-FINAL-

OPTIMIZATION PLAN CERCLA AREAS OF CONCERN LONG-TERM MONITORING PROGRAM

FORMER GRIFFISS AIR FORCE BASE SITE ROME, NEW YORK

Prepared for:

Air Force Center for Engineering and the Environment Building 770 428 Phoenix Drive Rome, New York 13441

Prepared by:

FPM

FPM Remediations Inc. 584 Phoenix Drive Rome, NY 13441

In association with:

40 British American Boulevard, Latham, NY 12110

10901 Lowell Avenue, Suite 271 Overland Park, Kansas 66210

Contract Number FA8903-10-D-8595
Delivery Order 0014
November 2011

LIST OF	F ACRO	NYMS A	AND ABBREVIATIONS	v			
1.0	INTRO	DUCTIO	ON	. 1-1			
	1.1	Griffiss A	AFB Operational History	1-2			
	1.2	Environi	mental Background	1-2			
	1.3	Standards Criteria and Guidance and Remedial Objectives					
2.0	LF001	(LANDF	FILL 1 AOC)	2-1			
	2.1	Site Des	cription	2-1			
	2.2	Current	Conditions	2-1			
	2.3	Regulato	ory Drivers	2-2			
	2.4	Proposed	d Outcome	2-2			
	2.5	Pathway	s to Achieve Proposed Outcome	2-2			
		2.5.1	Pathway to Proposed Outcome	2-2			
		2.5.2	Metric Development: Proposed End Point, Metrics, and Approach	2-3			
	2.6	Continge	encies	2-0			
3.0	LF002	02 (LANDFILL 2/3 AOC)					
	3.1	Site Des	cription	3-1			
	3.2	Current	Conditions	3-1			
	3.3	Regulato	ory Drivers	3-2			
	3.4	Proposed	d Outcome	3-2			
	3.5	Pathway	s to Achieve Proposed Outcome	3-2			
		3.5.1	Pathway to Proposed Outcome	3-2			
		3.5.2	Metric Development: Proposed End Point, Metrics, and Approach	3-2			
	3.6	Continge	encies	3-6			
4.0	LF003	(LANDF	FILL 7 AOC)	4-1			
	4.1	Site Des	cription	4-1			
	4.2	Current Conditions					
	4.3	Regulatory Drivers					
	4.4	Proposed Outcome					
	4.5	Pathway	s to Achieve Proposed Outcome	4-2			
		4.5.1	Pathway to Proposed Outcome	4-2			
		4.5.2	Metric Development: Proposed End Point, Metrics, and Approach .	4-2			
	4.6	Continge	encies	4-4			

i

TABLE OF CONTENTS

SECT	TION		P.	AGE		
5.0	LF00°	7 (LAND	OFILL 5 AOC)	5-1		
	5.1	Site De	escription	5-1		
	5.2	Current	t Conditions	5-1		
	5.3	Regulat	tory Drivers	5-2		
	5.4	Propose	ed Outcome	5-2		
	5.5	Pathwa	ys to Achieve Proposed Outcome	5-2		
		5.5.1	Pathway to Proposed Outcome	5-2		
		5.5.2	Metric Development: Proposed End Point, Metrics, and Approach	5-2		
	5.6	Conting	gencies	5-4		
6.0	LF00	9 (LAND	PFILL 6)	6-1		
	6.1	Site De	scription	6-1		
	6.2	Current Conditions				
	6.3	Regulatory Drivers				
	6.4	Proposed Outcome6				
	6.5	Pathwa	ys to Achieve Proposed Outcome	6-2		
		6.5.1	Pathway to Proposed Outcome	6-2		
		6.5.2	Metric Development: Proposed End Point, Metrics, and Approach	6-3		
	6.6	Conting	gencies	6-7		
7.0	SD03	1 (THRE	EE MILE CREEK AOC)	7-1		
	7.1	Site Description				
	7.2	Three N	Mile Creek AOC Conditions	7-1		
		7.2.1	Previous Investigations	7-1		
		7.2.2	Record of Decision	7-3		
		7.2.3	Three Mile Creek AOC Remedial Action	7-3		
		7.2.4	Three Mile Creek AOC Long Term Monitoring	7-3		
	7.3	Regulat	tory Drivers	7-8		
	7.4	Proposed Outcome7				
	7.5	Pathwa	ys to Achieve Proposed Outcome	7-8		
		7.5.1	Pathway to Proposed Outcome	7-8		
		7.5.2	Metric Development: Proposed End Point, Metrics, and Approach.	7-9		
	7.6	Conting	gencies	. 7-11		
8.0	SD03	2 (SIX M	IILE CREEK AOC)	8-1		

TABLE OF CONTENTS

SECTION	ON			PAGE
	8.1	Site De	scription	8-1
	8.2	Six Mil	e Creek AOC Conditions	8-1
		8.2.1	Previous Investigations	8-1
		8.2.2	Record of Decision	8-3
		8.2.3	Six Mile Creek AOC Long Term Monitoring	8-3
	8.3	Regulat	ory Drivers	8-7
	8.4	Propose	ed Outcome	8-7
	8.5	Pathwa	ys to Achieve Proposed Outcome	8-7
		8.5.1	Pathway to Proposed Outcome	8-7
		8.5.2	Metric Development: Proposed End Point, Metrics, and Ap	proach8-10
	8.6	Conting	gencies	8-10
9.0	SS06	0 (BUILE	DING 35 AOC)	9-1
	9.1	Site De	scription	9-1
	9.2	Current	Conditions	9-1
	9.3	Regulat	tory Drivers	9-3
	9.4	Propose	ed Outcome	9-3
	9.5	Pathwa	ys to Achieve Proposed Outcome	9-3
		9.5.1	Pathway to Proposed Outcome	9-3
		9.5.2	Metric Development: Proposed End Point, Metrics, and A	pproach9-5
	9.6	Conting	gencies	9-6
10.0	SUST	TAINABI	LE PRACTICES	10-1
11.0	REF	ERENCES	S	11-1
TABLE	<u>es</u>			
Table 1	LF(001 LTM	Schedule	2-4
Table 2	LF(001 LTM	Network Summary	2-9
Table 3			Schedule	
Table 4	LF(002 LTM	Network Summary	3-8
Table 5			Schedule	
Table 6	LF(003 LTM	Network Summary	4-6
Table 7	LF(007 LTM	Schedule	5-3

TABLE OF CONTENTS

SECTIO	N CONTENTS	PAGE
Table 8	LF003 LTM Network Summary	5-6
Table 9	LF003 AOC LTM Schedule	
Table 10	LF009 LTM Network Summary	
Table 11	PCB (Aroclor 1260) Detections (µg/kg) in Sediment Samples	7-6
Table 12	Fall 2006 Fish Sampling PCB (sum of congeners) Results at TMC	
Table 13	SD031 LTM Schedule	
Table 14	SD031 LTM Network Summary	7-12
Table 15	Benzene Detections (µg/L) in Surface Water Samples	8-4
Table 16	PCB Detections (µg/kg) in Sediment Samples at SMC	8-5
Table 17	SD032 LTM Schedule	8-8
Table 18	SD032 LTM Network Summary	8-11
Table 19	SS060 Remediation and LTM Schedule	9-5
Table 20	SS060 LTM Network Summary	9-7
FIGURE	<u>S</u>	
Figure 1	LF001 VOC Concentration Trends	
Figure 2	LF001 TDS Concentration Trends	
Figure 3	LF002 TDS Concentration Trends	
Figure 4	LF009 TDS Concentration Trends	
Figure 5	Sediment PCB Concentration Trends at TMC	
Figure 6	Fish Tissue PCB Concentrations in Fish Tissue at TMC 53	
Figure 7	Sediment PCB Concentration Trends at SMC	
Figure 8	Fish Tissue PCB Concentration Trends at SMC	
Figure 9	SS060 cis-1,2-DCE, Vinyl Chloride, and TOC Concentration Trends	

ATTACHMENTS

- A Long Term Monitoring Sampling Location Figures
- B Long Term Monitoring Results

LIST OF ACRONYMS AND ABBREVIATIONS

AFB Air Force Base

AFCEE Air Force Center for Engineering and the Environment

AFRL/RRS Air Force Research Laboratory/Rome Research Site

AFRPA Air Force Real Property Agency

ARARs Applicable or Relevant and Appropriate Requirements

ATSDR Agency for Toxic Substance and Disease Registry

AOC Area of Concern

BCT BRAC Cleanup Team

bgs Below Ground Surface

BRAC Base Realignment and Closure Act

CAPE Cape Environmental Management Inc

COC Contaminant of Concern

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CGI Combustible Gas Indicator
Conti Conti Environmental, Inc.

CY Cubic Yards

DCE dichloroethene

DDE 1,1-dichloro-2,2-bis(chlorophenyl)ethylene

DFAS Defense Finance and Accounting Service

DOC dissolved organic carbon

DOD United States Department of Defense

DP Drainage Pit

EA EA Engineering

E&E Ecology and Environment, Inc.

EE/CA Engineering Evaluation/Cost Analysis

EEEPC Ecology and Environment Engineering, P.C.

EPS Electrical Power Substation

FFA Federal Facility Agreement

FPM FPM Remediations Inc.

FS Feasibility Study

GLDC Griffiss Local Development Corporation

IC Institutional Control

IRA Interim Remedial Action

IRP Installation Restoration Program

JP-4 jet propulsion fuel grade 4

LAW Law Engineering and Environmental Services, Inc.

LEL lower explosive limit

LRA Local Reuse Agency

LTM Long-Term Monitoring

LUC Land-Use Controls

LUR Land-Use Restrictions

mg/L milligrams per liter

MSL Mean Sea Level

MS/MSD Matrix Spike/Matrix Spike Duplicate

μg/kg micrograms per kilogram

μg/L micrograms per liter

NEADS Northeast Air Defense Sector

NFA No Further Action

NPL National Priorities List

NYANG New York Air National Guard

NYCRR New York Code of Rules and Regulations

NYS New York State

NYSBC New York State Barge Canal

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operations and Maintenance

OCIDA Oneida County Industrial Development Agency

OP Optimization Plan

OU Operable Unit

OWS Oil/Water Separator

PAH Polynuclear Aromatic Hydrocarbon

PBR Performance-Base Remediation

PCB Polychlorinated Biphenyl

PCE tetrachloroethene

PEER PEER Consultants, P.C.

PISCES Passive In-Situ Chemical Extraction Sampling

PM Performance Monitoring

POC point-of-compliance

POP period of performance

ppm parts per million

QA Quality Assurance

QC Quality Control

RA Remedial Action

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

RL reporting limit

ROD Record of Decision
RRS Rome Research Site

RSCOs Recommended Soil Cleanup Objectives

SAC Strategic Air Command

SAR Small Arms Range

SCGs Standards, Criteria, and Guidance Values

SD Surface Drainage

SDG Sample Delivery Group

SI Supplemental Investigation

SMC Six Mile Creek

SPDES New York State Pollution Discharge Elimination System

SS Spill Site

SVI Soil Vapor Intrusion

SVOC Semi-Volatile Organic Compound

TAL Target Analyte List

TAGM Technical and Administrative Guidance Memorandum

TBC To Be Considered

TCA 1,1,1-trichloroethane

TCE Trichloroethylene

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TKN total Kjehldahl nitrogen

TMC Three Mile Creek

TRPH Total Recoverable Petroleum Hydrocarbons

UFP-QAPP Uniform Federal Policy Quality Assurance Project Plan

U.S. United States

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

UST Underground Storage Tank

VA Veterans Affairs

VC vinyl chloride

VOC Volatile Organic Compound

WSA Weapons Storage Area

1.0 INTRODUCTION

FPM Remediations Inc. (FPM), in association with Cape Environmental Management Inc (CAPE), has been contracted by the Air Force Center for Engineering and the Environment (AFCEE), to perform Long Term Monitoring (LTM) at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites at the former Griffiss Air Force Base (AFB), New York. The work discussed in this Optimization Plan (OP) will be conducted through contract number FA8903-10-D-8595-0014. The LTM CERCLA sites addressed in this OP include:

- ▲ LF001 Landfill 1 Area of Concern (AOC)
- ▲ LF002 Landfill 2/3 AOC
- ▲ LF003 Landfill 7 AOC
- ▲ LF007 Landfill 5 AOC
- ▲ LF009 Landfill 6 AOC
- ▲ SD031 Three Mile Creek (TMC) AOC
- ▲ SD032 Six Mile Creek (SMC) AOC
- ▲ SS060 Building 35 AOC.

All work conducted at these sites will be performed in accordance with the former Griffiss AFB Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) (FPM, April 2011). Sections 2-9 provide a site description and the proposed LTM activities and outcome for each site.

Additional CERCLA sites at the former Griffiss AFB are assigned to this Performance-Based Remediation (PBR) contract; however, they are Land-use Control (LUC) / Institutional Control (IC) sites. The objectives for these sites include status quo, site closure, or optimization. The sites are listed below based on the appropriate objective.

Status Quo

- ▲ ST006 (Building 101)
- ▲ SS008 (Building 112)
- ▲ SS024 (Fire Demonstration Area)
- ▲ FT030 (Fire Protection Training Area)
- ▲ SS033 (Coal Storage Yard Area)
- ▲ SS044 (Electrical Power Substation)
- ▲ SD052 (On-base Groundwater AOCs)
- ▲ SS062 (AOC-9).

Site Closure

- ▲ DP011 (Building 3 Drywell)
- ▲ SS023 (Building 20 AOC)
- ▲ ST036 (Building 110)
- ▲ ST053 (Building 133).

Optimization (Removal of Groundwater LUC/ICs)

- ▲ DP012 (Building 301)
- ▲ DP013 (Building 255)
- ▲ DP015 (Building 219)
- ▲ DP022 (Building 22)
- ▲ SS017 (Lot 69)
- ▲ SS025 (Building T-9)
- ▲ SD050 (Building 214).

The work plans/optimization documents for these sites will be reported separately from this OP.

1.1 Griffiss AFB Operational History

The mission of the former Griffiss AFB varied over the years. The base was activated on February 1, 1942, as Rome Air Depot, with the mission of storage, maintenance, and shipment of material for the United States (U.S.) Army Air Corps. Upon creation of the Air Force in 1947, the depot was renamed Griffiss AFB. The base became an electronics center in 1950, with the transfer of Watson Laboratory Complex (later Rome Air Development Center (1951), Air Force Research Laboratory/Rome Research Site (AFRL/RRS), and then the Information Directorate at Rome Research Site was established with the mission of applied research, development, and testing of electronic air-ground systems). The headquarters of the Ground Electronics Engineering Installations Agency was established in June 1958, to engineer and install ground communication equipment throughout the world. The 49th Fighter Interceptor Squadron served at Griffiss AFB from 1959 until its inactivation in 1987. On July 1, 1970, the 416th Bombardment Wing of the Strategic Air Command (SAC) was activated with the mission of maintenance and implementation of both effective air refueling operations and longrange bombardment capability.

Griffiss AFB was designated for realignment under the Base Realignment and Closure Act (BRAC) in 1993 and 1995, resulting in deactivation of the 416th Bombardment Wing in September 1995. The AFRL/RRS and the Northeast Air Defense Sector (NEADS) have continued to operate at their current locations, and the New York Air National Guard (NYANG) operated the runway for the 10th Mountain Division deployments until October 1998, when they were relocated to Fort Drum, NY. The Defense Finance and Accounting Service (DFAS) have established an operating location at the former Griffiss AFB.

1.2 Environmental Background

As a result of the various national defense missions carried out at the former Griffiss AFB since 1942, hazardous and toxic substances were used, and hazardous wastes were generated, stored, or disposed of at various sites on the installation. The defense missions involved were, among others: the procurement, storage, maintenance, and shipment of war material; research and development; and aircraft operations and maintenance.

Numerous studies and investigations under the U.S. Department of Defense (DOD) Installation Restoration Program (IRP) have been carried out to locate, assess, and quantify the past toxic and hazardous waste storage, disposal, and spill sites. These investigations included a records search in 1981, interviews with base personnel, a field inspection, compilation of an inventory of wastes, evaluation of disposal practices, and an assessment to determine the nature and extent of site contamination. Additionally, Problem Confirmation and Quantification studies (similar to what is now designated a Site Investigation) were conducted in 1982 and 1985; soil and groundwater analyses in 1986; a base-wide health assessment was conducted in 1988 by the U.S. Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR); base-specific hydrology investigations were also conducted in 1989 and 1990; a groundwater investigation in 1991; and site-specific studies and investigations were conducted between 1989 and 2005. The ATSDR issued a Public Health Assessment for Griffiss AFB dated October 23, 1995, and an addendum, dated September 9, 1996.

Pursuant to Section 105 of CERCLA, Griffiss AFB was included on the NPL on July 15, 1987. On August 21, 1990, the Air Force, the U.S. Environmental Protection Agency (USEPA), and New York State (NYS) Department of Environmental Conservation (NYSDEC) entered into an FFA under Section 120 of CERCLA. On March 20, 2009, 2,897.2 acres were deleted from the NPL.

1.3 Standards Criteria and Guidance and Remedial Action Objectives

Constituents of concern (COCs) targeted for remediation or monitoring at the at CERCLA sites consist of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, including cadmium and mercury, pesticides, polychlorinated biphenyls (PCBs), and landfill leachate indicators. The samples will be collected in accordance with the UFP-QAPP for Griffiss AFB. The site-specific sections highlight the Record of Decision (ROD) requirements and applicable regulatory drivers for meeting the remedial action objectives.

2.0 LF001 (LANDFILL 1 AOC)

2.1 <u>Site Description</u>

Approximately 22 acres in size, LF001 – Landfill 1 is located in the northern portion of the base. The wastes at Landfill 1 consisted of general refuse, hardfill, and boiler ash that was buried using trench and cover methods. An estimated 90,000-100,000 cubic yards (CY) of wastes were disposed of at the site from 1960-1973. The groundwater flow rate at LF001 is 2,000 feet per year. Groundwater flows to the southwest in the area of Landfill 1.

The ROD for LF001 was signed by the USEPA on June 5, 2000. In accordance with the ROD, the landfill was re-graded and capped in 2003. The cap components include a gas venting layer, a low-permeability layer, drainage layer, barrier protection layer, and a topsoil layer. LTM was initiated at LF001 in December 2003, and 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

2.2 Current Conditions

Beginning in December 2003, LTM was performed at 11 monitoring wells (MWSAR03, LF1P-2, -3, -5, LF1MW-1R, -5, -6, -10, -11, -12 and -13) and 3 surface water locations (LF1SW-1, -2SMC, and -3). LF1MW-103 was added to the LTM network during the March 2004 sampling round. LF1MW-14 was added to the LTM network during the December 2004 sampling round. These sampling locations are illustrated in the Landfill 1 Sampling Location Figure (Attachment A). The LTM network was analyzed quarterly (routine) and annually (baseline) for NYSDEC Part 360 Parameters and VOCs. Currently, based on several rounds of sampling data, NYSDEC Part 360 Parameters and VOCs are sampled annually. All recommendations to alter the sampling network were provided in previous Landfill AOCs LTM Reports and reviewed by the USEPA and NYSDEC.

Boron, cyanide, mercury, PCBs, pesticides, and phenols were analyzed until 2006 and were then removed from the LTM sampling network due to their low or absent concentrations at the site. VOCs currently detected above the NYS Groundwater/Surface water Standards, Criteria, and Guidance Values (SCGs) include 1,2-dichlorobenzene, 1,3-dichlorobenzene, benzene, and chlorobenzene. These exceedances only occur at monitoring well LF1MW-11 and concentrations are stable and/or decreasing. Landfill leachate indicators previously detected above the NYS Groundwater / Surface water SCGs included ammonia, color, total dissolved solids (TDS), and total Kjehldahl nitrogen (TKN). The landfill leachate indicators detections continue to show stable trends. Metals analysis for this site continues to show levels above NYS SCGs. Metals in exceedance include manganese, iron, sodium, aluminum, chromium, and nickel. Several of the metals (e.g., manganese, iron, sodium) are indicative of base background conditions. All previous sampling data is provided in the Landfill 1 Sampling Results Table in Attachment B.

Landfill gas monitoring is performed at Landfill 1 to identify the presence and concentration of methane at or near the landfill. A total of 20 gas monitoring probes and 31 landfill gas vents were monitored on a quarterly basis from October 2005 until May

2010. Landfill gas sampling was optimized after the spring 2010 sampling round and is now sampled semiannually. Results from the gas sampling events at Landfill 1 continue to show elevated methane concentrations throughout the landfill. However, methane concentrations at point of compliance (POC) gas monitoring probes (LF1GMP-13 through -17) remained at non-detectable concentrations through the fall 2010 sampling round. The absence of methane at the POC gas monitoring probes demonstrates continued protection of potential receptors. In addition, the passive gas trench installed near the northwestern perimeter of Landfill 1 to prevent methane migration into neighboring properties appears to remain an effective treatment.

Since April 2005, landfill inspections and cover maintenance have been performed at Landfill 1. Inspections and maintenance are conducted on a quarterly basis with annual landfill cover mowing (fall). LUC/ICs have been implemented by the ROD and are verified annually as part of the landfill cover inspection program. The fall inspections are performed in conjunction with the Base-wide LUC/IC Site Inspections.

2.3 Regulatory Drivers

LF001 is regulated under the CERCLA of 1980, as amended, and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Landfill recapping and LTM were/are conducted in accordance with New York State's Solid Waste Management Regulations, 6-NYCRR Part 360. Groundwater and surface water sample results are compared to NYSDEC Class GA Groundwater Standards and NYSDEC Class C Surface Water Standards (NYSDEC, June 1998). Additionally, the site activities are conducted under the supervision and recommendations of USEPA, Region II and NYSDEC.

2.4 Proposed Outcome

The proposed outcome for this site is LTM Optimization.

2.5 Pathways to Achieve Proposed Outcome

2.5.1 Pathway to Proposed Outcome

Groundwater monitoring, surface water monitoring, landfill gas monitoring, and landfill cover maintenance will continue to be performed at LF001. The decision to optimize the monitoring at the site will be guided by the sampling data. VOC exceedances at Landfill 1 are limited to one monitoring well, LF1MW-11. However, there has been a stable and/or decreasing VOC concentration trend at this monitoring well overtime. This monitoring well is located downgradient of the landfill boundary on the opposite side of SMC (Attachment A). No VOC exceedances have occurred at any of the surface water locations since LTM sampling was initiated in December 2003.

The landfill gas monitoring will be optimized from quarterly to semiannual. Previous landfill gas monitoring rounds show that elevated methane concentrations persist throughout the landfill. However, these levels are stable and data from the perimeter monitoring points show that methane is not migrating off the site's boundaries.

The landfill inspections will be optimized from quarterly to semiannually. Spring and fall inspections are proposed at the landfills. The inspections will be conducted in the spring

and fall as cover visibility can be impacted by snow cover during the winter and by tall grasses in the summer. Additional inspections and/or maintenance will be performed as needed; following the guidance established in the January 2005 Landfill 1 Operations and Maintenance (O&M) Manual. Additional inspections and/ or maintenance may be warranted as the result of significant rainfall over a 24-hour period (5-year storm event) or vector disturbance to the landfill cap.

2.5.2 Metric Development: Proposed End Point, Metrics, and Approach Groundwater/Surface Water Monitoring:

The proposed end point is the optimization of groundwater and surface water monitoring. Groundwater and surface water are anticipated to be monitored annually from 2011-2014. Following this period of performance (POP), the CAPE team anticipates optimizing monitoring to biennial for 2016 and 2018 then every 5 years from 2020-2040. Subject to data confirmation and regulatory concurrence, the LTM schedule for LF001 is provided in Table 1. The LF001 LTM network is provided in Table 2 at the end of the LF001 section.

Period of Performance:

Groundwater and surface water monitoring will be conducted at 13 monitoring wells and three surface water locations for landfill leachate indicators from 2011-2014. Additionally, annual VOC analysis will be performed at seven groundwater monitoring wells and three surface water locations from 2011-2014. The seven monitoring wells proposed for VOC monitoring include LF1MW-5, -6, -10, -11, -12, LF1P-2, and MWSAR03. Alterations to the frequency and duration of the LTM network will be conducted through the analysis of sampling data trends. Proposal to reduce the sampling frequency and/or discontinue the monitoring of a sampling location may be prompted by the indication of a decreasing trend and/or at least two consecutive rounds with COC levels below NYS Groundwater or Surface water SCGs. Proposal to increase the LTM network is detailed in the Contingencies section.

Sampling data from Landfill 1 has shown continued site-wide stabilization of all VOCs and leachate indicators. Figure 1 shows the LF001 VOC concentration trends and Figure 2 shows the LF001 TDS concentration trends (a landfill leachate indicator). VOC analysis will be conducted at the seven monitoring wells and three surface water locations to ensure chemicals of concern are not migrating off-site or into the stream environment. Therefore, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill.

The 13 monitoring wells include MWSAR03, LF1P-2, -3, -5, LF1MW-1R, -5, -6, -10, -11, -12, -13, -14, and -103 and the three surface water sampling locations include LF1SW-1, -2SMC, and -3. Low-flow sampling will be performed at all monitoring wells except bedrock monitoring well LF1MW-103 where bailer sampling will be performed. The surface water samples will be collected as grab samples. These sampling methods are described in detail in the Griffiss UFP-QAPP.

Table 1
LF001 LTM Schedule

Period of Performance						
Years	Activity	Performance				
	Monitoring	2 nd Quarter (June)				
2011, 2012, 2013, and 2014	Landfill Inspections, Landfill	2 nd and 4 th Quarters (May and				
2011, 2012, 2013, and 2014	Gas Monitoring	October)				
	Reporting	4 th Quarter (December)				
	Landfill Inspections, Landfill	2 nd and 4 th Quarters (May and				
2015	Gas Monitoring	October)				
2013	Reporting	4 th Quarter (December)				
	5-Year Review	2 nd Quarter (April)				
	Post Period of Performance					
	Landfill Inspections, Landfill	4 th Quarter (October)				
2020 through 2040	Gas Monitoring					
	Reporting	4 th Quarter (December)				
2016, 2018, 2020, 2025, 2030,	Monitoring	2 nd Quarter (June)				
2035, and 2040	iviointornig	2 Quarter (June)				
2020, 2025, 2030, 2035, and	5-Year Review	2 nd Quarter (April)				
2040	J-1 car Review	2 Quarter (April)				

Post-Period of Performance:

As a result of the stabilization/decline of contaminants at the site, we anticipate sampling will be optimized to biennial for 2016 and 2018 then every 5 years (2020, 2025, 2030, 2035, and 2040) at the 13 monitoring wells and three surface water sampling locations. Samples will be analyzed for landfill leachate indicators. This sampling will be conducted in conjunction with the 5-Year Review process. Based on stable/declining VOC results, the CAPE team anticipates recommending the discontinuation of VOC analysis from the LTM network.

Landfill Gas Monitoring:

The proposed end point is the optimization of landfill gas monitoring.

Period of Performance:

Twenty gas monitoring probes and 31 gas vents will be monitored semiannually for methane, LEL, oxygen, and carbon dioxide. Previous landfill gas monitoring rounds show that elevated methane concentrations persist throughout the landfill, but these levels are stable. Methane is not detected at any of the POC gas monitoring probes, therefore limiting potential risk of human exposure.

Post-Period of Performance:

As a result of the stable landfill gas results, we anticipate that monitoring will be optimized to annual.

Landfill Cover Inspections and Maintenance:

The proposed end point is the optimization of landfill cover inspections.

Period of Performance:

The current scope of quarterly landfill cover inspections and maintenance will be optimized to semiannual with annual landfill cover mowing. Vegetation growth on the landfill cap shows optimal coverage for erosion control and cover system stabilization. Spring and fall inspections are proposed as the landfills are covered by snow in the winter and by tall grasses in the summer. Additional inspections or maintenance will be performed as needed, as identified in the January 2005 Landfill 1 O&M Manual. An example of additional inspections includes the inspections of the landfill covers following a 5-Year Storm event (6 inches of rainfall within a 24-hour period).

Post-Period of Performance:

The recommended scope of semiannual landfill inspections will be recommended for optimization following the completion of this contract. If supported by the landfill conditions, the optimized frequency will be annual with annual reporting. It is necessary that inspections continue to ensure the integrity of landfill fencing, signage and the landfill cover.

Figure 1 LF001 VOC Concentration Trends

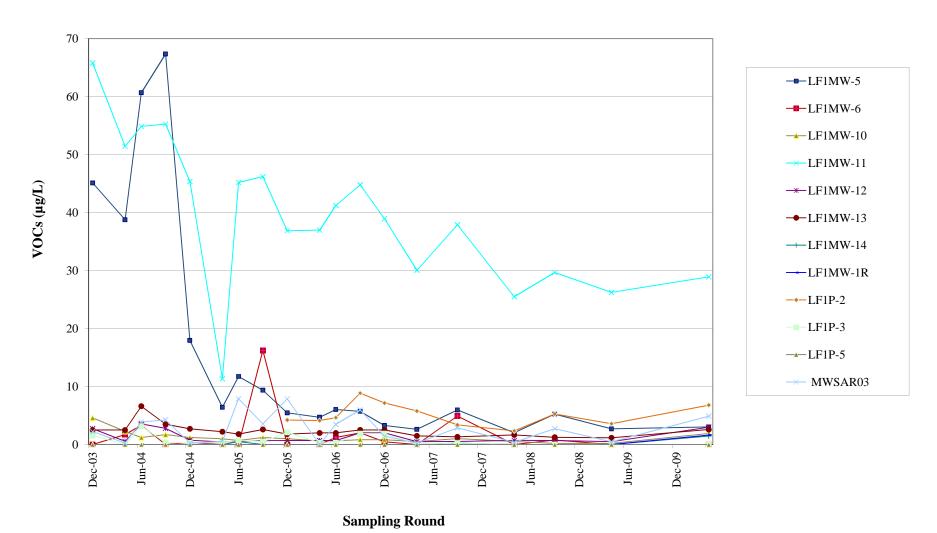
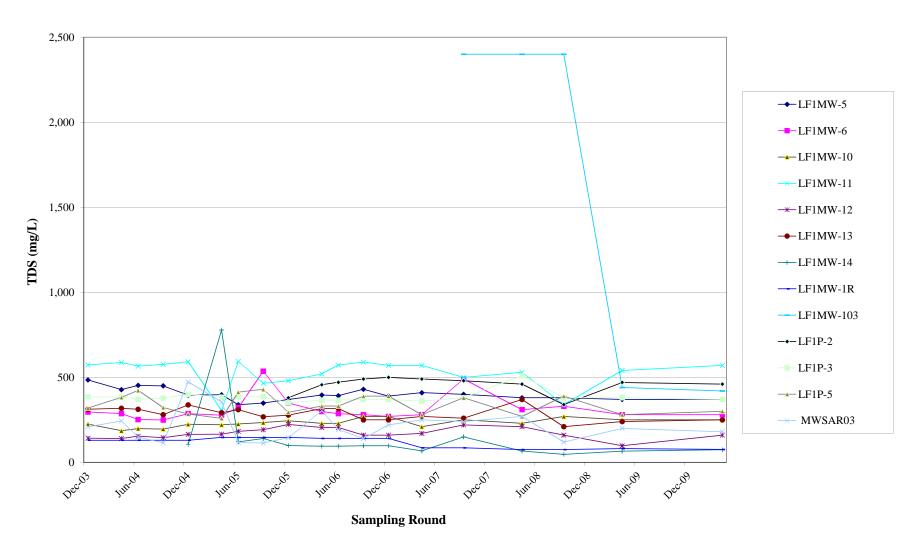



Figure 2 LF001 TDS Concentration Trends

Annual LUC/IC Inspections:

LUC/ICs, as required by the ROD, will be maintained in order to protect human health and the environment until the site is closed in 2040.

The Annual LUC/IC inspections will be conducted to confirm the implementation and performance of the LUC/ICs. All results will be reported annually in the base-wide LUC/IC Site Inspection Report.

5-Year Review:

LF001 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy. The site will also be included in the 2020, 2025, 2030, 2035, and 2040 5-Year Reviews.

2.6 Contingencies

Groundwater/Surface Water Monitoring:

Groundwater and surface water monitoring is anticipated to ensure that the landfill is not releasing contamination to the environment. If it is found that the landfill is indeed releasing COCs to the environment, based on an increase in landfill leachate indicator detections and concentrations, a baseline analysis will be conducted. At this site, the baseline analysis will include VOCs, metals, PCBs, and landfill leachate indicators. Additional recommendations will be made using this data.

Landfill Gas Monitoring:

Landfill gas monitoring will be performed to ensure that methane gas does not travel outside the Landfill 1 boundary. If methane gas is detected at any of the perimeter POC wells and suspected of leaving the landfill boundary there will be an increase in frequency of gas sampling events to track upward trends and migration of methane.

Landfill Cover Inspections and Maintenance:

The landfill cover inspections and maintenance will be performed to ensure landfill cover materials, site drainage structures, and onsite monitoring wells are maintained and functioning within the design standards. In the event that the integrity of any of the above mentioned criteria is compromised, inspections and/ or maintenance will be performed immediately to address any damages or flaws at the site. The landfill maintenance requirements are specified in the January 2005 Landfill 1 O&M Manual.

Annual LUC/IC Site Inspections:

The LUC/IC site inspections will be maintained at an annual frequency.

5-Year Review:

The 5-Year Review will be maintained at a 5-year frequency.

Table 2

LF001 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ EPA Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater LF1P-3 LF1P-5 LF1MW-1R LF1MW-13 LF1MW-103 LF1MW-14	494.13' - 489.13' 479.91' - 474.94' 534.46' - 524.46' 495.82' - 485.82' 32.8' - 22.8' 483.91' - 473.91'	Downgradient Downgradient Upgradient POC well Bedrock Downgradient	Anions – SW9056 Nitrogen (TKN) – 351.2 Ammonia – 350.1 Chemical Oxygen Demand (COD) – 410.4 Biological Oxygen Demand (BOD) – 405.1 Total Organic Carbon (TOC) - SW9060 Total Dissolved Solids (TDS) – 160.1 Alkalinity – 310.2 Phenols – SW9066 Hardness – 130.2 Color – 110.2 Boron – SW6010B	Water	16	Annually	If downgradient wells do not exhibit exceedances of NYS Groundwater Standards or Base background levels for two successive monitoring events, evaluate monitoring frequency and number of wells. Surface water analytes and frequency will be varied to follow groundwater program.
LF1P-2 LF1MW-5 LF1MW-6 LF1MW-10 LF1MW-11 LF1MW-12 MWSAR03 Surface Water (Six Mile Creek) LF1SW-1 LF1SW-2SMC LF1SW-3	495.07' – 490.07' 485.26' – 475.26' 492.36' – 482.36' 511.08' – 501.08' 494.25' – 484.25' 483.91' – 473.91' 521.28' – 511.28' Depth to groundwater ranged from 0.0 to 27.1 ft bgs.	Downgradient Downgradient Downgradient Downgradient Downgradient Downgradient Downgradient Downgradient Powngradient Downgradient Downgradient	VOCs – SW8260 Anions – SW9056 Nitrogen (TKN) – 351.2 Ammonia – 350.1 Chemical Oxygen Demand (COD) – 410.4 Biological Oxygen Demand (BOD) – 405.1 Total Organic Carbon (TOC) - SW9060 Total Dissolved Solids (TDS) – 160.1 Alkalinity – 310.2 Phenols – SW9066 Hardness – 130.2 Color – 110.2 Boron – SW6010B				
Methane All gas monitoring probes and vents		In accordance with 6 NYCRR 360-2.17(f)	CGI Methane or %LEL	Gas	20 probes 31 vents	Semiannually	

Baseline parameters based on 6 NYCRR Part 360, Subpart 2, Appendix A.

3.0 LF002 (LANDFILL 2/3 AOC)

3.1 <u>Site Description</u>

LF002, Landfill 2/3, is approximately 13 acres in size and is located in the northern portion of the base. The wastes at Landfill 2/3 consisted of hardfill in the southern portion of Landfill 2, on-board aircraft wastes in the northern portion of Landfill 2 and approximately 1 ton of wetted and double-bagged asbestos wastes in Landfill 3, located in the eastern portion of Landfill 2. The groundwater flow rate at LF002 is 222 feet per year. Groundwater flow is very gradual to the southwest in the area of Landfill 2/3.

The ROD for LF002 was signed by the USEPA on June 5, 2000. In accordance with the ROD, the landfill was re-graded and capped in summer 2003. The cap components include a gas venting layer, a low-permeability layer, drainage layer, barrier protection layer, and a topsoil layer. LTM was initiated at LF002 in December 2003, and 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

3.2 Current Conditions

Beginning in December 2003, LTM was performed at six monitoring wells (LF2MW2-1, LF2MW-4, -12, -13, -14, and -100) and three surface water locations (LF2SW-1, -2, and -3). These sampling locations are illustrated in the Landfill 2/3 Sampling Location Figure (see Attachment A). The LTM network was analyzed quarterly (routine) and annually (baseline) for NYSDEC Part 360 Parameters and VOCs. Currently, based on several rounds of sampling data metals and landfill leachate indicators are sampled annually. All recommendations to alter the sampling network were provided in previous Landfill AOCs LTM Reports and reviewed by the USEPA and NYSDEC.

VOCs, cyanide, mercury and phenols were analyzed until 2006 and then removed from the LTM sampling network due to their low or absent concentrations at the site. Landfill leachate indicators previously detected above the NYS Groundwater/Surface water SCGs included ammonia, chloride, bromide, color, TDS, and TKN and nitrate. The landfill leachate indicators detections continue to show stable trends. TDS at LF002 is historically detected near or below the NYS Groundwater Standard of 500 milligram/liter (mg/L) at all monitoring wells with the exception of LF2MW-100 (bedrock well). The TDS has historically been detected above 2,000 mg/L (Figure 3 in section 3.5.2). The TDS is higher at this well due to the sampling method (bailing) producing a greater amount of suspended solids in the sample. All exceedances are within one order of magnitude of the TDS standard.

Metals analysis for this site continues to show levels above NYS Groundwater SCGs. Metals in exceedance include barium, chromium, manganese, iron, sodium, aluminum, chromium, and nickel. Several of the metals (e.g., manganese, iron, and sodium) are indicative of base background conditions. All previous sampling data is provided in the Landfill 2/3 Sampling Results Table in Attachment B.

Landfill gas monitoring has been performed at Landfill 2/3 to identify the presence and concentration of methane at or near the landfill. A total of nine gas monitoring probes and 14 landfill gas vents were monitored on a quarterly basis from October 2005 until May

2010. Landfill gas sampling was optimized after the spring 2010 sampling round and is now sampled semiannually. Results from the gas sampling events at Landfill 2/3 continue to show site-wide stabilization of methane concentrations.

Since April 2005, landfill inspections and cover maintenance have been performed at Landfill 2/3. Inspections and maintenance are conducted on a quarterly basis with annual landfill cover mowing (fall). LUC/ICs have been implemented by the ROD and are verified quarterly as part of the landfill cover inspection program. The fall inspections are performed in conjunction with the Base-wide LUC/IC Site Inspections.

3.3 Regulatory Drivers

LF002 is regulated under the CERCLA of 1980, as amended, and the NCP. Landfill recapping and LTM were/are conducted in accordance with New York State's Solid Waste Management Regulations, 6-NYCRR Part 360. Groundwater and surface water sample results are compared to NYSDEC Class GA Groundwater Standards and NYSDEC Class C Surface Water Standards (NYSDEC, June 1998). Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

3.4 Proposed Outcome

The proposed outcome for this site is LTM Optimization.

3.5 Pathways to Achieve Proposed Outcome

3.5.1 Pathway to Proposed Outcome

Groundwater monitoring, surface water monitoring, landfill gas monitoring, and landfill cover maintenance will continue to be performed at LF002. The decision to optimize the monitoring at the site will be guided by the sampling data. Currently, no plumes or COCs are associated with the site as shown in the 8 years of LTM sampling data.

In addition, no VOC exceedances have occurred at any of the surface water locations since LTM sampling was initiated in December 2003.

The landfill inspections will be optimized from quarterly to semiannually. Spring and fall inspections are proposed at the landfills. The inspections will be conducted in the spring and fall as cover visibility is impacted by snow cover during the winter and by tall grasses in the summer. Additional inspections and/or maintenance will be performed as needed; following the guidance established in the January 2005 Landfill 2/3 O&M Manual. Additional inspections and/ or maintenance may be warranted as the result of significant rainfall over a 24-hour period or vector disturbance to the landfill cap.

3.5.2 Metric Development: Proposed End Point, Metrics, and Approach Groundwater/Surface Water Monitoring:

The proposed end point at this site is the optimization of groundwater and surface water monitoring. Groundwater and surface water are anticipated to be monitored biennially in 2011, 2013, and 2015 and then every 5 years from 2020-2040. Subject to data

confirmation and regulatory concurrence, the projected LTM schedule for LF002 is provided in Table 3.

Table 3
LF002 LTM Schedule

Period of Performance						
Years	Activity	Performance				
	Groundwater and Surface Water Monitoring	2 nd Quarter (June)				
2011, 2013, and 2015	Landfill Inspections, Landfill	2 nd and 4 th Quarters (May and				
	Gas Monitoring	October)				
	Reporting	4 th Quarter (December)				
	Landfill Inspections, Landfill	2 nd and 4 th Quarters (May and				
2012 and 2014	Gas Monitoring	October)				
	Reporting	4 th Quarter (December)				
2015	5-Year Review	2 nd Quarter (April)				
	Post Period of Performance					
2020 through 2040	Landfill Inspections, Landfill Gas Monitoring	4 th Quarter (October)				
	Reporting	4 th Quarter (December)				
2020, 2025, 2030, 2035, and	5-Year Review	2 nd Quarter (April)				
2040 2040	Groundwater and Surface Water Monitoring	2 nd Quarter (June)				

Period of Performance:

Groundwater and surface water monitoring will be conducted at six monitoring wells and three surface water locations for landfill leachate indicators. Since the landfill does not have an associated COC plume, the analysis of landfill leachate indicators will provide any detection of potential contamination from the landfill entering the environment. Alterations to the frequency and duration of the LTM network will be conducted through the analysis of sampling data trends. Proposal to reduce the sampling frequency and/or discontinue the monitoring of a sampling location may be prompted by the indication of a decreasing trend and/or at least two consecutive rounds with COC levels below NYS Groundwater or Surface water SCGs. Proposal to increase the LTM network is detailed in the Contingencies section.

The sampling will be conducted biennially at all monitoring wells and surface water locations. Given the low groundwater velocity, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill. As mentioned above, the groundwater flow velocity at this landfill is 222 feet per year. It will take groundwater approximately 4 years to migrate from upgradient of the landfill to the Landfill 2/3 toe. Additionally, sampling data from Landfill 2/3 has shown continued site-wide stabilization of all leachate indicators. Therefore, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to

the environment by the landfill. Figure 3 shows the LF002 TDS concentrations trends (a landfill leachate indicator).

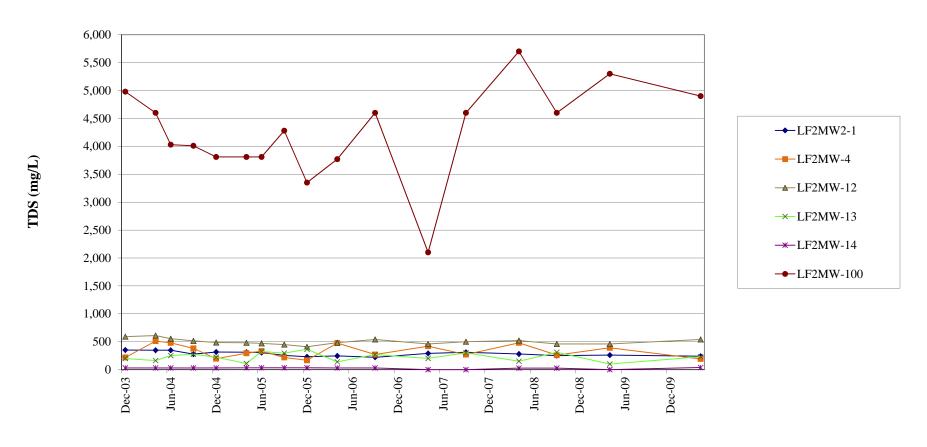
The six monitoring wells include LF2MW2-1, LF2MW-4, -12, -13, -14, and -100 and the three surface water sampling locations include LF2SW-1, -2, and -3. Low-flow sampling will be performed at all monitoring wells except bedrock monitoring well LF2MW-100 where bailer sampling will be performed. The surface water samples will be collected as grab samples. These sampling methods are described in detail in the Griffiss UFP QAPP. The LF002 LTM network is provided in Table 4 at the end of this plan.

Post-Period of Performance:

As a result of the absence of a contamination plume or COCs and the velocity of groundwater at the site, we anticipate sampling will be optimized to every 5 years (2020, 2025, 2030, 2035, and 2040) at the six monitoring wells and three surface water sampling locations. Samples will be analyzed for landfill leachate indicators. This sampling will be conducted in conjunction with the 5-Year Review process.

Landfill Gas Monitoring:

The proposed end point is the optimization of landfill gas monitoring.


Period of Performance:

Nine gas monitoring probes and 14 gas vents are monitored semiannually for methane, LEL, oxygen, and carbon dioxide. Previous landfill gas monitoring rounds show that elevated methane concentrations persist throughout the landfill, but these levels are stable. Methane is not detected at any of the POC gas monitoring probes, therefore limiting potential risk of human exposure.

Post-Period of Performance:

As a result of the stable landfill gas results, we anticipate that monitoring will be optimized to annual.

Figure 3 LF002 TDS Concentration Trends

Sampling Round

Landfill Cover Inspections and Maintenance:

The proposed end point is the optimization of landfill cover inspections.

Period of Performance:

The current scope of quarterly landfill cover inspections and maintenance will be optimized to semiannual with annual landfill cover mowing. Previous quarterly inspections have not identified any major deficiencies that would jeopardize the integrity of the cover. The inspections indicated that vegetation growth on the landfill cap shows optimal coverage for erosion control and cover system stabilization. Spring and fall inspections are proposed as the landfills are covered by snow in the winter and by tall grasses in the summer. Additional inspections or maintenance will be performed as needed, as identified in the January 2005 Landfill 2/3 O&M Manual. An example of additional inspections includes the inspections of the landfill covers following a 5-Year Storm event (6 inches of rainfall within a 24-hour period).

Post-Period of Performance:

The scope of semiannual landfill inspections will be recommended for optimization following the completion of this contract. If supported by landfill conditions, the optimized frequency will be annual with annual reporting. It is necessary that inspections continue to ensure the integrity of landfill fencing, signage, and the landfill cover.

Annual LUC/IC Inspections:

LUC/ICs, as required by the ROD, will be maintained in order to protect human health and the environment.

The Annual LUC/IC inspections will be conducted to confirm the implementation and performance of the LUC/ICs. All results will be reported annually in the base-wide LUC/IC Site Inspection Report.

5-Year Review:

LF002 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy. The site will also be included in 5-Year Review from 2020-2040.

3.6 <u>Contingencies</u>

Groundwater/Surface Water Monitoring:

Groundwater and surface water monitoring is anticipated to ensure that the landfill is not releasing contamination to the environment. If it is found that the landfill is indeed releasing COCs to the environment, based on an increase in landfill leachate indicator detections and concentrations, a baseline analysis will be conducted. At this site, the baseline analysis will include VOCs, metals, PCBs, and landfill leachate indicators. Additional recommendations will be made using this data.

Landfill Gas Monitoring:

Landfill gas monitoring will be performed to ensure that methane gas does not travel outside the Landfill 2/3 boundary. If methane gas is detected at any of the perimeter POC wells and suspected of leaving the landfill boundary there will be an increase in frequency of gas sampling events to track upward trends and migration of methane.

Landfill Cover Inspections and Maintenance:

The landfill cover inspections and maintenance will be performed to ensure landfill cover materials, site drainage structures, and onsite monitoring wells are maintained and functioning within the design standards. In the event that the integrity of any of the above mentioned criteria are compromised, inspections and/or maintenance will be performed immediately to address any damages or flaws at the site. The landfill maintenance requirements are specified in the January 2005 Landfill 2/3 O&M Manual.

Annual LUC/IC Site Inspections:

The LUC/IC site inspections will be maintained at an annual frequency.

5-Year Review:

The 5-Year Review will be maintained at a 5-Year frequency.

Table 4

LF002 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater			Landfill Leachate Indicators:	Water	9	Annually	If downgradient wells
LF2MW2-1	516.28' - 506.28'	Downgradient from potential source	Anions – SW9056				do not exhibit
LF2MW-4	526.17' – 516.19'	Downgradient from potential source	Nitrogen (TKN) – 351.2				exceedances of NYS
LF2MW-12	521.5' – 511.5'	Downgradient from potential source	Ammonia – 350.1				Groundwater
LF2MW-13	519.98' - 509.98'	Downgradient from potential source	COD – 410.4				Standards or Base
LF2MW-14	531.35' – 521.35'	Upgradient from potential source	BOD - 405.1				background levels for
LF2MW-100	475.2'- 465.2'	Downgradient from potential source	TOC – SW9060				two successive
			TDS – 160.1				monitoring events,
Surface Water	Depth to		Alkalinity – 310.2				evaluate monitoring
LF2SW-1	groundwater ranged	Potential contaminant receptor	Phenols – SW9066				frequency and
LF2SW-2	from 3.12 to 29.79	Potential contaminant receptor	Hardness – 130.2				number of wells.
LF2SW-3	ft bgs.	Potential contaminant receptor	Color – 110.2				
		_	Boron – SW6010B				
Gas Sampling Gas monitoring probes/vents		In accordance with 6 NYCRR 360- 2.17(f)	Methane (FID/CGI)	Gas	9 probes 14 vents	Se	miannual

¹ Baseline parameters based on 6 NYCRR Part 360, Subpart 2, Appendix A.

4.0 LF003 (LANDFILL 7 AOC)

4.1 <u>Site Description</u>

LF003, Landfill 7, is approximately 11 acres in size and is located northeast of Runway 15/33. The wastes at Landfill 7 consisted of domestic refuse, solid waste, liquid wastes, petroleum products, and miscellaneous Base operations waste (such as airplane parts), which were placed into four trenches in the landfill area and subsequently burned. Landfill 7 was active from 1950-1954. The groundwater flow rate at LF003 is 445 feet per year. Groundwater flow at Landfill 7 is in a general south-southwest direction.

The ROD for LF003 was signed by the USEPA on June 6, 2000. In accordance with the ROD, the landfill was re-graded and capped in 2002. The cap components include a low-permeability layer, drainage layer, barrier protection layer, and a topsoil layer. LTM was initiated in February 2003, and 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

4.2 Current Conditions

Beginning in February 2003, LTM was performed at eight monitoring wells (LF7W-22, -23, -26, -27, -28, -29, -30, and -100) and two wetland surface water locations (LF7WL-3 and -4). These sampling locations are illustrated in the Landfill 7 Sampling Location Figure (see Attachment A). The LTM network was analyzed quarterly (routine) and annually (baseline) for NYSDEC Part 360 Parameters and VOCs. Currently, based on several rounds of sampling data, only metals are analyzed on an annual basis. All recommendations to alter the sampling network were provided in previous Landfill AOCs LTM Reports and reviewed by the USEPA and NYSDEC.

VOCs, mercury, PCBs and all leachate indicators were removed from the Landfill 7 LTM network analysis list in spring 2006, due to their low or absent concentrations at the site. Landfill leachate indicators previously detected above the NYS Groundwater / Surface water SCGs included color, TDS, and TKN. The landfill leachate indicators detections showed stable trends before the analysis was removed from the LTM network in 2006. Metals analysis for this site continues to show levels above NYS Groundwater SCGs. Metals in exceedance include magnesium, manganese, iron, sodium, aluminum, chromium, and nickel. Several of the metals, including manganese, iron, and sodium are indicative of base background conditions. All previous sampling data is provided in the Landfill 7 Sampling Results Table in Attachment B.

Since September 2003, landfill inspections and cover maintenance have been performed at Landfill 7. Inspections and maintenance are conducted on a quarterly basis with annual landfill cover mowing (fall). LUC/ICs have been implemented by the ROD and are verified quarterly as part of the landfill cover inspection program. The fall inspections are performed in conjunction with the Base-wide LUC/IC Site Inspections.

4.3 Regulatory Drivers

LF003 is regulated under the CERCLA of 1980, as amended, and the NCP. Landfill recapping and LTM were/are conducted in accordance with New York State's Solid

Waste Management Regulations, 6-NYCRR Part 360. Groundwater and surface water sample results are compared to NYSDEC Class GA Groundwater Standards and NYSDEC Class C Surface Water Standards (NYSDEC, June 1998). Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

4.4 **Proposed Outcome**

The proposed outcome for this site is LTM Optimization.

4.5 Pathways to Achieve Proposed Outcome

4.5.1 Pathway to Proposed Outcome

Groundwater monitoring, surface water monitoring and landfill cover maintenance will continue to be performed at LF003. The decision to optimize the monitoring at the site will be guided by the sampling data. Currently, no plumes or COCs are associated with the site as shown in the 7 years of LTM sampling data.

The landfill inspections will be optimized from quarterly to semiannually. Spring and fall inspections are proposed at the landfills. The inspections will be conducted in the spring and fall as cover visibility is impacted by snow cover during the winter and by tall grasses in the summer. Additional inspections and/or maintenance will be performed as needed; following the guidance established in the September 2003 Landfill 7 O&M Manual. Additional inspections and/ or maintenance may be warranted as the result of significant rainfall over a 24-hour period or vector disturbance to the landfill cap.

4.5.2 Metric Development: Proposed End Point, Metrics, and Approach Groundwater/Surface Water Monitoring:

The proposed end point at this site is the optimization of groundwater and surface water monitoring. Groundwater and surface water are anticipated to be monitored biennially for leachate indicators in 2011, 2013, and 2015. Following the 2015 event, the sampling frequency will be optimized to every 5 years from 2020 to 2040. The LTM schedule for LF003 is provided in Table 5. The LF003 LTM network is provided in Table 6 at the end of this plan.

Period of Performance:

Groundwater and surface water monitoring will be conducted at eight monitoring wells and two wetland surface water locations for landfill leachate indicators. Since the landfill does not have an associated COC plume, the analysis of landfill leachate indicators will provide any detection of potential contamination from the landfill entering the environment. Alterations to the frequency and duration of the LTM network will be conducted through the analysis of sampling data trends. Proposal to reduce the sampling frequency and/or discontinue the monitoring of a sampling location may be prompted by the indication of a decreasing trend and/or at least two consecutive rounds with COC levels below NYS Groundwater or Surface water SCGs. The proposal to increase the LTM network is detailed in the Contingencies section.

Table 5 LF003 LTM Schedule

Period of Performance							
Years	Activity	Performance					
	Groundwater and Surface Water Monitoring	2 nd Quarter (June)					
2011, 2013, and 2015	Landfill Inspections	2 nd and 4 th Quarters (May and October)					
	Reporting	4 th Quarter (December)					
	Landfill Inspections	2 nd and 4 th Quarters (May and					
2012 and 2014	Landfill Inspections	October)					
	Reporting	4 th Quarter (December)					
2015	5-Year Review	2 nd Quarter (April)					
	Post Period of Performance						
	Landfill Inspections, Landfill	4 th Quarter (October)					
2020 through 2040	Gas Monitoring	4 Quarter (October)					
	Reporting	4 th Quarter (December)					
2020 2025 2020 2025 and	5-Year Review	2 nd Quarter (April)					
2020, 2025, 2030, 2035, and 2040	Groundwater and Surface Water Monitoring	2 nd Quarter (June)					

The sampling will be conducted biennially, starting in the June 2011, at all monitoring wells and surface water locations. Given the absence of COCs, sampling will be conducted biennially for landfill leachate indicators. The recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill.

The eight monitoring wells include LF7W-22, -23, -26, -27, -28, -29, -30, and -100 and the two wetland surface water sampling locations include LF7WL-3 and -4. Low-flow sampling will be performed at all monitoring wells except bedrock monitoring well LF7MW-100 where bailer sampling will be used. The surface water samples will be collected as grab samples. These sampling methods are described in detail in the Griffiss UFP-QAPP.

Post-Period of Performance:

As a result of the absence of a contamination plume or COCs and the velocity of groundwater at the site, we anticipate sampling will be optimized to every 5 years (2020, 2025, 2030, 2035, and 2040) at the eight monitoring wells and two wetland surface water sampling locations. Samples will be analyzed for metals and landfill leachate indicators. This sampling will be conducted in conjunction with the 5-Year Review process.

Landfill Cover Inspections and Maintenance:

The proposed end point at this site for landfill cover maintenance is semiannual.

Period of Performance:

The current scope of quarterly landfill cover inspections and maintenance will be reduced to semiannual with annual landfill cover mowing. Previous quarterly inspections have not identified any major deficiencies that would jeopardize the integrity of the cover. The inspections indicated that vegetation growth on the landfill cap shows optimal coverage for erosion control and cover system stabilization. Spring and fall inspections are proposed as the landfills are covered by snow in the winter and by tall grasses in the summer. Additional inspections or maintenance will be performed as needed, as identified in the September 2003 Landfill 7 O&M Manual. An example of additional inspections includes the inspections of the landfill covers following a 5-Year Storm event (6 inches of rainfall within a 24-hour period).

Post-Period of Performance:

The scope of semiannual landfill inspections will be recommended for optimization following the completion of this contract. If supported by the landfill conditions, the desired inspection frequency will be annual with annual reporting. It is necessary that inspections continue to ensure the integrity of landfill fencing, signage and the landfill cover.

Annual LUC/IC Inspections:

LUC/ICs, as required by the ROD, will be maintained in order to protect human health and the environment until the site is closed in 2040.

The Annual LUC/IC inspections will be conducted to confirm the implementation and performance of the LUC/ICs. All results will be reported annually in the base-wide LUC/IC Site Inspection Report.

5-Year Review:

LF003 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy. The site will also be included in the 2020, 2025, 2030, 2035, and 2040 5-Year Reviews.

4.6 Contingencies

Groundwater/Surface Water Monitoring:

Groundwater and surface water monitoring is anticipated to ensure that the landfill is not releasing contamination to the environment. If it is found that the landfill is indeed releasing COCs to the environment, based on an increase in landfill leachate indicator detections and concentrations, a baseline analysis will be conducted. At this site, the baseline analysis will include VOCs, metals, PCBs, and landfill leachate indicators. Additional recommendations will be made using this data.

Landfill Cover Inspections and Maintenance:

The landfill cover inspections and maintenance will be performed to ensure landfill cover materials, site drainage structures, and on-site monitoring wells are maintained and functioning within the design standards. In the event that the integrity of any of the above mentioned criteria are compromised, inspections and/ or maintenance will be performed immediately to address any damages or flaws at the site. The landfill maintenance requirements are specified in the September 2003 Landfill 7 O&M Manual.

Annual LUC/IC Site Inspections:

The LUC/IC site inspections will be maintained at an annual frequency.

5-Year Review:

The 5-Year Review will be maintained at a 5-year frequency.

Table 6
LF003 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater			Landfill Leachate Indicators:	Water	10	Annually	If downgradient
LF7MW-22	479.12' – 474.19'	Downgradient from source,	Anions – SW9056				wells do not
		within plume	Nitrogen (TKN) – 351.2				exhibit
LF7MW-23	482.03' – 472.01'	Downgradient from source,	Ammonia – 350.2				exceedances of
		cross-gradient from plume	COD – 410.4				NYS
LF7MW-26	495.53' – 485.53'	Downgradient from source,	BOD – 405.1				Groundwater
V 2000 6111 00	**************	within plume	TOC – SW9060				Standards or Base
LF7MW-27	500.91' – 490.91'	Downgradient from source	TDS – 160.1				background levels
LF7MW-28	484.31' – 474.31'	POC well	Alkalinity – 310.1				for two successive
LF7MW-29	514.56' – 504.56'	Upgradient from source	Phenols – SW9066				monitoring
LF7MW-30	494.67' – 484.67'	Downgradient from source	Hardness – 130.2				events, evaluate
LF7MW-100	470.57' – 460.57'	Downgradient from source,	Color – 110.2				monitoring
		within plume, Bedrock well	Boron – SW6010B				frequency and
							number of wells.
Surface Water LF7WL-3 LF7WL-4	Depth to groundwater ranged from less than 1 ft to 17.71 ft bgs.	Potential contaminant receptor Potential contaminant receptor					

¹ Baseline parameters based on 6 NYCRR Part 360, Subpart 2, Appendix A.

5.0 LF007 (LANDFILL 5 AOC)

5.1 <u>Site Description</u>

LF007, Landfill 5, is approximately 4 acres in size and is located in the south-central portion of the base. The waste at Landfill 5 consisted of domestic wastes, reportedly having been burned and then buried. Approximately 18,000 CY of wastes were disposed of at the site from 1950-1960. During the Remedial Investigation (RI), groundwater flow rates were found to be 114 feet per year. Principal groundwater flow directions at Landfill 5 are to the west in the area bordering the northern part of the landfill and to the southwest in the central and southern parts of the landfill.

The ROD for LF007 was signed by the USEPA on June 5, 2000. In accordance with the ROD, the landfill was re-graded and capped in 2002. The cap components include a low-permeability layer, drainage layer, barrier protection layer, and a topsoil layer. LTM was initiated in February 2003, and 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

5.2 Current Conditions

Beginning in February 2003, LTM was performed at five monitoring wells (LF5MW-1A, -3, -5, -100R, and MW49D07) and three surface water locations (LF5SW-1, -2, and -3). These sampling locations are illustrated in the Landfill 5 Sampling Location Figure (see Attachment A). The LTM network was analyzed quarterly (routine) and annually (baseline) for NYSDEC Part 360 Parameters and VOCs. Currently, based on several rounds of sampling data, only metals are analyzed on an annual basis. All recommendations to alter the sampling network were provided in previous Landfill AOCs LTM Reports and reviewed by the USEPA and NYSDEC.

VOCs were analyzed until 2006, no exceedances were reported. PCBs were analyzed until 2006 at all sampling locations and until 2008 at LF5MW-100R (bedrock well). PCBs were only detected in LF5MW-100R. In 2005 and 2006, the PCB detections were above the NYS Groundwater Standards, Criteria, or Guidance values (SCGs). No PCBs were detected at this location in 2007 and 2008. Landfill leachate indicators previously detected above the NYS Groundwater / Surface water SCGs included ammonia, bromide, chloride, color, nitrate, sulfate, TDS, and TKN. The landfill leachate indicators detections showed stable trends before the analysis was removed from the LTM network in 2006. Metals analysis for this site continues to show levels above NYS Groundwater SCGs. Metals in exceedance include manganese, iron, sodium, aluminum, chromium, and nickel. Several of the metals (e.g., manganese, iron, and sodium) are indicative of base background conditions. All previous sampling data is provided in the Landfill 5 Sampling Results Table in Attachment B.

Since September 2003, landfill inspections and cover maintenance have been performed at Landfill 5. Inspections and maintenance are conducted on a quarterly basis with annual landfill cover mowing (fall). LUC/ICs have been implemented by the ROD and are verified quarterly as part of the landfill cover inspection program. The fall inspections are performed in conjunction with the Base-wide LUC/IC Site Inspections.

5.3 Regulatory Drivers

LF007 is regulated under the CERCLA of 1980, as amended, and the NCP. Landfill recapping and LTM were/are conducted in accordance with New York State's Solid Waste Management Regulations, 6-NYCRR Part 360. Groundwater and surface water sample results are compared to NYSDEC Class GA Groundwater Standards and NYSDEC Class C Surface Water Standards (NYSDEC, June 1998). Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC. Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

5.4 Proposed Outcome

The proposed outcome for this site is Optimized Exit Strategy.

5.5 Pathways to Achieve Proposed Outcome

5.5.1 Pathway to Proposed Outcome

Groundwater monitoring, surface water monitoring and landfill cover maintenance will continue to be performed at LF007. The decision to optimize the monitoring at the site will be guided by the sampling data. Currently, no plumes or COCs are associated with the site as shown in the seven years of LTM sampling data.

The landfill inspections will be optimized from quarterly to semiannually. Spring and fall inspections are proposed at the landfills. The inspections will be conducted in the spring and fall as cover visibility is impacted by snow cover during the winter and by tall grasses in the summer. Additional inspections and/or maintenance will be performed as needed; following the guidance established in the September 2003 Landfill 5 O&M Manual. Additional inspections and/ or maintenance may be warranted as the result of significant rainfall over a 24-hour period or vector disturbance to the landfill cap.

5.5.2 Metric Development: Proposed End Point, Metrics, and Approach Groundwater/Surface Water Monitoring:

The proposed end point at this site is the optimization of groundwater and surface water monitoring. Groundwater and surface water are anticipated to be monitored biennially in 2011, 2013, and 2015, and every 5 years from 2019 to 2039. The LTM schedule for LF007 is provided in Table 7 and the LF003 LTM network is provided in Table 8.

Period of Performance:

Groundwater and surface water monitoring will be conducted at five monitoring wells and three surface water locations for landfill leachate indicators. Since the landfill does not have an associated COC plume, the analysis of landfill leachate indicators will provide any detection of potential contamination from the landfill entering the environment. Alterations to the frequency and duration of the LTM network will be conducted through the analysis of sampling data trends. Proposal to reduce the sampling frequency and/or discontinue the monitoring of a sampling location may be prompted by the indication of a decreasing trend and/or at least two consecutive rounds with COC

levels below NYS Groundwater or Surface water SCGs. Proposal to increase the LTM network is detailed in the Contingencies section.

Table 7
LF007 LTM Schedule

Period of Performance							
Years	Activity	Performance					
2011, 2013, 2015	Groundwater and Surface	2 nd Quarter (June)					
	water Monitoring						
	Landfill Inspections	2 nd and 4 th Quarters (May and					
		October)					
	Reporting	4 th Quarter (December)					
2012 and 2014	Landfill Inspections	2 nd and 4 th Quarters (May and					
		October)					
	Reporting	4 th Quarter (December)					
2015	5-Year Review	2 nd Quarter (April)					
	Post Period of Performance						
2016, 2017, and 2018	Landfill Inspections	4 th Quarter (October)					
	Reporting	4 th Quarter (December)					
2019, 2024, 2029, 2034, and	Groundwater and Surface	2 nd Quarter (June)					
2039	water Monitoring						
	Landfill Inspections	4 th Quarter (October)					
	Reporting	4 th Quarter (December)					
2020, 2025, 2030, 2035, and	5-Year Review	2 nd Quarter (April)					
2040							

The sampling will be conducted biennially, starting in the June 2011, at all monitoring wells and surface water locations. Given the low velocity of the groundwater flow at the site and absence of COCs, sampling will be conducted biennially for landfill leachate indicators. As mentioned above, the groundwater flow velocity at this landfill is 114 feet per year. It will take groundwater 2.5 years to migrate from upgradient of the landfill to the wetland area located at the Landfill 5 southern toe. Therefore, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill.

The five monitoring wells include LF5MW-1A, -3, -5, -100R, and MW49D07 and the three surface water sampling locations include LF5SW-1, -2, and -3. Low-flow sampling will be performed at LF5MW-3, and -5, while bailer sampling will be performed at LF5MW-1A, -100R, and MW49D07. The surface water samples will be collected as grab samples. These sampling methods are described in detail in the Griffiss UFP QAPP.

Post-Period of Performance:

As a result of the absence of a contamination plume or COCs and the velocity of groundwater at the site, we anticipate sampling will be optimized to every 5 years (2019,

2024, 2029, 2034, and 2039) at the five monitoring wells and three surface water sampling locations. Samples will be analyzed for landfill leachate indicators. This sampling will be conducted in conjunction with the 5-Year Review process.

Landfill Cover Inspections and Maintenance:

The proposed end point at this site for landfill cover maintenance is semiannual.

Period of Performance:

The current scope of quarterly landfill cover inspections and maintenance will be optimized to semiannual with annual landfill cover mowing. Previous quarterly inspections have not identified any major deficiencies that would jeopardize the integrity of the cover. The inspections indicated that vegetation growth on the landfill cap shows optimal coverage for erosion control and cover system stabilization. Spring and fall inspections are proposed as the landfills are covered by snow in the winter and by tall grasses in the summer. Additional inspections or maintenance will be performed as needed, as identified in the September 2003 Landfill 5 O&M Manual. An example of additional inspections includes the inspections of the landfill covers following a 5-Year Storm event (6 inches of rainfall within a 24-hour period).

Post-Period of Performance:

The scope of semiannual landfill inspections will be recommended for optimization following the completion of this contract. It is necessary that inspections continue to ensure the integrity of landfill fencing, signage and the landfill cover.

Annual LUC/IC Inspections:

LUC/ICs, as required by the ROD, will be maintained in order to protect human health and the environment until the site is closed in 2040.

The Annual LUC/IC inspections will be conducted to confirm the implementation and performance of the LUC/ICs. All results will be reported annually in the base-wide LUC/IC Site Inspection Report.

5-Year Review:

LF007 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy. The site will also be included in the 2020, 2025, 2030, 2035, and 2040 5-Year Reviews.

5.6 Contingencies

Groundwater/Surface Water Monitoring:

Groundwater and surface water monitoring is anticipated to ensure that the landfill is not releasing contamination to the environment. If it is found that the landfill is indeed releasing COCs to the environment, based on an increase in landfill leachate indicator detections and concentrations, a baseline analysis will be conducted. At this site, the

baseline analysis will include VOCs, metals, PCBs, and landfill leachate indicators. Additional recommendations will be made using this data.

Landfill Cover Inspections and Maintenance:

The landfill cover inspections and maintenance will be performed to ensure landfill cover materials, site drainage structures, and onsite monitoring wells are maintained and functioning within the design standards. In the event that the integrity of any of the above mentioned criteria are compromised, inspections and/or maintenance will be performed immediately to address any damages or flaws at the site. The landfill maintenance requirements are specified in the September 2003 Landfill 5 O&M Manual.

Annual LUC/IC Site Inspections:

The LUC/IC site inspections will not be optimized.

5-Year Review:

The 5-Year Review will not be optimized.

Table 8

LF003 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater LF5MW-3 MW49D07 LF5MW-5 LF5MW-100 LF5MW-1A Leachate Samples Surface Water LF5SW-1 LF5SW-2 LF5SW-3	459.25' - 449.25' 455.51' - 445.51' 459.49' - 449.49' 405.92' - 395.92' 465.6' - 455.6' Depth to groundwater ranged from 4.90 to 21.80 ft bgs.	Downgradient of potential source and between landfill and hardfill Downgradient from potential source Downgradient from potential source Bedrock, downgradient Upgradient from potential None encountered Potential contaminant receptor Potential contaminant receptor Potential contaminant receptor	Landfill Leachate Indicators: Anions – SW9056 Nitrogen (TKN) – 351.2 Ammonia – 350.2 COD – 410.4 BOD – 405.1 TOC – SW9060 TDS – 160.1 Alkalinity – 310.1 Phenols – SW9066 Hardness – 130.2 Color – 110.2 Boron – SW6010B	Water	8	Annually	If downgradient wells do not exhibit exceedances of NYS Groundwater Standards or Base background levels for two successive monitoring events, evaluate monitoring frequency and number of wells.
		NIVCDD Dout 260 Submout 2 Amoundin A					

Baseline parameters based on 6 NYCRR Part 360, Subpart 2, Appendix A.

98595.014

6.0 LF009 (LANDFILL 6 AOC)

Site Description

LF009, Landfill 6, is approximately 15.7 acres in size and is located near the southern boundary of the base. The wastes at Landfill 6 consisted of general refuse and hardfill that was buried and some of which was burned at the site. An estimated 38,000-62,000 CY of wastes were disposed at the site from 1955-1959. During the 1980s, although the landfill was no longer active, an unknown quantity of fuel-contaminated soil from the tank excavations at Tank Farms 1 and 3 was disposed of in the southern portion of Landfill 6. In 1986, a clay cap was constructed over the fuel-contaminated soils area. The groundwater flow rate at LF009 is 37 feet per year. Groundwater flows south-southwest toward TMC at Landfill 6.

The ROD for LF009 was signed by the USEPA on June 7, 2001. In accordance with the ROD, the landfill was re-graded and capped in 2004. The cap components include a gas venting layer, a low-permeability layer, drainage layer, barrier protection layer, and a topsoil layer. A portion of the fill material used at Landfill 6 consisted of soil/debris from various on-base projects, including: approximately 52,600 cubic yards (CY) of material from the TMC restoration project, approximately 3,000 CY of cobbles from the Apron 1 biopile remediation project and approximately 2 CY of soil from the Rainbow Creek remediation project. LTM was initiated in June 2006 and Five-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

6.2 Current Conditions

Beginning in June 2006, LTM was performed at 19 monitoring wells (775VMW-10, -18R, -20R, LF6MW-1, -12, LF6VMW-10R2, -17D, -17S, -18, -19, -20, -21, -22, -23, -24, -25, -26, TMCMW-9 and TMC-USGS-2), three surface water locations (LF6SW-1, -2, -3), and one wetland sampling location (LF6W-1). As recommended by the NYSDEC, landfill leachate sampling locations LF6LH-1 and -2 were added to the LF6 LTM network in December 2006. These sampling locations are illustrated in the Landfill 6 Sampling Location Figure (see Attachment A). The LTM network was analyzed quarterly (routine) and annually (baseline) for NYSDEC Part 360 Parameters and VOCs. Currently, based on several rounds of sampling data NYSDEC Part 360 Parameters and VOCs are sampled semiannually. All recommendations to alter the sampling network were provided in previous Landfill AOCs LTM Reports and reviewed by the USEPA and NYSDEC.

VOCs currently detected above the NYS Groundwater/ Surface water SCGs include TCE and cis-1,2 dichloroethene. Exceedances occur at monitoring wells 775VMW-10, LF6MW-12, and LF6VMW-26. Landfill leachate indicators previously detected above the NYS Groundwater / Surface water SCGs included chloride, color, TDS, and TKN. The landfill leachate indicators detections continue to show stable trends. Metals analysis for this site continues to show levels above NYS Groundwater SCGs. Metals in exceedance include manganese, magnesium, iron, sodium, aluminum, chromium, and nickel. Several of the metals (e.g., manganese, iron, sodium) are indicative of base

background conditions. All previous sampling data is provided in the Landfill 6 Sampling Results Table in Attachment B.

Landfill gas monitoring has been performed at Landfill 6 to identify the presence and concentration of methane at or near the landfill. A total of 13 gas monitoring probes and 16 landfill gas vents were monitored on a quarterly basis from October 2005 until October 2009. Landfill gas sampling was optimized after the October 2009 sampling round and is now sampled semiannually. Results from the gas sampling events at Landfill 6 showed elevated methane concentrations throughout the landfill, but these levels have declined. Methane has not been detected on Landfill 6 since the fall 2009 gas monitoring round.

Since July 2006, landfill inspections and cover maintenance have been performed at Landfill 6. Inspections and maintenance are conducted on a quarterly basis with annual landfill cover mowing (fall). Land-use Controls/Institutional Controls (LUC/ICs) have been implemented by the ROD and are verified quarterly as part of the landfill cover inspection program. The fall inspections are performed in conjunction with the Base-wide LUC/IC Site Inspections.

6.3 Regulatory Drivers

LF009 is regulated under the CERCLA of 1980, as amended, and the NCP. Landfill recapping and LTM were/are conducted in accordance with New York State's Solid Waste Management Regulations, 6-NYCRR Part 360. Groundwater and surface water sample results are compared to NYSDEC Class GA Groundwater Standards and NYSDEC Class C Surface Water Standards (NYSDEC, June 1998). Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC. Additionally, the site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

6.4 **Proposed Outcome**

The proposed outcome for this site is LTM Optimization.

6.5 Pathways to Achieve Proposed Outcome

6.5.1 Pathway to Proposed Outcome

Groundwater monitoring, surface water monitoring and landfill cover maintenance will continue to be performed at LF009. The decision to optimize the monitoring at the site will be guided by the sampling data. VOC exceedances at Landfill 6 are limited to three monitoring wells 775VMW-10, LF6MW-12, and LF6VMW-26. These wells have showed sustained exceedances. There has been a stable and/or decreasing VOC concentration trend at monitoring wells 775VMW-10, LF6MW-12, and LF6VMW-26. In addition, no VOC exceedances have occurred at any of the three surface water locations since LTM sampling was initiated in June 2006.

The landfill gas monitoring will be optimized from quarterly to semiannual. Previous landfill gas monitoring rounds show that elevated methane concentrations were detected throughout the landfill but these levels have declined.

The landfill inspections will be optimized from quarterly to semiannually. Spring and fall inspections are proposed at the landfills. The inspections will be conducted in the spring and fall as cover visibility is impacted by snow cover during the winter and by tall grasses in the summer. Additional inspections and/or maintenance will be performed as needed; following the guidance established in the December 2006 Landfill 6 O&M Manual. Additional inspections and/ or maintenance may be warranted as the result of significant rainfall over a 24-hour period or vector disturbance to the landfill cap.

6.5.2 Metric Development: Proposed End Point, Metrics, and Approach

The proposed end point at this site is the optimization of groundwater and surface water monitoring. Groundwater and surface water are anticipated to be monitored annually in 2011, 2012, and 2013, every two years from 2014-2018 and every 5 years from 2020-2040. Subject to data confirmation and regulatory concurrence, the projected LTM schedule for LF009 is provided in Table 9. The LF009 LTM network is provided in Table 10 at the end of the LF009 section.

Table 9
LF009 LTM Schedule

Period of Performance							
Years	Activity	Performance					
	Groundwater and Surface water Monitoring	2 nd Quarter (June)					
2011, 2012, 2013, and 2014	Landfill Inspections, Landfill	2 nd and 4 th Quarters (May and					
	Gas Monitoring	October)					
	Reporting	4 th Quarter (December)					
	Landfill Inspections	2 nd and 4 th Quarters (May and					
2015	Landini hispections	October)					
2013	Reporting	4 th Quarter (December)					
	5-Year Review	2 nd Quarter (April)					
	Post Period of Performance						
2016 through 2040	Landfill Inspections, Landfill Gas Monitoring	4 th Quarter (October)					
	Reporting	4 th Quarter (December)					
2016, 2018, 2020, 2025, 2030,	Groundwater and Surface	2 nd Quarter (June)					
2035, and 2040	water Monitoring	2 Quarter (June)					
2020, 2025, 2030, 2035, and 2040	5-Year Review	2 nd Quarter (April)					

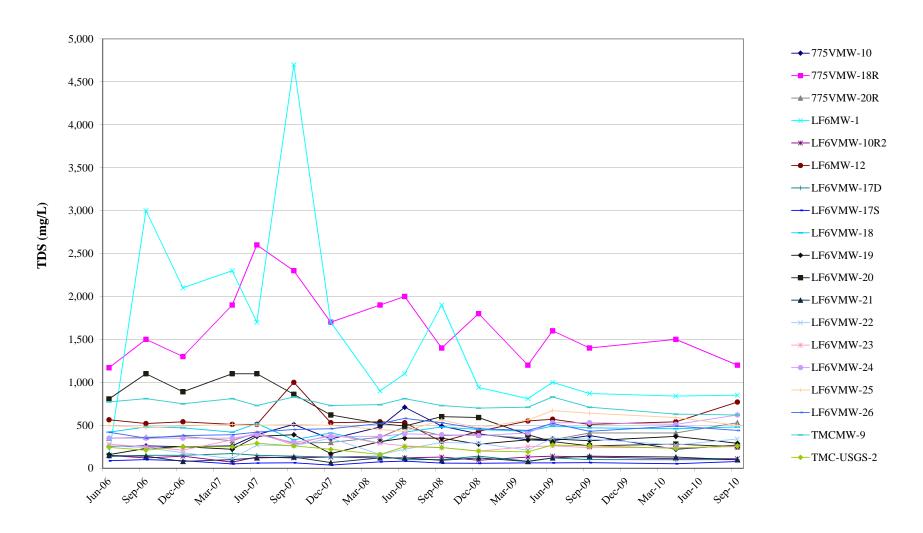
Period of Performance:

Groundwater and surface water monitoring will be conducted annually at 19 monitoring wells and three surface water locations, one wetland location and two leachate locations for landfill leachate indicators. Additionally, annual VOC analysis will be performed at monitoring wells 775VMW-10, LF6VMW-12, -23, -24, -25, -26, and TMCMW-9, surface water locations LF6SW-1, -2, -3, wetland sample LF6W-1. Alterations to the

frequency and duration of the LTM network will be conducted through the analysis of sampling data trends. Proposal to reduce the sampling frequency and/or discontinue the monitoring of a sampling location may be prompted by the indication of a decreasing trend and/or at least two consecutive rounds with COC levels below NYS Groundwater or Surface water SCGs. Proposal to increase the LTM network is detailed in the Contingencies section.

Starting in 2014, sampling will be conducted biennially at all monitoring wells and surface water locations for landfill leachate indicators. Given the low groundwater velocity, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill. As mentioned above, the groundwater flow velocity at this landfill is 37 feet per year. It will take groundwater approximately 10 years to migrate from upgradient of the landfill to the Landfill 6 toe. Additionally, sampling data from Landfill 6 has shown continued site-wide stabilization of all leachate indicators. Figure 4 shows the LF009 (TDS) concentrations trends (a landfill leachate indicator) for downgradient monitoring wells. Therefore, the recommended monitoring frequency will provide adequate warning to any potential release of COCs to the environment by the landfill.

Additionally, the CAPE team anticipates removing VOC analysis from the LF009 LTM following the 2014 sampling event. All exceedances reported during the LF009 LTM sampling are associated with Landfill 6 Chlorinated plume (SD052). The Landfill 6 Chlorinated Plume is part of the SD052 On-Base Groundwater Contamination program and is sampled semiannually. The 19 monitoring wells include 775VMW-10, -18R, -20R, LF6MW-1, -12, LF6VMW-10R2, -17D, -17S, -18, -19, -20, -21, -22, -23, -24, -25, -26, TMCMW-9 and TMC-USGS-2, the three surface water sampling locations include LF6SW-1, -2, and -3, two leachate sampling locations LF6LH-1 and -2, and wetland sample LF6W-1. Low-flow sampling will be performed at all monitoring wells except bedrock monitoring well LF1MW-103 where bailer sampling will be performed. The surface water samples and wetland sample will be collected as grab samples. These sampling methods are described in detail in the Griffiss UFP-QAPP.


Post-Period of Performance:

As a result of the stabilization/decline of contaminants at the site, we anticipate sampling will be optimized to biennial for 2016 and 2018 then every 5 years (2020, 2025, 2030, 2035, and 2040) at the 19 monitoring wells, three surface water sampling locations, and one wetland location. Samples will be analyzed for landfill leachate indicators. This sampling will be conducted in conjunction with the 5-Year Review process.

Landfill Gas Monitoring:

The proposed end point is the optimization of landfill gas monitoring.

Figure 4 LF009 TDS Concentration Trends

Sampling Round

Period of Performance:

Thirteen gas monitoring probes and 16 gas vents are monitored semiannually for methane, LEL, oxygen, and carbon dioxide. Previous landfill gas monitoring rounds show that elevated methane concentrations persist throughout the landfill, but these levels are stable. Methane is not detected at any of the POC gas monitoring probes, therefore limiting potential risk of human exposure.

Post-Period of Performance:

As a result of the stable landfill gas results, it is anticipated that monitoring will be optimized to annual.

Landfill Cover Inspections and Maintenance:

The proposed end point at this site for landfill cover maintenance is semiannual.

Period of Performance:

The current scope of quarterly landfill cover inspections and maintenance will be reduced to semiannual with annual landfill cover mowing. Previous quarterly inspections have not identified any major deficiencies that would jeopardize the integrity of the cover. The inspections indicated that vegetation growth on the landfill cap shows optimal coverage for erosion control and cover system stabilization. Spring and fall inspections are proposed as the landfills are covered by snow in the winter and by tall grasses in the summer. Additional inspections or maintenance will be performed as needed, as identified in the December 2006 Landfill 6 O&M Manual. An example of additional inspections includes the inspections of the landfill covers following a 5-Year Storm event (6 inches of rainfall within a 24-hour period).

Post-Period of Performance:

The scope of semiannual landfill inspections will be recommended for optimization following the completion of this contract. If supported by landfill conditions, the desired inspection frequency will be annual with annual reporting. It is necessary that inspections continue to ensure the integrity of landfill fencing, signage and the landfill cover.

Annual LUC/IC Inspections:

LUC/ICs, as required by the ROD, will be maintained in order to protect human health and the environment until the site is closed in 2040.

The Annual LUC/IC inspections will be conducted to confirm the implementation and performance of the LUC/ICs. All results will be reported annually in the base-wide LUC/IC Site Inspection Report.

5-Year Review:

LF009 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy. The site will also be included in the 2020, 2025, 2030, 2035, and 2040 5-Year Reviews.

6.6 <u>Contingencies</u>

Groundwater/Surface Water Monitoring:

Groundwater and surface water monitoring is anticipated to ensure that the landfill is not releasing contamination to the environment. If it is found that the landfill is indeed releasing COCs to the environment, based on an increase in landfill leachate indicator detections and concentrations, a baseline analysis will be conducted. At this site, the baseline analysis will include VOCs, metals, PCBs, and landfill leachate indicators. Additional recommendations will be made using these data.

Landfill Gas Monitoring:

Landfill gas monitoring will be performed to ensure that methane gas does not travel outside the Landfill 6 boundary. If methane gas is detected at any of the perimeter POC wells and suspected of leaving the landfill boundary there will be an increase in frequency of gas sampling events to track upward trends and migration of methane.

Landfill Cover Inspections and Maintenance:

The landfill cover inspections and maintenance will be performed to ensure landfill cover materials, site drainage structures, and on-site monitoring wells are maintained and functioning within the design standards. In the event that the integrity of any of the above mentioned criteria are compromised, inspections and/ or maintenance will be performed immediately to address any damages or flaws at the site. The landfill maintenance requirements are specified in the December 2006 Landfill 6 O&M Manual.

Annual LUC/IC Site Inspections:

The LUC/IC site inspections will be maintained at an annual frequency.

5-Year Review:

The 5-Year Review will be maintained at a 5-Year frequency.

Table 10

LF009 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater			Landfill Leachate	Water	23	Annually	If downgradient wells
LF6MW-1	460.8' – 450.8'	Upgradient well	<u>Indicators:</u>				do not exhibit
TMC-USGS-2	428.6' – 426.1'	Downgradient from landfill	Anions – SW9056				exceedances of NYS
775VMW-18R	423.7' – 413.7'	Upgradient well	Nitrogen (TKN) – 351.2				Groundwater
775VMW-20R	413.9' – 403.9'	Upgradient well	Ammonia – 350.2				Standards or Base
LF6VMW-10R2	439.2' – 429.2'	Downgradient from landfill	COD – 410.4				background levels for
LF6VMW-17S	457.18' – 447.18'	Downgradient, vertical profile	BOD – 405.1				two successive
LF6VMW-17D	422.1' – 412.1'	Downgradient, vertical profile	TOC – SW9060				monitoring events,
LF6VMW-18	411.88' – 421.88'	Downgradient, vertical profile	TDS – 160.1				evaluate monitoring
LF6VMW-19	438.95' – 428.95'	Downgradient, vertical profile	Alkalinity – 310.1				frequency and
LF6VMW-20	398.26' – 388.26'	Downgradient, vertical profile	Phenols – SW9066				number of wells.
LF6VMW-21	434.93' – 424.93'	Upgradient well	Hardness – 130.2				
LF6VMW-22	435.76' – 425.76'	Downgradient, vertical profile	Color – 110.2				
			Boron – SW6010B				
Leachate Locations							
LF6LH-1		Leachate locations					
LF6LH-2							

Table 10 (cont'd):

LF009 AOC LTM Network Summary

Sampling Locations	Screen Interval Depth (ft MSL)	Sampling Rationale	Target Analytes/ Method Numbers ¹	Matrix	# of Samples	Sampling Frequency	Evaluation Criteria
Groundwater 775VMW-10 LF6MW-12 LF6VMW-23 LF6VMW-24 LF6VMW-25 LF6VMW-9 Surface Water (TMC) LF6/TMCSW-1 LF6/TMCSW-2 LF6/TMCSW-3 Wetlands LF6W-1	427.1' - 412.1' 416.59' - 406.59' 424.57' - 414.57' 419.25' - 409.25' 416.6' - 406.6' 412.9' - 402.9' 439.16' - 429.16'	Upgradient well Downgradient from landfill Downgradient, vertical profile Downgradient, vertical profile Downgradient, vertical profile Downgradient from landfill Downgradient from landfill Potential contaminant receptor Potential contaminant receptor Potential contaminant receptor	VOCs – SW8260 Landfill Leachate Indicators: Anions – SW9056 Nitrogen (TKN) – 351.2 Ammonia – 350.2 COD – 410.4 BOD – 405.1 TOC – SW9060 TDS – 160.1 Alkalinity – 310.1 Phenols – SW9066 Hardness – 130.2 Color – 110.2 Boron – SW6010B	Water	23	Annually	If downgradient wells do not exhibit exceedances of NYS Groundwater Standards or Base background levels for two successive monitoring events, evaluate monitoring frequency and number of wells. Surface water analytes and frequency will be varied to follow groundwater program.
Gas Sampling Gas monitoring probes/vents		In accordance with 6 NYCRR 360-2.17(f)	Methane (FID/CGI)	Gas	13 probes 16 vents	Semiannual	

¹ Baseline parameters based on 6 NYCRR Part 360, Subpart 2, Appendix A.

7.0 SD031 (THREE MILE CREEK AOC)

7.1 Site Description

The TMC AOC is located in a forested area in the southern part of the former Griffiss AFB. It is bordered by the Electrical Power Substation (EPS) to the northwest, Landfills 4, 5, and 6 to the northeast, and the former Skyline Housing development to the southwest. The TMC AOC is a creek with an approximate length of 10,000 feet, a width of 10 feet and a depth ranging from 2 inches at its origination to 2 feet at the furthest downstream area near the New York State Barge Canal. The creek originates at two storm water culvert outlets located at Ellsworth Road and Wright Drive (near the EPS). Two additional smaller culverts that drain the area surrounding the EPS enter the creek slightly downstream from the two larger culverts. The creek receives both surface water runoff and groundwater from the surrounding watershed. Drainage is received from Landfills 4, 5, and 6, the Electric Power Substation and the south central part of the Base. TMC flows in a southeasterly direction and eventually flows into the NYS Barge Canal (about one mile south of the Base).

The ROD for the TMC AOC was issued by the Air Force in December 2003 and signed by the USEPA in March 2004. In addition, 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

7.2 Three Mile Creek AOC Conditions

7.2.1 Previous Investigations

Preliminary studies of TMC were performed in 1981, 1987, and 1988. Soil, sediment, surface water, groundwater, and fish tissue samples were collected. Numerous metals, PAHs, PCBs, and pesticides were detected in the streambed sediments and the fish tissue was contaminated with PCBs, some PAHs, and metals. The results of these studies led to the performance of an RI from 1993-1995.

The RI was performed to characterize the nature and extent of environmental contamination at the TMC AOC to determine whether remedial action was necessary to eliminate potential threats to human health and the environment from exposures that might arise under existing or expected future site conditions. The RI included an aquatic survey, surface water sampling, sediment sampling, and fish tissue sampling. The aquatic survey was used to evaluate creek habitat, water quality, benthic and drift macroinvertebrate communities, and fish populations within four 100-meter segments of the on-base part of the creek (one near the EPS, one near Landfill 5, one near the Thor Street residential area, and one further downstream just inside the base boundary). At approximately the same locations, sediment samples were collected for toxicity testing and fish samples were collected for pesticides, PCBs, and metals analyses. Results from the sediment toxicity tests performed as part of the aquatic survey indicated that chemicals were not present at levels acutely toxic to aquatic life. A slight impairment of benthic macroinvertebrate populations was noted at the locations near Landfill 5 and near the base boundary. The fish population assessment indicated that fish communities were in poor to fair condition which could be due to site contaminants and, in part, to the lack of quality habitat. The results of the fish tissue analysis indicated the presence of PCBs,

pesticides, and mercury at levels exceeding NYSDEC ecological risk guidelines for protection of piscivorous wildlife.

Surface water samples were collected from 12 locations along TMC and analyzed for VOCs, SVOCs, PCBs, pesticides, metals, glycols, radionuclides and water quality parameters. One VOC, 15 SVOCs, four pesticides, and seven metals were detected at concentrations above the most stringent criteria for surface water. Sediment samples were collected at two depths below the surface water/sediment interface (0.5 feet and 1.0 foot) from 15 locations, including the 12 locations along TMC and three locations along the drainage ditch near Landfill 5. The samples were analyzed for VOCs, SVOCs, pesticides, herbicides, PCBs, dioxins, metals, and radionuclides. Three VOCs, 22 SVOCs, 18 pesticides, dioxin, and ten metals were detected at concentrations above the most stringent criteria for sediment.

In 1995, NYSDEC performed passive in situ concentration/extraction sampling (PISCES) at one location in TMC to test for PCBs and other organochlorines. PCBs and 1,1-dichloro-2,2-bis(chlorophenyl)ethylene (DDE) were detected. Naturally occurring conditions such as below average rainfall and low flow in the stream may have affected the ability of PISCES to detect contaminants.

In 1997, for a separate investigation of PCB contamination associated with Landfill 5, sediment samples were collected at two depth intervals (0-0.5 feet and 1-1.5 feet) from seven locations in the Landfill 5 tributary to TMC. PCBs were detected at concentrations above the most stringent criteria.

In June 1997, as part of a basewide SI, three PISCES samples and two surface water samples were collected from TMC for pesticide and PCB analysis. Pesticides were detected in two of the PISCES samples. No contaminants were detected in the surface water.

In July 1998, additional SI samples were taken from the off-base portion of TMC to fill data gaps that had been identified in the RI sampling. These included two surface water samples and eight sediment samples. Four metals were detected in surface water samples above the most stringent criteria. Concentrations of 18 SVOCs, DDD, PCB (Aroclor 1260), and five metals detected in sediment were above the most stringent criteria.

A visual inspection of the habitat quality of TMC was conducted in 1999, by the Air Force, United States Army Corps of Engineers (USACE), NYSDEC, USEPA, and US Fish and Wildlife Service to gain a better understanding of creek conditions and the impact of potential remedial actions. In the same year, for the TMC Feasibility Study (FS), sediment samples were collected from six locations in TMC pond (located off-base between NYS Routes 365 and 49) and analyzed for PCBs, cadmium, and lead. In 2001, the same six locations in the pond were vertically profiled to depths of 3.5 feet below creek bottom to determine the vertical extent of sediment contamination and the appropriate depth for sediment remediation. Twelve additional samples were collected, two samples per location. PCBs, cadmium, and lead were all detected at concentrations exceeding the most stringent criteria.

The 2001 FS investigation also included sampling along the on-base portion of the TMC channel and the Landfill 5 tributary in order to define the vertical and lateral extent of contamination to better determine the potential breadth and depth of sediment remediation in those areas. Samples of sediment and native soil (beneath sediment) were collected at selected locations from depth intervals of up to 3.5 feet. Five VOCs, 24 SVOCs, 15 pesticides, two PCBs, dioxins, and 10 metals were detected at concentrations exceeding the most stringent criteria. While many of the same chemicals were also detected in the native soil samples, the concentrations were not as great, and fewer exceeded the most stringent criteria.

7.2.2 Record of Decision

The ROD for the TMC AOC was issued by the Air Force in December 2003 and signed by the USEPA in March 2004. Based on the previous investigations and environmental conditions at the site the selected remedy for the creek is selected excavation of contaminated sediments and LTM. The excavation included the entire length of the onbase portion of the creek, discrete and localized off-base portions of the creek, and the TMC pond. The contamination was identified to be considerably lower in the off-base portion of the creek. Therefore, excavation of the entire off-base portion was not required. For LTM, the ROD states surface water, sediment, and fish tissue samples will be analyzed in accordance with the TMC AOC LTM program following creek bed remediation and restoration.

7.2.3 Three Mile Creek AOC Remedial Action

CAPE performed a Remedial Action (RA) at TMC from summer 2004 to summer 2005. For the remedial action, excavation of contaminated sediments was conducted in the onbase and off-base portions of TMC. The TMC pond along with sixteen soil deposits was excavated to a depth of 3.5 feet below ground surface (bgs) in the off-base portion of TMC. Approximately 5,940 CY of sediment was excavated from the off-base portion of TMC. The main channel, the north channel, and the Landfill 5 tributary were excavated in the on-base portion of TMC. The design depths for the excavation ranged from 2.5 feet bgs to 4 feet bgs and approximately 29,427 CY were excavated. FPM collected two soil samples on June 29, 2005, from the TMC pond backfill, which were analyzed for VOCs, SVOCs, PCBs, pesticides, and metals. The results indicated VOCs and metals detections, none of which exceeded the Most Stringent Ecological Screening Values.

The excavated area of the creek was restored and consisted of sediment backfill, the construction of several meanders throughout the length of the creek, and the distribution of logs across the banks of the main channel to provide wildlife habitat areas and create five vernal pools and a mitigation wetland (5 acres) within the TMC floodplain.

7.2.4 Three Mile Creek AOC Long Term Monitoring

LTM at the TMC AOC consists of annual surface water and sediment sampling at sampling locations TMC-1 through -8 and fish tissue sampling and a benthic qualitative assessment performed every three years at sampling locations TMC-1 through -5. The sampling locations are illustrated in the SD031 sampling locations figure in Attachment A. Fish tissue sampling and benthic qualitative assessment is not performed at TMC-6 through -8 as these sites are upgradient potential source locations. LTM at the AOC was

98595.014

initiated in fall 2006. Surface water sampling, sediment sampling, fish tissue sampling and a benthic qualitative assessment was performed in accordance with the Final LTM work plan requirements (FPM, October 2004). Annual LTM sampling was also performed in fall 2007, fall 2008, fall 2009, and fall 2010. Only surface water and sediment samples were collected in the fall 2007, fall 2008, and fall 2010 sampling rounds. Fish tissue sampling and a benthic qualitative assessment were also performed in fall 2009 in addition to surface water and sediment sampling.

Surface water and sediment samples were analyzed for VOCs, SVOCs, metals, pesticides, and PCBs. Fish tissue samples were analyzed for cadmium, mercury, pesticides, and PCBs.

The following sections summarize the LTM sampling data.

7.2.4.1 Surface Water

VOC detections were reported in surface water samples during the 2006, 2007, 2008, and 2009 sampling events (not analyzed during the 2010 sampling event). None of these detections exceeded NYS Surface Water Standards. SVOC and metals concentrations exceeding NYS Surface Water Standards were reported during all sampling events. During data analysis, the SVOC and metals detections were determined to be indicative of basewide background conditions (identified during the RI) (reported at several sites throughout the base) or were detected within one order of magnitude of the surface water standard. Only one sampling location showed PCB or pesticide exceedances during the TMC AOC LTM sampling events. Location TMC-7 reported one PCB (Aroclor 1260) and one pesticide (dieldrin) exceedance during the fall 2007 and fall 2008 sampling events. The exceedances may be attributed to suspended solids in the sample.

All latest LTM surface water sampling results from 2010 were compared to the previous LTM surface water results and the 1993/94 RI (if applicable). Surface water results for SVOCs and pesticides are lower in concentration and in number of detected COCs than the four previous LTM rounds. Two SVOCs that were detected above NYSDEC Surface water Standards are associated with the B data qualifier. This qualifier indicates that the analyst was also detected in the associated blank. TMC-7 which showed the most SVOC exceedances during the Fall 2009 sampling round could not be sampled in 2010 due to a lack of water. TMC-6 showed the highest number of SVOC exceedances during this round which is an increase from the Fall 2009 round. This may be attributed to suspended solids or spatial variability. One pesticide, gamma-chlordane, exceedance was also detected in one surface water sampling location (TMC-6) and may be attributed to the sample containing suspended solids. No pesticides have ever been detected at this location. Additionally, it should be noted that pesticides containing these COCs are no longer used at the former Griffiss AFB.

7.2.4.2 Sediment

VOCs have not been detected at any location in all three LTM sampling rounds above the most stringent ecological screening value. SVOC and metals concentrations were detected above the most stringent ecological screening value. The SVOC and metals exceedances reported in the sampling round are indicative of basewide background conditions (identified during the RI) or were detected within one order of magnitude of

the most stringent ecological screening value. Pesticide exceedances were reported at all sampling locations. Total pesticide concentrations show a decreasing trend when the 1994 RI and LTM sampling results are compared. PCB (Aroclor 1260) has been detected at concentrations above the most stringent ecological screening value of 5 μ g/kg during all sampling rounds. Exceedances show a decreasing trend at applicable sampling locations (TMC-1, -2, -3, -6, -7, and -8) when the 1994 RI sampling round and LTM sampling rounds were compared. The PCB detections reported at the site during the LTM sediment sampling are provided in Table 1. The sediment sampling results are provided in Attachment B.

In 2010, PCB (Aroclor 1260) exceedances were reported for sampling locations TMC-1 (144 μ g/kg), -2 (71.7 μ g/kg), -3 (234 μ g/kg), -4 (339 μ g/kg), -5 (604 J μ g/kg), and -7 (28.3 μ g/kg). The most stringent ecological screening value for Aroclor 1260 is 5 μ g/kg. The highest PCB (Aroclor 1260) concentration during the fall 2010 sampling round was reported at TMC-5 (604 J μ g/kg). Sampling location TMC-5 is located downgradient of the creek that does not require remediation. Therefore, the higher concentrations may be attributed to contamination migration from the upgradient locations not part of the RA. Figure 1 shows the PCB concentrations detected in all of the sampling rounds at each sampling location. PCB concentration trend charts are also provided in Figure 5 for each sampling location with PCB detections.

Arochlor 1260 was detected at a maximum concentration of 7,500 μ g/kg (TMC-7) in the 1993/4 RI and declined to a maximum concentration of 603 J μ g/kg (TMC-5) in the fall 2010 sampling round. The maximum detection was 304 μ g/kg (TMC-4) in the fall 2009 sampling round, 433 μ g/kg (TMC-4) in the fall 2008 round, 116 μ g/kg (TMC-5) in the fall 2007 round, and 570 μ g/kg (TMC-4) in the fall 2006 round. The COC variations are likely due to spatial variability. However, the general trend is declining from the 1993/4 RI to the fall 2010 results by an order of magnitude. The PCB concentrations are provided in Table 11.

Given the data trends from the RI and LTM data, the RA was effective in removing a majority of the PCB contamination in the TMC sediments.

7.2.4.3 Fish Tissue

Pesticide, PCB, and metals detections were reported in fish tissue samples at all of the sampling locations (TMC-1, -2, -3, -4, and -5). All locations had at least one fish sample with a PCB or pesticide concentration above the NYSDEC piscivorous wildlife criteria. At sampling locations 1, 4, and 5, PCB concentrations were detected above the NYSDOH Fish Advisory Guidelines (locations 1, 4, and 5 also showed elevated PCB exceedances in the sediment samples). The TMC AOC 2004/2005 RA was not required along the entire length of the creek. It is likely that the fish sampled lived in the stretch of the creek that does not require remediation because TMC is dammed near the Barge Canal making it impossible for new fish to migrate into the creek.

In the on-base portion of the creek that required remediation, LTM fish tissue sampling data has shown a decrease in PCB levels compared to the RI results at locations TMC-1, -2, and -3. These three locations are similar to sampling locations sampled during the RI (TMCFS-1, -2, and -3). Detected PCBs concentrations ranged from 0.028-32.5 ppm

during the RI. In the 2006 sampling event, total detected PCB concentrations ranged from 0.25-2.89 ppm and from 0.58-4.3 ppm in the 2009 sampling event.

It should also be noted that the number and size of fish collected during the 2006 and 2009 sampling events show an increasing trend compared to the RI results. During the RI, a total of 456 fish were collected from these three locations ranging in length from 33-179 millimeters (mm). In the 2006 sampling event, 319 fish were collected from these locations ranging from 45-225 mm and 759 fish were collected at these three locations ranging from 47-251 mm in the 2009 sampling event. The small decrease in number of fish collected from the RI to the 2006 sampling event may be a result of the 2004/2005 RA displacing fish in this section of the creek.

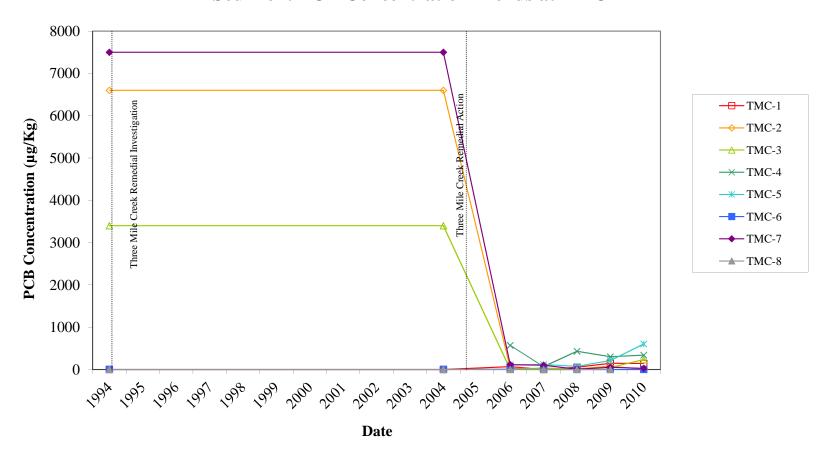
Additional fish tissue samples will be required to identify any trends. The PCB detections reported at the site during the LTM fish tissue sampling are provided in Table 12.

Table 11
PCB (Aroclor 1260) Detections (µg/kg) in Sediment Samples

Sampling	Sampling Round					
Location	RI Results (1994)	2006	2007	2008	2009	2010
TMC-1	NA	66.5	U	51.2	146	144
TMC-2	6,600	28.5 F	16.7	13.2 F	84	71.7
TMC-3	3,400	U	38.1	3.76 F	47.5	234
TMC-4	NA	570	67.1	433	304	339
TMC-5	NA	111	116	74.6	211	604 J
TMC-6	U	U	8.75 F	U	U	U
TMC-7	7,500	115	101	7.97 F	54.7	28.3
TMC-8	U	U	U	U	NS	NS

Notes:

U = not detected.


F = The analyte was detected above the MDL but below the RL.

J =The analyte was an estimation.

NA = not available.

NS = not sampled

Figure 5
Sediment PCB Concentration Trends at TMC

Note: Sampling Locations TMC-4 and TMC-5 were not sampled during the 1993/94 RI.

Table 12
Fall 2006 Fish Sampling PCB (sum of congeners) Results at TMC

Sampling Location	TMC-1	<u>TMC-2</u>	<u>TMC-3</u>	<u>TMC-4</u>	<u>TMC-5</u>
Range of PCB Detections (μg/kg)	<u>902 –</u> <u>2,890</u>	<u>250 –</u> <u>1,370</u>	<u>998.7 –</u> <u>1,858.13</u>	<u>1,628.91 –</u> <u>5,192.56</u>	<u>1,700 –</u> <u>2,576.91</u>
Exceedances above NYSDEC Piscivorous Wildlife Criteria	7	<u>10</u>	<u>5</u>	<u>5</u>	<u>6</u>
Exceedances above NYSDOH Fish Advisory Guidelines	<u>1</u>	<u>0</u>	<u>0</u>	<u>3</u>	4

The fish tissue sampling result trends for PCBs are illustrated in Figure 6.

7.2.4.4 Benthic Qualitative Assessment

The results of the benthic qualitative assessments conducted in 2006 and 2009 showed that the creek was slightly-to-moderately impacted according to the NYSDEC Biomonitoring Unit protocol for slow and sandy streams. Since there is sandy substrate and slow water flow in portions of the creek, TMC is considered a poor habitat for benthic macroinvertebrates. Therefore, the slightly-to-moderately impacted classification may be due to the poor habitat and not chemical conditions in surface water or sediment.

7.3 Regulatory Drivers

SD031 is regulated under the CERCLA of 1980, as amended, and NCP. NYSDEC piscivorous wildlife criteria and NYSDOH Fish Advisory Guidelines are used for fish tissue sampling results and NYSDEC most stringent ecological screening values are used for sediment sampling results. NYSDEC Class C Surface Water Standards. The site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

7.4 Proposed Outcome

The proposed outcome for this site is Site Closure.

7.5 Pathways to Achieve Proposed Outcome

7.5.1 Pathway to Proposed Outcome

The pathway to the proposed outcome is to demonstrate the stabilization/decline of site contamination, the effectiveness of the remedial action, and the absence of source site impact. Monitoring will continue at SD031 through annual sediment sampling at seven sampling locations and fish tissue at five sampling locations. Fish tissue sampling will be conducted in 2012 and 2015. The LTM schedule is provided in Table 13 and the LTM sampling summary is provided in Table 14.

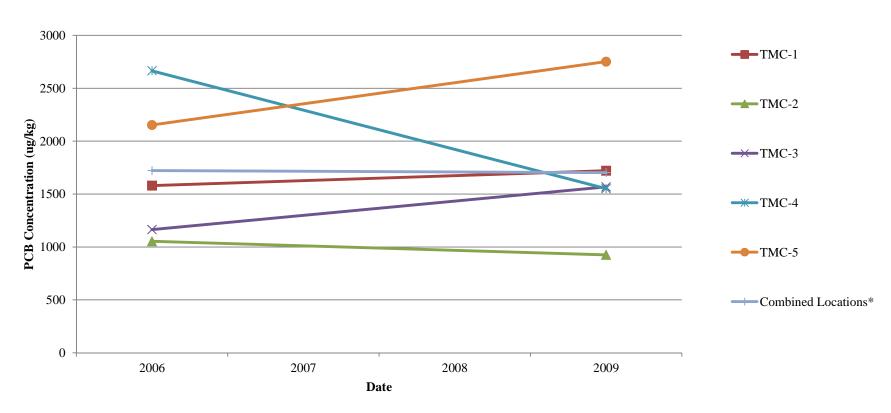
Additionally, continued source control will be conducted through the monitoring of potential source sites which include LF007 (Landfill 5), LF009 (Landfill 6), and SD052 (Landfill 6 TCE Plume). The remedies have been implemented at all of these sites.

Table 13
SD031 LTM Schedule

Period of Performance							
Years	Activity	Performance					
2011	Sediment Sampling	4 th Quarter (October 2011)					
2012	Benthic Qualitative assessment	3 rd Quarter (August 2012)					
2012	Sediment Sampling and Fish Tissue Sampling	4 th Quarter (October 2012)					
2013	Sediment Sampling	4 th Quarter (October 2013)					
2014	Sediment Sampling	4 th Quarter (October 2014)					
	Benthic Qualitative assessment	2 nd Quarter (June 2015)					
2015	Sediment Sampling and Fish Tissue Sampling	3 rd Quarter (July 2015)					
	Closure Report	3 rd Quarter (August 2015)					

7.5.2 Metric Development: Proposed End Point, Metrics, and Approach

The following details the approach and rationale of sediment sampling, fish tissue sampling and benthic qualitative assessment. The rationale for discontinuing surface water is also provided below.


Sediment Monitoring:

Annual sediment sampling for PCBs, SVOCs, and pesticides analysis will be conducted at seven sampling locations (TMC-1, -2, -3, -4, -5, -6, and -7). PCBs, SVOCs, and pesticides have been reported in the sediment above the most stringent ecological screening criteria. However, previous LTM data shows that the RA has significantly reduced the chemical of concern concentrations by over two orders of magnitude. Additionally, data shows that the RA goal of reducing PCB concentrations to 1 ppm or less throughout the creek has been achieved. The continued sediment sampling will be conducted to demonstrate the reduction and stabilization of sediment contaminants.

Fish Tissue Sampling:

Fish tissue sampling is proposed at five sampling locations in 2012 and 2015. Fish samples will be analyzed for pesticides, PCBs, mercury, cadmium, and % lipids. The 2006 and 2009 fish tissue sampling results showed pesticide, PCBs, and metals above NYSDEC piscivorous wildlife criteria. Additionally, tissue samples from three sampling locations (TMC-1, -4, and -5) showed PCB levels above NYSDOH fish advisory guidelines.

Figure 6
Fish Tissue PCB Concentrations at TMC

Note

^{* =} The combined locations line refers to the average concentrations for all sampling locations per event.

The COC concentrations in fish tissue are stable and it is anticipated that the PCB concentrations in the fish tissue will decline over time in lockstep with the PCB concentrations decline in the creek sediments. However, since PCBs are persistent chemicals, the PCB concentrations in the sediment are expected to decline over a prolonged period of time (decades). Additionally, TMC is a closed system with no entry or exit way for fish to migrate in and out of the creek. Therefore, since levels are expected to be stable for decades, with no change in fish population due to a lack of fish migration opportunities, the PCB levels in the fish tissue are expected to decline slowly over a decade long period. Since all remediation actions have been successfully completed, closure of the site will be recommended following the 2015 sampling round after COC stability has been shown.

Benthic Qualitative Assessment:

Benthic Qualitative assessments will be conducted in 2012 and 2015. The assessments of fall 2006 and fall 2009 showed an impaired habitat, possibly due to the sandy substrates and low flow at the creek and not chemical conditions in the surface water and sediment. The additional benthic qualitative assessments will be used to track trends in the ecological community and water quality at the creek.

Surface Water Monitoring:

Surface water sampling is proposed to be discontinued since the source of any surface water contamination has been confirmed to be a result of the contaminated suspended solids from sediments. Additionally, TMC surface water is proposed for sampling in the LF007 (Landfill 5) and LF009 (Landfill 6) LTM networks. It is anticipated that any potential contamination in the creek will be identified through these source area LTM networks.

5-Year Review:

SD031 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy and assess the proposed closure of the site.

7.6 Contingencies

Following this POP, if it is found that COCs at the creek increase or the ecological community does not continue to improve or if site closure is not approved, additional monitoring will be performed to evaluate the protectiveness of the selected remedy. The CAPE team will recommend monitoring every 5 years in conjunction with the 5-Year Review during the post POP years.

Table 14
SD031 AOC LTM Network Summary

Sampling Locations	Sampling Rationale	Sample Medium/ Target Analytes/ Method Numbers	Sampling Frequency	Evaluation Criteria/ Modification Justification
TMC-1	Upstream, northern fork	Sediment	Annually for sediment.	Sediment and fish will be sampled
TMC-2	Downstream of Landfill 5 tributary	SVOCs/SW8270,		annually to track COC
		Pesticides/SW8081,		concentrations.
TMC-3	Downstream of Landfill 5, cross	PCBs/SW8082,		
	gradient of Landfill 6	Mercury/SW7471		Benthic qualitative assessments
TMC-4	Downstream of Base Boundary			will be conducted to track trends
TMC-5	In TMC Pond	Fish	Every Three Years for	in water quality and the ecological
		Cadmium/SW6010,	fish tissue sampling and	community.
		Mercury/SW7471,	benthic qualitative	
		Pesticides/SW8081,	assessments	
		PCBs/SW8082,		
		% lipid.		
TMC-6	Upstream, southern fork	Sediment	Annually for sediment.	Sediment is sampled annually to
TMC-7	Landfill 5 tributary	SVOCs/SW8270,		track COC concentrations.
		Pesticides/SW8081,		
		PCBs/SW8082,		
		Mercury/SW7471		

8.0 SD032 (SIX MILE CREEK AOC)

8.1 <u>Site Description</u>

SMC is a natural stream bordered by wetlands and enters the base from the north. The creek is approximately 8 feet wide and 1.5 feet deep prior to entering the base and approximately 20 feet wide and 4 feet deep after leaving the former base. The on-base portion of the creek is approximately 8,400 feet long, split in an upper and lower section, plus an additional 7,200 feet within the runway culvert separating both sections. The creek continues off base for approximately 2 miles, ultimately flowing into the NYS Barge Canal.

Surface water runoff from Landfills 1, 2/3, and 7, the Weapon Storage Area (WSA), WSA Landfill, runway, on-base shops, and Rainbow Creek flows to the creek. Leachate from the same landfills also seeps into the creek. However, recent and historical data show that concentrations are below or within one order of magnitude of the NYS Surface water Standards. Portions of the base storm water system discharge to the on-base lower portion of the creek. During operation, the base storm water system also received rinse water and washdown, which may have contained oils, solvents, and fuels from various base facilities.

SMC has been classified as a NYSDEC Class C stream. According to the New York Code of Rules and Regulations (NYCRR) 701, the best usage for Class C stream waters is fishing, where waters shall be suitable for fish propagation and survival. Based on an Aquatic Habitat Assessment, at least 12 species of fish are found in SMC.

The ROD for SMC AOC was signed by the USEPA on March 26, 2004 and LTM was initiated in October 2004. In addition, 5-Year Reviews were conducted in 2005 and 2010. Both 5-Year Reviews indicated that the selected remedy is protective of human health and the environment.

8.2 Six Mile Creek AOC Conditions

8.2.1 Previous Investigations

Preliminary studies of SMC were performed in 1981 and 1988. Soil, sediment, and fish tissue samples were collected. Numerous metals and polynuclear aromatic hydrocarbons (PAHs) were detected in the sediments. Several metals and polychlorinated biphenyls (PCBs) were detected in the fish tissue samples at levels below the Food and Drug Administration (FDA) action level of 2.0 ppm but above the 0.1 ppm level representing risk to piscivorous wildlife. The results of these studies led to the performance of an RI in 1994 and 1995.

The RI was performed to evaluate the nature and extent of environmental contamination at the site and to determine whether RA was necessary to eliminate potential threats to human health and the environment from exposures that might arise under existing or expected future site conditions. The RI included an aquatic survey that evaluated creek habitat, water quality, benthic and drift macroinvertebrate communities, and fish populations at three stations along the northern section of the creek (SMC-FS1, SMC-FS2, and SMC-FS3, similar in location to location SMC-1 and -2). At approximately the same three locations, sediment samples were collected for toxicity testing and fish

samples were collected for pesticides, PCBs, and metals analyses. Results from the sediment toxicity tests performed as part of the aquatic survey indicated that chemicals were not present at levels acutely toxic to aquatic life; however, the benthic macroinvertebrate community at one station was classified as slightly impaired.

During the RI, surface water samples were collected over several rounds of sampling from 21 locations: 14 from SMC, one at the AFFF lagoon, three in the Mohawk River, and three in the Barge Canal. Two VOCs, 14 SVOCs, four pesticides, six metals, cyanide, and sulfide were detected at concentrations above the most stringent criteria for surface water. Sediment samples were collected at two depths below the surface water/sediment interface from the same 21 locations. Three VOCs, 18 SVOCs, 20 pesticides, one PCB and six metals were detected at concentrations above the most stringent criteria for sediment.

In 1995, the NYSDEC conducted a benthic macroinvertebrate community analysis for SMC just downstream of the former AFB's boundary at the Route 365 bridge. Due to a significantly impacted benthic macroinvertebrate community, the water quality was assessed as being moderately impacted. Fish population data indicated that fish communities were generally in fair condition and whole-body fish tissue concentrations indicated that PCBs, pesticides and mercury were present at levels exceeding NYSDEC ecological risk guidelines. The PCB concentrations in fish tissue also exceeded the previously mentioned FDA action level.

Also in 1995, NYSDEC performed passive in situ concentration/extraction sampling (PISCES) on the lower portion of SMC to test for PCBs and other organochlorines. No contaminants were detected. However, naturally occurring conditions, such as below average rainfall and low flow in the stream, may have affected the ability of PISCES samplers to detect contaminants.

As part of a basewide SI performed in June 1997, one water sample was collected from a storm sewer manhole located within the SMC culverted section, and two surface water samples were collected from the storm sewer outfalls at the headwaters of Rainbow Creek. No contaminants were detected in these water samples. In addition, ten PISCES samples were collected for pesticides and PCBs analyses from SMC, two from unnamed tributaries to the creek, and one from the Rainbow Creek Tributary. No PCBs were detected. The levels of pesticides found in Rainbow Creek and downstream in SMC were higher than in the upper portion of SMC and the other tributaries. There are no screening criteria for PISCES samples.

In July 1998, additional SI samples were collected, primarily from off-Base locations, to fill data gaps that had been identified in the RI sampling. These included two surface water samples and 12 sediment samples. Three metals were detected above the most stringent criteria for surface water. Ten SVOCs, PCBs, dioxins/furans, and two metals were above the most stringent criteria for sediment.

In July 1999, the habitat quality of the creek was visually inspected by AFRPA, USACE, NYSDEC, USEPA, and U.S. Fish and Wildlife Service (USFWS). A brief walkover of the on-Base portion revealed the presence of orange floc (iron oxide) at a few locations above and below the culvert. This was attributed to the presence of leachate seeps with

extensive orange floc upstream at Landfill 1. A more extensive walkover of the off-Base portion of the creek revealed an aquatic habitat of relatively high quality. The surrounding habitat is also of high quality for plants and wildlife, including extensive areas of forest, shrub, and emergent wetlands. The presence of cloudiness and some orange floc in the water column was observed. The floc is probably due to leachate seepage from Landfill 1. However, it should be noted that high concentrations of iron were observed in background conditions (E&E, July 2003).

8.2.2 Record of Decision

The ROD for the SMC AOC was issued by the Air Force in December 2003 and signed by the USEPA in March 26, 2004. Based on the previous investigations and environmental conditions at the site, the selected remedy is Source Control at sites potentially discharging to SMC and LTM of the SMC AOC, stated in the ROD.

8.2.3 Six Mile Creek AOC Long Term Monitoring

LTM at the SMC AOC was initiated in October 2004 and consisted of annual surface water and sediment sampling at twelve sampling locations (SMC-1 through -12) and fish tissue sampling and a benthic qualitative assessment is conducted every three years at 5 sampling locations (SMC-1 through -5). These locations are illustrated in the SMC AOC sampling location figure in Attachment A. Surface water sampling, sediment sampling, fish tissue sampling and a benthic qualitative assessment was performed in fall 2004 and fall 2007. Surface water and sediment sampling was also conducted in fall 2005 and fall 2006.

As recommended in the fall 2007 LTM Report, only SMC-1, -2, -4, -5, and -11 were sampled in 2008 and 2009. Seven locations were removed as a result of little to no contamination reported at the sites over four consecutive sampling rounds. During these events, surface water and sediment sampling was conducted.

In fall 2010, surface water samples, sediment samples, fish tissue samples, and benthic qualitative assessments were conducted at sampling locations SMC-1, -4, and -5. A benthic qualitative assessment was also conducted at SMC-2. No sediment samples were collected here due to the absence of contamination and surface water sampling is conducted under the Landfill 1 LTM network. Sampling location SMC-11 was removed from the LTM network following the installation of the Rainbow Creek culvert.

8.2.3.1 Surface Water:

Results from annual surface water sampling conducted between 2004 and 2010 showed VOC, SVOC, and metals concentrations above NYS Surface water Standards. One VOC (benzene) exceedance was present at two sampling locations, SMC-4 and -5. However, benzene concentrations have not been detected above the NYS Surface water Standards at these locations since 2008. The historical exceedances were attributed to the Apron 2 Petroleum Spill Site, which is upgradient of the creek and currently undergoing active remediation through horizontal biosparging. The benzene detections reported at the site during the LTM surface water sampling are provided in Table 15. The NYS Surface Water Standard for benzene is 1 $\mu g/L$.

 $\label{eq:Table 15} Table \ 15$ Benzene Detections (µg/L) in Surface Water Samples at SMC

Sampling Round	SMC-4	SMC-5
2004	5.8	3.8
2005	2.1	3
2006	5.98	3.61
2007	3.38	2.01
2008	2.53	1.21
2009	0.78	0.67
2010	U	U

Notes:

U = not detected

F = the analyte was reported above the MDL but below the RL.

NS = not sampled.

X = exceedance of NYS Surface Water Standard.

Samples from several locations have reported SVOC and metals concentrations above NYS Surface Water Standards. However, concentrations were within one order of magnitude of the NYS Surface Water Standards or attributed to background conditions. There were no PCB or pesticide exceedances reported in any of the sampling events.

8.2.3.2 Sediment

Results from annual sediment sampling conducted between 2004 and 2010 showed SVOC, metals, pesticides, and PCBs concentrations above the NYSDEC's most stringent ecological screening values. Sediment sampling results are provided in Attachment B. The following summarizes the latest LTM sampling results (fall 2010).

- ▲ Up to eight SVOC detections were reported at all three sampling locations, but concentrations did not exceed the most stringent ecological screening values. Additionally, two of the SVOCs detected at each location were also detected in the associated blank.
- No pesticides were detected in any of the three locations.
- One PCB detection was reported: Aroclor 1254 exceeded the most stringent ecological screening value (15.96 μg/kg) at sampling location SMC-5 (50.2 μg/kg). No PCBs detections were reported from sampling locations SMCs -1 and -4. The most stringent ecological screening value for Aroclor 1248 and 1254 is 15.96 μg/kg. The most stringent ecological screening value for Aroclor 1260 is 5 μg/kg.

PCB exceedances observed during LTM sampling show a decreasing trend compared to the 1994 RI sampling round, at applicable sampling locations (SMCs -1, -4, and -5). However, there is no discernable trend among the seven LTM rounds. The PCB detections reported at SMC-4 and -5 during the LTM sediment sampling are provided in Table 16. The PCB results trends for SMCs -4 and -5 are illustrated in Figure 7.

Table 16
PCB Detections (μg/kg) in Sediment Samples at SMC

Sampling	PCB		SamplingRound					
Locations	Locations (Aroclor)	2004	2005	2006	2007	2008	2009	2010
SMC-4	1248	54	9.9 F	U	U	U	U	U
	1254	61	52	67.1	120 J	14.5 F	72.7	U
	1260	19 F	U	U	U	U	U	U
SMC-5	1248	U	U	U	U	U	U	U
	1254	24 F	U	U	92.6	U	U	50.2
	1260	U	U	19.4 F	U	U	U	U

Notes:

U = not detected

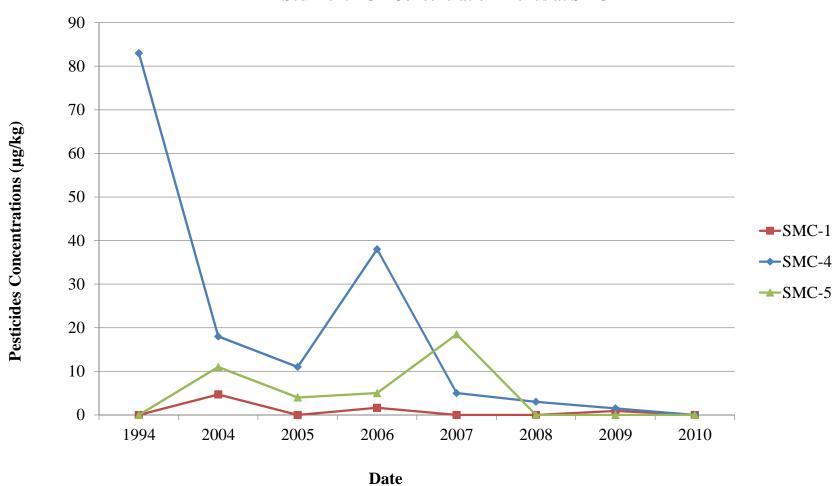
F = the analyte was reported above the MDL but below the RL.

J = the analyte was detected, the quantitation is an estimate.

X = exceedance of screening value.

8.2.3.3 Fish Tissue

During the 2004 LTM event, fish tissue sampling was conducted at sampling locations SMC-1, -2, -3, -4, and -5. Results showed PCB detections at all sampling locations, including SMC-1 which is the upgradient location. PCB exceedances of the NYSDEC piscivorous wildlife criteria were reported at sampling locations SMC-4 and -5. However, the concentrations were not above the NYS Department of Health Fish Advisory Guidelines.


Sampling locations SMC-3, -4, and -5 were sampled in 2007. Results showed PCB detections at all sampling locations. PCB exceedances of the NYSDEC piscivorous wildlife criteria were reported at sampling locations SMC-4 and -5. However, the concentrations were not above the NYS Department of Health Fish Advisory Guidelines.

Fish sampling was again conducted at SMC-1, -4, and -5 in 2010. No fish samples could be collected at SMC-2 due to the beaver pond. The samples from SMC-1, -4 and -5 were analyzed whole for ecological evaluation. No exceedances were reported in fish tissue samples at SMC-1, but one PCB (aroclor 1254) was detected. This location is upstream of all former Griffiss AFB source sites. PCB exceedances of the NYSDEC piscivorous wildlife criteria were reported at sampling locations SMC-4 and -5. However, the concentrations were not above the NYS Department of Health Fish Advisory Guidelines.

Fish Tissue Sampling Summary

The range of total PCB concentrations from the 2010 sampling round was lower than the total PCB concentration ranges from both the 2004 and 2007 sampling rounds. The sediment sample at this location did not show any PCB detections during the 2010 sampling round. The fish tissue sampling result trends for PCBs are illustrated in Figure 8.

Figure 7
Sediment PCB Concentration Trends at SMC

8.2.3.4 Benthic Qualitative Assessment

Benthic Qualitative Assessments were conducted at locations SMC-1, -2, -3, -4, and -5 in 2004, at SMC-2, -3, -4, and -5 in 2007, and at SMC-1, -2, -4, and -5 in 2010. Results from 2010 showed an improvement in water quality impacts in the creek at sampling locations SMC-1, -4, and -5. The water quality at SMC-1 and -5 was non-impacted in the 2010 sampling round. SMC-1 was slightly impacted in 2004 (not sampled in 2007) and SMC-5 was slightly impacted in 2004 and 2007. Both locations have ideal macro invertebrate habitat including a rocky substrate with faster water flow rates.

The water quality at SMC-4 was slightly impacted during the 2010 sampling round. This location was moderately impacted during the 2004 and 2007. Only 36 specimens could be collected using the kick sampling method at this location. However, the number of specimens collected has increased from the 2007 sampling round when only 26 specimens were collected. Additionally, only 84 specimens were collected at SMC-4 in 2004. Therefore, given the substrate and overall habitat of the sampling location, the low yield is not believed to be attributed to water quality but poor habitat. The water quality at SMC-2 remained similar when compared to previous sampling events (moderate). This location had sandy substrate and is downgradient of Landfill 1. At this location, a beaver dam has been constructed generating slow water flow rates. The sample was collected upstream of the pond in a narrower and shallower portion of the creek. The slow water flow rates can contribute to lower oxygen rates in the water and a less favorable benthic habitat.

8.3 Regulatory Drivers

SD032 is regulated under the CERCLA of 1980, as amended, and the NCP. The site activities are conducted under the supervision and recommendations of the USEPA, Region II and NYSDEC.

8.4 **Proposed Outcome**

The proposed outcome for this site is Site Closure.

8.5 Pathways to Achieve Proposed Outcome

8.5.1 Pathway to Proposed Outcome

The pathway to the proposed outcome at SD032 is additional annual sediment monitoring to show that the site COCs have stabilized or have declined. In addition, benthic qualitative assessments will be conducted in 2012 and 2014.

Monitoring will continue at SD032 through annual sediment sampling at two sampling locations. Benthic qualitative assessment will be conducted at one location The LTM schedule is provided in Table 17 and the LTM sampling summary is provided in Table 18.

Additionally, continued source control will be conducted through the monitoring of potential source sites which include LF001 (Landfill 1), LF002 (Landfill 2/3), LF003 (Landfill 7), Apron 2, SD052 (Landfill 6 TCE Plume) and AOC-9. The remedies have been implemented at all of these sites.

Table 17

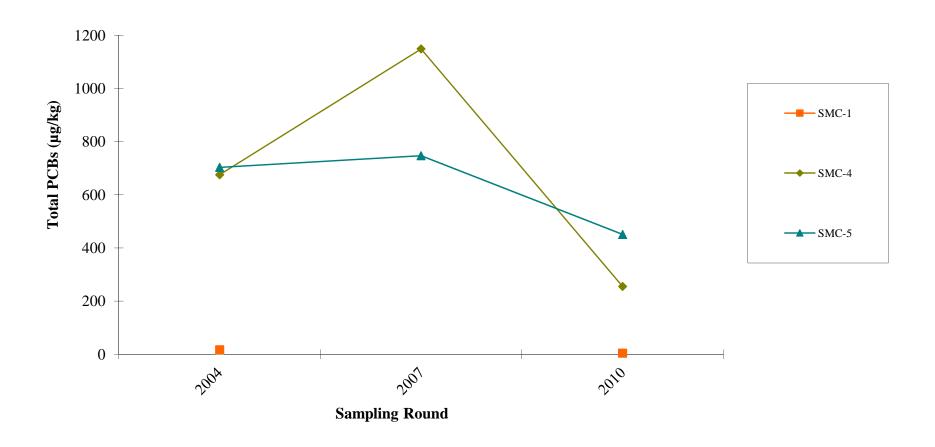
SD032 LTM Schedule

Period of Performance						
Years	Activity	Performance				
2011	Sediment Sampling	4 th Quarter (October 2011)				
2012	Benthic Qualitative assessment	2 nd Quarter (June 2012)				
	Sediment Sampling	4 th Quarter (October 2012)				
2013	Sediment Sampling	4 th Quarter (October 2013)				
2014	Benthic Qualitative assessment	2 nd Quarter (June 2014)				
	Sediment Sampling	4 th Quarter (October 2014)				
2015	Sediment Sampling	3 rd Quarter (July 2015)				
	Closure Report	3 rd Quarter (August 2015)				

8.5.2 Metric Development: Proposed End Point, Metrics, and Approach Sediment Monitoring:

Sediment sampling will be conducted in SMC at two sampling locations for PCBs (SMC-4 and -5). SMC-4 and -5 are located downgradient of the Rainbow creek culvert.

Previous sampling results shows that sediment contamination is limited to sampling locations down-gradient of Rainbow Creek (SMC-4 and -5). Due to the completion of the culvert in Rainbow Creek in 2009, we expect to see a decreasing trend in PCB detections as the potential for contaminated sediment migration has been eliminated.


SVOC and pesticide will be discontinued from the LTM network as previous exceedances are declining and within one order of magnitude of the most stringent ecological values or indicative of background conditions. Additionally, it should be noted that pesticides containing these COCs are no longer used at the former Griffiss AFB.

Fish Tissue Sampling:

The CAPE team proposes to discontinue fish tissue sampling at SD032. LTM data from 2004, 2007, and 2010 has shown that contaminant concentrations are below NYSDOH Fish Advisory Guidelines and less than one order of magnitude of the NYSDEC piscivorous wildlife criteria. Additionally, the sampling data shows a declining trend throughout the site.

In evaluating the necessity of fish tissue sampling at SD032, additional fish sampling data from waterways in Rome, New York were reviewed using the NYSDEC's fish contamination database. Fish tissue sampling from the Mohawk River (above Rome) and

Figure 8
Fish Tissue PCB Concentration Trends at SMC

Barge Canal (below Rome) showed PCB detections in the fish. The average PCB concentrations at both sampling locations ranged from 30-70 $\mu g/kg$. PCBs were also detected in SMC-1, the upgradient location in the SD032 LTM network. The fish tissue results showed PCBs up to 40 $\mu g/kg$ at this location. This location is isolated from the lower section of SMC and former Griffiss AFB source locations by the SMC culvert. The fish tissue sampling results from the upgradient location at SMC and the two independent locations shows that PCBs are present in previously thought un-impacted waterways. It has been demonstrated that fish in the lower section of SMC have been impacted as a result of the PCB contamination at Rainbow Creek; these results are still within an order of magnitude of regional results.

With fish tissue sampling, a large number of fish are removed. During the 2010, several mature brown trout were used for samples, thus potentially impacting the reproduction success of trout in this portion of the creek. Therefore, removal of the fish tissue sampling is also recommended to promote the continued recovery and fish diversity of the creek.

Benthic Qualitative Assessment:

Benthic qualitative assessment will be conducted at SMC-5 to provide a continued habitat assessment as contamination declines. Assessments will be conducted in 2012 and 2013. Previous assessments at this location have shown non-impacted water quality. The assessment at SMC-5 will serve as an indicator of water quality at the lower section of the creek.

5-Year Review:

SD032 will be included in the 2015 5-Year Review to evaluate the protectiveness of the remedy and assess the proposed closure of the site.

8.6 <u>Contingencies</u>

Additional LTM at SD032 will be conducted to ensure that the selected remedy is protective of human health and the environment. If it is found that COCs at the creek increase or the ecological community does not continue to improve, additional monitoring will be performed to evaluate the protectiveness of the selected remedy. Monitoring will continue on an annual basis.

If the COCs do show stable/decreasing trends; however, site closure is not approved. The CAPE team will recommend monitoring every 5 years in conjunction with the 5-Year Review.

Table 18
SD032 AOC LTM Network Summary

Sampling Locations	Sampling Rationale	Target Analytes/ Method Numbers	Sampling Frequency	Evaluation Criteria/ Modification Justification
SMC-4	Downgradient of former PCB source	Sediments PCBs/SW8082	Annually for sediment.	Sediment samples at SMC-4 to monitor potential downgradient contamination trends.
SMC-5	Downgradient of former PCB source		Annually for sediment Benthic Qualitative Assessment in 2012 and 2014	be sampled to monitor potential downgradient contamination

9.0 **SS060 (BUILDING 35 AOC)**

9.1 <u>Site Description</u>

Building 35 was located in the southeast-central section of the base (Figure 1-2), near an area that was used for outside storage of drums and scrap material during the 1940s. An unknown quantity of drums and transformers were also stored in this area during the late 1960s and 1970s. Site closure was a requirement under the Building 35 Resource Conservation and Recovery Act (RCRA) Hazardous Waste Storage permit and the closure activities were performed in the late 1990s (OHM Remediation Services Corporation [OHM], July 1997).

The former Hazardous Waste Storage Area (HWSA) was located in the southwest corner of Building 35 and was approximately 30-by-50 feet in area. Although a hazardous waste inventory is not available for the area, the area was assumed to contain waste associated with aircraft maintenance activities such as corrosion control painting, degreasing, and routine engine, wheel and tire services. There is no record of any spills at the HWSA.

The former PCB storage area was located in the northwest corner of Building 35 and occupied an approximate area of 37 by 46 feet. Inspection reports indicate that PCB items were stored in the area since at least 1985. Also, a spill in the PCB area was recorded on October 25, 1991, when approximately one quart of transformer oil leaked from a damaged terminal onto part of a wooden pallet and a 2-inch-diameter spot on the concrete floor. The oil was tested and was reported below 5 ppm PCBs. Base records also report a small PCB spill on March 16, 1995, which reportedly happened when a PCB-containing transformer was moved from the containment area within Building 35. The spill area, approximately 20 square feet, was properly remediated.

9.2 Current Conditions

Closure activities for the HWSA and PCB areas in association with RCRA NYSDEC Permit #6-3-13-00063/00020-0 were conducted by OHM in 1996 in accordance with Closure Plans approved by the NYSDEC in 1995. The Closure Plans were designed to ensure that the Building 35 storage areas would require no further maintenance after clean closure, and threats to human health and the environment would be minimized or eliminated. The closure activities included the collection of pre-closure wipe samples from each storage area and surface soil samples (0-1 feet bgs) from the outside perimeter of the building. Twelve surface soil samples were analyzed for PCBs, and all twelve samples indicated elevated concentrations of PCBs above the recommended action level of 1 ppm (OHM, July 1997).

A remedial action was conducted in 1997 to demolish Building 35, excavate, transport, and dispose of PCB-contaminated soil and debris, and backfill the area with clean soil after analysis of confirmation samples. After initial soil excavation, 82 confirmatory samples were collected, where 27 out of 68 grids had exceedances. Three additional rounds of soil excavation occurred; where in total 130 confirmatory samples were collected. Confirmatory samples were compared to state recommended cleanup levels, where values were taken from the NYSDEC Technical and Administrative Guidance Memorandum 4046. All values are reported in Table 3.1-2 Building 35 Area Confirmatory Sample Results Summary of Positive Hits and Validation Qualifiers, Appendix E of the Closeout Report Interim Remedial Action Building 35 Area (IT, May

1999). Approximately 24,414 tons of PCB-contaminated soil/concrete was removed during the excavation. An estimated 20,078 tons were disposed of offsite as non-hazardous soil/concrete, and 4,336 tons as hazardous soil.

Two groundwater monitoring rounds were conducted in May and July 1998, when samples were submitted for PCBs, VOCs, SVOCs, pesticides, and metals analyses. Results indicated two VOCs – vinyl chloride and total 1,2-DCE (including both the cis and trans isomers) – at levels above NYS Class GA Groundwater Standards in B035MW-4; total 1,2-DCE only was reported above the NYS Groundwater Standard in B035MW-3 (8 μ g/L). Concentrations were reported up to 6 μ g/L and 42 μ g/L for vinyl chloride and 1,2-DCE, respectively, both in B035MW-4. No PCBs were reported above the detection limit during either sampling round (1 μ g/L [2 μ g/L for arochlor-1221 only] for May 1998 and 0.06 μ g/L for July 1998) (OHM, April 2000).

In accordance with the closure requirements under the RCRA Permit for Building 35, threats to human health and the environment have been minimized or eliminated (i.e., source areas have been removed). The Air Force plans to monitor, under the On-Base Groundwater Contamination AOC, residual groundwater contamination for the COCs on an annual basis with a joint review by NYSDEC, USEPA, and the Air Force Real Property Agency (AFRPA) after 5 years; this intention was approved by NYSDEC in a letter dated December 8, 1999 (OHM, April 2000). The site was included in the 5-Year Review which was issued in 2010 (FPM, September 2010).

Groundwater Remediation:

Based on LTM sampling results, direct injection was performed at the site in efforts to remediate COCs. The purpose of the direct injection activities is to degrade and remediate the chlorinated hydrocarbon plume at the site. Hydrogen Release Compound (HRC®) releases lactic acid for fermentation by microorganisms producing hydrogen as an electron donor. Hydrogen then degrades chlorinated hydrocarbons. HRC® was injected in December 2005 at the Building 35 AOC in a 50-foot wall with 5 injection points. HRC® was injected from 10-20 ft bgs at a rate of 8 pounds of product per foot. HRC® was injected in August 2006 at the Building 35 AOC in two 50-foot walls with 5 injection points. HRC® was injected from 10-20 feet bgs at a rate of 8 pounds of product per foot. Newman Zone® was injected in December 2008 in monitoring well B035MW-4 at the Building 35 AOC site. Newman Zone® releases emulsified vegetable oil for fermentation by microorganisms producing hydrogen as an electron donor. Hydrogen then degrades chlorinated hydrocarbons. One thousand pounds of product were injected. The injections were recommended as part of the LTM reports, including August 2005 Groundwater Monitoring Report (FPM, August 2005) for the December 2005 injection, August 2006 Groundwater Monitoring Report (FPM, August 2006) for the August 2006 injection, and May 2008 Groundwater Monitoring Report (FPM, May 2008) for the December 2008 injection. The injection activities were summarized in the previous Onbase Groundwater AOCs Monitoring Report (August 2006, August 2007, and August 2009, respectively).

Groundwater Monitoring:

Monitoring well B035MW-4 was the only well sampled in the April 2010 sampling round. Analyses were performed for chlorinated ethenes only for VOCs, and alkalinity, chloride, nitrate, sulfate, and TOC for groundwater chemistry.

The VOC results indicated two exceedances as oppose to past sampling rounds which indicated one exceedance. The two exceedances included cis-1,2-DCE at 13.1 μ g/L and vinyl chloride (VC) at 3.03 μ g/L. The VOC results indicated detections similar to past sampling rounds of perchloroethene (PCE) , trichloroethene (TCE), and trans-1,2-DCE which were all below their respective NYSDEC Class GA Groundwater Standards (Attachment B). Groundwater chemistry results indicated an increase in chloride concentration from 73 mg/L in March 2009 to 96 mg/L in April 2010, sulfate also increased from 2.7 mg/L in March 2009 to 11 mg/L in April 2010, and TOC decreased from 8.2 mg/L in March 2009 to 1.9 mg/L in April 2010. The TOC, VC, and cis-1,2-DCE concentrations are trended in Figure 9.

Land Use Controls/Institutional Controls:

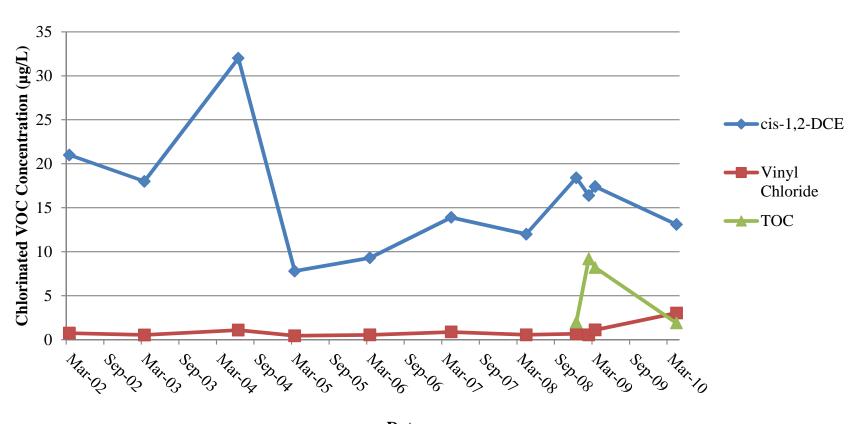
The Griffiss Land Use Controls/Institutional Control (LUC/IC) Site inspection program, which included SS060 was implemented in 2006. This site is inspected annually with annual reporting. No violations have been reported at this site.

9.3 Regulatory Drivers

SS060 is regulated under the Griffiss CERCLA On-Base Groundwater Program. The site activities are conducted under the supervision and recommendations of the NYSDEC and USEPA.

9.4 **Proposed Outcome**

The proposed outcome for this site is site closure with restrictions following the 2012 sampling event.


9.5 Pathways to Achieve Proposed Outcome

9.5.1 Pathway to Proposed Outcome

The pathway to the proposed outcome at SS060 is additional vegetable oil emulsion injection and annual groundwater monitoring to support site closure with restricted use.

A vegetable oil emulsion injection will be performed around contaminated well B035MW-1. Monitoring will continue at B035MW-1 for two annual sampling rounds. The remediation/ LTM schedule is provided in Table 19 and the LTM sampling summary is provided in Table 20.

Figure 9 SS060 cis-1,2-DCE, Vinyl Chloride, and TOC Concentration Trends

Date

Table 19
SS060 Remediation and LTM Schedule

	Period of Performanc	e
Years	Activity	Performance
2011	Monitoring	2 nd Quarter (June 2011)
2011	Remediation	3 rd Quarter (July 2011)
	Monitoring	2 nd Quarter (June 2012)
2012	Closure Report	1 st Quarter (January 2013)
	Well Abandonment	2 nd Quarter (April 2013)

9.5.2 Metric Development: Proposed End Point, Metrics, and Approach Groundwater Injection:

A vegetable oil emulsion injection (Newman Zone® injection) will be conducted at B035MW-4 following the next groundwater sampling event. Approximately 1,800 pounds of vegetable oil will be sheared into an emulsion with a shear pump and heated groundwater and then injected into a 25 ft grid surrounding monitoring well B035MW-4. The sampling data following the injection is anticipated to confirm that VOC concentrations are declining and that the vegetable oil emulsion injection is effectively boosting site contamination remediation.

Groundwater monitoring following the 2009 Newman Zone® injection has shown that the injection has had an effect on the chlorinated ethene concentrations at the Building 35 AOC site. This is demonstrated by the decrease in cis-1,2-DCE concentration ultimately leading to the increase in the daughter compound VC. Currently, the TOC dissolved in the groundwater is limiting the degradation of cis-1,2-DCE. However, the TOC levels are declining.

The additional vegetable oil emulsion injection will further decrease TOC levels and enhance the degradation of chlorinated solvents in the aquifer.

Groundwater Monitoring:

Groundwater monitoring will be conducted at one monitoring well (B035MW-4) for two additional annual groundwater monitoring events. Samples will be analyzed for chlorinated VOCs (AFCEE QAPP 4.0 List) using EPA Method SW8260 and groundwater characteristics. The LTM sampling summary is provided in Table 2.

Site Closure:

As mentioned in Section 2, this site was closed under RCRA in 1999. In the 1999 Completion Report recommended the following LUC/ICs to be incorporated in the deed for this site.

▲ The deed will state that within the site boundary, the owner or operator will restrict the relocation of the contaminated soils below 1 foot of the surface from being placed outside the site boundaries. If the contaminated soil below 1 foot of

98595.014

the surface is to be excavated, it must remain on site, stay covered if stockpiled, and covered by a minimum of 1 foot of clean fill once it is returned to the ground.

- A The deed will prohibit the development and use of the property for residential housing, elementary and secondary schools, childcare facilities and playgrounds unless prior approval is received from the Air Force, USEPA, and NYSDEC.
- The deed will prohibit the extraction, utilization, or consumption of any water from the aquifer below the surface of the ground unless the water has been tested and found to meet all applicable standards and such owner obtains the prior written approval from the NYSDOH.
- A The deed will include a covenant that the aquifer will not be used in any way that could spread or exacerbate environmental contamination or open exposure pathways to humans or the environment.

Therefore, SS060 cannot be closed with unrestricted use. Following one addition injection and two groundwater monitoring events, site closure with restricted use will be proposed. Given the current site conditions and proposed actions, site closure will be protective of human health and the environment with continued LUC/IC maintenance.

Monitoring Well Abandonment:

Following the approved closure of the site, all four remaining monitoring wells (B035MW-1, -2, -3, and -4) will be decommissioned. The wells will be decommissioned using NYSDEC approved decommissioning techniques.

Land Use Control/Institutional Controls:

LUC/ICs have been inspected at this site since 2006. These inspections will continue during this POP.

9.6 Contingencies

Potential risks at the site include the increase in chlorinated VOC concentrations. However, it has been determined that all contaminants sources have been removed from the site so an increase appears unlikely. Additional monitoring and vegetable oil emulsion injection will be conducted if declining trends are not confirmed after the 2012 sampling event.

Table 20 SS060 AOC LTM Network Summary

Sampling Locations	Sampling Rationale	Target Analytes / Method Numbers	Sampling Frequency	Evaluation Criteria / Modification Justification
B035MW-4	Downgradient of potential	<u>VOCs</u> – SW8260	Annual	Continue to verify the cis-
	source			1,2- DCE attenuation.
		Groundwater Chemistry -		Analysis for VOCs
		Alkalinity–SM2320B,		(chlorinated ethenes short
		Chloride - SW9056		list only) will occur
		Nitrate – SW9056,		annually, after which the
		Sulfate – SW9056, and		results will be evaluated to
		TOC – SW9060.		assess future monitoring
				frequency.

10.0 SUSTAINABLE PRACTICES

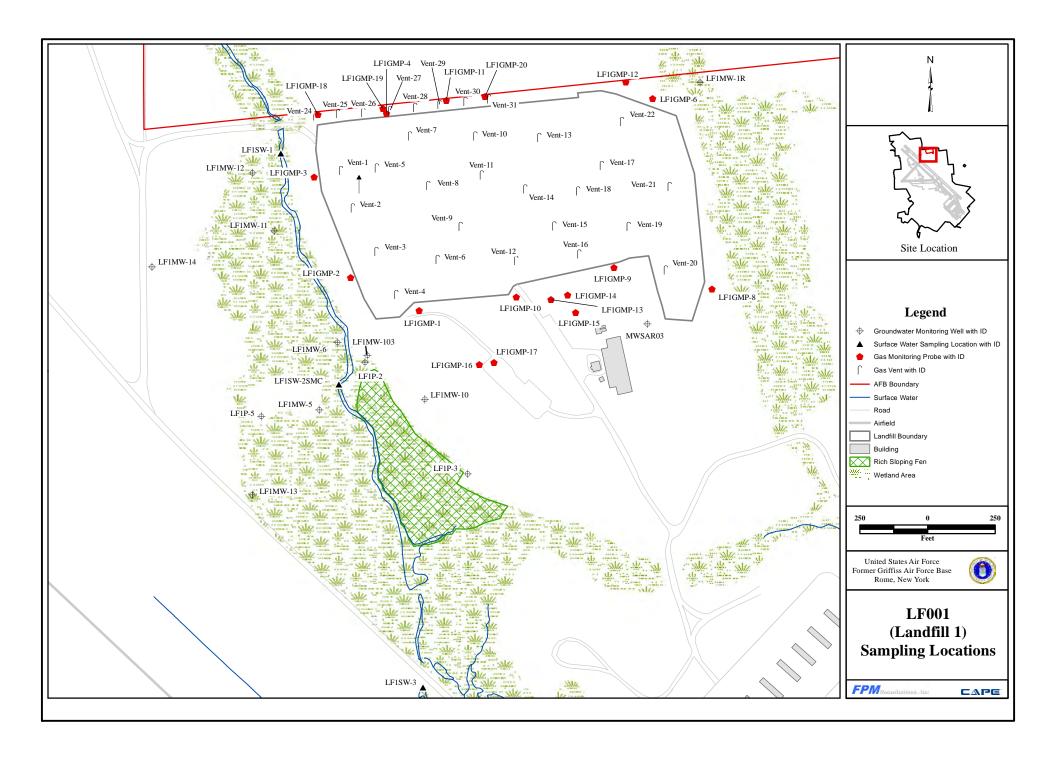
The majority of personnel are on site (FPM) thus reducing mobilization and demobilization time for system O&M, monitoring, and annual LUC/IC inspections which decreases fuel consumption and thus carbon emissions. Optimization of the LTM networks will also reduce fuel consumption as field requirements will be decreased. In addition, CAPE's team will produce the annual LTM Reports, LUC/IC Site Inspection Reports, the 2015 5-Year Review, and Site Closure Reports while minimizing paper usage by including all appendices on compact discs.

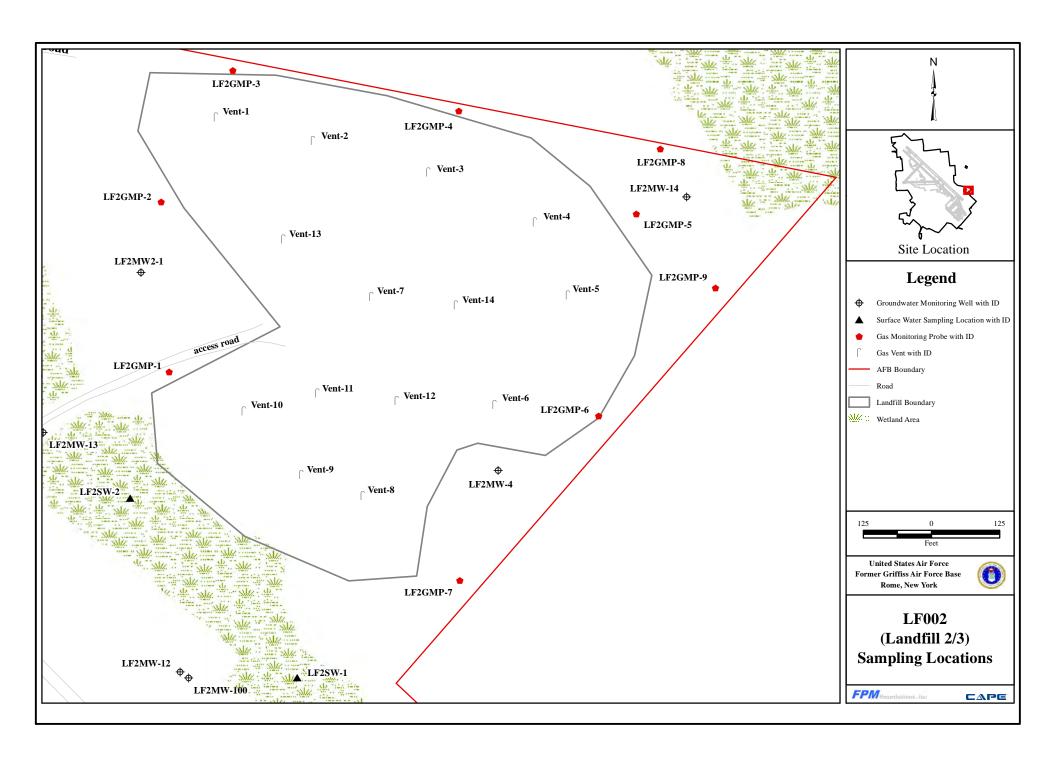
98595.014

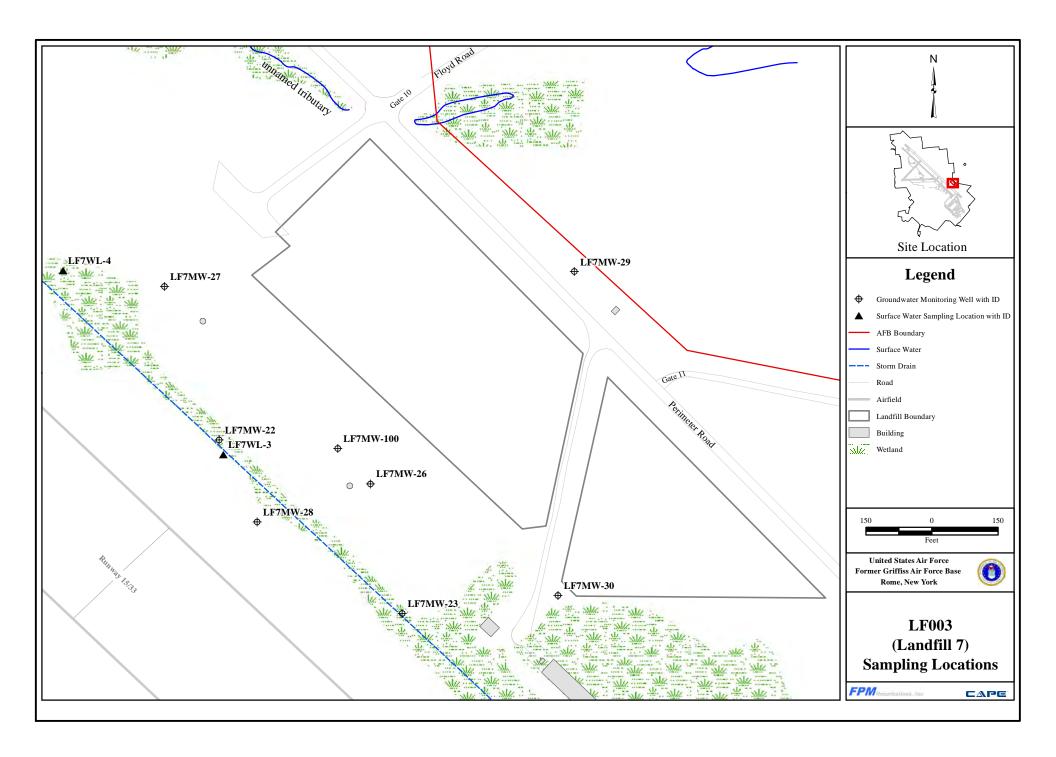
11.0 REFERENCES

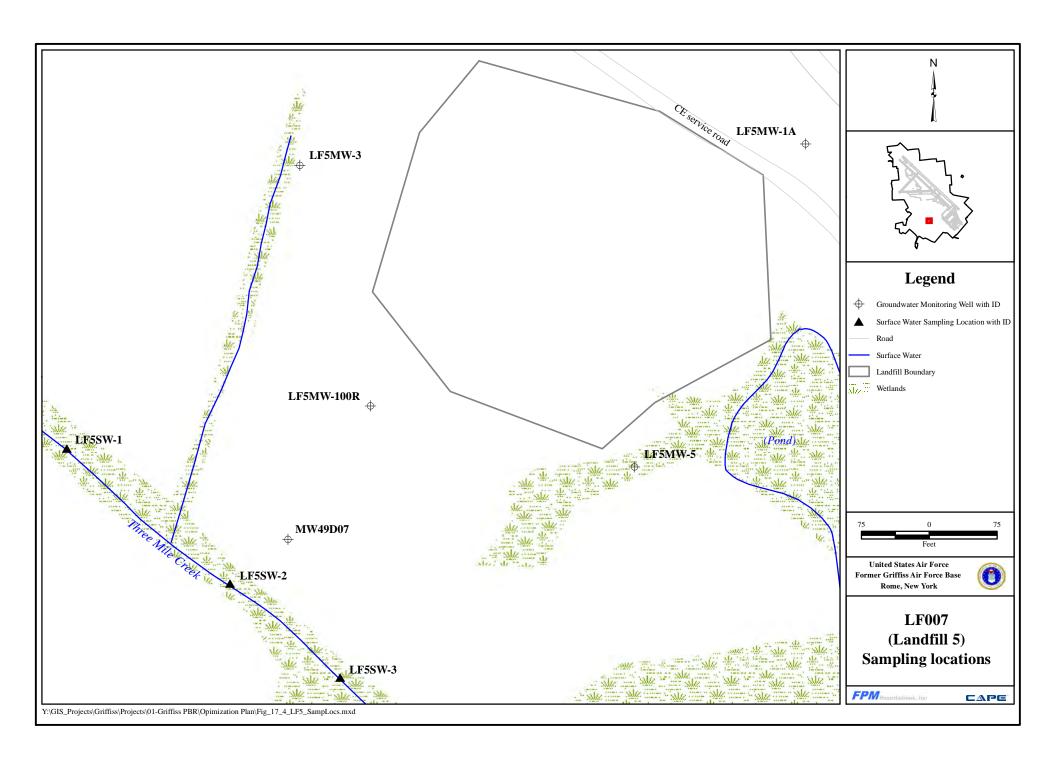
- AFRPA, Report of Implementation of Remedial Actions at the Landfill 6 AOC at the Former Griffiss Air Force Base, September 2008.
- AFRPA, Report of Implementation of Remedial Actions at the Landfill 1 AOC at the Former Griffiss Air Force Base, September 2009.
- Conti Environmental, Inc. and EA Engineering, *Landfill 7 Cover Improvements Closure Plan*, March 2002.
- Conti Environmental, Inc. and EA Engineering, *Landfill 2/3 Cover Improvements Closure Plan*, March 2002.
- Conti Environmental, Inc. and EA Engineering, *Landfill 5 Cover Improvements Closure Plan*, July 2002.
- Conti Environmental, Inc. and EA Engineering, Landfill 1 Cover Improvements Closure Plan, October 2002.
- Conti Environmental, Inc. and EA Engineering, *Landfill 5 Cover Improvements, Engineer's Certification Report*, May 2003.
- Conti Environmental, Inc. and EA Engineering, Landfill 5 Cover Improvements, Post-Closure Operations and Maintenance Manual, September 2003.
- Conti Environmental, Inc. and EA Engineering, *Landfill 6 Cover Improvements Closure Plan*, March 2004.
- Conti Environmental, Inc. and EA Engineering, *Landfill 7 Post-Closure Operations & Maintenance Manual*, May 2004.
- Conti Environmental, Inc., *Landfill 1 Cover Improvements, Engineer's Certification Report*, February 2005.
- Conti Environmental, Inc., Landfill 1, Landfill Gas Summary Report, March 2006.
- Conti Environmental, Inc., Landfill 1 Post-Closure Operations & Maintenance Manual Addendum, May 2006.
- Conti Environmental, Inc., Landfill 1 Cover Improvements, Engineer's Certification Report Addendum, September 2006.
- Conti Environmental, Inc., Landfill 6 Cover Improvements, Engineer's Certification Report, January 2007.
- Ecology and Environment, Inc, Final Record of Decision for the Landfill 1 Area of Concern at the Former Griffiss Air Force Base, Rome, NY, February 2000.

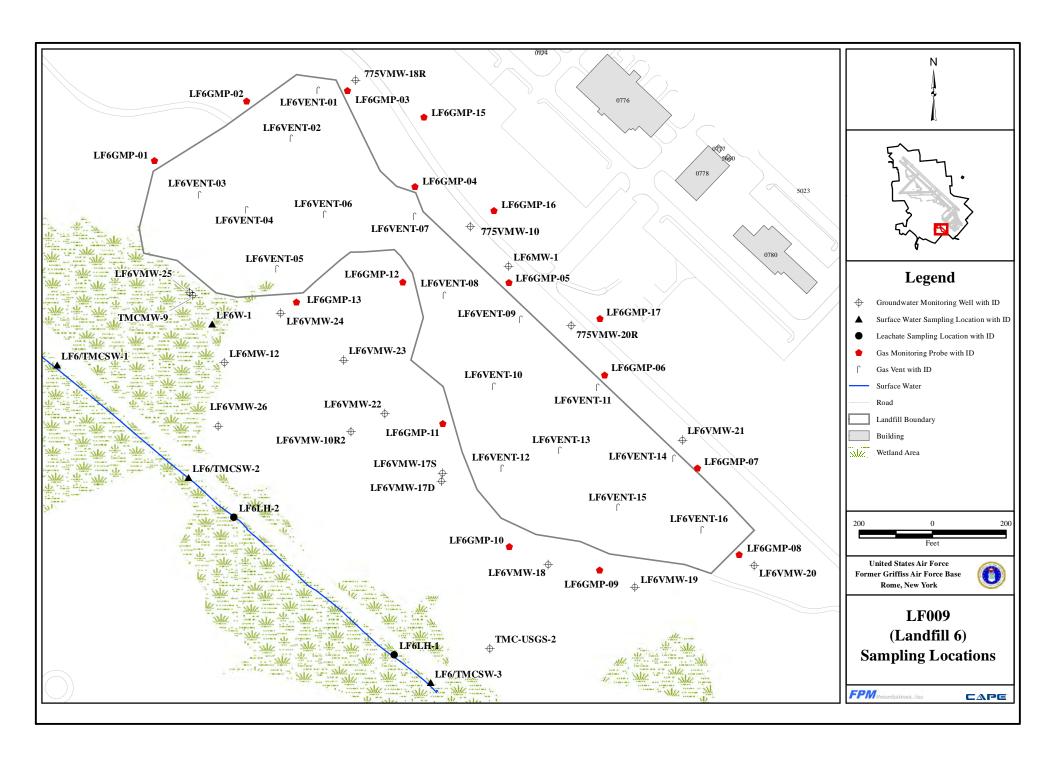
- Ecology and Environment, Inc, Final Record of Decision for the Landfill 2/3 Area of Concern at the Former Griffiss Air Force Base, Rome, NY, February 2000.
- Ecology and Environment, Inc, Final Record of Decision for the Landfill 7 Area of Concern at the Former Griffiss Air Force Base, Rome, NY, February 2000.
- Ecology and Environment, Inc, Final Record of Decision for the Landfill 5 Area of Concern at the Former Griffiss Air Force Base, Rome, NY, March 2000.
- Ecology and Environment, Inc, Final Record of Decision for the Landfill 6 Area of Concern at the Former Griffiss Air Force Base, Rome, NY, February 2001.
- Ecology and Environment, Inc, Final Three Mile Creek Feasibility Study Addendum at the Former Griffiss Air Force Base, Rome, NY, July 2002.
- Ecology and Environment, Inc, Final Record of Decision for Three Mile Creek Area of Concern at the Former Griffiss Air Force Base, Rome, NY, December 2003.
- Ecology and Environment, Inc, Final Record of Decision for Six Mile Creek Area of Concern at the Former Griffiss Air Force Base, Rome, NY, December 2003.
- FPM Group, Ltd., Final Long-term Monitoring Work Plan, Landfill 7 Area of Concern, Rev 2.0, March 2002.
- FPM Group, Ltd., Final Long-term Monitoring Work Plan, Landfill 5 Area of Concern, Rev 2.0, July 2002.
- FPM Group, Ltd., Final Long-term Monitoring Work Plan, Landfill 2/3 Area of Concern, Rev 2.1, August 2002.
- FPM Group, Ltd., Final Long-term Monitoring Work Plan, Landfill 1 Area of Concern, Rev 3.0, October 2002.
- FPM Group, Ltd., Long-term Monitoring Work Plan for Landfill 6 Area of Concern, Former Griffiss Air Force Base, Rome, NY, February 2004.
- FPM Group, Ltd., *Draft Long-Term Monitoring Report for Landfills AOCs*, Revision 0.0, July 2004.
- FPM Group, Ltd., Final Long-term Monitoring Work Plan for Three Mile Creek and Six Mile Creek Areas of Concern, Revision 0.0, October 2004.
- FPM Group, Ltd., Fall 2004 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 0.0, July 2005.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 0.0, August 2005.

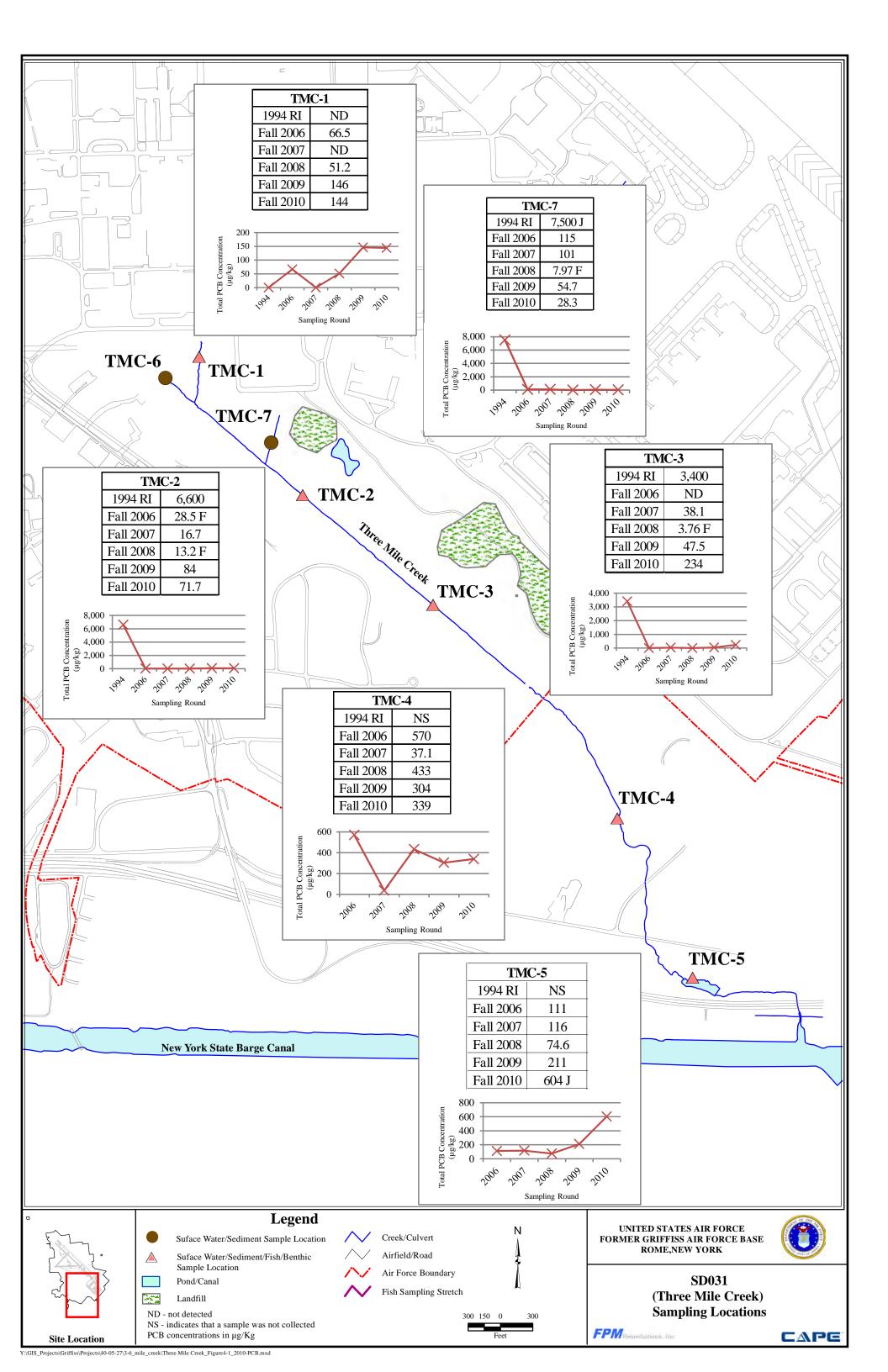

98595.014

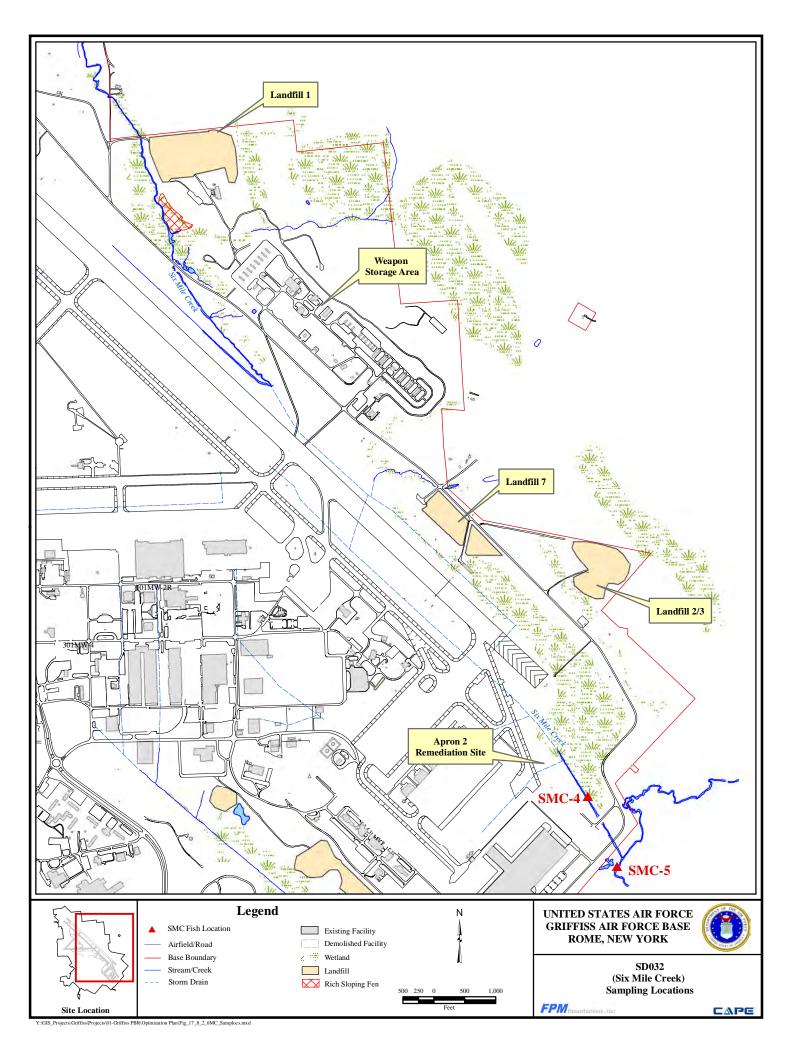

- FPM Group, Ltd., *Final 5-Year Review for the former Griffiss Air Force Base, Revision 2.2*, September 2005.
- FPM Group, Ltd., Fall 2005 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 0.0, May 2006.
- FPM Group, Ltd., Final Evaluation Report, Landfill 1 Groundwater/Leachate Collection Trench, Revision 1.0, January 2007.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 0.0, June 2007.
- FPM Group Ltd., Fall 2006 Annual Long-Term Monitoring Report for Three Mile Creek Area of Concern at the former Griffiss Air Force Base, Revision 1.0, October 2007.
- FPM Group, Ltd., Fall 2006 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 1.0, October 2007.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 1.0, April 2008.
- FPM Group, Ltd., Fall 2007 Annual Long-Term Monitoring Report for Three Mile Creek, Revision 1.0, October 2008.
- FPM Group Ltd., Final Performance Monitoring Work Plan (PM WP), On-Base Groundwater Remediation, On-Base Areas of Concern, Former Griffiss Air Force Base, Rome, New York, September 2008.
- FPM Group, Ltd., Fall 2007 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 0.0, October 2008.
- FPM Group, Ltd., Fall 2008 Annual Long-Term Monitoring Report for Three Mile Creek, Revision 1.0, August 2009.
- FPM Group, Ltd., Fall 2008 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 1.0, August 2009.
- FPM Group Ltd., Spring 2009 Quarterly Report for Performance Monitoring, On-Base Groundwater Remediation, On-Base Areas of Concern, Former Griffiss Air Force Base, Rome, New York, August 2009.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 1.0, November 2010.
- FPM Group, Ltd., Fall 2009 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 1.0, April 2010.


- FPM Group, Ltd., Fall 2009 Annual Long-Term Monitoring Report for Three Mile Creek, Revision 1.0, April 2010.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 0.0, January 2011.
- FPM Group, Ltd., Long Term Monitoring Report, Landfills Areas of Concern, Revision 0.0, March 2011.
- FPM Group, Ltd., Fall 2010 Annual Long-Term Monitoring Report for Three Mile Creek, Revision 0.0, March 2011.
- FPM Group, Ltd., Fall 2010 Annual Long-Term Monitoring Report for Six Mile Creek, Revision 0.0, March 2011.
- NYSDEC Division of Water Technical and Operational Guidance Series, *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, June 1998.
- NYSDEC Division of Fish, Wildlife, and Marine Resources, *Technical Guidance for Screening Contaminated Sediments*, January 1999.


Attachment A


Long Term Monitoring Sampling Location Figures





Attachment B

Long Term Monitoring Results

Landfill 1 AOC Groundwater Analytical Results

Location of Well									LF1MV	W-5					
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/16/2004	12/14/2004	4/5/2005	6/22/2005	9/9/2005	12/21/2005	3/17/2006	6/19/2006	9/15/2006	12/18/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M0526AA	LF1M0526BA	LF1M0526CA	LF1M0526DA	LF1M0526EA	LF1M0526FA	LF1M0526GA	LF1M0526HA	LF1M0526IA	LF1M0526JA	LF1M0526KA	LF1M0526LA	LF1M0526MA
Depth to Water (ft)			3.07	2.67	3.29	3.11	2.96	3.17	4.28	4.98	3.61	3.20	3.65	2.28	3.05
VOCs (µg/L)														,	
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	0.24 F	0.22 F	0.31 F	0.3 F	0.25 F	0.24 F	0.28 F	0.33 F	U	U	U	0.24 F	0.170 F
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	20	20	23	31	8.7	1.1	1.3	U	0.35 F	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	UJ
1,3,5-trimethylbenzene	5*	1	7.6	7.4	6.2	6.3	1.2	0.3 F	U	0.49 F	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	1.7	1.5	1.6	1.6	U	0.86	0.82	0.87	0.79	0.76	0.53	0.65 F	0.59
acetone	50	10	1.3 F	U	U	U	U	U	U	U	U	U	1.5 F	U	U
benzene	1	0.1	1.5	2.2	3.6	3.7	2.3	1.6	3.0	3.5	2.2	1.9	2.0	2.3	1.13
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	2.2	2.8	3.6	3.6	2.3	1.4	2.3	2.7	1.8	1.7	1.8	2.02	1.12
chloroethane	5*	1	U	0.2 F	0.27 F	0.25 F	0.33 F	0.25 F	0.32 F	U	U	U	0.2 F	U	0.120 F
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	0.23 F	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	0.24 F	0.26 F	U	0.38 F	0.3 F	0.25 F	0.31 F	0.41 F	U	U	U	0.26 F	U
dichlorodifluoromethane	5*	1	U	0.44 F	0.4 F	0.37 F	0.34 F	U	0.36 F	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	0.39 F	U	0.51 F	0.51 F	U	U	0.28 F	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	0.22 F	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	8.8	3.2	19	18	1.6 F	0.42 F	1.6 F	U	U	U	U	U	U
naphthalene	10	1	0.29 F	0.29 F	0.41 F	0.35 F	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	0.27 F	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	0.36 F	0.39 F	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	0.61 F	U	0.59 F	U	0.29 F	U	0.32 F	0.36 F	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	0.24 F	0.25 F	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	0.180 F
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	0.24 F	0.25 F	0.3 F	0.37 F	0.33 F	U	0.39 F	0.7 F	0.32 F	0.34 F	U	0.25 F	0.160 F
Total VOCs (µg/L)			45.11	38.76	60.66	67.37	17.94	6.42	11.73	9.36	5.46	4.7	6.03	5.72	3.28
Pesticides (µg/L)			T	1		1		1	1	T	1				1
No pesticides reported.									1						
PCBs (µg/L)			T	1		1		1	1	T	1				1
No PCBs reported.															1

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-5								 1
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/16/2004	12/14/2004	4/5/2005	6/22/2005	9/9/2005	12/21/2005	3/17/2006	6/19	/2006	9/15/	/2006	12/18	8/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M0526AA	LF1M0526BA	LF1M0526CA	LF1M0526DA	LF1M0526EA	LF1M0526FA	LF1M0526GA	LF1M0526HA	LF1M0526IA	LF1M0526JA	LF1M(LF1M0			0526MA
Depth to Water (ft)			3.07	2.67	3.29	3.11	2.96	3.17	4.28	4.98	3.61	3.20	3.	65	2.	28	3.	.05
Metals (μg/L) [Dissolved / Total] ¹		<u>'</u>																
aluminum	2,000	200	U	39 F	U	68.6 F	U	U	U	U	U	U	94.1 F	35.7 F	U	48.6 F	U	U
antimony	3	50	U	U	U	U	U	U	U	4.1 F	U	U	U	U	U	U	U	1.9 F
arsenic	25	30	4.8 F	18.9 F	8.4 F	9.2 F	4.3 F	U	9.2 F	5.2 F	U	U	4.3 F	8.7 F	7.41 F	6.46 F	U	4.3 F
barium	1,000	50	67.2	72.2	69.1	69.5	52.9	54	49.6 F	43.3 F	52.2	57.6	49.5 F	58.8	61.9	60.8	52	54
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	134	NA	NA	NA	NA	98.3	NA	NA	NA	99.2	U	97.7	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	136,000	138,000	135,000	133,000	114,000	113,000	99,900	93,400	108,000	121,000	111,000	118,000	121,000	120,000	120,000	130,000
chromium	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.7 F	U
cobalt		60	5.6 F	6 F	6 F	6.4 F	4.3 F	4.6 F	4.4 F	4.4 F	4.6 F	5 F	4.1 F	4.3 F	U	U	U	U
copper	200	10	2.0 F	U	1.8 F	U	U	U	U	U	U	U	U	U	U	U	2.2 F	U
iron	300	200	6,610	12,700	12,400	13,600	2,360	4,820	9,210	4,880	6,040	7,570	5,420	10,400	9,160	8,720	1,600	3,000
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	11,700	11,500	11,100	11,600	9,390	9,290	8,160	7,740	9,100	10,000	9,290	9,860	9,930	9,830	10,000	10,000
manganese	300	10	3,700	3,750	3,770	4,070	3,270	3,240	2,770	2,550	2,930	3,390	3,060	3,260	3,360	3,350	3,300	3,300
molybdenum		15	U	U	U	U	U	U	U	U	U	U	1.3 F	2.2 F	U	U	U	U
nickel	100	20	3.1 F	2.9 F	2.6 F	2.1 F	1.6 F	2.2 F	2.7 F	3.4 F	2.7 F	1.8 F	U	2.1 F	1.61 F	1.48 F	2.1 F	2.3 F
potassium		1,000	8,370	6,570	6,000	6,560	5,930	6,000	4,820	4,940	5,680	5,840	4,890	5,220	5,320	5,250	5,800	5,900
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.9 F
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	24,900	21,200	19,400	18,600	16,000	15,400	13,600	14,300	13,100	13,000	11,400	12,400	12,700	12,500	13,000	13,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	10.4 F	U	U	U	U	U	U	U	4.4 F	U	U	3.7 F	23.8 B	70.4 B	6.2 F	6.3 F
Leachate Indicators (mg/L)	<u>'</u>						!	!	!				•			1		
alkalinity, Total		10	450	423	380	416	380	373	354	324	352	377	4:	20	9	96	30	60
ammonia	2	0.2	2.6	1.9	1.9	2	1.1	1.9	1.6	1.8	1.8	1.8 B	1	.3	2	.5	2	2.3
BOD5		2.4	4.5	5.1	5.8	3.7	U	6.5	3.6	U	U	3.2	14	4.5	5	.5	4	1.2
bromide	2	0.5	U	0.27 F	0.2 F	0.19 F	U	U	U	U	0.26 F	0.48 F	0.	1 F	0.1	1 F	0.	.11
COD		5	U	12.4	U	U	U	U	3.6 F	19.7	U	U	31.	1 B	1	8	20	0 B
chloride	250	1	15.9	13.8	13.6	11.5	9.1	9.4	8.3	4.4	10	10.2	9	.7	9	.2	9	.4
color	15	5	150	NA	NA	NA	NA	100	NA	NA	NA	60	N	ΙA	N	ΙA	N	JΑ
cyanide, Total	200	0.02	0.048 J	NA	NA	NA	NA	U	NA	NA	NA	U	N	A	N	ΙA	N	ΙA
hardness, Total		1	1,290	384	396	390	324	330	312	420	350	285	13	88	35	90	34	40
nitrate	10	1	U	U	U	U	U	U	U	U	U	U	0.0	3 F	0.02	24 F	0.03	32 F
TKN	1	1	2.7	2.6	2.5	2.6	2.3	1.9	2.3	2.7	3.5	2.9	1	U	2	.6	2.	.4
sulfate	250	1	U	U	U	0.74 F	1.2	U	1.4	1.7	0.75 F	0.46 F	0.7	7 F	0.0	6 F	0.5	54 F
TDS	500	10	485	428	453	450	395	398	339	349	370	396	3	92	4:	30	39	90
TOC		1	3.5	3.6	2	3.1	3.5	2.7	2.7	2.8	2	2.2	2	.7	2	.4	2	2.8
phenolics, Total		0.005	0.011	U	U	U	U	U	0.0050 F	U	U	U	N	ΙA		ΙA		NΑ
r, 10m	-1	0.005	0.011			·	·	·	0.00501	Ÿ		<u> </u>	· ·		·			

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well								LF1MW-5	
Date of Collection	NYSDEC		4/4/2007	9/27/2007	4/2/2008	9/18/2008	4/17/2009	3/31/2010	
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M0526NA	LF1M0526OA	LF1M0526PA	LF1M0526QA	LF1M0526RA	LF1M0526SA	
Depth to Water (ft)	Standards		2.75	3.83	2.80	3.94	2.88	2.55	
VOCs (µg/L)									
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	
1,1-dichloroethane	5*	1	0.140 F	0.180 F	U	0.230 F	0.150 F	0.150 F	
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	
1,4-dichlorobenzene	3	0.5	0.480 F	0.550	0.470 F	0.590	0.420 F	0.450 F	
acetone	50	10	U	U	U	U	U	1.32 F	
benzene	1	0.1	0.740 F	2.03	0.690	2.23	0.880	0.360 F	
bromodichloromethane	50	0.5	U	U	U	U	U	U	
bromoform	50	1	U	U	U	U	U	U	
carbon disulfide	1,000	0.5	U	U	U	U	U	U	
chlorobenzene	5*	0.5	0.980 F	1.98	0.750	1.77	0.930	0.480 F	
chloroethane	5*	1	U	U	U	U	U	U	
chloroform	7	0.3	U	U	U	U	U	U	
chloromethane	5*	1	U	U	U	U	U	U	
cis-1,2-dichloroethene	5*	1	0.160 F	0.250 F	U	0.300 F	0.170 F	0.140 F	
dichlorodifluoromethane	5*	1	U	0.300 F	U	U	U	U	
ethylbenzene	5*	1	U	U	U	U	U	U	
isopropylbenzene	5*	1	U	U	U	U	U	U	
methylene chloride	5*	1	U	U	U	U	U	U	
methyl iodide	5*	0.5	U	U	U	U	U	U	
n-propylbenzene	5*	1	U	U	U	U	U	U	
m,p-xylene	5*	2	U	U	U	U	U	U	
naphthalene	10	1	U	U	U	U	U	U	
o-xylene	5*	1	U	U	U	U	U	U	
p-isopropyltoluene	5*	1	U	U	U	U	U	U	
sec-butylbenzene	5*	1	U	U	U	U	U	U	
tetrachloroethene	5	1	U	U	U	U	U	U	
tert-butylbenzene	5*	1	U	U	U	U	U	U	
trichloroethene (TCE)	5*	1	U	U	0.130 F	0.120 F	0.140 F	0.120 F	
toluene	5*	1	U	U	U	U	U	U	
trichlorofluoromethane	5*	1	U	U	U	U	U	U	
vinyl chloride	2	1	0.110 F	0.660 F	U	U	U	U	
Total VOCs (µg/L)			2.61	5.95	2.04	5.24	2.69	3.02	
Pesticides (µg/L)				,			,	,	
No pesticides reported.									
PCBs (µg/L)				,		1	,		
No PCBs reported.									

Landfill 1 AOC Groundwater Analytical Results (continued)

	1		1														
Location of Well	Name									T	LF1MW-5	Ī	Г	T			
Date of Collection	NYSDEC Class GA	Reporting	4/4/2	2007	9/27/	/2007	4/2/2	2008	9/18/2008	4/17/2009	3/31/2010						
Sample ID No.	Groundwater Standards	Limit	LF1M0	0526NA	LF1M0	0526OA	LF1M0	0526PA	LF1M0526QA	LF1M0526RA	LF1M0526SA						
Depth to Water (ft)			2.	.75	3.	83	2.3	80	3.94	2.88	2.55						
Metals (µg/L) [Dissolved / Total] ¹																	
aluminum	2,000	200	U	U	U	U	U	U	44 F	U	U						
antimony	3	50	U	U	U	U	U	U	U	U	U						
arsenic	25	30	U	U	16 F	15 F	U	U	8.8 F	U	U						
barium	1,000	50	51	52	56	55	45 F	46 F	52	50	49 F						
berylium	3	4	U	U	U	U	U	U	U	U	U						
boron	1,000	110	U	U	NA	NA	93	98.0	NA	NA	NA						
cadmium	5	5	U	U	U	U	U	U	U	U	U						
calcium		1,100	120,000	120,000	110,000	110,000	110,000	120,000	110,000	120,000	120,000 B						
chromium	50	10	2.1 F	U	1.9 F	U	U	U	U	U	U						
cobalt		60	U	U	U	U	U	U	U	U	U						
copper	200	10	U	U	U	U	U	U	U	U	U						
iron	300	200	2,100	2,700	13,000	12,000	2,200	3,800	12,000	5,300	3,600						
lead	25	25	U	U	U	U	U	U	U	U	U						
magnesium	35,000	1,000	10,000	9,900	9,100	8,800	9,200	9,500	8,900	9,400	9,700 B						
manganese	300	10	3,300	3,300	3,000	2,900	3,100	3,000	3,000	3,200	2,900						
molybdenum		15	U	U	U	U	U	U	U	U	U						
nickel	100	20	1.7 F	1.2 F	1.5 F	1.6 F	1.5 F	2.4 F	2.2 F	U	U						
potassium		1,000	5,600	5,600	5,100	5,000	5,300	5,400	5,000	4,600	5,000 B						
selenium	10	30	U	U	U	U	U	U	U	U	U						
silver	50	10	U	U	U	U	U	U	U	U	U						
sodium	20,000	1,000	12,000	12,000	12,000	12,000	11,000	11,000	11,000	9,700	12,000 B						
thallium	0.5	80	U	U	U	U	U	U	U	U	U						
vanadium		10	U	U	U	U	U	U	U	U	U						
zinc	2,000	20	U	U	59 B	30 B	11 F	11 F	13 F	U	4.8 BF						
Leachate Indicators (mg/L)														!			
alkalinity, Total		10	3'	70	30	60	36	50	350	350	360 B					I	
ammonia	2	0.2	2	.4	2	.4	2.	30	1.8	2.1	1.9						
BOD5		2.4	5	.0	5	.9	4	.4	4.4	4.4	4.1						
bromide	2	0.5	τ		0.0		0.09		0.077 F	0.081 F	0.12						
COD		5	19			3	1		8.2 F	10	U						
chloride	250	1	8	.6	6	.5		.0	5.5	5.8	12 B						
color	15	5		IA		ΙA		IJ	NA	U	U						
cyanide, Total	200	0.02		IA		ΙA		ΙA	NA	NA	NA						
hardness, Total		1		80		90		20	330	18	350 B						
nitrate	10	1		U	0.03		0.04		0.041 F	U	0.061 BF						
TKN	1	1		.3		.2		.2	2.4	2.2	2.5						
sulfate	250	1	0.6		1			.0	0.71 F	0.78 F	U						
TDS	500	10	4:			00		80	380	370	370						
TOC		1		.4	2		3.		2.4	1.9	2.4						
phenolics, Total		0.005		IA		A.		IA.	NA	NA NA	NA						
phenones, 10tai		0.005	10		10	•••	10	**	11/3	11/3	11/1		1				

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-6					
Date of Collection	NYSDEC		12/5/2003	3/30/2004	6/28/2004	9/16/2004	12/15/2004	4/1/2005	6/22/2005	9/9/2005	12/21/2005	3/20/2006	6/19/2006	9/14/2006	12/18/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M0620AA	LF1M0620BA	LF1M0620CA	LF1M0620DA	LF1M0620EA	LF1M0620FA	LF1M0620GA	LF1M0620HA	LF1M0620IA	LF1M0620JA	LF1M0620KA	LF1M0620LA	LF1M0620MA
Depth to Water (ft)			2.58	2.11	2.88	2.66	2.64	2.50	3.13	3.41	2.76	2.74	3.09	2,75	2.59
VOCs (µg/L)														,	
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	0.33 F	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	1.6	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	UJ
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	1.1	U	U	U	0.14 F	U
acetone	50	10	U	1.4 F	3.3 F	U	U	U	U	U	U	U	1.2 F	1.27 F	U
benzene	1	0.1	U	U	U	U	U	U	U	3.3	U	U	U	0.12 F	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	0.32 F	U	U	0.33 F	U	U	U	U	U	U	0.31 F	0.250 F
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	3.4	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	0.38 F	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	0.61 F	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	0.62 F	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	0.58 F	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	0.210 F
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	2.1	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	0.4 F	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.18 F	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	U	U	U	U	U	U	U	1.2	U	U	U	U	U
Total VOCs (µg/L)	1		0	1.72	3.3	0	0.33	0	0	16.22	0	0	1.2	2.02	0.46
Pesticides (µg/L)			<u> </u>			<u> </u>	0.00			10.22	<u> </u>		1,2		
No pesticides reported.															
PCBs (µg/L)				1	1	1					1	1			
No PCBs reported.															
			1	l	l	l	l	l	1	1	l	1		1	1

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	N-6								
Date of Collection	NYSDEC		12/5/2003	3/30/2004	6/28/2004	9/16/2004	12/15/2004	4/1/2005	6/22/2005	9/9/2005	12/21/2005	3/20/2006	6/19	2006	9/14	/2006	12/18	3/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M0620AA	LF1M0620BA	LF1M0620CA	LF1M0620DA	LF1M0620EA	LF1M0620FA	LF1M0620GA	LF1M0620HA	LF1M0620IA	LF1M0620JA	LF1M0		LF1M0		LF1M0	
Depth to Water (ft)			2.58	2.11	2.88	2.66	2.64	2.50	3.13	3.41	2.76	2.74	3.	09	2.	.75	2.	.59
Metals (μg/L) [Dissolved / Total] ¹					,			,		,	,							
aluminum	2,000	200	U	U	U	U	U	U	U	98 F	U	22 F	71.5 F	30.5 F	57.3 F	43.2 F	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	53.5	52.9	50.5	49.5 F	43.7 F	53.5	54.9	119	66	60.7	50.6	60.5	54.9	54.1	52	53
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	42.9	NA	NA	NA	NA	38	NA	NA	NA	45.2	45.7	45.4	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	72,300	74,500	66,000	64,700	58,200	71,800	74,100	148,000	87,800	84,300	70,100	76,100	66,900	65,200	70,000	70,000
chromium	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
cobalt		60	U	U	U	U	U	U	U	2.5 F	U	U	U	U	U	U	U	U
copper	200	10	U	U	5.6 F	U	1.7 F	U	U	U	U	U	U	U	U	U	U	U
iron	300	200	237	344	388	299	119 F	171 F	893	5,040	736	433	78.8 F	3,100	1,170	1,050	84 F	110 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	12,600 B	13,100	11,800	11,400	10,300	12,200	12,600	17,000	13,600	13,400	11,400	12,600	11,400	11,200	12,000	12,000
manganese	300	10	111	108	110	97.2	89.3	106	171	2,160	508	295	275	280	217	187	170	160
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	U	1.6 F	3.9 F	U	U	U	U	U	U	1.2 F	U
potassium		1,000	3,320 B	3,030	2,960	3,060	2,920	3,070	3,060	7,690	4,230	3,290	3,020	3,300	3,020	2,950	3,200	3,300
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	21,500 B	21,500	19,800	19,500	18,500	21,300	19,600	14,600	20,300	21,600	17,200	19,500	19,300	19,700	21,000	22,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	10.2 F	U	U	U	U	U	U	U	4.5 F	U	3.9 F	3.9 F	44 B	32.5 B	6.8 F	4.7 F
Leachate Indicators (mg/L)	*								'						-	•		
alkalinity, Total		10	265 B	247	190	220	230	250	280	492	326	256	29	92	2	30	2:	30
ammonia	2	0.2	0.41	0.31	0.39	0.43	0.33	0.4	0.5	2.1	0.82	0.54	0.	44	0.	.68	0.	.52
BOD5		2.4	2.8	3.8	4.7	U	3.8	2.5	4.8	7.8	U	U	ı	J	7	.8	3	.4
bromide	2	0.5	U	U	U	0.19 F	U	U	0.20 F	U	0.56	0.59	0.0	7 F	0.1	4 F	0.	.13
COD		5	U	U	U	U	U	U	U	22.6	10.6	11.7	τ	J	1	1	20) B
chloride	250	1	24 B	23.5	27.5	26.4	23.2	23.2	22.1	15.1	21	19.3	2	:1	2	22	2	23
color	15	5	0	NA	NA	NA	NA	12	NA	NA	NA	13	N	A	N	ΙA	N	ΙA
cyanide, Total	200	0.02	0.066 B	NA	NA	NA	NA	U	NA	NA	NA	U	N	A	N	ΙA	N	ΙA
hardness, Total		1	272 B	228	180	420	272	224	264	640	330	250	13	88	14	0 B	2:	20
nitrate	10	1	U	U	U	U	U	U	U	0.04 F	0.11 F	U	τ	J	0.0	12 F	τ	U
TKN	1	1	0.46	0.51	0.51	0.54 B	0.43	0.49	0.72	5.6	2.2	0.71	2	.2		.64	0.	.59
sulfate	250	1	U	U	U	U	U	U	U	U	U	U	ı			U		U
TDS	500	10	296 B	287	252	249	286	278	322	536	349	299	2			80		70
TOC		1	U	0.76 F	U	U	U	0.68 F	0.75 F	3.2	0.62 F	1.1	0.5			71 F		70 F
phenolics, Total		0.005	U	0.004 F	0.015	U	U	U	0.0040 F	U	U	U	N	A		ΙA		ĪΑ
, . · ····	+	0.002		0.0011	0.015	,		Ŭ	0.00101		Ŭ	L č						

Landfill 1 AOC Groundwater Analytical Results (continued)

L										
Location of Well	NYSDEC		4/4/2007	0.05.000	4/2/2000	0.40,000	470.7000	LF1MW-6	1	1
Date of Collection	Class GA	Reporting	4/4/2007	9/27/2008	4/2/2008	9/18/2008	4/20/2009	3/31/2010		
Sample ID No.	Groundwater Standards	Limit	LF1M0620NA	LF1M0620OA	LF1M0620PA	LF1M0620QA	LF1M0620RA	LF1M0620SA		
Depth to Water (ft)			2.23	3.24	2.25	2.91	2.20	NS		
VOCs (µg/L)										
1,1,1-trichloroethane	5*	1	U	U	U	U	U	NS		
1,1-dichloroethane	5*	1	U	0.150 F	U	U	U	NS		
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	NS		
1,2,4-trimethylbenzene	5*	1	U	1.08	U	0.200 F	U	NS		
1,2-dichloroethane	0.6	1	U	U	U	U	U	NS		
1,2-dichlorobenzene	3	1	U	U	U	U	U	NS		
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	NS		
1,3,5-trimethylbenzene	5*	1	U	0.140 F	U	U	U	NS		
1,3-dichlorobenzene	3	1	U	U	U	U	U	NS		
1,4-dichlorobenzene	3	0.5	U	0.400 F	U	U	U	NS		
acetone	50	10	U	U	U	U	U	NS		
benzene	1	0.1	U	1.65	U	0.410 F	U	NS		
bromodichloromethane	50	0.5	U	U	U	U	U	NS		
bromoform	50	1	U	U	U	U	U	NS		
carbon disulfide	1,000	0.5	U	U	U	U	U	NS		
chlorobenzene	5*	0.5	U	0.93	U	U	U	NS		
chloroethane	5*	1	U	U	U	U	U	NS		
chloroform	7	0.3	U	U	U	U	U	NS		
chloromethane	5*	1	U	U	U	U	U	NS		
cis-1,2-dichloroethene	5*	1	U	0.180 F	U	U	U	NS		
dichlorodifluoromethane	5*	1	U	0.270 F	U	U	U	NS		
ethylbenzene	5*	1	U	U	U	U	U	NS		
isopropylbenzene	5*	1	U	0.160 F	U	U	U	NS		
methylene chloride	5*	1	U	0.230 F	U	U	U	NS		
methyl iodide	5*	0.5	U	U	U	U	U	NS		
n-propylbenzene	5*	1	U	U	U	U	U	NS		
m,p-xylene	5*	2	U	0.730 F	U	0.160 F	U	NS		
naphthalene	10	1	U	U	U	U	U	NS		
o-xylene	5*	1	U	U	U	U	U	NS		
p-isopropyltoluene	5*	1	U	U	U	U	U	NS		
sec-butylbenzene	5*	1	U	U	U	U	U	NS		
tetrachloroethene	5	1	U	U	U	U	U	NS		
tert-butylbenzene	5*	1	U	U	U	U	U	NS		
trichloroethene (TCE)	5*	1	U	U	U	U	U	NS		
toluene	5*	1	U	U	U	U	U	NS		
trichlorofluoromethane	5*	1	U	U	U	U	U	NS		
vinyl chloride	2	1	U	U	U	U	U	NS		
Total VOCs (µg/L)			0	4.92	0	0.77	0	NS		
Pesticides (µg/L)										
No pesticides reported.										
PCBs (µg/L)										
No PCBs reported.										
•										-

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well											LF1MW-6						
Date of Collection	NYSDEC		4/4/	2007	9/27/	2007	4/2/2	2008	9/18/2008	4/20/2009	3/31/2010						
	Class GA	Reporting															
Sample ID No.	Groundwater Standards	Limit	LF1M0	0620NA	LF1M0	620OA	LF1M0	0620PA	LF1M0620QA	LF1M0620RA	LF1M0620SA						ļ
Depth to Water (ft)			2.	.23	3.	24	2.:	25	2.91	2.20	NS						
Metals (μg/L) [Dissolved / Total] ¹			*										*			!	
aluminum	2,000	200	U	U	U	U	U	U	42 F	U	NS						
antimony	3	50	U	U	U	U	U	U	1.7 F	U	NS						į.
arsenic	25	30	U	U	U	U	U	U	U	U	NS						į.
barium	1,000	50	46 F	51	120	110	54	55	65	49 F	NS						i
berylium	3	4	U	U	U	U	U	U	U	U	NS						1
boron	1,000	110	U	U	NA	NA	49	52	NA	NA	NS						
cadmium	5	5	U	U	U	U	U	U	U	U	NS						i
calcium		1,100	66,000	71,000	140,000	140,000	77,000	78,000	82,000	69,000	NS						i
chromium	50	10	1.8 F	U	3.0 F	2.2 F	U	U	U	U	NS						i
cobalt		60	U	U	U	U	U	U	U	U	NS						i
copper	200	10	U	U	U	U	U	U	U	U	NS						
iron	300	200	150 F	210	6,100	5,800	170 F	520	2,200	980	NS						i
lead	25	25	U	U	U	U	U	U	U	U	NS						i
magnesium	35,000	1,000	12,000	12,000	17,000	16,000	13,000	13,000	13,000	12,000	NS						
manganese	300	10	150	160	1,800	1,700	340	340	510	230	NS						
molybdenum		15	U	U	U	U	U	U	U	U	NS						
nickel	100	20	1.3 F	1.2 F	1.7 F	1.6 F	U	U	U	U	NS						
potassium		1,000	3,000	3,100	6,500	6,300	3,400	3,400	4,100	3,000	NS						į.
selenium	10	30	U	U	U	U	U	U	U	U	NS						
silver	50	10	U	U	U	U	U	U	U	U	NS						į.
sodium	20,000	1,000	21,000	22,000	18,000	18,000	20,000	20,000	20,000	21,000	NS						
thallium	0.5	80	U	U	U	U	U	U	U	U	NS						į.
vanadium		10	U	U	U	U	U	U	U	U	NS						į.
zinc	2,000	20	U	U	81 B	18 F	12 F	10 F	12 F	U	NS						
Leachate Indicators (mg/L)												l			!		
alkalinity, Total		10	2:	30	44	10	28	80	280	240	NS						
ammonia	2	0.2	0.	.50	2.	4	0.	72	1.10	0.54	NS						
BOD5		2.4	4	.2	6.	.7	τ	J	10	3.3	NS						
bromide	2	0.5		.11		16	0.		0.14	0.14	NS						
COD		5	10) B	8.5	5 F	6.3	3 F	U	6.0 F	NS						
chloride	250	1	2	22	1		2	1	19	20	NS						-
color	15	5	N	ΙA	N	A	τ	J	NA	U	NS						
cyanide, Total	200	0.02		IA.		Α	N		NA	NA	NS						
hardness, Total		1		30		39	25		280	220	NS						
nitrate	10	1		U	0.01		0.02		0.016 F	U	NS						
TKN	1	1	0.	.54	2.	.2	0.0	67	1.1	0.57	NS						
sulfate	250	1		U	Ţ		τ		U	U	NS						
TDS	500	10		80		90	31		330	280	NS						
TOC		1		17 F	2		0.5		0.73 F	U	NS						
phenolics, Total		0.005		JA.		A	N		NA	NA	NS						l

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-10					
Date of Collection	NYSDEC		12/9/2003	3/30/2004	6/28/2004	9/17/2004	12/15/2004	4/4/2005	6/23/2005	9/8/2005	12/22/2005	3/16/2006	9/14/2006	4/3/2007	9/26/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1029AA	LF1M1030BA	LF1M1029CA	LF1M1030DA	LF1M1030EA	LF1M1030FA	LF1M1030GA	LF1M1030HA	LF1M1030IA	LF1M1030JA	LF1M1030LA	LF1M1030NA	LF1M1030OA
Depth to Water (ft)			25.67	25.03	25.57	26.12	25.92	25.46	26.24	27.65	26.81	25.27	26.60	24.60	27.10
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	3.9	2	1.2	1.7	1.2	0.98	0.69	1.2	1	0.64	0.52 F	0.240 F	0.400 F♦
acetone	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	0.7	0.25 F	U	U	U	U	U	U	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.130 F	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	II.	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	II O	U	U	U	U	U	II.	U
p-isopropyltoluene	5*	1	U	U	U	U	U	II U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	0.21 F	0.120 F	0.260 F◆
tert-butylbenzene	5*	1	U	U	U	U	U	II U	U	U	U	U	U.211	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	II O	U	U	II.	U	0.1 F	U	0.130 F
toluene	5*	1	II.	U	U	U	U	II U	U	U	II.	U	U	II.	U.1301
trichlorofluoromethane	5*	1	U	U	U	U	U	II O	U	U	U	U	U	II.	0.230 F
vinyl chloride	2	1	U	U	U	U	U	II U	II.	II.	II U	U	U	U	U U
Total VOCs (µg/L)		1	4.6	2.25	1.2	1.7	1.2	0.98	0.69	1.2	1	0.64	0.83	0.49	1.02
			4.0	2.23	1.2	1./	1.2	0.50	0.09	1.2	1	0.04	0.03	0.47	1.02
Pesticides (µg/L) No pesticides reported.	_					T T									I
PCBs (µg/L)			1		T	T T		I	I					I	l
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-10								
Date of Collection	NYSDEC		12/9/2003	3/30/2004	6/28/2004	9/17/2004	12/15/2004	4/4/2005	6/23/2005	9/8/2005	12/22/2005	3/16/2006	9/14/	/2006	4/3/2	2007	9/26/	/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1029AA	LF1M1030BA	LF1M1029CA	LF1M1030DA	LF1M1030EA	LF1M1030FA	LF1M1030GA	LF1M1030HA	LF1M1030IA	LF1M1030JA	LF1M1030LA LF1M1030			A LF1M1030OA		
Depth to Water (ft)			25.67	25.03	25.57	26.12	25.92	25.46	26.24	27.65	26.81	25.27	26.60		24.	60	27.10	
Metals (µg/L) [Dissolved / Total] ¹			,	,				,	,			,						
aluminum	2,000	200	204	79.6 F	U	U	U	U	U	U	U	U	60 F	46.6 F	U	54 F	U	U
antimony	3	50	U	U	U	U	U	U	U	U	4.4 F	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	33.3 F	23.9 F	20.1 F	19.8 F	15.1	13.9 F	13 F	21.4 F	21.4 F	13.9 F	17.4 F	17.7 F	13 F	14 F	21 F	22 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	17.5	NA	NA	NA	NA	8.1 F	NA	NA	NA	11.3	U	U	U	U	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	64,500	69,800	76,600	76,800	64,300	68,500	70,400	84,200	88,200	70,900	88,400	88,300	74,000	80,000	90,000	90,000
chromium	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	3.8 F	U	U
cobalt		60	2 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	2.8 F	U	3.7 F	U	1.8 F	2.7 F	U	U	U	U	U	U	U	U	U	U
iron	300	200	2,380	561	222	231	256	210	95.5 F	268	214	73.6 F	116 F	126 F	28 F	40 F	90 F♦	110 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	3,860	3,480	3,390	2,880	2,300	2,300	2,250	1,990	2,680	2,580	3,120	3,120	4,400	4,800	2,800	2,800
manganese	300	10	343	216	125	171	182	163	93.9	249	212	138	U	151	120	120	450	430
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	2.8 F	U	U	U	U	U	U	U	U	U	U	U	U	1.3 F	U	U
potassium		1,000	2,850	1,900	1,420	1,230	1,020	886	783 F	762 F	967 F	887 F	985	963 F	1,200	1,300	1,100	1,100
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	1,860	2,730	4,290	2,380	1,540	1,460	1,500	1,090	1,030	1,600	1,180 B	1,180	2,800	2,800	2,000	2,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	4.6 F	U	U	U	U	U	U	U	4.4 F	U	65.3 F	30.6 F	U	U	U	U
Leachate Indicators (mg/L)			,	,				,	,			,						
alkalinity, Total		10	170	174	174	191	193	184	204	215	233	190	2:	30	0 200		230	
ammonia	2	0.2	1.1	0.39	0.25	0.19	0.15	0.13	0.2	0.17	0.16	0.041 F	0.0	48 F	0.03	88 F	0.071	
BOD5		2.4	U	2.3	U	U	U	U	U	U	U	U	τ	U	J	J	U	
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	τ	U	J	J	Ţ	J
COD		5	U	17.4	U	U	U	U	4.3 F	5.3 F	18.8 B	U	5	F	10	В	8.5	5 F
chloride	250	1	2.0	0.39 F	1.7	1.7	1.4	1.4	1.4 B	1.2	1.2	0.68 F	1	.1	0.8	0 F	0.85	5 F♦
color	15	5	25	NA	NA	NA	NA	7.5	U	NA	NA	U	N	IA	N	A	N	IA
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	U	NA	NA	0.0062 F	N	IA	N	A	N	IA
hardness, Total		1	210	188	196	200	208	182	216	230	270 B	147	240		53	80	200 J♦	
nitrate	10	1	U	0.88 F	0.23 F	0.13 F	0.07 F	0.14 F	0.26 F	0.04 F	0.26 F	0.26 F	0.1	7 F	0.3	32	0.18	
TKN	1	1	0.96	0.66	0.46	0.38	U	U	0.5 B	0.76	0.61	U	U		Ţ	J	0.13 F◆	
sulfate	250	1	14.7	9.2	9.1	7.4	8.5	14.3	15 B	14.2	10	6.9	1	3	1	1	9.2♦	
TDS	500	10	225	186	199	196	224	221	226	234	245	230	2	70	21	0	25	50
TOC		1	1.1	3.1	U	0.6 F	U	0.78 F	0.78 F	1 B	U	0.51 F	0.7	'3 F	0.6	5 F	0.9	0 F
phenolics, Total		0.005	0.029 B	U	U	U	U	U	U	U	U	U	N	ΙA	N	A	N	IA

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well							LF1MW-10				
Date of Collection	NYSDEC		4/1/2008	9/17/2008	4/21/2009	3/30/2010	EF INIW-10				
Date of Conection	Class GA	Reporting	4/1/2000	7/1//2000	4/21/2007	3/30/2010					
Sample ID No.	Groundwater Standards	Limit	LF1M1030PA	LF1M1030QA	LF1M1030RA	LF1M1030SA					
Depth to Water (ft)			24.52	26.55	24.44	25.90					
VOCs (µg/L)											
1,1,1-trichloroethane	5*	1	U	U	U	U					
1,1-dichloroethane	5*	1	U	U	U	U					
1,2,3-trichlorobenzene	5	1	U	U	U	U					
1,2,4-trimethylbenzene	5*	1	U	U	U	U					
1,2-dichloroethane	0.6	1	U	U	U	U					
1,2-dichlorobenzene	3	1	U	U	U	U					
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U					
1,3,5-trimethylbenzene	5*	1	U	U	U	U					
1,3-dichlorobenzene	3	1	U	U	U	U					
1,4-dichlorobenzene	3	0.5	0.340 F	U	U	0.180 F					
acetone	50	10	U	U	U	1.33 F					
benzene	1	0.1	U	U	U	U					
bromodichloromethane	50	0.5	U	U	U	U					
bromoform	50	1	U	U	U	U					
carbon disulfide	1,000	0.5	U	U	U	U					
chlorobenzene	5*	0.5	U	U	U	U					
chloroethane	5*	1	U	U	U	U					
chloroform	7	0.3	U	U	U	U					
chloromethane	5*	1	U	U	U	U					
cis-1,2-dichloroethene	5*	1	U	U	U	U					
dichlorodifluoromethane	5*	1	U	U	U	U					
ethylbenzene	5*	1	U	U	U	U					
isopropylbenzene	5*	1	U	U	U	U					
methylene chloride	5*	1	U	U	U	U					
methyl iodide	5*	0.5	U	U	U	U					
n-propylbenzene	5*	1	U	U	U	U					
m,p-xylene	5*	2	U	U	U	U					
naphthalene	10	1	U	U	U	U					
o-xylene	5*	1	U	U	U	U					
p-isopropyltoluene	5*	1	U	U	U	U					
sec-butylbenzene	5*	1	U	U	U	U					
tetrachloroethene	5	1	0.170 F	0.200 F◆	0.180 F	0.280 F					
tert-butylbenzene	5*	1	U	U	U	U					
trichloroethene (TCE)	5*	1	U	U	U	0.120 F					
toluene	5*	1	U	U	U	U					
trichlorofluoromethane	5*	1	U	U	U	U					
vinyl chloride	2	1	U	U	U	U					
Total VOCs (µg/L)			0.51	0.200	0.180	1.91					
Pesticides (µg/L)		1				'					·
No pesticides reported.											
PCBs (µg/L)						· · · · · · · · · · · · · · · · · · ·	<u> </u>				
No PCBs reported.											
			l .	1	1	1		-1	1	1	1

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MW-10						
Date of Collection	NYSDEC		4/1/	2008	9/17/2008	4/21/2009	3/30/2010		LF IWI W-10						
Date of Conection	Class GA	Reporting	4/1/.	2008	9/17/2008	4/21/2009	3/30/2010								
Sample ID No.	Groundwater Standards	Limit	LF1M1030PA		LF1M1030QA	LF1M1030RA	LF1M1030SA								
Depth to Water (ft)			24.52		26.55	24.44	25.90								
Metals (μg/L) [Dissolved / Total] ¹						,				,	,		· ·		
aluminum	2,000	200	U	U	42 F	U	U								
antimony	3	50	U	U	2.0 F	U	U								
arsenic	25	30	U	U	U	U	U								
barium	1,000	50	14 F	15 F	22 F	16 F	22 F								
berylium	3	4	U	U	U	U	U								
boron	1,000	110	7.2 F	7.4 F	NA	NA	NA								
cadmium	5	5	U	U	U	U	U								
calcium		1,100	78,000	79,000	95,000	80,000	96,000								
chromium	50	10	U	U	U	U	U								
cobalt		60	U	U	U	U	U					L			
copper	200	10	U	U	U	U	U								
iron	300	200	60 F	57	76 F	24 F	140 F								
lead	25	25	U	U	U	U	U								
magnesium	35,000	1,000	3,800	3,900	3,500	3,300	3,300								
manganese	300	10	120	120	93	49	260								
molybdenum		15	U	U	U	U	U								
nickel	100	20	U	U	U	U	U								
potassium		1,000	1,100	1,100	1,200	1,100	1,200								
selenium	10	30	U	U	U	U	U								
silver	50	10	U	U	U	U	U								
sodium	20,000	1,000	2,300	2,200	3,500	1,800	1,700								
thallium	0.5	80	U	U	U	U	U								
vanadium		10	U	U	U	U	U								
zinc	2,000	20	10 F	9.8 F	17 F◆	9.9 F	U								
Leachate Indicators (mg/L)			-	•			<u> </u>		•		'	•		•	
alkalinity, Total		10	2	00	250	200	230								
ammonia	2	0.2	0.0	26 F	0.050 B◆	U	U								
BOD5		2.4	1	U	U	U	U								
bromide	2	0.5	1	U	U	U	U								
COD		5	8.:	5 F	U	6.0 F	U								
chloride	250	1	0.7	19 F	0.79 F	0.53 F	0.39 F								
color	15	5	1	U	NA	U	U								
cyanide, Total	200	0.02	N	JA.	NA	NA	NA								
hardness, Total		1		20	280	220	250								
nitrate	10	1		.36	0.098 F	0.62	0.21								
TKN	1	1	0.13 F		0.25 B	U	0.24 B								
sulfate	250	1	22		12	15	17								
TDS	500	10		30	270	250	250								
TOC		1		1 F	0.97 F	0.54 F	0.77 F								
phenolics, Total		0.005		ĪΑ	NA	NA	NA								
r, rom		0.005	· · ·							-1	l	1			

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MW	V-11					
Date of Collection	NYSDEC		12/5/2003	3/29/2004	6/25/2004	9/16/2004	12/15/2004	4/1/2005	6/22/2005	9/8/2005	12/23/2005	3/16/2006	6/19/2006	9/15/2006	12/18/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1111AA	LF1M1111BA	LF1M1111CA	LF1M1111DA	LF1M1111EA	LF1M1111FA	LF1M1111GA	LF1M1111HA	LF1M1111IA	LF1M1111JA	LF1M1111KA	LF1M1111LA	LF1M1111MA
Depth to Water (ft)			2.99	2.57	3.31	3.10	3.13	2.89	3.64	3.98	3.35	3.01	4.90	3.65	3.21
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	1.6	0.93 F	1.2	1.3	1.2	0.29 F	1.1	0.8 F	1.1	1.2	0.86 F	0.93 F	1.05
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	0.22 F	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	0.27 F	0.58 F	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	0.13 F	0.120 F
1,2-dichlorobenzene	3	1	13	11	10	12	9	2.3	8.9	11	8.1	8.2	8.8	9.72	8.37
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	UJ
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	1.5	1	1.4	1.4	1	0.3 F	1.2	1.6	1.1	0.94 F	0.99 F	0.99 F	0.860 F
1,4-dichlorobenzene	3	0.5	16	13	13	14	11	2.9	11	14	10	10	11	11.7	10.0
acetone	50	10	U	U	3.6 F	U	U	1.8 F	2 F	U	U	U	2.3 F	3.89 F	2.30 F
benzene	1	0.1	4.9	3.4	3.6	3.7	3.3	0.62	3	2.6	2.7	2.9	2.4	2.43	2.53
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	17	14	14	14	12	2.3	11	13	10	10	11	10.4	9.70
chloroethane	5*	1	1.2	0.66 F	0.78 F	0.91 F	1	U	1.2	0.73 F	0.68 F	0.93 F	0.94 F	0.95 F	0.840 F
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	0.2 F	U	U
cis-1,2-dichloroethene	5*	1	0.48 F	0.32 F	U	0.46 F	0.45 F	U	0.37 F	U	U	U	U	0.26 F	0.340 F
dichlorodifluoromethane	5*	1	2.7	2.4	2.3	2.6	2.4	0.36 F	2.3	U	2	2.8	1.5	1.62	1.27
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	2.1	1.7	1.8	1.7	1.3	U	0.65 F	0.5 F	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.18 F	0.190 F
methyl iodide	5*	0.5	U	U	U	U	U	U	0.21 F	U	U	U	U	U	U
n-propylbenzene	5*	1	1.8	0.88 F	0.67 F	0.41 F	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	0.88 F	0.58 F	0.89 F	0.84 F	0.63	U	0.5 F	0.59 F	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	0.28 F	U	0.34 F	0.36 F	0.28	U	0.37 F	U	U	U	0.24 F	0.17 F	0.190 F
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	0.39 F	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.24 F	U
trichlorofluoromethane	5*	1	0.14	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	1.9	1.3	1.3	1.6	1.8	0.24 F	1.4	1	1.2	1.5	1	1.18	1.17
Total VOCs (µg/L)			65.78	51.44	54.86	55.28	45.36	11.33	45.20	46.21	36.88	36.97	41.23	44.79	38.93
Pesticides (µg/L)															
No pesticides reported.															
PCBs (µg/L)															
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-11								
Date of Collection	NYSDEC		12/5/2003	3/29/2004	6/25/2004	9/16/2004	12/15/2004	4/1/2005	6/22/2005	9/8/2005	12/23/2005	3/16/2006	6/19/	2006	9/15/	/2006	12/18	3/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1111AA	LF1M1111BA	LF1M1111CA	LF1M1111DA	LF1M1111EA	LF1M1111FA	LF1M1111GA	LF1M1111HA	LF1M1111IA	LF1M1111JA	LF1M1	111KA	LF1M1	1111LA	LF1M1	.111MA
Depth to Water (ft)			2.99	2.57	3.31	3.10	3.13	2.89	3.64	3.98	3.35	3.01	4.5	90	3.0	65	3.2	21
Metals (μg/L) [Dissolved / Total] ¹										•		•						
aluminum	2,000	200	U	145 F	U	U	U	128 F	U	U	U	U	U	U	53 F	68.5 F	U	43 F
antimony	3	50	U	U	U	U	U	5.3 F	U	U	U	U	U	U	U	U	U	1.6 F
arsenic	25	30	10.9 F	8.9 F	6.1 F	7.9 F	8 F	4.8 F	9.7 F	5 F	6 F	6.9 F	U	9.8 F	9.1 F	8.76 F	7.4 F	13 F
barium	1,000	50	169	170	167	167	151	52.7	144	129	138	137	125	159	160	163	160	170
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	136	NA	NA	NA	NA	34.1	NA	NA	NA	102	110	110	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	0.4 F	U	U	U	U	U	U	U
calcium		1,100	172,000	186,000	182,000	181,000	164,000	74,800	164,000	145,000	152,000	162,000	174,000	180,000	170,000	174,000	180,000	180,000
chromium	50	10	U	U	U	1.4 F	U	U	U	U	U	U	U	U	U	U	1.5 F	U
cobalt		60	14.7 F	15.7 F	14.7 F	15.4 F	12.6 F	3.9 F	12.5 F	8.8 F	9.8 F	9.6 F	11.8 F	12.3 F	9.87 F	9.21 F	9.1 F	8.4 F
copper	200	10	U	U	U	U	1.7 F	U	U	U	U	U	U	U	U	U	U	U
iron	300	200	24,200	25,400	23,200	22,600	20,200	12,700	19,600	13,300	16,000	18,800	10,400	20,400	19,300	19,600	20,000	22,000
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	15,500 B	16,800	15,800	16,000	14,800	7,410	13,800	11,000	12,800	13,700	U	15,000	13,600	13,600	15,000	15,000
manganese	300	10	3,080	3,420	3,270	3,380	3,350	1,900	2,880	1,780	2,540	2,810	2,660	2,860	2,510	2,560	3,000	3,000
molybdenum		15	U	U	U	U	U	U	U	U	U	U	2.6 F	2.7 F	U	U	U	U
nickel	100	20	9.9 F	10.6 F	9.5 F	10.3 F	8.6 F	2.7 F	9.3 F	6.4 F	7.3 F	7.1 F	7.2 F	8.2 F	8.02 F	7.37 F	7.1 F	7.3 F
potassium		1,000	6,230 B	5,670	5,620	6,190	5,800	1,450	5,120	5,070 B	5,170	4,360	5,340	5,460	5,430	5,500	5,700	5,700
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.9 F
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	10,600 B	11,500	11,400	11,700	10,900	6,170	9,880	9,810	10,600	9,870	9,020	9,370	9,690	9,860	11,000	11,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	1.21 F	U	U	U
zinc	2,000	20	U	U	U	U	U	U	U	U	4.7 F	U	U	U	49.9 F	54.5 B	8.2 F	9.1 F
Leachate Indicators (mg/L)	'											'	•			-		
alkalinity, Total		10	558 M	540	483	564	553	307	545	460	504	518	6	11	59	90	52	20
ammonia	2	0.2	3.6 M	2.3	2.3	3.4	2.3	0.85	2.5	2.9	3	2.2	1	.9	4.	.2	4	4
BOD5		2.4	7.4	3.8	2.9	5.6	5.7	5.4	4.7	U	12.3	3 B	6	.2	1	6	1-	14
bromide	2	0.5	U	0.24 F	0.27 F	U	U	U	0.2 F	0.21 F	0.26 F	0.52	0.0	9 F	0.1	3 F	0.	14
COD		5	19.5	34.1	U	18.2	14.8	13.5	11.7	13.3	25.3	17.4	30.	1 B	2	2	24	↓ B
chloride	250	1	13 B	11.3	12.4	12.8	11.4	7.4	12.3	12.6	10.8	8.2	9.	.6	1	1	1	13
color	15	5	80	NA	NA	NA	NA	120	NA	NA	NA	120	N	A	N	ΙA	N	JA.
cyanide, Total	200	0.02	0.022 M	NA	NA	NA	NA	U	NA	NA	NA	U	N	A	N	ΙA	N	JA.
hardness, Total		1	564 B	448	496	550	500	240	484	38.4 F	460	528	62	26	50	00	50	00
nitrate	10	1	U	0.03 F	U	U	0.06 F	U	U	0.5 F	U	U	τ	J	0.02	27 F	0.07	70 F
TKN	1	1	4.1	3.6	3.7	3.4	3.4	1.1	3.6	5.2	5.4	3.6	3.	.2	3.	.9	4.	.0
sulfate	250	1	1.9 B	3.3	4.2	3	2	2.6	2.6	2.2	1.6	3.6	4	.2	3.	.5	2.	.8
TDS	500	10	573 B	587	566	576	592	306	594	465	480	520	57	72	59	90	57	70
TOC		1	6.2	4.9	4.2	5	4.4	5	4.6	4.3 B	3.6	3	4	.4	4	4	4.	.0
phenolics, Total		0.005	UM	U	U	U	U	U	0.0070 F	U	U	U	N	A	N	ΙA	N	JA.

Landfill 1 AOC Groundwater Analytical Results (continued)

March Chemics Name Paris	Location of Well								LF1MW-11		
Clase Clas		NYSDEC		4/3/2007	9/26/2007	4/1/2008	9/17/2008	4/17/2009			
Second S	Date of Collection	Class GA		4/3/2007	3/20/2007	4/1/2000	3/17/2000	4/1//2007			
NOS Supple	Sample ID No.		Limit	LF1M1111NA			-				
1.5.16.1	Depth to Water (ft)			3.00	4.33	2.67	3.82	3.06	2.56		
1.5-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-										 	
1.2.1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			1								
1.24 Interdisplaneme		5*	1	0.950 F	0.750 F	0.750 F		0.730 F	0.900 F		
12-deline/formulate	1,2,3-trichlorobenzene	5	1	U	U			U	U		
12-label browned work 3	1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U		
12-shemoly-neared 12-shemoly-neared 13-shemoly-neared 13-s	1,2-dichloroethane	0.6	1		0.130 F						
1.3. Friende/Princese 5° 1	1,2-dichlorobenzene	3		6.69	9.81	5.84		5.80	6.04		
1.3-decinements 3	1,2-dibromo-3-chloropropane		2		U				_		
14-discherolement 3	1,3,5-trimethylbenzene	5*	1	U	0.100 F	U	U	U	U		
Second So	1,3-dichlorobenzene	3	1	0.740 F	1.16	0.660 F	0.780 F	0.600 F	0.710 F		
Note	1,4-dichlorobenzene										
None-Mark None	acetone	50	10		U	U	U	U	1.78 F		
Nemodram So 1	benzene	1	0.1	2.09	1.98	1.67	1.82	1.58	2.06		
Carbon dissilide	bromodichloromethane	50	0.5	U	U	U	U	U	U		
Section	bromoform	50	1	U	U	U	U	U	U		
chlorochinae 5	carbon disulfide	1,000	0.5	U	U	U	U	U	U		
chloronom	chlorobenzene	5*	0.5	8.10	9.89	6.49	8.05	7.06	7.18		
chloromethane	chloroethane	5*	1	0.650 F	0.670 F	0.610 F	0.720 F	0.700 F	0.720 F		
cis 1.2-dichlorosthene	chloroform	7	0.3	U	U	U	U	U	U		
dichlorodifluoromethane 5° 1	chloromethane	5*	1	U	U	U	U	U	U		
ethylhenzene	cis-1,2-dichloroethene	5*	1	0.280 F	0.260 F	0.230 F	0.260 F	0.180 F	0.260 F		
isopropylbenzene 5	dichlorodifluoromethane	5*	1	1.06	0.740 F	0.760 F	0.670 F	1.29	0.280 F		
methylene chloride 5° 1 0.120 F U U U U U U U U U U U U U U U U U U	ethylbenzene	5*	1	U	U	U	U	U	U		
methyl iodide 5 ° 0.5 U U U U U U U U U U U U U U U U U U U	isopropylbenzene	5*	1	U	U	U	U	U	U		
n-propylenzene 5° 1 U U U U U U U U U U U U U U U U U U	methylene chloride	5*	1	0.120 F	U	U	U	U	U		
mp-yilene 5	methyl iodide	5*	0.5	U	U	U	U	U	U		
Naphthalene 10	n-propylbenzene	5*	1	U	U	U	U	U	U		
- Sylene	m,p-xylene	5*	2	U	U	U	U	U	U		
p-isopropyltoluene 5 ° 1 U U U U U U U U U U U U U U U U U U	naphthalene	10	1	U	U	U	U	U	U		
sec-butybenzene 5° 1 U U U U U U U U U U U U U U U U U U	o-xylene	5*	1	U	U	U	U	U	U		
tetrachloroethene 5 1 U U U U U U U U U U U U U U U U U U	p-isopropyltoluene	5*	1	U	U	U		U	U		
tert-butylbenzene 5	sec-butylbenzene	5*	1	U	U	U	U	U	U		
trichloroethene (TCE) 5 * 1 U U U.0.180 F U U.0.160 F toluene 5 * 1 0.150 F 0.180 F 0.130 F 0.180 F 0.130 F 0.150 F 0.	tetrachloroethene	5	1	U	U	U	U	U	U		
toluene 5 ° 1 0.150 F 0.180 F 0.130 F 0.180 F 0.130 F 0.150 F	tert-butylbenzene	5*	1	0.170 F	0.290 F	U	0.210 F	0.120 F	0.170 F		
trichlorofluoromethane 5 * 1 U U U U U U U U U U U U U U U U U U	trichloroethene (TCE)	5*	1	U	U	0.180 F	U	U	0.160 F		
vinyl chloride 2 1 1.22 0.840 F 0.940 F 0.800 F 0.870 F 0.970 F Total VOCs (µg/L) 30.06 37.90 25.50 29.67 26.24 28.91	toluene	5*	1	0.150 F	0.180 F		0.180 F	0.130 F	0.150 F		
Total VOCs (μg/L) 30.06 37.90 25.50 29.67 26.24 28.91	trichlorofluoromethane	5*	1	U	U	U	U	U	U		
Pesticides (μg/L) No pesticides reported.	vinyl chloride	2	1	1.22	0.840 F	0.940 F	0.800 F	0.870 F	0.970 F		
No pesticides reported.	Total VOCs (µg/L)			30.06	37.90	25.50	29.67	26.24	28.91		
	Pesticides (µg/L)										
PCBs (µg/L)	No pesticides reported.										
	PCBs (µg/L)										
No PCBs reported.	No PCBs reported.										

Landfill 1 AOC Groundwater Analytical Results (continued)

		1	1													
Location of Well	Number									T	LF1MW-11	T				
Date of Collection	NYSDEC Class GA	Reporting	4/3/	2007	9/27/	2007	4/1/	2008	9/17/2008	4/17/2009	3/31/2010					
Sample ID No.	Groundwater Standards	Limit	LF1M	1111NA	LF1M1	1110A	LF1M	1111PA	LF1M1111QA	LF1M1111RA	LF1M1111SA					
Depth to Water (ft)			3.	.00	4.3	33	2.	.67	3.82	3.06	2.56					
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	2,000	200	U	43 F	U	U	U	U	150 F	62 F	86 F					
antimony	3	50	U	1.6 F	U	U	U	U	U	U	U					
arsenic	25	30	7.4 F	13 F	9.1 F	8.5 F	6.4 F	7.9 F	9.6 F	8.6 F	8.9 F					
barium	1,000	50	160	170	140	140	140	140	140	160	170					
berylium	3	4	U	U	U	U	U	U	U	U	U					
boron	1,000	110	NA	NA	NA	NA	9.9	100	NA	NA	NA					
cadmium	5	5	U	U	U	U	U	U	U	U	U					
calcium		1,100	180,000	180,000	150,000	150,000	170,000	170,000	160,000	190,000	190,000					
chromium	50	10	1.5 F	U	U	1.9 F	U	U	U	U	U					
cobalt		60	9.1 F	8.4 F	7.2 F	7.9 F	U	7.3 F	U	9.7 F	7.1 F					.
copper	200	10	U	U	U	U	U	U	U	U	U					
iron	300	200	20,000	22,000	17,000	17,000	19,000	20,000	19,000	23,000	22,000					
lead	25	25	U	U	U	U	U	U	U	4.2 F	U					
magnesium	35,000	1,000	15,000	15,000	11,000	12,000	14,000	14,000	12,000	15,000	15,000 B					
manganese	300	10	3,000	3,000	1,800	1,800	2,700	2,700	2,200	3,000	3,100					
molybdenum		15	U	U	U	U	U	U	U	U	U					
nickel	100	20	7.1 F	7.3 F	6.1 F	5.8 F	6.2 F	6.7 F	6.6 F	6.6 F	7.1 F					
potassium		1,000	5,700	5,700	5,300	5,400	4,900	5,000	5,400	5,400	5,500 B					
selenium	10	30	U	2.9 F	U	U	U	U	U	U	U					
silver	50	10	U	U	U	U	U	U	U	U	U					
sodium	20,000	1,000	11,000	11,000	9,800	10,000	11,000	11,000	11,000	11,000	11,000					
thallium	0.5	80	U	U	U	U	U	U	U	U	U					
vanadium		10	U	U	U	U	U	U	U	U	U					
zinc	2,000	20	8.2 F	9.1 F	5.5	3.3	11 F	11 F	14 F	U	8.5 BF					
Leachate Indicators (mg/L)												+		 		
alkalinity, Total		10	5	20	46	50	5.	30	490	510	560 B					
ammonia	2	0.2		4	3.	.9	3	3.6	4.1	3.5	3.3					
BOD5		2.4	1	14	6.	.8	1	14	12	14	19					
bromide	2	0.5	0.	.14	0.1	10	0.	.12	0.11	0.15	0.10					
COD		5	24	4 B	1:	5	1	17	13	17	9.9 F					
chloride	250	1	1	13	9.	.2	9	0.7	7.9	10.0	8.2 B					
color	15	5	N	ΙA	N	A	1	20	NA	U	U					
cyanide, Total	200	0.02	N	ΙA	N	A	N	ΙA	NA	NA	NA					
hardness, Total		1	5	00	38	30	4	90	540	500	530 B					
nitrate	10	1	0.0	70 F	0.05	53 F	0.0	86 F	U	U	U					
TKN	1	1	4	.0	3.	.7	3	3.7	4.0	3.7	4.1					
sulfate	250	1	2	.8	2.	.9	2	1	0.94	0.83 F	0.43 BF					
TDS	500	10		70	50			30	340	540	570					
TOC		1		.0	3.			1.4	3.5	3.0	4.0					
phenolics, Total		0.005		ĪΑ	N			JA	NA	NA	NA					
*			-		-					l	l	·				

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-12					
Date of Collection	NYSDEC		12/8/2003	3/29/2004	6/25/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/8/2005	12/23/2005	3/16/2006	9/15/2006	4/4/2007	9/26/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1212AA	LF1M1212BA	LF1M1212CA	LF1M1212DA	LF1M1212EA	LF1M1212FA	LF1M1212GA	LF1M1212HA	LF1M1212IA	LF1M1212JA	LF1M1212LA	LF1M1212NA	LF1M1212OA
Depth to Water (ft)			3.09	2.72	3.31	3.13	3.14	2.92	4.48	5.39	3.57	3.15	4.35	2.85	5.77
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	U	U	U	0.16 F	U	U
acetone	50	10	2 F	U	2.8 F	1.8 F	U	U	U	U	U	U	1.31 F	U	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	0.230 F
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.110 F	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	Ü	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	0.74 F	0.55 F	0.78 F	0.99 F	0.74 F	0.44 F	0.48 F	0.66 F	0.69 F	0.7 F	0.53 F	0.390 F	0.280 F
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	U	U	U	U	U	U	U	U	U	U	U	U	U
Total VOCs (µg/L)			2.74	0.55	3.56	2.79	0.74	0.44	0.48	0.66	0.69	0.7	2	0.5	0.51
Pesticides (µg/L)			·	·				·			·			•	
No pesticides reported.															
PCBs (µg/L)	•						•								
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Description Control	Location of Well									LF1MV	V-12								
Clase Clase Control C		NYSDEC		12/8/2003	3/29/2004	6/25/2004	9/16/2004	12/14/2004	4/1/2005			12/23/2005	3/16/2006	9/15	/2006	4/4/2	2007	9/26/	5/2007
Seminary Seminary		Groundwater																	1212OA
Seminan	Depth to Water (ft)			3.09	2.72	3.31	3.13	3.14	2.92	4.48	5.39	3.57	3.15	4.	35	2.3	85	5.	.77
Second S	Metals (µg/L) [Dissolved / Total] ¹																		
Semilar 1980 50	aluminum	2,000	200	114 F	U	U	U	U	U	U	U	102 F	U	58.8 F	42.1 F	U	U	U	100 F
Marian	antimony	3	50	U	U	U	U	U	U	U	U	U	4.1 F	U	U	U	U	U	U
Position S	arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	4.2 F
	barium	1,000	50	7.6 F	7.3 F	8.3 F	9.5 F	8.8 F	9.6 F	9.9 F	14.3	20.6 F	11.7 F	11.8 F	11.8 F	9.2 F	8.4 F	2.5 F	29 F
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Second	boron	1,000	110	11.6	NA	NA	NA	NA	8.9 F	NA	NA	NA	9.3 F	U	U	U	U	NA	NA
Secondary Seco	cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Pachale 60	calcium		1,100	35,600	38,000	40,000	42,100	40,400	42,500	38,400	54,400	69,000	58,500	48,000	48,100	49,000	50,000	57,000	56,000
Septem 10	chromium	50	10	U	U	U	1 F	U	U	U	U	3.1 F	0.9 F	U	U	U	U	U	U
First 10	cobalt		60	U	U	U	U	U	U	U	U	0.9 F	U	U	U	U	U	U	U
Peach 25	copper	200	10	2.5 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Regression 35,000 1,000 3,750 3,920 4,040 4,360 4,170 4,470 4,800 5,650 7,500 6,280 5,340 5,330 5,600 6,500 6,500 1,000	iron	300	200	253	120 F	140 F	154 F	1,180	490	1,070	703	9,430	1,470	994	1,050	690	810	7,000	10,000
Panaganose 300 10	lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
molybekenum	magnesium	35,000	1,000	3,750	3,920	4,040	4,360	4,170	4,400	4,080	5,650	7,500	6,280	5,340	5,330	5,600	5,600	6,500	6,500
nickel 100 20 U U U U U U U 1.7F 2.3F 2.4F U U U U U 1.4F potassium 9 1000 872F 710F 836F 972F 848F 727F 705F 898F 998F 725F 818 768 750F 710F 910F 910F 910F 910F 910F 910F 910F 9	manganese	300	10	40.8	16.3	52.5	89.3	58.7	274	340	241	307	65	231	253	92	93	720	970
Potassium	molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Selenium 10 30	nickel	100	20	U	U	U	U	U	U	1.7 F	2.3 F	2.4 F	U	U	U	U	U	1.4 F	1.2 F
Silver So	potassium		1,000	872 F	710 F	836 F	972 F	848 F	727 F	705 F	898 F	958 F	725 F	818	768	750 F	710 F	910 F	930 F
Sedim	selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
thallium 0.5 80 U U U U U U U U U U U U U U U U U U	silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium 10 U <t< td=""><td>sodium</td><td>20,000</td><td>1,000</td><td>6,300</td><td>5,660</td><td>6,160</td><td>6,570</td><td>6,010</td><td>6,210</td><td>5,460</td><td>5,980</td><td>6,010</td><td>5,390</td><td>5,180</td><td>5,120</td><td>4,200</td><td>4,300</td><td>11,000</td><td>15,000</td></t<>	sodium	20,000	1,000	6,300	5,660	6,160	6,570	6,010	6,210	5,460	5,980	6,010	5,390	5,180	5,120	4,200	4,300	11,000	15,000
Zinc 2,000 20	thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Leachate Indicators (mg/L) alkalinity, Total	vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
alkalinity, Total 10 97.7 93.2 87.9 114 122 119 125 163 202 169 290 130 1 ammonia 2 0.2 U U 0.012 F 0.041 F U 0.05 0.057 0.18 0.11 B U 0.15 0.054 B 0 BODS 2.4 U	zinc	2,000	20	7.1 F	U	U	U	U	U	U	U	6 F	U	20.5 B	22 B	U	U	16 F	19 F
ammonia 2 0.2 U U U U 0.012 F 0.041 F U 0.05 0.057 0.18 0.11 B U 0.15 0.054 B 0.0505	Leachate Indicators (mg/L)	-							•										
BODS 2.4 U U U U U U U U U U U U U U U U U U U	alkalinity, Total		10	97.7	93.2	87.9	114	122	119	125	163	202	169	2	90	13	30	17	70
bromide 2 0.5 U U U U U U U U U	ammonia	2	0.2	U	U	0.012 F	0.041 F	U	0.05	0.057	0.18	0.11 B	U	0.	.15	0.05	64 B	0.	.43
COD 5 U U U U U U U T.6F 14.8 12.2 7.1F 6.1F 15.16 16.16 17.0 19.4 15.8 11.3 9.3 16.2 7 8.4 7.3 10.2 8.4 7 5.7 5.7 12.0 10.0 15 5 2.5 NA	BOD5		2.4	U	U	U	U	U	U	U	U	U	U	1	U	Ţ	J	2	2.3
chloride 250 1 9,4 15.8 11.3 9,3 16.2 7 8.4 7.3 10.2 8.4 7 5.7 2.5 color 15 5 2.5 NA	bromide	2	0.5	U	U	U	U	U	U	U	U	0.17 F	U	0.0	34 F	0.02	22 F	0.	.17
color 15 5 2.5 NA NA NA NA 7.5 NA NA <th< td=""><td>COD</td><td></td><td>5</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>7.6 F</td><td>14.8</td><td>12.2</td><td>7.</td><td>1 F</td><td>6.1</td><td>F</td><td>1</td><td>13</td></th<>	COD		5	U	U	U	U	U	U	U	7.6 F	14.8	12.2	7.	1 F	6.1	F	1	13
cyanide, Total 200 0.02 0.041 J NA NA NA NA U NA NA </td <td>chloride</td> <td>250</td> <td>1</td> <td>9.4</td> <td>15.8</td> <td>11.3</td> <td>9.3</td> <td>16.2</td> <td>7</td> <td>8.4</td> <td>7.3</td> <td>10.2</td> <td>8.4</td> <td></td> <td>7</td> <td>5.</td> <td>7</td> <td>2</td> <td>21</td>	chloride	250	1	9.4	15.8	11.3	9.3	16.2	7	8.4	7.3	10.2	8.4		7	5.	7	2	21
hardness, Total 1 250 104 120 140 444 136 132 170 210 137 160 150 1 nitrate 10 1 U 0.82 F 0.51 F 0.28 F U U U U U U U U U U U U U U U U U U U 0.061 F U 0 0.061 F U 0.061 F <	color	15	5	2.5	NA	NA	NA	NA	7.5	NA	NA	NA	20	N	ΙA	N	A	N	NA
nitrate 10 1 U 0.82 F 0.51 F 0.28 F U 0.061 F U 0 0.061 F U 0.061 F 0.061 F<	cyanide, Total	200	0.02	0.041 J	NA	NA	NA	NA	U	NA	NA	NA	U	N	ΙA	N	A	N	NA
TKN 1 1 U 0.12 F U U 0.22 B 0.16 F U 1 1.9 U 0.061 F U 0 sulfate 250 1 9.1 7.9 8.1 7.3 6.1 5 3 4.4 7.5 7.3 3.8 4.4 B 2 TDS 500 10 142 140 154 145 165 166 183 192 223 205 160 170 2	hardness, Total		1	250	104	120	140	444	136	132	170	210	137	1	60	15	50	14	40
sulfate 250 1 9.1 7.9 8.1 7.3 6.1 5 3 4.4 7.5 7.3 3.8 4.4 B 2 TDS 500 10 142 140 154 145 165 166 183 192 223 205 160 170 2	nitrate	10	1	U	0.82 F	0.51 F	0.28 F	U	U	U	U	U	U	1	U	τ	J	τ	U
sulfate 250 1 9.1 7.9 8.1 7.3 6.1 5 3 4.4 7.5 7.3 3.8 4.4 B 2 TDS 500 10 142 140 154 145 165 166 183 192 223 205 160 170 2	TKN	1	1	U	0.12 F	U	U	0.22 B	0.16 F	U	1	1.9	U	0.0	61 F	τ	J	0	.42
TDS 500 10 142 140 154 145 165 166 183 192 223 205 160 170 2		250	1								4.4					4.4	В	2	
			10																220
				U	U			0.66 F	0.52 F	0.68 F	3.1 B	0.71 F	0.45 F						9 B
			0.005			_	U												NA.

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well							LF1MW-12				
	NYSDEC		4/2/2008	9/17/2008	4/17/2009	3/31/2010	LF1MW-12	1		1	
Date of Collection	Class GA	Reporting	4/2/2008	9/17/2008	4/17/2009	3/31/2010					
Sample ID No.	Groundwater Standards	Limit	LF1M1212PA	LF1M1212QA	LF1M1212RA	LF1M1212SA					
Depth to Water (ft)			2.79	4.65	3.11	2.78					
VOCs (µg/L)											
1,1,1-trichloroethane	5*	1	U	U	U	U					
1,1-dichloroethane	5*	1	U	U	U	U					
1,2,3-trichlorobenzene	5	1	U	U	U	U					
1,2,4-trimethylbenzene	5*	1	U	U	U	U					
1,2-dichloroethane	0.6	1	U	U	U	U					
1,2-dichlorobenzene	3	1	U	U	U	U					
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U					
1,3,5-trimethylbenzene	5*	1	U	U	U	U					
1,3-dichlorobenzene	3	1	U	U	U	U					
1,4-dichlorobenzene	3	0.5	0.200 F	U	U	U					
acetone	50	10	U	U	U	2.47 F					
benzene	1	0.1	U	U	U	U					
bromodichloromethane	50	0.5	U	U	U	U					
bromoform	50	1	U	U	U	U					
carbon disulfide	1,000	0.5	U	U	U	U					
chlorobenzene	5*	0.5	U	U	U	U					
chloroethane	5*	1	U	U	U	U					
chloroform	7	0.3	U	U	U	U					
chloromethane	5*	1	U	U	U	U					
cis-1,2-dichloroethene	5*	1	U	U	U	U					
dichlorodifluoromethane	5*	1	U	U	U	U					
ethylbenzene	5*	1	U	U	U	U					
isopropylbenzene	5*	1	U	U	U	U					
methylene chloride	5*	1	U	U	U	U					
methyl iodide	5*	0.5	U	U	U	U					
n-propylbenzene	5*	1	U	U	U	U					
m,p-xylene	5*	2	U	U	U	U					
naphthalene	10	1	U	U	U	U					
o-xylene	5*	1	U	U	U	U					
p-isopropyltoluene	5* 5*	1	U U	U U	U U	U U					
sec-butylbenzene				_							
tetrachloroethene	5 5*	1	U	U U	U U	U U					
tert-butylbenzene	-	1	U 0.510.E	0.700 F	-	0.500 F					
trichloroethene (TCE)	5* 5*	•	0.510 F	0.700 F U	0.490 F U	0.500 F U					
toluene	-	1	U U	U	U	U					
trichlorofluoromethane	5* 2	1	U	U	U	U					
vinyl chloride	2	1	0.71	0.70	0.49	2.97					
Total VOCs (µg/L)			0./1	0.70	0.49	2.91					
Pesticides (µg/L) No pesticides reported.		1		T T	l			1	T	l	
PCBs (μg/L) No PCBs reported.					I			1	T	I	
NO FCBS reported.					L				1	1	

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well								LF1MW-12						
Date of Collection	NYSDEC		4/2/	2008	9/17/2008	4/17/2009	3/31/2010	22 23 23 24 22						
	Class GA	Reporting												
Sample ID No.	Groundwater Standards	Limit	LF1M	1212PA	LF1M1212QA	LF1M1212RA	LF1M1212SA							
Depth to Water (ft)			2.	.79	4.65	3.11	2.78							
Metals (μg/L) [Dissolved / Total] ¹						,								
aluminum	2,000	200	U	U	U	U	U							
antimony	3	50	U	U	U	U	U							
arsenic	25	30	U	U	U	U	U							
barium	1,000	50	9.5 F	9.5 F	12 F	9.9 F	7.5 F							
berylium	3	4	U	U	U	U	U							
boron	1,000	110	7.2 F	8.2 F	NA	NA	NA							
cadmium	5	5	U	U	U	U	U							
calcium		1,100	65,000	64,000	59,000	63,000	49,000 B							
chromium	50	10	U	U	U	U	U							
cobalt		60	U	U	U	U	U							
copper	200	10	U	2.8 F	U	U	U							
iron	300	200	430	530	1,500	700	370							
lead	25	25	U	U	U	U	U							
magnesium	35,000	1,000	7,400	7,400	6,400	7,200	5,400 B							
manganese	300	10	65	65	140	81	56							
molybdenum		15	U	U	U	U	U							
nickel	100	20	U	U	U	U	U							
potassium		1,000	710 F	710 F	930 F	750 F	420 BF							
selenium	10	30	U	U	U	U	U							
silver	50	10	U	U	U	U	U							
sodium	20,000	1,000	4,300	4,200	4,900 B	4,100	4,200 B							
thallium	0.5	80	U	U	U	U	U							
vanadium		10	U	U	U	U	U							
zinc	2,000	20	10 F	13 F	21 B	U	4.4 BF							
Leachate Indicators (mg/L)				<u>'</u>					,					
alkalinity, Total		10	2	200	170	180	120 B							
ammonia	2	0.2	0.	.13	0.11 B	0.032 F	0.027 F							
BOD5		2.4	1	U	U	U	U							
bromide	2	0.5	0.0	35 F	0.040 F	0.027 F	U							
COD		5	1	U	U	3.7 F	U							
chloride	250	1	6	5.3	5.5	5.3	10 B							
color	15	5	1	U	NA	U	U							
cyanide, Total	200	0.02	N	NA	NA	NA	NA							
hardness, Total		1	2	200	170	170	140 B							
nitrate	10	1	1	U	U	U	0.026 BF							
TKN	1	1	1	U	0.27 B	U	0.18 F							
sulfate	250	1	4	1.3	4.3	3.8	5.8 B							
TDS	500	10	2	10	160	98	160							
TOC		1	0.4	47 F	0.53 F	U	1.7							
phenolics, Total		0.005		NΑ	NA	NA	NA							
<u> </u>						1			-1		1	1		

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-13					
Date of Collection	NYSDEC		12/8/2003	3/29/2004	6/25/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/8/2005	12/23/2005	3/14/2006	9/15/2006	4/3/2007	9/26/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1316AA	LF1M1316BA	LF1M1316CA	LF1M1316DA	LF1M1316EA	LF1M1316FA	LF1M1316GA	LF1M1316HA	LF1M1316IA	LF1M1316JA	LF1M1316LA	LF1M1316NA	LF1M1316OA
Depth to Water (ft)			6.32	4.92	7.28	6.53	5.54	5.14	8.21	9.18	7.13	5.68	7.88	4.92	9.25
VOCs (µg/L)				,		,	,			,					
1,1,1-trichloroethane	5*	1	U	U	U	UM	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	UM	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	UM	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	UM	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	U	UM	U	U	U	UM	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	UM	U	U	0.18 F	U	U
acetone	50	10	U	U	4.9 F	1.4 F	U	U	U	U	U	U	1.03 F	U	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	UM	U	U	U	UM	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	UM	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	UM	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	UM	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	UM	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	UM	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	UM	U	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	UM	U	U	UM	U	U	0.19 F	0.200 F	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	UM	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	UM	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	UM	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	UM	U	U	U	U	U
vinyl chloride	2	1	2.5	2.5	1.7	2.1	2.7 M	2.2	1.8	2.6	1.8	2	1.12	1.28	1.32
Total VOCs (µg/L)			2.5	2.5	6.6	3.5	2.7	2.2	1.8	2.6	1.8	2	2.52	1.48	1.32
Pesticides (µg/L)															
No pesticides reported.				<u> </u>		<u> </u>	<u> </u>			<u> </u>					
PCBs (µg/L)															
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MV	V-13								
Date of Collection	NYSDEC		12/8/2003	3/29/2004	6/25/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/8/2005	12/23/2005	3/14/2006	9/15	/2006	4/3/	2007	9/26/	/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1316AA	LF1M1316BA	LF1M1316CA	LF1M1316DA	LF1M1316EA	LF1M1316FA	LF1M1316GA	LF1M1316HA	LF1M1316IA	LF1M1316JA	LF1M:	1316LA	LF1M1		LF1M1	1316OA
Depth to Water (ft)			6.32	4.92	7.28	6.53	5.54	5.14	8.21	9.18	7.13	5.68	7.	.88	4.	92	9.	.25
Metals (μg/L) [Dissolved / Total] ¹			•	,			•	•		,		•						
aluminum	2,000	200	764	4,250	90	73.2 F	81.7 F	544	102 F	U	579	341	52.9 F	104 F	U	210	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	7.3 F	U	7.7 F	5.6 F	U	5.1 F	U	6.8 F	5.6 F	U	9.56 F	U	14 F	U	7.0 F
barium	1,000	50	83.8	97.8	79	58.2	84	81.2	70.1	63.4	74	72.9	60.7	65.7	71	79	59	60
berylium	3	4	U	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	83.3	NA	NA	NA	NA	70.8	NA	NA	NA	71.6	U	U	U	U	NA	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2 F	U	NA
calcium		1,100	82,800	81,800	75,200	60,400	79,000	79,100	65,900	76,000	72,000	74,700 M	59,600	58,900	75,000	76,000	60,000	58,000
chromium	50	10	1.3 F	5.6 F	U	2.4 F	U	U	U	U	2.5 F	1.2 F	U	U	U	6.5 F	U	U
cobalt		60	4.3 F	5.2 F	3 F	2.9 F	1.4 F	3 F	2.1 F	1.8 F	1.3 F	2.3 F	U	U	U	U	U	U
copper	200	10	3 F	11.6	5.8 F	U	U	U	U	U	3.1 F	2.2 F	U	U	U	U	U	U
iron	300	200	23,900	33,300	26,400	23,000	19,000	18,300 M	21,900	4,400 M	16,200	17,100	18,200	23,200	12,000	32,000	20,000	22,000
lead	25	25	U	4.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	10,500	10,900	9,680	7,370 M	9,610	9,440	7,900	9,190	8,920	9,150	7,430	7,340	9,200	9,400	7,400	7,200
manganese	300	10	3,200	2,920	2,690	2,440	1,960	2,520	2,040	1,990	1,890	2,200 M	1,800	1,770	1,600	1,700	2,000	1,900
molybdenum		15	U	U	U	U	U	U	U	U	U	1.9 F	U	U	U	U	U	U
nickel	100	20	8.0 F	11.2 F	2.7 F	3.5 F	2 F	2.9 F	2.9 F	2 F	U	1.7 F	U	U	1.5 F	2.3 F	U	U
potassium		1,000	1,360	2,350	972 F	798 F	1,040	1,110	826 F	874 F	1,060	916 F	699	684 F	900 F	1,100	760 F	760 F
selenium	10	30	U	U	U	U	U	U	U	U	U	6.8 F	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	18,700	18,900	17,900	15,500 M	19,400	18,400	16,300	17,700	18,100	18,700	16,100	16,400	18,000	18,000	16,000	15,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	1.9 F	8 F	U	U	U	0.9 F	U	U	1.4 F	U	U	U	U	U	U	U
zinc	2,000	20	4.4 F	17.1 F	6.9 F	20.2	U	3.2 F	U	U	4.5 F	3.6 F	18.8 F	39.5 B	U	U	5.0 F	U
Leachate Indicators (mg/L)	_,		1				-						10.01			-		
alkalinity, Total		10	258	252	229 M	260 M	256	270	247	276 M	243	230 B	2	00	2-	40	2	10
ammonia	2	0.2	0.23	0.17	0.2	0.21 J	0.13 M	0.19	0.13	0.23	0.26 M	0.042 F		32		14		.35
BOD5		2.4	U	U	2.7	U	U	U	U	2.1	U	U	2			J	Ţ	
bromide	2	0.5	U	U	U	U	U	U	U	UM	0.4 M	U		87 F	0.0			69 F
COD	-	5	U	U	UM	U	U	11.4	3.6 F	15.9	13.2 J	U		14		В		11
chloride	250	1	18.1	18.2	18.3	19.6	15.9 M	18	20.7	15.7 M	16.6 M	17.6 B		20		6		15
color	15	5	150 J	NA	NA	NA	NA	120	NA	NA	NA	80		IA.		IA.		IA.
cyanide, Total	200	0.02	U	NA NA	NA	NA	NA	0.0091 M	NA	NA	NA	U		IA.		IA.		IA.
hardness, Total		1	330	252	216 M	240	232	236	232	392	260	176		00		20		50
nitrate	10	1	U	U	U	UM	U	U	U	UM	0.08 F	U		28 F		J		U
TKN	10	1	0.31	0.56	0.47	0.23 B	0.48 B	0.29	0.43	1.1	1 J	0.25 B		26 F	0.3			.32
sulfate	250	1	9.4	7.8	8.3	7.5	6.1 M	6.8	7.8	6 M	6 M	5.6	7			7 F		i.5
TDS	500	10	312	318	312	280	338	292	310	268	278	316		50		7 F 70		60
TOC		10	2.2	2.1	0.52 F	2.1	2.7	292	2	2.4 B	1.9	316 U	2			.2		1.8
		-					U./					-		5 IA		.2 [A		8 IA
phenolics, Total		0.005	U	0.0078 F	UM	U	U	U	U	U	U	U	I N	(A	N	IA	N	A

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well							LF1MW-13		
	NYSDEC		4/1/2008	9/17/2008	4/17/2009	3/30/2010	LF1MW-13		
Date of Collection	Class GA	Reporting	4/1/2008	9/17/2008	4/17/2009	3/30/2010			
Sample ID No.	Groundwater Standards	Limit	LF1M1316PA	LF1M1316QA	LF1M1316RA	LF1M1316SA			
Depth to Water (ft)			4.65	8.59	6.33	5.85			
VOCs (µg/L)								 	
1,1,1-trichloroethane	5*	1	U	U	U	U			
1,1-dichloroethane	5*	1	U	U	U	U			
1,2,3-trichlorobenzene	5	1	U	U	U	U			
1,2,4-trimethylbenzene	5*	1	U	U	U	U			
1,2-dichloroethane	0.6	1	U	U	U	U			
1,2-dichlorobenzene	3	1	U	U	U	U			
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U			
1,3,5-trimethylbenzene	5*	1	U	U	U	U			
1,3-dichlorobenzene	3	1	U	U	U	U			
1,4-dichlorobenzene	3	0.5	0.180 F	U	U	U			
acetone	50	10	U	U	U	1.31♦			
benzene	1	0.1	U	U	U	U			
bromodichloromethane	50	0.5	U	U	U	U			
bromoform	50	1	U	U	U	U			
carbon disulfide	1,000	0.5	U	U	U	U			
chlorobenzene	5*	0.5	U	U	U	U			
chloroethane	5*	1	U	U	U	U			
chloroform	7	0.3	U	U	U	U			
chloromethane	5*	1	U	U	U	U			
cis-1,2-dichloroethene	5*	1	U	U	U	U			
dichlorodifluoromethane	5*	1	U	U	U	U			
ethylbenzene	5*	1	U	U	U	U			
isopropylbenzene	5*	1	U	U	U	U			
methylene chloride	5*	1	U	U	U	U			
methyl iodide	5*	0.5	U	U	U	U			
n-propylbenzene	5*	1	U	U	U	U			
m,p-xylene	5*	2	U	U	U	U			
naphthalene	10	1	U	U	U	U			
o-xylene	5*	1	U	U	U	U			
p-isopropyltoluene	5*	1	U	U	U	U			
sec-butylbenzene	5*	1	U	U	U	U			
tetrachloroethene	5	1	U	U	U	U			
tert-butylbenzene	5*	1	U	U	U	U			
trichloroethene (TCE)	5*	1	U	U	U	U			
toluene	5*	1	U	U	U	U			
trichlorofluoromethane	5*	1	U	U	U	U			
vinyl chloride	2	1	1.48	1.25	1.16♦	1.27			
Total VOCs (µg/L)			1.66	1.25	1.16	2.58			
Pesticides (µg/L)									
No pesticides reported.									
PCBs (µg/L)									
No PCBs reported.									

Landfill 1 AOC Groundwater Analytical Results (continued)

_

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well Date of Collection Sample ID No.	NYSDEC Class GA		12/15/2004							1MW-14					
	Close GA			4/4/2005	6/22/2005	9/9/2005	12/19/2005	3/15/2006	9/15/2006	4/3/2007	9/26/2007	4/2/2008	9/18/2008	4/21/2009	3/30/2010
	Groundwater Standards	Reporting Limit	LF1M1413EA	LF1M1413FA	LF1M1413GA	LF1M1413HA	LF1M1414IA	LF1M1414JA	LF1M1410LA	LF1M1414NA	LF1M1413OA	LF1M1414PA	LF1M1412QA	LF1M1412RA	LF1M1414SA
Depth to Water (ft)	Standards		6.91	5.87	10.67	12.88	8.41	6.64	10.42	5.90	15.63	5.37	11.90	7.41	6.85
VOCs (µg/L)												1			
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	0.28 F	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	TI.	U
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	TI.	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
acetone	50	10	U	U	U	U	U	U	U	U	U	U	U	U	1.45
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	TI.	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	0.250 F	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	0.21 F	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	Ü	Ü	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	U	U	U	U	U	U	U	U	U	U	U	U	U
Total VOCs (µg/L)	1 -	-	0	0	0.49	0	0	0	0	0	0.25	0	0	0	1.45
Pesticides (μg/L)	1								•		-				
No pesticides reported.															
PCBs (µg/L)								1							
No PCBs reported.			I	I				I							

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well										LF1	MW-14									
Date of Collection	NYSDEC		12/15/2004	4/4/2005	6/22/2005	9/9/2005	12/19/2005	3/15/2006	9/15		4/3/2	2007	9/26/	2007	4/2/2	2008	9/18/	/2008	4/21/2009	3/30/2010
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M1413EA	LF1M1413FA	LF1M1413GA	LF1M1413HA	LF1M1414IA	LF1M1414JA	LF1M	1410LA	LF1M1	414NA	LF1M1	413OA	LF1M1	1414PA	LF1M1	1412QA	LF1M1412RA	LF1M1414SA
Depth to Water (ft)			6.91	5.87	10.67	12.88	8.41	6.64	10	.42	5.9	90	13.	.34	5.	37	11	.90	7.41	6.85
Metals (µg/L) [Dissolved / Total] ¹				,	,															
aluminum	2,000	200	1,100	405	531	65,300	1,390	156 F	73.9	7,310	U	450	U	58,000	U	700	U	17,000	83 F	72 F
antimony	3	50	U	U	U	U	3.9 F	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	22.5 F	U	U	U	U	U	U	U	23 F	U	U	U	5.7 F	U	U
barium	1,000	50	15.4 F	10.2 F	11.3 F	287	14.6 F	7.7 F	9.73 F	38.3 F	66 F	8.9 F	11 F	230	7.2 F	9.1 F	9.7 F	74	11 F	10 F
berylium	3	4	U	U	U	3.4 F	U	U	U	U	U	U	U	2.6 F	U	U	U	0.69 F	U	U
boron	1,000	110	U	6.8 F	NA	NA	NA	5.4 F	U	U	U	U	NA	NA	5.0 F	6.1 F	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	15,600	15,200	19,200	30,100	15,800	14,200	20,300	21,100	15,000	16,000	28,000	32,000	16,000	16,000	20,000	22,000	15,000	19,000
chromium	50	10	1.4 F	1.5 F	1.8 F	150	4 F	1.7 F	U	50.3	U	13	U	150	U	6.3 F	U	100	3.1 F	U
cobalt		60	U	U	U	47.7 F	U	U	U	U	U	U	U	38 F	U	U	U	6.2 F	U	U
copper	200	10	7 F	8.2 F	1.8 F	165	3.3 F	2 F	U	19.3	U	4.0 F	U	120	U	3.7 F	U	39	U	U
iron	300	200	994	313	575	122,000	1,070	134 F	30.8 F	9,760	7.1 F	390	6.3 F	96,000	19 F	440	U	23,000	100 F	240
lead	25	25	U	U	U	51	U	U	U	U	U	U	U	37	U	U	U	10 F	U	U
magnesium	35,000	1,000	3,140	3,020	3,840	26,500	3,130	2,650	3,730	5,690	2,900	3,100	4,700	22,000	2,600	2,700	3,800	8,100	2,900	3,500
manganese	300	10	61.5	14.1	33.3	2,130	22.2	3.2 F	11.1	145	7.8 F	13	580	2800	2.5 F	8.4 F	4.8 F	480	3.8 F	13
molybdenum		15	U	U	U	3.3 F	U	U	U	U	U	U	U	4.8 F	U	U	U	U	U	U
nickel	100	20	2.7 F	2.9 F	2.4 F	228	3.6 F	1.8 F	1.26 F	30.6	1.2 F	6.4 F	3.2 F	130	U	5.3 F	1.5 F	64	3.1 F	2.4 F
potassium		1,000	863 F	628	725 F	6,820	967 F	445 F	623 F	2,390	410 F	570 F	1,100	9,100	730	840 F	670 F	4,500	590 F	500 F
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	5,000	4,620	6,270	6,660	4,550	4,280	5,540	5,680	4,500	4,400	6,500	5,900	3,700	3,700	4,800	5,100 B	3,200	4,300
thallium	0.5	80	U	U	U	7.6 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	1.9 F	0.9 F	U	98.4	2.5 F	U	U	13.4	U	1.3 F	U	97	U	U	U	29	U	U
zinc	2,000	20	6 F	3.9 F	5.1 F	252	22.5	3.8 F	27.9 B	42.7 B	6.4 F	7.3 F	37 B	270	12 F	15 F	15 F	59 B	5.8 F	9.6 F
Leachate Indicators (mg/L)	•								•				1					• •		
alkalinity, Total		10	57	52.1	58.2	70.1	52.2	28.7	6	54	4	2	7	6	4	-8	6	66	54	46
ammonia	2	0.2	0.071 F	0.024 F	U	0.076	U	U	1	U	0.01	2 F	0.	11	0.0	13 F	1	U	U	U
BOD5		2.4	U	U	U	U	U	U	1	U	τ	J	N	A	τ	IJ	1	U	U	U
bromide	2	0.5	U	U	U	U	U	0.52	1	U	Ţ	J	τ	J	τ	IJ	ı	U	U	U
COD		5	U	U	U	8.8 F	18.4	U	7.	1 F	8.3	F	12	20	4.	1 F	ı	U	3.7 F	U
chloride	250	1	5.5	4.7	8.1	7.6	2.7	1.9	3	.4	1.	.6	6.	.0	1	.4	2	.1	0.75 F	4.4
color	15	5	NA	25	NA	NA	NA	10	N	IA	N	A	N	A	1	U	N	IA	U	U
cyanide, Total	200	0.02	NA	U	NA	NA	NA	U	N	IA	N	A	N	A	N	ΙA	N	IA	NA	NA
hardness, Total		1	72	58	84	105	88	21.3	76	5 B	5	6	8	0	4	8	9)2	50	63
nitrate	10	1	0.070 F	0.38 F	U	0.83 F	0.1 F	U	0.3	2 F	0.07	2 F	0.	15	0.	43	0.	24	0.15	1.3
TKN	1	1	0.23	U	U	0.4	0.065	U	0.3	3 F	Ţ	J	4.	.3	Ţ	IJ	0.	48	0.93	0.19 FB
sulfate	250	1	10.2	9.9	10.5	10	10.5	9.8		.8	9.	1	9.	.8	7	.8	8	.0	7.5	7.9
TDS	500	10	107	778	121	140	99	95		98	6			50	6			17	66	74
TOC		1	U	0.76 F	0.45 F	0.84 F	U	0.71 F	0.6		0.6		3.		1		0.4		0.58 F	0.74 F
phenolics, Total		0.005	U	U	U	U	U	U		IA	N		N			IA.		IA	NA	NA
r	 	0.002				Ü		_ ~												

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well								LF1MW-1	ID.		
Date of Collection	NYSDEC		12/5/2003	4/4/2005	3/15/2006	4/3/2007	4/1/2008	4/21/2009	3/30/2010		
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M01R11AA	LF1M01R11FA	J/15/2006 LF1M01R11JA	LF1M01R11NA	LF1M01R11PA	LF1M01R11RA	LF1M01R11SA		
Depth to Water (ft)			4.30	3.99	3.14	4.09	3.75	4.15	4.18		
VOCs (µg/L)											
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U		
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U		
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U		
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U		
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U		
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U		
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U		
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U		
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U		
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U		
acetone	50	10	U	U	U	U	U	U	1.63 F		
benzene	1	0.1	U	U	U	U	U	U	U		
bromodichloromethane	50	0.5	U	U	U	U	U	U	U		
bromoform	50	1	U	U	U	U	U	U	U		
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U		
chlorobenzene	5*	0.5	U	U	U	U	U	U	U		
chloroethane	5*	1	U	U	U	U	U	U	U		
chloroform	7	0.3	U	U	U	U	U	U	U		
chloromethane	5*	1	U	U	U	U	U	U	U		
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U		
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U		
ethylbenzene	5*	1	U	U	U	U	U	U	U		
isopropylbenzene	5*	1	U	U	U	U	U	U	U		
methylene chloride	5*	1	U	U	U	U	U	U	U		
methyl iodide	5*	0.5	U	U	U	U	U	U	U		
n-propylbenzene	5*	1	U	U	U	U	U	U	U		
m,p-xylene	5*	2	U	U	U	U	U	U	U		
naphthalene	10	1	U	U	U	U	U	U	U		
o-xylene	5*	1	U	U	U	U	U	U	U		
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U		
sec-butylbenzene	5*	1	U	U	U	U	U	U	U		
tetrachloroethene	5	1	U	U	U	U	U	U	U		
tert-butylbenzene	5*	1	U	U	U	U	U	U	U		
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U		
toluene	5*	1	U	U	U	U	U	U	U		
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U		
vinyl chloride	2	1	U	U	U	U	U	U	U		
Total VOCs (μg/L)			0	0	0	0	0	0	1.63		
Pesticides (µg/L)			-	-					<u> </u>		-
No pesticides reported.											
PCBs (µg/L)											
No PCBs reported.											<u> </u>
			1	l .			<u> </u>	<u> </u>	<u> </u>		

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well										LF1MW-1	1R				
Date of Collection	NYSDEC		12/5/2003	4/4/2005	3/15/2006	4/3/2	2007	4/1/2	2008	4/21/2009	3/30/2010				
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M01R11AA	LF1M01R11FA	LF1M01R11JA	LF1M0	IR11NA	LF1M0	1R11PA	LF1M01R11RA	LF1M01R11SA				
Depth to Water (ft)			4.30	3.99	3.14	4.0	09	3.	75	4.15	4.18				
Metals (µg/L) [Dissolved / Total] ¹															
aluminum	2,000	200	1,780	1,300	1,980	100 F	1,600	110 F	1,800	2,000	240				
antimony	3	50	U	U	U	U	U	U	U	U	U				
arsenic	25	30	U	U	U	U	U	U	7.3 F	5.3 F	U				
barium	1,000	50	36.9 F	23.4 F	17.8	12 F	15 F	8.3 F	14 F	17 F	11 F				
berylium	3	4	0.3 F	0.3 F	U	U	U	U	0.23 F	0.26 F	U				
boron	1,000	110	15.9	6.1 F	9.4 F	U	U	5.2 F	8.8 F	NA	NA				
cadmium	5	5	U	U	U	U	U	U	U	U	U				
calcium		1,100	24,400	25,500	17,700	17,000	17,000	14,000	15,000	11,000	12,000				
chromium	50	10	1.6 F	2.2 F	3.3 F	1.5 F	4.8 F	U	3.1 F	4.8 F	U				
cobalt		60	U	0.9 F	1.1 F	U	U	U	U	U	U				
copper	200	10	2.8 F	3.9 F	6 F	U	6.5 F	U	5.0 F	5.8 F	U				
iron	300	200	7,820	9,020	7,520	6,500	9,900	4,000	13,000	14,000	6,900				
lead	25	25	U	U	U	U	U	U	4.4 F	U	U				
magnesium	35,000	1,000	3,380 B	2,330	2,690	3,000	3,000	2,300	2,400	2,400	2,300				
manganese	300	10	232	174	190	190	200	190	190	220	210				
molybdenum		15	U	U	1.9 F	U	U	U	U	U	U				
nickel	100	20	U	1.5 F	2 F	1.4 F	2.0 F	U	1.8 F	3.0 F	U				
potassium		1,000	1,830 B	1,120	874 F	490 F	680 F	240 F	640 F	640 F	290 F				
selenium	10	30	U	U	U	U	U	U	U	U	U				
silver	50	10	U	U	U	U	U	U	U	U	U				
sodium	20,000	1,000	8,650 B	4,760	4,340	4,000	3,900	3,200	3000 B	3,200	3,800				
thallium	0.5	80	U	U	U	U	U	U	U	U	U				
vanadium		10	3.3 F	5.3 F	5.9 F	0.90 F	8.1 F	1.4 F	23	18	U				
zinc	2,000	20	7.5 F	4.6 F	6.9 F	U	U	12 F	14 F	61	6.1 F				
Leachate Indicators (mg/L)											1				
alkalinity, Total		10	43.8 B	44.3	47.3	3	4	3	16	30	40				
ammonia	2	0.2	U	0.076	0.061		180	0.03		0.07	0.046 F				
BOD5		2.4	U	U	U	τ	J	ι	U	U	U				
bromide	2	0.5	U	0.32 F	0.49 F	0.03			28 F	0.014 F	U				
COD		5	U	19.2	13.2	19	В	2	20	17	6.5 F				
chloride	250	1	33 B	40.4	13.7	9.		7		6.3	7.3				
color	15	5	80	40	80		Α		80	50	U				
cyanide, Total	200	0.02	0.034 B	U	U	N	Α	N		NA	NA				
hardness, Total		1	150 B	76	44.8		0		18	44	38				
nitrate	10	1	U	U	U		J		U	0.021 F	0.013 F				
TKN	1	1	0.54	U	0.063 F	0.:	24	0.1	5 F	0.32	0.30 B				
sulfate	250	1	9.9 B	6.7	7.8	1			.0	9.9	8.7				
TDS	500	10	130 B	147	141		6		15	81	76				
TOC		1	2.1	4.8	4.2	5		7		8.0	2.6				
phenolics, Total		0.005	U	U	U		A		IA	NA	NA				
piiciones, rotai		0.005	Ü	U	Ü	1,	••	.,		****				l	

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MW-1	03					
Date of Collection	NYSDEC		3/31/2004	6/28/2004	9/17/2004	12/15/2004	4/5/2005	6/23/2005	9/9/2005	12/22/2005	3/17/2005	9/15/2006	4/4/2007	9/27/2007	4/1/2008
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M10334BA	Not Sampled	LF1M10335DA	Not Sampled	Not Sampled	LF1M10335GA	LF1M10335HA	LF1M10335IA	Not Sampled	LF1M10314LA	LF1M10333NA	LF1M10335OA	LF1M10331PA
Depth to Water (ft)	Standards		33.77	34.37	34.90	34.41	34.41	34.68	34.75	34.50	34.45	33.60	32.93	33.12	30.61
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,1-dichloroethane	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,2-dichloroethane	0.6	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,2-dichlorobenzene	3	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,3-dichlorobenzene	3	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	NS	U	NS	NS	U	U	U	NS	U	U	0.180 F	U
acetone	50	10	4.9 F	NS	1.5 F	NS	NS	U	U	U	NS	U	U	U	U
benzene	1	0.1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
bromodichloromethane	50	0.1	U	NS NS	U	NS	NS NS	U	U	U	NS NS	U	U	IJ	U
bromoform	50	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
carbon disulfide	1,000	0.5	0.31 F	NS	U	NS	NS	U	U	U	NS	U	U	U	U
chlorobenzene	5*	0.5	U.31 I	NS NS	U	NS NS	NS NS	U	U	U	NS NS	U	U	U	U
chloroethane	5*	1	U	NS	U	NS	NS NS	U	U	U	NS NS	U	U	U	U
chloroform	7	0.3	4.7 B	NS NS	0.51 B	NS NS	NS NS	U	U	U	NS NS	U	U	IJ	U
chloromethane	5*	1	4.7 B U	NS NS	U	NS NS	NS NS	U	U	U	NS NS	U	U	U	U
	5*	1	U		U		NS NS	U	U	U		U	U	U	U
cis-1,2-dichloroethene	5*	1	U	NS	U	NS		U	П	U	NS NS	U	U	U	U
dichlorodifluoromethane	_	1		NS		NS	NS		Ü					U	U
ethylbenzene 	5* 5*	1	U U	NS NS	U U	NS NS	NS NS	U U	U U	U U	NS NS	U U	U U	IJ	U
isopropylbenzene	5*	1	U	NS NS	U		NS NS	U	U	U	NS NS	U	U	U	U
methylene chloride		-	-			NS		U	U	-			-	U	U
methyl iodide	5* 5*	0.5	U U	NS	U U	NS NS	NS NS	U	U	U U	NS NS	U U	U U	IJ	U
n-propylbenzene	5*	2	U	NS	U			U	U	U		U	U	U	U
m,p-xylene	10		U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
naphthalene		1		NS		NS	NS				NS			U	U
o-xylene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	-
p-isopropyltoluene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
sec-butylbenzene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
tetrachloroethene	5	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
tert-butylbenzene	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	-	U
trichloroethene (TCE)	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
toluene	5*	1	0.34 F	NS	U	NS	NS	U	U	U	NS	U	U	U	U
trichlorofluoromethane	5*	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
vinyl chloride	2	1	U	NS	U	NS	NS	U	U	U	NS	U	U	U	U
Total VOCs (µg/L)			10.25	NS	2.01	NS	NS	0	0	0	NS	0	0	0.180	0
Pesticides (µg/L)										1			T		
No pesticides reported.									L						
PCBs (µg/L)	_							_					,		
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1MW-1	03							
Date of Collection	NYSDEC		3/31/2004	6/28/2004	9/17/2004	12/15/2004	4/5/2005	6/23/2005	9/9/2005	12/22/2005	3/17/2005	9/15/2006	4/4/2007	9/2	7/2007	4/1	1/2008
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1M10334BA	Not Sampled	LF1M10335DA	Not Sampled	Not Sampled	LF1M10335GA	LF1M10335HA	LF1M10335IA	Not Sampled	LF1M10314LA	LF1M10333NA	LF1M	10335OA	LF1M	I10331PA
Depth to Water (ft)			33.77	34.37	34.90	34.41	34.41	34.68	34.75	34.50	34.45	33.60	32.93	3	3.12	3	30.61
Metals (μg/L) [Dissolved / Total] ¹																	
aluminum	2,000	200	NS	NS	6,400	NS	12,000										
antimony	3	50	NS	NS	U	NS	U										
arsenic	25	30	NS	NS	U	NS	10 F										
barium	1,000	50	NS	NS	640	NS	310										
berylium	3	4	NS	NS	0.20 F	NS	0.43 F										
boron	1,000	110	NS	NS	NA	NS	530										
cadmium	5	5	NS	NS	U	NS	U										
calcium		1,100	NS	NS	15,000	NS	5,500										
chromium	50	10	NS	NS	30	NS	71										
cobalt	-	60	NS	NS	U	NS	U										
copper	200	10	NS	NS	46	NS	64										
iron	300	200	NS	NS	9,300	NS	10,000										
lead	25	25	NS	NS	6.4 F	NS	6.1 F										
magnesium	35,000	1,000	NS	NS	4,800	NS	3,000										
manganese	300	10	NS	NS	250	NS	170										
molybdenum		15	NS	NS	63	NS	77										
nickel	100	20	NS	NS	25	NS	25										
potassium		1,000	NS	NS	14,000	NS	9,300										
selenium	10	30	NS	NS	3.7 F	NS	4.1 F										
silver	50	10	NS	NS	U	NS	U										
sodium	20,000	1,000	NS	NS	770,000	NS	430,000										
thallium	0.5	80	NS	NS	U	NS	U										
vanadium		10	NS	NS	12	NS	22										
zinc	2,000	20	NS	NS	34 B	NS	44										
Leachate Indicators (mg/L)	<u> </u>																
alkalinity, Total		10	NS	-	460		300										
ammonia	2	0.2	NS		NA		0.34										
BOD5		2.4	NS		NA		NA										
bromide	2	0.5	NS	0.	86 F		NA										
COD		5	NS		NA		22										
chloride	250	1	NS		31		NA										
color	15	5	NS		NA		NA										
cyanide, Total	200	0.02	NS		NA		NA										
hardness, Total		1	NS		32		28										
nitrate	10	1	NS		220		NA										
TKN	1	1	NS		NA.		1.6										
sulfate	250	1	NS NS	NS	NS NS	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS NS		390		NA NA
TDS	500	10	NS NS		,400		NA										
TOC	500	10	NS NS		2.2		2.9										
phenolics, Total		0.005	NS NS		NA		NA										
prienories, Totai		0.003	INO.	No	NO.	IND	IND	IND	IND	INO	IND	IND	IND		11/1		11/1

Landfill 1 AOC Groundwater Analytical Results (continued)

			I										
Location of Well	NYSDEC		0.14.0.14.0.00	4444000		T	1	LF1MW-103		1	T	T	
Date of Collection Sample ID No.	Class GA Groundwater	Reporting Limit	9/18/2008 LF1M10333QA	4/21/2009 LF1M10333RA	3/31/2010 LF1M10317SA								
	Standards												
Depth to Water (ft)			17.51	14.10	16.60								
VOCs (µg/L)		1		T	T	T	T			T	T	T	
1,1,1-trichloroethane	5*	1	U	U	U								
1,1-dichloroethane	5*	1	U	U	U								
1,2,3-trichlorobenzene	5	1	U	U	U								
1,2,4-trimethylbenzene	5*	1	U	U	U								
1,2-dichloroethane	0.6	1	U	U	U								
1,2-dichlorobenzene	3	1	U U	U	U								
1,2-dibromo-3-chloropropane	0.04	2	_	U	U								
1,3,5-trimethylbenzene	5*	1	U	U	U								
1,3-dichlorobenzene	3	1	U	U	U								
1,4-dichlorobenzene	3	0.5	U	U	U								
acetone	50	10	13.6	18.0	13.5								
benzene	1	0.1	U U	U U	U U								
bromodichloromethane	50 50	0.5	U	U	U								
bromoform	1,000	0.5	U	U	U								
carbon disulfide	5*	0.5	U	U	U								
chlorobenzene	5*		U	U	U								
chloroethane chloroform	7	0.3	U	U	U								
chloromethane	5*	0.3	U	U	U								
		-	U	U	U								
cis-1,2-dichloroethene	5* 5*	1	U	U	U								
dichlorodifluoromethane	5*	1	U	U	U								
ethylbenzene	5*	1	U	U	U								
isopropylbenzene methylene chloride	5*	1	U	U	U								
methyl iodide	5*	0.5	U	U	U								
n-propylbenzene	5*	1	U	U	U								
m,p-xylene	5*	2	U	U	U								
naphthalene	10	1	U	U	U								
o-xylene	5*	1	U	U	U								
p-isopropyltoluene	5*	1	U	U	U								
sec-butylbenzene	5*	1	U	U	U								
tetrachloroethene	5	1	U	U	U								
tert-butylbenzene	5*	1	U	U	U								
trichloroethene (TCE)	5*	1	U	U	U								
toluene	5*	1	U	U	U								
trichlorofluoromethane	5*	1	U	U	U								
vinyl chloride	2	1	U	U	U								
Total VOCs (µg/L)			13.60	18.0	13.5		1			1		1	
Pesticides (µg/L)	+			1	1	'	1	1	+	-	'	-	
No pesticides reported.													
PCBs (µg/L)	_				·		·		1				
No PCBs reported.													
z 255 reported.		1		1	1	l	1	1	1	1	l	1	

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well										LF1M	W-103					
Date of Collection	NYSDEC		9/18/	/2008	4/21/2009	3/31	/2010			27 1.11	100					
Date of Conection	Class GA	Reporting	7/10/	2000	4/21/2009	5/51	72010									
Sample ID No.	Groundwater Standards	Limit	LF1M1		LF1M10333RA	LF1M1	10317SA									
Depth to Water (ft)			17	.51	14.10	16	5.60									
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	2,000	200	NS	7,700	4,900	2,500	11,000									l
antimony	3	50	NS	2.8 F	U	U	U									l
arsenic	25	30	NS	29 F	18 F	13 F	14 F									l
barium	1,000	50	NS	58	38 F	11 F	85									l
berylium	3	4	NS	0.26 F	U	U	U									l
boron	1,000	110	NS	NA	NA	NA	NA									ı
cadmium	5	5	NS	U	U	U	U									l
calcium		1,100	NS	4,300	5,800	5,500	10,000 B									I
chromium	50	10	NS	30	13	20	52									İ
cobalt		60	NS	U	U	U	U									İ
copper	200	10	NS	98	61	33	63									I
iron	300	200	NS	4,500	2,500	U	8,500									İ
lead	25	25	NS	U	U	U	6.6 F									İ
magnesium	35,000	1,000	NS	930 F	560 F	U	1,800 B									l
manganese	300	10	NS	82	53	U	220									l
molybdenum		15	NS	72	57	44	48									
nickel	100	20	NS	17 F	8.9 F	2.8 F	25									I
potassium		1,000	NS	4,100	3,300	3,600	5,200 B									I
selenium	10	30	NS	5.3 F	U	U	U									l
silver	50	10	NS	U	U	U	U									l
sodium	20,000	1,000	NS	180,000	160,000	180,000	180,000									i
thallium	0.5	80	NS	U	U	U	U									l
vanadium		10	NS	63	38	17	30									l
zinc	2,000	20	NS	38 B	10 F	9.1 F	32 B									l
Leachate Indicators (mg/L)	_,,,,,								I		l			1		
alkalinity, Total		10	3	10	350	4	-60									
ammonia	2	0.2		IS	21		25									
BOD5	_	2.4		IS	NA		ĪΑ									
bromide	2	0.5		IS	0.12		.10									
COD	_	5		IS	37		12									
chloride	250	1	N		4.9		3 B									
color	15	5		ΙA	10		U									
cyanide, Total	200	0.02		IA.	NA NA		NA.									
hardness, Total		1		12	18		2 B									
nitrate	10	1		IS	5.9		1 B									
TKN	10	1		IS	21		30					 	 			
				is Is	27		8 B									
sulfate	250	1			440											
TDS	500	10		IS TE			20									
TOC	-	1		IS	4.2		2.9									
phenolics, Total	-	0.005	N	IA	NA	N	ΝA					L	l			

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well								LF1P-2					
Date of Collection	NYSDEC		12/22/2005	3/16/2006	6/19/2006	9/14/2006	12/18/2006	4/4/2007	9/26/2007	4/1/2008	9/18/2008	4/21/2009	3/30/2010
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0213IA	LF1P0213JA	LF1P0213KA	LF1P0213LA	LF1P0213MA	LF1P0213NA	LF1P0213OA	LF1P0213PA	LF1P0213QA	LF1P0213RA	LF1P0213SA
Depth to Water (ft)			5.77	4.96	5.82	5.89	5.28	4.77	6.25	4.15	6.05	5.02	4.78
VOCs (µg/L)				,		•							
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	0.2 F	0.220 F	0.130 F	0.140 F	U	U	U	0.120 F
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	0.19 F	0.290 F	0.250 F	0.350 F	0.250 F	0.370 F	0.220 F	0.500 F
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	UJ	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	1.3	1.1	1.2	1.72	2.21	1.87	2.04	1.70	2.30	1.38	2.70
acetone	50	10	U	U	U	2.86 F	U	U	U	U	U	U	U
benzene	1	0.1	0.78	0.77	0.76	0.95	1.01	0.670	0.700	0.550	0.730	0.540	0.800
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	1.7	1.4	1.6	2.04	2.27	1.92	2.05	1.43	1.86	1.45	2.21
chloroethane	5*	1	U	U	0.25 F	0.2 F	0.300 F	0.220 F	U	U	U	U	0.340 F
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	0.120 F	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	0.35 F	0.26 F	U	U	0.240 F	0.140 F	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	0.13 F	U	0.100 F	U	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	0.120 F
trichloroethene (TCE)	5*	1	U	U	U	U	0.190 F	U	U	0.110 F	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	0.45 F	0.52 F	0.56 F	0.57 F	0.550 F	0.380 F	U	U	U	U	U
Total VOCs (µg/L)			4.23	4.14	4.63	8.86	7.16	5.78	3.38	2.34	5.26	3.59	6.79
Pesticides (µg/L)													
No pesticides reported.													
PCBs (µg/L)				_			1	1			1		
No PCBs reported.													

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well												LF1P-2							
Date of Collection	NYSDEC		12/22/2005	3/16/2006	6/19/	/2006	9/14/	/2006	12/18	/2006	4/4/	2007	9/26/	2007	4/1/2	2008	9/18/2008	4/21/2009	3/30/2010
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0213IA	LF1P0213JA	LF1P0	213KA	LF1P0)213LA	LF1P0	213MA	LF1P0	213NA	LF1P0	213OA	LF1P0	213PA	LF1P0213QA	LF1P0213RA	LF1P0213SA
Depth to Water (ft)			5.77	4.96	5.	82	5.3	89	5.	28	4.	77	6.	25	4.	15	6.05	5.02	4.78
Metals (µg/L) [Dissolved / Total] ¹																			
aluminum	2,000	200	U	41.4 F	U	U	54.1 F	46.1 F	U	U	U	U	U	U	U	U	U	U	1,500
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	4.3 F	U	4.1 F	U	U	U	U	U	U	U
barium	1,000	50	91.4	103	87.7	114	117	116	130	130	130	130	110	120	120	120	120	130	140
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	NA	78	94	95.6	NA	NA	NA	NA	U	U	NA	NA	86	89	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	0	U	U	U	U	U
calcium		1,100	130,000	136,000	140,000	149,000	144,000	143,000	160,000	160,000	160,000	160,000	140,000	150,000	140,000	140,000	140,000	150,000	160,000
chromium	50	10	U	U	U	U	U	U	U	1.6 F	1.9 F	U	1.6 F	1.6 F	U	U	U	U	U
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
iron	300	200	7,060	8,410	1,980	10,200	11,300	11,100	13,000	13,000	13,000	13,000	11,000	12,000	12,000	12,000	12,000	13,000	16,000
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	11,700	12,600	12,600	13,400	12,700	12,600	14,000	14,000	14,000	14,000	13,000	14,000	14,000	14,000	14,000	14,000	15,000
manganese	300	10	990	981	1,020	1,070	960	957	990	980	940	950	810	820	830	820	790	910	1,000
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	2.1 F	U	U	U	U	U	1.5 F	1.7 F	1.3 F	U	U	U	U	U	U	U	2.7 F
potassium		1,000	4,580	4,310	4,820	5,080	5,120	5,050	5,400	5,500	5,100	5,200	5,000	5,100	4,800	4,700	5,000	4,600	5,600
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	8,160	9,760	12,000	13,000	15,100	15,000	14,000	14,000	13,000	14,000	15,000	15,000	12,000	11,000	12,000	14,000	15,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	3.0 F
zinc	2,000	20	4.1 F	2.8 F	U	U	23.4 B	U	U	6.5 F	U	U	U	U	11 F	12 F	13 F	68	71
Leachate Indicators (mg/L)	2,000				_	_		-	_		-		_					**	
alkalinity, Total		10	389	418	4	46	4:	50	41	60	4	40	44	40	45	50	440	430	480
ammonia	2	0.2	1.5	1.3		.2	2.			.6		.4	2.		2.		2.2	2.0	1.7
BOD5	_	2.4	2.1	U		.6	1			.0		3.0	8.		ī		6.0	3.5	U
bromide	2	0.5	0.28 F	0.49 F	0.1		0.1			12		10	0.		0.08		0.14	0.12	0.13
COD		5	7.3 F	U	26.			6		B		В	8.5		8.5		3.7 F	6.0 F	14
chloride	250	1	7.4	9.5		1.5	1			1	8		1		6.		11	9	12
color	15	5	NA	140		IA.	N			IA.		íA.	N		6		NA NA	40	U
cyanide, Total	200	0.02	NA	U		IA		IA		IA		IA	N N		N		NA	NA NA	NA NA
hardness, Total		1	430 B	314		38		60		30		70	39		43		480	440	460
nitrate	10	1	0.07 F	U	0.0		0.03			30 F		J.	0.06		0.05		U	0.085 F	0.086 F
TKN	1	1	2.2	2.1		.9		.4		.7		.4	2.		2.		2.3	2.1	2.1
sulfate	250	1	5.8	3.8		.2		.9		.5	3.3		1.		1.		0.97 F	0.72 F	0.22 F
TDS	500	10	3.8	456		71		90		00		90	48			50	340	470	460
TOC	500	10	380 U	1.7	2		2			.0	2		3.		2.		2.2	3.1	2.3
phenolics, Total	-	0.005	U	U U		iA		.o IA		IA		.4 [A	N N			.3 A	NA	NA	NA
prienories, Total		0.003	U	U	IN	1/1	I N	in.	IN	in.	IN.	in.	IN	л	IN	А	1974	INA	1974

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1P	_3					
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/16/2004	12/15/2004	4/4/2005	6/22/2005	9/9/2005	12/22/2005	3/17/2006	9/13/2006	4/4/2007	9/26/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0317AA	LF1P0303BA	LF1P0317CA	LF1P0317DA	LF1P0317EA	LF1P0317FA	LF1P0317GA	LF1P0317HA	LF1P0317IA	LF1P0317JA	LF1P0317LA	LF1P0317NA	LF1P0317OA
Depth to Water (ft)	Standards		3.76	3.20	3.54	3.79	3.75	3.33	4.01	5.37	4.53	3.35	4.35	2.85	5.17
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	II	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	II	U	U	U	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	IJ	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	U	U	U	0.11 F	U	U
acetone	50	10	1.3 F	U	2.9 F	U	U	U	U	U	U	U	1 F	U	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	0.25 F	U	2.1	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	0.24 F	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	0.26 F	U	0.26 F	0.33 F	0.27 F	0.34 F	0.44 F	0.5 F	U	0.3 F	0.13 F	U	0.240 F
Total VOCs (µg/L)			1.56	0	3.16	0.33	0.27	0.34	0.69	0.5	2.1	0.3	1.86	0	0.240
Pesticides (µg/L)															·
No pesticides reported.															
PCBs (µg/L)	1						1					1			1
No PCBs reported.															
- I	1		l	1	1	1	1	1	1	1	1	1		1	1

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1P	-3								
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/16/2004	12/15/2004	4/4/2005	6/22/2005	9/9/2005	12/22/2005	3/17/2006	9/13/	/2006	4/4/	2007	9/27/	/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0317AA	LF1P0303BA	LF1P0317CA	LF1P0317DA	LF1P0317EA	LF1P0317FA	LF1P0317GA	LF1P0317HA	LF1P0317IA	LF1P0317JA	LF1P0	317LA	LF1P0	317NA	LF1P0	317OA
Depth to Water (ft)			3.76	3.20	3.54	3.79	3.75	3.33	4.01	5.37	4.53	3.35	4.	35	2.	85	5.	17
Metals (μg/L) [Dissolved / Total] ¹																		
aluminum	2,000	200	U	245	U	U	U	U	U	U	U	U	52.7 F	49.4 F	U	U	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	1.83 F	1.93 F	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	74	77.7	79.4	75.6	70.3	68.6	69.6	70.6	67.9	67.7	68.2 F	65.9 F	69	69	69	72
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	86.9	NA	NA	NA	NA	83.3	NA	NA	NA	79.6	U	U	U	U	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.8 F
calcium	-	1,100	103, 000	111,000	113,000	109,000	103,000	99,600	100,000	101,000	96,700	97,900	95,900	92,900	100,000	100,000	100,000	100,000
chromium	50	10	U	U	U	U	U	U	U	U	U	U	U	1.78 F	3.9 F	2.4 F	3.3 F	3.2 F
cobalt	-	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	3.9 F	2.8 F	1.6 F	2 F	U	U	U	U	U	U	U	U	U	U
iron	300	200	44.5 F	208	80.4 F	43.5 F	26.7 F	34.7 F	39.9	26.1 F	23.1 F	27 F	22.3 F	26.2 F	26 F	41 F	3.1 F	3.3 F
lead	25	25	U	U	U	U	U	U	U	18,400	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	19,700	20,900	21,000	21,800	19,700	19,000	18,200	18,400	17,900	17,700	17,600	17,000	18,000	18,000	18,000	18,000
manganese	300	10	89.2	87.1	100	100	91.7	U	84.9	88.4	79.1	79.7	79	73.2	74	77	79	82
molybdenum	-	15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	U	1.5 F	1.9 F	U	U	U	U	U	1.5 F	U	U
potassium		1,000	3,030	2,920	3,080	3,110	2,940	2,830	2,770	2,660	2,640	2,430	2,460	2,380	2,700	2,600	2,700	2,800
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	16,100	15,900	16,100	15,800	14,800	13,900	14,300	14,900	16,100	16,100	15,400	14,800	16,000	16,000	16,000	16,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	U	11.3 F	U	U	U	U	U	U	4 F	U	26.4 B	47.6 B	U	U	U	U
Leachate Indicators (mg/L)											,	,						
alkalinity, Total		10	338	335	301	347	347	354	471	347	334	342	3:	50	3-	40	3:	30
ammonia	2	0.2	0.29	0.27	0.32	0.35	0.34	0.36	6	0.41	0.3	0.3 B	0.	36	0.	41	0.	40
BOD5		2.4	U	2.4	U	U	U	U	U	U	U	2.3	4	.9	1	IJ	2	.2
bromide	2	0.5	U	U	U	U	U	U	U	U	0.23 F	0.52	0.08	85 F	0.0	89 F	0.	10
COD		5	U	U	U	U	U	U	50.1	12	13.9 B	U	5	F	8.3	3 F	τ	U
chloride	250	1	10.8	10.5	12	11.9	10.8	12.2	12.1	11.6	12.2	11.4	1	1	1	1	1	0
color	15	5	2.5	NA	NA	NA	NA	5	NA	NA	NA	U	N	IΑ	N	ΙA	N	ΙA
cyanide, Total	200	0.02	0.085 J	NA	NA	NA	NA	U	NA	NA	NA	U	N	IA	N	ΙA	N	IA
hardness, Total	-	1	770	320	324	350	352	328	332	582	340 B	222	33	30	31	60	20	60
nitrate	10	1	U	U	U	U	U	U	U	U	U	U	0.02	23 F	0.0	38 F	0.03	20 F
TKN	1	1	0.39	0.31	0.36	0.35 B	0.4	0.4	6.4	0.77	0.73	4	0.3	3 F	0.	38	0.	52
sulfate	250	1	22.3	19.9	24.7	18.2	16.8	17.8	14.1	11.9	11.4	10.3	8	.8	8.3	2 B	8	.3
TDS	500	10	385	384	371	378	400	384	385	386	351	366	3"	70	31	60	31	80
TOC		1	U	0.8 F	U	U	U	0.72 F	0.53 F	0.95 F	U	U	ι		1	IJ		.3
phenolics, Total		0.005	0.011	U	U	U	U	0.0050 F	U	U	U	U	N	IΑ		ÍΑ		IA
1	1										-	-	1		1		1	

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well			I				LF1P-3			
Date of Collection	NYSDEC		4/2/2008	9/18/2008	4/21/2009	3/31/2010	LFIP-3			
Date of Conection	Class GA	Reporting	4/2/2008	9/18/2008	4/21/2009	3/31/2010				
Sample ID No.	Groundwater Standards	Limit	LF1P0317PA	LF1P0317QA	LF1P0317RA	LF1P0317SA				
Depth to Water (ft)			2.68	4.67	3.13	3.78				
VOCs (µg/L)										
1,1,1-trichloroethane	5*	1	U	U	U	U				
1,1-dichloroethane	5*	1	U	U	U	U				
1,2,3-trichlorobenzene	5	1	U	U	U	U				
1,2,4-trimethylbenzene	5*	1	U	U	U	U				
1,2-dichloroethane	0.6	1	U	U	U	U				
1,2-dichlorobenzene	3	1	U	U	U	U				
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U				
1,3,5-trimethylbenzene	5*	1	U	U	U	U				
1,3-dichlorobenzene	3	1	U	U	U	U				
1,4-dichlorobenzene	3	0.5	U	U	U	U				
acetone	50	10	U	U	U	U				
benzene	1	0.1	U	U	U	U				
bromodichloromethane	50	0.5	U	U	U	U				
bromoform	50	1	U	U	U	U				
carbon disulfide	1,000	0.5	U	U	U	U				
chlorobenzene	5*	0.5	U	U	U	U				
chloroethane	5*	1	U	U	U	U				
chloroform	7	0.3	U	U	U	U				
chloromethane	5*	1	U	U	U	U				
cis-1,2-dichloroethene	5*	1	U	U	U	U				
dichlorodifluoromethane	5*	1	U	U	U	U				
ethylbenzene	5*	1	U	U	U	U				
isopropylbenzene	5*	1	U	U	U	U				
methylene chloride	5*	1	U	U	U	U				
methyl iodide	5*	0.5	U	U	U	U				
n-propylbenzene	5*	1	U	U	U	U				
m,p-xylene	5*	2	U	U	U	U				
naphthalene	10	1	U	U	U	U				
o-xylene	5*	1	U	U	U	U				
p-isopropyltoluene	5*	1	U	U	U	U				
sec-butylbenzene	5*	1	U	U	U	U				
tetrachloroethene	5	1	U	U	U	U				
tert-butylbenzene	5*	1	U	U	U	U				
trichloroethene (TCE)	5*	1	U	U	U	U				
toluene	5*	1	U	U	U	U				
trichlorofluoromethane	5*	1	U	U	U	U				
vinyl chloride	2	1	U	U	U	U				
Total VOCs (μg/L)	-	-	0	0	0	0				
Pesticides (µg/L)	+		, , , , , , , , , , , , , , , , , , ,	·	·			1	<u> </u>	<u> </u>
No pesticides reported.	1 1									
PCBs (µg/L)								1		
PCBs (μg/L) No PCBs reported.	T					I				
NO FCDS reported.						1				

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well								LF1P-3						
Date of Collection	NYSDEC		4/2/2	2008	9/18/2008	4/21/2009	3/31/2010	Line	1					
Date of Collection	Class GA	Reporting	4/2/	2000	3/10/2000									
Sample ID No.	Groundwater Standards	Limit	LF1P0	317PA	LF1P0317QA	LF1P0317RA	LF1P0317SA							
Depth to Water (ft)			2.0	68	4.67	3.13	3.78							
Metals (µg/L) [Dissolved / Total] ¹														
aluminum	2,000	200	U	U	U	U	43 F							
antimony	3	50	U	U	U	U	U							
arsenic	25	30	U	U	U	U	U							
barium	1,000	50	67	67	70	72	77							1
berylium	3	4	U	U	U	U	U							
boron	1,000	110	82	84	NA	NA	NA							
cadmium	5	5	U	U	U	U	U							
calcium		1,100	97,000	99,000	100,000	100,000	110,000 B							
chromium	50	10	U	2.5 F	1.9 F	3.1 F	U							
cobalt		60	U	U	U	U	U							
copper	200	10	U	U	U	U	U							
iron	300	200	18 F	36 F	29 F	60 F	72 F							
lead	25	25	U	U	U	U	U							
magnesium	35,000	1,000	18,000	18,000	18,000	19,000	19,000 B							
manganese	300	10	81	81	79	160	93							
molybdenum		15	U	U	U	U	U							
nickel	100	20	U	U	U	4.8 F	U							
potassium		1,000	2,500	2,500	2,600	2,500	2,900 B							
selenium	10	30	U	U	U	U	U							
silver	50	10	U	U	U	U	U							
sodium	20,000	1,000	17,000	17,000	16,000	17,000	16,000 B							
thallium	0.5	80	U	U	U	U	U							
vanadium		10	U	U	U	U	U							
zinc	2,000	20	10 F	13 F	13 F	U	6.3 BF							
Leachate Indicators (mg/L)	2,000	2.0	101	131			0.5 21					l		
alkalinity, Total		10	35	50	350	340	360 B			T				
ammonia	2	0.2	0.3		0.42	0.42	0.36 B							
BOD5		2.4	U.		U.42	U U	U.30 B							
bromide	2	0.5	0.09		0.10	0.12	0.093 F							
COD	_	5	8.5		U.10	8.2 F	U.093 F							
chloride	250	1	8.3		9.5	8.2 F 10.0	9.1 B		 					
color	15	5	Ţ		NA	U	9.1 B U							
	200	0.02												
cyanide, Total			N 20		NA	NA 220	240 B							
hardness, Total		1	32		330	320	340 B U							
nitrate	10	1	0.04		U	U			1					
TKN	1	1	0.3		0.55	0.39	0.75							
sulfate	250	1	9.		8.1	7.2	4.5 B							
TDS	500	10	51		380	380	370							
TOC	-	1	Ţ		U	0.60 F	U							
phenolics, Total	-	0.005	N	A	NA	NA	NA		1		1			

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1P	·-5					
Date of Collection	NYSDEC		12/5/2003	3/30/2004	6/28/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/9/2005	12/21/2005	3/17/2006	9/15/2006	4/4/2007	9/27/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0525AA	LF1P0525BA	LF1P0525CA	LF1P0525DA	LF1P0525EA	LF1P0525FA	LF1P0525GA	LF1P0525HA	LF1P0525IA	LF1P0525JA	LF1P0525LA	LF1P0525NA	LF1P0525OA
Depth to Water (ft)			4.20	3.57	4.91	4.39	4.05	4.02	5.93	6.98	5.03	4.37	5.16	3.53	6.38
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
acetone	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	U	U	U
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	U	U	U	U	II.	U	U	U	U	U	U	U	U
Total VOCs (µg/L)	_	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Pesticides (µg/L)			-			<u> </u>					<u> </u>				
No pesticides reported.				T T	T	I		I	T T	T T	T	T T			
PCBs (µg/L)															
No PCBs reported.									T T	T		T T			
				I					L	I		L		l	

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1P	-5								-
Date of Collection	NYSDEC		12/5/2003	3/30/2004	6/28/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/9/2005	12/21/2005	3/17/2006	9/15/	2006	4/4/	2007	9/27/	/2007
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF1P0525AA	LF1P0525BA	LF1P0525CA	LF1P0525DA	LF1P0525EA	LF1P0525FA	LF1P0525GA	LF1P0525HA	LF1P0525IA	LF1P0525JA	LF1P0	525LA	LF1P0	525NA	LF1P0	0525OA
Depth to Water (ft)	1		4.20	3.57	4.91	4.39	4.05	4.02	5.93	6.98	5.03	4.37	5.	16	3.	53	6.	.38
Metals (μg/L) [Dissolved / Total] ¹												,						
aluminum	2,000	200	U	U	U	U	U	U	U	U	U	U	57.9 F	U	U	U	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	1.54 F	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	40.4 F	43.9 F	64.9	43.6 F	30.4 F	34.3 F	66.9	67.3	37.5 F	37.4 F	59.3	59.5	33 F	31 F	63	62
berylium	3	4	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	2.4 F	U
boron	1,000	110	12.2	NA	NA	NA	NA	21.7	NA	NA	NA	14.4	U	U	U	U	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.1 F	U
calcium		1,100	94,900	122,000	131,000	101,000	63,600	74,800	120,000	122,000	89,900	107,000	105,000	106,000	87,000	82,000	110,000	110,000
chromium	50	10	U	U	U	U	U	U	U	U	U	U	U	U	2.2 F	U	4.7 F	1.6 F
cobalt	-	60	U	U	U	U	U	1.5 F	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	2 F	U	U	U	U	U	U	U	U	U	U	U	2.1 F	U
iron	300	200	12,800	2,950	11,000	15,000	6,830	1,160	7,760	7,420	4,140	4,740	9,160	9,240	5,300 J	4,000 J	9,300	8,900
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	12,600 B	16,800	17,900	13,900	7,790	9,300	16,300	16,700	12,200	14,500	14,500	14,600	12,000	11,000	15,000	15,000
manganese	300	10	685	734	751	710	407	782	609	669	606	724	572	573	390 J	310 J	670	630
molybdenum	-	15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.4 F	U
potassium		1,000	1,440 B	1,560	1,730	1,490	1,080	1,280	1,720	1,710	1,370	1,300	1,460	1,420	1,300	1,200	1,800	1,600
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	12,700 B	16,800	18,400	12,900	10,700	13,200	17,100	17,300	12,400	13,400	14,500	14,700	12,000	12,000	15,000	15,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.3 F	U
zinc	2,000	20	42 B	U	U	U	U	3.1 F	U	U	5.3	U	25.7 B	15.4	U	U	5.0 F	U
Leachate Indicators (mg/L)	.																	
alkalinity, Total	-	10	316 B	365	354	304	262	249	407	394	289	348	3:	50	2	70	3:	50
ammonia	2	0.2	0.64	0.45	0.55	0.66	0.54	0.16	0.44	0.58	0.61 B	0.56 B	0	.7	0.	28	0.	.71
BOD5		2.4	5.9	5	2.6	3.6	U	U	2.5	5.7	U	U	9	.8	1	IJ	4	1.5
bromide	2	0.5	U	0.19 F	U	U	0.2 F	U	U	U	0.4 F	0.3 F	0.1	1 F	0.0	70 F	0.	.11
COD		5	U	U	U	10.9	U	U	U	19.1	20.7	U	1	1	13	В	4.	1 F
chloride	250	1	11.2	13.2	16.6	11.1	9.1	11.1	15	14.8	10.9	11.3	1	1	9	.5	1	11
color	15	5	100	NA	NA	NA	NA	35	NA	NA	NA	160	N	Α	N	ΙA	N	NΑ
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NA	NA	0.017 F	N	Α	N	ΙA	N	NΑ
hardness, Total	-	1	340 B	328	376	310	200	228	364	680	300	228	34	40	20	60	3	10
nitrate	10	1	U	U	U	U	0.04 F	U	U	U	0.07 F	U	0.0	14 F	1	IJ	0.03	20 F
TKN	1	1	1	0.71	0.65	0.98 B	0.63 B	0.26	0.9	1.2	2.7	2.2	0.	69	0.	34	0).7
sulfate	250	1	U	U	U	U	2	3.2	U	U	0.41 F	U	τ	J	1.9	9 B	ι	U
TDS	500	10	320 B	382	423	323	284	259	413	430	295	331	35	90	2:	80	31	80
TOC		1	1.9	1.8	U	1.7	2.1	U	1.7	1.8	1.1	1.4	1	.5	1	.5	2	2.7
phenolics, Total		0.005	U	U	U	U	U	U	U	U	U	U	N	Α	N	ΙA	N	ΝA

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well	1							LF1P-5			
Date of Collection	NYSDEC		4/2/2008	9/18/2008	4/20/2009	3/31/2010		LFIP-5			
Date of Conection	Class GA	Reporting	4/2/2008	9/18/2008	4/20/2009	3/31/2010					
Sample ID No.	Groundwater Standards	Limit	LF1P0525PA	LF1P0525QA	LF1P0525RA	LF1P0525SA					
Depth to Water (ft)			3.45	6.17	4.28	3.90					
VOCs (µg/L)											
1,1,1-trichloroethane	5*	1	U	U	U	U					
1,1-dichloroethane	5*	1	U	U	U	U					
1,2,3-trichlorobenzene	5	1	U	U	U	U					
1,2,4-trimethylbenzene	5*	1	U	U	U	U					
1,2-dichloroethane	0.6	1	U	U	U	U					
1,2-dichlorobenzene	3	1	U	U	U	U					
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U					
1,3,5-trimethylbenzene	5*	1	U	U	U	U					
1,3-dichlorobenzene	3	1	U	U	U	U					
1,4-dichlorobenzene	3	0.5	U	U	U	U					
acetone	50	10	U	U	U	U					
benzene	1	0.1	U	U	U	U					
bromodichloromethane	50	0.5	U	U	U	U					
bromoform	50	1	U	U	U	U					
carbon disulfide	1,000	0.5	U	U	U	U					
chlorobenzene	5*	0.5	U	U	U	U					
chloroethane	5*	1	U	U	U	U					
chloroform	7	0.3	U	U	U	U					
chloromethane	5*	1	U	U	U	U					
cis-1,2-dichloroethene	5*	1	U	U	U	U					
dichlorodifluoromethane	5*	1	U	U	U	U					
ethylbenzene	5*	1	U	U	U	U					
isopropylbenzene	5*	1	U	U	U	U					
methylene chloride	5*	1	U	U	U	U					
methyl iodide	5*	0.5	U	U	U	U					
n-propylbenzene	5*	1	U	U	U	U					
m,p-xylene	5*	2	U	U	U	U					
naphthalene	10	1	U	U	U	U					
o-xylene	5*	1	U	U	U	U					
p-isopropyltoluene	5*	1	U	U	U	U					
sec-butylbenzene	5*	1	U	U	U	U					
tetrachloroethene	5	1	U	U	U	U	+			+	
tert-butylbenzene	5*	1	U	U	U	U					
trichloroethene (TCE)	5*	1	U	U	U	U					
toluene	5*	1	U	U	U	U					
trichlorofluoromethane	5*	1	U	U	U	U					
vinyl chloride	2	1	U	U	U	U					
Total VOCs (µg/L)	-	1	0	0	0	0					
Pesticides (µg/L)			•		•		1		-		<u> </u>
	 				I	I					
No pesticides reported.											
PCBs (µg/L)	T .			I	l l	l l					
No PCBs reported.					1	1					

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									LF1P-	5				
Date of Collection	NYSDEC		4/2/2	2008	9/18/2008	4/20/2009	3/31/2010		22.11	_				-
	Class GA	Reporting												
Sample ID No.	Groundwater Standards	Limit	LF1P0	0525PA	LF1P0525QA	LF1P0525RA	LF1P0525SA							
Depth to Water (ft)			3.	45	6.17	4.28	3.90							
Metals (µg/L) [Dissolved / Total] ¹														
aluminum	2,000	200	U	U	U	U	U							1
antimony	3	50	U	U	U	U	U							1
arsenic	25	30	U	U	U	U	U							1
barium	1,000	50	34 F	33 F	63	41 F	33 F							ı
berylium	3	4	U	U	U	U	U							ı
boron	1,000	110	17	18	NA	NA	NA							ı
cadmium	5	5	U	U	U	U	U							ı
calcium		1,100	93,000	91,000	120,000	100,000	94,000 B							ı
chromium	50	10	U	U	1.5 F	U	U							l.
cobalt		60	U	U	U	U	U							1
copper	200	10	U	U	U	U	U							
iron	300	200	5,800	6,100	9,100	3,400	1,900							ı
lead	25	25	U	U	U	U	U							ı
magnesium	35,000	1,000	13,000	12,000	16,000	15,000	13,000 B							1
manganese	300	10	370	380	630	290	200							
molybdenum		15	U	U	U	U	U							
nickel	100	20	U	U	U	U	U							ı
potassium		1,000	1,200	1,200	1,700	1,400	1,200 B							ı
selenium	10	30	U	U	U	U	U							ı
silver	50	10	U	U	U	U	U							ı
sodium	20,000	1,000	12,000	11,000	15,000	13,000	13,000 B							
thallium	0.5	80	U	U	U	U	U							ı
vanadium		10	U	U	U	U	U							l
zinc	2,000	20	12 F	10 F	16 F	U	6.5 BF							ı
Leachate Indicators (mg/L)														
alkalinity, Total		10	31	10	370	330	290 B							
ammonia	2	0.2	0.4		0.71	0.29	0.13 B							
BOD5		2.4	τ	IJ	3.9	U	U							
bromide	2	0.5	0.09	93 F	0.12	0.11	0.087 F							
COD		5	6.3	3 F	U	6.0 F	U							
chloride	250	1	9.		11	9.9	8.8 B							
color	15	5		5	NA	U	U							
cyanide, Total	200	0.02	N		NA	NA	NA							
hardness, Total		1	29		370	320	290 B							
nitrate	10	1	0.		U	0.21 F	0.27 BF							
TKN	1	1	0.4		0.83	0.35	0.38							
sulfate	250	1	0.5		U	U	0.50 BF							
TDS	500	10	27		390	280	300							
TOC	-	1		.5	1.3	1.10	1.4							
phenolics, Total	_	0.005		IA.	NA NA	NA NA	NA NA							
prictiones, Total	_	0.005		•••	14/4	14/1	11/3	l .				1		

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									MWSA	R03					
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/17/2004	12/15/2004	4/4/2005	6/23/2005	9/8/2005	12/22/2005	3/16/2006	6/19/2006	9/15/2006	12/18/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	MWSAR0324AA	MWSAR0324BA	MWSAR0324CA	MWSAR0324DA	MWSAR0324EA	MWSAR0324FA	MWSAR0321GA	MWSAR0324HA	MWSAR0324IA	MWSAR0324JA	MWSAR0321KA	MWSAR0321LA	MWSAR0321MA
Depth to Water (ft)	Standards		18.45	16.65	19.07	19.19	17.71	16.65	20.59	22.61	20.45	17.61	20.75	20.83	18.30
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U	U	U	U	U	U	U	UJ
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,3-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	U	U	U
1,4-dichlorobenzene	3	0.5	0.46 F	0.25 F	1.4	1.2	U	0.3 F	0.95	2.6	2.2	U	1.7	2.06	0.590
acetone	50	10	1.3 F	U	1.4 F	U	U	U	1.6 F	U	4.8 F	U	U	1.46 F	U
benzene	1	0.1	U	U	0.35 F	0.51	U	U	0.41 F	0.48 F	0.37 F	U	0.59	0.62	0.380 F
bromodichloromethane	50	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
bromoform	50	1	U	U	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
chlorobenzene	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	0.19 F	0.210 F
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U	U	U	U	U	U	U	U	U	U	U	U	U
chloromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	0.15 F	0.140 F
dichlorodifluoromethane	5*	1	U	U	U	0.34 F	U	U	0.43 F	U	U	U	0.2 F	U	U
ethylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
isopropylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
methyl iodide	5*	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
n-propylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U	U	U	U	U	U	U	U	U	U	U	U	U
naphthalene	10	1	U	U	U	U	U	U	U	U	U	U	U	U	U
o-xylene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
p-isopropyltoluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
sec-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tetrachloroethene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U
tert-butylbenzene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U	U	U	U	0.25 F	U	U	U	U	U	U	U	0.110 F
toluene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	U	U	U
vinyl chloride	2	1	0.46 F	U	0.73 F	2.2	U	0.26 F	4.5	0.47 F	0.48 F	U	1	1.48	U
Total VOCs (μg/L)			2.22	0.25	3.88	4.25	0.25	0.56	7.89	3.55	7.85	0	3.49	5.96	1.43
Pesticides (µg/L)			•	•	•	•		•	•		•			·	•
No pesticides reported.															
PCBs (µg/L)				•		•									
No PCBs reported.															

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well									MWSA	R03								
Date of Collection	NYSDEC		12/8/2003	3/30/2004	6/28/2004	9/17/2004	12/15/2004	4/4/2005	6/23/2005	9/8/2005	12/22/2005	3/16/2006	6/19/	2006	9/15	/2006	12/18	8/2006
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	MWSAR0324AA	MWSAR0324BA	MWSAR0324CA	MWSAR0324DA	MWSAR0324EA	MWSAR0324FA	MWSAR0321GA	MWSAR0324HA	MWSAR0324IA	MWSAR0324JA	MWSAF	R0321KA	MWSAI	R0321LA	MWSAR	R0321MA
Depth to Water (ft)			18.45	16.65	19.07	19.19	17.71	16.65	20.59	22.61	20.45	17.61	20	.75	20	.83	18	8.30
Metals (µg/L) [Dissolved / Total] ¹	1																	
aluminum	2,000	200	U	45.2 F	U	U	U	U	3,890	557	393	U	25.8 F	2,810	56.5 F	487	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	8.9 F	U	15.1 F	U	U	41.4	20.8 F	14.2 F	U	U	31.8	22.3 F	17.5 F	4.7 F	4.3 F
barium	1,000	50	22.8 F	44.4 F	25.9 F	39.8 F	26.2 F	34 F	64.5	65	51	22.7 F	29.9 F	60.2	30 F	46.1	16 F	22 F
berylium	3	4	U	U	U	U	U	U	0.3 F	U	U	U	U	U	NA	NA	NA	NA
boron	1,000	110	47.6	NA	NA	NA	NA	25.4	NA	NA	NA	34.2	30.2	29.3	NA	NA	NA	NA
cadmium	5	5	U	U	17.6	U	U	U	1.3 F	U	1.6 F	U	U	U	0.58 F	U	U	U
calcium	-	1,100	60,200	90,200	30,700	27,000	120,000	99,800	32,800	25,500	28,400	97,000	21,700	24,600	18,700	17,100	57,000	57,000
chromium	50	10	U	U	U	U	U	U	5.1 F	U	1.3 F	0.8 F	U	2.4 F	U	U	U	U
cobalt	-	60	U	U	U	U	U	U	2.6 F	1.2 F	1.2 F	U	U	1.4 F	U	U	U	U
copper	200	10	U	U	U	6.8 F	2.2 F	2.2 F	8.2 F	1.6 F	U	U	U	3.3 F	U	U	2.5 F	U
iron	300	200	9,310	26,900	27,600	47,700	3,220	13,000	76,400	65,600	76,800	9,870	35,100	88,400	60,900	55,300	17,000	17,000
lead	25	25	U	U	U	U	U	U	2.5 F	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	7,370	7,900	2,550	2,300	13,700	9,200	4,260	2,670	3,140	10,800	1,980	2,940	1,690	1,660	5,900	5,700
manganese	300	10	1,550	1,560	4,390	4,520	655	2,170	5,050	11,600	10,900	1,560	8,660	9,530	6,510	6,080	1,900	1,900
molybdenum	-	15	U	U	U	U	U	U	U	U	U	U	3.7 F	7.9 F	U	U	U	U
nickel	100	20	U	U	U	2.9 F	U	U	5 F	1.7 F	2.4 F	U	U	4 F	U	U	1.8 F	1.4 F
potassium	-	1,000	2,090	2,120	1,480	1,640	2,610	2,130	3,260	1,700 B	1,780	1,930	1,480	2,570	1,460	1,500	1,900	1,900
selenium	10	30	U	7 F	U	U	U	U	U	U	U	U	U	7.2 F	U	U	U	3.0 F
silver	50	10	U	U	U	U	U	U	U	U	1.1 F	U	U	U	U	U	U	U
sodium	20,000	1,000	5,570	3,160	5,270	4,720	1,880	3,240	6,830	4,110	5,180	3,760	4,690	5,140	3,700	3,390	3,800	3,800
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	7.4 F	1.1 F	0.9 F	U	U	5.6 F	0.93 F	2.09 F	U	5.3 F
zinc	2,000	20	U	U	U	U	U	U	14.3 F	4.4 F	8.6 F	3.1 F	U	10.7 F	46.6 B	37.1 B	6.5 F	U
Leachate Indicators (mg/L)			_															
alkalinity, Total	-	10	165	206	102	77.3	424	308	111	209	148 B	273	74	1.7	1	40	11	170
ammonia	2	0.2	U	U	0.22	0.23	0.015 F	0.11	0.33	0.42	0.37	0.0093 F	0.	25	0.	.56	0.	.14
BOD5		2.4	U	U	4	4.9	U	U	3.1	3.5	7.9	U	9	.2	1	14	6	5.6
bromide	2	0.5	U	U	U	U	U	U	U	U	0.34 F	U	ι	J	0.0	21 F	0.03)27 F
COD		5	U	11.4	U	U	U	U	12.7	16.2	12.9 B	U	40	В	1	16	14	4 B
chloride	250	1	8.8	6.6	7	8.5	2.3	2.4	U	5.9	8.9	4.3	5	.3	5	i.8	5	5.0
color	15	5	25	NA	NA	NA	NA	50	U	NA	NA	20	N	A	N	NΑ	N	NA
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	U	NA	NA	U	N	A	N	ĪΑ	N	NA
hardness, Total	_	1	310	256	88	90	400	302	140	400	90 B	316		20		0 B		170
nitrate	10	1	U	0.79 F	0.23	0.52 F	0.89 F	2.2	U	U	0.09 F	2.3	1			U		.13
TKN	1	1	U	0.1 F	0.49	0.29	0.28	0.13 F	0.73 B	1	1.1	0.19 F	-)	0.	.49	0.1	14 F
sulfate	250	1	16.8	24.7	11.3	15.1	18.1	21	U	6.1	14.2	21.3	17	7.9	9	1.9	1	12
TDS	500	10	209	244	150	115	473	356	117	114	145	304	15	93	1	40	2:	220
TOC	_	1	1.4	1.3	U	0.81 F	1.4	1.3	1.2	1.7 B	1.4	1.3	i		1	.1		1.2
phenolics, Total		0.005	U	U	U	U	U	II	U	U	U	U	N.	A		ĪΑ		NA

Landfill 1 AOC Groundwater Analytical Results (continued)

Location of Well	1							MWSAR03		
Date of Collection	NYSDEC		4/3/2007	9/26/2007	4/1/2008	9/18/2008	4/21/2009	3/30/2010		
	Class GA	Reporting								
Sample ID No.	Groundwater Standards	Limit	MWSAR0324NA	MWSAR0324OA	MWSAR0324PA	MWSAR0324QA	MWSAR0324RA	MWSAR0324SA		
Depth to Water (ft)			15.17	21.69	16.17	21.00	17.86	19.04		
VOCs (µg/L)										
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U		
1,1-dichloroethane	5*	1	U	U	U	U	U	U		
1,2,3-trichlorobenzene	5	1	U	U	U	U	U	U		
1,2,4-trimethylbenzene	5*	1	U	U	U	U	U	U		
1,2-dichloroethane	0.6	1	U	U	U	U	U	U		
1,2-dichlorobenzene	3	1	U	U	U	U	U	U		
1,2-dibromo-3-chloropropane	0.04	2	U	U	U	U	U	U		
1,3,5-trimethylbenzene	5*	1	U	U	U	U	U	U		
1,3-dichlorobenzene	3	1	U	U	U	U	U	U		
1,4-dichlorobenzene	3	0.5	U	2.05	0.380 F	0.620	U	1.81		
acetone	50	10	U	U	U	U	U	1.52 F		
benzene	1	0.1	U	0.350 F	U	0.550	0.350 F	0.410 F		
bromodichloromethane	50	0.5	U	U	U	U	U	U		
bromoform	50	1	U	U	U	U	U	U		
carbon disulfide	1,000	0.5	U	U	U	U	U	U		
chlorobenzene	5*	0.5	U	0.250 F	U	U	U	0.310 F		
chloroethane	5*	1	U	U	U	U	U	U		
chloroform	7	0.3	U	U	U	U	U	U		
chloromethane	5*	1	U	U	U	U	U	U		
cis-1,2-dichloroethene	5*	1	U	U	U	U	0.120 F	U		
dichlorodifluoromethane	5*	1	U	U	U	U	U	U		
ethylbenzene	5*	1	U	U	U	U	U	U		
isopropylbenzene	5*	1	U	U	U	U	U	U		
methylene chloride	5*	1	0.120 F	0.210 F	U	U	U	U		
methyl iodide	5*	0.5	U	U	U	U	U	U		
n-propylbenzene	5*	1	U	U	U	U	U	U		
m,p-xylene	5*	2	U	U	U	U	U	U		
naphthalene	10	1	U	U	U	U	U	U		
o-xylene	5*	1	U	U	U	U	U	U		
p-isopropyltoluene	5*	1	U	U	U	U	U	U		
sec-butylbenzene	5*	1	U	U	U	U	U	U		
tetrachloroethene	5	1	U	U	U	U	U	U		
tert-butylbenzene	5*	1	U	U	U	U	U	U		
trichloroethene (TCE)	5*	1	0.130 F	U	U	U	U	U		
toluene	5*	1	U	U	U	U	U	U		
trichlorofluoromethane	5*	1	U	U	U	U	U	U		
vinyl chloride	2	1	U	U	U	1.55	U	0.830 F		
Total VOCs (µg/L)			0.25	2.86	0.38	2.72	0.47	4.88		
Pesticides (µg/L)	+								· · · · · · · · · · · · · · · · · · ·	
No pesticides reported.										
PCBs (µg/L)	1									
No PCBs reported.										
1	1		l .	1	l .	1	l .			

Landfill 1 AOC Groundwater Analytical Results (continued)

	1		ı									MWSAR03					
Location of Well	NYSDEC		4/3/2	2007	0/26	/2007	4/1/2	2008	9/18	/2008	4/21/2009	3/30/2010	1				
Date of Collection	Class GA	Reporting			9/20	/2007					4/21/2009	3/30/2010					
Sample ID No.	Groundwater Standards	Limit	MWSAF	R0324NA	MWSAI	R0324OA	MWSAI	R0324PA	MWSAI	R0324QA	MWSAR0324RA	MWSAR0324SA					
Depth to Water (ft)	†		15.	.17	21	.69	16.	.17	21	.00	17.86	19.04					
Metals (µg/L) [Dissolved / Total] ¹	•														<u> </u>		
aluminum	2,000	200	U	70 F	U	500	U	U	49 F	2,300	U	62 F					
antimony	3	50	U	U	U	U	U	U	U	U	U	U					
arsenic	25	30	U	U	10 F	19 F	U	U	U	14 F	U	10 F					
barium	1,000	50	33 F	52 F	35 F	53	27 F	28 F	43 F	60	7.6 F	47 F					
berylium	3	4	U	U	U	U	U	U	U	U	U	U					
boron	1,000	110	U	U	NA	NA	28	30	NA	NA	NA	NA					
cadmium	5	5	U	U	U	U	U	U	U	U	U	U					
calcium		1,100	85,000	88,000	17,000	18,000	85,000	85,000	19,000	19,000	49,000	22,000					
chromium	50	10	U	U	U	2.7 F	U	U	1.8 F	3.8 F	U	U					
cobalt		60	U	U	U	U	U	U	U	U	U	U					
copper	200	10	U	U	U	U	U	U	U	4.3 F	U	U					
iron	300	200	840	1,400	63,000	76,000	5,200	6,800	51,000	62,000	3,800	80,000					
lead	25	25	U	U	U	U	U	U	U	U	U	U					
magnesium	35,000	1,000	5,900	6,100	1,800	2,000	8,200	8,200	2,000	2,700	6,900	2,900					
manganese	300	10	1,200	1,200	7,200	7,400	990	1,100	6,900	7,000	390	8,000					
molybdenum		15	U	U	U	3.2 F	U	U	U	U	U	U					
nickel	100	20	3.0 F	2.1 F	160	U	1.2 F	1.2 F	U	3.0 F	U	U					
potassium		1,000	1,100	1,200	1,300	1,500	1,100	1,200	1,500	2,200	720 F	1,200					
selenium	10	30	U	U	3.2 F	U	U	U	U	U	U	U					
silver	50	10	U	U	U	U	U	U	U	U	U	U					
sodium	20,000	1,000	1,700	1,800	3,700	3,800	2,900	2,900	4,700 B	4,800 B	3,100	6,200					
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U					
vanadium		10	U	U	U	0.86 F	U	U	U	4.8 F	U	U					
zinc	2,000	20	U	U	32	5.8 F	13 F	12 F	16 F	22 B	56	5.4 F					
Leachate Indicators (mg/L)	<u> </u>																
alkalinity, Total		10	21	10	1	40	25	50	1:	20	160	180					
ammonia	2	0.2	0.01	19 F	0	40	0.0	09	0.	49	0.035 F	0.24					
BOD5		2.4	τ	J		U	τ	U	6	.7	3.5	13					
bromide	2	0.5	τ	J	0.0	39 F	0.04	47 F		29 F	0.034 F	U					
COD	_	5	8.3			28	1			26	6.0 F	20					
chloride	250	1	2.			.8	3			.7	3.4	4.9					
color	15	5	N			IA		35		ΙA	U	U					
cyanide, Total	200	0.02	N			IA	N			IΑ	NA	NA					
hardness, Total		1	22			10	26			50	160	68					
nitrate	10	1	2.			U	0.			IJ	U	0.13 F					
TKN	1	1	0.09			.5	0.06		0.		U	0.40 B					-
sulfate	250	1	9.			.0	6.6			.9	1.8	4.2					
TDS	500	10	25			40		70		20	200	180					
TOC		10	0.7			.6	0.9			9 F	1.10	1.1					
phenolics, Total	_	0.005	N N			IA.		IA		IA.	NA	NA					
prictiones, total		0.005			1	***	1		1	•••	11/1	11/1	1	1		1	

Landfill 1 AOC Surface Water Analytical Results

Location of Well									LF1SW-1							
Date of Collection	NYSDEC Class A		12/9/2003	3/30/2004	6/25/2004	9/17/2004	12/15/2004	4/1/2005	6/22/2005	9/8/2005	12/20/2005	3/16/2006	9/15/	/2006	4/3/2	2007
Sample ID No.	Surface Water Standards	Reporting Limit	LF1SW0101AA	LF1SW0101BA	LF1SW0101CA	LF1SW0101DA	LF1SW0101EA	LF1SW0101FA	LF1SW0101GA	LF1SW0101HA	LF1SW0101IA	LF1SW0101JA	LF1SW	0101LA	LF1SW(0101NA
Depth to Water (ft)			Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Sur	face	Suri	face
VOCs (µg/L)																
1,1-dichloroethane	5	1	U	U	U	U	U	U	U	U	U	U	τ	U	Ţ	J
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	τ	U	Ţ	J
1,4-dichlorobenzene	3	0.5	U	U	U	U	U	U	0.41 F	U	U	U	0.3	4 F	Ţ	J
acetone	50	10	2.8 F	U	2.6 F	U	2 F	U	U	3.6 F	U	U	2.9	4 F	Ţ	J
benzene	1	0.1	U	U	U	U	U	U	0.30 F	U	U	U	0.1	2 F	Į	
chloroethane	5**	1	U	U	U	U	U	U	0.81 F	U	U	U	τ	U	Ţ	J
chloromethane		1	U	U	U	U	U	U	0.27 F	U	U	U		U	Ţ	J
dichlorodifluoromethane	5**	1	U	U	U	U	U	U	0.68 F	U	U	U		U	Ţ	
methylene chloride	5	1	U	U	U	U	U	U	U	1.2	U	U	0.	1 F	Ţ	
toluene	5	1	U	U	U	U	U	U	0.84 F	U	U	U	0.1	1 F	Į	J
Metals (µg/L) [Dissolved / Total] ¹							,	,			,			,		
aluminum	100	200	56.4 F	408	165 F	48 F	34.2 F	40.4 F	906	U	U	U	52.5 F	46.4 F	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	10.4 F	U	U	U	U	U	U	U
barium	1,000	50	7.5 F	6.3 F	11 F	10.4 F	8.6 F	10.5 F	83.9	32.2 F	17.5 F	13.9 F	36 F	35.7 F	12 F	12 F
boron, Total	1,000	110	8.7 F	U	NA	NA	NA	8.9 F	NA	NA	NA	10	U	U	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	20,300	9,540	23,300	21,000	30,400	44,300	128,000	143,000	75,600	58,600	94,700	94,700	49,000	49,000
chromium	50	10	U	U	U	U	U	U	0.90 F	U	U	U	U	U	U	U
cobalt	5	60	U	U	U	U	U	U	1.2 F	U	U	U	U	U	U	U
copper	200	10	U	U	U	U	2 F	U	2.0 F	U	U	U	U	U	U	U
iron	300	200	86.5 F	377	206	81.2 F	63.7 F	37.2 F	15,900	2,690	603	661	2,360	3,190	100 F	74 F
lead	50	25	U	U	U	U	U	U	2 F	U	U	U	U	U	U	U
magnesium	35,000	1,000	3,080	1,840	4,000	3,710	3,760	4,180	8,970	12,600	6,480	5,250	7,050	7,010	5,000	5,200
manganese	300	10	63.7	14.4	73.1	53.9	36.2	92.4	2,110	909	1,140	464	1,320	1,260	250 J	150 J
nickel	100	20	U	U	U	U	U	U	U	2.1 F	U	U	U	U	U	U
potassium		1,000	936 F	838 F	1,350	1,410	923	965 F	2,060	2,440 B	886 F	766 F	1,230	1,170	980 F	1,000
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium		1,000	5,840	5,030	7,020	6,810	8,120	5,240	3,610	3,690	3,250	5,640	3,480	3,520	14,000	14,000
vanadium		10	U	U	U	U	U	U	1.4 F	U	U	U	U	U	U	U
zinc	2,000	20	U	U	U	U	U	U	8.9 F	U	4.8 F	U	30.9 B	25.8 B	U	U
Leachate Indicators (mg/L)	1	1			I	I		1			1		1			
alkalinity, Total		10	48.3	17.5	49.3	57.9	95.3	130	370	428	213	154		80	12	
ammonia	2	0.2	U	U	0.0099 F	0.14	U	0.032 F	0.28	0.023 F	0.13	0.034 F	0.		0.01	
BOD5		2.4	U	U	U	U	U	U	8.8	3.6	U	U	6		Ţ	
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	0.03		Ţ	
COD		5	U	13.1	U	10.5 B	U	U	27.2	24.5	U	U	1		6.1	
chloride	250	1	9.5	7.9	13	11.9	15.5	9.1	5	5.8	5.5	8.6			2	
color	15	5	5	NA	NA To	NA	NA	7.5	NA	NA 500	NA	20		IA 80	N. 14	
hardness, Total		1	210	U	72 1	90	124	136	400	500	280	129	0.0		1.	
nitrate	10	1	U	0.77 F		1.1	2.5	1.2	U	U	U	0.71 F				
TKN	1 250	1	U	0.3	0.32	0.38	0.21	0.13 F	6.6	1	2.2	U		.1	0.09	
sulfate TDS	250 500	1	9.5 111	7.2 55	13.3	12	8.6 173	7.5	4	9.4 449	10.4	9.2 220	6	.9 40	9.	
TOC	500	10		55 1.7	120 U	87	173 0.72 F	156	432	1	237 0.69 F	220 0.84 F			0.9	
			1.1		-	1.5		1.1	6.8	6.9 B			2			
phenolics, Total		0.005	U	U	U	U	U	U	0.0050 F	U	U	U	N	IA	N.	A
Pesticides (µg/L)		T			ı	I		ı			I					
No pesticides were reported.																
PCBs (µg/L)		<u> </u>	T	T T		ı	T T	ı	T T	T	ı	T	T			
No PCBs were reported.							l		<u> </u>	<u> </u>						

Landfill 1 AOC Surface Water Analytical Results (continued)

Location of Well										LF1	SW-1					
Date of Collection	NYSDEC Class A		9/26/	/2007	4/2/	2008	9/18	/2008	4/20/2009	3/31/2010						
Sample ID No.	Surface Water Standards	Reporting Limit			LF1SW			/0101QA	LF1SW0101RA	LF1SW0101SA						
Depth to Water (ft)	1		Sur	face	Sur	face	Sur	rface	Surface	Surface						
VOCs (µg/L)	*	*	•				,				+	*	'	*		
1,1-dichloroethane	5	1	Ţ	U	Ţ	U	0.3	10 F	U	U						
1,2-dichlorobenzene	3	1	0.12	20 F	Ţ	U		U	U	U						
1,4-dichlorobenzene	3	0.5	0.	69	ī	U	0.3	10 F	U	U						
acetone	50	10	τ	U	ī	U	3.3	34 F	U	2.29 F						
benzene	1	0.1	0.12	20 F	ī	U	0.	690	U	U						
chloroethane	5**	1	0.	89	Ţ	U		U	U	U						
chloromethane		1	τ	U	τ			U	U	U						
dichlorodifluoromethane	5**	1	τ	U	τ			U	U	U						
methylene chloride	5	1		U	τ			U	U	U						
toluene	5	1	0.42		τ			.31	U	U						
Metals (μg/L) [Dissolved / Total] ¹			_				_		-							
aluminum	100	200	U	1,100	U	U	44 F	52 F	U	280						
antimony	3	50	U	U 1,100	U	U	U	U	U	U						
arsenic	50	30	4.2 F	8.4 F	U	U	U	U	U	U						
barium	1,000	50	130	160	10 F	10 F	49 F	52	7.5 F	4.8 F						
boron. Total	1,000	110	NA	NA	8.3 F	12	NA	NA	NA NA	NA						
cadmium	5	5	U	U	U	U	U	U	U	U						
calcium		1,100	140,000	140,000	41,000	41,000	230,000	230,000	18,000	9,400 B						
chromium	50	10	2.2 F	2.2 F	41,000 U	41,000 U	4.8 F	5.0 F	U	9,400 B U						
cobalt	5	60	U U	U U	U	U	U.81	U	U	U						
	200	10	U	3.2 F	2.6 F	U	U	U	U	U						
copper	300	200	140 F	8,700	2.0 F	57 F	1,400	4,500	27 F	270						
iron									U U	270 U						
lead .	50	25	U	U	U	U	U	U		1,800 B						
magnesium	35,000	1,000	11,000	11,000	4,500	4,500	15,000	15,000	3,200 22							
manganese	300	10	2,500	2,500	77	81	15,000	15,000		11						
nickel	100	20	2.0 F	3.4 F	U	U	U	1.2 F	U	U						
potassium		1,000	4,500	5,400	1,000	1,000	1,400	1,400	990 F U	570 BF U						
selenium	10	30	U	U	U	U	U	U								
sodium		1,000	6,600	6,900	14,000	13,000	4,600 B	4,700 B	7,600	5,300 B						
vanadium		10	U	2.1 F	U	U	U	U	U	U						
zinc	2,000	20	29 B	44 B	12 F	11 F	14 F	13 F	U	7.8 BF						
Leachate Indicators (mg/L)	1	1	1				1				1				1	
alkalinity, Total	-	10		00	1			i40	44	24 B						
ammonia	2	0.2	1.		0.			22 F	U	0.057 B						
BOD5		2.4	11		Ţ			15	U	U						
bromide	2	0.5	0.		Ţ			75 F	0.015 F	U						
COD		5		50	Ţ			31	6.0 F	U						
chloride	250	1	8			26		1.8	12	7.4 B						
color	15	5	N		Ţ			NA.	U	U						
hardness, Total		1	3			30		000	56	31 B						
nitrate	10	1	0.0		0.			U	0.78	0.24 B						
TKN	1	1	1		0.			.57	0.11 F	0.29						
sulfate	250	1	3		8			1.6	10	6.6 B						
TDS	500	10		30		70		00	110	90						
TOC		1		.6	1			3.2	1.2	3.2						
phenolics, Total		0.005	N	ΙA	N	ΙA	N	NΑ	NA	NA					1	
Pesticides (µg/L)																
No pesticides were reported.																
PCBs (µg/L)																
No PCBs were reported.																
	. —			-			. —				. —	•				

Landfill 1 AOC Surface Water Analytical Results (continued)

Location of Well			LF1SW-2						LF1SW-2SM							
Date of Collection	NYSDEC Class A		12/9/2003	4/29/2004	6/29/2004	9/20/2004	12/17/2004	4/1/2005	6/22/2005	9/9/2005	12/20/2005	3/17/2006	9/15/	2006	4/3/2	2007
	Surface Water	Reporting Limit		LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	LF1SW02SMC01	T THOMAS	7	T THOMAS	77. 5.00.43.1.1
Sample ID No.	Standards	Limit	LF1SW0201AA	BA	CA	DA	EA	FA	GA	HA	IA	JA	LF1SW023	SMC01LA	LF1SW02S	MCUINA
Depth to Water (ft)			Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Suri	face	Surf	ace
VOCs (µg/L)																
1,1-dichloroethane	5	1	U	U	U	U	U	U	U	U	U	U	0.13	2 F	Ţ	J
1,2-dichlorobenzene	3	1	U	U	0.27 F	U	U	0.24 F	0.48 F	U	U	U	0.3	9 F	Ţ	
1,4-dichlorobenzene	3	0.5	0.84	0.40 F	1.3	0.27 F	0.94	1.3	2.7	1.4	1.4	1.2	2.0		0.48	0 F
acetone	50	10	1.3 F	1.6 F	1.7 F	U	1.6 F	2.4 F	2.8 F	U	U	U	3.9	2 F	Ţ	J
benzene	1	0.1	0.21 F	U	0.27 F	U	U	0.23 F	0.30 F	U	U	U	0.2		Į	
chloroethane	5**	1	U	U	U	U	U	U	U	U	U	U	0.1		Ţ	
chloromethane		1	U	U	U	U	U	U	U	U	U	U	Ţ		Ţ	
dichlorodifluoromethane	5**	1	U	U	U	U	U	U	U	U	U	U	Ţ		Ţ	
methylene chloride	5	1	U	U	U	U	U	U	U	U	U	U	Ţ	J	Ţ	
toluene	5	1	U	U	U	U	U	U	U	U	U	U	Į	J	Į	J
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	100	200	U	46.6 F	40.5 F	43.8 F	42.7 F	361	U	42.2 F	689	U	58.3 F	3,680	U	44 F
antimony	3	50	U	U	U	U	U	U	U	4.2 F	U	U	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	4.9 F	U	8 F	U	U	107	U	U
barium	1,000	50	27.2 F	16.2 F	51	12.3 F	34.3	55.7	114	122	90	52.4	115	885	27 F	28 F
boron, Total	1,000	110	20.7	U	NA	NA	NA	33.8	NA	NA	NA	30.8	U	U	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	4.1 F	U	U
calcium		1,100	40,600	24,300	66,800	19,700	53,900	70,600	124,000	138,000	114,000	87,400	140,000	166,000	60,000	62,000
chromium	50	10	U	U	U	U	U	U	U	U	1.4 F	U	U	U	U	U
cobalt	5	60	U	U	U	U	U	U	1.1 F	1.4 F	1.3 F	U	U	10.5 F	U	U
copper	200	10	U	U	U	U	U	U	U	U	2.3 F	U	U	11.7	U	U
iron	300	200	2,380	833	2,180	497	2,160	4,620	3,570	1,290	16,500	4,230	2,470	373,000	930	1,400
lead	50	25	U	U	U	U	U	U	U	U	U	U	U	11.4 F	U	U
magnesium	35,000	1,000	4,050	3,000	5,850	3,100	4,790	5,050	7,030	7,340	7,520	6,150	8,070	9,330	5,400	5,600
manganese	300	10	474	205 B	876	121	600	987	2,310	2,620	2,470	1,330	3,050	5,030	490	510
nickel	100	20	U	U	U	U	U	U	2.2 F	2.2 F	2.6 F	U	U	8.13 F	1.3 F	U
potassium		1,000	1,380	1,190	2,310	1,240	1,690	2,040	3,970	4,710	2,750	1,750	4,030	4,660	1,300	1,400
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	2.87 F	U	U
sodium		1,000	5,990	7,240	8,060	5,660	7,000	5,420	7,870	9,940	5,830	6,390	9,740	9,820	13,000	13,000
vanadium		10	U	U	U	U	U	U	U	U	1.5 F	U	U	14.7	U	U
zinc	2,000	20	U	U	U	U	U	3 F	U	U	8.9 F	2.7 F	34 B	54 B	U	U
Leachate Indicators (mg/L)																
alkalinity, Total		10	110	63	153	59.8	150	217	406	414	318	245	41	10	15	0
ammonia	2	0.2	0.24	0.15	0.63	0.11	0.49	0.8	2	2.1	1.1	0.67 B	2	2	0.2	24
BOD5		2.4	U	U	1.5 F	U	U	U	U	U	U	U	3.	4	Ţ	J
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	0.1	3 F	0.02	24 F
COD		5	U	U	16.4 J	U	U	U	4 F	6.6 F	3.1 F	U	1	1	8.3	; F
chloride	250	1	9.6	11.7	13.1	9.2	9	7.7	10.2	11.7	7.9	8.2	1	1	2	4
color	15	5	60	20	40	20	50	100	NA	NA	NA	100	N	A	N.	A
hardness, Total		1	124	80	180	200	156	208	388	460	350	219	1,0	000	17	/0
nitrate	10	1	U	0.76 F	0.74 F	0.68 F	1.1	0.56 F	U	0.03 F	U	0.38 F	0.01	4 F	1.	.7
TKN	1	1	U	0.31 B	0.84	0.36	0.56	0.98	3.1	3	3.3	1.2	2.	.8	0.3	34
sulfate	250	1	9.3	8.9	11.7	10	7.6	6.6	4	3	8.1	8.4	4.	1	8.5	В
TDS	500	10	167	120	202	100	204	237	452	443	357	266	43	80	23	30
TOC		1	19.3	U	U	2	1.9	2.4	3.4	3.5	1.9	1.4	3.	7	1.	.2
phenolics, Total		0.005	U	U	U	0.0071 F	U	0.0079 F	0.0090 F	U	U	U	N	A	N	A
Pesticides (µg/L)	•			•		•	•		•							
No pesticides were reported.																
PCBs (µg/L)	•											•				
No PCBs were reported.																

Landfill 1 AOC Surface Water Analytical Results (continued)

Location of Well										LF1SV	V-2SMC					
Date of Collection	NYSDEC Class A		9/26/	2007	4/2/2	2008	9/18	/2008	4/20/2009	3/31/2010					\top	
Sample ID No.	Surface Water Standards	Reporting Limit	LF1SW02S	SMC01OA	LF1SW02	SMC01PA	LF1SW02	SMC01QA	LF1SW02SMC01RA	LF1SW02SMC01SA						
Depth to Water (ft)			Surf	face	Suri	face	Sur	face	Surface	Surface						
VOCs (µg/L)	•								•	•	•					
1,1-dichloroethane	5	1	Ţ	J	J	J	1	U	U	U						
1,2-dichlorobenzene	3	1	0.26	60 F	Ţ	J	0.4	80 F	U	U						
1,4-dichlorobenzene	3	0.5	2.0	03	0.49	00 F	2.	89	U	U						
acetone	50	10	Ţ	IJ	Ţ	J	1	IJ	U	U						
benzene	1	0.1	0.18	80 F	Ţ	J	0.2	40 F	U	U						
chloroethane	5**	1	Ţ	J	Ţ	J	1	U	U	U						
chloromethane		1	τ	J	Ţ	J	1	U	U	U						
dichlorodifluoromethane	5**	1	Ţ		Ţ			U	U	U						
methylene chloride	5	1	Ţ		Ţ			U	U	U						
toluene	5	1	0.31	10 F	Į	J	0.13	20 F	U	U						
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	100	200	42 F	470	U	160 F	U	1,100	U	440						
antimony	3	50	U	1.6 F	U	U	1.8 F	U	U	U	1 1					
arsenic	50	30	U	68	U	U	U	20	U	U						
barium	1,000	50	130	660	22 F	24 F	120	180	14 F	8.1 F						
boron, Total	1,000	110	NA	NA	14	15	NA	NA	NA	NA						
cadmium	5	5	U	U	U	U	U	U	U	U						
calcium		1,100	160,000	170,000	52,000	53,000	160,000	160,000	25,000	11,000 B						
chromium	50	10	2.2 F	U	U	U	U	U	U	U						
cobalt	5	60	U	U	U	U	U	U	U	U						
copper	200	10	U	U	U	U	U	2.0 F	U	U						1
iron	300	200	20 F	210,000	590	2,500	4,400	48,000	620	1,200						
lead	50	25	U	U	U	U	U	U	U	U						
magnesium	35,000	1,000	8,300	8,200	4,900	5,000	8,500	8,900	3,500	1,900 B						
manganese	300	10	3,200	4,300	400	420	3,400	3,800	170	95						
nickel	100	20	U	1.2 F	U	U	U	2.6 F	U	U						
potassium		1,000	4,500	4,500	1,300	1,300	4,000	4,400	1,200	730 BF						
selenium	10	30	U	5.2 F	U	U	U	U	U 7.500	U 5,300 B						
sodium		1,000	13,000	13,000	13,000 U	12,000 U	11,000 U	11,000 2.1 F	7,500 U	5,300 B U						
vanadium	2,000	10 20	U 21 B	0.79 F 26 B	11 F	12 F	15 F	2.1 F 23 B	U	7.2 BF						
zinc Leachate Indicators (mg/L)	2,000	20	21 B	20 B	11 F	12 F	13 F	23 B	U	7.2 DF						
alkalinity, Total		10	45	50	14	10	4	50	64	28 B			I		$\overline{}$	
ammonia	2	0.2	1.		0.3			.9	0.074	0.037 BF						
BOD5		2.4	4.		U			.0	U	U						
bromide	2	0.5	0.1		Ţ			16	0.018 F	U	1					
COD		5	2:		4.1		3		10	U	1					
chloride	250	1	1:		2			3	11	7.3 B	1				+	
color	15	5	N.		1			IA.	10	5	1					
hardness, Total		1	40		16			40	74	35 B						
nitrate	10	1	0.01		0.1			IJ	0.68	0.23 B						
TKN	1	1	2.		0.3			70	0.15 F	0.37	1					
sulfate	250	1	1.		8.		0.8		10	6.4 B					+	
TDS	500	10	46		20			50	120	86	1					
TOC		1	4.	.6	1.			.6	1.5	3.4	1					
phenolics, Total		0.005	N.		N			ΙA	NA	NA						
Pesticides (µg/L)	†						-						•			
No pesticides were reported.																
PCBs (μg/L)	•	-					-						•	<u> </u>		
No PCBs were reported.																
	+								+		+					

Landfill 1 AOC Surface Water Analytical Results (continued)

Location of Well									LF1SW-3							
Date of Collection	NYSDEC Class A		12/9/2003	3/30/2004	6/25/2004	9/17/2004	12/15/2004	4/1/2005	6/22/2005	9/8/2005	12/20/2005	3/14/2006	9/15/	2006	4/3/2	2007
Sample ID No.	Surface Water Standards	Reporting Limit	LF1SW0301AA	LF1SW0301BA	LF1SW0301CA	LF1SW0301DA	LF1SW0301EA	LF1SW0301FA	LF1SW0301GA	LF1SW0301HA	LF1SW0301IA	LF1SW0301JA	LF1SW		LF1SW	/0301NA
Depth to Water (ft)			Surface	Sur	face	Sur	face									
VOCs (µg/L)	,		,		,	,	,	,	,	,						
1,1-dichloroethane	5	1	U	U	U	U	U	U	U	U	U	U	Ţ	J	Ţ	U
1,2-dichlorobenzene	3	1	U	U	U	U	U	U	U	U	U	U	τ	J	τ	U
1,4-dichlorobenzene	3	0.5	U	U	U	0.24 F	0.21 F	U	U	U	U	0.64	τ	J	τ	U
acetone	50	10	U	1.5 F	3.1 F	2.2 F	1.8 F	2.2 F	3.4 F	U	U	U	1.1	5 F	τ	U
benzene	1	0.1	U	U	U	U	U	U	U	U	U	U	τ	J	τ	U
chloroethane	5**	1	U	U	U	U	U	U	U	U	U	U	τ	J	Ţ	U
chloromethane		1	U	U	U	U	U	U	U	U	U	U	τ	J	τ	U
dichlorodifluoromethane	5**	1	U	U	U	U	U	U	U	U	U	U	τ	J	τ	U
methylene chloride	5	1	U	U	U	U	U	U	U	U	U	U	τ	J	τ	U
toluene	5	1	U	U	U	U	U	U	U	U	U	U	τ	J	Ţ	U
Metals (μg/L) [Dissolved / Total] ¹																
aluminum	100	200	55.7 F	190 F	62 F	108 F	76.5 F	240	U	U	45.1 F	105 F	56.5 F	81.3 F	55 F	110 F
antimony	3	50	U	U	U	U	U	U	U	U	4.5 F	U	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	3.5 F	U	U	U	U	U	U	U
barium	1,000	50	17 F	6.8 F	23 F	20 F	16 F	11.1 F	51.4	50.5	20 F	15.2 F	27.4 F	28 F	8.6 F	8.8 F
boron, Total	1,000	110	16.6	U	NA	NA	NA	9.2 F	NA	NA	NA	11.2	U	U	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	35,500	12,000	49,200	35,000	32,500	11,200	90,400	101,000	38,600	26,200	54,100	52,900	21,000	20,000
chromium	50	10	U	U	U	U	U	U	U	U	U	1 F	U	U	U	U
cobalt	5	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	4.6 F	U	2.3 F	U	U	U	U	U	U	U	U	U
iron	300	200	486	301	731	573	668	442	983	919	494	545	402	1,320	95 F	250
lead	50	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	3,550	1,850	4,930	4,100	3,130	1,300	5,610	5,940	3,140	2,420	4,140	4,040	2,200	2,100
manganese	300	10	265	38	445	284	343	207	1,060	1,160	475	283	586	623	90	94
nickel	100	20	U	U	U	U	U	U	1.9 F	U	U	U	U	U	U	U
potassium		1,000	1,300	828 F	1,440	1,740	1,320	1,320	2,630	2,940 B	1,190	1,050	1,650	1,580	960 F	960 F
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium		1,000	7,120	5,020	8,790	7,460	6,980	4,120	7,630	8,430	6,860	7,200	13,400	13,100	6,300	6,000
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	5.1 F	9.7 F	U	U	U	5.1 F	U	U	6.4 F	4.5 F	36.5 B	33.6 B	U	U
Leachate Indicators (mg/L)																
alkalinity, Total		10	92.5	24.3	111	92.8	93	33.3	258	284	102	67.1	15			18
ammonia	2	0.2	0.072	U	0.16	0.12	0.2	0.13	0.55	0.12	0.26	0.093	0.0			44 F
BOD5		2.4	U	U	U	U	U	U	U	U	U	U	Ţ			U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	0.38 F	0.04			38 F
COD		5	U	11.8	10.2	13.3 B	U	13.5	U	15.9	U	16.4	9.2			5 B
chloride	250	1	10.6	8.1	14.3	13.1	10.8	7	9.9	10.8	9.6	10	2			0.3
color	15	5	25	NA	NA	NA	NA	50	NA	NA	NA	25	N			IΑ
hardness, Total		1	168	U	140	90	100	36	264	318	160	48.9	180			56
nitrate	10	1	U	0.62 F	0.47 F	0.81 F	0.45 F	0.15 F	0.36 F	0.82 F	0.17 F	0.19 F	0.1			.25
TKN	1	1	U	0.27	0.53	0.37	0.95	0.44	1.1	1	1.1 B	0.31	0.2		0.1	
sulfate	250	1	10.7	7.2	10.7	10.6	8.3	5	7.4	9	12	8.6	6.			2 B
TDS	500	10	157	60	174	134	160	56	332	313	154	149	20			39
TOC		1	1.8	2.1	1.3	2.4	2.3	4.5	3.4	3.6 B	1.6	2.5	4.			2.8
phenolics, Total		0.005	U	U	U	U	U	U	0.0050 F	U	U	U	N	A	N	ΙA
Pesticides (µg/L)											ı	ı				
No pesticides were reported.				L												
PCBs (µg/L)																
No PCBs were reported.																

Landfill 1 AOC Surface Water Analytical Results (continued)

Location of Well										LF1	ISW-3					
Date of Collection	NYSDEC Class A		9/26/	2007	4/2/2	2008	9/18/	/2008	4/17/2009	3/30/2010						
Sample ID No.	Surface Water Standards	Reporting Limit	LF1SW	0301OA	LF1SW	0301PA	LF1SW	0301QA	LF1SW0301RA	LF1SW0301SA						
Depth to Water (ft)			Sur	face	Sur	face	Sur	face	Surface	Surface						
VOCs (µg/L)									•	•		· ·				
1,1-dichloroethane	5	1		J	Ţ	J	1	U	U	U						
1,2-dichlorobenzene	3	1	τ	J	Ţ	J	1	U	U	U						
1,4-dichlorobenzene	3	0.5		J	Ţ			U	U	U						
acetone	50	10		5 F	Ţ			U	1.15 F	1.36 F						
benzene	1	0.1		J	τ	J	1	U	U	U						
chloroethane	5**	1		J	Ţ		1	U	U	U						
chloromethane		1		IJ	Ţ			U	U	U						
dichlorodifluoromethane	5**	1		IJ	Ţ			U	U	U						
methylene chloride	5	1	0.12		Ţ			U	U	U						
toluene	5	1	Ţ	J	τ	J	1	U	U	U						
Metals (μg/L) [Dissolved / Total] ¹		1	1													
aluminum	100	200	41 F	U	U	170 F	U	U	U	81 F						
antimony	3	50	U	U	U	U	U	U	U	U						
arsenic	50	30	U	U	U	U	U	U	U	U						
barium	1,000	50	37 F	39 F	7.6 F	8.6 F	40 F	41 F	8.8 F	4.8 F						
boron, Total	1,000	110	NA	NA	6.7 F	6.8 F	NA	NA	NA	NA						
cadmium	5	5	U	U	U	U	U	U	U	U						
calcium		1,100	76,000	79,000	17,000	17,000	83,000	78,000	22,000	12,000						
chromium	50	10	U	U	U	U	U	U	U	U						
cobalt	5	60	U	U	U	U	U	U	U	U						
copper	200	10	U	U	U	U	U	U	U	U						
iron	300	200	70 F	1,800	150 F	360	22 F	1,500	260	220						
lead	50	25	U	U	U	U	U	U	U	U						
magnesium	35,000	1,000	5,000	5,100	1,800	1,800	5,200	4,900	3,000 75	2,000 27						
manganese nickel	300 100	10 20	770 U	760 U	100 U	120 U	1,200 U	1,200	75 U	U U						
		1,000	2,000		780 F	810 F		U 2,300	1,000	840 F						
potassium selenium	10	30	2,000 U	2,100 U	/80 F U	U	2,100 U	2,300 U	1,000 U	840 F U						
sodium		1,000	14,000	14,000	6,100	6,200	12,000	12,000	7,500	5,900						
vanadium		10	U	U	U,100	U,200	U	U	U	U						
zinc	2,000	20	24 B	U	14 F	14 F	16 F	14 F	U	4.7 F						
Leachate Indicators (mg/L)	2,000	20	24 15		141	171	101	171	0	4.71						
alkalinity, Total		10	2	20	4	-6	2.	40	58	28	1			1		
ammonia	2	0.2	0.0		0.0			.2	U	U						
BOD5		2.4		J	Ţ			U	U	U				1		
bromide	2	0.5	0.04		τ			68 F	0.015 F	U						
COD		5	8.5		4.1			2 F	10	5.4 F						
chloride	250	1	1		9.			4	11	8.2				1		
color	15	5		A		0		ΙA	10	U						
hardness, Total		1		90	5		2		64	38						
nitrate	10	1	0.		0.		0.		0.39	0.28				1		
TKN	1	1	0.		0.:		0.		0.22	0.40 B				1		
sulfate	250	1	1		5.			.0	9.3	7.3						
TDS	500	10		80	7			80	U	71						
TOC		1	3.		3.			.7	2.4	2.8				1		
phenolics, Total		0.005		A	N			IA	NA	NA						
Pesticides (µg/L)	•	-	·				-				-				<u> </u>	
No pesticides were reported.																
PCBs (µg/L)	•	+	•				-				•			•	*	
No PCBs were reported.																
· · · · · · · · · · · · · · · · · · ·	+	1			<u> </u>					!	+			+		

Landfill 1 AOC

Gas Monitoring Results - Methane and LEL

	1	27	7-Sep-04			4	-Oct-04			5	-Nov-04	
	Baro	metric Press		29.68	Baro	metric Pres		29.41	Baro	metric Press		29.11
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide
LF1GMP-01	>100	58.3	2.3	32.5								
LF1GMP-02	>100	48.5	0.0	35.3								
LF1GMP-03	>100	64.5	0.0	35.3								
LF1GMP-04	>100	63.8	0.0	36.4					>100	56.6	0.5	42.7
LF1GMP-06	>100	76.4	0.0	10.6					>100	74.8	0.2	7.7
LF1GMP-08	>100	15.3	0.5	18.8								
LF1GMP-09	>100	53.3	0.1	29.0								
LF1GMP-10	>100	35.4	1.9	30.2								
LF1GMP-11	NI	NI	NI	NI	NI	NI	NI	NI	>100	40.6	2.4	33.5
LF1GMP-12	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	19.4	2.6
LF1GMP-13	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	17.9	0.5
LF1GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	19.0	1.1
LF1GMP-15	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	19.9	0.9
LF1GMP-16	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	18.5	2.6
LF1GMP-17	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	18.3	1.9
LF1GMP-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-19	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-20	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-01					>100	7.2	19.2	4.4				
LF1GV-02					>100	14.8	16.7	10.4				
LF1GV-03					>100	19.0	4.6	13.8				
LF1GV-04					>100	35.0	6.2	27.0				
LF1GV-05					>100	17.6	15.8	12.7				
LF1GV-06					>100	33.0	10.5	21.7				
LF1GV-07					>100	11.5	18.2	7.6				
LF1GV-08					>100	33.5	10.6	19.9				
LF1GV-09					>100	6.9	19.2	3.9				
LF1GV-10					>100	22.6	13.9	16.9				
LF1GV-11					>100	8.9	19.1	4.5				
LF1GV-12					>100	18.2	15.2	12.8				
LF1GV-13					>100	55.4	0.6	42.1				
LF1GV-14					>100	11.9	18.1	6.9				
LF1GV-15					>100	11.5	18.2	6.1				
LF1GV-16					>100	20.6	12.0	12.7				
LF1GV-17					>100	12.0	18.8	5.0				
LF1GV-18					>100	11.4	17.8	7.5				
LF1GV-19					>100	8.7	18.5	4.7				
LF1GV-20					>100	11.8	16.0	7.0				
LF1GV-21					>100	34.5	15.1	9.1				
LF1GV-22					>100	14.5	17.3	5.9				
LF1GV-23	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-24	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-25	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-26	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-27	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-28	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-29	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-30	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-31	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		8	-Nov-04			1:	1-Nov-04			10	6-Nov-04	
	Baro	metric Pres		29.60	Baro	metric Pres		29,79	Baro	metric Pres		29.83
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide
LF1GMP-01					>100	8.6	17.5	4.5				
LF1GMP-02					>100	27.0	8.9	15.7				
LF1GMP-03					>100	36.3	6.6	25.2				
LF1GMP-04	>100	52.0	3.6	41.8	>100	52.0	2.8	36.7				
LF1GMP-06	>100	64.3	3.2	6.6	>100	58.8	4.1	5.7				
LF1GMP-08					0	0.0	0.3	13.2				
LF1GMP-09					>100	39.4	5.3	16.1				
LF1GMP-10					>100	26.0	1.3	21.0				
LF1GMP-11	>100	40.0	0.0	35.2	>100	30.2	2.4	27.0				
LF1GMP-12	0	0.0	18.2	3.5	0	0.0	18.8	3.4				
LF1GMP-13	0	0.0	18.4	1.0								
LF1GMP-14	0	0.0	18.6	0.9								
LF1GMP-15	0	0.0	19.1	0.9								
LF1GMP-16	0	0.0	17.1	3.3								
LF1GMP-17	0	0.0	18.3	1.9								
LF1GMP-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-19	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-20	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-01												
LF1GV-02												
LF1GV-03												
LF1GV-04												
LF1GV-05												
LF1GV-06												
LF1GV-07												
LF1GV-08												
LF1GV-09												
LF1GV-10												
LF1GV-11												
LF1GV-12												
LF1GV-13												
LF1GV-14												
LF1GV-15												
LF1GV-16												
LF1GV-17												
LF1GV-18												
LF1GV-19												
LF1GV-20												
LF1GV-21												
LF1GV-22												
LF1GV-23	NI	NI	NI	NI	NI	NI	NI	NI	>100	38.6	12.5	14.2
LF1GV-24	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-25	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-26	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-27	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-28	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-29	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-30	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-31	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		10	6-Dec-04			1	7-Jan-05			1'	7-Feb-05	
	Baro	metric Press	sure (in.) =	29.73	Baro	metric Pres	sure (in.) =	29.77	Baro	metric Pres	sure (in.) =	29.34
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	>100	98.4	1.6	0.0	>100	98.8	0.4	0.8	>100	99.8	0.2	0.0
LF1GMP-02	>100	52.1	0.0	25.2	>100	46.6	0.2	21.4	>100	40.2	0.2	22.4
LF1GMP-03	>100	54.1	0.0	37.1	>100	40.8	0.4	30.8	>100	30.2	0.2	31.0
LF1GMP-04	>100	34.2	4.7	21.5	>100	61.4	0.4	38.0	>100	60.4	0.5	39.1
LF1GMP-06	>100	77.6	0.0	3.9	>100	62.8	0.8	2.6	>100	69.0	0.5	2.7
LF1GMP-08	10	0.5	20.9	0.0	0	0.0	5.5	11.0	0	0.0	6.7	9.8
LF1GMP-09	>100	41.4	0.2	19.2	>100	38.6	1.7	14.9	>100	47.2	0.0	18.2
LF1GMP-10	>100	33.9	0.0	29.3	>100	26.4	0.2	21.8	>100	24.0	0.1	24.1
LF1GMP-11	>100	18.1	0.0	19.6	>100	8.8	0.3	17.2	>100	7.9	0.1	18.8
LF1GMP-12	4	0.2	18.7	2.5	0	0.0	19.3	1.7	0	0.0	19.0	1.8
LF1GMP-13	10	0.5	15.8	0.3	0	0.0	16.2	1.0	0	0.0	16.4	1.2
LF1GMP-14	4	0.2	17.3	0.4	0	0.0	18.1	0.2	0	0.0	18.6	0.2
LF1GMP-15	4	0.2	19.1	0.8	0	0.0	19.3	0.3	0	0.0	20.1	0.2
LF1GMP-16	0	0.0	17.6	2.6	0	0.0	17.6	2.2	0	0.0	17.7	2.3
LF1GMP-17	0	0.0	18.3	1.7	0	0.0	18.3	1.4	0	0.0	18.6	1.4
LF1GMP-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-19	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-20	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-01	>100	14.4	0.1	17.3	>100	9.4	12.7	9.0	62	3.1	14.4	6.5
LF1GV-02	>100	13.8	1.0	20.2	>100	9.0	10.5	12.0	56	2.8	10.3	9.2
LF1GV-03	50	2.5	3.6	11.3	10	0.5	18.6	1.6	2	0.1	15.8	3.3
LF1GV-04	>100	11.5	1.9	18.5	62	3.1	15.9	5.5	4	0.2	15.5	4.0
LF1GV-05	>100	20.4	0.0	23.0	>100	13.5	10.4	12.7	88	4.4	11.0	8.6
LF1GV-06	>100	16.8	0.0	23.3	>100	21.1	1.5	20.7	16	0.8	6.1	12.4
LF1GV-07	>100	19.0	0.1	24.4	>100	20.3	5.6	18.9	>100	9.9	10.9	12.9
LF1GV-08	>100	26.7	0.1	23.1	>100	21.2	3.5	18.6	64	3.2	5.8	12.7
LF1GV-09	>100	6.4	1.9	14.6	>100	20.1	4.2	14.9	64	3.2	14.9	5.8
LF1GV-10	>100	17.1	1.3	22.8	>100	16.5	5.6	18.6	48	2.4	10.7	9.3
LF1GV-11	>100	17.0	0.7	16.1	>100	14.6	10.3	10.7	46	2.3	16.6	3.3
LF1GV-12	>100	12.7	1.2	20.2	>100	18.4	2.6	18.3	12	0.6	12.1	6.6
LF1GV-13	>100	21.9	1.2	27.5	>100	16.9	1.4	20.4	>100	10.3	1.1	20.1
LF1GV-14	>100	27.4	1.1	19.3	>100	26.6	4.9	15.0	>100	11.3	12.1	8.4
LF1GV-15	>100	7.1	0.8	14.3	>100	9.5	6.4	10.9	24	1.2	13.9	5.2
LF1GV-16	68	3.4	5.2	8.2	80	4.0	8.9	7.1	0	0.0	16.6	3.0
LF1GV-17	>100	14.9	5.2	14.2	>100	25.1	6.1	12.5	>100	19.1	9.9	12.1
LF1GV-18	>100	29.0	0.8	22.6	>100	27.2	4.4	15.7	>100	16.1	7.4	12.9
LF1GV-19	>100	9.1	0.2	16.3	>100	12.6	6.1	12.5	46	2.3	11.4	7.9
LF1GV-20	>100	14.8	1.8	15.9	>100	12.5	5.5	11.7	72	3.6	13.8	4.6
LF1GV-21	>100	34.2	0.8	18.0	>100	37.6	1.9	14.0	>100	26.9	2.6	13.2
LF1GV-22	>100	23.6	1.1	19.4	>100	24.8	2.5	16.1	>100	16.2	6.2	14.1
LF1GV-23	16	0.8	15.9	2.1	2	0.1	20.2	0.4	2	0.1	17.8	1.6
LF1GV-24	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-25	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI NI
LF1GV-25 LF1GV-26	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI NI
LF1GV-26 LF1GV-27	NI	NI NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI	NI NI
LF1GV-27 LF1GV-28	NI	NI NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI	NI NI
LF1GV-28 LF1GV-29	NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI	NI	NI NI	NI NI
LF1GV-29 LF1GV-30	NI	NI NI	NI			NI NI	NI	NI NI		NI	NI NI	NI NI
LF1GV-30 LF1GV-31				NI NI	NI				NI	-		
LF1GV-31	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		24	I-Mar-05			28	8-Apr-05			26	6-May-05	
	Baro	metric Press	sure (in.) =	30.00	Baro	metric Pres	sure (in.) =	29.28	Baro	metric Pres	sure (in.) =	29.23
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	0	0.0	21.0	0.0	>100	52.1	4.2	26.8	>100	67.5	0.6	26.5
LF1GMP-02	>100	32.5	0.8	21.5	>100	24.8	6.2	17.7	>100	33.5	1.0	21.0
LF1GMP-03	>100	25.1	0.6	30.1	>100	27.2	0.5	30.3	>100	30.8	0.4	30.1
LF1GMP-04	>100	59.5	0.4	40.1	>100	57.5	0.5	36.7	>100	54.5	0.9	35.6
LF1GMP-06	>100	62.5	0.5	2.2	>100	65.5	0.8	2.5	>100	64.5	0.7	3.5
LF1GMP-08	0	0.0	11.6	6.6	0	0.0	4.7	11.4	0	0.0	11.2	7.5
LF1GMP-09	>100	44.3	0.8	17.0	>100	32.3	2.2	17.5	>100	38.9	0.8	19.2
LF1GMP-10	>100	18.4	0.2	22.4	>100	16.6	2.1	23.2	>100	17.3	1.6	24.3
LF1GMP-11	>100	5.9	1.0	19.0	>100	9.0	0.7	19.1	>100	6.6	0.7	20.1
LF1GMP-12	0	0.0	18.4	2.2	0	0.0	19.4	1.5	0	0.0	19.6	1.6
LF1GMP-13	0	0.0	15.7	1.5	0	0.0	16.6	1.9	0	0.0	18.9	1.5
LF1GMP-14	0	0.0	18.4	0.3	2	0.1	19.1	0.5	0	0.0	20.2	0.5
LF1GMP-15	0	0.0	20.0	0.0	2	0.1	19.5	0.4	2	0.1	19.8	0.4
LF1GMP-16	0	0.0	17.3	2.4	0	0.0	17.8	2.9	0	0.0	18.2	2.7
LF1GMP-17	0	0.0	18.7	1.3	0	0.0	18.7	1.5	0	0.0	18.4	1.8
LF1GMP-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-19	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-20	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-01	12	0.6	20.2	0.9	>100	6.6	14.2	9.9	>100	17.9	12.1	14.4
LF1GV-02	10	0.5	19.9	1.0	46	2.3	15.2	7.1	>100	24.1	9.6	17.4
LF1GV-03	0	0.0	21.0	0.0	2	0.1	21.0	0.0	>100	36.1	0.3	30.4
LF1GV-04	0	0.0	21.0	0.0	4	0.2	21.0	0.0	>100	26.6	5.1	23.6
LF1GV-05	4	0.2	20.8	0.3	>100	5.3	16.0	7.6	>100	28.2	6.2	23.9
LF1GV-06	0	0.0	21.2	0.0	16	0.8	13.5	7.2	>100	35.4	0.8	30.4
LF1GV-07	4	0.0	21.0	0.2	>100	5.0	16.9	7.1	>100	26.1	8.4	21.6
LF1GV-08	0	0.0	21.0	0.0	20	1.5	15.0	5.2	>100	37.0	1.8	26.4
LF1GV-09	0	0.0	21.1	0.0	>100	7.1	11.9	9.8	>100	35.2	4.2	23.9
LF1GV-10	0	0.0	21.1	0.0	0	0.0	20.4	0.9	>100	5.3	17.5	4.5
LF1GV-11	0	0.0	21.2	0.0	48	2.4	18.3	3.1	>100	5.8	17.9	3.6
LF1GV-12	0	0.0	21.2	0.0	6	0.3	17.3	3.6	>100	32.1	1.7	30.3
LF1GV-13	0	0.0	21.1	0.0	14	0.7	17.3	3.5	>100	25.9	2.7	23.5
LF1GV-14	0	0.0	21.3	0.0	14	0.7	20.1	0.6	>100	31.2	6.2	19.8
LF1GV-15	0	0.0	20.9	0.0	54	2.7	9.6	9.6	>100	17.4	5.8	17.5
LF1GV-16	0	0.0	19.5	0.9	0	0.0	20.9	0.0	50	2.5	2.7	14.6
LF1GV-17	80	4.0	18.8	2.2	46	2.3	19.5	1.4	>100	26.6	9.6	15.5
LF1GV-18	18	0.9	19.9	1.0	14	0.7	20.1	0.7	>100	22.1	9.7	15.4
LF1GV-19	4	0.2	18.9	1.5	0	0.0	21.0	0.0	>100	17.4	1.7	20.3
LF1GV-20	0	0.0	20.8	0.2	8	0.4	20.1	0.7	>100	8.2	13.5	7.1
LF1GV-21	46	2.3	19.7	0.9	70	3.5	19.0	1.7	>100	43.1	3.6	18.4
LF1GV-22	>100	5.1	18.2	3.0	36	1.8	19.5	1.3	>100	34.5	5.2	20.8
LF1GV-23	0	0.0	21.1	0.0	0	0.0	20.0	0.6	48	2.4	15.3	6.1
LF1GV-24	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-25	NI	NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI NI
LF1GV-26	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI NI
LF1GV-26 LF1GV-27	NI	NI NI	NI NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI	NI NI
LF1GV-27 LF1GV-28	NI NI	NI NI	NI NI	NI NI	NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI
LF1GV-28 LF1GV-29						-						NI NI
	NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI NI	NI	
LF1GV-30 LF1GV-31	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-31	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		23	3-Jun-05			2	-Aug-05			29	9-Aug-05	
	Baro	metric Press	sure (in.) =	29.61	Baro	metric Pres	sure (in.) =	29.55	Baro	metric Pres	sure (in.) =	29.50
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	>100	74.4	0.9	24.2	>100	50.0	0.1	32.2	>100	100.0	0.0	0.0
LF1GMP-02	>100	34.8	1.1	27.5	>100	43.5	1.0	28.9	>100	47.6	0.5	30.0
LF1GMP-03	>100	37.0	1.1	40.4	>100	50.1	0.4	39.1	>100	60.3	0.1	39.6
LF1GMP-04	>100	52.1	1.7	44.2	>100	50.2	0.4	39.1	>100	60.3	0.3	39.4
LF1GMP-06	>100	63.1	1.2	4.4	>100	65.1	0.9	5.8	>100	76.2	0.1	7.0
LF1GMP-08	0	0.0	11.7	7.4	0	0.0	14.8	5.5	0	0.0	11.8	7.5
LF1GMP-09	>100	35.3	1.2	24.1	>100	39.8	0.8	24.4	>100	58.4	0.1	33.2
LF1GMP-10	>100	14.4	2.9	24.5	>100	13.5	3.4	22.5	>100	18.5	2.6	28.8
LF1GMP-11	>100	11.5	1.2	23.2	>100	9.6	1.1	22.0	>100	18.8	0.3	30.4
LF1GMP-12	0	0.0	18.8	2.2	0	0.0	19.4	1.7	0	0.0	18.8	2.0
LF1GMP-13	0	0.0	19.1	1.1	0	0.0	19.1	1.1	0	0.0	18.7	1.7
LF1GMP-14	0	0.0	19.9	0.5	0	0.0	19.6	0.6	0	0.0	19.0	1.2
LF1GMP-15	0	0.0	20.0	0.5	0	0.0	19.8	0.1	0	0.0	19.4	1.0
LF1GMP-16	0	0.0	17.8	2.8	0	0.0	17.7	3.2	0	0.0	17.2	3.0
LF1GMP-17	0	0.0	17.9	2.5	0	0.0	17.1	3.3	0	0.0	16.6	3.2
LF1GMP-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-19	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GMP-20	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-01	>100	21.3	1.0	31.9	>100	27.8	4.7	29.4	>100	58.4	0.0	41.6
LF1GV-02	>100	21.3	1.2	30.0	>100	19.3	4.1	24.5	>100	59.7	0.0	40.3
LF1GV-03	>100	8.4	2.4	22.0	40	2.0	14.3	6.7	>100	50.2	0.0	46.4
LF1GV-04	>100	8.0	6.2	20.1	>100	10.0	13.4	9.5	>100	40.8	0.1	41.0
LF1GV-05	>100	22.1	1.0	31.4	>100	26.4	4.1	28.3	>100	58.6	0.0	41.4
LF1GV-06	>100	10.0	1.3	23.0	8	0.4	13.1	6.5	>100	62.2	0.0	37.8
LF1GV-07	>100	24.3	1.0	34.1	>100	24.1	5.8	25.1	>100	60.7	0.0	39.3
LF1GV-08	>100	15.1	1.1	23.6	>100	6.2	9.3	11.4	>100	55.4	0.0	40.8
LF1GV-09	>100	8.1	1.5	22.2	>100	11.1	14.8	9.1	>100	40.2	4.0	55.8
LF1GV-10	>100	15.7	3.8	23.8	>100	16.4	7.4	19.7	>100	59.5	0.0	40.5
LF1GV-11	>100	14.8	2.0	21.9	>100	7.0	16.5	5.4	>100	45.8	3.3	33.1
LF1GV-12	>100	8.6	1.5	22.4	50	2.5	7.4	3.8	>100	55.0	0.3	44.9
LF1GV-12	>100	20.6	1.0	26.2	>100	15.9	2.9	21.2	>100	52.1	0.0	41.2
LF1GV-14	>100	30.7	4.2	27.5	>100	16.9	12.3	13.1	>100	45.5	4.4	37.2
LF1GV-15	>100	16.0	6.6	20.2	>100	15.0	12.3	13.5	>100	46.1	4.9	38.3
LF1GV-16	18	0.9	6.7	13.5	60	3.0	14.9	5.3	>100	36.0	4.3	30.1
LF1GV-17	>100	32.5	5.3	26.2	>100	12.8	14.0	11.4	>100	42.9	3.9	33.5
LF1GV-17 LF1GV-18	>100	22.1	7.4	20.7	>100	22.3	9.0	17.5	>100	49.0	3.3	41.1
LF1GV-19	>100	12.3	2.8	22.3	>100	9.3	11.7	11.3	>100	36.8	6.1	30.7
												23.3
LF1GV-20 LF1GV-21	>100	10.3	6.2	15.4	80	4.0	15.7	4.5	>100	26.5	4.2	
	>100	24.8	7.5 0.9	15.4	>100	9.0	14.2	5.3	>100	38.3	6.7	20.8
LF1GV-22	>100	27.8		25.8	>100		16.2	6.3	>100	46.8	3.1	32.2
LF1GV-23	42 NI	2.1	14.9	6.2		0.0	20.2	0.1	>100	19.9	6.6	25.7
LF1GV-24	NI	NI NI	NI	NI NI	NI	NI NI	NI	NI NI	NI NI	NI	NI	NI NI
LF1GV-25	NI	NI NI	NI	NI NI	NI		NI			NI	NI	
LF1GV-26	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-27	NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI	NI NI	NI	NI
LF1GV-28	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-29	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-30	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF1GV-31	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		7	'-Oct-05			1:	5-Nov-05			28	3-Nov-05	
	Baro	metric Pres	sure (in.) =	29.87	Baro	metric Pres	sure (in.) =	30.13	Baro	metric Pres	sure (in.) =	30.06
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	12	0.6	20.5	0.3	>100	66.3	11.3	13.4	>100	20.4	16.9	5.9
LF1GMP-02	>100	48.4	0.4	26.2	>100	52.3	0.8	20.9	>100	55.4	0.5	25.1
LF1GMP-03	>100	52.3	0.0	42.9	>100	54.8	0.3	36.0	>100	41.2	5.5	28.9
LF1GMP-04	>100	49.7	0.7	45.9	>100	39.7	0.0	32.1	36	1.8	8.8	13.3
LF1GMP-06	>100	70.5	0.3	8.3	>100	73.9	0.0	5.9	>100	81.3	0.5	6.1
LF1GMP-08	0	0.0	6.0	10.0	>100	6.8	0.7	15.5	10	0.5	3.7	17.8
LF1GMP-09	>100	58.8	0.3	30.7	>100	44.8	0.1	19.0	>100	49.2	0.9	21.0
LF1GMP-10	>100	20.3	1.8	25.8	>100	27.4	0.8	24.6	>100	29.9	0.8	28.4
LF1GMP-11	54	2.7	0.4	21.8	4	0.2	0.1	13.8	4	0.2	12.8	6.0
LF1GMP-12	0	0.0	18.9	2.3	0	0.0	18.6	2.6	0	0.0	19.8	1.2
LF1GMP-13	0	0.0	17.3	1.9	0	0.0	10.8	4.0	0	0.0	19.7	1.2
LF1GMP-14	0	0.0	17.4	1.8	0	0.0	13.1	2.5	0	0.0	14.4	2.9
LF1GMP-15	0	0.0	19.3	0.8	0	0.0	18.7	0.7	0	0.0	19.0	0.8
LF1GMP-16	0	0.0	17.8	2.7	0	0.0	17.5	2.8	0	0.0	18.1	2.6
LF1GMP-17	0	0.0	17.5	2.7	0	0.0	18.0	2.3	0	0.0	18.5	2.1
LF1GMP-18	>100	9.1	5.0	5.0	0	0.0	19.6	0.3	0	0.0	20.8	0.0
LF1GMP-19	>100	7.9	3.7	22.7	90	4.5	0.8	11.0	64	3.2	1.4	10.5
LF1GMP-20	0	0.0	20.4	0.0	0	0.0	20.5	0.0	4	0.2	20.7	0.0
LF1GV-01	>100	38.6	3.8	34.3	>100	40.8	0.9	29.8	>100	16.7	1.5	20.0
LF1GV-02	>100	23.0	10.6	19.3	>100	38.0	0.1	28.1	>100	14.8	3.2	19.4
LF1GV-03	>100	8.2	16.8	6.4	>100	29.8	0.0	25.3	>100	10.0	1.2	16.8
LF1GV-04	8	0.4	20.5	0.2	>100	27.0	1.0	25.6	>100	17.1	1.2	21.4
LF1GV-05	>100	46.1	0.3	42.6	>100	38.9	0.0	29.0	>100	24.7	0.8	27.0
LF1GV-06	>100	56.5	0.2	39.2	>100	42.2	0.1	27.0	>100	27.1	0.8	26.6
LF1GV-07	>100	50.2	0.3	45.3	>100	42.2	0.7	30.0	>100	32.0	0.2	32.6
LF1GV-08	>100	49.6	0.6	33.2	>100	40.1	1.0	23.9	>100	33.5	2.0	23.0
LF1GV-09	>100	32.4	4.0	27.3	>100	33.6	0.8	22.4	>100	12.3	1.8	16.7
LF1GV-10	>100	49.3	0.3	44.7	>100	38.5	0.3	29.8	>100	25.5	0.5	29.0
LF1GV-11	>100	28.4	6.1	23.1	>100	34.2	1.2	22.4	>100	18.4	6.9	15.2
LF1GV-12	>100	16.0	13.4	12.3	>100	29.3	0.1	24.5	>100	15.1	0.5	21.5
LF1GV-13	>100	45.8	0.3	37.5	>100	30.9	0.3	25.9	>100	25.2	0.7	30.6
LF1GV-14	>100	34.6	6.2	25.1	>100	39.8	1.6	23.5	>100	23.4	6.6	16,7
LF1GV-15	>100	16.4	11.2	13.3	>100	18.7	5.5	14.9	14	0.7	20.3	0.4
LF1GV-16	>100	20.9	9.6	15.2	>100	17.9	0.3	16.8	0	0.0	20.8	0.0
LF1GV-17	>100	27.8	9.7	20.2	>100	37.4	3.5	19.0	>100	18.3	6.3	13.2
LF1GV-18	>100	37.7	5.3	27.9	>100	31.2	3.7	18.5	>100	24.5	3.7	18.3
LF1GV-19	>100	15.6	12.1	12.4	>100	24.8	2.8	17.0	0	0.0	20.7	0.1
LF1GV-20	>100	15.2	10.9	11.8	>100	24.8	4.3	15.7	0	0.0	20.7	0.1
LF1GV-21	>100	22.8	12.6	11.2	>100	39.7	2.6	16.0	>100	21.8	10.9	10.4
LF1GV-22	>100	28.4	5.6	19.9	>100	35.7	1.7	20.0	>100	14.5	12.6	9.3
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned
LF1GV-24	>100	26.1	0.0	31.4	0	0.0	20.6	0.0	2	0.1	20.9	0.0
LF1GV-25	>100	30.8	36.0	0.3	>100	5.3	9.4	9.6	2	0.1	19.3	0.9
LF1GV-26	0	0.0	20.5	0.0	>100	13.1	2.3	19.3	22	1.1	14.8	5.5
LF1GV-27	>100	31.2	1.8	35.2	>100	22.0	2.4	22.8	10	0.5	13.1	4.8
LF1GV-28	>100	9.4	10.2	15.0	>100	5.3	16.9	1.4	36	1.8	8.9	13.1
LF1GV-28 LF1GV-29	>100	13.1	5.9	20.1	>100	13.0	0.3	19.5	10	0.5	13.1	4.8
LF1GV-29 LF1GV-30	>100	6.4	11.3	10.5	64	3.2	5.4	11.6	8	0.3	12.2	5.6
LF1GV-30		21.3	0.4					9.0	10	0.4		17.5
F1-10A-21	>100	21.5	0.4	26.7	0	0	20.6	9.0	10	0.5	18.3	17.5

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		9	-Jan-06			30)-Mar-06			1	1-Jul-06	
	Baroi	metric Pres		29.79	Baro		sure (in.) =	30,22	Baro			30.01 - 30.12
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	>100	98.0	0.0	2.0	>100	>100	0.2	31.2	>100	31.6	9.5	14.3
LF1GMP-02	>100	50.0	0.2	20.4	>100	45.0	0.4	19.2	14	0.7	18.5	0.4
LF1GMP-03	>100	42.2	2.5	30.1	>100	33.2	0.7	28.2	0	0.0	20.2	0.0
LF1GMP-04	>100	38.9	2.8	33.2	>100	26.4	3.4	24.4	>100	42.7	2.0	37.3
LF1GMP-06	>100	77.1	0.0	3.2	>100	61.3	0.0	1.6	>100	62.9	0.3	0.9
LF1GMP-08	>100	5.6	0.0	15.7	0	0.0	17.2	3.6	0	0.0	20.6	0.0
LF1GMP-09	>100	33.1	1.4	11.6	100	5.0	12.6	2.4	0	0.0	20.5	0.0
LF1GMP-10	>100	21.6	6.9	19.0	>100	24.7	0.0	23.4	0	0.0	20.9	0.0
LF1GMP-11	0	0.0	7.7	8.0	0	0.0	15.5	3.5	0	0.0	20.6	0.0
LF1GMP-12	0	0.0	19.4	2.0	0	0.0	19.7	1.1	0	0.0	20.4	0.1
LF1GMP-13	12	0.6	5.7	6.0	0	0.0	9.0	5.1	0	0.0	20.9	0.0
LF1GMP-14	0	0.0	14.1	2.1	0	0.0	18.0	1.3	0	0.0	19.2	0.4
LF1GMP-15	0	0.0	20.4	0.0	0	0.0	19.2	0.5	0	0.0	20.7	0.0
LF1GMP-16	0	0.0	17.6	2.6	0	0.0	19.0	1.9	0	0.0	19.9	0.3
LF1GMP-17	0	0.0	17.8	2.2	0	0.0	19.5	1.5	0	0.0	18.0	2.5
LF1GMP-18	0	0.0	20.6	0.0	0	0.0	20.8	0.0	0	0.0	20.9	0.0
LF1GMP-19	4	0.2	0.9	4.2	0	0.0	10.0	2.7	>100	7.0	9.5	10.0
LF1GMP-20	0	0.0	20.2	0.2	0	0.0	20.7	0.0	2	0.1	20.5	0.0
LF1GV-01	42	2.1	19.7	1.7	>100	6.5	17.3	5.2	2	1.1	17.3	4.0
LF1GV-02	2	0.1	20.7	0.0	>100	6.4	16.0	5.5	26	1.3	5.2	18.2
LF1GV-03	18	0.9	20.3	0.7	>100	20.2	3.0	20.9	20	1.0	13.7	5.6
LF1GV-04	>100	5.1	18.1	4.0	>100	13.8	8.7	14.0	0	0.0	19.0	1.0
LF1GV-05	0	0.0	20.6	0.0	>100	15.8	12.3	12.1	22	1.1	18.1	2.8
LF1GV-06	0	0.0	20.4	0.0	>100	14.2	9.6	14.4	28	1.4	8.8	10.1
LF1GV-07	88	4.4	18.8	2.9	>100	16.2	16.0	11.5	12	0.6	20.2	0.4
LF1GV-08	0	0.0	20.6	0.0	>100	21.4	9.4	14.5	36	1.8	18.1	2.3
LF1GV-09	26	1.3	19.8	1.1	>100	21.0	10.8	11.8	32	1.6	17.3	3.2
LF1GV-10	0	0.0	20.5	0.0	>100	15.7	9.3	15.0	0	0.0	20.7	0.1
LF1GV-11	56	2.8	19.0	2.1	>100	6.4	17.1	4.1	2	0.1	20.9	0.0
LF1GV-12	0	0.0	20.4	0.0	>100	12.2	10.4	12.6	0	0.0	20.4	0.0
LF1GV-13	0	0.0	20.3	0.0	>100	16.0	19.8	2.8	>100	7.8	1.6	20.0
LF1GV-14	50	2.5	19.3	1.5	>100	5.2	18.7	2.5	52	2.6	19.7	1.1
LF1GV-15	0	0.0	20.3	0.0	26	1.3	18.7	1.7	2	0.1	20.6	0.0
LF1GV-16	0	0.0	20.3	0.0	0	0.0	19.3	0.8	0	0.0	20.9	0.0
LF1GV-17	>100	12.6	16.2	5.7	>100	10.5	17.1	4.4	18	0.9	20.1	0.5
LF1GV-18	>100	12.3	15.6	6.1	74	3.7	18.5	2.2	8	0.4	20.4	0.2
LF1GV-19	4	0.2	20.3	0.2	44	2.2	18.6	1.8	0	0.0	20.9	0.0
LF1GV-20	0	0.0	20.1	0.3	>100	7.0	15.4	3.7	0	0.0	20.8	0.0
LF1GV-21	>100	9.1	17.5	3.1	>100	16.1	16.5	4.0	0	0.0	20.7	0.0
LF1GV-22	>100	10.5	15.3	9.5	94	4.7	19.1	2.0	12	0.6	19.9	0.4
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned
LF1GV-24	0	0.0	20.7	0.0	0	0.0	21.1	0.0	>100	8.5	16.7	3.9
LF1GV-25	0	0.0	20.6	0.0	0	0.0	20.1	0.5	12	0.6	19.6	0.2
LF1GV-26	0	0.0	20.6	0.0	6	0.3	19.3	0.8	4	0.2	20.2	0.0
LF1GV-27	>100	10.0	15.3	7.8	66	3.7	18.0	2.6	0	0.0	20.4	0.0
LF1GV-28	0	0.0	20.5	0.0	0	0.0	20.9	0.2	0	0.0	20.6	0.0
LF1GV-29	86	4.3	10.3	8.6	0	0.0	20.9	0.2	0	0.0	20.7	0.0
LF1GV-30	12	0.6	19.7	0.7	0	0.0	19.2	1.1	0	0.2	20.3	0.2
LF1GV-31	0	0	20.5	0	0	0	21.1	0	0	0.0	20.2	0.2

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		9	-Oct-06			3	3-Jan-07			31	-May-07	
	Baroi			29.43 - 29.47	Baro			29.42 - 29.47	Baro		-	29.40 - 29.44
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide
LF1GMP-01	56	2.8	19.1	1.6	>100	51.5	3.2	21.4	>100	56.2	0.7	27.8
LF1GMP-02	>100	26.5	-	18.7	0	0.0	5.1	5.4	>100	27.2	0.6	20.7
LF1GMP-03	>100	49.6	-	33.8	>100	29.2	-	22.9	>100	37.5	0.4	31.9
LF1GMP-04	>100	57.3	-	40.0	>100	19.5	0.0	24.3	>100	60.0	0.4	32.6
LF1GMP-06	>100	73.1	-	8.6	>100	11.9	-	4.8	>100	59.4	0.5	5.8
LF1GMP-08	0	0.0	20.4	0.3	0	0.0	9.9	7.0	0	0.0	20.9	0.0
LF1GMP-09	>100	33.4	-	19.7	>100	6.4	1.8	6.7	>100	12.0	13.0	5.7
LF1GMP-10	>100	23.0	-	25.3	89	4.5	14.1	5.7	10	0.4	20.2	0.4
LF1GMP-11	0	0.0	21.0	0.1	0	0.0	20.7	0.2	0	0.0	20.9	0.0
LF1GMP-12	0	0.0	20.9	0.2	0	0.0	19.8	1.9	0	0.0	20.9	0.0
LF1GMP-13	0	0.0	1.3	11.6	0	0.0	18.9	1.4	0	0.0	20.9	0.0
LF1GMP-14	0	0.0	15.0	3.3	0	0.0	17.5	1.7	0	0.0	20.7	0.3
LF1GMP-15	0	0.0	20.1	0.6	0	0.0	20.4	0.4	0	0.0	20.9	0.0
LF1GMP-16	0	0.0	20.5	0.5	0	0.0	18.0	2.4	0	0.0	19.2	1.7
LF1GMP-17	0	0.0	18.0	2.9	0	0.0	18.6	2.0	0	0.0	18.9	1.6
LF1GMP-18	0	0.0	17.4	2.8	0	0.0	20.9	0.2	0	0.0	6.8	4.8
LF1GMP-19	46	2.3	12.1	6.0	0	0.0	4.2	1.6	0	0.0	12.0	3.8
LF1GMP-20	2	0.1	20.8	0.1	0	0.0	20.9	0.1	0	0.0	20.6	0.0
LF1GV-01	70	3.5	20.0	3.4	2	0.1	20.9	0.2	>100	14.8	14.2	12.4
LF1GV-02	>100	7.7	17.6	6.3	0	0.0	20.8	0.2	>100	15.4	13.8	11.6
LF1GV-03	>100	11.3	15.8	9.2	0	0.0	21.0	0.1	>100	11.0	15.4	8.4
LF1GV-04	>100	6.7	17.6	5.7	0	0.0	20.9	0.1	42	2.1	20.0	1.2
LF1GV-05	>100	5.2	18.7	4.6	9	0.5	20.8	0.2	>100	30.5	6.9	25.2
LF1GV-06	>100	24.4	6.8	19.8	0	0.0	20.9	0.0	84	4.2	18.6	2.8
LF1GV-07	>100	11.5	16.2	9.8	39	2.0	19.8	1.7	>100	18.6	13.6	13.9
LF1GV-08	>100	14.0	15.3	9.0	>100	6.9	17.0	4.8	26	1.3	20.8	0.3
LF1GV-09	>100	9.9	16.7	6.9	39	2.0	19.2	1.7	20	1.0	20.8	0.2
LF1GV-10	>100	20.3	11.9	18.4	0	0.0	20.9	0.1	>100	7.1	7.2	5.5
LF1GV-11	>100	5.0	18.3	4.1	34	1.7	19.6	1.1	22	1.1	20.8	0.3
LF1GV-12	0	0.0	20.7	0.1	>100	5.4	16.0	4.5	>100	5.9	18.0	4.6
LF1GV-13	>100	16.5	11.5	14.4	0	0.0	20.8	0.1	>100	27.1	2.2	23.1
LF1GV-14	>100	6.6	17.8	5.1	20	1.0	20.0	0.6	96	4.8	1.8	19.4
LF1GV-15	4	0.2	20.7	0.3	13	0.7	19.9	1.0	46	2.3	19.4	1.6
LF1GV-16	61	3.1	18.6	2.4	9	0.4	18.2	1.8	0	0.0	21.0	0.0
LF1GV-17	20	1.0	20.1	1.1	>100	6.0	16.7	3.6	>100	7.6	18.2	3.5
LF1GV-18	84	4.2	19.0	3.0	53	2.7	17.9	2.2	42	2.1	20.2	0.8
LF1GV-19	7	0.3	20.5	0.5	25	1.3	18.8	1.5	6	0.3	20.8	0.0
LF1GV-20	80	4.0	18.1	2.8	40	2.0	18.7	1.7	50	2.5	18.8	1.8
LF1GV-21	>100	17.8	14.4	5.9	>100	6.7	17.3	2.6	>100	10.0	18.0	2.2
LF1GV-22	83	4.1	18.7	2.9	50	2.6	18.8	1.9	>100	8.9	18.0	3.0
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned
LF1GV-24	0	0.0	20.9	0.2	0	0.0	20.9	0.1	8	0.4	1.1	16.7
LF1GV-25	12	0.6	20.5	1.1	31	1.6	15.0	3.6	14	0.7	17.4	2.5
LF1GV-26	>100	15.6	13.7	8.7	0	0.0	20.9	0.1	0	0.0	20.7	0.0
LF1GV-27	>100	33.4	1.7	27.2	0	0.0	20.9	0.1	0	0.0	20.9	0.0
LF1GV-28	0	0.0	21.0	0.1	0	0.0	20.9	0.1	0	0.0	20.9	0.0
LF1GV-29	>100	13.8	11.4	11.2	0	0.0	20.9	0.1	0	0.0	21.1	0.0
LF1GV-30	0	0.0	21.1	0.0	0	0.0	20.9	0.1	0	0.0	19.4	0.9
LF1GV-31	0	0.0	20.9	0.1	0	0.0	20.9	0.1	1	0.1	12.9	5.6

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		3	0-Jul-07			(-Oct-07			2	3-Jan-08	
	Baro	metric Pres	sure (in.) =	29.38 - 29.46	Baro	ometric Pre	ssure (in.) =	30.19	Baro	metric Pres	sure (in.) =	29.37-29.53
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	18	0.8	19.4	1.4	>100	99.9	0.2	0.0	>100	81.0	0.9	27.3
LF1GMP-02	0	0.0	20.0	0.4	>100	29.4	0.2	17.9	0	0.0	21.2	0.0
LF1GMP-03	>100	34.3	0.4	31.0	>100	49.9	0.1	39.3	>100	34.8	0.0	29.2
LF1GMP-04	>100	50.7	0.1	39.1	>100	51.7	0.2	47.4	0	0.0	20.0	0.2
LF1GMP-06	>100	74.2	0.2	7.4	>100	65.9	0.3	10.3	>100	45.7	0.0	4.0
LF1GMP-08	0	0.0	20.9	0.0	0	0.0	16.4	3.0	0	0.0	19.0	2.2
LF1GMP-09	>100	16.0	2.1	12.4	>100	41.5	0.3	23.8	0	0.0	20.6	0.1
LF1GMP-10	>100	7.2	1.4	16.7	>100	14.5	0.1	23.0	>100	20.0	0.2	21.7
LF1GMP-11	0	0.0	17.7	2.2	0	0.0	17.7	2.7	0	0.0	21.3	0.1
LF1GMP-12	0	0.0	20.8	0.3	0	0.0	20.8	0.0	0	0.0	19.6	2.1
LF1GMP-13	0	0.0	15.0	4.2	0	0.0	12.5	5.3	0	0.0	17.1	2.3
LF1GMP-14	0	0.0	19.4	1.3	0	0.0	18.8	1.3	0	0.0	19.5	0.8
LF1GMP-15	0	0.0	20.1	0.5	0	0.0	19.6	1.0	0	0.0	20.4	0.6
LF1GMP-16	0	0.0	20.2	0.3	0	0.0	18.8	2.3	3	0.2	19.2	2.2
LF1GMP-17	0	0.0	18.0	2.8	0	0.0	18.9	2.3	1	0.1	19.3	2.0
LF1GMP-18	0	0.0	13.2	6.5	4	0.2	14.3	6.0	0	0.0	21.3	0.1
LF1GMP-19	0	0.0	20.4	0.3	0	0.0	19.1	1.7	4	0.2	17.7	2.5
LF1GMP-20	0	0.0	21.0	0.0	0	0.0	20.8	0.0	4	0.2	21.0	0.1
LF1GV-01	>100	6.9	17.1	5.9	>100	21.7	10.4	20.7	0	0.0	21.3	0.1
LF1GV-02	>100	25.5	7.1	22.8	>100	34.1	4.5	31.2	0	0.0	21.0	0.0
LF1GV-03	>100	25.7	2.8	26.5	>100	35.3	0.1	36.0	0	0.0	21.2	0.0
LF1GV-04	>100	7.3	12.1	11.4	>100	27.6	1.8	31.3	0	0.0	20.5	0.1
LF1GV-05	>100	31.1	4.5	29.4	>100	38.8	5.5	31.0	0	0.0	19.4	0.1
LF1GV-05	>100	20.0	2.8	22.7	>100	40.8	0.1	35.1	0	0.0	21.4	0.0
LF1GV-07	>100	24.0	10.2	18.2	>100	33.0	5.7	30.2	12	0.8	20.5	1.2
LF1GV-08	>100	16.8	10.2	13.1	>100	20.4	10.7	14.0	24	1.2	19.4	1.1
LF1GV-08	76	3.8	18.6	3.1	>100	25.6	8.2	20.9	2	0.1	20.0	0.4
LF1GV-09	>100	5.8	17.2	5.2	>100	17.5	12.5	15.4	9	0.5	17.8	2.9
LF1GV-10	>100	5.5	18.0	3.8	>100	9.4	15.2	7.2	1	0.1	20.3	0.2
LF1GV-12	>100	6.0	15.4	6.7	>100	30.1	3.2	29.7	7	0.4	19.6	0.2
LF1GV-12 LF1GV-13	>100	25.3	0.5	25.5	>100	31.9	0.9	31.7	14	0.4	18.9	2.3
LF1GV-13 LF1GV-14	>100	6.2	18.4	3.6	>100	20.1	10.6	16.4	4	0.3	20.3	0.4
LF1GV-15	>100	10.4	14.9	8.0	>100	11.6	13.7	9.7	0	0.0	20.3	0.4
LF1GV-16	46	2.3	9.9	9.8	>100	14.7	7.1	14.2	0	0.0	20.4	0.1
LF1GV-17	>100	14.2	14.8	9.0	>100	5.8	18.3	3.7	2	0.0	20.3	0.1
LF1GV-18	>100	7.7	19.4	4.9	>100	14.5	15.3	9.1	0	0.0	20.6	0.2
LF1GV-18 LF1GV-19	>100	7.0	16.0	5.4	>100	12.8	12.9	9.2	0	0.0	20.8	0.2
LF1GV-19 LF1GV-20		7.3					11.4	8.3	0	0.0	20.7	0.2
LF1GV-20 LF1GV-21	>100	12.0	12.6 16.5	6.8 4.3	>100	10.9 17.6	6.8	14.4	17	0.0	20.7	0.2
LF1GV-21 LF1GV-22			14.2							0.9		
LF1GV-22 LF1GV-23	>100	15.2	Abandoned	8.6	>100	6.6	17.1 Abandoned	4.4 Abandoned	13 Abandoned		20.2	1.0
LF1GV-23 LF1GV-24	Abandoned >100	Abandoned 9.3		Abandoned 17.5	Abandoned >100	Abandoned 14.4	Abandoned 2.2	Abandoned 22.4	Abandoned 0	Abandoned 0.0	Abandoned 21.2	Abandoned 0.0
LF1GV-24 LF1GV-25	>100	0.1	6.2 20.5	0.2	>100	12.5	11.8	13.4	0	0.0	20.2	0.0
LF1GV-25 LF1GV-26	0	0.0	20.9	0.2	>100	7.2	15.3	12.9	1	0.0	19.0	1.6
LF1GV-26 LF1GV-27	0	0.0	21.0	0.0	>100	13.1	11.0	16.8	0	0.1	20.1	0.1
LF1GV-27 LF1GV-28	0	0.0	21.0	0.0	>100	2.0	14.6	5.5	0	0.0	21.3	0.1
LF1GV-29	0	0.0	21.0	0.0	0	0.0	21.0	0.0	0	0.0	20.3	1.0
LF1GV-30	0	0.0	20.9	0.1	2	1.0	20.8	0.0	0	0.0	20.9	0.3
LF1GV-31	0	0.0	21.0	0.0	>100	7.7	1.7	19	0	0.0	21.3	0.1

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		17	7-Apr-08			1	1-Jul-08			17	7-Nov-08	
	Baro	metric Pres	sure (in.) =	30.01-30.20	Baro	metric Pres	sure (in.) =	29.29 - 29.40	Baro	metric Pres	sure (in.) =	29.38-29.41
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	>100	36.1	1.8	21.8	>100	10.6	11.7	8.9	2	0.1	21.3	0.1
LF1GMP-02	>100	7.2	0.3	14.4	34	1.8	6.6	5.1	0	0.0	21.4	0.0
LF1GMP-03	>100	17.9	0.3	21.6	>100	30.0	0.2	27.8	>100	5.9	18.0	4.3
LF1GMP-04	>100	15.7	5.4	17.5	>100	28.4	0.0	32.9	0	0.0	21.6	0.0
LF1GMP-06	>100	21.3	0.7	4.4	>100	24.2	0.9	7.7	0	0.0	21.7	0.1
LF1GMP-08	0	0.0	15.6	2.4	0	0.0	16.9	3.7	1	0.0	21.6	0.1
LF1GMP-09	>100	10.0	1.2	7.7	>100	20.9	0.4	16.0	1	0.0	21.5	0.0
LF1GMP-10	>100	8.4	1.2	13.3	80	3.9	15.1	4.0	0	0.0	21.0	0.0
LF1GMP-11	0	0.0	18.9	0.4	0	0.0	17.4	3.8	0	0.0	21.7	0.1
LF1GMP-12	0	0.0	18.8	0.9	0	0.0	20.6	1.7	0	0.0	19.6	2.8
LF1GMP-13	0	0.0	21.0	0.3	0	0.1	19.1	1.8	2	0.1	21.4	0.1
LF1GMP-14	0	0.0	20.2	0.2	0	0.0	21.2	0.3	2	0.1	19.7	0.6
LF1GMP-15	0	0.0	18.0	0.8	0	0.0	21.1	0.3	1	0.0	21.6	0.1
LF1GMP-16	0	0.0	19.1	1.4	4	0.3	19.9	2.1	0	0.0	21.2	0.1
LF1GMP-17	0	0.0	19.4	1.4	5	0.3	19.3	2.1	0	0.0	19.5	1.6
LF1GMP-18	0	0.0	20.2	0.0	0	0.0	6.1	11.6	0	0.0	21.6	0.0
LF1GMP-19	4	0.2	18.0	0.8	0	0.0	17.5	2.9	0	0.0	21.6	0.1
LF1GMP-20	2	0.1	20.0	0.0	0	0.0	21.9	0.7	0	0.0	21.7	0.0
LF1GV-01	>100	9.4	12.8	9.1	>100	6.4	13.1	17.1	0	0.0	21.3	0.1
LF1GV-02	>100	17.1	4.6	17.4	90	4.5	12.9	13.0	2	0.0	21.3	0.1
LF1GV-02 LF1GV-03	>100	22.7	0.4	23.6	>100	9.2	2.9	23.0	2	0.1	21.3	0.1
LF1GV-03 LF1GV-04	>100	17.7	4.3	19.7	0	0.0	21.2	0.0	3	0.1	21.3	0.1
LF1GV-04 LF1GV-05	>100	14.8	10.8	13.1	>100	17.3	1.1	31.3	0	0.0	20.9	0.0
LF1GV-05 LF1GV-06		21.2	0.4	24.4	0	0.0	21.2		0	0.0	20.2	0.0
LF1GV-00 LF1GV-07	>100	10.5	13.8	9.2	>100	8.0	13.0	0.1 12.0	0	0.0	20.2	0.1
LF1GV-07 LF1GV-08	>100	20.8	9.3	12.7	63	3.2	18.6	4.0	0	0.0	20.7	0.1
					0				0			
LF1GV-09 LF1GV-10	>100	14.7	9.9	10.4		0.0	20.6 15.9	6.2	0	0.0	20.3	0.1
	>100	11.2			18				0			
LF1GV-11	>100	13.2	7.1	9.6	55	2.7	16.5	5.5	0	0.0	21.3	0.0
LF1GV-12	>100	15.6		14.9		0.0	21.4	0.1	0		21.3	0.0
LF1GV-13 LF1GV-14	>100	17.4	0.1	20.4	90 47	4.5	2.0	21.8		0.0	21.3	0.1
	>100	13.5		9.5		2.4	18.8	3.8	0	0.0	21.4	0.1
LF1GV-15 LF1GV-16	76 4.0	3.8 0.2	14.2	5.1	0.0	0.0	14.4 20.6	6.5 1.1	0.0	0.0	21.4	0.1
LF1GV-10 LF1GV-17	>100	13.9	13.1	1.6 8.0	53	2.7	18.2	3.8	2	0.0	21.3	0.0
LF1GV-17 LF1GV-18	>100	8.4	14.5	5.7	23	1.1	19.8	2.7	0	0.0	21.2	0.0
LF1GV-19	>100	11.5	7.7	9.8	12	0.7	19.0	2.4	2	0.1	21.3	0.1
LF1GV-20	82	4.1	16.8	2.8	5	0.3	18.6	2.4	0	0.0	21.3	0.0
LF1GV-21	>100	16.4	12.4	6.4	65	3.4	18.0	3.8	0	0.0	21.3	0.0
LF1GV-22	>100	11.2	12.7	7.4	69	3.5	15.7	6.0	2	0.1	21.2	0.1
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned
LF1GV-24 LF1GV-25	2	0.1	16.7	1.8	17	0.9	14.8	20.1	0	0.0	21.0	0.0
	6	0.3	16.5	2.1	0	0.0	21.3	1.0	0	0.0	18.6	2.7
LF1GV-26	2	0.1	20.7	0.0	0	0.0	21.4	0.7	0	0.0	21.1	0.1
LF1GV-27	16	0.8	18.9	1.1	0	0.0	21.2	1.2	11	0.6	21.0	1.1
LF1GV-28	0	0.0	20.7	0.1	0	0.0	21.6	0.8	0	0.0	21.0	0.0
LF1GV-29	2	0.1	18.4	0.9	0	0.0	19.1	2.1	0	0.0	20.9	0.2
LF1GV-30	0	0.0	19.7	0.0	0	0.0	20.6	1.8	0	0.0	20.9	0.1
LF1GV-31	0	0.0	19.8	0.1	0	0.0	21.0	0.9	0	0.0	21.1	0.0

NI = Not Installed

--- = Not monitored

 ${\bf Land fill\ 1\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		20)-Jan-09			24	1-Apr-09			9)-Jul-09	
	Bare	ometric Pres	sure (in.) =	28.95-29.88	Bare	ometric Pres	sure (in.) =	29.51-29.58	Bare	ometric Pres	ssure (in.) =	29.56-29.66
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF1GMP-01	>100	59.0	1.9	20.3	>100	7.6	13.2	5.8	>100	26.8	4.1	17.9
LF1GMP-02	91	4.5	1.7	10.2	0	0.0	20.7	0.2	34	1.7	6.4	3.7
LF1GMP-03	>100	38.2	1.7	26.6	>100	14.5	7.7	11.9	>100	24.8	6.8	19.5
LF1GMP-04	0	0.0	21.3	0.1	12	0.6	18.8	1.0	>100	10.3	5.8	15.9
LF1GMP-06	0	0.0	20.3	0.2	0	0.0	20.1	0.1	94	4.7	6.4	3.3
LF1GMP-08	0	0.0	21.3	0.2	0	0.0	20.8	0.1	0	0.0	18.0	2.3
LF1GMP-09	>100	8.6	11.9	5.3	23	1.1	17.6	0.2	>100	15.5	0.3	10.2
LF1GMP-10	>100	14.4	1.3	20.1	62	3.1	12.2	3.6	0	0.0	20.7	0.0
LF1GMP-11	0	0.0	21.4	0.1	0	0.0	19.6	0.7	0	0.0	17.2	1.5
LF1GMP-12	0	0.0	20.3	0.2	0	0.0	20.0	1.1	0	0.0	19.9	0.0
LF1GMP-13	0	0.0	19.5	1.5	0	0.0	19.7	0.4	0	0.0	19.4	0.9
LF1GMP-14	0	0.0	20.7	0.9	0	0.0	20.9	0.0	0	0.0	19.2	1.2
LF1GMP-15	0	0.0	21.7	0.3	0	0.0	20.2	0.3	0	0.0	17.7	1.6
LF1GMP-16	0	0.0	18.3	2.2	0	0.0	20.1	1.4	0	0.0	18.7	1.7
LF1GMP-17	1	0.1	20.0	0.3	0	0.0	20.0	1.7	0	0.0	18.1	2.3
LF1GMP-18	13	0.6	20.8	0.6	0	0.0	21.0	0.0	0	0.0	19.4	0.3
LF1GMP-19	0	0.0	21.1	0.1	0	0.0	19.5	1.1	0	0.0	19.6	5.6
LF1GMP-20	0	0.0	21.1	0.1	0	0.0	20.9	0.0	0	0.0	19.5	0.0
LF1GV-01	8	0.4	21.0	0.8	2	0.1	20.0	0.5	0			
LF1GV-02	8	0.4	20.6	1.1	2	0.1	19.8	1.2		0.0	20.2	0.1
LF1GV-03	8	0.4	20.6	0.9	14	0.7	14.9	4.6	0	0.0	19.7	0.1
LF1GV-04	14	0.7	20.0	1.4	2	0.1	19.4	1.4	1	0.0	17.5	1.3
LF1GV-05	0	0.0	21.0	0.0	36	1.7	14.6	5.2	2	0.1	16.5	2.9
LF1GV-06	0	0.0	21.0	0.1	9	0.4	17.0	6.8	0	0.0	20.5	0.0
LF1GV-07	0	0.0	21.4	0.1	15	0.4	18.8	2.1	1	0.0	15.3	3.0
LF1GV-08	0	0.0	20.8	0.0	38	1.9	18.9	1.5	0	0.0	20.4	0.0
LF1GV-08 LF1GV-09	0	0.0	21.0	0.0	10	0.5	18.6	1.8	- 11	0.6	18.7	1.9
LF1GV-09	0	0.0	21.2	0.1	5	0.2	18.7	1.7	1	0.0	18.3	1.6
LF1GV-10 LF1GV-11	0	0.0	21.1	0.1	34	1.7	19.6	1.7	0	0.0	19.1	0.5
LF1GV-11 LF1GV-12			21.0	0.1		0.4	19.0	1.5	1	0.1	19.6	0.8
	0	0.0			8				0	0.0	20.6	0.0
LF1GV-13		0.0	20.3	0.2	>100	7.4	15.6	2.6	44	2.3	12.5	4.7
LF1GV-14	0	0.0	21.1	0.1		1.4	19.7	1.0	8	0.4	18.6	1.9
LF1GV-15 LF1GV-16	0.0	0.0	21.1	0.1	0.0	0.4	19.3 19.5	1.0	0	0.0	20.3	0.0
LF1GV-16 LF1GV-17	0.0					0.0		0.6	0	0.0	20.5	0.0
LF1GV-17 LF1GV-18		0.0	20.5	0.2	11		20.2	0.4	0	0.0	20.4	0.0
	0	0.0	20.5	0.2	11	0.5	17.9	1.9	0	0.0	20.4	0.0
LF1GV-19	0	0.0	21.0	0.3	38	1.9	13.4	4.6	0	0.0	20.3	0.0
LF1GV-20	0	0.0	21.2	0.2	67	3.3	14.5	3.0	0	0.0	20.4	0.0
LF1GV-21	0	0.0	20.3	0.2	64	3.2	17.0	2.5	0	0.0	19.7	0.2
LF1GV-22	0	0.0	20.4	0.2	>100	5.7	5.2	13.7	0	0.0	19.7	0.4
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned
LF1GV-24	12	0.6	21.0	0.6	0	0.0	20.7	0.2	3	0.1	19.0	0.8
LF1GV-25	8	0.4	21.1	0.5	0	0.0	20.0	0.7	0	0.0	19.4	0.0
LF1GV-26	0	0.0	21.2	0.0	0	0.0	21.0	0.0	0	0.0	19.4	0.0
LF1GV-27	0	0.0	21.4	0.1	1	0.0	20.3	0.1	0	0.0	19.2	0.0
LF1GV-28	0	0.0	21.4	0.1	0	0.0	20.8	0.0	0	0.0	19.6	0.0
LF1GV-29	0	0.0	21.4	0.1	0	0.0	19.3	1.2	0	0.0	19.3	0.0
LF1GV-30	0	0.0	21.4	0.1	0	0.0	21.1	0.0	0	0.0	18.8	0.5
LF1GV-31	0	0.0	21.4	0.1	0	0.0	20.9	0.0	0	0.0	6.4	3.1

NI = Not Installed

--- = Not monitored

Landfill 1 AOC

Gas Monitoring Results - Methane and LEL (continued)

		2	0-Oct-09			1	-Feb-10			5-	-May-10			26-0	ct-10	
	Bare	ometric Pres	ssure (in.) =	29.50-29.61	Bar	ometric Pres	sure (in.) =	29.45-29.50	Bare	ometric Pres	sure (in.) =	29.04-29.23	Bare	ometric Pres	sure (in.) =	29.40-29.29
Sample Location	LEL	Methane	Oxygen	Carbon Dioxide	LEL	Methane	Oxygen	Carbon Dioxide	LEL	Methane		Carbon Dioxide	LEL			Carbon
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	Oxygen (%)	(%)	(%)	Methane (%)	Oxygen (%)	Dioxide (%)
LF1GMP-01	>100	28.5	5.9	17.8	>100	45.5	2.1	20.6	>100	32.4	2.5	18.8	>100	52.5	0.9	24.6
LF1GMP-02	0	0.0	20.8	0.1	0	0.0	14.4	2.1	>100	8.1	0.0	12.8	>100	28.6	0.1	18.1
LF1GMP-03	>100	14.8	10.2	10.7	>100	5.7	8.1	8.1	>100	18.2	0.0	22.1	>100	43.7	0.1	34.6
LF1GMP-04	>100	55.6	0.0	43.4	10	0.5	14.3	4.5	>100	17.6	0.0	24.2	>100	53.8	0.1	40.9
LF1GMP-06	>100	84.0	0.0	6.7	>100	70.8	0.0	4.3	>100	44.8	0.0	6.3	>100	79.5	0.3	8.9
LF1GMP-08	0	0.0	19.9	0.6	0	0.0	20.5	1.1	0	0.0	16.3	2.5	0	0.0	7.4	8.4
LF1GMP-09	>100	45.0	0.0	21.3	47	2.4	7.7	4.0	>100	11.2	0.0	12.5	>100	45.7	0.3	22.9
LF1GMP-10	>100	6.1	11.8	5.8	>100	9.0	6.8	10.7	>100	10.2	0.5	15.1	>100	18.1	0.3	21.6
LF1GMP-11	0	0.0	2.0	0.2	0	0.0	23.8	0.1	0	0.0	16.1	2.3	0	0.0	15.2	3.3
LF1GMP-12	0	0.0	20.8	2.0	0	0.0	21.4	1.5	0	0.0	18.5	1.5	0	0.0	17.9	2.3
LF1GMP-13	0	0.0	19.4	0.0	0	0.0	18.1	1.3	0	0.0	15.1	2.2	0	0.0	7.4	7.1
LF1GMP-14	0	0.0	20.9	0.9	0	0.0	21.6	0.6	0	0.0	19.0	0.5	0	0.0	15.6	2.0
LF1GMP-15	0	0.0	19.0	0.6	0	0.0	22.3	0.1	0	0.0	19.2	0.5	0	0.0	18.6	1.3
LF1GMP-16	0	0.0	20.0	1.3	0	0.0	19.9	1.5	0	0.0	19.1	1.6	0	0.0	17.7	2.5
LF1GMP-17	0	0.0	19.3	0.2	0	0.0	19.6	1.5	0	0.0	19.4	1.5	0	0.0	17.5	2.5
LF1GMP-18	0	0.0	20.4	1.1	0	0.0	22.0	0.1	0	0.0	19.6	0.2	0	0.0	17.5	2.4
LF1GMP-19	0	0.0	19.9	9.0	0	0.0	22.0	0.3	0	0.0	18.6	0.7	53	2.6	7.1	5.2
LF1GMP-20	0	0.0	3.4	0.0	2	0.1	22.7	0.1	0	0.0	19.6	0.0	0	0.0	20.1	0.0
LF1GV-01	25	1.2	21.1	1.2	0	0.0	22.1	0.2	>100	8.0	13.6	8.1	>100	26.3	8.8	23.2
LF1GV-02	>100	11.3	19.9	14.0	2	0.1	21.3	0.5	>100	7.6	12.5	9.8	>100	11.8	14.7	9.6
LF1GV-03	58	2.9	15.2	5.2	3	0.1	21.0	0.7	>100	5.4	14.0	6.8	>100	27.5	8.0	21.0
LF1GV-04	19	1.0	19.0	1.9	0	0.0	22.0	0.3	>100	15.2	0.3	20.9	>100	24.2	5.5	22.2
LF1GV-05	>100	5.1	19.1	3.5	>100	6.1	19.5	8.8	>100	5.7	14.8	6.7	>100	23.7	10.0	19.3
LF1GV-06	>100	8.8	7.6	14.8	>100	7.4	2.9	17.1	>100	8.2	6.8	12.2	>100	32.8	4.3	25.3
LF1GV-07	0	0.0	20.9	0.0	>100	6.6	14.6	7.3	3	0.1	20.9	0.1	>100	16.1	13.6	14.2
LF1GV-08	0	0.0	20.8	0.0	>100	6.5	17.0	4.8	13	0.6	20.6	0.5	>100	9.5	16.7	6.2
LF1GV-09	20	1.0	20.0	1.0	47	2.3	19.2	2.1	16	0.8	20.6	0.7	>100	9.8	16.4	6.8
LF1GV-10	0	0.0	20.9	0.0	>100	5.0	8.4	11.8	2	0.1	20.7	0.2	>100	15.4	13.4	13.0
LF1GV-11	0	0.0	20.8	0.1	79	3.9	18.4	3.1	3	0.1	20.8	0.2	>100	5.2	18.0	3.9
LF1GV-12	0	0.0	20.8	0.2	60	3.0	16.9	4.2	3	0.2	20.6	0.3	>100	14.5	13.1	12.4
LF1GV-13	11	0.5	18.9	1.9	>100	20.4	0.4	22.5	2	0.1	20.3	0.9	>100	13.5	12.8	11.4
LF1GV-14	0	0.0	20.9	0.1	>100	5.0	17.5	3.9	46	2.3	19.7	1.3	>100	5.0	18.2	3.5
LF1GV-15	0	0.0	21.0	0.0	24	1.2	17.9	2.8	5	0.2	20.6	0.4	>100	6.5	16.6	6.9
LF1GV-16	0	0.0	21.0	0.0	6	0.3	18.3	1.9	0	0.0	20.9	0.0	>100	8.8	14.0	7.5
LF1GV-17	7	0.3	20.8	0.3	31	1.5	21.1	1.3	37	1.7	19.9	1.4	>100	5.8	17.5	5.1
LF1GV-18	0	0.0	20.9	0.1	22	1.1	20.6	1.4	21	1.0	20.0	0.9	>100	9.3	15.9	6.9
LF1GV-19	0	0.0	21.0	0.1	52	2.5	17.5	3.3	8	0.3	20.5	0.5	>100	15.4	12.5	10.3
LF1GV-20	0	0.0	21.1	0.0	58	2.9	18.7	1.9	28	1.4	20.1	0.6	>100	10.1	13.5	6.5
LF1GV-21	22	1.1	20.1	0.7	>100	5.9	18.9	2.4	76	3.8	19.6	1.1	>100	17.5	14.0	6.7
LF1GV-22	4	0.2	21.0	0.1	>100	7.3	16.0	5.5	12	0.6	20.6	0.5	>100	8.6	15.9	6.8
LF1GV-23	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	Abandoned	18.6	Abandoned
LF1GV-24	0	0.0	13.7	4.5	0	0.0	22.3	0.1	0	0.0	14.9	1.9	>100	18.9	0.4	21.3
LF1GV-25	3	0.1	20.5	0.3	0	0.0	22.2	0.1	0	0.0	16.1	2.8	>100	26.9	0.2	26.5
LF1GV-26	77	3.9	19.9	3.2	0	0.0	22.1	0.2	0	0.0	19.8	0.1	>100	10.8	12.0	10.4
LF1GV-27	>100	9.2	14.1	6.9	0	0.0	21.8	0.1	0	0.0	19.6	0.2	33	1.7	18.7	2.9
LF1GV-28	8	0.4	20.7	0.4	0	0.0	22.0	0.1	0	0.0	17.7	1.4	5	0.2	19.7	0.3
LF1GV-29	0	0.0	21.1	0.0	0	0.0	19.6	1.6	0	0.0	19.9	0.1	26	1.3	17.8	2.4
LF1GV-30	0	0.0	21.1	0.0	0	0.0	21.9	0.1	0	0.0	19.6	0.3	>100	8.6	10.4	11.7
LF1GV-31	0	0.0	20.6	0.4	0	0.0	21.8	0.1	0	0.0	14.2	4.1	>100	5.6	9.5	9.0
Notes:										-						

NI = Not Installed

--- = Not monitored

Landfill 2/3 AOC Groundwater Analytical Results

Location of Well								1	LF2MW2-1					
Date of Collection			12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/13/2004	3/31/2005	6/21/2005	9/8/2005	12/19/2005	3/10/2006	9/13/2006	4/2/2007
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF2M2137AA	LF2M2137BA	LF2M2137CA	LF2M2137DA	LF2M2137EA	LF2M2137FA	LF2M2137GA	LF2M2137HA	LF2M2137IA	LF2M2137JA	LF2M2137KA	LF2M2137LA
Depth to Water (ft)	†		15.90	15.81	16.13	16.65	15.83	15.62	16.72	18.35	16.59	15.80	16.86	14.73
VOCs (µg/L)	+													
1,1-dichloroethane	5*	1	0.40 F	0.43 F	0.42 F	0.41 F	0.42 F	0.41 F	0.45 F	0.34 F	0.38 F	0.42 F	NA	NA
1,2-dichloroethane	0.6	1	0.30 F	0.32 F	0.3 F	0.3 F	0.27 F	0.26 F	0.27 F	U	U	U	NA	NA
acetone	50	10	U	U	1.9 F	3.1 F	U	U	U	U	U	U	NA	NA
carbon disulfide	1,000	0.5	U	U	U	U	U	U	0.3 F	U	U	U	NA	NA
chloroethane	5*	1	1.2	1.2	1.1	1.3	1.3	1.2	1.4	1	1	1.1	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	0.22 F	0.21 F	U	0.22 F	U	U	U	NA	NA
dichlorodifluoromethane	5*	1	3.3	4	2.8	3.1	3.6	3.8	3	U	1	2.5	NA	NA
methylene chloride	5*	1	U	U	U	U	U	U	0.26 F	U	U	U	NA	NA
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	NA	NA
vinyl chloride	2	1	0.77 F	0.96 F	0.82 F	1	0.98 F	0.94 F	1	0.77 F	U	0.85 F	NA	NA
Metals (μg/L) [Dissolved / Total] ¹														
aluminum	2,000	200 50	U U	U	U U	U U	U U	U U	U	U U	U U	U U	62 F U	U U
antimony	25	30		18 F		21.9 F	27.4 F			19.8 F	18.3 F			12 F 15 F
arsenic barium	1,000	50	28.6 F 77.5	76.6	46.7 92.3	72.9	69.4	25.1 F 75.4	49.2 70.4	61.9	55	26.4 F 72.9	59.7 F 66 68.8 67.8	73 75
berylium	3	4	U	U	U	72.9 U	U	73.4 U	U	U	11	U	U U	U U
boron, Total	1,000	10	43.4	NA NA	NA NA	NA NA	NA NA	48.3	NA NA	NA NA	NA NA	43.3	NA NA	NA NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U U	U U
calcium		1,100	71,900	71,300	75,100	66,700	62,600	73,600	62,500	58,600	51,800	63,000	54,300 55,800	70,000 70,000
chromium	50	10	U	1.4 F	U	U	U	U	U	U	U	U	2.8 F 2.72 F	5.4 F 6.5 F
cobalt		60	8.5 F	9.9 F	10.6 F	8.1 F	7.7 F	8.8 F	7.7 F	6.3 F	5.8 F	8.1 F	U U	U U
copper	200	10	U	U	3.1 F	U	U	U	U	U	U	U	U U	U U
iron	300	200	21,900	20,000	31,700	19,800	18,000	20,900	26,600	14,800	14,000	18,400	23,900 26,800	10,000 11,000
lead	25	25	5.1 F	U	U	U	U	U	U	U	U	U	U U	U U
magnesium	35,000	1,000	15,900	15,600	16,500	14,500	13,500	15,300	13,200	12,000	10,800	13,800	11,900 12,200	15,000 15,000
manganese	300	10	9,010	9,250	10,200	8,680	7,960	8,490	7,590	6,850	6,160	7,670	6,660 7,020	7,900 8,100
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U U	U U
nickel	100	20	2.4 F	U	2.8 F	U	2.3 F	3.2 F	3 F	2.5 F	3.2 F	3.6 F	U U	1.5 F 3.3 F
potassium		1,000	901 F	894 F	958 F	899 F	876 F	923 F	863 F	785 F	803 F	899 F	975 F 974 F	1,100 1,000
selenium	10	30	U	U	U	U	U	U	U	U	U	9,620	U U	4.1 F 4.6 F
silver	50	10	U	U	U	U	U	0.9 F	U	U	U	U	U U	U U
sodium	20,000	1,000	8,770	8,660	9,490	8,680	8,400	9,020	7,870	7,990	7,840	U	7,430 7,770	8,500 8,600
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U U	U U
vanadium		10	U	U	U	U	U	U	U	U	_	U	U U	U U
zinc	2,000	20 1	3.1 F U	U	U	U	-	3 F U	3.3 F	2.9 F	5.3 F	3 F U	40.4 B 48.1 B NA NA	U U NA NA
Leachate Indicators (mg/L)	0.7	1	U	NA	NA	NA	NA	U	NA	NA	NA	U	NA NA	NA NA
alkalinity, Total		10	262	265	214	236	241	266	250	219	198	226	210	220
ammonia	2	0.2	0.18	0.13	0.17 B	0.18	0.22	0.25	0.11	0.24	0.18 B	0.23	0.71	0.34
BOD5		2.4	4.4	3.5	3.5	U	U	2.3	U	U	U	U.23	3	U
bromide	2	0.5	U	0.31 F	0.22 F	0.22 F	U	0.31 F	0.19 F	0.2 F	U	U	0.091 F	0.12 F
COD		5	U	11.1	U	U	U	U	8 F	7.6 F	4.4 F	U	14	26 B
chloride	250	1	16.8	18	18	17.3	15.8	15.7	14.9	13.3	11.6	11.7	12	12
color	15	5	200	NA	NA	NA	NA	160 J	NA	NA	NA	50	NA	NA
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NA	NA	U	NA	NA
hardness, Total		1	284	276	236	255	204	272	272	320	200	173	680	240
nitrate	10	1	U	U	U	U	U	0.03 F	U	U	U	0.032 F	0.021 F	U
TKN	1	1	U	0.38	0.46	U	1.2 B	0.36 B	0.82	0.93	0.34 B	0.35	0.69	0.34
sulfate	250	1	18.9	18.8	18.5	17.5	14.4	15.9	14.1	14.6	14.6	13.7	9.3	14
TDS	500	10	351	348	347	277	315	312	305	254	230	246	220	290
TOC		1	1.5	1.5	U	1.9	1.7	1.5	1.7	1.4 B	0.58 F	0.81 F	1.3	0.85 F
phenolics, Total		0.005	0.0360	U	U	U	U	U	0.0050 F	U	U	U	NA	NA

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well										LF2MW2-1					
Date of Collection	1		9/25/2007		3/31/	2008	9/17/2008	4/8/2009	3/30/2010	LF2MW2-1					
Date of Conection	- NYSDEC Class GA Groundwater	Reporting	3/23/2007		3/31/	2000	9/17/2008	4/8/2009	3/30/2010						
Sample ID No.	Standards	Limit	LF2M2137M	A	LF2M2	137NA	LF2M2137OA	LF2M2137PA	LF2M2137QA						
Depth to Water (ft)			18.34		14.	88	17.70	15.13	15.98						
VOCs (µg/L)														·	
1,1-dichloroethane	5*	1	NA		N.	A	NA	NA	NA						
1,2-dichloroethane	0.6	1	NA		N.	A	NA	NA	NA						
acetone	50	10	NA		N.	A	NA	NA	NA						
carbon disulfide	1,000	0.5	NA		N.	A	NA	NA	NA						
chloroethane	5*	1	NA		N.		NA	NA	NA						
cis-1,2-dichloroethene	5*	1	NA		N.		NA	NA	NA						
dichlorodifluoromethane	5*	1	NA		N.		NA	NA	NA						
methylene chloride	5*	1	NA		N.		NA	NA	NA						
trichlorofluoromethane	5*	1	NA		N.		NA	NA	NA						
vinyl chloride	2	1	NA		N.	A	NA	NA	NA						
Metals (µg/L) [Dissolved / Total] ¹													ı		1
aluminum	2,000	200		U	93 F	960	50 F	U	U						
antimony	3	50		U	1.8 F	1.8 F	U	U	U						
arsenic	25	30		2 F	9.6 F	13 F	15 F	8.5 F	17 F						
barium	1,000	50		54	67	68	68	63	54						
berylium	3	4		U	U 47 P	U 140	U	U	U						
boron, Total cadmium	1,000 5	10 5		IA U	47 B U	140 U	NA U	46 U	40 U						
cadmium		1,100					63,000	67.000	57,000						
calcium	50	1,100	. ,	,000 3 F	68,000 3.4 F	68,000 3.6 F	63,000 3.8 F	67,000 3.5 F	57,000 U						
cobalt	50	60		U	3.4 F 19 F	3.6 F 20 F	3.8 F U	5.5 F 6.6 F	U						
copper	200	10		U	U	20 F	U	0.0 F	U						
iron	300	200		,000	8,900	9,400	19,000	6,800	9,100						
lead	25	25		U	U	U U	U	U	U						
magnesium	35,000	1,000		,000	14,000	14,000	13,000	14,000	11,000						
manganese	300	10		200	8,000	7,800	7,600	8,200	6,900						
molybdenum		15		2 F	U	U	U	U	U						
nickel	100	20	1.8 F 2.	0 F	18 F	19 F	4.2 F	6.8 F	U						
potassium		1,000	930 88	80 F	1,100	1,000	1,000	1,200	1,200						
selenium	10	30	4.1 F	U	U	U	U	U	U						
silver	50	10	U	U	U	U	U	U	U						
sodium	20,000	1,000	7,800 7,	400	7,700	7,600	6,800 B	8,400	7,300						
thallium	0.5	80		U	U	U	U	U	U						
vanadium		10		U	U	U	U	U	U						
zinc	2,000	20		7 B	23 B	23 B	17 F	89	5.9 F						
mercury	0.7	1	NA N	JA	NA	NA	NA	NA	NA						
Leachate Indicators (mg/L)															
alkalinity, Total	-	10	220		24		210	150	190						
ammonia	2	0.2	0.36		0.2		0.45	0.18	0.38						
BOD5		2.4	U		J		2.5	U	U						
bromide	2	0.5	0.074 F		0.08		0.11	0.12 F	0.092 F						
COD chloride	250	-	13		11		13	20 B 14	7.0 F						
color	250 15	1 5	NA	l	6		13 NA	20	13 U						
color cyanide, Total	200	0.02	NA NA	-	N.		NA NA	NA	NA						
	200	0.02	NA 200		N. 25		NA 250	NA 240	NA 190						
hardness, Total nitrate	10	1	200 U		0.04		250 U	0.21	0.016 F						
TKN	10	1	0.31		0.04		0.55 B	0.21	0.56 B						
sulfate	250	1	13		0.2-		0.33 B	21	0.36 B						
TDS	500	10	310		28		250	260	240						
TOC		1	1.5 B		0.80		0.77 F	0.83 F	1.3						
phenolics, Total		0.005	NA NA		N.		NA	NA	NA						
<u>jr</u>	1				1,,							l		+	-1

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well									LF2MW-4							
Date of Collection	NYSDEC Class GA		12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/14/2004	3/31/2005	6/21/2005	9/8/2005	12/19/2005	3/14/2006	9/13	/2006	4/2/2	2007
Sample ID No.	Groundwater Standards	Reporting Limit	LF2M0437AA	LF2M0437BA	LF2M0437CA	LF2M0437DA	LF2M0437EA	LF2M0437FA	LF2M0437GA	LF2M0437HA	LF2M0437IA	LF2M0437JA	LF2M0	0437KA	LF2M0	0437LA
Depth to Water (ft)			29.79	29.21	29.92	30.25	29.81	29.34	30.42	32.51	30.68	29.19	30	.70	27.	.25
VOCs (µg/L)	*						•		•			*			•	
1,1-dichloroethane	5*	1	U	0.24 F	U	U	U	U	0.24 F	U	U	U	N	ΙA	N	ΙA
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	N	ΙA	N	ΙA
acetone	50	10	U	U	U	1.5 F	U	U	U	U	U	U	N	ΙA	N	ΙA
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U		ΙA		IA
chloroethane	5*	1	U	0.41 F	0.29 F	U	U	U	0.29 F	U	U	U		ΙA		IA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U		IA.		IA
dichlorodifluoromethane	5*	1	3.5	1.7	1.5	1.8	2.7	2.6 U	1.5	U	2.3	1.9 U		IA.		IA.
methylene chloride trichlorofluoromethane	5* 5*	1	U U	U 0.28 F	U U	U 0.26 F	U U	U	0.23 F U	U	U U	U		IA IA		IA IA
vinyl chloride	2	1	U	U.28 F	II.	0.26 F U	U	II.	U	U	U	U		IA		IA
Metals (μg/L) [Dissolved / Total] ¹		1	0			0		0		0				V/1	,	-
aluminum	2,000	200	40.3 F	U	U	U	U	U	U	39.4 F	U	U	56.4 F	U	U	U
antimony	3	50	U	U	U	U	U	U	U	U	4.7 F	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	9.6 F	35 F	37.3 F	27.3 F	8.2 F	17.9 F	17.3 F	11.2 F	7 F	31.2 F	14 F	13.8 F	30 F	31 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	10	9.9 F	NA	NA	NA	NA	9.9 F	NA	NA	NA	11.9	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	54,100	151,000	160,000	127,000	47,700	88,900	84,400	60,800	42,600	145,000	72,300	74,800	140,000	140,000
chromium	50	10	U	U	U	U	U	U	U	U	U	1.3 F	U	U	2.0 F	1.7 F
cobalt	-	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	U	U	U	2.6 F	U	U	U	U	U	U	U	U
iron	300	200	44.9 F	55.9 F	20.9 F	U	U	U	U	68.5 F	U	U	10.5 F U	27.6 F	9.5 F	U
lead magnesium	25 35,000	25 1,000	U 10,800	U 19,300	U 19,600	U 17,700	U 9,320	11,300	U 12,500	U 11,000	U 9,920	U 15,600	10,300	U 10,600	U 14,000	U 15,000
manganese	300	10	54.1	19,300	19,600	129	23.9	55.1	66.3	10	9,920 5.1 F	2 F	27.2	26.1	14,000	13.0
molybdenum		15	U U	U	U	U	U	1.6 F	U	U	U	U	U U	U U	U	U
nickel	100	20	U	U	U	U	U	U	U	U	U	U	U	U	1.2 F	U
potassium		1,000	930 F	1,940	1,820	1,540	771 F	1,210	1,150	928 F	651 F	1,480	926 F	921	1,400	1,400
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	3,910	2,810	2,950	3,190	3,680	3,440	3,450	3,760	4,000	3,580	3,410	3,550	3,200	3,300
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	U	U	U	U	U	U	U	3.9 F	4 F	U	38.5 B	29.2 B	U	U
mercury	0.7	1	U	NA	NA	NA	NA	U	NA	NA	NA	U	NA	NA	NA	NA
Leachate Indicators (mg/L)	T	10	170	450	202	254	151	271	274	106	120	105		10	21	70
alkalinity, Total ammonia	2	10 0.2	170 U	459 U	383 U	364 U	154 0.046 F	271 0.027 F	274 U	186 0.049 F	138 U	405 U		10 U		70 U
BOD5		2.4	U	U	U	U	0.046 F U	0.027 F U	U	0.049 F U	U	U		U		U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U		02 F		U
COD		5	U	U	U	U	U	U	U	U	U	U		U	6.1	
chloride	250	1	5.8	3.8	3.8	5.8	5.6	6.4	6.7	7.8	7	5.6		3.1		.5
color	15	5	0	NA	NA	NA	NA	UJ	NA	NA NA	NA	3		IA.		IA.
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NA	NA	U		ΙA		ΙA
hardness, Total		1	310	468	444	400	180	280	292	239	200	305		40		00
nitrate	10	1	U	0.58 F	1.8 B	0.87 F	1.1	0.77 F	0.94 F	0.83 F	1.3	0.66 F	0.9	97 F	0.5	94
TKN	1	1	1.2	0.15 F	0.23	0.077 F	U	0.06 F	0.64	0.67	U	0.36	1	U	τ	U
sulfate	250	1	12.9	15.6	16.1	15.4	U	15.6	15.2	15	14.4	15	1	14	1	6
TDS	500	10	218	511	479	381	196	293	332	218	167	475		70		20
TOC		1	1.3	1.5	U	1.4	U	0.68 F	0.94 F	0.64 F	U	1.3		54 F		12 F
phenolics, Total		0.005	U	U	U	U	U	U	0.0050 F	U	U	U	N	ΙA	N	IA

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Description Property Control	Location of Well							LF2M	MW-4		
		-		9/25/2007	3/31/2008	0/17/2008	4/8/2000		1111-1		
Segret No. Seg	Date of Conection		Reporting	9/23/2007	3/31/2006	9/17/2008	4/8/2009	3/30/2010			
March Marc	Sample ID No.			LF2M0437MA	LF2M0437NA	LF2M0437OA	LF2M0437PA	LF2M0437QA			
Decident control Decident co	Depth to Water (ft)			32.50	27.65	31.57	28.01	29.69			
Professionation Professionationation Professionation on Professionation Professionationation Professionationationation Professionationationationationationationationat	VOCs (µg/L)										
Marie Mari	1,1-dichloroethane	5*	1	NA	NA	NA	NA	NA			
Section 1,900 1,	1,2-dichloroethane	0.6	1	NA	NA	NA	NA	NA			
Secondary 5	acetone	50				NA	NA	NA			
Second Control Seco	carbon disulfide			NA	NA	NA	NA	NA			
Mathematication 1	chloroethane		1			NA	NA	NA			
methy methy											
Marie Mar											
Marked part Marked part		-									
Maniferance Maniferance			1								
Definition 2,000 200 U 0,000 U 0,000 U 0,000 U U U U U U U U U		2	1	NA	NA	NA	NA	NA			
Internacy 3							T.	T			
Paralle 25											
Series 1,000 50	-										
Persistan 3											
Pares, Total 1,000 10											
Secondary Seco	•										
Selicin	· ·										
Second So											
Sealis								.,			
Second S											
Dec											
Index											
Bagnesium 35,000 1,000 11,000 11,000 16,000 16,000 17,00 15,000 11,000 11,000 10,000 11,000											
nanganese 300 10 U 4.20 1.6F 12.0 7.0F 150 3.7F Image of the control of the contro											
molybdraum	-										
nickel 100 20 U 1.8 F U <											
Potassium	-										
Selentium 10 30 U U U U U U U U U											
silver 50 10 U D A NA	Ī .										
sodium 20,000 1,000 4,200 3,600 350 B 4,900 B 4,700 4,800 thallium 0.5 80 U Wa NA											
The fillium											
vanadium 10 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Zinc 2,000 20											
Description Description											
Leachate Indicators (mg/L)											
alkalinity, Total 10 190 460 190 330 120 ammonia 2 0.2 U U 0.016 F 0.035 F U BOD5 2.4 U U U U U bromide 2 0.5 0.029 F U 0.038 F 0.035 F 0.031 F COD 5 11 6.3 F U 6.7 F U chloride 250 1 9.2 5.1 10 8.3 11 color 15 5 NA U NA U U cyanide, Total 200 0.02 NA NA NA NA NA hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 <		***									1
Ammonia 2 0.2 U U 0.016 F 0.035 F U U U U U U U U U			10	190	460	190	330	120			
BODS 2.4 U U U U U U DOWN F DOWN F <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
bromide 2 0.5 0.029 F U 0.038 F 0.035 F 0.031 F COD 5 11 6.3 F U 6.7 F U chloride 250 1 9.2 5.1 10 8.3 11 color 15 5 NA U NA U U cyanide, Total 200 0.02 NA NA NA NA NA hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190											
COD 5 11 6.3 F U 6.7 F U chloride 250 1 9.2 5.1 10 8.3 11 color 15 5 NA U NA U U cyanide, Total 200 0.02 NA NA NA NA NA hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190		2		0.029 F	U						
chloride 250 1 9,2 5.1 10 8.3 11 color 15 5 NA U NA U U cyanide, Total 200 0.02 NA NA NA NA NA hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190					6.3 F						
color 15 5 NA U NA U U U U U U U U U U U U U U NA	chloride	250	1	9.2	5.1	10					
cyanide, Total 200 0.02 NA NA NA NA NA hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190	color	15									
hardness, Total 1 180 470 240 380 160 nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190	cyanide, Total		0.02	NA	NA		NA	NA			
nitrate 10 1 2.3 1.3 3.5 2.0 3.7 TKN 1 1 0.074 F U 0.18 F U 0.21 B sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190			1	180	470	240	380	160			
sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190		10	1	2.3	1.3						
sulfate 250 1 13 15 14 15 16 TDS 500 10 270 480 260 390 190	TKN	1	1	0.074 F	U	0.18 F	U	0.21 B			
	sulfate	250	1	13	15						
TOC - 1 0.71F 0.52F U 0.59 U	TDS	500	10	270	480	260	390	190			
	TOC		1	0.71 F	0.52 F	U	0.59	U			
phenolics, Total 0.005 NA NA NA NA NA NA	phenolics, Total		0.005	NA	NA	NA	NA	NA			

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well]	LF2MW-12							
Date of Collection	NYSDEC Class GA		12/4/2003	3/26/2004	6/24/2004	9/15/2004	12/13/2004	3/31/2005	6/21/2005	9/8/2005	12/19/2005	3/14/2006	9/13	/2006	4/3/	2007
Sample ID No.	Groundwater Standards	Reporting Limit	LF2M1219AA	LF2M1219BA	LF2M1219CA	LF2M1219DA	LF2M1219EA	LF2M1219FA	LF2M1219GA	LF2M1219HA	LF2M1219IA	LF2M1219JA	LF2M1	1219KA	LF2M1	1219LA
Depth to Water (ft)			9.62	8.99	10.16	10.31	9.43	9.09	10.77	12.74	10.50	8.94	11	.12	8.	07
VOCs (µg/L)	•															
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	N	IA	N	IA
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U		ΙA		ΙA
acetone	50	10	U	U	1.6 F	U	U	U	U	U	U	U		IA		IA
carbon disulfide	1,000	0.5	U	U	U	U U	U U	U	U	U	U	U		IA		IA.
chloroethane cis-1,2-dichloroethene	5* 5*	1	U	U	U	U	U	TI U	U	U	U	U		IA IA		IA IA
dichlorodifluoromethane	5*	1	0.52 F	U	0.28 F	0.35 F	0.32 F	U	U	U	U	U		IA.		IA.
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	U		IA.		IA.
trichlorofluoromethane	5*	1	0.21 F	U	U	U	U	U	U	U	U	U		IA		ΙA
vinyl chloride	2	1	U	U	U	U	U	U	U	U	U	U	N	ΙA	N	ĪΑ
Metals (μg/L) [Dissolved / Total] ¹						•						•			·	
aluminum	2,000	200	U	U	U	U	U	U	U	U	U	U	41.6 F	U	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	46.5 F	47.1 F	50.2	49.5 F	47.7 F U	45.2 F U	37.3	42.1 F	37.9 F U	38.3 F	42.6 F	41.3 F	39 F	40 F
berylium boron, Total	1,000	4 10	U 80.7	U NA	U NA	U NA	NA	68.7	U NA	U NA	NA	U 55.9	U NA	U NA	U NA	U NA
cadmium	5	5	80.7 U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	162,000	170,000	178,000	168,000	158,000	156,000	131,000	145,000	136,000	147,000	153,000	157,000	150,000	150,000
chromium	50	10	U	U	U	U	3 F	U	U	U	0.9 F	7.2 F	U	U	3.5 F	U
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	U	U	U	2.4 F	2.2 F	U	U	1.6 F	U	U	U	U
iron	300	200	U	458	177 F	352	345	1,400	238	58 F	198 F	82.1 F	U	59.6 F	U	56 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	17,900	18,600	19,400	17,200	15,900	14,800	12,600	12,200	11,000	12,100	12,000	12,300	13,000	13,000
manganese	300	10	94.2	263	293	271	339	364	422	448	279	309	311	338	600	600
molybdenum nickel	100	15 20	U U	U	U U	U	U 3 F	U	U 1.8 F	U U	U	U U	U U	U U	U U	U U
potassium		1,000	8,340	8,060	8,390	8,940	8,700	8,060	7,510	8,710 B	8,360	7,340	8,450	8,260	7,800	7,900
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	2,640	2,950	2,960	2,600	2,220	2,350	2,130	2,090	1,410	2,120	2,960	2,720	2,300	2,400
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	U	U	U	U	U	U	U	U	4.8 F	U	15.5 F	16.9 F	U	U
mercury	0.7	1	U	NA	NA	NA	NA	U	NA	NA	NA	U	NA	NA	NA	NA
Leachate Indicators (mg/L) alkalinity, Total		10	418	452	393	440	420	424	409	397	372	372	3	90	3'	70
ammonia	2	0.2	0.065	U	U	U	0.049 F	U	0.024 F	0.074	U	U		U	0.0	
BOD5		2.4	U	U	U	U	U	U	U	U	U	U		U		U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	1	U	1	U
COD		5	U	12.4	6 F	U	U	U	4.6 F	15.2	27.6 B	U	1	4	1	.5
chloride	250	1	2.5	2.7	2.5	2.6	2.3	2	1.6	1.9	1.5	1.6	1	.2	0.9	95 F
color	15	5	0	NA	NA	NA	NA	12 J	NA	NA	NA	U		IA		ΙA
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NA	NA	U		IA		IA
hardness, Total		1	750	496	516	505	468	448	424	468	400	298		00		10
nitrate TKN	10	1	10.8	7.0 J	U	4.8 F	5.2	3.8	2.6	2.1	1.3	2.8	0.1	.4 2 F		.0 5 F
TKN sulfate	1 250	1	0.32 65.1	0.66 B 52.4	0.65 B 45.9	0.52 46.9	0.44 B 43.6	0.58 B 42.2	U 31.9	0.87 35	1.1 B 32.3	0.64 29.4		2 F i4		5 F 87
TDS	500	10	590	610	554	515	485	481	470	448	409	483		40		16
TOC		1	4	4.4	3.2	4.9	4.4	4	4.7	4.2 B	2.9	4	4			.4
phenolics, Total		0.005	U	U	0.009 F	U	U	U	0.0050 F	U	U	0.007 F		IA		ΙA

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well	1						LF2MW-	12			
Date of Collection			9/25/2007	3/31/2008	9/17/2008	4/7/2009	3/29/2010	12			
Date of Conection	NYSDEC Class GA	Reporting	3/23/2007	3/31/2000	9/11/2008	4/1/2009	3/27/2010				
Sample ID No.	Groundwater Standards	Limit	LF2M1219MA	LF2M1219NA	LF2M1219OA	LF2M1219PA	LF2M1219QA				
Depth to Water (ft)			13.08	8.2	12.2	8.39	8.98				
VOCs (µg/L)		,									
1,1-dichloroethane	5*	1	NA	NA	NA	NA	NA				
1,2-dichloroethane	0.6	1	NA	NA	NA	NA	NA				
acetone	50	10	NA	NA	NA	NA	NA				
carbon disulfide	1,000	0.5	NA	NA	NA	NA	NA				
chloroethane	5*	1	NA	NA	NA	NA	NA				
cis-1,2-dichloroethene	5*	1	NA	NA	NA	NA	NA				
dichlorodifluoromethane	5*	1	NA	NA	NA	NA	NA				
methylene chloride	5*	1	NA	NA	NA	NA	NA				
trichlorofluoromethane	5*	1	NA	NA	NA	NA	NA				
vinyl chloride	2	1	NA	NA	NA	NA	NA				
Metals (μg/L) [Dissolved / Total] ¹	2.000	200	, , , , , , , , , , , , , , , , , , ,	120 E 1 225							
aluminum	2,000	200	U U	120 F 1,300 U U	U U	U U	U				
antimony arsenic	3 25	50 30	U U	U U	U	U	U U				
	1,000	50	46 F 46 F	46 F 51	44 F	43 F	51 B				
barium berylium	1,000	4	46 F 46 F	46 F 51 U U	44 F U	43 F U	U				
boron, Total	1,000	10	NA NA	88 220	NA NA	63	59 B				
cadmium	5	5	U U	U U	U	U	U				
calcium		1,100	170,000 170,000	170,000 180,000	160,000	170,000	190,000				
chromium	50	10	U U	U 1.9 F	U	U	U				
cobalt		60	U U	U U	U	U	U				
copper	200	10	U U	U U	U	Ü	U				
iron	300	200	U 22 F	U 97 F	27 F	45 F	23 F				
lead	25	25	U U	U U	U	U	U				
magnesium	35,000	1,000	13,000 13,000	15,000 15,000	14,000	14,000	15,000 B				
manganese	300	10	870 680	1,100 1,200	1,900	1,500	1,700				
molybdenum		15	U U	U U	U	U	U				
nickel	100	20	1.7 F 1.4 F	1.3 F 1.3 F	1.6 F	U	U				
potassium		1,000	9,200 9,400	8,200 8,200	8,500	7,900	8,700				
selenium	10	30	U U	U U	U	U	U				
silver	50	10	U U	U U	U	U	U				
sodium	20,000	1,000	2,300 2,400	2,400 2,500	1,900 B	2,100	2,400 B				
thallium	0.5	80	U U	U U	U	U	U				
vanadium		10	U U	U U	U	U	U				
zinc	2,000	20	24 B 23 B	10 F 11 F	14 F	11 F	7.1 FB				
mercury	0.7	1	NA NA	NA NA	NA	NA	NA	1			1
Leachate Indicators (mg/L)					1						
alkalinity, Total		10	440	490	400	420	520				
ammonia	2	0.2	0.058	0.030 F	0.088 B	0.089	0.10 B				
BOD5		2.4	U U	U U	U	U 0.062 E	U 0.027 E				
bromide COD	2	0.5	11	8.5 F	0.031 F 3.7 F	0.062 F 20	0.037 F 9.2 FB				
chloride	250	5	1.2	8.5 F 1.8	3.7 F 1.2	1.5	9.2 FB 2.3				
color	250 15	5	NA	1.8 U	NA	20	U 2.3				
cyanide, Total	200	0.02	NA NA	NA	NA NA	NA	NA NA				
hardness, Total	200	1	610	500	460	490	530				
nitrate	10	1	1.6	0.5	0.49 F	0.6	0.43 F				
TKN	10	1	0.19 F	0.22 B	0.49 F 0.32 B	U U	0.43 F 0.52 B				
sulfate	250	1	22	22 22	0.32 B 35	24	20 20				
TDS	500	10	500	520	460	460	540				
TOC		1	3.9	3.4	3.3	4.0	3.9				
phenolics, Total		0.005	NA	NA	NA	NA	NA				
E	1		H	+				+	l	+ + + + + + + + + + + + + + + + + + + +	+

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well								1	LF2MW-13							
Date of Collection	NYSDEC Class GA		12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/13/2004	3/31/2005	6/21/2005	9/8/2005	12/16/2005	3/14/2006	9/13/	2006	4/2/	2007
Sample ID No.	Groundwater Standards	Reporting Limit	LF2M1312AA	LF2M1312BA	LF2M1312CA	LF2M1312DA	LF2M1312EA	LF2M1312FA	LF2M1312GA	LF2M1312HA	LF2M1312IA	LF2M1312JA	LF2M1	312KA	LF2M1	312LA
Depth to Water (ft)			3.12	2.47	4.32	4.46	2.68	2.78	5.15	6.97	4.53	2.46	5.	63	2.	25
VOCs (µg/L)	,															
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	N			IΑ
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	N			ΙA
acetone	50	10	U	U	1.6 F	3.9 F	U	U	U	U	U	U	N			ΙA
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	N			ΙA
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	N			IA.
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	N			IA.
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U	N			IA.
methylene chloride	5* 5*	1	U U	U U	U U	N N			íA íA							
trichlorofluoromethane	2	1	U	U	U	U	U	U	U	U	U	U	N			IA IA
vinyl chloride	2	1	U	U	U	U	U	U	U	U	U	U	IN	A	IN	A
Metals (µg/L) [Dissolved / Total] ¹ aluminum	2,000	200	1,140	6,650	60.7 F	42.8 F	103 F	544	NA	60.4 F	83.6 F	468	62.4 F	126 F	46 F	140 F
antimony	3	50	1,140 U	U	U	42.8 F U	U	U	U	00.4 F	4.8 F	408 U	02.4 F	U U	40 F U	U U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	21.2 F	36.9 F	29 F	41.5 F	19.8 F	9.2 F	23.8 F	35.8 F	44.9 F	10.1 F	27.8 F	25.6 F	15 F	15 F
berylium	3	4	U	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	10	35	NA	NA	NA	NA	11.5	NA	NA	NA	10.9	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	54,100	44,600	82,500	96,000	54,300	29,500	83,500	92,600	103,000	33,400	77,800	74,500	75,000	72,000
chromium	50	10	1.8 F	10.9	U	U	U	1.5 F	U	U	1.2 F	1.4 F	U	3.96 F	2.6 F	1.7 F
cobalt		60	U	3.1 F	2.1 F	2.8 F	1.5 F	1 F	1.4 F	1.5 F	3.1 F	U	U	U	U	U
copper	200	10	4.9 F	23.1	U	U	U	3.4 F	1.7 F	U	2.1 F	5.6 F	U	2.03 F	U	U
iron	300	200	2,620	10,200	286	191	1,250	1,200 J	494	168 F	485	404	361	775 J	930	1,200
lead	25	25	U	3.9 F	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	5,220	7,080	6,070	8,060	4,580	2,450	6,270	7,450	9,460	2,480	6,100	5,820	6,200	6,100
manganese	300	10	2,440	1,030	3,500	5,080	2,700	806	3,410	3,500	5,300	144	3,690	3,240	3,700	3,400
molybdenum		15	U	U	U	U	U	1.1 F	U	U	U	U	U	U	U	U
nickel	100	20 1,000	3.9 F 3,420	9.7 F 4,700	7.1 F 3,430	7.2 F 4,280	3.4 F 2,500	2.4 F 1,710	3.7 F 2,850	3.8 F 4,040 B	8.6 F 3,700	U 2,100	3.48 F 3,020	4.88 F 3,040	2.2 F 2,800	2.2 F 2,900
potassium selenium	10	30	3,420 U	4,700 U	3,430 U	4,280 U	2,500 U	1,710 U	2,850 U	4,040 B U	3,700 U	2,100 U	3,020 U	3,040 U	2,800 U	2,900 U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	1,360	1,120	1,430	3,140	1,350	713 F	1,680	2,900	2,970	1,050	2,130	1,950	1,800	1,900
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	3.4 F	14.9	U	U	1.5 F	1.3 F	U	U	U	3.1 F	1.87 F	3.42 F	0.84 F	1.4 F
zinc	2,000	20	5.8 F	23.7	9.2 F	U	U	U	U	4.7 F	4.4 F	U	1.84 F	18.3 F	U	U
mercury	0.7	1	U	NA	NA	NA	NA	U	NA	NA	NA	U	NA	NA	NA	NA
Leachate Indicators (mg/L)										<u>'</u>						
alkalinity, Total		10	147	105	192	280	149	84.3	264	278	294	96.5	23	30	2	10
ammonia	2	0.2	0.24	0.0094 F	0.15 B	0.44	0.28 J	0.05	0.18	0.82	0.74	U	0		0.0	
BOD5		2.4	3.7	U	2.5	U	U	U	U	U	U	U	τ		2	
bromide	2	0.5	U	U	U	U	U	U	U	U	0.57 J	0.48 F	0.02		0.00	
COD		5	12	U	18.5	15.1	12.1	U	U	15.6	U	UM	2			5 B
chloride	250	1	2.8	1.4	1.9	2.2	1.1	1.1	1.8	2.5	3.2	1.3	1.			.7
color	15	5	60	NA	NA	NA	NA	50 J	NA	NA	NA	30	N			IA.
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NA	NA	U	N			IA.
hardness, Total		1	190	176	220	315	188	88	272	272	290	82.1	25			60
nitrate	10	1	U	U	0.15	U	U	U	U	U	U	0.05 F	0.0			U
TKN	1	1	0.48	0.066 F	0.71	0.76	0.57 B	0.32 B	0.76	1.7	1.4 J	UM	0.		0.1	
sulfate TDS	250 500	1 10	11.5 199	8.8	2.9 251	25.1 275	8.4 221	2 J 110	9.1 325	15.5 295	33 365	2.4 139	27			.1
TOC	500	10	6.1	162 3.4	6.2	9.1	7	3.4	6.3	295 4.7 B	5.3	139	6			.5
phenolics, Total		0.005	0.1 U	3.4 U	0.038 F	9.1 U	U U	3.4 U	0.0050 F	4.7 B U	5.5 U	U U	o. N			.5 IA
phenones, Total		0.003	U	U	U.UU36 F	U	U	U	0.0000 F	U	U	U	IN	13	IN	7%

Landfill 2/3 AOC Groundwater Analytical Results (continued)

										I FORMU 12			
Location of Well	4		0/25	/2007	3/31/	2008	9/17/2008	4/7/2009	3/29/2010	LF2MW-13			
Date of Collection	NYSDEC Class GA	Reporting	9/25/	/2007	3/31/	2008	9/17/2008	4///2009	3/29/2010				
Sample ID No.	Groundwater Standards	Limit	LF2M1	1312MA	LF2M1	312NA	LF2M1312OA	LF2M1312PA	LF2M1312QA				
Depth to Water (ft)			7.	.28	2.0	07	6.55	2.18	3.56				
VOCs (µg/L)		,											
1,1-dichloroethane	5*	1	N	ĪΑ	N	A	NA	NA	NA				
1,2-dichloroethane	0.6	1		IA	N		NA	NA	NA				
acetone	50	10		ΙA	N		NA	NA	NA				
carbon disulfide	1,000	0.5		ĮΑ	N		NA	NA	NA				
chloroethane	5*	1		ΙA	N		NA	NA	NA				
cis-1,2-dichloroethene	5*	1		ΙA	N		NA	NA	NA				
dichlorodifluoromethane	5*	1		IA.	N		NA	NA	NA				
methylene chloride	5*	1		IA	N		NA	NA	NA				
trichlorofluoromethane	5*	1		IA.	N		NA	NA	NA				
vinyl chloride	2	1	N	IA	N	A	NA	NA	NA				
Metals (µg/L) [Dissolved / Total] ¹	2,000	200	T,	#1	200 B	1 200	00 E	90 F	72 F.				
aluminum	2,000	50	U	U	300 B U	1,200 1.6 F♦	90 F U	88 F 5.3 F	73 F♦ U				
antimony arsenic	25	30	U	U	U	1.0 F♥ U	U	U U	U				
barium	1,000	50	29 F♦	30 F	11 F	21 F	33 F	11 F	17 FB				
berylium	3	4	291 √ U	U	U	U	U	U	U				
boron, Total	1,000	10	NA	NA	43 B	20 B♦	NA	19♦	23 B♦				
cadmium	5	5	U	U	U	U	U	U	U				
calcium		1,100	83,000	88,000	49,000	47,000	89,000	44.000	54,000 B				
chromium	50	10	1.6 F♦	2.1 F	1.4♦	6.2 F	2.2 F	U	U				
cobalt		60	U	U	U	U	U	U	U				
copper	200	10	U	U	U	7.1 F	U	4.5 F♦	U				
iron	300	200	920	960	210	2,300	390♦	240♦	250♦				
lead	25	25	U	U	U	U	U	U	U				
magnesium	35,000	1,000	6,700	7,100	3,800	4,100	7,300♦	3,700	4,300 B				
manganese	300	10	4,900	5,400	530♦	910	5,200	400	65 J				
molybdenum		15	3.2 F♦	3.5 F♦	U	U	U	U	U				
nickel	100	20	2.3 F♦	3.1 F	1.3 F	5.3 F	3.1 F	U	U				
potassium		1,000	4100♦	4,200	2,200	2,600	3,500	2,500	3,600 B♦				
selenium	10	30	2.9 F♦	3.5 F	U	U	U	U	U				
silver	50	10	U	U	U	U	U	U	U				
sodium	20,000	1,000	2,200	2,300	1,600	1800 B	3,800 B	1,100	1,600 B				
thallium vanadium	0.5	80 10	U U	U 0.69 F♦	U 1.2 F	U 5.1 F	U 1.2 F	U U	U U				
zinc	2,000	20	45 B	0.69 F♥ 79 B♦	1.2 F 13 F♦	22 B♦	1.2 F 13 F◆	16 F◆	6.0 FB				
mercury	0.7	1	NA	NA	NA NA	NA	NA	NA	NA				
Leachate Indicators (mg/L)	0.7	1	1471	1474	1471	1471	IVA	TUT	IVA				
alkalinity, Total		10	2:	50	14	10	260	110	150♦				
ammonia	2	0.2		55♦	0.02		0.30♦	0.034 F	0.068 B				
BOD5		2.4		U		J	U	U	U				
bromide	2	0.5	0.05	50 F♦	τ	J	0.074 F◆	0.012 F	U				
COD		5	2		20		22♦	23 J♦	9.5 FB				
chloride	250	1	1	.9	2.:	2♦	1.6♦	0.53 F	0.65 F				
color	15	5	N	ΙA	1	5	NA	20	U				
cyanide, Total	200	0.02		ΙA	N	A	NA	NA	NA				
hardness, Total		1		20	14	40	330♦	140	150				
nitrate	10	1		U	0.1		U	0.036 F◆	0.015 F				
TKN	1	1	0.8		0.3		0.76 J◆	0.15 F	0.45 B				
sulfate	250	1		.7	8.8		12	2.9	8.5				
TDS	500	10		00♦	15		310	100	230♦				
TOC		1		.3♦	4.		6.4	4.5♦	3.3				
phenolics, Total		0.005	N	IA	N	A	NA	NA	NA				
	·				· <u></u>				·	•		•	·

Landfill 2/3 AOC Groundwater Analytical Results (continued)

										LF2MW-1	1		
Location of Well Date of Collection			12/4/2003	3/31/2005	3/14/2006	4/2/	2007	3/31/	2008	4/8/2009	3/29/2010		
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF2M1416AA	LF2M1416FA	LF2M1416JA	LF2M		LF2M1		LF2M1416PA	LF2M1416QA		
Depth to Water (ft)			7.89	7.63	7.67	6	70	7.3	31	7.36	8.08		
VOCs (µg/L)			7.03	7.05	7.07	0.	,,,	/	, <u>.</u>	7.50	0.00		
1,1-dichloroethane	5*	1	U	U	U	N	A	N.	A	NA	NA		
1,2-dichloroethane	0.6	1	U	U	U	N		N.		NA	NA		
acetone	50	10	1.9 F	U	U	N		N.		NA	NA		
carbon disulfide	1,000	0.5	U	U	U		A	N.		NA	NA		
chloroethane	5*	1	U	U	U	N	A	N.	A	NA	NA		
cis-1,2-dichloroethene	5*	1	U	U	U	N		N.		NA	NA		
dichlorodifluoromethane	5*	1	U	U	U	N	A	N.	A	NA	NA		
methylene chloride	5*	1	U	U	U	N	A	N.	A	NA	NA		
trichlorofluoromethane	5*	1	U	U	U	N	A	N.	A	NA	NA		
vinyl chloride	2	1	U	U	U	N	A	N.	A	NA	NA		
Metals (μg/L) [Dissolved / Total] ¹													
aluminum	2,000	200	978	846	836	680	760	750 B	1300	800	790		
antimony	3	50	U	U	U	U	U	U	U	U	U		
arsenic	25	30	U	U	U	U	U	U	U	U	U		
barium	1,000	50	67.8	53.6	53.1	52	53	52	54	52	49 FB		
berylium	3	4	0.80 F	0.6 F	0.5 F	0.61 F	0.60 F	0.55 F	0.55 F	0.59 F	0.50 F		
boron, Total	1,000	10	6.2 F	5.3 F	6.3 F	NA	NA	5.9 F	44 B	6.7 F	8.9 FB		
cadmium	5	5	U	U	U	U	U	U	U	U	U		
calcium		1,100	1,600	1,820	1,460	1,500	1,500	1,400	2,200	1,600	1,800 B		
chromium	50	10	U	1 F	0.8 F	U	U	U	U	U	U		
cobalt		60	2.1 F	3.2 F	3.3 F	U	U	U	U	U	U		
copper	200	10	4.7 F	5.4 F	5.5 F	3.8 F	4.3 F	3.5 F	4.4 F	4.5 F	4.4 F		
iron	300	200	35 F	107 F	144 F	8.4 F	46 F	U	140 F	64 F	61 F		
lead	25	25	U	U	U	U	U	U	U	U	U		
magnesium	35,000	1,000	766 F	751 F	648 F	680 F	680	640 F	720 F	780 F	820 FB		
manganese	300	10	135	123	123	120	120	110	110	120	120		
molybdenum		15	U	0.8 F	U	U	U	U	U	U	U		
nickel	100	20	5 F	5 F	5.8 F	5.9 F U	6.0 F	5.7 F	6.2 F	5.7 F	5.1 F U		
potassium	10	1,000 30	252 F U	227 F U	220 F U	U	U U	130 F U	180 F U	U U	U		
selenium silver	50	10	U	U	U	U	U	U	U	U	IJ		
sodium	20,000	1,000	663 F	1,240	1,730	1,200	1,200	1300 B	1300 B	1,300	1,800 B		
thallium	0.5	80	U	U	U	U U	U	U 1300 B	U	U	U		
vanadium	0.5	10	U	U	U	U	1.8 F	U	0.71 F	U	U		
zinc	2,000	20	34.4	25.6	29.8	29	29	35 B	36 B	40 B	31 B		
mercury	0.7	1	U	U	U U	NA	NA	NA	NA	NA	NA		
Leachate Indicators (mg/L)		-											
alkalinity, Total		10	U	2.4 F	0.89 F	1	J	Ţ	J	U	U		
ammonia	2	0.2	U	0.039 F	U		J	τ		U	U		
BOD5		2.4	U	U	U	1	J	Ţ		U	U		
bromide	2	0.5	U	U	0.34 F	1	J	Ţ	J	U	U		
COD		5	U	U	U	17	В	4.1	F	9.0 F	U		
chloride	250	1	2.6	2.4	2.8		2	0.5	3 F	1.9	2.1		
color	15	5	0	10 J	U	N	A	τ	J	U	U		
cyanide, Total	200	0.02	U	U	U	N	A	N.	A	NA	NA		
hardness, Total		1	28	8	1.8 F	1	J	2	8	U	7.8		
nitrate	10	1	U	0.07 F	0.09 F	0.	11	Ţ	J	0.19	0.078 F	 	
TKN	1	1	U	0.27 B	0.12 F		J	J		U	0.52 B		
sulfate	250	1	9.7	12	7.8	8		2.		10	10		
TDS	500	10	30	33	30		J	2		U	38 B		
TOC		1	U	0.93 F	1.2		.2	1.		1.2	1.9		
phenolics, Total		0.005	U	U	U	N	A	N.	A	NA	NA		

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well								ī	F2MW-100							
Date of Collection			12/4/2003	3/26/2004	6/25/2004	9/16/2004	12/14/2004	4/1/2005	6/22/2005	9/7/2005	12/19/2005	3/15/2006	9/14	/2006	4/3/	2007
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF2M10009AA	LF2M10011BA	LF2M10015CA	LF2M10026DA	LF2M10031EA	LF2M10022FA	LF2M10026FA	LF2M10046HA	LF2M10028IA	LF2M10021JA	LF2M1	0011KA	LF2M1	0008LA
Depth to Water (ft)	-		9.42	10.92	15.24	25.70	30.90	21.80	26.37	46.15	27.80	20.91	10	.80	8.	06
VOCs (µg/L)		ļ														
1,1-dichloroethane	5*	1	U	U	U	U	U	U	U	U	U	U	N	ΙA	N	ΙA
1,2-dichloroethane	0.6	1	U	U	U	U	U	U	U	U	U	U	N	ΙA	N	ΙA
acetone	50	10	2.7 F	2.5 F	3.6 F	2.6 F	4.2 F	1.4 F	U	U	6.2 F	7.8 F	N	ΙA	N	ΙA
carbon disulfide	1,000	0.5	U	U	U	U	U	U	U	U	U	U	N	ĮΑ	N	IΑ
chloroethane	5*	1	U	U	U	U	U	U	U	U	U	U		ΙA		ΙA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U		IΑ		IA
dichlorodifluoromethane	5*	1	U	U	U	U	U	U	U	UJ	U	U		ΙA		IA
methylene chloride	5*	1	U	U	U	U	U	U	U	U	U	4.2		IA.	N	
trichlorofluoromethane	5*	1	U	U	U	U	U	U	U	U	U	U		IA IA		IA IA
vinyl chloride	2	1	U	U	U	U	U	U	U	U	U	U	N	IA.	N	IA.
Metals (μg/L) [Dissolved / Total] ¹ aluminum	2,000	200	1,230	12 000	336	200	142 F	128 F	531	201	147 F	40.9 E	42.1 E	50 6 E	U	190 F
antimony	2,000	50	7.5 F	13,900 U	330 U	209 U	142 F U	128 F	5.7 F	201 U	5.6 F	40.8 F U	42.1 F U	58.6 F U	2.5 F	2.1 F
arsenic	25	30	7.5 r U	7.4 F	U	U	U	U	U U	U	J.0 F	U	U	U	2.3 F U	2.1 F U
barium	1,000	50	2.280	2,690	1.770	1.780	1.860	1.880	1,390	1,860	3.020	1,540	1.840	1.900	1.900	2,000
berylium	3	4	0.4 F	1.2 F	U	U	U	U	U	0.3 F	0.3 F	0.3 F	U	U	U	U
boron, Total	1,000	10	706	NA	NA	NA	NA	769	NA	NA	NA	746	NA	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	68,000	74,600	47,300	49,200	47,400	49,000	39,000	54,700	83,600	46,500	52,800	56,600	60,000	64,000
chromium	50	10	5.2 F	52	3.4 F	2.5 F	U	2.5 F	181	970	170	8.8 F	93.6	877	18	3,400
cobalt		60	1.5 F	8.9 F	1.1 F	1.5 F	1.3 F	U	3.6 F	22.5	2.6 F	1.7 F	7.57 F	U	18 F	69
copper	200	10	81.3	184	18.8	8.9 F	8.6 F	6.3 F	24.8 F	21.9	10.1	3.3 F	3.28 F	16.4	7.5 F	240
iron	300	200	1,920	22,200	427	274	122 F	116 F	1,170	5,220	560	72.8 F	283	1,760	2,200	27,000
lead	25	25	U	17.2 F	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	22,400	26,700	15,300	16,600	15,300	15,600	12,400	16,800	25,600	14,300	16,300	17,300	18,000	19,000
manganese	300	10	130	557	86	88.7	77.4	80.8	106	458	260	107	326	320	520	1,200
molybdenum		15	25.2	29.5	17.8	21	15.9	10.5 F	21.3	47.1	29.4	15.9	22.5	35.8	46	190
nickel	100	20 1,000	19.9 F 28,600	76.6 28,200 F	9.7 F 24,100 F	8.3 F 22,200 F	6.6 F 23,800 F	7.3 F 33,200 J	136 30,000 M	1,020 40,000 M	68.7 50,900 M	87.9 31,500	646 28,800	596 30,200	1,100 29,000	3,700 30,000
potassium selenium	10	30	28,000 U	28,200 F U	24,100 F U	22,200 F U	23,800 F U	33,200 J U	U 30,000 M	40,000 M	U U	U 31,300	20,000 U	30,200 U	29,000 U	30,000 U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	1,920,000	1,660,000	1,390,000	1,400,000	1,490,000	1,400,000	1,220,000	1,500,000	1,810,000	1,390,000	1,660,000	1,700,000	1,700,000	1,800,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	13.4 F	11.1 F	U	U
vanadium		10	3.1 F	20.2	0.8 F	U	U	U	2.3 F	3.8 F	1 F	U	U	4.68 F	U	13
zinc	2,000	20	10.5 F	61.7	8.2 F	24.7	12.8 F	12.4	21.3	39	22	12.3 F	30.5 B	99.3 B	26	27
mercury	0.7	1	U	NA	NA	NA	NA	U	NA	NA	NA	U	U	NA	NA	NA
Leachate Indicators (mg/L)							•							•		
alkalinity, Total		10	126	136	141	183	177	171	183	187	189	187	1	70	1-	40
ammonia	2	0.2	7.4	U	6	7.2	5.5	6.6	0.25	7.4	7.8	6.2		5		.7
BOD5		2.4	2.2	U	U	NS	NA	NA	NA	NA	NA	NA		.4		U
bromide	2	0.5	39.6	47.3	U	36	U	NA	NA	27.5	40.4	28.2		27		31
COD		5	47	U	178	36	U	73.8	U	41.8	40.3	45.9		11		2
chloride	250	1	3,070	3,890 R	0.4 F	3,220	8.8	NA	NA	4,060	4,670	3,900		600	2,	
color	15	5	150	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	U		IA.		IA.
cyanide, Total	200	0.02	0.022	NA 200	NA 100	NA 210	NA 106	U	NA 106	NA 265	NA	U		₹A 80		IA 20
hardness, Total	10	1	510 U	300 UJ	188 U	210 U	196 0.28 F	184 NA	196 NA	265 U	350 U	124 U		80 1.2		20 1 F
nitrate		1	9.3		6.6	6.5	0.28 F			7.1	10.9			.1		.9
TKN sulfate	1 250	1	19.3	U 27.2	19.9	21.7	6.9	7.4 NA	0.54 NA	10.5	10.9	7.9 11.9		6 F		.9 8 F
TDS	500	10	19.3 4.980	4,600	19.9 4,030	4,010	3,810	NA NA	NA NA	4,280	3,350	3,770		600		8 F 100
TOC	500	10	4,980 U	4,600 U	4,030 U	4,010 U	3,810 NA	0.79 F	1.7	1.5	3,350 U	1.2	-	.5	,	.0
								0.771	1.7			1.2	1			

Landfill 2/3 AOC Groundwater Analytical Results (continued)

Location of Well										ī	F2MW-100				
Date of Collection	1		9/26/	2007	4/1/	2008	9/18	/2008	4/8	/2009		/2010			
Date of Concetion	NYSDEC Class GA Groundwater	Reporting	7/20/		1,2,	2000	7/10	2000	470	2007	0/25/	2010			
Sample ID No.	Standards	Limit	LF2M10	011MA	LF2M1	10008NA	LF2M1	0011OA	LF2M	10008PA	LF2M1	0010QA			
Depth to Water (ft)			12.	64	7.	.98	11	.45	8	-31	9.	.87			
VOCs (µg/L)															
1,1-dichloroethane	5*	1	N.	A	N	JA.	N	ΙA	N	NΑ	N	ΙA			
1,2-dichloroethane	0.6	1	N.	A	N	IA.	N	ΙA	N	NΑ	N	ΙA			
acetone	50	10	N.	A	N	JA	N	IA	N	NΑ	N	ΙA			
carbon disulfide	1,000	0.5	N.	A	N	JA	N	IA	N	NΑ	N	ΙA			
chloroethane	5*	1	N.	A	N	JA	N	ΙA	N	NΑ	N	ΙA			
cis-1,2-dichloroethene	5*	1	N.	A	N	IA.	N	ΙA	N	NΑ	N	ΙA			
dichlorodifluoromethane	5*	1	N.	A	N	JA	N	IA	N	NΑ	N	ΙA			
methylene chloride	5*	1	N.	A	N	ΙA	N	ΙA	N	NΑ	N	ΙA			
trichlorofluoromethane	5*	1	N.	A	N	JA	N	IΑ	N	NΑ	N	IΑ			
vinyl chloride	2	1	N.	A	N	JA	N	ΙA	N	NΑ	N	ΙA			
Metals (μg/L) [Dissolved / Total] ¹															
aluminum	2,000	200	U	58 F	U	56 F	U	100 F	U	U	U	410			
antimony	3	50	2.3 F	7.1 F	2.3 F	2.7 F	3.4 F	U	U	U	U	U			
arsenic	25	30	U	U	U	U	U	4.2 F	U	U	U	U			
barium	1,000	50	1,600	1,800	2,800	2,800	1,800	2,300	2,600	2,500	2,500	2,600			
berylium	3	4	U	U	U	U	U	U	U	U	U	U			
boron, Total	1,000	10	NA	NA	750	760	NA	NA	790	810	NA	740			
cadmium	5	5	U	U	U	U	U	U	U	U	U	U			
calcium		1,100	67,000	68,000	92,000	93,000	63,000	84,000	79,000	82,000	81,000	78,000 B			
chromium	50	10	U	2,200	U	140	8.1 F	480	U	120	U	200			
cobalt		60	31 F	28 F	U	U	U	28 F	U	U	U	U			
copper	200	10	10	56	4.7 F	28	2.0 F	72	U	5.7 F	U	U			
iron	300	200	4,900	14,000	830	1,500	280	12,000	850	1,900	2,000	2,800			
lead	25	25	U	U	U	U	U	U	U	U	U	U			
magnesium	35,000	1,000	18,000	18,000	27,000	27,000	19,000	23,000	23,000	24,000	22,000	21,000			
manganese	300	10	910	820	450	440	250	900	330	430	270	310			
molybdenum		15	50	98	34	33	35	65	19	23	23 F	17 F			
nickel	100	20	2,600	2,500	580 J	470 J	510	2,000	320	470	410 F	200 J			
potassium		1,000	30,000	29,000	38,000	38,000	31,000	36,000	34,000	37,000	35,000	35,000			
selenium	10	30	U	U	U	U	U	U	U	U	U	U			
silver	50	10	U	U	U	U	U	U	U	U	U	U			
sodium	20,000	1,000	1,600,000	1,600,000	2,000,000	2,100,000	1,600,000	2,100,000	1,900,000	2,000,000	1,900,000	1,900,000			
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U			
vanadium		10	U	11	U	0.74 F	U	2.7 F	U	U	U	U			
zinc	2,000	20	38	64	12 F	13 F	63 B	16 F	29 B	24 B	18 F	11 FB			
mercury	0.7	1	NA												
Leachate Indicators (mg/L)															
alkalinity, Total		10	15			80		80		80		50			
ammonia	2	0.2	8.			0.7		.3		0.1		.9			
BOD5		2.4	N.			U	N			3.0		U			
bromide	2	0.5	25			34		28		33	3				
COD		5	70			39		14		0 B	47				
chloride	250	1	2,7			200		700	,	200		000			
color	15	5	N.			U	N			20		U			
cyanide, Total	200	0.02	N.			ΙA	N			NA		IA			
hardness, Total		1	73			60		40		30		80			
nitrate	10	1	0.05			U		18 F		U		U			
TKN	1	1	14			0.4		.6		0.0		.0			
sulfate	250	1	6			8 F		8 F		.5 F		U			
TDS	500	10	4,6			700		600		300		900			
TOC		1	2.			.1		.8		1.7	1				
phenolics, Total		0.005	N.	A	N	JA.	N	IA	N	NΑ	N	IA			1

Landfill 2/3 AOC Surface Water Analytical Results

Location of Well							vater Analytical Kesi		F2SW-1						
Date of Collection			12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/13/2004	3/31/2005	6/21/2005	9/8/2005	12/16/2005	3/10/2006	9/13/2006	4/3/	2007
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit	LF2SW0101AA	LF2SW0101BA	LF2SW0101CA	LF2SW0101DA	LF2SW0101EA	LF2SW0101FA	LF2SW0101GA	Not Sampled	Not Sampled	LF2SW0101JA	Not Sampled	LF2SW	V0101LA
Depth to Water (ft)			Surface	Surface	Surface	Surface	Surface	Surface	Surface	NS	NS	Surface	NS	Sur	rface
VOCs (µg/L)	,		•	<u>'</u>							,				
acetone	50	10	4.2 F	4.5 F	3.8 F	4.5 F	2.9 F	3.1 F	3.2 F	NS	NS	13	NS	N	NΑ
2-butanone (MEK)	50	10	U	U	U	U	U	U	U	NS	NS	U	NS	N	NΑ
toluene	5	1	U	U	U	0.32 F	U	U	U	NS	NS	U	NS	N	NΑ
Metals (μg/L) [Dissolved / Total] ¹				,							,				
aluminum	100	200	2,210	240	840	547	206	36.1 F	402	NS	NS	83.3 F	NS	U	53 F
antimony	3	50	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
arsenic	50	30	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
barium	1,000	50	22.5 F	7.9 F	17.8 F	18.8 F	4.6 F	3.6 F	23.1 F	NS	NS	7.1 F	NS	84 F	83 F
berylium	3	4	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
boron, Total	1,000	110	15.3	NA	NA	NA	NA	5.1 F	NA	NS	NS	6.1 F	NS	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
calcium		1,100	29,100	9,730	43,000	27,900	7,080	6,120	47,100	NS	NS	6,960	NS	11,000	10,000
chromium	50	10	2.2 F	U	0.9 F	U	U	U	U	NS	NS	1.1 F	NS	U	U
cobalt	5	60	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
copper	200	10	4.6 F	U	2.2 F	U	U	3.4 F	3.4 F	NS	NS	1.9 F	NS	U	U
iron	300	200	3,130	451	2,060	5,110	431	133 F	1,680	NS	NS	240	NS	250	1,000
lead	50	25	4.1 F	U	U	U	U	U	U	NS	NS	U	NS	U	U
magnesium	35,000	1,000	2,970	918 F	4,130	2,140	898 F	672 F	4,990	NS	NS	818 F	NS	1,300	1,300
manganese	300	10	247	282	333	926	81	71.3	425	NS	NS	233	NS	27	70
molybdenum		15	U	U	U	U	U	0.6 F	U	NS	NS	U	NS	U	U
nickel	100	20	U	U	U	U	U	U	1.5 F	NS	NS	U	NS	1.6 F	U
potassium		1,000	3,690	1,140	2,430	3,980	2,200	1,180	3,120	NS	NS	1,040	NS	920 F	860 F
selenium	10	30	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
silver	50	10	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
sodium		1,000	564 F	552 F	1730	578	U	381 F	1,580	NS	NS	694 F	NS	1,500	1,300
thallium	0.5	80	U	U	U	U	U	U	U	NS	NS	U	NS	U	U
vanadium		10	2.9 F	U	1.2 F	1.5	U	U	1 F	NS	NS	U	NS	U	U
zinc	2,000	20	20.3	15.7 F	U	U	9 F	9 F	3.7 F	NS	NS	11.6 F	NS	20	24
mercury	0.7	1	U	NA	NA	NA	NA	U	NA	NS	NS	U	NS	NA	NA
Leachate Indicators (mg/L)															
alkalinity, Total		10	74.4	22.8	94.8	78.1	24	21.6	139	NS	NS	22.2	NS	3	30
ammonia	2	0.2	U	0.098	0.024 F	0.057	0.067	0.038 F	U	NS	NS	0.3	NS	1	U
BOD5		2.4	5.1	2.8	6.8	U	U	3.2	5	NS	NS	2.5	NS	2	2.3
bromide	2	0.5	U	U	U	U	U	U	U	NS	NS	U	NS	1	U
COD		5	36.4	17.4	46.8	30	11.8	U	28.5	NS	NS	U	NS	1	17
chloride	250	1	2.4	1.4	2.4	1	0.62 F	0.67 F	1.1	NS	NS	U	NS	1	1.1
color	15	5	140	NA	NA	NA	NA	25 J	NA	NS	NS	20	NS	N	NΑ
cyanide, Total	200	0.02	U	NA	NA	NA	NA	U	NA	NS	NS	U	NS	N	NΑ
hardness, Total		1	116	28	112	90	56	12	160	NS	NS	15.3	NS	5	56
nitrate	10	1	U	0.5 F	U	U	U	U	U	NS	NS	0.57 F	NS	1	U
TKN	1	1	U	0.88	0.77	1	1 B	0.45 B	1.2	NS	NS	1.2	NS	0.	.29
sulfate	250	1	7.5	3.8	5.4	2.1	2.9	1.4	13.2	NS	NS	U	NS	3	3.7
TDS	500	10	144	59	172	88	65	45	189	NS	NS	46	NS	4	180
TOC		1	8.1	3.7	12.6	11.7	5.3	U	13.2	NS	NS	4.1	NS	3	3.7
Phenolics, Total		0.005	U	0.0032 F	U	U	U	U	0.01	NS	NS	U	NS	N	NΑ

Landfill 2/3 AOC
Surface Water Analytical Results (continued)

						Surface V	Vater Analytical Results (c	continued)					
Location of Well								LF2	2SW-1				
Date of Collection	NYSDEC Class A		9/25/2007	3/31/	2008	9/18/2008	4/7/2009	3/29/2010					
Sample ID No.	Surface Water Standards	Reporting Limit	LF2SW0101MA	LF2SW	0101NA	LF2SW0101OA	LF2SW0101PA	LF2SW0101QA					
Depth to Water (ft)			NS	Sur	face	NS	Surface	Surface					
VOCs (µg/L)													
acetone	50	10	NS	N	IS	NS	NS	NS					
2-butanone (MEK)	50	10	NS	N	IS	NS	NS	NS					
toluene	5	1	NS	N	IS	NS	NS	NS					
Metals (µg/L) [Dissolved / Total] ¹						•	•	,		· ·		<u> </u>	
aluminum	100	200	NS	130 F	110 F	NS	41,000	72 F					
antimony	3	50	NS	U	U	NS	U	U					
arsenic	50	30	NS	U	U	NS	13 F	U					
barium	1,000	50	NS	2.8 F	2.8 F	NS	220	6.9 FB					
berylium	3	4	NS	U	U	NS	1.6 F	U					
boron, Total	1,000	110	NS	14 B	11 B	NS	31	22 B					
cadmium	5	5	NS	U	U	NS	U	U					
calcium		1,100	NS	3,700	3,400	NS	41,000	19,000 B					
chromium	50	10	NS	U	U	NS	37	U					
cobalt	5	60	NS	U	U	NS	18 F	U					
copper	200	10	NS	U	U	NS	67	U					
iron	300	200	NS	41 F	78 F	NS	66,000	240					
lead	50	25	NS	U	U	NS	43	U					
magnesium	35,000	1,000	NS	490	430	NS	12,000	2,200 B					
manganese	300	10	NS	60	74	NS	1,500	17					
molybdenum		15	NS	U	U	NS	U	U					
nickel	100	20	NS	U	U	NS	44	U					
potassium		1,000	NS	500 F	440 F	NS	7,900	1,600 B					
selenium	10	30	NS	U	U	NS	U	U					
silver	50	10	NS	U	U	NS	U	U					
sodium		1,000	NS	370 F	300 F	NS	1,800	930 FB					
thallium	0.5	80	NS	U	U	NS	U	U					
vanadium		10	NS	U	U	NS	64	U					
zinc	2,000	20	NS	19 F	16 F	NS	270	24 B					
mercury	0.7	1	NS	NA	NA	NS	NA	NA					
Leachate Indicators (mg/L)	1												
alkalinity, Total		10	NS		2	NS	66	50					
ammonia	2	0.2	NS		IJ	NS	0.2	U					
BOD5		2.4	NS		.8	NS	5.0	U					
bromide	2	0.5	NS		IJ	NS	0.019 F	U					
COD		5	NS		.5	NS	390	19 B					
chloride	250	1	NS		3 F	NS	0.92 F	0.50 F					
color	15	5	NS		.5	NS	50	15					
cyanide, Total	200	0.02	NS		ΙA	NS	NA	NA					
hardness, Total		1	NS		20	NS	110	57					
nitrate	10	1	NS		IJ	NS	0.049 F	0.015 F					
TKN	1	1	NS	0.3		NS	7.9	0.78 B					
sulfate	250	1	NS		.1	NS	3.7 F	3.5					
TDS	500	10	NS		IJ	NS	100	100					
TOC		1	NS	4	.0	NS	10	8.8					
Phenolics, Total		0.005	NS	N	ΙA	NS	NA	NA					

Landfill 2/3 AOC Surface Water Analytical Results (continued)

						Surface wa	ter Analytical Result		DACITY A						
Location of Well								1	F2SW-2					4/2/	/2007
Date of Collection	NYSDEC Class A	Reporting	12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/13/2004	3/31/2005	6/21/2005	9/8/2005	12/16/2005	3/10/2006	9/13/2006	4/2/	2007
Sample ID No.	Surface Water Standards	Limit	LF2SW0201AA	LF2SW0201BA	LF2SW0201CA	LF2SW0201DA	LF2SW0201EA	LF2SW0201FA	Not Sampled	Not Sampled	Not Sampled	LF2SW0201JA	Not Sampled	LF2SW	V0201LA
Depth to Water (ft)			Surface	Surface	Surface	Surface	Surface	Surface	NS	NS	NS	Surface	NS	Sur	rface
VOCs (µg/L)															
acetone	50	10	3.6 F	3.1 F	3.2 F	3.7 F	2.8 F	11	NS	NS	NS	10	NS		NΑ
2-butanone (MEK)	50	10	U	U	U	U	U	1.4 F	NS	NS	NS	U	NS		NΑ
toluene	5	1	U	U	0.35 F	0.28 F	U	U	NS	NS	NS	U	NS	N	NΑ
Metals (μg/L) [Dissolved / Total] ¹															,
aluminum	100	200	3,620	1,420	1,800	2,390	349	78.3 F	NS	NS	NS	80.9 F	NS	U	54 F
antimony	3	50	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
arsenic	50	30	U	U	U	4.3 F	U	U	NS	NS	NS	U	NS	U	U
barium	1,000	50	27 F	13.8 F	29.8 F	36.9 F	4.4 F	4.2 F	NS	NS	NS	2.8 F	NS	6.5 F	4.9 F
berylium	3	4	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
boron, Total	1,000	110	20.7	NA	NA	NA	NA	7.4 F	NS	NS	NS	6.3 F	NS	NA	NA
cadmium	5	5	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
calcium		1,100	31,600	19,100	50,200	42,800	12,200	9,000	NS	NS	NS	2,500	NS	17,000 J	13,000 J
chromium	50	10	3.1 F	1.7 F	1.6 F	1 F	U	U	NS	NS	NS	1.1 F	NS	1.9 F	U
cobalt	5	60	1.4 F	U	0.9 F	U	U	U	NS	NS	NS	U	NS	U	U
copper	200	10	4.8 F	U	7.5 F	4.3 F	U	8.1 F	NS	NS	NS	1.7 F	NS	U	U
iron	300	200	4,020	1,450	3,410	5,160	398	203	NS	NS	NS	71.3	NS	93 F	280
lead	50	25	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
magnesium	35,000	1,000	3,520	1,920	4,600	3,670	1,110	984 F	NS	NS	NS	370 F	NS	1,600 J	1,200 J
manganese	300	10	459	160	660	1,710	55.1	241	NS	NS	NS	13.2	NS	200 J	140 J
molybdenum		15	2.1 F	U	U	U	U	0.9 F	NS	NS	NS	2,260	NS	U	U
nickel	100	20	2.8 F	U	1.7 F	1.8 F	U	U	NS	NS	NS	U	NS	U	U
potassium		1,000	3,560	1,430	4,270	5,310	2,030	2,760	NS	NS	NS	U	NS	1,900	1,600
selenium	10	30	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
silver	50	10	U	U	U	U	U	U	NS	NS	NS	U	NS	U	U
sodium		1,000	892 F	840 F	1760	884 F	U	237 F	NS	NS	NS	1,100	NS	620 F	550 F U
thallium	0.5	80	U	U	U	U	U	U	NS	NS	NS	U	NS	U	
vanadium		10	5.3 F	2.6 F	2.4 F	4 F	U	U	NS	NS	NS	U	NS	U U	U
zinc	2,000	20	13.4 F	U	9.3 F	10.8 F	U	6.7 F	NS	NS	NS	16.1 F	NS	NA.	6.3 F NA
mercury	0.7	1	U	NA	NA	NA	NA	U	NS	NS	NS	U	NS	INA	INA
Leachate Indicators (mg/L)		10	92	42.4	107	122	36	22.6	NG	NG	NE	215	NG	4	50
alkalinity, Total	2	10 0.2	83 U	42.4 U	107 0.64	122 0.16	36 U	33.6 0.2	NS NS	NS	NS NS	3.1 F 0.35	NS		25 F
ammonia BOD5	2	2.4	3.9	2.2	4.1	4.2	U	7.6	NS NS	NS NS	NS NS	U.35	NS NS		2.2
	2	0.5	3.9 U			4.2 U	-	7.6 U	NS NS			U			113 F
bromide COD	2	0.5 5	26.3	U 35.4	U 41.9	57.6	U U	26.5	NS NS	NS NS	NS NS	U	NS NS		8 B
chloride	250	1	20.3	33.4	5.2	1.2	0.52 F	26.5 0.65 F		NS NS	NS NS	2.4	NS NS		92 F
color	250 15	5	2.1 160	NA	5.2 NA	NA	0.52 F NA	0.65 F 25 J	NS NS	NS NS	NS NS	15	NS NS		NA
cyanide, Total	200	0.02	U	NA NA	NA NA	NA NA	NA NA	U	NS NS	NS NS	NS NS	U	NS NS		NA.
hardness, Total	200	0.02	136	76	140	140	64	32	NS NS	NS NS	NS NS	1.5 F	NS NS		40
nitrate	10	1	130	76 U	140 U	140 U	04 U	0.06 F	NS NS	NS NS	NS NS	0.74 F	NS NS		164 F
TKN	10	1	1	0.42	1.6	1.2	0.63 B	0.76 B	NS NS	NS NS	NS NS	0.74 F 0.91	NS NS		.25
sulfate	250	1	11.1	4.9	8.4	1.8	0.03 B	U.76 B	NS NS	NS NS	NS NS	3.5	NS NS		1.9
TDS	500	10	148	89	180	1.6	68	45	NS NS	NS NS	NS NS	31	NS NS		53
TOC	500	10	5.9	3.3	10.8	11.8	4.1	5.2	NS NS	NS NS	NS NS	5.2	NS NS		3.9
Phenolics, Total		0.005	U U	3.3 U	U	U 11.8	4.1 U	U 3.2	NS NS	NS NS	NS NS	U 5.2	NS NS		NA

Landfill 2/3 AOC Surface Water Analytical Results (continued)

Location of Well						Surface v	Vater Analytical Results (SW-2				
Date of Collection	-		9/25/2007	3/31	/2008	9/18/2008	4/8/2009	3/29/2010	311-2		1		
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit	LF2SW0201MA		0201NA	LF2SW0201OA	LF2SW0201PA	LF2SW0201QA					
Depth to Water (ft)			NS	Sur	face	NS	Surface	Surface					
VOCs (µg/L)								•	<u>'</u>		_		
acetone	50	10	NS	1	NS	NS	NS	NS					
2-butanone (MEK)	50	10	NS	ľ	IS	NS	NS	NS					
toluene	5	1	NS	ľ	IS	NS	NS	NS					
Metals (μg/L) [Dissolved / Total] ¹		,										,	
aluminum	100	200	NS	54 F	430 B	NS	U	U					
antimony	3	50	NS	U	U	NS	U	U					
arsenic	50	30	NS	U	U	NS	U	U					
barium	1,000	50	NS	9.7 F	12 F	NS	11 F	9.0 FB					
berylium	3	4	NS	U	U	NS	U	U					
boron, Total	1,000	110	NS	11 B	11 B	NS	14	25 B					
cadmium	5	5	NS	U	U	NS	U	U					
calcium		1,100	NS	27,000	25,000	NS	41,000	43,000 B					
chromium	50	10	NS	U	U	NS	U	U					
cobalt	5	60	NS	U	U	NS	U	U					
copper	200	10	NS	U	2.3 F	NS	U	U					
iron	300	200	NS	180 F	800	NS	160 F	52 F					
lead	50	25	NS	U	U	NS	U	U					
magnesium	35,000	1,000	NS	2,200	2,100	NS	4,300	4,700 B					
manganese	300	10	NS	240	290	NS	42	30					
molybdenum		15	NS	U	U	NS	U	U					
nickel	100	20	NS	U	U	NS	U	U					
potassium		1,000	NS	1,500	1,600	NS	2,100	2,900 B					
selenium	10	30	NS	U	U	NS	U	U					
silver	50	10	NS	U	U	NS	U	U					
sodium		1,000	NS	590 F	540 F	NS	930 F	1,200 B					
thallium	0.5	80	NS	U	U	NS	U	U					
vanadium		10	NS	U	1.1 F	NS	U	U					
zinc	2,000	20	NS	14 F	18 F	NS	13 F	10 FB					
mercury	0.7	1	NS	NA	NA	NS	NS	NS					
Leachate Indicators (mg/L)													
alkalinity, Total		10	NS		0	NS	120	130					
ammonia	2	0.2	NS		U	NS	0.029 F	U					
BOD5		2.4	NS		.9	NS	U	U					
bromide	2	0.5	NS		U	NS	0.021 F	U					
COD		5	NS		14	NS	27	22 B					
chloride	250	1	NS	0.0		NS	0.54 F	0.51 F					
color	15	5	NS		80	NS	25	20					
cyanide, Total	200	0.02	NS		ΙA	NS	NA	NA					
hardness, Total		1	NS		58	NS	130	130					
nitrate	10	1	NS	0.0		NS	0.033 F	0.014 F					
TKN	1	1	NS		.2	NS	0.23	0.61 B					
sulfate	250	1	NS		.7	NS	3.1	2.7					
TDS	500	10	NS	(NS	69	160					
TOC		1	NS		.6	NS	6.2	8.5					
Phenolics, Total		0.005	NS	N	ΙA	NS	NA	NA					

Landfill 2/3 AOC Surface Water Analytical Results (continued)

Location of Well						Surface Wa	ter Analytical Result		F2SW-3						
Date of Collection			12/4/2003	3/26/2004	6/25/2004	9/15/2004	12/14/2004	3/31/2005	6/21/2005	9/8/2005	12/16/2005	3/10/2006	9/13/2006	4/2/2	2007
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit	Not Sampled	LF2SW0301BA	Not Sampled	Not Sampled	LF2SW0301EA	LF2SW0301FA	Not Sampled	Not Sampled	Not Sampled	LF2SW0301JA	Not Sampled	LF2SW	
Depth to Water (ft)			Surface	Surface	NS	NS	Surface	Surface	NS	NS	NS	Surface	NS	Sur	face
VOCs (µg/L)				,				<u>'</u>			,	,			
acetone	50	10	NS	U	NS	NS	U	1.5 F	NS	NS	NS	U	NS	N	A
2-butanone (MEK)	50	10	NS	U	U	NS	U	U	NS	NS	NS	U	NS	N	A
toluene	5	1	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	N	A
Metals (µg/L) [Dissolved / Total] ¹		,					•			,				,	
aluminum	100	200	NS	1,580	NS	NS	59.8	320	NS	NS	NS	1,720	NS	U	U
antimony	3	50	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
arsenic	50	30	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
barium	1,000	50	NS	14.1 F	NS	NS	6.7 F	11.5 F	NS	NS	NS	23 F	NS	5.3 F	3.6 F
berylium	3	4	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
boron, Total	1,000	110	NS	NA	NS	NS	NA	18.5	NS	NS	NS	11.3	NS	NA	NA
cadmium	5	5	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
calcium		1,100	NS	19,200	NS	NS	45,800	37,000	NS	NS	NS	29,400	NS	63,000	60,000
chromium	50	10	NS	1.5 F	NS	NS	U	U	NS	NS	NS	2.4 F	NS	5.3 F	2.8 F
cobalt	5	60	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
copper	200	10	NS	U	NS	NS	U	4.1 F	NS	NS	NS	4.4 F	NS	U	U
iron	300	200	NS	1,380	NS	NS	24.8	298	NS	NS	NS	1,700	NS	29 F	25 F
lead	50	25	NS	U	NS	NS	U	2.7 F	NS	NS	NS	4.2 F	NS	U	U
magnesium	35,000	1,000	NS	2,190	NS	NS	8,700	5,900	NS	NS	NS	3,920	NS	12,000	12,000
manganese	300	10	NS	44.4	NS	NS	82.2	377	NS	NS	NS	296	NS	6,600	7,100
molybdenum		15	NS	U	NS	NS	U	0.6 F	NS	NS	NS	U	NS	U	U
nickel	100	20	NS	U	NS	NS	U	U	NS	NS	NS	1.9 F	NS	1.3 F	1.3 F
potassium		1,000	NS	1,370	NS	NS	580 F	1,090	NS	NS	NS	1,610	NS	1,200	1,100
selenium	10	30	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	4.8 F
silver	50	10	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
sodium		1,000	NS	929 F	NS	NS	3,910	2,450	NS	NS	NS	2,080	NS	5,800	6,200
thallium	0.5	80	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	U	U
vanadium		10	NS	3.2 F	NS	NS	U	U	NS	NS	NS	3.2 F	NS	U	U
zinc	2,000	20	NS	6.7 F	NS	NS	U	5.2 F	NS	NS	NS	11.2 F	NS	U	U
mercury	0.7	1	NS	NA	NS	NS	NA	U	NS	NS	NS	U	NS	NA	NA
Leachate Indicators (mg/L)															
alkalinity, Total		10	NS	49	NS	NS	136	116	NS	NS	NS	76	NS		00
ammonia	2	0.2	NS	U	NS	NS	0.1	0.059	NS	NS	NS	U	NS	0.	
BOD5		2.4	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	Ţ	
bromide	2	0.5	NS	U	NS	NS	U	U	NS	NS	NS	U	NS	0.08	
COD		5	NS	18.7	NS	NS	U	13.1	NS	NS	NS	15.8	NS	26	
chloride	250	1	NS	1.4	NS	NS	6.5	3.4	NS	NS	NS	2.6	NS	9.	
color	15	5	NS	NA	NS	NS	NA	20 J	NS	NS	NS	25	NS	N	
cyanide, Total	200	0.02	NS	NA	NS	NS	NA	U	NS	NS	NS	U	NS	N	
hardness, Total		1	NS	60	NS	NS	156	120	NS	NS	NS	75.3	NS	23	
nitrate	10	1	NS	0.21 F	NS	NS	0.05 F	0.18 F	NS	NS	NS	0.4 F	NS	0.05	
TKN	1	1	NS	0.38	NS	NS	0.35	1.4	NS	NS	NS	0.72	NS	0.4	
sulfate	250	1	NS	4.7	NS	NS	10.2	7.3	NS	NS	NS	10.6	NS	9.	
TDS	500	10	NS	95	NS	NS	200	138	NS	NS	NS	118	NS	20	
TOC		1	NS	2.9	NS	NS	2.7	3.3	NS	NS	NS	21.6	NS	2.	
Phenolics, Total		0.005	NS	0.0098 F	NS	NS	U	U	NS	NS	NS	U	NS	N	A

Landfill 2/3 AOC Surface Water Analytical Results (continued)

		T.				Surface v	Vater Analytical Results (
Location of Well	4								SW-3				
Date of Collection	NYSDEC Class A		9/25/2007	3/31	/2008	9/18/2008	4/8/2009	3/29/2010					
Sample ID No.	Surface Water Standards	Reporting Limit	LF2SW0301MA	LF2SW	0301NA	LF2SW0301OA	LF2SW0301PA	LF2SW0301QA					
Depth to Water (ft)			NS	Sur	face	NS	Surface	NS					
VOCs (µg/L)										<u> </u>			
acetone	50	10	NA	N	A	NA	NA	NA					
2-butanone (MEK)	50	10	NA	N	A	NA	NA	NA					
toluene	5	1	NA	N	A	NA	NA	NA					
Metals (µg/L) [Dissolved / Total] ¹								,				·	
aluminum	100	200	NS	160 F	280 B	NS	86 F	NS					
antimony	3	50	NS	U	2.1 F	NS	U	NS					
arsenic	50	30	NS	U	U	NS	U	NS					
barium	1,000	50	NS	6.3 F	7.4 F	NS	5.8 F	NS					
berylium	3	4	NS	U	U	NS	U	NS					
boron, Total	1,000	110	NS	24 B	9.6 F	NS	16	NS					
cadmium	5	5	NS	U	U	NS	U	NS					
calcium		1,100	NS	22,000	22,000	NS	49,000	NS					
chromium	50	10	NS	U	U	NS	U	NS					
cobalt	5	60	NS	U	U	NS	U	NS					
copper	200	10	NS	U	U	NS	U	NS					
iron	300	200	NS	80 F	330	NS	72 F	NS					
lead	50	25	NS	U	U	NS	U	NS					
magnesium	35,000	1,000	NS	2,600	2,600	NS	7,700	NS					
manganese	300	10	NS	2.5 F	67	NS	29	NS					
molybdenum		15	NS	U	U	NS	U	NS					
nickel	100	20	NS	U	U	NS	U	NS					
potassium		1,000	NS	830 F	850 F	NS	720 F	NS					
selenium	10	30	NS	U	U	NS	U	NS					
silver	50	10	NS	U	U	NS	U	NS					
sodium		1,000	NS	890 F	830 F	NS	2,900	NS					
thallium	0.5	80	NS	U	U	NS	U	NS					
vanadium		10	NS	U	U	NS	U	NS					
zinc	2,000	20	NS	11 F	13 F	NS	17 F	NS					
mercury	0.7	1	NS	NA	NA	NS	NA	NS					
Leachate Indicators (mg/L)													
alkalinity, Total		10	NS		0	NS	140	NS					
ammonia	2	0.2	NS		J	NS	0.029 F	NS					
BOD5		2.4	NS		J	NS	2.2	NS					
bromide	2	0.5	NS		J	NS	0.030 F	NS					
COD		5	NS		5	NS	23	NS					
chloride	250	1	NS	0.9		NS	3.3	NS					
color	15	5	NS		5	NS	15	NS					
cyanide, Total	200	0.02	NS	N		NS	NA	NS					
hardness, Total		1	NS		2	NS	160	NS					
nitrate	10	1	NS		J	NS	0.34	NS					
TKN	1	1	NS	0.4	1 B	NS	0.21	NS					
sulfate	250	1	NS		.9	NS	8.7	NS					
TDS	500	10	NS	6		NS	130	NS					
TOC		1	NS		.1	NS	3.2	NS					
Phenolics, Total		0.005	NS	N	A	NS	NA	NS					

Landfill 2/3 AOC

Gas Monitoring Results - Methane and LEL

		27-S	ер-04			5-No	ov-04			16-D	ec-04			17-J:	an-05			17-F	eb-05	
	Baron	netric Press	sure (in.) =	29.68	Baron	netric Press	ure (in.) =	29.60	Baron	netric Press	ure (in.) =	29.79	Baron	netric Press	ure (in.) =	29.77	Baron	etric Press	ure (in.) =	29.34
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	32	1.6	2.4	16.0					6	0.3	1.0	13.1	0	0.0	4.1	10.7	0	0.0	6.4	10.5
LF2GMP-02	>100	8.7	4.7	6.3					41	2.4	11.3	7.4	6	0.3	10.0	7.4	0	0.0	13.3	5.3
LF2GMP-03	0	0.0	18.7	2.7					>100	11.3	0.5	21.5	>100	9.5	0.5	19.9	0	0.0	5.7	12.5
LF2GMP-04	62	3.0	9.4	12.3					>100	13.1	0.7	26.9	>100	11.4	0.6	23.1	>100	10.8	3.6	22.0
LF2GMP-05	>100	7.0	5.8	7.6					6	0.3	16.2	2.2	0	0.0	18.5	0.9	0	0.0	20.2	0.2
LF2GMP-06	0	0.0	13.9	6.0					6	0.3	12.4	7.8	0	0.0	14.1	6.3	0	0.0	18.2	3.0
LF2GMP-07	0	0.0	16.9	4.5					6	0.3	17.5	2.9	0	0.0	18.0	1.8	0	0.0	19.1	1.4
LF2GMP-08	NI	NI	NI	NI	0	0.0	20.3	0.5	4	0.2	19.4	0.9	0	0.0	19.8	0.2	0	0.0	19.6	0.8
LF2GMP-09	NI	NI	NI	NI	0	0.0	21.0	0.2	4	0.2	20.1	0.3	0	0.0	20.6	0.2	0	0.0	20.5	0.2
LF2VENT-01									>100	19.5	5.5	17.5	>100	7.2	9.1	10.0	>100	7.6	7.6	9.6
LF2VENT-02									54	2.7	18.2	2.3	44	2.2	18.5	1.7	>100	9.8	11.8	9.9
LF2VENT-03	>100	15.2	6.8	13.0					>100	44.5	1.5	20.3	>100	28.2	8.9	13.3	>100	25.1	9.1	14.0
LF2VENT-04	>100	10.5	15.0	8.6					>100	33.3	0.2	22.8	>100	22.2	5.6	16.1	>100	25.9	2.3	19.5
LF2VENT-05	>100	32.0	0.3	29.4					>100	24.6	0.0	25.1	>100	21.3	1.0	21.5	>100	14.7	0.3	21.0
LF2VENT-06	>100	13.7	7.9	15.9					>100	8.6	0.7	20.3	54	2.7	5.2	14.7	0	0.0	21.0	0.0
LF2VENT-07	>100	10.0	18.4	5.2					>100	11.3	3.7	8.8	>100	6.5	5.8	7.8	16	0.8	11.3	3.5
LF2VENT-08	66	3.2	5.7	12.6					4	0.2	3.9	10.0	0	0.0	11.2	5.5	0	0.0	10.1	6.9
LF2VENT-09									6	0.3	6.8	4.7	0	0.0	18.4	0.5	0	0.0	14.0	3.7
LF2VENT-10									24	1.2	9.4	5.1	2	0.1	13.0	3.6	0	0.0	15.2	3.9
LF2VENT-11	50	2.5	16.1	5.2					>100	8.8	1.2	15.2	>100	7.8	1.4	13.1	48	2.4	6.9	10.7
LF2VENT-12	>100	24.3	0.3	29.1					>100	13.1	0.0	21.3	>100	9.1	0.5	12.9	>100	6.0	2.2	16.2
LF2VENT-13	54	3.1	19.9	1.9					>100	23.0	4.0	15.9	>100	18.0	6.6	12.9	>100	17.5	6.0	12.7
LF2VENT-14	>100	11.4	16.7	8.0					>100	38.1	0.4	26.7	>100	32.5	1.5	20.6	>100	28.5	0.9	22.3

NI Not Installed

 ${\bf Land fill~2/3~AOC}$ ${\bf Gas~Monitoring~Results~-Methane~and~LEL~(continued)}$

		24-M	lar-05			28-A	pr-05			26-M	ay-05			23-Ju	ın-05			1-Au	ıg-05	
	Baron	netric Press	ure (in.) =	30.00	Baron	etric Press	ure (in.) =	29.28	Baron	netric Press	ure (in.) =	29.23	Baron	netric Press	ure (in.) =	29.61	Baron	etric Press	ure (in.) =	29.54
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	18.1	1.2	0	0.0	16.1	2.3	4	0.2	19.3	0.3	0	0.0	9.7	8.3	12	0.6	3.7	16.2
LF2GMP-02	0	0.0	13.1	5.7	6	0.3	10.0	8.1	40	2.0	8.5	9.8	76	3.8	8.7	11.4	>100	5.2	11.2	6.8
LF2GMP-03	0	0.0	14.6	6.3	0	0.0	14.7	5.5	0	0.0	18.8	2.3	0	0.0	19.5	1.1	0	0.0	19.1	1.1
LF2GMP-04	>100	5.9	6.7	17.4	>100	9.1	8.6	17.3	80	4.0	10.2	12.7	16	0.8	10.6	11.5	18	0.9	6.1	14.7
LF2GMP-05	0	0.0	20.6	0.2	0	0.0	18.2	0.5	0	0.0	15.3	1.1	12	0.6	10.3	3.2	>100	9.5	5.5	9.2
LF2GMP-06	0	0.0	18.4	2.4	0	0.0	17.0	3.1	0	0.0	16.7	2.9	0	0.0	15.9	3.5	0	0.0	13.3	6.0
LF2GMP-07	0	0.0	18.6	1.5	0	0.0	18.6	2.2	0	0.0	19.7	1.6	0	0.0	18.0	2.5	0	0.0	18.4	2.6
LF2GMP-08	0	0.0	19.0	1.1	0	0.0	19.8	0.9	0	0.0	20.4	0.5	0	0.0	19.6	0.9	0	0.0	20.1	0.3
LF2GMP-09	0	0.0	20.2	0.4	0	0.0	20.7	0.3	0	0.0	20.7	0.2	0	0.0	20.0	0.3	0	0.0	20.2	0.2
LF2VENT-01	>100	5.2	15.7	3.3	>100	9.0	14.2	5.3	0	0.0	21.2	0.0	0	0.0	18.7	1.1	0	0.0	20.2	0.5
LF2VENT-02	46	2.3	17.8	2.5	16	0.8	20.2	0.5	60	3.0	17.6	3.8	0	0.0	15.8	4.1	0	0.0	20.4	0.1
LF2VENT-03	>100	25.2	8.2	14.4	>100	24.0	11.3	14.2	>100	18.1	7.1	18.9	>100	7.5	8.5	16.5	14	0.7	11.9	13.1
LF2VENT-04	>100	12.5	9.3	10.4	>100	11.0	5.5	15.9	0	0.0	20.8	0.1	2	0.1	8.0	10.6	8	0.4	19.1	1.8
LF2VENT-05	84	4.2	7.1	10.4	66	3.3	21.0	0.0	52	2.6	16.1	6.0	0	0.0	17.7	1.7	8	0.4	20.5	0.1
LF2VENT-06	0	0.0	18.4	2.1	24	1.2	9.1	10.1	0	0.0	21.2	0.0	0	0.0	19.7	0.2	>100	5.1	11.1	11.7
LF2VENT-07	0	0.0	20.3	0.2	16	0.8	13.4	4.2	0	0.0	20.9	0.1	0	0.0	10.2	4.8	0	0.0	18.7	2.8
LF2VENT-08	0	0.0	20.9	0.0	0	0.0	11.6	5.3	0	0.0	21.1	0.0	0	0.0	17.2	1.8	>100	6.5	3.4	17.3
LF2VENT-09	0	0.0	20.8	0.0	0	0.0	17.2	2.7	0	0.0	21.0	0.0	0	0.0	17.9	1.6	0	0.0	16.8	4.7
LF2VENT-10	0	0.0	20.7	0.0	0	0.0	18.5	1.5	0	0.0	21.1	0.0	0	0.0	18.3	1.5	0	0.0	16.5	4.8
LF2VENT-11	0	0.0	20.6	0.1	60	3.0	9.1	8.4	0	0.0	21.1	0.0	0	0.0	18.2	1.4	50	2.5	10.7	10.8
LF2VENT-12	0	0.0	15.5	3.3	>100	8.3	2.6	16.8	0	0.0	21.1	0.0	0	0.0	16.4	1.4	>100	9.6	7.8	15.6
LF2VENT-13	>100	16.8	8.7	10.2	>100	21.1	9.4	12.7	2	0.1	17.8	4.0	0	0.0	15.5	3.1	0	0.0	19.8	0.9
LF2VENT-14	>100	26.5	5.5	19.9	>100	32.5	2.5	24.9	>100	18.3	3.1	23.3	8	0.4	19.0	1.0	86	4.3	17.8	2.8

NI Not Installed

 ${\bf Land fill~2/3~AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		29-A	ug-05			7-O	ct-05			14-N	ov-05			28-N	ov-05			6-Ja	m-05	
	Baron	netric Press	ure (in.) =	29.50	Baron	netric Press	ure (in.) =	29.87	Baron	netric Press	ure (in.) =	30.32	Baron	etric Press	ure (in.) =	30.06	Baron	etric Press	ure (in.) =	29.13
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	10	0.5	15.3	5.7	20	1.0	2.3	14.8	16	0.8	0.7	11.5	12	0.6	0.2	12.1	0	0.0	9.8	5.6
LF2GMP-02	0	0.0	20.5	0.0	>100	9.5	0.3	22.1	>100	5.1	6.4	11.4	>100	7.0	3.4	14.2	20	1.0	2.9	11.3
LF2GMP-03	0	0.0	19.4	1.3	0	0.0	19.4	1.2	0	0.0	17.6	2.2	0	0.0	12.2	3.7	88	4.4	0.0	14.4
LF2GMP-04	0	0.0	6.4	15.1	4	0.2	9.0	9.0	>100	6.2	15.4	4.1	>100	9.2	2.8	20.9	>100	11.9	1.0	25.1
LF2GMP-05	>100	8.9	6.3	12.3	38	1.9	6.7	10.9	0	0.0	12.9	6.5	0	0.0	14.2	5.5	0	0.0	14.0	5.3
LF2GMP-06	0	0.0	13.4	7.1	0	0.0	13.9	6.3	0	0.0	12.9	6.2	0	0.0	12.8	6.6	2	0.1	11.4	7.4
LF2GMP-07	6	0.3	18.5	2.9	0	0.0	17.9	2.5	0	0.0	17.4	2.9	0	0.0	18.1	2.7	0	0.0	19.4	2.4
LF2GMP-08	0	0.0	19.9	0.9	0	0.0	20.1	0.6	0	0.0	19.5	1.0	0	0.0	20.3	0.8	0	0.0	20.7	0.1
LF2GMP-09	0	0.0	20.2	0.3	0	0.0	20.6	0.1	0	0.0	20.2	0.3	0	0.0	20.7	0.2	0	0.0	20.5	0.5
LF2VENT-01	0	0.0	19.4	1.3	0	0.0	19.5	1.0	6	0.3	18.8	1.3	>100	7.5	12.8	6.1				
LF2VENT-02	0	0.0	19.6	1.1	0	0.0	20.6	0.0	0	0.0	20.2	0.2	>100	11.3	11.9	10.3				
LF2VENT-03	38	1.9	7.5	19.3	0	0.0	20.6	0.0	0	0.0	19.5	0.4	80	4.0	14.9	1.7				
LF2VENT-04	2	0.1	8.6	12.2	0	0.0	20.7	0.0	40	2.0	8.7	8.0	18	0.9	15.0	5.3				
LF2VENT-05	18	0.9	11.3	8.5	>100	26.0	0.4	26.2	>100	5.1	14.7	6.7	>100	25.6	1.0	24.1				
LF2VENT-06	0	0.0	20.2	0.3	0	0.0	20.5	0.0	0	0.0	20.2	0.3	64	3.2	12.4	8.5				
LF2VENT-07	0	0.0	15.8	4.5	0	0.0	20.4	0.0	0	0.0	20.6	0.0	0	0.0	21.0	0.0				
LF2VENT-08	4	0.2	20.6	0.1	>100	6.8	0.3	18.3	0	0.0	20.7	0.0	0	0.0	21.1	0.0				
LF2VENT-09	2	0.1	19.6	1.8	0	0.0	20.6	0.0	0	0.0	20.6	0.0	0	0.0	21.0	0.0				
LF2VENT-10	0	0.0	18.7	2.6	0	0.0	19.6	0.6	0	0.0	20.6	0.0	0	0.0	20.6	0.0				
LF2VENT-11	0	0.0	20.7	0.2	70	3.5	2.6	14.4	0	0.0	19.5	0.7	38	1.9	10.0	7.0				
LF2VENT-12	6	0.3	17.4	3.5	>100	16.2	1.2	23.0	8	0.4	17.3	2.7	78	3.9	12.8	7.8				
LF2VENT-13	0	0.0	18.5	2.3	0	0.0	18.9	2.1	0	0.0	19.6	0.3	>100	5.1	9.7	2.8				
LF2VENT-14	28	1.4	10.2	11.6	30	1.5	19.3	1.7	18	0.9	19.1	0.7	>100	11.5	9.2	8.9				

NI Not Installed

 ${\bf Land fill\ 2/3\ AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		30-M	lar-06			20-A	pr-06			26-M	ay-06			30-Jı	ın-06			28-J	ul-06	
	Baron	netric Press	ure (in.) =	30.22	Baron	netric Press	ure (in.) =	30.02	Baron	netric Press	ure (in.) =	30.06	Baron	etric Press	ure (in.) =	29.96	Baron	etric Press	ure (in.) =	29.24
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	16.8	2.7	0	0.0	17.2	3.2	0	0.0	13.0	5.3	0	0.0	16.1	3.2	63	3.2	0.6	17.4
LF2GMP-02	0	0.0	3.1	11.9	0	0.0	20.9	0.0	8	0.4	19.9	0.2	>100	10.7	0.3	19.9	0	0.0	21.6	0.0
LF2GMP-03	0	0.0	20.9	0.0	0	0.0	20.9	0.0	0	0.0	20.1	0.0	0	0.0	20.2	0.0	0	0.0	21.6	0.0
LF2GMP-04	10	0.5	12.2	2.8	0	0.0	20.9	0.0	0	0.0	20.1	0.0	0	0.0	20.2	0.0	0	0.0	21.1	0.0
LF2GMP-05	0	0.0	19.0	0.7	0	0.0	20.8	0.0	4	0.2	10.5	2.7	0	0.0	20.0	0.1	>100	14.9	0.2	10.6
LF2GMP-06	0	0.0	16.5	3.3	0	0.0	21.0	0.0	4	0.2	20.1	0.1	0	0.0	20.2	0.0	0	0.0	10.7	7.3
LF2GMP-07	0	0.0	20.0	1.0	0	0.0	20.6	0.5	2	0.1	19.9	0.3	0	0.0	17.8	2.9	0	0.0	18.8	2.1
LF2GMP-08	0	0.0	20.2	0.4	0	0.0	20.4	0.6	4	0.2	19.9	0.3	0	0.0	18.7	1.4	0	0.0	19.9	1.5
LF2GMP-09	0	0.0	20.7	0.2	0	0.0	20.8	0.2	4	0.2	20.0	0.1	0	0.0	19.7	0.6	0	0.0	20.2	0.6
LF2VENT-01	6	0.3	20.2	0.1	0	0.0	20.9	0.0	0	0.0	20.1	0.0	0	0.0	20.2	0.0	0	0.0	21.6	0.0
LF2VENT-02	16	0.8	19.5	1.4	44	2.2	18.8	2.2	6	0.3	20.1	0.1	0	0.0	20.2	0.0	0	0.0	21.6	0.0
LF2VENT-03	0	0.0	20.1	0.1	4	0.2	19.2	0.9	4	0.2	20.0	0.1	0	0.0	20.1	0.1	0	0.0	11.7	7.2
LF2VENT-04	66	3.3	16.2	2.3	32	1.6	14.0	3.7	0	0.0	20.1	0.0	6	03	13.8	3.9	3	0.2	18.0	1.9
LF2VENT-05	>100	5.5	11.3	8.0	0	0.0	20.8	0.1	0	0.0	20.1	0.0	0	0.0	19.6	0.8	>100	17.3	0.9	21.1
LF2VENT-06	0	0.0	13.4	6.6	0	0.0	21.0	0.1	2	0.1	20.0	0.0	48	2.4	12.3	6.1	>100	15.4	4.7	17.1
LF2VENT-07	0	0.0	19.9	0.1	0	0.0	20.2	0.2	6	0.3	16.2	2.8	0	0.3	20.0	0.2	0	0.0	3.6	7.9
LF2VENT-08	4	0.2	17.4	1.9	0	0.0	19.4	1.5	0	0.0	20.1	0.0	0	0.0	14.7	2.6	14	0.7	2.4	13.4
LF2VENT-09	0	0.0	18.0	1.1	0	0.0	14.5	3.7	0	0.0	20.2	0.0	0	0.0	9.7	6.6	0	0.0	5.2	11.2
LF2VENT-10	0	0.0	20.1	0.1	0	0.0	18.8	1.0	0	0.0	20.2	0.0	0	0.0	20.3	0.0	0	0.0	4.3	12.1
LF2VENT-11	18	0.9	16.5	2.5	0	0.0	21.0	0.0	0	0.0	20.2	0.0	0	0.0	20.3	0.0	8	0.4	6.0	11.3
LF2VENT-12	36	1.8	5.8	10.1	0	0.0	20.9	0.2	2	0.1	20.2	0.1	22	1.1	14.5	5.1	>100	16.9	1.6	20.3
LF2VENT-13	22	1.1	19.1	0.4	0	0.0	20.9	0.0	0	0.0	20.1	0.0	0	0.0	20.1	0.0	0	0.0	21.6	0.0
LF2VENT-14	>100	6.6	16.1	4.5	>100	10.5	13.8	8.5	>100	15.6	6.6	17.9	>100	8.5	14.5	5.6	>100	20.8	1.1	21.2

NI Not Installed

 ${\bf Land fill~2/3~AOC}$ Gas Monitoring Results - Methane and LEL (continued)

		18-A	ug-06			29-S	ер-06			4-Ja	n-07			31-M	ay-07			30-J	ul-07	
	Baron	netric Press	ure (in.) =	30.18	Baron	netric Press	ure (in.) =	29.83	Baron	netric Press	ure (in.) =	29.40	Baron	etric Press	ure (in.) =	29.43	Baron	etric Press	ure (in.) =	29.49
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	16.3	3.1	0	0.0	20.3	0.1	0	0.0	20.7	0.1	32	1.6	17.6	1.9	0	0.0	20.2	0.4
LF2GMP-02	>100	12.1	0.0	22.4	>100	11.2	21.7	1.5	2	0.1	4.5	11.4	32	1.6	0.4	9.6	>100	5.4	6.5	15.0
LF2GMP-03	0	0.0	20.1	0.0	0	0.0	20.1	0.0	0	0.0	20.2	0.3	0	0.0	19.9	0.0	0	0.0	20.6	0.1
LF2GMP-04	0	0.0	20.2	0.0	0	0.0	17.8	0.0	5	0.3	19.8	0.9	0	0.0	19.9	0.0	0	0.0	20.7	0.0
LF2GMP-05	>100	13.1	0.0	11.4	0	0.0	18.0	0.0	0	0.0	18.8	1.3	0	0.0	11.4	1.5	>100	7.7	3.5	7.7
LF2GMP-06	0	0.0	20.2	0.0	0	0.0	20.3	0.0	0	0.0	12.2	6.3	0	0.0	21.2	0.0	0	0.0	20.7	0.1
LF2GMP-07	0	0.0	19.8	0.3	0	0.0	17.3	1.6	0	0.0	20.7	0.4	0	0.0	21.0	0.0	0	0.0	20.9	0.2
LF2GMP-08	0	0.0	19.7	0.1	0	0.0	17.5	0.0	0	0.0	20.2	0.7	0	0.0	21.1	0.0	0	0.0	20.6	0.4
LF2GMP-09	0	0.0	20.2	0.0	0	0.0	19.8	0.4	1	0.1	20.7	0.2	0	0.0	20.4	0.0	0	0.0	20.6	0.2
LF2VENT-01	0	0.0	19.6	0.7	0	0.0	17.6	0.2	>100	5.7	15.8	2.9	30	1.5	19.6	0.1	0	0.0	20.4	0.2
LF2VENT-02	0	0.0	20.3	0.0	2	0.1	17.7	0.1	8	0.4	20.4	0.4	0	0.0	19.9	0.0	0	0.0	20.5	0.1
LF2VENT-03	0	0.0	20.1	0.0	0	0.0	20.0	0.0	0	0.0	20.7	0.1	1	0.1	18.4	1.2	0	0.0	20.5	0.2
LF2VENT-04	0	0.0	19.9	0.0	26	1.3	18.6	0.8	>100	5.5	15.9	2.7	3	0.2	17.3	2.1	0	0.0	19.9	0.8
LF2VENT-05	0	0.0	20.3	0.0	0	0.0	19.3	0.0	>100	28.5	0.2	23.0	0	0.0	20.2	0.0	16	0.8	13.0	5.0
LF2VENT-06	0	0.0	20.2	0.0	28	1.4	18.7	1.8	>100	12.6	6.6	15.1	0	0.0	20.1	1.2	0	0.0	20.0	0.4
LF2VENT-07	0	0.0	20.1	0.2	0	0.0	17.6	0.4	14	0.7	18.6	0.5	1	0.1	18.1	2.8	0	0.0	19.1	1.0
LF2VENT-08	0	0.0	12.9	6.3	0	0.0	17.6	0.0	0	0.0	18.1	1.4	0	0.0	16.1	4.8	0	0.0	20.8	0.2
LF2VENT-09	0	0.0	19.2	0.8	0	0.0	20.3	0.0	13	0.7	10.8	3.3	0	0.0	20.5	0.4	0	0.0	16.3	3.6
LF2VENT-10	0	0.0	20.3	0.0	0	0.0	20.1	0.1	0	0.0	20.2	0.4	0	0.0	19.6	1.2	0	0.0	20.2	0.3
LF2VENT-11	0	0.0	18.0	2.5	0	0.0	20.4	0.0	47	2.4	17.0	2.6	0	0.0	19.7	1.5	0	0.0	17.5	2.0
LF2VENT-12	0	0.0	19.5	0.8	10	0.5	17.3	1.3	>100	7.8	11.3	9.4	0	0.0	19.6	2.0	0	0.0	20.1	0.7
LF2VENT-13	0	0.0	18.8	1.1	0	0.0	18.0	0.0	70	3.5	16.8	1.0	0	0.0	21.0	0.2	0	0.0	20.0	0.9
LF2VENT-14	>100	5.3	11.5	10.1	6	0.3	19.4	0.1	>100	5.7	18.7	3.4	>100	6.3	13.5	8.3	96	4.8	7.7	10.1

NI Not Installed

 ${\bf Land fill~2/3~AOC}$ ${\bf Gas~Monitoring~Results~-Methane~and~LEL~(continued)}$

		6-O	ct-07			23-J	fan-08			17-	Apr-08			16-J	ul-08			17-N	ov-08	
	Baron	netric Press	ure (in.) =	30.15	Baron	netric Press	ure (in.) =	29.42-29.48	Baron	netric Press	ure (in.) =	30.01-30.02	Baron	netric Press	ure (in.) =	NA	Baron	netric Press	ure (in.) =	29.64
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	20.6	0.0	0	0.0	20.2	0.5	0	0.0	20.7	0.1	0	0.0	11.4	5.5	0	0.0	20.7	0.2
LF2GMP-02	8	0.4	20.2	0.5	0	0.0	10.2	6.7	0	0.0	5.4	8.3	>100	9.5	0.0	19.3	0	0.0	21.0	0.1
LF2GMP-03	0	0.0	20.6	0.0	36	1.8	14.1	5.4	2	0.1	20.4	0.5	0	0.0	20.2	0.1	0	0.0	15.2	3.3
LF2GMP-04	0	0.0	20.6	0.0	1	0.1	19.7	0.8	4	0.2	20.6	0.1	0	0.0	20.5	0.0	0	0.0	20.0	1.1
LF2GMP-05	0	0.0	20.6	0.0	0	0.0	18.9	0.3	2	0.1	19.2	0.3	>100	6.9	0.4	7.8	0	0.0	17.8	2.2
LF2GMP-06	0	0.0	20.6	0.0	0	0.0	9.7	7.8	2	0.1	13.6	3.5	0	0.0	20.3	0.2	0	0.0	14.6	5.2
LF2GMP-07	0	0.0	20.6	0.0	0	0.0	19.9	1.0	6	0.3	20.1	0.3	0	0.0	19.6	1.0	0	0.0	20.2	1.3
LF2GMP-08	0	0.0	20.6	0.1	0	0.0	20.4	0.5	0	0.0	20.6	0.1	0	0.0	20.6	0.3	0	0.0	20.4	1.2
LF2GMP-09	0	0.0	20.6	0.0	0	0.0	20.6	0.3	2	0.1	20.8	0.2	0	0.0	20.5	0.3	0	0.0	21.2	0.4
LF2VENT-01	0	0.0	20.5	0.1	21	1.1	19.2	0.7	0	0.0	21.0	0.1	0	0.0	20.2	0.3	44	2.2	17.9	1.6
LF2VENT-02	0	0.0	20.6	0.0	28	1.5	19.7	1.7	8	0.4	20.7	0.2	0	0.0	20.7	0.1	6	0.3	21.4	0.3
LF2VENT-03	2	0.0	20.5	0.1	7	0.4	20.4	0.3	2	0.1	20.9	0.1	0	0.0	20.7	0.1	19	0.9	20.3	0.6
LF2VENT-04	4	0.1	20.3	0.3	1	0.1	20.2	0.7	8	4.0	19.3	0.5	2	0.1	20.0	0.3	51	3.1	16.6	2.7
LF2VENT-05	0	0.2	20.6	0.0	>100	23.6	2.3	20.8	>100	12.6	8.6	10.9	>100	6.8	4.2	11.7	>100	10.2	14.3	7.1
LF2VENT-06	0	0.0	20.6	0.0	>100	8.5	10.6	11.3	30	1.5	17.1	2.0	0	0.0	19.7	0.5	>100	26.1	1.2	22.3
LF2VENT-07	0	0.0	19.3	0.8	0	0.0	18.7	0.4	4	0.2	20.0	0.1	0	0.0	20.3	0.2	0	0.0	21.6	0.1
LF2VENT-08	0	0.0	16.5	3.2	45	2.3	13.2	4.4	26	1.3	14.4	2.3	0	0.0	19.5	0.6	2	0.1	20.2	0.9
LF2VENT-09	0	0.0	19.9	0.5	0	0.0	17.7	1.8	8	0.4	13.6	1.2	0	0.0	20.2	0.2	5	0.2	16.1	2.3
LF2VENT-10	0	0.0	20.2	0.3	0	0.0	19.5	0.9	6	0.3	20.1	0.0	0	0.0	20.8	0.1	2	0.1	20.6	0.7
LF2VENT-11	0	0.0	16.9	3.0	31	1.6	16.7	2.5	4	0.2	20.3	0.2	0	0.0	20.8	0.1	2	0.1	18.4	0.8
LF2VENT-12	0	0.0	18.4	2.3	>100	5.0	12.3	7.6	12	0.6	19.8	0.5	0	0.0	19.3	0.6	>100	5.0	15.0	6.0
LF2VENT-13	0	0.0	19.5	1.1	11	0.6	19.6	0.6	6	0.3	20.8	0.0	0	0.0	20.2	0.2	43	2.1	17.1	1.2
LF2VENT-14	2	0.1	20.3	0.2	32	1.6	18.9	1.3	22	1.1	19.2	0.5	0	0.0	20.3	0.2	6	0.3	19.7	1.0

NI Not Installed

 ${\bf Land fill~2/3~AOC}$ ${\bf Gas~Monitoring~Results~-Methane~and~LEL~(continued)}$

		15-	Jan-09			28-	Apr-09			10-J	ul-09			21-0	ct-09			3-Fe	eb-10	
	Baron	netric Press	ure (in.) =	28.98-29.62	Baron	netric Press	ure (in.) =	29.41-29.51	Baron	netric Press	ure (in.) =	29.52-29.6	Baron	netric Press	ure (in.) =	29.56-29.5	Baron	netric Press	ure (in.) =	29.34
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	20.7	0.1	0	0.0	19.7	0.7	0	0.0	16.9	2.4	0	0.0	21.0	0.0	0	0.0	21.1	0.1
LF2GMP-02	0	0.0	19.7	0.1	12	0.6	0.6	11.1	>100	9.7	0.0	17.5	>100	8.8	0.0	20.9	0	0.0	21.5	0.0
LF2GMP-03	0	0.0	21.4	0.3	0	0.0	21.1	0.0	0	0.0	20.0	0.0	0	0.0	19.3	1.1	3	0.1	21.1	0.4
LF2GMP-04	3	0.2	21.5	0.5	0	0.0	21.2	0.0	0	0.0	20.5	0.0	0	0.0	20.2	0.4	14	0.7	19.1	1.9
LF2GMP-05	0	0.0	20.9	0.2	0	0.0	17.8	0.5	64	3.2	0.1	6.3	0	0.0	0.4	12.9	0	0.0	22.0	0.1
LF2GMP-06	2	0.1	20.3	0.4	0	0.0	10.8	5.0	0	0.0	19.1	0.6	0	0.0	20.7	0.1	0	0.0	10.3	6.9
LF2GMP-07	0	0.0	20.1	0.4	0	0.0	20.0	0.5	0	0.0	19.9	0.1	0	0.0	20.6	0.2	0	0.0	21.3	1.2
LF2GMP-08	0	0.0	20.4	0.7	0	0.0	20.2	0.3	0	0.0	20.3	0.1	0	0.0	20.3	0.5	0	0.0	21.8	0.4
LF2GMP-09	0	0.0	20.5	0.4	0	0.0	20.8	0.0	0	0.0	20.4	0.1	0	0.0	20.4	0.3	0	0.0	21.9	0.3
LF2VENT-01	8	0.5	20.2	0.8	19	0.9	18.8	0.7	0	0.0	19.9	0.0	0	0.0	19.6	0.6	34	1.7	19.9	0.9
LF2VENT-02	1	0.1	21.7	0.2	0	0.0	20.8	0.0	0	0.0	19.8	0.0	4	0.2	20.7	0.1	0	0.0	21.9	0.2
LF2VENT-03	17	0.8	21.0	0.5	0	0.0	20.8	0.0	0	0.0	20.0	0.0	0	0	20.8	0.1	55	2.8	19.9	1.0
LF2VENT-04	2	0.1	19.5	1.8	0	0.0	20.6	0.0	0	0.0	20.1	0.0	>100	6.1	16.4	2.5	11	0.5	19.4	1.7
LF2VENT-05	21	1.1	19.9	1.1	0	0.0	20.4	0.0	0	0.0	20.3	0.0	>100	13.1	10.8	8.6	11	0.6	21.6	0.5
LF2VENT-06	67	3.4	17.0	3.0	0	0.0	20.2	0.0	8	0.4	18.2	0.8	>100	29.2	0.0	23.0	>100	6.8	14.7	6.8
LF2VENT-07	0	0.0	20.1	0.1	0	0.0	20.8	0.0	0	0.0	20.5	0.0	7	0.3	18.6	0.5	0	0.0	22.0	0.1
LF2VENT-08	4	0.2	17.5	1.5	0	0.0	21.0	0.0	0	0.0	20.3	0.0	0	0	21.0	0.0	0	0.0	22.1	0.1
LF2VENT-09	0	0.0	17.3	1.4	0	0.0	19.2	0.4	0	0.0	20.2	0.0	0	0	21.0	0.0	0	0.0	22.1	0.1
LF2VENT-10	0	0.0	19.6	0.6	0	0.0	21.2	0.0	0	0.0	20.2	0.0	0	0	20.9	0.0	0	0.0	22.0	0.1
LF2VENT-11	10	0.5	17.8	1.3	0	0.0	20.9	0.0	0	0.0	20.1	0.0	0	0	20.9	0.1	2	0.1	21.5	0.3
LF2VENT-12	66	3.2	13.6	4.6	0	0.0	20.9	0.0	0	0.0	20.2	0.0	0	0	21.0	0.1	4	0.2	21.3	0.4
LF2VENT-13	9	0.5	19.0	0.4	0	0.0	20.8	0.0	0	0.0	19.9	0.0	4	0.2	19.8	0.4	9	0.4	21.0	0.4
LF2VENT-14	40	2.0	18.8	0.7	0	0.0	20.8	0.0	0	0.0	20.4	0.0	14	0.5	17.9	1.0	92	4.6	16.4	1.7

NI Not Installed

Landfill 2/3 AOC

Gas Monitoring Results - Methane and LEL (continued)

		6-Ma	ay-10			26-0	ct-10													
	Ba	rometric Pre	ssure (in.) =	29.05-29.06	Ва	arometric Pre	ssure (in.) =	29.24	Ва	rometric Pre	ssure (in.) =		Ba	rometric Pre	ssure (in.) =		Ba	rometric Pre	ssure (in.) =	
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF2GMP-01	0	0.0	16.9	2.2	0	0.0	18.5	1.6												
LF2GMP-02	>100	5.4	1.0	16.3	0	0.0	15.8	4.8												
LF2GMP-03	0	0.0	21.0	0.0	0	0.0	17.4	2.5												
LF2GMP-04	0	0.0	21.0	0.0	0	0.0	18.1	1.8												
LF2GMP-05	0	0.0	21.0	0.0	0	0.0	18.4	1.5												
LF2GMP-06	0	0.0	21.3	0.0	3	0.2	17.4	2.2												
LF2GMP-07	0	0.0	20.9	0.5	5	0.3	18.1	2.3												
LF2GMP-08	0	0.0	20.5	0.6	0	0.0	18.4	1.8												
LF2GMP-09	0	0.0	21.0	0.3	0	0.0	18.9	1.3												
LF2VENT-01	43	2.1	18.4	1.1	0	0.0	19.5	0.6												
LF2VENT-02	0	0.0	21.0	0.0	0	0.0	19.4	0.6												
LF2VENT-03	7	0.3	20.4	0.3	0	0.0	19.4	0.7												
LF2VENT-04	41	2.0	14.2	5.2	1	0.0	19.1	0.9												
LF2VENT-05	77	3.8	16.7	3.8	0	0.0	19.1	0.9												
LF2VENT-06	>100	7.1	12.0	7.9	0	0.0	18.8	1.3												
LF2VENT-07	2	0.1	17.2	1.1	0	0.0	19.5	0.6												
LF2VENT-08	0	0.0	19.0	1.0	6	0.3	19.1	1.1												
LF2VENT-09	0	0.0	18.4	1.8	7	0.4	19.4	0.8												
LF2VENT-10	0	0.0	20.8	0.1	0	0.0	19.5	0.7												
LF2VENT-11	6	0.3	17.5	1.4	0	0.0	19.5	0.7												
LF2VENT-12	15	0.7	18.4	1.4	0	0.0	19.5	0.7												
LF2VENT-13	36	1.8	18.4	0.9	0	0.0	19.4	0.6												
LF2VENT-14	34	1.7	14.5	2.5	0	0.0	19.5	0.6												

NI Not Installed

Landfill 7 AOC Groundwater Analytical Results

Location of Well			1					LF7M	IW-22					
Date of Collection	-		1/12/1999§	2/7/2003	6/17/2003	9/10/2003	12/3/2003	3/24/2004	6/24/2004	9/15/2004	12/9/2004	3/30/2005	6/21/2005	9/7/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2203AA	LF7MW2210AA	LF7MW2210BB	LF7M2208CA	LF7M2208DA	LF7M2208EA	LF7M2208FA	LF7M2208GA	LF7M2208HA	LF7M2208IA	LF7M2208JA	LF7M2208KA
Depth to Water (ft)			3.23	2.89	2.54	1.61	0.41	0.00	0.54	0.98	0.55	0.00	1.37	2.05
VOCs (µg/L)														
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	NA	NA	NA	U	NA	NA
1,1-dichloroethene	5*	1	0.36 F	U	U	U	U	U	NA	NA	NA	U	NA	NA
benzene	1	0.1	0.22 F	U	U	U	U	U	NA	NA	NA	U	NA	NA
cis-1,2-dichloroethene	5*	1	3.58	0.26 F	0.69 F ♦	2.7	U	U	U	U	U	U	U	U
methylene chloride	5*	1	0.48 F	U	U	U	U	U	NA	NA	NA	U	NA	NA
trichloroethene (TCE)	5*	1	18.3	6.15	7.5 J ♦	26	0.42 F	2.5	8.5	3	1.4	0.97 F	11.8	1.9
toluene	5*	1	U	U	U	U	U	U	NA	NA	NA	U	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	0.39 F	U	U	U	U	U	U	U	U
Metals (µg/L) [Dissolved / Total]			,											
aluminum	2,000	200	0.83 J	U	73.3 F	180 F	97.1 F	250	U	83.4 F	U	132 F	U	50.2 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	0.0661	73.7	79.5	53.1	86.8	88.8	88.4	98.1	110	103	89.7	116
berylium	3	4	U	U	U	U	U	0.6 F	U	U	U	0.3 F	U	U
boron, Total	1,000	110	287	285.6	257 B	NA	NA	288	NA	NA	NA	278	NA	NA
cadmium	5	5	1.2 F	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	177,210	189,058.5	166,000	133,000	177,000	186,000	185,000	177,000	177,000	197,000	156,000	180,000
chromium	50	10	1 F	U	U	U	U	U	U	U	U	U	U	U
cobalt		60	0.4 F	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	U	U	U	4.5 F	6.8 F	2 F	U	1.8 F	7.3 F	2.1 F	U
iron	300	200	7,401 J	6,278.7	8,730	4,280	5,240	11,500	6,990	6,550	6,340	10,500	5,960	9,640
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	22,645	50,165.2	25,300	22,200	43,700	49,700	36,900	39,500	42,100	50,400	35,700	37,400
manganese	300	10	1,914	919.8	2,090	1,330	937	808	1,780	1,090	1,090	888	887	1,160
molybdenum		15	1	4.5 F	U	U	U	U	U	U	U	U	U	U
nickel	100	20	2 F	U	U	U	U	U	U	U	U	U	2.6 F	U
potassium		1,000	7,117	4,824.4	6,400	5,000	6,760	5,080	6,410	7,470	7,180	5,140	5,130	7,540
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	3 F	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	10,670	20,185.6	9,860	5,840	18,200	19,200	14,500	15,700	16,900	19,000	13,700	14,300
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	4 F	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	10 J	4.1 F	U	U	35.5	7.5 F	U	U	U	7.3 F	4 F	6.8 F
mercury	0.7	1	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA
Leachate Indicators (mg/L)														
alkalinity, Total		10	478	610	421	403	595	622	483	594	606	642	603	601
ammonia	2	0.2	0.700 J	0.42	0.77	0.61	0.61	0.44	0.65	0.83	0.74	0.52	0.39	0.84
BOD5		2.4	U	U	U	5.7	U	U	2.8	U	U	U	U	U
bromide	2	0.5	0.20 F	U	U	U	U	0.25 F	0.24 F	0.31 F	0.23 F	0.31 F	0.24 F	0.36 F
COD		5	U	U	23.6	U	U	10.8	6 F	U	10.5	U	5.3 F	U
chloride	250	1	7.15 F	17.9345	3.3	6.4	11.3	12.3	13.1	13.1	15.9	16.2	18.1	16.5
color	15	5	25	150 R	20	NA	NA	40	NA	NA	NA	200 J	NA	NA
cyanide, Total	200	0.02	U	0.00295 F	U	NA	NA	NA	NA	NA	NA	U	NA	NA
fluoride	1.5	1	U	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hardness, Total		1	475 J	678.51	522	463	790	670	612	640	668	655	690	72.7
nitrate	10	1	U	U	2.0	U	U	U	0.027 F	U	U	U	U	U
TKN	1	1	U	1.68	1.1	1.1	1.6	U	1.2 B	1.3	1	1.8	1.2	1.5
phosphate		1	U	0.0932 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sulfate	250	1	92.50 F	87.2678	4.8	55.5	82.6	83.2	85.5	69.8	72.3	79.7	72.2	55.4
TDS	500	10	623	731	306	566	716	759	677	673	696	719	693	722
1	1		2.00					1			I		1	
TOC		1	3.99	3.05	1.6	U	3.1	3.1	1.6	3	3.3	2.6	3.2	4.7

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well										1	LF7MW-22				
Date of Collection	1		12/15/2005	3/10/2006	9/14/	2006	3/28/	2007	9/25/		3/28/	/2008	9/16/2008	4/21/2009	4/1/2010
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2208LA	LF7M2208MA	LF7M2		LF7M2		LF7M2		LF7M2		LF7M2208RA	LF7M2208SA	LF7M2208TA
Depth to Water (ft)	1		1.66	0.00	1	37	0.0	00	2.	53	0.	00	3.20	0.44	0.00
VOCs (µg/L)															
1,1,1-trichloroethane	5*	1	NA	NA	N	S	N	S	N	S	N	IS	NS	NS	NS
,1-dichloroethene	5*	1	NA	NA	N	S	N	S	N	S	N	IS	NS	NS	NS
enzene	1	0.1	NA	NA	N	S	N	S	N	S	N	IS	NS	NS	NS
is-1,2-dichloroethene	5*	1	U	U	N		N			S	N		NS	NS	NS
nethylene chloride	5*	1	NA	NA	N	S	N	S	N	S	N	IS	NS	NS	NS
richloroethene (TCE)	5*	1	0.92 F	0.93 F	N	S	N	S	N	S	N	IS	NS	NS	NS
luene	5*	1	NA	NA	N	S	N	S	N	S	N	IS	NS	NS	NS
ans-1,2-dichloroethene	5*	1	U	U	N	S	N	IS	N	S	N	IS	NS	NS	NS
etals (µg/L) [Dissolved / Total]														1	
minum	2,000	200	228	637	U	160 F	52 F	95 F	U	250	U	48 F	53 F	190 F	360
itimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
enic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U
rium	1,000	50	132	134	127	123	110	120	130	140	110	110	150	120	120
rylium	3	4	0.4 F	0.5 F	U	U	U	U	U	U	U	0.17 F	U	U	U
ron, Total	1,000	110	NA	288	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
dmium	5	5	U	U	U	U	0.57 F	1.0 F	U	U	U	U	U	U	U
cium		1,100	191,000	204,000	186,000	184,000	200,000	210,000	180,000	190,000	200,000	200,000	200,000	190,000	180,000
romium	50	10	1 F	2.1 F	2.9 F	4.07 F	6.9 F	8.8 F	4F	4.2F	4.4 F	5.1 F	3.5 F	5.0 F	U
palt		60	U	U	U	U	U	U	U	U	U	U	U	U	U
per	200	10	3.5 F	5.6 F	U	U	U	U	U	4.6F	U	U	U	U	U
7.1	300	200	12,900	33,100	6,610	10,800	5,100	12,000	6,700	15,000	5,400	7,500	10,000	11,000	8,100
	25	25	12,900 U	2.5 F	U,010	10,000 U	J,100	12,000 U	U,700	13,000 U	J,400	7,500 U	U	U	U.
acium	35,000	1,000	43,400	51,900	37,200	36,400	52,000	53,000	36,000	-	51,000	50,000	39,000	45,000	47,000
esium anese	300	1,000	1,130	963	1,250	1,270	840	860	1,200	36,000 1,300	870	850	1,300	1,000	880
odenum		15	U	1.7 F	U.	U	U	U	U	U	U	U	U	U	U
l	100	20	U	2.1 F	1.13 F	U	U	U	U	1.5F	U	U	U	2.2 F	U
sium		1,000	7,270	5,630	7,750	7,730	5,200	5,400	7,800	7,800	5,400	5,300	8,000	5,200	5,700
ium		30	U	U	7,750 U	7,730 U	J,200	J,400 U	7,800 U	7,800 U	U U	U U	2.9 F	U	5,760 U
	50	10	U	U	U	U	U	U	U	U	U	U	2.9 F U	U	U
r ım	20,000	1,000	17,300	19,700	14,700	14,400	21,000	21,000	15,000	15,000	21,000	20,000	17,000	18,000	18,000
ium	0.5	80	17,300 U	19,700 U	14,700 U	14,400 U	21,000 U	21,000 U	15,000 U	15,000 U	21,000 U	20,000 U	U 17,000	18,000 U	18,000 U
	0.5	10	1 F	2.6 F	U	1 F	U	U	U	.92F	U	U	U	U	U
idium	2,000	20	8.5 F	9.2 F	15.6 F	31.6	U	U	23.0	.92F 29.0	1.0 F	1.1 F	19 F	17 F	23
ury	0.7	20 1	NA	9.2 F U	15.6 F NA	31.6 NA	NA.	NA.	23.0 NA	29.0 NA	NA	NA	NA	NA	NA
chate Indicators (mg/L)	0.7	1	INA		11/1	IIA	11/1	11/1	11/1	11/1	11/1	1474	14/3	1475	19/3
actiate indicators (ing/L)		10	605	633	N	S	N	IS	N	S	N	IS	NS	NS	NS
imonia	2	0.2	0.81	0.59	N		N N		N		N N		NS	NS	NS
DD5		2.4	U.81	U	N		N N			S	N N		NS	NS NS	NS
romide	2	0.5	0.32 F	0.49 F	N		N		N			is	NS	NS	NS
OD		5	U.321	U.491	N		N N		N		N		NS	NS NS	NS NS
loride	250	1	20.4	19.5	N		N N			S	N		NS	NS	NS NS
oride	15	5	20.4 NA	19.5	N		N N		N		N N		NS NS	NS NS	NS NS
ide, Total	200	0.02	NA NA	U	N		N N		N		N N		NS NS	NS NS	NS NS
ide, rotai	1.5	0.02	NA NA	NA.	N N		N N		N N		N N		NS NS	NS NS	NS NS
ness, Total	1.5	1	660	588	N N		N N		N N		N N		NS NS	NS NS	NS NS
	10	1	990	588 U	N N		N N			S S	N N		NS NS	NS NS	NS NS
ate V	10		-				N N				N N				
		1	1.9	0.82	N				N				NS	NS	NS
osphate	250	1	NA	NA	N		N			S	N		NS	NS	NS
lfate	250	1	79.3	82.2	N		N		N		N.		NS	NS	NS
DS	500	10	698	750	N		N			S	N		NS	NS	NS
OC		1	2	3.7 B	N		N		N		N		NS	NS	NS
enolics, Total		0.005	U	U	N	3	N	3	N	3	N	IS	NS	NS	NS

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								LF7M	IW-23					
Date of Collection			1/12/1999§	2/7/2003	6/17/2003	9/10/2003	12/4/2003	3/25/2004	6/24/2004	9/15/2004	12/9/2004	3/30/2005	6/21/2005	9/7/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW2303AA	LF7MW2311AA	LF7MW2316BB	LF7M2310CA	LF7M2300DA	LF7M2312EA	LF7M2312FA	LF7M2312GA	LF7M2312HA	LF7M2312IA	LF7M2312JA	LF7M2312KA
Depth to Water (ft)			3.08	1.93	2.06	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.47
VOCs (µg/L)			5100	100	2100	3,70	0.00	0100	0100	0.00	0.00	0.00	0120	VII.,
1,1,1-trichloroethane	5*	1	U	U	U	U	U	U	NA	NA	NA	U	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	U	U	NA	NA	NA	U	NA	NA
benzene	1	0.1	U	U	U	U	U	U	NA	NA	NA	U	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	0.63 B	U	U	U	U	U	NA	NA	NA	U	NA	NA
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U	0.19 F	U	U	U	U	NA	NA	NA	U	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
Metals (µg/L) [Dissolved / Total]	1													
aluminum	2,000	200	420	U	26.6 F ♦	636 J	296	2,110	581	616	162 F	366	360	231
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	29.6	21.1 F	18.5 F ♦	51.6	21.4 F	26.2 F	21.7 F	22.4 F	19.7 F	21.4	19.9 F	24 F
berylium	3	4	U	U	U	U	U	0.3 F	U	U	U	U	U	U
boron, Total	1,000	110	U	U	69.3 B ◆	NA	NA	27.5	NA	NA	NA	26.2	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	38,620	22,058.1	20,400	48,000	22,400	22,300	23,300	23,300	21,700	23,900	22,200	23,600
chromium	50	10	1 F	1.0 F	U	U	U	2.4 F	1.1 F	U	U	1.1 F	U	U
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	0.9 F
copper	200	10	U	U	U	U	U	2.4 F	1.7 F	U	U	U	U	U
iron	300	200	1,409	140.9 F	62.3 F ◆	937	404	1,990	946	856	276	533	525	568
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	7,237.6	6,521.7	5,720	14,000	6,210	6,740	6,420	6,430	6,070	6,690	6,210	5,440
manganese	300	10	405.4	60.1	23.2 ♦	119	36.8	51.3	46.1	38.7	27.5	53.3	41.4	103
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	1 F	U	U	U	U	U	1.8 F	U	U	1.6 F	2.8 F	U
potassium		1,000	2,093	1,658.7	1,900 ♦	3,260	2,220	2,720	2,200	2,500	2,240	2,010	1,980	1,900
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	8,410	11,176	9,560	7,020	10,100	9,740	9,510	10,300	9,900	9,990	9,290	8,720
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	1 F	U	U	U	U	4.2 F	1.5 F	1.2 F	U	1 F	U	U
zinc	2,000	20	10	3.5 F	U	U	2.7 F	U	57.3	34.4	17 F	27.4	41.7	25.8
mercury	0.7	1	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA
Leachate Indicators (mg/L)														
alkalinity, Total		10	156	85	79.2	173	94	82.6	71.9	86.3	89.5	86	89	93
ammonia	2	0.2	0.28	U	0.26	0.34	0.32	0.3	0.32	0.38	0.36	0.3	0.31	0.32
BOD5		2.4	U	U	U	U	U	2	U	U	U	U	U	7.4 B
bromide	2	0.5	0.11 F	U	U	U	U	U	U	U	U	U	U	U
COD		5	U	U	U	U	U	U	U	U	14.1	U	U	U
chloride	250	1	2.89 F	2.1783	1.8	1.7	2.1	0.52 F	1.8	2	1.9	1.8	1.7	2.4
color	15	5	U	5 R	0	NA	NA	15	NA NA	NA	NA	20 J	NA NA	NA
cyanide, Total	200	0.02	U	U	U	NA	NA	U	NA NA	NA	NA NA	U	NA	NA NA
fluoride	1.5	1	U	0.1017	NA	NA 105	NA 140	NA	NA 02	NA 00	NA 100	NA 02	NA	NA 70.5
hardness, Total		1	148	86.28	45.6 ♦	195	140	72	92	90	100	92	112	70.5
nitrate	10	1	U	U	U	U 0.52	U	0.18 F	U	U	U	U 0.45	U	U
TKN	1	1	U	U	0.41 B	0.52	U	0.4	0.60 B	0.43	0.6	0.45	0.36	0.3
phosphate		1	U	0.0466 R	NA	NA	NA 16.4	NA 2.7	NA 10.4	NA 18 0	NA	NA	NA 10	NA 160
sulfate	250	1	16 F	18.3229	18.7	14.2	16.4	2.7	19.4	18.9	17.7	17.5	18	16.9
TDS TOC	500	10	200	100	129 ♦	229 U	136	94 U	112 U	103 U	108	117	128	201
		0.005	U 0.0026 UJ	0.59 SU U	U U	U	U U	U	U	U	U U	U U	0.46 F 0.0050 F	1.3 U
phenolics, Total		0.005	0.0026 UJ	U	U	U	U	U	U	U	U	U	0.0050 F	U

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7MW-23					
Date of Collection	1		12/16/2005	3/10/2006	9/13/	2006	3/29/	2007	9/25	2007	3/28/	/2008	9/17/2008	4/22/2009	3/31/2010	
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2312LA	LF7M2312MA		2312NA	LF7M2		LF7M			2312QA	LF7M2312RA	LF7M2312SA	LF7M2312TA	
Depth to Water (ft)			0.00	0.00	0.	00	0.	00	0.	45	0.	00	0.00	0.00	0.00	
VOCs (µg/L)																
1,1,1-trichloroethane	5*	1	NA	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
1,1-dichloroethene	5*	1	NA	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
benzene	1	0.1	NA	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
cis-1,2-dichloroethene	5*	1	U	U		IS		IS		IS	N		NS	NS	NS	
methylene chloride	5*	1	NA	NA		IS		IS		IS		IS	NS	NS	NS	
trichloroethene (TCE)	5*	1	U	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
toluene	5*	1	NA	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
trans-1,2-dichloroethene	5*	1	U	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
Metals (µg/L) [Dissolved / Total]		-														
duminum	2,000	200	166 F	460	45.8 F	906	62 F	320	U	1,400	U	56 F	1,100	U	300	
ntimony	3	50	U	U	43.8 F	U	U	U 320	U	U U	U	U	U	U	U	
rsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	
arium	1,000	50	19.5 F	22.6 F	19.2 F	22.8 F	21 F	22 F	28F	35F	22 F	22 F	33 F		27 F	
	1,000	50 4	19.5 F U	22.6 F U	19.2 F U	22.8 F	U	22 F U	U U	U	22 F U	22 F U	U	24 F	U U	
perylium Poron Total	1,000	110		27.5										U		
oron, Total			NA		NA	NA	NA 0.02 F	NA 0.76 F	NA	NA	NA	NA	NA	NA	NA	
cadmium	5	5	U 22.000	U 22.500	U 22.100	U 22.000	0.83 F	0.76 F	U 21.000	U 25.000	U 22.000	U	U 20.000	U	U 42.000	
alcium		1,100	22,000	23,500	22,100	23,900	25,000	25,000	31,000	35,000	32,000	31,000	38,000	37,000	43,000	
hromium	50	10	U	1.8 F	U	3.78 F	4.0 F	4.2 F	U	4F	U	U	15.0	U	U	
obalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	
opper	200	10	1.7 F	U	U	2.95 F	U	U	U	3.9F	U	U	4.6 F	U	U	
ron	300	200	283	635	21.1 F	1,510	19 F	510	160F	2,300	90 F	180 F	2,500	390	1,700	
ead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	
nagnesium	35,000	1,000	6,210	7,020	6,200	6,890	7,100	7,200	7,800	9,100	7,900	7,600	7,900	8,200	9,000	
nanganese	300	10	34.6	39.3	21.9	51	23	42	120	180	43	45	180	62	81	
nolybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	
nickel	100	20	U	U	U	2.16 F	U	U	U	3.1	U	U	8.9 F	U	U	
ootassium		1,000	2,120	2,060	2,060	2,360	2,100	2,100	2,200	2,700	1,800	1,800	2,000	1,500	1,800	
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U	U	
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	
sodium	20,000	1,000	10,000	10,900	9,660	9,960	11,000	11,000	9,000	9,300	11,000	10,000	9,300 B	8,200	9,200	
hallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	
vanadium .		10	U	U	U	1.68 F	U	U	U	2.6F	U	U	3.5 F	U	U	
zinc	2,000	20	12.6 F	14.9 F	15.3 F	47.7 B	U	25	22.0	53	12 F	12 F	62 B	15 F	10 F	
mercury	0.7	1	NA	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	U	
Leachate Indicators (mg/L)				T							-					
lkalinity, Total		10	89.3	89.5	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	
mmonia	2	0.2	0.34	0.34		IS		IS		IS	N		NS	NS	NS	
OD5		2.4	U	U		IS		IS		IS	N N		NS	NS	NS	
promide	2	0.5	U	U		IS		IS		IS		is	NS	NS	NS	
COD		5	U	U		IS		IS		IS		is	NS	NS NS	NS NS	
hloride	250	1	2.2	2.2		IS		IS		IS	N N		NS NS	NS NS	NS NS	
olor	15	5	NA	5		IS		IS		is is	N N		NS NS	NS NS	NS NS	
otor yanide, Total	200	0.02	NA NA	U		is Is		is Is		is is	N N		NS NS	NS NS	NS NS	
		0.02				is Is		is Is		is Is	N N			NS NS		
luoride	1.5	-	NA 76 I	NA									NS		NS	
ardness, Total		1	76.1	75.1		IS		IS		IS	N		NS	NS	NS	
itrate	10	1	U	U		IS		IS		IS		IS	NS	NS	NS	
ΓKN	1	1	0.39 B	0.37		IS	N			IS	N		NS	NS	NS	
shosphate		1	NA	NA		IS		IS		IS	N		NS	NS	NS	
sulfate	250	1	17.4	18		IS		IS		IS	N		NS	NS	NS	
ΓDS	500	10	135	132		IS		IS		IS	N		NS	NS	NS	
TOC		1	U	U		IS		IS		IS	N		NS	NS	NS	
phenolics, Total		0.005	U	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS	

Landfill 7 AOC Groundwater Analytical Results (continued)

								1 1273	TIV 26					
Location of Well			2/7/2003	6/17/2003	9/9/2003	42/2/2002	3/24/2004	6/23/2004	IW-26	12/8/2004	3/30/2005	6/21/2005	0///2005	12/15/2005
Date of Collection Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	2/7/2003 LF7MW2612AA	6/17/2003 LF7MW2612BB	9/9/2003 LF7M2613CA	12/3/2003 LF7M2612DA	3/24/2004 LF7M2612EA	6/23/2004 LF7M2612FA	9/14/2004 LF7M2613GA	12/8/2004 LF7M2612HA	3/30/2005 LF7M2612IA	6/21/2005 LF7M2613JA	9/6/2005 LF7M2614KA	12/15/2005 LF7M2613LA
Depth to Water (ft)			12.10	12.17	13.16	11.70	11.50	12.39	12.75	12.17	11.73	13.15	14.22	12.68
VOCs (µg/L)			*										*	
1,1,1-trichloroethane	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
benzene	1	0.1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trichloroethene (TCE)	5*	1	2.41	3	1.3	0.42 F	1.8	1.9	0.76 F	0.73 F	1.3	2.2	1.6	0.72 F
toluene	5*	1	0.08 F	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
Metals (µg/L) [Dissolved / Total]														
aluminum	2,000	200	12,441.8	1,850	218	4,180	8,020	2,590	5,380	3,620	1,180	2,650	2,580	2,520
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	3.1 F	U	U
barium	1,000	50	77.3	35.6 F	18.3 F	30.8 F	47.7 F	29.3 F	34.5 F	36.5 F	25.7 F	25.4 F	31.1 F	38.4 F
berylium	3	4	0.65 F	U	U	0.3 F	0.5 F	U	U	U	U	U	U	U
boron, Total	1,000	110	U	75.4 B	NA	NA	19.5	NA	NA	NA	27.6	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	122,758.4	123,000	84,000	70,100	84,600	94,800	71,500	111,000	103,000	77,200	94,400	126,000
chromium	50	10	17.8	3.0 F	U	6.2 F	11.5	4.7 F	7.7 F	5.2 F	2.6 F	3.7 F	6.6 F	48.9
cobalt		60	6.2 F	U	U	U	2.7 F	1.6 F	1.5 F	U	U	1.4 F	1.3 F	1.1 F
copper	200	10	44.7	6.1 F	U	7.4 F	16.7	6.3 F	11.2	6.6 F	4 F	4.6 F	6.6 F	8.9 F
iron	300	200	23,658.7	2,860	193 F	4,250	7,910	2,580	4,860	2,900	1,100	2,260	2,290	2,060
lead	25	25	12.3 F	U	U	3.8 F	5.6 F	U	4.1 F	U	2.5 F	U	U	U
magnesium	35,000	1,000	19,330.4	14,000	10,400	9,550	11,500	11,500	9,700	12,900	11,400	9,180	10,400	13,400
manganese	300	10	1,751.5	1,200	661	456	1,050	1,180	1,050	1,100	635	836	2,130	1,330
molybdenum		15	4.3 F	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	13.6 F	3.8 F	U	4.8 F	9.1 F	4 F	6.1 F	4.5 F	2.3 F	5.8 F	10.4 F	50.4
potassium		1,000	3,621.7	2,230	1,700	2,230 U	3,260	2,170	2,310	2,270	1,690	1,640	1,810	2,360
selenium	50	30 10	U U	U U	U U	U	U U	U U	U U	U U	U U	U U	U U	U U
silver			1,939.3			667 F		1,330		2,310				
sodium thallium	20,000	1,000 80	1,939.3 U	1,900 U	996 F U	00/F U	948 F U	1,330 U	368 F U	2,310 U	2,930 U	916 F U	2,880 U	16,800 U
	0.5	10	19.4	3.8 F	U	5.9 F	11.8	3.5 F		4.1 F	1.9 F	3.4 F	3.3 F	3.1 F
vanadium	2.000	20	55.7	3.8 F U	Ū	5.9 F 18.4 F	11.8 19.1 F	3.5 F 13.5 F	6.6 F 14.1 F	4.1 F 8.1 F	5.2 F	5.4 F	3.3 F 7.7 F	7.3 F
zinc mercury	0.7	1	U	U	NA.	NA	U	NA	NA	NA	U U	NA	NA	NA
Leachate Indicators (mg/L)	0.7	1		· ·	14/1	1411	0	101	144	1471		TOTAL CONTRACTOR OF THE PARTY O	147	14/1
alkalinity, Total		10	304	252	228	215	225	234 B	47.3	239	283	293	296	239
ammonia	2	0.2	U	0.090	228 U	U	U	0.035 F	0.130	0.1	0.032 F	U	0.19	U
BOD5		2.4	U	U.090	U	U	U	U.033 I	U.130	U	U.032 I	U	U.19	3.4
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U
COD		5	9.77	U	U	U	U	U	11.6	U	U	U	U	U
chloride	250	1	U	7.0	2.1	1.9	2.6	1.8	5.2	6.1	6.3	4.4	17.2	40.6
color	15	5	250 R	70	NA	NA	120	NA	NA	NA	160 J	NA	NA	NA
cyanide, Total	200	0.02	0.00179 F	U	NA	NA NA	U	NA NA	NA	NA NA	U	NA NA	NA	NA NA
fluoride	1.5	1	0.0501 F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hardness, Total		1	364.75	372	224	380	320	280	225	348	312	236	300	450
nitrate	10	1	1.3269	U	2.3	1.5	1.4	1	1	1.7	1.7	0.48 F	0.93 F	0.54 F
TKN	1	1	U	0.46 B	U	U	0.23	0.44 B	0.48	U	0.39	0.28	0.55	1 B
phosphate		1	0.0466 R	NA NA	NA	NA	U	NA	NA	NA	NA	NA	NA	NA NA
sulfate	250	1	7.3051	122	5.8	5.3	4.6	5.2	7.4	10.1	6.2	4	5.6	7.2
TDS	500	10	314	614	287	246	242	225	289	370	297	245	361	369
TOC		1	2.57	U	U	1.2	1.7	U	0.93 F	1.4	1.9	2.8	1.8	0.69 F
	1				-		1 77	U	1	1 77		1		

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											1.0	7MW-26							
Date of Collection	1		3/10/2006	9/12/	2006	3/29	/2007	9/24	/2007	3/28	3/2008	9/16/	2008	4/22	/2009	3/25/2010			
Date of Conection	NYSDEC Class	Reporting	3/10/2000	7/12/	2000	3/27	72007	7/24/	2007	3/20	, 2000	2/10/	2000	4/22	12007	3/23/2010			
Sample ID No.	GA Groundwater Standards	Limit	LF7M2612MA	LF7M2	612NA	LF7M2	2610OA	LF7M2	2614PA	LF7M	2611QA	LF7M2	2613RA	LF7M	2612SA	LF7M2612TA			
Depth to Water (ft)			11.75	13.	.32	10	.17	13	.95	10).70	13.	.39	11	.57	11.91			
VOCs (µg/L)																		<u> </u>	
1,1,1-trichloroethane	5*	1	NA	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
1,1-dichloroethene	5*	1	NA	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
benzene	1	0.1	NA	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
cis-1,2-dichloroethene	5*	1	U	N			NS	N			NS	N			NS	NS			
methylene chloride	5*	1	NA	N			NS	N			NS	N			NS	NS			
trichloroethene (TCE)	5*	1	0.98 F	N			NS	N			NS	N			NS	NS			
toluene	5*	1	NA	N			NS	N			NS	N			NS	NS			
trans-1,2-dichloroethene	5*	1	U	N	S	N	NS	N	IS	l l	NS	N	IS	N	NS	NS			
Metals (µg/L) [Dissolved / Total]																			
aluminum	2,000	200	2,470	U	2,020	58 F	4,300	U	3,600	U	2,200	67 F	10,000	U	2,900	3,500	l		
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
barium	1,000	50	28.7 F	18.7 F	26 F	18 F	38 F	18 F	38 F	16 F	28 F	16 F	59	13 F	36 F	34 F			
berylium	3	4	U	U	U	U	U	U	U	U	0.11 F	U	4.6 F	Ü	U	U			$-\!\!\!\!-\!\!\!\!\!-$
boron, Total	1,000	110	22.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NS			
cadmium	5	5	U	U	U	0.61 F	0.53 F	U	U	U	U	U	U	U	U	U			
calcium		1,100	88,600	96,000	84,400	92,000	90,000	99,000	96,000	89,000	96,000	82,000	88,000	70,000	93,000	89,000			
chromium	50	10	13.7	U	49.1	4.5 F	52	1.7F	120	U	15	1.7 F	63	U	86	15			
cobalt	200	60	1 F 4.3 F	U	U	U U	U	U	U	U	7.2 F	U	U 17	U U	U 9.6 F	U 4.5 F			
copper	300	10 200	4.3 F	U U	5.06 F 2.350	5.9 F	13 5,300	U	9.5F 3.700	U	2.900	U	9,500		3,700	4.5 F 3,000			
iron lead	300 25	200	1,960 U	U	2,350 U	5.9 F U	5,300 U	U	3,700 U	U	2,900 U	U	9,500 8.2 F	U U	3,700 U	3,000 U			
	35,000	1,000	10,600	10,500	10.000	11.000	12,000	11.000	12,000	11,000	12,000	9,500	8.2 F 12.000	8,900	12,000	12,000			
magnesium manganese	35,000	1,000	459	1,720 J	1,170	310	1,100	1,400	2,100	47	540	640	1,500	12	2,200	520			
	300	15	U	1,720 J	U U	U	U	U U	3.5F	U U	U U	U	U U	U	2,200 U	U			
molybdenum nickel	100	20	7.1 F	12.9 F	12.6 F	10 F	25	3.7F	29	U	7.8 F	2.7 F	19 F	U	17 F	5.6 F			
potassium		1,000	1,960	1,530	1,580	1,300	2,000	1,700	2,000	1,200	1,700	1,400	3,000	830 F	1,700	2,200			
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
sodium	20,000	1,000	5,060	15,400 J	8,430 J	7,100 J	5,400 J	4,000J	1,900J	10,000	11,000	10,000 B	7,000 B	4,000	12,000	5,800			
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
vanadium		10	3.1 F	U	2.94 F	U	6.3 F	U	4.9F	U	3.5 F	U	13	U	5.3 F	5.6 F			
zinc	2,000	20	7.4 F	30.2 B	35.9 B	U	15 F	40.0	49.0	11 F	17 F	13 F	30.0	11 F	21 B	21			
mercury	0.7	1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Leachate Indicators (mg/L)	•		•									•							
alkalinity, Total		10	285	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
ammonia	2	0.2	0.1	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
BOD5		2.4	U	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
bromide	2	0.5	U	N	S	N	NS	N	IS	1	NS	N	IS	N	NS	NS			
COD		5	U	N	S	N	NS	N	IS	1	NS	N			NS	NS			
chloride	250	1	23.1	N			NS	N			NS	N			NS	NS			
color	15	5	20	N			NS	N			NS	N			NS	NS			
cyanide, Total	200	0.02	U	N			NS	N			NS	N			NS	NS			
fluoride	1.5	1	NA	N			NS	N			NS	N			NS	NS			
hardness, Total		1	242	N			NS	N			NS	N			NS	NS			
nitrate	10	1	1.1	N			NS	N			NS	N			NS	NS			
TKN	1	1	0.39	N			NS	N			NS	N			NS	NS			
phosphate		1	NA	N			NS	N			NS	N			NS	NS			
sulfate	250	1	5.9	N			NS	N			NS	N			NS	NS			
TDS	500	10	311	N			NS	N			NS	N			NS	NS			
TOC		1	1.2 B	N			NS	N			NS	N			NS	NS			
phenolics, Total		0.005	U	N	S	N	NS	N	IS	I	NS	N	IS	N	NS	NS			

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								LF7N	IW-27					
Date of Collection			2/7/2003	6/18/2003	9/9/2003	12/3/2003	3/25/2004	6/23/2004	9/14/2004	12/8/2004	3/30/2005	6/21/2005	9/7/2005	12/15/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW2713AA	LF7MW2707BB	LF7M2713CA	LF7M2713DA	LF7M2713EA	LF7M2713FA	LF7M2713GA	LF7M2713HA	LF7M2713IA	LF7M2713JA	LF7M2713KA	LF7M2713LA
Depth to Water (ft)	1		6.29	6.59	7.91	5.82	6.12	7.44	7.74	6.86	5.75	8.39	10.83	7.65
VOCs (µg/L)	•			,			<u>'</u>		<u>'</u>	<u>'</u>		•		
1,1,1-trichloroethane	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	UM	NA	NA	NA	U	NA	NA	NA
benzene	1	0.1	U	U	U	U	UM	NA	NA	NA	U	NA	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	UM	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	UM	NA	NA	NA	U	NA	NA	NA
trichloroethene (TCE)	5*	1	0.69 F	0.47 F♦	1.1	0.84 F	0.53 M	0.69 F	0.94 F	0.64 F	U	0.77 F	0.83 F	0.68 F
toluene	5*	1	0.29 F	U	U	U	UM	NA	NA	NA	U	NA	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	UM	U	U	U	U	U	U	U
Metals (µg/L) [Dissolved / Total]	1													
aluminum	2,000	200	34.5 F	58.7 F	62.4 F	246	U	U	69.7 F	U	77.8 F	U	101 F	36.4 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	18.0 F	18.4 F♦	18.4 F	17.9 F	17.5 F	16.6 F	18.2 F	16.6 F	20 F	16.1 F	16.9 F	15.7 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	110	U	56 ♦	NA	NA	11.7	NA	NA	NA	11.2	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	81,375.5	75,900 ♦	75,800.0	74,500	74,600	74,500	76,200	76,900	57,200	72,600	77,200	77,100
chromium	50	10	2.0 F	1.7 F	U	1.9 F	U	0.9 F	0.9 F	U	1 F	U	U	0.9 F
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	1.9 F	U	U	U	U	U	3 F	U	2.2 F	U	U	U
iron	300	200	72.4 F	38.8 F	44.8 F	273 M	62.6 F	U	80.2 F	U	89.2 F	U	124 F	43.4
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	10,190.9	9,120	8,840	9,060	9,080	8,580	9,110	8,890	6,470	8,560	8,910	9,310
manganese	300	10	13	8.4 F	7.4 F	43.4	1.7 F	1.1 F	8.3 F	0.7 F	7.3 F	2.2 F	11.1	3.2 F
molybdenum		15	3.1 F	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	9.3 F	6.0 F	21.6	2.6 F	9.4 F	11.3 F	6.2 F	5.2 F	14.8 F	13.9 F	14.1 F
potassium		1,000	1,575.2	2,140	2,490	2,360	1,950	2,150	2,470	2,060	2,730	2,070	2,130	1,890
selenium		30	6.7 F	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	6,648.1	5,420 ♦	5,910	6,290	5,990	5,890	5,630	4,080	3,960	4,220	3,590	3,550
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	7.3 F	U	U	3.1 F	U	U	U	U	U	U	U	2.8 F
mercury	0.7	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
Leachate Indicators (mg/L)	_	10	224	220	210	210	21716	155.0	224	246	172	222	220	220
alkalinity, Total		10	234	220 ♦	210	219	217 M	177 B	224	246	172	233	230	230
ammonia	2	0.2	U	U	U	U	U	U	U	0.027 F	U	U	U	U
BOD5		2.4	U	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	UM	U	U	U	U
COD		5	U	U	U	UM	U	3.7 UM	U	U	U	5.3 F	U	U
chloride	250	1	3.7045	2	2.8	3.1 M	2.5	1.9	2	1.6 M	1.1	1.6	1.6	1.8
color	15	5	5 R	0	NA	NA	U	NA	NA	NA	10 J	NA	NA	NA
cyanide, Total	200	0.02	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
fluoride	1.5	1	U	NA 207	NA 216	NA 250	NA 220	NA 200	NA 225	NA 248	NA 166	NA 240	NA 251	NA 150
hardness, Total		1	243.16	297	216	250	220	208	235	248	166	240	251	159
nitrate	10	1	1.5298	1.4	2	2	1.9	1.8	1.4	1.2 M	0.21 F	1.2	0.99 F	0.98 F
TKN	1	1	U	U	U	UM	U	0.20 B	0.34	0.47	0.26	0.27	0.31	0.66 B
phosphate		1	0.0466 R	NA	NA	NA 12	NA 12.7	NA	NA	NA	NA 2.0	NA	NA	NA
sulfate	250	1	11.5627	14.3	11	12	12.7	10.4	9.2	8.9 M	2.9	7.3	7.1	10
TDS	500	10	247	302	239	257	231	238	275	271	167	257	300	236
TOC		1	0.81 F	U	U	U	0.85 F	U	0.87 F	0.86 F	1.6	1	1.8	U
phenolics, Total		0.005	U	U	U	UM	U	U	U	0.0044 F	U	0.0050 F	U	U

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7N	IW-27				
Date of Collection	1		3/10/2006	9/13/2	2006	3/29	9/2007	9/25/	2007	3/27	/2008	9/16/2008	4/21/2009	3/25/2010		
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2713MA	LF7M27	713NA	LF7M	12713OA	LF7M2	2713PA	LF7M2	2713QA	LF7M2713RA	LF7M2713SA	LF7M2713TA		
Depth to Water (ft)	1		6.57	8.6	7	4	1.99	9.	28	5.	56	8,90	6.62	7.01		
VOCs (µg/L)						1									<u> </u>	
1,1,1-trichloroethane	5*	1	NA	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
1,1-dichloroethene	5*	1	NA	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
benzene	1	0.1	NA	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
cis-1,2-dichloroethene	5*	1	U	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
methylene chloride	5*	1	NA	NS	3	1	NS	N	S	N	IS	NS	NS	NS		
trichloroethene (TCE)	5*	1	0.48 F	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
toluene	5*	1	NA	NS	3	1	NS	N	S	N	IS	NS	NS	NS		
trans-1,2-dichloroethene	5*	1	U	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
Metals (µg/L) [Dissolved / Total]	1											,			,	
aluminum	2,000	200	U	50.2 F	96.4 F	62 F	160 F	U	170F	U	190 F	400 B♦	U	160 F♦		
antimony	3	50	U	U	U	U	U	U	U	U	1.7 F	U	U	U		
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U		
barium	1,000	50	15 F	15.9 F	15.4 F	19 F	20 F	16F	17F	14 F	15 F	17 F◆	14 F	14 F		
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U		
boron, Total	1,000	110	8.9 F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
cadmium	5	5	U	U	U	0.67 F	0.49 F	U	U	U	U	U	U	U		
calcium		1,100	81,600	70,700	70,500	65,000	68,000	70,000	73,000	74,000	76,000	76,000♦	73,000	73,000		
chromium	50	10	1.3 F	1.47 F	2.11 F	4.1 F	4.3 F	1.9F	3.4F	U	3.6 F	3.3 F◆	U	U		
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U		
copper	200	10	U	U	U	U	U	U	U	U	U	2.9 F♦	U	U		
iron	300	200	U	U	74.6 F	U	110 F	6.1F	150F	U	210	390♦	U	110 F◆		
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U		
magnesium	35,000	1,000	9,350	8,250	8,100	7,200	7,500	8,400	8,900	9,100	9,400	9,000 B	8,900	9,000		
manganese	300	10	0.6 F	U	5.3 F	U	6.5 F	U	12	U	16	32 J♦	U	7.0 F◆		
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U		
nickel	100	20	13.3 F	17 F	13.9 F	2.6 F	4.0 F	25.0	29.0	30	40	38♦	24	29		
potassium		1,000	1,610	1,920	1,910	3,000	3,100	2,200	2,300	1,700	1,800	2,000♦	1,400	1,800		
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U		
silver	50	10	U	U	U	U	U	U	U	U	U	0.99 F♦	U	U		
sodium	20,000	1,000	4,330	2,920	2,930	2,800	3,000	3,800	4,000	3,400	3,500	3,000 B♦	2,600	2,700		
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U		
vanadium		10	U	U	U	U	U	U	U	U	U	1.2 F◆	U	U		
zinc	2,000	20	U	16.7 F	23.3 B	U	U	26J	21J	11 F	11 F	14 F	13 F	6.0 F♦		
mercury	0.7	1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Leachate Indicators (mg/L)													•	·	<u> </u>	
alkalinity, Total		10	231	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
ammonia	2	0.2	0.016 F	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
BOD5		2.4	U	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
bromide	2	0.5	U	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
COD		5	U	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
chloride	250	1	1.3	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
color	15	5	3	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
cyanide, Total	200	0.02	U	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
fluoride	1.5	1	NA	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
hardness, Total		1	214	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
nitrate	10	1	1.2	NS	3	1	NS	N	IS	N	IS	NS	NS	NS		
TKN	1	1	0.26	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
phosphate		1	NA	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
sulfate	250	1	10.5	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
TDS	500	10	241	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		
TOC		1	0.56 F	NS			NS	N			IS	NS	NS	NS		
phenolics, Total		0.005	UJ	NS	S	1	NS	N	IS	N	IS	NS	NS	NS		

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								I F7N	1W-28					
Date of Collection	-		3/18/2003	6/17/2003	9/10/2003	12/4/2003	3/25/2004	6/24/2004	9/15/2004	12/9/2004	3/30/2005	6/21/2005	9/7/2005	12/15/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW2802AA	LF7MW2807BB	LF7M2806CA	LF7M2810DA	LF7M2806EA	LF7M2806FA	LF7M2810GA	LF7M2810HA	LF7M2810IA	LF7M2810JA	LF7M2810KA	LF7M2810LA
Depth to Water (ft)	1		2.15	3.32	1.31	0.42	0.00	0.44	0.67	0.00	0.00	1.00	1.07	0.64
VOCs (µg/L)			2110	5.62	101	0.12	0.00	V	0.07	0100	0.00	1100	1107	0.01
1,1,1-trichloroethane	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
benzene	1	0.1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	0.08 F	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
Metals (μg/L) [Dissolved / Total]					<u> </u>									
aluminum	2,000	200	128.9 F	62.4 F	480	695	347	U	149 F	232	143 F	800	222	125 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	3.9 F	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	15.9 F	17.7 F	25.1 F	24.9 F	14 F	50.2	22.5 F	19.4 F	18.1 F	26.4 F	28.3 F	21.9 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	110	36.7 F	102 B	NA	NA	U	NA NA	NA NA	NA NA	27.4	NA	NA	NA NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	71,228.7	64,400	62,300	54,700	44,300	85,900	62,700	56,400	50,900	55,300	75,800	63,300
chromium	50	10	1.0 F	1.4 F	U	1.4 F	1.5 F	U	U	U	U	1 F	U	U
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	2.0 F	U	2.4 F	2.8 F	U	5.2 F	U	U	1.7 F	2.2 F	U	2.3 F
iron	300	200	249.3	U	512	693	411	57.2 F	138 F	275	169 F	750	227	148 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	7,315.6	6,440	6,360	5,610	5,180	9,540	6,500	6,040	5,660	5,690	7,960	6,870
manganese	300	10	63.4	11	58	62.9	44.3	61	77	71.9	53.8	122	47.4	51.1
molybdenum		15	5.0 F	U	Ū	U	Ü	U	Ü	U	U	Ü	U	U
nickel	100	20	U	U	U	U	U	U	U	1.6 F	U	3.4 F	U	U
potassium		1,000	2,332	2,820	3,330	2,540	1,780	3,700	3,280	2,900	2,350	3,430	3,070	2,160
selenium		30	7.1 F	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	851.5 F	917 F	950	1,100	616 F	1,300	1,190	536 F	507 F	370	943 F	430 F
thallium	0.5	80	8.2 F	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	1.6 F	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	5.8 F	U	U	50.7	8.4 F	19.5 F	11.6 F	15.1 F	11.8 F	16.2	11 F	13 F
mercury	0.7	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
Leachate Indicators (mg/L)									,					
alkalinity, Total		10	213	189	179	159	140	210	184	168	146	168	206	220
ammonia	2	0.2	U	U	0.086	U	U	U	0.065	0.027 F	U	U	U	U
BOD5		2.4	7	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U
COD		5	U	U	U	U	U	8.1 F	U	U	U	U	U	3.4 F
chloride	250	1	0.7607	U	U	U	1.8	0.86 F	0.75 F	39.6	0.49 F	U	0.95 F	0.63 F
color	15	5	U	0	NA	NA	U	NA	NA	NA	2.5 J	NA	NA	NA
cyanide, Total	200	0.02	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
fluoride	1.5	1	0.07 F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hardness, Total		1	235.7	U	195	240	164	252	195	172	U	192	223	136
nitrate	10	1	0.2659	U	2.2	U	U	0.034 F	0.09 F	0.56 F	0.17 F	0.14 F	0.67 F	0.12 F
TKN	1	1	0.73	0.25 B	U	U	0.11 F	0.37 B	0.084 F	Ü	0.6	0.17 F	0.4	0.29 B
phosphate		1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sulfate	250	1	5.285	9.2	5.1	3.8	17.8	5.4	6	20.5	3	3.6	20.8	6.7
TDS	500	10	206	215	203	174	127	212	156	152	144	190	309	242
TOC		1	1.36	U	U	U	0.55 F	U	0.81 F	0.9 F	0.82 F	0.91	1.4	U
phenolics, Total		0.005	0.00408 F	U	U	U	0.0065 F	0.012	U	U	U	0.0040 F	U	U

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7N	IW-28			
Date of Collection			3/10/2006	9/13/2	2006	3/29	9/2007	9/25/	2007	3/28	/2008	9/17/2008	4/22/2009	4/1/2010	
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2810MA	LF7M28	810NA	LF7M	2810OA	LF7M2	2810PA		2810QA	LF7M2810RA	LF7M2810SA	LF7M2810TA	
Depth to Water (ft)			0.00	0.3	60	0	.00	1.4	48	0.	.00	0.80	0.33	0.00	
VOCs (µg/L)	'												,	<u>'</u>	
1,1,1-trichloroethane	5*	1	NA	NS	S	1	NS	N	IS	N	NS	NS	NS	NS	
1,1-dichloroethene	5*	1	NA	NS	S	1	NS	N	S	N	NS	NS	NS	NS	
benzene	1	0.1	NA	NS	S	1	NS	N	IS	N	NS	NS	NS	NS	
cis-1,2-dichloroethene	5*	1	U	NS	S	1	NS	N	IS		NS	NS	NS	NS	
methylene chloride	5*	1	NA	NS	S	1	NS	N	S	N	NS	NS	NS	NS	
trichloroethene (TCE)	5*	1	U	NS			NS	N			NS	NS	NS	NS	
toluene	5*	1	NA	NS			NS	N			NS	NS	NS	NS	
trans-1,2-dichloroethene	5*	1	U	NS	S	1	NS	N	IS	N	NS	NS	NS	NS	
Metals (µg/L) [Dissolved / Total]	ı									,					
aluminum	2,000	200	199 F	43.7 F	722	U	270	U	250	U	230	240 B	77 F	1,700	
antimony	3	50	U	U	U	U	U	U	U	U	1.9 F	U	U	U	
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	
barium	1,000	50	22.5 F	52.4	67.8	19 F	21 F	26 F	28 F	14 F	19 F	64	30 F	47 F	
berylium	3	4	U	U	U	U	U	U	U	U	U	0.39 F	U	U	_
boron, Total	1,000	110	34.5	NA	NA	NA	NA	NA	NA	NA	NA	U	NA	NA	
cadmium	5	5	U	U	U	U	0.53 F	U	U	U	U	NA	U	U	
calcium		1,100	69,600	76,900	84,600	53,000	54,000	63,000	62,000	63,000	65,000	71,000	71,000	98,000	
chromium	50	10	1.5 F	U	6.25 F	U	4.8 F	U	2.8 F	U	1.9 F	11	U	31	
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	
copper	200	10	U	U	4.06 F	U	U	U	U	U	U	2.7 F	U	5.1 F	
iron	300	200	290	U	970	U	290	6.8F	280	U	360	440	270	3,100	
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	
magnesium	35,000	1,000	7,370	8,110	8,690	6,000	6,000	7,400	7,200	7,500	7,700	7,800	7,800	12,000	
manganese	300	10	61.7	2.99 F	345	U	98	U	140	U	140	150	170	520	
molybdenum		15	U	4.55 F	U	U	U	U	U	U	U	U	U	U	
nickel	100	20	U	2.48 F	6.29 F	U	2.1 F	1.3 F	2.5 F	U	2.4 F	11 F	U	19 F	
potassium		1,000	2,250	3,420	3,650	1,800	1,900	2,300	2,200	1,800	1,800	2,500	1,700	2,600	
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U	
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	
sodium	20,000	1,000	889 F U	1,380 U	1,520 U	720 F U	750 F	810 F U	780 F U	1,600 U	1,600	4,900 B U	8,100	5,900 U	
thallium	0.5	80					U				U		U U		
vanadium	2,000	10 20	U 12.8 F	U 56.1 B	1.26 F 76.9 B	U	U 17 F	U 36.0	U 63.0	U 14 F	U 26	1.2 F 30 B	29 B	3.4 F 47	
zinc mercury	0.7	1	12.8 F	NA NA	70.9 B NA	NA.	NA	NA	NA	NA	NA	NA	NA	U U	
Leachate Indicators (mg/L)	0.7	1		INA	INA	IVA	IVA	11/1	INA	IVA	IVA	IVA	IVA.		
alkalinity, Total		10	190	NS	5	,	NS	N	IS	N	NS	NS	NS	NS	
ammonia	2	0.2	0.013 F	NS NS			NS	N			NS	NS	NS	NS NS	
BOD5		2.4	U.013 F	NS			NS	N			NS	NS NS	NS NS	NS NS	
bromide	2	0.5	U	NS NS			NS	N			NS	NS	NS	NS NS	
COD		5	U	NS NS			NS	N			NS	NS NS	NS NS	NS NS	
chloride	250	1	0.19 F	NS NS			NS	N			NS	NS	NS	NS NS	
color	15	5	U.191	NS			NS	N			NS	NS NS	NS	NS NS	
cyanide, Total	200	0.02	U	NS			NS	N			NS	NS	NS	NS	
fluoride	1.5	1	NA	NS			NS	N			NS	NS	NS	NS	
hardness, Total		1	176	NS			NS	N			NS	NS	NS	NS	
nitrate	10	1	0.097 F	NS			NS	N			NS	NS	NS	NS	
TKN	1	1	0.25	NS			NS	N			NS	NS	NS	NS	
phosphate		1	NA	NS			NS	N			NS	NS	NS	NS	
sulfate	250	1	4.3	NS			NS	N			NS	NS	NS	NS	
TDS	500	10	190	NS			NS	N			NS	NS	NS	NS	
TOC		1	U	NS			NS	N			NS	NS	NS	NS	
phenolics, Total		0.005	U	NS			NS	N			NS	NS	NS	NS	

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								I F7N	1W-29					
Date of Collection			2/6/2003	6/17/2003	9/9/2003	12/3/2003	3/25/2004	6/23/2004	9/14/2004	12/8/2004	3/30/2005	6/21/2005	9/6/2005	12/14/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW2923AA	LF7MW2920BB	LF7M2923CA	LF7M2923DA	LF7M2923EA	LF7M2923FA	LF7M2923GA	LF7M2923HA	LF7M2923IA	LF7M2923JA	LF7M2923KA	LF7M2923LA
Depth to Water (ft)	1		17.71	16.17	17.21	16.59	16.57	16.45	17.40	18.17	17.25	17.28	19.21	18.37
VOCs (µg/L)			1,11,1	10117	1/121	10.05	1007	10110	17710	10117	17120	17120	19121	10107
1,1,1-trichloroethane	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
benzene	1	0.1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	0.16 F	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
Metals (μg/L) [Dissolved / Total]		-												
aluminum	2,000	200	22.5 F	43.5 F	U	31.8 F	54.4 F	U	U	U	Ü	Ü	60.5 F	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	4.8 F	5.8 F	4.3 F	5.3 F	5.6 F	5.3 F	4.3 F	3.5 F	3.9 F	3.5 F	3.1 F	35.4 F
berylium	3	4	4.8 F	U U	4.51°	U	U	U	4.5 F	U	U	U	U	U
boron, Total	1,000	110	U	48.9 B	NA NA	NA NA	4.9 F	NA NA	NA NA	NA NA	5.7 F	NA NA	NA NA	NA NA
cadmium	5	5	U	48.9 B U	U	U	4.9 F U	U	U	U	3.7 F U	U	0.9 F	U
		1,100	4,498.5	3,060	4,000	3,600	3,240	3,290	3,920	4,030	3,620		4,110	112,000
calcium	50	1,100	4,498.5 0.9 F	3,000 U	4,000 U	3,600 U	3,240 U	3,290 U	3,920 U	4,030 U	3,620 U	3,120 U	4,110 U	8.9 F
chromium								U	U					
cobalt	200	60	U	U	U	U	U	U		U	U U	U	U	U
copper	200	10		U	U	U			2.4 F	U		U	1.9 F	1.6 F
iron	300	200	32.8 F	U	U	U	70.4 F	50.9 F	U	U	24.7 F	U	U	46 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	1,224.9	773 F	1,040.0	938 F	842 F	835 F	1,040.0	1,040	954 F	850	1,000	14,000
manganese	300	10	5.9 F	3.3 F	2.9 F	3.4 F	4.7 F	2.5 F	2.2 F	1.2 F	1.3 F	0.90 F	6.6 F	379
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	U	U	U	U	2.4 F	U	1.8 F
potassium		1,000	210.2 F	446 F	612 F	558 F	445 F	447 F	570 F	585 F	476 F	430 F	544 F	1,570
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	2,229.1	1,490	1,680	1,750	1,530	1,480	1,720	1,800	1,680	1,100	1,750	59,800
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	5.7 F	U	U	3.5 F	U	U	U	U	U	U	9.9 F	3.5 F
mercury	0.7	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
Leachate Indicators (mg/L)	T	10			••		655	aug P	7.05		505	225	10	10.4
alkalinity, Total		10	13	U	U	U	6.7 F	313 B	7.2 F	9.2 F	5.2 F	7.7 F	10	10.4
ammonia	2	0.2	U	U	U	U	U	0.023 F	0.011 F	U	U	0.76	0.012 F	U
BOD5		2.4	U	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U
COD		5	5.43	U	U	U	U	U	11.9	U	U	U	U	U
chloride	250	1	1.5687	1.1	1.5	1.7	2.5	1.4	1.5	1.5	1.3	1.2	1.8	80.9
color	15	5	U	0	NA	NA	U	NA	NA	NA	12 J	NA	NA	NA
cyanide, Total	200	0.02	0.00183 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
fluoride	1.5	1	0.0397 F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hardness, Total		1	19.61	U	28	68	16	48	30	24	18	36	8	321
nitrate	10	1	0.2163	U	U	U	1.9	0.029 F	U	U	U	U	0.03 F	0.33 F
TKN	1	1	U	0.25 B	U	U	U	0.24 B	0.42	0.25	0.8	0.098 F	U	0.076 F
phosphate		1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sulfate	250	1	7.7013	7.2	7.3	7.5	12.7	7.2	7.3	7.2	7.4	7.1	7.2	32
TDS	500	10	10.0 SU	40	21	33	221	17 F	27	46	27	47	30	95
TOC		1	0.59 SU	U	U	U	U	U	U	U	U	U	U	U
phenolics, Total		0.005	U	U	U	U	U	U	U	0.0062 F	U	0.01	U	U

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7N	4W-29			
Date of Collection	-		3/10/2006	9/12/2006		3/28	3/2007	9/24/	/2007	3/27/	/2008	9/16/2008	4/17/2009	3/25/2010	
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M2923MA	LF7M2923N	A	LF7M	2923OA	LF7M2	2923PA		2923QA	LF7M2923RA	LF7M2923SA	LF7M2923TA	
Depth to Water (ft)	1		16.52	17.48		15	5.30	18	.50	14	.14	18.04	14.96	17.95	
VOCs (µg/L)												<u>'</u>	•	<u>'</u>	
1,1,1-trichloroethane	5*	1	NA	NS		1	NS	N	IS	N	NS	NS	NS	NS	
1,1-dichloroethene	5*	1	NA	NS		1	NS	N	IS	N	NS	NS	NS	NS	
benzene	1	0.1	NA	NS		1	NS	N	IS	N	NS	NS	NS	NS	
cis-1,2-dichloroethene	5*	1	U	NS		1	NS	N	IS		NS	NS	NS	NS	
methylene chloride	5*	1	NA	NS			NS	N			NS	NS	NS	NS	
trichloroethene (TCE)	5*	1	U	NS			NS	N			NS	NS	NS	NS	
toluene	5*	1	NA	NS			NS	N			NS	NS	NS	NS	
trans-1,2-dichloroethene	5*	1	U	NS		1	NS	N	IS	N	NS	NS	NS	NS	
Metals (µg/L) [Dissolved / Total]			T						1						
aluminum	2,000	200	29.6 F		7 F	77 F	180 F	U	180 F	53 F	60 F	260 B	U	190 F	
antimony	3	50	U		U	U	U	U	U	U	1.7 F	U	U	U	
arsenic	25	30	U		U	U	U	U	U	U	U	U	U	U	
barium	1,000	50	5.8 F		.1 F	12 F	13 F	5.7F	6.5F	29 F	29 F	11 F	21 F	4.4 F	
berylium	3	4	U		U	U	U	U	U	U	U	U	U	U	
boron, Total	1,000	110	3.6 F		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
cadmium	5	5	U		U	1.0 F	1.5 F	U	U	U	U	U	U	U	
calcium		1,100	3,150		80 B	2,800	2,900	3,900	4,200	2,300	2,200	4,000 B	2,100	4,100	
chromium	50	10	0.8 F		U	3.5 F	6.3 F	U	U	U	3.4 F	U	U	U	
cobalt		60	U		U	U	U	U	U	U	U	U	U	U	
copper	200	10	U		U	U	U	U	U	U	U	U	U	U	
iron	300	200	29.8 F		3 F	7.6 F	110 F	39F	130F	U	23 F	160 F	U	76 F	
lead .	25	25	U		U	U	U	U	U	U	U	U	U	U	
magnesium	35,000 300	1,000 10	862 F 3.2 F		940 18 F	730 4.4 F	780 F 9.2 F	1,000 U	1,100 4.9F	380 F 14	390 F 14	1,100 6.2 F	510 F 7.3 F	1,100 3.2 F	
manganese	1	15	3.2 F		U	4.4 F				14 U	14 U	0.2 F U	U U	3.2 F U	
molybdenum nickel	100	20	U		U	U	U	U U	U U	U	2.7 F	U	U	U	
potassium		1,000	358		10 F	U	480 F	580F	590F	320 F	2.7 F 310 F	480 F	240 F	630 F	
selenium		30	U		U	U	U	U	U	U 3201	U	U U	U U	U	
silver	50	10	U		U	U	U	U	U	U	U	U	U	U	
sodium	20,000	1,000	1,830		450	1,400	1,300	1,800	1,800	1,500	1,800	1,700 B	1,200	2,000	
thallium	0.5	80	U		U	U	U	U	U	U	U	U	U	U	
vanadium		10	U		U	U	U	U	U	U	U	U	U	U	
zinc	2,000	20	3.2 F		i.5 B	U	U	30J	23J	15 F	14 F	23	14 F	14 F	
mercury	0.7	1	U		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Leachate Indicators (mg/L)								1				1			
alkalinity, Total		10	8.7 F	NS	1	1	NS	N	IS	N	NS	NS	NS	NS	
ammonia	2	0.2	0.023 F	NS			NS	N			NS	NS	NS	NS	
BOD5		2.4	U	NS			NS	N			NS	NS	NS	NS	
bromide	2	0.5	U	NS			NS	N			NS	NS	NS	NS	
COD		5	U	NS		1	NS	N	IS		NS	NS	NS	NS	
chloride	250	1	1.1	NS		1	NS	N	IS	N	NS	NS	NS	NS	
color	15	5	U	NS		1	NS	N	IS	N	NS	NS	NS	NS	
cyanide, Total	200	0.02	U	NS		1	NS	N	IS	N	NS	NS	NS	NS	
fluoride	1.5	1	NA	NS		1	NS	N	IS	N	NS	NS	NS	NS	
hardness, Total		1	4.4	NS		1	NS	N	IS	N	NS	NS	NS	NS	
nitrate	10	1	0.033 F	NS			NS		IS	N	NS	NS	NS	NS	
TKN	1	1	0.22	NS		1	NS	N	IS	N	NS	NS	NS	NS	
phosphate		1	NA	NS		1	NS	N	IS	N	NS	NS	NS	NS	
sulfate	250	1	6.9	NS		1	NS	N	IS	N	NS	NS	NS	NS	
TDS	500	10	44	NS		1	NS	N	IS	N	NS	NS	NS	NS	
TOC		1	U	NS		1	NS	N			NS	NS	NS	NS	
phenolics, Total		0.005	0.045	NS		1	NS	N	IS	N	NS	NS	NS	NS	

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								I E7A	4W-30					
Date of Collection			2/6/2003	6/17/2003	9/10/2003	12/3/2003	3/24/2004	6/23/2004	9/14/2004	12/9/2004	3/30/2005	6/21/2005	9/7/2005	12/14/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW3011AA	LF7MW3011BB	LF7M3007CA	LF7M3011DA	LF7M3008EA	LF7M3008FA	LF7M3004GA	LF7M3004HA	LF7M3004IA	LF7M3004JA	LF7M3004KA	LF7M3004LA
Depth to Water (ft)			2.99	3.49	3.82	3.02	2.90	3.40	3.64	3.11	2.94	3.88	4.32	3.61
VOCs (µg/L)			2,77	3.49	3.62	3.02	2,50	3.40	3.04	3.11	2,34	3.66	4.32	3.01
1,1,1-trichloroethane	5*	1	0.17 F	U	U	U	U	NA	NA	NA	U	NA	NA	NA
1,1-dichloroethene	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
benzene	1	0.1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	U	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trichloroethene (TCE)	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	0.20 F	U	U	U	U	NA	NA	NA	U	NA	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	U	U	U	U	U	U	U	U	U	U
Metals (µg/L) [Dissolved / Total]	l ¹						,	,	•		<u>'</u>	•	,	
aluminum	2,000	200	55.2 F	108 F	40.2 F	U	32.6 F	U	U	U	U	U	U	167 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	23.6 F	29.4 F	31.3 F	22.5 F	30 F	28.8 F	31.2 F	32.1 F	33 F	32.3 F	32.8 F	4.3 F
berylium	3	4	U	U	U	U	0.4 F	U	U	U	U	U	U	U
boron, Total	1,000	110	U	52.2 B	NA	NA	8.9 F	NA	NA	NA	9.2 F	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	93,405.9	97,600	96,300	96,800	114,000	113,000	118,000	125,000	134,000	123,000	89,300	4,210
chromium	50	10	4.5 F	88.1	7.7 F	5.6 F	510	214	38.3	2.4 F	53.8	5.4 F	1.7 F	2.1 F
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	3.5 F	U	U	16.4	6.3 F	3.9 F	U	2.8 F	U	U	2.9 F
iron	300	200	275.6	496	114 F	41.5 F	2,630	696	175 F	U	463	26.9 F	U	166 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	12,774.6	13,600	13,500	13,300	15,600	14,700	15,400	15,700	16,600	15,700	10,300	1,130
manganese	300	10	355.6	314	198	85.6	196	350	461	248	268	89.6	391	9.4 F
molybdenum		15	4.3 F	U	U	U	8.9 F	3.6 F	U	U	0.9 F	U	U	U
nickel	100	20	6.2 F	13.5 F	26.3	16.6 F	54	12.5 F	10.9 F	2.5 F	11.2 F	3.9 F	3 F	U
potassium		1,000	735.8 F	1,500	1,710	1,500	1,600	1,430	1,740	1,630	1,460	1,540	1,420	594 F
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	4,621.1	12,300	14,700	5,110	34,300	14,600	23,700	24,300	24,400	37,100	52,800	1,690
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	7.3 F	U	U	U	3.6 F	U	U	U	2.7 F	U	U	6.7 F
mercury	0.7	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
Leachate Indicators (mg/L)	1					1	1	1			1			
alkalinity, Total		10	226	264	261	240	282	266 B	66.6 F	380	332	381	264	336
ammonia	2	0.2	U	U	0.072	U	U	U	U	U	U	0.12	0.17	U
BOD5		2.4	U	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U
COD		5	U	U	U	U	U	7 F	52	14.8	U	U	U	U
chloride	250	1	41.5736	27.3	33.7	47.2	76.6	31.7	48.8	0.51 F	62.4	52.5	77.4	1.9
color	15	5	U	0	NA	NA	40	NA	NA	NA	UJ	NA	NA	NA
cyanide, Total	200	0.02	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
fluoride	1.5	1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
hardness, Total		1	286.31	30.4	341	320	400	328	370	484	384	384	285	24.7
nitrate	10	1	1.0192	3.6	U	2.6	2.2	1.8	0.74 F	0.25 F	1.9	0.96 F	0.09 F	U
TKN	1	1	U	0.27 B	0.22	U	0.09 F	0.49 B	0.37	0.17 F	0.34	0.5	0.37	0.097 F
phosphate		1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
sulfate	250	1	10.4815	15.3	12.8	13.2	21.8	27.7	15.5	5	35.3	29.8	22.6	8.1
TDS	500	10	276	379	353	398	476	395	469	438	451	500	462	542
TOC		1	1.15	U	U	U	1.2	U	1.1	1.6	1.1	1.6	1.4	0.91 F
phenolics, Total		0.005	U	U	U	U	U	U	U	0.0069 F	U	0.0070 F	U	U

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7N	MW-30				
Date of Collection			3/10/2006	9/13/	/2006	3/29/	/2007	9/24	/2007	3/27/	2008	9/16/2008	4/17/2009	3/25/2010		
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M3004MA	LF7M3		LF7M3		LF7M		LF7M3		LF7M3001RA	LF7M3004SA	LF7M3010TA		
Depth to Water (ft)			2.66	3.0	60	2.	28	4.	13	2.	57	3.79	3.20	3.09		
VOCs (μg/L)			2.00		-				10			3.17	3,20	3.07		
1,1,1-trichloroethane	5*	1	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		
1,1-dichloroethene	5*	1	NA	N		N			IS		IS	NS	NS	NS		l
benzene	1	0.1	NA	N		N			IS		IS	NS	NS	NS		ĺ
cis-1,2-dichloroethene	5*	1	U	N		N			IS		IS	NS	NS	NS		l
methylene chloride	5*	1	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		l
trichloroethene (TCE)	5*	1	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		l
toluene	5*	1	NA	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		l
trans-1,2-dichloroethene	5*	1	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		
Metals (µg/L) [Dissolved / Total]	1															
aluminum	2,000	200	U	U	U	48 F	66 F	U	U	U	U	U	U	150 F		l
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U		I
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U		I
barium	1,000	50	37.9 F	41.1 F	40.1 F	33 F	32 F	57	58	31 F	32 F	59	37 F	43 F		I
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U		
boron, Total	1,000	110	8.3 F	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		I
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U		l
calcium		1,100	143,000	157,000	161,000	140,000	140,000	190,000	200,000	130,000	130,000	210,000	130,000	140,000		l
chromium	50	10	8.7 F	2.7 F	4.76 F	4.8 F	14	3F	7.8F	2.3 F	8.5 F	4.7 F	18	43		ĺ
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U		
copper	200	10	U	U	U	U	U	U	U	U	U	U	U	U		ĺ
iron	300	200 25	70.4 F U	U U	13.1 F U	6.7 F U	49 F U	U U	29F U	U U	67 F U	47 F U	140 F U	390 U		ĺ
lead	25										19,000	28,000	19,000	23,000		ĺ
magnesium manganese	35,000 300	1,000 10	19,600 302	20,600 116	21,000 129	18,000 38	18,000 180	23,000 190	24,000 480	19,000 57	340	28,000 500	19,000 580	2,300		ĺ
molybdenum	300	15	U U	U	U U	U	U	U U	U	U	U U	U	U	2,300 U		
nickel	100	20	1.9 F	U	U	U	1.7 F	2F	2.7F	U	1.2 F	1.7 F	2.9 F	6.0 F		ĺ
potassium		1,000	1,360	1,550	1,570	1,400	1,500	1,700	1,800	1,400	1,400	1,900	1,400	1,700		ĺ
selenium		30	U	U	U	U	U	U	U	U	U	U	U	U		ĺ
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U		ĺ
sodium	20,000	1,000	31,300	18,200	18,900	18,000	18,000	12,000	12,000	18,000	18,000	13,000	24,000	6,000		
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U		ĺ
vanadium		10	U	U	U	U	U	U	U	U	U	U	U	U		ĺ
zinc	2,000	20	5.8 F	17 F	24.7 B	U	U	49J	22J	10 F	10 F	11 F	11 F	6.9 F		ĺ
mercury	0.7	1	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		ĺ
Leachate Indicators (mg/L)													·			
alkalinity, Total		10	358	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		
ammonia	2	0.2	U	N	IS	N	IS	N	IS	N	IS	NS	NS	NS		I
BOD5		2.4	U	N		N			IS		IS	NS	NS	NS		I
bromide	2	0.5	U	N		N			IS		IS	NS	NS	NS		I
COD		5	U	N		N			IS		IS	NS	NS	NS		
chloride	250	1	51.4	N		N			IS		IS	NS	NS	NS		I
color	15	5	U	N		N			IS		IS	NS	NS	NS		I
cyanide, Total	200	0.02	U	N		N			IS		IS	NS	NS	NS		I
fluoride	1.5	1	NA	N		N			IS		IS	NS	NS	NS		I
hardness, Total		1	381	N		N			IS		IS	NS	NS	NS		I
nitrate	10	1	1.4	N		N			IS		IS	NS	NS	NS		
TKN	1	1	0.4	N		N			IS	N		NS	NS	NS		I
phosphate		1	NA	N		N			IS		IS	NS	NS	NS		I
sulfate	250	1	44.2	N		N			IS		IS IS	NS	NS	NS		I
TDS	500	10	482	N		N			IS		IS IS	NS	NS	NS		l
TOC		1 0.005	0.78 F	N		N			IS IE		IS IS	NS	NS	NS NE		I
phenolics, Total		0.005	U	N	ıo	N	(i)	N	IS	N	IS	NS	NS	NS	1	·

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well								LF7M	IW-100					
Date of Collection			2/7/2003	6/18/2003	9/10/2003	12/4/2003	3/25/2004	6/24/2004	9/15/2004	12/9/2004	3/30/2005	6/22/2005	9/7/2005	12/15/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7MW10046AA	LF7MW1004SBB	NS	LF7M10045DA	LF7M10045EA	LF7M10045FA	LF7M10045GA	LF7M10045HA	LF7M10045IA	NS	LF7M10044KA	LF7M10045LA
Depth to Water (ft)	1		45.40	45.18	NS	44.85	44.75	44.85	44.93	45.00	44.95	44.93	44.85	44.85
VOCs (µg/L)			•					,	•		,			,
1,1,1-trichloroethane	5*	1	U	U	NS	U	U	NA	NA	NA	U	NS	NA	NA
1,1-dichloroethene	5*	1	U	U	NS	U	U	NA	NA	NA	U	NS	NA	NA
benzene	1	0.1	0.56	U	NS	U	U	NA	NA	NA	U	NS	NA	NA
cis-1,2-dichloroethene	5*	1	U	U	NS	U	U	U	U	U	U	NS	U	U
methylene chloride	5*	1	U	U	NS	U	U	NA	NA	NA	U	NS	NA	NA
trichloroethene (TCE)	5*	1	U	U	NS	U	U	U	U	U	U	NS	U	U
toluene	5*	1	U	2.9	NS	U	U	NA	NA	NA	U	NS	NA	NA
trans-1,2-dichloroethene	5*	1	U	U	NS	U	U	U	U	U	U	NS	U	U
Metals (µg/L) [Dissolved / Total]	1													
aluminum	2,000	200	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
antimony	3	50	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
arsenic	25	30	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
barium	1,000	50	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
berylium	3	4	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
boron, Total	1,000	110	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
cadmium	5	5	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
calcium		1,100	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
chromium	50	10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
cobalt		60	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
copper	200	10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
iron	300	200	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
lead	25	25	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
magnesium	35,000	1,000	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
manganese	300	10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
molybdenum		15	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
nickel	100	20	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
potassium		1,000	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
selenium		30	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
silver	50	10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
sodium	20,000	1,000	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
thallium	0.5	80	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
vanadium		10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
zinc	2,000	20	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
mercury	0.7	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
Leachate Indicators (mg/L)				1				T.			1			T.
alkalinity, Total		10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
ammonia	2	0.2	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
BOD5		2.4	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
bromide	2	0.5	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
COD		5	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
chloride	250	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
color	15	5	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
cyanide, Total	200	0.02	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
fluoride	1.5	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
hardness, Total		1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
nitrate	10	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
TKN	1	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
phosphate		1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
sulfate	250	1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
TDS	500	10	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
TOC		1	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS
phenolics, Total		0.005	NA	NA	NS	NA	NA	NS	NA	NA	NA	NS	NS	NS

Landfill 7 AOC Groundwater Analytical Results (continued)

Location of Well											LF7M	IW-100				
Date of Collection	1		3/10/2006	9/13	/2006	3/29	/2007	9/24	2007	3/27	/2008	9/16/2008	4/17/2009	3/25/2010		
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF7M10045MA	LF7M1	0045NA	LF7M1	0045OA	LF7M1	0044PA	LF7M1	10045QA	LF7M10045RA	LF7M10045SA	LF7M10044TA		
Depth to Water (ft)			44.70	44	.59	44	.59	44	.65	44	1.68	44.81	44.53	45.45		
VOCs (µg/L)												<u>'</u>	,			
1,1,1-trichloroethane	5*	1	NA	N	IS	N	IS	N	IS	N	NS	NS	NS	NS		
1,1-dichloroethene	5*	1	NA	N	IS	N	IS	N	IS	N	NS	NS	NS	NS		
benzene	1	0.1	NA	N	IS	N	IS	N	S	ľ	NS	NS	NS	NS		
cis-1,2-dichloroethene	5*	1	U		IS		IS		IS		NS	NS	NS	NS		
methylene chloride	5*	1	NA		IS		IS	N			NS	NS	NS	NS		
trichloroethene (TCE)	5*	1	U		IS		IS	N			NS	NS	NS	NS		
toluene	5*	1	NA		IS		IS	N			NS	NS	NS	NS		
trans-1,2-dichloroethene	5*	1	U	N	IS	N	IS	N	S	N N	NS	NS	NS	NS		
Metals (µg/L) [Dissolved / Total]															ı	
aluminum	2,000	200	NS	NS	4,620	63 F	3,400	U	3,500	NS	4,100	8,400	8,800	5,500		
antimony	3	50	NS	NS	U	U	U	U	U	NS	U	11 F	U	U		
arsenic	25	30	NS	NS	U	U	U	U	U	NS	U	U	4.7 F	10 F		
barium	1,000	50	NS	NS	51.9	36 F	53	35F	44F	NS	48 F	97	67	69		
berylium	3	4	NS NG	NS	U	U	U	U	U	NS	U	U	U	U		
boron, Total	1,000 5	110 5	NS NG	NS NS	NA 2.29 F	NA 10 F	NA 2.3 F	NA U	NA U	NS NS	NA 2.8 F	NA 0.67 F	NA 4.8 F	NA U		
cadmium			NS NG													
calcium		1,100	NS NE	NS	57,000	55,000	55,000	47,000	48,000	NS	42,000	48,000	43,000	47,000		
chromium	50	10 60	NS NS	NS NS	26.1 U	2.0 F U	28 U	U U	18 U	NS	11,000 46 F	4,300	20,000 72	21,000		
cobalt	200	10	NS NS	NS NS	50.3	7.6 F	44	6.7F	31	NS NS	130	U 98	200	34 F 180		
copper		200				7.0 F U	1,400	0.7F U			25,000	11,000	18,000	21,000		
iron lead	300 25	25	NS NS	NS NS	1,600 U	U	U U	U	920 U	NS NS	9.3 F	7.0 F	12 F	4.2 F		
magnesium	35,000	1,000	NS NS	NS	13,900	13,000	14,000	12,000	12,000	NS	11,000	12,000	11,000	11,000		
manganese	300	10	NS NS	NS	300	210	250	150	180	NS	670	240	1,400	680		
molybdenum	500	15	NS	NS	16	17	17	16	17	NS	260	150	350	370		
nickel	100	20	NS	NS	44.3	15 F	38	13F	31	NS	4,900	860	5,900	4,100		
potassium		1.000	NS	NS	20,800	21,000	21,000	19,000	19,000	NS	19,000	18,000	19,000	20,000		
selenium		30	NS	NS	4.39 F	4.2 F	5.0 F	U	3.2	NS	5.5 F	9.4 F	5.8 F	U		
silver	50	10	NS	NS	U	U	U	U	U	NS	U	U	U	U		
sodium	20,000	1,000	NS	NS	1,020,000	1,100,000	1,100,000	990,000	990,000	NS	990,000	950,000	1,000,000	910,000		
thallium	0.5	80	NS	NS	U	U	1.7 F	U	Ú	NS	U	U	U	U		
vanadium		10	NS	NS	2.42 F	U	U	U	1.5F	NS	43.0	22.0	61	76		
zinc	2,000	20	NS	NS	401	26	61	30	110	NS	110	69	90 B	46		
mercury	0.7	1	NS	NS	NA	NA	NA	NA	NA	NS	NA	NA	NA	NS		
Leachate Indicators (mg/L)																
alkalinity, Total		10	NS	N	IS	N	IS	N	IS	1	NS	NS	NS	NS		
ammonia	2	0.2	NS	N	IS	N	IS	N	IS	N	NS	NS	NS	NS		
BOD5		2.4	NS	N	IS	N	IS		IS		NS	NS	NS	NS		
bromide	2	0.5	NS		IS		IS	N			NS	NS	NS	NS		
COD		5	NS		IS		IS	N			NS	NS	NS	NS		
chloride	250	1	NS		IS		IS	N			NS	NS	NS	NS		
color	15	5	NS		IS		IS	N			NS	NS	NS	NS		
cyanide, Total	200	0.02	NS		IS		IS	N			NS	NS	NS	NS		
fluoride	1.5	1	NS		IS		IS	N			NS	NS	NS	NS		
hardness, Total		1	NS		IS		IS	N			NS	NS	NS	NS		
nitrate	10	1	NS		IS		IS		IS		NS	NS	NS	NS		
TKN	1	1	NS		IS		IS	N			NS	NS	NS	NS		
phosphate		1	NS		IS		IS	N			NS	NS	NS	NS		
sulfate	250	1	NS		IS		IS	N			NS	NS	NS	NS		
TDS	500	10	NS		IS		IS	N			NS	NS	NS	NS		
TOC		1	NS		IS		IS		IS		NS	NS	NS	NS		
phenolics, Total		0.005	NS	N	IS	N	IS	N	IS	N	NS	NS	NS	NS		

Landfill 7 AOC Surface Water Analytical Results

Location of Well									LF7WL-3						
Date of Collection	NYSDEC		2/7/2003	6/17/2003	9/10/2003	12/3/2003	3/24/2004	6/23/2004	9/14/2004	12/8/2004	3/30/2005	6/21/2005	9/7/2005	12/15/2005	3/10/2006
Sample ID No.	Class A Surface Water Standards	Reporting Limit	NS	LF7WL0300BB	LF7WL0301CA	NS	LF7WL0301EA	LF7WL0301FA	LF7WL0301GA	LF7WL0301HA	LF7WL0301IA	LF7WL0301JA	NS	LF7WL0301LA	LF7WL0301MA
Depth to Water (ft)			surface	surface	surface	NS	surface	surface	surface	surface	surface	surface	NS	surface	surface
VOCs in (µg/L)															
cis-1,2-dichloroethene	5	1	NS	U	U	NS	U	U	U	U	U	U	NS	U	U
trichloroethylene	5	1	NS	U	U	NS	U	U	U	U	U	U	NS	0.61 F	U
trans-1,2-dichloroethene	5	1	NS	U	U	NS	U	U	U	U	U	U	NS	U	U
vinyl chloride	0.3	1	NS	U	U	NS	U	U	U	U	U	U	NS	U	U
Metals (µg/L) [Dissolved / Total			,								,				
aluminum	100	200	NS	34.4 F	349	NS	U	U	222	U	U	1,860	NS	236	74.1 F
antimony	3	50	NS	U	U	NS	U	U	U	U	U	U	NS	U	U
arsenic	50	30	NS	U	52.9	NS	U	U	5.9 F	4.2 F	U	5 F	NS	5.5 F	U
barium	1,000	50	NS	188	234	NS	17.4 F	106	95.1	U	50.1	146	NS	59	30.2 F
berylium	3	4	NS	U	0.3 F	NS	U	U	U	U	U	U	NS	U	U
boron, Total	1,000	110	NS	124 B	NA	NS	15.9	NA	NA	NA	21.8	NA	NS	NA	17.6
cadmium	5	5	NS	U	U	NS	U	U	U	U	U	0.4 F	NS	U	U
calcium		1,100	NS	96,900	77,800	NS	43,700	63,600	74,400	43,400	24,800	38,500	NS	111,000	20,600
chromium	50	10	NS	U	U	NS	U	U	U	U	U	2 F	NS	1 F	1.1 F
cobalt	5	60	NS	U	3.7 F	NS	U	U	1.8 F	U	U	3.3 F	NS	U	U
copper	200	10	NS	U	8.2 F	NS	U	U	4.2 F	U	U	6.6 F	NS	3.9 F	U
iron	300	200	NS	4,680	99,100	NS	58.9 F	1,990	32,700	2,600	362	12,400	NS	8,200	170 F
lead	50	25	NS	5.0 F	9.4 F	NS	U	U	U	U	U	4.4 F	NS	U	U
magnesium	35,000	1,000	NS	14,600	14,100	NS	6,280	5,680	9,110	5,850	2,450	5,810	NS	17,800	2,920
manganese	300	10	NS	7,050	7,780	NS	32.6	214	1,690	448	400	3,540	NS	436	73.7
nickel	100	20	NS	U	4.4 F	NS	U	U	1.8 F	U	U	6.4 F	NS	U	U
potassium		1,000	NS	125 F	243 F	NS	1,250	499 F	136 F	1,660	1,350	433 F	NS	2,190	1,400
selenium	10	30	NS	U	8.5 F	NS	U	U	U	U	U	U	NS	U	U
sodium		1,000	NS	2,660	4,580	NS	1,210	U	583 F	377 F	553 F	1,210	NS	9,540	1,690
thallium	0.5	80	NS	5.8 F	14.9 F	NS	U	U	U	U	U	U	NS	U	U
vanadium		10	NS	U	7.6 F	NS	U	U	1.8 F	U	U	4.4 F	NS	1 F	U
zinc	2,000	20	NS	U	46.8	NS	2.8 F	11.5 F	12.5 F	U	U	40.1	NS	14.3 F	5.2 F
mercury	0.7	1	NS	U	NA	NS	U	NA	NA	NA	U	NA	NS	NA	U
Leachate Indicators (mg/L)		T	T		l -		<u> </u>		T	1	1	1		1	
alkalinity, Total		10	NS	304	210	NS	132	142 B	35	133	78.5	179	NS	321	61.5
ammonia	2	0.2	NS	U	U	NS	U	0.02 F	0.025 F	U	U	U	NS	U	U
BOD5		2.4	NS	U	8.7	NS	U	3	U	2.2	U	4.2	NS	4	U
bromide	2	0.5	NS	U	U	NS	U	U	U	U	U	U	NS	U	U
COD		5	NS	27.4	276	NS	U	34.9	32.5	15.8	U	44.7	NS	21.4	U
chloride	250	1	NS	U	9.4	NS	2	0.65 F	0.44 F	0.94 F	0.9 F	0.35 F	NS	27.5	2.1
color	15	5	NS	70	NA	NS	7.5	NA	NA	NA	25 J	NA NA	NS	NA	13
cyanide, Total	200	0.02	NS	U	NA 268	NS	U	NA 100	NA 250	NA 126	U	NA	NS	NA 420	U
hardness, Total			NS	209	268	NS	330	190	250	136	78	236	NS	430	53.3
nitrate	10	1	NS	U	U	NS	0.16 F	U	U	U	U	U	NS	0.11 F	0.087 F
nitrite-N	1	1	NS	U	NA	NS	NA	NA	NA	NA 0.67	NA	NA a co	NS	NA . B	NA
TKN	1	1	NS	0.87 B	7.1	NS	U	0.75 B	1	0.67	0.42	0.89	NS	1 B	U
sulfate	250	1	NS	1	1.6	NS	4.7	U	U	5.7	0.86 F	32.5	NS	6.8	3.8
TDS	500	10	NS	330	257	NS	154	199	240	146	81	241	NS	382	76
TOC		1	NS	9.3	5.3	NS	1.8	8.4	6.2	2.2	2.2	9.0	NS	3.9	2.4 B
phenolics, Total		0.005	NS	U	U	NS	U	U	U	U	U	0.0090 F	NS	0.004 F	U

Landfill 7 AOC Surface Water Analytical Results

Location of Well											LF7	WL-3			
Date of Collection			9/12/	/2006	3/29	/2007	9/24/2007	3/27/	2008	9/16/		4/21/2009	4/1/2010		
Date of Concensus	NYSDEC Class A	Reporting	<i>3,12,</i>	2000	5,25	2007	3/24/2007	0,21,	2000	2/10/	2000	1/21/2009	1/1/2010		
Sample ID No.	Surface Water Standards	Limit	LF7WL	.0301NA	LF7WL	.0301OA	LF7WL0301PA	LF7WL	0301QA	LF7WL	0301RA	LF7WL0301SA	LF7WL0301TA		
Depth to Water (ft)			sur	face	sur	face	surface	surf	ace	surf	face	surface	surface		
VOCs in (µg/L)															
cis-1,2-dichloroethene	5	1	N	IS	N	IS	NS	N	S	N	IS	NS	NS		
trichloroethylene	5	1	N	IS	N	IS	NS	N	S	N	IS	NS	NS		
trans-1,2-dichloroethene	5	1	N	IS	N	IS	NS	N	S	N	IS	NS	NS		
vinyl chloride	0.3	1	N	IS	N	IS	NS	N	S	N	IS	NS	NS		
Metals (μg/L) [Dissolved / Total]	1											,			
aluminum	100	200	U	18,200	56 F	180 F	NS	U	110 F	U	64 F	U	U		
antimony	3	50	U	U	U	U	NS	U	1.9 F	U	U	U	U		
arsenic	50	30	U	755	U	U	NS	U	U	U	U	U	U		
barium	1,000	50	108	11,900	21 F	50	NS	19 F	29 F	51	55	33 F	18 F		
berylium	3	4	U	U	U	U	NS	U	U	U	U	U	U		
boron, Total	1,000	110	NA	NA	NA	NA	NS	NA	NA	NA	NA	NA	NA		
cadmium	5	5	U	26.3 F	U	0.55 F	NS	U	U	U	U	U	U		
calcium		1,100	88,600	418,000	48,000	48,000	NS	66,000	67,000	71,000	79,000	7,400	62,000		
chromium	50	10	U	U	2.1 F	3.5 F	NS	U	U	U	U	U	U		
cobalt	5	60	U	388 F	U	U	NS	U	U	U	U	U	U		
copper	200	10	U	145	U	2.3 F	NS	U	2.4 F	U	U	U	U		
iron	300	200	250	4,050,000	5.4 F	520	NS	U	550	69 F	440	1,200	82 F		
lead	50	25	U	147 F	U	U	NS	U	U	U	U	U	U		
magnesium	35,000	1,000	12,300	33,500	5,900	5,900	NS	8,400	8,600	8,800	9,900	10,000	8,000		
manganese	300	10	2,880	218,000	3.0 F	960	NS	U	250	570	650	310	10		
nickel	100	20	U	88.9 F	U	U	NS	U	U	U	U	U	U		
potassium		1,000	2,480	5,680 F	1,300	1,400	NS	970 F	1,000	2,000	2,000	1,400	1,600		
selenium	10	30	U	U	U	U	NS	U	U	U	U	U	U		
sodium		1,000	4,070 B	5,070 F	4,600	4,600	NS	3,000	3,100	7,200 B	7,800 B	6,000	4,000		
thallium	0.5	80	U	U	U	U	NS	U	U	U	U	U	U		
vanadium		10	U	167	U	U	NS	U	U	U	U	U	U		
zinc	2,000	20	18.8 F	1,100	U	9.3 F	NS	10 F	23	14 F	18 F	18 F	6.2 F		
mercury	0.7	1	NA	NA	NA	NA	NS	NA	NA	NA	NA	NA	NA		
Leachate Indicators (mg/L)															
alkalinity, Total		10		IS		IS	NS	N		N		NS	NS		
ammonia	2	0.2		IS		IS	NS	N		N		NS	NS		
BOD5		2.4		IS		IS	NS	N		N		NS	NS		
bromide	2	0.5		IS		IS	NS	N		N		NS	NS		
COD		5		IS		IS	NS	N		N		NS	NS		
chloride	250	1		IS		IS	NS	N		N		NS	NS		
color	15	5		IS		IS	NS	N		N		NS	NS		
cyanide, Total	200	0.02		IS		IS	NS	N		N		NS	NS		
hardness, Total		1		IS		IS	NS	N		N		NS	NS		
nitrate	10	1		IS		IS	NS	N		N		NS	NS		
nitrite-N	1	1		IS IS		IS IS	NS	N		N		NS NS	NS		
TKN	1	1		IS IS		IS	NS	N		N		NS	NS		
sulfate	250	1		IS IS		IS IS	NS	N		N		NS	NS		
TDS	500	10		IS IS		IS IS	NS NE	N		N		NS	NS NE		
TOC		1 0.005		IS IS		IS	NS NE	N		N		NS	NS		
phenolics, Total		0.005	N	IS	N	IS	NS	N	3	N	13	NS	NS	L	

Landfill 7 AOC Surface Water Analytical Results

Location of Well									LF7WL-4						
Date of Collection			2/7/2003	6/17/2003	9/10/2003	12/3/2003	3/24/2004	6/23/2004	9/14/2004	12/8/2004	3/30/2005	6/21/2005	9/7/2005	12/15/2005	3/10/2006
Date of Concetion	NYSDEC Class A	Reporting	2/1/2003	0/17/2003	3/10/2003	12/3/2003	3/24/2004	0/25/2004	7/14/2004	12/3/2004	3/30/2003	0/21/2003	3/1/2003	12/13/2003	3/10/2000
Sample ID No.	Surface Water Standards	Limit	NS	LFWL0400BB	LF7WL0401CA	NS	LF7WL0401EA	LF7WL0401FA	LF7WL0401GA	LF7WL0401HA	LF7WL0401IA	LF7WL0401JA	NS	NS	LF7WL0401MA
Depth to Water (ft)			surface	surface	surface	NS	surface	surface	surface	surface	surface	surface	NS	NS	surface
VOCs in (µg/L)							•							•	*
cis-1,2-dichloroethene	5	1	NS	U	U	NS	U	U	U	U	U	U	NS	NS	U
trichloroethylene	5	1	NS	0.24 F	U	NS	U	U	U	U	U	U	NS	NS	U
trans-1,2-dichloroethene	5	1	NS	U	U	NS	U	U	U	U	U	U	NS	NS	U
vinyl chloride	0.3	1	NS	U	U	NS	U	U	U	U	U	U	NS	NS	U
Metals (μg/L) [Dissolved / Total] ¹															
aluminum	100	200	NS	83.4 F	3,490	NS	U	43.5 F	U	113 F	402	1,600	NS	NS	155 F
antimony	3	50	NS	U	29.6 F	NS	U	U	U	U	U	U	NS	NS	U
arsenic	50	30	NS	U	491	NS	U	U	U	4.1 F	U	5.5 F	NS	NS	U
barium	1,000	50	NS	44.7 F	2,110	NS	17.9 F	123	90.1	398	159	88.3	NS	NS	25.9 F
berylium	3	4	NS	U	1.2 F	NS	U	U	U	U	U	U	NS	NS	U
boron, Total	1,000	110	NS	151 B	NA	NS	28.8	NA	NA	NA	U	NA	NS	NS	19.1
cadmium	5	5	NS	U	U	NS	U	U	U	U	U	U	NS	NS	U
calcium		1,100	NS	164,000	415,000	NS	57,300	66,300	70,000	57,400	166,000	167,000	NS	NS	22,100
chromium	50	10	NS	U	6.6 F	NS	U	U	U	U	U	2.5 F	NS	NS	1.4 F
cobalt	5	60	NS	U	16.6 F	NS	U	U	U	4.5 F	1.5 F	3.4 F	NS	NS	U
copper	200	10	NS	U	50.7	NS	U	3.3 F	2.7 F	2.7 F	15.2	10.4	NS	NS	2.3 F
iron	300	200	NS	1,690	1,240,000	NS	104 F	122 F	66.2 F	20,300	22,400	29,200	NS	NS	260
lead	50	25	NS	U	84	NS	U	U	U	U	8.2 F	7.8 F	NS	NS	U
magnesium	35,000	1,000	NS	14,300	20,100	NS	7,080	8,930	11,000	6,320	8,530	8,680	NS	NS	2,650
manganese	300	10	NS	602	27,300	NS	20.5	40.5	44.5	9,530	4,850	3,540	NS	NS	9.5 F
nickel	100	20	NS	U	28	NS	U	U	U	U	3.8 F	8.3 F	NS	NS	U
potassium		1,000	NS	8,130	7,090	NS	2,730	1,760	2,700	3,330	2,360	4,580	NS	NS	1,590
selenium	10	30	NS	U	55.1	NS	U	U	U	5.1 F	U	U	NS	NS	U
sodium		1,000	NS	3,790	4,930	NS	1,720	1,800	3,220	1,030	1,720	1,650	NS	NS	1,580
thallium	0.5	80	NS	U	138	NS	U	U	U	U	U	U	NS	NS	U
vanadium		10	NS	U	63	NS	U	U	U	U	4 F	4.8 F	NS	NS	U
zinc	2,000	20	NS	U	339	NS	3.5 F	8.1 F	U	23	60.9	27.4	NS	NS	5.7 F
mercury	0.7	1	NS	U	NA	NS	U	NA	NA	NA	U	NA	NS	NS	U
Leachate Indicators (mg/L)				•			<u>'</u>		,					•	
alkalinity, Total		10	NS	370	309	NS	153	155 B	53.4	234	208	390	NS	NS	63.2
ammonia	2	0.2	NS	U	70.4	NS	U	0.011 F	0.012 F	0.044 F	0.075	0.070	NS	NS	0.059
BOD5		2.4	NS	2.1	41.3	NS	U	U	U	3.8	6.9	8.4	NS	NS	U
bromide	2	0.5	NS	U	U	NS	U	U	U	U	U	U	NS	NS	U
COD		5	NS	24.9	U	NS	18	22	16.5	28	21.5	26.2	NS	NS	U
chloride	250	1	NS	3.6	4.9	NS	2	Ü	2.2	1.8	1	2.9	NS	NS	1.2
color	15	5	NS	40	NA	NS	7.5	NA	NA	NA	15 J	NA	NS	NS	15
cyanide, Total	200	0.02	NS	U	NA	NS	U	NA	NA	NA	U	NA	NS	NS	U
hardness, Total		1	NS	422	1,460	NS	310	192	230	216	425	670	NS	NS	53.5
nitrate	10	1	NS	U	U	NS	0.1 F	U	U	U	0.06 F	U	NS	NS	0.16 F
nitrite-N	1	1	NS	U	NA	NS	NA	NA	NA	NA	NA	NA	NS	NS	NA
TKN	1	1	NS	0.84 B	30.2	NS	0.15 F	0.71 B	0.54	1.4	0.79	2.5	NS	NS	0.3
sulfate	250	1	NS	34.5	U	NS	22.3	16.4	0.81 F	25.7	16.3	18.6	NS	NS	7
TDS	500	10	NS	480	334	NS	189	216	258	283	179	422	NS	NS	72
TOC		1	NS	4.2	4	NS	2.4	6.3	4.6	5.3	2.1	5	NS	NS	2.1 B
phenolics, Total		0.005	NS	U	0.064	NS	U	U	U	0.0087 F	U	0.0050 F	NS	NS	U

Landfill 7 AOC Surface Water Analytical Results

Location of Well											LF7	WL-4				
Date of Collection	NYSDEC		9/12/	/2006	3/29	/2007	9/24/2007	3/27/	2008	9/16	/2008	4/21/2009	4/1/2010			
Sample ID No.	Class A Surface Water Standards	Reporting Limit		0401MA	LF7WL		LF7WL0401PA	LF7WL		LF7WL		LF7WL0401SA	LF7WL0401TA			
Depth to Water (ft)			sur	face	sur	face	surface	sur	face	sur	face	surface	surface			
VOCs in (µg/L)																
cis-1,2-dichloroethene	5	1	N	IS	N	IS	NS	N	IS	N	IS	NS	NS			
trichloroethylene	5	1	N	IS	N	IS	NS	N	IS	N	IS	NS	NS			
trans-1,2-dichloroethene	5	1	N	IS	N	IS	NS	N	IS	N	IS	NS	NS			
vinyl chloride	0.3	1	N	IS	N	IS	NS	N	IS	N	IS	NS	NS			
Metals (µg/L) [Dissolved / Total]	l ¹				,											
aluminum	100	200	U	173 F	50 F	52 F	NS	U	47 F	U	U	U	U			
antimony	3	50	U	U	U	U	NS	U	U	U	U	U	U			
arsenic	50	30	U	46.2	U	U	NS	U	U	U	U	U	U			
barium	1,000	50	59.8	229	11 F	11 F	NS	15 F	14 F	23 F	90	13 F	43 F			
berylium	3	4	U	U	U	U	NS	U	U	U	U	U	U			
boron, Total	1,000	110	NA	NA	NA	NA	NS	NA	NA	NA	NA	NA	NA			
cadmium	5	5	U	U	U	0.47 F	NS	U	U	U	U	U	U			
calcium		1,100	87,700	101,000	61,000	63,000	NS	80,000	76,000	79,000	92,000	63,000	68,000			
chromium	50	10	U	U	1.7 F	3.2 F	NS	U	U	U	1.5 F	U	U			
cobalt	5	60	U	U	U	U	NS	U	U	U	U	U	U			
copper	200	10	U	3.07 F	U	U	NS	U	U	U	3.0 F	U	U			
iron	300	200	8,490	119,000	U	65 F	NS	5.9 F	69 F	U	3,800	39 F	26 F			
lead	50	25	U	U	U	U	NS	U	U	U	U	U	U			
magnesium	35,000	1,000	12,100	12,500	7,500	7,900	NS	8,900	8,600	12,000	13,000	10,000	8,700			
manganese	300	10	2,150	2,880	U	12	NS	U	2.4 F	16	3,400	12	4.9 F			
nickel	100	20	U	2.52 F	U	U	NS	U	U	U	2.1 F	2.9 F	U			
potassium		1,000	2,800	3,020	1,700	1,700	NS	2,100	2,000	2,700	2,800	1,200	5,800			
selenium	10	30	U	U	U	U	NS	U	U	U	U	U	U			
sodium		1,000	3,940 B	3,940	1,500	1,500	NS	2,400	2,200	4,500	4,100	1,500	4,300			
thallium	0.5	80	U	U	U	U	NS	U	U	U	U	U	U			
vanadium		10	0.93 F	8.65 F	U	U	NS	U	U	U	U	U	U			
zinc	2,000	20	21.8 B	43.3 B	U	U	NS	9.7 F	11 F	14 F	27	12 F	5.3 F			
mercury	0.7	1	NA	NA	NA	NA	NS	NA	NA	NA	NA	NA	NA			
Leachate Indicators (mg/L)							T							1		
alkalinity, Total		10		IS		IS	NS		IS		IS	NS	NS			
ammonia	2	0.2		IS		IS	NS		IS		IS	NS	NS			
BOD5		2.4		IS		IS	NS		IS		IS	NS	NS			
bromide	2	0.5		IS		IS	NS		IS		IS	NS	NS			
COD		5		IS		IS	NS		IS		is	NS	NS		<u> </u>	
chloride	250	1		IS		IS	NS		IS		IS	NS	NS			
color	15	5		IS		IS	NS		IS		IS	NS	NS			
cyanide, Total	200	0.02		IS		IS	NS		IS		IS	NS	NS			
hardness, Total		1		IS		IS	NS		IS		IS	NS	NS			
nitrate	10	1		IS		IS	NS		IS		IS	NS	NS		<u> </u>	
nitrite-N	1	1		IS		IS	NS		IS		IS	NS	NS			
TKN	1	1		IS		IS	NS		IS		IS	NS	NS			
sulfate	250	1		is		IS	NS		IS		IS	NS	NS			
TDS	500	10		is		IS	NS	N			IS	NS	NS			
TOC		1		IS		IS	NS	N			IS	NS	NS			
phenolics, Total		0.005	N	IS	N	IS	NS	N	IS	N	IS	NS	NS			

Landfill 5 AOC Groundwater Analytical Results

Location of Well									LF5MW-1A						
Date of Collection			2/3/2003	6/16/2003	9/8/2003	12/1/2003	3/26/2004	6/21/2004	9/13/2004	12/10/2004	3/30/2005	6/20/2005	9/6/2005	12/13/2005	3/9/2006
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M1A22AA	LF5M1A21BB	LF5M1A22CA	LF5M1A21DA	LF5M1A21EA	LF5M1A21FA	LF5M1A21GA	LF5M1A22HA	LF5M1A22IA	LF5M1A22JA	LF5M1A22KA	LF5M1A22LA	LF5M1A23MA
Depth to Water (ft)			21.80	20.99	21.59	21.16	20.98	21.10	21.33	21.81	21.84	21.80	22.46	21.78	22.53
VOCs (µg/L)															
1,2,3-trichlorobenzene	5	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trichlorobenzene	5*	1	U	UM	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trimethylbenzene	5*	1	U	UM	NA	NA	U	NA	NA	NA	UM	NA	NA	NA	UM
1,3,5-trimethylbenzene	5*	1	U	UM	NA	NA	U	NA	NA	NA	UM	NA	NA	NA	U
4-chlorotoluene	5*	1	U	0.20 M	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
acetone	50	10	U	U	NA	NA	U	NA	NA	NA	1.7 F	NA	NA	NA	U
carbon disulfide	1,000	0.5	U	U	NA	NS	U	NA	NA	NA	U	NA	NA	NA	U
chlorobenzene	5*	0.5	U	UM	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
chloroform	7	0.3	0.35 B	UM	NA	NA	0.26 F	NA	NA	NA	0.33 F	NA	NA	NA	U
naphthalene	10	1	U	UM	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
o-xylene	5*	1	U	UM	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
styrene	50*	1	U	UM	NA	NA	U	NA	NA	NA	UM	NA	NA	NA	UM
toluene	5*	1	0.16 F	UM	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
vinyl acetate		5	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
Metals (µg/L) [Dissolved / Tot	al] ¹														
aluminum	2,000	200	33,118.6	11,000 M	10,400	23,500	15,600 M	12,200 M	3,990	6,020	8,370 M	9,220 M	3,530 J	1,900 J	1,520
antimony	3	50	21.8 F	21.0 F	17.5 F	14.3 F	U	U	U	U	U	U	U	U	U
arsenic	25	30	29.5 F	6.1 F	8.7 F	20.9 F	10.3 F	8.1 F	U	5.2 F	3.1 F	3.8 F	U	U	U
barium	1,000	50	233.1	91.7	92.9	152	117	108	68	74.8	99.1 M	98.2	80.4	70.2	54.2
berylium	3	4	1.79 F	0.50 F	0.6 F	1.2 F	0.8 F	U	U	U	0.5 F	0.5 F	U	U	U
boron, Total	1,000	10	35.5 F	60.6 B	NA	NS	24.4	NA	NA	NA	17.8	NA	NA	NA	15.1
cadmium	5	5	U	U	U	U	0.5 F	U	U	U	U	U	U	U	U
calcium		1,100	99,808.9	65,000	86,500	75,800	90,700	118,000 M	106,000	145,000	140,000	126,000	191,000	139,000	101,000
chromium	50	10	14,712.7	1,160	1,100 M	749 J	346 M	1,000 M	240 M	394 J	447 M	965 M	458 M	219 M	610 M
cobalt		60	52.5	10.1 F	11.2 F	22.8 F	12.7 F	11.3 F	2.6 F	4.5 F	7.7 F	11.5 F	4.5 F	2.2 F	1.9 F
copper	200	10	328.6	45.7	47.2	93.6	52.8 M	56.4	15.5	22 J	38.3 J	37.6	18.1 J	9 F	13
iron	300	200	134,816.7	19,500	23,600 M	51,400	29,500	26,000 M	7,610	11,000	14,700 M	18,600 M	7,980 J	3,480 J	3,590 M
lead	25	25	22 F	8.0 F	9.2 F	22.5 F	12.6 F	8.9 F	U	3.9 F	5.1 F	4.1 F	U	U	U
magnesium	35,000	1,000	19,850.2	6,510	6,890	11,600	9,270	9,600 M	6,300	9,000	8,060	8,810 M	9,590	7,050	5,020
manganese	300	10	4,461.8	1,000	941 M	2,360	1,450	1,180 M	310	419	620 M	869 M	340 M	136 M	124 M
molybdenum		15	151.1	13.1 F	14.1 F	8.8 F	4.6 F	11.4 F	2.9 F	2.9 F	3.1 F	9.8 F	5.4 F	2.7 F	9.9 F
nickel	100	20	757.2	80.9	82.4	127	72.2 M	81	33.1 J	84.5	107 M	109 M	122	59.8 J	45.3 M
potassium		1,000	6,355.4	4,850 M	4,450.0	7,710	6,190	5,040	2,750	3,260	3,720	4,390	2,560	2,260	1,530
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	2.2 F	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	70,416.3	32,400	79,900 M	74,000	47,400	47,600 M	71,500	92,200	126,000	111,000	135,000	166,000 M	104,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	107.8	26.1	24.4	46.8	31.3	25.7	7.3 F	11.4	16.4 J	18.8	7.5 F	4 F	4.9 F
zinc	2,000	20	171.3	42.7	59	116	69.1	55.2 M	17 F	24.9	34.9	37.7 M	17.2 F	7.3 F	7.4 F
PCBs (µg/L) [Filtered/Unfilter				T	T	T	1						T		
aroclor 1242	0.09	0.5	U	U	U	U	U	U	U	U	U	NA	NA	NA	U
aroclor 1248	0.09	0.5	U	U	U	U	U	U	U	U	U	NA	NA	NA	U
Leachate Indicators (mg/L)															
alkalinity, Total		10	247	180	252 M	219	205	168	212	379	356	249	342 M	252	240
ammonia	2	0.2	U	0.15	UM	0.11 J	0.078	U	0.03 F	0.14	U	U	0.029 F	U	U
BOD5		2.4	U	6.1 B	UM	U	U	U	UM	U	UM	U	U	U	U
bromide	2	0.5	U	UM	UM	U	U	UM	U	U	U	U	U	U	U
COD		5	12.54	19.1 M	UM	U	U	U	U	U	U	6.3 M	U	19.4 M	UM
chloride	250	1	74.323 R	27.9	71.3 M	83.2	126	184	231	147	184	262	325	363 M	203 M
color	15	5	50	100	NA	NA	250	NA	NA	NA	400 J	NA	NA	NA	20
cyanide	200	0.02	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	0.0071 F
hardness, Total		1	1.94	221	269	300	272	308	320	444	290	384	U	80.3 M	300 M
nitrate	10	1	5.6315	5 M	14.5 J	U	3.8 J	UM	3.7 M	3.4	3.3 M	3.3 M	3.3 M	3.1 M	2.6
TKN	1	1	1.12	0.43	0.79 M	0.45	0.34 J	0.36	0.17 F	0.73 B	0.34	0.22	0.36 M	0.89 M	0.91 M
sulfate	250	1	16.6555	14	15.9 M	16	10.7	12	11	15.1	19.1 M	15.2	14.9	23.4 M	14
TDS	500	10	275.6	325	451	434	494	608	626	667	649	707	1,040	848	577
TOC		1	5.99	2.7	3.1	3.7	2.5	0.95 F	2.7	4.2	3.9	3.5	3.2	2.2	2.3
phenolics, Total		0.005	0.0062	0.019 B	U	0.014 J	U	U	U	U	0.0069 F	U	U	U	U

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well													TEEN	AW-1A						
Date of Collection	1		9/12	/2006	3/27/	2007	9/24	/2007	3/27	/2008	9/15/	2008		/2009	3/24	1/2010				
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit		IA22NA	LF51A		LF5M1		LF5M1		LF5M1			1A20SA		1A21TA				
Depth to Water (ft)	†		21	.91	20	.52	22	2.20	20	.12	21.	.88	20	0.32	2	1.47				
VOCs (µg/L)											ı									
1,2,3-trichlorobenzene	5	1	N	ΙA	N	A	N	ΙA	N	ΙA	N	A	1	NA	1	NA				
1,2,4-trichlorobenzene	5*	1	N	VΑ	N	A	N	ĮΑ	N	ΙA	N	A	1	NA	1	NA				
1,2,4-trimethylbenzene	5*	1	N	ĪΑ	N	A	N	ĪΑ	N	ĮΑ	N		ľ	NA	1	NA				
1,3,5-trimethylbenzene	5*	1		ĪΑ		A		ĪΑ		ĮΑ	N			NA		NA				
4-chlorotoluene	5*	1		VΑ		A		ΙA		IA	N			NA		NA				
acetone	50	10		ĪΑ	N			IΑ		IA	N			NA		NA				
carbon disulfide	1,000	0.5		NA.		A		IA.		IA	N			NA		NA				
chlorobenzene	5*	0.5		NA.		A		IA.		IA	N			NA.		NA.				
chloroform	7	0.3		NA.		A		IA.		IA.	N			NA		NA				
naphthalene	10 5*	1		IA IA	N	A		IA IA		IA IA	N N			NA NA		NA NA				
o-xylene	50*	-		NA NA		A		IA		IA	N N			NA NA		NA NA				
styrene toluene	5*	1		JA		A		IA		IA	N N			NA NA		NA NA				
vinyl acetate	3**	5		JA		A		IA		IA	N N			NA NA		NA NA				
Metals (μg/L) [Dissolved / Tota																		1		
aluminum	2,000	200	U	1,870	U	13,000	U	5,700	U	9,500+	U	4.800♦	U	14,000 J	U	4,600 ♦				
antimony	3	50	U	U	U	U	U	2.5F	U	U	3.9 F♦	U	U	U	U	U				
arsenic	25	30	U	U	U	8.3 F	U	5F	U	8.0 F	U	4.6 F♦	U	11 F	U	U				
barium	1,000	50	46 F	55.7	34 F	93	34F	65	30 F	78♦	50♦	82♦	36 F◆	99	69 ♦	76				
berylium	3	4	U	U	U	0.73 F	U	.28F	0.11 F	0.87 F	U	0.72 F◆	U	0.80 F	U	0.24 F♦				
boron, Total	1,000	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
cadmium	5	5	U	U	U	U	U	U	U	0.53 F	U	U	U	U	U	U				
calcium		1,100	108,000	105,000	110,000	110,000	120,000	120,000	68,000	70,000♦	130,000	140,000♦	78,000 ♦	89,000	160,000 J	110,000 J				
chromium	50	10	U	189	3.6 F	1,400 J	U	620M	U	2,200 J	U	1,700♦	U	950 J♦	U	620 M				
cobalt		60	U	U	U	9.1 F	U	U	U	7.8 F	U	7.0 F	U	11 F	U	U				
copper	200	10	U	9.79 F	4.0 F	55	U	26J	U	45 J♦	U	38	U	51	U	19				
iron	300	200	13.8 F	4,740	U	25,000	U	13,000	U	27,000♦	22 F	16,000	U	29,000 J	290	9,700 ♦				
lead .	25	25	U	U	U	9.7 F	U 5.400	U 7.200	U	8.5 F♦	U	U	U	13 F	U 7.400 L .	U				
magnesium	35,000 300	1,000 10	4,560 8.63 F	5,010 130	6,700 23	10,000 1,000	5,400 30J	7,300 470	4,400 12	7,300♦ 960 ♦	4,900♦ 91 J♦	6,800 ♦	4,100 ♦ 6.9 F♦	8,400 1,400 J	7,400 J ♦ 76 ♦	6,200 320				
manganese molybdenum	300	15	0.03 F	U U	U	13 F	U	7.3F	U	12 F♦	91.J ♥	17.0	0.9 F♥	7.7 F♦	76 ▼	5.7 F♦				
nickel	100	20	30.9	43.1	44	110 J	66.0	120J	17 F	110 J+	160 J♦	250	19 F ♦	150 J◆	94 J	230 J ♦				
potassium		1,000	1,080	1,720	1,000	4,900	1,100	2,600	1,100	3,800♦	1,200	2,800♦	1,000	4,900 J	1,600	3,100 ♦				
selenium	10	30	U	U U	U	U	U	U U	U	U	U	U	U	U 4,700 3	U	U U				
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
sodium	20,000	1,000	146,000	142,000	57,000	58,000	100,000	100,000	92,000 J	93,000 J+	140,000+	150,000+	110,000 J+	130,000 J	300,000 J	▶ 220,000 J				
thallium	0.5	80	U	6.85 F	U	U	U	U	U	6.3 F	U	U	U	U	U	U				
vanadium		10	U	4.35 F	U	27	U	12	U	26 J♦	U	12	U	28	U	10 ♦				
zinc	2,000	20	29.2 B	37.1 B	U	59	U	30	12 F	60 B♦	15 F	29♦	15 F♦	83	8.9 F♦	20 ♦				
PCBs (µg/L) [Filtered/Unfilter	ed]																			
aroclor 1242	0.09	0.5		ĪΑ		A		IΑ		IA	N			NA		NA				
aroclor 1248	0.09	0.5	N	ĪΑ	N	A	N	ΙA	N	IA	N	A	1	NA	1	NA				
Leachate Indicators (mg/L)															T .					
alkalinity, Total		10		NA.		A		IA.		IA	N			NA.		NA 				
ammonia	2	0.2		NA.		A		IA.		IA.	N			NA.		NA				
BOD5		2.4		NA NA		A A		IA IA		IA IA	N N			NA NA		NA NA				
bromide COD	2	0.5 5		NA NA	N N			IA IA		IA IA	N N			NA NA		NA NA				
chloride	250	1		JA		A		IA		IA	N N			NA NA		NA NA				
color	15	5		JA		A		JA		IA	N			NA NA		NA NA				
cyanide	200	0.02		JA		A		JA		IA	N N			NA		NA.				
hardness, Total	200	1		VA VA		A		JA		IA.	N			NA.		NA.				
nitrate	10	1		VA VA		A		JA		IA	N			NA.		NA.				
TKN	1	1		VA.		A		JA		IA.	N			NA.		NA				
sulfate	250	1		NA.		A		ĪΑ		IA.	N			NA.		NA				
TDS	500	10		JA.	N			JA.		ΙA	N			NA		NA				
TOC		1		JA.		A		JA.		IA	N			NA		NA				
phenolics, Total		0.005	N	ĪΑ	N	A	N	ĪΑ	N	ΙA	N	A	1	NA	1	NA				
	. '		•																	

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well									LF5MW-3						
Date of Collection	Nacional Co.		1/8/1999§	2/5/2003	6/16/2003	9/8/2003	12/1/2003	3/29/2004	6/18/2004	9/16/2004	12/29/2004	3/30/2005	6/20/2005	9/6/2005	12/13/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M0308AB	LF5M0314AA	LF5M0314BA	LF5M0315CA	LF5M0315DA	LF5M0315EA	LF5M0315FA	LF5M0315GA	LF5M0315HA	LF5M0315IA	LF5M0315JA	LF5M0315KA	LF5M0315LA
Depth to Water (ft)			8.11	7.83	7.62	7.46	6.16	5.67	7.00	8.11	7.28	5.21	7.28	7.69	7.08
VOCs (µg/L)			,	_	,					,					
1,2,3-trichlorobenzene	5	1	NA	0.10 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,2,4-trichlorobenzene	5*	1	NA	0.07 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,2,4-trimethylbenzene	5*	1	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,3,5-trimethylbenzene	5*	1	NA	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
4-chlorotoluene	5*	1	NA	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
acetone	50	10	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
carbon disulfide	1,000	0.5	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
chlorobenzene	5*	0.5	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
chloroform	7	0.3	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
naphthalene	10	1	U	U	U	NA	NA	U	NA	NA	NA NA	U	NA	NA	NA NA
o-xylene	5*	1	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
styrene toluene	50* 5*	1	NA U	U 0.43 F	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U U	NA NA	NA NA	NA NA
	5°* 	5	-	0.43 F UJ	U			U	NA NA	NA NA		U	NA NA		
vinyl acetate			NA	UJ	U	NA	NA	U	INA	NA	NA	U	INA	NA	NA
Metals (µg/L) [Dissolved / Total	2,000	200	570 J	3,154.6	10,600	992	17,300	6,390	4,610	1,580	568	318	256	192 F	195 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	6.3 F	U	U	U	U	U	U	U	U
barium	1,000	50	13.98	58.1	113	45.6 F	170	63.1	63.1	43.9 F	50.6	66.4	42.3 F	51.7	67
berylium	3	4	U	U	0.60 F	0.40 F	0.9 F	0.3 F	U	U	U	U	U	U	U
boron, Total	1,000	10	U	6.2 F	68.5 B	NA	NS	17.6	NA	NA	NA	22.7	NA	NA	NA
cadmium	5	5	U	U	U	U	U	U	U	U	U	0.4 F	0.3 F	U	U
calcium		1,100	209,400 M	84,004	58,000	83,900	56,800	37,700	64,400	61,600	128,000	118,000	122,000	134,000	183,000
chromium	50	10	1.0 F	4.4 F	14.3	2.3 F	22	8.9 F	7.3 F	5.1 F	1.9 F	1.6 F	0.9 F	U	U
cobalt		60	0.7 F	0.5 F	3.7 F	U	7.6 F	2.4 F	2.2 F	U	U	U	U	U	U
copper	200	10	U	21.8	47.8	34.9	59.1	32.7	41.2	28.1	16	11.8	14	13	13.6
iron	300	200	607.8 J	2,929.5	8,990	958	14,900	5,180	3,980	1,390	527	222	232	217	188 F
lead	25	25	3.0 F	2.7 F	4.9 F	U	7.3 F	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	25,945	10,255.1	6,120	6,130	7,650	3,940	5,680	5,140	12,900	11,100	12,600	13,400	17,800
manganese	300	10	1,766.3	389.9	85.9	188	144	48.7	90.1	32.4	335	77.2	151	294	661
molybdenum		15	U	4.3 F	U	2.2 F	U	U	U	U	U	0.7 F	U	U	U
nickel	100	20	6.0 F	3.7 F	12.6 F	5.1 F	18.9 F	8.7 F	8.0 F	5.8 F	3.6 F	3.5 F	2.3 F	2.5 F	2.6 F
potassium		1,000	4,638	21,330	3,090	1,340	4,480	1,770	1,560	975 F	1,440	1,070	1,460	1,490	1,780
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U
silver sodium	50 20,000	10	U 13,570	U 4,088.7	U 2.580	U	U 4,240	U 2.570	U 3,980	U 2,680	U	U 2,210	U 1,440	U	U 0.270
thallium	0.5	80	13,570 U	4,088.7 U	2,580 10 F	4,190 U	4,240 U	3,570 U	3,980 U	2,680 U	1,410 U	2,210 U	1,440 U	1,240 U	8,370 U
vanadium	0.5	80 10	U	4.5 F	18.0	2.8 F	29.4	11.7	8.5 F	3.2 F	1.6 F	1.1 F	U	U	U
zinc	2,000	20	U	13.4 F	29.8	2.6 F U	50.1	18.6 F	6.5 F 14.5 F	5.8 F	U	7.1 F	U	3.7 F	U
PCBs (µg/L) [Filtered/Unfiltered		20		13.41	29.8	0	30.1	18.01	14.51	J.8 I		7.1 F	0	5.71	
aroclor 1242	0.09	0.5	NA	U	UJ	U	U	U	U	U	U	U	NA	NA	NA
aroclor 1248	0.09	0.5	NA	U	UJ	U	U	U	U	U	U	U	NA	NA	NA
Leachate Indicators (mg/L)															
alkalinity, Total		10	362	186	142	202	89.6	63.6	162	140	326	111	232	247	247
ammonia	2	0.2	U	U	U	U	U	U	0.071	0.13	0.14 B	0.1	U	0.015 F	U
BOD5		2.4	2.4 J	U	6.5 B	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	0.28 F	U	0.21 F	U	U	U
COD		5	27.5 M	47.74	58.4	67.8	77.8	54.2	64.9	64.5	32.6	22.9	19.8	16.2	32.8
chloride	250	1	84 F	9.9047	1.7	1.2	U	1.5	1.4	1.2	1.4	6.6	4.1	8	18.8
color	15	5	60	90	160	NA	NA	280	NA	NA	NA	50 J	NA	NA	NA
cyanide	200	0.02	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
hardness, Total		1	752 J	247.09	198	368	230	104	204	350	400	344	352	480	221
nitrate	10	1	0.02 M	3.6409	U	U	8.9	6.8	0.83 F	7.2	0.98 F	5.8	0.38 F	0.2 F	2.5
TKN	1	1	U	1.26	1	1.4	3	4	2	6	0.89	1.2	0.48	0.86	0.66
sulfate	250	1	175 F	30.2992	15	13.3	35.8	9.6	12	14.5	36.3	236	141	146	334
TDS	500	10	854	396	355	325	463	200	319	276	440	450	445	524	705
TOC		1	20.8	21.55	21.2	27.6	27.8	19.4	23.4	22.6	11.9	11.3	9.8	10.1	9.6
phenolics, Total		0.005	U	0.00595	0.015 B	U	U	U	U	U	U	U	0.0040 F	U	U

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well												1.1	75MW-3							
Date of Collection			3/9/2006	9/12/2	2006	3/28/	2007	9/24/	2007	3/27/	2008		/2008	4/6/2	2009	3/24	/2010			
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M0315MA	LF5M0	315NA	LF5M0	0315OA	LF5M0	315PA	LF5M0	315QA	LF5M	0315RA	LF5M0	D315SA	LF5M0	0315TA			
Depth to Water (ft)			7.01	7.6	51	3.	97	7.9	93	5.1	25	7.	.14	5.	51	5.	76			
VOCs (µg/L)																				
1,2,3-trichlorobenzene	5	1	U	N.		N		N		N			ΙA		A		IA			
1,2,4-trichlorobenzene	5*	1	U	N.		N		N		N			IΑ		A		IA			
1,2,4-trimethylbenzene	5*	1	U	N.		N		N		N			IA		A		IA			
1,3,5-trimethylbenzene	5*	1	U	N.		N		N		N			IA	N			IA			
4-chlorotoluene	5*	1	U	N.		N		N		N			IA		A		IA			
acetone	50	10	U	N. N.		N N		N. N		N			IA IA		A		IA			
carbon disulfide chlorobenzene	1,000 5*	0.5 0.5	U U	N.		N N		N.		N N			iA IA		A A		IA IA			
chloroform	5** 7	0.3	U	N.		N N		N.		N N			IA		IA IA		IA IA			
naphthalene	10	1	U	N.		N		N.		N			IA		IA.		IA			
o-xylene	5*	1	U	N.		N		N		N			IA.		IA.		IA.			-
styrene	50*	1	U	N.		N		N.		N			IA.		IA		IA.			
toluene	5*	1	U	N.		N		N		N			IA.		ΙA		IA			
vinyl acetate		5	U	N.		N		N		N			IA		ΙA		IA			
Metals (μg/L) [Dissolved / T	Fotal] ¹																			
aluminum	2,000	200	498	44.5 F	107 F	190 F	920	44F	210	180 F	320	62 F	250	120 F	420	U	220			
antimony	3	50	U	U	U	U	U	U	U	U	U	1.8 F	U	U	U	U	U			
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
barium	1,000	50	62.3	67.7	68.9	97	100	69	70	100	120	65	70	100	110	82	79			
berylium	3	4	U	U	U	U	U	U	U	0.17 F	0.16 F	U	U	U	U	U	U			
boron, Total	1,000	10	47.7 1 F	NA U	NA U	NA	NA	NA U	NA	NA U	NA	NA	NA	U	U	U U	NA			
cadmium calcium	5	5 1,100	188,000	201,000	199,000	U 200,000	U 200,000	210,000	U 200,000	320,000	U 350,000	U 190,000	U 210,000	NA 420,000	NA 440,000	320,000	U 300,000			
chromium	50	100	2.1 F	3.04 F	4.3 F	6.5 F	7.7 F	3.1F	3.2F	2.6 F	4.0 F	2.1 F	5.4 F	3.9 F	6.7 F	320,000 U	U			
cobalt		60	1 F	U U	U	U	U	U	U	U U	U	U	U	U	U	U	U			
copper	200	10	12.2	12.7	12.4	15	17	14	15	15	17	6.4 F	10	22	25	13	13			
iron	300	200	502	16.6 F	70.7 F	80 F	690	47F	200	71 F	180 F	330	710	65 F	370	160 F	290			
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
magnesium	35,000	1,000	18,100	21,100	20,900	23,000	23,000	21,000	21,000	36,000	39,000	21,000	22,000	43,000	45,000	36,000	35,000			
manganese	300	10	452	251	255	56	190	290	320	38	77	2,200	2,300	38	110	150	130			
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
nickel	100	20	3.4 F	3.33 F	3.54 F	6.8 F	7.1 F	3.6F	4.1F	6.5 F	7.3 F	4.8 F	11 F	60 F	7.2 F	4.5 F	4.1 F			
potassium		1,000	1,600	1,910	1,910	1,400	1,600	1,700	1,700	1,500	1,700	1,800	1,900	2,100	2,400	1,700	1,800			
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			
silver sodium	50 20,000	1.000	U 3,250	U 2,850 B	U 2,840 B	U 3,300	U 3,200	U 2,700	U 2,600	U 5,800	U 6,300	U 2,100 B	U 2,600B	U 7 100	7,300	U 5 100	U 4,700			-
thallium	0.5	80	3,230 U	2,850 B U	2,840 B U	3,300 U	3,200 U	2,700 U	2,600 U	5,800 U	0,300 U	2,100 B U	2,600B U	7,100 U	7,300 U	5,100 U	4,700 U			
vanadium	0.5	10	1.3 F	U	U	U	1.8 F	U	U	U	U	U	1.2 F	U	U	U	U			
zinc	2,000	20	5.8	16 F	20.9 B	6.9 F	13 F	U	5.2F	17 F	20 B	16 F	1.2 F	24	25	8.3 F	12 F			
PCBs (µg/L) [Filtered/Unfil																				
aroclor 1242	0.09	0.5	U	N.	A	N		N	A	N	A	N	ΙA	N		N				
aroclor 1248	0.09	0.5	U	N.	A	N	A	N	A	N	A	N	IA	N	ΙA	N	ΙA			
Leachate Indicators (mg/L)																				
alkalinity, Total		10	323	N.		N		N		N			IA		A		IA			
ammonia	2	0.2	U	N.		N		N		N			IA.		A		IA.			
BOD5		2.4	U	N.		N		N		N			IA		IA.		IA			
bromide COD	2	0.5 5	U	N.		N N		N N		N N			IA IA		IA IA		IA.			
chloride	250	1	15.5 4.7	N.		N N		N.		N N			IA		IA IA		IA IA		-	
color	250 15	5	25	N.		N N		N.		N N			IA		IA		IA IA			
cyanide	200	0.02	0.01 F	N.		N		N.		N			IA.		IA.		IA			
hardness, Total	200	1	560	N.		N		N.		N			IA.		IA.		IA.			
nitrate	10	1	2.1	N.		N		N.		N			IA		IA.		IA.			
TKN	1	1	0.79 B	N.		N		N		N			IA.		ΙA		IA			
sulfate	250	1	188	N.		N		N		N			IA		ΙA		ΙA			
TDS	500	10	626	N.	A	N		N		N		N	ΙA		ΙA		IA			
TOC		1	8.8	N.	A	N	A	N	A	N	A	N	ΙA	N	ΙA	N	ΙA			
phenolics, Total		0.005	U	N.	A	N	Α	N	A	N	A	N	ΙA	N	ΙA	N	IA		 	

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well									LF5MW-5						
Date of Collection			2/5/2003	6/16/2003	9/8/2003	12/1/2003	3/29/2004	6/21/2004	9/14/2004	12/10/2004	3/30/2005	6/20/2005	9/6/2005	12/12/2005	3/9/2006
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M0512AA	LF5M0505BB	LF5M0513CA	LF5M0512DA	LF5M0512EA	LF5M0512FA	LF5M0512GA	LF5M0512HA	LF5M0512IA	LF5M0512JA	LF5M0512KA	LF5M0512LA	LF5M0512MA
Depth to Water (ft)	•		5.60	4.92	5.53	4.75	4.35	5.17	5.42	5.03	5.33	5.66	6.17	5.61	5.52
VOCs (µg/L)			<u>'</u>	<u>'</u>	<u>'</u>										•
1,2,3-trichlorobenzene	5	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trichlorobenzene	5*	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trimethylbenzene	5*	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,3,5-trimethylbenzene	5*	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
4-chlorotoluene	5*	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
acetone	50	10	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
carbon disulfide	1,000	0.5	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
chlorobenzene	5* 7	0.5 0.3	U U	U U	NA NA	NA	U U	NA	NA	NA NA	U U	NA	NA	NA	U U
chloroform		0.3	U	II U		NA	U	NA	NA		IJ	NA	NA	NA	U
naphthalene	10 5*	1	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
o-xylene styrene	50*	1	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
toluene	5*	1	0.15 F	II.	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
vinyl acetate		5	UJ	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
Metals (μg/L) [Dissolved / Tota					.03							103		. 473	
aluminum	2,000	200	2,162.1	2,420	195 F	1,720	1,470	536	3,880	1,660	1,080	1,130	824	1,830	1,710
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	59	50.0	62.3	45.2 F	41.6 F	54	51.5	54.6	39.5 F	46.1 F	50.1	58.4	49.6 F
berylium	3	4	U	0.30 F	U	0.50 F	U	U	U	U	U	U	U	0.3 F	U
boron, Total	1,000	10	U	51.2 B	NA	NS	10.3	NA	NA	NA	13.3	NA	NA	NA	14.6
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	0.3 F
calcium		1,100	38,853.6	21,300	97,600	25,700	19,400	53,400	27,800	20,000	18,600	36,500	54,600	35,500	33,300
chromium	50	10	2.9 F	4.1 F	U	3.1 F	2 F	1.2 F	4.1 F	U	1.8 F	1.7 F	U	2.1 F	3.4 F
cobalt		60	6.8 F	4.9 F	1.7 F	7 F	7.1 F	5.2 F	9.9 F	1.8 F	4.9 F	6.6 F	2.6 F	5 F	6.9 F
copper	200	10	30.7	38.1	13.8	35	33	27	40.9	34.4	31.8	31.4	35.3	35.2	32.6 F
iron	300	200	2,389.8	2,380	519	1,940	1,900	1,410	3,500	1,800	1,110	1,440	1,290	1,730	2,400
lead	25	25	U	U	U	U	U	U	U	U	U	U	2 F	U	2.7 F
magnesium	35,000	1,000	6,631.1	5,450	15,200	6,240	4,470	13,300	6,600	4,340	3,780	6,600	10,300	6,740	7,630
manganese	300	10	315.1	146	534	267	231	655	490	202	151	506	444	212	277
molybdenum	100	15 20	1.9 F 11.0 F	U 10.2 F	U 3.5 F	U 9.9 F	U	U 8.6 F	U 11.8 F	U 10.7 F	U	U 10.7 F	U 6.4 F	U 10.9 F	U
nickel potassium		1,000	1,322.9	1,620	3.5 F 1,660	9.9 F 1,540	11.1 F 1,200	1,270	2,270	10.7 F 1,340	8.6 F 1,060	10.7 F 1,110	1,900	10.9 F 1,870	12 F 980 F
selenium	10	30	1,322.9 U	U 1,620	U	1,540 U	1,200 U	U	2,270 U	1,540 U	U 1,060	U U	1,900 U	U	980 F U
silver	50	10	U	U	II.	U	U	U	U	II.	U	U	U	U	U
sodium	20,000	1,000	2,290.3	1,820	2,270	1,750	1,370	1,820	1,250	2,080	2,340	2,030	6,980	3,460	2,560
thallium	0.5	80	U	5.9 F	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	4.6 F	U	3.2 F	2 F	0.9 F	6.1 F	2.1 F	1.7 F	1.6 F	1.2 F	3 F	3.5 F
zinc	2,000	20	23	U	U	18.9 F	19.5 F	10.3 F	18.8 F	20.6	18.2 F	12.7	8.6 F	15.6 F	17.2 F
PCBs (µg/L) [Filtered/Unfiltered															
aroclor 1242	0.09	0.5	U	U	U	U	U	U	U	U	U	NA	NA	NA	U
aroclor 1248	0.09	0.5	U	U	U	U	U	U	U	U	U	NA	NA	NA	U
Leachate Indicators (mg/L)															
alkalinity, Total		10	90	60	274	78	48.6	148	27.5	62.9	52.8	102	161	90.7	93.5
ammonia	2	0.2	U	0.093	0.052 B	U	U	0.024 F	0.059	0.026 F	U	U	0.014 F	U	U
BOD5		2.4	U	6.6 B	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U	U
COD		5	19.53	66.4	33.7	56.1	52.5	49.6	63.8	35.6	21.5	40.6	29	39.6	48.2
chloride	250	1	3.7745	2	1.6	U	1.4	2.1	1.2	2.5	2.3	2.2	2.7	1.5	1.5
color	15	5	50	70	NA	NA	70	NA	NA	NA	100 J	NA	NA	NA	70
cyanide	200	0.02	U 121.58	U	NA 495	NA 300	U U	NA 192	NA 170	NA	U 84	NA 128	NA 220	NA 200	0.01 F
hardness, Total		1		96.6	495 U	300 U		192 U		68					180
nitrate	10	1	1.7616	U			0.12 F		0.03 F	0.14 F	0.19 F	0.040 F	0.03 F	0.34 F	0.19 F
TKN	1	1	0.64	0.94	0.55	1.4	0.59	0.7	0.9	0.84 B	0.42	0.37	0.59	1.3 B	0.52 B
sulfate TDS	250	1	14.9267	9.1	18.5	11.9	U 124	13.8	10.1	13.8	14.8	19.5	35.5	22	21.6
TOC	500	10	85 15.72	191 17.2	350	161	124	245	163 22.3	126	123	195	277 17	172 15.3	170
phenolics, Total		0.005	15.72 0.0144	17.2 U	13.3 U	20.2 U	16.8 0.0039 F	15.6 U	22.3 U	18.3 U	16.2 U	16.1 U	U U	15.3 U	13.9 U
phenones, rotar		0.005	0.0144	U	U	U	0.0039 F	U	U	U	U	U	U	U	U U

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well													LE5N	MW-5								
Date of Collection			9/12/2	2006	3/27/	2007	9/24	/2007	3/27/	2008	9/15	/2008	4/7/2		3/24/2	2010				T		-
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M05		LF5M0			0512PA	LF5M0			0512RA	LF5M0		LF5M0							
Depth to Water (ft)	1		5.8	36	3.	15	6.	.01	3.	71	5.	46	3.	74	4.3	30						
VOCs (µg/L)																						
1,2,3-trichlorobenzene	5	1	N/	A	N	A	N	IA	N	A	N	ΙA	N	ΙA	N/	A						
1,2,4-trichlorobenzene	5*	1	N/	A	N	A	N	IA	N	A	N	IΑ	N	ΙA	N/	A						
1,2,4-trimethylbenzene	5*	1	N/	A	N	A		IA	N	A		ΙA	N	IA	N/							
1,3,5-trimethylbenzene	5*	1	N/	A	N	A		IA	N	A		IΑ	N		N/	A						
4-chlorotoluene	5*	1	N/		N			IA	N			ΙA	N		N/							
acetone	50	10	N/		N			IA		A		ΙA	N		N/							
carbon disulfide	1,000	0.5	N/		N			IA	N			IA	N		N/							
chlorobenzene	5*	0.5	N/		N			IA	N			IA	N		N/							
chloroform	7	0.3	N/		N			IA	N			IA	N		N/							
naphthalene	10	1	N/		N			IA		A	N		N		N/							
o-xylene	5*	1	N/		N			IA	N			IA.	N		N.							
styrene	50*	1	N/		N			IA.	N			IA.	N		NA							
toluene	5*	1	N/		N			IA.	N			IA.	N		NA NA							
vinyl acetate		5	N/	n.	N	n.	N	IA	N	A	l N	IA	N	IA.	N.	Α			_			
Metals (µg/L) [Dissolved / Tota		200	202 B	1.140	510	2,200	170E	220	450 B	1.600	1.500	2.700	410	1.500	540	4.000					1	
aluminum	2,000	200	293 B U	1,140 U	510 U		170F U	230 U	450 B U	1,600 U	1,500 U	3,700 U	410 U	1,500 U	540 U	4,000 U						
antimony arsenic	25	50 30	U	U	U	U U	U	U	U	U	U	U	U	U	U	U						
harium	1,000	50	41.7 F	47.3 F	28 F	43 F	57	58	20 F	31 F	54	80	25 F	34 F	26 F	49 F						
berylium	3	4	41.7 F	47.3 F	U	43 F U	.12F	U	U	0.11 F	0.20 F	0.27 F	U	34 F U	U	0.29 F						
boron, Total	1,000	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	NA						
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U						
calcium		1,100	39,800	39,000	14,000	14,000	93,000	92,000	13,000	14,000	22,000	22,000	13,000	13,000	12,000	11,000						
chromium	50	10	U	2.15 F	2.0 F	4.1 F	5F	4F	U	U	2.3 F	3.8 F	U	U	U	5.9 F						
cobalt		60	U	U	U	7.4 F	7.6F	6.4F	U	U	U	U	U	U	U	13 F						
copper	200	10	27.8	32.2	27	33	7.6F	9.7F	16	20	37	47	15	17	22	29						
iron	300	200	476	1,390	310	1,900	2,300	2,400	330	1,300	1,400	3,500	260	1,200	400	3,500						
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U						
magnesium	35,000	1,000	8,650	8,510	2,600	2,900	26,000	26,000	1,800	2,100	4,800	5,300	2,100	2,200	1,800	2,200						
manganese	300	10	266	272	81	190	2,000	2,000	19	33	110	170	20	37	9.8 F	290						
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U						
nickel	100	20	9.3 F	10.5 F	7.3 F	12	9.1F	9.7F	4.2 F	5.8 F	11 F	14 F	3.9 F	4.7 F	6.0 F	9.4 F						
potassium		1,000	950 F	1,200	680 F	1,100	1,400	1,400	970 F	1,300	1,500	2,100	1,200	1,400	790 F	1,900						
selenium	10	30	2.79 F	U	U	U	U	U	U	U	U	U	U	U	U	U						
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U						
sodium	20,000	1,000	4,180 B	3,930 B	2,200	2,200	3,300	3,200	2,000	2,100 B	3,600B	4,100 B	2,200	2,100	2,200	2,000						
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U						
vanadium		10	U	2.18 F	0.95 F	3.5 F	1.8F	2F	1.8 F	3.6 F	2.4 F	6.2 F	U	3.7 F	U	8.9 F						
zinc	2,000	20	27 B	24 B	16 F	U	8.5F	11F	21 B	40 B	28	70	28	33	15 F	30						
PCBs (µg/L) [Filtered/Unfilter		0.5							.,													
aroclor 1242	0.09	0.5	N/		N			IA.	N			IA.	N		N ₂							
aroclor 1248	0.09	0.5	N/	n.	N	n.	N	IA	N	Α	l N	IA	N	IA	N.	Α			_			
Leachate Indicators (mg/L) alkalinity, Total		10	N/	Δ	N	Δ	×	IA	N	Δ	N .	ΙΑ	N	Δ	N.	Δ						
ammonia	2	10 0.2	N/		N N			IA	N N			IA IA	N		N/							
BOD5	2	2.4	N/		N N			IA IA	N N			IA IA	N N		N/							
bromide	2	0.5	N/		N			IA	N			IA	N		N ₂							
COD		5	N/		N			IA		A	N N		N		N ₂							
chloride	250	1	N/		N			IA	N			IA	N		N _z							
color	15	5	N/		N			IA.	N			IA.	N		N.							
cvanide	200	0.02	N/		N			IA.	N			IA.	N		N.							
hardness, Total	200	1	N/		N			IA	N			IA.	N		N.							
nitrate	10	1	N/		N			IA.	N			IA.	N		N.							
TKN	1	1	N/		N			IA		A		IA	N		N.							
sulfate	250	1	N/		N			IA.	N			IA.	N		N.							
TDS	500	10	N/		N			IA	N		N		N		N/							
TOC		1	N/		N			IA	N			ΙA	N		N.							
phenolics, Total		0.005	N/		N			IA		A		ΙA	N		N/							
•	1																					

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well				LF5M	W-100						LF5MW-100R				
Date of Collection			2/5/2003	6/17/2003	9/8/2003	12/1/2003	3/29/2004	6/21/2004	9/14/2004	12/10/2004	3/30/2005	6/20/2005	9/6/2005	12/12/2005	3/9/2006
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M10009AA	LF5M10009BB	NS	NS	LF5M100R08EA	LF5M100R68FA	LF5M100R10GA	LF5M100R11HA	LF5M100R10IA	LF5M100R10JA	LF5M100R10KA	LF5M100R10LA	LF5M100R10MA
Depth to Water (ft)			9.50	9.08	NS	NS	8.47	19.48	9.79	11.16	9.73	9.85	10.26	9.78	9.79
VOCs (µg/L)															
1,2,3-trichlorobenzene	5	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trichlorobenzene	5*	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
1,2,4-trimethylbenzene	5*	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
1,3,5-trimethylbenzene	5*	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
4-chlorotoluene	5*	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
acetone	50	10	U	U	NS	NS	3.3 F	NA	NA	NA	U	NA	NA	NA	
carbon disulfide	1,000 5*	0.5 0.5	U 0.52	U U	NS NS	NS NS	U U	NA NA	NA NA	NA NA	0.42 F U	NA NA	NA NA	NA NA	U U
chlorobenzene chloroform	7	0.3	U.52	U	NS NS	NS NS	2.0 B	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
naphthalene	10	0.3	U	U	NS	NS NS	U U	NA NA	NA NA	NA NA	II.	NA NA	NA NA	NA NA	U
o-xylene	5*	1	0.08 F	U	NS NS	NS	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA	U
styrene	50*	1	U	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
toluene	5*	1	0.20 F	0.27 F	NS	NS	U	NA	NA	NA	U	NA	NA NA	NA NA	U
vinyl acetate		5	UJ	U	NS	NS	U	NA	NA	NA	U	NA	NA	NA	U
Metals (μg/L) [Dissolved / Tota	nl] ¹														
aluminum	2,000	200	1,882	2,020	NS	NS	9,790	28,200	2,020	2,260	7,520	4,970	5,910	2,140	6,360
antimony	3	50	U	6.4 F	NS	NS	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	NS	NS	U	12.1 F	U	U	3.5 F	U	U	U	U
barium	1,000	50	13,480.7	266	NS	NS	511	9,620	7,850	7,890	8,390	7,510	8,990	6,850	7,590
berylium	3	4	U	U	NS	NS	0.7 F	1.7 F	1.4 F	U	1.4 F	0.6 F	0.4 F	0.6 F	0.8 F
boron, Total	1,000	10	U	67.1	NS	NS	24	NA	NA	NA	565	NA	NA	NA	500
cadmium	5	5	U	U	NS	NS	U	0.6 F	U	U	U	U	U	U	0.4 F
calcium		1,100	532,223.6	87,600	NS	NS	518,000	482,000	44,900	411,000	455,000	397,000	390,000	386,000	434,000
chromium	50	10	23.6 F	3.1 F	NS	NS	89.9	50.7	12.2	22	55.2	25.9	15	10.8	28.5
cobalt		60	U	U	NS	NS	6.4 F	25.1 F	2.9 F	3.1 F	9.4	3.8 F	5.3 F	2 F	4.8 F
copper	200	10	8.0F	U	NS	NS	34.5	88.1	7.7 F	7.2 F	49	14.5	25.2	7 F	17.8
iron	300 25	200 25	4,215.7 U	21,900 U	NS NS	NS	14,300	52,900	3,610 U	3,760	22,900 22.4 F	7,820 2.2 F	9,680 2.5 F	3,090 U	10,300 3.8 F
lead magnesium	35,000	1,000	115,200.5	23,700	NS NS	NS NS	5.3 F 4,160	16.8 F 122,000	14,600	U 19,400	92,200	45,000	77,600	18,700	42,600
manganese	300	1000	754	1,320	NS NS	NS NS	259	1,620	133	109	2,840	313	307	110	325
molybdenum		15	U	U	NS NS	NS NS	19.7	5.5 F	5.2 F	5 F	4.4 F	5 F	5 F	4.6 F	4.8 F
nickel	100	20	24.6 F	U	NS	NS	20.4	49.8	6.6 F	13 F	42.2	16.1 F	14.7 F	5.9 F	18.1 F
potassium		1,000	68,473	1,770	NS	NS	40,100	59,300 F	5,300	48,700 F	87,400	86,400	101,000	79,500	82,900
selenium	10	30	U	U	NS	NS	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	NS	NS	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	4,607,994	1,380	NS	NS	138,000	3,460,000	286,000	2,810,000	3,520,000	2,950,000	3,270,000	2,540,000	2,850,000
thallium	0.5	80	U	7.2 F	NS	NS	U	U	Ü	U	U	U	U	U	U
vanadium		10	11.1F	5.5 F	NS	NS	17.5	45.8	4.1 F	3.3 F	16.6	7.8 F	9.4 F	3.7 F	11
zinc	2,000	20	48.4 F	U	NS	NS	47.6	141.0	12.5 F	16.5	63	23.4 B	33.3	10.2 F	38.5
PCBs (µg/L) [Filtered/Unfiltered															
aroclor 1242	0.09	0.5	UJ	U	NS	NS	U	U	U	U	0.45 F	NA	NA	NA	U
aroclor 1248	0.09	0.5	UJ	U	NS	NS	U	U	U	U	U	NA	NA	NA	U
Leachate Indicators (mg/L)		10		140	270	210	1.000	20.4	10.1	011	26.0		00.4	0.50	00.0
alkalinity, Total		10	76	149	NS	NS	1,080	39.1	10.4	81.1	36.2	76	80.4	96.8	90.8
ammonia	2	0.2	18.34 U	8.7	NS	NS	1.9 U	18.6	18.5 U	14.2 U	20.1	15.4	17.2 U	13.5	15.5 U
BOD5 bromide		2.4 0.5	160,4726	15.7 46.8	NS NS	NS NS	4.3	U 252	83	80.4	3.2	U 134	130	U 57.2	72
bromide COD	2	0.5			NS NS	NS NS			83 U	80.4 U	116	94.5	130 54.3	57.2	
chloride	250	1	119.35 8.821.04	16 2.920	NS NS	NS NS	16 375	664 13,500	9,110	7.820	118 12,900	94.5 8.370	54.3	112 10,200	132 6,560
color	15	5	8,821.04 10	15	NS NS	NS NS	250	13,500 NA	9,110 NA	7,820 NA	2,000 J	8,370 NA	5,840 NA	10,200 NA	5
cyanide	200	0.02	U	U	NS NS	NS NS	250 U	NA NA	NA NA	NA NA	2,000 J U	NA NA	NA NA	NA NA	0.0059 F
hardness, Total	200	0.02	1,882.56	308	NS NS	NS NS	1,210	1,800	1,270	1,210	430	1,210	1,510	3,200	1,600
nitrate	10	1	U	U	NS	NS	U	U	U	U	U	U U	U	U	U
TKN	1	1	18.68	10.4	NS	NS	2.2	17.9	14.8	12.9	19.2	15	16.1	9.6	15.9
sulfate	250	1	11.2708	33.9	NS	NS	3.2	U	U	U	U	1.3	U	0.87 F	1.1
TDS	500	10	13,874	5,850	NS	NS	1,640	11,400	11,300	10,100	10,400	8,750	8,810	7,090	8,360
TOC		1	U	U	NS	NS	13.2	U	U	U	1.5	U	U	U	U
phenolics, Total		0.005	0.09368	U	NS	NS	U	U	U	U	0.008 F	0.0050 F	U	0.013	0.004 F
							·		-						

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well													LF5MV	V-100R						
Date of Collection			9/12/	/2006	3/27/20	07***	9/25	/2007	3/27/	2008	9/15/	2008	4/7/2		3/25	2010				-
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	LF5M10	00R10NA	LF5M10	0R08OA	LF5M10	00R10PA	LF5M10	0R08QA	LF5M10	0R08RA	LF5M10	0R09SA	LF5M10	0R09TA				
Depth to Water (ft)			10	.00	8.	09	10	.17	8.4	47	9.	81	8.	55	8.	95				
VOCs (µg/L)																				
1,2,3-trichlorobenzene	5	1		JA.	N			IA.	N.		N		N		N					
1,2,4-trichlorobenzene	5*	1		IA.	N			JA.	N.			A	N		N					
1,2,4-trimethylbenzene	5*	1		IΑ	N			IA.	N.		N		N		N					
1,3,5-trimethylbenzene	5*	1		IA	N			IA.	N.		N		N		N					
4-chlorotoluene	5*	1		JA	N			JA	N.			A	N			A				
acetone	50	10		IA.	N			IA.	N.			A	N		N					
carbon disulfide	1,000	0.5		IA IA	N			IA IA	N.			A A	N N		N N	A				
chlorobenzene chloroform	5* 7	0.5 0.3		IA	N N			JA	N.			A	N		N N					
naphthalene	10	0.3		IA	N			JA	N.			A	N			A				
o-xylene	5*	1		IA.	N			JA	N.			A	N			A				
styrene	50*	1		ĪΑ	N			JA	N.		N		N		N					
toluene	5*	1		IA.	N			JA	N.			A	N		N					
vinyl acetate		5		ΙA	N			JA.	N			A	N			A				
Metals (μg/L) [Dissolved / Tota	nl] ¹															, i				
aluminum	2,000	200	U	3,620	U	850	U	160F	U	690	U	240	U	2,500	760	840				
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
barium	1,000	50	5,970	6,050	6,700	5,700	8,500J	4,000J	10,000 J	1,700 J	3,900	4,100	4,300	4,800	360	360				
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
boron, Total	1,000	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
calcium		1,100	309,000	311,000	370,000	360,000	330,000	290,000	420,000 J	300,000 J	270,000	290,000	290,000	300,000	210,000	210,000				
chromium	50	10	U	12.6	6.9 F	11	U	6.2F	U	13	U	5.1 F	U	24	U	5.6 F				
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U				_
copper	200	10	U	19.4	U	U	U	U	U	U	U	U	U	9.5 F	U	U 170 F				
iron lead	300 25	200 25	U U	7,770 U	U	1,200 U	U U	240 U	U U	660 U	U U	110 F U	U U	4,300 U	U U	170 F U				
magnesium	35,000	1,000	30,000	32,900	45,000			19,000J	85,000 J	4,100 J	2,300	9,300	26,000	37,000	U	250 F				
manganese	300	1,000	5.68 F	170	45,000 U	37,000 140	70,000J 140J	79J	190 J	4,100 J 30 J	2,300 U	19	20,000 U	37,000	U	4.2 F				
molybdenum		15	3.63 F	5.01 F	U	U	U	3.1F	U	3.9 F	3.4 F	3.8 F	U	U	U	U				-
nickel	100	20	U	11.9 F	U	3.4 F	U	2.2F	U	6.1 F	U	2.0 F	U	17 F	U	U				
potassium		1,000	62,800	61,700	65,000	54,000	62,000J	37,000J	74,000 J	21,000 J	42,000	46,000	39,000	43,000	9,200	9,000				
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
sodium	20,000	1,000	2,920,000	2,890,000	3,300,000	2,800,000	3,800,000J	1,800,000J	4,400,000 J	760,000 J	1,900,000	2,100,000	1,900,000	2,100,000 +	170,000	160,000				
thallium	0.5	80	16.8 F	24.7 F	U	U	U	U	U	U	U	6.0 F	U	U	U	U				
vanadium		10	U	6.94 F	U	2.0 F	U	U	U	1.3 F	U	U	U	5.2 F	U	U				
zinc	2,000	20	24.7 B	62.6 B	U	U	26F	43	U	13 F	15 F	15 F	11 F	25	11 F	6.5 F				
PCBs (µg/L) [Filtered/Unfiltered																				
aroclor 1242	0.09	0.5		JJ	U	U		IA.	U	U	U	U	N		N					
aroclor 1248	0.09	0.5	0.2	55 F	U	U	N	IA.	U	U	U	U	N	A	N	A				
Leachate Indicators (mg/L)	l	10		TA	3.7	A		TA	3.7	Δ	3.7	A								
alkalinity, Total ammonia	2	10 0.2		IA IA	N N			JA JA	N. N.		N N		N N		N N					
ammonia BOD5	2	2.4		ia Ia	N N			IA	N.		N N		N N		N N					
bromide	2	0.5		IA	N N			JA	N.		N N		N N		N N					
COD		5		IA.	N			JA	N.		N		N			A				
chloride	250	1		JA	N			JA	N.			A	N		N				+	
color	15	5		IA.	N			JA	N.		N		N			A				
cyanide	200	0.02		ĪΑ	N			ĪΑ	N.			A	N		N					
hardness, Total		1		ĪΑ	N			JA.	N.			A	N			Α				
nitrate	10	1		ΙA	N			JA.	N.			A	N		N					
TKN	1	1	N	ΙA	N	A	N	ΙA	N.	A	N	A	N	A	N	A				
sulfate	250	1	N	ĪΑ	N	A	N	ĪΑ	N.	A	N	A	N	A	N	A				
TDS	500	10		ĪΑ	N	A	N	ĪΑ	N.	A		A	N		N	A				
TOC		1	N	ΙA	N	A	N	ΙA	N.	A	N	A	N	A	N	A				
phenolics, Total		0.005	N	ΙA	N	A	N	ΙA	N.	A	N	A	N	A	N	A				
	1																		I	

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well									MW49D07						
Date of Collection	NWGDEG GL GA		1/9/1999§	2/3/2003	6/17/2003	9/8/2003	12/1/2003	3/29/2004	6/21/2004	9/14/2004	12/10/2004	3/31/2005	6/20/2005	9/6/2005	12/12/2005
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	MW49D0706AB	MW49D0709AA	MW49D0705BB	LF5M49D0707C A	MW49D0704DA	MW49D0704EA	M49D0705FA	M49D0705GA	M49D0705HA	M49D0705IA	M49D0705JA	M49D0705KA	M49D0705LA
Depth to Water (ft)			5.55	4.90	4.87	7.48	4.08	3.85	4.47	4.88	4.91	5.80	4.79	5.11	4.65
VOCs (µg/L)			T	ı						ı	ı		ı		
1,2,3-trichlorobenzene	5	1	NA	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,2,4-trichlorobenzene	5*	1	NA	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,2,4-trimethylbenzene	5* 5*	1	NA	0.06 M	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
1,3,5-trimethylbenzene		1	NA	0.06 M	U	NA	NA	U U	NA	NA	NA	U	NA	NA	NA
4-chlorotoluene	5* 50	10	NA 5.5 F	U	U	NA	NA NA	U	NA NA	NA	NA NA	U 1.9 F	NA NA	NA NA	NA NA
acetone	1,000	0.5	5.5 F U	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	1.9 F U	NA NA	NA NA	NA NA
carbon disulfide chlorobenzene	1,000 5*	0.5	U	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA
chloroform	7	0.3	U	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA
naphthalene	10	0.5	0.06 F	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA
o-xylene	5*	1	NA	U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	U	NA NA	NA NA	NA NA
styrene	50*	1	NA NA	0.05 M	U	NA	NA NA	U	NA NA	NA	NA NA	U	NA NA	NA NA	NA
toluene	5*	1	U	0.40 F	U	NA	NA	U	NA	NA NA	NA	U	NA NA	NA NA	NA
vinvl acetate		5	NA	1.06 M	U	NA	NA	U	NA	NA	NA NA	U	NA NA	NA NA	NA
Metals (µg/L) [Dissolved / Tota				2.00 111											
aluminum	2,000	200	13,220	U	368	1,300	2,100	1,270	5,640	11,100	4,630	1,080	2,580	5,100	13,200
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	9 F	U	U	U	U	U	U	U	U	3 F	U	U	5 F
barium	1,000	50	192.3	151.8	6,410	171	208	192	199	236	198	164	172	186	230
berylium	3	4	0.4 F	U	0.60 F	U	U	U	U	U	U	U	U	U	0.7 F
boron, Total	1,000	10	78 F	U	438	NA	NS	19.9	NA	NA	NA	19.5	NA	NA	NA
cadmium	5	5	2.8 F	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	103,330	91,608.3	266,000	97,700	97,200	95,200	102,000	114,000	101,000	89,500	93,200	95,900	115,000
chromium	50	10	18	2.2 F	17.7	U	2.8 F	U	7.5 F	12.9	6 F	1.5 F	2.7 F	5.8 F	15.4
cobalt		60	6.5	U	2.8 F	U	U	U	3.2 F	6.1 F	1.5 F	U	1.2 F	3.4 F	7.5 F
copper	200	10	14	U	15.5	U	4.1 F	U	15.8	20.7	6.1 F	1.8 F	U	10.3	24.9
iron	300	200	18,178	3,634.1	646	1,420	8,310	7,330	8,620	15,000	8,110	3,190	1,840	7,760	18,700
lead	25	25	10.0 F	U	U	U	U	U	3.8 F	6.1 F	U	U	U	2.6 F	6.5 F
magnesium	35,000	1,000	31,652	27,269.3	60,800	26,300	26,900	25,800	30,000	35,200	26,900	21,800	23,600	23,600	30,500
manganese	300	10	1,147.7	318.3	407	264	833	645	542	747	564	830	305	446	700
molybdenum		15	U	4.9 F	9.2 F	U	U	U	U	U	U	0.8 F	U	U	U
nickel	100	20	14	U	59.3	U	U	U	5.4 F	13.4 F	4.4 F	1.5 F	1.8 F	7 F	17 F
potassium	10	1,000	31,652	843.5 F	38,200	1,760	1,990 U	1,530	2,950	4,920	2,500	1,460	1,960	2,480	5,100
selenium	50	30 10	U U	10.6 F U	U	U U	U	U	U U	U U	U U	U U	U U	U U	U U
silver sodium	20,000	1,000	7,950	1,660.6	2,440,000	1,510	1,800	1,230	3,200	2,500	2,420	2,390	2,980	1,930	2,380
thallium	0.5	80	7,930 U	1,000.0 U	6.2 F	U 1,510	1,800 U	1,230 U	3,200 U	2,300 U	2,420 U	2,390 U	2,980 U	1,930 U	2,380 U
vanadium	0.5	10	28	1.7 F	U.Z.F	3 F	4.5 F	2.8 F	10	19	7.7 F	2 F	4.3 F	8.2 F	22.2
zinc	2.000	20	28 45	1.7 F 8.2 F	28	U	4.5 F 13.1 F	7.3 F	20.3	40.1	18.6 F	8.1 F	4.3 F 4.9 F	8.2 F 25.1	22.2 37.5
PCBs (µg/L) [Filtered/Unfilter		20	1 70	0.21	20		13.11	7.51	20.3	70.1	10.01	0.11	7.71	23.1	31.3
aroclor 1242	0.09	0.5	NA	U	U	U	U	U	U	U	U	U	NA	NA	NA
aroclor 1248	0.09	0.5	NA	U	U	U	U	U	U	U	U	U	NA	NA	NA
Leachate Indicators (mg/L)															
alkalinity, Total		10	296	295	273	296	331	288	264	90.2	181	270	270	280	299
ammonia	2	0.2	U	U	U	U	U	U	0.029 F	0.064	0.046 F	0.062	U	0.052	U
BOD5		2.4	2.40 UJ	U	U	U	U	U	U	U	U	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	U	0.19 F
COD		5	8.7	19.38	24.2	U	12 B	40	16.4	U	U	37.3	U	13.3	3.1 F
chloride	250	1	6.78 F	3.0623	1.8	1.9	2.3	0.41 F	2.1	5.4	4.8	1.9	2.3	4	7.5
color	15	5	10 J	10	120	NA	NA	80	NA	NA	NA	400 J	NA	NA	NA
cyanide	200	0.02	U	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA
hardness, Total		1	12	271.88	960	421	430	352	348	480	360	308	328	390	620
nitrate	10	1	0.19 UJ	U	U	U	U	U	0.027 F	U	0.030 F	U	U	U	U
TKN	1	1	U	U	0.46	0.74	0.29	0.50	U	0.56	0.58 B	0.46 B	0.2	0.62	0.91 B
sulfate	250	1	29.60 F	26.8659	30.4	27.9	29.8	27.6	30.2	35.9	43.3	44.2	39.7	33.1	40.7
TDS	500	10	355	278	353	358	364	333	372	411	372	317	346	370	419
TOC		1	5.09	4.53	2.9	3.7	4	2.7	2.7	3.8	5.2	4.8	5.3	4.6	3.5
phenolics, Total		0.005	0.00236 UJ	U	U	U	U	U	U	U	0.0097 F	U	0.0070 F	U	U

Landfill 5 AOC Groundwater Analytical Results (continued)

Location of Well								MW49D07				
Date of Collection			3/9/2006	9/12/2006	3/28/2007	9/24/2007	3/27/2008	9/15/2008	4/7/2009	3/25/2010		
Sample ID No.	NYSDEC Class GA Groundwater Standards	Reporting Limit	M49D0705MA	M49D0705NA	M49D0703OA	MW49D0705PA	MW49D0705QA	MW49D0705RA	MW49DO704SA	MW49D0704TA		
Depth to Water (ft)			4.78	4.89	3.32	5.15	3.69	4.79	3.71	4.07		
VOCs (µg/L)												
1,2,3-trichlorobenzene	5	1	U	NA	NA	NA	NA	NA	NA	NA		
1,2,4-trichlorobenzene	5*	1	U	NA	NA	NA	NA	NA	NA	NA		
1,2,4-trimethylbenzene	5*	1	U	NA	NA	NA	NA	NA	NA	NA		
1,3,5-trimethylbenzene	5*	1	U	NA	NA	NA	NA	NA	NA	NA		
4-chlorotoluene	5*	1	U	NA	NA	NA	NA	NA	NA	NA		
acetone	50	10	U	NA	NA	NA	NA	NA	NA	NA		
carbon disulfide	1,000	0.5	U	NA	NA	NA	NA	NA	NA	NA		
chlorobenzene	5* 7	0.5 0.3	U U	NA NA	NA NA	NA NA	NA	NA	NA	NA		
chloroform naphthalene	10	0.3	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
•	5*	1	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
o-xylene stvrene	50*	1	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
toluene	5*	1	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
vinyl acetate		5	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
Metals (μg/L) [Dissolved / T		,							18/3	- 10		
aluminum	2,000	200	4,150	U 2,180	U 3,300	U 3,400	44 F 940	U 900	U 440	U 610		
antimony	3	50	U	U U	U U	U U	U U	U U	U U	U U		
arsenic	25	30	U	U U	U U	U U	U U	U U	U U	U U		
barium	1,000	50	184	155 172	150 170	170 210	190 220	210 240	200 240	190 190		
berylium	3	4	U	U U	U U	U U	0.11 F U	U U	U U	U U		
boron, Total	1,000	10	24.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
cadmium	5	5	U	U U	U U	U U	U U	U U	U U	U U		
calcium		1,100	99,400	90,700 92,100	93,000 99,000	100,000 120,000	110,000 110,000	130,000 150,000	100,000 110,000	96,000 96,000		
chromium	50	10	5.3 F	U 3.85 F	2.9 F 7.2 F	3F 6.7F	2.5 F 3.1 F	2.9 F 4.3 F	U 2.9 F	U U		
cobalt		60	2.1 F	U U	U U	U U	U U	U U	U U	U U		
copper	200	10	5.9 F	U 3.05 F	U 5.3 F	U 4.9F	U U	U U	U U	U U		
iron	300	200	4,840	65.8 F 2,890	U 3,900	10F 5,100	13 F 3,900	420 2,000	8.4 F 2,100	27 F 1,100		
lead	25	25	U	U U	U U	U U	U U	U U	U U	U U		
magnesium	35,000	1,000	23,800	20,600 20,900	20,000 22,000	22,000 26,000	25,000 25,000	28,000 32,000	22,000 24,000	22,000 22,000		
manganese	300	10	379	242 316	180 550	330 440	310 970	590 870	290 590	260 390		
molybdenum	100	15	U 4.3 F	U U	U U	U U	U U	U U	U U	U U		
nickel		20	1.5	U 2.78 F	U 3.0 F	U 4.6F	U U	U 1.4 F	U U	U U		
potassium selenium	 10	1,000 30	2,390 U	924 F 1,740 U U	1,100 2,300 U U	1,200 2,300 U U	1,200 1,400 U U	1,300 1,700 U U	1,200 1,400 U U	1,400 1,600 U U		
silver	50	10	U	U U	U U	U U	U U	0.97 F U	UUU	U U		
sodium	20,000	1,000	3,190	3,250 B 3,120 B	3,900 4,200	4,400 5,000	7,500 7,000	7,100 8,000	20,000 25,000	22,000 22,000		
thallium	0.5	80	3,190 U	U U	U U	U U	U U	U U	U U	U U		
vanadium	0.5	10	7.1 F	U 4.18 F	U 5.9 F	U 5.8F	U 1.9 F	U 1.8 F	U U	U U		
zinc	2,000	20	13.5 F	35.8 B 35.2 B	U 12 F	U 15F	9.5 F 14 F	15 F 14 F	13 F 15 F	42 J 6.4 F		
PCBs (µg/L) [Filtered/Unfile							1.11			1		
aroclor 1242	0.09	0.5	U	NA	NA	NA	NA	NA	NA	NA		
aroclor 1248	0.09	0.5	U	NA	NA	NA	NA	NA	NA	NA		
Leachate Indicators (mg/L)						•	•				·	
alkalinity, Total		10	267	NA	NA	NA	NA	NA	NA	NA		
ammonia	2	0.2	0.023 F	NA	NA	NA	NA	NA	NA	NA		
BOD5		2.4	U	NA	NA	NA	NA	NA	NA	NA		
bromide	2	0.5	U	NA	NA	NA	NA	NA	NA	NA		
COD		5	22.9	NA	NA	NA	NA	NA	NA	NA		
chloride	250	1	4.7	NA	NA	NA	NA	NA	NA	NA		
color	15	5	140	NA	NA	NA	NA	NA	NA	NA		
cyanide	200	0.02	0.0052 F	NA	NA	NA	NA	NA	NA	NA		
hardness, Total		1	370	NA	NA	NA	NA	NA	NA	NA		
nitrate	10	1	U	NA	NA	NA	NA	NA	NA	NA		
TKN	1	1	0.58 B	NA NA	NA NA	NA	NA	NA	NA	NA		
sulfate	250	1	39.8	NA NA	NA	NA NA	NA NA	NA NA	NA	NA		
TDS	500	10	334	NA NA	NA NA	NA NA	NA	NA	NA	NA NA		
TOC		1 0.005	4.3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		
phenolics, Total		0.005	U	INA	INA	INA	INA	INA	INA	INA		

Landfill 5 AOC Surface Water Analytical Results

Location of Well									LF5SW-1						
Date of Collection			2/6/2003	6/16/2003	9/8/2003	12/1/2003	3/26/2004	6/18/2004	9/13/2004	12/13/2004	3/30/2005	6/20/2005	9/6/2005	12/12/2005	3/9/2006
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit	LF5SW0101AA	LF5SW0100BA	LF5SW0101CA	LF5SW0101DA	LF5SW0101EA	LF5SW0101FA	LF5SW0101GA	LF5SW0101HA	LF5SW0101IA	LF5SW0101JA	LF5SW0101KA	LF5SW0101LA	LF5SW0101MA
Depth to Water (ft)	-		Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
VOCs (µg/L)				-		-		-	-	-	!		-		1
1,2,4-trimethylbenzene	5	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,2-dichlorobenzene	3	1	U	U	NA	NA	U	NA	NA	NA	1.7	NA	NA	NA	U
1,3,5-trimethylbenzene	5	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
1,4-dichlorobenzene	3	0.5	U	U	NA	NA	U	NA	NA	NA	0.96	NA	NA	NA	U
acetone	50	10	U	U	NA	NA	U	NA	NA	NA	3.5 F	NA	NA	NA	U
benzene	1	0.1	0.13 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
chlorobenzene	5	0.5	0.45 F	0.52	NA NA	NA NA	0.26 F	NA NA	NA NA	NA NA	6.7	NA	NA NA	NA NA	0.53
chloroform	7	0.3	0.17 F	U	NA NA	NA NA	0.20 F	NA	NA	NA NA	0.29 F	NA NA	NA	NA	U
naphthalene	10	0.3	U.17 I	U	NA NA	NA NA	U.29 I	NA NA	NA NA	NA NA	0.23 F	NA NA	NA NA	NA NA	U
-			0.31 F	U											U
trichloroethene	5	1	0.31 F 0.10 F	U	NA	NA NA	0.26 F	NA	NA	NA	0.27 F	NA	NA	NA	U
toluene	5	1		-	NA	NA	U	NA	NA	NA	U	NA	NA	NA	
vinyl acetate		5	UJ	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
Metals (μg/L) [Dissolved / Tot		200			42.0.5					250					
aluminum	100	200	U	508	42.9 F	111 F	202	U	U	379	102	137 F	U	441	50.2 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	44.5 F	60.2	57.8	37.6 F	34.6 F	49.9 F	48.2 F	32.7 F	41.7 F	46.5 F	49.8 F	48.8 F	48.3 F
berylium	3	4	U	U	0.3 F	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	110	U	67.5 B	NA	NS	17.8	NA	NA	NA	24.2	NA	NA	NA	25.8
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	95,594.8	101,000	112,000	68,800	85,900	111,000	102,000	77,800	120,000	142,000	131,000	117,000	117,000
chromium	50	10	U	2.5 F	U	U	U	1.1 F	U	U	0.8 F	U	U	U	0.9 F
cobalt	5	60	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	3.9 F	U	2.5 F	U	4.2 F	2 F	3.1 F	U	3.3 F	U	2.4 F	U
iron	300	200	78.6 F	991	58.4 F	232	298	98.1 F	139 F	442	166 F	472	237	622	241
lead	50	25	U	6.2 F	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	15,486.9	16,500	18,500	9,380	11,800	16,900	15,500	9,510	14,900	18,900	20,100	16,500	17,200
manganese	300	10	62.8	164	71.8	68.3	64.9	65.2	71.4	139	326	758	559	446	432
molybdenum		15	3.9 F	U	U	U	U	2.1 F	U	2.6 F	2 F	6.2 F	U	U	U
nickel	100	20	U	U	U	U	U	U	U	U	U	1.7 F	U	U	U
potassium		1,000	1,492.5	2,180	2,050	2,080	1,880	2,210	2,230	1,980 F	2,500	3,370	2,440	2,680	2,280
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium		1,000	90,342	76,300	94,000	199,000	88,200	98,400	92,400	98,500	110,000	101,000	109,000	102,000	110,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	3.9 F	U	U	U	U	U	3.3 F	2.5 F	1.9 F	U	1.7 F	U
zinc	2,000	20	14.5 F	U	U	27.3	10.7 F	12.1 F	U	12.4 F	10 F	7.4 F	5.1 F	9.4 F	6.6 F
	2,000	20	14.51			21.3	10.71	12.11		12.41	101	7.41	5.11	7.41	0.01
Leachate Indicators (mg/L) alkalinity, Total		10	232	222	254	166	172	222	241	163	207	262	285	241	230
•															
ammonia	2	0.2	U	U	0.092 B	U	U	U	0.037	0.13	U	0.076 F	0.024 F	0.029 F	0.025 F
BOD5		2.4	U	7.1 B	U	U	U	U	U	U	U	U	U	2.5	U
bromide	2	0.5	U	U	U	U	U	U	U	U	U	U	U	6.6	U
COD		5	U	U	U	U	U	U	U	U	U	9.3 F	U	U	U
chloride	250	1	160.3862	148	163	300	195	192	172	209	274	250	218	180	224
color	15	5	U	10	NA	NA	20	NA	NA	NA	15 J	NA	NA	NA	5
cyanide	200	0.02	0.00173 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	0.0084 F
hardness, Total		1	298.07	451	295	280	276	300	340	288	344	432	470	410	440
nitrate	10	1	1.4562	1	1.2	1.6	1.2	1.4	1.1	0.96 F	1.1	0.5 F	0.35 F	U	1.1
TKN	1	1	0.56	0.43	0.37	0.5	0.16 F	0.34 B	U	0.74	0.32	0.72	0.55	0.63 B	U
sulfate	250	1	42.954	48.8	46.8	29.3	33	43	0.14 F	53.1	62.6	99	67.8	58.6	53.6
TDS	500	10	559	577	641	712	536	657	598	535	665	813	771	684	677
TOC		1	1.01	1.2	1.1	1.4	1.1	0.85 F	0.75 F	2.3	1.8	3.4	2	0.57 F	0.85 F
phenolics, Total		0.005	U	U	U	U	0.0048 F	U	U	U	U	0.011	0.017	U	U

Landfill 5 AOC Surface Water Analytical Results

Location of Well													LF55	SW-1							
Date of Collection	-		9/12	/2006	3/28/	2007	9/24/	2007	3/27/	2008	9/15	/2008		2009	3/25/	2010					
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit		/0101NA	LF5SW(LF5SW		LF5SW			0101RA		/0101SA	LF5SW						
Depth to Water (ft)	-		Sm	rface	Surf	ace	Sur	face													
VOCs (µg/L)																					
1,2,4-trimethylbenzene	5	1	N	ΙA	N.	A	N	A	N	A	N	ΙA	N	ΙA	N	A					
1,2-dichlorobenzene	3	1	N	JA.	N.	A	N	Α	N	A	N	IA	N	JA.	N	A					
1,3,5-trimethylbenzene	5	1	N	ĪΑ	N.	A	N	A	N	A	N	ΙA	N	ĪΑ	N	A					
1,4-dichlorobenzene	3	0.5	N	ĪΑ	N.	A	N	A	N	A	N	ΙA	N	ΙA	N	A					
acetone	50	10	N	ΙA	N.	A	N	A	N	A	N	IA	N	ΙA	N	A					
benzene	1	0.1		JA.	N.		N		N			IA		ΙA	N						
chlorobenzene	5	0.5		IA.	N.		N		N			IA		ΙA	N						
chloroform	7	0.3		IA.	N.		N		N			IA		ĪΑ		A					
naphthalene	10	1		IA.	N.		N		N			IA		ĪΑ	N						
trichloroethene	5	1		IA.	N.		N		N			IA		IA.	N						
toluene	5	1		JA	N.		N		N			IA.		IA.	N						
vinyl acetate		3	l N	ΙA	N.	1	N	Λ	N	Α	N	IA	N	ΙA	N	A		1			
Metals (μg/L) [Dissolved / Tota aluminum	100	200	U	51.1 F	U	70 F	U	110 F	200 B	U	48 F	96 F	U	170 F	U	96 F				T	
antimony	3	50	U	J1.1 F	U	U	U	U	200 B U	U	u U	U	U	170 F U	U	90 F U					
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
barium	1,000	50	36.4 F	37 F	37 F	37 F	53	56	37 F	38 F	68	85	38 F	41 F	48 F	50					
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
boron, Total	1,000	110	NA																		
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
calcium		1,100	109,000	107,000	96,000	95,000	110,000	110,000	97,000	100,000	110,000	120,000	91,000	90,000	100,000	100,000					
chromium	50	10	U	U	3.2 F	2.0 F	2.1 F	1.5 F	U	U	2.2 F	U	U	U	U	U					
cobalt	5	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
copper	200	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
iron	300	200	25.8	319	6.3 F	180 F	24 F	280	13 F	160 F	29 F	510	120 F	500	93 F	330					
lead	50	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
magnesium	35,000	1,000	17,600	17,600	13,000	12,000	17,000	18,000	14,000	14,000	18,000	19,000	13,000	12,000	15,000	16,000					
manganese	300	10	250	249	120	130	370	390	120	120	470	500	180	160	150	210					
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
nickel	100	20	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
potassium	10	1,000 30	1,910 U	1,970 U	2,000 U	2,000 U	2,000 U	2,000 U	2,000 U	2,000 U	2,200 U	2,300 U	1,900 U	1,900 U	2,000 U	2,200 U					
selenium	50	10	U	II	II.	U	U	II.	U	U	U	U	II	U	U	U					
silver sodium	50	1,000	97,700	99,200	110,000	110,000	110,000	110,000	99,000	100,000	98,000	110,000	90,000	90,000	98,000	96,000	-		+		
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U					
vanadium		10	U	U	U	U	U	U	U	U	U	1.1 F	U	U	U	U					
zinc	2,000	20	25.8 B	22.5 B	6.3 F	7.6 F	2.7 B	5.2 F	16 F	24 B	17 F	17 F	19 F	23	12 F	14 F					
Leachate Indicators (mg/L)																			-		
alkalinity, Total		10	N	IA.	N.	A	N	A	N	A	N	IA	N	ΙA	N	A					
ammonia	2	0.2	N	JA	N.	A	N	A	N	A	N	ΙA	N	ΙA	N	A					
BOD5		2.4		ĪΑ	N.		N		N			IΑ		ĪΑ	N						
bromide	2	0.5		ĪΑ	N.		N		N			ΙA		ΙA	N						
COD		5		JA.	N.		N		N			ΙA		JA.	N						
chloride	250	1		IΑ	N.		N		N			IA		IA	N						
color	15	5		JA	N.		N		N			IA.		IA	N						
cyanide	200	0.02		IA.	N.		N		N			IA.		IA.		A					
hardness, Total		1		IA.	N.		N		N			IA.		IA.		A					
nitrate	10	1		IA IA	N.		N N		N N			IA IA		IA IA	N N				-		
TKN sulfate	250	1		IA	N.		N N		N N			IA IA		ia Ia	N N						
TDS	500	10		IA	N.		N N		N N			IA IA		ia Ia	N N						
TOC	500	10		IA	N.		N N		N			IA IA		iA	N						
phenolics, Total		0.005		JA	N.		N		N			IA		IA	N						
piiciones, rotai		0.005	1	***	147	•	19	••	14	••	15		15	***	1	••		1			

Landfill 5 AOC Surface Water Analytical Results

T CTV. II									LF5SW-2						
Location of Well Date of Collection			2/6/2003	6/16/2003	9/8/2003	12/1/2003	3/26/2004	6/18/2004	9/13/2004	12/13/2004	3/30/2005	6/20/2005	9/6/2005	12/12/2005	3/9/2006
Sample ID No.	NYSDEC Class A Surface Water Standards	Reporting Limit	LF5SW0201AA	LF5SW0201BA	LF5SW0201CA	LF5SW0201DA	LF5SW0201EA	LF5SW0201FA	LF5SW0201GA	LF5SW0201HA	LF5SW0201IA	LF5SW0201JA	LF5SW0201KA	LF5SW0201LA	LF5SW0201MA
Depth to Water (ft)			Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
VOCs (µg/L)			Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
1,2,4-trimethylbenzene	5	1	U	U	NA	NA	U	NA	NA	NA	0.47 F	NA	NA	NA	U
1,2-dichlorobenzene	3	1	U	U	NA	NA	U	NA	NA	NA	4.3	NA	NA	NA	0.82 F
1,3,5-trimethylbenzene	5	1	U	U	NA	NA	U	NA	NA	NA	0.78 F	NA	NA	NA	U
1,4-dichlorobenzene	3	0.5	U	U	NA	NA	U	NA	NA	NA	2.1	NA	NA	NA	0.41 F
acetone	50	10	U	U	NA	NA	U	NA	NA	NA	12	NA	NA	NA	2.8 F
benzene	1	0.1	2.79	0.34 F	NA	NA	2.2	NA	NA	NA	3.5	NA	NA	NA	0.62
chlorobenzene	5	0.5	2.55	1.3	NA	NA	1.8	NA	NA	NA	22	NA	NA	NA	5.5
chloroform	7	0.3	0.15 F	U	NA	NA	0.29 F	NA	NA	NA	U	NA	NA	NA	U
naphthalene	10	1	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
trichloroethene	5	1	0.25 F	U	NA	NA	0.28 F	NA	NA	NA	U	NA	NA	NA	U
toluene	5	1	0.13 F	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
vinyl acetate		5	UJ	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	U
Metals (μg/L) [Dissolved / Tota	al] ¹														
aluminum	100	200	U	70.4 F	25.5 F	139 F	229	U	115 F	290	786	224	U	166 F	37.8 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	44.8 F	51.1	58.3	37.6 F	34.6 F	48.0 F	57.2	43.5 F	50.5	43.7 F	45.4 F	42.5 F	47.7 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U
boron, Total	1,000	110	U	63.6 B	NA	NS	18.3	NA	NA	NA	74.2	NA	NA	NA	23
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	95,166.7	98,200	113,000	69,900	84,300	104,000	112,000	91,000	203,000	127,000	123,000	110,000	114,000
chromium	50	10	1.0 F	U	U	U	U	U	U	U	1 F	U	U	U	1.1 F
cobalt	5	60	U	U	U	U	U	U	U	U	1.4 F	U	U	U	U
copper	200	10	U	U	U	2.8 F	U	3.4 F	2.8 F	3.2 F	8.3 F	3.7 F	U	1.7 F	U
iron	300	200	128.0 F	109 F	50.3 F	215	382	119 F	382	540	1,320	457	214	288	205
lead	50	25	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	15,931.8	15,500	19,200	9,510	11,500	16,200	15,900	11,400	12,800	19,200	19,500	15,600	16,900
manganese	300	10	82.3	76.9	82.5	63.6	66.7	67.2	185	244	495	556	502	340	346
molybdenum		15	4.0 F	U	U	U	U	U	3.5 F	3.5 F	19.8	4 F	U	2.9 F	U
nickel	100	20	U	U	U	U	U	U	1.7 F	1.5 F	6.7 F	1.7 F	U	U	U
potassium		1,000	1,356.3	2,030	1,990	2,040	1,820	2,070	2,660	2,270	4,540	2,790	2,380	2,650	2,010
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium		1,000	86,248.3	83,000	94,800	185,000	82,700	90,200	89,400	98,500	34,100	102,000	105,000	102,000	113,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium	2,000	10 20	U 13.5 F	1.7 F	U U	U 19 F	1.9 F 11.6 F	1.1 F 11.0 F	2.4 F 7.3 F	3.6 F 11.5 F	23.8 6.6 F	1.5 F 8.4 F	U 4.4 F	U 6.7 F	U 8.7 F
zinc	2,000	20	13.5 F	U	U	191	11.0 F	11.0 F	7.5 F	11.5 F	0.0 F	8.4 F	4.4 F	0./ F	8.7 F
Leachate Indicators (mg/L)	T	10	240	220	250	170	172	224	246	161	194	252	274	222	222
alkalinity, Total		10	240	229	258 U	170	172	224	246	161	184	253	274	233	233
ammonia BOD5	2	0.2 2.4	U U	U 6.9 B	U	U U	U U	0.1 U	0.079 U	0.068 U	0.2	0.069 U	0.013 F U	U U	0.057 U
bromide	2	0.5	U	6.9 B U	U	U	U	U	U	U	7.5 0.6	U	U	6.6	U
COD		0.5	U	U	TI U	U	U	U	U	10.8	29.6	17.1	5.6 F	6.6 U	U
chloride	250	1	154.286	155	170	234	178	184	177	10.8	79.1	241	217	180	230
color	15	5	U	5	NA	NA NA	20	NA	NA	NA	79.1 70 J	NA	NA	NA	5
color	200	0.02	U	U	NA NA	NA NA	0.0086 F	NA NA	NA NA	NA NA	7 0 3	NA NA	NA NA	NA NA	U
hardness, Total	200	1	298.07	300	400	250	268	NA 296	350	312	594	424	1NA 440	460	370
nitrate	10	1	1.1061	1.1	1.1	1.7	1.3	1.3	0.99 F	0.94 F	1.6	0.55 F	0.32 F	460 U	0.99 F
TKN	10	1	U	0.44	0.43	0.59	0.24	0.40 B	0.99 F 0.21	0.94 F 0.72	1.3	0.33 F 0.47	0.52 F 0.51	0.42 B	0.57 B
sulfate	250	1	43.0834	0.44 44	46.5	29.6	32.3	0.40 B 42.1	57.6	67.6	573	79.1	66.9	0.42 B 61	0.57 B 62
TDS	500	10	550	583	633	707	516	631	618	586	874	764	748	706	657
TOC		1	1.57	1	1.1	1.5	2.3	0.87 F	2.2	2.9	13.8	2.9	2	0.47 F	1.2
phenolics, Total	-	0.005	U	0.011 B	U	U	U	U.87 I	U	U	0.0047 F	0.01	U	U.47 I	U
prictiones, 10tai		0.005	U	0.011 B	U	U	U	U	l C	U	0.00471	0.01	U		U

Landfill 5 AOC Surface Water Analytical Results

I continu of Wall			1										LF55	EW 2						
Location of Well Date of Collection	_		9/12	2/2006	3/28/	2007	9/24	/2007	3/27/	2008	9/15/	2008	4/7/		3/25	/2010			T	
Date of Conection	NYSDEC Class A	Reporting	9/12	42000	3/20/	2007	3/24/	2007	3/2//.	2008	7/13/	2008	4///	2009	3/23/	/2010				
Sample ID No.	Surface Water Standards	Limit	LF5SW	V0201NA	LF5SW(0201OA	LF5SW	0201PA	LF5SW(0201QA	LF5SW(0201RA	LF5SW	/0201SA	LF5SW	/0201TA				
Depth to Water (ft)			Sur	rface	Surf	ace	Sur	face	Surf	ace	Surf	face	Sur	face	Sur	rface				
VOCs (µg/L)	· · · · · · · · · · · · · · · · · · ·																*			
1,2,4-trimethylbenzene	5	1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ΙA				
1,2-dichlorobenzene	3	1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	JA.				
1,3,5-trimethylbenzene	5	1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ĪΑ				
1,4-dichlorobenzene	3	0.5	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ĪΑ				
acetone	50	10	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	IA	N	IA.				
benzene	1	0.1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ΙA				
chlorobenzene	5	0.5	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ΙA				
chloroform	7	0.3	N	NA	N.	A	N	IΑ	N.	A	N.	A	N	ΙA	N	ΙA				
naphthalene	10	1	N	NA	N.	A	N	IΑ	N.	A	N.	A	N	IΑ	N	ΙA				
trichloroethene	5	1	N	NA	N.	A	N	IΑ	N.	A	N.	A	N	IΑ	N	JΑ				
toluene	5	1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ΙA				
vinyl acetate		5	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ΙA			 	
Metals (μg/L) [Dissolved / Tot	tal] ¹																			
aluminum	100	200	U	96.6 F	U	87 F	U	63 F	46 F	51 F	42 F	72 F	U	68 F	U	U				
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
barium	1,000	50	43.5 F	44.9 F	36 F	37 F	54	56	3.7 F	40 F	63	71	36 F	36 F	49 F	49 F				
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
boron, Total	1,000	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
calcium		1,100	111,000	110,000	96,000	95,000	110,000	110,000	99,000	100,000	110,000	120,000	89,000	88,000	100,000	100,000				
chromium	50	10	U	2.12 F	3.3 F	2.5 F	1.8 F	1.8 F	U	U	2.3 F	3.0 F	U	U	U	U				
cobalt	5	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
copper	200	10	U	U	U	U	U	2.2 F	U	U	U	U	U	U	U	U				
iron	300	200	29.8 F	167 F	8.4 F	190 F	26 F	290	8.7 F	160 F	28 F	400	19 F	160 F	67 F	180 F				
lead	50	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
magnesium	35,000	1,000	17,600	17,700	12,000	12,000	19,000	19,000	14,000	15,000	19,000	20,000	12,000	12,000	16,000	16,000				
manganese	300	10	198	201	120	120	280	300	130	140	350	410	100	100	160	160				
molybdenum		15	U	U	U	U U	U	U	U U	U	U	U U	U	U	U	U U				
nickel	100	20	1.58 F	U	U 2.100		U	U		U 2.100	U 2.200		-	U	U					
potassium selenium	10	1,000 30	1,850 U	1,960 U	2,100 U	2,000 U	2,000 U	2,100 U	2,100 U	2,100 U	2,200 U	2,300 U	1,900 U	1,900 U	2,100 U	2,100 U				
	50	10	U	II	U	U	U	II.	U	U	U	U	II	U	II.	U				
silver sodium	50	1,000	101,000	102,000	110,000	110,000	100,000	100,000	95,000	99,000	100,000	110,000	92,000	90,000	97,000	97,000				
thallium	0.5	80	U	IJ	U	110,000	100,000 U	100,000 U	95,000 U	99,000 U	U	U	92,000 U	90,000 U	U	U				'
vanadium	0.3	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
zinc	2,000	20	30.5 B	2.62 B	6.2 F	7.6 F	15 F	7.0 F	13 F	22 B	18 F	15 F	19 F	18 F	15 F	13 F				
Leachate Indicators (mg/L)		· ·											1							
alkalinity, Total		10	N	NA.	N.	A	N	ΙA	N.	A	N.	A	N	IA	N	JA.				
ammonia	2	0.2		NA	N.			ΙA	N.		N.			ΙA		ĪΑ				l
BOD5		2.4		NA	N.			ΙA	N.		N.			ΙA		ĪΑ				l
bromide	2	0.5		NA	N.			ΙA	N.		N.			ΙA		ĪΑ				
COD		5	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	ĪΑ				Į.
chloride	250	1	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	JA.				
color	15	5	N	NA	N.	A	N	ΙA	N.	A	N.	A	N	ΙA	N	JA				Į.
cyanide	200	0.02	N	NA	N.	A	N	IΑ	N.	A	N.	A	N	ΙA	N	JA				
hardness, Total		1	N	NA	N.	A	N	IΑ	N.	A	N.	A	N	ΙA	N	ΙA				l
nitrate	10	1		NA	N.			ΙA	N.		N.			ΙA	N	ΙA				
TKN	1	1	N	NA	N.	A	N	ΙA	N.	A	N.	Α	N	IA	N	IA.				 -
sulfate	250	1		NA	N.			IΑ	N.		N.			ΙA		ĪΑ				
TDS	500	10	N	NA	N.	A	N	ΙA	N.	A	N.		N	IA	N	ĪΑ				
TOC		1		NA	N.			IΑ	N.		N.			IA		ĪΑ				ļ
phenolics, Total		0.005	N	NΑ	N.	A	N	ΙA	N.	A	N.	A	N	IA	N	VΑ				

Landfill 5 AOC Surface Water Analytical Results

Sample ID No. Depth to Water (ft) VOCs (µg/L) 1,2,4-trimethylbenzene 1,2-dichlorobenzene 1,3-5-trimethylbenzene 1,4-dichlorobenzene ectone benzene chlorobenzene chlorobenzene chlorobenzene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenic benzim berylium boron, Total cadmium calcium chromium cobalt copper iron 3 lead magnesium 35 manganese 33 molybdenum nickel potassium selenium silver sodium thallium (vanadium) (vanadium) (()	SDEC Class A urface Water Standards 5	Reporting Limit 1	2/6/2003 LFSSW0301AA Surface U U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U U U U U U U U U U U U U U U U U	0/16/2003 LF5SW0301BA Surface U U U U U U U U U U U U U U U U U U	9/8/2003 LF5SW0301CA Surface NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	12/1/2003 LF5SW0301DA Surface NA NA NA NA NA NA NA NA NA NA NA U U U 40.9 F U NS	3/26/2004 LFSSW0301EA Surface U U U U U 1.1 1.1 0.22 F U 0.21 F U U U U 1.1 1.5 F	NA NA NA NA NA NA NA NA NA U U U U Solo	9/13/2004 LFSSW0301GA Surface NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	12/13/2004 LFSSW0301HA Surface NA NA NA NA NA NA NA NA NA NA U U U	3/30/2005 LF5SW03011A Surface 0.27 F 2.3 0.37 F 1.1 8.4 F 1.6 11 U 0.2 F U U U U U	6/20/2005 LF5SW0301JA Surface NA NA NA NA NA NA NA NA	9/6/2005 LF5SW0301KA Surface NA NA NA NA NA NA NA NA NA NA NA NA NA	12/12/2005 LFSSW0301LA Surface NA NA NA NA NA NA NA NA NA NA NA NA NA	3/9/2006 LF5SW0301MA Surface U 0.44 F U U 2.7 F 0.49 F 3.4 U U U U U U U U U U
Sample ID No. Depth to Water (ft) VOCs (µg/L) 1,2,4-trimethylbenzene 1,2-dichlorobenzene 1,3-5-trimethylbenzene 1,4-dichlorobenzene etholorobenzene chlorobenzene chlorobenzene chlorobenzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium boron, Total cadmium calcium chromium cobalt copper iron 3 lead magnesium 35 manganese 33 molybdenum nickel potassium selenium silver sodium tvanadium (() vanadium ()	Standards Stan	Limit 1 1 1 1 0.5 10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	U U U U U U U U U U U U U U U U U U U	Surface U U U U U U U 0.22 F 0.96 U U U U U U U U U U U U U U U U U U U	NA	NA	Surface U U U U U I.1 1.1 0.22 F U 0.21 F U U U 31.5 F	Surface NA NA NA NA NA NA NA NA NA U U U U	Surface NA NA NA NA NA NA NA NA NA NA NA NA NA	NA	Surface 0.27 F 2.3 0.37 F 1.1 8.4 F 1.6 11 U 0.2 F U U U U U	NA	Surface NA NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	Surface U 0.44 F U U 2.7 F 0.49 F 3.4 U U U U U U 0 0 0 0 0 0 0 0 0 0 0 0 0
VOCs (µg/L) 1,2,4-trimethylbenzene 1,2-dichlorobenzene 1,3-5-trimethylbenzene 1,4-dichlorobenzene acetone benzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total)¹ aluminum antimony arsenic barium 1, berylium boron, Total cadmium calcium chromium cobalt copper iron lead magnesium molyelead magnesium molyelead magnesium molyelead moly	3 5 3 5 5 5 1 1 5 5 5 5 5 1 1 1 1 1 1 1	1 1 0.5 10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5	U U U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F U U U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U U U U 1.1 1.1 0.22 F U 0.21 F U U U	NA NA NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	0.27 F 2.3 0.37 F 3.1 I 8.4 F 1.6 11 U 2 F U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U 0.44 F U U 2.7 F 0.49 F 3.4 U U U U U
VOCs (µg/L) 1,2,4-trimethylbenzene 1,2-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene acetone benzene chlorobenzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium 1, berylium boron, Total cadmium calcium chromium cobalt copper iron lead magnesium magnesium magnesium mickel potassium selenium silver sodium thallium (vanadium) (vanadium) (dium) (d	3 5 3 5 5 5 1 1 5 5 5 5 5 1 1 1 1 1 1 1	1 1 0.5 10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5	U U U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F U U U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U U U U 1.1 1.1 0.22 F U 0.21 F U U U	NA NA NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA	0.27 F 2.3 0.37 F 3.1 I 8.4 F 1.6 11 U 2 F U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U 0.44 F U U 2.7 F 0.49 F 3.4 U U U U U
1,2,4-trimethylbenzene 1,2-dichlorobenzene 1,3,5-trimethylbenzene 1,3,5-trimethylbenzene 1,4-dichlorobenzene acetone benzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenic barium 1, berylium boron, Total 1, cadmium calacium chromium cobalt copper iron 1, lead magnesium 35 manganese 30 molybdenum nickel potassium selenium silver sodium thallium (vanadium (vanadium (vanadium (vanadium (vanadium (vanadium (vanadium (vanadium ((vanadium ((vanadium ((vanadium ((((((((((((((((((3 5 3 5 5 5 1 1 5 5 5 5 5 1 1 1 1 1 1 1	1 1 0.5 10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5	U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA U U U	2.3 0.37 F 1.1 8.4 F 1.6 11 U 0.2 F U U U	NA NA NA NA NA NA NA NA NA NA NA NA T NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	0.44 F U U 2.7 F 0.49 F 3.4 U U U U U U U U U U U U U U U U U U U
1,2-dichlorobenzene 1,3,5-trimethylbenzene 1,4-dichlorobenzene acetone benzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium boron, Total cadmium calcium chromium cobalt copper iron agamese agam	3 5 3 5 5 5 1 1 5 5 5 5 5 1 1 1 1 1 1 1	10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA U V 4,280 U	2.3 0.37 F 1.1 8.4 F 1.6 11 U 0.2 F U U U	NA NA NA NA NA NA NA NA NA NA NA NA T NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U 2.7 F 0.49 F 3.4 U U U U U
1,3,5-trimethylbenzene 1,4-dichlorobenzene acetone benzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium toluene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium toluene toluene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium toluene tol	5 3 50 1 5 7 10 5 5 5 100 3 5 5 1,000 3 1,000 5	10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	U U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U U U U U 91,794,4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U U 1.1 1.1 0.22 F U 0.21 F U U U	NA NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA U V 4,280 U	0.37 F 1.1 8.4 F 1.6 11 U 0.2 F U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U 2.7 F 0.49 F 3.4 U U U U U
1.4-dichlorobenzene acetone benzene chlorobenzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Tota]¹ aluminum antimony arsenic barium 1, berylium boron, Total cadmium calcium chromium cobalt copper 2 iron aa magnesium	3 50 1 5 7 10 5 5 5 100 3 5 5 1,000 3 1,000 5	10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	U U U 1.43 1.35 0.10 F U 0.18 F 0.22 F U U U 48.1 F U U U 91,794.4	U U U 0.22 F 0.96 U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U U 1.1 1.1 0.22 F U 0.21 F U U 196 F U U 31.5 F	NA NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA U NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA U V 4,280 U	1.1 8.4 F 1.6 11 U 0.2 F U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	2.7 F 0.49 F 3.4 U U U U U
acetone benzene chlorobrzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenie 5 barium 1, berylium 1, berylium 1, cadmium calcium chromium cobalt copper 2 iron 1 antimony 3 manganese 3 manganese 3 molybdenum nickel potassium selenium silver 5 sodium 4 sodium (name 1 and 1	50 1 5 7 10 5 5 100 3 50 1,000 3 1,000 5 50	10 0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	U 1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U 48.1 F U U 91,794.4	U 0.22 F 0.96 U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	U 1.1 1.1 0.22 F U 0.21 F U U 196 F U U 31.5 F	NA NA NA NA NA NA NA U U U U	NA NA NA NA NA NA NA NA NA U NA NA U NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA U NA NA U U U	8.4 F 1.6 11 U 0.2 F U U U	NA NA NA NA NA NA NA NA NA TA NA NA TA NA NA TO TE TE TE TE TE TE TE TE TE TE TE TE TE	NA NA NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA NA	2.7 F 0.49 F 3.4 U U U U U
benzene chlorobenzene chlorobenzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenic barium berylium boron, Total 1, cadmium calcium chromium cobalt copper iron 3 lead magnesium 35 manganese 33 molybdenum nickel potassium selenium silver sodium thallium (vanadium (vanadium ()	1 5 7 10 5 5 5 100 3 3 50 1,000 3 1,000 5 50	0.1 0.5 0.3 1 1 1 5 200 50 30 50 4 110 5 1,100 10	1.43 1.35 0.10 F U 0.18 F 0.22 F UJ U 48.1 F U U 91,794.4	0.22 F 0.96 U U U U U U U 0 61.1 B U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA U U U 40.9 F U	1.1 1.1 0.22 F U 0.21 F U U 196 F U U 31.5 F	NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA UA NA UA UA UA UA UA UA UA UA UA UA UA UA UA	NA NA NA NA NA NA NA VA U V 4,280 U	1.6 11 U 0.2 F U U U	NA NA NA NA NA NA NA NA TO TO TO TO TO TO TO TO TO TO TO TO TO	NA NA NA NA NA NA U U U	NA NA NA NA NA NA NA NA NA	0.49 F 3.4 U U U U U
chlorobenzene chloroform naphthalene trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium boron, Total calcium chromium cobalt copper iron aganesium magnesium molybdenum nickel potassium selenium silver sodium thallium yanadium (5 7 100 5 5 1000 3 3 1,000 5 5 50	0.5 0.3 1 1 5 200 50 30 50 4 110 5 1,100 10	1.35 0.10 F U 0.18 F 0.22 F UJ U U 48.1 F U U 91,794.4	0.96 U U U U U 153 F U U 59.3 U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA U U U 40.9 F U	1.1 0.22 F U 0.21 F U U	NA NA NA NA NA U U U U	NA NA NA NA NA NA NA UA NA UA U I64 F U	NA NA NA NA NA NA NA UA NA NA UA U	11 U 0.2 F U U U	NA NA NA NA NA NA NA TO NA NA NA NA NA NA NA	NA NA NA NA NA NA U U	NA NA NA NA NA NA	3.4 U U U U U
chloroform naphthalene trichlorochene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum antimony arsenic barium loron, Total cadmium cadmium cadcium chromium cobalt copper co	7 10 5 5 100 3 50 1,000 3 1,000 5	0.3 1 1 5 200 50 30 50 4 110 5 1,100	0.10 F U 0.18 F 0.22 F UJ U U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA U U 40.9 F U	0.22 F U 0.21 F U U 196 F U U 31.5 F	NA NA NA NA NA U U U	NA NA NA NA NA UA NA UA 164 F U	NA NA NA NA NA U	U 0.2 F U U U U S51 U	NA NA NA NA NA NA U NA NA U NA NA U NA NA NA	NA NA NA NA NA U U	NA NA NA NA NA	U U U U U
naphthalene trichloroethene toluene toluene toluene toluene toluene Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenic barium 1, berylium boron, Total cadmium calcium chromium cobalt copper 1 2 iron lead magnesium 35 manganese 33 molybdenum nickel potassium selenium silver sodium thallium ((vanadium) ((vanadium) ((vanadium) (((((((((((((((((((100 5 5 1000 3 50 1,000 3 1,000 5	1 1 1 5 200 50 30 50 4 110 5 1,100	U 0.18 F 0.22 F UJ U U U 48.1 F U U U 91,794.4	U U U U 153 F U U 59.3 U	NA NA NA NA NA NA NA NA NA NA NA NA NA U U U G G G G G G G G G G G G G G G G	NA NA NA NA VA 247 U U 40.9 F U	U 0.21 F U U U 31.5 F	NA NA NA NA U U U	NA NA NA NA U	NA NA NA NA U	0.2 F U U U U	NA NA NA NA U 152 F U	NA NA NA U U	NA NA NA NA	U U U U
trichloroethene toluene vinyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony arsenic 5 barium 1, berylium 5 boron, Total 1, cadmium calcium chromium cobalt copper 2 iron 3 lead magnesium 35 manganese 33 molybdenum nickel potassium selenium silver 5 sodium thallium (6 vanadium)	5 5 5 100 3 50 1,000 3 1,000 5 50	200 50 30 50 4 110 5 1,100	0.18 F 0.22 F UJ U U U 48.1 F U U 91,794.4	U U U U U U U U U U U U U U U U U U U	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA 247 U U 40.9 F U	0.21 F U U 196 F U U 31.5 F	NA NA NA U U U U	NA NA NA	NA NA NA 4,280 U	U U U 551	NA NA NA	NA NA NA	NA NA NA	U U U
toluene vinyl acctate Metals (µg/L) [Dissolved / Total] aluminum antimony arsenic barium berylium boron, Total cadmium calcium chromium cobalt copper iron	5 100 3 50 1,000 3 1,000 5 50	200 50 30 50 4 110 5 1,100	0.22 F UJ U U U 48.1 F U U 91,794.4	U U 153 F U U 59.3 U 61.1 B	NA NA 52.3 F U U 61.8 U NA U	247 U U 40.9 F U	196 F U U 31.5 F	NA NA U U U	NA NA 164 F U	NA NA 4,280 U	U U 551 U	NA NA 152 F U	NA NA U	NA NA 136 F	U U 63.3 F
winyl acetate Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony 1 arsenic 5 barium 1 berylium 1 boron, Total 1 cadnium 1 chromium 2 cobalt 2 copper 2 iron 3 lead 3 manganese 3 molybdenum 1 nickel 1 potassium 5 selenium 5 sodium 4 thallium (vanadium (100 3 50 1,000 3 1,000 5 50	200 50 30 50 4 110 5 1,100	UJ U U 48.1 F U U 10 11 12 13 14 15 15 16 17 17 17 17 17 18 18 18 18 18	U 153 F U U 59.3 U 61.1 B U	52.3 F U U 61.8 U NA U	247 U U 40.9 F U	U 196 F U U 31.5 F	NA U U U U	NA 164 F U	4,280 U	551 U	152 F U	U U	NA 136 F	63.3 F
Metals (µg/L) [Dissolved / Total]¹ aluminum 1 antimony 1 arsenic 1 barium 1 barium 1 cadmium 1 calcium 1 chromium 2 copper 2 iron 3 lead 3 manganesium 35 manganese 3 molybdenum 1 nickel 1 potassium 1 selenium 1 sodium 4 thallium 0 vanadium 0	100 3 50 1,000 3 1,000 5	200 50 30 50 4 110 5 1,100	U U U 48.1 F U U U 91,794.4	153 F U U 59.3 U 61.1 B	52.3 F U U 61.8 U NA U	247 U U 40.9 F U	196 F U U 31.5 F	U U U	164 F U	4,280 U	551 U	152 F U	U U	136 F	63.3 F
aluminum 1 antimony arrival antimony arrival antimony arrival antimony array arrival antimony array and antimony array and antimony array and antimony array and antimony array and antimony array antimony array	3 50 1,000 3 1,000 5 50	50 30 50 4 110 5 1,100	U U 48.1 F U U U 91,794.4	U U 59.3 U 61.1 B	U U 61.8 U NA U	U U 40.9 F U	U U 31.5 F	U U	U	U	U	U	U		
antimony arsenic barium berylium berylium boron, Total cadmium calcium chromium cobalt copper iron 3 lead magnesium mickel potassium selenium silver sodium sodium tillium vanadium	3 50 1,000 3 1,000 5 50	50 30 50 4 110 5 1,100	U U 48.1 F U U U 91,794.4	U U 59.3 U 61.1 B	U U 61.8 U NA U	U U 40.9 F U	U U 31.5 F	U U	U	U	U	U	U		
arsenic barium 1, berylium 1, berylium 1, berylium 1, berylium 1, berylium 2, cadmium calcium chromium cobalt copper 2 iron 3 lead magnesium 35 manganese 35 manganese 31 molybdenum nickel 1 potassium selenium silver 2 sodium thallium (6 vanadium)	50 1,000 3 1,000 5 50	30 50 4 110 5 1,100	U 48.1 F U U U 91,794.4	U 59.3 U 61.1 B	U 61.8 U NA U	U 40.9 F U	U 31.5 F	U		-				U	U
barium 1, berylium 1, berylium 1, boron, Total 1, cadmium calcium 1, cobalt 1, copper 2 iron 3 lead 3, manganese 3, molybdenum 1, inckel 1, potassium 2, selenium 3, silver 3, sodium 4, vanadium (6, potassium 1, sodium 1, sodium 1, selenium 3, silver 3, sodium 4, vanadium (7, sodium 1, selenium 3, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 4, sodium 6, sodium 6, sodium 6, sodium 6, sodium 7, sodium 6	1,000 3 1,000 5 50	50 4 110 5 1,100 10	48.1 F U U U U 91,794.4	59.3 U 61.1 B U	61.8 U NA U	40.9 F U	31.5 F		U	T.T.		11	y =		1
berylium boron, Total 1, cadmium calcium chromium cobalt copper 2 iron 3 lead 3 magnesium 35 manganese 3 molybdenum nickel 1 potassium selenium silver 5 sodium thallium (6 vanadium	3 1,000 5 50	4 110 5 1,100 10	U U U 91,794.4	U 61.1 B U	U NA U	U		50.5			U		U	U	U
boron, Total 1, cadmium calcium chromium cobalt copper 2 iron 3 lead 3 lead 3 magnesium 35 manganese 33 molybdenum nickel 1 potassium selenium silver 5 sodium thallium (6 vanadium	1,000 5 50	110 5 1,100 10	U U 91,794.4	61.1 B U	NA U			52.5	64.3	63.9	39.9	42.9 F	45.3 F	40.1 F	49.2 F
cadmium calcium chromium cobalt copper 2 iron 3 lead magnesium malybdenum nickel potassium selenium silver sidum thallium vanadium	5 50	5 1,100 10	U 91,794.4	U	U	NS	U	U	U	U	U	U	U	U	U
calcium chromium cobalt copper iron 3 lead magnesium 35 manganese 3 molybdenum nickel 1 potassium selenium silver sodium thallium vanadium	50	1,100 10	91,794.4				15.7	NA	NA	NA	48.7	NA	NA	NA	26.2
chromium cobalt copper	50	10		95,700		U	U	U	U	0.6 F	0.4 F	U	U	U	U
cobalt copper 2 iron 3 lead 3 magnesium 35 manganese 3 molydenum 1 nickel 1 potassium selenium silver 5 sodium thallium vanadium (U		110,000	68,000	66,000	102,000	109,000	92,400	129,000	127,000	123,000	105,000	119,000
cobalt copper 2 iron 3 lead 3 magnesium 35 manganese 3 molydenum 1 nickel 1 potassium selenium silver 5 sodium thallium vanadium (60		U	U	1.8 F	1.8 F	1.0 F	U	5.6 F	1.2 F	U	U	U	1.3 F
iron 3 lead 3 magnesium 35 manganese 33 molybdenum nickel 1 potassium selenium silver 3 sodium thallium (6 vanadium	J		U	U	U	U	U	U	U	2.2 F	0.9 F	U	U	U	U
iron 3 lead 3 magnesium 35 manganese 33 molybdenum nickel 1 potassium selenium silver 3 sodium thallium (6 vanadium	200	10	U	U	U	4.7 F	5.1 F	4.1 F	2.6 F	12.4	5.5 F	2.9 F	U	1.9 F	U
lead	300	200	171.0 F	295	60 F	528	540	165 F	516	4,320	896	352	179	242	260
magnesium 35 manganese 3 molybdenum nickel nickel 1 potassium selenium silver 2 sodium thallium vanadium (50	25	U	U	U	33.3	U	U	U	13.2	2.5 F	U	U	U	U
manganese 3 molybdenum nickel 1 potassium selenium silver 3 sodium thallium (0 vanadium	35,000	1,000	16,006.9	16,200	19,100	9,670	9,440	16,500	16,500	10,700	11,700	19,400	19,800	15,700	17,400
molybdenum nickel 1 potassium selenium silver 5 sodium thallium vanadium	300	10	90.6	87.4	67.8	87.5	56.9	70.5	184	293	347	572	487	271	408
nickel 1 potassium selenium silver 5 sodium thallium vanadium		15	4.5 F	U	U	U	U	2.1 F	U	3 F	10.7 F	4.4 F	U	U	1.7 F
potassium selenium silver : sodium thallium vanadium	100	20	4.5 I	U	U	U	U	U	U	7.2 F	4.6 F	1.6 F	U	U	U
selenium silver sodium thallium vanadium		1,000	1,335.1	1,980	2,170		1,290	2,080	2,500	3,150 F			2,380		2,240
silver : sodium thallium (vanadium	10		1,555.1 U	1,980 U	2,170 U	1,940 U	1,290 U	2,080 U	2,300 U	3,130 F U	2,740 U	2,690 U	2,360 U	2,440 U	2,240 U
sodium thallium vanadium		30			U										
thallium (50	10	U	U		U	U	U	U	U	U	U	U	U	U
vanadium		1,000	82,992.5	79,000	97,400	182,000	55,800	88,000	85,100	323,000	23,600	101,000	106,000	103,000	132,000
	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U
		10	U	2.3 F	U	2.2	2.2 F	1.4 F	1.8 F	19.8	13.3	1.4 F	U	U	0.9 F
	2,000	20	13.3 F	U	U	20	10.9 F	9.9 F	5.8	41	11.4 F	7.7 F	4.4 F	7.2 F	10.1 F
Leachate Indicators (mg/L)															
		10	203	219	246	157	142	223	245	161	146	250	270	228	229
	2	0.2	U	U	U	0.05	U	0.024 F	0.11	0.062	0.18	U	0.022 F	0.023 F	0.028 F
BOD5		2.4	U	7.2 B	U	U	1.8 F	U	U	U	4.4	U	U	U	U
bromide	2	0.5	U	U	U	U	U	U	U	U	0.62	U	U	6.9	U
COD		5	9.77	U	U	12 B	35.4	U	22	U	28.6	U	U	U	U
chloride 2	250	1	142.9855	148	110	293	114	184	172	726	59.5	243	216	187	254
color	15	5	30	20	NA	NA	60	NA	NA	NA	100 J	NA	NA	NA	3
	200	0.02	U	U	NA	NA	U	NA	NA	NA	U	NA	NA	NA	0.0072 F
· .		1	298.07	345	358	400	212	308	335	320	414	396	420	340	430
		1	1.3597	U	1	1.7	1.9	1.3	0.97 F	1.2	2.4	0.53 F	0.28 F	U	1
	10	1	U	0.45	0.49	0.75	0.63	0.51 B	0.14 F	0.16 F	1.3	0.36	0.58	0.77 B	0.91 B
	10	1	41.4313	42.9	45.8	28.9	25.1	43.2	49.7	80.8	319	79	65.8	53.2	58.6
	1	10	532	577	599	666	388	615	627	1,170	634	711	731	670	660
	1 250		4.42	1.9	1.3	4	5.6	1.1	2	2.4	17.6	2.9	2	0.62 F	1.1
phenolics, Total	1	1	4.42	1.9 U	1.5 U	U U	0.0093 F	1.1 U	U U	2.4 0.0091 F	U U	0.014	0.009 F	U.62 F	1.1 U

Landfill 5 AOC Surface Water Analytical Results

Leasting of Well			1										LF58	ZW 2						
Location of Well Date of Collection	-		9/12	/2006	3/28/	2007	9/24/	2007	3/27/2	2008	9/15/	2008	4/7/2		3/25	/2010				
Date of Conection	NYSDEC Class A	Reporting	9/12	/2000	3/20/.	2007	3/24/	2007	3/2//2	2008	9/13/	2008	4///2	2009	3/23/	2010				
Sample ID No.	Surface Water Standards	Limit	LF5SW	0301NA	LF5SW(0301OA	LF5SW	0301PA	LF5SW0	0301QA	LF5SW(0301RA	LF5SW	0301SA	LF5SW	0301TA				
Depth to Water (ft)			Sur	face	Surf	face	Sur	face	Surf	ace	Surf	face	Sur	face	Sur	face				
VOCs (µg/L)																		,		
1,2,4-trimethylbenzene	5	1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
1,2-dichlorobenzene	3	1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
1,3,5-trimethylbenzene	5	1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
1,4-dichlorobenzene	3	0.5	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
acetone	50	10	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	IΑ				
benzene	1	0.1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
chlorobenzene	5	0.5	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
chloroform	7	0.3	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
naphthalene	10	1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
trichloroethene	5	1	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
toluene	5	1		IA	N.		N		N.		N.		N			ΙA				
vinyl acetate		5	N	IA	N.	A	N	Α	N.	A	N.	A	N	A	N	ΙA				
Metals (µg/L) [Dissolved / Tot																				
aluminum	100	200	U	62.4 F	U	170 F	U	74 F	45 F	200	41 F	93 F	U	120 F	U	57 F				
antimony	3	50	U	U	U	U	1.7 F	U	U	U	U	U	U	U	U	U				
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U				I
barium	1,000	50	42.2 F	44.1 F	36 F	37 F	54	55	36 F	37 F	64	71	35 F	38 F	51	51				
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U				ļ
boron, Total	1,000	110	NA																	
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
calcium		1,100	108,000	109,000	93,000	90,000	110,000	110,000	95,000	97,000	110,000	120,000	84,000	88,000	100,000	100,000				
chromium	50	10	U	3.18 F	2.9 F	2.3 F	2.3 F	2.5 F	U	U	2.1 F	2.8 F	U	U	U	U				
cobalt	5	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U				\vdash
copper	200	10	U	U	2.3 F	2.5 F	U	U	U	U	U	U	U	U	U	U				
iron	300 50	200 25	22.9 F	162 F	31 F	300	23 F	260	19 F	150 F	33 F	390	U	240	61 F	200				l
lead magnesium	35,000	1,000	U 17,400	U 17,700	U 12,000	U 12,000	U 19,000	U 19,000	U 14,000	U 14,000	U 19,000	U 20,000	U 12,000	U 13,000	U 17,000	U 17,000				
manganese	300	1000	193	198	140	140	270	280	130	140	390	430	95	110	17,000	17,000				
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
nickel	100	20	U	U	U	U	U	U	U	U	U	1.4 F	U	U	U	U				
potassium		1,000	1,800	1,950	2,000	2,000	2,000	2,000	1,900	1,900	2,200	2,300	1,800	1,900	2,100	2,200				
selenium	10	30	U	U	U	U	U	U	U	U	2.8 F	U	U	U	U	U				
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U				
sodium		1,000	100,000	103,000	100,000	100,000	100,000	100,000	94,000	96,000	98,000	110,000	89,000	91,000	97,000	97,000				
thallium	0.5	80	U	6.01 F	U	U	U	U	U	U	U	U	U	U	U	U				
vanadium		10	U	U	0.71 F	0.94 F	U	U	U	U	U	U	U	U	U	U				
zinc	2,000	20	49.9 B	29 B	U	9.4 F	26 B	U	16 F	21 B	18 F	65	16 F	19 F	20	87				
Leachate Indicators (mg/L)																				
alkalinity, Total		10	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				
ammonia	2	0.2	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	ΙA				l
BOD5		2.4		IA	N.		N		N.		N.		N			ΙA				Ų
bromide	2	0.5		IA	N.		N		N.		N.		N			IΑ				l
COD		5		IA	N.		N		N.		N.		N			ΙA				
chloride	250	1		IA	N.		N		N.		N.			A		IA				Ų
color	15	5		IA	N.		N		N.		N.		N			IA				Ų
cyanide	200	0.02		IA	N.		N		N.		N.		N			IA				Ų
hardness, Total		1		IA	N.		N		N.		N.		N			IA				
nitrate	10	1		IA.	N.		N		N.		N.		N			IA.				
TKN	1	1		IA	N.		N		N.		N.		N			IA				l
sulfate	250	1		IA	N.		N		N.		N.		N			IA.				l
TDS	500	10		IA	N.		N		N.		N.		N			IA.				Ų
TOC		1		IA.	N.		N		N.		N.		N			IA.				ļ
phenolics, Total		0.005	N	IA	N.	A	N	A	N.	A	N.	A	N	A	N	IA				

Landfill 6 AOC Groundwater Analytical Results

Location of Well															775VN	IW-10												
Date of Collection	NYSDEC		6/28	/2006	9/15	/2006	12/11	/2006	4/11/	2007	6/19/	2007	9/27/	2007	12/10		4/3/	2008	6/12/2	008	9/30	/2008	12/9/20	008	4/15/2	2009	6/29/200	9
Sample ID No.	Class GA Groundwater	Reporting Limit	775VM	1095AA	775VM	11095BB	775VM	1095CA	775VM	1095DA	775VM	1095EA	775VM	1095FA	775VM	1095GA	775VM	1095HA	775VM1	095IA	775VM	11095JA	775VM10	95KA	775VM1	1095LA	775VM109	5MA
Depth to Water (ft)	Standards		60	.25	60	0.18	59	.27	58.	.15	57.	.97	59.	.37	59	.63	58	.43	58.3	2	49	.46	59.53	3	59.	07	59.13	
VOCs (µg/L)																							!					
1,1,1-trichloroethane	5*	1	1	.1		1	0.82	20 F	0.72	20 F	0.70	00 F	0.51	10 F	0.75	60 F	U	J	U		0.5	40 F	0.540	F	0.40	00 F	0.340 F	
1,1-dichloroethene	5*	1		U		U	1		τ		τ	J	τ			J	τ		U		1	U	U		U		U	
1,2-dichloroethane	0.6	1		U		U	1		τ	J	τ	-		J	1	-	τ		U			U	U		U		U	
1,4-dichlorobenzene	3	0.5		U		U	1	-	τ		τ	J	τ	-	1	-	τ	-	U		1	U	U		U		U	
acetone	50	10		4 F		U	1	•	τ	_	τ		τ		- 1		τ		U			U	U		U		U	
benzene	1	0.1		U		U	1	-	τ		τ	-	τ		1	-	ι	-	U			U	U		U		U	
carbon disulfide	1,000	0.5		U		U		-	ι		U	-		J	1		U	-	U			U	U	_	U		U	
chloroform	7	0.3		U		U	0.14		ι		Į			J	1		Ţ		U			U	0.150	F	U		U	
chloromethane cis-1.2-dichloroethene	5* 5*	1		U U		U U	T.		ı ı		Į.	-	T.		1	-	l t	-	U			U	U		U	-	U	
	5*	1		U		U		U	ı	_	I				- 1	_	1		U			U	U		U	-	U	
dichlorodifluoromethane hexachlorobutadiene	0.5*	0.6		U		U		U	ī		ī		I I				1 1	-	U			U	U		U		U	
methylene chloride	5*	0.6		U II		U	,		I		0.47		ī	-	0.13	-	1 1	-	1.00	E		U II	U		TI		II	
trichloroethene (TCE)	5*	1		96		3.6	84.		68	_	-	3.4	58	-	65		,	1.4	59.			6.9	43.4		43.	_	34.6	
toluene	5*	1		U		U	04.		U U		U d		Į Ja		0.2		1		U U			U	43.4 U		U.S.		34.0 U	_
trans-1,2-dichloroethene	5*	1		U		U	i		ί		τ			J	i		l i		U			U	U		U		U	
trichlorofluoromethane	5*	1		U		U	i		ι		ί		ί		i		i		U			U	U		U		U	
vinyl chloride	2	1	1	U		U	i	U	τ	J	ī	J	ī	J	i	J	i	J	U		1	U	U		Ü	J	U	
xylenes, Total		1.5	1	U		U	1	U	τ	J	τ	J	τ	J	1	J	τ	J	U		1	U	U		U	J	U	
Total VOCs (µg/L)			98	8.5	8	4.6	85	.26	68.	.92	69.	.45	59.	.31	66	48	60).4	60.)	47	.44	44.09)	43.	90	34.94	
Metals (μg/L) [Dissolved / Total] ¹																												
aluminum	2,000	200	157 F	1,780	40.1 F	594	U	370	U	400	1400	U	U	440	U	200	U	310	U	63 F	U	380	88 F	6,100	U	410	64 F	250
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	75	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	3.2 F	10.1 F	3.16 F	4.73 F	2.2 F	5.3 F	2.9 F	4.0 F	8.6 F	3.4 F	2.8 F	4.3 F	3.2 F	3.6 F	2.6 F	3.3 F	3.3 F	3.1 F	3.4 F	4.0 F	3.2 F	27 F	2.4 F	3.5 F	3.7 F	3.5 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.24 F	U	U	U	U
boron	1,000	110	20.7	26.9	NA	NA	NA	NA	NA	NA	13.0	13.0	NA	NA	NA	NA	9.6 F	9.7 F	12.0	11.0	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U 49,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	42,200	45,900	42,900	42,900	42,000	.9 F 12		48,000	55,000	51,000	62,000	63,000	59,000	67,000	66,000	68,000	71,000	74,000	70,000	70,000	65,000	74,000	54,000	53,000		3,000
chromium	50	10	1.6 F	32 U	2.36 F	11.6 U	2.9 F	U U		9.0 F	11 U	2.8 F	3.4 F	7.6 F	4.9 F	7.8 F	1.8 F	6.1 F	3.4 F	5.8 F	4.4 F	7.9 F	3.7 F U	29 U	U	3.1 F U	7.1 F	5.1 F
cobalt		60	U	3.4 F	U	U	-	1.1 F 2.5 F		U	48F	U	U	U	U		U	U	U	U	U	U	_	19		U II		U
copper iron	200 300	10 200	U	2,190	U	822				530	2,300	5.8 F	26 F	660	U	U 290	U	380	13 F	U 120 F	U	310	U	11,000	U	610	U	330
lead	25	25	U	2,190 U	U	U				U	2,300 U	U.	U	U	U	290 U	U	U	U	120 F	U	U	U	4.9 F	U	U	U	U
magnesium	35,000	1,000	14,900	16,200	15,900	15,800	16,000	15,000	U 18,000	17,000	20,000	19,000	23,000	23,000	21,000	24,000	24,000	25,000	25,000	26,000	25,000	25,000		25,000	20,000	19,000		9,000
manganese	300	10	0.5 F	95	U	37	U	30	U	30	120	U	11	46	U	16	U	19	U	10	U	18	U U	930	U	28	U.	19
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	1.8 F	3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	3.1 F	12.8 F	U	3.26 F	1.6 F	3.6 F	U	3.1 F	3.5 F	U	U	2.3 F	U	2.5 F	U	1.8 F	U	U	U	1.9 F	U	15 F	U	U	U	U
potassium		1,000	685 F	1,300	685 F	839 F	670 F	780 F	770 F	820 F	1,200	730 F	910	1,000	850 F	900 F	760 F	880 F	880 F	940 F	930 F	1,000	930 F	3,000	760 F	850 F	930 F	860 F
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	10,800	11,600	9,750	9,870	7,600	7,300	7,000	6,600	11,000	10,000	15,000	15,000	10,000	12,000	9,100	8,800	14,000	16,000	23,000	23,000	30,000	29,000	18,000	18,000		21,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	14 F	U
vanadium	-	10	U	3.7 F	U	0.86 F	U	1.1 F	U	1.6 F	2.7 F	U	U	1.2 F	U	0.81 F	U	1.1 F	U	U	U	U	U	13	U	U	U	U
zinc	2,000	20	4.2 F	10 F	12.9 F	24.9 B	4.8 F	6.8 F	U	U	10 F	U	13 F	49 B	32 B	28B	11 F	13 F	9.3 F	11 F	20 B	12 F	34 B	100 B	U	U	U	U
Leachate Indicators (mg/L)				0.70		**		**						20														
alkalinity, Total	-	10		8 B		20		20	11		11		10			00	9		100			94 IT	110		10		98	
ammonia	2	0.2	1	U U		U		U	ι		0.02		ı I	J	0.02	54 P	ı ı		0.11 U	в		U U	U		U		U	
BOD5		2.4		U		U 11 F		UJ		J	I I			J	0.0	J LATE			0.04	r c	0.0	-	U W		U		U	
bromide	2	0.5		U II		II F		U		3	15	-	I	-	0.04		4.1		0.04:	r		43 F	15		0.04		U	
COD chloride	250	5		.3 B		U 44					8		11			20	4.		150	1		50	120		3.7		90 J	
color	250 15	5		.3 B 50		NA	N N		5 N		ı s		N N		N.		N.		U	,	N N		NA		II U			
	200	0.02	-			NA NA	N N		N N		ī		N N		N N		I N		0.006	3 F		IA IA	NA NA				NA NA	
cyanide, Total hardness, Total	200	0.02		60		10		50	19		24	-	22		20		20		30			70	NA 290		N. 22		NA 210	
naraness, 1 otal	10	1		.7		3.3	3		2.		2.		2.		2		2		2.0			.7	1.6		1.1		1.1	
TKN	10	0.2				U		U.U	0.1		0.06		0.3		0.05		0.05		2.0 U			U.	0.11	F	U.		0.36	
sulfate	250	1		В		5.3	6		5.1			.2	9.		0.0.		9		12			14	13		10		8.9	
TDS	500	10		54		60		50	26			90	51		34		41		710			90	400		33		320	
TOC	500	1	_	1		46 F	0.5		1		ī		0.7		0.9		0.5		U		1		0.67		U		320 U	
phenolics, Total		0.005	1	U		U		U	ì		ī		0.00		0.00		0.5		U			U	U.0.07		N.		NA	
priciones, rotar		0.002	·	-	1		,		,	-	1	-	0.00		5.00	•		-			1 '	-			193		. 473	

Location of Well	NVCDEC				2004	0.000.0000				_	77	5VMW-10				 	_			
Date of Collection	NYSDEC Class GA	Reporting		1/2009	3/22/2010	9/23/2010							1							
Sample ID No.	Groundwater Standards	Limit	775VM	I1095NA	775VM1095OA	775VM1095PA														
Depth to Water (ft)	Standards		60	0.05	60.57	61.55														
VOCs (µg/L)														<u>'</u>				•		
1,1,1-trichloroethane	5*	1		880 F	0.410 F	0.460 F														
1,1-dichloroethene	5*	1		U	U	U														
1,2-dichloroethane	0.6	1		U	U	U														
1,4-dichlorobenzene	3	0.5		U	U	U														
acetone	50	10		U	U	2.54 FB														
benzene carbon disulfide	1,000	0.1		U U	U U	U U														
chloroform	7	0.3		U	U	U														
chloromethane	5*	1		U	U	U														
cis-1,2-dichloroethene	5*	1		U	U	U														
dichlorodifluoromethane	5*	1		U	U	U														
hexachlorobutadiene	0.5*	0.6		U	U	U														
methylene chloride	5*	1		U	U	U														
trichloroethene (TCE)	5*	1		3.2	41.2	43.3														
toluene	5*	1		U	U	U														
trans-1,2-dichloroethene	5*	1		U	U	U														
trichlorofluoromethane	5*	1		U	U	U				1			1				1			
vinyl chloride	2	1	1	U	U	U														
xylenes, Total	-	1.5		U	U	U														
Total VOCs (µg/L)			43	3.58	41.61	46.3														
Metals (μg/L) [Dissolved / Total] ¹																				
aluminum	2,000	200	U	290	540	270														
antimony	3	50	U	UJ	U	U														
arsenic barium	25 1,000	30 50	U	UJ 3.0 F	U 4.6 F	U U														
	1,000	4	2.6 F	U U	4.6 F U	II.														
berylium boron	1,000	110	U	U	15	NA NA														+
cadmium	5	5	7.2 J	UJ	U	U														
calcium	_	1,100	53,000	52,000	45,000	49,000														
chromium	50	10	U	U	5.4 F	U														
cobalt	_	60	U	U	U	U														
copper	200	10	U	U	U	U														
iron	300	200	U	340	590	400														
lead	25	25	U	U	U	U														
magnesium	35,000	1,000	18,000	18,000	16,000	17,000														
manganese	300	10	U	18	25	19														
mercury	0.7	1	U	U	U	U														
molybdenum		15	U	U	U	U														
nickel	100	20	U	U	U	2.6 F														
potassium	-	1,000	820 F	900 F	970 F	820 F														
selenium	10	30	U	U	U U	U]]			
silver sodium	50 20,000	1000	U 24 000	U 24 000	20,000	18,000							-		1				1	+
thallium	0.5	1,000 80	24,000 U	24,000 U	20,000 U	18,000 U]]			
vanadium	0.5	10	U	U	U	U]]			
zinc	2,000	20	6.3 F	4.2 F	5.6 F	4.4 F]]			
Leachate Indicators (mg/L)	2,000		0.51	7.2.1							_									_
alkalinity, Total	-	10	1	100	130	120														
ammonia	2	0.2		U	U	U														
BOD5	_	2.4		U	U	U														
bromide	2	0.5	0.0	35 F	U	U														
COD	-	5	1	U	U	U														
chloride	250	1	1	100	61	73														
color	15	5		NA	U	NA														
cyanide, Total	200	0.02		NA	0.0088 F	U														
hardness, Total	-	1		210	180	190														
nitrate	10	1		1.1	1.0 B	1.1														
TKN	1	0.2		U	0.24 B	0.21 B	<u></u>	T	 						<u></u>					
sulfate	250	1		9.4	9.2 B	9.0				1			1				1			
TDS	500	10		880	220	270														
TOC	-	1		52 F	U	0.82 F				1			1				1			
phenolics, Total	-	0.005	1	U	U	U														

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well			1												775VM	W-18R												
Date of Collection	NYSDEC		6/28	/2006	9/15	/2006	12/11	/2006	4/11/	2007	6/19	/2007	9/27/	2007	12/10		4/7/2	2008	6/12/	2008	9/30	0/2008	12/9/	2008	4/14/	2009	6/29/	2009
Sample ID No.	Class GA Groundwater	Reporting Limit	775VM	18R90AA	775VM	18R90BB	775VM1	8R90CA	775VM1	8R90DA	775VM	18R90EA	775VM1	8R90FA	775VM1	8R90GA	775VM1	8R90HA	775VM1	8R90IA	775VM	18R90JA	775VM1	8R90KA	775VM1	8R90LA	775VM18	8R90MA
Depth to Water (ft)	Standards		52	.65	52	2.63	51	.77	50	.57	50	.15	51.	.68	52.	26	51.	.10	51.	57	51	1.84	52	1.1	51.	.52	51.	33
VOCs (µg/L)																					_							
1,1,1-trichloroethane	5*	1		6		.01	5.		5.			.7	3.5		5.		4.:		4.5			.11	3.5		4.3		4.2	
1,1-dichloroethene	5*	1		4 F		37 F	0.21		0.2			50 F	0.24		0.84		Ţ		Ţ			U	0.18		τ		ι	
1,2-dichloroethane	0.6	1		.3		1.3	1.		0.			.85	0.6		0.8		0.6		0.7			.630	0.5		0.5		0.5	
1,4-dichlorobenzene acetone	3 50	0.5 10		U		U U		IJ		J		U U	T.		ι		ι		ι			U U	I I		I I		ι	
benzene	30	0.1		U		U		J	- 1			U	I	_	T T		I		I			U	I		ī		I	
carbon disulfide	1,000	0.5		U		U		IJ	l i	-		U	i	-	i		ī	-	ī			U	τ	-	Ü	-	ī	-
chloroform	7	0.3		52		49 F	0.5		1	J		70 F	0.23	80 F	0.7	20	0.26	50 F	0.28	0 F	0.2	80 F	0.36		0.2		0.29	00 F
chloromethane	5*	1		U		U	τ	IJ	1	J	1	U	τ	J	τ	J	τ	J	τ	J		U	τ	J	τ	IJ	ι	J
cis-1,2-dichloroethene	5*	1		U		U		Ú	- 1	-		U	τ		τ		U	-	τ	,		U	Ţ	-	τ		τ	-
dichlorodifluoromethane	5*	1		U		U		IJ	1	-		U	Į	-	Į		Į	-	Į			U	Ţ		τ		ι	-
hexachlorobutadiene	0.5*	0.6		U U		U	1	-	1	-		U	U	-	ι		U	-	Į			U	Ţ		ι	-	Į,	-
methylene chloride	5* 5*	1		U		U		U I	1	-		U U	I I		ı ı		I I	-	ι			U U	Į		Ţ		T.	-
trichloroethene (TCE) toluene	5° 5*	1		U		U U						U	I I		I I		ı ı		ı			U	I I		I I		T.	_
trans-1,2-dichloroethene	5*	i		U		U	i		i			U	ī		ī		τ		ί			U	τ		ί		τ	
trichlorofluoromethane	5*	1		U		U	i		i			U	τ		τ		ι		τ	J		U	ι		τ		ι	
vinyl chloride	2	1		U		U	1	J	1	J	1	U	U	IJ	τ	J	τ	J	τ	J		U	τ	J	τ	IJ	ι	J
xylenes, Total	-	1.5		U		U	1	-	1	-		U	τ	-	τ		τ	-	Ţ	,		U	τ	-	τ		τ	,
Total VOCs (μg/L)			7	22	7	.17	7.	35	6.	23	6.	.17	5.0	05	6.3	35	5.0	28	5.9	90	5.	.02	5.0	08	5.1	13	5.0	19
Metals (μg/L) [Dissolved / Total] ¹																												
aluminum	2,000	200 50	53.9 F U	681 U	U U	546 U	U	560 U	U	450 U	390 U	U	U	210 U	U	200 U	U	220 U	U	U	U	210 U	68 F U	6,400 U	U	3,000 U	41 F U	500 U
antimony arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1.000	50	19 F	21.3 F	13.9 F	15.8 F	11 F	14 F	19 F	21 F	21 F	20 F	17 F	18 F	17 F	18 F	16 F	18 F	14 F	15 F	14 F	16 F	14 F	37 F	15 F	25 F	12 F	13 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	81.1	77.7	NA	NA	NA	NA	NA	NA	61	61	NA	NA	NA	NA	52	53	50	51	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium	-	1,100	178,000	183,000	129,000	131,000	120,000	120,000	200,000	190,000	210,000	210,000	180,000	180,000	170,000	180,000	160,000	170,000	130,000	140,000	130,000	130,000	170,000	170,000	140,000	140,000	130,000	140,000
chromium	50	10	1.3 F	27	4.99 F	10.2 U	4.4 F	6.3 F	6.6 F	6.1 F	9.1 F	6 F	4.9 F	5.4 F	6.3 F	4.6 F	5.7 F	8.1 F	5.1 F	5.1 F	5.3 F	7.1 F	5.3 F	25 U	4.2 F	20	7.2 F	6.9 F
cobalt	200	60 10	U	U 12.3	U	U	U 2.4 F	U 4.0 F	U	U 2.5 F	U	U	U	U 2.3 F	U	U	U	5.1 F	U	U	U	U	U	18	U	U 12	U	U 3.7 F
iron	300	200	U	1,030	U	934	8.1 F	1,100	U	770	770	U	19 F	400	9.4 F	340	U	340	U	110 F	U	350	U	11,000	U	6,400	18 F	730
lead	25	25	U	U	U	U	U	U	Ü	U	U	Ü	U	U	U	U	Ü	U	Ü	U	U	U	Ü	4.8 F	Ü	U	U	U
magnesium	35,000	1,000	55,300	58,100	40,600	40,800	37,000	38,000	59,000	58,000	62,000	62,000	52,000	52,000	49,000	52,000	48,000	50,000	39,000	40,000	38,000	39,000	49,000	53,000	43,000	44,000	40,000	41,000
manganese	300	10	2.4 F	99.8	9.05 F	80	U	U 88 NA NA		84	74	4.7 F	U	42	2.0 F	32	U	28	U	28	U	37	U	1,600	U	930	U	55
mercury	0.7	1	NA	NA	NA	NA	NA	NA NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	1.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel notaccium	100	20 1,000	U 2,290	2.7 F 2,580	2.36 F 2,000	3.81 F 2,200	1.6 F	2.6 F 2,100	U 2,500	2.4 F 2,600	U 2,800	U 2,700	1.4 F 2,900	1.9 F 2,900	U 2,700	1.4 F 2,900	1.5 F 2,600	2.8 F 2,800	U 2,400	U 2,500	1.4 F 2,400	1.9 F 2,500	U 2,700	14 F 4,900	3.4 F 2,600	17 F 3,400	U 2,500	2.2 F 2,700
potassium selenium	10	30	2,290 U	2,580 U	2,000 U	2,200 U	1,900 U	2,100 U	2,500 U	2,000 U	2,800 U	2,700 U	2,900 U	2,900 U	2,700 U	2,900 U	2,000 U	2,800 U	2,400 2.7 F	2,500 U	2,400 U	2,500 U	2,700 U	4,900 U	2,600 U	3,400 U	2,500 U	2,700 U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	191,000	195,000	189,000	192,000	170,000	170,000	210,000	200,000	270,000	270,000	340,000	340,000	340,000	350,000	330,000	330,000	330,000	330,000	320,000	330,000	330,000	340,000	360,000	360,000	330,000	340,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ü	U	U	U
vanadium	- 1	10	U	1.8 F	U	U	U	1.4 F	0.90 F	1.3 F	U	U	U	0.92 F	U	0.90 F	U	0.74 F	U	0.80 F	U	U	U	13	U	6.8 F	U	U
zinc	2,000	20	6.6 F	8.9 F	30.2 B	35.4 B	6.8 F	9.1 F	U	6.9 F	U	U	37 B	33 B	28 B	18 F	1.1 F	16 F	11 F	12 F	12 F	12 F	53 B	52 B	U	20	U	7.4 F
Leachate Indicators (mg/L)			, .	12		10				20		10		10		10		10		'0		10		20		50		10
alkalinity, Total	2	10 0.2		42 U		40 U		150		20 J		10 24 F	13 U		0.02	5 E	0.02		0.05			140 U	13 U		15 U	50	14 U	
ammonia BOD5	2	0.2 2.4		U		U		U UJ		J J		24 F U	l t		0.02		0.02 U		0.05 U			U	l t		ι		τ	
bromide	2	0.5		U		92 F		UJ 0.043 F		8 F		20 F	0.2		0.2		0.2		0.1			14 F	U		0.1		0.1	
COD	1 - 1	5	2	7.4		1 F		9.4 F		7		5 B	6.3		6.3		8.5		4.1			26	2		2		20	
chloride	250	1		73		50		450		10		80	88		80		79		68			720	76	50	81		630	
color	15	5		18	1	NΑ		A	N	A		U	N	A	N	A	τ	-	τ		N	NA	N	A	τ	IJ	N.	A
cyanide, Total	200	0.02		76 F		NΑ	N		N			U	N		N		0.00		0.00			NA	N		N		N.	
hardness, Total	-	1		80		20		50	7:			70	61		65		60		47			500	60		59		48	
nitrate	10	1		.4		8.4	3		4			.3	3.		3.		3.		3.			3.5	3.		3.		3.	
TKN	1	0.2		U		U	0.0		0.1			11 B	0.1	2 F 0	U		1 3	-	I.	,		U	0.1		0.1		0.13	
sulfate TDS	250 500	1 10		53 770		41 500	1,3	4 100	1,5	0		50 600	2,3	-	1,7		3 1,9	-	3 2,0			35 , 400	3 1,8		1,2		1,6	
TOC	500	10		77 0 33 F		500 53 F	0.6		0.4			50 F	0.8		0.6		0.8		0.5			400 53 F	1,8		0.4		0.59	
phenolics, Total		0.005		U		U	0.0		0.4			U	U.8		0.00		U.8		0.00			U	Į.		0.4 N		0.5 N.	
prictiones, 10tai		0.003		~				~		-		v	,	,	0.00	- L	,	-	0.00	1		v	,	-	IN		14.	•

			1							775X3A	W 10D					
Location of Well Date of Collection	NYSDEC		Q/1	4/2009	3/22/2010	9/23/2010				775VM	w-18K	-				
Sample ID No.	Class GA Groundwater	Reporting Limit		18R90NA	775VM18R90OA	775VM18R90PA										
Depth to Water (ft)	Standards		5	2.29	53.04	53.74										
VOCs (µg/L)														_		
1,1,1-trichloroethane	5*	1	1	3.96	4.00	4.03								1		
1,1-dichloroethene	5*	1		U	U	0.170 F										
1,2-dichloroethane	0.6	1	0	.500	0.460 F	0.430 F										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone	50	10		U	U	1.71 FB										
benzene	1	0.1		U	U	U										
carbon disulfide	1,000	0.5		U	U	U										
chloroform chloromethane	7 5*	0.3		270 F U	0.360 F U	0.530 U										
cis-1,2-dichloroethene	5*	1		U	U	U										
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene	0.5*	0.6		U	U	U										
methylene chloride	5*	1		U	U	U										
trichloroethene (TCE)	5*	1		U	U	U										
toluene	5*	1		U	U	U										
trans-1,2-dichloroethene	5*	1		U	U	U										
trichlorofluoromethane	5*	1		U	U	U										
vinyl chloride	2	1		U	U	U										
xylenes, Total	-	1.5		U	U	U										
Total VOCs (µg/L)			-	1.73	4.82	6.87										
Metals (μg/L) [Dissolved / Total] ¹ aluminum	2,000	200	190 F	260	460	90 F	<u> </u>	1	Т			 1	Г	T T	T	
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	Ü										
barium	1,000	50	10 F	11 F	15 F	8.7 F										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	50	NA										
cadmium	5	5	U	U	U	U										
calcium		1,100	110,000		130,000	120,000										
chromium	50	10	U	U	5.4 F	U										
cobalt	200	60	U	U	U	U U										-
copper	300	10 200	290	420	680	230										
iron lead	25	25	U	U	U	U U										
magnesium	35,000	1,000	33,000	33,000	42,000	36,000										
manganese	300	10	28	39	52	13										
mercury	0.7	1	U	U	U	U										
molybdenum	-	15	U	U	U	U										
nickel	100	20	U	2.2 F	4.9 F	4.8 F										
potassium		1,000	2,100	2,200	3,000	2,400										
selenium	10	30	U	U	U	U										
silver	50	10	U	U	U 300,000	U 240,000	_							1		1
sodium	20,000	1,000	270,000	270,000	300,000 U	240,000 U										
thallium vanadium	0.5	80 10	U	U	U	U										
zinc	2.000	20	4.5 F	6.2 F	8.4 F	8.2 F										
Leachate Indicators (mg/L)	2,000		1 7.52	1 0.21											 	
alkalinity, Total	1	10	T	150	160	160										
ammonia	2	0.2	().35	U	U										
BOD5	-	2.4		U	U	U										
bromide	2	0.5		12 F	U	U										
COD	-	5		.7 F	5.6 FB	U								ļ		
chloride	250	1		560	640	510										
color	15	5		NA	U	NA										
cyanide, Total	200	0.02		NA 410	0.0080 F	U										
hardness, Total	10	1		410 3.9	500 3.7	440 4.5										
nitrate TKN	10	0.2		0.4	0.22 B	4.5 0.20 B								1		
rkn sulfate	250	0.2		29	0.22 B 35	0.20 B 35										
TDS	500	10		,400	1,500	1,200										
TOC	500	10		.61 F	0.65 FB	0.88 F										
phenolics, Total		0.005		U	U U	U U										
gramoneo, roun		0.005	1	-		-		-1					l	1		

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															775VM	W-20R												
Date of Collection	NYSDEC		6/28	2006	9/18	3/2006	12/11	/2006	4/11/2	2007	6/20/20	007	9/28/	2007	12/10		4/8/2	2008	6/12/	2008	10/1	/2008	12/9/	/2008	4/14/	2009	6/29/2	2009
Sample ID No.	Class GA Groundwater	Reporting Limit	775VM2	0R110AA	775VM2	20R110BB	775VM20	0R110CA	775VM20	R110DA	775VM20F	R110EA	775VM20	0R110FA	775VM20	R110GA	775VM20	0R110HA	775VM2	R110IA	775VM2	0R110JA	775VM20	0R110KA	775VM20	DR110LA	775VM201	R110MA
Depth to Water (ft)	Standards		65	.15	65	5.20	64.	.22	63.	22	62.9	5	64.	.40	64.	61	63.	.34	63.	31	64	1.42	64.	.54	63.	.99	64.0	.01
VOCs (µg/L)							l				ļ														l			
1,1,1-trichloroethane	5*	1	1	IJ		U	τ	IJ	U	ſ	U		Ţ	J	τ	J	τ	U	Į	J		U	Ţ	U	Į	J	U	J
1,1-dichloroethene	5*	1		IJ		U	τ		U		U		τ		τ		τ		τ			U		U	τ		U	-
1,2-dichloroethane	0.6	1		IJ		U	τ	-	U		U		τ	-	τ		τ	-	Ţ			U		U	τ	-	U	-
1,4-dichlorobenzene	3	0.5				U	τ		U		U		τ		τ		τ		Ţ			U II		U	τ		U	
acetone	50	10		J.		U	Ţ		U		U		I		I.		I I		I I			U II	1	U	Ţ	_	U	
benzene carbon disulfide	1,000	0.1		-		U	I I		U		U		ľ	-	ī		ī	-	ī			U		U	U	-	U	-
chloroform	7	0.3		II.		U	ľ		U		U		ί		ī		ί		ī			U		n n	ι		U	
chloromethane	5*	1		IJ		U	Ü		U		U		ì		ί		ί		ī			U		U	ί		U	-
cis-1,2-dichloroethene	5*	1	1	IJ		U	τ		U		U		τ	J	τ	J	τ	U	τ	J		U	τ	U	τ	J	U	J
dichlorodifluoromethane	5*	1	1	IJ		U	τ	J	U		U		τ	J	Ţ	J	Ţ	U	Į	J		U	τ	U	τ	J	U	J
hexachlorobutadiene	0.5*	0.6	1	IJ		U	τ		U		U		τ	J	τ	J	τ	U	τ	J		U	τ	IJ	ι	J	U	J
methylene chloride	5*	1	1	-		U	0.18		U		U		τ		τ		τ	-	τ			U		U	τ		U	J
trichloroethene (TCE)	5*	1				U	Ţ		U		U		τ		τ		Ţ		Ţ			U		U	Ţ		U	
toluene trans-1,2-dichloroethene	5* 5*	1	1			U U	Į Į		U		U		ι		ι		ι		I I			U U	Į,	n n	Ţ		U	
trans-1,2-dichloroethene trichlorofluoromethane	5* 5*	1		II.		U	ι		U		0.140		l i		ı ı		ι		ī			U U		n n	l t		U	
vinyl chloride	2	1		II.		U	1		U		0.140 U		ī		ī		ī		ī			U	1		ī	-	U	-
xylenes, Total] ~ [1.5		IJ		U	ί	-	U		U		ί	-	ι		τ	-	ι			U	i	-	τ	-	U	-
Total VOCs (µg/L)				0		0	0.1	18	0		0.14	1	(0	0		(0	()		0	-	0	(0	,
Metals (µg/L) [Dissolved / Total] ¹																												
aluminum	2,000	200	73 F	811	U	189 F	U	380	U	470	U	410	U	130	U	240	U	1,000	U	120 F	41 F	300	62 F	260 B	U	110 F	61 F	110 F
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	40.2 F	44.1 F	37.9 F	39.2 F	45 F	47 F	41 F	43 F	38 F	41 F	41 F	41 F	41 F	44 F	47 F	56	46 F	47 F	47 F	48 F	46 F	47 F	56	55	51	52
berylium	3	4	U	U 20.4	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U
boron cadmium	1,000 5	110	40 U	39.4 0.3 F	NA U	NA U	NA U	NA U	NA U	NA U	43 U	44 U	NA U	NA U	NA U	NA U	44.0 U	49 U	49 U	47 U	NA U	NA U	NA U	NA U	NA U	NA U	U U	U
calcium	_	1,100	50,200	53,300	47,500	48,500	48,000 49,000 48,000 49,000 4.4 F 4.2 F 4.2 F 3.7 F		50,000	53,000	58,000	58,000	55,000	58,000	55,000	60,000	64,000	63,000	66,000	67,000	61,000	61,000	54,000	55,000	60,000	62,000		
chromium	50	10	U	1.5 F	2.28 F	3.79 F				3.2 F	5.3 F	3.9 F	3.6 F	5.0 F	2.9 F	4.4 F	U	3.2 F	3.3 F	4.9 F	6.1 F	4.3 F	5.5 F	3.0 F	U	7.6 F	5.9 F	
cobalt	-	60	U	U	U	U			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		
copper	200	10	U	2.1 F	U	U	2.4 F 2.9 F U 3.2 F		3.2 F	U	U	U	U	U	U	U	3.7 F	U	U	U	U	U	U	U	U	U	U	
iron	300	200	27.4 F	891	41.3 F	189 F	57 F 550 32 F 590		590	35 F	580	33 F	180 F	25 F	260	32 F	1,500	48 F	220	34 F	310	35 F	260	17 F	200	36 F	130 F	
lead	25	25	U	U	U	U	U U U U			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
magnesium	35,000	1,000	24,000	26,200	23,700	23,700	24,000	25,000	24,000	24,000	25,000	26,000	28,000	27,000	27,000	29,000	28,000	30,000	31,000	30,000	31,000	31,000	30,000	30,000	28,000	28,000	29,000	30,000
manganese	300 0.7	10	477	532	467	456	470	470	450	450	470	510	500	480	490	540	460	570	590	590	560	590	530	520	470 U	460 U	490	520
mercury molybdenum	0.7	15	NA 2.3 F	NA 2.5 F	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	U	U	U	U
nickel	100	20	2.3 F	2.5 F	U	U	2.6 F	2.7 F	U	1.4 F	U	U	U	U	U	U	U	2.7 F	U	1.3 F	19F	3.6 F	2.1 F	2.5 F	U	U	U	U
potassium		1,000	1,530	1,900	1,450	1,530	1,500	1,600	1,500	1,700	1,500	1,700	1,700	1,700	1,600	1,700	1,500	2,000	1,600	1,600	1,700	1,700	1,600	1,600	1,500	1,500	1,600	1,700
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	1.6 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	34,300	35,900	34,600	35,000	37,000	37,000	38,000	38,000	38,000	40,000	37,000	36,000	34,000	35,000	34,000	36,000	39,000	38,000	38,000	38,000	37,000	36,000	34,000	34,000	39,000	40,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	1.6 F	U	U	U	1.5 F	0.78 F	1.6 F	U	U	U	U	U	U	U	1.9 F	U	U	U	0.72 F	U	U	U	U	U	U
Zinc	2,000	20	9.4 F	9.8 F	15.8 F	15.5 F	6.1 F	6.3 F	6.4 F	6.9 F	17 F	U	36 B	29 B	58 B	29 B	12 F	22 B	13 F	17 F	13 F	15 F	56 B	55 B	U	4.5 F	U	U
Leachate Indicators (mg/L) alkalinity, Total	T .	10	1 2	19	1	80	18	80	18	0	180		18	20	17	20	111	70	18	20	1	80	11	70	17	70	17	70
alkalınıty, Total ammonia	2	10 0.2	0.0			180 135 F					0.039		0.01		0.04		0.03		0.05			33 F		70 20 F	0.04		0.02	
BOD5	2	2.4		IZ F		U		U 0.020 F UJ U		U.039		U.U.		U.04		U.U.		0.03			33 F U		ZO F	U.U4		U.02		
bromide	2	0.5	ì			11 F	U U U		U		0.02		0.04		0.05		0.03			39 F		IJ	0.04		0.02			
COD		5		7.8		6 B	U 13		17		τ		4.1		8.5		Ţ			7 F		U	6.0		U			
chloride	250	1	5	.1		59	U 13 57 58		71		8	3	8-	4	8	19	11	0	1	10	9	12	9	2	98	, J		
color	15	5		5		NA	N		N.		U		N		N.		τ		τ			JΑ	N		τ		N/	
cyanide, Total	200	0.02	0.00			NA	N		N.		U		N		N.		τ		0.01			ĪΑ	N		N		N/	
hardness, Total	-	1	2			260	23		22		230		22		26		26		27			00	27		27		28	
nitrate	10	1	1			U	0.01		0.2		0.041	F	0.0		τ		0.04		Ţ			U		U	τ		U	
TKN	1	0.2	0.1			084 F	0.4		0.12		U		Ţ	-	τ		0.1		Ţ			U	U	-	Į		U	-
sulfate	250	1		0.4		42	3		39		40			7	3		3		3			38		15	3		34	
TDS	500	10		48 5 F		60 U	0.5		32 0.44		410 1.6		0.6		0.4		36 1.1		48 I			80 85 F	0.5		35 I		33 U	
TOC phenolics, Total	-	0.005	0.7			U	0.5: L		0.44 U		1.6 U		0.6		0.00		1.1		l t			U U	0.5		N	-	N/	-
				U.		U		U	l U		U		l (J	0.00	40 F	l l	U	1 (,	1	U	1	U	N.	A	N/	A

			_															
Location of Well	NW CODE				,	,			-	,	775VM	W-20R	-	 -	 1	-		
Date of Collection	NYSDEC Class GA	Reporting	9/14	/2009	3/22/2010	9/23/2010												
Sample ID No.	Groundwater	Limit	775VM2	0R110NA	775VM20R110OA	775VM20R110PA												
Depth to Water (ft)	Standards		64	1.97	65.51	66.65												
VOCs (µg/L)																		
1,1,1-trichloroethane	5*	1		U	U	U												
1,1-dichloroethene	5*	1		U	U	U												
1,2-dichloroethane	0.6	1		U	U	U												
1,4-dichlorobenzene	3	0.5		U	U	U												
acetone	50	10		U	U	1.61 FB												
benzene	1	0.1		U	U	U												
carbon disulfide	1,000	0.5		U	U	U												
chloroform	7	0.3		U	U	U												
chloromethane	5*	1		U	U	U												
cis-1,2-dichloroethene	5* 5*	1		U	U	U												
dichlorodifluoromethane		1		U	U	U												
hexachlorobutadiene	0.5*	0.6			U	U												
methylene chloride	5* 5*	1		U U	U U	U U												
trichloroethene (TCE) toluene	5*	1		U	U	U												
trans-1,2-dichloroethene	5*	1		U	U	U												
trichlorofluoromethane	5*	1		U	U	U											1	
vinyl chloride	2	1		U	U	U												
xylenes, Total		1.5		U	U	U												
Total VOCs (µg/L)	1			0	0	1.61												
Metals (µg/L) [Dissolved / Total] ¹																		
aluminum	2,000	200	U	U	49 F	U												
antimony	3	50	U	U	U	U												
arsenic	25	30	U	U	U	U												
barium	1,000	50	50	49 F	82	69												
berylium	3	4	U	U	U	U												
boron	1,000	110	U	U	46	NA												
cadmium	5	5	U	U	U	U												
calcium	-	1,100	63,000	64,000	62,000	62,000												
chromium	50	10	U	U	U	U												
cobalt	-	60	U	U	U	U												
copper	200	10	U	U	U	U												
iron	300	200	26 F	54 F	110 F U	74 F U												
lead	25	25	U	U	31,000	30,000												
magnesium	35,000 300	1,000 10	30,000 500	30,000 490	500	420												
manganese	0.7	10	U	490 U	U	420 U												
mercury molybdenum		15	U	U	U	U												
nickel	100	20	U	U	U	U												
notassium		1,000	1,600	1,600	1,700	1,600											1	
selenium	10	30	U	U	U	U												
silver	50	10	U	U	U	U												
sodium	20,000	1,000	41,000	41,000	40,000	47,000							1					
thallium	0.5	80	U	U	U	U												
vanadium	-	10	U	U	U	U											1	
zinc	2,000	20	U	U	6.9 F	5.4 F												
Leachate Indicators (mg/L)																		
alkalinity, Total	-	10		80	170	170												
ammonia	2	0.2		22 F	0.35 F	U											1	
BOD5	-	2.4		U	U	U											1	
bromide	2	0.5		37 F	U	U												
COD		5		U	U	U												
chloride	250	1		10	120	130												
color	15	5		NA.	U	NA											1	
cyanide, Total	200	0.02		NA 100	0.0080 F	U												
hardness, Total		1		000	280	280												
nitrate	10	1		17 F	0.055 F	U												
TKN	1	0.2		13 F 35	0.30 B 34	0.18 FB 37												
sulfate	250	1		35 10	34 410	37 530												
TDS TOC	500	10 1		10 39 F	410 U	0.71 F												
	-	0.005		U	U	U.71 F												
phenolics, Total		0.005	 		U	U		ļ			L							

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															L	F6MW-1												
Date of Collection	NYSDEC		6/28/	2006	9/18/	/2006	12/11	/2006	4/9/	2007	6/20/2	2007	9/27/	/2007	12/10		4/2/2	2008	6/17/	2008	9/30	/2008	12/9	/2008	4/14	/2009	6/29/2009)
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6M0	168AA	LF6M0	0168BB	LF6M0	168CA	LF6M	0168DA	LF6M0	168EA	LF6M0	0168FA	LF6M0	168GA	LF6M0	168HA	LF6M0	0168IA	LF6M	O168JA	LF6M	O168KA	LF6M	0168LA	LF6M0168N	MA
Depth to Water (ft)	Standards		63.	.18	63.	.21	62.	.19	61	.18	60.	97	62	.46	62.	59	61.	.55	61.	.24	62	2.39	62	2.52	62	.00	62.03	
VOCs (µg/L)									1																			
1,1,1-trichloroethane	5*	1	Ţ	-	τ		τ			U	U		τ	-	τ		τ	-	τ	-		U		U		U	U	
1,1-dichloroethene 1,2-dichloroethane	5* 0.6	1	I I			n n	T.			U U	U		l t		ı I		ı		Į			U U		U U		U U	U	
1,4-dichlorobenzene	3	0.5	ι			U	ι			U	U		l i	-	ï		i i	-	ί	-		U		U		U	U	
acetone	50	10	1.1			U	ι			00 F	τ			U	ï		ī		τ			U		U		U	U	
benzene	1	0.1	ι	J	Ţ	U	ι	J		U	τ	ſ	τ	U	τ	J	Ţ	U	ι	J		U		U		U	U	
carbon disulfide	1,000	0.5	ι	J		U	ι	J		U	U	ſ	τ	U	0.17	70 F	τ	U	ι	J		U		U	1	JJ	U	
chloroform	7	0.3	τ			U	τ			U	U			U	Ţ		U		τ	-		U		U		U	U	
chloromethane	5* 5*	1	I I		ı I	U	U			U U	U		ı	-	Į.		I.	-	ι	-		U II		U U		U U	U U	
cis-1,2-dichloroethene dichlorodifluoromethane	5*	1	I		I		J I			M .	T.		1	-	1	,	1		ī	-		U		U		U	U	
hexachlorobutadiene	0.5*	0.6	τ	-		U	ι			U	Ü			U	ì		i	-	ί	-		U		U		U	U	
methylene chloride	5*	1	τ		ī		0.33			U	Ü	ſ	i	U	0.12	0 F ♦	ī	U	τ	J		U		U		U	U	
trichloroethene (TCE)	5*	1	τ		τ	U	τ	J		U	U		τ	U	τ	J	τ		τ	-		U		U		U	U	
toluene	5*	1	Ţ		Į,		t			U	U		Ţ		Ţ		t	-	Į			U		U		U	U	
trans-1,2-dichloroethene trichlorofluoromethane	5* 5*	1	I I		ı I	U U	I I			U U	U		ı		I I		ı I		ι			U U		U U		U U	U 0.180 F	
vinyl chloride	2	1	ι		l i		ι			U	U			IJ	ī		ı	-	ί	-		U		U		U	0.180 F	
xylenes, Total		1.5	τ	-	τ	-	ι			U	τ		i		ï		ī	-	ί	-		U		U		U	U	
Total VOCs (µg/L)			1.	.1	(0	0.3	33		1	0			0	0.2	90	(0	()		0		0		0	0.180	
Metals (µg/L) [Dissolved / Total] ¹																												
aluminum	2,000	200	55.5 F	94.6 F	U	80.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	72 F	U	U		U
antimony arsenic	3 25	50 30	U U	U U	U U	U U	U U	U U	U	U	U	U	U U	U	U	U U	U	U U	U	U	U U	U U	U	U U	U	U		U U
harium	1.000	50	1 F	54.3	94.2	95.8	64	66	69	70	36 F♦	37 F	56♦	56♦	31 F	33 F	15 F	15 F	18 F◆	18 F◆	44 F◆	46 F	14 F	14 F	17 F◆	17 F		20 F
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
boron	1,000	110	20.7 J	15.7 J	NA	NA	NA	NA	NA	U U 50,000 150,000	14♦	16♦	U	U	NA	NA	12	11	15 J ♦	14♦	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	2.4 F	U	0.73 F	U	U		-	U	U	U	U	U	U	U	U	0.58 F	U	U	U	U	U	U	U		U
calcium	-	1,100	65,500	149,000	216,000	217,000	150,000	150,000		0,000 150,000 .5 F 12 U U	73,000◆	76,000	110,000	110,000	61,000	64,000◆	32,000	31,000	42,000	44,000◆	99,000◆	100,000	32,000	32,000	47,300	40,000		3,000♦
chromium cobalt	50	10 60	2.3 F 1 F	11.1 U	4.31 F	33.2 U	7.5 F U	7.7 F U		.5 F 12 U U	6.7 F♦ U	11 U	4.5 F	5.4 F◆ U	4.7 F	3.8 F◆	U	U	2.6 F♦ U	1.9 F	3.4 F	3.8 F◆	U	7.7F♦ U	U	3.8 F		i.0 F♦
copper	200	10	U	6.1 F	U	U	3.1 F	U	U	_	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U
iron	300	200	18.5 F	104 F	U	117 F	20 F	28 F	11 F	17 F	9.8 F	26 F	8.7 F	22 F	23 F	10 F◆	5.2 F	11 F◆	40 F	12 F	9.4 F♦	14 F	U	25 F◆	U	29 F		18 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	37,500 J	23,100 J	41,200	40,300	37,000	37,000	35,000	36,000	19,000	21,000	25,000	26,000♦	12,000	12,000	5,500	5,100	8,200♦	8,400♦	16,000	17,000	5,400	5,300	6500♦	6,200		,000♦
manganese	300 0.7	10	6.7 F	6.2 F	U	4 F	U	U	U	U	U	1.6 F	U	U	U NA	U	U	U	U7	U	2.1 F♦	U	U NA	U	3.4♦	3.0 F		U
mercury molybdenum	0.7	15	NA 4 F	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	NA U	IJ.	NA U	NA U	NA U	NA U	NA U	NA U	NA U	U	NA U	U	U	-	U
nickel	100	20	125 J	4.2 F	U	2.13 F	2.0 F	1.9 F	U	2.1 F	U	U	U	1.2 F♦	U	U	U	U	U	U	U	1.2 F	U	U	U	U	-	U
potassium	-	1,000	1,490	2,830	3,650	3,710	3,000	2,900	3,000	3,100	2,000	2,200	2,700	2,800♦	2,000	2,100♦	1,400	1,500	1400 J◆	1,100◆	2,100	2,200	1,200	1,200	1400◆	1,400	1,400♦ 1.	1,300
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
silver	50	10	U	1.1 F	U	U	U	U	U	1.0 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
sodium thallium	20,000	1,000 80	93,800 U	378,000 U	563,000 U	573,000 U	570,000 U	570,000 U	720,000 U	730,000 U	560,000+	570,000 U	800,000+	800,000+ U	550,000+ U	600,000+	360,000 U	350,000 U	420,000◆ U	410,000◆ U	620,000◆ U	630,000	340,000 U	340,000 U	260,000	250,000		0,000 ♦
vanadium	0.5	10	U	U	U	U	U	U	U	0.95 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	U
zinc	2,000	20	U	18.9 F	17.1 F	30.6 B	8.4 F	4.6 F	U	U	U	U	47 B	60 B	60 B	74 B♦	11 F	11 F	13 F	13 F	14 F◆	17 F♦	69 B	81 B	U	U		U
Leachate Indicators (mg/L)																												
alkalinity, Total		10	25		25		33			60	400		34		32		21		33			90		40		70	280	
ammonia	2	0.2	0.03		Į		Į.			U	0.028		Į į		0.04		0.0		0.05			U		U		U	U	
BOD5 bromide	2	2.4 0.5	U		0.2	U S F	U 0.1:			U 24 F	0.18		0.2	U P6 F	Į.		t		Ţ			U 18 F		U UJ		U 64 F◆	U 0.077 F	
COD	2	U.5 5	ι		14		24				20			8 J	13	,	6.3		6.3			18 F 17		.7 F		94 F♥ 0 F	U.077 F	
chloride	250	1	3.	-	1,30		970		19 J 1,100 M		740			200	74		34		39			70		80		70	430	
color	15	5	8	0	N	IA	N.				U	ſ		ΙA	N		τ	U	τ	J		ĪΑ	1	NΑ		U	NA	
cyanide, Total	200	0.02	0.00		N		N.			ĮΑ	0.01		N		N		0.00		0.01			ĪΑ		NΑ		IΑ	NA	
hardness, Total	-	1	44			40	52			30	26			60	24		10		19			70♦		0 J +		40	180♦	
nitrate	10	0.2	0.7		0.9		0.1			.6	0.94		0.10	.0	0.9		0.82		0.8		0.0	.2 70 E		.75 77 F◆		12 F U	1.0 0.14 F	
						U	0.1		1 0.	40	0.10	1.4	0.10	0.1.4	0.1	4.1	0.00		,		0.0	/0 F	0.0		1		0.14 P	
TKN	250	0.2			4	5			54	M		•	7	2♦	65	M	35	9♦	5	2	75	3 M		34		32	50	
	1 250 500	1 10	6. 15	.1	3,0		2,1	0		5 М 300	49 1,70		7: 4,70	2 ♦ 00 J ♦	65 1,7		39 90		5 1,10			8 M 100◆		34 1 40		32 10	50 1,000	
TKN sulfate		1	6.	.1 56	3,0		51	0 00	2,i		49	10+	4,70 2.6	00 J+		00 ♦ 4		00 .7		00+	1,5		9		8			

Location of Well	NVCDEC				2/22/2010	0.000.000.0	 		_		LF6MW-	1	 	·		 		·	_	
Date of Collection	NYSDEC Class GA	Reporting		5/2009	3/22/2010	9/23/2010														
Sample ID No.	Groundwater Standards	Limit	LF6M	0168NA	LF6M0168OA	LF6M0168PA														
Depth to Water (ft)	Sundirus		63	3.02	63.52	64.47														
VOCs (µg/L)			_																	
1,1,1-trichloroethane	5*	1		U	U	U														
1,1-dichloroethene 1,2-dichloroethane	5* 0.6	1		U U	U U	U U														
1,4-dichlorobenzene	3	0.5		U	U	U														
1,4-dichlorobenzene acetone	50	10		U	U	1.66 FB														
benzene	1	0.1		U	U	U														
carbon disulfide	1,000	0.5		U	U	U														
chloroform	7	0.3		U	U	U														
chloromethane	5*	1		U	U	U														
cis-1,2-dichloroethene	5*	1		U	U	U														
dichlorodifluoromethane	5*	1		U	U	U														
hexachlorobutadiene	0.5*	0.6		U	U	U														
methylene chloride	5*	1		U	U	U U														
trichloroethene (TCE) toluene	5* 5*	1		U U	U U	U			-											
trans-1,2-dichloroethene	5*	1		U	U	U														
trichlorofluoromethane	5*	1		U	U	U														
vinyl chloride	2	1		U	U	U														
xylenes, Total	-	1.5		U	U	U									<u> </u>	<u> </u>			<u> </u>	
Total VOCs (µg/L)				0	0	1.66														
Metals (µg/L) [Dissolved / Total] ¹																				
aluminum	2,000	200	260 J	120 F◆	U	U														
antimony arsenic	3 25	50 30	U	U	U U	U U														
barium	1,000	50	20 F	20 F◆	27 F◆	24 F														
berylium	3	4	U	U	U	U														
boron	1,000	110	U	U	18 B♦	NA														
cadmium	5	5	U	1.1 F◆	U	U														
calcium		1,100	46,000	47,000◆	59,000 ♦	56,000														
chromium	50	10	U	U	U	U														
cobalt		60	U	U	U	U														_
copper	200 300	10 200	U	U 11 F♦	13 ♦ 18 F	U 15 F														
iron lead	25	25	U	II F◆ U	U	U														
magnesium	35,000	1,000	5,500	5,700♦	6,400	5,600														
manganese	300	10	U	U	U	U														
mercury	0.7	1	U	U	U	U														
molybdenum	-	15	U	U	U	U														
nickel	100	20	U	U	U	U														
potassium		1,000	1,300	1,300◆	1,900 ♦	1,800														
selenium	10	30	U	U	U U	U]]											
silver sodium	50 20,000	1,000	290,000	U 300,000◆	330,000 ♦	310,000		-		-				-	-			-	-	+
thallium	0.5	80	290,000	U	U	U														
vanadium	0.5	10	U	U	U	U]]											
zinc	2,000	20	U	U	16 FB◆	8.1 F◆]]											
Leachate Indicators (mg/L)						<u>'</u>											,			
alkalinity, Total	-	10		280	320	310														
ammonia	2	0.2		19 F ♦	U	U														
BOD5	-	2.4		U	U	U														
bromide	2	0.5		14 F	U	U														
COD		5		.7 F	5.2 FB◆	8.1 FB◆			-			-								
chloride color	250 15	1 5		M → NA	320 U	310 NA														
color cyanide, Total	200	0.02		NA NA	0.013 F	0.0063 F														
hardness, Total	200	0.02		160	170	0.0003 F 160														
nitrate	10	1		.0 +	0.86 FB ◆	0.98 F◆														
TKN	1	0.2		U	0.19 FB◆	0.29 BJ◆														
sulfate	250	1		M♦	42	65♦														
TDS	500	10	8	70♦	840	850														
TOC	-	1		.3♦	1.4 B	2.0														
phenolics, Total		0.005		U	U	U														
· · · · · · · · · · · · · · · · · · ·							 	 					 		_					

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well														LF6V	AW-10R2												
Date of Collection	NYSDEC		6/29	/2006	9/19	/2006	12/13/2	2006	4/13/20	07	6/21/2007		10/1/2007		2/2007	4/7/	2008	6/18/2	008	10/1	1/2008	12/11/	2008	4/16/20)09	6/30/20	.009
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM1	0R230AA	LF6VM	10R230BB	LF6VM10	R230CA	LF6VM10R	230DA	LF6VM10R23	EA LI	6VM10R230FA	LF6VM	10R230GA	LF6VM1	0R230HA	LF6VM10	R230IA	LF6VM	10R230JA	LF6VM10	R230KA	LF6VM10B	t230LA	LF6VM10R	R230MA
Depth to Water (ft)	Standards		12	.92	13	3.33	12.2	27	11.40		12.15		13.22	1	2.61	11	.47	12.2	7	13	3.01	12.4	19	12.02	2	12.46	16
VOCs (µg/L)												-										•					
1,1,1-trichloroethane	5*	1		U		U	U		U		U		U		U		U	U			U	U		U		U	
1,1-dichloroethene	5*	1		U		U	U		U		U		U		U		U	U			U	U		U	l	U	
1,2-dichloroethane	0.6	1		U U		U U	U U		U		U		U U		U U		U U	U			U U	U		U U		U	
1,4-dichlorobenzene acetone	3 50	0.5 10		U		U	U		U		U		U		U		U	U			U	U		U		1.31 I	
benzene	30	0.1		U		U	U		U		U		U		U		U	U			U	U		U	\rightarrow	1.31 I	
carbon disulfide	1,000	0.5	1	U		U	U		U		U		U	0.	120 F	1	U	U			U	U		UJ		U	
chloroform	7	0.3	1	U		U	U		U		U		U		U		U	U			U	U		U		U	
chloromethane	5*	1	0.1	18 F		U	U		U		U		U		U		U	U			U	U		U		U	
cis-1,2-dichloroethene	5*	1		U		U	U		U		U		U		U		U	U			U	U		U		U	
dichlorodifluoromethane	5*	1		U		U	UJ		U		U		U		U		U	U			U	U		U		U	
hexachlorobutadiene	0.5*	0.6		U U		U U	U		U		U		U		U 110 F		U U	U			U U	U		U U		U	
methylene chloride	5* 5*	1		U		U	U		U		U		U		U		U	U			U	U		U		U	
trichloroethene (TCE) toluene	5*	1		U		U	U		U		U		U		U		U	U			U	U		U		U	
trans-1,2-dichloroethene	5*	1		U		U	U		U		U		U		U		U	U			U	U		U	l	U	
trichlorofluoromethane	5*	1		U		U	U	U			Ū		U		U		U	U			U	U		U	ļ	U	
vinyl chloride	2	1	1	U		U	U	U			U		U		U	τ	U	U			U	U		U	ļ	U	
xylenes, Total		1.5		U		U	U	U			U		U		U		U	U			U	U		U		U	
Total VOCs (µg/L)			0.	.18		0	0		0		0		0	0	.230		0	0			0	0		0		1.31	1
Metals (µg/L) [Dissolved / Total] ¹	, ,																,										
aluminum	2,000	200	57.7 F	3,500	U	1,060	U	2,400		2,500			U 1,100	U	2,200	U	1,600	U	990	U	1,200	U	3,100	U	1,500		1,600 ♦
antimony arsenic	3 25	50 30	U	U	U U	U U	U	U	U U	U U			U U U U	U	U U	U	U	U	U U	U	U	U	U U	U	U U	U	U U
harium	1.000	50	3.3 F	18.1 F	2.59 F	8.13 F	2.4 F	13 F		1.4 F			7F 6.3 F	2.4 F	13 F	2.0 F	9.3 F	1.6 F	7.2 F	1.9 F	7.8 F	2.4 F	16 F	U	8.4 F		9.6 F
berylium	3	4	U	U	U	U	U	U	U	U			U U	U	0.11 F	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	13.9	13.1	NA	NA	NA	NA	NA	NA	7.8 F 8.	5 F	NA NA	NA	NA	7.9 F	12	8.5 F	6.6 F	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	0.3 F	U	U	U	U	U	U	U	J	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	25,700	26,300	26,800	27,900	26,000	27,000	25,000	29,000			,000 28,000	25,000	27,000	26,000	27,000	28,000	28,000	26,000	28,000	26,000	29,000	26,000	27,000		27,000
chromium	50	10	1.6 F	4.9 F	U	U	U	3.9 F		4.3 F			U 1.6 F	2.0 F	5.4 F	U	3.5 F	U	U	2.3 F	4.2 F	2.9 F	6.0 F	U	3.4 F		3.1 F
cobalt		60	U	1.6 F	U	U	U	U	U	U	-		U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
iron	200 300	10 200	U 21.9 F	8.8 F	U	3.31 F 1,540	2.4 F	9.8 F		7.6 F			U 2.0 F U 1.300	U	4.0 F 2,200	U	5.4 F 2,200	U	2.9 F 1,200	U	3.2 F	U	7.8 F	U	8.5 F 2,100		4.8 F 2,000
lead	25	25	U U	4,510 U	U	U U	5.5 F U	3,300 U	U	3,500 U			U 1,300 U 0	U	2,200 U	U	2,200 U	U	U.	U	1,300 U	U	3,800 U	U	U.	U	2,000 U
magnesium	35,000	1,000	6,850	7,650	6,970	7,480	7,200	7,900		8,100			900 7,400	6,900	7,400	6,900	7,700	7,500	7,600	7,100	7,700	7,300	8,600		7,800		7,800
manganese	300	10	2.3 F	194	U	74.2	U	140	U	160			U 6.4 F	U	100	U	97	U	76	U	73	U	180	U	100	U	100
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA N	A 1	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	U	U	U	U	U	U	U			U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	3.9 F	U	1.92 F	U	3.0 F		2.4 F			U 1.5 F	U	2.1 F	U	2.3 F	U	U	U	2.0 F	U	3.5 F	U	U	U	U
potassium		1,000	942 F	1,850	637 F	972 F	620 F	1,400		1,600			50 F 1,000	730 F	1,500	630 F	1,200	630 F	920 F	630 F	1,100	670 F	1,700	590 F	1,100		1,200
selenium silver	10 50	30 10	U	U	U 1.11 F	U 0.93 F	U	U	U	U			U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U
sodium	20,000	1,000	3,390 J	2,010 J	2,210	0.93 F 2,240	2,400	2,400		2,500	-		300 2,400	2,200	2,300	2,200	2,300	2,100 B	2,100 B	2,000 B	2,100	2,000	2,200	2,000	2,100		2,100
thallium	0.5	80	U U	U U	2,210 U	U U	U U	U U	U U	2,300 U			U U	2,200 U	2,300 U	2,200 U	2,300 U	U U	2,100 B	2,000 B	2,100 U	2,000 U	2,200 U	U U	U U	U U	2,100 U
vanadium		10	U	5.9 F	0.89 F	2.59 F	U	4.7 F	0.91 F	4.8 F		1 F	U 1.7 F	U	3.6 F	U	2.9 F	U	1.9 F	U	2.1 F	U	5.6 F	U	2.6 F	U	3.2 F
zinc	2,000	20	5.4 F	14.9 F	33.4 B	33.4 B	13 F	24	U	16 F	U 7.	7 F 8	.3 F 13 F	38 B	51 B	10 F	20 B	1.1 F	16 F	10 F	19 F	78 B	81 B	U	1.6 F	U	12 F
Leachate Indicators (mg/L)																											
alkalinity, Total		10		3.8		84	86		82		82		80		86		92	80	_		88	80		80	_	78	
ammonia	2	0.2		U		23 F	U		U		0.025 F		0.011 F		U	0.0		0.047	F		119 F	U		0.029	F	U	
BOD5		2.4		U		U U	U		U		U U		U		U U	I O		U 0.024	г		U	U		U 0.033	г	U 0.037	
bromide COD	2	0.5		U 2 B		U 2 F	U		U 19		11 B		U		.3 F	0.0		6.3			016 F	8.2		0.033 8.2 F		0.037 6.7 F	
chloride	250	5		2 B		2.5	2.1		2.1		2.4		2.4		2.3 F		5 F 3.4	5.0	-		3.6	8.2 4.1		8.2 F 4.1		5.0	
color	15	5		40		NA	NA NA		NA		U.4		NA		NA		U	J.0 U			NA	NA NA		4.1 U	ļ	NA	
cyanide, Total	200	0.02		U		NA.	N.A		NA		U		NA		NA	0.0	-	0.0050	F		NA	N/		NA		NA	
hardness, Total		1		6.7		30	100		96		92		92		120		92	420			120	120		110		100	
nitrate	10	1		29 F		24 F	0.4		0.17		0.16 B		0.16 B		055 F		.23	0.39			.19	0.1		0.77		0.90	
TKN	1	0.2		76 F		U	U		0.076	F	U		0.38 B		U		U	U			U	U		U		U	
	250	1	10	0.9		12	11		12		13		12		12		13	15			14	13	;	14	ļ	14	
sulfate		1																									
TDS	500	10	1	48	1	20	140		70		130		120		130	13		120			130	93		130	1	140	
		10 1 0.005	0.4		1		140 0.73 U	F	70 U U		130 0.76 F U		120 0.54 F U	0	130 59 F U	1	20 1.3 U	120 U U		0.4	130 49 F U	93 U U		130 U NA		140 0.51 I NA	F

March Marc																			
March Marc	Location of Well	1				-			-		LF6VM	W-10R2		•			 		
None None	Date of Collection	NYSDEC Class CA	Donoutino	9/15/2	2009	3/24/2010	9/16/2010												
Page Page	Sample ID No.	Groundwater	Limit	LF6VM10	R230NA	LF6VM10R230OA	LF6VM10R230PA												
Classification 1	Depth to Water (ft)	Standards		13.2	29	12.78	14.11												
Classification 1	VOCs (µg/L)															I.			
Content		5*	1	U	r	U	U												
Control Cont	1,1-dichloroethene	5*	1	U	r	U	U												
Section 100		0.6																	
Service 1	1,4-dichlorobenzene																		
Section 14.00		50																	
Selection 1																			
All																			
Second compose																			
Michael Anthonous 18																			
Note Part			-																
subsystematics			-																
## Section Control Con			0.6																
Section Sect			1																
Second S			1						+										
wished missed section of the content of the conten			1																
Part Part	trichlorofluoromethane		1																
Section Sect	vinyl chloride		1																
Maintage Maintage		-	1.5	U	r	U	U												
Administration 2.00	Total VOCs (µg/L)			0		0	1.51												
selections 3	Metals (μg/L) [Dissolved / Total] ¹								*									·	
service 25	aluminum	2,000	200	220	740	690	1,700												
Name 1,000 50 25 54 54 54 57 54 54 54 54 54 54 54 54 54 54 54 54 54	antimony																		
Seylam 3																			
Nome 1,000 110 U U U U U U U U U																			
salamina 5																			
Second Company Compa																			
Secondary 10																			
Seal																			
orger 200 10 U U U U U U U U U		50																	
Second 190		200																	+
Seal Seal																			
magnesim																			
manganec 300 10 19 61 40 120 U U U U U D D D D D D D D D D D D D D																			
mercary 0.7 1 0 U U U U U U U U U U U U U U U U U U																			
Marked 15		0.7	1	U	U	U	U												
Description Control		-	15	U	U	U	U												
Selenima	nickel	100																	
silver	1																		
Sodium																			
thallium 0.5	silver							-											
vanding																			
Second 1																			
Lackinity, Total																			
alkalinity. Total — 10 80 82 80 82 80 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2,000	20	4.1 F	HF	8.4 F	12 F						_						
ammonia 2 0.2 U U U U U U O O O O O O O O O O O O O			10	0/)	82	80					-							
BOD5																			
bromide 2 0.5 0.044 F 0.067 F U U U U U U U U U U U U U U U U U U																			
COD - 5 U U U U U O O O O O O O O O O O O O O																			
chloride 250 1 4.6 3.5 7.4																			
Color		250	1																
cyanide, Total 200 0.02 NA NA U U I 110 100 120 I 20 I 20 I 20 I 20 I 20																			
hardness, Total	cyanide, Total		0.02																
aifrate 10 1 0.68 0.6 0.64 F <	hardness, Total					100													
TKN 1 0.2 U 0.20 B 0.16 FB sulfate 250 1 14 14 14 19 TDS 500 10 130 110 110 TOC - 1 0.48 F U 1.1	nitrate	10	1	0.6	i8	0.6	0.64 F												
sulfate 250 1 14 14 19 17DS 500 10 130 110 110 17CC - 1 0.48 F U 1.1	TKN		0.2																
TOC - 1 0.48F U 1.1	sulfate	250	1																
TOC - 1 0.48F U 1.1	TDS	500	10																
obenolics. Total - 0.005 U U U	TOC		1																
	phenolics, Total	-	0.005	U	1	U	U												

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6M	W-12												
Date of Collection	NYSDEC		6/29	/2006	9/19	9/2006	12/13	3/2006	4/17	2007	6/25	5/2007	10/1/	2007	12/12		4/7/	2008	6/18	/2008	10/2	/2008	12/11	/2008	4/16/	2009	7/1/2	2009
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6M	1246AA	LF6M	1246BB	LF6M	1246CA	LF6M:	1246DA	LF6M	1246EA	LF6M1	1246FA	LF6M1	246GA	LF6M1	1246HA	LF6M	1246IA	LF6M	1246JA	LF6M1	1246KA	LF6M1	246LA	LF6M12	246MA
Depth to Water (ft)	Standards		4	.48	4	1.91	3.	.90	2.	90	3	.89	4.3	85	4	2	3.	29	3.	91	4	.06	4.	12	3.	74	4.1	15
VOCs (µg/L)																												
1,1,1-trichloroethane	5*	1		U		U	1	U	1	J		U	Ţ	J	Ţ	J	T.	U	1	U		U	1	IJ	Ţ	J	U	J
1,1-dichloroethene	5*	1		U		63 F		U	0.4			U	0.53		τ		0.49			U		U		IJ	τ		U	J
1,2-dichloroethane	0.6	1		U		U		U	1	-		U	Ţ	-	τ	-	τ	-		U		U		U	τ	-	U	-
1,4-dichlorobenzene	3	0.5		U		U		U	1			U		J	1		τ			U		U		IJ	τ		U	
acetone	50	10		76 F .62		U 47 F		U	0.3	-		U	0.39		1	_	0.3			U		.0 F		U II	T.		U	-
benzene carbon disulfide	1	0.1		.62 U		47 F U		U	0.3			U	0.35 U			-	0.3			U		00 F		ח	l t	-	U	-
chloroform	7	0.3		U		U		U	1			U		J	i		l i	-		U		U		U	τ		U	-
chloromethane	5*	1		U		U		U	1			U	τ		1		i		1	U		U		U	τ		U	IJ
cis-1,2-dichloroethene	5*	1	4	70	1	264	2	75	19	2 J	1	175	17	79	10	63	15	58	1.	38	1	60		66	12	20	11	17
dichlorodifluoromethane	5*	1		U		U	τ	JJ	1	J		U	ι	J	1	J	ι	Ú	1	U		U	1	Ú	ι	J	U	J
hexachlorobutadiene	0.5*	0.6		U		U	1	U	1	J		U		J	1	J	ι	U	1	U		U	1	U	τ	J	U	J
methylene chloride	5*	1		U		U		U	1	-		00 F	,	J		_	τ		1		4.5	50 F		U	τ	_	U	J
trichloroethene (TCE)	5*	1		500		042		60 J		1 J		702	74		79			67	7.		_	64		23		53	70	
toluene trans-1,2-dichloroethene	5* 5*	1		U 16		U 2.8	8.7	U 15 E	4	J 68	. 0.	U 00 F	14		20.			31		U .25		U 8.5		U I F	1 17	J 5 F	6.00	
trichlorofluoromethane	5*	1		16 U		U.		U	4.		9.	U		J	20.		5.		8.			0. 0 U		u r U	4.7		6.00	
vinyl chloride	2	1		2.7		2.4	ı	U	1.	-		U	1.:		i		i			U		U		U	ī		U	-
xylenes, Total	-	1.5		U		U	2.5	50 F	1			U	τ		1	J	1	U	1	U		U	1	U	τ	J	U	J
Total VOCs (µg/L)			1,9	90.08	1,2	22.30	1,34	18.75	1,04	9.80	89	2.00	937	1.39	97	4.2	931	1.11	873	3.25	92	9.00	8	00	777	.75	83	32
Metals (µg/L) [Dissolved / Total] ¹								U U 45 F U																				
aluminum	2,000	200	58.2 F	80.8 F	U	55.1 F	U	-	U U U		U	U	U	U	U	U	U	U	U	U	67 F	120 F	U	U	U	U	U	U
antimony	3	50	U	U	U	U	U	U	U U U U 2.7 F 2.1 F		U U	U	U	U	2.3 F	1.6 F	U	U	2.0 F	1.7 F	U	U	U	U	U	U	U	U
arsenic barium	25 1.000	30 50	U 3.9 F	U 3.6 F	U 2.59 F	U 3.13 F	U 2.1 F	U 3.7 F		U U U U 2.7 F 2.1 F		U 2.9 F	U 1.8 F	U 2.0 F	U 3.1 F	U 2.8 F	U 3.2 F	U 3.0 F	U 2.1 F	U 2.1 F	U 10 F	U 9.9 F	U 18 F	U 18 F	U 17 F	U 18 F	U 17 F	U 17 F
berylium	1,000	4	3.9 F	3.0 F	2.39 F	3.13 F	2.1 F	3.7 F		U U 2.7 F 2.1 F U U		2.9 F	1.0 F	2.0 F	3.1 F	2.6 F	3.2 F	3.0 F	2.1 F	2.1 F	II	9.9 F	II	U	II II	II	U	U
boron	1,000	110	126	115	NA	NA	NA	NA		U U 2.7 F 2.1 F U U NA NA		110	NA	NA	NA	NA	110	100	100	100	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	0.7 F	U	U	U	U	U U NA NA U U 120,000 120,000		100 U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	134,000	126,000	127,000	130,000	130,000	130,000	NA NA U U		120,000	120,000	110,000	120,000	130,000	120,000	130,000	130,000	130,000	130,000	25,000	24,000	81,000	83,000	110,000	110,000	120,000	120,000
chromium	50	10	U	1.1 F	2.43 F	3.43 F	3.0 F	3.4 F	U U 120,000 120,000 6.1 F 2.4 F		3.6 F	4.0 F	3.5 F	3.4 F	6.1 F	5.6 F	5.2 F	6.0 F	3.1 F	2.6 F	U	1.5 F	5.6 F	6.1 F	4.0 F	5.2 F	3.4 F	3.7 F
cobalt		60	U	U	U	U	U	U	6.1 F 2.4 F U U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	2.4 F	18	U	7.23 F	U	4.2 F		U U U U 5.4 F		U	U	U	U	U	U	U	U	U	3.5 F	13	U	8.7 F	U	U	U	U
iron lead	300 25	200 25	19 F 7.5 F	228 U	38.8 F U	139 U	37 F U	51 F U	16 F	46 F	10 F U	1.5 F U	39 F	39 F U	21 F U	53 F U	13 F U	20 F U	17 F U	27 F U	71 F U	130 F U	360 U	400 U	450 U	450 U	480 U	480 U
magnesium	35,000	1,000	30,000	28,500	28,600	29,000	27,000	27,000	25,000	25,000	25,000	25,000	25,000	25,000	28,000	26,000	29,000	29,000	29,000	29,000	7,200	6,900	28,000	27,000	30,000	30,000	29,000	29,000
manganese	300	10	4,450	4,890	4,640	4,840	4,400	4,400	4,400	4,400	4,600	4,600	4,800	4,900	5,200	5,000	5,000	5,000	5,000	4,900	2,700	2,700	4,200	4,200	4,600	4,400	4,500	4,500
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	1.4 F	U	U	U	U	U	U	U	U	U	3.0 F	3.5 F	4.9 F	4.8 F	U	U	U	U	56	53	U	5.1 F	U	U	U	U
nickel	100	20	3.7 F	2.5 F	U	U	U	1.3 F	U	U	U	1.3 F	2.9 F	U	1.2 F	1.3 F	1.2 F	1.2 F	U	U	U	U	U	U	U	U	U	U
potassium		1,000	6,990	6,720	5,110	5,440	4,900	5,600	5,300	5,200	4,600	4,700	4,200	4,400	4,700	4,600	4,700	4,700	4,400	4,400	2,200	2,100	4,200	4,300	4,600	4,700	4,600	4,500
selenium	10	30	U	U	U	U	4.2 F	5.9 F	U	U	U	U	U	U	U	3.0 F	U	U	U	U	3.6 F	3.6 F	U	U	U	U	U	U
silver sodium	50 20,000	1,000	U 18,000	U 15,300	U 16,200	U 16,600	U 17,000	U 17,000	U 18,000	U 18,000	U 18,000	1.6 F 18,000	U 18,000	U 18,000	U 21,000	U 20,000	U 24,000	U 24,000	U 29,000	U 29,000	73,000	70,000	U 33,000	U 33,000	U 26,000	U 26,000	U 26,000	U 26,000
thallium	0.5	80	18,000 U	15,300 U	16,200 U	10,000 U	17,000 U	17,000 U	10,000	18,000 U	18,000 U	18,000 U	18,000 U	18,000 U	21,000 U	20,000 U	24,000 U	24,000 U	29,000 U	29,000 U	73,000 U	70,000	U 33,000	33,000 U	26,000 U	26,000 U	20,000	26,000 U
vanadium	-	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	11.5	8.5 F	20.2 B	24.5 B	5.4 F	7.0 F	8.5 F	11 F	U	U	50 B	22 B	27 B	49 B	12 F	12 F	15 F	20	11 F	14 F	17 F	73 B	U	U	U	U
Leachate Indicators (mg/L)																												
alkalinity, Total	-	10		31		350		40		30		320	29			10	33			50		20		10		90	31	
ammonia	2	0.2		13 F		051 B	0.0			73		.078	0.0			162	0.0		0.1			1 B		98		2 B	0.0	
BOD5	-	2.4		U U		U		U		J		U	U		U		U			U		3 J		18 U	U		U	
bromide COD	2	0.5		U		09 F U		U 16	0.			10 F 4 B	0. 8.5		0. 13		0.			16 5 F		17 F 10		U 15	0.1	7 F	0.18	
chloride	250	5		38		44		19		9 9		4 В 55		2	13		7			5 F 58		10 53		i5 '5	7		64	
color	15	5		13		NA		IA	N N			U	N		N		l ′(U U		JA		IA.	ί,		N/	
cyanide, Total	200	0.02		U		NA.		ĪA.	N N			U	N		N		0.00		0.00	-		JA	N N		N		N/	
hardness, Total		1		12		170		20		10	4	100	38		55			14		10		96		10		00	42	
nitrate	10	1		05 F		U		U	1			U		J	1		0.0		0.0			U		U	τ		0.03	
TKN	1	0.2		U		082 F	0.0		1	-)58 F	0.1		0.0		0.09		0.1			.64	0.		0.1		0.2	
sulfate	250	1		6.9		59		55		3		60		8	7		6			32		23		5	7		70	
TDS	500	10		64		520		40	5			510	10		53		54		5.			10	4.			50	57	
TOC	-	1	1 2	2.2	1	1.7	2	0	1	.6	1 :	1.5	1.	.8	1.	.7	1	.8	1	.6	1 3	33	8	.3	1.	.6	1.1	.7
phenolics, Total		0.005		U		U		U	1			U		J	1		0.00			U		U		IJ		A	N/	

Location of Well	NT/OTE C									LF6M	W-12						
Date of Collection	NYSDEC Class GA	Reporting	9/16	/2009	3/24/2010	9/16/2010											
Sample ID No.	Groundwater	Limit	LF6M1	1246NA	LF6M1246OA	LF6M1246PA											
Depth to Water (ft)	Standards		4.	.77	4.20	6.55											
VOCs (µg/L)	•																
1,1,1-trichloroethane	5*	1	1	U	U	U											
1,1-dichloroethene	5*	1		U	U	U											
1,2-dichloroethane	0.6	1		U	U	U											
1,4-dichlorobenzene	3	0.5		U	U	U											
acetone	50	10		U	U	226 FB											
benzene	1	0.1		U	U	U											
carbon disulfide	1,000	0.5		U	U	3.50 F											
chloroform	7	0.3		U	U	U											
chloromethane	5*	1		U	U	U											
cis-1,2-dichloroethene	5* 5*	1		74	241	972											
dichlorodifluoromethane		1		U	U	U											
hexachlorobutadiene	0.5*	0.6		U	U	U											
methylene chloride	5* 5*	1		U	U 655	U											
trichloroethene (TCE) toluene	5*	1		'11 U	U	14.5 F U											
trans-1,2-dichloroethene	5*	1	9.2		7.25 F	5.00 F											
trichlorofluoromethane	5*	1		U	U	U											
vinyl chloride	2	1		U	U	U											
xylenes, Total	-	1.5		U	U	U											
Total VOCs (µg/L)				4.25	903.25	1221											
Metals (μg/L) [Dissolved / Total] ¹																	
aluminum	2,000	200	U	U	U	U						T I			T		
antimony	3	50	U	U	U	U											
arsenic	25	30	U	U	U	U											
barium	1,000	50	14 F	14 F	17 F	24 F											
berylium	3	4	U	U	U	U											
boron	1,000	110	U	U	76	NA											
cadmium	5	5	U	U	U	U											
calcium	-	1,100	120,000	120,000	130,000	180,000											
chromium	50	10	U	5.4 F	U	5.4 F											
cobalt		60	U	U	U	U											
copper	200	10	U	U	U	U											
iron	300	200	480	420	590	1,000											
lead	25	25	U	U	U 29,000	U 30,000											
magnesium	35,000 300	1,000 10	27,000 4,400	28,000 4,400	5,000	15,000											
manganese	0.7	10	4,400 U	4,400 U	U	15,000 U											
mercury molybdenum		15	U	U	U	U											
nickel	100	20	U	U	U	U											1
notassium		1,000	4,300	4,500	4,500	4,700											
selenium	10	30	U	U U	U	U											
silver	50	10	U	U	U	Ü											
sodium	20,000	1,000	24,000	25,000	24,000	53,000											
thallium	0.5	80	U	U	U	U											
vanadium		10	U	U	U	U											
zinc	2,000	20	U	8.5 F	5.4 F	70 F											
Leachate Indicators (mg/L)																	
alkalinity, Total		10		000	310	430											
ammonia	2	0.2		068	0.034 F	U											
BOD5	-	2.4		U	10	550 J											
bromide	2	0.5	0.1		0.4	U											
COD		5		14	22	1,300	l										
chloride	250	1		58	110	78											
color	15	5		NA	U	NA											
cyanide, Total	200	0.02		NA	NA 450	U											
hardness, Total		1		20	450	580											
nitrate	10	1		U	U 0.62 P	·											
TKN	1	0.2		U 52	0.63 B	0.73 14											
sulfate	250	1		52 510	66 540	14 770											
TDS TOC	500	10 1		3	4.5	270											
	-	0.005		U	4.5 U	U U											
phenolics, Total		0.005	<u> </u>	U	U	U	L							L			

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VM	W-17D												
Date of Collection	NYSDEC		6/28	/2006	9/18	3/2006	12/12/	/2006	4/13/	2007	6/21/	2007	9/28/	2007	12/10		4/3/2	2008	6/18/2	2008	10/1	/2008	12/9/	2008	4/14/20	009	6/29/200	9
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM	17D48AA	LF6VM	17D48BB	LF6VM1	7D48CA	LF6VM1	7D48DA	LF6VM1	7D48EA	LF6VM1	7D48FA	LF6VM1	7D48GA	LF6VM1	7D48HA	LF6VM1	7D48IA	LF6VM	17D48JA	LF6VM1	7D48KA	LF6VM17I	D48LA	LF6VM17D4	48MA
Depth to Water (ft)	Standards		13	3.00	13	3.41	11.	.22	9.3	30	12.	18	14.	25	12.	92	9.8	88	12.	15	13	.68	12.	05	10.29	9	12.11	
VOCs (µg/L)																												
1,1,1-trichloroethane	5*	1		U		U	ι		ι	ı	ι	ı	Į		Ţ		Į		U			U	ι		U		U	
1,1-dichloroethene	5*	1		U		U	ι		τ		τ		ι		τ		Į		U			U	ι		U		U	
1,2-dichloroethane	0.6	1		U		U	ι	-	U		U		ι		ι		U	-	U			U	I.		U		U	
1,4-dichlorobenzene	3 50	0.5 10		U 1 F		U 12 F	ι		T T		T T		τ		ı I		0.18 I		U			U U	ι	-	U U		U 5.06 F	
acetone benzene	50	0.1		U		U	I	-	I		I		1		I		I	-	T			U II	I		U		5.06 F	
carbon disulfide	1,000	0.1		U		U	Ü	-	ľ		ī		τ	-	ì		ī	-	T			U	ι	-	UJ		U	
chloroform	7	0.3	1	U		U	ι		τ		τ	ī	τ		ί		τ		Ü			U	ι		U		U	
chloromethane	5*	1	1	U		U	τ	J	τ	ī	τ	ī	ι	J	τ	J	τ	J	U			U	ι	J	U		U	
cis-1,2-dichloroethene	5*	1	1	U		U	ι	J	ι	ī	ι	ī	ι	J	τ	J	Į	J	U			U	ι	J	U		U	
dichlorodifluoromethane	5*	1		U		U	U		ι		ι		ι		Ţ		Į		U			U	Ţ		U		U	
hexachlorobutadiene	0.5*	0.6		U		U	ι		τ		τ		ι	-	τ		Į	-	U			U	ι		U		U	
methylene chloride	5*	1		U		42 F	ι		τ		τ			J	0.17		Ţ		U			U	ι		U		U	
trichloroethene (TCE)	5* 5*	1		U		U	Į,		U		U		T.		ι		I I		U			U U	I I		U		U 0 100 F	2
toluene trans-1,2-dichloroethene	5* 5*	1		U U		U U	ι		l t		t		ι		ι		Į		T T			U U	Į į		U		0.190 F U	
trichlorofluoromethane	5*	1		U		U	ī	U		ľ		ι		ί		ī		Ü			U	ι		U		U		
vinyl chloride	2	1		U		U		U U			τ		τ		i		ι		Ü			U	ί		U		U	
xylenes, Total	-	1.5	1	U		U	ι	U U		ī	τ	ī	τ	J	τ	J	τ	J	τ			U	τ	J	U		U	
Total VOCs (µg/L)	'		1	.1	1.	.54	0)	0		0		()	0.1	70	0.1	80	0			0	0)	0		5.25	
Metals (µg/L) [Dissolved / Total] ¹																												
aluminum	2,000	200	46.4 F	555	U	146 F	U	U	U 1.9 F U		U	U	U	U	U	U	U	U	U	U	U	47 F	U	40 B	U	U		55 F
antimony	3	50	U	U	U	U	U		U U 1.9 F U U U		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
arsenic barium	25 1.000	30 50	U 8.8 F	U 13.1 F	U 9.59 F	U 9.76 F	U 10 F	U 9.4 F	1.9 F U U U		U 9.4 F	U 9.2 F	U 8.5 F	U 8.0 F	U 12 F	U 11 F	U 10 F	U 9.8 F	U 8.4 F	U 7.8 F	U 7.9 F	U 8.1 F	U 8.5 F	U 11 F	U 8.3 F	U 7.8 F		U 8.0 F
berylium	1,000	30 4	8.8 F	13.1 F	9.59 F	9.76 F	II II	9.4 F			9.4 F	9.2 F	8.5 F	8.0 F	U	II	II II	9.8 F	8.4 P	7.8 F	7.9 F	8.1 F	8.5 F	U	8.5 F	7.8 F		8.0 F
boron	1,000	110	13	10.8	NA	NA	NA	NA			6.8 F	7.2 F	NA	NA	NA	NA	6.1 F	4.8 F	6.0 F	5.4 F	NA	NA	NA	NA	NA	NA		U
cadmium	5	5	U	U	U	U	U	U	13 F 13 F		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
calcium	_	1,100	28,000	30,900	35,000	34,600	35,000	35,000	U U NA NA U U 46,000 45,000		34,000	33,000	31,000	30,000	37,000	37,000	41,000	40,000	34,000	32,000	28,000	29,000	30,000	31,000		31,000		29,000
chromium	50	10	4.9 F	9.6 B	U	6.85 F	2.6 F	2.7 F	3.8 F	NA NA U U 46,000 45,000 3.8 F 1.6 F		3.5 F	2.2 F	2.3 F	2.9 F	2.0 F	U	U	U	U	2.0 F	3.3 F	U	22	U	U		3.7 F
cobalt	-	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	5.2 F	U	U	2.4 F	2.6 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	3.0 F	U	U	U	U
iron	300	200	U	833	U	96.6	7.2 F	42 F	U	U	U	U	U	U	U	U	U	U	U	8.1 F	U	16 F	U	520	U	27 F		16 F
lead	25	25	U 7 070	U 0 420	U	U	U 10.000	U 10.000	U 12.000	U 12 000	U	U 0.400	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
magnesium manganese	35,000 300	1,000 10	7,870 0.3 F	8,420 35.4	9,680 U	9,260 3.36 F	10,000 U	10,000 U	12,000 U	12,000 U	9,600 U	9,400 U	9,400 U	9,100 U	11,000 U	10,000 U	11,000 U	11,000 U	9,700 U	9,100 U	8,600 U	8,700 U	8,800 U	9,000 21	9,000 U	8,600 U		8,400 U
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ü	U		U
nickel	100	20	U	9.9 F	U	U	2.8 F	1.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2 F	U	11 F	U	U		U
potassium		1,000	1,190	1,420	745 F	891 F	700 F	660 F	850 F	760 F	740 F	820 F	720 F	750 F	770 F	740 F	660 F	620 F	560 F	540 F	600 F	630 F	570 F	670 F	580 F	530 F	440 F	610 F
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U
silver	50	10	U	U	U	U	U	U	1.0 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	2,320	1,910	1,780	1,790	1,800	1,700	1,800	1,800	1,900	2,000	2,000	2,100	2,000	2,000	1,900 B	1,800 B	1,800 B	1,800 B	1,600	1,700 B	1,600 B	1,700 B	1,600	2,600		1,600
thallium	0.5	80	U	U	U	U	U	U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium	2.000	10 20	U	1.6 F 6.4 F	U 15.8 F	U 17.1 F	U 7.7 F	9.3 F	0.72 F U	0.71 F U	U	U	48 B	U 51 B	U 35 B	U 35 B	11 F	11 F	U 11 F	U 12 F	10 F	11 F	65 B	U 49 B	U	U		U U
Leachate Indicators (mg/L)	2,000	20	U	0.4 F	13.0 F	17.11	7.7 F	9.3 F	U	U	U	U	40 D	31 B	a cc	33 B	111	1111	111	14 F	10 F	HF	0.0	47 D		U	U	-
alkalinity, Total		10	1	10	1	20	15	50	15	0	11	0	10	10	12	:0	13	30	12	0	9	92	11	10	110		96	
ammonia	2	0.2		U		U	ι		ι		0.02		ι		0.02		ι		0.04		0.0		ι		U		0.13	
BOD5	-	2.4		U		U	ι		ι	J	τ	ī	τ		τ	J	τ		U			U	ι		U		U	
bromide	2	0.5		U		U	ι		ι		τ		τ		τ		τ	-	U			U	U		U		U	
COD	-	5		U		U	9.4		15		8.5		Į		4.1		8.5		τ			U	ι	-	28		U	
chloride	250	1		2.9	1	3	2.		2.		2.		2.		2.		2.		1.1			.7	3.		1.7		1.6	
color	15	5	_	50		NA NA	N.		N.		U		N		N		J	-	U			IA.	N.		U		NA	
cyanide, Total	200	0.02		076 F 9.5		NA 30.0	N. 13		N. 16		12		N 7		N 14		0.00		0.004			IA 20	N. 12		NA 120		NA 110	
hardness, Total nitrate	10	1		9.5 13 F		30.0 18 F	0.1		0.2		0.16		0.1:		0.1		0.		0.1			.14	0.1		0.18		110 0.15	
nitrate TKN	10	0.2		.38		U	U.1		U.2		U.10		U.13		0.06		U.		U.1		0.1		U.1		U.18		0.15 0.16 F	
sulfate	250	1		.36 7.8		3.3	8.	-	8.		8.		8.		8.		8.	-	8.			.3	8.		8.9		8.5	
TDS	500	10		35		50	15		17		15		14		13		14		99			00	14		81		120	
	1	-				72 F	0.8		0.9		0.54		0.7		0.8		0.8		T		0.4		0.6		U		U	
TOC		1	0.4	44 F	0.	/2 P	0.8	/ P	0.9	/ I	0.5	+ P	0.7	I F	0.0	01	0.0						0.0	+ F	U		U	

Location of Well	1								LF6VM	IW 17D							
Location of Well Date of Collection	NYSDEC		9/14/	/2009	3/22/2010	9/15/2010			LF6VM	IW-17D							
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM1		LF6VM17D48OA	LF6VM17D48PA											
Depth to Water (ft)	Standards		14	.00	12.06	15.05											
VOCs (µg/L)																	
1,1,1-trichloroethane	5*	1	I	U	U	U											
1,1-dichloroethene	5*	1		U	U	Ü											
1,2-dichloroethane	0.6	1		U	U	U											
1,4-dichlorobenzene	3	0.5	τ	U	U	U											
acetone	50	10	τ	U	U	1.97 FB											
benzene	1	0.1	Ţ	U	U	U											
carbon disulfide	1,000	0.5	τ	U	U	U											
chloroform	7	0.3	Ţ	U	U	U											
chloromethane	5*	1		U	U	U											
cis-1,2-dichloroethene	5*	1		U	U	U											
dichlorodifluoromethane	5*	1		U	U	U											
hexachlorobutadiene	0.5*	0.6		U	U	U											
methylene chloride	5*	1		U	U	U											
trichloroethene (TCE)	5*	1		U	U	U											
toluene trans-1,2-dichloroethene	5* 5*	1		U	U U	U U											
	5*	1		U	U	U											
trichlorofluoromethane vinyl chloride	2	1		U	U	U											
xylenes, Total		1.5	ī		U	U											
Total VOCs (µg/L)		1.5			0	1.97											
Metals (µg/L) [Dissolved / Total] ¹				<u> </u>	0	1.57											
aluminum	2,000	200	U	U	U	U		Т								-	_
antimony	3	50	U	U	U	U											
arsenic	25	30	U	U	U	U											
barium	1,000	50	7.1 F	6.4 F	9.1 F	7.1 F											
berylium	3	4	U	U	U	U											
boron	1,000	110	U	U	11 B	NA											1
cadmium	5	5	U	U	U	U											
calcium	-	1,100	26,000	26,000	31,000	23,000											
chromium	50	10	U	U	U	4.4 F											
cobalt		60	U	U	U	U											
copper	200	10	U	U	U	U											
iron	300	200	U	U	U	U											
lead	25	25	U	U	U	U											
magnesium	35,000	1,000	8,000	7,800	8,900	6,900											
manganese	300	10	U	U	U	U											
mercury	0.7	1	U	U	U	U											
molybdenum	-	15	U	U	U	U											
nickel	100	20	U	U	U 580 F	U 720 F											
potassium		1,000	520 F	450 F	580 F U												
selenium	10 50	30 10	U	U U	U	U U											
silver sodium	20,000	1,000	1,600	1,600	1,900 B	1,400				 	-+						+
thallium	0.5	80	U 1,600	1,000 U	U U	U											
vanadium	V.J	10	U	U	U	U											
zinc	2,000	20	U	U	U	5.7 F											
Leachate Indicators (mg/L)	2,000	20															
alkalinity, Total		10	8	36	98	84	T										
ammonia	2	0.2		U	Ü	U								1			
BOD5	-	2.4		U	U	U											
bromide	2	0.5		.6	U	U											
COD	_	5		U	U	U											
chloride	250	1		.6	1.5	1.5											
color	15	5		IA	U	NA											
cyanide, Total	200	0.02	N	IA	0.0083 F	U											
hardness, Total	-	1	11	10	110	85											
nitrate	10	1	0.1	5 B	0.16 B	U											
TKN	1	0.2	τ		0.23 B	0.16 FB											
sulfate	250	1		.7	9.3 B	9.5											
TDS	500	10		00	98 B	100											
TOC		1		2 F	0.60 FB	U											
phenolics, Total		0.005	τ	U	U	U	<u> </u>										
					•			,		-							

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VN	IW-17S												
Date of Collection	NYSDEC		6/28	/2006	9/18	8/2006	12/15	5/2006	4/13/	2007	6/21	/2007	9/28	2007	12/10	/2007	4/3/2	2008	6/18/	2008	10/2	/2008	12/9/	2008	4/15/2	2009	6/29/20	.009
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM	17S13AA	LF6VM	117S12BB	LF6VM1	17S12CA	LF6VM	17S12DA	LF6VM	17S12EA	LF6VM	17S12FA	LF6VM1	7S12GA	LF6VM1	17S15HA	LF6VM	17S15IA	LF6VM	17S13JA	LF6VM1	7S13KA	LF6VM1	7S15LA	LF6VM17	S15MA
Depth to Water (ft)	Standards				12	2.26	9.2	27	7.	77	11	.08	13	.40	12	.07	6.	38	11.	.08	12	2.78	10.	60	8.7	77	10.8	;9
VOCs (µg/L)																												
1,1,1-trichloroethane	5*	1	1	J	Г	U	U	J	1	J		U	1	J	1	J	ı	J	Į	J		U	Į	J	U	J	U	
1,1-dichloroethene	5*	1		U		U	Ţ					U		J		J	τ		τ	J		U	τ		U		U	
1,2-dichloroethane	0.6	1		U		U	τ		1			U		J	1		τ		Į	,		U	Į		U		U	
1,4-dichlorobenzene	3	0.5		U		U	τ	-	1	-		U	1		1		τ		τ	-		U	Ţ		U		U	
acetone	50	10	1.3			U	Ţ	0	1.7			U		J	2.		τ	-	Į			U	Į	,	1.37		4.61	
benzene	1	0.1	1	U		U		U	1			U U		J	1	-	ı	-	I	-		U U	I I		U		U	
carbon disulfide chloroform	1,000	0.5 0.3		U		U		U U		-		U		J J			1	-	ı ı	-		U	I		U. U		U	
chloromethane	5*	0.3		U		U	ī		i			U		J	i		l i		ī	-		U	0.34	-	U		U	
cis-1.2-dichloroethene	5*	1		II .		U	ī		i	-		U			i	-	l ì	-	ī	-		U	U.54		U		U	
dichlorodifluoromethane	5*	1		-		U	Ü	JJ	-	J	ı	J	1	IJ	i	J	ì	-	ī	J		U	ī		U		U	
hexachlorobutadiene	0.5*	0.6		U		U	τ		1			U		J	i	J	i	J	τ	J		U	τ		U		U	
methylene chloride	5*	1	1	U		U	τ	U	1	J	1	U	1	J	1	J	τ	J	τ	J	1	U	ι	J	U	J	U	
trichloroethene (TCE)	5*	1	1	U	1	U	τ	U	1	J	1	U	1	J	1	J	τ	J	τ	J	1	U	τ	J	U	J	U	
toluene	5*	1		U		U	Į		1			U	1		1		τ	-	Ţ	-		U	Ţ		U		0.190	F
trans-1,2-dichloroethene	5*	1		U		U	Ţ	-	1			U		J	1		τ		τ	-		U	τ		U		U	
trichlorofluoromethane	5*	1		U		U	τ		1	-		U		J	1	-	τ	-	τ	,		U	Ţ	-	U		U	
vinyl chloride	2	1		U		U	τ		1	-		U	1	-	1	-	τ	-	τ	,		U	Ţ		U		U	
xylenes, Total	-	1.5		U		U		U	- 1	-		U	1		- 1		τ	-	t	,		U	U	-	U		U	
Total VOCs (µg/L)			1	.3	ш'	0		0 1.7		.7		0)	2.	07)	()		0	0	34	1.3	57	4.8	-
Metals (µg/L) [Dissolved / Total]	2,000	200	331 B	261	200	1,650	720	760	000	1.000	500	500	470	1 200	600	5,300	600	720	580	520	260 B	1.100	620 B	950	900	000	570	630
antimony	2,000	200 50	U 331 B	361 U	290 U	U U	720 U	760 U	900 U	1,000 1.8 F	590 U	590 U	470 U	1,300 U	600 U	U U	690 U	730 U	1.6 F	520 U	360 B U	1,100 U	U U	850 U	890 U	900 U	U	U
arsenic	25	30	U	U	U	U	U	II	U	U	U	U	II	U	U	U	U	U	1.0 F	U	II.	U	U	U	U	U	U	U
barium	1.000	50	76.6	71.2	86.2	87.8	110	120	64	64	88	87	81	85	69	100	86	83	120	100	93	92	86	91	91	89	91	95
berylium	3	4	U	U	U	0.47 F	0.72 F	0.64 F	0.62 F	0.57 F	0.50 F	0.45 F	0.57 F	0.67 F	0.66 F	0.89 F	0.40 F	0.39 F	0.54 F	0.50 F	0.47 F	0.55 F	0.58 F	0.59 F	0.56 F	.54 F	0.47 F	0.59 F
boron	1,000	110	12.2 J	7.9 F	NA	NA	NA	NA	NA	NA	6.7 F	5.5 F	NA	NA	NA	NA	4.2 F	3.4 F	4.2 F	4.5 F	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	1.9 F	1.9 F	1.84 F	U	3.9 F	3.5 F	4.2 F	3.8 F	3.2 F	2.9 F	2.7 F	2.8 F	2.6 F	2.2 F	2.7 F	2.6 F	3.3 F	3.0 F	2.1 F	2.3 F	2.1 F	2.2 F	3.1 F	3.0 F	1.9 F	2.7 F
calcium	-	1,100	11,900	11,600	10,500	10,600	9,100	9,300	8,500	8,500	8,500	8,400	8,000	7,900	8,300	8,800	8,100	7,900	10,000	8,900	8,100	7,900	8,600	9,100	8,900	8700	8,300	8,700
chromium	50	10	0.5 F	1.1 F	U	17.7	U	U	1.8 F	3.4 F	U	U	U	6.2 F	U	25	U	U	U	U	U	8.3 F	U	5.6 F	U	U	U	U
cobalt	-	60	6.1 F	6.2 F	U	7.49 F	8.4 F	6.4 F	U	U	U	U	8.8 F	9.3 F	6.8 F	U	7.5 F	6.6 F	U	U	U	7.1 F	U	U	7.3 F	7.0 F	U	6.9 F
copper	200	10	U	2.2 F	U	2.55 F	4.9 F	6.2 F	3.2 F	3.6 F	U	2.1 F	U	3.4 F	6.0 F	14	4.4 F	5.3 F	U	U	U	2.9 F	U	U	3.2 F	4.6 F	U	U
iron	300	200	18 F	128 F	14.6 F	3,170	1,700	2,000	75 F	210	19 F	39 F	110 F	3,600	19 F	13,000	140 F	190 F	17 F	3.3 F	11 F	2,700	14 F	930	12 F	110 F	U	16 F
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	1,860	1,900	1,820	2,050	1,800	1,800	1,800	1,800	1,900	1,800	1,600	1,700	1,600	2,300	1,600	1,600	2,300	2,000	1,600	1,700	1,900	2,100	1,800	1,800	1,800	2,000
manganese	300 0.7	10	524 NA	536 NA	291 NA	336 NA	320 NA	340 NA	120 NA	120 NA	230 NA	220 NA	540 NA	530 NA	240 NA	330 NA	290 NA	280 NA	390 NA	310 NA	270 NA	280 NA	230 NA	240 NA	260 II	260 II	180 U	190 U
mercury molybdenum	0.7	15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	12.3 F	12.8 F	13.4 F	21.5	7.6 F	9.1 F	3.7 F	5.5 F	17 F	17 F	19 F	19 F	12 F	26	6.7 F	9.5 F	11 F	10 F	11 F	14 F	7.7 F	10 F	7.8 F	8.7 F	7.4 F	7.9 F
potassium		1,000	337 F	270 F	380 F	789 F	220 F	210 F	U	U	U	U	230 F	320 F	220 F	730 F	170 F	160 F	190 F	200 F	210 F	390 F	U	U	230 F	230 F	U	250 F
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	Ü	U	U	U	Ü	U	U	U	U	U	U	Ü	Ü	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	2,520 J	1,850 J	2,280	2,090	1,500	1,000 B	1,300	1,300	1,400	1,400	1,400	1,300	1,400	1,400	6,000	5,500	1,900 B	1,700 B	2,200 B	1,800 B	1,400 B	1,500 B	3,300	3,300 B	1,300	1,500
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium	-	10	U	U	U	2.36 F	U	U	U	U	U	U	U	U	U	4.0 F	U	U	U	U	U	0.84 F	U	U	U	U	U	U
zinc	2,000	20	13.5 F	12.2 F	34.2 B	52 B	31	39 B	21	23	24	27	69 B	59 B	74 B	83 B	35 B	32 B	39	35	31 B	33 B	62 B	68 B	23	22	21	22
Leachate Indicators (mg/L)																,				,				,				
alkalinity, Total	-	10	3.5			U		U	1			U		J	1		I O		U			U	Ţ		U		U	
ammonia	2	0.2	1	U JJ		U U	0.1	.10 U	0.0			41 F U	0.0	34 F J	0.03		0.03		0.05 U			14 F U	l I	-	0.03 U		U	
BOD5		2.4		U		U	ı ı					U		J			1		ι			U II	U		U		U	
hammada.		0.5		J		-	24	-		16		U 7 B		0	28		6.3		'			U 15	6.0		11		9.01	F
bromide COD	2	0.5		13 1	1 1 2									7 F	0.7		0.6		0.5			52 F	2.		0.52			
COD	2		12	2.3	0.6			6 F	0.7	8 F	0.5								0.5									
COD chloride	2 250		12	.9	0.6	66 F	0.4		0.7 N		0.7	U U			N	A	I	J	T								0.63 NA	
COD chloride color	2 250 15	5 1 5	12 1 1	.9 U	0.6 N	66 F NA	0.4 N	ĮΑ	N	A	1		N	A	N N		0.0		ι	J	N	ĪΑ	N	A	U	J	NA	A
COD chloride color cyanide, Total	2 250	5 1	12 1 0.00	.9 U)76 F	0.6 N	66 F	0.4 N N	ĮΑ		A A		U	N N		N	A	0.01 2	12 F		l l	N N			A A		J A		A A
COD chloride color	2 250 15 200	5 1 5	12 1 1	.9 U)76 F	0.6 N N	66 F NA NA	0.4 N N	IA IA 36	N N	A A 2	2	U U	N N	A A		A 0.0	0.0	12 F 8	ι	0 1	N N	IA IA	N N	A A 4	U N	J A. 6	NA NA	A A
COD chloride color cyanide, Total hardness, Total	2 250 15 200 	5 1 5	12 1 0.00	.9 U)76 F 1.9	0.6 N N 80	66 F NA NA NA 80 B	0.44 N N 3	IA IA 36 .3	N N 7	A A 2 .3	1 1	U U 28	N N 1	A A J	N 15	A 0.0 3	0.01	12 F 8 .9	U 4	0 0 1	N 3 1	NA NA 32	N N 4	A A 4 3	U N/ 56	J A 5 2	NA NA 44	A A I J
COD chloride color cyanide, Total hardness, Total nitrate	2 250 15 200 10	5 1 5 0.02 1 1	12 1 0.00 31	.9 U 076 F 1.9 1 58 F	0.6 N N 80 1	66 F NA NA 80 B	0.44 N N 3 1.	IA IA 36 .3	N N 7 1	A A 2 2 .3 6 F	0.1	U U 28 .6	N N 1	A A J .0	N 15 1	A 0.0 3 53	0.01 2 1	12 F 8 9	4 3.	J J 0 0 0	N N 3 1	NA NA 32 5	N N 4 3.	A A 4 3 3 F	U NA 56 4.1	J A 6 2 5 B	NA NA 44 3.5	A A J J
COD chloride color cyanide, Total hardness, Total nitrate TKN	2 250 15 200 10	5 1 5 0.02 1 1	12 1 0.00 31 0.00	.9 U 076 F 1.9 1 58 F	0.6 N N 80 1 0.1	66 F NA NA NA 80 B 1.1	0.4 N N 3 1. 0.3	IA IA 36 .3	N 7 1 0.1	A A 2 2 .3 6 F	0.1	U U 28 .6	N N 1 1 0.	A A J .0 33	N 15 1 0.	A 0.0 3 53	0.01 2 1	12 F 8 .9 42	4 3. 0.07	J J 0 0 0 78 F 2	N N 3 1 0.	NA NA 32 5	N N 4 3.	A A 4 3 3 F 8	U NA 56 4.2 0.45	J A 6 2 5 B	NA NA 44 3.5 .	A A J I
COD chloride color cyanide, Total hardness, Total nitrate TKN sulfate	2 	5 1 5 0.02 1 1 0.2	12 1 0.000 31 0.00 33 8	.9 U 076 F 1.9 1 58 F 3.9	0.6 N N 80 1 0.1	66 F NA NA 80 B 1.1 19 F	0.4 N N 3 1. 0.3	IA IA 36 .3 81 F 80	N 7 1 0.1	A A A A A A A A A A A A A A A A A A A	0.1	U U 28 6 11 F	N N 1 1 0. 2	A J	N 15 1 0.	A 0.0 3 53 5 6	0.00 2 1 0.00 2	12 F 8 9 42 6 4	0.07 2	J J 0 0 0 78 F 2 2	N 3 1 0.	NA NA 32 5 36	N N 4 3. 0.1	A A 4 3 3 F 8	U NA 56 4.3 0.45 20	J A 6 2 5 B 0 2	NA NA 44 3.5 : 0.21	A A J J 1

Location of Well	LF6VMW-17S		
Sample ID No. Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA Groundwards Class GA GROUNDWARD Class GA GROUNDW			
Depth to Water (ft)			
VOCs (pg/L) I,1,1=richlorochane 5* 1 U <th< th=""><th></th><th></th><th></th></th<>			
1,1,1-trichloroethane			<u> </u>
1,1-dichloroethene 5* 1 U U U 1,2-dichloroethane 0.6 1 U U U U			
1,2-dichloroethane 0.6 1 U U U			
1,4-dichlorobenzene 3 0.5 U U U			
acetone 50 10 U U 2.48 FB			
benzene 1 0.1 U U U			
carbon disulfide 1,000 0.5 U U U			
chloroform 7 0.3 U U U			
chloromethane 5* 1 U U U			
cis-1,2-dichloroethene 5* 1 U U U			
dichlorodifluoromethane 5* 1 U U U			
hexachlorobutadiene 0.5° 0.6 U U U			
methylene chloride 5* 1 U U U			
trichloroethene (TCE) 5* 1 U U U			
toluene 5* 1 U U U trans-1,2-dichloroethene 5* 1 U U U			
trans-1,2-dichloroethene 5* 1 U U U U U U U U U U U U U U U U U U			
trichtorolluoromethane			
vinyi cnioria 2 1 U U U U V V V V V V V V V V V V V V V			
xyrienes, total Total VOCs (tg/L) 0 0 2.48			
Metals (pg.) Dissolved / Total) ¹			
aluminum 2,000 200 360 3,200 610 1,600			
antimony 3 50 U U U U			
arsenic 25 30 U U U U U			
barium 1,000 50 67 81 66 51			
berylium 3 4 0.38 F 0.59 F 0.44 F 0.56 F			
boron 1,000 110 U U 8.7 F NA			
cadmium 5 5 1.2 F 1.5 F 1.9 F 2.0 F			
calcium - 1,100 7,700 8,000 9,300 8,800			
chromium 50 10 U 17 U U			
cobalt - 60 U U 4.4F 4.2 F			
copper 200 10 U 5.7 F U U			
iron 300 200 11 F 9,300 F 87 F 6,300			
lead 25 25 U U U U			
magnesium 35,000 1,000 1,700 2,000 1,900 1,900			
manganese 300 10 390 420 170 170			
mercury 0.7 1 U U U U			
molybdenum - 15 U U U U III nickel 100 20 7.6F 16F 6.4F 5.5F			
Silver 30 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - - - - - - - - - 	
20,000 1,000 1,100 1,100 1,000 1,000 1,1			
Vanadium			
Valiadum 2.000 20 18 F 21 22 19 F			
Leachate Indicators (mg/L)			
alkalinity, Total - 10 80 U U			
ammonia 2 0.2 0.018 F U U			
BOD5 - 2.4 U U U			
bromide 2 0.5 U U U			
COD - 5 25 12 B 17			
chloride 250 1 0.70 F 0.95 F 1.4			
color 15 5 NA U NA			
cyanide, Total 200 0.02 NA 0.0081 F U			
hardness, Total - 1 24 31 30			
nitrate 10 1 3.0 4.4 4.5 F			
TKN 1 0.2 0.56 0.27 B 0.72 B			
sulfate 250 1 15 15 B 11			
TDS 500 10 65 52 B 78			
TOC - 1 4.8 3.2 B 3.1 B			
phenolics, Total - 0.005 U U U			

Landfill 6 AOC Groundwater Analytical Results (continued)

New Columbia (1964) (1	Location of Well															LF6VN	MW-18												
Part Part	Date of Collection	NYSDEC Closs GA	Reporting	6/28	/2006	9/18	/2006	12/12	/2006	4/13/	2007	6/21	/2007	9/28/	/2007			4/3/2	2008	6/18/	2008	9/30/	2008	12/9/	2008	4/14/	/2009	6/29/2	2009
Page Page	Sample ID No.	Groundwater		LF6VM	1850AA	LF6VM	1850BB	LF6VM	1850CA	LF6VM	1850DA	LF6VM	11850EA	LF6VM	1850FA	LF6VM	1850GA	LF6VM	1850HA	LF6VM	1850IA	LF6VM	1850JA	LF6VM	1850KA	LF6VM	1850LA	LF6VM1	850MA
Change C	Depth to Water (ft)	Standards		11	.28	11	.67	10	.58	9.0	61	10	.31	11.	.43	9.	97	9.3	78	10.	50	11.	.29	10.	97	10.	.28	10.7	70
Marchander Mar	VOCs (µg/L)														17		.,												
Content			1		-		-		-		-		-						-	-		-	-				-	-	
Control Cont			1		-				-		-		-		-				-	-							-	-	
Sementation of the content of the co							-		-				-		-			,	*			-	-			,			
Marchestand 1,00		-					-		-								-	U.Z.	J	_		-	-			Ī	II.	-	
Second condition				1	U	1	U	1	J	ι	J	1	U	Ţ	U	τ	U	Ţ	J	ι	J	τ	J	ī	J	U	U		
Selection of the select	carbon disulfide	1,000		1	U	1	U	1	J					ι	U	τ	U	τ	J	ι	J	ι	J	τ	J	τ	IJ	U	I
Second condition	chloroform	7	0.3	1	U	1	U	1	J	ι	J			Ţ	U	τ	U	0.12	20 F	τ	J	τ	J	τ	J	τ	U	U	I
Mathemathemathemathemathemathemathemathem	chloromethane		1	1	U	1	U	1	J					Į	IJ		-					-	-			τ	U	U	i
INTERPRETAMENTAL STATE OF STAT	cis-1,2-dichloroethene	-	1		0		0		-	,	-		-		-				_				_		-	,			
							-															-	-						
																						-	-				U		
Seminorization of the content of the							-		-				-		-				-	-		-	-			'	U	-	
Second S			2		-		-		-				-	1	-		-		-	-		-	-			,	_		
Second S	toluene		1		-		-		-										-								•		
mished members and set of the content of the conte			1		-		-												-			-	-				-		
Second S	trichlorofluoromethane		1		-		-		-		-		-		-			,	,	-						,		-	
yeles field — 15 Fiel	vinyl chloride		-				-		-	τ	J	1	U			i	U	τ	J	τ	J	τ	J			ι	U		
Make Jung Jungshed Feel Feel Seel Seel Seel Seel Seel Seel	xylenes, Total		1.5		-	1	U		-	,	-		-	τ	U		0	τ	J	τ	J	ι	J				-		
Second Second	Total VOCs (µg/L)				0		0)		0	(0	0.1	110	0.3	20	0		0)	0.4	00	- (0	8.35	50
maintanger 3 50 50 U U U U U U U U U U U U U U U U U	Metals (µg/L) [Dissolved / Total] ¹								U 370																				
Seedle 25 90 0 U U U U U U U U U U U U U U U U U	aluminum			59.3 F										-						-	-							-	
Name 1,000 20 235 248 250	antimony	-				-	-	-	U U				-	-		-	-	-	-		-	-	-	-	-	-		-	
Seedame 1.00 110 193 174 170 170 170 170 170 170 170 170 170 170	arsenic								U U U				-	-						-					-		-		
$\believe believe bel$		1,000	50		248		265	250							270	250						290							
Section Sect		3	4	-	U	-	U	U			-	-	-	-	U	U	-			-		U			-		-	-	
Selement Part Part Part Part Part Part Part Par																												-	
chemoles 50		3						-	-		_			-									-		-		-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	chromium	50																											
mere bela 200 200 U 258 0 290 U 3580 290 U 3500 U 0 U 0 U U U U U U U U U U U U U U	cobalt																											-	
merent grown grown and grown g	copper	200	10	U	13.7	U	U	2.6 F	6.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesim	iron	300	200	U	2,500	29.9 F	279	44 F	1,000	49 F	260	5.2 F	280	53 F	320	82 F	520	57 F	180 F	86 F	99 F	64 F	190 F	68 F	870	60 F	260	98 F	220
managenese 300 10 96 182 116 121 110 140 140 130 130 130 130 130 130 130 130 130 13	lead	25	25	U	U	U	U	U	U		U	U	U	U	U	U		U	U	· ·	U	U	U	U	U	U		U	U
memory 0.7	magnesium			38,500				41,000																					
molybedroms 15	manganese		10																										
misked 100 20 U 5.5F U 13F 13F 27F U U U U U U 10 10 13F 13F 13F 13F 13F 13F 13F 13F 13F 13F			1																										
potassimm							-	-	-				-	-				-	-	-			-	-	-			-	
selemism 10 30 U U U U U U U U U		100																											
siber 9 0 10 U U U U 10 0 10 0 0 12 0 0 10 0 10		10																											
Society Soc	silver				U			-			-		-		-					-									
thalling	sodium		1,000	12,300 J	9,780 J	13,600	13,500	16,000	16,000	18,000	19,000	20,000	20,000	20,000	20,000	19,000	19,000	20,000		21,000	21,000	25,000		26,000	26,000			31,000	33,000
	thallium																				-								
	vanadium																												
Aladinity, Total 10 274 260 250 260 270 270 250 220 240 250 230 210 220 240 250 260 270 270 250 250 220 240 250 250 230 210 220 240 250	zinc	2,000	20	4.8 F	8.8 F	14.9 F	17.4 F	4.4 F	5.4 F	U	U	U	U	52 B	32 B	32 B	51 B	9.7 F	12 F	12 F	13 F	11 F	11 F	65 B	60 B	U	U	U	U
ammonia 2 0.2 U U U U U U U U U U U U U U U U U U U	Leachate Indicators (mg/L)								***				80				***								10		10		
BODS	**					2	60																						
teromide 2 0.5 U 0.044 F U 0.038 F 0.049 F 0.050 F 0.038 F 0.052 F 0.047 F U 0.047 F 0.039 F COD 5 14 U 9.4 F 13 8.5 F 4.1 F 6.3 F 4.1 F 20 8.2 F U 6.0 F U 6.0 F U 6.0 F U 6.0 F U 6.0 F COD Color					-		U		-						-		-		-								-	-	
COD 5 14 U 9.4F 13 8.5F 4.1F 6.3F 4.1F 20 8.2F U 6.0F U clot 250 1 64.7 67 63 63 62 52 51 88 100 95 95 110 100 color 15 5 20 NA NA NA U NA NA U NA NA									_		-		-		-			,	,	-						,	_	-	
chloride 250 1 64.7 67 63 63 63 62 52 51 88 100 95 95 95 110 100 J Color 15 5 20 NA NA NA U NA NA U NA NA U NA NA U NA NA U NA NA NA U NA NA NA NA NA NA NA NA NA NA NA NA NA		2							-																				
color 15 5 20		250	-				-																						
cyanide, Total 200 0.02 0.0076 F NA NA NA NA U NA NA 0.0098 F U NA NA NA NA NA NA NA NA NA NA NA NA NA			-																										
hardness, Total 1 315 410 380 360 370 320 340 340 410 380 330 340 360 airrate 10 1 0 .655 0.14 F 0.092 F 0.11 0.24 0.21 B 0.27 0.058 F 0.082 F 0.046 F U U U U U U U U U U U U U U U U U U																			-								-		
nitrate 10 1 0.655 0.14F 0.092F 0.11 0.24 0.21B 0.27 0.058F 0.082F 0.046F U U U U TKN 1 0.2 0.15F 0.081F 0.070F U U U 0.062F U U U U U U U U U U U U U U U U U U U	hardness, Total																												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nitrate	10	1																										
TDS 500 10 420 480 470 420 520 330 410 290 420 480 450 430 490 TOC - 1 U 0.72 F 1.1 0.56 F 1.3 B 0.92 F 3.0 1.6 0.48 F 0.53 F 0.86 F U 0.65 F	TKN	1	0.2	0.1	5 F	0.0	81 F											Ţ	J	U	J	τ	J	Ţ	J	Ţ	U	U	i
TOC - 1 U 0.72 F 1.1 0.56 F 1.3 B 0.92 F 3.0 1.6 0.48 F 0.53 F 0.86 F U 0.65 F	sulfate	250	1	44	5.5		6	5	2	4	9			5	60	4	4											39)
	TDS	500	10	4	20																								
phenolics, Total 0.005 U U U U U U U U U NA NA	TOC				-														-								-		
	phenolics, Total	-	0.005	1	U	1	U	1	J	Į	J	1	U	I	U	τ	U	Į	J	ι	J	ι	J	Ţ	J	N	IA	N/	A

Location of Well										LF6VM	IW-18						
Date of Collection	NYSDEC		9/14	/2009	3/22/2010	9/14/2010				LFOVN	111-10						
Sample ID No.	Class GA Groundwater	Reporting Limit		11850NA	LF6VM1850OA	LF6VM1850PA											
Depth to Water (ft)	Standards		11	.81	11.41	13.58											
VOCs (µg/L)																	
1,1,1-trichloroethane	5*	1	1	U	U	U											
1,1-dichloroethene	5*	1		U	U	U											
1,2-dichloroethane	0.6	1		U	U	U											
1,4-dichlorobenzene	3	0.5		U	U	U											
acetone	50	10		U	U	2.30 F											
benzene	1	0.1		U U	U U	U U											
carbon disulfide	1,000	0.5		U	U	U											
chloroform chloromethane	7 5*	0.3		U	U	U											
cis-1,2-dichloroethene	5*	1		U	U	U											
dichlorodifluoromethane	5*	1		U	U	U											
hexachlorobutadiene	0.5*	0.6		U	U	U											
methylene chloride	5*	1		U	U	U											
m,p-xylene	5*	2		U	U	U											
trichloroethene (TCE)	5*	1		U	U	U	<u></u>										
toluene	5*	1		U	U	U											
trans-1,2-dichloroethene	5*	1		U	U	U											
trichlorofluoromethane	5*	1		U	U	U											
vinyl chloride	2	1		U	U	U											
xylenes, Total		1.5		U	U	U											
Total VOCs (µg/L)				0	0	2.30											
Metals (µg/L) [Dissolved / Total] ¹	2.000	200	**	**	***	**		 T 1	1				 1			1	
aluminum antimony	2,000	200 50	U U	U U	U U	U U											
arsenic	3 25	30	U	U	U	U											
barium	1,000	50	310	310	290	310											
berylium	3	4	U	U	U	U											
boron	1,000	110	U	U	16	NA											
cadmium	5	5	U	U	U	U											
calcium		1,100	81,000	81,000	76,000	76,000											
chromium	50	10	U	11	17	30											
cobalt		60	U	U	U	U											
copper	200	10	U	U	U	U											
iron	300	200	100 F	120 F	230	310											
lead	25	25	U	U	U	U											
magnesium	35,000	1,000	40,000	39,000	38,000	38,000											
manganese mercury	300 0.7	10	140 U	140 U	140 U	150 U											
molybdenum	0.7	15	U	U	U	U											
nickel	100	20	7.1 F	6.9 F	7.3 F	8.6 F											
potassium		1,000	1,900	1,800	2,000	2,000											
selenium	10	30	U	U	U	U											
silver	50	10	U	U	U	U											
sodium	20,000	1,000	36,000	36,000	39,000	43,000											
thallium	0.5	80	U	U	U	U											
vanadium		10	U	U	U	U											
zinc	2,000	20	U	U	7.7 F	7.2 F											
Leachate Indicators (mg/L)		40			240	240					,						
alkalinity, Total		10		60 20 F	240	240											
ammonia BOD5	2	0.2 2.4		38 F U	U U	U U											
bromide	2	0.5		U 53 F	U	U											
COD	_	5		33 F U	5.4 FB	U											
chloride	250	1		10	110	120							1				
color	15	5		ĮA.	U	NA NA											
cyanide, Total	200	0.02		ĪΑ	0.0083 F	U											
hardness, Total		1	3	60	350	340											
nitrate	10	1	0.0	30 F	U	U	<u></u>										
TKN	1	0.2		U	0.19 FB	0.27 B											
sulfate	250	1		12	39	42											
TDS	500	10		70	460	480											
TOC		1		52 F	0.67 FB	0.82 F											
phenolics, Total		0.005		U	U	U						- 1	1	1	1	1	

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VN	MW-19												
Date of Collection	NYSDEC Class GA	Reporting	6/28	/2006	9/18/	/2006	12/12	2/2006	4/13/	2007	6/20	/2007	9/28/	2007	12/10	/2007	4/7/2	2008	6/18/	2008	9/30/	2008	12/9/	2008	4/14/.	2009	6/29/	2009
Sample ID No.	Groundwater Standards	Limit	LF6VM	I1926AA	LF6VM	1926BB	LF6VM	1926CA	LF6VM	1926DA	LF6VM	11926EA	LF6VM	1926FA	LF6VM	1926GA	LF6VM	1926HA	LF6VM	1926IA	LF6VM	1926JA	LF6VM	1926KA	LF6VM	1926LA	LF6VM	1926MA
Depth to Water (ft)	Standards		9.	.03	9.	37	8.	31	7.0)2	7.	.65	9.0	03	8.	78	7.	38	7.9	95	8.	90	8.	68	7.5	96	9.3	30
VOCs (μg/L)			1	U				U			1		Т.	,	Ţ	.,		,	Ţ	,	1		Ţ				τ	C.
1,1,1-trichloroethane 1,1-dichloroethene	5* 5*	1		U U		II II		U	ι			U U	Ţ		ı ı		ι		l t		1	-	1		T.		ī	
1,2-dichloroethane	0.6	1		U		II.		IJ	ί			U	ī	-	ī	-	ī		ι		l i	-	ı	-	ī		ī	-
1,4-dichlorobenzene	3	0.5		U	i	U	1	U	ί		i	U	ī	J	τ	U	0.18	80 F	τ		τ	IJ	τ	IJ	ί	J	ī	Ü
acetone	50	10	1	F		U	1	U	τ	J	1	U	Ţ	J	τ	U	τ	J	τ	J	τ	U	τ	IJ	ι	J	2.4	19 F
benzene	1	0.1		U		U	1	-	τ			U	Ţ	-	τ	-	τ		τ	-	τ	-	τ	-	ι		τ	
carbon disulfide	1,000	0.5		U		U	1	-	τ			U	Ţ	-	τ	-	Ţ		Ţ		Ţ	-	τ		U		τ	-
chloroform chloromethane	7 5*	0.3		U U		07 U	0.2		0.10			850 U	1.4 I		0.6 I	540	0.15 I		0.47 I		1.:		0.5		0.13 I		0.7 I	
cis-1,2-dichloroethene	5*	1		U		II.		U U	1			U	ī	-	ī	-	ī		ī	-	I	-	l t		ī		ī	-
dichlorodifluoromethane	5*	1		U		U		JJ	I			U	I	-	,	U	I	_	I		ı		ī		ī	,	ı	-
hexachlorobutadiene	0.5*	0.6		U		U		U	ί			U	τ		τ		τ		τ		t		τ		ί		ί	
methylene chloride	5*	1		U		U	1	U	τ	J	1	U	0.12	20 F	τ	U	τ	J	τ	J	τ	IJ	τ	IJ	ι	J	ι	J
m,p-xylene	5*	2		U		U		U	τ			U	τ		τ		τ		τ		τ		τ		ι		ι	
trichloroethene (TCE)	5*	1		U		U		U	ι			U	U	-	U	-	U	-	τ		τ	-	τ		U		ι	-
toluene	5* 5*	1		U		U U		U U	ι			U	Ţ	-	Į.	-	ι		Į.	-	l t		Į	-	ι		ι	
trans-1,2-dichloroethene trichlorofluoromethane	5* 5*	1		U U		n n		U U	I I			U U	l t	-	I I		Ţ		ı T	-	I		ι		T T	*	I I	-
vinyl chloride	2	1		U		U		U	ι			U	U		T.	-	ι		T.		ī	-	ī		Į		ι	
xylenes, Total	-	1.5		U		U		U	ί			U	ι		τ	-	ί	J	τ		τ	-	τ	-	ι	J	ι	-
Total VOCs (μg/L)				1	1.	07	0.	29	0.	1	0.0	850	1.5	70	0.6	540	0.3	30	0.4	170	1.5	570	0.5	570	0.1	30	3.2	260
Metals (μg/L) [Dissolved / Total] ¹								U 180 F																				
aluminum	2,000	200	54.6 F	3,800	U	258		U U		89 F	U	140 F	U	U	U	U	U	U	U	U	44 F	65 F	63 F	350 B	U	U	U	48 F
antimony	3 25	50 30	U	U	U U	U U	-	U U U		U U	U U	U	U	U	U	U	U U	U	U	2.4 F	U	U U	U	U	U U	U U	U U	U U
arsenic barium	1,000	50	15.4 F	40 F	25.4 F	26.6 F		U U 24 F 26 F		24 F	31 F	32 F	41 F	4.2 F	27 F	28 F	32 F	32 F	39 F	U 39 F	U 47 F	46 F	33 F	36 F	45 F	45 F	35 F	38 F
berylium	3	4	U	U	U	20.0 T	U	24 F 26 F		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	12.4 J	9.9 F	NA	NA	NA			NA	11	11	NA	NA	NA	NA	10	9.1 F	7.5 F	6.7 F	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	NA 0.44 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	38,000	39,400	36,400	37,600	57,000	59,000	66,000	65,000	41,000	41,000	42,000	42,000	55,000	59,000	96,000	97,000	67,000	67,000	52,000	52,000	69,000	69,000	110,000	110,000	68,000	76,000
chromium	50	10	0.9 F	598	2.13 F	70.4	2.4 F	73	21	19	4.8 F	67	6.2 F	110	3.9 F	49	1.7 F	12	2.0 F	27	5.2 F	90	3.3 F	140	U	19	U	12
cobalt		60	U	5.9 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper iron	200 300	10 200	U 19.6 F	30.9 7,640	U	U 543	23 F 17 F	6.4 F 630	U 160 F	U 180 F	U 5.6 F	2.4 F 430	U 5.2 F	3.2 F 330	U	2.0 F 200	U 5.3 F	U 62 F	U	U 110 F	U 18 F	U 320	U	4.6 F 840	U U	U 140 F	U U	U 75 F
lead	25	25	U	7,040 U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	4,100	5,620	15,000	15,000	9,300	8,900	9,200	8,900	23,000	22,000	24,000	24,000	11,000	10,000	11,000	11,000	23,000	20,000	26,000	25,000	12,000	12,000	11,000	11,000	16,000	16,000
manganese	300	10	2.2 F	310	U	22.4	U	31	8.2 F	8.4 F	U	21	U	3.2 F	U	4.5 F	2.0 F	4.0 F	U	3.9 F	1.9 F	5.8 F	U	21	U	3.1 F	U	1.4 F
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	4.2 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel potassium	100	20 1,000	11.1 F 554 F	140 1,750	3.24 F 557 F	9.72 F 753 F	2.2 F 680 F	11 720 F	3.2 F 760 F	5.5 F 670 F	2.9 F 750 F	6.4 F 780 F	2.4 F 910 F	4.5 F 870 F	2.0 F 820 F	3.1 F 760 F	U 800 F	1.7 F 800 F	3.0 F 770 F	3.6 F 720 F	16 F 890 F	16 F 900 F	2.6 F 840 F	9.8 F 900 F	U 790 F	U 770 F	U 670 F	U 750 F
selenium	10	30	334 F	1,750 U	337 F U	/55 F	080 F	720 F	760 F U	U	/50 F U	780 F	910 F	8/0 F	820 F	760 F	800 F	800 F	U	720 F	890 F U	900 F U	840 F	900 F U	790 F	U	U	750 F U
silver	50	10	1.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	2,300 J	1,480 J	16,300	16,100	6,300	5,400	4,500	4,500	22,000	21,000	38,000	38,000	12,000	11,000	5,800	4,800	21,000	18,000	34,000	34,000	13,000	13,000	7,000 J	5,700 J	20,000	18,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	9.6 F	U	U	U	1.5 F	0.81 F	U	U	U	U	0.90 F	U	0.71 F	U	U	U	U	U	0.96 F	U	U	U	U	U	U
Leachata Indicators (ma/l)	2,000	20	4.5 F	19.8 F	24.7 B	12.2 F	4.7 F	7.3 F	U	6.1 F	U	U	13 F	11 F	39 B	42 B	11 F	10 F	16 F	12 F	13 F	14 F	26 B	59 B	U	U	U	U
Leachate Indicators (mg/L) alkalinity, Total		10	1	06	1	10	1	30	14	10		92	12	20	14	50	2.5	50	15	50	1:	10	18	80	29	20	10	90
ammonia	2	0.2		U		U	1		I I			27 F	Į.		0.02		0.0		0.05		0.01		Į.		29 L		IS U	
BOD5	-	2.4		U	i	U		U	τ			U	τ		τ		τ		τ		τ		τ		ι		ι	-
bromide	2	0.5		U		14 F	1	-	τ	J	1	U	0.04		τ	-	τ		0.03		0.04		ι		0.01		0.01	16 F
COD		5		076 F		F	9.		1			5 F	τ	-	τ		6.3		4.1			8	τ		3.7		ι	U
chloride	250	1		8.4	J	10		0	6.			90	10			13	7.			6		20	2		7.	-	44	
color	15	5	-	50		IA.		IA.	N.			U U	N		N		Į 0.01		I I	-	N		N		L	-		IA.
cyanide, Total hardness, Total	200	0.02		076 F 15		IA 60		IA 90	N. 20			80	N 17		N 19		0.01		24			A 50	N 30		N. 34			JA 50
nitrate	10	1		15 55 F		.6		90 95	0.8			.4	1.		0.0		0.4		1.			.5	0.0		0.8		1.	
TKN	10	0.2		16 F		U		U	U.		0.0		0.07		U.		N.		I.		0.0		3.		0.1		I.	
sulfate	250	1		5.6	2	!3	4	12	4		2	20	1		1	7	2		2	4		0	2		2		2	
TDS	500	10	1	58	2:			50	22	20		70	39			70	31		35		35	50	28	80	33	50		40
TOC		1		55 F		5 F		.2	1.			U	0.4		1.		1.		0.6		0.4		0.8		ι		0.6	
phenolics, Total		0.005		U	1	U	1	U	ι	J	1	U	0.00	11 F	0.00	14 F	0.000	92 F	0.000	98 F	Ţ	J	Ţ	J	N.	A	N	ĮΑ

Location of Well								LF6VMW-19						
Date of Collection	NYSDEC		9/14/2009	3/22/2010	9/14/2010			LF6VMW-19						
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM1926NA	LF6VM1926OA	LF6VM1926PA									
Depth to Water (ft)	Standards		9.31	9.34	10.55									
VOCs (µg/L)														
1,1,1-trichloroethane	5*	1	U	U	U									
1,1-dichloroethene	5*	1	U	U	U									
1,2-dichloroethane 1,4-dichlorobenzene	0.6	1 0.5	U U	U U	U U									
acetone	50	10	U	U	2.20 F									
benzene	1	0.1	U	U	U U									
carbon disulfide	1,000	0.5	U	U	U									
chloroform	7	0.3	1.87	0.5	1.97									
chloromethane	5*	1	U	U	U									
cis-1,2-dichloroethene	5*	1	U	U	U									
dichlorodifluoromethane	5*	1	U	U	U									
hexachlorobutadiene methylene chloride	0.5* 5*	0.6	U U	U U	U U									
	5° 5*	2	U	U	U									
m,p-xylene trichloroethene (TCE)	5*	1	U	U	U									
toluene	5*	1	U	U	U								l	
trans-1,2-dichloroethene	5*	1	U	U	U									
trichlorofluoromethane	5*	1	U	U	U									
vinyl chloride	2	1	U	U	U									
xylenes, Total	-	1.5	U	U	U									
Total VOCs (µg/L)			1.87	0.5	4.17									
Metals (µg/L) [Dissolved / Total] ¹	4.000	400		**	**		т т			1		1	T	ı
aluminum	2,000	200 50	U U	U U	U U									
antimony arsenic	25	30	U U	U	U									
barium	1,000	50	37 F 37 F	55	46 F									
berylium	3	4	U U	U	U									
boron	1,000	110	U U	12 B	NA									
cadmium	5	5	U U	U	U									
calcium		1,100	43,000 44,000	120,000	58,000									
chromium	50	10	4.1 F 48	35	37									
cobalt		60	U U	U	U									
copper iron	200 300	10 200	U U U 200	U 210	U 210									
lead	25	25	U U	U	U U									
magnesium	35,000	1,000	21,000 21,000	17,000	25,000									
manganese	300	10	U 2.5 F	2.3 F	1.9 F									
mercury	0.7	1	U U	U	U									
molybdenum		15	U U	U	U									
nickel	100	20	7.3 F 8.9 F	U	7.9 F									
potassium		1,000	830 F 760 F	960 F	1,000									
selenium silver	10 50	30 10	U U	U U	U U									
sodium	20,000	1,000	39,000 37,000	11,000	28,000								1	
thallium	0.5	80	U U	U	U									
vanadium		10	U U	U	U									
zinc	2,000	20	U U	5 F	6.6 F									
Leachate Indicators (mg/L)								,						
alkalinity, Total	-	10	140	320	160									
ammonia BOD5	2	0.2	0.042 F U	U U	U U									
bromide	2	2.4 0.5	0.037 F	U	U									
COD		5	U U	U	U									
chloride	250	1	77	21	78						1			
color	15	5	NA	U	NA NA									
cyanide, Total	200	0.02	NA	0.0089 F	U									
hardness, Total		1	200	360	250									
nitrate	10	1	2.0	1.4	1.8									
TKN	1	0.2	U	0.24 B	0.28 B									
sulfate	250	1	17	23 B	18									
TDS	500	10	320	370	290									
TOC phenolics, Total		1 0.005	0.44 F U	1.3 B U	0.78 F U									
pnenones, rotai	-	0.005	U	U	U	1	L		1	1				

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VN	MW-20												
Date of Collection	NYSDEC Class GA	Donoutino	6/28	/2006	9/18/	2006	12/12	2/2006	4/11/	2007	6/20	/2007	9/27/	2007	12/10		4/7/2	2008	6/17/	2008	9/30/	/2008	12/9/	2008	4/14/	2009	6/29/	2009
Sample ID No.	Groundwater Standards	Reporting Limit	LF6VM	12068AA	LF6VM	2068BB	LF6VM	I2068CA	LF6VM	2068DA	LF6VM	12068EA	LF6VM	2068FA	LF6VM	2068GA	LF6VM	2068HA	LF6VM	12068IA	LF6VM	I2068JA	LF6VM	2068KA	LF6VM	2068LA	LF6VM2	2068MA
Depth to Water (ft)	Standards		11	.04	11.	40	10	.25	8.	97	9.	.20	4.	78	10	.85	9.3	28	9.5	54	10.	.74	10.	.73	9.9	95	10.	.10
VOCs (µg/L)		T																										
1,1,1-trichloroethane	5*	1		U	ι			U	Ţ			U	Į,			U	Į		Ţ		Į	-	Ţ			IJ	U	-
1,1-dichloroethene	5*	1		U U	T.			U U	Į,	J	1	-	i i	-	I I	-	Ţ	-	I	-	ι	-	Ţ		I I		U	-
1,2-dichloroethane 1,4-dichlorobenzene	0.6	0.5		II	I			II.	1			-	l i	-	1	-	ī	-	ī	-	ī	-	ı		ı	-	I.	
acetone	50	10	1	-	ī	ī		U	i	-	l i	-	i	-	i	U	ί	J	ί	-	ί	U	ī	IJ	ī	-	ī	
benzene	1	0.1	1	U	U	ı		U	1	J	1	U	ī	J	ı	U	Ţ	J	Ţ	J	ι	U	Ţ		U	U	U	J
carbon disulfide	1,000	0.5	1	U	τ	ī		U	1	J	1	U	τ	J	τ	U	τ	J	τ	J	τ	U	τ		τ	IJ	τ	J
chloroform	7	0.3		U	τ	ī		U			1		τ		τ	IJ	τ	J	ι		ι	U	τ		τ	IJ	τ	J
chloromethane	5*	1	1		τ			U		J		U	τ		τ	-	Į		Ţ		τ	-	0.34			IJ	ι	
cis-1,2-dichloroethene	5*	1		U	τ			U	- 1		1		I	-	U		Ţ	_	Ţ		Ţ	U	Ţ		Ţ		τ	
dichlorodifluoromethane	5*	1		U U	I I			JJ U		J		U	l t		I I		Ţ		Ţ		ı ı	U	Ţ		l t	IJ	ι	
hexachlorobutadiene methylene chloride	0.5* 5*	0.6		U	I		0.1			J		-		-	0.1	-	ί	-	ī	-	l t	-	Ţ		1	U IT	U	
m,p-xylene	5*	2		U	ī			U	l i				l i		0.1		ί		ι	-	ί	-	ī		ı	II.	ī	
trichloroethene (TCE)	5*	1		U	τ			U	ī		l i		i		ī		τ		ι		τ		ī		Ţ	-	T.	-
toluene	5*	1	1	U	ι	ı		U	ī	J	i	U	ī	J	ī	U	ι	J	ı	J	ι	U	ī	J	i	U	τ	
trans-1,2-dichloroethene	5*	1		U	τ			U	τ		1		τ		τ	-	τ	J	τ		τ	-	τ	-	τ	U	ι	
trichlorofluoromethane	5*	1		U	τ			U	τ		1		τ		τ		τ		τ		τ		τ		τ	-	τ	
vinyl chloride	2	1		U	τ			U		J	1	-	ι		τ	-	ι	-	Ţ	-	τ	-	τ		τ	-	τ	-
xylenes, Total		1.5		U	τ			U		J		U	τ	-	U		Ţ	-	τ	_	τ		Ţ			J	τ	
Total VOCs (µg/L)				0	(1	0.	.14)		0	_ ')	0.1	100	()	()	(0	0.	34)	0	
Metals (µg/L) [Dissolved / Total] ¹	2,000	200	55 F	1,240 B	U	333	U	U	U	99 F	U	71 F	U	U	U	82 F	U	58 F	U	U	U	69 F	63 F	150 F	U	U	U	57 F
antimony	2,000	50	JJ F	1,240 B	U	U	U	9.9 F	U	U	U	3.8 F	U	2.8 F	U	10 F	U	Jo F	U	U	U	U	U U	9.3 F	U	U	U	U
arsenic	25	30	U	U	U	35	U	U	U	6.7 F	U	U	U	U	U	5.6 F	Ü	4.2 F	U	4.3 F	U	U	U	14 F	U	6.4 F	U	4.2 F
barium	1,000	50	57.6 J	25.5 F	0.56 F	8.01 F	U	3.1 F	0.65 F	2.9 F	U	2.5 F	U	0.79 F	U	2.8 F	U	1.5 F	U	0.90 F	U	1.5 F	U	2.8 F	U	U	U	U
berylium	3	4	U	0.7 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	17.8 J	U	NA	NA	NA	NA	NA	NA	11	13.0	NA	NA	NA	NA	15	14	15	13	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	0.7 F	UJ	U	1.41 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2 F	U	U	U	U	U	U
calcium	-	1,100	150,000 J	78,700 J	82,200	83,500	82,000	80,000	88,000	86,000	71,000	74,000	63,000	65,000	69,000	74,000	47,000	45,000	41,000	40,000	51,000	50,000	48,000	49,000	34,000	34,000	27,000	29,000
chromium	50	10	2.7 F	73,200	11.9 U	16,900 59.4 F	12 II	3,400 14 F	10 II	3,100 21 F	8.7 F	2,300 21 F	14 11	1,400	10 II	3,200 38 F	5.7 F	1,400 22 F	5.8 F	920 12 F	5.4 F	1,100 20 F	6.6 F	3,000 95	6.1 F	1,400 43 F	61 U	860 23 F
copper	200	10	2.8 F	695	U	39.4 F	U	36	U	32 32	U	21 F 23	U	15 F	U	38 F	U	14	U	12 F	U	20 F	U	28	U	43 F	U	9.6 F
iron	300	200	U U	352,000	87.2 F	80,200	97 F	19,000	67 F	22,000	66 F	19,000	130 F	13,000	81 F	27,000	43 F	15,000	34 F	11,000	47 F	12,000	65 F	33,000	67 F	16,000	810	11,000
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	22,600	39,600	48,000	47,000	48,000	47,000	50,000	48,000	40,000	41,000	35,000	35,000	36,000	38,000	25,000	24,000	22,000	20,000	26,000	26,000	25,000	24,000	17,000	17,000	14,000	14,000
manganese	300	10	3.1 F	4,160	9.27 F	1,110	12	400	8.8 F	470	8.8 F	400	12	280	12	600	8.0 F	330	5.2 F	200	8.5 F	320	9.5 F	1,200	3.7 F	620	23.000	330
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	172	U	314	U	14 F	U	8.2 F	U	5.5 F	U	3.7 F	U	7.6 F	U	U	U	U	U	U	U	U	U	U	U	U
nickel potassium	100	20 1,000	1.8 F 2,800 J	3,340 1,820 J	108 1,680	922 1,850	94 1,800	270 1,700	85 2,200	290 2,100	64 2,000	230 2,100	85 1,900	200 1,900	94 2,000	350 2,100	84 1,500	220 1,400	54 1,500	160 1,300	60 1,500	180 1,500	78 1,500	450 1,500	43 1,100	230 1,000	33 670 F	140 940 F
selenium	10	30	2,800 J U	1,820 J	1,080 U	1,850 U	1,800 U	1,700 U	2,200 U	2,100 U	2,000 U	2,100 U	1,900 U	1,900 U	2,000 U	2,100 U	1,500 U	1,400 U	1,500 U	1,300 U	1,500 U	1,500 U	1,500 U	1,500 U	1,100 U	1,000 U	U	940 F
silver	50	10	U	1.6 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	384,000 J	97,700 J	113,000	115,000	100,000	100,000	180,000	180,000	190,000	190,000	160,000	170,000	180,000	180,000	120,000	120,000	130,000	120,000	140,000	140,000	150,000	140,000	88,000	87,000	67,000	69,000
thallium	0.5	80		9.9 F	U	8.15 F	U	U	U	U	U	U	U	U	U	U	Ü	U	U	U	Ü	U	U	U	U	U	U	U
vanadium		10	U	175	U	44.4	U	9.6 F	U	9.7 F	U	7.9 F	U	5.7 F	U	12	U	5.8 F	U	4.4 F	U	5.1 F	U	17	U	7.1 F	U	5.1 F
zinc	2,000	20	21.4	85.2	16.6 F	56 B	6.2 F	12 F	U	8.6 F	U	U	21 B	45 B	46 B	54 B	11 F	15 F	11 F	12 F	10 F	14 F	58 B	49 B	U	5.3 F	U	4.4 F
Leachate Indicators (mg/L)		10		40	12	0	,	30		20		50		70	1:	50	16	:0	15	20		60		70	19	20	18	90
alkalinity, Total ammonia	2	10 0.2		40 22	0.0			30 U	13	30 J		50 31 F	0.0		0.03		0.0		0.09		10		I.		19		18 T	
BOD5	-	2.4		JJ	U.U			U		J		U	0.0			U U	U.		U.05		ί	_	ī			II.	ī	-
bromide	2	0.5		U	0.07			44 F		J		10 F	i		0.08		0.05		τ		0.06	-		IJ	0.03	-	t	-
COD		5	1	U	9.2			3 F		7		15	ī	J		3 F	6.3		ι		8.2		τ) F	τ	
chloride	250	1	4	63	40	0	3	40	41	70	4	70	3	5	39	90	20	00	18	,,,	25	50	23	30	11	10	5	7
color	15	5	4		N			IΑ	N			15	N		N			0		5	N			A		0		ΙA
cyanide, Total	200	0.02	0.00		N			ĮΑ	N			18 F	N		N		0.01		0.0		N		N		N			IA
hardness, Total		1		00	45			00	43			40	21		34		21		20		24			10	10			20
nitrate	10	1		7 F	1.			.5	1			.5	0.		1		0.		0.7		0.9		0.		0.9		0.9	
TKN sulfate	1 250	0.2		46	0.1			U 16		J 2		U 15	0.0			J 5	1		Į,	3	U 1	-	1			-	T.	
TDS	500	1 10		06	1,1			90	1,1			100	86			20	52		49		60			<i>3</i> 90	39		31	
TOC	500	10		В	0.9			33 F	0.5			51 F	0.5		0.7		0.7			J	Į			3 F	35 U		31 U	
phenolics, Total		0.005		05 F	U.			U		J		U	U.S		0.00		U.,		ι		τ	-	υ.,		N			IA.
9 /											·	-	·——				·				·	-	·					

Location of Well									LF6VM	TW 20						
Date of Collection	NYSDEC		9/14	/2009	3/22/2010	9/15/2010			LF6VM	IW-20						
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM		LF6VM2068OA	LF6VM2068PA										
Depth to Water (ft)	Standards		11	.20	11.65	12.71										
VOCs (µg/L)								· ·			*	*	*		*	
1,1,1-trichloroethane	5*	1	ı	U	U	U										
1,1-dichloroethene	5*	1	1	U	U	U										
1,2-dichloroethane	0.6	1		U	U	U										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone	50	10	1		U	1.21 F										
benzene	1	0.1	1		U	U										
carbon disulfide	1,000	0.5		U	U	U										
chloroform	7	0.3		U	U	U										
chloromethane	5* 5*	1		U	U	U										
cis-1,2-dichloroethene		1	1		U	U										
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene methylene chloride	0.5* 5*	0.6		U U	U U	U U										
	5° 5*	2		U U	U	U										
m,p-xylene trichloroethene (TCE)	5*	1		U	U	U										
toluene (TCE)	5*	1		U	U	U										
trans-1,2-dichloroethene	5*	1		U	U	U										
trichlorofluoromethane	5*	1		U	U	U										
vinyl chloride	2	1		U	U	U										
xylenes, Total		1.5	1		U	U										
Total VOCs (µg/L)	1				0	1.21										
Metals (µg/L) [Dissolved / Total] ¹												_		_		
aluminum	2,000	200	U	U	U	58 F										
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	6.6 F										
barium	1,000	50	U	U	U	U										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	16	NA										
cadmium	5	5	U	U	U	U										
calcium		1,100	25,000	25,000	30,000	28,000										
chromium	50	10	4.5 F	330	500	1,200										
cobalt		60	U	4.9 F	11 F	46 F										
copper	200	10	U	U	7.1 F	13										
iron	300	200	37 F	3,800	5,900	16,000										
lead	25	25	U	U	U	U										
magnesium	35,000	1,000	13,000	13,000	15,000	14,000 630										
manganese	300 0.7	10	U U	110 U	160 U	U										
mercury molybdenum	0.7	15	U	U	U	U										
nickel	100	20	15 F	52	100	250										
potassium		1,000	940 F	880 F	1,000	1,000										
selenium	10	30	U	U	U U	U U										
silver	50	10	U	U	U	U										1
sodium	20,000	1,000	70,000	68,000	69,000	55,000										
thallium	0.5	80	U	U	U	U										
vanadium		10	U	U	2.5 F	6.7 F										
zinc	2,000	20	U	U	7.7 F	11 F										
Leachate Indicators (mg/L)																
alkalinity, Total		10	13		170	160										
ammonia	2	0.2	1		U	U										
BOD5		2.4		U	U	U										
bromide	2	0.5	0.02		U	U										
COD		5		U	U	U	ļ									
chloride	250	1		12	68	54										
color	15	5	N		U	NA										
cyanide, Total	200	0.02	N		0.0082 F	U										
hardness, Total		1		10	140	130										
nitrate	10	1	1		1.0 B	0.76 F										
TKN	1	0.2	1		0.56 B	0.16 FB										
sulfate	250	1	7		8.9 B	9.0										
TDS	500	10	20		280	250										
TOC	-	1	1		0.55 FB	0.53 F										
phenolics, Total		0.005	1 1	U	U	U	l									

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VN	4W-21												
Date of Collection	NYSDEC Class GA	Reporting	6/28	/2006	9/18/	2006	12/12	/2006	4/11/	2007	6/20/	2007	9/27	/2007	12/10	/2007	4/7/2	2008	6/17/	2008	10/1/	2008	12/9/	2008	4/14/.	2009	6/29/2	2009
Sample ID No.	Groundwater Standards	Limit	LF6VM	2175AA	LF6VM	2175BB	LF6VM	2175CA	LF6VM	2175DA	LF6VM	2175EA	LF6VM	2175FA	LF6VM	2175GA	LF6VM	2175HA	LF6VM	2175IA	LF6VM	12175JA	LF6VM	2175KA	LF6VM:	2175LA	LF6VM2	.175MA
Depth to Water (ft)	Standards		43	.30	43.	41	42	.40	41.	29	41.	.35	42	.68	42.	.78	41.	.51	41.	54	43.	.71	42.	.74	42.	05	42.1	15
VOCs (µg/L)	1	1															-		ı		_							
1,1,1-trichloroethane	5* 5*	1		n n	T.		1		I I		I I			n n	I I			J	ι		T.		T.		ι		U	
1,1-dichloroethene 1,2-dichloroethane	5° 0.6	1		U U	I		,	-	ī		ī			II.	ī		ι	J	I I		I	-	1	-	T.	,	U	
1,4-dichlorobenzene	3	0.5		-	ī		i	-	ι		ī	-			ī	-	l i	-	ī		ı	-	l t		ī		U	
acetone	50	10		5 F	ī		i	-	ί		ī	-	1		ī	-		J	ľ		ī	-	ı		ī		4.77	
benzene	1	0.1		U	U	J	1	J	ι		U	J	1	U	τ	J	τ	J	τ	J	τ	U	ī	J	ι		U	
carbon disulfide	1,000	0.5	1	U	τ	J	1	J	ι	r	τ	J	1	U	τ	J	τ	J	τ	J	τ	IJ	τ	J	ι	r	U	í
chloroform	7	0.3		U	0.2		0.20		ι		0.15	50 F	1		0.15		0.16	50 F	0.11	0 F	τ		τ		0.16	0 F	U	
chloromethane	5*	1		U	τ		1	-	ι		Į		1		Į	-	Ţ	-	τ		τ	-	τ		ι		U	
cis-1,2-dichloroethene	5*	1		U	Ţ		1		J		Ţ	-	1		I	-	Ţ	-	Ţ	-	I		Į		I.		U	
dichlorodifluoromethane hexachlorobutadiene	5* 0.5*	1 0.6	1	U U	ι		Į.		I I		I I		1	ח	ι	-	Į	J	I I		ī	-	ι		ī		U	
methylene chloride	5*	1		U	0.3		0.19		ι		ī			n n	0.16		ī		ī		I	-	l t		ī		U	
m,p-xylene	5*	2		U	U.5		0.1		ι		ī	-			U.10		ί	-	ί		Ţ	-	ī		ι	r	U	
trichloroethene (TCE)	5*	1		U	τ		i		ί		ι		1		ί		ί		τ		τ		τ	J	ί	r	U	
toluene	5*	1	1	U	τ	J	1	-	τ	ſ	Ţ		1	U	τ	J	τ	J	τ	J	Ţ	-	τ		τ	ſ	U	
trans-1,2-dichloroethene	5*	1		U	τ	,		-	ι		Ţ	-	1		τ	-	τ	-	τ		τ	-	τ		ι		U	
trichlorofluoromethane	5*	1		U	0.1		1	_	ι		Į		1		Į	-	τ	-	τ		ι		0.11		0.18		0.21	
vinyl chloride	2	1		U	ι		1	-	ι		Į		ι		τ	-	τ	J	τ		Ţ	-	U		ι		U	
xylenes, Total		1.5		.5	U.0		0.	,	- t		0.1	-		U O	0.3	2	0.1	J	0.1		T.		Į.		0.3		4.93	
Total VOCs (µg/L) Metals (µg/L) [Dissolved / Total] ¹			1	.5	0.0	54	0.	45			0.1	.50)	0.3	10	0.1	.60	0.1	10	,	U	0.1	.10	0.3	40	4.9.	90
aluminum	2,000	200	54.2 F	5,140	U	1,210	U	3,500	71 F	770	U	170 F	U	170 F	U	220	U	1,200	U	94 F	U	140 F	76 F	180 F	U	200	U	180 F
antimony	3	50	U	U	U	U	U	2.4 F	U	U	U	U	U	3.4 F	1.6 F	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	56.9 J	31.7 F	5.13 F	11.8 F	4.0 F	19 F	4.8 F	7.6 F	3.4 F	5.0 F	2.7 F	4.7 F	3.2 F	4.9 F	3.6 F	9.5 F	3.2 F	3.9 F	2.9 F	5.1 F	3.0 F	3.8 F	3.2 F	5.0 F	U	4.1 F
berylium	3	4	U	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	18.8 J	30.8	NA	NA	NA	NA	NA	NA	9.7 F	10	NA	NA	NA	NA	11	13	10	9.4 F	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	1.6 F	U	U	U	U	U	1.5 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium	50	1,100 10	149,000 J 2.5 F	34,200 J 22.3	22,900 U	25,100 540	18,000	23,000	21,000 8.8 F	21,000	22,000 10	22,000	23,000 4 4 F	23,000 540	22,000 4.4 F	23,000 500	22,000 3.1 F	24,000	25,000 2.5 F	24,000	24,000 4.7 F	24,000	23,000 2.9 F	23,000 210	24,000 U	24,000	25,000 U	26,000
chromium cobalt	50	60	2.5 F	22.3 3 F	U	540 U	4.9 F	470 U	6.2 F	230 U	U	310 U	4.4 F	540 U	4.4 P	U	3.1 F	510	2.5 F	350 U	4.7 F	1,200	2.9 F	210 II	U	460 U	U	190 U
copper	200	10	2.2 F	21.7	U	17.3	3.3 F	41	U	5.0 F	U	4.2 F	U	5.2 F	U	9.0 F	U	13	U	18	U	74	U	11	U	27	U	13
iron	300	200	U	8,590	5.82 F	4,840	18 F	8,300	20 F	3,400	53 F	2,000	170	5,100	7.5 F	3,500	8.0 F	4,600	U	2,100	8.7 F	5,200	Ū	1,400	U	3,600	U	1,800
lead	25	25	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	22,200 J	9,760 J	7,900	8,220	9,300	10,000	8,500	8,400	8,400	8,300	8,800	8,800	8,200	8,900	10,000	10,000	9,300	9,000	9,000	8,900	9,300	9,200	9,900	9,800	8,700	9,300
manganese	300	10	3.1 F	581	2.91 F	149	U	310	U	98	U	32	U	41	U	40	U	150	17	49	U	42	U	12	U	27	U	17.000
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA U	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum nickel	100	15 20	U 2.7 F	6.6 F 29.4	U 67.6	8.23 F	U 23	7.2 F	U 68	U	U 27	U 51	U 52	3.2 F 210	U 43	4.2 F 160	21	4.6 F 220	U 96	U 170	U 34	11 F 140	U 11 F	U 29	U 11 F	U 56	U 11 F	U 33
potassium	100	1,000	2.7 F 2,750 J	29.4 2,170 J	516 F	161 999 F	760 F	190 1,700	68 92 F	160 930 F	590 F	620 F	52 800 F	800 F	43 700 F	760	650	1,000	600 F	630 F	780 F	810 F	560 F	570 F	530 F	56 530 F	230 F	520 F
selenium	10	30	U U	U U	U	U	U	U 1,700	U	930 F	U	U U	U	U	U	U	U	U U	U	U	U	U	U	U	U U	U U	230 F	U U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	380,000 J	3,120 J	2,140	1,860	5,100 J	4,100 J	1,700	1,700	1,800	1,600	2,900	2,200	2,200	2,000	8,900	8,500	6,500	5,400	3,600	2,800 B	5,300 J	4,300 J	17,000	18,000	9,500	9,400
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	8.8 F	U	5.53 F	U	7.6 F	0.67 F	2.5 F	U	2.0 F	U	1.9 F	U	2.6 F	U	4.0 F	U	2.4 F	U	6.1 F	U	U	U	3.8	U	U
Zinc	2,000	20	17.5 F	47.4	24.8 B	52.1 B	5.0 F	31	U	7.8 F	U	U	53 B	58 B	31 B	23 B	11 F	18 F	13 F	11 F	11 F	12 F	54 B	71 B	U	U	4.8 F	U
Leachate Indicators (mg/L) alkalinity, Total		10	1	11	9	6	0	2	7:	, 1	8	2.		18		2	10	00	10	00	9	10	9	2	12	0	11	0
ammonia	2	0.2		23 F	0.01		,		ı,		0.02		1		0.02		0.0		0.04		0.02		ί		L		U	
BOD5		2.4		JJ	U.U.		i	-	ι		U.U.		i		U.U.		U.U		U.U.		U.O.		τ		ι	r	U	
bromide	2	0.5	i		τ	J	i	J	ί		τ	J	1		ι	J	τ	J	τ		τ	IJ	ι	IJ	τ	r	U	í
COD	-	5		U	18			6	1		6.3	3 F		U	22		6.3		Į	-	τ		Ţ		ι	r	U	
chloride	250	1		.6	2.			.8	1.		1.			.2	2.		3.		4.		2		3.		4.	7	2.1	
color	15	5		60	N		N		N.		Į			IA	N		ι		1		N		N		ι	r	N/	
cyanide, Total	200	0.02		76 F	N		N		N.		Ţ	-		IA.	N		Į	-	0.00		N		N		N.		N/	
hardness, Total	10	1		07 15 F	10		9	-	0.7		0.0		6	60 85	9			00	8		0.	10	9		11		88	
nitrate TKN	10	0.2		.5 F	0.8		0.0		0.7 U		0.3 U			85 U	0.1 U		0.t		0.1 U		0.: I		U.		0. I		U	
1KN sulfate	250	0.2		1.5 fi	0.0		4		4.		4.		4		4.		4.		4.		4.	-	9.		4.		4.3	
TDS	500	10		48	14		7		10		12		1		6			20	12		9		13		7:		12	
TOC		1		U	0.5		0.8	-	ί		ī.		1		0.4	-	0.4		τ		ί		0.4		ι		U	
phenolics, Total		0.005		U	Ţ		1		ι		ι		0.00		0.00			11 F	τ		τ	U	τ		N.	A	N/	
La.																												

Location of Well		ı								LF6VN	AW 21							
Date of Collection	NYSDEC		9/15	5/2009	3/22/2010	9/14/2010				LF6VN	4W-21	1						
Sample ID No.	Class GA Groundwater	Reporting Limit		//2175NA	LF6VM2175OA	LF6VM2175PA												
Depth to Water (ft)	Standards		43	3.25	43.72	44.67												
VOCs (µg/L)	*					•		*	*					,	*		*	
1,1,1-trichloroethane	5*	1		U	U	U												
1,1-dichloroethene	5*	1		U	U	U												
1,2-dichloroethane	0.6	1		U	U	U												
1,4-dichlorobenzene	3	0.5		U	U	U												
acetone	50	10		U	U	1.56 F												
benzene	1	0.1		U	U	U												
carbon disulfide	1,000	0.5		U	U	U												
chloroform chloromethane	7 5*	0.3		U U	0.110 F U	0.120 F U												
chloromethane cis-1,2-dichloroethene	5°	1		U	U	U												
dichlorodifluoromethane	5*	1		U	U	U												
hexachlorobutadiene	0.5*	0.6		U	U	U												
methylene chloride	5*	1		U	U	U												
m,p-xylene	5*	2		U	U	U												
trichloroethene (TCE)	5*	1		U	U	U												
toluene	5*	1		U	U	U												
trans-1,2-dichloroethene	5*	1		140 F	U	U												
trichlorofluoromethane	5*	1	1	U	0.140 F	0.140 F												
vinyl chloride	2	1		U	U	U												
xylenes, Total		1.5		U	U	U												
Total VOCs (μg/L)			0.	.14	0.25	1.82												
Metals (μg/L) [Dissolved / Total] ¹					,					 								
aluminum	2,000	200	U	6,200	630	270												
antimony	3	50	U	U	U	U												
arsenic	25	30	U	U	U	U												
barium	1,000	50	2.5 F	26 F	6.9 F	4.4 F												
berylium	3	4	U	0.21 F	U	U												
boron cadmium	1,000	110 5	U U	U U	9.6 FB U	NA U												
calcium	5	1,100	25,000	41,000	29,000	27,000												
chromium	50	100	23,000 U	1,600	550	490												
cobalt	50	60	U	14 F	U	U												
copper	200	10	U	180	43	41												
iron	300	200	U	19,000	3,600	3,600												
lead	25	25	U	U	U	U												
magnesium	35,000	1,000	8,800	12,000	10,000	9,200												
manganese	300	10	U	430	87	30												
mercury	0.7	1	U	U	U	U												
molybdenum	-	15	U	20	5.7 F	U												
nickel	100	20	23	570	140	84												
potassium		1,000	650 F	2,400	540 F	780 F												
selenium	10	30	U	U	U	U												
silver	50	10	U	U	U 7.500 P	U									 	 		
sodium thallium	20,000	1,000 80	6,500 U	6,500 U	7,500 B U	6,400 U												
vanadium	0.5	10	U	19	4.3 F	2.9 F												
zinc	2,000	20	U	45	12 B	7.7 F												
Leachate Indicators (mg/L)	2,000	20		1 40	12.0	1.7.1								_				_
alkalinity, Total		10	1	130	110	100												
ammonia	2	0.2		U	U	U												
BOD5	_	2.4		NA	U	U				1								
bromide	2	0.5		U	U	U				l								
COD		5		39	U	U			L									
chloride	250	1		3.5	2.9	2.3	1											
color	15	5	N	NA	U	NA												
cyanide, Total	200	0.02		NA	0.0080 F	U												
hardness, Total		1		180	110	100				1								
nitrate	10	1		2.3	2.3	1.2												
TKN	1	0.2		17 F	0.44 B	0.19 FB												
sulfate	250	1		4.3	4.3 B	4.6				1								
TDS	500	10		140	130 B	97												
TOC		1		86 F	U	U												
phenolics, Total	-	0.005		U	U	U	1			L		l						

Landfill 6 AOC Groundwater Analytical Results (continued)

Part Part	Location of Well			1												LF6VN	4W-22												
Page Page		NYSDEC Close CA	Paparting	6/29	/2006	9/19/	2006	12/13	/2006	4/13/	2007	6/21/	/2007	9/28/	2007			4/8/2	2008	6/18/	2008	10/1/	2008	12/11	/2008	4/16/	2009	6/30/2	2009
Segret configure	Sample ID No.	Groundwater		LF6VM	12235AA	LF6VM	2235BB	LF6VM	12235CA	LF6VM	2235DA	LF6VM	12235EA	LF6VM	2235FA	LF6VM	2235GA	LF6VM:	2235НА	LF6VM	12235IA	LF6VM	12235JA	LF6VM	2235KA	LF6VM:	2235LA	LF6VM2	235MA
Mathematic		- Community		19	.27	14	.68	13	.54	12.	71	13	.37	14.	.41	13.	.89	12.	84	13.	.56	14.	.28	13.	.74	13.	36	13.7	76
Mathematical Math										_								_								_			
Content																												U	
Mathematic A			-				-		-				-			1	-						-			-		U	-
Second S	-,		-		-		_		-				-		-	1	-				-		-				*	U	-
Second 1	1	-			-				-						-	,	-				-	,				-		5.26	-
Second content					-				-	_			-		-	,	-	-	-			,			-	_	,	J.20	
Marchenester Part		-					-		-				-		-								-			-	-	U	-
Second compose Seco		,	0.3	1	U	1	J	1	U			1	U	τ	J			ι	J	i i	J	τ	IJ	τ	IJ			U	J
Material production 19	chloromethane	5*	1	1	U	1	J	1	U	ι	ī	1	U	τ	J	τ	J	ι	J	τ	J	τ	IJ	τ	IJ	τ	J	U	J
Machine Mach	cis-1,2-dichloroethene	5*	1	1	U		J	1	U	ι	ī		U	τ	J	τ	J	ι	J	τ	J	ι	U	τ	IJ	τ	J	U	J
Second part	dichlorodifluoromethane		1											Ţ	J	Į	J	J	J	τ	J							U	
Part	hexachlorobutadiene	0.5*	0.6																							τ	J	U	
Marchander Mar					-		-		-						-		-				-		-		-	-		U	
Second S			2				-		-								-						-			-		U	
Mary Mary			1																									U	
Part Part			1				-		-														-					U	
Second S			1		-		-		-								-				-		-			-		U	
Second S			1				-																-			-		U	
The New Conference							-																-			_		U	
Section Column			1.5		-																	,			-	-		5.2	
Seminame 1,90									0	0.1	00	0.1	20		,	0.1	.20	0.1	<i>7</i> 0		,		,					3.2	
Series S		2 000	200	55 8 F	343	П	172 F	п	57 F	59 F	62 F	П	II	п	II	п	П	II	54 F	п	П	II	61 F	п	200	п	75 F ♦	11	140 F♦
Second 1.50																				_									U
Seminar 1,000 20		-		-	-			-		-			-		_			-	-		-	-		-	-	-	-		U
Segmen S				3.7 F		3.59 F	4.39 F	1.4 F	2.5 F	2.2 F	1.6 F		2.7 F◆	2.9 F	3.2 F		3.6 F			2.2 F			3.7 F	3.3 F	3.8 F		2.1 F♦		3.3 F
Decompose 1,00		3	4													U													U
Second S		1,000	110	15.9 J	U	NA	NA	NA	NA	NA	NA	7.6 F	8.2 F◆	NA	NA	NA	NA	8.9 F	9.0 F	7.5 F	7.3 F♦	NA	NA	NA	NA	NA	NA	U	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	cadmium	5	5	U	U	U	U	U	U	0.71 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	calcium		1,100	48,300	48,800	47,300	48,200	35,000	37,000	29,000	28,000	44,000	43,000	59,000♦	60,000♦	58,000	57,000	37,000	36,000	53,000	51,000 ♦	64,000	63,000	59,000	58,000	42,000	41,000	56,000♦	54,000
Post	chromium	50	10	0.8 F	3.5 F	U	3.97 F	U	2.9 F	5.2 F	2.4 F	3.5 F	4.3 F◆	8.9 F♦	44	5.4 F♦	29	3.1 F	14	2.7 F◆	3.7 F◆	4.6 F	19	4.6 F	27	U	11	3.8 F◆	12♦
Second S	cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U
lead							-				-		-				-	-	-					-			-		U
$\begin{subarray}{ c c c c c c c c c c c c c c c c c c c$																				7.9 F♦									210♦
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-			-	-					-	-	-	-	-	-	-	U	-		-	-	-	-	-		U
Interior Interior		,	,				,		.,				. ,	. ,		-,		.,		,		- ,	- ,	.,			. ,	. ,	23,000♦ 9.0 F♦
molybedroms			10										-					-		-	-		-	-					9.0 F◆
Indeed 100 20			15																								-		U
Decision Control Con																													U
Column 10 30 U U U U U U U U U																													830 F◆
Silver So																													U
Definition Column								U						_					U	-				_		U		U	
thallium	sodium			9,230			9,700	6,500	6,500	4,100	4,000	9,100	8,900 ♦	17,000	16,000	15,000	15,000	6,700♦		13,000	12,000	19,000	18,000	15,000	15,000	7,700 ♦	7,400	13,000♦	12,000
Exchange Exchang	thallium	0.5		U	-	-	-	U	U		U		-	U	U	-	-	-	-	U	U	-	-	-	U	-	-		U
Recipion Recipion	vanadium			-										-					-						-				U
Second Correction Seco		2,000	20	14.7 F	4.8 F	17 F	25.7 B	4.7 F	11 F	U	U	U	U	55 B♦	59 B♦	48 B♦	66 B	11 F	12 F	11 F	15 F♦	9.3 F	10 F	76 B	84 B♦	U	U	U	U
Immonia 2 0.2 U U U U U U U U U																													
BODS												-																19	
Eventide 2							-		-								-											0.01	
COD 5 U U 9.4F 13J 13B U 13B 6.3F 13J 3.7F 6.0F 6.0F 6.0F 6.0F 6.0F 6.0F 6.0F 6.0							-						-										-					U	
chloride 250 1 18.4 20 9.1 4.6 27 50 38 8.8 30 45 28 10 color 15 5 20J NA		2	0.5						-																			0.073	5 P♦
color 15 5 20.1 NA NA NA U NA NA NA U NA NA <td></td> <td>250</td> <td>5</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0.0</td> <td></td> <td>23</td> <td>2</td>		250	5				-		• •						-											0.0		23	2
cyanide, Total 200 0.02 U NA NA NA NA NA U NA 0.0047 F U NA NA NA NA NA NA NA NA NA NA NA NA NA					-			-																				23 NA	
hardness, Total 1 197 200 150 110 190 + 270 260 140 210 + 280 240 + 190 20 nitrate 10 1 0.9F 0.89F 0.42 0.29 0.90 + 1.2 1.2 0.57 B + 1.1 1.5 1.4 0.99 + TKN 1 0.2 U 0.9 F 0.0 1.5 1.5 1.5 1.5 1.5 0.2 1.0 4.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0																										_		NA NA	
nitrate 10 1 0.9 F 0.89 F 0.42 0.29 0.90 cm 1.2 1.2 0.57 Bect 1.1 1.5 1.4 0.99 cm TKN 1 0.2 U 0.2 24 20 1.0 13 21 cm 27 27 16 21 26 24 20 27 27 16 21 26 24 20 20 23 10 20<													-															N/ 24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																									1.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1															-											0.12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		250			-		_		-				-			,	-				-		-		-	-		24	
TOC - 1 0.64 F 0.72 F 0.69 F U 0.77 F 1.2 0.90 F 1.5 B 0.54 F 0.97 F 0.65 F 0.39 F 0.			-																									350	
																												0.75	
phenolics, Total	phenolics, Total		0.005																									N/	

Location of Well										LF6VM	IW-22					
Date of Collection	NYSDEC		9/16/	/2009	3/23/2010	9/15/2010				LFOVM	I W-22					
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM		LF6VM2235OA	LF6VM2235PA										
Depth to Water (ft)	Standards		14.	.61	14.15	15.47										
VOCs (µg/L)					•			*	<u> </u>			*	-	<u> </u>	<u> </u>	
1,1,1-trichloroethane	5*	1	Ţ	U	U	U										
1,1-dichloroethene	5*	1	τ	U	U	U										
1,2-dichloroethane	0.6	1		U	U	U										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone	50	10	τ		1.17 F	1.76 FB♦										
benzene	1	0.1	Ţ		U	U										
carbon disulfide	1,000	0.5		U	U	U										
chloroform	7	0.3		U	U	U										
chloromethane	5* 5*	1		U	U	U										
cis-1,2-dichloroethene	-	1	τ		U	U							_			
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene methylene chloride	0.5* 5*	0.6		U U	U U	U U										
	5*	2		U	U	U										
m,p-xylene trichloroethene (TCE)	5° 5*	1		U U	U	U										
toluene (TCE)	5*	1		U	U	U										
trans-1,2-dichloroethene	5*	1		U	U	U	1									
trichlorofluoromethane	5*	1		U	U	U										
vinyl chloride	2	1		U	U	U										
xylenes, Total	-	1.5	ī		U	U	1									
Total VOCs (µg/L)					1.17	1.76										
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	2,000	200	U	U	U	U										
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	U										
barium	1,000	50	3.3 F◆	3.2 F	4.0 F◆	5.1 F										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	12	NA										
cadmium	5	5	U	U	U	U										
calcium	-	1,100	67,000♦	68,000	62,000 ♦	74,000◆										
chromium	50	10	U	4.6 F♦	8.2 F	7.4 F										
cobalt		60	U	U	U	U										
copper	200	10	U	U	U	U										
iron	300	200	U	43 F◆	81 F◆	28 F										
lead	25	25	U	U	U	U										
magnesium	35,000 300	1,000	28,000	29,000	24,000 ◆ 1.1 F◆	28,000 U										
manganese mercury	0.7	10	U	U U	1.1 F◆ U	U										
molybdenum	0.7	15	U	U	U	U										
nickel	100	20	U	U	U	U										
potassium		1,000	920 F◆	940 F	840 F	1,200										
selenium	10	30	920 F▼ U	940 F	U U	U										
silver	50	10	U	U	U	U			1 1							
sodium	20,000	1,000	19,000♦	18,000	11,000	14,000						1				
thallium	0.5	80	U	U	U	U			1 1							
vanadium		10	U	U	U	U										
zinc	2,000	20	12 F	U	5.3 F	5.6 F♦										
Leachate Indicators (mg/L)																
alkalinity, Total		10	23		220	250										
ammonia	2	0.2	τ		U	U	1									
BOD5		2.4	τ		U	U	1									
bromide	2	0.5	0.05		0.036 F	UM										
COD		5	9.0		59 J	5.6 F										
chloride	250	1	3		14	20♦										
color	15	5	N		U	NA										
cyanide, Total	200	0.02	N		0	U										
hardness, Total		1	36		0.010 F	300										
nitrate	10	1	1.		1.2	1.9										
TKN	1	0.2		U	0.38 JB◆	0.24 B◆	1									
sulfate	250	1	2		23	26										
TDS	500	10	34		270	340♦	1									
TOC phenolics, Total	-	1 0.005	0.8		0.81 F	1.1 B	1									
		0.005	1 I	U	U	U				i e		1	1			

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6V?	MW-23												
Date of Collection	NYSDEC Class GA	Reporting	6/29/	/2006	9/18/	2006	12/12	/2006	4/17/	2007	6/21/	/2007	9/28/	2007		1/2007	4/3/2	2008	6/18/	2008	10/1/	2008	12/11	/2008	4/16/	2009	6/30/	2009
Sample ID No.	Groundwater Standards	Limit	LF6VM	12348AA	LF6VM	2348BB	LF6VM	2348CA	LF6VM	2348DA	LF6VM	12348EA	LF6VM	2348FA	LF6VM	12348GA	LF6VM	2348НА	LF6VM	2348IA	LF6VM	12348JA	LF6VM	2348KA	LF6VM	2348LA	LF6VM2	2348MA
Depth to Water (ft)	Standards		16	.16	16.	.60	15	.58	14.	44	15	.33	16.	.38	15	5.96	14.	.69	15.	.51	16.	.21	15.	.70	15.	21	16.	69
VOCs (µg/L)	1	1 .			_							.,		*		**		.,								,		
1,1,1-trichloroethane 1,1-dichloroethene	5* 5*	1	1		t	-	1		ι		1	IJ	I			U U	Ţ	II.	T.		I	IJ.	T.		Ţ		T.	
1,2-dichloroethane	0.6	1	1		l i		1	-	1		1		ī	-		-	ī	-	ı	-	1		l i	-	ī		T	-
1,4-dichlorobenzene	3	0.5	i	-	l i	_	l i	-	ī			U	ī	-			ī	-	l i		1	-	l i		ī		Ü	-
acetone	50	10	1	U	ì	-	i	J	ί	ı	ī		ι	J	1	U	τ	U	τ	J	ī	-	τ		τ	J	1.10	
benzene	1	0.1	1	U	Ţ	J	1	J	τ	ī	Ţ	U	Į	J	1	U	Ţ	U	Ţ	J	τ	IJ	Ţ	IJ	Ţ	J	τ	
carbon disulfide	1,000	0.5		U	τ	J	1	J	ι	ī	τ	U	τ	J	1	U	τ	U	τ	J	τ	U	τ	IJ	U	J	U	J
chloroform	7	0.3			τ	J	1		ι		τ		τ			U	τ		τ		τ	-	τ		τ		τ	
chloromethane	5*	1	1		τ		1	J	ι		τ		Į			U	Į	U	τ		Ţ	IJ	τ		Ţ	J	U	I
cis-1,2-dichloroethene	5*	1	- 1	-	τ	-	1	J	ι		τ		Į			U	Ţ	U	τ		Ţ	J	τ	-	Ţ	J	τ	1
dichlorodifluoromethane	5*	1	1		ι	-		IJ	Į,		ι		Ţ	-		U	Į	-	ι	-	Ţ	-	ι	-	Ţ		ι	
hexachlorobutadiene	0.5* 5*	0.6	1		U	-	1		I I		ı I		ι			U	ι		ı I		ι	-	ι		Į	J	τ	
methylene chloride m,p-xylene	5*	1 2			0.1 I				ι		ı		l t			10 F U	ī		l t		"		l t		ı ı	ī	τ	
trichloroethene (TCE)	5*	1	i		ί	-	;	J	l		,		ī				1	U	l i		1		l i		ī		T.	
toluene	5*	1	1	-	ī		i	J	τ			U	i			U	ī	U	ī		ī		ī	-	ι	J	ī.	
trans-1,2-dichloroethene	5*	1	i			J	i		τ		ī		τ	J	1	U		U	τ		t	U	τ		τ		τ	J
trichlorofluoromethane	5*	1	1		τ	-	1	-	τ		τ		τ			U		U	τ		τ		τ		τ	-	τ	-
vinyl chloride	2	1	1	-	τ	-	1	-	τ		τ	-	τ	-	1	-	,	U	τ	-	τ	-	τ	-	τ		υ	-
xylenes, Total		1.5	- 1		Ţ	-	1		Į			U	Į			U	Į		Į		Ţ		Į		Į		τ	
Total VOCs (µg/L)				0	0.	14)	0			0	()	0.1	110	(0)		0		0	()	1.1	.0
Metals (μg/L) [Dissolved / Total] ¹	2,000	200	46 1 E	4.120	7.7	660	**	C10	100 F	500	**	470	U	(2.F	**	220	U	300	U	260	7.7	110.5	**	200	7.7	110 F	62 F	180 F
aluminum antimony	2,000	50	46.1 F	4,120 U	U	669 U	U	610 II	180 F	580 U	U	470	II	62 F U	U	230 U	U	300	U	260 U	U	110 F	U	200 II	U	U	53 F U	180 F U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	11 F	26.4 F	8.59 F	12.1 F	7.7 F	10 F	12 F	13 F	14 F	15 F	13 F	13 F	14 F	15 F	11 F	1.2 F	9.0 F	12 F	9.7 F	10 F	11 F	12 F	11 F	11 F	10 F	11 F
berylium	3	4	U	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	16.6	17.4	NA	NA	NA	NA	NA	NA	13	12	NA	NA	NA	NA	9.1 F	9.6 F	8.5 F	8.8 F	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	0.92 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2 F	U	U	U	U
calcium		1,100	63,700	66,900	57,800	59,800	58,000	58,000	78,000	75,000	94,000	93,000	93,000	92,000	94,000	98,000	76,000	78,000	66,000	64,000	66,000	67,000	75,000	76,000	71,000	73,000	66,000	66,000
chromium	50	10	U	6.8 F	U	6.43 F	3.0 F	4.4 F	4.0 F	1.9 F	3.8 F	4.0 F	2.6 F	2.9 F	3.9 F	U	U	1.5 F	U	U	3.3 F	3.9 F	3.0 F	3.7 F	U	U	U	6.3 F
cobalt		60	U	2.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper iron	200 300	10 200	U U	22.7 4,600	U U	2.6 F 678	2.3 F 8.7 F	5.7 F 690	U 160 F	3.8 F 690	U	2.1 F 520	U	U 75 F	U	U 240	U	2.3 F 290	U 28 F	U 260	U	U 63 F	U	160 F	U U	U 130 F	U U	U 130 F
lead	25	25	U	U.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
magnesium	35,000	1,000	13,900	15,400	13,500	13,800	13,000	14,000	17,000	17,000	21,000	20,000	21,000	21,000	21,000	22,000	18,000	18,000	15,000	15,000	15,000	15,000	17,000	17,000	17,000	17,000	15,000	15,000
manganese	300	10	1.3 F	211	U	36.9	U	34	10	52	U	25	U	3.3 F	U	11.0	U	11	U	12	U	3.1 F	U	5.5 F	U	4.9 F	U	4.2 F
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	6.1 F	U	2.61 F	1.6 F	2.0 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.8 F
potassium		1,000	772 F	1,920	491 F	870 F	620 F	770 F	780 F	770 F	800 F	890 F	760 F	770 F	840 F	780 F	640 F	760 F	570 F	630 F	640 F	680 F	630 F	660 F	580 F	640 F	590 F	660 F
selenium silver	10 50	30 10	U	U 3.7 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U	U
sodium	20,000	1,000	2,820 J	2,010 J	2,610	2,250	2,300	2,000	3,100	2,800	3,100	2,800	3,200	3,000	3,700	3,600	3,200	3,300	2,800 B	2,700 B	2,300 B	2,300 B	2,200	2,200	2,200 B	2,300 B	2,100	2,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U	U	U U	U	U	U
vanadium		10	U	7 F	U	0.95 F	U	1.5 F	U	0.92 F	U	0.83 F	U	U	U	0.71 F	U	0.75 F	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	3.8 F	21.9	27.6 B	22.5 B	4.6 F	6.9 F	7.7 F	6.2 F	U	U	55 B	12 F	38 B	68 B	12 F	11 F	11 F	13 F	12 F	12 F	69 B	57 B	U	U	U	U
Leachate Indicators (mg/L)																												
alkalinity, Total	-	10	20			80	31		16			60	18			90	21		20			80		00	22		19	
ammonia	2	0.2	1			J	1		Į,		0.0		Ţ			.05	Į		0.05		0.02		Ţ		Ţ		0.02	
BOD5 bromide		2.4	1		0.02	J No F	1	-	U 0.1		0.08	U DO E	U 0.1	-		U 12 F	0.02	-	0.02			J De F	t		U 0.02	-	ι	-
bromide COD	2	0.5	11.	-		29 F 8 B	5.3	-	0.1		0.08		0.1			12 F 5 F	0.02		4.1		0.03		6.0		0.02	-	I.	
chloride	250	1	2		2.		3		5.			.3	5.	2	5		`	.0	4.1		,	.2	3.		0.8		0.6	,
color	15	5	6	50	N N		N		N.		ī		N		N		Į.		ī		N			A	U.S.		N.	
cyanide, Total	200	0.02	1	U	N		N		N.		ī	-	N		N		0.01	-	τ			ΙA	N		N	-	N.	
hardness, Total		1	2:	37	23	30	20	00	26	0	30	00	31	10	3.	30	26	60	22	20	22	20	20	50	25	50	22	.0
nitrate	10	1	0.3	2 F	0.6	8 F	0.	53	1.	3	1	.9	1.	.6	1	.7	0.9	96	0.	61	0.	.6	0.	81	0.0	51	0.7	/0
TKN	1	0.2	0.1		τ	-	1		0.05			U	0.08			U	Ţ	-	Ţ	-		Ú	ι		J		ι	
sulfate	250	1	40		3			5	8:			30	12			10	5			0		8	5		3		2:	
TDS	500	10	2		25			10	33			10	27			90	29		20		24			00	25		26	
TOC		1		8 F	1.		0.8		0.5			3 B	0.9			81 F		.3	0.4		0.5			4 F	0.3		0.50	
phenolics, Total		0.005		U	τ	J	1	J	Į	1		U	Į	J		U	0.000	J92 F	Ţ	J		U	Ţ	J	N	A	N.	4

Location of Well	1		1							LF6VM	4W 22							
Date of Collection	NYSDEC		9/15	2009	3/23/2010	9/15/2010				LF6VM	4W-23	1						
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM		LF6VM2348OA	LF6VM2348PA												
Depth to Water (ft)	Standards		16	.51	16.07	17.40												
VOCs (µg/L)	*						*	*					,	*	*	*	*	
1,1,1-trichloroethane	5*	1	1	J	U	U												
1,1-dichloroethene	5*	1		J	U	U												
1,2-dichloroethane	0.6	1		J	U	U												
1,4-dichlorobenzene	3	0.5		J	U	U												
acetone	50	10		J	1.42 F	2.07 FB												
benzene	1	0.1	1		U	U												
carbon disulfide	1,000	0.5		J	U	U												
chloroform chloromethane	7 5*	0.3		J	U U	U U												
cis-1,2-dichloroethene	5*	1	l i		U	U												
dichlorodifluoromethane	5*	1	_	J	U	U												
hexachlorobutadiene	0.5*	0.6		J	U	U												
methylene chloride	5*	1		J	U	U												
m,p-xylene	5*	2	1	J	U	U												
trichloroethene (TCE)	5*	1	1	J	U	U		L										
toluene	5*	1		J	U	U												
trans-1,2-dichloroethene	5*	1		J	U	U												
trichlorofluoromethane	5*	1		J	U	U												
vinyl chloride	2	1		J	U	U												
xylenes, Total		1.5	1		U	U												
Total VOCs (μg/L))	1.42	2.07												
Metals (µg/L) [Dissolved / Total] ¹ aluminum	2,000	200	11	73 F	00 F	60 F			T					 	T T			
antimony	3	50	U U	U	98 F U	U												
arsenic	25	30	U	U	U	U												
barium	1,000	50	8.4 F	9.0 F	12 F	11 F												
berylium	3	4	U	U	U	U												
boron	1,000	110	U	U	15	NA												
cadmium	5	5	U	U	U	U												
calcium		1,100	52,000	64,000	77,000	70,000												
chromium	50	10	U	U	U	U												
cobalt		60	U	U	U	U												
copper	200	10	U	U	U	U												
iron	300	200	U	44 F	120 F	81 F												
lead	25	25	U	U	U	U												
magnesium	35,000 300	1,000	13,000	14,000 1.1 F	16,000 4.4 F	14,000 3.3 F												
manganese mercury	0.7	10	U U	U	4.4 F U	3.3 F U												
molybdenum	0.7	15	U	U	U	U												
nickel	100	20	U	U	U	U												
potassium		1,000	470 F	570 F	550 F	700 F												
selenium	10	30	U	U	U	U												
silver	50	10	U	U	U	U												
sodium	20,000	1,000	1,800	1,900	1,900	1,500												
thallium	0.5	80	U	U	U	U												
vanadium		10	U	U	U	U												
zinc	2,000	20	U	U	6.2 F	8.3 F												
Leachate Indicators (mg/L)		10		20	200													
alkalinity, Total		10	0.0	90 10 E	220 U	210 U												
ammonia BOD5	2	0.2 2.4		18 F J	U	U												
bromide	2	0.5	0.03		0.021 F	U												
COD		5	0.0.		U U	U												
chloride	250	1	0.7		0.55 F	0.82 F												
color	15	5	N		U	NA NA												
cyanide, Total	200	0.02	N		0.0091 F	U												
hardness, Total		1	2		260	230												
nitrate	10	1	0.		0.6	0.48 F												
TKN	1	0.2		J	0.20 B	0.16 FB												
sulfate	250	1	2	1	29	20												
TDS	500	10	24		240	250												
TOC		1	0.6		0.66 F	2.2 B												
phenolics, Total		0.005	1	J	U	U												

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6VN	4W-24												
Date of Collection	NYSDEC Class GA	Reporting	6/29/	2006	9/19/	2006	12/12	/2006	4/17/	2007	6/21/	/2007	9/28/	2007	12/11	/2007	4/7/2	2008	6/18/	2008	10/1/	2008	12/11	/2008	4/16/	2009	7/1/2	009
Sample ID No.	Groundwater Standards	Limit		2448AA	LF6VM	2449BB	LF6VM	2449CA	LF6VM	2449DA	LF6VM	12449EA	LF6VM		LF6VM	2449GA	LF6VM	2449НА	LF6VM		LF6VM	2449JA	LF6VM	2449KA	LF6VM:	2449LA	LF6VM2	449MA
Depth to Water (ft)	Standards		12	.32	12.	74	11.	.70	10.	65	11	.51	12.	52	12.	.12	10.	92	11.	71	12.	.39	11.	85	4.4	42	11.5) 0
VOCs (µg/L) 1.1.1-trichloroethane	5*			,	I		1	,		, ,	1		Ι τ	T	I	·		T	ī	,	ī	7	I	, ,	ī	7		
1,1,1-trichloroethane 1,1-dichloroethene	5° 5*	1		-	ī		I	-	I	-	1		l t	-	ī		I	-	l t		ī	-	ı ı	-	ī	-	u	
1,2-dichloroethane	0.6	1		-	ī		I	-	Į	-	ï	-	1	-	ī	-	l i	-	ί		ī		Į	-	ī		U	
1,4-dichlorobenzene	3	0.5	i		ι		ī	-	t		ï		ί		i	-	ί	-	ί		ī	-	ί		ι	-	U	
acetone	50	10	1	J	τ	ī	τ	J	τ		τ	U	τ	J	τ	J	Ţ	J	τ	J	τ	J	τ		ι	J	5.40	F♦
benzene	1	0.1	1	J	ι	ī	Ţ	J	U	J	Ţ	U	Ţ	J	Į	J	Ţ	J	ι	J	τ	J	J	J	τ	J	U	
carbon disulfide	1,000	0.5		J	τ	ī	τ	J	ι	J	τ	IJ	τ	J	Ţ	J	τ	J	ι	J	ι	J	ι	J	U	IJ	U	i
chloroform	7	0.3			ι		τ		ι		τ		Į		Ţ	-	Ţ		ι		ι	-	Į		ι		U	
chloromethane	5*	1	1		ι		τ	-	ι		ι	-	Ţ	-	Ţ	-	Ţ	-	ι		ι	-	Ţ		ι	-	U	
cis-1,2-dichloroethene	5*	1			ι		Ţ	-	ι	,	Ţ		Ţ	_	Ţ	-	Ţ		ι		τ	-	Į		ι	-	U	
dichlorodifluoromethane	5* 0.5*	1	1		I I		ι	IJ	Į.		l I		ι		I I		τ		τ		T.		I I		ι	-	U	
hexachlorobutadiene methylene chloride	0.5° 5*	0.6			ī		0.32		ι		1		1		0.12		ī	-	ī		ī		ι		ī	J	U	
m,p-xylene	5*	2	l i		ī		0.52 I		ī		ï	-	ī		U.12		ī	-	ī		ī	-	ī		ī	ī	U	
trichloroethene (TCE)	5*	1		-	τ		ι	-	ι			U	l i	-	ī	-	ĺ	-	ī		ī	-	ι	-	ι	-	U	
toluene	5*	1	1		τ		ī	-	ι			U	Ţ		Ţ		ī		τ		τ		τ		τ		0.210	
trans-1,2-dichloroethene	5*	1	1	J	τ	ī	τ	J	τ		Ü		τ	J	τ		τ	J	ι	J	τ	J	τ		τ	J	U	
trichlorofluoromethane	5*	1		-	τ		τ	-	τ	-	τ	-	τ	-	τ	-	τ	-	ι		ι	J	τ		ι	J	U	i
vinyl chloride	2	1		-	τ		τ	-	τ		τ		τ	-	τ	-	τ	-	τ		ι	-	τ		ι	-	U	
xylenes, Total		1.5	1	-	τ		τ		τ		U	-	Ţ	-	Ţ		Ţ	-	ι		τ	_	τ		τ	-	U	
Total VOCs (µg/L)				0		1	0	32	0)		0	()	0.1	20	()	0		0)	()	0)	5.6	1
Metals (μg/L) [Dissolved / Total] ¹	4.000	400	48.0 D	#04	**	40.4 P	**		10.5	**	**			**		**		**		**	**	44.70	**	**	**	**	**	
aluminum antimony	2,000	200 50	67.8 F	581 U	U	58.5 F	U	U	43 F	U	U U	U 2.0 F	U	U	U	U	U	U	U	U	U U	41 F U	U	U U	U U	U	U	U U
arsenic	25	30	U	U	U	U	U	U	U	U	U	2.0 F U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	183	167	187	180	170	170	180	190	190	190	200	220	220	220	220	210	230	240	240	240	250	250	260	260	290	290
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	21.1	17.9	NA	NA	NA	NA	NA	NA	12	16	NA	NA	NA	NA	16	16	15	15	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	36,000	34,100	37,300	36,400	33,000	33,000	41,000	41,000	40,000	41,000	41,000	43,000	43,000	43,000	46,000	44,000	48,000	48,000	49,000	50,000	51,000	51,000	51,000	51,000	58,000♦	56,000
chromium	50	10	1 F	8 F	U	1.74 F	3.6 F	3.4 F	3.3 F	2.2 F	U	2.7 F	2.3 F	3.3 F	4.4 F	U	2.8 F	3.6 F	1.6 F	2.0 F	3.6 F	5.6 F	3.9 F	5.0 F	U	9.1 F	U	13
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	4.6 F	U	U	3.2 F	2.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
iron lead	300 25	200 25	41 F	807 U	U U	59 F	11 F U	31 F U	23 F	33 F U	14 F U	21 F U	U	17 F U	9.2 F	8.6 F	34 F U	37 F U	9.3 F	7.3 F U	7.9 F U	12 F U	U	16 F U	13 F U	49 F	U U	70 F U
magnesium	35,000	1,000	15,000	15,000	15,500	15,200	16,000	16,000	18,000	18,000	18,000	19,000	18,000	19,000	19,000	19,000	21,000	20,000	22,000	22,000	22,000	22,000	23,000	23,000	23,000	23,000	26,000♦	25,000
manganese	300	10	34.1	49	27.9	28.4	27	27	60	62	46	48	31	35	30	32	56	53	38	37	33	35	35	36	43	41	42♦	39
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	3.2 F	6.8 F	U	U	1.6 F	1.5 F	U	1.3 F	U	U	U	U	U	U	1.2 F	7.4 F	U	U	U	U	U	U	U	U	U	3.8 F◆
potassium		1,000	1,190	1,250	1,010	1,070	1,100	1,100	1,100	1,100	1,000	1,200	1,200	1,200	1,300	1,200	1,300	1,200	1,200	1,200	1,300	1,300	1,300	1,300	1,200	1,200	1,300	1,300
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	3.2 F	U	U	U	U	U	U	U	1.1 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium thallium	20,000	1,000 80	71,900	66,100 U	71,600	69,800 U	65,000	65,000	56,000	60,000 U	56,000 U	58,000	65,000	69,000	71,000 U	71,000 U	64,000 U	62,000 U	64,000 U	65,000 U	69,000 U	70,000 U	72,000 U	72,000	65,000 U	65,000 U	72,000 ♦ U	69,000
thallium vanadium	0.5	80 10	U	1 F	U U	U	U	U	U U	U	U	U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U
zinc	2.000	20	5.9 F	6.3 F	16.7 F	24.3 B	7.2 F	5.7 F	U	U	U	U	12 F	56 B	47 B	53 B	11 F	12 F	11 F	12 F	10 F	12 F	44 B	79 B	U	U	U	U
Leachate Indicators (mg/L)	2,000			0.01	10.71	24.5 5	7.2.	J.7.						30.5	77.5	33.5								., .				
alkalinity, Total		10	1:	38	12	0	10	50	12	20	12	20	13	30	13	30	13	30	13	0	12	20	1.2	20	13	30	12	0
ammonia	2	0.2		087	0.07		0.0	054	0.0	65	τ	-	0.0		0.		0.	11	0.10) B	0.1	1 B	0.0	62	0.11	1 B	0.10	
BOD5		2.4		-	2.		τ	-	τ		τ	-	τ	-	2.		τ	-	2.		2.		2.		τ	-	2.:	
bromide	2	0.5	0.		0.0		0.:		0.5		0.		1.		1.		0.:		0.5		0.5		0.5		0.5		0.48	
COD		5	12.		5		7.3		15		8.5		4.1		8.5		6.3		ι		8.2		8.2		8.2		9.0	
chloride	250	1		99	11		11		9	-		10	13		13		13		13			50	1.5		17		170	
color	15	5		0	N		N		N.		τ,	-	N		N		ι	-	ι		N.		N		L	-	N.	
cyanide, Total hardness, Total	200	0.02	1	59	N 18		N 15	A FO	N. 17			U 80	N 18		N 20		U 20		U 21		N. 22		N 22		N. 23		N/ 25	
nitrate	10	1	11		18		1: I		17		0.0		18		20 I		20 I		21 I		22 I		1 22 L		23 I		25 U	
TKN	10	0.2	0.0		0.07		0.1		I			U	0.08	-	(ı ı		0.1:		T.		Į		ι		0.16	
sulfate	250	1		J.6	2		2		2		2		2			4	2		2:		2		2		2:		21	
TDS	500	10		50	35		35		35			90	30			70	37		40		39		38		41		530	
TOC		1	1	IJ	τ	J	0.4	5 F	0.8	1 F	0.6	i6 F	0.5	1 F	0.4	8 F	0.9	3 F	0.4		ι	J	τ	J	ι	J	U	
phenolics, Total		0.005	1	Ü	τ	J	τ		τ		τ	U	τ		τ		0.00	11 F	0.00	19 F	τ	J	τ	J	N.	A	N.	A

Location of Well	1									LF6VN	IW-24					
Date of Collection	NYSDEC		9/15/	/2009	3/23/2010	9/23/2010				LFOVA	1 11-24					
Sample ID No.	Class GA Groundwater	Reporting Limit		12449NA	LF6VM2449OA	LF6VM2449PA										
Depth to Water (ft)	Standards		12	68	12.19	13.80										
VOCs (µg/L)							•	 *						 	, , , , , , , , , , , , , , , , , , ,	
1,1,1-trichloroethane	5*	1	1	U	U	U										
1,1-dichloroethene	5*	1		U	U	U										
1,2-dichloroethane	0.6	1		U	U	U										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone	50	10		U	1.22 F	2.21 FB										
benzene	1	0.1		U U	U U	U U										
carbon disulfide	1,000	0.5		U	U	U										
chloroform chloromethane	7 5*	0.3		U	U	U										
cis-1,2-dichloroethene	5*	1		U	U	U										
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene	0.5*	0.6		U	U	U										
methylene chloride	5*	1		U	U	U										
m,p-xylene	5*	2		U	U	U										
trichloroethene (TCE)	5*	1	1		U	U										
toluene	5*	1		U	U	U			·							
trans-1,2-dichloroethene	5*	1		U	U	U										
trichlorofluoromethane	5*	1		U	U	U										
vinyl chloride	2	1		U U	U U	U										
xylenes, Total Total VOCs (μg/L)		1.5		0	1.22	U 2.21	 					-				
Metals (μg/L) [Dissolved / Total] ¹			<u> </u>		1.22	2.21								 		
aluminum	2,000	200	U	U	U	U	П		1			I	1	T I		1
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	U										
barium	1,000	50	280	300	330	360										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	19	NA										
cadmium	5	5	U	U	U	U										
calcium		1,100	56,000	59,000	65,000	71,000										
chromium	50	10	U	U	7.6 F	U										
cobalt		60	U	U	U	U										
copper	200	10	U	U	U	U										
iron lead	300 25	200 25	U U	U U	28 F U	25 F U										
magnesium	35,000	1,000	24,000	26,000	28,000	30,000										
manganese	300	10	37	U	42	43										
mercury	0.7	1	U	U	U	U										
molybdenum		15	U	U	U	U										
nickel	100	20	U	U	U	U										
potassium		1,000	1,200	1,400	1,500	1,600										
selenium	10	30	U	U	U	U										
silver	50	10	U	U	U	U										
sodium	20,000	1,000	70,000	75,000	76,000	82,000										
thallium	0.5	80	U	U U	U U	U										
vanadium zinc	2,000	10 20	U U	U	47 F	U U									1 1	
Leachate Indicators (mg/L)	2,000	20			47.1			 	1							_
alkalinity, Total		10	13	20	130	130										
ammonia	2	0.2	0.0		0.065	0.073										
BOD5		2.4		U	8.5	3.8 J										
bromide	2	0.5		.58	0.7	U										
COD		5		7 F	U	5.6 FB										
chloride	250	1		80	210	240									1	
color	15	5		ĮA.	U	NA									1	
cyanide, Total	200	0.02		ĮA #0	0.0090 F 280	U 300										
hardness, Total		1		50												
nitrate TKN	10	0.2		.95	U 0.54 B	U 0.24 B	-									
rkn sulfate	250	0.2		.95 24	0.54 B 18	0.24 B										
TDS	500	10		30	510	620										
TOC		1		57 F	U	0.85 F										
phenolics, Total		0.005		U	U	U										
process, roun	1	0.000	·	-	-		1	 						 		

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															LF6V	MW-25												
Date of Collection	NYSDEC Class GA	Reporting	6/29/20	06	9/19/2	006	12/12/	2006	4/17	/2007	6/25	/2007	10/1/	2007	12/11		4/3/2	008	6/17/2	008	10/2/	2008	12/11	/2008	4/16/	2009	6/30/2	2009
Sample ID No.	Groundwater Standards	Limit	LF6VM25	44AA	LF6VM2	544BB	LF6VM2	2544CA	LF6VN	2544DA	LF6VN	12544EA	LF6VM	2544FA	LF6VM	2544GA	LF6VM2	544HA	LF6VM2	544IA	LF6VM	2544JA	LF6VM	2544KA	LF6VM	2544LA	LF6VM2	.544MA
Depth to Water (ft)	Standards		3.13		3.72	2	2.8	6	1	83	2	.85	3.5	56	3.1	10	2.1	0	2.9)	3.3	37	2.	87	2.6	52	3.0	.8
VOCs (µg/L)																												
1,1,1-trichloroethane	5*	1	U		U		U			U		U	Į		Į		U		U		I I	*	1		ι		U	
1,1-dichloroethene 1,2-dichloroethane	5* 0.6	1	U		U		U			II II		U U	ι		Ţ		U		U		ī	*	1		T.		u	
1,4-dichlorobenzene	3	0.5	U		U		T.			-		U	1		l i		U		U		ī	*		-	ī		U	
acetone	50	10	U		U		Ü			IJ		U	i		ί	-	U		U		τ	J	i	-	Ü		U	
benzene	1	0.1	U		U		U	1		U		U	U	U	ι	Ú	U		U		ι	J	1	J	U	J	U	į –
carbon disulfide	1,000	0.5	U		U		U	ſ		U		U	τ	U	0.14	40 F	U		U		τ	J		J	U	J	U	į.
chloroform	7	0.3	U		U		U	ſ		U		U	τ	U	τ	IJ	U		U		τ	J		J	ι		U	
chloromethane	5*	1	U		U		U			U		U	τ		τ		U		U		τ	J	1	-	τ	-	U	
cis-1,2-dichloroethene	5*	1	U		U		U					U		U	Ţ		U		U		I	J	- 1	,	τ	,	U	
dichlorodifluoromethane	5* 0.5*	1	U		U		U			U		U U	τ	-	ι		U		U		T.	J	1	-	τ		U	
hexachlorobutadiene methylene chloride	0.5° 5*	0.6	U		U		0.29			ח		U	Ţ		0.15		U		U		ı ı			-	ī		U	
metnyiene chioride m,p-xylene	5*	2	U		U		U.29					U	1		U.13		U		U		ī	*	i	-	T.	-	U	
trichloroethene (TCE)	5*	1	U		U		U			U U		U	ī		ί		U		U		ι	J	i		τ		U	
toluene	5*	1	U		U		U			U		U	i		τ		U		U		τ	J	1		ī.		U	
trans-1,2-dichloroethene	5*	1	U		U		U	ſ		U		U	τ	U	τ	IJ	U		U		ι	J	1	J	τ		U	
trichlorofluoromethane	5*	1	U		U		U	ſ		U		U	τ		τ		U		U		ι	*	1		τ		U	
vinyl chloride	2	1	U		U		U	ſ		U		U	ι		τ		U		U		ι	J		J	τ		U	
xylenes, Total	-	1.5	U		U		U			U		U	Ţ		Ţ		U		U		τ	J	- 1		ι		U	
Total VOCs (µg/L)			0		0		0.2	9		0		0	(U	0.1	190	0		0			1	_ '	,	0		0	
Metals (µg/L) [Dissolved / Total] ¹ aluminum	2,000	200	46.1 F	1,770	U	315	U	69 F	61 F	U	U	U	U	U	U	44 F	U	U	U	U	45 F	66 F	U	U	U	79 F	U	65 F
antimony	2,000	50	40.1 F	I,//0	U	315 U	U	09 F	U	U	U	U	U	U	U	U	U	U	U	U	45 F	U	U	U	U	79 F	U	U
arsenic	25	30	U	II	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	87.2	92.6	89.6	91.4	88	89	100	110	100	100	98	100	97	100	100	100	100	99	110	110	100	110	96	98	110	110
berylium	3	4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	81.4	74.1	NA	NA	NA	NA	NA	NA	62	62	NA	NA	NA	NA	50	51	50	48	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium	-	1,100		145,000	140,000	142,000	140,000	140,000	140,000	150,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	140,000	150,000	150,000	160,000	170,000	150,000	160,000	170,000	180,000
chromium	50	10	U	26.1	U	11	4.4 F	9.2 F	4.8 F	2.2 F	2.2 F	2.6 F	2.0 F	3.3 F	4.0 F	U	U	U	3.2 F	2.9 F	3.0 F	3.8 F	3.7 F	4.2 F	U	3.2 F	U	4.4 F
cobalt		60		1.7 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U U	U	U	U	U	U
copper iron	200 300	10 200	2.2 F U	17.4 3,030	U 25.1 F	6.01 F 603	3.3 F 33 F	6.7 F 240	23 F	76 F	17 F	U 42 F	U 68	U 53 F	U 24 F	61 F	20 F	38 F	U 3.9 F	23 F	U 28 F	U 54 F	30 F	66 F	22 F	4.0 F 140 F	31 F	86 F
lead	25	25	U	U.	23.1 F	U	U	240 U	U	U	U	42 F	U	U	U	U	U	U	3.9 F	U	U	U	U	U	U	U	U	U
magnesium	35,000	1.000	-	16.400	15.300	15,600	15,000	15.000	16.000	16.000	15.000	16,000	15,000	16,000	15,000	16,000	16,000	16.000	16,000	16,000	17.000	17.000	17.000	18,000	16.000	16.000	18.000	18,000
manganese	300	10	3,520	3,660	3,590	3,610	3,600	3,600	3,600	3,800	3,600	3,700	3,700	3,700	3,600	3,900	3,800	3,800	3,700	3,700	4,200	4,200	4,500	4,700	4,300	4,400	4,800	5,000
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	7.6 F	26.8	2.67 F	9.07 F	3.9 F	6.5 F	3.5 F	3.5 F	3.0 F	3.4 F	2.9 F	4.0 F	3.0 F	3.4 F	2.7 F	2.9 F	2.5 F	3.5 F	3.4 F	3.5 F	3.3 F	3.6 F	3.4 F	4.1 F	3.3 F	4.2 F
potassium		1,000		4,380	3,770	3,880	4,000	3,900	4,300	4,500	4,400	4,500	4,200	4,300	4,200	4,500	4,300	4,400	4,100	4,200	3,900	3,900	3,900	3,900	3,600	3,600	3,700	3,600
selenium silver	10 50	30 10	U	U 2.8 F	U U	U	U	U U	U	3.0 F	U 1.6 F	U 1.4 F	U	U	U	U	U	U	U	U	U U	U U	U	U U	U	U	U	U U
sodium	20,000	1,000		2.8 F 15,000	16,100	16,200	16,000	15,000	16,000	17,000	1.0 F 15,000	1.4 F 15,000	15,000	15,000	15,000	16,000	15,000	15,000	10,000	9,800	11,000	11,000	11,000	11,000	9,800	9,600	8,800	8,400
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium	-	10	-	4.7 F	U	1.34 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20		18.8 F	28.6 B	24.7 B	5.5 F	8.3 F	U	U	U	U	38 B	13 F	31 B	51 B	12 F	12 F	11 F	15 F	16 F	13 F	68 B	47 B	U	U	U	6.3 F
Leachate Indicators (mg/L)																							_					
alkalinity, Total	-	10	478		390		12			00		80	39			80	38		370		32			10	37		36	
ammonia	2	0.2	0.077		0.94	1	1.			.3		.4	1.		1.		1.5		1.6		1.			.6	1.		1.:	
BOD5	-	2.4	U		U 0.024	L F	U			U EO E		U 24 F	J O O	-	0.04		0.02		U 062	E	L	*	1		L	-	U	
bromide COD	2	0.5	U		0.024 7.1 l		U 1e			50 F 9 B		24 F 2 B	0.02		0.04		0.024		.062 8.5		0.1		U 1		0.14		0.1	
chloride	250	1	11.5		7.1 1		14			4		2 B		9	13		13		8.5		2:	_	2		11		13	
color	15	5	25		NA NA		N.			IA.		U	N		N		U		U		N.		N		I.		N/	
cyanide, Total	200	0.02	U		NA		N.			ΙA		U	N		N		0.016		N.A		N.			A	N.	A	N.	
hardness, Total	-	1	720		460		21			20	4	10		2		50	40		440		42			30	44		50	
nitrate	10	1	U		0.017	F	0.08	9 F				U	0.03		0.03	32 F	0.02	5 F	0.018	F	0.04	1 F	- 1		0.08	6 F	0.02	1 F
TKN	1	0.2	1.2		1.1		1.	-		.2		.4	1.		1.		1.5		1.4		1.			.5	2.	-	1.	•
sulfate	250	1	36.3		36		33			13		34	3		3		38		47		12			20	11		120	
TDS	500	10	498		470		49			10		00	51		50		450		430		56			70	56		67	
TOC	-	1 0.005	3.9		3.5 U		3. I			.3		8.7 U	3.		3. U		3.4		3.0 U		3. I			.0	2.		2.5	
phenolics, Total		0.005	U		U		ι	1		U		U	Ţ	U	l (U	U		U		Į l	,	1	J	N.	A	N.	4

Location of Well									LF6VN	AW 25						
Date of Collection	NYSDEC		9/16/	2009	3/23/2010	9/15/2010			LF6V	MW-25						
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6VM		LF6VM2544OA	LF6VM2544PA										
Depth to Water (ft)	Standards		3.5	84	3.09	4.48										
VOCs (µg/L)						•			,			*		,		
1,1,1-trichloroethane	5*	1	τ		U	U										
1,1-dichloroethene	5*	1		J	U	U										
1,2-dichloroethane	0.6	1		J	U	U										
1,4-dichlorobenzene	3	0.5		J	U	U										
acetone	50	10		J	U	1.06 FB										
benzene carbon disulfide	1	0.1 0.5	τ	J J	U U	U U										
chloroform	7	0.3		J	U	U										
chloromethane	5*	1		J	U	U										
cis-1,2-dichloroethene	5*	1	i		U	U										
dichlorodifluoromethane	5*	1		J	U	U										
hexachlorobutadiene	0.5*	0.6		J	U	U										
methylene chloride	5*	1	τ	J	U	U										
m,p-xylene	5*	2	τ	J	U	U										
trichloroethene (TCE)	5*	1	τ		U	U										
toluene	5*	1		J	U	U			 1			T				
trans-1,2-dichloroethene	5*	1		J	U	U										
trichlorofluoromethane	5*	1	τ		U	U										
vinyl chloride	2	1	U		U	U	1				l					
xylenes, Total		1.5	U		U	U	-		 		-					
Total VOCs (µg/L)				J	0	1.06			 							
Metals (µg/L) [Dissolved / Total] ¹ aluminum	2,000	200	U	67 F	U	U								 	1	
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	U										
barium	1,000	50	100	100	89	71										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	39	NA										
cadmium	5	5	U	U	U	U										
calcium		1,100	190,000	180,000	180,000	150,000										
chromium	50	10	U	U	U	U										
cobalt		60	U	U	U	U										
copper	200	10	U	U	25	U										
iron	300	200	31 F	93 F	66 F	31 F										
lead	25 35,000	25 1,000	U 18,000	U 17.000	U 18,000	U 15,000										
magnesium manganese	300	1,000	5,100	5,100	5,000	3,900										
mercury	0.7	1	U	U	U	U										
molybdenum		15	U	U	U	U										
nickel	100	20	4.0 F	4.2 F	2.9 F	2.9 F										
potassium		1,000	3,600	3,500	3,700	3,600										
selenium	10	30	U	U	U	U				1	l					
silver	50	10	U	U	U	U										
sodium	20,000	1,000	9,100	8,700	11,000	13,000									1	
thallium	0.5	80	U	U	U	U										
vanadium		10	U	U	U	U				1	l					
zinc Leachate Indicators (mg/L)	2,000	20	U	U	19 F	5.5 F								 		
Leachate Indicators (mg/L) alkalinity, Total	-	10	3.5	50	390	330										
ammonia	2	0.2	1.		1.3	1.0										
BOD5	-	2.4	1.		U	U										
bromide	2	0.5	0.1		U	U										
COD		5		4	15	U	1				l					
chloride	250	1	2		19	21										
color	15	5	N	A	U	NA	1				l					
cyanide, Total	200	0.02	N	A	0.0084 F	U										
hardness, Total		1	53	30	520	440										
nitrate	10	1	0.04		0.052 F	U										
TKN	1	0.2	1.		1.5	1.2										
sulfate	250	1	15		160	110										
TDS	500	10	64		590	500										
TOC		1	3.		2.9	3.4 B										
phenolics, Total	-	0.005	τ	J	U	U	L				L					

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well			Ι												LF6VN	4W-26												
Date of Collection	NYSDEC Class GA	Reporting	7/6/2	2006	9/19/	2006	12/13	/2006	4/17/	2007	6/25/	2007	10/1/	2007	12/12		4/7/2	2008	6/18/	2008	9/29/	/2008	12/11	/2008	4/16/	2009	7/1/2	2009
Sample ID No.	Groundwater Standards	Limit	LF6VM0	02650AA	LF6VM0	02650BB	LF6VM	2650CA	LF6VM	2650DA	LF6VM	2650EA	LF6VM	2650FA	LF6VM	2650GA	LF6VM2	2650HA	LF6VM	2650IA	LF6VM	12650JA	LF6VM	2650KA	LF6VM:	.2650LA	LF6VM2	2650MA
Depth to Water (ft)	Standards		5	35	5.7	72	4.	65	3.8	15	4.3	37	5.0	63	4.9	91	4.1	13	4.9	91	5	39	4.3	35	4.5	50	4.9	92
VOCs (µg/L)		1 .			_		_		_				_		_						_		_					
1,1,1-trichloroethane 1,1-dichloroethene	5* 5*	1	UI		Ţ	-		J	ι		Ţ		Ţ		I		U		τ		T.	-	T T		Į.		U	-
1,2-dichloroethane	0.6	1	I I		I	-	1	-	ī		ī		1	-	ī	-	T T		ī	-	ī	-			ī	~	U	-
1,4-dichlorobenzene	3	0.5	U		I	-	l i	-	ι		ī		l i		ī	-	T T		ī	-	ī	-	ī		ī	~	U	
acetone	50	10	I.		ί	-	l i	-	ι		ί		ī		ī	-	Ü		ί		ī	-	ī		τ	-	U	
benzene	1	0.1	U	M	Į	J	1	J	ι	ſ	Ţ	J	Ţ	J	Ţ	J	U	J	τ	J	Ţ	U	Ţ	J	ι	J	U	Ű
carbon disulfide	1,000	0.5	ι	U	ι	J	1	J	ι	ī	τ	J	τ	J	τ	J	τ	J	τ	J	τ	U	τ	J	U	JJ	0.60	00 F
chloroform	7	0.3	U		ι	J	1	J	ι		τ	J	τ		τ	-	U		τ		τ	-	τ		ι	J	U	
chloromethane	5*	1	U		Į			-	ι		Į		τ	-	τ	~	U		τ		τ	-	Ţ		ι	~	U	
cis-1,2-dichloroethene	5*	1		M	75			06	90.		10		91		10		11		92			3.0	93		87			05
dichlorodifluoromethane	5*	1	UI		Į,	-		IJ	Į.		Ţ		Ţ		Į,		U		ι	-	T.	-	T T		Į,		U	-
hexachlorobutadiene	0.5* 5*	0.6	U		U 0.1		1		ι		1.2		l t	-	0.55		U		T.		I	-	1		ı ı	-	U	-
methylene chloride m,p-xylene	5*	2	U		U.1.		l i	-	ι		1.2 U		l i		0.55		u u		ī	-	Ţ	-	ī		ī	~	U	
m,p-xylene trichloroethene (TCE)	5*	1	U		ī			1	1.0		ī		l i		ī		u u		ī		Ţ		1		ī	-	U	
toluene	5*	1	I.		ī		i	J	I.		Ţ		ì		ī		Ü	-	τ		ι	-	ī		τ	-	U	
trans-1,2-dichloroethene	5*	1	UI	M	τ	J	1	J	τ	ī	ι		τ	J	τ	J	τ	J	ι	J	τ	U	τ	J	0.80	J0 F	U	Ü
trichlorofluoromethane	5*	1	UI		ι		1		ι		τ		τ		τ	-	υ		ι		τ		τ		ι	-	U	
vinyl chloride	2	1	0.72		0.0		1	-	0.61		τ		τ		τ	-	τ		ι		τ	-	τ		τ	-	U	-
xylenes, Total		1.5	U		Į		- 1	-	Į		Ţ	,	Ţ		Į		U	,	Į.	-	τ	-	Ţ		Ι	-	U	
Total VOCs (µg/L)			99.	.72	75.	.95	10	06	92.	18	103	.20	91	.8	108	1.55	11	15	92	8	78	5.0	93.	90	88.	.20	105.	5.60
Metals (µg/L) [Dissolved / Total] ¹	2.000	200	42.4E	2.210	7.7	152 F	**	**	40 F	U	U	U	U	21 F	7.7	46 E	U	U	U	66 E	44.5	40 F	02 F	**		200	U	U
aluminum	2,000	50	42.4 F	3,210 U	U	153 F	U	U	49 F	U	U	U	II.	71 F U	U	45 F	U	U	U	55 F 2.0 F♦	44 F U	48 F	83 F	U	U	390 U	U	U
antimony arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.0 F▼ U	U	U	U	U	U	U	U	U
barium	1,000	50	131	182	153	150	140	140	140	140	150	150	150	150	150	140	180	190	190	200♦	170	160	170	170	150	150	160	160
berylium	3	4	U	0.3 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
boron	1,000	110	74.5	75.8	NA	NA	NA	NA	NA	NA	65	64	NA	NA	NA	NA	67	71♦	71♦	74♦	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	64,500	74,600	66,700	65,800	66,000	66,000	65,000	65,000	68,000	68,000♦	68,000	69,000	69,000	66,000♦	87,000	91,000♦	89,000♦	90,000◆	77,000	74,000	76,000	76,000	66,000	68,000	72,000	70,000
chromium	50	10	U	10.3	1.7 F	4.87 F	4.4 F	4.8 F	5.4 F	2.7 F	3.6 F	5.0 F♦	4.3 F	5.1 F	6.0 F◆	7.0 F	5.2 F	6.2 F◆	4.9 F♦	5.7 F	5.6 F	6.1 F	6.1 F	5.6 F	3.4 F	5.6 F	3.4 F	U
cobalt		60	U	1.4 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200	10	U	4 F	U	U	U	2.0 F	U	U	U	U	U	U	U	U	U	4.1 F♦	U	2.6 F	U	U	U	U	U	4.2 F	U	U
iron lead	300 25	200 25	U	3,260 U	276 U	504 U	280 U	320 U	320 U	310 U	330 U	300 U	280 U	3,900 U	290 U	320 U	400 U	470 + U	420+ U	590 U	270 U	240 U	330 U	330 U	210 U	820 U	270 U	250 U
magnesium	35,000	1,000	36,700	40,200	39,600	39,500	39,000	39.000	37,000	38.000	38,000	40,000+	39,000	40,000	40,000	39,000+	51,000	53,000+	52,000+	53,000+	44,000	43,000	44,000	45,000	39,000	40,000	41,000	41,000
manganese	300	10	107	182	104	102	100	100	110	110	110	110	110	100	110	100+	140	150	150	150	120	99	130	130	110	120	130	120
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	0.9 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	2.1 F	11.3 F	U	1.84 F	U	U	U	U	U	U	U	1.8 F	U	2.1 F	U	U	U	1.6 F	2.4 F	3.3 F	U	U	U	3.0 F	U	U
potassium		1,000	1,360	2,620	1,350	1,430	1,400	1,400	1,500	1,400	1,500	1,600♦	1,500	1,500	1,600	1600♦	1,700	1800◆	1,700♦	1,700♦	1,600	1,600	1,600	1,700	1,400	1,600	1,500	1,400
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.9 F	U	U	U	U	U	U	U	U
silver	50	10	U	U 20.000	U 20.200	U	U 20.000	U 20.000	U 20.000	U	U 20.000	U 20,000	22,000	U 22.000	U 22.000	U 22 000+	U 25.000	U 26.000	U 27 000+	U 27 000 .	U 20.000	U 20.000	U 25.000	U 25.000	U 20.000	U 20.000	U 20.000	U 20.000
sodium thallium	20,000 0.5	1,000 80	17,500 U	20,000 U	20,200 U	19,800 U	20,000 U	20,000	20,000 U	19,000 U	20,000 U	20,000 U	22,000 U	22,000 U	23,000 U	23,000+ U	25,000 U	26,000 U	27,000+	27,000+ U	29,000 U	28,000 U	35,000 U	35,000 U	29,000 U	29,000 U	30,000 U	28,000 U
vanadium	0.5	10	U	5.7 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc	2,000	20	4.2 F	7.4 F	11.8 F	35.8 B	10 F	4.4 F	U	U	U	U	25 B	50 B	31 B	26 B	13 F♦	13 F◆	15 F	11 F	11 F	12 F	74 B	63 B	U	U	U	U
Leachate Indicators (mg/L)																												
alkalinity, Total		10	30	06	26	50		40	24		24	-	24		23		24		25	50		50	23		22	20	22	20
ammonia	2	0.2	τ	-	τ	-	1		τ		0.02		0.01		τ		0.043	3 F ♦	0.2			U	τ		0.03		0.08	
BOD5	-	2.4	ι		ι		2		ι		ι		Į		Ţ	-	U		ι		τ	-	τ		ι		U	
bromide	2	0.5	0.2		0.0				0.08		0.05		0.05		0.09		0.1		0.2		0.1		τ		0.07		0.06	
COD		5	U		ι		9.4		17		17		Ţ		- 11		8.5		13		3.7		3.7		6.0		6.7	
chloride	250	1	5		4.		5		4		5		6		6		13 T		12			88	20		9:		85	
color cvanide, Total	15 200	5 0.02	U	70 M	N N			A	N. N.		Ţ		N N		N N		0.001		10	0	N N	IA IA	N N		N.	-		IA IA
cyanide, Total hardness, Total	200	0.02	370		N. 33			A 20	N. 32		33		N 32		N 35		0.00		42	-		1A 60	30 30		N. 34		N/ 35	
nitrate	10	1	3/0		33 I		3. I		32 I		3: I		32 I		35 I		42 I		42 I		0.03		30 I		34 I		33	
TKN	10	0.2	U	-	I	_	i		ı		ı		I		I		U	_	0.2		0.0.		1	-	ī		0.11	
sulfate	250	1	4		4	-		2	4.		5		5		5		53		4:		4		4		51	-	54	
						50		80	39		42		45		46		52		58			30	46		44			20
TDS	500	10	41	19	35																							
TDS TOC	500	10 1	0.8		0.6		0.7		0.8		1.		1.		1.1		1.		0.60	0 F	0.7		τ		L		0.41	

Location of Well	1		1							LF6VN	IW-26						\neg
Date of Collection	NYSDEC		9/16	5/2009	3/24/2010	9/16/2010				LFOVN	111-20						-
Sample ID No.	Class GA Groundwater	Reporting Limit		12650NA	LF6VM2650OA	LF6VM2650PA											
Depth to Water (ft)	Standards		5	.57	5.00	6.22											
VOCs (µg/L)																	
1,1,1-trichloroethane	5*	1		U	U	U											
1,1-dichloroethene	5*	1		U	U	U											
1,2-dichloroethane	0.6	1		U	U	U											
1,4-dichlorobenzene	3	0.5		U	U	U											
acetone	50	10		U	U	5.35 U											
benzene carbon disulfide	1	0.1		U U	U U	U											
chloroform	7	0.3		U	U	U											
chloromethane	5*	1		U	U	U											
cis-1,2-dichloroethene	5*	1		100	80. 4+	82											
dichlorodifluoromethane	5*	1		U	U	U											
hexachlorobutadiene	0.5*	0.6		U	U	U											
methylene chloride	5*	1		U	U	U											
m,p-xylene	5*	2		U	U	U											
trichloroethene (TCE)	5*	1		U	U	U				ļ		ļ					
toluene	5*	1		U	U	U											
trans-1,2-dichloroethene	5*	1		50 F	U	U											
trichlorofluoromethane	5*	1		U	U U	U								1			
vinyl chloride xylenes, Total	2	1 1.5		U U	U	U U											
Total VOCs (µg/L)	-	1)		0.55	80.4	87.35											-
Metals (µg/L) [Dissolved / Total] ¹			1 20	0100	0014	07.00											
aluminum	2,000	200	U	U	U	U											
antimony	3	50	U	U	U	U											
arsenic	25	30	U	U	U	U											
barium	1,000	50	160	160	160	170											
berylium	3	4	U	U	U	U											
boron	1,000	110	U	U	68	NA											
cadmium	5	5	U	U	U	U											
calcium		1,100	71,000	72,000	72,000	75,000											
chromium cobalt	50	10 60	U U	U U	U U	U U											
copper	200	10	U	U	U	U											
iron	300	200	170	170	180	120 F											
lead	25	25	U	U	U	U											
magnesium	35,000	1,000	42,000	43,000	46,000	51,000											
manganese	300	10	120	110	120	130											
mercury	0.7	1	U	U	U	U											
molybdenum		15	U	U	U	U											
nickel	100	20	U	U	U	2.4 F											
potassium		1,000	1,400	1,500	1,600	1,700											
selenium	10 50	30 10	U U	U U	U	U U											
silver sodium	20,000	1,000	27,000	26,000	28,000	28,000		+ + +	-				-			 	-
thallium	0.5	80	27,000 U	U	U	28,000 U											
vanadium	0.5	10	U	U	U	U											
zinc	2,000	20	6.2 F	U	7.7 F◆	9.1 F											
Leachate Indicators (mg/L)			•			•											
alkalinity, Total	-	10		210	200	220											
ammonia	2	0.2		U	U	U								1			
BOD5		2.4		U	U	24 J											
bromide	2	0.5		183 F	U	U								1			
COD		5		.7 F	U	23											-
chloride	250	1		00	140 ♦	140											
color	15	5		NA NA	U	NA U											
cyanide, Total hardness, Total	200	0.02		NA 860	NA 370	400											
nitrate	10	1		600 144 F	0.060 F	400 U								1			
TKN	1	0.2		U	0.28 B ◆	U				l		l					-
sulfate	250	1		53	49	51								1			
TDS	500	10		130	490◆	440											
TOC		1		60 F	0.66 F	1.0											
phenolics, Total		0.005		U	U	U								1			
u ·														1	1	· · · · · ·	

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															TMC	MW-9												
Date of Collection	NYSDEC Class GA	Reporting	6/29	2006	9/19/	2006	12/12	/2006	4/17/	2007	6/25/	2007	10/1/	2007	12/11		4/3/2	2008	6/17/	2008	10/2/	2008	12/10	/2008	4/16/	2009	6/30/	/2009
Sample ID No.	Groundwater	Limit	TMC0	919AA	TMC0	919BB	TMCM	0919CA	TMCM	0919DA	TMCM	0919EA	TMCM	0919FA	TMCM	0919GA	TMCM	0919HA	TMCM	0919IA	TMCM	0919JA	TMCM	0919KA	TMCM	0919LA	TMCM	0919MA
Depth to Water (ft)	Standards		2.	62	3.	20	2.3	82	1.	23	2.3	36	3.0	02	2.	62	1.5	50	3.3	32	3.	15	2.	29	2.0	06	2.	.48
VOCs (µg/L)	,	T																										
1,1,1-trichloroethane	5*	1	1		1		I I		Ţ		I I		I		I	U	I		ι		I I	IJ	T.			IJ		U U
1,1-dichloroethene 1,2-dichloroethane	5* 0.6	1		-	1	-	ī	-	ι		ī		ī	-	1	-	ī		ī		I	-	l t	-	I I	-		U
1,4-dichlorobenzene	3	0.5	l ;	-	l i	-	ì	-	ī		ī		ī	-	ı ,	-	ī		ī		ī	-	ı		ī	-		U
acetone	50	10	i	IJ	i	J	τ	J	τ		i	J	ī	J	1.2	0 F	τ	J	ί	J	τ	IJ	τ	IJ	τ	IJ	i	U
benzene	1	0.1	1	J	1	J	ι	J	ι	J	ι	J	Į	J	U	U	Ţ	J	ι	J	Ų	J	Ţ	J	Ų	J	1	U
carbon disulfide	1,000	0.5	1		1		τ	-	τ		τ		Ţ		τ		τ		τ		τ		τ		τ	IJ	1	-
chloroform	7	0.3	1	-	1	-	τ	-	τ		τ		Ţ		τ	-	Ţ		τ		τ	-	τ		τ	-	1	
chloromethane	5* 5*	1	1		0.1	-	t I	-	ι		I I		Ţ		i i		Ţ		ι		T.	-	0.48 U		l I	J		U U
cis-1,2-dichloroethene dichlorodifluoromethane	5*	1			0.1		,	ij	T T		τ	_	I	-		n n	ı ı	-	τ		I	J I	T T			n n		U
hexachlorobutadiene	0.5*	0.6	l i		l i	-	ī		I		ī		ī		ı ,		ī		ī		ī	I	ı		ī		l i	
methylene chloride	5*	1	i	J	i	J	0.12	20 F	τ	J	ί	J	τ	J	0.19	90 F	τ	J	ί	J	τ	u U	τ	u u	τ	u u	i	U
m,p-xylene	5*	2	1		1	J	τ	J	τ		τ		τ		τ	U	τ		τ		τ		τ		τ	-		U
trichloroethene (TCE)	5*	1	1	-	1	-	τ	-	τ		τ	-	Ţ	-	τ		Ţ	_	τ		τ		τ		τ			U
toluene	5*	1	1	-	1	-	τ	-	τ		ι		Ţ	-	Ţ	-	τ		τ		ι	-	U	-	ι	-		U
trans-1,2-dichloroethene	5* 5*	1	1	-		J	τ	-	ι		ι		I I	-	ı I	-	ι		ι		ı I	-	ι	-	T.			U U
trichlorofluoromethane vinyl chloride	5*	1	1 1		1		l i		l t		ī		ī		1		ī		ι		I		l t		I	-		U
xylenes, Total		1.5	l i	-	l i	-	ί	-	ī		ι		ī	-	l i	-	ί		ī		Ţ	-	l i		Ţ	-		U
Total VOCs (µg/L)	1			0	0.	12	0.	12	(,	0)	()	1.3	390	()	0	1	(0	0.4	180	(0		0
Metals (μg/L) [Dissolved / Total] ¹										•																		
aluminum	2,000	200	38.8 F	36.6 F	U	U	U	U	44 F	U	U	46 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	1.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium berylium	1,000	50 4	21.8 F	20.8 F	28.8 F	28.6 F	19 F	15 F U	16 F	16 F U	22 F	20 F	22 F	20 F	20 F U	16 F	18 F	18 F U	22 F	19 F U	20 F	20 F	15 F	15 F	15 F U	12 F	20 F	19 F U
boron	1,000	110	187	183	NA	NA	NA	NA	NA	NA	190	190	NA	NA	NA	NA	180	180	200	180	NA	NA	NA	NA	NA	NA	U	U
cadmium	5	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
calcium		1,100	173,000	174,000	180,000	176,000	170,000	160,000	170,000	170,000	180,000	180,000	170,000	180,000	170,000	170,000	170,000	170,000	190,000	170,000	160,000	170,000	160,000	160,000	150,000	140,000	170,000	160,000
chromium	50	10	U	U	2.68 F	3.04 F	5.1 F	4.3 F	4.8 F	2.7 F	3.5 F	7.7 F	4.2 F	12.0	6.0 F	2.8 F	1.8 F	2.3 F	4.9 F	4.0 F	3.7 F	6.2 F	4.4 F	6.0 F	3.3 F	17	U	3.5 F
cobalt		60	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
copper	200 300	10 200	U	U 85.2 F	654 J	U 329 J	2.8 F 32 F	2.3 F 14 F	U 16 F	U 27 F	U 21 F	U 18 F	U 300	U 200 J	U 11 F	U 12 F	U 15 F	U 17 F	U 46 F	U 26 F	U 150 F	U 180	U	U 14 F	U	U	U 25 F	U 22 F
iron lead	25	25	U	85.2 F	054 J U	329 J U	32 F	U	U	U	U	U	U U	200 J	U	U	U	U	40 F	20 F U	U	180 U	U	U U	U	U	U	22 F U
magnesium	35,000	1,000	35,300	36,500	37,000	36,000	36,000	36,000	36,000	36,000	35,000	36,000	35,000	36,000	34,000	36,000	35,000	35,000	37,000	34,000	32,000	34,000	34,000	34,000	31,000	32,000	32,000	31,000
manganese	300	10	1,690	1,730	2,420	2,440	810 J	13 J	500	480	1,800	1,500	2,100	1,600 J	910 J	6.3 F	380	320	2,000	1,900	2,000	2,000	6.3 F	9.7 F	49	3.8 F	2,400	2,200
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20 1,000	2.4 F	3.2 F 10,100	2.8 F	3.33 F	3.0 F	1.7 F	2.0 F	1.7 F	2.9 F	2.1 F 10,000	3.8 F	2.9 F	2.0 F	U	U 10.000	1.3 F 10,000	3.0 F	2.3 F	2.8 F	2.9 F	U 9,500	U 0.700	U 0.100	U 0.100	2.8 F	2.6 F 8,900
potassium selenium	10	30	10,100 U	10,100 U	10,200 U	9,810 U	10,000 U	10,000 U	9,800 U	10,000 U	9,700 U	10,000 U	9,600 U	10,000 U	10,000 U	11,000 U	10,000 U	10,000 U	10,000 U	9,200 U	9,200 U	9,500 U	9,500 U	9,700 U	9,100 U	9,100 U	9,100 U	8,900 U
silver	50	10	U	2.7 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	67,900	67,800	67,900	65,800	63,000	64,000	65,000	66,000	64,000	66,000	65,000	67,000	67,000	70,000	68,000	69,000	69,000	63,000	63,000	64,000	65,000	66,000	62,000	63,000	60,000	58,000
thallium	0.5	80	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	U	U	0.67 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
zinc Leachate Indicators (mg/L)	2,000	20	4.4 F	7.6 F	24.6 B	21.3 F	8.9 F	9.4 F	7.9 F	7.9 F	10 F	19 F	56 B	41 B	47 B	38 B	13 F	11 F	11 F	12 F	15 F	14 F	61 B	66 B	U	U	U	4.4 F
alkalinity, Total		10	5	96	50	00	45	30	50	10	50	00	50	00	41	80	50	00	52	0	50	00	48	80	44	40	4	90
ammonia	2	0.2	0			500 480 1.5 U		0.4		1.		1.		0.02		0.0		1.			.3	τ		0.04			1.3	
BOD5	_	2.4	ï	J	1		U		τ		ι		ι			U	ι		ι			IJ	τ		τ			U
bromide	2	0.5	1	-		J	Ü		0.1		ι		0.07			98 F	0.05		0.		0.1		ι			IJ	0.0	
COD		5	20.			5 F 11 89 90		17		3.		1			В	8.5		8.5			5	15		1	,		11	
chloride	250	1	86						8		9: I		8			7	8		8:			0	7			8		70
color cvanide, Total	15 200	5 0.02	1	0	N N	A	N N		N N		0.00		N N		N N		0.00		U N.		N	A A	N N		U N	-		NA NA
hardness Total	200	0.02	5	-	6		N 51		50 50		57		57		5: 5:		54		N. 64			50	A*		A*			40
nitrate	10	1	0.0		0.0			.4	1.		0.1	-	0.1			.5	1.		L		0.08		1.		1.	, ,		12 F
TKN	1	0.2	1		1	-	0.1		0.4		1.		1.		0.1		0.	-	1.			.3	0.00		0.1			1.5
sulfate	250	1	87	1.4	9	3	9	2	8	5	9	0	8		8	14	8		8:	2		7	7	4	7	4		56
TDS	500	10	7			10	75		81		73		83		7.		74		81		73		70		71			30
TOC		1		.5	3			4	3.		4.		3.		3		3.		3.			.3	3.7		2.			3.5
phenolics, Total		0.005	11	J	1	J	τ	J	τ	J	ι	J	Ţ	J	l t	U	Ţ	J	ι	J	Ţ	J	Ţ	J	N	A	N	NΑ

Location of Well		I								TMCM	1W-9					
Date of Collection	NYSDEC		9/16	/2009	3/23/2010	9/15/2010				INICA	111-9					
Sample ID No.	Class GA Groundwater	Reporting Limit		10919NA	TMCM0919OA	TMCM0919PA										
Depth to Water (ft)	Standards		3.	.26	2.45	3.88										
VOCs (µg/L)						<u> </u>		 *						*	*	
1,1,1-trichloroethane	5*	1		U	U	U										
1,1-dichloroethene	5*	1		U	U	U										
1,2-dichloroethane	0.6	1		U	U	U										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone benzene	50	10 0.1		U U	U	1.53 FB U										
carbon disulfide	1,000	0.1		U	U	U										
chloroform	7	0.3		U	U	U										
chloromethane	5*	1		U	U	U										
cis-1,2-dichloroethene	5*	1		10 F	U	0.120 F										
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene	0.5*	0.6	1	U	U	U										
methylene chloride	5*	1		U	U	U										
m,p-xylene	5*	2		U	U	U										
trichloroethene (TCE)	5*	1		U	U	U	1									
toluene	5*	1		U	U	U										
trans-1,2-dichloroethene trichlorofluoromethane	5* 5*	1		U U	U U	U U										
trichlorofluoromethane vinyl chloride	5* 2	1		U U	U	U										
xylenes, Total		1.5		U	U	U										
Total VOCs (µg/L)		1		.11	0	1.65	1									
Metals (µg/L) [Dissolved / Total] ¹																
aluminum	2,000	200	U	U	U	U										
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	U										
barium	1,000	50	23 F	23 F	15 F	22 F										
berylium	3	4	U	U	U	U										
boron	1,000	110	U	U	170	NA										
cadmium	5	5 1,100	U 160,000	U 160,000	U 150,000	U 150,000										
chromium	 50	1,100	160,000 U	160,000 U	150,000 4.4 F	150,000 U										
cobalt	50	60	U	U	U U	U										
copper	200	10	U	U	U	U										
iron	300	200	2,000	2,000	11 F	U										
lead	25	25	U	U	U	U										
magnesium	35,000	1,000	30,000	32,000	31,000	30,000										
manganese	300	10	2,300	2,300	95	2,100										
mercury	0.7	1	U	U	U	U										
molybdenum		15	U	U	U	U										
nickel	100	20	2.6 F	2.9 F	U 0.400	27 F 9,700										
potassium selenium	10	1,000 30	8,800 U	9,200 U	9,400 U	9,700 U										
silver	50	10	U	U	U	U										
sodium	20,000	1,000	57,000	59,000	55,000	55,000		1	1							
thallium	0.5	80	U	U	U	U										
vanadium		10	U	U	U	U										
zinc	2,000	20	U	U	4.1 F	10 F										
Leachate Indicators (mg/L)	_					_										
alkalinity, Total		10		80	460	500										
ammonia	2	0.2		1.3	U	1.4										
BOD5 bromide		2.4		U 97 F	U 0.1 F	U U										
bromide COD	2	0.5		97 F 16	0.1 F 12	12										
chloride	250	1		72	70	70	1									
color	15	5		NA	U	NA										
cyanide, Total	200	0.02		ΝA	0.012 F	U										
hardness, Total		1		80	490	510										
nitrate	10	1	0.	.21	1.1	U	<u> </u>									
TKN	1	0.2		1.3	U	1.5							1 -			-
sulfate	250	1		56	63	59										
TDS	500	10		10	630	620										
TOC	-	1		3.3	2.9	3.8										
phenolics, Total	-	0.005	1 1	U	U	U										

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well															TMC-I	USGS-2												
Date of Collection	NYSDEC Class GA	Reporting	7/6/	2006	9/19/	2006	12/13	/2006	4/18/	/2007	6/21/	2007	10/1/	2007	12/11	/2007	4/8/2	2008	6/18/	2008	10/2/	2008	12/11/	2008	4/14/	2009	7/1/2	.009
Sample ID No.	Groundwater Standards	Limit	TMCUN	40277AA	TMCUM	10277BB	TMCUM	10227CA	TMCUM	10227DA	TMCUM	10227EA	TMCUM	10277FA	TMCUM	10277GA	TMCUM	10277HA	TMCUM	10227IA	TMCUM	10227JA	TMCUM	0227KA	TMCUM	10227LA	TMCUM	0227MA
Depth to Water (ft)	Standards		4.	.38	4.	31	3.	62	2.	66	3.9	91	5.0	03	4.	25	3.2	20	6.8	30	4.0	68	4.0	00	3.8	35	4.1	ا7
VOCs (µg/L)	1	T						. 1									-		-		_		-					
1,1,1-trichloroethane	5* 5*	1		U U	1		1			n n	l I		I I		1		Ţ		τ		ı	J	τ		J I		U	
1,1-dichloroethene 1,2-dichloroethane	0.6	1		U			,	-		JJ	ī		ī			-	ī	-	ī		ī	-	ī		ī	ī	U	-
1,4-dichlorobenzene	3	0.5		U	0.2		i	-		J J	0.11	-	0.10	-		-	ī	-	ī		ī	-	ī		ī	ī	U	-
acetone	50	10	1	F	1		i	J		IJ	Ţ		U		i	U	τ	J	τ	J	τ	J	τ	J	ι	J	U	
benzene	1	0.1	1	U	- 1	J	1	J	τ	IJ	Ţ	J	Ţ	J	1	U	Ţ	J	τ	J	Ţ	J	τ	J	Ţ	J	U	J
carbon disulfide	1,000	0.5	0.1	11 F		J	1	J	ι	IJ	ι	J	Į	J	1	IJ	τ	J	ι	J	ι	J	ι	J	U	J	0.14	.0 F
chloroform	7	0.3		U	1	J	1	-		IJ	Į		Į		1	-	Ţ	-	ι		τ	-	ι		Į		U	-
chloromethane	5*	1		U	1	J		J		JJ	Į	-	Į	-	1	-	Į	J	ι		Ţ	-	U		Ţ		U	j
cis-1,2-dichloroethene dichlorodifluoromethane	5* 5*	1		U U	1		Ţ	J II	T.	IJ	I I		Ţ	_	1		ı ı	J T	ι		I	-	0.36 L		ı	,	U	·
hexachlorobutadiene	0.5*	0.6		16 F	i		1			n n	ī		ī			U U	ί		ī		ī	-	ί		ι		U	
methylene chloride	5*	1		U	0.4		0.1			jj	0.12		ī		0.1		ί		ί		ί		ι		ί		U	
m,p-xylene	5*	2	1	U	1		1			IJ	τ		τ	J	1		Ţ	J	τ	J	τ	J	τ		τ	J	U	J
trichloroethene (TCE)	5*	1	1	U		J		J	τ	IJ	τ	J	τ	J	1	-	τ	J	ι	J	τ	J	ι		ι	J	U	
toluene	5*	1		U	1		1	-		U	τ	-	τ	-		U	τ	-	τ		Ţ	-	τ		τ		U	
trans-1,2-dichloroethene	5*	1		U	1		1	-		JJ	τ	-	τ	-	1	-	τ	,	τ		Ţ	-	ι		ι	*	U	
trichlorofluoromethane	5*	1		U	1	,		_		IJ	ι	-	ι	-			Į	,	Į,		Ţ	-	ι		Į	*	U	
vinyl chloride xylenes, Total	2	1.5		U U	1		1	-		n n	Ţ	-	T.	-	1	-	Ţ	-	ι		Į	-	τ		I I	,	U	ī
Total VOCs (µg/L)	-	1.5	1	.27	0.		0.	-		0	0,:		0.	-		150		-			- (-	0.3		- (0.1	40
Metals (µg/L) [Dissolved / Total] ¹			-			,,,		.,			0	20		•	0		`				<u> </u>	,			`			
aluminum	2,000	200	45.4 F	3,470	51.4 F	5,820	U	17,000	42 F	16,000	U	4,500	U	7,900	U	4,900	U	4,300	2,200	4,600	880	4,100	U	9,400	U	19,000	U	5,100
antimony	3	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.7 F	U	U	U	U	U	U	U	U	U
arsenic	25	30	U	U	U	U	U	6.5 F	U	4.8 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	6.3 F	U	U
barium	1,000	50	166	233	215	280	210	420	220	410	190	250	200	280	190	250	200	250	220	260	210	240	220	310	220	440	230	270
berylium	3	4	U	0.3 F	U	U	U	0.96 F	U	0.91 F	U	U	U	0.30 F	U	U	U	0.17 F	U	0.20 F	U	0.23 F	U	0.29 F	U	0.81 F	U	U
boron cadmium	1,000	110	20.7 U	17.2 0.9 F	NA U	NA 0.44 F	NA 0.62 F	NA 1.9 F	NA U	NA 1.0 F	9.9 F U	17 U	NA II	NA U	NA 1.7 F	NA 11.0	15.0 U	1.9 4.1 F	15.0 1.5 F	18.0 4.9 F	NA 0.56 F	NA 2.7 F	NA U	NA 5.4	NA 1.3 F	NA 7.0	U U	U 2.5 F
calcium	-	1,100	32,700	40,300	38,200	43,700	36,000	67,000	37,000	67,000	35,000	44,000	38,000	47,000	36,000	41,000	39,000	43,000	42,000	4.9 F 45,000	39,000	42,000	38,000	48,000	39,000	70,000	39,000	42,000
chromium	50	10	0.5 F	2.9 F	1.5 F	7.41 F	2.8 F	23	2.9 F	25	U	8.4 F	2.5 F	11	3.8 F	5.5 F	2.8 F	8.2 F	4.2 F	8.0 F	4.1 F	9.1 F	3.8 F	14	U	24	U	6.4 F
cobalt		60	U	1.5 F	U	U	U	9.2 F	U	11 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	9.4 F	U	U
copper	200	10	U	U	U	10.3	3.1 F	36	U	32	U	7.3 F	U	12	U	8.5 F	U	6.7 F	3.0 F	8.6 F	U	6.2 F	U	16	U	39	U	7.1 F
iron	300	200	U	3,240	6.13 F	8,650	18 F	29,000	28 F	27,000	32 F	6,300	28	11,000	41 F	6,000	19 F	5,500	2,800	6,400	1,100	5,600	50 F	13,000	U	31,000	55 F	5,300
lead	25	25	U	U	U	U	U	8.2 F	U	7.9 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	9.2 F	U	U
magnesium manganese	35,000 300	1,000 10	15,600 37.8	18,200 107	17,800 U	21,100 208	18,000 17	29,000 770	17,000 20	29,000 720	17,000 19	21,000 190	18,000 13.0	22,000 260	17,000 20	20,000 150	19,000 14	21,000 140	20,000 89	22,000 190	19,000 41	21,000 150	19,000 44	23,000 320	19,000 F 7.1 F	32,000 840	19,000 31	21,000 130
mercury	0.7	10	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	130 U
molybdenum		15	15 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	3.5 F	1.22 F	8.46 F	2.1 F	24	U	U	U	5.2 F	1.5 F	11 F	U	6.0 F	U	5.8 F	2.3 F	5.3 F	1.9 F	6.0 F	U	11 F	U	28	U	5.4 F
potassium		1,000	667 F	1,910	741 F	2,430	780 F	5,400	750 F	5,600	630 F	2,200	730 F	3,200	820 F	2,400	740 F	2,200	1,300	2,100	1,000	2,100	750 F	3,800	710 F	5,400	670 F	2,400
selenium	10	30	U	U	U	U	U	2.9 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U 16 200	U	1.1 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium thallium	20,000	1,000 80	13,600 U	16,000	16,200 U	16,700 U	16,000 U	17,000 U	16,000 U	17,000 U	16,000 U	17,000 U	16,000 U	17,000 U	15,000 U	16,000 U	16,000 U	17,000 U	16,000	17,000 U	16,000 U	15,000 U	15,000 U	16,000 U	16,000 II	16,000 II	16,000 U	16,000 U
vanadium	0.5	10	U	5.8 F	U	9.71 F	0.97 F	28	U	27	U	7.0 F	U	13	U	8.1 F	U	6.9 F	3.8 F	7.9 F	1.6 F	6.8 F	U	16	U	32	U	8.6 F
zinc	2,000	20	4.2 F	11.4 F	17.6 F	56.6 B	8.5 F	84	8.4 F	72	U	24	18 F	56 B	31 B	76 B	11 F	27 B	20	34	17 F	27 B	63 B	91 B	U	87	U	18 F
Leachate Indicators (mg/L)			•																									
alkalinity, Total		10		56	1:				24		15		17			70	1.5		19			50	15		18		13	
ammonia	2	0.2	0.0		0.0			190 0.12		10	0.0		0.04		0		0.02		0.2 I		0.05		0.0		0.08		0.0	
BOD5	2	2.4 0.5		U U	0.03			0.12 U		U 38 F	0.03	-	0.03	-	0.0	-	U 0.04	-	0.04		0.03	-	U		0.04		0.02	-
bromide COD	2	0.5		U .1 B	0.0.	I .		-		58 F 5 B	0.03		0.03			46 F i B	26		0.04		0.03		3		6.0		0.02	
chloride	250	1		1.9	2	2	2	-		!1	2		2	-	20		20		2		2	_	19		2		23	
color	15	5		00	N		N		N		ι		N		N		ι		ι		N		N.		ι		N.	
cyanide, Total	200	0.02	1	U	N	A	N		N	ΙA	τ	J	N	A	N	ΙA	τ	J	ι		N		N.	A	N	A	N.	
hardness, Total		1		60	20		2		20		20		20		2		18		21		20		21		30		19	
nitrate	10	1		U	0.0		0.		0.0		0.03		0.04		0.0		0.04		0.05		0.04		0.0		2.5		0.05	
TKN	1	0.2		1 F	0.0		0.		0.		0.1		0.1		0.0		0.09		2.5		0.1		0.19		0.4		0.18	
sulfate TDS	250	1 10		2.8	2		2	3	2:	14	3		26		2		3		3: 25		3		20		3.		27	
TOS	500	10		43 54 F	0.7		0.7			50 U	29 U		0.5		0.6		18 U		25 L		0.5		20 L		15 I		0.50	-
phenolics, Total		0.005		04 F U	0.7		0.7			U	ī		U.5		0.0		ί		ι		U.5.		ί		N.		0.50 Na	
prictiones, Total		0.003	l	U	<u> </u>	,		J		U		J	,	,	· '	U	١ ,	,		,	١	-	١	,	IN.	n	IN/	3

Location of Well	1									TMC-U	ISGS-2					
Date of Collection	NYSDEC		9/16/	/2009	3/24/2010	9/15/2010				IMC-U	303-4					
Sample ID No.	Class GA Groundwater	Reporting Limit		10227NA	TMCUM0227OA	TMCUM0227PA										
Depth to Water (ft)	Standards		5.	06	4.12	5.79										
VOCs (µg/L)	*						•	-							-	
1,1,1-trichloroethane	5*	1	1	U	U	U										
1,1-dichloroethene	5*	1		U	U	U										
1,2-dichloroethane	0.6	1		U	U	U										
1,4-dichlorobenzene	3	0.5		U	U	U										
acetone	50	10		U	U	2.15 FB										
benzene carbon disulfide	1	0.1		U U	U U	U U										
carbon disulfide chloroform	1,000 7	0.5 0.3		U	U	U										
chloromethane	5*	1		U	U	U										
cis-1,2-dichloroethene	5*	i		U	U	U										
dichlorodifluoromethane	5*	1		U	U	U										
hexachlorobutadiene	0.5*	0.6	1	U	U	U										
methylene chloride	5*	1	1	U	U	U										
m,p-xylene	5*	2		U	U	U										
trichloroethene (TCE)	5*	1	- 1		U	U										
toluene	5*	1		U	U	U										
trans-1,2-dichloroethene	5*	1		U	U	U										
trichlorofluoromethane vinyl chloride	5* 2	1		U U	U U	U U										
vinyl chloride xylenes, Total	2	1.5		U U	U	U										
Total VOCs (µg/L)		1			0	2.15	1									
Metals (µg/L) [Dissolved / Total] ¹				-												
aluminum	2,000	200	200 B	6,200	5,100	20,000										
antimony	3	50	U	U	U	U										
arsenic	25	30	U	U	U	6.2 F										
barium	1,000	50	210	280	260	440										
berylium	3	4	U	U	U	0.82 F										
boron	1,000	110	U	U	20 B	NA										
cadmium calcium	5	5 1,100	U 39,000	4.1 F 46,000	4.1 F 42,000	26 78,000										
chromium	50	1,100	39,000 U	7.4 F	42,000 4.1 F	78,000										
cobalt		60	U	U	U	11 F										
copper	200	10	U	13	7.3 F	50										
iron	300	200	300	9,100	5,300	31,000										
lead	25	25	U	U	U	9.6 F										
magnesium	35,000	1,000	19,000	22,000	21,000	35,000										
manganese	300	10	24	230	130	1,000										
mercury	0.7	1	U	U	U	U										
molybdenum nickel		15 20	U U	U	U 4.2 F	U 33										
potassium	100	1,000	850 F	8.9 F 2,500	4.2 F 2,600	7,800										
selenium	10	30	U	2,300 U	U	U U										
silver	50	10	U	U	U	U			1							
sodium	20,000	1,000	15,000	16,000	15,000	17,000										
thallium	0.5	80	U	U	U	U			1							
vanadium		10	U	11	8.7 F	33			1							
zinc	2,000	20	6.2 F	32	22	120										
Leachate Indicators (mg/L)																
alkalinity, Total		10		50	160	200										
ammonia BOD5	2	0.2 2.4		063 U	U U	0.082 U										
bromide	2	0.5	0.03		U	U										
COD	_	5		30 F	14	47										
chloride	250	1		24	25	29										
color	15	5		IA	U	NA										
cyanide, Total	200	0.02	N	IA	NA	U										
hardness, Total		1		10	190	340										
nitrate	10	1		.1	0.092 F	U										
TKN	1	0.2		U	0.20 B	0.61 B										
sulfate	250	1		1	32	32										
TDS TOC	500	10		60 72 F	230	260										
		0.005		12 F U	U U	1.9 B										
phenolics, Total		0.005		U	U	U	1									

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well										LF6LH-1						
Date of Collection	NYSDEC Class GA	D	12/20/20	006	4/18/2007	6/21/2007	10/1/2007	12/11/2007	4/8/2008	6/18/2008	10/1/2008	12/10/2008	4/16/2009	6/30/2009	9/17/2009	3/24/2010
Sample ID No.	Groundwater Standards	Reporting Limit	LF6LH010	01CA	LF6LH0101DA	LF6LH0101EA	LF6LH0101FA	LF6LH0101GA	LF6LH0101HA	LF6LH0101IA	LF6LH0101JA	LF6LH0101KA	LF6LH0101LA	LF6LH0101MA	LF6LH0101NA	LF6LH0101OA
Depth to Water (ft)	Standards		Leacha	ite	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
VOCs (µg/L)																
1,1,1-trichloroethane	5*	1	U		UJ	U	U	U	U	U	U	U	U	U	U	U
1,1-dichloroethene 1,2-dichloroethane	5* 0.6	1	U		UJ UJ	U	U	U	U	U	U	U U	U	U	U	U U
1,4-dichlorobenzene	3	0.5	U		UJ	U	U	II.	U	U	U	U	U	II.	U	U
acetone	50	10	U		2.34 F	U	U	Ü	U	U	U	U	1.45 F	1.08 F	2.63 F	1.81 F
benzene	1	0.1	U		UJ	U	U	U	U	U	U	U	U	U	U	U
carbon disulfide	1,000	0.5	U		UJ	U	U	U	U	U	U	U	U	U	U	U
chloroform	7	0.3	U		UJ	U	U	U	U	U	U	U	U	U	U	U
chloromethane cis-1,2-dichloroethene	5* 5*	1	UJ		W W	UJ U	U U	U	U	U U	U U	U	U	U	U	U
dichlorodifluoromethane	5*	1	U		UJ	U	U	II.	U	II.	II.	U	U	U	U	U
hexachlorobutadiene	0.5*	0.6	U		UJ	U	U	U	U	U	U	U	U	U	U	U
methylene chloride	5*	1	0.210	F	UJ	U	U	0.120 F	U	U	U	U	U	U	U	U
m,p-xylene	5*	2	U		UJ	U	U	U	U	U	U	U	U	U	U	U
trichloroethene (TCE)	5*	1	U		UJ	U	U	U	U	U	U	U	U	U	U	U
toluene	5*	1	U		U	U	U	U	U	U	U	U	U	0.230 F	0.310 F	U
trans-1,2-dichloroethene trichlorofluoromethane	5* 5*	1	U		W W	U	U U	U	U	U	U U	U U	U U	U	U U	U U
vinyl chloride	2	1	U		UJ	U	U	U	U	U	U	U	U	U	U	U
xylenes, Total	_	1.5	U		UJ	U	U	U	U	U	U	U	U	Ü	U	U
Total VOCs (µg/L)			0.21		2.34	0.21	0	0.120	0	0	0	0	1.45	1.31	2.94	1.81
Metals (μg/L) [Dissolved / Total] ¹																
aluminum	2,000	200	U	60 F	46 F 4,300	U U	U 2,100	U 7,000	U 290	U 14,000	U 3,000	69 F 4,300	U 4,100	U U	64 F 1,400	57 F
antimony	3 25	50 30	U	U U	U U	U U	U U U 7.2 F	U U	U U	U 2.7 F U 7.5 F	U U	U U	U U U 14 F	U U 13 F 22 F	U U 18 F 31	U U
arsenic barium	1,000	50	9.9 F	9.6 F	9.6 F 26 F	19 F 18 F	U 7.2 F 13 F 28 F	370 490	14 F 16 F	360 780	380 400	330 400	23 F 44 F	23 F 24 F	18 F 31 31 F 37 F	20 F
berylium	3	4	U	U	U U	UUU	U U	U 0.36 F	U U	U 0.81 F	U 0.12 F	U U	U 0.21 F	U U	U U	U
boron	1,000	110	NA	U	NA NA	8.8 F 12.0	NA NA	NA NA	9.9 F 10	41 54	NA NA	NA NA	NA NA	U U	U U	12 B
cadmium	5	5	U	U	U U	U U	U U	U U	U U	U 0.63 F	U U	U U	U U	U U	U U	U
calcium		1,100		53,000	40,000 42,000	58,000 61,000	59,000 63,000	45,000 57,000	44,000 47,000	48,000 90,000	50,000 53,000	48,000 57,000	44,000 48,000	59,000 63,000	63,000 68,000	52,000
chromium	50	10 60	4.9 F	3.7 F	2.0 F 7.9 F	U 2.8 F	1.8 F 3.6 F	4.2 F 14 U U	1.8 F 2.5 F	2.5 F 22	5.0 F 8.7 F	5.0 F 9.1 F	U 6.6 F U U	U U	4.5 F U	U
cobalt copper	200	10	2.4 F	3.0 F	U 17	U U	U 8.8 F	U 15	U U	U 45	U 7.2 F	U 11	U 18	U U	U 6.1 F	U
iron	300	200	230	720	7.2 F 6,700	140 F 1,400	53 F 5,300	U 10,000	57 F 3,000	14 F 25,000	340 4,500	100 F 7,000	27 F 11,000	1,900 3,800	3,200 8,200	980
lead	25	25	U	U	U U	U U	U U	U 4.2 F	U U	U 22 F	U U	U U	U 7.9 F	U U	U U	U
magnesium	35,000	1,000	,	15,000	10,000 12,000	11,000 12,000	11,000 12,000	28,000 34,000	10,000 11,000	31,000 43,000	30,000 32,000	30,000 33,000	12,000 13,000	15,000 15,000	16,000 16,000	14,000
manganese	300	10	5,200	5,300	1,300 1,600	2,800 2,700	1,700 2,100	110 430	740 700	120 1,200	320 300	240 410	700 1,000	1,400 1,300	1,900 2,400	990
mercury molybdenum	0.7	1 15	NA U	NA U	NA NA U U	NA NA U U	NA NA U U	NA NA U U	NA NA U U	NA NA U U	NA NA U U	NA NA U U	U U	U U	U U	U U
nickel	100	20	U	U	U 4.7 F	U U	U 2.5 F	U 9.0 F	U U	U 24	U 4.0 F	U 4.8 F	U 5.4 F	U U	3.2 F 2.6 F	U
potassium	-	1,000		540 F	860 F 2,200	U 480 F	630 F 1,200	970 F 3,200	780 F 890	1,100 4,200	1,300 2,000	1,000 2,400	1,000 1,700	430 F 360 F	840 F 1,100	1,100
selenium	10	30	U	3.6 F	U U	U U	U U	U U	U U	3.1 F 2.7 F	U U	U U	U U	U U	U U	U
silver	50	10	U	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U U	U
sodium	20,000	1,000	2,100	1,900	1,300 1,300	2300 B 2,400	2,000 2,100	35,000 34,000	1,300 1,300	33,000 38,000	37,000 31,000	32,000 34,000	2,000 1,800	4,200 J 3,300 J	4,100 3,800	4,600
thallium vanadium	0.5	80 10	U U	U U	U U U 8.6 F	U U	U U U 5.1 F	U U U 16	U U U 1.0 F	U U U 45	U U U 7.7 F	U U U 9.7 F	U U U 9.3 F	U U	U U U 3.7 F	U U
zinc	2,000	20	7.7 F	6.8 F	U 8.6 F	U U	18 F 47 B	48 B 59 B	10 F 1.0 F	12 F 170	12 F 34 B	65 B 75 B	U 9.3 F	U U	U 3.7 F	10 F
Leachate Indicators (mg/L)																
alkalinity, Total	-	10	180		130	180	180	190	150	180	190	190 B	150	190	200	160
ammonia	2	0.2	U		0.051	0.041 F	0.034 F	0.042 F	0.016 F	0.10 B	0.063 B	0.031 F	0.10 B	0.07	0.065	U
BOD5		2.4	3.1		2.1	U	U	U	2.2	2.4	U	U	2.6	U	2.4	U
bromide	2	0.5	U 20		U 15 B	U 20 B	U 13	0.27 28 B	U 20	0.33 120	0.19 F 13	UJ 17 B	0.013 F 53	0.021 F	0.022 F 23	U 8.1 F
COD chloride	250	5	2.2	-	2.2	20 B 2.7	2.6	28 B 60	1.8	74	13	17 B 58	3.5	7.3	6.4	8.1 F 6.5
color	15	5	NA		NA	10	NA	NA	10	U U	NA	NA	10	NA	NA	U
cyanide, Total	200	0.02	NA		NA	U	NA	NA	U	U	NA	NA	NA NA	NA NA	NA	NA
hardness, Total	-	1	200		140	210	210	290	160	480	270	250	170	220	240	180
nitrate	10	1	U		16	U	U	U	0.016 F	0.016 F	U	U	U	0.014 F	0.029 F	0.016 F
TKN	1	0.2	0.085	F	0.14 F	0.11 F	0.25 B	0.39	0.46	2.2	0.38	0.20	0.93	0.28	0.36	0.32 B
sulfate	250	1	23		U	19	20	36	16	34	38	37	20	8.3	14	24
TDS TOC	500	10	200 2.1		160 1.8	240 3.1	220 2.6	340 1.4 F	140 1.9 B	390 U	330 1.7	360 1.2 B	210	250	250	230
phenolics, Total	-	0.005	2.1 U		1.8 U	3.1 U	2.6 U	U U	0.0032 F	U	U U	1.2 B	1.9 NA	2.6 NA	3.5 U	2.4 B U
рислонея, тока		0.003	U		U	U	U	U	0.0032 F	U	U	U	MA	:NA	U	U

v avv. n		ı							LF6L	TT 1								
Location of Well Date of Collection	NYSDEC		9/16/2010					1	LF6L	H-1								
Sample ID No.	Class GA Groundwater	Reporting Limit	LF6LH0101PA															
Depth to Water (ft)	Standards		Leachate															
VOCs (µg/L)	-		Leucinic															
1,1,1-trichloroethane	5*	1	U															-
1,1-dichloroethene	5*	1	U															
1,2-dichloroethane	0.6	1	U															
1,4-dichlorobenzene	3	0.5	U															
acetone	50	10	3.09 FB															
benzene	1	0.1	U															
carbon disulfide	1,000	0.5	U															
chloroform	7	0.3	U															
chloromethane	5*	1	U															
cis-1,2-dichloroethene	5*	1	U															
dichlorodifluoromethane	5*	1	U															
hexachlorobutadiene	0.5*	0.6	U															
methylene chloride	5*	1	U															
m,p-xylene	5*	2	U															
trichloroethene (TCE)	5*	1	U															
toluene	5*	1	1.08 U															
trans-1,2-dichloroethene	5* 5*	1	U															
trichlorofluoromethane	5*	1	U															
vinyl chloride xylenes, Total	2	1 1.5	U															
Total VOCs (µg/L)		1.5	4.17															
Metals (µg/L) [Dissolved / Total] ¹			4.17				 								 			
aluminum	2,000	200	9,900			I					Т	Т	1					
antimony	3	50	U															
arsenic	25	30	89															
barium	1,000	50	120	1														
berylium	3	4	0.49 F															
boron	1,000	110	NA															
cadmium	5	5	U															
calcium		1,100	53,000															
chromium	50	10	12															
cobalt		60	U															
copper	200	10	44															
iron	300	200	38,000															
lead	25	25	16 F															
magnesium	35,000	1,000	21,000															
manganese	300	10	3,200															
mercury	0.7	1	U															
molybdenum		15	U															
nickel	100	20	12 F															
potassium		1,000	3,800 U															
selenium	10 50	30	U															
silver sodium	20,000	1,000	3,600	+ +			1 1	1			+	-+		-+			-	
thallium	0.5	80	U 3,000															
vanadium	0.5	10	21															
zinc	2,000	20	95															
Leachate Indicators (mg/L)	_,,,,,,						 											
alkalinity, Total		10	190								T							
ammonia	2	0.2	0.6	1														
BOD5	_	2.4	9.7 J															
bromide	2	0.5	U															
COD		5	130															
chloride	250	1	6.0															
color	15	5	NA	1														
cyanide, Total	200	0.02	U	1														
hardness, Total	-	1	220															
nitrate	10	1	U	<u> </u>			 											
TKN	1	0.2	3.2															
sulfate	250	1	10	1														
TDS	500	10	190															
TOC	-	1	11	1														
phenolics, Total		0.005	U	<u> </u>			 											
*	•	•	•															

Landfill 6 AOC Groundwater Analytical Results (continued)

Location of Well														LF	6LH-2											
Date of Collection	NYSDEC Class CA	Donostino	12/20/	2006	4/18/200	7	6/21/2007		10/1/2007	12/1	2/2007	4/8/	2008		8/2008	10/1	1/2008	12/10	/2008	4/16	/2009	7/1/	2009	9/17/	2009	3/25/2010
Sample ID No.	Class GA Groundwater Standards	Reporting Limit	LF6LH0	0201CA	LF6LH020	DA	LF6LH0201EA	١.	LF6LH0201FA	LF6LH	I0201GA	LF6LH	0201HA	LF6L	H0201IA	LF6LF	H0201JA	LF6LH	0201KA	LF6LH	0201LA	LF6LH	0201MA	LF6LH0	0201NA	LF6LH0201OA
Depth to Water (ft)	Standards		Leac	hate	Leachat	,	Leachate		Leachate	Lea	chate	Lea	chate	Lea	achate	Lea	chate	Lead	chate	Lea	chate	Lead	:hate	Leac	:hate	Leachate
VOCs (µg/L)	1 1					J U U U U U U U U U U U U U U U U U U U								1				_								
1,1,1-trichloroethane	5* 5*	1	t t				U		U U		U U		U U		U U		U U	T T			U		J .	J J		U U
1,1-dichloroethene 1,2-dichloroethane	5° 0.6	1	ī				U		U		U		U II		U		U	0.13	-				U.	ī		U
1,4-dichlorobenzene	3	0.5	ī				U		U		U	0.1	80 F		U		U	0.1.			-		1	ī	-	U
acetone	50	10	τ	ı			U		U		U		U		U		U	1.8	5 F	1	U	1	IJ	ι	IJ	U
benzene	1	0.1	τ	ı	UJ		U		U		U		U		U		U	τ	IJ	1	U	1	IJ	ι	IJ	U
carbon disulfide	1,000	0.5	τ	ī		JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ	U		U	0.1	00 F		U		U		U	τ	IJ	1	U	1	IJ	ι	IJ	U
chloroform	7	0.3	υ				U		U		U	1	U		U		U	τ	-	1			IJ	Į	-	U
chloromethane	5* 5*	1	U				UJ		U		U		U		U		U	0.64		1	-	1	-	0.54		U
cis-1,2-dichloroethene dichlorodifluoromethane	5*	1	L L				U		U		U U		U U		U		U	I I	-	1	U	1		J		U U
hexachlorobutadiene	0.5*	0.6	l t				U		U		U		U		U		U	"			U			Ţ		U
methylene chloride	5*	1	0.15				0.120 F		U		U		U		U		U	i				1	-	ί		U
m,p-xylene	5*	2	τ				U		U		U	1	U		U		U	τ	IJ	1	U	1	IJ	τ	IJ	U
trichloroethene (TCE)	5*	1	τ				U		U		U		U		U		U	Ţ	-	1	-	1	IJ	ι		U
toluene	5*	1	U		-	T	U	T	U		U		U		1.33		.400	τ	-	1	-	1	_	Ţ	-	U
trans-1,2-dichloroethene	5*	1	U				U		U		U		U		U		U	U			-	1	_	ι	-	U
trichlorofluoromethane	5* 2	1	t t				U		U U		U U		U		U U		U U	T T		1			II.	J I		U
vinyl chloride xylenes, Total		1.5	'				U II		U		U II		П		U		U	'	II.		U U		-	Ţ	i i	U U
Total VOCs (µg/L)		1.0	0.1	15			0.12		0		100	0.	180	1	.330		.400	2.	85				0	0.5	54	0
Metals (µg/L) [Dissolved / Total] ¹																										
aluminum	2,000	200	U	880	45 F		U 981		U 2,200	U	U	U	4,500	150 F	2,200	41 F	1,900	71 F	25,000	U	2,200	U	620	U	380	4,300
antimony	3	50	U	U	U		U U		U 2.1 F	U	U	U	U	U	U	U	U	U	3.7 F	U	U	U	U	U	U	U
arsenic	25	30	U	U	U		U U		U U	U	U	U	U	8.5 F	19 F	11 F	15 F	U	30	U	U	U	U	U	U	U
barium	1,000	50	370 U	370 U	400 U				400 440 U U	16 F	13 F U	350 U	480 0.24 F	54 U	120 0.12 F	34 F	44 F U	28 F	200 1.3 F	320 U	390 U	390 U	410 U	410 U	430 U	440 U
berylium boron	1,000	110	NA NA	NA		-	41 42	_	NA NA	NA NA	NA NA	41	43	9.7 F	12 12	NA	NA	NA NA	NA	NA	NA NA	U	U	U	U	47
cadmium	5	5	U	U	U		U U		U U	U	U	U	U	U	U	U	U	U	3.9 F	U	U	U	U	U	U	U
calcium		1,100	44,000	44,000	44,000 4	5,000	43,000 45,0		46,000 51,000	52,000	52,000	47,000	58,000	66,000	74,000	57,000	59,000	43,000	69,000	45,000	50,000	50,000	52,000	50,000	51,000	53,000
chromium	50	10	4.0 F	3.1 F	3.8 F	6.6 F	1.6 F 4.2	F	3.3 F 5.7 F	3.1 F	3.3 F	4.0 F	10	U	4.5 F	3.3 F	6.1 F	14	39	U	5.4 F	3.2 F	3.0 F	U	U	5.3 F
cobalt		60	U	U	U		U U		U U	U	U	U	U	U	U	U	U	U	13	U	U	U	U	U	U	U
copper	200	10	U	3.0 F	U		U U		U 4.2 F	3.0 F	U	U	13	2.0 F	13	U	11	U	120	U	4.8 F	U	U	U	U	6.4 F
iron lead	300 25	200 25	20 F U	1,300 U	7.6 F				8.6 F 3,300	2,500 J	1,800 J	U	8,500 5.1 F	2,900 U	11,000 6.7 F	4,000 U	8,900 5.3 F	600 U	50,000 58	U	3,700 U	200 U	1,200 U	190 F	750 U	5,000 U
magnesium	35,000	1,000	28,000	28,000	-		28,000 29,0		29,000 31,000	12,000	12,000	31,000	34,000	12,000	13,000	13,000	14,000	12,000	20,000	28,000	30,000	31,000	31,000	30,000	30,000	32,000
manganese	300	10	110	160			110 120		110 210	2,400 J	1,500 J	110	420	850	1,000	1,500	1,900	1,400	3,800	8.60	230	120	150	120	140	220
mercury	0.7	1	NA	NA			NA NA		NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U	U	U	U
molybdenum		15	U	1.8 F	U		U U		U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U		U U		U 2.6 F	U	U	U	7.7 F	U	2.6 F	U	3.1 F	U	33	U	2.9 F	U	U	U	U	3.9 F
potassium		1,000 30	930 F U	1,100	930 F		1,000 1,10 U U		1,000 1,700 U U	760 F	870 F	1,000 U	2,100 U	620 F 3.8 F	1,200 3.1 F	1,100 U	1,800 U	1,100 U	6,200 U	1,300 U	1,600 U	1,200 U	1,300 U	1,200 U	1,200	2,600 U
selenium silver	10 50	30 10	U	2.7 F	U	-	UUU		U U	U	U	U	U	3.8 F	3.1 F U	U	U	U	U	U	U	U	U	U	U	U
sodium	20,000	1,000	29,000	29,000	Ü	0	28,000 32,0	_	36,000 36,000	1,600 J	1,200 J	34,000	35,000	5,100 B	6,000	2,400 B	2,600 B	3,100 B	2,900 B	39,000	38,000	41,000	41,000	44,000	43,000	42,000
thallium	0.5	80	U	U	U	_	U U		U U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
vanadium		10	U	2.2 F	U		U U		U 5.0 F	U	U	U	U	1.0 F	6.9 F	U	4.8 F	U	61	U	4.6 F	U	U	U	U	8.7 F
zinc	2,000	20	7.7 F	11 F	U	U	U U		20 B 38 B	62 B	50 B	11 F	51 B	20	100	12 F	33 B	24 B	370 B	U	12 F	U	5.0 F	17 F	13 F	17 F
Leachate Indicators (mg/L)		10		0	100		100	-	100		60		00	T .	100		170		0 D		00		70		70	160
alkalinity, Total	2	10 0.2	19 U				180 0.046 F		180 0.043 F		60 13 F		90 46 F		190 0.31		170).17	0.0		0.0	80 84 B	0.0		0.0		160 0.046 F
BOD5	-	2.4	l t				U.046 F		U.043 F		1.1		40 F U		9.6		3.8	1		0.0		0.0		U.U		U.040 F
bromide	2	0.5	0.08	0 F			0.17		0.32		U	0.	.13		029 F)23 F	ι		0.	31	0.2	2 F	0.3	31	0.24 F
COD		5	7.3	F			17 B		4.1 F		3 B	1	15		39		17	25			13	1	~	6.7	7 F	12
chloride	250	1	3'		49		56		71		2.0		54		11		5.1	6.			19		0	9		99
color	15	5	N.		NA		U		NA		NA.		U		45		NA	N			U		A	N		U
cyanide, Total	200	0.02	N. 22		NA 220		U 230		NA 250		NA 100		U 80		U 250		NA 220	N 2:			IA 50	N 2:	A EO	N 26		NA 270
hardness, Total	10	1	22 I		220 U		230 U		250 U		200 118 F		80 33 F		250 034 F		220 U	21			50 U		50 U	0.02		270 U
nitrate TKN	10	0.2	T.		U		U	-	0.12 F		188 F		26		1.8		0.70	4.			20		26	0.02 L		0.35 B
sulfate	250	1	3'		36		39		36		24		36		15		17	2			89		8	3	-	37
TDS	500	10	27		320		360		390		200		30		250		210	15		4			20	38		380
TOC	-	1	0.50	5 F	U		U		0.71 F		2.7	0.4	19 F		4.6		5.7	5.9	9 B		U		U	0.4	6 F	1.3 B
phenolics, Total		0.005	ι	J	U		U		U		U	0.00	018 F		U		U	τ	U	N	ΙA	N	ΙA	ι	IJ	U

	1	1	1														
Location of Well	NYSDEC		9/16/2010							LF6L	H-2			1			
Date of Collection Sample ID No.	Class GA Groundwater	Reporting Limit	1F6LH0201PA														
	Standards	Lillit	Leachate														
Depth to Water (ft) VOCs (µg/L)	1		Leacnate														
1,1,1-trichloroethane	5*	1	U										1	T			_
1,1-dichloroethene	5*	1	U														
1,2-dichloroethane	0.6	1	U														
1,4-dichlorobenzene	3	0.5	U														
acetone	50	10	1.99 FB														
benzene	1	0.1	U														
carbon disulfide	1,000	0.5	U														
chloroform chloromethane	7 5*	0.3 1	U U														
cis-1,2-dichloroethene	5*	1	U														
dichlorodifluoromethane	5*	1	U														
hexachlorobutadiene	0.5*	0.6	U														
methylene chloride	5*	1	U														
m,p-xylene	5*	2	U														
trichloroethene (TCE)	5*	1	U														
toluene	5*	1	U														
trans-1,2-dichloroethene	5* 5*	1	U U														
trichlorofluoromethane vinyl chloride	2	1	U														
xylenes, Total	_	1.5	U														
Total VOCs (µg/L)	1		1.99														
Metals (μg/L) [Dissolved / Total] ¹							<u> </u>	<u> </u>	•				•		·		
aluminum	2,000	200	1,100														
antimony	3	50	U														
arsenic	25	30	U														
barium	1,000	50 4	510 U														
berylium boron	1,000	110	NA NA														
cadmium	5	5	U														
calcium	_	1,100	61,000														
chromium	50	10	U														
cobalt		60	U														
copper	200	10	U														
iron	300	200	1,500														
lead	25	25	U														
magnesium	35,000 300	1,000 10	35,000 190														
manganese mercury	0.7	10	190 U														
molybdenum		15	U														
nickel	100	20	U														
potassium		1,000	1,800														
selenium	10	30	U														
silver	50	10	U														
sodium	20,000	1,000	48,000														
thallium vanadium	0.5	80 10	U U														
vanadium zinc	2.000	20	7.6 F														
Leachate Indicators (mg/L)	2,000	20	7.01											1		<u> </u>	
alkalinity, Total		10	160									T		T			
ammonia	2	0.2	0.051	1													
BOD5		2.4	U	1													
bromide	2	0.5	U														
COD		5	9.0 F														
chloride	250	1	120														
color cyanide, Total	15 200	5 0.02	NA U														
hardness, Total	200	0.02	300														
nitrate	10	1	300 U	1													
TKN	1	0.2	0.32 B														
sulfate	250	1	39														
TDS	500	10	360														
TOC	-	1	1.0														
phenolics, Total		0.005	U														

Landfill 6 AOC Surface Water Analytical Results

Location of Well	1		1												I Fe	6SW-1												
Date of Collection	NYSDEC Class A		7/6/	/2006	9/19	/2006	12/14	1/2006	4/17	/2007	6/25	2007	10/1	/2007		1/2007	4/3/	2008	6/18	/2008	10/1	/2008	12/10	0/2008	4/16/	/2009	6/30/20	09
Sample ID No.	Surface Water Standards	Reporting Limit		/0101AA	LF6SW		LF6SW		LF6SW		LF6SW			/0101FA		V0101GA	LF6SW			V0101IA		/0101JA	LF6SW		LF6SW		LF6SW01	
Depth to Water (ft)	-		Surfac	e Water	Surface	e Water	Surface	e Water	Surface	e Water	Surface	Water	Surface	e Water	Surfac	ce Water	Surface	e Water	Surfac	e Water	Surfac	e Water	Surfac	e Water	Surface	Water	Surface V	Votor
VOCs (µg/L)	1		Surrac	e water	Surraci	· water	Surrace	· water	Suriac	· water	Surface	· water	Surface	e water	Surrac	ce water	Surface	e water	Suriac	e mater	Surrac	e mater	Surrac	e water	Surface	. water	Surface v	atti
1,2-dichlorobenzene	3	1	_	U	0.2	12 E	0.1	10 E	1	IJ	1	T	l ı	П	Т	U	1	U		U	,	U		U	l t	T.	U	
1,4-dichlorobenzene	3	0.5		U	0.2			U	0.1	-	i	-		П		220 F	0.1			U		U		U	ı		11	
acetone	50	10		2 F	2.			5 F	0.1			5 F	ì	П		.51 F		U		U		U	2.		2.3	-	1.81 1	2
henzene	1	0.1		U	1		1.4		,	-	1.5		l ì	п		350 F		U		U		U		U	0.11		U	
carbon disulfide	1	0.1		U				U		П			,	U		170 F		U		U		U		U	U.11		U	
chlorobenzene	5	0.5		37 F	0.			560	0.4	-	0.10	-	0.2			1.11	0.3			U	0.3		0.		0.38		U	
	7	0.3		U	0.			U U	0.4		0.10		0.2	10 F		U	0.3			U				U			U	
chloroform	,	0.3		U						-		-										U U			0.13			
chloromethane		1			1		1		1	-		-		U		U		U		U		-		U	τ		U	
cis-1,2-dichloroethene	5	1		U	1		1	-		U	1	-	'	U		U		U		U		U		U	τ	-	U	
dichlorodifluoromethane	5**	1		U	1	-	ι		1	U		J	ı	U		U		U		U		U		U	Ţ		U	
methylene chloride	5	1		U	1			10 F		U	1		τ	U		120 F		U		U		U		U	τ	-	U	
tetrachloroethene	0.7	1		U	1			U	1	-	1	-	T T	U		U		U		U		U		U	τ	-	U	
trichloroethene (TCE)	5	1		U	0.1		1		1			J	T T	U		U	1			U		U		U	τ		U	
trans-1,2-Dichloroethene	5	1		U	1		1		1	-	1		τ	U		U		U		U		U		U	τ		U	
vinyl chloride	0.3	1		U	1	U	1	U	1	U	- 1	J	τ	U		U	1	U		U		U	1	U	Ţ	J	U	
Metals (μg/L) [Dissolved / Total] ¹																												
aluminum	100	200	57.2 F	77.8 F	U	47.5 F	U	46 F	83 F	98 F	U	U	U	U	U	160 F	49 F	76 F	U	97 F	U	120 F	90 F	1,600	U	U	U	U
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	133	153	121	122	130	140	83	87	220	220	210	220	150	170	110	110	160	160	210	210	62	80	100	110	160	170
boron	1,000	110	36.2	31.4	NA	NA	NA	NA	NA	NA	23	25	NA	NA	NA	NA	20	20	16	16	NA	NA	NA	NA	NA	U	U	U
calcium		1,100	98,700	109,000	102,000	105,000	94,000	96,000	76,000	79,000	95,000	100,000	100,000	100,000	98,000	100,000	81,000	80,000	54,000	52,000	87,000	87,000	42,000	44,000	74,000	76,000	91,000	93,000
chromium	50	10	0.7 F	U	U	U	3.6 F	2.5 F	2.6 F	3.1 F	1.7 F	3.1 F	2.5 F	2.0 F	3.7 F	U	U	U	U	U	3.2 F	4.1 F	U	4.8 F	U	U	U	U
copper	200	10	U	U	U	U	2.2 F	3.3 F	U	U	U	U	U	U	U	2.8 F	2.5 F	2.6 F	U	U	U	U	U	13	U	U	U	U
iron	300	200	33.8 F	173 F	25 F	197 F	47 F	230	130 F	270	26 F	180 F	210	34 F	26 F	660	110	220	95 F	370	57 F	520	67 F	2,400	62 F	250	91 F	200
magnesium	35,000	1.000	19,200	20,500	18,200	18,600	19,000	19,000	12,000	13,000	22,000	24,000	24,000	25,000	20,000	20,000	15,000	14,000	13,000	12,000	20,000	20,000	6,000	6,400	15,000	16,000		20,000
manganese	300	10	8.7 F	172	186	196	290	310	170	190	210	230	260 J	210 J	480	550	140	140	150	160	400	430	100	260	110	120	59	63
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	U	U	U	U
molybdenum		15	2.1 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	2.0 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	3.1 F	U	U	U	U
potassium		1.000	1,680	1,860	2.080	2,150	2.000	U U	1,800	1,800	1.800	1,900	1,900	2.000	2.100	2,100	1,900	1,800	1,000	1,000	1,900	2,000	1.300	1,700	2.000	1,800	1,600	1,600
sclenium	10	30	U.	U 1,800	2,000 U	2,130 U	2,000 U	U	U 1,800	1,800	1,800	1,900 U	1,900 U	2,000 U	2,100 U	2,100 U	1,900 U	1,000	1,000	U U	1,900 U	2,000 U	1,500	1,700 U	2,000 U	1,600	U	U U
	50	10	U	U	U	U	U	1.1 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	30													-		-							-	-				
sodium	_	1,000	88,600	99,900	93,400	95,000	74,000	75,000	74,000	76,000	86,000	89,000	88,000	91,000	110,000	110,000	81,000	80,000	39,000	37,000	72,000	71,000	86,000	94,000	77,000	77,000		86,000
vanadium	-	10	U	U	0.7 F	0.83 F	U	1.3 F	U	0.95 F	U	U	U	U	U	1.4 F	0.74 F	0.96 F	0.75 F	1.3 F	U	U	U	5.2 F	U	U	U	U
zinc	2,000	20	4.2 F	4.1 F	19.4 F	36.9 B	13 F	11 F	7.6 F	11 F	U	U	26 B	30 B	38 B	53 B	16 F	15 F	15 F	20	13 F	16 F	86 B	110 B	U	U	4.2 F	4.9 F
Leachate Indicators (mg/L)	1														,													
alkalinity, Total	-	10		76		70		30		90		30		50		240		80		30		10	96			90	220	
ammonia	2	0.2		U	0.0)53		33 F	0.0		0.0			0.13		22 F		.19		0.2		059	0.04		0.033	P
BOD5		2.4		U		.2	1			U	1		τ			U		U		U		U		1.4		IJ	U	
bromide	2	0.5		31 F	0.1			11		12	0.		0.			0.23		3 F).2		.26		UJ	0.1		0.181	1
COD	-	5		U	5) B		5 B		В	8.5			15 B		15		15		17		33	12		11	
chloride	250	1		84	1	80	1:	30	1-	40	13	80	11	70	1	190	1-	40		74	1	30	1-	40	15	50	160	
color	15	5	18	8 B	N	ΙA	N	ΙA	N	ΙA	1	5	N	IA	1	NA	4	15	2	20	N	JΑ	N	JΑ	1	0	NA	
hardness, Total	-	1	3	70	3	40	30	00	2	50	34	40	35	50	3	330	2	60	2	00	3	00	1	50	20	50	320	
nitrate	10	1	0.4	48 F	0.4	12 F	0.	69	1	.1	0	.1	0.04	42 F	0).72	0.	82	0.	.24	0.	.29	0.	.49	0.3	9 F	0.171	2
TKN	1	0.2	0.0	87 F	0.1	9 F	0.2	2 F	0.	27	0.1	7 F	0.3	60 B	0	0.32	0.	32	0.	.38	0.	.42	0.	.61	0.	22	0.20	
sulfate	250	1	5:	2.8	4	19	- 4	17	3	7	- 4	7	- 4	15		45	3	39	- 2	23	3	37	1	18	3	9	40	
TDS	500	10		95		40		70	4			10		40		640	d .	80		40		90		10	49		590	
TOC		1		2.7	3			.2	4		2			.9		3.1		.6		1.5		1.8		8 B	2		2.3	
phenolics, Total	_	0.005		U	,					U U		J		U		U		U	0.00			U		U		IA.	NA NA	
prictiones, 10tai		0.003		U		U		U		U		J	L '	U	l	U	l '	U	0.00	/41 F	1	U	1	U	N	iA.	NA	

11131		İ	9/17/2009	3/24/2010	9/16/2010			LIG	SW-1		1					
Sur	SDEC Class A urface Water	Reporting														
	Standards	Limit	LF6SW0101NA	LF6SW0101OA	LF6SW0101PA											
Depth to Water (ft)			Surface Water	Surface Water	Surface Water											
VOCs (µg/L)										•		<u> </u>				
1,2-dichlorobenzene	3	1	U	U	U											
1,4-dichlorobenzene	3	0.5	U	U	U											
acetone	50	10	3.1 F	2.17 F	1.97 FB											
benzene	1	0.1	U	0.160 F	U											
carbon disulfide		0.5	U	U	U											
chlorobenzene	5	0.5	U	0.400 F	U											
chloroform	7	0.3	U	U	U											
chloromethane	-	1	U	U	U											
cis-1,2-dichloroethene	5	1	U	U	U											
dichlorodifluoromethane	5**	1	U	U	U											
methylene chloride	5	1	U	U	U											
tetrachloroethene	0.7	1	U	U	U											
trichloroethene (TCE)	5	1	U	U	U											
trans-1,2-Dichloroethene	5	1	U	U	U											
vinyl chloride	0.3	1	U	U	U											
Metals (μg/L) [Dissolved / Total] ¹																
aluminum	100	200	U U	93 F	U											
arsenic	50	30	U U	U	U											
l l	1,000	50	200 200	110	180											
	1,000	110	U U	21 B	NA											
calcium		1,100	100,000 97,000	77,000	100,000											
chromium	50	10	U U	U	U											
copper	200	10	U U	U	U				1							
iron	300	200	43 F 210	350	260											
	35,000	1,000	23,000 23,000	15,000	22,000											
manganese	300	10	110 120	230	160											
mercury	0.7	10	U U	U	U											
molybdenum		15	U U	U	U											
nickel	100	20	ט ט	U	U											
potassium		1,000	2,000 1,800	1,600	2,400				1				-			
selenium	10	30	U U	U	2,400 U											
silver	50	10	U U	U	U											
sodium		1,000	92,000 88,000	64.000	93,000 J											
vanadium	_	1000	U U	64,000 U	93,000 J U											
	2,000	20	4.5 F 12 F	12 F	17 F											
Leachate Indicators (mg/L)	2,000	20	4.0 F 12.F	121	17.1											
alkalinity, Total	-	10	250	190	250											
ammonia	2	0.2	0.032 F	U	0.026 F											
BOD5	-	2.4	U.032 F	U	U.026 F											
bromide	2	0.5	0.25 F	0.17 F	U											
COD	2	5	9.0 F	17	7.9 F											
chloride	250	1	9.0 F	120	7.9 F 180									 		
color	250 15	5	NA	120 30	NA											
l l		1		250	NA 340											
hardness, Total			350													
nitrate	10	1	0.16 F	0.87	U											
TKN	1	0.2	0.11 F	0.67 B	0.30 B											
sulfate	250	1	43	35	40											
TDS	500	10	620	440	550											
TOC	-	1	2	6.4	2.5											
phenolics, Total		0.005	U	U	U											

Landfill 6 AOC Surface Water Analytical Results (continued)

Location of Well	1		1												1.0	6SW-2												
Date of Collection			7/6/	2007	0/10	/2006	12/1/	1/2006	4/17/	2007	6/21	2007	10/1	/2007		1/2007	4/2/	2008	(110	3/2008	10/1	/2008	12/10	0/2009	4/1/	/2009	7/1/20	100
Date of Collection	NYSDEC Class A Surface Water	Reporting	//6/	2006	9/19/	/2006	12/14	1/2006	4/1//	2007	0/21	2007	10/1	/200/	12/1	1/200/	4/3/	2008	0/18	/2008	10/1	/2008	12/10	J/2009	4/10	/2009	//1/20	99
Sample ID No.	Standards	Limit	LF6SW	0201AA	LF6SW	0201BB	LF6SW	0201CA	LF6SW	0201DA	LF6SW	0201EA	LF6SW	0201FA	LF6SV	V0201GA	LF6SW	0201HA	LF6SV	V0201IA	LF6SV	V0201JA	LF6SW	0201KA	LF6SW	0201LA	LF6SW02	01MA
Depth to Water (ft)			Surfac	Water	Surface	e Water	Surfac	eWater	Surface	Water	Surface	Water	Surface	e Water	Surfac	ce Water	Surfac	e Water	Surfac	e Water	Surfac	e Water	Surface	e Water	Surfac	e Water	Surface V	Nater
VOCs (µg/L)																												
1,2-dichlorobenzene	3	1	1	IJ	0.2	.5 F	0.1	10 F	1	J	1	J	1	U	0.	110 F		U		U		U	1	U	1	U	U	
1,4-dichlorobenzene	3	0.5	1	IJ	0.2	2 F	1	U	0.1	10 F	1	J	1	U	0.	110 F	1	U		U		U	1	U	1	U	U	
acetone	50	10	1.	5 F	1.4	12 F	1.1	8 F	1.1	2 F	1	J	1.2	26 F	1.	.55 F	1	U	3.	.20		U	1.7	73 F	2.6	64 F	U	
benzene	1	0.1	1	IJ	0.1	2 F	1	U	1	J	1	J	1	U	0.2	210 F	1	U		U		U		U	1	U	U	
carbon disulfide	-	0.5	1	J	1	U	1	U		J	1	J	1	U	0.	170 F		U		U		U	1	U	1	U	U	
chlorobenzene	5	0.5	0.2	3 F	1.	15	0.4	80 F	0.34	40 F	0.1	30 F	0.1	30 F	0	.720	0.3	00 F	0.2	00 F	0.2	60 F	1	U	0.2	80 F	U	
chloroform	7	0.3	1	IJ		U	1	U	1	J	1	J	1	U		U		U		U		U	1	U	0.1	10 F	U	
chloromethane	-	1	1	IJ		U	1	U	1	J	1	J	1	U		U		U		U		U	1	U	1	U	U	
cis-1,2-dichloroethene	5	1	1	IJ		U	1	U	1	J	1	J	1	U		U		U		U		U	1	U	1	U	U	
dichlorodifluoromethane	5**	1	1	IJ		U	τ	IJ	1	J	1	J	1	U		U	1	U		U		U	1	U	1	U	U	
methylene chloride	5	1	1	Ú	1	U	0.2	00 F	1	J	1	J	1	U	0.	130 F		U		U		U	- 1	U	1	U	U	
tetrachloroethene	0.7	1	1	IJ	1	U	1	U	1	J	1	J	1	U		U	1	U		U		U	1	U	1	U	U	
trichloroethene (TCE)	5	1	1	IJ	1	U	1	U	0.1	10 F	1	J	1	U		U	1	U		U		U	1	U	1	U	U	
trans-1,2-Dichloroethene	5	1	1	IJ		U	1	U	1	J	1	J	1	U		U	1	U	1	U		U	1	U	1	U	U	
vinyl chloride	0.3	1	1	IJ	1	U	1	U	1	J		J	- 1	U	<u></u>	U	1	U		U		U	1	U	1	U	U	
Metals (μg/L) [Dissolved / Total] ¹																			•						•			
aluminum	100	200	58.1 F	84.6 F	U	54.2 F	U	U	76 F	85 F	U	49 F	U	60 F	U	64 F	U	490	U	86 F	U	63 F	82 F	840	U	520	U	U
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	132	150	119	120	130	140	84	89	200	200	200	200	160	160	99	130	160	U	200	200	63	68	86	120	160	170
boron	1,000	110	37.5	34.2	NA	NA	NA	NA	NA	NA	26	30	NA	NA	NA	NA	17	20	17	17	NA	NA	NA	NA	NA	NA	U	U
calcium		1,100	99,100	109,000	109,000	110,000	91,000	93,000	74,000	78,000	94,000	98,000	99,000	99,000	97,000	98,000	76,000	83,000	51,000	53,000	86,000	86,000	47,000	52,000	68,000	77,000	89,000	91,000
chromium	50	10	U	U	U	U	2.9 F	2.0 F	2.8 F	2.1 F	U	4.2 F	2.0 F	2.0 F	3.8 F	U	U	U	U	U	3.4 F	3.1 F	U	3.3 F	U	U	U	U
copper	200	10	U	U	U	U	2.1 F	3.1 F	U	U	U	U	U	U	U	U	2.5 F	4.5 F	U	U	U	U	3.8 F	6.6 F	U	U	Ü	U
iron	300	200	23.3 F	179 F	39.9 F	223	52 F	230	150 F	280	39 F	280	74 F	330	22 F	370	150 F	1,100	97 F	360	44 F	330	200	1,900	70 F	1,700	97 F	210
magnesium	35,000	1,000	20,200	21,000	20,100	20,200	18,000	19,000	12,000	13,000	22,000	23,000	25,000	25,000	19,000	20,000	14,000	15,000	13,000	13,000	20,000	20,000	8,900	9,700	15,000	17,000	20,000	21,000
manganese	300	10	190	195	296	301	290	310	190	210	750	830	430	460	490	530	140	230	140	150	430	430	540	560	110	240	48	53
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	1.5 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.5 F	U	2.4 F	U	U	U	U
potassium	-	1,000	1,750	1,890	2,060	2,110	1,900	1,900	1,700	1,800	1,600	1,800	1,800	1,800	2,100	2,100	1,700	2,000	980 F	1,000	1,900	2,000	1,300	2,000	1,900	2,000	1,700	1,700
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium		1,000	86,400	96,600	94,700	96,600	71,000	71,000	70,000	73,000	71,000	72,000	77,000	78,000	110,000	110,000	76,000	81,000	35,000	36,000	69,000	69,000	64,000	60,000	68,000	73,000	88,000	87,000
vanadium		10	U	U	U	U	U	U	U	U	U	0.81 F	U	U	U	0.83 F	U	1.9 F	U	0.93 F	U	U	U	3.0 F	U	U	U	U
zinc	2,000	20	10.4 F	3.3 F	37.3 B	22 B	9.7 F	9.2 F	8.4 F	13 F	U	7.3 F	38 B	26 B	51 B	37 B	14 F	26 B	13 F	20	12 F	15 F	74 B	98 B	U	13 F	U	U
Leachate Indicators (mg/L)																												
alkalinity, Total	-	10	2	79	2:	50	2	30	11	70	2	30	2	50	:	230	1	90	1	30	2	10	13	0 B	1	80	220	
ammonia	2	0.2	1	U	0.04	41 F	0.0)50	0.02	24 F	0.	13	0.0	28 F	(0.14	0.0	17 F	0.	.21	0	.23	0.0	36 F	0.	15	0.048	F
BOD5		2.4	1	IJ	1	U	1	U	1	J	1	J	1	U		U	3	0.0		U		U	2	1.3	1	4	U	
bromide	2	0.5	0.3	1 F	0.1	4 F	0.	11	0.1	2 F	0.	21	0.	24	().23	0.1	13 F	0).2	0.	.25	Ţ	UJ	0.1	7 F	0.19	F
COD	_	5		IJ	1	6		5 B	28	В	20	В	8.:	5 F	1	1 B	1	17	1	17		13	26		1	5	18	
chloride	250	1	1-	14		80		30	1:			40		50	_	190	1	40	1	72		30	9			40	160	,—
color	15	5	18	В		IA		IA	N		2	5		IA		NA	3	30		20	-	NΑ		JΑ	2	20	NA	
hardness, Total	_	1		70		50		00	24			30	4	50	1	350		70		90		90		80		60	300	
nitrate	10	1	0.4		0.3			67	0.		0.		0.0			0.67		.77	0.			.29		.32	0.2		0.13	
TKN	1	0.2	0.4			2 F		6 F	0.		0.2			1 B).31		.40		.26		.42	0.			.8	0.37	
sulfate	250	1		-	5.5			16		6	4			14		45		39		23		37		22		18	41	
TDS	500	10		36	4,6			50	4			30		00		630		70		10		60		70		90	600	
TOC		1			2			.4	4			.2	-	.3		2.9		1.8		3.4		3.9		3 B		.6	2.2	
phenolics, Total	_	0.005	0.0	-	1			U		J		J		U	1	U		U		015 F		U		U		IA.	NA	
pinnoino, rotai		0.005	0.0	,,,		-			<u> </u>		l'		<u> </u>	_	1	~			0.00	J. J. I	1		ı '		L 1		IVA	

Marie Note Mar	Location of Well	1							F 17/	cw 1							
Part Part				9/17/2009	3/25/2010	9/16/2010			LF6	5W-2			1				
Seque Brown 1																	
Victorial Control Co	Sample ID No.		Limit	LF6SW0201NA	LF6SW0201OA	LF6SW0201PA											
1.545 Marketerane 3				Surface Water	Surface Water	Surface Water											
Justice Just	VOCs (µg/L)							<u> </u>									
some		3	1	U	U	U											
Section 1	1,4-dichlorobenzene	3	0.5	U	U	U											
Section Sect	acetone	50	10	1.54 F	3.67 F	1.22 FB											
Second Content	benzene	1	0.1	U	0.180 F	U											
Second Para				U	U	U											
Abstraction	chlorobenzene	5	0.5	U	0.420 F	U											
Signatur	chloroform	7	0.3	U	U	U											
Signatur	chloromethane	_	1	U	U	U											
Second content		5	1														
Second Second																	
Second content																	
Note																	
Part Part																	
Marke 100																	
Maintenage Mai																	
Seminar 100 200 U U V V V U U U U U		0.3	1	U	U	U											
sericis					40.7	**	-										
Marian 1,000 50 200 200 100																	
Second 1,000 1,0																	
cacimn																	
Secondary So		1,000															
Pope																	
ison 35.00 200 41F 230 380 190F 190																	
negrenism agrance 35,000 1,000 24,000 74,000 17,000 22,000 arrangement angrance 300 10 130 130 220 1440 arrangement and the second and the se																	
Emplane 300 10 130 130 260 140	iron																
Include 15	magnesium																
molybeham	manganese		10														
nickel 100 20 U U U U U U U U U U U U U U U U U	mercury	0.7	1														
Potassium	molybdenum		15														
Selection	nickel	100	20	U U	U	U											
silver 50 10 U <	potassium	-	1,000	2,000 1,900	1,700	2,100											
Sodium	selenium	10	30	U U	U	U											
vanadium - 10 U	silver	50	10	U U	U	U											
Value	sodium	-	1,000	92,000 89,000	66,000	86,000											
2,000 20 U U 7,4 F 4,8 F	vanadium	-	10		U	U											
Leachate Indicators (mg/L) alkalinity, Total - 10 250 210 250 ammonia 2 0.2 0.025 F U U BOD5 - 2.4 U U U bromide 2 0.5 0.25 F 0.19 F U COD - 5 9.0 F 13 U chloride 250 1 170 140 170 color 15 5 NA 20 NA hardness, Total - 1 360 270 330 nitrate 10 1 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B sulfate 250 1 43 37 40 TDS 500 10 620 480 510		2,000															
alkalinity, Total — 10 250 210 250 U U U BBOD5 — 2.4 U U U U U U BBOD5 — 2.4 U U U U U BBOD5 — 5 9.0 F 13 U U BDO7 — 5 9.0 F 13 U U BDO7 — 5 9.0 F 13 U U BDO7 — 15 5 NA 20 NA NA BDO7 — 11 360 270 330 NA BDO7 — 11 0.15 F 0.8 U BDO7 — 11 0.15 F 0.8 U BDO7 — 11 0.2 U 0.43 B 0.25 B BDO7 — 12 0.0 F														 			
ammonia 2 0.2 0.2 0.025 F U U U BODS 2.4 U U U U COD 5 9.0 F 13 U chloride 250 1 170 140 170 color 15 5 NA 20 NA hardness, Total 1 360 270 330 nitrate 10 11 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B sulfate 250 1 43 37 40 TDS 500 10 620 480 510		_	10	250	210	250											
BODS - 2.4 U U U U U C COD - 5 9.0 F 0.19 F U C COD - 5 9.0 F 13 U C COD - 15 5 9.0 F 13 U C COD COD - 15 5 9.0 F 13 U C COD COD COD COD COD COD COD COD COD C																	
bromide 2 0.5 0.25 F 0.19 F U U U U U U U U U U U U U U U U U U																	
COD - 5 9.0 F 13 U chloride 250 1 170 140 170 color 15 5 NA 20 NA hardness, Total 1 360 270 330 nitrate 10 1 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B sulfate 250 1 43 3.7 40 TDS 500 10 620 480 510																	
Abdrade 250 1 170 140 170 color 15 5 NA 20 NA hardness, Total - 1 360 270 330 nitrate 10 1 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B sulfate 250 1 43 37 40 TSS 500 10 620 480 510																	
color 15 5 NA 20 NA hardness, Total - 1 360 270 330 intrate 10 1 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B sulfate 250 1 43 37 40 TDS 500 10 620 480 510		250															
hardness, Total - 1 360 270 330																	
nitrate 10 1 0.15 F 0.8 U TKN 1 0.2 U 0.43 B 0.25 B U U 0.43 B 0.25 B U U 0.43 B 0.25 B U U 0.45 B 0.25 B U 0.45 B U 0.45 B U																	
TKN 1 0.2 U 0.43 B 0.25 B Sulfate 250 1 43 37 40 TDS 500 10 620 480 510																	
sulfate 250 1 43 37 40 TDS 500 10 620 480 510																	
TDS 500 10 620 480 510											 				 		
TOC - 1 2.2 5.2 2.3																	
phenolics, Total - 0.005 U U U	phenolics, Total		0.005	U	U	U											

Landfill 6 AOC Surface Water Analytical Results (continued)

Location of Well	ı		T .												10	6SW-3												
Date of Collection	-		7/6/	2007	0/10	/2006	10/14	1/2006	4/16	/2007	6/21	2007	10/1	/2007		1/2007	4/7/	2008	(110	3/2008	10/1	/2008	12/1/	0/2008	4/16	2000	6/30/2	000
Date of Collection	NYSDEC Class A Surface Water	Reporting	//6/	2006	9/19	/2006	12/14	1/2006	4/18	/200/	0/21/	2007	10/1	/200/	12/1	1/2007	4///	2008	0/18	/2008	10/1	/2008	12/10	0/2008	4/10	2009	6/30/2	109
Sample ID No.	Standards	Limit	LF6SW	0301AA	LF6SW	0301BB	LF6SW	0301CA	LF6SW	0301DA	LF6SW	0301EA	LF6SW	0301FA	LF6SV	V0301GA	LF6SW	0301HA	LF6SV	V0301IA	LF6SW	/0301JA	LF6SW	0301KA	LF6SW	0301LA	LF6SW03	01MA
Depth to Water (ft)			Surface	Water	Surface	e Water	Surface	e Water	Surfac	e Water	Surface	Water	Surface	e Water	Surfa	ce Water	Surface	e Water	Surfac	e Water	Surfac	e Water	Surfac	e Water	Surface	Water	Surface V	Nater
VOCs (µg/L)																												
1,2-dichlorobenzene	3	1	1	IJ	1	U	1	U	1	JJ	1	J	1	U		U	1	U		U	1	U	1	U	1	Ü	U	
1,4-dichlorobenzene	3	0.5	1	IJ	0.	1 F		U	1	JJ	0.13	30 F	1	U		U	1	U		U		U	1	U	1	IJ	U	
acetone	50	10	1.3	2 F	1.	4 F		U	1	JJ	1	J	1	U		U	1	U	2.5	94 F		U	2.4	19 F	2.0	1 F	2.16	F
benzene	1	0.1	1	IJ	1			U	1	JJ	1	J	1	U	0.	140 F	1	U		U		U		U	1	IJ	U	
carbon disulfide	-	0.5	1	J	1	U	1	U		U	- 1	J	1	U	0.	140 F	1	U		U	1	U	1	U		J	U	
chlorobenzene	5	0.5	1	IJ	0.1	3 F	0.3	10 F	0.3	70 F	1	J	1	U	0	470 F	1	U		U		U	0.1	40 F	0.23	20 F	U	
chloroform	7	0.3	1	IJ	1	U		U		U		J	1	U		U	1	U		U		U	1	U	1	IJ	U	
chloromethane	-	1	1	IJ	1	U		U	1	JJ		J	1	U		U	1	U		U	1	U	1	U	1	IJ	U	
cis-1,2-dichloroethene	5	1	1	IJ	1	U		U	1	JJ		J	1	U		U	1	U		U	1	U	1	U	1	IJ	U	
dichlorodifluoromethane	5**	1	1	IJ	1	U	τ	IJ	1	JJ	1	J	1	U		U	1	U		U		U	1	U	1	IJ	U	
methylene chloride	5	1	1	J	1	U	- 1	U	0.1	30 F	- 1	J	1	U	0.	140 F	1	U		U		U		U	1	J	U	
tetrachloroethene	0.7	1	1	IJ	1	U	1	U		U	1	J	1	U		U	1	U		U	1	U	1	U	1	IJ	U	
trichloroethene (TCE)	5	1	1	IJ	1	U	1	U	1	JJ	1	J	1	U		U	1	U		U		U	1	U	1	IJ	U	
trans-1,2-Dichloroethene	5	1	1	IJ	1	U	1	U		U	1	J	1	U		U	1	U	1	U		U	1	U	1	IJ	U	
vinyl chloride	0.3	1	1	IJ	1	U	1	U	L 1	JJ	1	J	1	U		U	- 1	U		U	1	U	1	U	1	IJ	U	
Metals (μg/L) [Dissolved / Total] ¹																			•									
aluminum	100	200	55.7 F	71.5 F	U	45.2 F	U	61 F	77 F	210	U	U	U	U	U	56 F	U	81 F	U	70 F	41 F	56 F	180 F	1,800	U	180 F	U	U
arsenic	50	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
barium	1,000	50	132	155	193	198	140	140	99	99	210	220	220	230	170	170	110	110	180	180	210	220	70	82	120	130	180	180
boron	1,000	110	35.7	29.4	NA	NA	NA	NA	NA	NA	23	28	NA	NA	NA	NA	23	22	19	19	NA	NA	NA	NA	U	U	U	U
calcium	-	1,100	91,200	102,000	94,200	96,400	87,000	87,000	78,000	79,000	86,000	92,000	90,000	94,000	93,000	90,000	74,000	73,000	53,000	55,000	81,000	81,000	41,000	44,000	74,000	76,000	97,000	92,000
chromium	50	10	U	U	U	U	3.2 F	2.0 F	2.2 F	3.5 F	U	4.2 F	7.8 F	U	3.1 F	3.8 F	2.7 F	2.5 F	1.5 F	1.6 F	3.7 F	3.1 F	U	4.7 F	U	U	U	U
copper	200	10	1.3 F	U	U	U	2.7 F	3.1 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	10	U	U	Ü	U
iron	300	200	21.3 F	161 F	48.3 F	231	57 F	250	88 F	430	49 F	230	51 F	210	2.7 F	270	94 F	240	100 F	320	55 F	280	86 F	2,700	70 F	650	94 F	190 F
magnesium	35,000	1,000	19,400	20,600	22,600	23,100	18,000	18,000	13,000	14,000	21,000	22,000	23,000	24,000	20,000	20,000	16,000	15,000	14,000	14,000	20,000	20,000	6,700	7,000	16,000	16,000	22,000	21,000
manganese	300	10	126	161	383	386	270	280	190	200	520	570	220	230	460	450	120	120	130	150	320	330	110	310	140	160	100	99
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum	-	15	1.2 F	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
nickel	100	20	U	U	U	U	1.3 F	U	U	U	U	U	2.2 F	U	U	U	U	U	U	U	U	1.2 F	U	3.0 F	U	U	U	U
potassium	-	1,000	1,680	1,840	1,780	1,860	1,800	1,800	1,700	1,800	1,600	1,800	1,800	1,900	2,000	2,000	1,800	1,800	1,000	1,100	1,900	1,900	1,000	1,700	1,600	1,700	1,500	1,600
selenium	10	30	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
silver	50	10	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
sodium	-	1,000	80,000	91,400	80,700	82,800	67,000	67,000	77,000	76,000	70,000	73,000	77,000	80,000	100,000	100,000	74,000	73,000	37,000	38,000	66,000	66,000	66,000	85,000	72,000	72,000	85,000	80,000
vanadium	-	10	U	U	U	U	U	U	U	U	U	U	U	U	U	0.74 F	U	U	U	1.1 F	U	U	U	5.3 F	U	U	U	U
zinc	2,000	20	4.1 F	3.2 F	34.3 B	26.1 B	7.5 F	14 F	8.0 F	8.5 F	U	U	35 B	64 B	38 B	23 B	14 F	14 F	19 F	16 F	12 F	15 F	79 B	13 B	U	5.1 F	U	4.5 F
Leachate Indicators (mg/L)																												
alkalinity, Total	-	10	20	67	2	20	2:	20	1	80	2:	20	2	40		230	1	80	1	40	1	90	10	0 B	1	90	230	, —
ammonia	2	0.2	1	U	0.0	57 B	0.02	29 F	0.0	21 F	0.	17	0.0	31 F	0	.091	0.0	22 F	0.	.17	0.	.15	0.0	057	0.0	41 F	0.028	F
BOD5		2.4	1	IJ	1	U		U		U	1		1	U		U	1	U		U	1	U	2	1.3	2	.6	U	ļ
bromide	2	0.5	0.3	1 F	0.:	2 F	0.	11	0.	4 F	0.	23	0.	26	().23	0.	16	0.2	21 F	0.	.25	τ	UJ	0.1	8 F	0.21	F
COD	_	5	26.	7 B	1	1	22	2 B	2	l B	17	В	8.:	5 F	1	1 B	1	1	1	13	1	10	26	5 B	8	7	14	
chloride	250	1		54		60		20		40		40		50		170		30		70	1	20		20	1-	40	150	,—
color	15	5	13			IA		IA		ĮΑ	2	0		IA		NA		20		20		JA.		JA.	1	0	NA	
hardness, Total	_	1	3-			80	29			50		10	l	30		290		40		80		00		40	2		290	
nitrate	10	1	0.3		0.1			60		.77	0.1		0.0).59		45		23 F		.25	0.		0.3		0.13	
TKN	1	0.2	1			2 F		1 F		.20	0.3			7 F		.19 F	0.1			.34		.35		1.5	0.		0.19	
sulfate	250	1	50		4		-	14		37	4			12		43		36		23		37		17	3		39	
TDS	500	10		20		70		20		00	5:	-		30		590		60		20		90		70	4		590	
TOC		1	2			.8		.7		.0		.6		.6		2.9		.7		3.1		1.4		7 B	2		2.0	
phenolics, Total	_	0.005	1		1			u U		U		J		U		U		U		U		U		U		IA.	NA NA	
pinenoines, Total		0.005	<u> </u>	~		-			L		<u> </u>		<u> </u>			~	L	_	L		<u> </u>		1		15		INA	

Location of Well	ı		I					T 10	6SW-3						
Location of Well Date of Collection			9/17/2009	3/24/2010	9/16/2010			LF	05W-3		1				
	NYSDEC Class A Surface Water	Reporting													
Sample ID No.	Standards	Limit	LF6SW0301NA	LF6SW0301OA	LF6SW0301PA										
Depth to Water (ft)			Surface Water	Surface Water	Surface Water										
VOCs (µg/L)															
1,2-dichlorobenzene	3	1	U	U	U										
1,4-dichlorobenzene	3	0.5	U	U	U										
acetone	50	10	2.49 F	2.60 F	1.34 FB										
benzene	1	0.1	U	0.110 F	U										
carbon disulfide		0.5	U	U	U										
chlorobenzene	5	0.5	U	0.300 F	U										
chloroform	7	0.3	U	U	U										
chloromethane		1	U	U	U										
cis-1,2-dichloroethene	5	1	U	U	U										
dichlorodifluoromethane	5**	1	U	U	U										
methylene chloride	5	1	U	U	U										
tetrachloroethene	0.7	1	U	U	U										
trichloroethene (TCE)	5	1	U	U	U										
trans-1,2-Dichloroethene	5	1	U	U	U										
vinyl chloride	0.3	1	U	U	U										
Metals (μg/L) [Dissolved / Total] ¹		•													
aluminum	100	200	U 63 F	87 F	U				T						
arsenic	50	30	U U	U	U										ı
barium	1,000	50	220 230	120	190										ı
boron	1,000	110	U U	21 B	NA NA										1
calcium	1,000	1,100	92,000 94,000	72,000	95,000										1
	50	100	U U	72,000 U	93,000 U										ı
chromium															
copper	200	10	U U	U	U										ı
iron	300	200	39 F 500	350	160 F										ı
magnesium	35,000	1,000	23,000 24,000	15,000	22,000										1
manganese	300	10	100 140	270	92										ı
mercury	0.7	1	U U	U	U										ı
molybdenum	-	15	U U	U	U										ı
nickel	100	20	U U	U	2.6 F										
potassium	-	1,000	1,900 1,800	1,500	2,000										ı
selenium	10	30	U U	U	U										ı
silver	50	10	U U	U	U										ı
sodium	-	1,000	83,000 83,000	56,000	83,000										ı
vanadium	-	10	U U	U	U										ı
zinc	2,000	20	U 5.7 F	12 F	4.5 F				1						
Leachate Indicators (mg/L)															
alkalinity, Total	-	10	240	190	240										
ammonia	2	0.2	0.059	U	U										
BOD5		2.4	U	U	U										
bromide	2	0.5	0.23 F	0.18 F	U										
COD	-	5	11	19	7.9 F										
chloride	250	1	160	110	170										
color	15	5	NA	30	NA										
hardness, Total	-	1	350	240	330										
nitrate	10	1	0.13 F	0.87	U										
TKN	1	0.2	0.14 F	0.61 B	0.24 B										
sulfate	250	1	41	32	40										
TDS	500	10	590	430	530										
TOC		1	1.9	6.2	2.4								l		
phenolics, Total		0.005	U	U	U										
			1					I .							

Landfill 6 AOC Surface Water Analytical Results (continued)

Location of Well															11	6W-1												
Date of Collection	NYSDEC Class A		7/6/	/2006	9/19	/2006	12/14	1/2006	4/17	2007	6/21	/2007	10/1/	2007		11/2007	4/8/	2008	6/18	3/2008	10/1	/2008	12/10	0/2008	4/16	/2009	7/1/2	2009
Sample ID No.	Surface Water Standards	Reporting Limit		NS		NS		0101CA	LF6WT			0101EA	LF6WT			T0101GA		0101НА		T0101IA		Г0101ЈА	LF6WT			0101LA	LF6WT0	
Depth to Water (ft)	Stantiarus		Surfac	e Water	Surfac	e Water	Surface	e Water	Surfac	Water	Surfac	e Water	Surface	Water	Surfa	ce Water	Surfac	e Water	Surfac	e Water	Surfac	e Water	Surface	e Water	Surface	e Water	Surface	o Water
VOCs (µg/L)			Surrac	e water	Surrac	e water	Surrac	water	Suriac	. water	Surfac	water	Surrace	· mater	Surra	ce water	Surrac	e water	Surrac	e water	Surrac	e water	Surrac	· water	Suriac	e water	Surface	water
1,2-dichlorobenzene	3	1	,	NS	,	NS	1 1	U	1	J	, N	IS	N	IS		NS		U	,	NS	,	NS	1	U		U	ī	CT.
1,4-dichlorobenzene	3	0.5		NS		NS		U				is	N			NS		90 F		NS		NS		U		U	ī	-
acetone	50	10		NS		NS		7 F		1		is		IS		NS		U		NS		NS		U		0 F	1.8	-
	1	0.1		NS		NS		U		-		IS	N			NS		U		NS		NS		U		U	1.0	
benzene carbon disulfide	1	0.1		NS		NS				J		is		IS		NS		U		NS		NS		U		U	ι	-
chlorobenzene	5	0.5	_	NS		NS		U		J		is	N			NS		U		NS		NS		U		U	τ	
chloroform	7	0.3		NS		NS		U				is	N			NS NS		U		NS		NS		U		U	ī	
chloromethane	_	0.3		NS		NS		П		-		is	N			NS NS		U		NS		NS		U		U	ī	-
cis-1,2-dichloroethene	5	1		NS NS		NS NS		13	2.6	-		is is		IS		NS NS		U		NS NS		NS NS		U		1.7	27	0
	5**	1						13 JJ	2.0									U						U		L./ U		
dichlorodifluoromethane		1	_	NS		NS						IS .	N			NS				NS		NS					L	
methylene chloride	5	1		NS		NS	0.3			J		IS		IS		NS		U		NS		NS		U		U		U
tetrachloroethene	0.7	1		NS		NS		U		J		IS	N			NS		U		NS		NS	0.1			60 F	0.42	
trichloroethene (TCE)	5	1		NS		NS		40 F	0.4			is		IS		NS		U		NS		NS		U		1.0	12	
trans-1,2-Dichloroethene	5	1		NS		NS		U		-		IS	N			NS		U		NS		NS		U		20 F	0.35	
vinyl chloride	0.3	1	1	NS	1	NS	0.6	90 F		J	N	IS	N	IS		NS		U	1	NS	1	NS	1	U	3.	36	3.3	.36
Metals (µg/L) [Dissolved / Total] ¹																						1						
aluminum	100	200	NS	NS	NS	NS	U	U	62 F	54 F	NS	NS	NS	NS	NS	NS	U	990	NS	NS	NS	NS	120 F	320	U	1,700	U	330
arsenic	50	30	NS	NS	NS	NS	U	U	U	U	NS	NS	NS	NS	NS	NS	U	U	NS	NS	NS	NS	U	U	U	U	U	U
barium	1,000	50	NS	NS	NS	NS	41 F	41 F	26 F	25 F	NS	NS	NS	NS	NS	NS	100	190	NS	NS	NS	NS	40 F	42 F	47 F	61	80	81
boron	1,000	110	NS	NS	NS	NS	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	58	59	NS	NS	NS	NS	NA	NA	NA	NA	U	U
calcium	-	1,100	NS	NS	NS	NS	100,000	100,000	64,000	61,000	NS	NS	NS	NS	NS	NS	60,000	65,000	NS	NS	NS	NS	73,000	71,000	140,000	150,000	18,000	18,000
chromium	50	10	NS	NS	NS	NS	U	U	1.9 F	1.6 F	NS	NS	NS	NS	NS	NS	U	1.9 F	NS	NS	NS	NS	U	U	U		U	U
copper	200	10	NS	NS	NS	NS	3.0 F	4.3 F	U	U	NS	NS	NS	NS	NS	NS	U	4.9 F	NS	NS	NS	NS	U	4.5 F	U	6.4 F	U	U
iron	300	200	NS	NS	NS	NS	9.3 F	12 F	8.9 F	42 F	NS	NS	NS	NS	NS	NS	16 F	360	NS	NS	NS	NS	U	240	U	1,800	49 F	630
magnesium	35,000	1,000	NS	NS	NS	NS	9,600	9,700	6,600	6,300	NS	NS	NS	NS	NS	NS	8,700	9,100	NS	NS	NS	NS	8,700	9,300	13,000	14,000	15,000	15,000
manganese	300	10	NS	NS	NS	NS	54 J	39 J	5.7 F	6.7 F	NS	NS	NS	NS	NS	NS	9.1 F	83	NS	NS	NS	NS	7.1 F	18	850	1,400	5,800	5,800
mercury	0.7	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	U
molybdenum		15	NS	NS	NS	NS	U	U	U	U	NS	NS	NS	NS	NS	NS	U	U	NS	NS	NS	NS	U	U	U	U	U	U
nickel	100	20	NS	NS	NS	NS	U	U	U	U	NS	NS	NS	NS	NS	NS	U	2.4 F	NS	NS	NS	NS	U	500 F	U	3.8 F	U	U
potassium	-	1,000	NS	NS	NS	NS	3,100	3,100	2,500	2,400	NS	NS	NS	NS	NS	NS	2,800	3,000	NS	NS	NS	NS	740 F	U	4,600	4,300	8,000	7,800
selenium	10	30	NS	NS	NS	NS	U	U	U	U	NS	NS	NS	NS	NS	NS	U	U	NS	NS	NS	NS	U	U	U	U	U	U
silver	50	10	NS	NS	NS	NS	U	U	U	U	NS	NS	NS	NS	NS	NS	U	U	NS	NS	NS	NS	U	U	U	U	U	U
sodium	_	1,000	NS	NS	NS	NS	3,600	3,600	5,600	5,300	NS	NS	NS	NS	NS	NS	8,400	8,700	NS	NS	NS	NS	4,100 B	5,500	4,700	4,500	6,000	5,700
vanadium	_	10	NS	NS	NS	NS	U	0.76 F	U	U	NS	NS	NS	NS	NS	NS	U	2.7 F	NS	NS	NS	NS	U	U	U	6.1 F	U	3.2 F
zinc	2,000	20	NS	NS	NS	NS	11 F	11 F	9.9 F	7.3 F	NS	NS	NS	NS	NS	NS	15 F	23 B	NS	NS	NS	NS	42 B	46 B	7.0 F	18 F	5.6 F	8.1 F
Leachate Indicators (mg/L)	,,,,,																											
alkalinity, Total	_	10		NS	,	NS	2	60	1	70	N	IS	N	S		NS	1	80	,	NS	,	NS	19	0 B	3	90	48	80
ammonia	2	0.2		NS		NS		II.				is		IS		NS		21 F		NS		NS		U		72	1.	
BOD5		2.4		NS		NS		II.		1		is	N			NS		U		NS		NS		U		II.	3.	
bromide	2	0.5		NS		NS		U	0.0	-		is		IS		NS		35 F		NS		NS		IJ	0.0	-	0.	
COD		0.3		NS		NS		2 B		нн г В		is	N			NS NS		33 F 31		NS		NS	3		8.		U.	
chloride	250	1		NS NS		NS NS		.8	15			is is		IS		NS NS		.5		NS NS		NS NS		.8		.1	2.	-
color	250 15	1		NS NS		NS NS		.8 IA	N			is is	N N			NS NS		20		NS NS		NS NS		i.a IA		ı U	N.	
		5														NS NS				NS NS				00			N. 50	
hardness, Total	-	1		NS		NS		80 22 F	1			IS IS	N					00				NS TC				10 U		
nitrate	10	1		NS		NS		22 F	0.			IS	N			NS		4 B		NS		NS		8 B			ι	-
TKN	1	0.2		NS		NS	0.2		0.1			IS		IS		NS		.3		NS		NS	0.			.6	1.	
sulfate	250	1		NS		NS		18		2		IS	N			NS		20		NS		NS		.2		89	46	
TDS	500	10		NS		NS		40	2			IS	N			NS		80		NS		NS		80		70	60	
TOC	-	1		NS		NS		.9	4			IS	N			NS		.0		NS		NS		6 B		.7	7.	
phenolics, Total		0.005	1	NS	1	NS	1	U	1	J	N	IS	Į	J		NS	0.00	30 F	1	NS	1	NS		U	N	IΑ	N.	A

Martin M	v			1							v	** 4									
Section Sect	Location of Well	4 I		04:	****	2/2//2010	0.45.004.0	1			LF6V	W-1		1		1			1	1	
Septime Note 1	Date of Collection		Reporting	9/17/	/2009	3/24/2010	9/15/2010														
Note	Sample ID No.			LF6WT	0101NA	LF6WT0101OA	LF6WT0101PA														
13-400-1-1	Depth to Water (ft)	1		Surface	e Water	Surface Water	Surface Water														
Justice Just						<u>'</u>	<u>'</u>			·		•				•		<u> </u>			
Section Sect	1,2-dichlorobenzene	3	1	N	IS	U	NS														
Security 1	1,4-dichlorobenzene	3	0.5	N	is.	U	NS														
Section Sect	acetone	50	10	N	IS	2.29 F	NS														
Mathematical Math	benzene	1	0.1	N	IS	U	NS														
Statement S	carbon disulfide		0.5	N	IS.	U	NS														
Scheduck 7 0,3 88 U 88 U 88 U 88 U 88 U 88 U 88 U 88		5	0.5	N	IS .	U	NS														
Secondary 1		7	0.3	N	IS.	U	NS														
Second Content																					
Salandoniomonishe 5°		5	1			U															
Second S																					
tumbhendom 0.7 1 NS U NS distallandene (TCE) 5 1 NS U NS tima 2 (Dalbardene et al.) 5 1 NS U NS tima 2 (Dalbardene et al.) 5 1 NS U NS tima (Dalbardene et al.) 5 1 NS U NS tima (Dalbardene et al.) 10 NS NS NS tima (Dalbardene et al.) 10 3 NS NS tima (Dalbardene et al.) 100 3 NS NS tima (Dalbardene et al.) 100 3 NS NS tima (Dalbardene et al.) 100 NS NS NS tima (Dalbardene et al.) 100 NS NS NS NS tima (Dalbardene et al.) 100 NS																					
Second Control S																					
Trans 1																					
Marking 1971 Mark																					
Market M																					
Section 100 200 88 88 19		0.3	1				140														
Second S		100	200	NIC	NIC	120 F	Ne	<u> </u>		1 1	 П	T	1	I	1	T	T				
brian 1,000 190 NS NS 7,2 F NS NS NS NS NS NS NS																					1
No. 1,000 110 NS NS 72,F NS NS 72,F NS NS 75,000 NS NS 75,000 NS NS 75,000 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS 10 NS NS NS NS NS NS NS N																					ı
Salama		,																			ı
Second S																					ı
Septem 200																					1
ron 300 200 NS NS NS 120 F NS magnetism 35000 1100 NS NS 9500 NS S magnetism 35000 1100 NS NS 9500 NS S macrory 0.7 1 NS NS 9500 NS NS NS NS NS NS NS NS NS NS NS NS NS																					
magnesium 35,000 1,000 NS NS NS 9,900 NS NS marganes 300 10 NS NS NS 9,900 NS NS marganes 300 10 NS NS NS 6,5 F NS NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS U NS NS U NS NS U																					ı
mangenee 300 10 NS NS S 6.5F NS NS NS NS NS NS NS NS NS NS NS NS NS																					1
merany 0,7 1 NA NA U NS NS NS U NS U NS	magnesium																				ı
Modeled 100	manganese																				1
Decision		0.7																			1
Detail D	molybdenum																				1
Selentum	nickel	100	20	NS	NS																
Silver																					ı
Sedium Color																					ı
vanadium 10 NS NS U NS MS U NS U NS </td <td></td> <td>50</td> <td></td> <td>ı</td>		50																			ı
2,000 20	sodium		1,000	NS	NS	2,000 B	NS														ı
Leachate Indicators (mg/L) Alkalinity, Total - 10 NS 190 NS atmonia 2 0.2 NS U NS BOD5 2.4 NS U NS bromide 2 0.5 NS U NS COD 5 NS U NS color 15 5 NS U NS color 15 5 NS U NS mirate 10 1 NS 230 NS TKN 1 0.2 NS 0.77 NS suffae 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TCC 1 NS 4.1 NS	vanadium																				ı
alkalinity, Total 10 NS 190 NS ammonia 2 0.2 NS U NS BOD5 2.4 NS U NS bromide 2 0.5 NS U NS COD 5 NS 6.7 F NS color 15 5 NS U NS hardness, Total 1 NS 230 NS TRN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TCC 1 NS 4.1 NS		2,000	20	NS	NS	7.5 F	NS		L												
ammonia 2 0.2 NS U NS U NS DOS 2.4 NS U NS DOS S NS U NS S S S U NS S S S S S S S S S	Leachate Indicators (mg/L)																				
BOD5 - 2.4 NS U NS U NS COD - 5 NS U NS COD - 5 NS S S S S S S S S S S S S S S S S S	alkalinity, Total	-	10	N	IS	190	NS														
bromide 2 0.5 NS U NS COD - 5 NS 6.7 F NS Albridge 250 1 NS 1.8 NS color 15 5 NS U NS hardness, Total - 1 NS 230 NS TRN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TCC - 1 NS 4.1 NS	ammonia	2	0.2	N	IS	U	NS														
COD - 5 NS 6.7 F NS chloride 250 1 NS 1.8 NS color 15 5 NS U NS hardness, Total - 1 NS 230 NS nitrate 10 1 NS 12 NS TKN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TOC 1 NS 4.1 NS	BOD5	-	2.4	N	IS		NS														
chloride 250 1 NS 1.8 NS color 15 5 NS U NS hardness, Total 1 NS 230 NS NS nitrate 10 1 NS 12 NS NS U NS NS NS NS NS NS NS NS NS NS NS NS NS	bromide	2	0.5	N	IS	U	NS														
chloride 250 1 NS 1.8 NS color 15 5 NS U NS hardness, Total 1 NS 230 NS NS nitrate 10 1 NS 12 NS NS U NS NS NS NS NS NS NS NS NS NS NS NS NS	COD		5	N	IS	6.7 F	NS														
color 15 5 NS U NS hardness, Total 1 NS 230 NS nitrate 10 1 NS 12 NS TKN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TCC 1 NS 4.1 NS		250	1	N	IS	1.8	NS														
hardness, Total 1 NS 230 NS nitrate 10 1 NS 12 NS TKN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TOC 1 NS 4.1 NS				N	IS	U	NS														
nitrate 10 1 NS 12 NS TKN 1 0.2 NS 0.77 NS sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TOC - 1 NS 4.1 NS	hardness, Total		1			230															
TKN 1 0.2 NS 0.77 NS		10																			
sulfate 250 1 NS 4.2 NS TDS 500 10 NS 200 NS TOC 1 NS 4.1 NS																					
TDS 500 10 NS 200 NS TOC - 1 NS 4.1 NS																					
TOC - 1 NS 4.1 NS																					
PRICEOFAS, 1968 - 9.500 195 U 195			-																		
	prictiones, 10tai		0.003	N	10	U	193	I	I		L								1		

Landfill 6 AOC

Gas Monitoring Results - Methane and LEL

		21-	-Dec-04			17-	Jan-05			17-	Feb-05			24-	Mar-05			26-	Apr-05	
	Baro	metric Press	sure (in.) =	29.39	Baro	metric Press	sure (in.) =	29.77	Baro	metric Press	ure (in.) =	29.34	Baro	metric Press	sure (in.) =	30.00	Baro	metric Press	sure (in.) =	29.28
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-02	NI	NI	NI	NI	NI	NI	NI	NI									0	0.0	19.6	0.4
LF6GMP-03	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.5	0.1	0	0.0	20.8	0.0	0	0.0	20.7	0.0
LF6GMP-04	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.3	0.1	0	0.0	20.2	0.3	0	0.0	20.4	0.0
LF6GMP-05	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	19.7	0.6	0	0.0	20.8	0.0	0	0.0	20.4	0.1
LF6GMP-06	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	19.5	0.5	0	0.0	19.1	0.5	0	0.0	19.6	0.5
LF6GMP-07	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.7	0.0	0	0.0	16.6	2.7	0	0.0	15.9	3.6
LF6GMP-08	NI	NI	NI	NI	NI	NI	NI	NI									4	0.2	11.3	8.1
LF6GMP-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-10	NI	NI	NI	NI	NI	NI	NI	NI									0	0.0	20.4	0.1
LF6GMP-11	NI	NI	NI	NI	NI	NI	NI	NI									0	0.0	19.1	1.0
LF6GMP-12	NI	NI	NI	NI	NI	NI	NI	NI									0	0.0	16.7	3.5
LF6GMP-13	NI	NI	NI	NI	NI	NI	NI	NI									0	0.0	19.6	0.6
LF6GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-15S	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.7	0.0	0	0.0	20.9	0.0	0	0.0	20.7	0.0
LF6GMP-15D	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.8	0.0	0	0.0	20.9	0.0	0	0.0	20.6	0.0
LF6GMP-16S	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.6	0.0	0	0.0	20.8	0.0	0	0.0	20.5	0.0
LF6GMP-16D	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.1	0.2	0	0.0	20.9	0.0	0	0.0	20.7	0.0
LF6GMP-17S	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.6	0.0	0	0.0	21.0	0.0	0	0.0	20.6	0.0
LF6GMP-17D	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	20.5	0.0	0	0.0	21.1	0.0	0	0.0	20.7	0.0
LF6VENT-01	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-02	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-04	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-05	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-06	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-07	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6VENT-10	0	0.0	20.9	0.0	0	0.0	20.5	0.1									0	0.0	20.2	0.2
LF6VENT-11	0	0.0	18.2	1.8	0	0.0	17.4	2.1									0	0.0	18.7	0.9
LF6VENT-12	0	0.0	19.6	0.8	0	0.0	16.1	1.4									0	0.0	18.9	1.2
LF6VENT-13	0	0.0	20.6	0.3	0	0.0	14.7	3.4									0	0.0	17.6	1.0
LF6VENT-14	4	0.2	21.4	0.0	0	0.0	18.7	0.8									0	0.0	18.5	1.1
LF6VENT-15	2	0.1	21.4	0.0	0	0.0	17.6	0.9									0	0.0	17.6	1.4
LF6VENT-16	4	0.2	21.5	0.0	0	0.0	17.4	1.7									0	0.0	15.5	2.7

NI = Not Installed.

 $NS = Not \ Sampled.$

Landfill 6 AOC

Gas Monitoring Results - Methane and LEL (continued)

		26-	May-05			24-	Jun-05			2-2	Aug-05			30-	Aug-05			10-	Oct-05	
	Baro	metric Press	sure (in.) =	29.23	Baro	metric Press	ure (in.) =	29.61	Baro	metric Press	ure (in.) =	29.55	Baro	metric Press	ure (in.) =	29.38	Baro	metric Press	sure (in.) =	29.55
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	0	0.0	15.1	1.0
LF6GMP-02	0	0.0	18.0	1.8	0	0.0	49.1	0.6					0	0.0	15.1	4.2	2	0.1	20.7	0.0
LF6GMP-03	0	0.0	20.7	0.1	0	0.0	20.2	0.1					0	0.0	18.4	1.0	0	0.0	20.7	0.0
LF6GMP-04	0	0.0	19.6	0.9	0	0.0	19.3	0.6					0	0.0	17.4	2.4	0	0.0	20.5	0.1
LF6GMP-05	2	0.1	20.3	0.5	0	0.0	19.6	0.5					0	0.0	18.8	1.6	0	0.0	20.4	0.1
LF6GMP-06	2	0.1	19.9	0.5	0	0.0	19.3	0.6					0	0.0	19.1	1.5	0	0.0	19.1	1.2
LF6GMP-07	0	0.0	20.9	0.1	0	0.0	19.4	0.7					0	0.0	14.4	5.9	0	0.0	20.8	0.0
LF6GMP-08	6	0.3	13.6	7.5	42	2.1	6.4	18.6					98	4.9	2.8	28.5	94	4.7	5.7	17.5
LF6GMP-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	2	0.1	18.7	0.5
LF6GMP-10	2	0.1	20.9	0.0	0	0.0	18.9	1.6					0	0.0	18.5	2.3	2	0.1	18.5	2.1
LF6GMP-11	2	0.1	18.8	2.1	0	0.0	18.1	2.5					0	0.0	15.9	5.2	2	0.1	20.6	0.1
LF6GMP-12	0	0.0	14.1	6.7	0	0.0	17.6	3.7					0	0.0	15.3	4.3	0	0.0	17.4	2.7
LF6GMP-13	2	0.1	19.8	0.9	0	0.0	18.3	1.9					0	0.0	16.9	3.5	2	0.1	16.6	3.7
LF6GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-15S	0	0.0	20.8	0.0	0	0.0	20.7	0.0	0	0.0	20.6	0.0	0	0.0	20.3	0.3	0	0.0	20.6	0.0
LF6GMP-15D	0	0.0	21.0	0.0	0	0.0	20.6	0.0	0	0.0	20.5	0.0	0	0.0	20.6	0.1	0	0.0	20.7	0.0
LF6GMP-16S	0	0.0	20.6	0.0	0	0.0	20.2	0.2	0	0.0	20.1	0.2	0	0.0	20.0	0.4	0	0.0	20.2	0.2
LF6GMP-16D	0	0.0	20.3	0.2	0	0.0	20.7	0.0	0	0.0	20.6	0.0	0	0.0	20.0	0.4	0	0.0	20.2	0.2
LF6GMP-17S	0	0.0	20.7	0.1	0	0.0	20.3	0.1	0	0.0	20.3	0.1	0	0.0	20.3	0.3	0	0.0	20.2	0.2
LF6GMP-17D	0	0.0	20.8	0.0	0	0.0	20.6	0.0	0	0.0	20.4	0.0	0	0.0	20.4	0.2	0	0.0	20.2	0.1
LF6VENT-01	NI	NI	NI	NI	NI	NI	NI	NI					14	0.7	5.1	2.2	0	0.0	19.5	0.2
LF6VENT-02	NI	NI	NI	NI	NI	NI	NI	NI					>100	9.6	2.5	0.0	0	0.0	20.7	0.0
LF6VENT-03	NI	NI	NI	NI	NI	NI	NI	NI					>100	23.8	0.0	15.2	0	0.0	20.4	0.4
LF6VENT-04	NI	NI	NI	NI	NI	NI	NI	NI					>100	8.5	10.7	3.7	>100	14.5	4.9	9.4
LF6VENT-05	NI	NI	NI	NI	NI	NI	NI	NI					>100	7.4	0.4	19.8	0	0.0	16.2	2.8
LF6VENT-06	NI	NI	NI	NI	NI	NI	NI	NI					>100	6.3	5.4	1.1	0	0.0	20.7	0.0
LF6VENT-07	NI	NI	NI	NI	NI	NI	NI	NI					0	0.0	6.4	13.7	0	0.0	20.7	0.0
LF6VENT-08	NI	NI	NI	NI	NI	NI	NI	NI					80	4.0	1.2	20.6	0	0.0	20.7	0.0
LF6VENT-09	NI	NI	NI	NI	NI	NI	NI	NI					0	0.0	15.6	4.4	0	0.0	20.8	0.0
LF6VENT-10	0	0.0	21.0	0.0	0	0.0	20.3	0.2					18	0.9	1.8	18.8	0	0.0	20.8	0.0
LF6VENT-11	0	0.0	21.0	0.0	0	0.0	18.4	1.6					0	0.0	12.0	7.8	0	0.0	20.7	0.0
LF6VENT-12	0	0.0	13.5	5.1	0	0.0	18.9	1.5					46	2.3	0.9	22.3	0	0.0	20.8	0.0
LF6VENT-13	0	0.0	17.2	2.6	0	0.0	16.2	2.8					0	0.0	7.8	11.1	0	0.0	20.7	0.0
LF6VENT-14	0	0.0	21.2	0.0	0	0.0	17.6	2.0					0	0.0	11.4	7.7	0	0.0	20.8	0.0
LF6VENT-15	0	0.0	21.1	0.0	0	0.0	10.6	8.1					>100	5.1	0.0	26.0	0	0.0	20.7	0.0
LF6VENT-16	0	0.0	21.2	0.0	0	0.0	11.9	6.2					38	1.9	0.3	19.5	0	0.0	20.7	0.0
Notes:																				

NI = Not Installed.

NS = Not Sampled.

Landfill 6 AOC
Gas Monitoring Results - Methane and LEL (continued)

		14-	Nov-05			1-I	Dec-05			9-,	an-06]	13-Jul-06			9	0-Oct-06	
	Baro	metric Press	ure (in.) =	30.32	Baro	metric Press	sure (in.) =	29.94	Baro	metric Press	ure (in.) =	29.79	Baro	metric Press	sure (in.) =	29.77-30.04	Baro	metric Press	sure (in.) =	29.51-29.65
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	0	0.0	14.0	0.8	0	0.0	19.2	0.3	0	0.0	17.2	0.5	0.0	0.0	16.5	11.2	0	0.0	9.6	3.0
LF6GMP-02	0	0.0	20.6	0.0	0	0.0	12.3	5.2	0	0.0	16.7	2.7	0.0	0.0	20.6	0.0	0	0.0	20.2	0.2
LF6GMP-03	0	0.0	20.6	0.0	0	0.0	18.3	0.7	0	0.0	19.3	0.4	0.0	0.0	20.6	0.0	0	0.0	21.0	0.1
LF6GMP-04	0	0.0	20.5	0.0	0	0.0	20.6	0.2	0	0.0	19.2	1.1	0.0	0.0	20.4	0.0	0	0.0	15.9	4.1
LF6GMP-05	0	0.0	20.6	0.0	0	0.0	18.2	1.9	0	0.0	20.5	0.0	0.0	0.0	20.6	0.0	0	0.0	18.1	2.1
LF6GMP-06	0	0.0	19.6	0.4	0	0.0	18.5	1.6	0	0.0	19.2	0.8	0.0	0.0	20.6	0.0	0	0.0	21.0	0.3
LF6GMP-07	0	0.0	20.5	0.0	0	0.0	13.6	6.1	0	0.0	20.2	0	0.0	0.0	20.6	0.0	0	0.0	13.7	6.1
LF6GMP-08	50	2.5	13.7	7.1	>100	9.1	0.1	24.0	>100	7.5	0.0	22.2	72.0	3.6	0.0	29.8	20	1.0	1.8	15.2
LF6GMP-09	0	0.0	20.5	0	0	0	15.5	4.1	0	0	18.2	1.3	0.0	0.0	20.7	0.0	0	0	20.3	0.6
LF6GMP-10	0	0.0	20.2	0.2	0	0.0	20.7	0.3	0	0.0	20.1	0.4	0.0	0.0	20.3	0.0	0	0.0	19.7	1.8
LF6GMP-11	0	0.0	20.5	0.0	0	0.0	16.0	3.3	0	0.0	20.5	0	0.0	0.0	20.6	0.0	0	0.0	14.8	5.5
LF6GMP-12	0	0.0	19.8	0.4	0	0.0	16.40	3.6	0	0.0	18.00	2.0	0.0	0.0	20.6	0.0	0	0.0	13.40	6.2
LF6GMP-13	0	0.0	16.0	3.4	0	0.0	16.5	3.4	0	0.0	16.6	3.3	0.0	0.0	20.4	0.1	0	0.0	15.6	4.0
LF6GMP-14	NI	NI	NI	NI																
LF6GMP-15S	0	0.0	20.4	0.0	0	0.0	20.4	0.2	0	0.0	20.3	0.1								
LF6GMP-15D	0	0.0	20.5	0.0	0	0.0	20.6	0.0	0	0.0	20.4	0.1								
LF6GMP-16S	0	0.0	20.2	0.0	0	0.0	20.2	0.2	0	0.0	19.8	0.4								
LF6GMP-16D	0	0.0	20.4	0.0	0	0.0	19.9	0.3	0	0.0	20.5	0.0								
LF6GMP-17S	0	0.0	20.3	0.0	0	0.0	20.5	0.2	0	0.0	20.2	0.2								
LF6GMP-17D	0	0.0	20.4	0.0	0	0.0	20.6	0.0	0	0.0	20.4	0.0								
LF6VENT-01	0	0.0	20.5	0.0	0	0.0	15.8	0.2	0	0.0	20.5	0.0	0.0	0.0	19.1	0.3	1	0.1	14.6	1.2
LF6VENT-02	0	0.0	20.6	0.0	30	1.5	11.6	0.0	0	0.0	20.5	0.0	0.0	0.0	20.5	0.0	15	0.8	16.8	0.1
LF6VENT-03	0	0.0	20.5	0.0	34	1.7	4.4	7.1	0	0.0	20.3	0.0	0.0	0.0	18.4	1.3	18	0.9	15.6	2.8
LF6VENT-04	0	0.0	20.5	0.0	>100	5.9	4.2	4.5	0	0.0	20.4	0.0	62.0	3.1	12.9	4.4	>100	5.1	14.3	2.2
LF6VENT-05	0	0.0	20.4	0.0	0	0.0	9.8	6.7	0	0.0	20.3	0.0	0.0	0.0	19.9	0.3	0	0.0	19.3	1.4
LF6VENT-06	0	0.0	20.5	0.0	52	2.6	11.6	0.0	0	0.0	20.4	0.0	0.0	0.0	19.2	0.0	7	0.4	14.5	0.5
LF6VENT-07	0	0.0	20.5	0.0	0	0.0	15.4	3.7	0	0.0	20.4	0.0	0.0	0.0	18.6	1.4	0	0.0	12.6	5.2
LF6VENT-08	0	0.0	20.6	0.0	0	0.0	16.6	2.5	0	0.0	20.4	0.0	0.0	0.0	19.0	1.0	0	0.0	17.9	1.7
LF6VENT-09	0	0.0	20.5	0.0	0	0.0	17.8	1.9	0	0.0	20.6	0.0	0.0	0.0	19.3	0.4	0	0.0	16.2	3.1
LF6VENT-10	0	0.0	20.5	0.0	0	0.0	15.5	3.2	0	0.0	20.5	0.0	0.0	0.0	18.7	2.2	0	0.0	9.4	6.5
LF6VENT-11	0	0.0	20.5	0.0	0	0.0	16.1	3.2	0	0.0	20.2	0.0	0.0	0.0	19.1	0.8	0	0.0	6.2	7.3
LF6VENT-12	0	0.0	20.5	0.0	0	0.0	15.5	3.5	0	0.0	20.4	0.0	0.0	0.0	18.4	2.7	0	0.0	16.6	3.1
LF6VENT-13	0	0.0	20.5	0.0	0	0.0	13.4	4.8	0	0.0	20.5	0.0	0.0	0.0	16.4	2.6	0	0.0	12.7	5.4
LF6VENT-14	0	0.0	20.5	0.0	0	0.0	13.6	4.3	0	0.0	20.2	0.0	0.0	0.0	16.4	2.7	0	0.0	14.0	3.9
LF6VENT-15	0	0.0	20.5	0.0	0	0.0	8.9	7.3	0	0.0	20.3	0.0	0.0	0.0	13.8	7.1	5	0.3	9.7	7.4
LF6VENT-16	0	0.0	19.7	0.4	48	2.4	1.3	13.5	0	0.0	20.2	0.0	16.0	0.8	3.3	16.2	0	0.0	10.3	5.3

NI = Not Installed.

 $NS = Not \ Sampled.$

Landfill 6 AOC
Gas Monitoring Results - Methane and LEL (continued)

		4	l-Jan-07			1	l-Jun-07			3	1-Jul-07			6-0	Oct-07			2	9-Jan-08	
	Baro	metric Press	sure (in.) =	29.35-29.40	Baro	metric Press	sure (in.) =	29.41-29.52	Baro	metric Press	ure (in.) =	29.36-29.48	Baro	metric Press	sure (in.) =	29.94	Baro	metric Press	ure (in.) =	29.06-29.42
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	0	0.0	19.4	0.4	0	0.0	14.9	1.7	0	0.0	16.1	2.5	0	0.0	13.1	3.3	0	0.0	18.0	1.3
LF6GMP-02	0	0.0	10.0	6.4	0	0.0	8.9	6.7	0	0.0	11.1	6.3	0	0.0	18.2	1.9	0	0.0	10.3	7.0
LF6GMP-03	0	0.0	13.9	2.5	0	0.0	14.9	1.7	0	0.0	15.4	2.1	0	0.0	17.2	1.7	0	0.0	19.0	1.0
LF6GMP-04	0	0.0	12.9	7.1	0	0.0	13.9	6.0	0	0.0	13.1	6.3	0	0.0	14.1	5.9	0	0.0	14.7	5.9
LF6GMP-05	0	0.0	20.5	0.4	0	0.0	18.2	1.7	0	0.0	18.8	1.8	0	0.0	18.4	2.0	0	0.0	18.2	2.3
LF6GMP-06	0	0.0	18.3	2.3	0	0.0	18.2	1.7	0	0.0	19.2	1.6	0	0.0	17.9	2.5	0	0.0	18.3	2.2
LF6GMP-07	0	0.0	20.9	0.1	0	0.0	15.2	5.2	0	0.0	15.7	5.0	0	0.0	15.8	4.8	0	0.0	15.7	5.2
LF6GMP-08	0	0.0	20.6	0.4	0	0.0	3.6	19.1	0	0.0	9.2	11.3	0	0.0	5.1	16.0	0	0.0	5.4	11.5
LF6GMP-09	0	0.0	20.2	0.6	0	0.0	18.3	3.4	0	0.0	19.1	1.6	0	0.0	14.1	6.5	0	0.0	16.8	4.0
LF6GMP-10	0	0.0	20.6	1.0	0	0.0	20.0	0.4	0	0.0	20.0	1.0	0	0.0	20.0	0.7	0	0.0	19.9	1.1
LF6GMP-11	0	0.0	18.6	2.6	0	0.0	18.5	2.4	0	0.0	17.9	3.2	0	0.0	17.7	3.2	0	0.0	19.0	2.3
LF6GMP-12	0	0.0	19.5	1.3	0	0.0	18.1	3.1	0	0.0	17.4	3.5	0	0.0	17.4	7.5	0	0.0	18.3	2.7
LF6GMP-13	0	0.0	18.3	2.2	0	0.0	19.2	1.3	0	0.0	19.3	1.7	0	0.0	19.7	1.1	0	0.0	19.6	1.9
LF6GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-15S																				
LF6GMP-15D																				
LF6GMP-16S																				
LF6GMP-16D																				
LF6GMP-17S																				
LF6GMP-17D																				
LF6VENT-01	12	0.6	10.8	0.8	0	0.0	17.1	1.2	0	0.0	12.6	1.0	6	0.3	12.6	1.4	7	0.4	9.5	1.4
LF6VENT-02	83	4.2	4.2	0.1	38	1.9	11.6	0.2	32	1.6	10.6	0.4	>100	6.1	1.3	0.5	>100	5.8	0.6	0.2
LF6VENT-03	99	5.0	3.2	7.9	0	0.0	13.2	4.8	18	0.9	8.4	7.7	>100	5.3	6.7	9.2	>100	6.8	2.7	10.3
LF6VENT-04	>100	9.5	0.4	4.0	>100	9.4	9.1	5.7	>100	12.1	4.5	7.3	>100	15.7	6.2	6.0	>100	14.6	0.5	5.5
LF6VENT-05	3	0.2	6.7	6.1	0	0.0	19.1	1.4	0	0.0	14.2	4.5	0	0.0	13.4	5.5	32	1.6	3.0	11.9
LF6VENT-06	66	3.3	8.4	0.5	0	0.0	16.1	0.2	7	0.3	9.7	0.3	30	1.5	11.4	0.4	84	4.2	2.3	0.5
LF6VENT-07	0	0.0	13.4	5.1	0	0.0	19.5	1.4	0	0.0	15.2	4.2	0	0.0	13.8	5.3	>100	0.0	9.9	8.6
LF6VENT-08	0	0.0	13.5	3.9	0	0.0	17.9	2.5	0	0.0	17.8	2.4	0	0.0	10.3	6.7	0	0.0	8.8	7.8
LF6VENT-09	0	0.0	19.8	0.7	0	0.0	19.8	0.6	0	0.0	17.6	1.9	0	0.0	16.6	3.1	0	0.0	15.4	4.8
LF6VENT-10	0	0.0	13.2	4.1	0	0.0	17.7	2.9	0	0.0	13.7	4.9	0	0.0	6.2	10.1	0	0.0	5.9	9.4
LF6VENT-11	0	0.0	16.4	3.3	0	0.0	19.0	1.0	0	0.0	15.8	3.3	0	0.0	14.1	5.0	0	0.0	6.3	8.0
LF6VENT-12	0	0.0	18.0	1.5	0	0.0	18.3	2.5	0	0.0	14.5	5.3	0	0.0	3.8	12.8	0	0.0	14.8	5.2
LF6VENT-13	0	0.0	14.9	4.3	0	0.0	16.8	3.0	0	0.0	12.0	6.0	0	0.0	10.9	7.9	0	0.0	11.5	8.1
LF6VENT-14	0	0.0	15.7	3.4	0	0.0	17.2	2.8	0	0.0	15.9	3.8	0	0.0	14.4	4.6	0	0.0	12.3	7.8
LF6VENT-15	0	0.0	19.7	0.8	0	0.0	5.0	13.5	0	0.0	4.6	12.2	8	0.4	1.4	17.3	0	0.0	5.0	12.5
LF6VENT-16	0	0.0	20.9	0.2	0	0.0	3.0	13.6	1	0.0	15.2	4.7	0	0.0	4.0	12.3	0	0.0	4.8	10.1

 $NI = Not\ Installed.$

NS = Not Sampled.

Landfill 6 AOC
Gas Monitoring Results - Methane and LEL (continued)

		1	17-Apr-08]	16-Jul-08			1	8-Nov-08			j	14-Jan-09			2	8-Apr-09	
	Baron	metric Press	sure (in.) =	30.01-30.02	Baro	metric Press	sure (in.) =	NA	Baro	metric Press	ure (in.) =	29.60-29.63	Baro	metric Press	sure (in.) =	29.17-29.66	Baro	metric Press	ure (in.) =	29.41-29.47
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	0	0.0	18.5	0.4	0	0.0	19.4	0.7	0	0.0	20.1	0.4	0	0.0	19.2	1.4	0	0.0	20.7	0.0
LF6GMP-02	0	0.0	13.5	4.2	0	0.0	12.7	4.3	0	0.0	21.5	0.1	0	0.0	12.5	6.4	0	0.0	11.5	4.8
LF6GMP-03	0	0.0	16.6	1.5	0	0.0	15.5	1.8	0	0.0	20.8	0.0	0	0.0	16.8	2.5	0	0.0	16.0	2.0
LF6GMP-04	0	0.0	16.7	3.6	0	0.0	19.6	4.9	0	0.0	21.0	0.0	0	0.0	16.0	5.0	0	0.0	21.0	0.0
LF6GMP-05	0	0.0	19.3	1.4	0	0.0	18.9	1.1	0	0.0	21.3	0.0	0	0.0	19.3	2.2	0	0.0	18.8	1.8
LF6GMP-06	0	0.0	19.3	1.2	0	0.0	18.6	1.3	0	0.0	21.2	0.0	0	0.0	19.8	1.8	0	0.0	18.9	1.5
LF6GMP-07	2	0.1	16.5	4.2	0	0.0	16.3	4.0	0	0.0	21.2	0.1	0	0.0	16.4	4.9	0	0.0	16.3	4.3
LF6GMP-08	0	0.0	14.1	3.8	0	0.0	5.1	13.6	0	0.0	21.3	0.0	0	0.0	11.4	7.2	0	0.0	5.2	10.6
LF6GMP-09	0	0	17.7	1.8	0	0	15.8	4.1	0	0	21.7	0.1	0	0	19.4	2.3	0	0	17.2	2.7
LF6GMP-10	0	0.0	21.0	0.1	0	0.0	19.4	0.9	2	0.1	21.7	0.0	0	0.0	21.4	0.4	0	0.0	20.3	0.0
LF6GMP-11	0	0.0	19.4	1.3	0	0.0	18.3	2.1	0	0.0	21.5	0.4	0	0.0	20.5	1.8	0	0.0	19.0	1.7
LF6GMP-12	0	0.0	18.5	2.0	0	0.0	18.4	2.0	0	0.0	21.6	0.1	0	0.0	19.5	2.4	0	0.0	17.9	2.1
LF6GMP-13	0	0.0	20.4	0.8	0	0.0	18.3	2.1	0	0.0	21.4	0.2	0	0.0	20.3	1.8	0	0.0	19.2	1.4
LF6GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-15S																				
LF6GMP-15D																				
LF6GMP-16S																				
LF6GMP-16D																				
LF6GMP-17S																				
LF6GMP-17D																				
LF6VENT-01	0	0.0	20.4	0.4	0	0.0	16.1	0.6	0	0.0	16.9	2.0	0	0.0	19.5	0.5	0	0.0	20.7	0.1
LF6VENT-02	0	0.0	19.9	0.2	4	0.2	12.1	0.2	0	0.0	19.9	0.1	0	0.0	19.2	0.2	0	0.0	21.0	0.0
LF6VENT-03	0	0.0	19.8	0.9	0	0	13.3	3	0	0.0	18.8	1.1	0	0.0	18.8	1.1	0	0.0	21.0	0.0
LF6VENT-04	6	0.3	15.2	2.3	60	2.9	11.1	4.8	1	0.0	17.7	1.4	0	0.0	18.8	1.5	1	0.0	19.9	0.6
LF6VENT-05	0	0.0	19.6	1.1	0	0	12.8	3.8	0	0.0	20.5	0.4	0	0.0	20.5	1.0	0	0.0	19.3	0.6
LF6VENT-06	0	0.0	20.9	0.2	0	0	12	0.2	1	0.0	20.7	0.3	0	0.0	17.7	1.9	1	0.0	15.8	1.0
LF6VENT-07	0	0.0	20.8	0.5	0	0	20.5	0.2	0	0.0	20.9	0.2	0	0.0	20.0	0.4	0	0.0	21.0	0.0
LF6VENT-08	0	0.0	20.7	0.5	0	0	19.5	0.5	2	0.1	20.1	1.1	0	0.0	21.6	0.3	0	0.0	19.5	0.9
LF6VENT-09	0	0.0	20.2	0.7	0	0	20	0.5	2	0.1	18.5	1.9	0	0.0	20.7	0.2	0	0.0	20.9	0.1
LF6VENT-10	0	0.0	20.3	0.8	0	0.0	18.4	1.2	0	0.0	20.0	0.6	0	0.0	20.4	0.9	0	0.0	20.3	0.5
LF6VENT-11	0	0.0	19.7	1.0	0	0.0	18.4	1.1	0	0.0	20.6	0.1	0	0.0	20.9	0.2	0	0.0	20.7	0.0
LF6VENT-12	0	0.0	20.4	0.7	0	0.0	19.3	1.1	0	0.0	20.2	0.5	0	0.0	20.6	1.2	0	0.0	20.8	0.0
LF6VENT-13	0	0.0	18.1	2.0	0	0.0	15.7	2.5	0	0.0	19.9	0.5	0	0.0	20.6	0.7	0	0.0	20.3	0.2
LF6VENT-14	2	0.1	19.1	1.6	0	0.0	17.3	1.8	2	0.1	20.3	0.3	0	0.0	21.4	0.4	0	0.0	20.5	0.1
LF6VENT-15	0	0.0	17.5	2.2	0	0.0	13.7	4.4	2	0.1	19.6	0.8	0	0.0	21.3	0.3	0	0.0	18.8	1.7
LF6VENT-16	0	0.0	16.5	2.8	0	0.0	10.4	5.8	0	0.0	17.2	2.0	0	0.0	20.9	0.4	0	0.0	17.9	3.4
Notes:						•	•		•	•			-	•			•	•	•	

NI = Not Installed.

NS = Not Sampled.

Landfill 6 AOC

Gas Monitoring Results - Methane and LEL (continued)

			13-Jul-09			2	22-Oct-09			2-	Feb-10			7-N	May-10			26-	-Oct-10	
	Baro	metric Press	sure (in.) =	29.28-29.31	Baro	metric Press	sure (in.) =	29.28-29.36	Baro	metric Press	sure (in.) =	NS	Baro	metric Press	sure (in.) =	29.18-29.3	Baro	metric Press	sure (in.) =	29.19-29.2
Sample Location	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Methane (%)	Oxygen (%)	Carbon Dioxide (%)
LF6GMP-01	0	0.0	19.6	0.1	0	0.0	12.3	4.0	NS	NS	NS	NS	0	0.0	20.6	0.1	0	0.0	19.4	0.5
LF6GMP-02	2	0.1	10.5	6.0	0	0.0	10.6	7.2	NS	NS	NS	NS	0	0.0	20.9	0.1	0	0.0	11.8	6.6
LF6GMP-03	2	0.1	16.7	2.5	0	0.0	14.3	2.9	NS	NS	NS	NS	0	0.0	20.9	0.0	0	0.0	15.6	2.7
LF6GMP-04	2	0.1	19.4	1.6	0	0.0	12.6	6.9	NS	NS	NS	NS	0	0.0	20.9	0.0	0	0.0	19.4	1.0
LF6GMP-05	2	0.1	19.5	1.4	0	0.0	17.4	2.4	NS	NS	NS	NS	0	0.0	20.9	0.0	0	0.0	20.6	0.2
LF6GMP-06	2	0.1	19.6	1.2	0	0.0	17.6	2.4	NS	NS	NS	NS	0	0.0	19.7	0.9	0	0.0	20.4	0.4
LF6GMP-07	0	0.0	20.5	0.0	0	0.0	15.3	5.3	NS	NS	NS	NS	0	0.0	17.6	3.4	0	0.0	16.3	4.6
LF6GMP-08	0	0.0	20.2	0.3	0	0.0	4.2	14.2	NS	NS	NS	NS	0	0.0	10.2	9.2	0	0.0	5.4	13.8
LF6GMP-09	2	0.1	18.6	2.4	0	0.0	13.2	6.8	NS	NS	NS	NS	0	0.0	17.4	3.1	0	0.0	14.2	5.9
LF6GMP-10	2	0.1	19.7	1.1	0	0.0	19.5	1.3	NS	NS	NS	NS	0	0.0	19.8	1.0	0	0.0	19.7	1.0
LF6GMP-11	2	0.1	19.5	1.3	0	0.0	17.8	2.9	NS	NS	NS	NS	0	0.0	19.9	1.1	0	0.0	18.0	2.7
LF6GMP-12	2	0.1	18.8	2.3	0	0.0	17.1	3.2	NS	NS	NS	NS	0	0.0	20.3	0.6	0	0.0	18.8	1.9
LF6GMP-13	0	0.0	19.6	0.7	0	0.0	16.8	3.5	NS	NS	NS	NS	0	0.0	20.2	0.7	0	0.0	18.9	1.5
LF6GMP-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
LF6GMP-15S																				
LF6GMP-15D																				
LF6GMP-16S																				
LF6GMP-16D																				
LF6GMP-17S																				
LF6GMP-17D																				
LF6VENT-01	0	0.0	14.3	2.1	5	0.2	8.1	1.6	NS	NS	NS	NS	0	0.0	19.7	0.7	0	0.0	20.7	0.1
LF6VENT-02	38	1.9	4.0	0.6	94	4.7	0.0	0.4	NS	NS	NS	NS	0	0.0	20.4	0.1	0	0.0	20.6	0.0
LF6VENT-03	7	0.3	8.0	6.4	>100	5.3	0.9	11.3	NS	NS	NS	NS	0	0.0	20.2	0.5	0	0.0	20.6	0.1
LF6VENT-04	>100	7.2	6.5	5.6	>100	14.7	0.2	6.4	NS	NS	NS	NS	0	0.0	18.5	1.6	0	0.0	20.7	0.0
LF6VENT-05	2	0.1	15.6	3.3	4	0.2	2.5	10.9	NS	NS	NS	NS	0	0.0	20.1	0.8	0	0.0	20.2	0.2
LF6VENT-06	9	0.4	10.0	0.6	39	1.9	1.1	0.7	NS	NS	NS	NS	0	0.0	20.2	0.4	0	0.0	20.7	0.0
LF6VENT-07	2	0.1	14.2	4.4	0	0.0	10.2	7.4	NS	NS	NS	NS	0	0.0	19.4	0.8	0	0.0	20.2	0.0
LF6VENT-08	2	0.1	16.5	3.2	0	0.0	9.8	5.7	NS	NS	NS	NS	0	0.0	19.8	0.6	0	0.0	20.3	0.0
LF6VENT-09	1	0.1	19.4	1.3	0	0.0	15.8	3.4	NS	NS	NS	NS	0	0.0	19.5	0.7	0	0.0	20.4	0.0
LF6VENT-10	2	0.1	16.0	3.4	0	0.0	4.9	9.6	NS	NS	NS	NS	0	0.0	19.6	0.9	0	0.0	20.4	0.1
LF6VENT-11	2	0.1	18.2	2.4	0	0.0	15.4	4.3	NS	NS	NS	NS	0	0.0	19.5	0.9	0	0.0	20.6	0.0
LF6VENT-12	2	4.1	17.2	3.2	0	0.0	8.0	7.8	NS	NS	NS	NS	0	0.0	20.1	0.7	0	0.0	20.5	0.0
LF6VENT-13	2	0.1	15.2	4.4	0	0.0	11.6	7.5	NS	NS	NS	NS	0	0.0	17.3	2.0	0	0.0	20.6	0.0
LF6VENT-14	2	0.1	16.9	3.5	0	0.0	14.8	4.1	NS	NS	NS	NS	0	0.0	19.2	1.4	0	0.0	20.6	0.0
LF6VENT-15	2	0.1	7.5	9.7	0	0.0	4.4	13.0	NS	NS	NS	NS	0	0.0	18.7	1.5	0	0.0	20.6	0.0
LF6VENT-16	2	0.1	13.4	5.7	0	0.0	11.2	5.9	NS	NS	NS	NS	0	0.0	15.7	4.1	0	0.0	20.7	0.0

NI = Not Installed.

NS = Not Sampled.

Notes for Tables

- B = The analyte was found in an associated blank, as well as in the sample.
- F =The analyte was positively identified above MDL, however the concentration is below the reporting limit (RL).
- J = The analyte was positively identified, but the quantitation is an approximation.
- M = A matrix effect was present.
- U = The analyte was analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- UJ = The result is estimated at the method detection limit.
- UM = A matrix effect was present; the analyte was not detected above the method detection limit.
- NA = Not analyzed
- NS = Not sampled
- R = The data is unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- ♦ = Duplicate value was used.
- -- = No value reported

= Value exceeded NYSDEC Groundwater standard.

Sample Location			TMC-1								
Sample ID	NYS Surface Water	RI Results (TMCSW-2)	TMCSW0101AA	TMCSW0101BB	TMCSW0101CA	TMCSW0101DA	TMCSW0101EA				
Date of Collection ²	Standards ¹	5/94 - 11/94	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010				
Sample Depth (ft bgs)				0-1							
SVOCs (μg/L)											
anthracene	3.8	0.005 J	U	U	U	U	U				
benzo(a)anthracene	0.002	U	U	U	U	U	U				
benzo(a)pyrene	0.002	U	U	U	U	U	U				
benzo(b)fluoranthene	0.002	U	U	U	U	U	U				
benzo(k)fluoranthene	0.002	U	U	U	U	U	U				
benzo(g,h,i)perylene	-	U	U	U	U	U	U				
benzoic acid		U	U	U	U	U	U				
benzyl alcohol		U	U	U	U	U	U				
bis(2-ethylhexyl) phthalate	0.6	U	U	0.510 F	0.804 F	0.465 F	16.1 B				
benzyl butyl phthalate	-	U	U	U	U	U	U				
chrysene	0.002	U	U	U	U	U	U				
di-n-butyl phthalate	50	U	1.88 F	U	U	U	45.1 B				
diethyl phthalate		U	U	U	U	U	1.58 F				
dimethyl phthalate		0.047 J	U	U	U	U	U				
fluoranthene	50	U	U	U	U	U	U				
fluorene	0.54	U	U	U	U	U	U				
indeno(1,2,3-c,d)pyrene		U	U	U	U	U	U				
phenanthrene	5.0	0.11 J	U	U	U	U	U				
phenol	1.0	U	U	U	U	U	U				
pyrene	4.6	0.014 J	U	U	U	U	U				
PCBs (µg/L)											
Aroclor 1260	0.09	NA	U	U	U	U	U				
Pesticides (µg/L)											
gamma BHC (lindane)	0.05	U	U	U	U	U	U				
alpha-chlordane	0.05	U	U	U	U	U	U				
gamma-chlordane	0.05	U	U	U	U	U	U				
p,p'-DDD	0.3	U	U	U	U	U	U				
p,p'-DDE	0.2	U	U	U	U	U	U				
p,p'-DDT	0.2	U	U	U	U	U	U				
dieldrin	0.004	U	U	U	U	U	U				
endrin aldehyde	5*	U	U	U	U	U	U				
heptachlor	0.04	U	U	U	U	U	U				

Sample Location			TMC-2							
Sample ID	NYS Surface Water	RI Results (TMCSW-8)	TMCSW0201AA	TMCSW0201BB	TMCSW0201CA	TMCSW0201DA	TMCSW0201EA			
Date of Collection ²	Standards 1	5/94 - 11/94	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/;29/2010			
Sample Depth (ft bgs)				0-1						
SVOCs (μg/L)			**							
anthracene	3.8	U	U	U	U	U	U			
benzo(a)anthracene	0.002	U	U	U	U	U	U			
benzo(a)pyrene	0.002	U	U	U	U	U	U			
benzo(b)fluoranthene	0.002	U	U	U	U	U	U			
benzo(k)fluoranthene	0.002	U	U	U	U	U	U			
benzo(g,h,i)perylene	-	U	U	U	U	U	U			
benzoic acid		U	U	U	U	U	U			
benzyl alcohol		U	U	U	U	U	U			
bis(2-ethylhexyl) phthalate	0.6	R	U	0.980 F	U	U	3.89 FB			
benzyl butyl phthalate	-	R	U	U	U	U	U			
chrysene	0.002	U	U	U	U	U	U			
di-n-butyl phthalate	50	U	U	U	U	U	8.14 FB			
diethyl phthalate		U	U	U	U	U	U			
dimethyl phthalate		R	U	U	U	U	U			
fluoranthene	50	U	U	U	U	U	U			
fluorene	0.54	R	U	U	U	U	U			
indeno(1,2,3-c,d)pyrene		U	U	U	U	U	U			
phenanthrene	5.0	R	U	U	U	U	U			
phenol	1.0	U	U	U	U	U	U			
pyrene	4.6	R	U	U	U	U	U			
PCBs (µg/L)										
Aroclor 1260	0.09	NA	U	U	U	U	U			
Pesticides (µg/L)										
gamma BHC (lindane)	0.05	U	U	U	U	U	U			
alpha-chlordane	0.05	U	U	U	U	U	U			
gamma-chlordane	0.05	U	U	U	U	U	U			
p,p'-DDD	0.3	U	U	U	U	U	U			
p,p'-DDE	0.2	U	U	U	U	U	U			
p,p'-DDT	0.2	U	U	U	U	U	U			
dieldrin	0.004	U	U	U	U	U	U			
endrin aldehyde	5*	U	U	U	U	U	U			
heptachlor	0.04	U	U	U	U	U	U			

Sample Location			TMC-3							
Sample ID	NYS Surface Water	RI Results (TMCSW-10)	TMCSW0301AA	TMCSW0301BB	TMCSW0301CA	TMCSW0301DA	TMCSW0301EA			
Date of Collection ²	Standards 1	5/94 - 11/94	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010			
Sample Depth (ft bgs)				0-1	0-1					
SVOCs (μg/L)			**							
anthracene	3.8	U	U	U	U	U	U			
benzo(a)anthracene	0.002	U	U	U	U	U	U			
benzo(a)pyrene	0.002	U	U	U	U	U	U			
benzo(b)fluoranthene	0.002	U	U	U	U	U	U			
benzo(k)fluoranthene	0.002	U	U	U	U	U	U			
benzo(g,h,i)perylene	-	U	U	U	U	U	U			
benzoic acid		U	U	U	U	U	U			
benzyl alcohol		U	U	U	U	U	U			
bis(2-ethylhexyl) phthalate	0.6	R	U	0.660 F	U	0.903 F	23.8 B			
benzyl butyl phthalate	-	R	U	U	U	U	0.394 F			
chrysene	0.002	U	U	U	U	U	U			
di-n-butyl phthalate	50	R	U	U	U	U	72.7 B			
diethyl phthalate		R	U	U	U	U	2.36 F			
dimethyl phthalate		U	U	U	U	U	U			
fluoranthene	50	U	U	U	U	U	U			
fluorene	0.54	U	U	U	U	U	U			
indeno(1,2,3-c,d)pyrene		U	U	U	U	U	U			
phenanthrene	5.0	R	U	U	U	U	U			
phenol	1.0	U	U	U	U	U	U			
pyrene	4.6	U	U	U	U	U	U			
PCBs (µg/L)										
Aroclor 1260	0.09	NA	U	U	U	U	U			
Pesticides (µg/L)										
gamma BHC (lindane)	0.05	U	U	U	U	U	U			
alpha-chlordane	0.05	U	U	U	U	U	U			
gamma-chlordane	0.05	U	U	U	U	U	U			
p,p'-DDD	0.3	U	U	U	U	U	U			
p,p'-DDE	0.2	U	U	U	U	U	U			
p,p'-DDT	0.2	U	U	U	U	U	U			
dieldrin	0.004	U	U	U	U	U	U			
endrin aldehyde	5*	U	U	U	U	U	U			
heptachlor	0.04	U	U	U	U	U	U			

Sample Location		TMC-4							
	NYS Surface	TMCSW0401AA	TMCSW0401BB	TMCSW0401CA	TMCSW0401DA	TMCSW0401EA			
Sample ID	Water								
Date of Collection ² Sample Depth (ft bgs)	Standards ¹	10/9/2006	10/18/2007	10/27/2008 0-1	10/1/2009	10/29/2010			
SVOCs (µg/L)				V-1					
anthracene	3.8	U	U	U	U	U			
benzo(a)anthracene	0.002	U	U	U	U	U			
benzo(a)pyrene	0.002	U	U	U	U	U			
benzo(b)fluoranthene	0.002	U	U	U	U	U			
benzo(k)fluoranthene	0.002	U	U	U	U	U			
benzo(g,h,i)perylene	_	U	U	U	U	U			
benzoic acid		U	U	U	U	U			
benzyl alcohol		U	U	U	U	U			
bis(2-ethylhexyl) phthalate	0.6	U	0.598 F	U	2.17 F	32.9 B			
benzyl butyl phthalate	_	U	U	U	U	U			
chrysene	0.002	U	U	U	U	U			
di-n-butyl phthalate	50	U	U	U	U	97.9 B			
diethyl phthalate		U	U	U	U	2.74 F			
dimethyl phthalate		U	U	U	U	U			
fluoranthene	50	U	U	U	U	U			
fluorene	0.54	U	U	U	U	U			
indeno(1,2,3-c,d)pyrene		U	U	U	U	U			
phenanthrene	5.0	U	U	U	U	U			
phenol	1.0	U	U	U	U	U			
pyrene	4.6	U	U	U	U	U			
PCBs (µg/L)									
Aroclor 1260	0.09	U	U	U	U	U			
Pesticides (µg/L)									
gamma BHC (lindane)	0.05	U	U	U	U	U			
alpha-chlordane	0.05	U	U	U	U	U			
gamma-chlordane	0.05	U	U	U	U	U			
p,p'-DDD	0.3	U	U	U	U	U			
p,p'-DDE	0.2	U	U	U	U	U			
p,p'-DDT	0.2	U	U	U	U	U			
dieldrin	0.004	U	U	U	U	U			
endrin aldehyde	5*	U	U	U	U	U			
heptachlor	0.04	U	U	U	U	U			

Sample Location				TMC-5		
	NYS Surface	TMCSW0501AA	TMCSW0501BB	TMCSW0501CA	TMCSW0501DA	TMCSW0501EA
Sample ID	Water					
Date of Collection 2	Standards ¹	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010
Sample Depth (ft bgs)				0-1		
SVOCs (µg/L) anthracene	3.8	U	U	U	U	UJ
benzo(a)anthracene	0.002	U	U	U	U	UJ
` '	0.002	U	U	U	U	UJ
benzo(a)pyrene benzo(b)fluoranthene	0.002	U	U	U	U	UJ
benzo(k)fluoranthene	0.002	U	U	U	U	UJ
		U	U	U	U	UJ
benzo(g,h,i)perylene	-	U	U	U	U	U
benzoic acid						
benzyl alcohol		U	U	U	U	U
bis(2-ethylhexyl) phthalate	0.6	U	0.680 F	U	0.455 F	27.0 B
benzyl butyl phthalate	-	U	U	U	U	U
chrysene	0.002	U	U	U	U	UJ
di-n-butyl phthalate	50	2.75 F	U	U	U	78.1 B
diethyl phthalate		U	U	U	U	2.20 F
dimethyl phthalate		U	U	U	U	U
fluoranthene	50	U	U	U	U	UJ
fluorene	0.54	U	U	U	U	UJ
indeno(1,2,3-c,d)pyrene		U	U	U	U	UJ
phenanthrene	5.0	U	U	U	U	UJ
phenol	1.0	U	U	U	U	U
pyrene	4.6	U	U	U	U	UJ
PCBs (µg/L)						
Aroclor 1260	0.09	U	0.0170 F	U	U	U
Pesticides (µg/L)						
gamma BHC (lindane)	0.05	U	U	U	U	U
alpha-chlordane	0.05	U	U	U	U	U
gamma-chlordane	0.05	U	U	U	U	U
p,p'-DDD	0.3	U	U	U	U	U
p,p'-DDE	0.2	U	U	U	U	U
p,p'-DDT	0.2	U	U	U	U	U
dieldrin	0.004	U	U	U	U	U
endrin aldehyde	5*	U	U	U	U	U
heptachlor	0.04	U	U	U	U	U

Sample Location				TM	C-6		
Sample ID	NYS Surface Water	RI Results (TMCSW-4)	TMCSW0601AA	TMCSW0601BB	TMCSW0601CA	TMCSW0601DA	TMCSW0601EA
Date of Collection ²	Standards ¹	5/94 - 11/94	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010
Sample Depth (ft bgs)	Standards	3/94 - 11/94	10/9/2000	0-1	10/27/2006	10/1/2009	10/29/2010
SVOCs (µg/L)							
anthracene	3.8	U	U	U	U	U	U
benzo(a)anthracene	0.002	U	U	U	U	U	0.614 F
benzo(a)pyrene	0.002	U	U	U	U	U	0.634 F
benzo(b)fluoranthene	0.002	U	U	U	U	U	0.446 F
benzo(k)fluoranthene	0.002	U	U	U	U	U	U
benzo(g,h,i)perylene	-	U	U	U	U	U	0.475 F
benzoic acid		U	U	UJ	U	U	U
benzyl alcohol		U	U	UJ	U	U	U
bis(2-ethylhexyl) phthalate	0.6	U	U	4.06 F	1.04 F	0.527 F	31.8 B
benzyl butyl phthalate	-	U	U	UJ	U	U	U
chrysene	0.002	U	U	U	U	U	0.752 F
di-n-butyl phthalate	50	U	U	UJ	U	U	91.2 B
diethyl phthalate		U	U	UJ	U	U	2.75 F
dimethyl phthalate		U	U	UJ	U	U	U
fluoranthene	50	U	U	U	U	U	1.10 F
fluorene	0.54	U	U	U	U	U	U
indeno(1,2,3-c,d)pyrene		U	U	U	U	U	U
phenanthrene	5.0	0.12 J	U	U	U	U	0.673 F
phenol	1.0	U	U	U	U	U	U
pyrene	4.6	0.031 J	U	U	U	U	1.03 F
PCBs (µg/L)							
Aroclor 1260	0.09	NA	U	U	U	U	U
Pesticides (µg/L)							
gamma BHC (lindane)	0.05	U	U	U	U	U	U
alpha-chlordane	0.05	U	U	U	U	U	U
gamma-chlordane	0.05	U	U	U	U	U	U
p,p'-DDD	0.3	U	U	U	U	U	U
p,p'-DDE	0.2	U	U	U	U	U	0.019 F
p,p'-DDT	0.2	0.094	U	U	U	U	0.50 F
dieldrin	0.004	U	U	U	U	U	U
endrin aldehyde	5*	U	U	U	U	U	U
heptachlor	0.04	U	U	U	U	U	U

Sample Location				TMC-7		
	NYS Surface	TMCSW0701AA	TMCSW0701BB	TMCSW0701CA	TMCSW0701DA	
Sample ID	Water					
Date of Collection 2	Standards ¹	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010
Sample Depth (ft bgs)				0-1		
SVOCs (µg/L) anthracene	3.8	U	UJ	U	0.473 F	NS
benzo(a)anthracene	0.002	U	0.570 F	0.621 F	2.64 F	NS NS
benzo(a)pyrene	0.002	U	UJ	U U	2.48 F	NS
benzo(b)fluoranthene	0.002	U	UJ	0.558 F	5.79 F	NS NS
benzo(k)fluoranthene	0.002	U	UJ	U	1.54 F	NS
benzo(g,h,i)perylene	0.002	U	UJ	U	0.879 F	NS
benzoic acid		11.2 F	U	U	U	NS
benzyl alcohol		0.681 F	0.634 F	U	1.79 F	NS
bis(2-ethylhexyl) phthalate	0.6	U	1.12 F	0.716 F	1.77 F	NS
benzyl butyl phthalate	0.0	U	U	U	0.473 F	NS
chrysene	0.002	U	UJ	U	2.74 F	NS
di-n-butyl phthalate	50	1.72 F	U	U	U	NS
diethyl phthalate		U	U	U	U	NS
dimethyl phthalate		U	U	U	U	NS
fluoranthene	50	U	0.871 F	0.789 F	4.56 F	NS
fluorene	0.54	U	UJ	U	U	NS
indeno(1,2,3-c,d)pyrene		U	UJ	U	0.571 F	NS
phenanthrene	5.0	U	UJ	U	2.43 F	NS
phenol	1.0	0.606 F	U	U	U U	NS
pyrene	4.6	U	0.925 F	0.705 F	4.77 F	NS
PCBs (µg/L)	1.0		0.528 1	0.7001	.,,, 2	1,2
Aroclor 1260	0.09	U	0.227 F	1.2	0.205 F	NS
Pesticides (µg/L)						
gamma BHC (lindane)	0.05	U	U	U	U	NS
alpha-chlordane	0.05	U	U	U	U	NS
gamma-chlordane	0.05	U	U	U	U	NS
p,p'-DDD	0.3	U	U	U	U	NS
p,p'-DDE	0.2	U	U	U	U	NS
p,p'-DDT	0.2	U	U	U	U	NS
dieldrin	0.004	U	0.029 F	0.042 F	U	Ns
endrin aldehyde	5*	U	U	U	U	NS
heptachlor	0.04	U	U	U	U	NS

Surface Water:

- B Result is a positive value, however, the analyte was detected in an associated blank above the RL.
- F The analyte was positively identified above the MDL, however, the concentration is below the RL.
- J The analyte was positively identified, but the quantitation is an estimation.
- M A matrix effect was present.
- NA not analyzed
- R The data was rejected because QA/QC criteria were not met during the analysis.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- UJ The analyte was analyzed for, but not detected. The quantitation is an approximation.
- UM The analyte was analyzed for, but not detected. A matrix effect was present.
- ¹ The NYS Surface Water Standard for the protection of aquatic life from chronic effects is used if available and if lower than the surface water standard.
- ² The different analyses for the sample locations sampled in the 1993/4 RI were collected at different times between 5/1994 and 11/1994.
 - Indicates an exceedance of the NYS Surface Water Standards.

Sample Location					TM	C-1		
Sample ID	Most Stringent Ecological	RI Results (TMCSD-2)	TMCSD0101AA	TMCSD0101BB	TMCSD0101CA	TMCSD0101DA	TMCSD0101EA	
Date of Collection	Screening Value	5/17/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)					0-0).5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	U	U	U	30 F	280 F	U	
1,2,4-trichlorobenzene	3400	U	U	U	U	U	U	
1,3-dichlorobenzene	1600	U	U	U	U	U	U	
1,4-dichlorobenzene	8500	U	U	U	U	78 F	U	
2-methylnaphthalene	65	5,100 J	25 F	U	U	33 F	30 F	
4-chlorophenyl phenyl ether		U	U	U	U	U	U	
4-nitroaniline	500*	U	U	U	U	U	U	
acenaphthene	16	U	33 F	U	U	160 F	220 F	
acenaphthylene		11,000 J	U	U	22 F	U	U	
anthracene	85	19,000	75 F	U	58 F	540 F	86 F	
benzo(a)anthracene	261	51,000	190 F	U	160 F	1,700 J	290 F	
benzo(a)pyrene	370	35,000	170 F	U	130 F	1,500 M	250 F	
benzo(b)fluoranthene		41,000	250 F	U	190 F	2,300 M	470 F	
benzo(k)fluoranthene	240	28,000	95 F	U	83 F	970 M	150 F	
benzo(g,h,i)perylene	170	19,000	60 F	U	47 F	320 F	88 F	
benzyl alcohol		U	U	U	U	U	U	
benzoic acid		U	U	U	U	U	U	
bis(2-ethylhexyl) phthalate	10453.8	900 J	30 F	29 F	45 F	110 F	120 F	
benzyl butyl phthalate	50000	U	U	U	U	47 F	39	
chrysene	340	43,000	190 F	U	130 F	1,700 J	310 F	
di-n-butyl phthalate		U	U	U	U	U	U	
di-n-octyl phthalate	50000	U	U	U	U	U	U	
dibenz(a,h)anthracene	60	8,700 J	22 F	U	U	120 F	U	
dibenzofuran	2000	10,000 J	31 F	U	U	U	52 F	
diethyl phthalate	7100	U	U	41 F	U	U	U	
fluoranthene	600	84,000	370 F	U	320 F	3,200 J	650 F	
fluorene	35	12,000 J	45 F	U	24 F	210 F	55 F	
indeno(1,2,3-c,d)pyrene	200	22,000	50 F	U	34 F	140 F	18 F	
naphthalene	13000	15,000 J	47 F	U	20 F	U	58 F	
nitrobenzene	200*	U	U	U	U	U	U	
phenanthrene	240	91,000	330 F	U	250 F	2,400 J	510 F	
pyrene	490	89,000	340 F	U	260 F	3,900 J	580 F	

Sample Location					TM	C-1				
Sample ID	Most Stringent Ecological	RI Results (TMCSD-2)	TMCSD0101AA	TMCSD0101BB	TMCSD0101CA	TMCSD0101DA	TMCSD0101EA			
Date of Collection	Screening Value	5/17/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010			
Sample Depth (ft TOIC)	1		0-0.5							
Metals (mg/Kg)										
aluminum		1,930	3,900	4,100	3,600	3,000	2,800 J			
antimony	2	U	U	U	0.23 F	U	U			
arsenic	6	5 J	2.9 F	3.0 F	2 F	1.9 F	3.3 F			
barium		23.8	15.0	17.0	14.0	11.0	11.0			
berylium		U	0.18 F	0.18 F	0.17 F	0.13 F	0.12 F			
cadmium	0.6	1.7	0.44 F	U	0.44 F	U	U			
calcium		20,100	5,600	720	5,600	8,800	6,700			
chromium	26	21.2	5.6	4.9	5.3	3.9	5.9			
cobalt		2.7	3.2	3.1	2.7	1.9	2.3			
copper	16	52.5	42	10	10	9.4	8.6			
iron	20,000	11,400	9,600	9,100	8,600	7,200	6,500			
lead	31	94.6 J	7.1	1.9 F	5.7	4.3	12			
magnesium		1,970	2,200	1,700	2,100	2,100	1,800			
manganese	460	77.9	170	160	130	100	120			
molybdenum		9.1	0.33 F	U	U	U	U			
nickel	16	33.9	7.5	7.1	6.9	5.8	5.5			
potassium		233	500	520	58	440	450			
selenium		U	U	0.61 F	0.39 F	U	U			
silver	1	U	U	U	U	U	U			
sodium		206	67 F	44 F	51 F	74 F	74			
thallium		U	U		U	U	U			
vanadium		97.0	9.3	6.9	8.1	6.7	5.9			
zinc	120	153 J	23	18	20	23	26			
mercury	0.15	U	0.0249 F	0.006 F	0.056 F	0.015 F	0.0095 F			
PCBs (µg/Kg)			1							
Aroclor 1248	11.1	U	U	U	U	U	U			
Aroclor 1260	5	R	66.5	U	51.2	146	144			
Pesticides (µg/Kg)			1	T	T	T				
alpha BHC	0.01	R	U	U	U	U	U			
beta BHC	0.04	R	U	U	U	U	U			
delta BHC	0.04	R	U	U	U	U	U			
gamma BHC (Lindane)	0.05	R	U	U	U	U	U			
alpha-Chlordane	0.05	R	U	U	U	U	U			
gamma-Chlordane	0.05	R	0.66 F	U	U	U	U			
p,p'-DDD	2	R	5.8 F	U	U	U	U			
p,p'-DDE	2	R R	0.53 F 25 F	U UM	U 13 J	U U	U U			
p,p'-DDT	1			UM U		U U	U U			
aldrin dieldrin	0.02	R R	13 F U	0.56 F	U 8.6 J	U	U U			
endosulfan I	0.02	R R	U	U.56 F	8.6 J U	U	U			
endosulfan II		R R	12 F	0.40 F	U	U	U			
endosulfan sulfate		R R	U	U.40 F	U	U	U			
endosunan sunate endrin	3	R	4 F	U	U	U	U			
endrin endrin aldehyde	5 5*	R R	8.8 F	U	U	U	U			
heptachlor	0.04	R R	0.8 F U	U	U	U	U			
heptachlor epoxide	0.04	R R	0.79 J	U	U	U	U			
		R R	2.9 F	U	U	U	U			
methoxychlor	31.44	К	2.9 F	U	U	U	U			

Sample Location					TM	C-2			1
Sample ID	Most Stringent Ecological	RI Results (TMCSD-8)	TMCSD0201AA	TMCSD0201BB	TMCSD0201CA	TMCSD0201DA	TMCSD0201EA		
Date of Collection	Screening Value	5/16/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010		
Sample Depth (ft TOIC)			0-0.5						
SVOCs (µg/Kg)									
1,2-dichlorobenzene	7900	220 J	U	U	U	140 F	55 F		
1,2,4-trichlorobenzene	3400	U	U	U	U	U	U		
1,3-dichlorobenzene	1600	U	U	U	U	U	U		
1,4-dichlorobenzene	8500	200 J	U	U	U	62 F	29 F		
2-methylnaphthalene	65	360 J	U	U	U	24 F	U		
4-chlorophenyl phenyl ether		U	U	U	U	U	U		
4-nitroaniline	500*	U	U	U	U	U	U		
acenaphthene	16	810 J	U	U	U	27 F	U		
acenaphthylene		230 J	U	U	U	30 F	U		
anthracene	85	1,600	30 F	U	U	68 F	25 F		
benzo(a)anthracene	261	6,300	84 F	U	20 F	340 F	130 F		
benzo(a)pyrene	370	4,600	75 F	U	U	370 F	140 F		
benzo(b)fluoranthene		5,400	100 F	U	19 F	790 F	240 F		
benzo(k)fluoranthene	240	4,700	37 F	U	U	210 F	80 F		
benzo(g,h,i)perylene	170	1,700	24 F	U	U	110 F	59 F		
benzyl alcohol		U	U	U	U	U	U		
benzoic acid		U	U	U	U	U	U		
bis(2-ethylhexyl) phthalate	10453.8	1000 J	26 F	47 F	30 F	49 F	63 F		
benzyl butyl phthalate	50000	U	U	U	U	U	U		
chrysene	340	5,300	81 F	U	U	430 F	150 F		
di-n-butyl phthalate		U	U	U	U	U	U		
di-n-octyl phthalate	50000	U	U	U	U	U	50 F		
dibenz(a,h)anthracene	60	970 J	U	U	U	UM	U		
dibenzofuran	2000	660 J	U	U	U	U	U		
diethyl phthalate	7100	U	U	40 F	U	U	U		
fluoranthene	600	11,000	150 F	U	32 F	690 F	260 F		
fluorene	35	1,000 J	U	U	U	36 F	U		
indeno(1,2,3-c,d)pyrene	200	2,300	U	U	U	U	U		
naphthalene	13000	860 J	U	U	U	28 F	U		
nitrobenzene	200*	U	U	U	U	U	U		
phenanthrene	240	8,500	110 F	U	18 F	380 F	140 F		
pyrene	490	10,000	130 F	U	26 F	800 F	260 F		

Sample Location					TM	C-2		1
Sample ID	Most Stringent Ecological	RI Results (TMCSD-8)	TMCSD0201AA	TMCSD0201BB	TMCSD0201CA	TMCSD0201DA	TMCSD0201EA	
Date of Collection	Screening Value	5/16/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)			•		0-0	0.5		
Metals (mg/Kg)								
aluminum		54,330	2,700	2,900	3,100	3,600	1,900	
antimony	2			U	U	U	0.38 F	
arsenic	6	26.7	1.7 F	1.1 F	1.5 F	3.8 F	6.7	
barium		95.7	11	14	9.5	17.0	21.0	
berylium		U	0.12 F	0.12 F	0.14 F	0.20 F	0.28 F	
cadmium	0.6	7.7	0.22 F	U	0.19 F	1.3	2.0	
calcium		14,600	2,700	4,000	860	2,200	2,900	
chromium	26	65.8	4	4.0	4.0	5.2	6.6	
cobalt		6.8	2.4	2.2	2.4	2.3	0.9	
copper	16	67.6	6.8	7.3	7.1	11	15	
iron	20,000	19,100	6,700	7,400	7,200	8,800	5,100	
lead	31	206	2.5 F	1.9 F	1.8 F	12	28	
magnesium		1,870	1,300	1,500	1,400	1,200	430	
manganese	460	119	180	110	180	160	89	
molybdenum		U	U	U	U	U	0.59 F	
nickel	16	22.9	5.2	5.4	5.6	7.3	3.9	
potassium		519	380	420	490	480	270	
selenium		U	U	0.41 F	U	U	0.65 F	
silver	1	6.8	U	U	U	U	0.26 F	
sodium		448	41 F	31 F	16 F	30 F	50 F	
thallium		U	U	U	0.77 F	U	U	
vanadium		77.3	6.4	6.4	5.9	9.1	8.3	
zinc	120	184	20	22	15	33	26	
mercury	0.15	0.4	0.00613 F	U	0.0069 F	0.050 F	0.081	
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	U	U	U	U	
Aroclor 1260	5	6,600	28.5 F	16.7	13.2 F	84.0	71.7	
Pesticides (µg/Kg)								
alpha BHC	0.01	U	U	U	U	U	U	
beta BHC	0.04	U	U	U	U	U	U	
delta BHC	0.04	U	U	U	U	U	U	
gamma BHC (Lindane)	0.05	U	U	U	U	U	U	
alpha-Chlordane	0.05	U	0.41 F	U	U	U	U	
gamma-Chlordane	0.05	U	0.41 F	U	U	U	U	
p,p'-DDD	2	U	2.8 F	2.9 F	U	U	U	
p,p'-DDE	2	U	U	U	U	U	U	
p,p'-DDT	1	U	2.6 F	UM	U	U	U	
aldrin	0.02	U	2.8 F	U	U	U	U	
dieldrin	0.02	U U	U U	2.5 F U	1.4 F U	U U	U U	
endosulfan I		U	2.2 F	U	U	U	U	
endosulfan II		U	2.2 F U	U	U	U	U	
endosulfan sulfate endrin	3	U U	U	1.1 F	U	U	U U	
	3 5*	U U	1.7 F	1.1 F U	U U	U U	U U	
endrin aldehyde heptachlor	0.04	U	1.7 F U	U	U	U	U	
heptachlor epoxide	0.04	U	0.63 F	U	U	U	U	
		U	UJ	U		-		
methoxychlor	31.44	U	UJ	U	U	67 F	U	

Sample Location					TM	C-3		
Sample ID	Most Stringent Ecological	RI Results (TMCSD-10)	TMCSD0301AA	TMCSD0301BB	TMCSD0301CA	TMCSD0301DA	TMCSD0301EA	
Date of Collection	Screening Value	5/15/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)					0-0	0.5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	97 J	U	U	U	U	U	
1,2,4-trichlorobenzene	3400	U	U	U	U	U	U	
1,3-dichlorobenzene	1600	U	U	U	U	U	U	
1,4-dichlorobenzene	8500	U	U	U	U	U	U	
2-methylnaphthalene	65	U	U	U	U	U	24 F	
4-chlorophenyl phenyl ether		U	U	U	U	U	U	
4-nitroaniline	500*	U	U	U	U	U	U	
acenaphthene	16	120 J	U	U	U	U	U	
acenaphthylene		82 J	U	U	U	U	U	
anthracene	85	340 J	U	U	U	38 F	33 F	
benzo(a)anthracene	261	1,700	U	51 F	U	120 F	160 F	
benzo(a)pyrene	370	1,200	U	53 F	U	100 F	160 FM	
benzo(b)fluoranthene		1,700	U	79 F	U	230 F	300 FM	
benzo(k)fluoranthene	240	920	U	31 F	U	75 F	93 FM	
benzo(g,h,i)perylene	170	370 J	U	23 F	U	UM	UM	
benzyl alcohol		U	U	U	U	U	U	
benzoic acid		U	U	U	U	U	U	
bis(2-ethylhexyl) phthalate	10453.8	U	U	77 F	100 F	70 F	260 F	
benzyl butyl phthalate	50000	U	U	U	U	U	51 F	
chrysene	340	1,500	U	60 F	U	110 F	170 F	
di-n-butyl phthalate		U	U	U	U	U	U	
di-n-octyl phthalate	50000	U	U	U	U	U	62 F	
dibenz(a,h)anthracene	60	U	U	U	U	UM	UM	
dibenzofuran	2000	U	U	U	U	U	U	
diethyl phthalate	7100	U	U	47 F	U	U	U	
fluoranthene	600	2,800	U	110 F	U	220 F	300 F	
fluorene	35	200 J	U	U	U	U	U	
indeno(1,2,3-c,d)pyrene	200	440 J	U	U	U	U	U	
naphthalene	13000	87 J	U	U	U	U	U	
nitrobenzene	200*	U	U	U	U	U	U	
phenanthrene	240	1,700	U	59 F	U	150 F	170 F	
pyrene	490	2,400	U	99 F	U	230 F	270 F	

Sample Location					TM	C-3		
Sample ID	Most Stringent Ecological	RI Results (TMCSD-10)	TMCSD0301AA	TMCSD0301BB	TMCSD0301CA	TMCSD0301DA	TMCSD0301EA	
Date of Collection	Screening Value	5/15/1994	10/11/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)				•	0-0	0.5		
Metals (mg/Kg)								
aluminum		3,030	2,100	3,600	3,000	3,500	3,800	
antimony	2	U	U	U	U	U	U	
arsenic	6	6.20	1.4 F	2.0 F	1.4 F	2.4 F	3.50	
barium		48.2	9.4	16	22	37	52	
berylium		0.54	0.16 F	0.17 F	0.13 F	0.15 F	0.22 F	
cadmium	0.6	1.6	0.23 F	0.30 F	0.15 F	0.21 F	0.57	
calcium		19400	2,200	4,400	900	5,300	9,200	
chromium	26	25.2	3.7	5.3	3.7	4.5	6.6	
cobalt		3.9	2.2	3.1	2.5	2.5	2.6	
copper	16	11	3.8	10	7.1	10	17	
iron	20,000	9,330	8,300	7,900	7,100	7,600	9,000	
lead	31	36.5	1.8 F	5.5	1.6 F	5.4	12	
magnesium		2,390	1,100	1,900	1,400	1,700	1,800	
manganese	460	135	64	210	210	140	470	
molybdenum		U	0.48 F	0.46 F	U	U	U	
nickel	16	8.6	4.1	7.5	5.4	6.7	7.4	
potassium		408	300	480	470	470	580	
selenium		U	U	0.40 F	U	U	.50 F	
silver	1	1.8	U	U	U	U	U	
sodium		260	24 F	42 F	18 F	34 F	66 F	
thallium		U	U	U	U	U	U	
vanadium		14.3	9.1	9.2	5.4	7.6	12	
zinc	120	63.6	12	30	15	28	63	
mercury	0.15	U	0.00677 F	0.012 F	0.0044 F	0.014 F	0.034 F	
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	U	U	U	U	
Aroclor 1260	5	3400	U	38.1	3.76 F	47.5	234	
Pesticides (µg/Kg)								
alpha BHC	0.01	U	U	U	U	U	U	
beta BHC	0.04	U	U	U	U	U	U	
delta BHC	0.04	U	U	U	U	U	U	
gamma BHC (Lindane)	0.05	U	U	U	U	U	U	
alpha-Chlordane	0.05	U	U	U	U	U	U	
gamma-Chlordane	0.05	U	U	U	U	U	U	
p,p'-DDD	2	U	0.28 F	2.8 F	U	3.1 F	U	
p,p'-DDE	2	U	0.42 F	3.7 F	U	U	U	
p,p'-DDT	1	U	0.68 F	U	U	U	U	
aldrin		U	U	1.0 F	U	U	U	
dieldrin	0.02	U	0.51 F	6.5 F	U	5.4 F	U	
endosulfan I		U	U	U	U	U	U	
endosulfan II		U	0.2 F	U	U	U	U	
endosulfan sulfate		U	U	U	U	U	U	
endrin	3	U	U	U	U	U	U	
endrin aldehyde	5*	U	U	U	U	U	U	
heptachlor	0.04	U	U	U	U	U	U	
heptachlor epoxide	0.03	U	U	0.48 F	U	U	U	
methoxychlor	31.44	U	UJ	U	U	U	U	

Sample Location					TM	C-4		
Sample ID	Most Stringent Ecological	TMCSD0401AA	TMCSD0401BB	TMCSD0401CA	TMCSD0401DA	TMCSD0401EA		
Date of Collection	Screening Value	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010		
Sample Depth (ft TOIC)					0-0).5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	400 F	U	U	220 F	U		
1,2,4-trichlorobenzene	3400	U	U	U	U	U		
1,3-dichlorobenzene	1600	77 F	U	U	U	56 F		
1,4-dichlorobenzene	8500	1200 F	U	U	430 F	43 F		
2-methylnaphthalene	65	190 F	U	U	59 F	95 F		
4-chlorophenyl phenyl ether		150 F	U	U	U	U		
4-nitroaniline	500*	U	U	U	U	U		
acenaphthene	16	U	U	U	74 F	U		
acenaphthylene		220 F	U	U	49 F	62 F		
anthracene	85	130 F	U	U	110 F	100 F		
benzo(a)anthracene	261	380 F	27 F	350 F	360 F	330 F		
benzo(a)pyrene	370	460 F	27 F	240 F	390 F	230 FM		
benzo(b)fluoranthene		940 F	39 F	370 F	790 F	430 F		
benzo(k)fluoranthene	240	320 F	U	U	300 F	340 F		
benzo(g,h,i)perylene	170	210 F	U	U	UM	90 FM		
benzyl alcohol		U	U	U	U	U		
benzoic acid		U	U	U	U	U		
bis(2-ethylhexyl) phthalate	10453.8	U	60 F	U	150 F	120 F		
benzyl butyl phthalate	50000	U	U	U	U	U		
chrysene	340	620 F	32 F	270 F	420 F	240 F		
di-n-butyl phthalate		U	U	U	U	U		
di-n-octyl phthalate	50000	U	U	U	U	86 F		
dibenz(a,h)anthracene	60	80 F	U	U	UM	UM		
dibenzofuran	2000	U	U	U	57 F	60 F		
diethyl phthalate	7100	U	44 F	U	U	U		
fluoranthene	600	870 F	58 F	670 F	680 F	540 F		
fluorene	35	120 F	U	U	80 F	77 F	 	
indeno(1,2,3-c,d)pyrene	200	110 F	U	U	U	U		
naphthalene	13000	140 F	U	U	49 F	140 F		
nitrobenzene	200*	U	U	U	U	U		
phenanthrene	240	440 F	35 F	500 F	490 F	500 F		
pyrene	490	1,400 J	52 F	510 F	1,200 F	480 F		

Sample Location	1				TM	C-4		
Sample ID	Most Stringent Ecological	TMCSD0401AA	TMCSD0401BB	TMCSD0401CA	TMCSD0401DA	TMCSD0401EA		
Date of Collection	Screening Value	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010		
Sample Depth (ft TOIC)			•		0-4	0.5		
Metals (mg/Kg)								
aluminum		4,800	2,500	3,600	5,100	4,000		
antimony	2	U	U	U	U	U		
arsenic	6	9	2.1 F	2.2 F	12	4		
barium		43	24	34	58	36		
berylium		0.35 F	0.11 F	0.22 F	0.48 F	0.25 F		
cadmium	0.6	6.5	0.44 F	1.4	20	1.9		
calcium		4,900	2,700	3,600	3,800	3,800		
chromium	26	32	4.8	9.7	44	11		
cobalt		5.1	2.4	3	5.9	2.9		
copper	16	26	5.4	15	38	13		
iron	20,000	9,700	6,400	7,500	9,800	7,400		
lead	31	55	8	21	68	25		
magnesium		2,600	1,600	1,900	1,900	2,000		
manganese	460	160	260	130	160	130		
molybdenum		0.86 F	U	U	U	U		
nickel	16	15	5.5	8.7	19	13		
potassium		490	320	370	410	380		
selenium		0.61 F	0.45 F	0.46 F	U	0.42 F		
silver	1	0.81 F	U	0.21 F	1.0 F	0.22 F		
sodium		48 F	27 F	31 F	51 F	84		
thallium		U	U	0.83 F	U	U		
vanadium		16	5.7	12	21	17		
zinc	120	100	34	69	130	65		
mercury	0.15	0.0747 F	0.010 F	0.040 F	0.17 F	0.040 F		
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	U	U	U		
Aroclor 1260	5	570	67.1	433	304	339		
Pesticides (µg/Kg)								
alpha BHC	0.01	U	U	U	U	U		
beta BHC	0.04	2.7 F	U	U	U	U		
delta BHC	0.04	16 F	U	U	U	U		
gamma BHC (Lindane)	0.05	2 F	U	U	U	U		
alpha-Chlordane	0.05	35 F	U	U	U	U		
gamma-Chlordane	0.05	22 F	U	17 J	U	U		
p,p'-DDD	2	59	4.5 J	11	60 F	U		
p,p'-DDE	2	15	U	U	U	U		
p,p'-DDT	1	81 J	UM	U	U	46 F		
aldrin		U	U	U	U	U		
dieldrin	0.02	56 J	6.8 J	28 J	45 F	U		
endosulfan I		U	U	U	U	U		
endosulfan II		57 F	3.9 F	18 J	U	U		
endosulfan sulfate		U	U	U	U	U		
endrin	3	7 F	U	U	U	U		
endrin aldehyde	5*	39 J	U	U	U	U		
heptachlor	0.04	2 F	U	U	U	U		
heptachlor epoxide	0.03	110 J	0.75 F	U	U	U		
methoxychlor	31.44	14 F	U	U	U	U		

Sample Location					TM	IC-5		
Sample ID	Most Stringent Ecological	TMCSD0501AA	TMCSD0501BB	TMCSD0501CA	TMCSD0501DA	TMCSD0501EA		
Date of Collection	Screening Value	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010		
Sample Depth (ft TOIC)					0-0	0.5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	63 F	U	U	19 F	28 F		
1,2,4-trichlorobenzene	3400	U	U	U	U	U		
1,3-dichlorobenzene	1600	U	U	U	U	U		
1,4-dichlorobenzene	8500	33 F	U	U	U	22 F		
2-methylnaphthalene	65	44 F	U	U	U	26 F		
4-chlorophenyl phenyl ether		U	U	U	U	U		
4-nitroaniline	500*	U	U	U	U	U		
acenaphthene	16	23 F	U	U	U	U		
acenaphthylene		110 F	U	U	U	U		
anthracene	85	79 F	30 F	U	35 F	54 F		
benzo(a)anthracene	261	320 F	120 F	190 F	160 F	350 F		
benzo(a)pyrene	370	380 F	120 F	U	150 F	260 F		
benzo(b)fluoranthene		550 F	190 F	U	310 F	480 FM		
benzo(k)fluoranthene	240	180 F	82 F	U	98 F	94 FM		
benzo(g,h,i)perylene	170	170 F	44 F	U	U	180 FM		
benzyl alcohol		U	U	U	U	U		
benzoic acid		U	U	U	U	U		
bis(2-ethylhexyl) phthalate	10453.8	U	63 F	U	56 F	180 F		
benzyl butyl phthalate	50000	U	U	U	U	U		
chrysene	340	430 F	140 F	U	170 F	260 F		
di-n-butyl phthalate		U	U	U	U	63 F		
di-n-octyl phthalate	50000	U	U	U	U	U		
dibenz(a,h)anthracene	60	52 F	U	U	U	UM		
dibenzofuran	2000	41 F	U	U	U	U		
diethyl phthalate	7100	41 F	50 F	U	U	U		
fluoranthene	600	770 F	240 F	230 F	280 F	540 F		
fluorene	35	68 F	U	U	U	25 F		
indeno(1,2,3-c,d)pyrene	200	140 F	25 F	U	U	U		
naphthalene	13000	55 F	U	U	U	24 F		
nitrobenzene	200*	U	U	U	U	U		
phenanthrene	240	570 F	140 F	U	170 F	270 F		
pyrene	490	750 F	240 F	200 F	330 F	460 F		

Sample Location					TM	IC-5		
Sample ID	Most Stringent Ecological	TMCSD0501AA	TMCSD0501BB	TMCSD0501CA	TMCSD0501DA	TMCSD0501EA		
Date of Collection	Screening Value	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010		
Sample Depth (ft TOIC)					0-0			
Metals (mg/Kg)								
aluminum		11,000	3,600	3,500	4,600	3,600		
antimony	2	U	U	U	U	U		
arsenic	6	13	2.1 F	1.5 F	3.1 F	2.7 F		
barium		66	34	27	31	52		
berylium		0.55 F	0.18 F	0.16 F	0.24 F	0.22 F		
cadmium	0.6	6.6	0.53 F	0.62 F	1.0	0.91		
calcium		2,200	3,700	2,000	3,700	9,900		
chromium	26	21	6	5.2	7.6	7.2		
cobalt		7.1	2.8	2.7	3.2	2.6		
copper	16	30	13	9.9	16	16		
iron	20,000	18,000	8,300	7,800	9,300	7,900		
lead	31	44	9.0	6	16	16		
magnesium		2,100	1,600	1,500	1,800	1,500		
manganese	460	390	180	120	310	230		
molybdenum		0.55 F	U	U	U	U		
nickel	16	14	7.1	6.3	9.2	7.9		
potassium		580	460	490	520	510		
selenium		1.1 F	0.54 F	0.33 F	U	U		
silver	1	0.57 F	U	U	U	0.20 F		
sodium		60 F	56 F	32 F	61 F	100		
thallium		U	U	U	U	U		
vanadium		22	8.6	7.4	14	11		
zinc	120	84	33	25	49	52		
mercury	0.15	0.116 F	0.024 F	0.012 F	0.054 F	0.044 F		
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	U	U	U		
Aroclor 1260	5	111	116	74.6	211	604 J		
Pesticides (µg/Kg)								
alpha BHC	0.01	0.22 F	U	U	U	U		
beta BHC	0.04	U	U	U	U	U		
delta BHC	0.04	0.97 F	U	U	U	U		
gamma BHC (Lindane)	0.05	U	U	U	U	U		
alpha-Chlordane	0.05	8.3 J	U	U	U	U		
gamma-Chlordane	0.05	41 J	U	U	U	U		
p,p'-DDD	2	10	5.5 J	U	U	U		
p,p'-DDE	2	2 J	1.8 F	U	U	U		
p,p'-DDT	1	19 J	UM	14 J	U	U		
aldrin		U	U	U	U	U		
dieldrin	0.02	12 J	13 J	9.3 J	24 F U	U U		
endosulfan I		U	U U	U U	U	U		
endosulfan II		11 J U	U	U	U	U		
endosulfan sulfate endrin	3	4.2 J	U	U	U	U		
	3 5*	4.2 J 0.92 J	U	U	U	U		
endrin aldehyde heptachlor	0.04	0.92 J U	U	U	U	U		
neptachior heptachlor epoxide	0.04	2 F	2.4 J	U	U	U		
			2.4 J U	U	U	U		
methoxychlor	31.44	2.6 F	U	U	U	U		

Sample Location					TM	C-6		
Sample ID	Most Stringent Ecological	RI Results (TMCSD-4)	TMCSD0601AA	TMCSD0601BB	TMCSD0601CA	TMCSD0601DA	TMCSD0601EA	
Date of Collection	Screening Value	5/15/1994	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)					0-().5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	U	U	U	U	U	U	
1,2,4-trichlorobenzene	3400	U	U	U	U	U	U	
1,3-dichlorobenzene	1600	U	U	U	U	U	U	
1,4-dichlorobenzene	8500	U	U	U	U	U	U	
2-methylnaphthalene	65	U	U	U	U	92 F	U	
4-chlorophenyl phenyl ether		U	U	U	U	U	U	
4-nitroaniline	500*	U	U	U	U	U	U	
acenaphthene	16	15 J	U	U	U	200 F	21 F	
acenaphthylene		9 J	U	U	U	U	39 F	
anthracene	85	60 J	41 F	U	U	980 F	80 F	
benzo(a)anthracene	261	U	99 F	47 F	19 F	U	370 F	
benzo(a)pyrene	370	160 J	91 F	60 F	19 F	2,400 F	220 F	
benzo(b)fluoranthene		190 J	140 F	100 F	U	4,800 J	510 FM	
benzo(k)fluoranthene	240	99 J	47 F	51 F	U	1,500 F	130 FM	
benzo(g,h,i)perylene	170	140 J	43 F	32 F	U	550 F	110 FM	
benzyl alcohol		U	U	U	U	U	U	
benzoic acid		5 J	U	U	U	U	U	
bis(2-ethylhexyl) phthalate	10453.8	540 J	190 F	390 F	U	430 F	350 F	
benzyl butyl phthalate	50000	540 J	U	U	U	U	28 F	
chrysene	340	180 J	110 F	79 F	U	3,500 J	280 F	
di-n-butyl phthalate		U	U	U	U	U	U	
di-n-octyl phthalate	50000	U	U	30 F	U	U	U	
dibenz(a,h)anthracene	60	U	U	U	U	UM	UM	
dibenzofuran	2000	U	U	U	U	130 F	28 F	
diethyl phthalate	7100	U	33 F	47 F	U	U	U	
fluoranthene	600	350 J	200 F	110 F	29 F	5,600 J	730 F	
fluorene	35	U	U	U	U	360 F	47 F	
indeno(1,2,3-c,d)pyrene	200	U	37 F	U	U	U	U	
naphthalene	13000	U	23 F	U	U	U	U	
nitrobenzene	200*	U	U	U	U	U	U	
phenanthrene	240	260 J	160 F	50 F	18 F	5,000 J	530 F	
pyrene	490	430 J	180 F	140 F	25 F	9,300 J	560 F	

Sample Location					TM	IC-6		
Sample ID	Most Stringent Ecological	RI Results (TMCSD-4)	TMCSD0601AA	TMCSD0601BB	TMCSD0601CA	TMCSD0601DA	TMCSD0601EA	
Date of Collection	Screening Value	5/15/1994	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)				•	0-4	0.5		
Metals (mg/Kg)								
aluminum		1960 J	3,300	2,700	3,200 M	2,900	3,100	
antimony	2	U	U	U	UM	U	U	
arsenic	6	1 J	1.9 F	1.0 F	1.3 F	2.5 F	1.2 F	
barium		61.8	12	15	11	U	19.0	
berylium		U	0.17 F	0.10 F	0.14 F	0.13 F	0.14 F	
cadmium	0.6	U	0.24 F	0.044 F	0.17 F	U	U	
calcium		27400 J	3,400	5,800	2,200	37,000	13,000	
chromium	26	9.0	5.3	5.0	4.1	5.4	9.0	
cobalt		2.3	3.1	1.9	2.4	1.8	1.7	
copper	16	11.7 J	9.3	8.8	7.4	12	21	
iron	20,000	7,720	7,600	6,200	7,500 M	11,000	7,100	
lead	31	59.8 J	3.5 F	4.1	1.8 F	10	12	
magnesium		1,720	1,800	1,700	1,700	2,300	2,100	
manganese	460	118	250	59	140	200	90	
molybdenum		U	U	U	U	U	U	
nickel	16	4.8 J	6.4	5.3	5.6	7.7	5.9	
potassium		265 J	470	420	490	390	620	
selenium		U	U	0.28 F	0.3 F	U	U	
silver	1	U	U	U	U	U	U	
sodium		209	50 F	34 F	35 F	55 F	75	
thallium		U	U	U	U	U	U	
vanadium		6.1 J	6.9	6.0	6.1	7.5	10.0	
zinc	120	82.9	20	32	15	60	41	
mercury	0.15	U	0.0149 F	0.0048 F	0.0050 F	U	0.011 F	
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	16.7 F	U	U	U	
Aroclor 1260	5	U	8.75 F	U	U	U	U	
Pesticides (µg/Kg)								
alpha BHC	0.01	U	U	U	U	U	U	
beta BHC	0.04	U	U	U	U	U	U	
delta BHC	0.04	U	U	U	U	U	U	
gamma BHC (Lindane)	0.05	U	U	U	U	U	U	
alpha-Chlordane	0.05	U	3.5 J	U	U	U	U	
gamma-Chlordane	0.05	U	2.5 J	U	1.7 F	U	U	
p,p'-DDD	2	U	0.78 F	2.1 F	U	U	U	
p,p'-DDE	2	U	0.22 F	U	U	U	U	
p,p'-DDT	1	U	1.8 F	UM	2.2 F	1.4 F	U	
aldrin		U	U	U	U	U	U	
dieldrin	0.02	U	1.6 F	3.3 F	U	U	U	
endosulfan I		U	U	U	U	U	U	
endosulfan II		U	1.1 F	U	U	U	U	
endosulfan sulfate		U	U	U	U	U	U	
endrin	3 5*	U	0.83 F	U	U	U	U	
endrin aldehyde	-	U	U	U	U	U	U	
heptachlor	0.04	U	U	U	U	U	U	
heptachlor epoxide	0.03	U	0.83 F	U	U	U	U	
methoxychlor	31.44	U	UJ	U	U	U	U	

Sample Location	I				TM	C-7		1
Sample ID	Most Stringent Ecological	RI Results (LF5SD- 3)	TMCSD0701AA	TMCSD0701BB	TMCSD0701CA	TMCSD0701DA	TMCSD0701EA	
Date of Collection	Screening Value	5/15/1994	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)					0-0	0.5		
SVOCs (µg/Kg)								
1,2-dichlorobenzene	7900	U	190 F	2100 F	U	28 F	U	
1,2,4-trichlorobenzene	3400	U	U	48 F	U	U	U	
1,3-dichlorobenzene	1600	U	U	34 F	U	U	U	
1,4-dichlorobenzene	8500	U	260 F	270 F	U	37 F	19 F	
2-methylnaphthalene	65	U	61 F	89 F	U	U	U	
4-chlorophenyl phenyl ether		U	U	U	U	U	U	
4-nitroaniline	500*	U	U	U	U	U	U	
acenaphthene	16	U	U	U	U	U	U	
acenaphthylene		U	U	U	U	U	U	
anthracene	85	U	35 F	37 F	U	U	U	
benzo(a)anthracene	261	U	110 F	480 F	U	47 F	22 F	
benzo(a)pyrene	370	U	110 F	510 F	U	44 F	U	
benzo(b)fluoranthene		140 J	160 F	770 F	U	120 F	U	
benzo(k)fluoranthene	240	72 J	75 F	370 F	U	22 F	U	
benzo(g,h,i)perylene	170	U	44 F	210 F	U	U	U	
benzyl alcohol		180 J	U	U	U	U	U	
benzoic acid		4,200	U	U	U	U	U	
bis(2-ethylhexyl) phthalate	10453.8	1,300	52 F	260 F	30 F	41 F	76 F	
benzyl butyl phthalate	50000	U	U	U	U	U	U	
chrysene	340	220 J	13 F	450 F	U	46 F	U	
di-n-butyl phthalate		U	U	U	U	U	U	
di-n-octyl phthalate	50000	U	U	U	U	U	35 F	
dibenz(a,h)anthracene	60	U	U	71 F	U	U	U	
dibenzofuran	2000	U	U	U	U	U	U	
diethyl phthalate	7100	U	29 F	53 F	U	U	U	
fluoranthene	600	150 J	230 F	460 F	U	75 F	32 F	
fluorene	35	U	U	U	U	U	U	
indeno(1,2,3-c,d)pyrene	200	U	33 F	U	U	U	U	
naphthalene	13000	U	43 F	41 F	U	U	U	
nitrobenzene	200*	U	U	U	U	U	U	
phenanthrene	240	100 J	150 F	120 F	U	43 F	27 F	
pyrene	490	270 J	230 F	610 F	U	76 F	26 F	

Sample Location					TM	IC-7		
Sample ID	Most Stringent Ecological	RI Results (LF5SD- 3)	TMCSD0701AA	TMCSD0701BB	TMCSD0701CA	TMCSD0701DA	TMCSD0701EA	
Date of Collection	Screening Value	5/15/1994	10/9/2006	10/18/2007	10/27/2008	10/1/2009	10/29/2010	
Sample Depth (ft TOIC)				•	0-0	0.5		
Metals (mg/Kg)								
aluminum		3,420	3,200	6,500	3,000	3,800	2,800	
antimony	2	U	U	U	U	U	0.32 F	
arsenic	6	U	2.3 F	5.7 F	1.3 F	2.4 F	2.0 F	ı
barium		5.9	18	42	15	20	18	ı
berylium		29	0.18 F	0.34 F	0.13 F	0.19 F	0.13 F	I
cadmium	0.6	U	0.44 F	0.23 F	0.18 F	0.32 F	U	I
calcium		9,850	1,100	62,000	2,500	3,400	2,700	
chromium	26	6.7	4.8	12	4	4.7	3.2	
cobalt		3.2	3.1	4.0	2.3	2.9	2	I
copper	16	10.6	7.5	9.8	7.1	9.8	5.6	I
iron	20,000	10,200	6,900	9,800	7,100	8,500	6,500	i
lead	31	39.6	4.4	7.6	1.9 F	4.8	2.3	i
magnesium		2,890	1,700	2,700	1,500	1,800	1,400	ı
manganese	460	476	190	230	280	610	180	
molybdenum		U	0.34 F	1.3 F	U	U	U	ı
nickel	16	8.2	11	19	6.2	9.4	6	
potassium		514	450	450	450	540	470	ı
selenium		U	U	0.57 F	0.27 F	U	U	
silver	1	U	U	U	U	U	U	ı
sodium		357	44 F	71 F	48 F	64 F	24 F	
thallium		U	U	U	U	U	U	ı
vanadium		13.2	20	67	7.1	13	7.8	
zinc	120	51.6	63	120	21	44	21	ı
mercury	0.15	0.29	0.0180 F	0.035 F	0.0091 F	0.019 F	0.010 F	
PCBs (µg/Kg)								
Aroclor 1248	11.1	U	U	U	U	U	U	ı
Aroclor 1260	5	7,500 J	115	101	7.97 F	54.7	28.3	
Pesticides (µg/Kg)								
alpha BHC	0.01	U	UJ	U	U	U	U	I
beta BHC	0.04	U	UJ	U	U	U	U	ı
delta BHC	0.04	U	UJ	U	U	U	U	I
gamma BHC (Lindane)	0.05	U	UJ	U	U	U	U	I
alpha-Chlordane	0.05	24 J	0.99 F	0.93 F	U	U	U	i
gamma-Chlordane	0.05	U	0.68 F	U	U	U	U	l
p,p'-DDD	2	U	3.9 F	3.8 F	0.87 F	1.8 F	U	<u> </u>
p,p'-DDE	2	U	0.28 F	U	U	U	U	i
p,p'-DDT	1	U	5.2 J	UM	2.3 F	U	U	i
aldrin		U	UJ	U	U	U	U	i
dieldrin	0.02	U U	4.8 J	6.5	1.5 F	2.9 F	U	i
endosulfan I			0.229 F	U	U	U	U	l
endosulfan II		U U	4.3 F UJ	6.4 J U	1.4 F U	U U	U U	i
endosulfan sulfate endrin	3	U	1.7 F	U	U	U	U	
	5*	U	1./ F 3 F	U	1.1 F	U	U U	i
endrin aldehyde heptachlor	0.04	U	UJ	U	U I.I F	U	U	i
heptachlor epoxide	0.04	U	0.68 F	1.3 F	U	U	U	l
		U			_	_		i
methoxychlor	31.44	U	1.0 F	U	1.2 F	U	U	

Sediment:

- B Result is a positive value, however, the analyte was detected in an associated blank above the RL.
- F The analyte was positively identified above the MDL, however, the concentration is below the RL.
- J The analyte was positively identified, but the quantitation is an estimation.
- M A matrix effect was present.
- NA not analyzed
- R The data was rejected because QA/QC criteria were not met during the analysis.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- UJ The analyte was analyzed for, but not detected. The quantitation is an approximation.
- UM The analyte was analyzed for, but not detected. A matrix effect was present.
- BHC hexachlorocyclohexane
- 1 This value is the most stringent criterion for ecological endpoints derived from Table 2-3a in the Final Three Mile Creek Feasibility Study Addendum (E&E, July 2002).
- 2 The most stringent criterion for metals have been derived from Table 2 in Technical Guidance for Screening Contaminated Sediments (NYSDEC, January 1999).
- This analyte was not sampled for in the 1993/4 RI.
- -- No most stringent ecological screening value is known for this compound.
 - Indicates an exceedance of the Most Stringent Ecological Screening Value.

2006 Sample Location 1 Fish Tissue Analytical Results

				Samp	ple Location 1 Fish Tiss	sue Analytical Results				
Fish Sample ID				Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7
Sample ID	Wildlife	NYSDOH Fish Advisory	1993/4 RI Results	TMCFS0101AA	TMCFS0102AA	TMCFS0103AA	TMCFS0104AA	TMCFS0105AA	TMCFS0106AA	TMCFS0107AA
Sample description *	Criteria	Guideline	(LAW, Dec	CO sample of 2 CC	CO sample of 1 CC	CO sample of 3 WS	CO sample of 2 CC	CO sample of 8 CC	CO sample of 8 CC	CO sample of 1WS
Date of Collection	-		1996).	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
Metals (mg/Kg)										
cadmium	-	-	1.26 J	U	U	U	U	U	U	U
mercury	-	1	0.12 J - 0.23	0.040 F	0.046 F	0.036 F	0.054 F	0.073 F	0.039 F	0.033 F
PCBs (µg/Kg)	<u> </u>			T		T	T			
aroclor 1016	- 1	- 2	-	U	U	U	U	U	U	U
aroclor 1221	- 1	- 2	-	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	-	U	U	U	U	U	U	U
aroclor 1242	- 1	- 2	-	U	U	U	U	U	U	U
aroclor 1248	_ 1	- 2	-	U	U	U	U	U	U	U
aroclor 1254	_ 1	_ 2	-	U	U	U	U	U	U	U
aroclor 1260	_ 1	_ 2	290 - 32,500	1,110	1,640	902	1,500	1,480	1,540	2,890
Sum of all PCB congeners	110	2,000	-	1,110	1,640	902	1,500	1,480	1,540	2,890
Pesticides (µg/Kg)				,	,		,	,	,	,
alpha BHC	100	-	- 8	U	21 F	U	U	1.9 F	1.9 F	U
beta BHC	100	-	2.08 J	U	U	U	20 J	U	78 J	U
delta BHC	100	-	- 8	U	26 J	U	U	U	U	U
gamma BHC (Lindane)	100	-	_ 8	U	U	U	U	61 J	61 J	U
alpha-Chlordane	500	300^{3}	220	9.3 F	34 F	13 F	11 F	10 F	6.7 F	11 F
gamma-Chlordane	500	300^{3}	_ 8	U	45 J	22 J	72 J	U	U	99 J
p,p'-DDD	200	5,000 ⁴	_ 8	19 F	13 F	16 F	23 F	31 F	29 F	39 F
p,p'-DDE	200	5,000 ⁴	_ 8	30 F	25	41 J	41 J	56 J	U	U
p,p'-DDT	200	5,000 ⁴	_ 8	99 J	230 J	80 J	170 J	150 J	150 J	240 J
aldrin	120	300 ⁵	1.73 J - 115 J	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	8	74 J	U	66 J	120 J	120 J	120 J	210 J
alpha endosulfan	120	300	_ 8	U	U	U	U	U	U	U
beta endosulfan	-	-	_ 8	U	U	U	U	U	U	U
	-	-	- 8	U	9.6 J	8.7 F	12 F	U	5.1 F	20 F
endosulfan I	+ -		_ 8	U	9.6 J U			U	5.1 F U	20 F U
endosulfan II	-	-	_ 8			U	2.6 F		_	
endosulfan sulfate	- 25	- 2006		U	U	U	5.3 F	4.7 F	12 F	U
endrin	25	300 ⁶	- 8	53 J	37 J	32 F	U	56 J	56 J	120 J
endrin aldehyde	-	300 ⁶	- 8	U	UJ	U	U	U	U	U
heptachlor	200	3007	- 8	15 F	7.3	19 B	17 J	17 J	24 F	3.1 J
heptachlor epoxide	200	300 ⁷	- 8	36 J	27 J	11 F	31 J	25 J	25 J	37 J
methoxychlor	-	-	- 8	U	12 F	U	3.7 F	4.0 F	4.0 F	10 F
toxaphene	-	5,000	- 8	U	U	U	U	U	U	U
Other measurements										
% Lipid	-	-	-	0.622	1.48	1.03	1.28	2.58	1.95	0.632
Initial Weight (g)	-	-	-	41.1	48.3	52.3	38	41	25.9	65.1
% Whole Fish ⁹	-	-	-	NA	NA	NA	NA	NA	NA	NA

						Sample Local	tion 2 Fish Tissue Analy	tical Results					
Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc. Wildlife	Fish Advisory	Results	TMCFS0201AA	TMCFS0202AA	TMCFS0203AA	TMCFS0204AA	TMCFS0205AA	TMCFS0206AA	TMCFS0207AA	TMCFS0208AA	TMCFS0209AA	TMCFS0210AA
Sample description *	Criteria	Guideline	(LAW,	CO sample of 1 CC	CO sample of 12 CC		CO sample of 11 CC	CO sample of 1 WS	CO sample of 3 WS	CO sample of 19 WS		CO sample of 9 WS	CO sample of 14 TP
Date of Collection Metals (mg/Kg)			Dec 1996).	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006	10/12/2006
cadmium		I	8	0.047 F	U	U	U	Ü	U	U	U	U	0.076 F
mercury	-	-	0.63 - 0.64	0.047 F 0.088 F	0.047 F	0.052 F	0.055 F	0.050 F	0.052 F	0.057 F	0.059 F	0.057 F	0.076 F 0.010 F
PCBs (µg/Kg)	-	1	0.03 - 0.04	U.U66 F	0.047 F	0.032 F	0.033 F	0.030 F	0.032 F	0.037 F	0.039 F	0.03 / F	0.010 F
aroclor 1016	_ 1	_ 2	. 8	U	U	U	U	U	U	U	U	U	U
aroclor 1221	_ 1	_ 2	- 8	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	_ 2	_ 8	U	U	U	U	U	U	U	U	U	U
aroclor 1242	- 1	- 2	- 8	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	_ 2	- 8	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	_ 2	- 8	U	U	U	U	U	U	U	U	U	U
aroclor 1260	- 1	_ 2	71 J - 146 J	1220	1160	1140	1130	745	1,190	1,370	1,120	1,220	250
Sum of all PCB congeners	110	2,000	-	1,220	1,160	1,140	1,130	745	1,190	1,370	1,120	1,220	250
Pesticides (µg/Kg)													
alpha BHC	100	-	10.5 J	U	U	UJ	U	U	U	U	U	U	5.7 J
beta BHC	100	-	- 8	58 J	61 J	UJ	28 J	U	59 J	13 F	44 J	U	33 J
delta BHC	100	-	5 J	U	U	16 F	31 J	U	2.5 F	U	7.3 F	U	25 J
gamma BHC (Lindane)	100	- 2	_	U	15 F	UJ	U	U	72 J	U	U	U	5.8 J
alpha-Chlordane	500	300 ³	- 8	U	U	4.3 F	6.7 F	8.7 F	7.7 F	7.0 F	24 J	24 J	2.3 F
gamma-Chlordane	500	300 ³	- 8	U	U	38 J	38 J	29 J	U	U	U	U	UJ
p,p'-DDD	200	5,000 ⁴		22 F	19 F	12 F	23 F	12 F	24 F	23 F	25 F	19 F	20 F
p,p'-DDE	200	5,000 ⁴	160 - 210	87 J	38 J	27 F	57 J	19 F	32 F	45 J	44 J	43 J	4.1 F
p,p'-DDT	200	5,000 ⁴	10.9 J	130 J	120 J	150 J	110 J	84 J	140 J	150 J	120 J	140 J	48 J
aldrin	120	300 ⁵	- 8	U	U	UJ	U	U	2.5 F	U	U	U	UJ
dieldrin	120	300 ⁵	- 8	93 J	76 J	61 J	83 J	55 J	86 J	110 J	90 J	89 J	13 J
alpha endosulfan	-	-	- 8	U	U	UJ	U	U	U	U	U	U	UJ
beta endosulfan	-	-	- 8	U	U	UJ	U	U	U	U	U	U	UJ
endosulfan I	-	-	- 8	U	U	2.1 F	2.6 F	4.3 F	6.0 F	8.0 F	5.3 F	8.0 F	0.93 F
endosulfan II	-	-	- 8	U	U	U	U	U	U	2.0 F	U	U	UJ
endosulfan sulfate	-	-	- 8	U	9.7 F	UJ	8.7 F	9.7 F	U	14 F	15 F	11 F	15 J
endrin	25	300 ⁶	- 8	47 J	42 J	34 J	37 J	35 J	60 J	57 J	76 J	50 J	7.4 J
endrin aldehyde	-	300 ⁶	- 8	U	U	UJ	U	U	U	U	U	U	2.6 F
heptachlor	200	300 ⁷	- 8	22 J	21 J	33 J	18 J	12 F	21 J	14 F	22 J	18 J	4.6 J
heptachlor epoxide	200	300 ⁷	28	32 J	24 J	20 J	32 J	13 F	25 J	36 J	29 J	36 J	4.7 J
methoxychlor	-	-	13.8 J	3.3 F	7.0 F	3.2 F	11 F	4.7 F	U	11 F	10 F	7.3 F	UJ
toxaphene	-	5,000	- 8	U	U	UJ	U	U	U	U	U	U	UJ
Other measurements				2.18	1.49	2.43	3,68	0.486	0.726	1.69	1.73	1.09	1.01
% Lipid Initial Weight (g)	-	-	-	40.6	1.49 46.8	39	3.68	0.486 56.4	0.726 41.4	57.3	40.6	52.1	1.01 40.6
% Whole Fish 9		-		40.6 NA	46.8 NA	NA	39.1 NA	36.4 NA	NA	NA	40.6 NA	32.1 NA	NA
70 WHOIE FISH	-	_	-	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

2006 Sample Location 3 Fish Tissue Analytical Results

						Sample Location	3 Fish Tissue Analytical Results					
Fish Sample ID				TMCFS0301	AA combined with TMCFS0308AA		TMCFS0302A	A combined with TMCFS0309AA		TMFS	303AA becomes 2 Samples	
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	1993/4 RI Results	TMCFS0318WF	TMCFS0318HG	Whole fish (mathematically combined).	TMCFS0329WF	TMCFS0329HG	Whole fish (mathematically combined).	TMCFS0303WF	TMCFS0303HG	Whole fish (mathematically combined).
Sample description *		Guideline	(LAW, Dec	WF sample of 2 CC	OF sample of 2 CC		WF sample of 1 CC and WS	OF sample of 1 CC and WS		WF sample of 1 WS	OH sample of 1 WS	
Date of Collection			1996).	10/13/2006	10/13/2006		10/13/2006	10/13/2006		10/13/2006	10/13/2006	
Metals (mg/Kg)												
cadmium	-	-	1.49 J - 2.55 J	U	0.19 F	0.07	U	0.43 F	0.15	U	0.037 F	0.01
mercury	-	1	0.22 - 0.29	0.084 F	0.064 F	0.08	0.086 F	0.039 F	0.07	0.048 F	0.031 F	0.04
PCBs (µg/Kg)												
aroclor 1016	_1	- 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1221	_1	_ 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1232	_1	- 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1242	-1	- 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1248	-1	- 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1254	_1	_ 2	- 8	U	U	U	U	U	U	U	U	U
aroclor 1260	_1	_ 2	28 J - 14,100	544	1,800 J	1018.74	576	1,820	998.70	934	3,270	1858.13
Sum of all PCB congeners	110	2,000	-	544	1,800	1018.74	576	1,820	998.70	934	3,270	1858.13
Pesticides (µg/Kg)												
alpha BHC	100	-	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
beta BHC	100	-	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
delta BHC	100	-	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
gamma BHC (Lindane)	100	-	- 8	U	37 J	13.99	UJ	UJ	U	UJ	UJ	U
alpha-Chlordane	500	300^{3}	82 J - 97 J	4 F	18 J	9.29	7 F	10 F	8.02	8 F	15 F	10.77
gamma-Chlordane	500	300^{3}	- 8	9.3 F	U	5.78	9.3 F	34 J	17.69	17 J	47 J	28.87
p,p'-DDD	200	5,000 ⁴	- 8	12 F	42 J	23.34	29 F	35 J	31.04	23 F	65 J	39.62
p,p'-DDE	200	5,000 ⁴	150 J - 190 J	66 J	150 J	97.75	46 J	88 J	60.27	25 F	71 J	43.20
p,p'-DDT	200	5,000 ⁴	- 8	U	22 J	8.32	100 J	250 J	150.97	UJ	UJ	U
aldrin	120	300 ⁵	62 J - 98 J	2.7 F	4.43 F	3.35	UJ	2.29 F	0.78	UJ	2 F	0.79
dieldrin	120	300 ⁵	- 8	19 F	130 J	60.96	47 J	110 J	68.41	UJ	UJ	U
alpha endosulfan	-	-	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
beta endosulfan	-	-	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
endosulfan I	-	-	- 8	U	U	U	U	U	U	6 F	U	3.63
endosulfan sulfate	-	-	- 8	U	5.7 F	2.15	UJ	5.3 F	1.80	3.2 F	9.7 F	5.77
endrin	25	300 ⁶	- 8	15 F	44.3 J	26.07	15 F	41 J	23.83	29 F	71 J	45.62
endrin aldehyde	-	300 ⁶	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
heptachlor	200	300 ⁷	- 8	U	12 F	4.54	2.7 F	13 F	6.20	6.7 F	15 F	9.98
heptachlor epoxide	200	300 ⁷	- 8	8.3 F	26 J	14.99	15 F	20 J	16.70	9.7 F	28 J	16.94
methoxychlor	-	-	- 8	4.7 F	14 J	8.22	4.7 F	14 F	7.86	7.7 F	49 F	24.04
toxaphene	-	5,000	- 8	U	U	U	UJ	UJ	U	UJ	UJ	U
Other measurements												
% Lipid	-	-	-	0.259	2.63	1.16	0.184	1.2	0.53	0	1.19	0.47
Initial Weight (g)	-	-	-	62.7	38.1	100.8	95.4	49.1	144.5	66	43.2	109.2
% Whole Fish 9	-	-	-		62.2%			66.0%			60.4%	

2006 Sample Location 3 Fish Tissue Analytical Results

						mple Location 3 Fish T	issue Analytical Results				
Fish Sample ID				TMFS	0304AA becomes 2 Samples		TMCFS0305A	A combined with TMCFS0307AA		TMCFS0306AA - MS/MSD Sample	TMCFS0310AA - MS/MSD Sample
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	1993/4 RI Results	TMCFS0304WF	TMCFS0304HG	Whole fish (mathematically combined).	TMCFS0357WF	TMCFS0357HG	Whole fish (mathematically combined).	TMCFS0306AA	TMCFS0310AA
Sample description *		Guidenne	(LAW, Dec	WF sample of 1 WS	OH sample of 1 WS		WF sample of 2CC and 1 WS	OF sample of 2 CC and 1 WS		CO sample of 6 WS	CO sample of 4 CC
Date of Collection			1996).	10/13/2006	10/13/2006		10/13/2006	10/13/2006		10/13/2006	10/13/2006
Metals (mg/Kg)		1	1.49 J - 2.55 J	U	0.088 F	0.04	U	0.18 F	0.07	U	0.33 F
cadmium mercury	-	- 1	0.22 - 0.29	0.077 F	0.088 F 0.046 F	0.04	0.091 F	0.18 F 0.045 F	0.07	0.054 F	0.059 F
PCBs (µg/Kg)			0.22 - 0.29	0.077 F	0.040 F	0.00	0.091 F	0:043 F	0.07	0:034 F	0.039 F
aroclor 1016	_1	_ 2	. 8	U	U	U	U	U	U	U	U
aroclor 1221	_1	_ 2	_ 8	U	U	U	U	U	U	U	U
aroclor 1232	_1	_ 2	_ 8	U	U	U	U	U	U	U	U
aroclor 1242	_1	_ 2	_ 8	U	U	U	U	U	U	U	U
aroclor 1248	_ 1	_ 2	_ 8	U	U	U	U	U	U	U	U
aroclor 1254	_ 1	_ 2	_ 8	U	U	U	U	U	U	U	U
aroclor 1260	_1	_ 2	28 J - 14,100	928	2,430	1578.02	574	1,910 J	1060.01	979	1040
Sum of all PCB congeners	110	2,000	-	928	2430	1578.02	574	1,910	1060.01	979	1040
Pesticides (µg/Kg)			•						<u>'</u>		
alpha BHC	100	-	- 8	U	U	U	U	UJ	U	UJ	U
beta BHC	100	-	- 8	U	6.3 F	2.73	U	UJ	U	UJ	U
delta BHC	100	-	- 8	U	41 J	17.74	4 F	UJ	2.54	UJ	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	UJ	U	UJ	U
alpha-Chlordane	500	300^{3}	82 J - 97 J	2.2 F	17 J	8.60	5.7 F	15 F	9.08	UJ	6 F
gamma-Chlordane	500	300^{3}	- 8	14 F	46 J	27.85	14 F	32 J	20.55	6.5 F	16 F
p,p'-DDD	200	5,000 ⁴	- 8	19 F	48 J	31.55	39 J	50 J	43.00	51 M	19 F
p,p'-DDE	200	5,000 ⁴	150 J - 190 J	45 J	110 J	73.13	55 J	130 J	82.28	44 F	46 J
p,p'-DDT	200	5,000 ⁴	- 8	170 J	360 J	252.23	140 J	260 J	183.65	200 M	130 M
aldrin	120	300 ⁵	62 J - 98 J	U	2 F	0.87	5.7 F	2.5 F	4.54	UJ	U
dieldrin	120	300 ⁵	- 8	73 J	UJ	41.41	46 J	UJ	29.27	UM	84 M
alpha endosulfan	-	-	- 8	U	UJ	U	U	UJ	U	UJ	U
beta endosulfan	-	-	- 8	U	UJ	U	U	UJ	U	U	U
endosulfan I	-	-	_ 8	4.3 F	U	U	U	UJ	U	UJ	UM
endosulfan sulfate	-	-	- 8	U	10 F	4.33	U	6.3 F	2.29	UM	2.9 F
endrin	25	300 ⁶	_ 8	28 F	63 J	43.15	U	43 J	15.64	24 F	25 F
endrin aldehyde	-	300 ⁶	_ 8	U	UJ	U	U	UJ	U	UM	UM
heptachlor	200	300 ⁷	_ 8	2.3 F	5.7 F	3.77	U	2.2 F	0.80	7.5 F	4 F
heptachlor epoxide	200	300 ⁷	- 8	110 F	23 J	72.35	10 F	21 J	14.00	5.5 F	14 F
methoxychlor	-	-	- 8	7.3 F	22 F	13.66	5 F	15 F	8.64	8 F	8.4 F
toxaphene	-	5,000	- 8	U	UJ	U	U	UJ	U	U	U
Other measurements	•	•	*								
% Lipid	-	-	-	0.133	1.24	0.61	0.326	2.27	1.03	1.05	1.6
Initial Weight (g)	-	-	-	50.2	38.3	88.5	79.4	45.4	124.8	161.9	169.4
% Whole Fish	-	-	-	1	56.7%			#VALUE!		-	-

2006 Sample Location 4 Fish Tissue Analytical Results

					Sample Lo	ocation 4 Fish Tissue Analytical Resul					
Fish Sample ID			TMCFS0401	AA combined with TMCFS0402AA		TMCFS0403	AA combined with TMCFS0404AA		TMCFS0405	5AA combined with TMCFS0406AA	
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	TMCFS0412WF	TMCFS0412HG - combined with TMCFS0434HG	Whole fish (mathematically combined).	TMCFS0434WF	TMCFS0434HG - combined with TMCFS0412HG	Whole fish (mathematically combined).	TMCFS0456WF	TMCFS0456HG - combined with TMCFS0478HG and TMCFS04991HG	Whole fish (mathematically combined).
Sample description *		Guidenne	WF sample of 2 CC	OF sample of 2 CC		WF sample of 5 CC	OF sample of 5 CC		WF sample of 3 WS	OH sample of 3 WS	
Date of Collection			10/13/2006	10/13/2006		10/13/2006	10/13/2006		10/13/2006	10/13/2006	
Metals (mg/Kg)											
cadmium	-	-	0.17 F	0.33 F	0.24	U	0.33 F	0.13	U	0.07	0.03
mercury	-	1	0.13	0.059 F	0.10	0.074 F	0.059 F	0.07	0.041 F	0.02	0.03
PCBs (µg/Kg)											
aroclor 1016	_1	- 2	U	U	U	U	U	U	U	U	U
aroclor 1221	_ 1	- 2	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	U	U	U	U	U	U	U	U	U
aroclor 1242	_ 1	- 2	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	_ 2	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	- 2	U	U	U	U	U	U	U	U	U
aroclor 1260	- 1	- 2	859	2740 J	1628.91	1060	2740 J	1699.70	1180	4563.03	2405.74
Sum of all PCB congeners	110	2,000	859	2740	1628.91	1060	2740	1699.70	1180	4563.03	2405.74
Pesticides (µg/Kg)											
alpha BHC	100	-	U	UJ	U	U	UJ	U	U	U	U
beta BHC	100	-	U	11 F	4.50	U	11 F	4.19	U	U	U
delta BHC	100	-	U	UJ	U	U	UJ	U	U	15.85	5.74
gamma BHC (Lindane)	100		U	UJ	U	U	UJ	U	U	33.00	11.96
alpha-Chlordane	500	300 ³	6.7 F	27 J	15.01	7.7 F	27 J	15.05	8.7 F	25.38	14.74
gamma-Chlordane	500	300^{3}	14 F	56 J	31.19	19 J	56 J	33.09	15 F	20.00	16.81
p,p'-DDD	200	5,000 ⁴	29 F	69 J	45.37	17 F	69 J	36.80	23 F	71.38	40.53
p,p'-DDE	200	5,000 ⁴	33 J	82 J	53.06	23 F	82 J	45.47	20 F	69.38	37.89
p,p'-DDT	200	$5,000^4$	140 J	380 J	238.23	130 J	380 J	225.19	170 J	496.23	288.20
aldrin	120	300 ⁵	U	UJ	U	U	UJ	U	U	4.49	1.63
dieldrin	120	300 ⁵	72 J	220 J	132.58	U	220 J	83.77	F	U	U
endosulfan I	-	-	U	9 F	3.68	U	9 F	3.43	7.3 F	14.38	9.87
endosulfan II	-	-	U	5.3 F	2.17	U	5.3 F	2.02	2 F	9.13	4.58
alpha endosulfan	-	-	U	UJ	U	U	UJ	U	U	U	U
beta endosulfan	-	-	U	UJ	U	U	UJ	U	U	U	U
endosulfan sulfate	-	- ,	U	UJ	U	U	UJ	U	2.6 F	12.38	6.14
endrin	25	300 ⁶	21 F	73 J	42.28	U	73 J	27.80	29 F	87.75	50.29
endrin aldehyde	-	300 ⁶	U	UJ	U	U	UJ	U	UJ	U	U
heptachlor	200	300 ⁷	11 F	12 F	11.41	4 F	12 F	7.05	6 F	15.87	9.58
heptachlor epoxide	200	300 ⁷	12 F	39 J	23.05	19 J	39 J	26.62	12 F	34.00	19.97
methoxychlor	-	-	U	21 F	8.60	6.7 F	21 F	12.15	9 F	29.38	16.38
toxaphene	-	5,000	U	UJ	U	U	UJ	U	U	U	U
Other measurements								1 1			
% Lipid			1.51	4.27 34.3	2.64 83.8	1.14	4.27 30.5	2.33 80.1	0.584	2.45	1.26 82.8
Initial Weight (g)			49.5		85.8	49.6		80.1	52.8	63.8%	82.8
% Whole Fish 9				59.1%			61.9%			0.5.8%	

2006 Sample Location 4 Fish Tissue Analytical Results

				2006 Sample Location 4 Fish Tissue Analytical	Results			
Fish Sample ID				7AA combined with TMCFS0408AA		TMCFS040	9AA combined with TMCFS0410AA	
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	TMCFS0478WF	TMCFS0478HG - combined with TMCFS0456HG and TMCFS04991HG	Whole fish (mathematically combined).	TMCFS0491WF	TMCFS0491HG - combined with TMCFS0456HG and TMCFS0478HG	Whole fish (mathematically combined).
Sample description *		Guideline	WF sample of 3 WS	OH sample of 3 WS		WF sample of 4 WS	OH sample of 4 WS	
Date of Collection			10/13/2006	10/13/2006		10/13/2006	10/13/2006	
Metals (mg/Kg)								
cadmium	-	-	U	0.07	0.02	U	0.07	0.02
mercury		1	0.046 F	0.02	0.04	0.043 F	0.02	0.04
PCBs (µg/Kg)								ı
aroclor 1016	_1	_ 2	U	U	U	U	U	U
aroclor 1221	_1	_ 2	U	U	U	U	U	U
aroclor 1232	- 1	- 2	U	U	U	U	U	U
aroclor 1242	_1	_ 2	U	U	U	U	U	U
aroclor 1248	_1	_ 2	U	U	U	U	U	Ü
aroclor 1254	_1	_ 2	U	U	U	U	U	U
aroclor 1260	_1	2	1390	4563.03	2399.96	5500	4563.03	5192.56
Sum of all PCB congeners	110	2,000	1390	4563.03	2399.96	5500	4563.03	5192.56
Pesticides (µg/Kg)		-,		100000				
alpha BHC	100	-	UJ	U	U	U	U	U
beta BHC	100	-	UJ	U	U	U	U	U
delta BHC	100	-	UJ	15.85	5.04	U	15.85	5.20
gamma BHC (Lindane)	100	-	UJ	33.00	10.50	U	33.00	10.83
alpha-Chlordane	500	300^{3}	10 F	25.38	14.90	28 J	25.38	27.14
gamma-Chlordane	500	300^{3}	21 J	20.00	20.68	80 J	20.00	60.31
p,p'-DDD	200	5,000 ⁴	28 F	71.38	41.81	93 J	71.38	85.91
p,p'-DDE	200	5,0004	25 F	69.38	39.13	92 J	69.38	84.58
p,p'-DDT	200	5,000 ⁴	220 J	496.23	307.92	570 J	496.23	545.79
aldrin	120	300 ⁵	UJ	4.49	1.43	2.9 F	4.49	3.42
dieldrin	120	300 ⁵	UJ	U	U	U	U	U
endosulfan I	- 120	300	8.7 F	14.38	10.51	U	14.38	4.72
endosulfan II	-	-	UJ	9.13	2.91	U	9.13	3.00
alpha endosulfan	-	-	UJ	9.13 U	U U	U	9.13 U	U 3.00
beta endosulfan	-	-	UJ	Ü	Ü	Ü	Ü	Ü
endosulfan sulfate	-	-	UJ	12.38	3,94	15 F	12.38	14.14
endrin	25	300 ⁶	36 J	87.75	52.47	90 J	87.75	89.26
endrin aldehyde	-	300 ⁶	UJ	U	U	UJ	U	U
heptachlor	200	300 ⁷	14 F	15.87	14.60	12 F	15.87	13.27
	200		17 J	34.00	22.41	52 J	34.00	46.09
heptachlor epoxide methoxychlor		300 ⁷	17 J 9 F	29.38	15.49	32 F	29.38	31.14
methoxycnior toxaphene	-	5.000	y F UJ	29.38 U	15.49 U	32-F U	29.38 U	31.14 U
Other measurements	-	3,000	0,	+	-		-	
% Lipid		1	0.684	2.45	1.25	3.66	2.45	3.26
Initial Weight (g)			54.4	25.4	79.8	60.2	29.4	89.6
% Whole Fish 9				68.2%		****	67.2%	
/0 TTHOIC FISH		1		JO.270			J1.279	

2006 Sample Location 5 Fish Tissue Analytical Results

					Sample Lo	ocation 5 Fish Tissue Analytical Res					
Fish Sample ID			TMCFS0501	AA combined with TMCFS0502AA		TMI	FS0503AA becomes 2 Samples		TMCFS050-	4AA combined with TMCFS0505AA	
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	TMCFS0512WF	TMCFS0512HG - COMBINED WITH TMCFS0503HG and TMCFD0545HG	Whole fish (mathematically combined).	TMCFS0503WF	TMCFS0503HG - COMBINED WITH TMCFS0512HG and TMCFD0545HG	Whole fish (mathematically combined).	TMCFS0545WF	TMCFS0545HG - COMBINED WITH TMCFS0503HG and TMCFD0512HG	Whole fish (mathematically combined).
Sample description *			WF sample of 2 WS	OF sample of 2 WS		WF sample of 1 WS	OF sample of 1 WS		WF sample of 4 WS	OF sample of 4 WS	
Date of Collection			10/13/2006	10/13/2006		10/13/2006	10/13/2006		10/13/2006	10/13/2006	
Metals (mg/Kg)					,						
cadmium	-	-	U 0.049 F	0.13 0.01	0.04	0.042 F	0.13 0.01	0.04	0.036 F 0.035 F	0.13 0.01	0.07
mercury PCBs (μg/Kg)	-	1	0.049 F	0.01	0.04	0.042 F	0.01	0.03	0.035 F	0.01	0.03
aroclor 1016	_1	_ 2	U	U	U	U	U	U	U	U	U
aroclor 1221	1	2	Ü	U	U	U	U	U	U	U	U
aroclor 1232	1	2	U	U	U	U	Ü	U	U	U	U
	- 1	- 2	U	U	U		U	U	U	U	
aroclor 1242		-				U					U
aroclor 1248	_1	_ 2	U	U	U	U	U	U	U	U	U
aroclor 1254	_1	_ 2	U	U	U	U	U	U	U	U	U
aroclor 1260	_1	_ 2	1130	3739.78	1945.56	2020 J	3739.78	2576.91	1330 J	3739.78	2075.29
Sum of all PCB congeners	110	2,000	1130	3739.78	1945.56	2020	3739.78	2576.91	1330	3739.78	2075.29
Pesticides (µg/Kg)					,						
alpha BHC	100 100	-	UJ UJ	U	U	UJ	U	U	UJ UJ	U	U
beta BHC delta BHC	100	-	UJ	U	U	UJ	U	U	UJ	U	II U
gamma BHC (Lindane)	100	-	UJ	II U	U	UJ	II U	U	UJ	U II	U
alpha-Chlordane	500	300 ³	7 F	23.47	12.15	17 J	23.47	19.10	5.5 F	23.47	11.06
gamma-Chlordane	500	300 ³	18 J	52.93	28.92	41 J	52.93	44.86	11 F	52.93	23.97
	200			52.95 82.38			52.93 82.38			82.38	
p,p'-DDD		5,0004	35 J		49.81	53		62.51	21 F		39.98
p,p'-DDE	200	5,0004	24 F	70.93	38.67	45 J	70.93	53.40	22 F	70.93	37.13
p,p'-DDT	200	5,000 ⁴	180 J	439.50	261.09	290 J	439.50	338.41	160 J	439.50	246.44
aldrin	120	300 ⁵	UJ	3.84	1.20	UJ	3.84	1.24	2.2 F	3.84	2.71
dieldrin	120	300 ⁵	UJ	U	U	UJ	U	U	60 J	U	41.44
endosulfan I	-	-	U	5.98	1.87	8 F	5.98	7.35	UJ	5.98	1.85
endosulfan II	-	-	U	2.99	0.93	UJ	2.99	0.97	UJ	2.99	0.92
alpha endosulfan	-	-	UJ	Ü	U	UJ	U	U	UJ	U	U
beta endosulfan	-	-	UJ	U	U 2.23	UJ	U	U	UJ	U	U
endosulfan sulfate	25	300 ⁶	2.4 F 26 F	1.86	2.23 37.85	4.7 F 41 J	1.86	3.78 48.42	UJ 24 F	1.86	0.58 36.34
endrin											
endrin aldehyde	-	300 ⁶	UJ	U	U	UJ	U	U	UJ	U	U
heptachlor	200	300 ⁷	8 F	8.15	8.05	6.3 F	8.15	6.90	12 F	8.15	10.81
heptachlor epoxide	200	300 ⁷	12 F	35.46	19.33	27 J	35.46	29.74	12 F	35.46	19.26
methoxychlor	-	-	6.3 F	22.71	11.43	12 F	22.71	15.47	6 F	22.71	11.17
toxaphene	-	5,000	UJ	U	U	UJ	U	U	UJ	U	U
Other measurements % Lipid		, ,	0.42	2.32	1.01	0.651	2.32	1.19	0.125	2.32	0.80
% Lipid Initial Weight (g)	+		70.4	2.32 32	1.01 102.4	0.651 66.4	2.32 31.8	98.2	0.125 73.7	33	0.80
			70.4	68.8%	102.4	06.4	67.6%	70.2	13.1	69.1%	100./
% Whole Fish 9				U8.8%			07.0%			U9.1%	

2006 Sample Location 5 Fish Tissue Analytical Results

					Fish Tissue Analytical R				
Fish Sample ID			TMCFS0506.	AA combined with TMCFS0507AA		TMCFS0508	AA combined with TMCFS0509AA		TMCFS0510AA - MS/MSD Sample
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	TMCFS0567WF	TMCFS0567HG	Whole fish (mathematically combined).	TMCFS0589WF	TMCFS0589HG	Whole fish (mathematically combined).	TMCFS0510AA
Sample description *			WF sample of 2 CC	OF sample of 2 CC		WF sample of 4 WS	OF sample of 4 WS		CO sample of 4 CC
Date of Collection			10/13/2006	10/13/2006		10/13/2006	10/13/2006		10/22/2004
Metals (mg/Kg)									
cadmium	-	-	U	0.22 F	0.08	0.044 F	0.22 F	0.11	0.12 F
mercury	<u> </u>	1	0.068 F	0.034 F	0.06	0.061 F	0.044 F	0.05	0.051 F
PCBs (µg/Kg)		2			1 1				T
aroclor 1016	_1	_ 2	U	U	U	U	U	U	U
aroclor 1221	_1	- 2	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	U	U	U	U	U	U	U
aroclor 1242	-1	- 2	U	U	U	U	U	U	U
aroclor 1248	_1	_ 2	U	U	U	U	U	U	U
aroclor 1254	_1	_ 2	U	U	U	U	U	U	U
aroclor 1260	_1	_ 2	1300	4060	2271.48	1080 J	4430	2303.26	1750 J
Sum of all PCB congeners	110	2.000	1300	4060	2271.48	1080	4430	2303.26	1750
Pesticides (µg/Kg)		7							-
alpha BHC	100	-	U	8.7 F	3.06	U	U	U	U
beta BHC	100	-	U	36 J	12.67	U	32 J	11.68	23 M
delta BHC	100		U	29 J	10.21	U	72 J	26.29	U
gamma BHC (Lindane)	100	-	U	U	U	U	34 J	12.42	U
alpha-Chlordane	500	300^{3}	7 F	20 J	11.58	7 F	21 J	12.11	12 F
gamma-Chlordane	500	300 ³	21 J	52 J	31.91	22 J	64 J	37.34	31 J
p,p'-DDD	200	5,000 ⁴	30 F	49 J	36.69	32 F	59 J	41.86	39 F
p,p'-DDE	200	5,000 ⁴	25 F	65 J	39.08	27 F	87 J	48.91	49 J
p,p'-DDT	200	5,000 ⁴	U	430 J	151.35	170 J	460 J	275.89	280 M
aldrin	120	300 ⁵	U	4.3 F	1.51	U	3 F	1.10	U
dieldrin	120	300 ⁵	U	210 J	73.92	U	210 J	76.68	120 M
endosulfan I	-	-	U	U	U	U	U	U	-
endosulfan II	-	-	1.1 F	2.5 F	1.59	U	2.7 F	0.99	1.6 F
alpha endosulfan	-	-	U	U	U	U	U	U	U
beta endosulfan	-		U	U	U	U	U	U	U
endosulfan sulfate	-	-	2.3 F	11 F	5.36	U	11 F	4.02	5.2 F
endrin	25	300 ⁶	36 J	81 J	51.84	25 F	71 J	41.80	41 J
endrin aldehyde	-	300 ⁶	UJ	UJ	U	UJ	UJ	U	UM
heptachlor	200	300 ⁷	2.6 F	15 F	6.96	2.9 F	19 J	8.78	10 F
heptachlor epoxide	200	300 ⁷	14 F	31 J	19.98	22 J	50 J	32.22	27 M
methoxychlor	-	-	7.7 F	U	4.99	7.3 F	19 F	11.57	14 F
toxaphene	-	5,000	U	Ü	U	U	U	U	U
Other measurements	*			•	•		*	•	
% Lipid			0.296	1.21	0.62	0.486	63.7	23.57	0.667
Initial Weight (g)			79.9	43.4	123.3	68.5	39.4	107.9	178.7
% Whole Fish 9				64.8%			63.5%		

Sample Location TMC-1 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	TMCFS0101BB	TMCFS0102BB	TMCFS0103BB	TMCFS0104BB	TMCFS0105BB	TMCFS0106BB	TMCFS0107BB	TMCFS0108BB	TMCFS0109BB	TMCFS0110BB
Sample description *	Wildlife	Advisory	1 CC	2 CC	1 CC	1 WS	1 WS	2 WS	1 WS	1 WS	2 CC	2 CC
Date of Collection	Criteria	Guideline	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009
Metals (μg/g)			**	0.42.5	**	**	**	**	**	**	**	**
cadmium	•	1	U 0.016 F	0.12 F 0.085 F	0.011 F	U 0.048 F	U 0.021 F	U 0.018 F	U 0.033 F	U 0.013 F	U 0.024 F	0.020 F
mercury DCPa (ua/Va)	-	1	0.016 F	0.085 F	0.011 F	0.048 F	0.021 F	0.018 F	0.033 F	0.013 F	0.024 F	0.020 F
PCBs (µg/Kg) aroclor 1016	1	_ 2	U	U	NA	U	UJ	U	U	U	NA	U
aroclor 1221	- 1	_ 2	U	U	NA NA	U	UJ	U	U	U	NA NA	U
aroclor 1232	1	_ 2	U	U	NA NA	U	UJ	U	U	U	NA NA	U
aroclor 1242	- 1	2	U	U	NA NA	U	UJ	U	U	U	NA NA	U
aroclor 1248	1	_ 2	IJ	U	NA NA	U	UJ	U	U	U	NA NA	U
aroclor 1248	- 1	2	II.	U	NA NA	U	UJ	U	U	U	NA NA	U
aroclor 1260	1	_ 2	1,350	662	NA NA	691	4,220 J	1,290	670	3,790	NA	1,100
Sum of all PCB congeners	110	2.000	1,350	662	NA	691	4,220	1,290	670	3,790	NA	1.100
Pesticides (µg/Kg)	110	2,000	1,550	002	1111	071	7,220	1,270	070	3,770	141	1,100
alpha BHC	100	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
beta BHC	100	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
delta BHC	100	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
gamma BHC (Lindane)	100	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
alpha-Chlordane	500	300^{3}	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
gamma-Chlordane	500	300^{3}	UM	UM	NA	UM	UM	UM	UM	UM	NA	40 F
p,p'-DDD	200	$5,000^4$	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
p,p'-DDE	200	$5,000^4$	140 F	50 F	NA	50 F	230 F	UM	UM	UM	NA	120 F
p,p'-DDT	200	$5,000^4$	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
aldrin	120	300 ⁵	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
dieldrin	120	300 ⁵	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
alpha endosulfan		-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
beta endosulfan	-	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
endosulfan sulfate	-	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
endrin	25	300 ⁶	UJ	UJ	NA	UJ	170 F	77 F	UJ	180 F	NA	UJ
endrin aldehyde	-	300 ⁶	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
heptachlor	200	300 ⁷	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
heptachlor epoxide	200	300 ⁷	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
methoxychlor	-	-	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
toxaphene	-	5,000	UJ	UJ	NA	UJ	UJ	UJ	UJ	UJ	NA	UJ
Other measurements												
% Lipid			1.7	1.7	1.9	0.7	2.4	1.1	0.5	3.0	2.7	1.2

2009 Sample Location TMC-2 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	TMCFS0201BB	TMCFS0202BB	TMCFS0203BB	TMCFS0204BB	TMCFS0205BB	TMCFS0206BB	TMCFS0207BB	TMCFS0208BB	TMCFS0209BB	TMCFS0210BB
Sample description *	Wildlife	Advisory	1 WS	1 WS	1 WS	1 WS	7 WS	2 CC	4 CC	1 CC	2 CC	1 CC
Date of Collection	Criteria	Guideline	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009
Metals (µg/g)												
cadmium	-	-	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.040 F	0.019 F	0.053 F	0.019 F	0.025 F	0.038 F	0.026 F	0.012 F	0.051 F	0.031 F
PCBs (µg/Kg)												
aroclor 1016	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1221	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1242	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	- 2	U	U	U	U	U	U	U	U	U	U
aroclor 1260	- 1	- 2	1,050 J	1,080 J	819	1,530	501	694	1,100	458	1,280	578
Sum of all PCB congeners	110	2,000	1,050	1,080	819	1,530	501	694	1,100	458	1,280	578
Pesticides (µg/Kg)												
alpha BHC	100	-	UJ									
beta BHC	100	-	UJ									
delta BHC	100	-	UJ									
gamma BHC (Lindane)	100	-	UJ									
alpha-Chlordane	500	300^{3}	UJ									
gamma-Chlordane	500	300^{3}	UM									
p,p'-DDD	200	$5,000^4$	UJ									
p,p'-DDE	200	$5,000^4$	UJ	150 F	43 F	UM	57 F	43 F	67 F	190 F	130 F	170 F
p,p'-DDT	200	$5,000^4$	UM	UM	UJ							
aldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
dieldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
alpha endosulfan	-	-	UJ									
beta endosulfan	-	-	UJ									
endosulfan sulfate	-	-	UJ									
endrin	25	300^{6}	UJ									
endrin aldehyde	-	300^{6}	UJ									
heptachlor	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
heptachlor epoxide	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
methoxychlor	-	-	UJ									
toxaphene	-	5,000	UJ									
Other measurements												
% Lipid			1.9	1.3	0	1.1	1.7	1.5	2.1	1.6	3.5	1.2

2009 Sample Location TMC-3 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	TMCFS0301BB	TMCFS0302BB	TMCFS0303BB	TMCFS0304BB	TMCFS0305BB	TMCFS0306BB	TMCFS0307BB	TMCFS0308BB	TMCFS0309BB	TMCFS0310BB
Sample description *	Wildlife	Advisorv	1WS	1 WS	1 WS	1 WS	1 WS	1 CC	2 CC	2 CC	2 CC	3 CC
Date of Collection	Criteria	Guideline	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009
Metals (μg/g)				20,0,200		20,0,200	24,4,244	20,0,200	20,0,200	20,0,200	20,0,200	
cadmium	-	-	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.026 F	0.013 F	0.045 F	0.025 F	0.022 F	0.016 F	0.032 F	0.027 F	0.017 F	0.022 F
PCBs (µg/Kg)												
aroclor 1016	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1221	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1232	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1242	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1248	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1254	- 1	- 2	U	U	U	UJ	U	U	U	U	U	U
aroclor 1260	- 1	_ 2	645	2,590	1,130	4,300 J	2,540	658	633	1,640	611	939
Sum of all PCB congeners	110	2,000	645	2,590	1,130	4,300	2,540	658	633	1,640	611	939
Pesticides (µg/Kg)												
alpha BHC	100	-	UJ									
beta BHC	100	-	UJ									
delta BHC	100	-	UJ									
gamma BHC (Lindane)	100	-	UJ									
alpha-Chlordane	500	300^{3}	UJ									
gamma-Chlordane	500	300^{3}	UM									
p,p'-DDD	200	$5,000^4$	UJ									
p,p'-DDE	200	$5,000^4$	260 F	UM	450 F	280 F	140 F	120 F	57 F	93 F	110 F	UM
p,p'-DDT	200	$5,000^4$	UJ									
aldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
dieldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
alpha endosulfan	-	-	UJ									
beta endosulfan	-	-	UJ									
endosulfan sulfate	-	-	UJ									
endrin	25	300 ⁶	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
endrin aldehyde	-	300^{6}	UJ									
heptachlor	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
heptachlor epoxide	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
methoxychlor	-	-	UJ									
toxaphene	-	5,000	UJ									
Other measurements												
% Lipid			0.4	2.1	1.1	2.2	1.2	1.0	1.4	1.5	2.5	2.0

2009 Sample Location TMC-4 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	Sample 1	Sample 2	Sample 3	Sample 4
Sample ID	Pisc.	Fish	TMCFS0401BB	TMCFS0402BB	TMCFS0403BB	TMCFS0404BB
Sample description *	Wildlife	Advisory	2 WS	5 CC	4 CC	4 CC
Date of Collection	Criteria	Guideline	10/6/2009	10/6/2009	10/6/2009	10/6/2009
Metals (µg/g)			***	***	***	***
cadmium mercury	-	1	U 0.016 F	U 0.017 F	U 0018 F	0.015 F
PCBs (µg/Kg)	-	1	0.016 F	0.017 F	0018 F	0.013 F
aroclor 1016	_ 1	_ 2	UJ	U	U	U
aroclor 1221	_ 1	_ 2	UJ	U	U	U
aroclor 1232	- 1	_ 2	UJ	U	U	U
aroclor 1242	- 1	- 2	UJ	U	U	U
aroclor 1248	_ 1	- 2	UJ	U	U	U
aroclor 1254	- 1	- 2	UJ	U	U	U
aroclor 1260	- 1	- 2	2,010 J	1,290	1,190	1,720
Sum of all PCB congeners	110	2,000	2,010	1,290	1,190	1,720
Pesticides (µg/Kg)						
alpha BHC	100	-	UJ	UJ	UJ	UJ
beta BHC	100	-	UJ	UJ	UJ	UJ
delta BHC	100	-	UJ	UJ	UJ	UJ
gamma BHC (Lindane)	100	-	UJ	UJ	UJ	UJ
alpha-Chlordane	500	300 ³	UJ	UJ	UJ	UJ
gamma-Chlordane	500	300 ³	UM	UM	UM	UM
p,p'-DDD	200	5,0004	UJ	UJ	UJ	UJ
p,p'-DDE	200	5,0004	UM	110 F	UM	UM
p,p'-DDT	200	5,0004	UJ	UJ	UJ	UJ
aldrin	120	300^{5}	UJ	UJ	UJ	UJ
dieldrin	120	300^{5}	UJ	UJ	UJ	UJ
alpha endosulfan	-	-	UJ	UJ	UJ	UJ
beta endosulfan	-	-	UJ	UJ	UJ	UJ
endosulfan sulfate		-	UJ	UJ	UJ	UJ
endrin	25	300^{6}	UJ	UJ	UJ	UJ
endrin aldehyde	-	300^{6}	UJ	UJ	UJ	UJ
heptachlor	200	300 ⁷	UJ	UJ	UJ	UJ
heptachlor epoxide	200	300 ⁷	UJ	UJ	UJ	UJ
methoxychlor	-	-	UJ	UJ	UJ	UJ
toxaphene	-	5,000	UJ	UJ	UJ	UJ
Other measurements						
% Lipid			1.3	1.9	1.6	2.0

2009 Sample Location TMC-5 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	Sample 1	Sample 2	6 12	Sample 4	6 15	G 1.6	g 1.7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	TMCFS0501BB	TMCFS0502BB	Sample 3 TMCFS0503BB	TMCFS0504BB	Sample 5 TMCFS0505BB	Sample 6 TMCFS0506BB	Sample 7 TMCFS0507BB	TMCFS0508BB	TMCFS0509BB	TMCFS0510BB
Sample 1D Sample description *	Wildlife	Advisory	1 WS	1 WS	1 WS	1 WS	1 WS	170 CC	43 CC	30 CC	51 CC	84 CC
Date of Collection	Criteria	Guideline	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009
Metals (µg/g)	Criteria	Guideline	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009	10/0/2009
cadmium	-	-	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.051 F	0.021 F	0.022 F	0.018 F	0.020 F	0.012 F	0.012 F	0.018 F	0.018 F	0.012 F
PCBs (µg/Kg)												
aroclor 1016	- 1	- 2	UM	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1221	_ 1	- 2	U	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1232	- 1	- 2	U	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1242	- 1	- 2	U	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1248	- 1	- 2	U	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1254	- 1	- 2	U	UJ	U	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aroclor 1260	- 1	- 2	810	7,570 J	1,530	2,610 J	2,410 J	1,770 J	3,000 J	4,000 J	3,460 J	3,060 J
Sum of all PCB congeners	110	2,000	810	7,570 B	1,530	2,610	2,410	1,770	3,000	4,000	3,460	3,060
Pesticides (µg/Kg)												
alpha BHC	100	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
beta BHC	100	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
delta BHC	100	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
gamma BHC (Lindane)	100	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
alpha-Chlordane	500	300 ³	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
gamma-Chlordane	500	300 ³	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
p,p'-DDD	200	5,000 ⁴	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
p,p'-DDE	200	5,000 ⁴	UM	UM	UM	100 F	93 F	UM	UM	UM	UM	UM
p,p'-DDT	200	5,000 ⁴	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
aldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
dieldrin	120	300 ⁵	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
alpha endosulfan	-	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
beta endosulfan	-	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
endosulfan sulfate	-	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
endrin	25	300^{6}	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
endrin aldehyde	-	300 ⁶	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
heptachlor	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
heptachlor epoxide	200	300 ⁷	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
methoxychlor	-	-	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
toxaphene	-	5,000	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Other measurements		ı										
% Lipid			0.4	2.2	0.5	2	1	1.4	3	3.5	2	2.5

Fish Tissue:

- F The analyte was positively identified above the MDL, however, the concentration is below the RL.
- J The analyte was positively identified, but the quantitation is an estimation.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- UJ The analyte was analyzed for, but not detected. The quantitation is an approximation.
- 1 The PCB piscivorous wildlife criterion of 110 ppb applies to the sum of all PCB congeners.
- 2 The PCB fish advisory guideline of 2,000 ppb applies to the sum of all PCB congeners.
- 3 The chlordane fish advisory guideline of 300 ppb applies to the sum of all chlordane compounds.
- 4 The DDT fish advisory guideline of 5,000 ppb applies to the sum of all DDT, DDE, and DDD compounds.
- 5 The aldrin fish advisory guideline of 300 ppb applies to the sum of all aldrin/dieldrin compounds.
- 6 The endrin fish advisory guideline of 300 ppb applies to the sum of all endrin/endrin aldehyde compounds.
- 7 The heptachlor fish advisory guideline of 300 ppb applies to the sum of all heptachlor/heptachlor epoxide compounds.
- - No piscivorous wildlife criterion or fish advisory guideline is available.
- * OF is offal sample, WF is whole fish, HG is offal-and-head, CC is creek chub, and WS is white sucker.
 - Indicates an exceedance of the NYSDOH Fish Advisory Guidelines and/or the NYSDEC Pisc. Wildlife Criteria.

Sample Location	NYS	SM	C-1	SMC-1R	Surface Water St	SM	C-1	
Sample ID	Surface Water	RI Results (SMCSW-2)	SMCSW0101AA	SMCSW0101EA	SMCSW0101FA	SMCSW0101GA		
Date of Collection ²	Standards 1	5/94 - 11/94	10/20/2004	11/24/2008	10/1/2009	10/27/2010		
Sample Depth (ft bgs)	(ppb)	0-1	0-1	0-1	0-1	0-1		
VOCs (µg/L)								
1,1,1-trichloroethane	5*	U	U	U	U	U		
1,2,4-trimethylbenzene	5	U	U	U	U	U		
1,2-dichlorobenzene	3	U	U	U	U	U		
1,3,5-trimethylbenzene	5	U	U	U	U	U		
1,4-dichlorobenzene	3	U	U	0.17 F	U	U		
acetone	50	U	U	U	1.15 F	U		
benzene	1	U	U	U	U	U		
chlorobenzene	5	U	U	U	U	U		
chloroform	7	U	U	U	U	U		
chloromethane		U	U	U	U	U		
ethylbenzene	5	U	U	U	U	U		
methyl tert-butyl ether	10	U	U	U	U	U		
methylene chloride	5*	U	U	U	U	U		
methyl ethyl ketone (2-butanone)		U	U	U	U	U		
m,p,-xylene	5	U	U	U	U	U		
naphthalene	10	U	U	U	U	U		
trichloroethylene (TCE)	5	U	U	U	U	U		
toluene	5	0.093 J	U	U	U	U		

				DIA WHIC CITCE	Surface water Sa	imping Results		
Sample Location	NYS				SMC-4			
Sample ID	Surface Water	RI Results (SMCSW-13)	SMCSW0401AA	SMCSW0401BB	SMCSW0401CA	SMCSW0401DA	SMCSW0401EA	SMCSW0401FA
Date of Collection ²	Standards 1	5/94 - 11/94	10/20/2004	10/20/2005	10/17/2006	10/17/2007	11/24/2008	10/1/2009
Sample Depth (ft bgs)	(ppb)	0-1	0-1	0-1	0-1	0-1	0-1	0-1
VOCs (µg/L)								
1,1,1-trichloroethane	5*	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5	U	U	U	0.220 F	0.130 F♦	0.7 F♦	0.240 F♦
1,2-dichlorobenzene	3	U	U	U	U	U	0.27 F	U
1,3,5-trimethylbenzene	5	U	U	U	U	0.130 F◆	0.27 F	U
1,4-dichlorobenzene	3	U	U	U	U	U	U	U
acetone	50	U	U	4.6 F	2.13 F	4.21 F	1.28 F ♦	1.39 F♦
benzene	1	0.11 J	5.8	2.1	5.92	3.38 ♦	2.53 ♦	0.780 ♦
chlorobenzene	5	U	0.28 F	U	U	U	0.19 F	0.230 F
chloroform	7	U	U	U	U	U	U	U
chloromethane		U	U	U	U	U	U	U
ethylbenzene	5	U	U	U	0.410 F	0,110 F♦	0.24 F	U
methyl tert-butyl ether	10	U	1.2 F	U	1.28 F	U	0.53 F	0.230 F♦
methylene chloride	5*	U	U	U	0.140 F	U	U	U
methyl ethyl ketone (2-butanone)		U	U	U	U	U	U	6.95 F♦
m,p,-xylene	5	U	U	U	0.890 F	0.340 FC	0.89 F	0.230 F♦
naphthalene	10	U	U	U	0.110 F	0.140 F♦	U	0.110 F◆
trichloroethylene (TCE)	5	U	U	U	U	U	U	U
toluene	5	U	U	U	U	U	U	U

Six while Creek Surface water sampling Results										
Sample Location	NYS				SMC-4					
	Surface	SMCSW0401GA								
Sample ID	Water	SIVICS WU-FUIGA								
Date of Collection ²	Standards 1	10/27/2010								
Sample Depth (ft bgs)	(ppb)	0-1								
VOCs (µg/L)										
1,1,1-trichloroethane	5*	U								
1,2,4-trimethylbenzene	5	U								
1,2-dichlorobenzene	3	U								
1,3,5-trimethylbenzene	5	U								
1,4-dichlorobenzene	3	U								
acetone	50	3.08 F♦								
benzene	1	U								
chlorobenzene	5	0.150 F								
chloroform	7	U								
chloromethane		U								
ethylbenzene	5	U								
methyl tert-butyl ether	10	U								
methylene chloride	5*	U								
methyl ethyl ketone (2-butanone)		U								
m,p,-xylene	5	U								
naphthalene	10	U								
trichloroethylene (TCE)	5	U								
toluene	5	U						_		

Sample Location	NYS				SMC-5	<u> </u>		
Sample ID	Surface Water	RI Results (SMCSW-14)	SMCSW0501AA	SMCSW0501BB	SMCSW0501CA	SMCSW0501DA	SMCSW0501EA	SMCSW0501FA
Date of Collection ²	Standards 1	5/94 - 11/94	10/20/2004	10/20/2005	10/17/2006	10/17/2007	11/24/2008	10/1/2009
Sample Depth (ft bgs)	(ppb)	0-1	0-1	0-1	0-1	0-1	0-1	0-1
VOCs (µg/L)								
1,1,1-trichloroethane	5*	U	U	U	U	U	U	U
1,2,4-trimethylbenzene	5	U	U	U	0.310 F	0.300 F	0.530 F	0.160 F
1,2-dichlorobenzene	3	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5	U	U	U	U	0.160 F	U	U
1,4-dichlorobenzene	3	U	U	U	U	U	U	U
acetone	50	U	U	4.3 F	U	U	1.46 F	3.01 F
benzene	1	0.091 J	3.8	3.0	3.61	2.01	1.21	0.67
chlorobenzene	5	U	U	U	U	U	U	0.120 F
chloroform	7	U	U	U	U	U	U	U
chloromethane		U	U	U	U	U	0.37 F	U
ethylbenzene	5	U	0.23 F	U	0.370 F	0.180 F	0.13 F	U
methyl tert-butyl ether	10	U	1.1 F	0.50 F	0.850 F	U	0.24 F	U
methylene chloride	5*	U	U	U	U	U	U	U
methyl ethyl ketone (2-butanone)		U	U	U	U	U	U	3.97 F
m,p,-xylene	5	U	0.64 F	U	0.770 F	0.460 F	0.27 F	U
naphthalene	10	U	U	U	0.160 F	0.150 F	U	U
trichloroethylene (TCE)	5	U	U	U	U	U	U	U
toluene	5	U	U	U	U	U	U	U

		1	Shi time cree	ek Surrace water Sa	mpmg meane	
Sample Location	NYS			SMC-5		
	Surface	SMCSW0501GA				
Sample ID	Water	SMCSWOSOIGA				
Date of Collection ²	Standards 1	10/27/2010				
Sample Depth (ft bgs)	(ppb)	0-1				
VOCs (µg/L)						
1,1,1-trichloroethane	5*	U				
1,2,4-trimethylbenzene	5	U				
1,2-dichlorobenzene	3	U				
1,3,5-trimethylbenzene	5	U				
1,4-dichlorobenzene	3	U				
acetone	50	U				
benzene	1	U				
chlorobenzene	5	0.110 F				
chloroform	7	U				
chloromethane		U				
ethylbenzene	5	U				
methyl tert-butyl ether	10	U				
methylene chloride	5*	U				
methyl ethyl ketone (2-butanone)		U				
m,p,-xylene	5	U				
naphthalene	10	U				
trichloroethylene (TCE)	5	U				
toluene	5	U				

Surface Water:

- B Result is a positive value, however, the analyte was detected in an associated blank above the RL.
- F The analyte was positively identified above the MDL, however, the concentration is below the RL.
- FB The analyte was positively identified above the MDL, however, the concentration is below the RL. The analyte was also detected in an associated blank.
- J The analyte was positively identified, but the quantitation is an estimation.
- M A matrix effect was present.
- NA not analyzed
- R The data was rejected because QA/QC criteria were not met during the analysis.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- UJ The analyte was analyzed for, but not detected. The quantitation is an approximation.
- UM The analyte was analyzed for, but not detected. A matrix effect was present.
- ¹ The NYS Surface Water Standard for the protection of aquatic life from chronic effects is used if available and if lower than the surface water standard.
- ² The different analyses for the sample locations sampled in the 1993/4 RI were collected at different times between 5/1994 and 11/1994.
- 3 The value was calculated with the most stringent criterion for PCB from Table 1 in Technical Guidance for Screening Contaminated Sediments (NYSDEC, January 1999) multiplied by the analyzed organic content of 11.4 g/Kg for sampling location SMCSD-11.
 - Indicates an exceedance of the NYS Surface Water Standards.

Six Mile Creek Sediment Sampling Results

	1			m.c	SIX N	me Creek Seam	ent Sampling R	esuits	C3. #	0.1	
Sample Location	Most Stringent		ar raan arar	SMC-1	ar raan at at a	ar can or or	SMC-1R	ar taar oo o	SM	U-1	
Sample ID	Ecological Screening Value	RI Results (SMCSD-2)	SMCSD0101A A	В	SMCSD0101C A	A	SMCSD0101E A	SMCSD0101F A	SMCSD0101G A		
Date of Collection	(μg/Kg) ¹	5/17/1994	10/20/2004	11/30/2005	10/16/2006	10/17/2007	11/24/2008	10/1/2009	10/27/2010		
Sample Depth (ft TOIC)	(μg/Kg)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5		
SVOCs (µg/Kg)											
2-methylnaphthalene	65	U	U	U	U		U	U	U		
acenaphthene	16	U	U	U	U	260 F	U	U	U		
anthracene	85	42 J	U	U	U		81 F	U	U		
benzo(a)anthracene	261	190 J	69 F	130 F	19 F	100 F	340 F	53 F	39 F		
benzo(a)pyrene	370	U	69 F	140 F	U	UM	250 F	48 F	32 F		
benzo(b)fluoranthene		150 J	U	160 F	31 F	UM	350 F	120 F	U		
benzo(k)fluoranthene	240	120 J	63 F	56 F	U	UM	130 F	29 F	U		
benzo(g,h,i)perylene	170	U	U	97 F	U	UM	170 F	U	U		
bis(2-ethylhexyl) phthalate	10453.8	U	U	U	U		U	U	170 FB		
benzyl butyl phthalate	50000	U	U	74 F	U	37 F	U	U	U		
chrysene	340	260 J	81 F	U	U	UM	320 F	56 F	31 F		
di-n-butyl phthalate		U	U	U	U	U	U	U	37 FB		
dibenz(a,h)anthracene	60	U	81 F	140 F	U	95 F	U	U	U		
dibenzofuran	2000	U	U	U	U	UM	U	U	U		
diethyl phthalate	7100	U	U	U	U	UM	U	U	U		
fluoranthene	600	440 J	160 F	340 F	29 F		710 F	110 F	66 F		
fluorene	35	U	U	U	U	210 F	410 F	U	U		
indeno(1,2,3-c,d)pyrene	200	130 J	U	U	U	UM	310 F	U	U		
naphthalene	13000	U	U	U	U	U	U	U	U		
phenanthrene	240	390 J	110 F	240 F	U	180 F	530 F	64 F	47 F		
pyrene	490	580 J	130 F	290 F	28 F	260 F	720	110 F	63 F		
PCBs (µg/Kg)											
Aroclor 1248	15.96 ³	-	U	U	U	U	UJ	U	U		
Aroclor 1254	15.96 ³	U	U	U	U	U	UJ	U	U		
Aroclor 1260	5	-	U	U	U	U	UJ	U	U		
Pesticides (µg/Kg)											
delta BHC	0.04	U	U	U	0.97 F	U	UJ	U	U		
gamma BHC (Lindane)	0.05	U	U	U	U	U	UJ	U	U		
alpha-Chlordane	0.05	U	U	U	U	U	UJ	U	U		
p,p'-DDD	2	U	U	U	U	U	UJ	U	U		
p,p'-DDE	2	U	U	U	0.31 F	U	UJ	U	U		
p,p'-DDT	1	UJ	U	U	0.34 F	UM	UJ	U	U		
aldrin	0.00	U	U	U	U	U	UJ	U	U		
dieldrin	0.02	U	U	U	U	U	UJ	0.90 F	U		
alpha endosulfan		U	U	U	U	U	UJ	U	U		
beta endosulfan		U	U	U	U	U	UJ	U	U		
endosulfan sulfate		U	U	U	U	U	UJ	U	U		
endosulfan II	3.6	U	U	U	U	U	UJ	U	U		
endrin	3	U	U	U	U	U	UJ	U	U		
endrin aldehyde	5*	U	U	U	U	U	UJ	U	U		
heptachlor	0.04	U	U	U	U	U	UJ	U	U		
heptachlor epoxide	0.03	U	U	U	U	U	UJ	U	U		
methoxychlor	31.44	U	4.7 F	U	U	U	UJ	U	U		

Six Mile Creek Sediment Sampling Results

C1- T4'	1	1			SIX N	Aile Creek Sedin		esuits		1
Sample Location	Most Stringent	DI D	CMCCD0401A	CMCCD0401D	CMCCD0401C	SM		CMCCD0401E	SMCSD0401G	_
Sample ID	Ecological Screening Value	RI Results (SMCSD-13)	A	SMCSD0401B B	A	A	A	A	A	
Date of Collection	(μg/Kg) ¹	5/14/1994	10/20/2004	11/30/2005	10/17/2006	10/17/2007	11/24/2008	10/1/2009	10/27/2010	
Sample Depth (ft TOIC)	(μg/Kg)	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	
SVOCs (µg/Kg)										
2-methylnaphthalene	65	U	180 F	U	120 F	290 F ♦	U	58 F♦	44 F	
acenaphthene	16	U	U	U	U	U	U	87 F ♦	U	
anthracene	85	U	U	U	U	U	U	150 F♦	U	
benzo(a)anthracene	261	U	190 F	120 F	83 F	56 F♦	100 F♦	630 F♦	U	
benzo(a)pyrene	370	U	420 F	120 F	100 F	U	90 F♦	680 F♦	U	
benzo(b)fluoranthene		U	460 F	180 F	230 F	U	150 F♦	1700 ♦	U	
benzo(k)fluoranthene	240	U	250 F	56 F	55 F	U	53 F ♦	650 F♦	U	
benzo(g,h,i)perylene	170	U	220 F	110 F	45 F	U	100 F♦	240 F♦	U	
bis(2-ethylhexyl) phthalate	10453.8	240 J	U	200 F	60 F	90 F♦	93 F ♦	37 F ♦	49 FB♦	
benzyl butyl phthalate	50000	U	U	U	U	850 F♦	U	U	U	
chrysene	340	U	270 F	150 F	110 F	57 F ♦	120 F◆	1000 ♦	U	
di-n-butyl phthalate		U	U	U	U	U	U	U	35 FB	
dibenz(a,h)anthracene	60	U	120 F	U	U	U	U	78 F ♦	U	
dibenzofuran	2000	U	U	U	U	U	U	66 F ♦	U	
diethyl phthalate	7100	U	U	U	35 F	U	U	U	U	
fluoranthene	600	U	280 F	220 F	140 F	110 F ♦	210 F◆	790 F♦	U	
fluorene	35	U	U	U	U	U	U	100 F♦	U	
indeno(1,2,3-c,d)pyrene	200	U	220 F	89 F	U	UM	250 F♦	160 F♦	U	
naphthalene	13000	U	U	U	U	93 F ♦	110 F◆	92 F ♦	U	
phenanthrene	240	Ü	130 F	120 F	80 F	68 F ♦	130 F◆	740 F♦	U	
pyrene	490	U	220 F	180 F	190 F	110 F♦	200 F♦	830 F♦	19 F	
PCBs (µg/Kg)										
Aroclor 1248	15.96 ³	-	54	9.9 F	U	U	U	U	U	
Aroclor 1254	15.96 ³	U	61	52	67.1	120 J ♦	14.5 F ♦	72.7	U	
Aroclor 1260	5	-	U	19 F	U	U	U	U	U	
Pesticides (µg/Kg)										
delta BHC	0.04	U	U	U	U	U	UJ	U	U	
gamma BHC (Lindane)	0.05	U	U	U	U	U	UJ	U	U	
alpha-Chlordane	0.05	U	U	U	0.57 F	UM	UJ	U	U	
p,p'-DDD	2	U	U	U	1.1 F	0.82 F♦	UJ	1.5 F	U	
p,p'-DDE	2	U	U	U	U	UM	UJ	U	U	
p,p'-DDT	1	UJ	18 F	11	16 J	U	UJ	U	U	
aldrin	0.00	U	U	U	U	U	UJ	U	U	
dieldrin	0.02	57	U	U	4.6 F	1.6 F♦	1.8 FJ ♦	U	U	
alpha endosulfan		U	U	U	1.6 F	U	UJ	U	U	
beta endosulfan		U	U	U	5.4 J	U	UJ	U	U	
endosulfan sulfate		U	U	U	U	UM	UJ	U	U	
endosulfan II	3.6	U	U	U	U	2.1 F♦	0.83 F	U	U	
endrin	3	U	U	U	2.2 F	0.69 F	UJ	U	U	
endrin aldehyde	5*	U	U	U	1.4 F	U	UJ	U	U	
heptachlor	0.04	Ü	U	U	U	U	UJ	Ü	U	
heptachlor epoxide	0.03	U	U	U	4.8 J	UM	UJ	U	U	
methoxychlor	31.44	26 J	U	U	U	U	UJ	U	U	

Six Mile Creek Sediment Sampling Results

Sample Location						nie Creek Sedin	C-5			
Sample Location	Most Stringent	RI Results	SMCSD0501A	SMCSD0501B	SMCSD0501C	SMCSD0501D		SMCSD0501F	SMCSD0501G	
Sample ID	Ecological	(SMCSD-14)	A	B	A	A	A	A	A	
Date of Collection	Screening Value	5/14/1994	10/20/2004	11/30/2005	10/17/2006	10/17/2007	11/24/2008	10/1/2009	10/27/2010	
Sample Depth (ft TOIC)	(μg/Kg) ¹	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	
SVOCs (µg/Kg)		0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	
2-methylnaphthalene	65	210 J	84 F	U	U	62 F	U	U	U	
acenaphthene	16	U 2103	U	U	U	U	U	U	U	
anthracene	85	U	U	U	26 F	63 F	U	U	U	1
benzo(a)anthracene	261	U	U	U	68 F	26 F	U	U	25 F	
benzo(a)anthracene benzo(a)pyrene	370	U	U	U	63 F	36 F	U	U	U	-
benzo(a)pyrene benzo(b)fluoranthene		55 J	U	71 F	140 F	580 F	U	U	U	-
benzo(k)fluoranthene	240	23 J	U	73 F	34 F	280 F	U	U	U	
	170	23 J U	U	U U	34 F U	U 280 F	U	U	U	-
benzo(g,h,i)perylene	10453.8	960	U	95 F	U	110 F	69 F	20 F	54 FB	
bis(2-ethylhexyl) phthalate	10453.8 50000	960 U	U	95 F U	U	43 F	U	20 F U	U S4 FB	
benzyl butyl phthalate		IJ	U	IJ	65 F	43 F 300 F	U	U	U	
chrysene	340	IJ	U	U	U	300 F	U	U		
di-n-butyl phthalate				_			_	IJ	30 FB	1
dibenz(a,h)anthracene	60	U	U	U	U	U	U		U	
dibenzofuran	2000	U	U	U	U	U	U	U	U	1
diethyl phthalate	7100	U	U	U	27 F	U	U	U	U	
fluoranthene	600	88 J	U	77 F	140 F	550 F	U	25 F	35 F	
fluorene	35	U	U	U	U	33 F	U	U	U	
indeno(1,2,3-c,d)pyrene	200	U	U	U	U	46 F	U	U	U	
naphthalene	13000	U	U	U	U	U	U	U	U	
phenanthrene	240	U	U	37 F	110 F	350 F	U	19 F	29 F	
pyrene	490	U	U	64 F	U	520 F	U	27 F	33 F	
PCBs (µg/Kg)										
Aroclor 1248	15.96 ³	-	U	U	U	U	U	U	U	
Aroclor 1254	15.96 ³	84 J	24 F	U	U	92.6	U	U	50.2	
Aroclor 1260	5	-	U	U	19.4 F	U	U	U	U	
Pesticides (µg/Kg)										
delta BHC	0.04	U	U	U	U	U	UJ	U	U	
gamma BHC (Lindane)	0.05	U	U	U	U	U	UJ	U	U	
alpha-Chlordane	0.05	U	U	U	U	U	UJ	U	U	
p,p'-DDD	2	U	U	U	1.1 F	3.0 F	UJ	U	Ü	
p,p'-DDE	2	U	U	U	0.31 F	U	UJ	U	U	
p,p'-DDT	1	UJ	11 F	U	U	U	UJ	U	U	
aldrin	0.00	U	U	U	0.28 F	U	UJ	U	U	
dieldrin	0.02	U	U	4 F	1.3 F	Ü	UJ	U	Ü	
alpha endosulfan		U	U	U	U	Ü	UJ	U	U	
beta endosulfan		U	U	U	1.0 F	U	UJ	U	U	
endosulfan sulfate		U	U	U	U	U	UJ	U	U	
endosulfan II	3.6	U	U	U	U	11 J	UJ	U	Ü	
endrin	3	U	U	Ü	0.66 F	4.5 F	UJ	U	Ü	
endrin aldehyde	5*	U	U	U	0.52 F	U	UJ	U	U	
heptachlor	0.04	U	U	U	U	U	UJ	IJ	Ü	
heptachlor epoxide	0.03	U	U	U	U	U	UJ	U	U	
methoxychlor	31.44	UJ	U	U	U	U	UJ	U	U	
шешолуешог	31.44	O.J	U	U	U	U	UJ	U	U	1

Sediment:

- B Result is a positive value, however, the analyte was detected in an associated blank above the RL.
- F The analyte was positively identified above the MDL, however, the concentration is below the RL.
- FB The analyte was positively identified above the MDL, however, the concentration is below the RL. The analyte was also detected in an associated blank.
- J The analyte was positively identified, but the quantitation is an estimation.
- M A matrix effect was present.
- NA not analyzed
- R The data was rejected because QA/QC criteria were not met during the analysis.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- UJ The analyte was analyzed for, but not detected. The quantitation is an approximation.
- UM The analyte was analyzed for, but not detected. A matrix effect was present.
- BHC hexachlorocyclohexane
- 1 This value is the most stringent criterion for ecological endpoints derived from Table 2-3a in the Final Three Mile Creek Feasibility Study Addendum (E&E, July 2002).
- 2 The most stringent criterion for metals have been derived from Table 2 in Technical Guidance for Screening Contaminated Sediments (NYSDEC, January 1999).
- This analyte was not sampled for in the 1993/4 RI.
- -- No most stringent ecological screening value is known for this compound.
 - Indicates an exceedance of the Most Stringent Ecological Screening Value.

2004 Sample Location 1 Fish Tissue Analytical Results

Fish Sample ID			1		0 1 1			0 1 2		G 1.5	0 1 (G 1.	0 10	G 1.0	G 1 10
I ish bumple ID					Sample 1	***		Sample 3	**** 1 6 1	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	1993/4 RI Results	SMCFS0101AA1OH	SMCFS0101AA1WF	Whole fish (mathematically combined).	SMCFS0101AA3OH	SMCFS0101AA3WF	Whole fish (mathematically combined).	SMCFS0101AA5CO	SMCFS0101AA6CO	SMCFS0101AA7CO	SMCFS0101AA8CO	SMCFS0101AA9CO	SMCFS0101AA10CO
Sample description *	Criteria	Guideline	(LAW,	OH sample of 5 CC	WF sample of 5 CC		OH sample of 5 CC	WF sample of 5 CC		CO sample of 41 BD	CO sample of 40 BD	CO sample of 30 CC	CO sample of 29 CC	CO sample of 6 CC	CO sample of 20 BD
Date of Collection			Dec 1996).	10/25/2004	10/25/2004		10/25/2004	10/25/2004		10/25/2004	10/25/2004	10/25/2004	10/25/2004	10/25/2004	10/25/2004
Metals (mg/Kg)	T		0	T		T .			T .				T.		
cadmium	-	-	- 8	U	0.058 F	0.03	U	U	U	U	U	U	U	U	U
mercury	· .	1	0.56 - 0.61	0.016 F	0.10 F	0.06	0.026 F	0.038 F	0.03	0.14	0.085	0.051 F	0.062 F	0.070 F	0.063 F
PCBs (µg/Kg)	_1	_ 2			••	1	**			**	**	**		••	**
Aroclor 1016	_		-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1221	- 1	- ²	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1232	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1242	_ 1	_ 2	-	20 F	U	8.94	U	12 F	7.02	14 F	U	12 F	U	19 F	U
Aroclor 1248	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1254	- 1	_ 2	-	U	U	U	13 F	U	5.39	U	U	U	U	12 F	40 F
Aroclor 1260	- 1	- 2	-	U	U	U	U	U	U	U	8.4 F	U	U	U	7.7 F
Sum of all PCB congeners	110	2,000	165 J	20	0	8.94	13	12	12.41	14	8.4	12	0	31	47.7
Pesticides (µg/Kg)						T			T				T		
alpha BHC	100	-	- 8	U	U	U	U	1.1 F	0.64	U	U	U	U	U	U
beta BHC	100		- 8	U	U	U	U	U	U	U	U	U	U	U	U
delta BHC	100	-	- 8	6.2 J	U	2.77	6 J	U	2.49	U	U	U	U	U	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
alpha-Chlordane	500	300 ³	- 8	U	U	U	U	U	U	U	U	U	U	U	U
gamma-Chlordane	500	300 ³	- 8	5.5 J	2.2 F	3.67	U	U	U	11 J	U	U	7.6 J	U	1.0 F
p,p'-DDD	200	5,000 ⁴	- 8	U	U	U	U	U	U	U	U	U	U	U	U
p,p'-DDE	200	$5,000^4$	- 8	6.7 J	3.3 F	4.82	10	4.3	6.66	11 J	9.1 J	5.4	4.2 J	3.8 F	13 J
p,p'-DDT	200	5,000 ⁴	- 8	U	U	U	U	U	U	U	U	U	U	U	U
aldrin	120	300 ⁵	- 8	4.8 J	U	2.14	4.6 F	3.9 F	4.19	U	U	U	U	U	U
dieldrin	120	300 ⁵	- 8	U	U	U	U	U	U	U	U	U	0.65 F	U	U
alpha endosulfan	-	-	- 8	1.3 F	U	0.58	2.7 F	1.3 F	1.88	U	U	U	0.98 F	U	U
beta endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	_ 8	U	U	U	U	U	U	U	U	0.59 F	U	U	U
endrin	25	300 ⁶	_ 8	1.2 F	U	0.54	U	0.6 F	0.35	U	U	U	U	U	24 J
endrin aldehyde	-	300 ⁶	_ 8	U	U	U	U	U	U	U	U	U	U	U	U
heptachlor	200	300 ⁷	_ 8	U	U	U	U	U	U	U	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	_ 8	0.36 F	U	0.16	1.4 F	U	0.58	6.1 J	1.9 J	U	U	2.9 F	8.3 J
methoxychlor	-	-	_ 8	U	U	U	U	U	U	U	U	U	U	U	U
toxaphene	_	5,000	_ 8	U	U	U	U	U	U	U	U	U	U	U	U
Other measurements		5,500													
% Lipid	I			2.5	0.7	1.50	1.7	0.8	1.17	3.1	2.8	1.7	1.3	1.3	3.1
Initial Weight (gr)				53.8	66.6	120.4	64.8	91.5	156.3	63.2	65.8	67.2	70.3	73.3	44.1
% Fillet		-	_		55.3%			58.5%							

2004 Sample Location 2 Fish Tissue Analytical Results

			•			T		,
Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Sample ID	Pisc. Wildlife	Fish Advisory	Results	SMCFS0201AA1CO	SMCFS0201AA2CO	SMCFS0201AA3CO	SMCFS0201AA4CO	SMCFS0201AA5CO
Sample description * Date of Collection	Criteria	Guideline	(LAW, Dec 1996).	CO sample of 22 CC 10/22/2004	CO sample of 12 CC 10/22/2004	CO sample of 12 CC 10/22/2004	CO sample of 1 WS 10/22/2004	CO sample of 18 BD 10/22/2004
Metals (mg/Kg)			Dec 1990).	10/22/2004	10/22/2004	10/22/2004	10/22/2004	10/22/2004
cadmium	-	-	_ 8	U	U	U	U	U
mercury	-	1	0.75 - 1.3	0.053 F	0.11	0.061 F	0.098	0.16
PCBs (µg/Kg)			0.75 1.5	0.0331	0.11	0.0011	0.070	0.10
Aroclor 1016	- 1	- 2	-	U	U	U	U	U
Aroclor 1221	_ 1	_ 2	-	U	U	U	U	U
Aroclor 1232	- 1	_ 2	-	U	U	U	U	U
Aroclor 1242	- 1	_ 2	-	U	U	U	U	U
Aroclor 1248	- 1	_ 2	-	U	U	U	U	U
Aroclor 1254	- 1	- 2	-	U	U	U	U	U
Aroclor 1260	- 1	_ 2	-	7.8 F	U	U	U	U
Sum of all PCB congeners	110	2,000	273 - 1380	7.8	0	0	0	0
Pesticides (µg/Kg)								
alpha BHC	100	-	- 8	U	U	U	U	U
beta BHC	100	-	- 8	U	U	U	U	U
delta BHC	100	=	- 8	U	U	U	U	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U
alpha-Chlordane	500	300 ³	- 8	U	U	U	U	U
gamma-Chlordane	500	300 ³	- 8	U	U	3.1 F	U	U
p,p'-DDD	200	5,000 ⁴	367	2.8 F	3.1 F	U	25	6.4 F
p,p'-DDE	200	5,000 ⁴	367	12	U	10	66	35
p,p'-DDT	200	5,000 ⁴	367	U	1.0 F	1.4 F	6.6 F	U
aldrin	120	300 ⁵	- 8	1.2 F	U	U	U	3.4 F
dieldrin	120	300 ⁵	- 8	1.7 F	U	1.6 F	4.8 F	4.3 F
alpha endosulfan	-	-	- 8	U	U	U	U	U
beta endosulfan	-	-	- 8	1.7 F	U	U	U	U
endosulfan sulfate	-	-	- 8	U	U	U	U	U
endrin	25	300 ⁶	- 8	3.4 F	2.8 F	1.2 F	U	5.4 F
endrin aldehyde	П	300 ⁶	- 8	U	U	U	U	U
heptachlor	200	300 ⁷	- 8	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	- 8	U	U	U	U	U
methoxychlor	-	-	- 8	U	U	U	U	U
toxaphene	-	5,000	- 8	U	U	U	U	U
Other measurements								
% Lipid				1.9	1.6	1.1	1.4	4.6
Initial Weight (gr)				51.5	51.1	50.9	13.4	28.5
% Fillet		<u>l</u>						

2004 Sample Location 3 Fish Tissue Analytical Results

Fish Sample ID	1				Sample 1**			Sample 3			Sample 4			Sample 5	
Sample ID	NYSDEC Pisc. Wildlife Criteria	NYSDOH Fish Advisory Guideline	1993/4 RI Results	SMCFS0301AA1FI	SMCFS0301AA1OF	Whole fish (mathematically combined).	SMCFS030AA3FI	SMCFS0301AA3OF	Whole fish (mathematically combined).	SMCFS0301AA4WF	SMCFS0301AA4OH	Whole fish (mathematically combined).	SMCFS0301AA5WF	SMCFS0301AA5OH	Whole fish (mathematically combined).
Sample description *	Criteria	Guidellile	(LAW, Dec	FI sample of 2 WS	OF sample of 2 WS		FI sample of 1 CC	OF sample of 1 CC		WF sample of 1 CC	OH sample of 1 CC		WF sample of 1 CC	OH sample of 1 CC	
Date of Collection			1996).	10/22/2004	10/22/2004		10/22/2004	10/22/2004		10/22/2004	10/22/2004		10/22/2004	10/22/2004	
Metals (μg/g)	T		8			T	***			***		***		**	11
cadmium	-	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
mercury PCBs (μg/Kg)	-	I	0.51	0.044 F	0.054 F	0.05	0.15	0.052 F	0.10	0.085 F	0.083 F	0.08	0.04 F	0.062 F	0.05
Aroclor 1016	_ 1	_ 2	_	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1221	_ 1	_ 2	_	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1232	_ 1	_ 2	_	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1242	_ 1	_ 2	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1248	_ 1	_ 2	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1254	_ 1	- 2	-	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1260	- 1	- 2	-	U	8.9 F	4.29	U	35 F	18.55	U	12 F	5.42	U	18 F	9.35
Sum of all PCB congeners	110	2,000	128 - 13,500	0	8.9	4.29	0	35	18.55	0	12	5.42	0	18	9.35
Pesticides (µg/Kg)				T				T	1	l					
alpha BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
beta BHC	100	-	- 8	8 F	U	4.15	U	U	U	U	U	U	U	U	U
delta BHC	100	1	- 8	U	U	U	U	U	U	U	U	U	U	U	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
alpha-Chlordane	500	300^{3}	- 8	U	U	U	U	2.7 F	1.43	U	U	U	U	U	U
gamma-Chlordane	500	300^{3}	- 8	19	4 F	11.77	5.5 F	5.8 J	5.66	U	5 J	2.26	U	U	U
p,p'-DDD	200	5,000 ⁴	252 - 870	U	4.1 F	1.98	4.6 F	13	9.05	3 F	10 J	6.16	3.8 F	6.2 J	5.05
p,p'-DDE	200	5,000 ⁴	252 - 870	13 J	24	18.30	9.7	68	40.60	9.3	67 J	35.37	10	31	20.91
p,p'-DDT	200	5,000 ⁴	252 - 870	U	4.6 F	2.22	0.89 F	U	0.42	0.86 F	U	0.47	U	U	U
aldrin	120	300 ⁵	274 - 313	U	1.6 F	0.77	U	U	U	U	3.1 F	1.40	U	2.6 F	1.35
dieldrin	120	300 ⁵	274 - 313	3.4 F	4 F	3.69	1.5 F	8.8	5.37	1.4 F	4.5 F	2.80	U	4 F	2.08
alpha endosulfan	-	-	- 8	1.2 F	U	0.62	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	- 8	U	U	U	U	U	U	U	U	U	U	U	U
endrin	25	300^{6}	- 8	U	U	U	U	7.7	4.08	U	6 J	2.71	U	U	U
endrin aldehyde	-	300 ⁶	- 8	U	U	U	U	U	U	U	U	U	U	U	U
heptachlor	200	300 ⁷	- 8	U	U	U	U	U	U	U	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	- 8	U	4.3 F	2.07	U	5.3 F	2.81	U	U	U	U	U	U
methoxychlor	-	-	- 8	19 F	U	9.85	U	U	U	U	U	U	U	U	U
toxaphene	-	5,000	- 8	U	U	U	U	U	U	U	U	U	U	U	U
Other measurements															
% Lipid				0.6	2.2	1.37	0.9	3.5	2.28	0.7	2.4	1.47	0.8	2.5	1.68
Initial Weight (gr)	+			55.3	51.4	106.7	25.1	28.3 47.0%	53.4	59.8	49.3 54.8%	109.1	41.9	45.3 48.1%	87.2
% Fillet				1	51.8%			47.0%			54.8%			48.1%	

Notes:

** Original samples 1 and 2 were inadvertently combined into one sample at the lab.

2004 Sample Location 4 Fish Tissue Analytical Results

Fish Sample ID				Sample 1			Sample 2			Sample 3			Sample 4			Sample 5	_
Sample ID	NYSDEC Pisc. Wildlife Criteria	. NYSDOH Fish Advisory Guideline	SMCFS0401AA1FI	SMCFS0401AA1OF	Whole fish (mathematically combined).	SMCFS0401AA2FI	SMCFS0401AA2OF	Whole fish (mathematically combined).	SMCFS0401AA3FI	SMCFS0401AA3OF	Whole fish (mathematically combined).	SMCFS0401AA4FI	SMCFS0401AA4OF	Whole fish (mathematically combined).	SMCFS0401AA5FI	SMCFS0401AA5OF	Whole fish (mathematically combined).
Sample description *	Criteria	Guideine	FI sample of 1 BnT	OF sample of 1 BnT		FI sample of 1 BkT	OF sample of 1 BkT		FI sample of 1 BnT	OF sample of 1 BnT		FI sample of 1 WS	OF sample of 1 WS		FI sample of 1 WS	OF sample of 1 WS	
Date of Collection			10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004	
Metals (μg/g)																	
cadmium	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.099	0.062 F	0.08	0.16	0.046 F	0.10	0.16	0.15	0.15	0.054 F	0.051 F	0.05	0.10 F	0.046	0.08
PCBs (µg/Kg)	1	1 .	ı		1	T	ı	1	T					1	T		
Aroclor 1016	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1221	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1232	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1242	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1248	1	2	170	350	267.48	80	240	158.95	160	310	236.48	110	1200	547.55	160	1100	592.89
Aroclor 1254	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1260	1	2	71	140	108.37	32 F	190	109.96	79	270	176.38	36 F	1200	503.25	56	1400	674.95
Sum of all PCB congeners	110	2,000	241	490	375.85	112	430	268.92	239	580	412.86	146	2400	1050.80	216	2500	1267.84
Pesticides (µg/Kg)																	
alpha BHC	100	-	U	U	U	U	2.2 F	1.09	U	U	U	U	U	U	U	U	U
beta BHC	100	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
delta BHC	100	-	U	U	U	U	16 J	7.90	U	U	U	U	U	U	U	U	U
gamma BHC (Lindane)	100	-	1.2 F	U	0.55	8.0 F	U	4.05	U	U	U	U	U	U	U	U	U
alpha-Chlordane	500	300^{3}	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
gamma-Chlordane	500	300^{3}	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
p,p'-DDD	200	5,000 ⁴	U	U	U	U	U	U	14 F	21 F	17.57	U	U	U	U	U	U
p,p'-DDE	200	5,000 ⁴	15	22 F	18.79	46 J	30 J	38.10	27	46 F	36.69	14 J	120	56.55	13 J	98	52.14
p,p'-DDT	200	5,000 ⁴	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
aldrin	120	300 ⁵	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	37	71	55.41	35 J	50 J	42.40	73	150	112.26	12 J	140 J	63.38	15 J	130	67.96
alpha endosulfan	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
endrin	25	300^{6}	16 J	U	7.33	U	38 J	18.75	U	31 F	15.81	18 J	150 J	70.99	18 J	150	78.79
endrin aldehyde	-	300 ⁶	U	U	U	17 F	7.4 J	12.26	U	U	U	U	22 F	8.83	U	U	U
heptachlor	200	300 ⁷	1.0 F	U	0.46	U	4.0 F	1.97	U	U	U	U	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	U	U	U	U	U	U	U	U	U	U	68	27.30	U	39 F	17.96
methoxychlor	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
toxaphene	-	5,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Other measurements																	
% Lipid		ļ	1.1	2.1	1.64	0.5	1.1	0.80	1.3	2.5	1.91	0.7	4.6	2.27	0.7	3.5	1.99
Initial Weight (gr)		1	170.9	201.9	372.8	88.9	86.6	175.5	203.9	212.1	416	135.1	90.6	225.7	123.0	105.0	228
% Fillet		1		45.8%			50.7%			49.0%			59.9%			53.9%	

2004 Sample Location 5 Fish Tissue Analytical Results

Fish Sample ID		1	Ī	Sample 1		Π	Sample 2			Sample 3		T	Sample 4			Sample 5	1
Sample ID	Wildlife	NYSDOH Fish Advisory	SMCFS0501AA1FI	SMCFS0501AA1OF	Whole fish (mathematically combined).	SMCFS0501AA2FI	SMCFS0501AA2OF	Whole fish (mathematically combined).	SMCFS0501AA3FI		Whole fish (mathematically combined).	SMCFS0501AA4FI	•	Whole fish (mathematically combined).	SMCFS0501AA5FI	SMCFS0501AA5OF	Whole fish (mathematically combined).
Sample description *	Criteria	Guideline	FI sample of BnT	OF sample of BnT		FI sample of BnT	OF sample of BnT		FI sample of BnT	OF sample of BnT		FI sample of WS	OF sample of WS		FI sample of BnT	OF sample of BnT	
Date of Collection			10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004		10/21/2004	10/21/2004	
Metals (μg/g)																	
cadmium	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.38	0.28	0.32	0.16	0.14	0.15	0.11	0.11	0.11	0.07 F	0.044 F	0.06	0.16	0.12	0.14
PCBs (µg/Kg)																	
Aroclor 1016	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1221	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1232	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1242	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1248	1	2	110	480 F	313.77	140	130	134.99	150	330	252.50	160	740	480.44	22 F	50 F	34.31
Aroclor 1254	1	2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Aroclor 1260	1	2	280	1400	896.82	190	160	174.98	220	540	402.22	260	770	541.77	46 F	33 F	40.29
Sum of all PCB congeners	110	2,000	390	1880	1210.59	310	290	299.98	370	870	654.71	420	1510	1022.21	68	669.8	332.48
Pesticides (µg/Kg)																	
alpha BHC	100	-	2.7 F	U	1.21	2.4 F	U	1.20	3.3 F	U	1.42	U	U	U	U	U	U
beta BHC	100	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
delta BHC	100	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
gamma BHC (Lindane)	100	- 2	U	U	U	U	U	U	U	U	U	U	U	U	U	1.6 F	0.70
alpha-Chlordane	500	3003	U	U	U	2.2 F	U	1.10	1.1 F	U	0.47	1.4 F	U	0.63	U	16 J	7.03
gamma-Chlordane	500	300 ³	U	U	U	U	U	U	U	31 J	17.65	U	U	U	U	20 J	8.79
p,p'-DDD	200	5,0004	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
p,p'-DDE	200	5,0004	26	58	43.62	29 J	21	24.99	11 J	29 J	21.25	15	44	31.02	8.0	20 J	13.27
p,p'-DDT	200	5,0004	U	U	U	U	U	U	U	U	U	U	U	U	U	20 J	8.79
aldrin	120	300 ⁵	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	23 J	46	35.67	24 J	14	18.99	23	66 J	47.49	U	37 J	20.44	4.7	15 J	9.23
alpha endosulfan	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
endrin	25	300 ⁶	U	U	U	36 J	U	17.97	U	U	U	U	U	U	U	U	U
endrin aldehyde	-	300 ⁶	6.2	U	2.79	7.1 J	4.6	5.85	7.7	13 F	10.72	3.6 F	U	1.61	U	U	U
heptachlor	200	3007	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
methoxychlor	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
toxaphene	-	5,000	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Other measurements			0.5	1.2	0.04	1.2	1.0	1.10	1.1	2.6	1.05	0.0	1.0	1.24	0.0	0.2	4.20
% Lipid Initial Weight (gr)			0.5 538.4	1.3	0.94 1198.4	1.2 387.0	1.0 388.2	1.10 775.2	1.1 291.5	2.6 385.5	1.95 677	0.8 58.4	1.6 72.1	1.24	0.6 267.2	9.2 209.5	4.38 476.7
% Fillet		+	330.4	44.9%	1170.4	307.0	49.9%	113.2	271.3	43.1%	0//	30.4	44.8%	130.3	207.2	56.1%	4/0./
/U I MCt		ı	1	77.2/0		l	77.770			TJ.1 /0			77.070			30.170	

2007 Sample Location 3 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	Results			SMCFS0303BB						SMCFS0309BB	
Sample description *	Wildlife	Advisory	(LAW,	1 WS	1 WS	1 CC	1 CC	2 CC	1 CC	1 CC	1 WS	1 CC	1 CC
Date of Collection	Criteria	Guideline	Dec 1996).	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007
Metals (µg/g)			0										
cadmium	-	-	- 8	U	U	U	U	U	U	U	U	U	U
mercury	-	1	0.51	0.051 F	0.065 F	0.070 F	0.13	0.088 F	0.075 F	0.075 F	0.070 F	0.11	0.050 F
PCBs (µg/Kg)	1	2	l										
aroclor 1016	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1221	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1242	_ 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1248	_ 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	_ 2	-	12.8 F	9.05 F	8.72 F	6.58 F	5.05 F	U	U	5.83 F	U	U
aroclor 1260	- 1	- 2	-	13.1 F	11.0 F	5.14 F	7.72 F	7.97 F	U	U	5.09 F	U	U
Sum of all PCB congeners	110	2,000	128 - 13,500	25.9	20.05	13.86	14.3	13.02	U	U	10.92	U	U
Pesticides (µg/Kg)													
alpha BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U
beta BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U
delta BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U	U	U	U	U	U
alpha-Chlordane	500	300^{3}	- 8	4.8 J	U	U	U	U	U	U	U	U	U
gamma-Chlordane	500	300^{3}	- 8	U	U	1.9 J	U	U	U	U	U	U	U
p,p'-DDD	200	$5,000^4$	252 - 870	1.7 F	8.2 J	2.6 F	5.4 J	U	U	U	2.2 f	U	8.5 J
p,p'-DDE	200	$5,000^4$	252 - 870	7.5 J	280 M	12	150 J	140 J	U	140 J	110 J	7.2 J	86 J
p,p'-DDT	200	5,0004	252 - 870	U	U	U	U	U	U	U	U	U	U
aldrin	120	300 ⁵	274 - 313	5.8 J	U	U	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	274 - 313	U	U	U	U	U	U	U	U	U	U
alpha endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	- 8	1.5 F	6.5 J	2.2 F	3.6 J	6.0 J	U	6.6 J	1.8 F	18 J	8.5 J
endosulfan sulfate	-	-	- 8	U	U	U	U	U	U	U	U	U	U
endrin	25	300^{6}	- 8	2.4 F	7.7 J	4.1 J	6.6 J	9.3 J	2.6 F	12 J	1.5 F	2.7 F	14 J
endrin aldehyde	-	300^{6}	- 8	1.5 F	U	U	U	4.3 J	1.6 F	4.5 J	U	U	U
heptachlor	200	300 ⁷	- 8	17 J	14 M	3.6 J	4.6 J	13 J	7.4 J	16 J	10 J	19 J	16 J
heptachlor epoxide	200	300 ⁷	- 8	U	U	1.9	2.2 J	U	U	U	U	U	3.3 J
methoxychlor	-	-	- 8	U	U	U	U	U	U	U	U	U	U
toxaphene	-	5,000	- 8	U	U	U	U	U	U	U	U	U	U
Other measurements													
% Lipid				0.279	0.453	0.859	0.651	0.456	0.591	0.594	1.39	0.581	0.926

2007 Sample Location 4 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	Results			SMCFS0403BB							
Sample description *	Wildlife	Advisory	(LAW,	1 BT	1 WS	1 BB	1 WS						
Date of Collection			Dec 1996).	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007	10/24/2007
Metals (µg/g)		1											
cadmium	-	-	- 8	0.10 F	U	U	U	U	U	U	0.039 F	U	U
mercury	-	1	0.51	0.095 F	0.041 F	0.011 F	0.047 F	0.049 F	0.067 F	0.053 F	0.050 F	0.057 F	0.043 F
PCBs (µg/Kg)	1	_ 2		**	**	**	**	**	**	**	**	**	**
aroclor 1016	- 1		-	U	U	U	U	U	U	U	U	U	U
aroclor 1221	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1242	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	- 2	-	915	524	363	488	776	1040 J	1070	620	657	728
aroclor 1260	- 1	- 2	-	398	328	241	361	599	578 J	622	381	373	423
Sum of all PCB congeners	110	2,000	128 - 13,500	1313	852	604	849	1375	1618	1692	1001	1030	1151
Pesticides (µg/Kg)			0										
alpha BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U
beta BHC	100	-	- 8	U	U	U	U	17 M	17 M	U	U	U	U
delta BHC	100	-	- 8	U	U	U	U	U	U	U	U	U	U
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U	U	U	7.6 M	U	U
alpha-Chlordane	500	300 ³	- 8	U	U	U	9.9 J	53 M	U	U	U	U	U
gamma-Chlordane	500	300^{3}	- 8	U	U	U	U	U	U	U	U	U	U
p,p'-DDD	200	5,000 ⁴	252 - 870	9.8 J	U	U	U	U	U	U	U	U	U
p,p'-DDE	200	5,000 ⁴	252 - 870	43 J	U	U	U	U	U	U	U	U	U
p,p'-DDT	200	5,000 ⁴	252 - 870	U	U	53 J	U	U	U	U	U	U	U
aldrin	120	300 ⁵	274 - 313	U	U	U	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	274 - 313	U	U	U	U	U	36 J	43 M	U	U	U
alpha endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	- 8	U	U	U	U	U	U	U	U	U	U
endrin	25	300^{6}	- 8	19 J	13 J	12 J	14 J	19 M	U	U	U	U	U
endrin aldehyde	-	300 ⁶	- 8	U	U	U	U	U	12 M	11 M	U	U	7.0 M
heptachlor	200	300 ⁷	- 8	39 J	U	U	U	U	U	U	U	U	U
heptachlor epoxide	200	300 ⁷	- 8	U	U	U	U	U	U	U	U	U	U
methoxychlor	-	-	- 8	19 J	U	U	U	U	U	U	U	U	U
toxaphene	-	5,000	- 8	U	U	U	U	U	U	U	U	U	U
Other measurements													
% Lipid				1.76	0.455	1.24	0.902	1.44	1.46	1.43	0.712	0.676	1.13

2007 Sample Location 5 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	Results					SMCFS0505BB				SMCFS0509BB	SMCFS0510BB
Sample description *	Wildlife	Advisory	(LAW,	1 WS	1 WS	1 WS	1 WS	4 BT	4 BT	1 BT	4 PKS	7 WS	MI
Date of Collection	Criteria	Guideline	Dec 1996).	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007	10/26/2007
Metals (μg/g) cadmium		_	_ 8	U	U	U	U	U	0.036 F	U	U	U	0.051 F
	-	1	0.51	0.058 F	0.044 F	0.071 F	0.040 F	0.038 F	0.036 F 0.032 F	0.048 F	0.082 F	0.032 F	0.051 F 0.0052 F
mercury PCBs (µg/Kg)	-	1	0.51	0.038 F	0.044 F	0.071 F	0.040 F	0.036 F	0.032 F	0.046 F	0.062 F	0.032 F	0.0032 F
aroclor 1016	_ 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1221	_ 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1242	_ 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	- 2	-	335	492	638	687	366	492	574	464	298	19.1
aroclor 1260	- 1	- 2	-	198	387	434	547	252	268	436	331	239	22.5
Sum of all PCB congeners	110	2,000	128 - 13,500	533	879	1072	1234	618	760	1010	795	537	41.6
Pesticides (µg/Kg)		I											
alpha BHC	100	-	- 8	U	U	U	U	U	U	U	25 M	U	U
beta BHC	100	-	- 8	7.5 J	U	U	U	U	U	12 M	U	U	U
delta BHC	100	-	- 8	25 J	U	U	U	U	U	U	U	U	47 J
gamma BHC (Lindane)	100	-	- 8	U	U	U	U	U	U	U	U	U	U
alpha-Chlordane	500	300^{3}	- 8	27 J	U	U	U	U	U	U	U	U	U
gamma-Chlordane	500	300^{3}	- 8	U	U	U	U	U	U	U	U	U	U
p,p'-DDD	200	$5,000^4$	252 - 870	U	U	U	U	U	U	U	14 M	U	U
p,p'-DDE	200	5,000 ⁴	252 - 870	U	U	U	U	U	11 J	8.2 M	43 M	U	U
p,p'-DDT	200	5,000 ⁴	252 - 870	U	U	U	U	U	U	U	U	U	5.0 M
aldrin	120	300 ⁵	274 - 313	U	U	U	U	U	U	U	U	U	U
dieldrin	120	300 ⁵	274 - 313	21 J	U	U	22 J	30 J	U	33 M	48 M	U	11 J
alpha endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U
beta endosulfan	-	-	- 8	U	U	U	U	U	U	U	U	U	U
endosulfan sulfate	-	-	- 8	U	U	U	U	U	U	U	U	U	U
endrin	25	300 ⁶	- 8	U	U	U	U	U	U	U	U	U	U
endrin aldehyde	-	300^{6}	- 8	6.1 J	10 M	13 M	9.6 M	8.2 J	8.4 M	U	U	U	3.0 F
heptachlor	200	300 ⁷	- 8	14 J	U	U	U	U	U	U	U	U	29 J
heptachlor epoxide	200	300 ⁷	- 8	U	U	U	U	U	U	U	U	U	4.9 M
methoxychlor	-	-	- 8	U	U	25 M	14 F	12 F	32 M	10 F	U	U	U
toxaphene	-	5,000	- 8	U	U	U	U	U	U	U	U	U	U
Other measurements				1.40	0.002	1.45	0.502	1.10	1.00	0.000	125	0.674	0.212
% Lipid				1.40	0.803	1.47	0.693	1.12	1.22	0.809	1.26	0.674	0.213

2010 SMC-1 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Sample ID	Pisc.	Fish	Results	SMCFS0101CA	SMCFS0102CA	SMCFS0103CA	SMCFS0104CA	SMCFS0105CA
Sample description *	Wildlife	Advisory	(LAW, Dec	2 CC	15 CC	14 CC	17 WS	38 BD
Date of Collection	Criteria	Guideline	1996).	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010
PCBs (µg/Kg)								
aroclor 1016	_ 1	- 2	-	U	U	U	U	U
aroclor 1221	- 1	- 2	-	U	U	U	U	U
aroclor 1232	_ 1	- 2	-	U	U	U	U	U
aroclor 1242	_ 1	- 2	-	U	U	U	U	U
aroclor 1248	_ 1	- 2	-	U	U	U	U	U
aroclor 1254	_ 1	- 2	-	U	U	U	U	21
aroclor 1260	- 1	- 2	-	U	U	U	U	U
Sum of all PCB congeners	110	2,000	128 - 13,500	0	0	0	0	21
Other measurements								
% Lipid				1.6	2.6	2.2	2.6	3.3

2010 SMC-4 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC	NYSDOH	1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	Results	SMCFS0401CA	SMCFS0402CA	SMCFS0403CA	SMCFS0404CA	SMCFS0405CA	SMCFS0406CA	SMCFS0407CA	SMCFS0408CA	SMCFS0409CA	SMCFS0410CA
Sample description *	Wildlife	Advisory	(LAW, Dec	1 BT	1 BT	1 BT	1 WS	1 WS	3 CC	2 CC	3 CC	3 CC	6 BB
Date of Collection	Criteria	Guideline	1996).	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010	11/3/2010
PCBs (µg/Kg)													
aroclor 1016	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1221	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1242	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	_ 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	_ 2	-	220	280	130	200	40	67	160	170	160	130
aroclor 1260	- 1	- 2	-	110	160	97	100	16	30	100	160	130	78
Sum of all PCB congeners	110	2,000	128 - 13,500	330	440	227	300	56	107	260	330	290	208
Other measurements													
% Lipid				2.1	1.8	1.3	0.91	0.85	0.69	2.2	0.61	0.83	2.1

2010 SMC-5 Fish Tissue Analytical Results

Fish Sample ID	NYSDEC		1993/4 RI	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10
Sample ID	Pisc.	Fish	Results	SMCFS0501CA	SMCFS0502CA	SMCFS0503CA	SMCFS0504CA	SMCFS0505CA	SMCFS0506CA	SMCFS0507CA	SMCFS0508CA	SMCFS0509CA	SMCFS0510CA
Sample description *	Wildlife	Advisory	(LAW,	1 BT	1 WS								
Date of Collection	Criteria	Guideline	Dec 1996).	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010	11/2/2010
PCBs (µg/Kg)													
aroclor 1016	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1221	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1232	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1242	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1248	- 1	- 2	-	U	U	U	U	U	U	U	U	U	U
aroclor 1254	- 1	- 2	-	440	370	420	230	170	120	230	300	200	210
aroclor 1260	- 1	- 2	-	250	410	270	190	150	53	94	140	130	140
Sum of all PCB congeners	110	2,000	128 - 13,500	690	780	690	420	320	173	324	440	330	350
Other measurements													
% Lipid				2.0	1.2	2.6	2.0	1.7	1.0	3.5	2.7	0.7	0.73

Fish Tissue:

- **F** The analyte was positively identified above the MDL, however, the concentration is below the RL.
- **J** The analyte was positively identified, but the quantitation is an estimation.
- U The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.
- **UJ** The analyte was analyzed for, but not detected. The quantitation is an approximation.
- 1 The PCB piscivorous wildlife criterion of 110 ppb applies to the sum of all PCB congeners.
- 2 The PCB fish advisory guideline of 2,000 ppb applies to the sum of all PCB congeners.
- 3 The chlordane fish advisory guideline of 300 ppb applies to the sum of all chlordane compounds.
- 4 The DDT fish advisory guideline of 5,000 ppb applies to the sum of all DDT, DDE, and DDD compounds.
- 5 The aldrin fish advisory guideline of 300 ppb applies to the sum of all aldrin/dieldrin compounds.
- **6** The endrin fish advisory guideline of 300 ppb applies to the sum of all endrin/endrin aldehyde compounds.
- 7 The heptachlor fish advisory guideline of 300 ppb applies to the sum of all heptachlor/heptachlor epoxide compounds.
- 8 This compound was not detected in the 1993/4 RI above the NYSDEC Pisc. Wildlife Criteria.
- 9 This percentage is the wholefish weight divided by the total fish weight.
- - No piscivorous wildlife criterion or fish advisory guideline is available.
- * BB is Black Bullhead, BD is blacknosed dace, BT is Brown Trout, CC is creek chub, and WS is white sucker.
 - Indicates an exceedance of the NYSDOH Fish Advisory Guidelines and/or the NYSDEC Pisc. Wildlife Criteria.

Building 35 Groundwater Sampling Results March 2002 through April 2010 Sampling Rounds

Sample Location							B035MW-4	4				
Sample ID	NYSDEC GW	B035M04 15AA	B03M04 15BA	B035M041 5CA	B035M041 5DA	B035M041 5EA	B035M041 6FA	B035M041 6GA	B035M0416 HA<>	B035M041 6GB	B035M041 6HA	B035M04 16IA
Date of Collection	Standards	3/12/02	3/11/03	6/9/04	3/29/05	3/24/06	4/18/07	4/8/08	12/10/08	2/26/09	3/24/09	4/13/2010
Sample Depth	(µg/L)	15	15	15	15	15	16	16	16	16	16	16
(ft BTOIC)		10	10		10	10	10	10	10	10	10	10
VOC (µg/L)												
acetone	5	U	U	1.8 F	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
tetrachloroethylene (PCE)	5	0.84	0.82	0.81 F	0.63	0.66	0.42 F	0.320 F	0.520 F	0.590 F	0.620 F	0.210 F
trichloroethylene (TCE)	5	0.75 ♦	0.55	0.97 F	0.28 F	0.35 F	0.35 F	0.250 F	0.450 F	0.510 F	0.520 F	0.390 F
cis-1,2- dichloroethylene	5	21	18	32	7.8	9.3	13.9	12.0	18.4	16.4	17.4	13.1
trans-1,2- dichloroethylene	5	0.37 F ♦	0.22 F	0.69 F	U	U	0.39 F	0.310 F	0.360 F	0.400 F	0.380 F	0.460 F
vinyl chloride	2	0.75	0.54	1.1	0.45 F	0.55	0.88 F	0.560 F	0.670 F	0.550 F	1.11	3.03
Wet Chemistry Data	a (mg/L)											
Alkalinity		N/S	N/S	N/S	N/S	N/S	N/S	N/S	280	290	280	270
Chloride	250	N/S	N/S	N/S	N/S	N/S	N/S	N/S	2.4	60 J	73	96
Nitrogen, Nitrate	10	N/S	N/S	N/S	N/S	N/S	N/S	N/S	U	U	U	U
Sulfate	250	N/S	N/S	N/S	N/S	N/S	N/S	N/S	13	1.4	2.7	11
TOC		N/S	N/S	N/S	N/S	N/S	N/S	N/S	2.0	9.2	8.2	1.9

Notes:

BTOIC - below top of inner casing.

F - Analyte was positively identified but the associated numerical value is below the RL.

N/S - Not sampled.

- U Analyte analyzed for, but not detected. The associated numerical value is at or below the method detection limit.
- J The analyte was positively identified, the quantity is an estimate.
- -- Indicates no NYS GA Groundwater Standard.
- ◆ Concentrations are from duplicate sample, which was greater than the original sample.
 □ Indicates an exceedance of the NYS Groundwater Standard.
- <> Sample is not included in the annual sampling round, sample was collected to monitor ground water before Newman Zone injection.