|     |                                 |                                                                               |                       |                                              |                           |          |          |
| 1)  |                                 | Fluorobenzene                                                                 |                       | ISTD                                         |                           |          |          |
| 2)  |                                 | Dichlorodifluoromet                                                           | 0.309                 |                                              |                           |          |          |
|     |                                 | Chloromethane                                                                 | 0.259                 |                                              |                           |          |          |
| 4)  |                                 | Vinyl chloride                                                                | 0.145                 |                                              |                           |          |          |
| 5)  |                                 | Bromomethane                                                                  | 0.192                 |                                              |                           |          |          |
| 6)  |                                 | Chloroethane                                                                  | 0.192                 |                                              |                           | <b>.</b> |          |
| 7)  |                                 | Trichlorofluorometh                                                           |                       |                                              |                           | -        |          |
| 8)  | CPM                             | 1,1-Dichloroethene                                                            | 0.234                 | ·                                            |                           |          |          |
| 9)  |                                 | Carbon disulfide                                                              | 0.752                 |                                              |                           | -        |          |
| 10) |                                 | 1,1,2-Trichloro-1,2                                                           | 0.244                 |                                              |                           |          |          |
| 11) |                                 | Methyl iodide                                                                 | 0.280                 |                                              |                           |          |          |
| 12) |                                 | Acrolein                                                                      | 0.029                 |                                              |                           |          |          |
| 13) |                                 | Methylene chloride                                                            | 0.256                 |                                              |                           | •        |          |
| 14) |                                 | Acetone                                                                       | 0.045                 |                                              |                           |          |          |
| 15) |                                 | Methyl acetate                                                                | 0.140                 |                                              |                           |          |          |
| 16) |                                 | Methyl tert-Butyl e                                                           | 0.633                 |                                              |                           |          |          |
| 17) |                                 | trans-1,2-Dichloroe                                                           | 0.251                 |                                              | :                         |          |          |
| 8)  | P                               | 1,1-Dichloroethane                                                            | 0.452                 |                                              |                           |          |          |
| )   |                                 | Acrylonitrile                                                                 | 0.068                 |                                              |                           |          |          |
| 20) | l -                             |                                                                               | 0.315                 |                                              |                           |          |          |
| 21) | l                               | cis-1,2-Dichloroeth                                                           | 0.294                 |                                              |                           |          |          |
| 22) | }                               | 2,2-Dichloropropane                                                           | 0.365                 |                                              |                           |          |          |
| 23) | )                               | Bromochloromethane                                                            | 0.111                 |                                              |                           | -        |          |
| 24) | )                               | Cyclohexane                                                                   | 0.469                 |                                              |                           |          |          |
| 25) | ) CP                            | Chloroform                                                                    | 0.414                 |                                              |                           |          |          |
| 26) |                                 | Carbon tetrachlorid                                                           |                       |                                              |                           |          |          |
| 27) |                                 | 1,1,1-Trichloroetha                                                           | 0.339                 |                                              |                           | -        |          |
| 28  |                                 | 2-Butanone                                                                    | 0.074                 |                                              |                           |          |          |
| 29  |                                 | 1,1-Dichloropropene                                                           | 0.351                 |                                              |                           |          |          |
| 30  |                                 | Benzene                                                                       | 1.177                 |                                              |                           |          |          |
| 31  |                                 | 1,2-Dichloroethane-                                                           | 0.232                 |                                              |                           |          |          |
| 32  |                                 | 1,2-Dichloroethane                                                            | 0.280<br>0.421        |                                              |                           | •        |          |
| 33  |                                 | Methylcyclohexane                                                             | 0.421                 |                                              |                           |          |          |
| 34  |                                 | Trichloroethene                                                               | 0.129                 |                                              |                           | •        |          |
| 35  |                                 | Dibromomethane                                                                |                       |                                              |                           |          |          |
| 36  |                                 | 1,2-Dichloropropane                                                           |                       |                                              |                           |          |          |
| 37  |                                 | Bromodichloromethan                                                           | 0.044                 |                                              |                           |          |          |
| 38  |                                 | 2-Chloroethylvinyl                                                            |                       |                                              |                           |          |          |
| 39  | )                               | cis-1,3-Dichloropro                                                           | 0.728                 |                                              |                           |          |          |
| 40  |                                 | Toluene                                                                       |                       |                                              |                           |          |          |
| 41  |                                 | 4-Methyl-2-pentanon                                                           | 0.100                 |                                              |                           |          |          |
| 42  |                                 | trans-1,3-Dichlorop                                                           | 0 172                 |                                              |                           |          |          |
| 43  | )                               | 1,1,2-Trichloroetha                                                           | . V. I / 2            |                                              |                           |          |          |
|     |                                 |                                                                               |                       |                                              | 1 3 5                     |          | н        |

(#) = Out of Range ### Number of calibration levels exceeded format J227VOCW.M Fri Feb 27 10:57:34 2009 ###

| ]<br>I<br>F                                                                                                                                                                            | lespo                   | e : VOC's w/Re<br>Update : Fri Feb 27<br>onse via : Initial Ca                                                                                                                                                                                                                                                                                                                                                                                                         | estek Rtx-5<br>7 10:57:28                                                                                                                                                                          | 02.2, 0.25 m | RTE Integrato<br>m x 60 M, 1.4 | or)<br>4 df | •    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-------------|------|
|                                                                                                                                                                                        | Cali<br>10              | pration Files<br>=J8707.D<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                         | <del></del>                                                                                                                                                                                        |              | =                              |             |      |
|                                                                                                                                                                                        |                         | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                 |              |                                | Avg         | %RSD |
| 44)                                                                                                                                                                                    |                         | 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.113                                                                                                                                                                                              |              | · <b> -</b>                    | f           |      |
| 45)<br>46)<br>47)<br>48)<br>50)<br>51)<br>52)<br>52)<br>53)<br>54)<br>55)<br>56)<br>57)<br>58)                                                                                         | I<br>S<br>PM<br>CP<br>P | Chlorobenzene-d5<br>Toluene-d8<br>Tetrachloroethene<br>Dibromochloromethan<br>1,3-Dichloropropane<br>1,2-Dibromoethane<br>1-Chlorohexane<br>Chlorobenzene<br>Ethylbenzene<br>1,1,1,2-Tetrachloro<br>(m+p)-Xylene<br>o-Xylene<br>Styrene<br>Bromoform                                                                                                                                                                                                                   | 0.956<br>0.493<br>0.974<br>1.948<br>3.520                                                                                                                                                          | ISTD         | )                              |             |      |
| 59)                                                                                                                                                                                    | I                       | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -d                                                                                                                                                                                                 | ISTI         | D                              |             |      |
| <pre>[0)<br/>62)<br/>62)<br/>63)<br/>65)<br/>65)<br/>66)<br/>67)<br/>68)<br/>70)<br/>72)<br/>73)<br/>74)<br/>75)<br/>74)<br/>75)<br/>77)<br/>78)<br/>79)<br/>80)<br/>81)<br/>82)</pre> |                         | Isopropylbenzene<br>Bromofluorobenzene<br>Bromobenzene<br>1,1,2,2-Tetrachloro<br>2-Chlorotoluene<br>1,3,5-Trimethylbenz<br>1,2,3-Trichloroprop<br>trans-1,4-Dichloro-<br>4-Chlorotoluene<br>tert-Butylbenzene<br>1,2,4-Trimethylbenz<br>sec-Butylbenzene<br>p-Isopropyltoluene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,2-Dichlorobenzene<br>1,2-Dibromo-3-chlor<br>Hexachlorobutadiene<br>1,2,3-Trichlorobenz | 1.045<br>5.065<br>0.988<br>3.364<br>3.529<br>0.787<br>0.167<br>3.310<br>2.444<br>3.244<br>3.244<br>3.468<br>2.754<br>1.878<br>1.772<br>2.180<br>1.737<br>0.116<br>0.200<br>5.200<br>1.715<br>1.716 |              |                                |             |      |

(#) = Out of Range ### Number of calibration levels exceeded format ### J227VOCW.M Fri Feb 27 10:57:36 2009 Page 2

### AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

| Analytical Method: | SW8260B                       | AAB #:                               | <u>R16558</u> |
|--------------------|-------------------------------|--------------------------------------|---------------|
| Lab Name:          | Life Science Laboratories, In | Contract Number:                     |               |
| Instrument ID:     | <u>MS03_10</u>                | Initial Calibration ID:              | <u>1515</u>   |
| Second Source ID:  | 2SRC-16558                    | Concentration Units (mg/L or mg/kg): | <u>µg/L</u>   |

| Analyte                  | Expected P | ound | %D Q |   |
|--------------------------|------------|------|------|---|
| cis-1,2-Dichloroethene   | 10         | 9.56 | -4.4 |   |
| Tetrachloroethene        | 10         | 9.4  | -6.0 |   |
| trans-1,2-Dichloroethene | 10         | 9.46 | -5.4 |   |
| Trichloroethene          | 10         | 9.54 | -4.6 |   |
| Vinyl chloride           | 10         | 10.3 | 2.7  | _ |

Comments:

----

\_\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

### AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION - GC/MS ANALYSIS

| Analytical Method:          | <u>SW8260B</u>                | AAB #:                  | MS03_10_090227 |
|-----------------------------|-------------------------------|-------------------------|----------------|
| Lab Name:                   | Life Science Laboratories, In | Contract Number:        |                |
| Instrument ID:              | <u>MS03_10</u>                | Initial Calibration ID: | <u>1515</u>    |
| ICV ID: CCV #1 ID: <u>C</u> |                               | <u>V-16559</u>          | CCV #2 ID:     |

| Analyte                  | ICV   | CCV #1 | CCV #2  |
|--------------------------|-------|--------|---------|
| Analyte                  | RF %D | RF %D  | RF %D Q |
| Vinyl chloride #         |       | 4.9    |         |
| 1,2-Dichloroethane-d4    |       | -0.4   |         |
| 4-Bromofluorobenzene     |       | -2.8   |         |
| cis-1,2-Dichloroethene   |       | 2.1    |         |
| Tetrachloroethene        |       | -1.1   |         |
| Toluene-d8               |       | -0.8   |         |
| trans-1,2-Dichloroethene |       | 2.0    |         |
| Trichloroethene          |       | -0.8   |         |

\* SPCCs # CCCS

----

Comments:

\_\_\_\_\_.

AFCEE FORM O-5A

Page 1 of 1

\_\_\_\_

### AFCEE ORGANIC ANALYSES DATA SHEET 7 BLANKS

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:           | <u>R16559</u>   |
|-------------------------|---------------------------------|------------------|-----------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract Number: |                 |
| Units:                  | <u>µg/L</u>                     | Method Blank ID: | <u>MB-16559</u> |
| Initial Calibration ID: | <u>1515</u>                     | File ID:         | <u>J8714.D</u>  |

| Analyte                  | Method Blank | RL   | Q |
|--------------------------|--------------|------|---|
| cis-1,2-Dichloroethene   | 0.100        | 1.00 | U |
| Tetrachloroethene        | 0.100        | 1.00 | U |
| trans-1,2-Dichloroethene | 0.100        | 1.00 | U |
| Trichloroethene          | 0.100        | 1.00 | U |
| Vinyl chloride           | 0.330        | 1.00 | U |

| Surrogate             | Recovery | Control Limits Qualifier |
|-----------------------|----------|--------------------------|
| 1,2-Dichloroethane-d4 | 97       | 72 - 119                 |
| 4-Bromofluorobenzene  | 93       | 76 - 119                 |
| Toluene-d8            | 95       | 81 - 120                 |

| Internal Std           | Area Counts | Area Count Limits Qualifier |
|------------------------|-------------|-----------------------------|
| 1,4-Dichlorobenzene-d4 | 374012      | 210140 - 840560             |
| Chlorobenzene-d5       | 699178      | 363092 - 1452366            |
| Fluorobenzene          | 1949378     | 1001210 - 4004840           |

Comments:

\_\_\_\_\_

### AFCEE ORGANIC ANALYSES DATA SHEET 8 LABORATORY CONTROL SAMPLE

| Analytical Method:    | <u>SW8260B</u>                         |               | AAB #:   |              |            | <u>R16559</u> |            |          |
|-----------------------|----------------------------------------|---------------|----------|--------------|------------|---------------|------------|----------|
| Lab Name:             | Life Science Labora                    | atories, Inc. | Ca       | ontract #:   |            |               |            |          |
| LCS ID:               | LCS-16559                              |               | Ini      | itial Calibr | ation ID:  | <u>1515</u>   | 5          |          |
| Concentration Units ( | mg/L or mg/kg):                        | <u>µg/L</u>   | Fil      | le ID:       |            | <u>J871</u>   | <u>1.D</u> |          |
|                       | Analyte                                |               | Expected | Found        | %R         | Contro        | l Limits   | Q        |
| cis-1,2-Dichl         | oroethene                              |               | 10       | 9.37         | 94         | 72 -          | 126        |          |
| Tetrachloroe          | thene                                  |               | 10       | 9.32         | 93         | 66 -          | 128        |          |
| trans-1,2-Dic         | hloroethene                            |               | 10       | 9.24         | 92         | 63 - 137      |            |          |
| Trichloroethe         | ene                                    |               | 10       | 9.36         | 94         | 70 - 127      |            |          |
| Vinyl chloride        | )                                      |               | 10       | 10.2         | 102        | 50 -          | 134        |          |
|                       | Surrogate                              |               | Recover  | y C          | ontrol Lii | mits          | Quali      | fier     |
| 1,2-Dict              | lloroethane-d4                         |               | 93       |              | 72 - 119   | 3             |            |          |
| 4-Brome               | ofluorobenzene                         |               | 91       |              | 76 - 119   | <del>)</del>  |            |          |
| Toluene               | Toluene-d8                             |               | 94       |              | 81 - 120   |               |            |          |
|                       | Internal Std<br>1,4-Dichlorobenzene-d4 |               | Counts   | Area         | Count Lir  | nits          | Q          | ualifier |
| 1,4-Dich              |                                        |               | 458076   | 2101         | 40 - 8405  | 60            |            |          |
| Chlorob               | enzene-d5                              |               | 774561   | 3630         | 92 - 1452  | 366           |            |          |
| Fluorob               | enzene                                 |               | 2167605  | 10012        | 210 - 4004 | 840           |            |          |

### Comments:

.....

### AFCEE ORGANIC ANALYSES DATA SHEET 8 LABORATORY CONTROL SAMPLE

| Analytical Method:                        | <u>SW8260B</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A.       | AB #:         |           | <u>R16559</u>         |   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-----------|-----------------------|---|
| Lab Name:                                 | Life Science Laboratories, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co       | Contract #:   |           |                       |   |
| LCS ID:                                   | LCSD-16559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ini      | itial Calibra | ation ID: | <u>1515</u>           |   |
| Concentration Units (mg/L or mg/kg): ug/L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fi       | File ID:      |           |                       |   |
|                                           | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Expected | Found         | %R        | <b>Control Limits</b> | Q |
| cis-1,2-Dichl                             | oroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       | 9.37          | 94        | 72 - 126              |   |
| Tetrachloroe                              | thene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10       | 9.49          | 95        | 66 - 128              |   |
| trans-1,2-Dic                             | chloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10       | 9.43          | 94        | 63 - 137              |   |
| Trichloroethe                             | ene interioritation interioritatio | 10       | 9.52          | 95        | 70 - 127              |   |

| Surrogate             | Recovery | Control Limits Qualifier |
|-----------------------|----------|--------------------------|
| 1,2-Dichloroethane-d4 | 93       | 72 - 119                 |
| 4-Bromofluorobenzene  | 91       | 76 - 119                 |
| Toluene-d8            | 93       | 81 - 120                 |

10

**10**.1

101

50 - 134

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 451499      | 210140 - 840560   |           |
| Chlorobenzene-d5       | 777024      | 363092 - 1452366  |           |
| Fluorobenzene          | 2143840     | 1001210 - 4004840 |           |

#### Comments:

Vinyl chloride

### AFCEE ORGANIC ANALYSES DATA SHEET 9 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

| Analytical Method:        | <u>SW8260B</u>      |                  | AAB #:         | <u>R16559</u>             |
|---------------------------|---------------------|------------------|----------------|---------------------------|
| Lab Name:                 | Life Science Labora | atories, Inc.    | Contract #:    |                           |
| Concentration Units (mg/L | or mg/kg): <u>u</u> | g/L              | % Solids:      | <u>0</u>                  |
| Parent Field Sample ID:   | LCSD-16559          | MS ID: <u>LC</u> | <u>S-16559</u> | MSD ID: <u>LCSD-16559</u> |

### Calibration ID: 1515

| Parent                   |                | Spiked           |                    | Duplicate        |     |      | Control   | The Conception of the second | - Contraction of the second |
|--------------------------|----------------|------------------|--------------------|------------------|-----|------|-----------|------------------------------|-----------------------------|
| Analyte Sample<br>Result | Spike<br>Added | Sample<br>Result |                    | Spiked<br>Sample |     | %RPD |           | Limits<br>%RPD               | Q                           |
|                          |                | Tiosuit          | etertrett vi trave | Result           |     |      | · · · · · | , and D                      |                             |
| cis-1,2-Dichloroethene   | 10.0           | 9.37             | 94                 | 9.37             | 94  | 0    | 72 - 126  | 20                           |                             |
| Tetrachloroethene        | 10.0           | 9.32             | 93                 | 9.49             | 95  | 2    | 66 - 128  | 20                           | <b></b>                     |
| trans-1,2-Dichloroethene | 10.0           | 9.24             | 92                 | 9.43             | 94  | 2    | 63 - 137  | 20                           |                             |
| Trichloroethene          | 10.0           | 9.36             | 94                 | 9.52             | 95  | 2    | 70 - 127  | 20                           |                             |
| Vinyl chloride           | 10.0           | 10.2             | 102                | 10.1             | 101 | 1    | 50 - 134  | 20                           |                             |

### Comments:

. \_\_\_\_\_

\_...\_

\_ · .\_

. ....

.....

. . . .

### AFCEE ORGANIC ANALYSES DATA SHEET 10 HOLDING TIMES

| Analytical Metho | d: <u>SW8260B</u> |                               | AAB #:                                      | <u>R16559</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|------------------|-------------------|-------------------------------|---------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Lab Name:        | Life Science Lat  | poratories, Inc.              | Contract #:                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| Field Sample ID  | Lab Sample ID     | Date Date<br>Collected Receiv | Nax.<br>Date Holding<br>ed Extracted Time E | Held Date     | Concerning to a second of the second s | Time<br>Heid Q<br>Anal |
| B035M0416GB      | 0902124-001A      | 26-Feb-09 26-Feb-             | -09 27-Feb-09                               | 27-Feb-09     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1                    |

Comments:

# AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method:                               | <u>SW8260B</u>        |                          | AAB#:                    |                            |                            |
|--------------------------------------------------|-----------------------|--------------------------|--------------------------|----------------------------|----------------------------|
| Lab Name:                                        | Life Science Laborate | ories, Inc.              | Contract #               | :                          |                            |
| Instrument ID #:                                 | <u>MS03_10</u>        |                          | Calibration              | <b>ID:</b> <u>1515</u>     |                            |
| Field Sample ID/Std ID/<br>Blank ID/QC Sample ID | Lab<br>Sample ID      | Date Analysis<br>Started | Time Analysis<br>Started | Date Analysis<br>Completed | Time Analysis<br>Completed |
| TB022709A3                                       | TB022709A3            | 27-Feb-09                | 5:57                     | 27-Feb-09                  | 6:29                       |
| ICAL 0.5 ppb                                     | ICAL 0.5 ppb          | 27-Feb-09                | 6:29                     | 27-Feb-09                  | 7:00                       |
| ICAL 1.0 ppb                                     | ICAL 1.0 ppb          | 27-Feb-09                | 7:00                     | 27-Feb-09                  | 7:31                       |
| ICAL 2.0 ppb                                     | ICAL 2.0 ppb          | 27-Feb-09                | 7:31                     | 27-Feb-09                  | 8:03                       |
| ICAL 10 ppb                                      | ICAL 10 ppb           | 27-Feb-09                | 8:03                     | 27-Feb-09                  | 8:34                       |
| ICAL 20 ppb                                      | ICAL 20 ppb           | 27-Feb-09                | 8:34                     | 27-Feb-09                  | 9:05                       |
| ICAL 30 ppb                                      | ICAL 30 ppb           | 27-Feb-09                | 9:05                     | 27-Feb-09                  | 9:37                       |
| ICAL 40 ppb                                      | ICAL 40 ppb           | 27-Feb-09                | 9:37                     | 27-Feb-09                  | 10:40                      |
| 2SRC-16558                                       | 2SRC-16558            | 27-Feb-09                | 10:40                    | 27-Feb-09                  | 10:40                      |
| CCV-16559                                        | CCV-16559             | 27-Feb-09                | 11:11                    | 27-Feb-09                  | 11:42                      |
| TB022709B3                                       | TB022709B3            | 27-Feb-09                | 11:11                    | 27-Feb-09                  | 11:42                      |
| LCS-16559                                        | LCS-16559             | 27-Feb-09                | 11:42                    | 27-Feb-09                  | 12:14                      |
| LCSD-16559                                       | LCSD-16559            | 27-Feb-09                | 12:14                    | 27-Feb-09                  | 13:17                      |
| MB-16559                                         | MB-16559              | 27-Feb-09                | 13:17                    | 27-Feb-09                  | 13:48                      |
| B035M0416GB                                      | 0902124-001A          | 27-Feb-09                | 13:48                    | 27-Feb-09                  | 13:48                      |

Comments:

### AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:      | SW8260B                         | AAB #:               | MS03_10_090227A          |
|-------------------------|---------------------------------|----------------------|--------------------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:          |                          |
| Instrument ID:          | <u>MS03_10</u>                  | Injection Date/Time: | 2/27/09 5:57:00 AM       |
| Initial Calibration ID: | <u>1515</u>                     | File ID:             | C:\HPCHEM\1\DATA\J8700.D |
| Compound:               | <u>SW8260B</u>                  | Sample ID:           | TB022709A3               |

| Mass | Ion Abundance Criteria                         | % Relative<br>Abundance Q |
|------|------------------------------------------------|---------------------------|
| 50   | 15 - 40% of m/z 95                             | 17.4                      |
| 75   | 30 - 60% of m/z 95                             | 46.1                      |
| 95   | Base peak, 100% relative abundance             | 100                       |
| 96   | 5 - 9% of m/z 95                               | 6.9                       |
| 173  | Less than 2% of m/z 174                        | 0.4                       |
| 174  | Greater than 50% of m/z 95                     | 68.4                      |
| 175  | 5 - 9% of m/z 174                              | 7.0                       |
| 176  | Greater than 95% but less than 101% of m/z 174 | 96.0                      |
| 177  | 5 - 9% of m/z 176                              | 6.6                       |

.

### AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:     | <u>SW8260B</u>                                                                                      | AAB #:               | MS03_10_090227B            |
|------------------------|-----------------------------------------------------------------------------------------------------|----------------------|----------------------------|
| Lab Name:              | Life Science Laboratories, Inc.                                                                     | Contract #:          |                            |
| Instrument ID:         | <u>MS03_10</u>                                                                                      | Injection Date/Time: | <u>2/27/09 11:11:00 AM</u> |
| Initial Calibration ID | : <u>1515</u>                                                                                       | File ID:             | C:\HPCHEM\1\DATA\J8710.D   |
| Compound:              | <u>SW8260B</u>                                                                                      | Sample ID:           | TB022709B3                 |
| Mass                   | ion Abundance                                                                                       | Criteria             | % Relative<br>Abundance Q  |
|                        |                                                                                                     |                      |                            |
| 50                     | 15 - 40% of m/z 95                                                                                  |                      | 18.7                       |
| 50<br>75               | 15 - 40% of m/z 95<br>30 - 60% of m/z 95                                                            |                      | 18.7<br>47.6               |
|                        |                                                                                                     | ance                 |                            |
| 75                     | 30 - 60% of m/z 95                                                                                  | ance                 | 47.6                       |
| 75<br>95               | 30 - 60% of m/z 95<br>Base peak, 100% relative abund                                                | ânce                 | 47.6<br>100                |
| 75<br>95<br>96         | 30 - 60% of m/z 95<br>Base peak, 100% relative abund<br>5 - 9% of m/z 95                            | ânce                 | 47.6<br>100<br>7.0         |
| 75<br>95<br>96<br>173  | 30 - 60% of m/z 95<br>Base peak, 100% relative abund<br>5 - 9% of m/z 95<br>Less than 2% of m/z 174 | ance                 | 47.6<br>100<br>7.0<br>0    |

Greater than 95% but less than 101% of m/z 174

5 - 9% of m/z 176

176

177

96.8

6.8

## Wet Chemistry Data

## **TOC DATA**

| AFCEE<br>WET CHEM ANALYSES DATA SHEET 3-10<br>INITIAL MULTIPOINT CALIBRATION |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

| Analytical Method:      | <u>Stv9060</u>                  | AAB #:                               | <u>R16585</u> |
|-------------------------|---------------------------------|--------------------------------------|---------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:                          |               |
| Instrument ID:          | TOC-5000A                       | Date of initial Calibration:         | 04-Mar-09     |
| Initial Calibration ID: | <u>1518</u>                     | Concentration Units (mg/L or mg/kg): | <u>mg/L</u>   |

|         |                      | ļ |
|---------|----------------------|---|
| r a     | 0.99957              |   |
| STD 10  | 0                    |   |
| STD 9   | 0                    |   |
| STD 8   | 0                    |   |
| 5TD7    | 0                    |   |
| sm.     | 0                    |   |
| STD 5   | 0                    |   |
| STDA    | 20                   |   |
| STO 3   | 10                   |   |
| STD 2   | -                    |   |
| 5TD 1   | 0                    |   |
| Analyte | Total Organic Carbon |   |

r = correlation coefficient

Comments:

....

.

### AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9060</u>              |            |             | AAB #:              |            | <u>R16585</u> |
|--------------------|----------------------------|------------|-------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |             | Contract #:         |            |               |
| Instrument ID:     | TOC-5000A                  |            |             | Initial Calibration | ID:        | <u>1518</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: | <u>CCV1</u> | L                   | CCV #2 ID: | <u>CCV2</u>   |

| Anayte               | 2nd Sour<br>Ver | ce Calibrat<br>Incation | ion<br>%0 – E | Co<br>xpected | entinuing C<br>Pound J | V ndúradík<br>V ndúradík<br>V ndúradík | erification<br>Found 2 |      |
|----------------------|-----------------|-------------------------|---------------|---------------|------------------------|----------------------------------------|------------------------|------|
| Total Organic Carbon | 10.0            | 9.80                    | -2.0          | 10.0          | 9.81                   | -1.9                                   | 9.81                   | -1.9 |

Comments:

QAPP 4.0

### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | s (mg/L or mg/kg): <u>mg/L</u>  |                         |               |
| Calibraton Blank ID: | ICB                             | Initial Calibration ID: | <u>1518</u>   |
| Method Blank ID:     | MB-R16585                       | Initial Calibration ID: | <u>1518</u>   |

| Analyte              | Calibration<br>Blank | Method Blank | ન્ય વ |
|----------------------|----------------------|--------------|-------|
| Total Organic Carbon | 0.093                | 0.40         | 1.0   |

Comments:

AFCEE FORM W-5

.

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:  | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | (mg/L or mg/kg): mg/L           |                         |               |
| Calibraton Blank ID | CCB1                            | Initial Calibration ID: | <u>1518</u>   |
| Method Blank ID:    | MB-R16585                       | Initial Calibration ID: | <u>1518</u>   |
|                     |                                 |                         |               |

| Total Organic Carbon | 0.064       | 0.40         | 1.0 |   |
|----------------------|-------------|--------------|-----|---|
| Analyte,             | Calibration | Method Blank | RL  | Q |

Comments:

-----

-----

QAPP 4.0

\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |
| Calibraton Blank ID: | CCB2                            | Initial Calibration ID: | <u>1518</u>   |
| Method Blank ID:     | MB-R16585                       | Initial Calibration ID: | <u>1518</u>   |

Comments:

.\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16585                      | Initial Calibration ID: | <u>1518</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Found | <b>1</b> | Control Limits |  |
|----------------------|----------|-------|----------|----------------|--|
| Total Organic Carbon | 10       | 9.79  | 98       | 90 - 110       |  |

.

Comments:

QAPP 4.0

AFCEE FORM W-6

1

-----

------

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCSD-R16585                     | Initial Calibration ID: | <u>1518</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Found | %R | Control LimitsQ |   |
|----------------------|----------|-------|----|-----------------|---|
| Total Organic Carbon | 10       | 9.76  | 98 | 90 - 110        | _ |

Comments:

.

QAPP 4.0

AFCEE FORM W-6

-----

#### AFCEE WET CHEM ANALYSES DATA SHEET 7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

| Analytical Method:  | <u>SW9060</u>                   | AAB #:                  | <u>R16585</u>           |
|---------------------|---------------------------------|-------------------------|-------------------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |                         |
| % Solids:           | <u>0</u>                        | Initial Calibration ID: | <u>1518</u>             |
| Parent Field Sample | 1D: <u>B035M0416GB</u>          | MS ID: 0902124-001CMS   | MSD ID: 0902124-001CMSD |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |                         |

| Anatyte              | Parent<br>Sample Sp<br>Result Ad | ike<br>ded | Spiked<br>Sample<br>Result | %R | uplicate<br>Spiked<br>Sample<br>Result | <b>7</b> .8 | %RPD | Co   | nita<br>nita | Control<br>Limits<br>%RPD | <b>a</b> |
|----------------------|----------------------------------|------------|----------------------------|----|----------------------------------------|-------------|------|------|--------------|---------------------------|----------|
| Total Organic Carbon | 9.16                             | 10.0       | 18.4                       | 92 | 18.4                                   | 93          | 0    | _ 75 | - 125        | 20                        | <u> </u> |

Comments:

,

QAPP 4.0

. . . . . . . . . . . .

\_\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SW9060</u>                   | AAB #:      | <u>R16585</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| Field Sample 10 | Lab Sample IO   | Date<br>Collected | Date<br>Received | Date      |    | Tano | Q |
|-----------------|-----------------|-------------------|------------------|-----------|----|------|---|
| B035M0416GB     | 0902124-001C    | 26-Feb-09         | 26-Feb-09        | 04-Mar-09 | 28 | 6.1  |   |
| B035M0416GB     | 0902124-001CMS  | 26-Feb-09         | 26-Feb-09        | 04-Mar-09 | 28 | 6.1  |   |
| B035M0416GB     | 0902124-001CMSD | 26-Feb-09         | 26-Feb-09        | 04-Mar-09 | 28 | 6.2  |   |

Comments:

\_\_\_\_\_

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SW9060</u>                   |             |
|--------------------|---------------------------------|-------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |
| Instrument ID #:   | <u>TQC-5000A</u>                |             |

| Field Sample ID/Std ID/ | Lab 👘           | Date Analyses | Time Analyses | Onte Analyses | Time Analyses |
|-------------------------|-----------------|---------------|---------------|---------------|---------------|
| Blank ID/QC Sample ID   | Sample ID       | Started       | Started       | Completed     | Completed     |
| SO                      | SO              | 04-Mar-09     | 10:30         | 04-Mar-09     | 10:42         |
| S1                      | S1              | 04-Mar-09     | 10:42         | 04-Mar-09     | 10:58         |
| S10                     | S10             | 04-Mar-09     | 10:58         | 04-Mar-09     | 11:12         |
| S20                     | S20             | 04-Mar-09     | 11:12         | 04-Mar-09     | 11:25         |
| ĊV                      | ICV             | 04-Mar-09     | 11:25         | 04-Mar-09     | 11:35         |
| ĊB                      | ICB             | 04-Mar-09     | 11:35         | 04-Mar-09     | 11:44         |
| MB-R16585               | MB-R16585       | 04-Mar-09     | 11:44         | 04-Mar-09     | 11:57         |
| LCS-R16585              | LCS-R16585      | 04-Mar-09     | 11:57         | 04-Mar-09     | 12:11         |
| LCSD-R16585             | LCSD-R16585     | 04-Mar-09     | 12:11         | 04-Mar-09     | 12:24         |
| LCS3-R16585             | LCS3-R16585     | 04-Mar-09     | 12:24         | 04-Mar-09     | 12:37         |
| LCS4-R16585             | LCS4-R16585     | 04-Mar-09     | 12:37         | 04-Mar-09     | 13:15         |
| CCV1                    | CCV1            | 04-Mar-09     | 13:15         | 04-Mar-09     | 13:24         |
| CCB1                    | CCB1            | 04-Mar-09     | 13:24         | 04-Mar-09     | 14:34         |
| B035M0416GB             | 0902124-001C    | 04-Mar-09     | 14:34         | 04-Mar-09     | 14:47         |
| B035M0416GB             | 0902124-001CMS  | 04-Mar-09     | 14:47         | 04-Mar-09     | 15:00         |
| B035M0416GB             | 0902124-001CMSD | 04-Mar-09     | 15:00         | 04-Mar-09     | 15:24         |
| CCV2                    | CCV2            | 04-Mar-09     | 15:24         | 04-Mar-09     | 15:33         |
| CCB2                    | CCB2            | 04-Mar-09     | 15:33         | 04-Mar-09     | 15:33         |

Comments:

# Total Alkalinity Data

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SM 2320 B</u>          |             | AAB #:                  | <u>R16544</u> |          |
|----------------------|---------------------------|-------------|-------------------------|---------------|----------|
| Lab Name:            | Life Science Laboratories | Inc.        | Contract Number:        |               |          |
| Concentration Units  | (mg/L or mg/kg):          | <u>mg/L</u> |                         |               |          |
| Calibraton Blank ID: |                           |             | Initial Calibration ID: |               | <u>0</u> |
| Method Blank ID:     | <u>MB-R16544</u>          |             | Initial Calibration ID: |               | <u>0</u> |

| Analyte              | Calibration | Method Blank | RL Q |
|----------------------|-------------|--------------|------|
| Alkalinity, as CaCO3 |             | 10           | 10   |

ı,

Comments:

QAPP 4.0

AFCEE FORM W-5

-----

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SM 2320 B</u>                | AAB #:                  | <u>R16544</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16544                      | Initial Calibration ID: | Q             |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Found | %R | Control Limits Q |
|----------------------|----------|-------|----|------------------|
| Alkalinity, as CaCO3 | 50       | 48    | 96 | 90 - 110         |

Comments:

QAPP 4.0

-----

AFCEE FORM W-6

\_\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SM 2320 B</u>                | AAB #:      | <u>R16544</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

|                 | 0902124-001DDUP | 26-Feb-09 | 26-Feb-09 | 01-Mar-09 | 14              | 2.5            | [ |
|-----------------|-----------------|-----------|-----------|-----------|-----------------|----------------|---|
| B035M0416GB     | 0902124-001D    | 26-Feb-09 | 26-Feb-09 | 01-Mar-09 | 14              | 2.5            |   |
|                 |                 | Collected | Received  | Analyzed  | Three<br>(days) | (0. <b>78)</b> |   |
| Field Sample ID | Lab Sample ID   | Date      | Date      | Date      | Holding         | Held           | 0 |

Comments:

----

-----

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: SM 2320 B

Lab Name: Life Science Laboratories, Inc. Contract #:

Instrument ID #: Buret Type A

| Field Sample I0/Std ID/<br>Blank ID/QC Sample ID | Leb<br>Sample ID | Date Analyses | Time Analyses<br>Started | Date Analyses<br>Completed | Time Analyses<br>Completed |
|--------------------------------------------------|------------------|---------------|--------------------------|----------------------------|----------------------------|
| LCS-R16544                                       | LCS-R16544       | 01-Mar-09     | 0:00                     | 01-Mar-09                  | 0:00                       |
| MB-R16544                                        | MB-R16544        | 01-Mar-09     | 0:00                     | 01-Mar-09                  | 0:00                       |
| B035M0416GB                                      | 0902124-001DDUP  | 01-Mar-09     | 0:00                     | 01-Mar-09                  | 0:00                       |
| B035M0416GB                                      | 0902124-001D     | 01-Mar-09     | 0:00                     | 01-Mar-09                  | 0:00                       |

Comments:

|                                         |                                                                      | LITE SCIENCE L'ADUTAUTIES, ILC.                                                                           | 16.                  |                               |                                                                                        | A                                  | NALYI                  | ANALY IICAL UC SUMMAKY KEFUKI                                                     | NIVINA                   | .RY RE        | IPOI        |
|-----------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|----------------------------------------------------------------------------------------|------------------------------------|------------------------|-----------------------------------------------------------------------------------|--------------------------|---------------|-------------|
| 5000 Bri<br>East Syr                    | 5000 Brittonlield Farkway, Suite 200<br>East Syracuse, NY 13057 (315 | y, Sunte 200<br>(315) 437-0200                                                                            |                      |                               |                                                                                        | 23                                 | Method:<br>Work Order: | SM 18-20 2320 B<br>0902124                                                        | 120 B                    |               |             |
| CLIENT:                                 | : FPM Group                                                          |                                                                                                           |                      |                               |                                                                                        | 4                                  | Project:               | Griffiss AFB - Building 35                                                        | Building                 | 35            |             |
| Sample ID:<br>Client ID:<br>Instrument: | D: 0902124-001DDUP<br>B035M0416GB<br>tt:                             | IP SampType: DUP<br>Batch ID: R16544<br>ColumnID:                                                         | TestCode:<br>Method: | »: ALKT 2320B<br>SM 18-20 232 | 20B Units: mg/L<br>1 232                                                               | Prep Date:<br>Analysis Date:       | te:<br>Date: 3/1/2009  | RunNo:<br>SeqNo:                                                                  | No: 16544<br>No: 431498  | 44<br>498     |             |
| Analyte                                 |                                                                      | QC Sample<br>Result                                                                                       | PQL                  | SPK Added                     | Parent<br>Sample<br>Result                                                             | %REC LowLinit                      | nit HighLimit          | RPD Ref Val                                                                       | %RPD                     | RPDLimit      | Qual        |
| Alkalinity                              | Alkalinity, as CaCO3                                                 | 282                                                                                                       | 9                    |                               |                                                                                        |                                    |                        | 536                                                                               | 4.<br>4.                 | ₽             |             |
| Qualifiers:                             | e g                                                                  | Analyte detected in the associated Method Blank<br>Not Detected at the Practical Quantitation Limit (PQL) | Blank<br>.imit (PQL) | E Valu<br>R RPD               | Value exceeds the instrument calibration range<br>RPD exceeds accepted precision limit | nt calibration range<br>sion limit | S                      | Analyte detected below the PQL<br>Spike Recovery outside accepted recovery limits | w the PQL de accepted re | ecovery limit | R           |
| -                                       | U Not Detec                                                          | Not Detected at the MDC or RL                                                                             |                      |                               |                                                                                        |                                    |                        |                                                                                   |                          | -             | Daga 1 of 1 |

Page I of I

05-Mar-09

Date:

### **Anions Data**

# AFCEE WET CHEM ANALYSES DATA SHEET 3-10 INITIAL MULTIPOINT CALIBRATION

| #:<br><u>R16538</u> | Contract #:                     | Date of Initial Calibration: <u>17-Feb-09</u> | Concentration Units (mg/L or mg/kg): <u>mg/L</u> |
|---------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------|
| AAB #:              | Cont                            | Date                                          | Conc                                             |
| SW9056              | Life Science Laboratories, Inc. | <u>ସ</u>                                      | <u>1509</u>                                      |
| Analytical Method:  | Lab Name:                       | Instrument ID:                                | Initial Calibration ID: 1509                     |

| Analyte III.     | STD 1 | STD 2 | STD 3 | 510.4 | STD 5 | STD 6 | su? | STD 8 | S 012 | STD 10 | -       | a |
|------------------|-------|-------|-------|-------|-------|-------|-----|-------|-------|--------|---------|---|
| Chloride         | 0     | 0.2   | 0.5   | -     | ഹ     | 10    | 20  | 40    | 0     | 0      | Ļ       |   |
| Nitrate (as N)   | 0     | 0.02  | 0.05  | 0.1   | 0.5   | -     | 2   | •     | 0     | 0      | 0.99999 |   |
| Sulfate (as SO4) | 0     | 0.2   | 0.5   | 1     | 5     | 10    | 20  | 40    | 0     | 0      | +       |   |
|                  |       |       |       |       |       |       |     |       |       |        |         |   |

r = correlation coefficient

Comments:

------

#### AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9056</u>              |                       | AAB #:                  | <u>R16538</u> |
|--------------------|----------------------------|-----------------------|-------------------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.                  | Contract #:             |               |
| Instrument ID:     | <u>IC</u>                  |                       | Initial Calibration ID: | <u>1509</u>   |
| 2nd Source ID:     | <u>2S CV</u>               | CCV #1 ID: <u>ICV</u> | CCV #2 ID:              | <u>CCV1</u>   |

| Amplyin          | 2nd So   | urce Calib<br>Ienfication | ation |          | Continuing C | dibration Vi | mication | <b>Q</b> |
|------------------|----------|---------------------------|-------|----------|--------------|--------------|----------|----------|
|                  | Expected | Found                     | 19 %D | Expected | Found 1      | 2.0          | Ren 2    | %D       |
| Chloride         | 5.00     | 5.05                      | 1.1   | 10.0     | 10.0         | 0.3          | 10.1     | 1.3      |
| Nitrate (as N)   | 0.500    | 0.506                     | 1.1   | 1.00     | 1.00         | 0.3          | 1.01     | 0.8      |
| Sulfate (as SO4) | 5.00     | 4.97                      | -0.7  | 10.0     | 10.0         | 0            | 10.0     | 0.5      |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SW9056</u>             |             | AAB #:                  | <u>R16538</u> |             |
|----------------------|---------------------------|-------------|-------------------------|---------------|-------------|
| Lab Name:            | Life Science Laboratories | . Inc.      | Contract Number:        |               |             |
| Concentration Units  | (mg/L or mg/kg):          | <u>mg/L</u> |                         |               |             |
| Calibraton Blank ID: | ICB                       |             | Initial Calibration ID: |               | <u>1509</u> |
| Method Blank ID:     | <u>MB-R16538</u>          |             | Initial Calibration ID: |               | <u>1509</u> |

| Analyte          | Calibration Blank Met | hod Blank | RL QT |
|------------------|-----------------------|-----------|-------|
| Chloride         | -0.020                | 0.099     | 1.0   |
| Nitrate (as N)   | 0.015                 | 0.015     | 1.0   |
| Sulfate (as SO4) | 0.20                  | 0.20      | 1.0   |

Comments:

QAPP 4.0

AFCEE FORM W-5

\_\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16538</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | s (mg/L or mg/kg): <u>mg/L</u>  |                         |               |
| Calibraton Blank ID | : <u>CCB1</u>                   | Initial Calibration ID: | <u>1509</u>   |
| Method Blank ID:    | <u>MB-R16538</u>                | Initial Calibration ID: | <u>1509</u>   |

| Analyte          | Calibration<br>Blank | Method Blank | RL 4 |
|------------------|----------------------|--------------|------|
| Chloride         | -0.0095              | 0.099        | 1.0  |
| Nitrate (as N)   | 0.015                | 0.015        | 1.0  |
| Sulfate (as SO4) | 0.20                 | 0.20         | 1.0  |

Comments:

\_\_\_\_

AFCEE FORM W-5

\_ \_

\_\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

4.99

100

85 - 115

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16538</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16538                      | Initial Calibration ID: | <u>1509</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

 Analyte
 Expected
 Found
 %R
 Control Limits
 Q

 Chloride
 5
 5.05
 101
 85 - 115

 Nitrate (as N)
 0.5
 0.506
 101
 85 - 115

5

Comments:

Sulfate (as SO4)

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:    | <u>SW9056</u>                   | AAB #:                  | <u>R16538</u> |
|-----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:             | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:               | LCSD-R16538                     | Initial Calibration ID: | <u>1509</u>   |
| Concentration Units ( | mg/L or mg/kg): <u>mg/L</u>     |                         |               |

| Anatyte          | Expected | Found | %R  | Control Limits Q |
|------------------|----------|-------|-----|------------------|
| Chloride         | 5        | 5.05  | 101 | 85 - 115         |
| Nitrate (as N)   | 0.5      | 0.506 | 101 | 85 - 115         |
| Sulfate (as SO4) | 5        | 4.99  | 100 | 85 - 115         |

Comments:

QAPP 4.0

AFCEE FORM W-6

\_\_\_\_\_

\_\_\_\_\_

#### AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SW9056</u>                   | AAB #:      | <u>R16538</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories. Inc. | Contract #: |               |

| - Field Sample 1D | Lab;Sample ID  | Data<br>Collected | Date<br>Recorved | Anatyzed  | Max<br>Helding<br>Tane<br>(days) | (fime<br>Feid<br>fidays) m | 9 |
|-------------------|----------------|-------------------|------------------|-----------|----------------------------------|----------------------------|---|
| B035M0416GB       | 0902124-001B   | 26-Feb-09         | 26-Feb-09        | 27-Feb-09 | 28                               | 1.0                        |   |
| B035M0416GB DL    | 0902124-001BDL | 26-Feb-09         | 26-Feb-09        | 27-Feb-09 | 28                               | 1.0                        |   |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

 Analytical Method:
 SW9056

 Lab Name:
 Life Science Laboratories, Inc.

<u>IC</u>

Contract #:

Instrument ID #:

| Field Sample ID/Std ID/ | Lab            | Date Analysea | Time Analyses |           | Time Analyses |
|-------------------------|----------------|---------------|---------------|-----------|---------------|
| Blank ID/QC Sample ID   | Sample ID      | Started       | Started       | Completed | Completed     |
| ICAL 0                  | ICAL 0         | 17-Feb-09     | 11:17         | 17-Feb-09 | 11:37         |
| ICAL 7                  | ICAL 7         | 17-Feb-09     | 11:37         | 17-Feb-09 | 11:57         |
| ICAL 6                  | ICAL 6         | 17-Feb-09     | 11:57         | 17-Feb-09 | 12:16         |
| ICAL 5                  | ICAL 5         | 17-Feb-09     | 12:16         | 17-Feb-09 | 12:36         |
| ICAL 4                  | ICAL 4         | 17-Feb-09     | 12:36         | 17-Feb-09 | 12:56         |
| ICAL 3                  | ICAL 3         | 17-Feb-09     | 12:56         | 17-Feb-09 | 13:16         |
| ICAL 2                  | ICAL 2         | 17-Feb-09     | 13:16         | 17-Feb-09 | 13:36         |
| ICAL 1                  | ICAL 1         | 17-Feb-09     | 13:36         | 17-Feb-09 | 13:36         |
| ICV                     | ICV            | 27-Feb-09     | 9:13          | 27-Feb-09 | 9:33          |
| 2S CV                   | 2S CV          | 27-Feb-09     | 9:33          | 27-Feb-09 | 9:53          |
| ICB                     | ICB            | 27-Feb-09     | 9:53          | 27-Feb-09 | 10:13         |
| MB-R16538               | MB-R16538      | 27-Feb-09     | 10:13         | 27-Feb-09 | 10:32         |
| LCS-R16538              | LCS-R16538     | 27-Feb-09     | 10:32         | 27-Feb-09 | 10:52         |
| LCSD-R16538             | LCSD-R16538    | 27-Feb-09     | 10:52         | 27-Feb-09 | 11:16         |
| B035M0416GB DL          | 0902124-001BDL | 27-Feb-09     | 11:16         | 27-Feb-09 | 11:55         |
| B035M0416GB             | 0902124-001B   | 27-Feb-09     | 11:55         | 27-Feb-09 | 12:42         |
| CCV1                    | CCV1           | 27-Feb-09     | 12:42         | 27-Feb-09 | 13:02         |
| CCB1                    | CCB1           | 27-Feb-09     | 13:02         | 27-Feb-09 | 13:02         |

Comments:

QAPP 4.0

#### Life Science Laboratories, Inc.

5000 Brittonfield Parkway, Suite 200 East Syracuse, NY 13057 (315) 437-0200

Friday, April 10, 2009

Niels van Hoesel FPM Group 153 Brooks Road Rome, NY 13441

TEL:

Project: GRIFFISS AFB - BUILDING 35 RE: Analytical Results

Order No.: 0903143

Dear Niels van Hoesel:

Life Science Laboratories, Inc. received 1 sample(s) on 3/25/2009 for the analyses presented in the following report. Sample results relate only to the samples as received by the laboratory.

Very truly yours, Life Science Laboratories, Inc.

Files

Pamela J. Titus Project Manager

# **Laboratory Report**

#### **Project Management Case Narrative**

#### INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for samples from FPM, for the Griffiss AFB-Building 35-Rome, NY project.

#### **CONDITION UPON RECEIPT/CHAIN OF CUSTODY**

The cooler(s) were received intact. When the cooler(s) were received by the laboratory, the sample custodian(s) opened and inspected the shipment(s) for damage and custody inconsistencies. Chains of custody documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

Discrepancies noted upon receipt are listed on the sample receipt checklist in the chain of custody section. The temperature of the well iced cooler was -0.2°C.

#### METHODOLOGY

The following methods were used to perform the analyses:

| PARAMETER            | METHOD  | REFERENCE |
|----------------------|---------|-----------|
| Volatile Organics    | SW8260B | 1         |
| Total Organic Carbon | SW9060  | 1         |
| Alkalinity as CaCO3  | SM2320B | 2         |
| Anions               | SW9056  | 1         |

- 1) <u>Test Methods for Evaluating Solid Wastes</u>, SW-846 Third Edition, Final Update III, December 1996 (including the QC requirements specified in AFCEE 4.0 + variances).
- 2) <u>Standard Methods for the Examination of Water and Wastewater</u>, 18<sup>th</sup> Edition, 1992

#### **QUALITY CONTROL**

QA/QC results are summarized in the Laboratory Report.

#### **RAW DATA**

The raw data is not requested for this report. Life Science Laboratories, Inc. will keep the raw data on file.

Total # of pages in this report:

Client: Project/Order: Work Order #: Methodology:

FPM Griffiss AFB – Building 35 0903143 8260B

Analyzed/Reviewed by (Initials/Date):

Supervisor/Reviewed by (Initials/Date):

QA/QC Review (Initials/Date):

JF 4/2/69 DW 4-9-09 DD for 2k 4/9/08

File Name:

G:\Narratives\MSVoa\0903143msvnar.doc

#### **GC/MS Volatile Organics**

The GC/MS Volatile instruments are equipped with a Restek Rtx-VMS, 60 m x 0.25 mm ID capillary column (MS01), Restek Rtx-502.2, 105 m x 0.53 mm ID capillary column (MS02), Restek Rtx-502.2, 60 m x 0.25 mm ID capillary column (MS03) and Restek Rtx-VMS, 60 m x 0.25 mm ID capillary column (MS04), and a Vocarb 3000 adsorbent trap.

There were no excursions to note. All QC results were within established control limits.

#### **Holding Times and Sample Preservation**

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of < 2.

#### Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

#### Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

#### **Internal Standards**

All internal standard areas met method and/or project specific QC criteria.

#### Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

#### **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

#### Wet Chemistry Case Narrative

| Client ID:                              | FPM                             |
|-----------------------------------------|---------------------------------|
| Project/Order:                          | Griffiss AFB – Building 35      |
| Work Order #:                           | 0903143                         |
| Methodology:                            | Total Organic Carbon – SW9060   |
|                                         | Alkalinity as CaCO3 - SM 2320 B |
|                                         | Anions – SW9056                 |
|                                         |                                 |
| Analyzed/Reviewed by (Date/Initials):   | 4.5-09 mg                       |
|                                         |                                 |
| Supervisor/Reviewed by (Date/Initials): | 4-5-04 kg                       |
| QA/QC Review (Date/Initials):           | 4/6/04 herflarst                |
|                                         | •                               |

#### Wet Chemistry

٨

#### **Holding Times**

All samples were prepared and analyzed within the method and/or QAPP specified holding times.

#### Laboratory Control Sample

All spike recoveries met method and/or project specified QC criteria.

#### MS/MSD AND MS/MSD RPD

All spike recovery and RPD data met method and/or project specific QC criteria.

#### **Sample Duplicate**

All sample duplicate RPD data met method and/or project specific QC criteria.

#### Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

#### **Preparation Blanks**

All preparation blanks met method and/or project specific QC criteria.

I:\WC\_Narrative\0903143 FPM\_Griffiss\_bld35\_wc.doc

#### Life Science Laboratories, Inc.

- ----

| CLIENT:<br>Project:<br>Lab Order: | FPM Group<br>Griffiss AFB - Building 35<br>0903143 |            | Work Order Sa   | mple Summary  |
|-----------------------------------|----------------------------------------------------|------------|-----------------|---------------|
| Lab Sample ID                     | Client Sample ID                                   | Tag Number | Collection Date | Date Received |
| 0903143-001A                      | B035M0416HA                                        | B035MW04   | 3/24/2009       | 3/25/2009     |
| 0903143-001B                      | B035M0416HA                                        | B035MW04   | 3/24/2009       | 3/25/2009     |
| 0903143-001C                      | B035M0416HA                                        | B035MW04   | 3/24/2009       | 3/25/2009     |
| 0903143-001D                      | B035M0416HA                                        | B035MW04   | 3/24/2009       | 3/25/2009     |

# Life Science Laboratories, Inc.

10-Apr-09

|                                                    | Analysis Date       | 3/30/2009                        | 3/25/2009              | 3/27/2009                           | 4/2/2009             |
|----------------------------------------------------|---------------------|----------------------------------|------------------------|-------------------------------------|----------------------|
| DATES REPORT                                       | TCLP Date Prep Date |                                  |                        |                                     |                      |
|                                                    | Test Name           | Groundwater Alkalinity, as CaCO3 | Inorganic anions by IC | Volatile Organic Compounds by GC/MS | Total Organic Carbon |
|                                                    | Matrix              | Groundwater                      |                        |                                     |                      |
| ilding 35                                          | Collection Date     | 3/24/2009 2:47:00 PM             |                        |                                     |                      |
| 0903143<br>FPM Group<br>Griffiss AFB - Building 35 | Client Sample ID    | B035M0416HA                      |                        |                                     |                      |
| Lab Order:<br>Client:<br>Project:                  | Sample ID           | 0903143-001A                     | 0903143-001B           | 0903143-001C                        | 0903143-001D         |

**External Chain of Custody** 

# AFCEE CHAIN OF CUSTODY RECORD

COC#: \_1\_ SDG#: \_209\_ Cooler ID: \_A\_

| Ship to: Pamela Titus<br>Life Science Laboratories, Inc.                                                                                            | tories, Inc.                                |                          |                   |                                                                                                                                                                       | Projec<br>Samp                                                                                                                                                                     | et Nam<br>ler Nan                 | e: Grift<br>ne: Nic | Project Name: Griffiss AFB Site I<br>Sampler Name: Niels van Hoesel | Project Name: Griffiss AFB Site Building 35 sampling<br>Sampler Name: Niels van Hoesel | suilding         | ; 35 sai                                                                                        | npling                                                                                                                                                               |                                                                                                                                                                          | nd Resu   | Send Results to: Niels van Hoesel<br>FPM Group |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|------------|
| 5000 Brittonfield Pkwy, Suite 200<br>East Syracuse, NY 13057 To                                                                                     | wy, Suite 200<br>3057 Tel:                  | )0<br>Tel: (315)437-0200 | 37-020(           | (                                                                                                                                                                     |                                                                                                                                                                                    |                                   | Y                   | Amel                                                                | wig                                                                                    | $\wedge$         |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           | 153 Brooks Koad<br>Rome, NY 13441              |            |
| Carrier: LSL courier.                                                                                                                               |                                             |                          |                   |                                                                                                                                                                       | Samp                                                                                                                                                                               | Sampler Signature                 | lature:             |                                                                     |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           | Phone: (315) 336-7721 Ext 205                  | 21 Ext 205 |
|                                                                                                                                                     |                                             |                          |                   |                                                                                                                                                                       |                                                                                                                                                                                    |                                   |                     |                                                                     |                                                                                        |                  | 4                                                                                               | Analys                                                                                                                                                               | Analyses Requested                                                                                                                                                       | ested     |                                                |            |
| Field Sample ID                                                                                                                                     | Location ID<br>(LOCID)                      | Date 1<br>2009           | Jime              | XIATAM                                                                                                                                                                | 2BD/2ED<br>ZWCODE                                                                                                                                                                  | SACODE                            | эчйвчтэгэтч         | Fik,/UnFilt.                                                        | No. of<br>Containers                                                                   | 40 mL vial (HCI) | Anions, <sup>note 2</sup><br>250 mL poly                                                        | TOC note3<br>40 mL vials (HCL)                                                                                                                                       | Alkalinity <sup>note 4</sup><br>8 oz glass (zero<br>headspace)                                                                                                           |           | Comments                                       |            |
| B035M0416HA B02                                                                                                                                     | B035MW04                                    | 3/24 1.                  | 1447 W            | MG I                                                                                                                                                                  | B 0/0                                                                                                                                                                              | z                                 | HCI                 | Unf.                                                                | 7                                                                                      | 3                | 1                                                                                               | 7                                                                                                                                                                    |                                                                                                                                                                          |           |                                                |            |
| Sample Condition Upon Receipt at Laboratory:                                                                                                        | cipt at Laborator                           | _                        | Sauch 1           | - urtol                                                                                                                                                               | 5                                                                                                                                                                                  | 11/100                            | NTACI               | F                                                                   | Carlo and                                                                              |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          | Cooler    | Cooler Temperature: -0, 2                      | P C avide  |
| Special Instructions/Comments:                                                                                                                      | nts: Analyses to be conducted in compliance | be cond                  | ducted Trore      | in com                                                                                                                                                                | ofiance                                                                                                                                                                            | with Al                           | FCEE (              | with AFCEE QAPP 4.0                                                 |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           |                                                |            |
| NORE 1: VUC: method SW 8260: Larget CUCS: FUE, LUE, LUE, VIII) Chiolite and Chiologuin<br>Note 2: Anions: SW9056 CHLORIDE, SULFATE AND NITRATE ONLY | HLORIDE, SU                                 | LFATE                    | AND .             | NITR/                                                                                                                                                                 | VIII AL                                                                                                                                                                            | VLY VILLE                         |                     |                                                                     |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           |                                                |            |
| Note 3: TOC: SW9060.                                                                                                                                |                                             |                          |                   |                                                                                                                                                                       |                                                                                                                                                                                    |                                   |                     |                                                                     |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           |                                                |            |
| Note 4: Alkalinity: 310.1.                                                                                                                          |                                             |                          |                   |                                                                                                                                                                       |                                                                                                                                                                                    |                                   |                     |                                                                     |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           | 00                                             |            |
|                                                                                                                                                     |                                             |                          |                   |                                                                                                                                                                       |                                                                                                                                                                                    |                                   | **                  | V                                                                   |                                                                                        |                  |                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                          |           | 141 0                                          |            |
| #1 Released by: (Sig)                                                                                                                               |                                             | Date:                    |                   | #2 F                                                                                                                                                                  | #2 Released by                                                                                                                                                                     | by: (Sig)                         | n -                 | - In                                                                | Å                                                                                      | Date: 3          | 3/24/09                                                                                         |                                                                                                                                                                      | #3 Released by: (Sig)                                                                                                                                                    | by: (Sig) | The Martes                                     | 325/09     |
| Company Name:                                                                                                                                       |                                             | Time:                    |                   | Con                                                                                                                                                                   | Company Name: FPM                                                                                                                                                                  | ne: FPK                           | [Group]             | >Ltd                                                                |                                                                                        | Time:            | -                                                                                               | °C<br>~                                                                                                                                                              | Company Name:                                                                                                                                                            | ume:      |                                                | لی مخالم ا |
| #1 Received by: (Sig) Niels van Hoesel                                                                                                              | Hoesel                                      | Date: 2/22/09            | /22/09            | #2 F                                                                                                                                                                  | #2 Received by: (Sig)                                                                                                                                                              | y: (Sig)                          | 1                   |                                                                     | Ŋ                                                                                      | Date:            | 1241                                                                                            | <b>6</b> #3                                                                                                                                                          | #3 Received by: (Sig)                                                                                                                                                    | by: (Sig) | The former Date: 3,                            | 3/25/09    |
| Company Name: FPM Group Ltd                                                                                                                         | td                                          | Time: 10200              | 0200              | Con                                                                                                                                                                   | Company Name:                                                                                                                                                                      | ne:                               | R<br>N              |                                                                     |                                                                                        | Time:            | 2.5                                                                                             | о<br>Г                                                                                                                                                               | Company Name: (                                                                                                                                                          |           | Let Time:                                      | کفلاص :    |
| <u>MATRIX</u><br>WG = Ground water<br>WQ = Water Quality Control Matrix<br>SO = Soil                                                                | lity Control Matrix                         |                          | 8 8 8 5 5 6 8 8 S | <b>SMCODE</b><br><b>B</b> = Bailer<br><b>G</b> = Grab (only fo<br>NA = Not Applics<br>PP = Peristaltic Pu<br>BP = Bladder Pun<br>SP = Submersible<br>SS = Split spoon | SMCODE<br>B = Bailer<br>G = Grab (only for EB).<br>NA = Not Applicable (only for AB/TB)<br>PP = Peristaltic Pump<br>BP = Bladder Pump<br>SP = Submersible Pump<br>SS = Split spoon | r EB).<br>able (only<br>սաթ<br>որ | / for AB            | (BL)                                                                |                                                                                        |                  | <b>SACODE</b><br>N = Norm<br>AB = Amt<br>TB = Trip<br>EB = Equi<br>FD = Fielk<br>MA<br>SD = Mat | <b>SACODE</b><br>N = Normal Sample<br>AB = Ambicnt Blanl<br>TB = Trip Blank<br>EB = Equipment Bla<br>FD = Field Duplicat<br>MS = Matrix Spike<br>SD = Matrix Spike I | SACODE<br>N = Normal Sample<br>AB = Ambicnt Blank<br>TB = Trip Blank<br>EB = Equipment Blank<br>FD = Field Duplicate<br>MS = Matrix Spike<br>SD = Matrix Spike Duplicate | plicate   |                                                |            |

#### Life Science Laboratories, Inc.

#### Sample Receipt Checklist

| Client Name: FPM                                        |                       | Date and Time Received:  | 3/25/2009 8:05:00 AM |
|---------------------------------------------------------|-----------------------|--------------------------|----------------------|
| Work Order Number: 0903143                              |                       | Received by: ads         |                      |
| Checklist completed by:                                 | 3/25/09<br>Date       | Reviewed by: M           | 3/25/09<br>Date      |
| Delivery Me                                             | ethod: <u>Courier</u> |                          |                      |
| Shipping container/cooler in good condition?            | Yes 🔽                 | No 🗌 Not Present 🛄       |                      |
| Custody seals intact on shipping container/cooler?      | Yes 🖌                 | No 🗌 Not Present 🗐       |                      |
| Custody seals intact on sample bottles?                 | Yes                   | No 🗌 Not Applicable 🗹    |                      |
| Chain of custody present?                               | Yes 🗹                 | No                       |                      |
| Chain of custody signed when relinquished and received? | Yes 🖌                 | No                       |                      |
| Chain of custody agrees with sample labels?             | Yes                   | No 🗹                     |                      |
| Samples in proper container/bottle?                     | Yes 🗹                 | No 🗔                     |                      |
| Sample containers intact?                               | Yes 🔽                 | No 🗌                     |                      |
| Sufficient sample volume for indicated test?            | Yes 🗹                 | Νο                       |                      |
| All samples received within holding time?               | Yes 🔽                 | No 🗌                     |                      |
| Container/Temp Blank temperature in compliance?         | Yes 🗹                 | No 🗔                     |                      |
| Water - VOA vials have zero headspace?                  | Yes 🔽                 | No 🗌 No VOA vials submit | ted                  |
| Water - pH acceptable upon receipt?                     | Yes 🗹                 | No 🗌 Not Applicable 🗌    |                      |

| рH  | Preservative         | pH Acceptable    | Sample ID |
|-----|----------------------|------------------|-----------|
| >12 | NaOH                 | Yes 🗌 N 🛄 NA 🗹   |           |
| <2  | HNO3                 | Yes 🗌 N 🗌 NA 🗹   |           |
| <2  | HSO4                 | Yes 🗌 N 🗔 NA 🗹   |           |
| <2  | 1:1 HCL              | Yes 🗹 N 🗌 NA 🗌 1 | гос       |
| 5-9 | Pest/PCBs (608/8081) | Yes 🗌 N 🛄 NA 🗹   |           |

Volume of Preservative added in Lab.

#### Comments:

١

Client's COC lists 2 bottles for TOC, only one shipped.

Corrective Action:

TOC: logged in as 1 vial.

6010 Client/Project\_\_\_

| 0903143 |  |
|---------|--|
| FPN     |  |

,

ŝ

.

|                |      | Sar         | mple Co       | Sample Control Record |          |                        |
|----------------|------|-------------|---------------|-----------------------|----------|------------------------|
| Sample ID      | Frac | Client Samp | Removed<br>By | Date and Time Removed | Analysis | Date and Time Returned |
| 040 3143 - 001 | V    |             | XL            | 3/22/09 15:00         | 8260     | NK                     |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             | •             |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
| *              |      |             |               |                       | -        |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |
|                |      |             |               |                       |          |                        |

١

4

4

G:\Logbook Forms\Logbooks (old)\GeneralLaboratory\Sign out.xfs

•

Client/Project FPM 0903143

,

ţ

|                       | Date and Time Returned | 3/25/09 (6:00  | 3-30-09 180  |  |   |  |  |   |   |  |   |
|-----------------------|------------------------|----------------|--------------|--|---|--|--|---|---|--|---|
|                       | Analysis               | 90 G           | ALKJ         |  |   |  |  |   | - |  |   |
| Sample Control Record | Date and Time Removed  | 3/25/09 8:45   | 3-30-09 1625 |  |   |  |  |   |   |  |   |
| nple Co               |                        | 36             | ΫK           |  | ĩ |  |  |   |   |  | - |
| Sar                   | Client Sample ID By    |                |              |  |   |  |  | - |   |  |   |
|                       | Frac                   | Ŀ              |              |  |   |  |  |   |   |  |   |
|                       | Sample ID              | 1 09 - 2112000 | 0503143-001  |  |   |  |  |   |   |  |   |

١

ł

G:\Logbook Forms\Logbooks (old)\GeneralLaboratory\Sign out.xis

•

# **Analytical Results**

#### AFCEE ORGANIC ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW8260B</u>                  | AAB #:            | <u>R16810</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |
|                    |                                 |                   |               |

| B035M0416HA | 0903143-001C |
|-------------|--------------|
|             | 0000140-0010 |

#### **Comments:**

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

| Signature: | Canuly Sikes   | Name: | Pamela J. Titus |  |
|------------|----------------|-------|-----------------|--|
| Date:      | 4/9/09         | Title | Project Manager |  |
| QAPP 4.0   | AFCEE FORM O-1 |       | Page 1 of 1     |  |

#### AFCEE ORGANIC ANALYSES DATA SHEET 2 RESULTS

| Analytical Method: <u>SW8260B</u>               | Preparatory Method:          | AAB #:         | <u>R16810</u>    |
|-------------------------------------------------|------------------------------|----------------|------------------|
| Lab Name: Life Science Laboratories, Inc.       | Contract #:                  |                |                  |
| Field Sample ID: <u>B035M0416HA</u>             | Lab Sample ID: 0903143-001C  | Matrix:        | Groundwater      |
| % Solids: <u>0</u>                              | Initial Calibration ID: 1527 | File ID:       | <u>J8948.D</u>   |
| Date Received: <u>25-Mar-09</u>                 | Date Extracted:              | Date Analyzed: | <u>27-Mar-09</u> |
| Concentration Units (ug/L or mg/Kg dry weight): | <u>µg/L</u>                  | Sample Size:   | <u>mL</u>        |

| Analyte                  | MDL   | RL    | Concentration | Dilution | Confirm Qualifier |
|--------------------------|-------|-------|---------------|----------|-------------------|
| Chloroform               | 0.100 | 0.500 | 0.100         | 1        | U                 |
| cis-1,2-Dichloroethene   | 0.100 | 1.00  | 17.4          | 1        |                   |
| Tetrachloroethene        | 0.100 | 1.00  | 0.620         | 1        | F                 |
| trans-1,2-Dichloroethene | 0.100 | 1.00  | 0.380         | 1        | F                 |
| Trichloroethene          | 0.100 | 1.00  | 0.520         | 1        | ́ F               |
| Vinyl chloride           | 0.330 | 1.00  | 1.11          | 1        |                   |

| Surrogate             | Recovery | Control Limits | Qualifier |
|-----------------------|----------|----------------|-----------|
| 1,2-Dichloroethane-d4 | 105      | 72 - 119       |           |
| 4-Bromofluorobenzene  | 88       | 76 - 119       |           |
| Toluene-d8            | 105      | 81 - 120       |           |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 700267      | 269046 - 1076184  |           |
| Chlorobenzene-d5       | 851897      | 373660 - 1494642  |           |
| Fluorobenzene          | 2229089     | 939074 - 3756298  |           |

Comments:

QAPP 4.0

-----

Page 1 of 1

\_....

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9060</u>                   | AAB #:            | <u>R16864</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample ID | Lab Sample 10 |
|-----------------|---------------|
| B035M0416HA     | 0903143-001D  |

## Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature:

Date:

Titus 0

| Name:  | Pamela J. Titus |  |
|--------|-----------------|--|
| Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

| Analytical Method:  | SW9060                     |                         | AAB #:     | R16864         |             |
|---------------------|----------------------------|-------------------------|------------|----------------|-------------|
| Lab Name:           | Life Science Laboratories, | inc. Co                 | ontract #: |                |             |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:          | 0903143-0  | 01D Matrix:    | Groundwater |
| % Solids:           | 0                          | Initial Calibration ID: | 1537       |                |             |
| Date Received:      | 25-Mar-09                  | Date Prepared:          |            | Date Analyzed: | 02-Apr-09   |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                  |            |                |             |

| Anatyte              | NOL I | - R. 1 | Conceptration | Dilution | Qualifier |
|----------------------|-------|--------|---------------|----------|-----------|
| Total Organic Carbon | 0.35  | 1.0    | 8.2           | 1        |           |

Comments:

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SM 2320 B</u>                | AAB #:            | <u>R16819</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample ID | Lab Sample ID |
|-----------------|---------------|
| B035M0416HA     | 0903143-001A  |

# Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

Signature

| 9: | Conceled Liker | ١ |
|----|----------------|---|
|    | 419109         | T |

| Name:  | Pamela J. Titus |  |
|--------|-----------------|--|
| Title: | Project Manager |  |

Date: QAPP 4.0

AFCEE FORM W-1

| Analytical Method:     | SM 2320 B                    |                       | AAB #:      | R16819 | )              |             |
|------------------------|------------------------------|-----------------------|-------------|--------|----------------|-------------|
| Lab Name:              | Life Science Laboratories, I | nc.                   | Contract #: |        |                |             |
| Field Sample ID:       | B035M0416HA                  | Lab Sample ID:        | 0903143     | -001A  | Matrix:        | Groundwater |
| % Solids:              | 0                            | Initial Calibration I | ID: 0       |        |                |             |
| Date Received:         | 25-Mar-09                    | Date Prepared:        |             |        | Date Analyzed: | 30-Mar-09   |
| Concentration Units (r | ng/L or mg/kg dry weight):   | mg/L                  |             |        |                |             |

|      | Analyte          | MOL | RL RL | Concentration | Dilation | Qualifier |
|------|------------------|-----|-------|---------------|----------|-----------|
| Alka | linity, as CaCO3 | 10  | 10    | 280           | 1        |           |

Comments:

# AFCEE WET CHEM ANALYSES DATA PACKAGE

| Analytical Method: | <u>SW9056</u>                   | AAB #:            | <u>R16776</u> |
|--------------------|---------------------------------|-------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract Number:  |               |
| Base/Command:      |                                 | Prime Contractor: | FPM Group     |

| Field Sample IC | Lab Sample ID   |
|-----------------|-----------------|
| B035M0416HA     | 0903143-001B    |
| B035M0416HA     | 0903143-001BDUP |
| B035M0416HA     | 0903143-001BMS  |
| B035M0416HA     | 0903143-001BMSD |

#### Comments:

I certify this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager's designee, as verified by the following signature.

······

| Signature: | Camelef Tikes | Name:  | Pamela J. Titus |  |
|------------|---------------|--------|-----------------|--|
| Date:      | 4/9/09        | Title: | Project Manager |  |

QAPP 4.0

AFCEE FORM W-1

| Analytical Method:  | SW9056                    |                       | AAB #:      | R16776 | 6              |             |
|---------------------|---------------------------|-----------------------|-------------|--------|----------------|-------------|
| Lab Name:           | Life Science Laboratories | , Inc.                | Contract #: |        |                |             |
| Field Sample ID:    | B035M0416HA               | Lab Sample ID:        | 0903143-0   | 001B   | Matrix:        | Groundwater |
| % Solids:           | 0                         | Initial Calibration I | D: 1528     |        |                |             |
| Date Received:      | 25-Mar-09                 | Date Prepared:        |             |        | Date Analyzed: | 25-Mar-09   |
| Concentration Units | (mg/L or mg/kg dry weigh  | t): mg/L              |             |        |                |             |

| Analyto          | NDL   | RL   | Concentration |   | Quanties |
|------------------|-------|------|---------------|---|----------|
| Chloride         | 0.20  | 2.0  | 73            | 2 |          |
| Nitrate (as N)   | 0.020 | 0.20 | 0.020         | 2 | U        |
| Sulfate (as SO4) | 0.20  | 2.0  | 2.7           | 2 |          |

Comments:

| Analytical Method:  | SW9056                     |                         | AAB #:     | R16776 |                |           |
|---------------------|----------------------------|-------------------------|------------|--------|----------------|-----------|
| Lab Name:           | Life Science Laboratories, | Inc. Co                 | ontract #: |        |                |           |
| Field Sample iD:    | B035M0416HA                | Lab Sample ID:          | 0903143-0  | 01BMS  | Matrix:        | Aqueous   |
| % Solids:           | 0                          | Initial Calibration ID: | 1528       |        |                |           |
| Date Received:      | 25-Mar-09                  | Date Prepared:          |            |        | Date Analyzed: | 25-Mar-09 |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                  |            |        |                |           |

| Analyte          | MDL    | RE    | Concentration | Dilution | Gualitiera |
|------------------|--------|-------|---------------|----------|------------|
| Chloride         | 0.500  | 5.00  | 81.6          | 5        |            |
| Nitrate (as N)   | 0.0500 | 0.500 | 1.02          | 5        |            |
| Sulfate (as SO4) | 0.500  | 5.00  | 12.5          | 5        |            |

Comments:

QAPP 4.0

| Analytical Method:  | SW9056                     |                        | AAB #:      | R16776  |                |           |  |
|---------------------|----------------------------|------------------------|-------------|---------|----------------|-----------|--|
| Lab Name:           | Life Science Laboratories, | Inc.                   | Contract #: |         |                |           |  |
| Field Sample ID:    | B035M0416HA                | Lab Sample ID:         | 0903143-    | 001BMSD | Matrix:        | Aqueous   |  |
| % Solids:           | 0                          | Initial Calibration II | D: 1528     |         |                |           |  |
| Date Received:      | 25-Mar-09                  | Date Prepared:         |             |         | Date Analyzed: | 25-Mar-09 |  |
| Concentration Units | (mg/L or mg/kg dry weight) | : mg/L                 |             |         |                |           |  |

| Analyte          | MOL    | RL    | Concentration | Dilution | Qualifier |
|------------------|--------|-------|---------------|----------|-----------|
| Chloride         | 0.500  | 5.00  | 81.8          | 5        |           |
| Nitrate (as N)   | 0.0500 | 0.500 | 1.02          | 5        |           |
| Sulfate (as SO4) | 0.500  | 5.00  | 12.4          | 5        |           |

Comments:

# **Quality Control Results**

# **GC/MS Volatile Organics Data**

# AFCEE ORGANIC ANALYSES DATA SHEET 3 INITIAL MULTIPOINT CALIBRATION-GC/MS ANALYSIS

Analytical Method: 8260B

AAB #:

Lab Name: Life Science Laboratories, Inc.

Instrument ID: HP5973 GCMS#3

Initial Calibration ID: 1527

Contract #:

Date of Initial Calibration: 24 March 09

Concentration Units (ug/L or mg/Kg): ug/L

#### SEE ATTACHED

Comments:

|                                               |              | r                                                                                                                                                | lespons                                   | ie raci                                   | ог кер                                    | UIC +                                     | 1 JUDIO                                   |                                           |                                           |                                                                                                                                          |
|-----------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Titl<br>Last | od : C:\HPCHEM<br>e : VOC's w/R<br>Update : Tue Mar 2<br>onse via : Continuin                                                                    | estek<br>4 11:4                           | Rtx-50<br>4:28 2                          | 2.2, 0<br>009                             | W.M (F<br>.25 mm                          | ıx 60                                     | tegrato<br>M, 1.4<br>#/ <i>57</i>         | d£                                        |                                                                                                                                          |
|                                               | 0.5          |                                                                                                                                                  | L=<br>[                                   |                                           |                                           | 2.0<br>30                                 |                                           |                                           |                                           |                                                                                                                                          |
|                                               |              | Compound                                                                                                                                         | 0.5                                       | 1.0                                       | 2.0                                       | 1.0<br>                                   | 20                                        | 30<br><b>-</b> -                          | Avg                                       | %RSD                                                                                                                                     |
| 2)<br>3)                                      | P<br>CP      | Dichlorodifluoromet<br>Chloromethane<br>Vinyl chloride<br>Bromomethane                                                                           | 0.217<br>0.505<br>0.159<br>0.169          | 0.225<br>0.395<br>0.153<br>0.146          | 0.217<br>0.317<br>0.155<br>0.135          | 0.383<br>0.387<br>0.208<br>0.141          | 0.381<br>0.366<br>0.208<br>0.144          | 0.360<br>0.207<br>0.150                   | 0.310<br>0.385<br>0.185<br>0.150          | 27.21<br>15.19<br>14.77<br>7.81                                                                                                          |
| 6)<br>7)<br>8)<br>9)<br>10)<br>11)            | СРМ          | Chloroethane<br>Trichlorofluorometh<br>1,1-Dichloroethene<br>Carbon disulfide<br>1,1,2-Trichloro-1,2<br>Methyl iodide                            | 0.320<br>0.194<br>0.721<br>0.222          | 0.318<br>0.188<br>0.697<br>0.222          | 0.302<br>0.182<br>0.673<br>0.215          | 0.375<br>0.228<br>0.811<br>0.255          | 0.369<br>0.231<br>0.805<br>0.256          | 0.368<br>0.231<br>0.805<br>0.251          | 0.345<br>0.213<br>0.758<br>0.239          | 7.51<br>8.78<br>11.30<br>7.77<br>7.74<br>22.45                                                                                           |
| 12)<br>13)<br>14)<br>15)<br>16)               |              | Acrolein<br>Methylene chloride<br>Acetone<br>Methyl acetate<br>Methyl tert-Butyl e                                                               | 0.027<br>0.276<br>0.067<br>0.219<br>0.500 | 0.029<br>0.256<br>0.058<br>0.177<br>0.529 | 0.032<br>0.254<br>0.054<br>0.155<br>0.548 | 0.038<br>0.263<br>0.055<br>0.144<br>0.603 | 0.038<br>0.261<br>0.051<br>0.143<br>0.609 | 0.039<br>0.252<br>0.050<br>0.138<br>0.600 | 0.035<br>0.260<br>0.055<br>0.159<br>0.571 | $   \begin{array}{r}     15.16 \\     3.12 \\     10.91 \\     18.90 \\     7.87 \\   \end{array} $                                      |
| 7)<br>18)<br>19)<br>20)<br>21)                | ₽            | trans-1,2-Dichloroe<br>1,1-Dichloroethane<br>Acrylonitrile<br>Vinyl acetate<br>cis-1,2-Dichloroeth                                               | 0.227<br>0.444<br>0.054<br>0.251<br>0.241 | 0.226<br>0.429<br>0.059<br>0.260<br>0.249 | 0.223<br>0.443<br>0.061<br>0.275<br>0.249 | 0.245<br>0.478<br>0.070<br>0.303<br>0.281 | 0.251<br>0.490<br>0.068<br>0.317<br>0.288 | 0.248<br>0.479<br>0.068<br>0.323<br>0.282 | 0.239<br>0.463<br>0.064<br>0.291<br>0.268 | 5.64<br>5.10<br>9.18<br>9.83<br>7.81<br>12.66                                                                                            |
| 22)<br>23)<br>24)<br>25)<br>26)               |              | 2,2-Dichloropropane<br>Bromochloromethane<br>Cyclohexane<br>Chloroform<br>Carbon tetrachlorid                                                    | 0.088<br>0.432<br>0.419<br>0.227          | 0.096<br>0.419<br>0.417<br>0.215          | 0.092<br>0.416<br>0.408<br>0.219          | 0.104<br>0.499<br>0.427<br>0.263          | 0.105<br>0.512<br>0.435<br>0.279          | 0.102<br>0.501<br>0.425<br>0.280          | 0.098<br>0.470<br>0.423<br>0.253          | 6.80<br>9.63<br>2.18<br>12.48<br>7.78                                                                                                    |
| 27)<br>28)<br>29)<br>30)<br>31)               |              | 1,1,1-Trichloroetha<br>2-Butanone<br>1,1-Dichloropropene<br>Benzene<br>1,2-Dichloroethane-                                                       | 0.070<br>0.330<br>1.141<br>0.241          | 0.068<br>0.318<br>1.109<br>0.233          | 0.073<br>0.327<br>1.110<br>0.235          | 0.077<br>0.370<br>1.204<br>0.249          | 0.075<br>0.376<br>1.223<br>0.246          | 0.074<br>0.370<br>1.191<br>0.242          | 0.073<br>0.353<br>1.168<br>0.241          | 4.56<br>7.46<br>4.03<br>2.34<br>3.53                                                                                                     |
| 32)<br>33)<br>34)<br>35)<br>36)               |              | 1,2-Dichloroethane<br>Methylcyclohexane<br>Trichloroethene<br>Dibromomethane<br>1,2-Dichloropropane                                              | 0.369<br>0.221<br>0.129<br>0.269          | 0.368<br>0.229<br>0.124<br>0.267          | 0.363<br>0.229<br>0.128<br>0.272          | 0.435<br>0.247<br>0.134<br>0.292          | 0.438<br>0.250<br>0.136<br>0.292          | 0.437<br>0.249<br>0.131<br>0.288          | 0.408<br>0.240<br>0.131<br>0.282          | 9.71<br>5.57<br>3.27<br>4.22<br>11.74                                                                                                    |
| 37)<br>38)<br>39)<br>40)<br>41)<br>42)<br>43) | CPM          | Bromodichloromethan<br>2-Chloroethylvinyl<br>cis-1,3-Dichloropro<br>Toluene<br>4-Methyl-2-pentanon<br>trans-1,3-Dichlorop<br>1,1,2-Trichloroetha | 0.055<br>0.314<br>0.633<br>0.121<br>0.245 | 0.061<br>0.333<br>0.620<br>0.131<br>0.242 | 0.072<br>0.343<br>0.652<br>0.152<br>0.270 | 0.084<br>0.406<br>0.738<br>0.156<br>0.324 | 0.084<br>0.427<br>0.750<br>0.168<br>0.340 | 0.084<br>0.422<br>0.738<br>0.167<br>0.345 | 0.075<br>0.383<br>0.699<br>0.153<br>0.302 | $   \begin{array}{r}     11.74 \\     16.70 \\     13.22 \\     8.77 \\     13.19 \\     \overline{15.99} \\     5.94 \\   \end{array} $ |
| -                                             |              |                                                                                                                                                  |                                           |                                           | 1-1-0                                     |                                           |                                           |                                           |                                           |                                                                                                                                          |

Response Factor Report #3MS10

(#) = Out of Range ### Number of calibration levels exceeded format J324VOCW.M Tue Mar 24 11:44:38 2009

3/24/01

### Page 1

|                                                                           |              | न्न                                                                                                                                                                                                                                                  | lespons                                                                                                                                                                                            | se Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or Rep                                                                                                                                                                                             | port #                                                                                                                                                                                             | 3MS10                                                                                                                                                                                              |                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                                                                          |
|---------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                           | Titl<br>Last | od : C:\HPCHEM<br>e : VOC's w/R<br>Update : Tue Mar 2<br>oonse via : Continuin                                                                                                                                                                       | lestek<br>4 11:4                                                                                                                                                                                   | Rtx-50<br>4:28 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2, 0<br>009                                                                                                                                                                                      | CW.M (R<br>).25 mm                                                                                                                                                                                 | TE Int<br>1 x 60                                                                                                                                                                                   | egrato<br>M, 1.4                                                                                                                                                                                   | or)<br>df                                                                                                                                                                                                   |                                                                                          |
|                                                                           | 0.5          | bration Files<br>=J8827.D 1.0<br>=J8830.D 20                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                                                                                             |                                                                                          |
|                                                                           |              | Compound                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                | 10                                                                                                                                                                                                 | 20                                                                                                                                                                                                 | 30                                                                                                                                                                                                 | Avg                                                                                                                                                                                                         | %RSD                                                                                     |
| 44)                                                                       |              | 2-Hexanone                                                                                                                                                                                                                                           | 0.075                                                                                                                                                                                              | 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.098                                                                                                                                                                                              | 0.118                                                                                                                                                                                              | 0.118                                                                                                                                                                                              | 0.119                                                                                                                                                                                              | 0.105                                                                                                                                                                                                       | 18.12                                                                                    |
| 47)<br>48)<br>50)<br>51)<br>52)<br>53)<br>54)<br>55)<br>55)<br>56)<br>57) | PM<br>CP     | Chlorobenzene-d5<br>Toluene-d8<br>Tetrachloroethene<br>Dibromochloromethan<br>1,3-Dichloropropane<br>1,2-Dibromoethane<br>1-Chlorohexane<br>Chlorobenzene<br>Ethylbenzene<br>1,1,1,2-Tetrachloro<br>(m+p)-Xylene<br>o-Xylene<br>Styrene<br>Bromoform | 0.508<br>0.314<br>0.806<br>0.347<br>0.708<br>1.713<br>2.916<br>0.338<br>1.138<br>1.049<br>1.464<br>0.141                                                                                           | 0.541<br>0.326<br>0.852<br>0.741<br>1.673<br>3.030<br>0.394<br>1.156<br>1.107<br>1.521<br>0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.528<br>0.361<br>0.884<br>0.748<br>1.670<br>3.089<br>0.405<br>1.213<br>1.136<br>1.671<br>0.157                                                                                                    | 0.561<br>0.442<br>0.913<br>0.441<br>0.903<br>1.810<br>3.443<br>0.487<br>1.335<br>1.277<br>1.987<br>0.211                                                                                           | 0.568<br>0.479<br>0.925<br>0.450<br>0.933<br>1.828<br>3.503<br>0.529<br>1.382<br>1.338<br>2.091<br>0.233                                                                                           | 0.570<br>0.494<br>0.916<br>0.452<br>0.942<br>1.823<br>3.459<br>0.551<br>1.387<br>1.345<br>2.098<br>0.252                                                                                           | 0.553<br>0.418<br>0.888<br>0.421<br>0.850<br>1.773<br>3.270<br>0.469<br>1.288<br>1.232<br>1.851<br>0.200                                                                                                    | 5.41 $20.03$ $4.97$ $10.16$ $13.23$ $4.90$ $7.57$ $19.48$ $8.97$ $10.70$ $15.65$ $27.28$ |
| 62)<br>63)                                                                | S            | 1,3,5-Trimethylbenz<br>1,2,3-Trichloroprop<br>trans-1,4-Dichloro-<br>4-Chlorotoluene<br>tert-Butylbenzene<br>1.2,4-Trimethylbenz                                                                                                                     | 3.439<br>1.351<br>0.821<br>4.554<br>0.740<br>3.005<br>2.689<br>0.670<br>0.053<br>2.772<br>2.407<br>2.625<br>3.462<br>2.626<br>1.624<br>1.594<br>2.391<br>1.495<br>0.078<br>0.282<br>0.451<br>0.449 | 3.466<br>1.229<br>0.830<br>4.436<br>0.764<br>3.164<br>2.813<br>0.627<br>0.083<br>2.727<br>2.468<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.748<br>3.573<br>2.7456<br>1.458<br>0.095<br>0.287<br>0.516<br>0.597 | 3.661<br>1.215<br>0.821<br>4.797<br>0.771<br>3.007<br>3.008<br>0.669<br>0.099<br>2.954<br>2.534<br>2.941<br>3.801<br>2.946<br>1.640<br>1.595<br>2.601<br>1.547<br>0.106<br>0.297<br>0.571<br>0.824 | 4.089<br>1.215<br>0.902<br>5.306<br>0.856<br>3.393<br>3.408<br>0.689<br>0.127<br>2.964<br>2.895<br>3.339<br>4.306<br>3.384<br>1.741<br>1.687<br>3.092<br>1.637<br>0.114<br>0.335<br>0.719<br>1.219 | 4.067<br>1.207<br>0.900<br>5.253<br>0.832<br>3.155<br>3.431<br>0.665<br>0.142<br>3.177<br>2.838<br>3.371<br>4.245<br>3.415<br>1.762<br>1.695<br>3.082<br>1.627<br>0.120<br>0.323<br>0.772<br>1.375 | 4.055<br>1.211<br>0.894<br>5.175<br>0.837<br>3.139<br>3.445<br>0.664<br>0.150<br>3.153<br>2.885<br>3.382<br>4.276<br>3.508<br>1.766<br>1.679<br>3.154<br>1.640<br>0.122<br>0.346<br>0.803<br>1.452 | 3.851<br>1.243<br>0.874<br>4.953<br>0.810<br>3.189<br>3.188<br>0.669<br>0.117<br>2.961<br>2.710<br>3.120<br>3.120<br>3.995<br>3.160<br>1.709<br>1.650<br>2.848<br>1.586<br>0.110<br>0.317<br>0.665<br>1.061 | 8.27<br>4.22<br>5.71<br>7.15<br>6.36                                                     |

(#) = Out of Range ### Number of calibration levels exceeded format ### J324VOCW.M Tue Mar 24 11:44:40 2009 Page 2

|                         |       | · I                                     | Response Factor H | Report | #3MS | 10    |        |           |
|-------------------------|-------|-----------------------------------------|-------------------|--------|------|-------|--------|-----------|
|                         |       |                                         |                   |        |      |       |        |           |
|                         | Cali  | bration Files                           |                   |        |      |       |        |           |
|                         | 40    | =J8833.D                                | =                 |        | =    |       |        |           |
|                         |       | =                                       | =                 |        |      |       |        |           |
|                         |       | Compound                                | 40                |        |      | A<br> | vg<br> | %RSD<br>- |
| 1)                      | I     | Fluorobenzene                           |                   | ISTI   | D    |       |        |           |
| 2)                      |       | Dichlorodifluoromet                     |                   |        |      |       |        |           |
| 3)                      |       | Chloromethane                           | 0.365             |        |      |       |        |           |
| 4)                      | СР    | Vinyl chloride                          | 0.203             |        |      |       |        |           |
| 5)<br>6)                |       | Bromomethane<br>Chloroethane            | 0.161<br>0.196    |        |      |       |        |           |
| 7)                      |       | Trichlorofluorometh                     |                   |        |      |       |        |           |
| 8)                      | СРМ   | 1,1-Dichloroethene                      |                   |        |      | -     |        |           |
| 9)                      |       | Carbon disulfide                        | 0.793             |        |      |       |        |           |
| 10)                     |       | 1,1,2-Trichloro-1,2                     |                   |        |      |       |        |           |
| 11)                     |       | Methyl iodide                           | 0.171             |        |      |       |        |           |
| 12)<br>13)              |       | Acrolein<br>Methylene chloride          | 0.039             |        |      |       |        |           |
| 14)                     |       | Acetone                                 | 0.051             |        |      |       |        |           |
| 15)                     |       | Methyl acetate                          | 0.135             |        |      |       |        |           |
| 16)                     |       | Methyl tert-Butyl e                     |                   |        |      | ·     |        |           |
| .7)                     | _     | trans-1,2-Dichloroe                     |                   |        |      |       |        |           |
| 18)                     | Р     | 1,1-Dichloroethane<br>Acrylonitrile     | 0.479             |        |      |       |        |           |
| 19)<br>20)              |       | Vinyl acetate                           | 0.308             |        |      |       |        |           |
| 21)                     |       | cis-1,2-Dichloroeth                     |                   |        |      |       |        |           |
| 22)                     |       | 2,2-Dichloropropane                     |                   |        |      | · .   |        |           |
| 23)                     |       | Bromochloromethane                      |                   |        |      | ž     |        |           |
| 24)                     |       | Cyclohexane                             | 0.511             |        |      | )     |        |           |
| 25)                     | CP    | Chloroform<br>Carbon tetrachlorid       | 0.432             |        |      |       |        |           |
| 26)<br>27)              |       | 1,1,1-Trichloroetha                     |                   |        |      |       |        |           |
| 28)                     |       | 2-Butanone                              | 0.075             |        |      |       |        |           |
| 29)                     |       | 1,1-Dichloropropene                     | 0.378             |        |      |       |        |           |
| 30)                     | М     | Benzene                                 | 1.198             |        |      |       |        |           |
| 31)                     | S     | ,                                       | 0.243             |        |      |       |        |           |
| 32)                     |       | 1,2-Dichloroethane<br>Methylcyclohexane | 0.294<br>0.450    |        |      |       |        |           |
| 33) <sup>.</sup><br>34) | м     | Trichloroethene                         | 0.256             |        |      | i     |        |           |
| 35)                     |       | Dibromomethane                          | 0.133             |        |      | :     |        |           |
| 36)                     | CP    | 1,2-Dichloropropane                     |                   |        |      |       |        |           |
| 37)                     |       | Bromodichloromethan                     |                   |        |      |       |        |           |
| 38)                     |       | 2-Chloroethylvinyl                      | 0.083             |        |      |       |        |           |
| 39)<br>40)              | מסיק  | cis-1,3-Dichloropro<br>Toluene          | 0.434<br>0.764    |        |      |       |        |           |
| 40)<br>41)              | UE MI | 4-Methyl-2-pentanon                     |                   | ,      |      |       |        |           |
| 42)                     |       | trans-1,3-Dichlorop                     | 0.351             |        |      |       |        |           |
| 43)                     |       | 1,1,2-Trichloroetha                     |                   |        |      |       |        |           |
|                         | -     | 1                                       |                   |        |      |       |        |           |

(#) = Out of Range ### Number of calibration levels exceeded format J324VOCW.M Tue Mar 24 11:53:46 2009 Response Factor Report #3MS10

|                         |              | -                                                                                  | · · · · · · · · · · · · · · · · · · ·    |                                            |         |      |
|-------------------------|--------------|------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|---------|------|
|                         | Tit]<br>Last | nod : C:\HPCHEM<br>le : VOC's w/F<br>: Update : Tue Mar 2<br>ponse via : Initial C | Restek Rtx-502.2, 0.<br>24 11:53:42 2009 | 7.M (RTE Integrator<br>25 mm x 60 M, 1.4 d | )<br>df |      |
|                         | Cali         | bration Files                                                                      |                                          |                                            |         |      |
|                         | 40           | =J8833.D                                                                           | · _                                      | =                                          |         |      |
|                         |              | <u>~</u>                                                                           | =                                        | =                                          | . *     |      |
|                         |              | Compound                                                                           | 40                                       | ·                                          | Avg     | %RSD |
| 44)                     |              | 2-Hexanone                                                                         | 0.121                                    |                                            |         |      |
| 45)                     | т            | Chlorobenzene-d5                                                                   |                                          | ISTD                                       |         |      |
| 46)                     | ŝ            | Chlorobenzene-d5<br>Toluene-d8                                                     | 2.477                                    |                                            |         |      |
| 47)                     |              | Tetrachloroethene                                                                  | 0.598                                    |                                            |         |      |
| 48)                     |              | Dibromochloromethan                                                                |                                          |                                            |         |      |
| 49)                     |              | 1,3-Dichloropropane                                                                |                                          |                                            |         |      |
| 50)                     |              | 1,2-Dibromoethane                                                                  |                                          | _                                          |         |      |
| 51)                     |              | 1-Chlorohexane                                                                     | 0.974                                    |                                            |         |      |
|                         |              | Chlorobenzene<br>Ethylbenzene                                                      | 1.891<br>3.448                           |                                            |         |      |
| 53)<br>54)              |              | 1,1,1,2-Tetrachloro                                                                |                                          | ·                                          |         |      |
| 54)                     |              | (m+p)-Xylene                                                                       |                                          |                                            |         |      |
|                         |              | ó-Xylene                                                                           | 1.372                                    |                                            |         |      |
| 57)                     |              | Styrene                                                                            | 2.125                                    |                                            |         |      |
|                         | Ρ            | Bromoform                                                                          | 0.268                                    |                                            |         |      |
|                         |              |                                                                                    | -                                        | remb                                       |         |      |
| 59)                     | I            | 1,4-Dichlorobenzene                                                                | -d                                       |                                            |         |      |
| 60)                     |              | Isopropylbenzene<br>Bromofluorobenzene                                             |                                          |                                            |         |      |
| 61)                     | S            | Bromobenzene                                                                       |                                          |                                            |         |      |
| 62)<br>63)              |              | n-Propylbenzene                                                                    |                                          |                                            |         |      |
| 631                     | D            | 1,1,2,2-Tetrachloro                                                                | 0.874                                    |                                            |         |      |
| 65)                     | Ľ            | 2-Chlorotoluene                                                                    | 3.458                                    |                                            |         |      |
| 66)                     |              | 1,3,5-Trimethylbenz                                                                |                                          |                                            |         |      |
| 67)                     |              | 1,2,3-Trichloroprop                                                                | 0.702                                    |                                            |         |      |
| 68)                     |              | trans-1,4-Dichloro-                                                                | 0.165                                    |                                            |         |      |
| 69)                     |              | 4-Chlorotoluene                                                                    | 2.976                                    |                                            |         |      |
| 70)                     |              | tert-Butylbenzene                                                                  | 2.940                                    |                                            |         |      |
| 71)                     |              | 1,2,4-Trimethylbenz                                                                |                                          |                                            |         |      |
| 72)                     |              | sec-Butylbenzene<br>p-Isopropyltoluene                                             | 4.299<br>3.532                           |                                            |         |      |
| 73)<br>74)              |              | 1,3-Dichlorobenzene                                                                |                                          |                                            |         |      |
| 7 <del>4</del> )<br>75) |              | 1,4-Dichlorobenzene                                                                |                                          |                                            |         |      |
| 76)                     |              | n-Butylbenzene                                                                     | 3.159                                    |                                            |         |      |
| 77)_                    | ~            | 1,2-Dichlorobenzene                                                                |                                          |                                            |         |      |
| 78)                     |              | 1,2-Dibromo-3-chlor                                                                | 0.131                                    |                                            |         |      |
| 79)                     |              | Hexachlorobutadiene                                                                |                                          |                                            |         |      |
| 80)                     |              | 1,2,4-Trichlorobenz                                                                |                                          |                                            |         |      |
| 81)                     |              | Naphthalene                                                                        | 1.508                                    |                                            |         |      |
| 82)                     |              | 1,2,3-Trichlorobenz                                                                | 0.660                                    |                                            |         |      |
|                         |              |                                                                                    |                                          |                                            |         |      |

(#) = Out of Range ### Number of calibration levels exceeded format #
 J324VOCW.M Tue Mar 24 11:53:48 2009
 H

1

#### AFCEE ORGANIC ANALYSES DATA SHEET 4 SECOND SOURCE CALIBRATION VERIFICATION

| Analytical Method: | <u>SW8260B</u>                | AAB #:                               | <u>R16764</u> |
|--------------------|-------------------------------|--------------------------------------|---------------|
| Lab Name:          | Life Science Laboratories, In | Contract Number:                     |               |
| Instrument ID:     | <u>MS03_10</u>                | Initial Calibration ID:              | <u>1527</u>   |
| Second Source ID:  | 2SRC-16764                    | Concentration Units (mg/L or mg/kg): | <u>µg/L</u>   |

| Analyte                  | Expected | Found | %D   | Q |
|--------------------------|----------|-------|------|---|
| Chloroform               | 10       | 10.4  | 4.2  |   |
| cis-1,2-Dichloroethene   | 10       | 10.2  | 2.4  |   |
| Tetrachloroethene        | 10       | 10.3  | 3.4  |   |
| trans-1,2-Dichloroethene | 10       | 10.6  | 5.5  |   |
| Trichloroethene          | 10       | 10.3  | 2.6  |   |
| Vinyl chloride           | 10       | 11.6  | 16.4 |   |

Comments:

\_\_\_\_

\_\_\_\_\_

AFCEE FORM O-4

#### AFCEE ORGANIC ANALYSES DATA SHEET 5A CALIBRATION VERIFICATION - GC/MS ANALYSIS

| Analytical Method: | <u>SW8260B</u>                | AAB #:                  | <u>MS03_10_090327</u> |
|--------------------|-------------------------------|-------------------------|-----------------------|
| Lab Name:          | Life Science Laboratories, In | Contract Number:        |                       |
| Instrument ID:     | <u>MS03_10</u>                | Initial Calibration ID: | <u>1527</u>           |
| ICV ID:            | CCV #1 ID: <u>CC</u>          | <u>CV-16810</u>         | CCV #2 ID:            |

| Analyte                  | ICV   | CCV #1 |       | CCV #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|--------------------------|-------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Analyte                  | RF %D | RF     | %D    | RF %D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q |
| Chloroform #             |       |        | 3.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Vinyl chloride #         |       |        | 16.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 1,2-Dichloroethane-d4    |       |        | 2.9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| 4-Bromofluorobenzene     |       |        | -14.8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · |
| cis-1,2-Dichloroethene   |       |        | 2.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Tetrachloroethene        |       |        | 17.4  | and the second se |   |
| Toluene-d8               | -     |        | 4.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| trans-1,2-Dichloroethene |       |        | 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Trichloroethene          |       |        | 10.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |

\* SPCCs # CCCS

Comments:

------QAPP 4.0

AFCEE FORM O-5A

# AFCEE ORGANIC ANALYSES DATA SHEET 7 BLANKS

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:           | <u>R16810</u>   |
|-------------------------|---------------------------------|------------------|-----------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract Number: |                 |
| Units:                  | µg/L                            | Method Blank ID: | <u>MB-16810</u> |
| Initial Calibration ID: | <u>1527</u>                     | File ID:         | <u>J8940.D</u>  |

| Analyte Method Blank RL  |       |       |   |  |  |  |
|--------------------------|-------|-------|---|--|--|--|
| Chloroform               | 0.100 | 0.500 | U |  |  |  |
| cis-1,2-Dichloroethene   | 0.100 | 1.00  | U |  |  |  |
| Tetrachloroethene        | 0.100 | 1.00  | U |  |  |  |
| trans-1,2-Dichloroethene | 0.100 | 1.00  | U |  |  |  |
| Trichloroethene          | 0.100 | 1.00  | U |  |  |  |
| Vinyl chloride           | 0.330 | 1.00  | U |  |  |  |

| Surrogate             | Recovery | Control Limits Qualifier |
|-----------------------|----------|--------------------------|
| 1,2-Dichloroethane-d4 | 108      | 72 - 119                 |
| 4-Bromofluorobenzene  | 90       | 76 - 119                 |
| Toluene-d8            | 104      | 81 - 120                 |

| Internal Std           | Area Counts | Area Count Limits | Qualifier |
|------------------------|-------------|-------------------|-----------|
| 1,4-Dichlorobenzene-d4 | 643873      | 269046 - 1076184  |           |
| Chlorobenzene-d5       | 806083      | 373660 - 1494642  |           |
| Fluorobenzene          | 2082187     | 939074 - 3756298  |           |

Comments:

#### AFCEE ORGANIC ANALYSES DATA SHEET 8 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW8260B</u>                  | AAB #:                  | <u>R16810</u>    |
|---------------------|---------------------------------|-------------------------|------------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |                  |
| LCS ID:             | LCS-16810                       | Initial Calibration ID: | <u>1527</u>      |
| Concentration Units | (mg/L or mg/kg): <u>µg/L</u>    | File ID:                | <u>J8933.D</u>   |
|                     | Analyte                         | xpected Found %R (      | Control Limits Q |

| - Aired/tee              | - Abecced | - t comaser |     |          | 12000101101200 |
|--------------------------|-----------|-------------|-----|----------|----------------|
| Chloroform               | 10        | 10.8        | 108 | 69 - 128 |                |
| cis-1,2-Dichloroethene   | 10        | 10.6        | 106 | 72 - 126 |                |
| Tetrachloroethene        | 10        | 12.1        | 121 | 66 - 128 |                |
| trans-1,2-Dichloroethene | 10        | 10.5        | 105 | 63 - 137 |                |
| Trichloroethene          | 10        | 11.3        | 113 | 70 - 127 |                |
| Vinyl chloride           | 10        | 12.4        | 124 | 50 - 134 |                |

| Surrogate             | Recovery | Control Limits | Qualifier |
|-----------------------|----------|----------------|-----------|
| 1,2-Dichloroethane-d4 | 101      | 72 - 119       | 1         |
| 4-Bromofluorobenzene  | 84       | 76 - 119       | 1         |
| Toluene-d8            | 102      | 81 - 120       |           |

| Internal Std           | Area Counts | Area Count Limits Qualifier |  |
|------------------------|-------------|-----------------------------|--|
| 1,4-Dichlorobenzene-d4 | 721649      | 269046 - 1076184            |  |
| Chlorobenzene-d5       | 827071      | 373660 - 1494642            |  |
| Fluorobenzene          | 2091873     | 939074 - 3756298            |  |

### Comments:

# AFCEE ORGANIC ANALYSES DATA SHEET 10 HOLDING TIMES

| Analytical Method | : <u>SW8260B</u> |                  |           | AAB #             | ¥:      | <u>R16810</u>        | 2                |                           |      |   |
|-------------------|------------------|------------------|-----------|-------------------|---------|----------------------|------------------|---------------------------|------|---|
| Lab Name:         | Life Science La  | boratories, Inc. |           | Contr             | act #:  |                      |                  |                           |      |   |
| Field Sample ID   | Lab Sample ID    |                  | Date      | Date<br>Extracted | Holding | Time<br>Held<br>Ext. | Date<br>Analyzed | Max.<br>Holding<br>Time A | Held | Q |
| B035M0416HA       | 903143-001C      | 24-Mar-09        | 25-Mar-09 | 27-Mar-09         |         |                      | 27-Mar-09        | 14                        | 3.2  |   |

Comments:

QAPP 4.0

AFCEE FORM O-10

#### AFCEE ORGANIC ANALYSES DATA SHEET 11 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SW8260B</u>                  | AAB#:                |
|--------------------|---------------------------------|----------------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #:          |
| Instrument ID #:   | <u>MS03_10</u>                  | Calibration ID: 1527 |

| Field Sample ID/Std ID<br>Blank ID/QC Sample I |              | Date Analysis<br>Started | Time Analysis<br>Started | Date Analysis<br>Completed | Time Analysis<br>Completed |
|------------------------------------------------|--------------|--------------------------|--------------------------|----------------------------|----------------------------|
| TB032409A3                                     | TB032409A3   | 24-Mar-09                | 7:13                     | 24-Mar-09                  | 7:49                       |
| ICAL 0.5 PPB                                   | ICAL 0.5 PPB | 24-Mar-09                | 7:49                     | 24-Mar-09                  | 8:22                       |
| ICAL 1.0 PPB                                   | ICAL 1.0 PPB | 24-Mar-09                | 8:22                     | 24-Mar-09                  | 8:53                       |
| ICAL 2.0 PPB                                   | ICAL 2.0 PPB | 24-Mar-09                | 8:53                     | 24-Mar-09                  | 9:28                       |
| ICAL 10 PPB                                    | ICAL 10 PPB  | 24-Mar-09                | 9:28                     | 24-Mar-09                  | 10:02                      |
| ICAL 20 PPB                                    | ICAL 20 PPB  | 24-Mar-09                | 10:02                    | 24-Mar-09                  | 10:36                      |
| ICAL 30 PPB                                    | ICAL 30 PPB  | 24-Mar-09                | 10:36                    | 24-Mar-09                  | 11:17                      |
| ICAL 40 PPB                                    | ICAL 40 PPB  | 24-Mar-09                | 11:17                    | 24-Mar-09                  | 12:34                      |
| 2SRC-16764                                     | 2SRC-16764   | 24-Mar-09                | 12:34                    | 24-Mar-09                  | 12:34                      |
| TB032709A3                                     | TB032709A3   | 27-Mar-09                | 9:49                     | 27-Mar-09                  | 10:20                      |
| CCV-16810                                      | CCV-16810    | 27-Mar-09                | 10:20                    | 27-Mar-09                  | 10:56                      |
| LCS-16810                                      | LCS-16810    | 27-Mar-09                | 10:56                    | 27-Mar-09                  | 14:36                      |
| MB-16810                                       | MB-16810     | 27-Mar-09                | 14:36                    | 27-Mar-09                  | 18:47                      |
| B035M0416HA                                    | 0903143-001C | 27-Mar-09                | 18:47                    | 27-Mar-09                  | 18:47                      |

Comments:

QAPP 4.0

#### AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:               | MS03_10_090324A          |
|-------------------------|---------------------------------|----------------------|--------------------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:          |                          |
| Instrument ID:          | <u>MS03_10</u>                  | Injection Date/Time: | 3/24/2009 7:13:00 AM     |
| Initial Calibration ID: | <u>1527</u>                     | File ID:             | C:\HPCHEM\1\DATA\J8826.D |
| Compound:               | SW8260B                         | Sample ID:           | TB032409A3               |

| Mass |                                                | % Relative          |
|------|------------------------------------------------|---------------------|
| 50   | Ion Abundance Criteria<br>15 - 40% of m/z 95   | Abundance Q<br>18.3 |
| 75   | 30 - 60% of m/z 95                             | 47.7                |
| 95   | Base peak, 100% relative abundance             | 100                 |
| 96   | 5 - 9% of m/z 95                               | 6.8                 |
| 173  | Less than 2% of m/z 174                        | 0.4                 |
| 174  | Greater than 50% of m/z 95                     | 65.8                |
| 175  | 5 - 9% of m/z 174                              | 7.4                 |
| 176  | Greater than 95% but less than 101% of m/z 174 | 98.1                |
| 177  | 5 - 9% of m/z 176                              | 6.3                 |

## AFCEE ORGANIC ANALYSES DATA SHEET 12 INSTRUMENT PERFORMANCE CHECK (BFB or DFTPP)

| Analytical Method:      | <u>SW8260B</u>                  | AAB #:               | MS03 10 090327C          |
|-------------------------|---------------------------------|----------------------|--------------------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:          |                          |
| Instrument ID:          | <u>MS03_10</u>                  | Injection Date/Time: | 3/27/2009 9:49:00 AM     |
| Initial Calibration ID: | <u>1527</u>                     | File ID:             | C:\HPCHEM\1\DATA\J8931.D |
| Compound:               | SW8260B                         | Sample ID:           | TB032709A3               |

| Mass                  |                                                | % Relative  |
|-----------------------|------------------------------------------------|-------------|
| <u>Geographi</u> (UL) | Ion Abundance Criteria                         | Abundance Q |
| 50                    | 15 - 40% of m/z 95                             | 16.1        |
| 75                    | 30 - 60% of m/z 95                             | 46.5        |
| 95                    | Base peak, 100% relative abundance             | 100         |
| 96                    | 5 - 9% of m/z 95                               | 6.4         |
| 173                   | Less than 2% of m/z 174                        | 0.2         |
| 174                   | Greater than 50% of m/z 95                     | 67.6        |
| 175                   | 5 - 9% of m/z 174                              | 7.2         |
| 176                   | Greater than 95% but less than 101% of m/z 174 | 96.6        |
| 177                   | 5 - 9% of m/z 176                              | 7.1         |

# Wet Chemistry Data

# TOC Data

AFCEE WET CHEM ANALYSES DATA SHEET 3-10 INITIAL MULTIPOINT CALIBRATION

| Analytical Method:      | 0906MS                                 | AAB #:                               | R16864           |
|-------------------------|----------------------------------------|--------------------------------------|------------------|
| Lab Name:               | <u>Life Science Laboratories, Inc.</u> | Contract #:                          |                  |
| Instrument ID:          | TOC-5000A                              | Date of Initial Calibration:         | <u>02-Apr-09</u> |
| Initial Calibration ID: | <u>1537</u>                            | Concentration Units (mg/L or mg/kg): | mg/L             |

| 10 20 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 6 | - | • | Total Organic Carbon |
|---------------------------|---|---|---|---|---|---|----|---|---|---|----------------------|
|---------------------------|---|---|---|---|---|---|----|---|---|---|----------------------|

r = correlation coefficient

Comments:

.

#### AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9060</u>              |            |             | AAB #:                  | <u>R16864</u> |
|--------------------|----------------------------|------------|-------------|-------------------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |             | Contract #:             |               |
| Instrument ID:     | TOC-5000A                  |            |             | Initial Calibration ID: | <u>1537</u>   |
| 2nd Source ID:     | ICV                        | CCV #1 ID: | <u>CCV1</u> | CCV #2                  | ID:           |

| Analyte              | Ex  | 2nd Sou<br>Vi<br>pected | rce Calibrat<br>Infication<br>Found | ion<br>%C | C<br>Expected | Found 1 | alibration Verification | 9.<br>2. |
|----------------------|-----|-------------------------|-------------------------------------|-----------|---------------|---------|-------------------------|----------|
| Total Organic Carbon | · . | 10.0                    | 9.96                                | -0.4      | 10.0          | 9.98    | -0.2                    |          |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R16864</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): mg/l           | •                       |               |
| Calibraton Blank ID: | ICB                             | Initial Calibration ID: | <u>1537</u>   |
| Method Blank ID:     | MB-R16864                       | Initial Calibration ID: | <u>1537</u>   |

| Total Organic Carbon | 0.24 | 0.25 | 1.0 |  |
|----------------------|------|------|-----|--|
| Total Organic Carbon | 0.24 | 0.35 | 1.0 |  |

Comments:

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SW9060</u>                   | AAB #:                  | <u>R16864</u> |
|----------------------|---------------------------------|-------------------------|---------------|
| Lab Name:            | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units  | (mg/L or mg/kg): <u>mg/l</u>    |                         |               |
| Calibraton Blank ID: | CCB1                            | Initial Calibration ID: | <u>1537</u>   |
| Method Blank ID:     | MB-R16864                       | Initial Calibration ID: | <u>1537</u>   |

| Total Organic Carbon | 0.34        | 0.35         | 1.0 |   |
|----------------------|-------------|--------------|-----|---|
| Total Omania Carbon  | 0.24        | 0.35         | 1.0 |   |
| Analyte              | Blank       | Method Blank | EL. | 0 |
|                      | Calibration |              |     |   |

Comments:

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW9060</u>                   | AAB #:                  | <u>R16864</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16864                      | Initial Calibration ID: | <u>1537</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Eound | %R | Connol Limits Q |
|----------------------|----------|-------|----|-----------------|
| Total Organic Carbon | 10       | 9.83  | 98 | 90 - 110        |

Comments:

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SW9060</u>                   | AAB #:      | <u>R16864</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| B035M0416HA     | 0903143-001D  | 24-Mar-09        | 25-Mar-09        | 02-Apr-09 | ( <b>dana</b> )<br>28 |        |   |
|-----------------|---------------|------------------|------------------|-----------|-----------------------|--------|---|
| Field Sample ID | Lab Sample ID | Date<br>Conected | Date<br>Received | Date      | Holding               | idaya) | 0 |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: <u>SW9060</u>

Lab Name: Life Science Laboratories, Inc. Contract #:

Instrument ID #: TOC-5000A

Date Analyses Completed Field Sample (D/Std ID/ Blank ID/QC Sample ID Date Analyses Started Time Analyses 1.70 Sample ID Conte Started 9:45 02-Apr-09 S 0 S 0 02-Apr-09 9:33 9:58 S 1 9:45 02-Apr-09 S 1 02-Apr-09 10:12 9:58 02-Apr-09 S 10 S 10 02-Apr-09 S 20 10:12 02-Apr-09 10:31 S 20 02-Apr-09 10:42 02-Apr-09 ICV ICV 10:31 02-Apr-09 10:54 02-Apr-09 ICB 10:42 ICB 02-Apr-09 11:07 10:54 02-Apr-09 MB-R16864 MB-R16864 02-Apr-09 13:59 11:07 02-Apr-09 LCS-R16864 LCS-R16864 02-Apr-09 13:59 02-Apr-09 15:32 B035M0416HA 0903143-001D 02-Apr-09 15:44 15:32 02-Apr-09 CCV1 CCV1 02-Apr-09 02-Apr-09 15:44 CCB1 CCB1 15:44 02-Apr-09

Comments:

# Total Alkalinity Data

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:   | <u>SM 2320 B</u>          |               | AAB #:                  | <u>R16819</u> |   |
|----------------------|---------------------------|---------------|-------------------------|---------------|---|
| Lab Name:            | Life Science Laboratories | <u>. Inc.</u> | Contract Number:        |               |   |
| Concentration Units  | (mg/L or mg/kg):          | <u>mg/L</u>   |                         |               |   |
| Calibraton Blank ID: |                           |               | Initial Calibration ID: |               | Q |
| Method Blank ID:     | MB-R16819                 |               | Initial Calibration ID: |               | Q |

| Analys               | Calibration<br>Blank | Method Blank | RL |
|----------------------|----------------------|--------------|----|
| Alkalinity, as CaCO3 |                      | 10           | 10 |

Comments:

\_\_\_\_

AFCEE FORM W-5

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SM 2320 B</u>                | AAB #:                  | <u>R16819</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16819                      | Initial Calibration ID: | <u>0</u>      |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

| Analyte              | Expected | Found | %R | Control Lunits |         |
|----------------------|----------|-------|----|----------------|---------|
| Alkalinity, as CaCO3 | 50       | 48    | 96 | 90 - 110       | · · · · |

Comments:

QAPP 4.0

## AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SM 2320 B</u>                | AAB #:      | <u>R16819</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| Field Sample 10 | Lab Sample ID | Date<br>Collocted | Ditte     | Date<br>Analyzed | No. | Time<br>Held<br>(days) | 9 |
|-----------------|---------------|-------------------|-----------|------------------|-----|------------------------|---|
| B035M0416HA     | 0903143-001A  | 24-Mar-09         | 25-Mar-09 | 30-Mar-09        | 14  | 5.4                    |   |

Comments:

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

| Analytical Method: | <u>SM 2320 B</u>                |             |
|--------------------|---------------------------------|-------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |
| Instrument ID #:   | <u>pH meter</u>                 |             |

| Eleid Sample ID/Std ID/<br>Blank ID/OC Sample ID | Lac<br>Sample ID | Date Analyses | Time Analyses<br>Started | Date Analyses | Time Analyses<br>Completed |
|--------------------------------------------------|------------------|---------------|--------------------------|---------------|----------------------------|
| LCS-R16819                                       | LCS-R16819       | 30-Mar-09     | 0:00                     | 30-Mar-09     | 0:00                       |
| MB-R16819                                        | MB-R16819        | 30-Mar-09     | 0:00                     | 30-Mar-09     | 0:00                       |
| B035M0416HA                                      | 0903143-001A     | 30-Mar-09     | 0:00                     | 30-Mar-09     | 0:00                       |

Comments:

QAPP 4.0

# **Anions Data**

AFCEE WET CHEM ANALYSES DATA SHEET 3-10 INITIAL MULTIPOINT CALIBRATION

| Analytical Method:      | SW9056                          | AAB #:                               | <u>R16776</u> |
|-------------------------|---------------------------------|--------------------------------------|---------------|
| Lab Name:               | Life Science Laboratories, Inc. | Contract #:                          |               |
| Instrument ID:          | <u>ਹ</u>                        | Date of Initial Calibration:         | 20-Mar-09     |
| Initial Calibration ID: | <u>1528</u>                     | Concentration Units (mg/L or mg/kg): | mg/L          |

|                  |   |      |      |     |     | and the second s | ATTACK AND A DESCRIPTION OF A DESCRIPTIO | and the second second second | A CONTRACTOR OF A CONTRACTOR O |   |         |  |
|------------------|---|------|------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|--|
| Chloride         | 0 | 0.2  | 0.5  | -   | ഹ   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 0.99998 |  |
| Nitrate (as N)   | 0 | 0.02 | 0.05 | 0.1 | 0.5 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 0.99996 |  |
| Sulfate (as SO4) | 0 | 0.2  | 0.5  | 1   | 9   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 0.99998 |  |
|                  |   |      |      |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |         |  |

r = correlation coefficient

Comments:

# AFCEE WET CHEMISTRY ANALYSES DATA SHEET 4 CALIBRATION VERIFICATION

| Analytical Method: | <u>SW9056</u>              |            |            | AAB #:              |            | <u>R16776</u> |
|--------------------|----------------------------|------------|------------|---------------------|------------|---------------|
| Lab Name:          | Life Science Laboratories, | Inc.       |            | Contract #:         |            |               |
| Instrument ID:     | <u>IC</u>                  |            |            | Initial Calibration | ID:        | <u>1528</u>   |
| 2nd Source ID:     | <u>2\$ CV</u>              | CCV #1 ID: | <u>ICV</u> |                     | CCV #2 ID: | <u>CCV1</u>   |

| Agailyte         |               | nce Calibra<br>milication | 6 <u>0</u> 9 | Ço                | An ing Ca | bration V | erification - | C C        |
|------------------|---------------|---------------------------|--------------|-------------------|-----------|-----------|---------------|------------|
| Chloride         | Expected 5.00 | Found 5.06                | 36D E        | xpected F<br>10.0 | 9.93      | <b>%D</b> | ound 2        | <b>340</b> |
| Nitrate (as N)   | 0.500         | 0.496                     | -0.7         | 1.00              | 0.994     | -0.6      | 0.994         | -0.6       |
| Sulfate (as SO4) | 5.00          | 4.93                      | -1.3         | 10.0              | 9.90      | -1.0      | 9.93          | -0.7       |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16776</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract Number:        |               |
| Concentration Units | s (mg/L or mg/kg): <u>mg/L</u>  |                         |               |
| Calibraton Blank ID | ; <u>ICB</u>                    | Initial Calibration ID: | <u>1528</u>   |
| Method Blank ID:    | MB-R16776                       | Initial Calibration ID: | <u>1528</u>   |

| Anarvio          | Calibration<br>Blank | Method Blank | R    | q |
|------------------|----------------------|--------------|------|---|
| Chloride         | 0.023                | 0.10         | 1.0  |   |
| Nitrate (as N)   | 0.010                | 0.010        | 0.10 |   |
| Sulfate (as SO4) | 0.0043               | 0.10         | 1.0  |   |

Comments:

# AFCEE WET CHEM ANALYSES DATA SHEET 5 BLANKS

| Analytical Method:  | <u>SW9056</u>             |               | AAB #:                  | <u>R16776</u> |             |
|---------------------|---------------------------|---------------|-------------------------|---------------|-------------|
| Lab Name:           | Life Science Laboratories | <u>, Inc.</u> | Contract Number:        |               |             |
| Concentration Units | (mg/L or mg/kg):          | mg/L          |                         |               |             |
| Calibraton Blank ID | : <u>CCB1</u>             |               | Initial Calibration ID: |               | <u>1528</u> |
| Method Blank ID:    | <u>MB-R16776</u>          |               | Initial Calibration ID: |               | <u>1528</u> |

| Analyte          | Calibration | Method Blank | RL   |   |
|------------------|-------------|--------------|------|---|
| Chloride         | 0.010       | 0.10         | 1.0  | ] |
| Nitrate (as N)   | 0.010       | 0.010        | 0.10 |   |
| Sulfate (as SO4) | 0.10        | 0.10         | 1.0  |   |

Comments:

QAPP 4.0

#### AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16776</u> |
|---------------------|---------------------------------|-------------------------|---------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |               |
| LCS ID:             | LCS-R16776                      | Initial Calibration ID: | <u>1528</u>   |
| Concentration Units | (mg/L or mg/kg): <u>mg/L</u>    |                         |               |

Expected Found % Control Limits Analyte Chloride 5.05 101 85 - 115 5 85 - 115 99 Nitrate (as N) 0.5 0.494 98 85 - 115 Sulfate (as SO4) 4.92 5

Comments:

QAPP 4.0

## AFCEE WET CHEM ANALYSES DATA SHEET 6 LABORATORY CONTROL SAMPLE

| Analytical Method: | <u>SW9056</u>                                     | AAB #:                  | <u>R16776</u> |
|--------------------|---------------------------------------------------|-------------------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc.                   | Contract #:             |               |
| LCS ID:            | LCSD-R16776                                       | Initial Calibration ID: | <u>1528</u>   |
| <b>A</b>           | (m, m) (m, m) (m) (m) (m) (m) (m) (m) (m) (m) (m) |                         |               |

Concentration Units (mg/L or mg/kg): mg/L

| Analyte          | Expected | Found | 26R | Control Limits | Q |
|------------------|----------|-------|-----|----------------|---|
| Chloride         | 5        | 5.07  | 101 | 85 - 115       |   |
| Nitrate (as N)   | 0.5      | 0.495 | 99  | 85 - 115       |   |
| Sulfate (as SO4) | 5        | 4.93  | 99  | 85 - 115       |   |

Comments:

QAPP 4.0

-----

AFCEE FORM W-6

\_\_\_\_\_

-----

# AFCEE WET CHEM ANALYSES DATA SHEET 7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE SAMPLE RECOVERY

| Analytical Method:  | <u>SW9056</u>                   | AAB #:                  | <u>R16776</u>           |
|---------------------|---------------------------------|-------------------------|-------------------------|
| Lab Name:           | Life Science Laboratories, Inc. | Contract #:             |                         |
| % Solids:           | Q                               | Initial Calibration ID: | <u>1528</u>             |
| Parent Field Sample | ID: <u>B035M0416HA</u>          | MS ID: 0903143-001BMS   | MSD ID: 0903143-001BMSD |
| 0                   | the set of the second second    |                         |                         |

Concentration Units (mg/L or mg/kg): mg/L

| Analyte          | Parent.<br>Sample<br>Result | Spika<br>Added 1. | Spiked<br>Sampis<br>Result | %R  | Semple<br>Result | %R  | %SPD | Control<br>Limits<br>76 | Control<br>Limits<br>%RPD | 3 |
|------------------|-----------------------------|-------------------|----------------------------|-----|------------------|-----|------|-------------------------|---------------------------|---|
| Chloride         | 72.5                        | 10.0              | 81.6                       | 91  | 81.8             | 92  | 0    | 85 - 115                | 20                        |   |
| Nitrate (as N)   |                             | 1.00              | 1.02                       | 102 | 1.02             | 102 | 0    | 85 - 115                | 20                        |   |
| Sulfate (as SO4) | 2.71                        | 10.0              | 12.5                       | 97  | 12.4             | 97  | 0    | 85 - 115                | 20                        |   |

Comments:

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 8 HOLDING TIMES

| Analytical Method: | <u>SW9056</u>                   | AAB #:      | <u>R16776</u> |
|--------------------|---------------------------------|-------------|---------------|
| Lab Name:          | Life Science Laboratories, Inc. | Contract #: |               |

| Field Sample (D            | Lab Sample ID                   | Date                   | Date                   | Date                   | He dina | Time   | e e |
|----------------------------|---------------------------------|------------------------|------------------------|------------------------|---------|--------|-----|
|                            |                                 |                        | Received               |                        | Time    | (days) |     |
|                            |                                 |                        | 05 Mar 00              | 25 Mar 00              | 28      | 0.8    |     |
| B035M0416HA<br>B035M0416HA | 0903143-001B<br>0903143-001BDUP | 24-Mar-09<br>24-Mar-09 | 25-Mar-09<br>25-Mar-09 | 25-Mar-09<br>25-Mar-09 | 28      | 0.8    |     |
| B035M0416HA                | 0903143-001BD0P                 | 24-Mar-09              | 25-Mar-09              | 25-Mar-09              | 28      | 0.8    |     |
| B035M0416HA                | 0903143-001BMSD                 | 24-Mar-09              | 25-Mar-09              | 25-Mar-09              | 28      | 0.9    |     |

Comments:

\_\_\_\_

-----

- and the second state in the second

QAPP 4.0

# AFCEE WET CHEM ANALYSES DATA SHEET 9 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: SW9056

<u>IC</u>

| Lab Name: | Life Science Laboratories, Inc. | Contract #: |
|-----------|---------------------------------|-------------|
|-----------|---------------------------------|-------------|

Instrument ID #:

| Eield Sample 1D/Std 1D/ | Lab Hite        | are to be the same for an and the same to be a set of |         | Date Analyses | Time Analyses |
|-------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|---------------|
| Biank ID/OC Sample IO   | Sample ID       | Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Started | Completed     | Completed     |
| ICAL 0                  | ICAL 0          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:08   | 20-Mar-09     | 10:28         |
| ICAL 7                  | ICAL 7          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:28   | 20-Mar-09     | 10:51         |
| ICAL 6                  | ICAL 6          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:51   | 20-Mar-09     | 11:11         |
| CAL 5                   | ICAL 5          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:11   | 20-Mar-09     | 11:31         |
| ICAL 4                  | ICAL 4          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:31   | 20-Mar-09     | 11:51         |
| CAL 3                   | ICAL 3          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:51   | 20-Mar-09     | 12:11         |
| CAL 2                   | ICAL 2          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:11   | 20-Mar-09     | 12:31         |
| ICAL 1                  | ICAL 1          | 20-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:31   | 20-Mar-09     | 12:31         |
| CV                      | ICV             | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8:07    | 25-Mar-09     | 8:27          |
| 2S CV                   | 2S CV           | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8:27    | 25-Mar-09     | 8:47          |
| ICB                     | ICB             | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8:47    | 25-Mar-09     | 9:07          |
| MB-R16776               | MB-R16776       | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9:07    | 25-Mar-09     | 9:27          |
| LCS-R16776              | LCS-R16776      | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9:27    | 25-Mar-09     | 9:47          |
| LCSD-R16776             | LCSD-R16776     | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9:47    | 25-Mar-09     | 10:26         |
| B035M0416HA             | 0903143-001B    | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:26   | 25-Mar-09     | 10:46         |
| B035M0416HA             | 0903143-001BDUP | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10:46   | 25-Mar-09     | 11:06         |
| B035M0416HA             | 0903143-001BMS  | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:06   | 25-Mar-09     | 11:26         |
| B035M0416HA             | 0903143-001BMSD | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:26   | 25-Mar-09     | 12:26         |
| CCV1                    | CCV1            | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:26   | 25-Mar-09     | 12:46         |
| CCB1                    | CCB1            | 25-Mar-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12:46   | 25-Mar-09     | 12:46         |

Comments:

4