DELAWARE ENGINEERING, P.C.

LETTER OF TRANSMITTAL

Albany, New York 12203 Phone: (518) 452-1290 • Fax: (518) 452-1335

28 Madison Avenue Extension

					DATE: 2/6/2007	JOB NO.: 06-450
N	YSDEC		to the		ATTENTION: Su	san Lasdin
6	25 Broadway				RE: City of Rome	- Tannery Road Landfill
A	Albany, New York	12233		-		
			DECEIVE		<u> </u>	4
			FEB 9 - 2007	7	he ma	
7E 4 D I	E CENTRALO MON		REMEDIAL BUREAU	J D		
	E SENDING YOU :	Prints	Under separate	cover via		the following item
7 X X		111113	Grace separate			
Sho	op drawings	Change Ord	ler Plans		Samples	Specifications
Cor	by of Letter	Report	Other			
	by of Letter	Report	Other		,	
lav.	The Same of the Same	.1	22 - 234-27			The second second
COPIE		NO.	2006 A1 D+		DESCRIPTION	
1	2/2007		2006 Annual Report			
-	let .			-		
HESE	ARE TRANSMITTE	ED as checke	ed below:			
For	approval		Approved as submitted		Resubmit	copies for approval
For	your use		Approved as noted		Submit	copies for distribution
Ası	requested		Returned for corrections		Return	corrected prints
For	review and commen	t 🗌				
For	Bids Due		20		Prints Returned After	r Loan to Us
– EMAR	CKS:					
			5.5	- 5		
			7			
DV T						
PY TO	D:			SIGNI	ED: Ed Edha	mkanf
				SIGN	ED: Ed Fahre	шкорі

CITY OF ROME TANNERY ROAD LANDFILL 2006 ANNUAL REPORT

Prepared for:

City of Rome City Hall 198 N. Washington Street Rome, New York 13440

Prepared by:

Delaware Engineering, P.C. 28 Madison Avenue Extension Albany, New York 12203

February 2007

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	3
2.0	GROU	ND WATER AND LEACHTE ANALYTICAL DATA	3
3.0	GROU	ND WATER ELEVATION DATA	4
4.0	SITE I	NSPECTIONS	4
4.1 4.2	WER	EKLY SITE INSPECTIONSTHE INSPECTIONS	4 5
5.0	GROU	ND WATER / LEACHATE PUMPING SYSTEM	5
6.0	RECO	MMENDATIONS	6
Table Table 2		Summary of 2006 Ground Water Elevation Data Summary of Monthly Leachate Volume Pumping Data	
		List of Appendices	
Appen	dix A	Analytical Data Summary Tables	
Appen	dix B	Monitoring Well and Leachate Well Time Series Concentration Graphs	
Appen	dix C	Monitoring Well and Leachate Well Ground Water Level Elevation Data	

List of Figures

March 2006 Ground Water Contour Map June 2006 Ground Water Contour Map September 2006 Ground Water Contour Map December 2006 Ground Water Contour Map

Monthly Inspection Forms

Appendix D

1.0 INTRODUCTION

This document presents the 2006 annual report for the post closure operations, including maintenance and monitoring activities for the closed City of Rome Landfill located on Tannery Road in the City of Rome, Oneida County, New York. Final closure of the landfill was completed in September 1997 and in January 1999 the New York State Department of Environmental Conservation (NYSDEC) approved the closure certification report.

The post closure maintenance and monitoring activities were performed pursuant to the Operation, Maintenance and Monitoring Plan (Revised October 19, 1999) that was approved by the NYSDEC. This annual report covers the period from February 2006 through January 2007.

Pursuant to the approved Operation, Maintenance and Monitoring Plan (O&M), this annual report provides the following information:

- The results of all ground water and leachate quality analytical data.
- The amount of ground water/leachate collected from the recovery wells.
- Water level monitoring and ground water contour maps for March, June, September and December 2006.
- Monthly Inspection Data.

2.0 GROUND WATER AND LEACHTE ANALYTICAL DATA

During 2006, ground water samples were collected in March, June, September and December from monitoring wells MW-1S, MW-3S, MW-4S, MW-5S, MW-7D and groundwater/leachate well LMW-10. The June, September and December samples were analyzed for the NYSDEC Part 360 Routine parameters. The samples collected in March 2006 were analyzed for the Part 360 Baseline parameters.

Analytical results have been previously submitted to the NYSDEC in the quarterly monitoring reports. Tables summarizing the analytical data for each monitoring well from March 1999 to present are provided in Appendix A. Concentrations that exceeded the New York State ground water standard are presented in a bold font.

The ground water analytical data from 2006 demonstrate that ground water in the vicinity of monitoring wells MW-2D, MW-3S, MW-4S and MW-7D continue to exhibit elevated concentrations of landfill related constituents. In 2006 ground water from monitoring wells MW-2D, MW-3S, MW-4S and MW-7D continued to consistently exhibit ammonia concentrations above the ground water standard and/or upgradient MW-9S concentrations. Potassium concentrations in ground water in the vicinity of monitoring wells MW-3S and MW-7D were higher than the upgradient MW-9S concentration as were the MW-7D iron and chloride concentrations. Ground water from monitoring well MW-7D continues to exhibit benzene and total xylenes above the ground water standard.

Graphs of parameter concentration over time (trend graphs) for several leachate indicator parameters (alkalinity, ammonia, chloride, iron, potassium, sodium, TDS) for each monitoring well are provided in Appendix C. The trend graphs indicate that MW-3S ground water alkalinity, chloride, iron, sodium and TDS concentrations have exhibited a decreasing trend from the 1999 concentrations and appear to have stabilized at the current concentrations. The MW-3S ground water concentrations of ammonia and potassium continue to exhibit a decreasing trend. Data indicate that implementation of the procedures stipulated in the Record of Decision have resulted in an improvement in the ground water quality in the vicinity of monitoring well MW-3S.

3.0 GROUND WATER ELEVATION DATA

Consistent with the O&M plan, ground water elevation data were measured monthly from monitoring wells MW-1S, MW-2S, MW-3S, MW-4S, MW-5S, MW-7S, MW-9S, piezometer PZ-1 and leachate wells LMW-10, LMW-11 and LMW-12. A summary of the 2006 ground water elevation data is provided in Table 1. Ground water contour maps for March, June, September and December 2006 have been provided in the quarterly ground water monitoring reports and are also provided in this report. Graphs depicting ground water elevations over time for each monitoring well are provided in Appendix C.

Monitoring well MW-9S has been considered upgradient of the landfill. However, historical ground water elevation data indicate that there are periods when the ground water level elevation in MW-9S are lower than the water level elevation in landfill leachate wells LMW-10, LMW-11 and LMW-12 and lower than the ground water elevation in monitoring well MW-3. Monitoring well MW-9S is located at a greater distance in an upgradient direction from the landfill than any other monitoring well, and would be expected to exhibit less of a landfill related impact on ground water quality, if any, than any other landfill monitoring well. Therefore, for the purpose of comparing ground water analytical results, ground water data from monitoring well MW-9S has been considered representative of background conditions.

The monthly ground water elevation data for 2006 indicates that throughout 2006, ground water elevations in monitoring wells MW-3S, MW-4S, MW-5S and MW-9S were higher than the LMW-10, LMW-11 and LMW-12 leachate monitoring well elevations, indicating an inward gradient at these locations. MW-2S ground water elevations were higher than the LMW-10S ground water elevations in all months except May, August and September, indicating an overall inward gradient with respect to LMW-10S. Data indicate that the leachate recovery wells have reduced the volume of leachate in the landfill and reduced the overall head difference between the landfill and the monitoring wells located outside the slurry/sheet pile wall.

4.0 SITE INSPECTIONS

4.1 Weekly Site Inspections

City of Rome personnel in accordance with the procedures detailed in the O&M manual performed weekly landfill inspections. The weekly inspections included evaluation of the ground water/leachate pumping operation and general site security. As noted in the 2004 annual report,

in October 2004, City of Rome personnel repaired one of the breaches in the diversion berm located west of the north stormwater swale, repaired the erosion outside the landfill fence at the end of the southern stormwater swale and repaired the erosion on the southeast side of the landfill. The erosion at the end of the southern stormwater swale was repaired using medium to heavy riprap and subsequent inspections conducted throughout 2006 indicated that the erosion problem in this area has been adequately resolved. Erosion along the fence and tack on berm at the southeast end of the landfill continues to be a concern.

4.2 Monthly Inspections

Delaware Engineering performed monthly landfill inspections. The inspections included general review of landfill cap conditions, general site conditions, evaluation and recording of data for the ground water/leachate pumping system, collection of ground water levels and operability of the landfill flares and passive gas vents. In March, June, September and December, ground water samples were collected and submitted for analysis as discussed in Section 2.0. The annual gas vent inspection and hydrogen sulfide measurements were conducted in August 2006. Copies of the completed inspection forms are provided in Appendix D.

Erosion along the fence at the southeast end of the landfill continues to be a concern. In the spring of 2007 it is recommended that the soil be replaced, an erosion control mat (North American Green P550 or Curlex HVHD or equivalent) be installed and the area seeded.

5.0 GROUND WATER / LEACHATE PUMPING SYSTEM

For each recovery well, readings from the flow totalizers in the meter pit were recorded during the monthly inspections. Leachate flows for each recovery well for the period from January,

2006 to January 19, 2007 are presented below. A summary of the monthly leachate pumping volumes is provided in Table 2.

RW-1	0 gallons
RW-2	1,698,000 gallons
RW-3	474,600 gallons
RW-4	0 gallons

Total Gallons 2,172,100 gallons

A summary of the total gallons of leachate that have been pumped from the landfill since 1998 is provided in the following table.

YEAR	RW-1	RW-2	RW-3	RW-4	TOTAL
1998 (To 12/18/98)	998,300	1,403,300	366,300	328,900	3,096,800
1999 (12/18/98 to 12/20/99	822,193	1,334,300	318,500	141,000	2,615,993
2000 (12/20/99 to1/12/01	724,800	1,351,300	223,200	0	2,299,300

2001 (1/12/01 to 1/16/02)	596,400	1,179,900	297,500	0	2,073,800
2002 (1/16/02 to 1/9/03)	515,900	1,025,600	414,400	299,300	2,255,200
2003 (1/9/03 to 1/29/04)	487,500	1,040,800	632,900	1,497,400	3,658,600
2004 (1/29/04 to 1/20/05)	428,200	1,016,100	384,100	1,004,500	2,832,900
2005 (1/20/05 to (1/17/06)	-28,000	522,300	381,400	622,600	1,497,900
2006 (1/17/06 to (1/19/07)	0	1,698,000	474,600	0	2,172,100
Total	4,545,493	10,571,600	3,492,900	3,893,000	22,502,593

During 2006 recovery wells RW-1 and RW-4 were non functional. It is anticipated that new leachate recovery wells will be installed at the RW-1 and RW-4 locations in the spring of 2007. As noted in the 2005 annual report a video inspection of RW-1 and RW-4 revealed that the well casings had collapsed prohibiting the discharge of leachate from the pumps. Continual shifting of the landfill mass has previously affected site monitoring wells and leachate recover well RW-4. Recovery wells RW-1 and RW-4 will be replaced in the spring of 2007. The City of Rome has contracted Atlantic Testing and Drilling (ATD) to install the replacement recovery wells. ATD in conjunction with Delaware Engineering are evaluating alternative recovery well installation and construction options that could be used to minimize future damage to the recovery wells.

6.0 RECOMMENDATIONS

As discussed in Section 3.0, ground water from monitoring wells MW-2D, MW-3S, MW-4S and MW-7S have continue to exhibit ammonia concentrations that exceed both the NYSDEC ground water standards and upgradient MW-9S concentrations. Ground water quality adjacent to the landfill has been adequately characterized. The landfill has been capped and leachate is actively pumped from the waste mass via the on-site recovery wells. Ground water quality is not expected to significantly change on a quarterly basis. Therefore, semi-annual collection and analysis of ground water from the on-site monitoring wells would provide adequate ground water monitoring

The City of Rome requests that NYSDEC approve a reduction in ground water monitoring to semi-annual (April and October). On an alternating basis, samples collected during one of the semi-annual events would be analyzed for the Part 360 baseline parameters and the samples from the other monitoring event would be analyzed for the Part 360 routine parameters. Ground water elevation data would continue to be obtained on a monthly basis.

TABLES

Table 1
Summary of 2006 Ground Water Elevation Data, Comparison to LMW-10 and LMW-12
City of Rome Tannery Road Landfill

	MEASURING POINT						DEP	TH TO WATE	ER (FT.)					
VELL	ELEVATION (FT.)	1/17/06	2/28/06	3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/07
W-1S	449.59	4.71	5.35	4.97	4.85	5.63	3.91	5.39	6.71	6.77	4.46	4.67	4.77	4.62
W-2S	459.44	6.31	7.51	6.77	6.65	8.26	6.26	7.19	8.91	8.81	5.86	6.27	6.8	6.18
W-3S	456.4	Frozen	3.87	3.59	3.57	4.08	3.28	3.61	4.14	4.12	3.44	3.61	3.54	3.56
W-4S	456.19	3.87	3.97	3.86	3.9	4.19	3.67	3.83	4.47	4.93	3.79	3.8	3.7	3.66
W-5S	457.15	4.46	4.87	4.44	4.45	5.27	3.48	4.65	5.86	6.21	4.14	4.45	4.45	4.41
W-75	452.25	7.77	8	7.81	7.89	8.57	8.18	8.07	9.49	10.27	7.72	7.36	7.6	7.1
W-9S	456.38	3.94	4.07	3.93	3.95	4.21	3.6	3.9	4.21	4.16	3.72	3.75	3.7	3.71
MW-10		35.2	35	35.11	35.11	35.12	35.09	34.88	35.24	35.37	35.2	35.22	34.78	34.5
MW-11		52	51.88	51.96	51.9	51.86	52	51.82	52.08	52.22	52.09	52.03	51.69	51.4
						32.14	32.3	32.04	32.33	32.56	32.35	32.04	31.77	31.6
MW-12		32.23	31.97	31.99	32									5.51
Z-1	454.37	5.8	6.61	5.83	5.95	7.23	5.01	6.39	7.91	8.47	5.41	5.72	5.72	
IW-7D	451.79	7.91	8.1	7.9	8.08	8.85	8.7	8.42	9.65	10.3	7.93	7.23	7.64	6.89
							WATER	LEVEL ELEV	ATION (FT.)					
VELL		1/17/06	2/28/06	3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/0
1W-1S		444.88	444.24	444.62	444.74	443.96	445.68	444.2	442.88	442.82	445.13	444.92	444.82	444.9
W-25		453.13	451.93	452.67	452.79	451.18	453.18	452.25	450.53	450.63	453.58	453.17	452.64	453.2
IW-3S		NA	452.53	452.81	452.83	452.32	453.12	452.79	452.26	452.28	452.96	452.79	452.86	452.8
IW-45		452.32	452.22	452.33	452.29	452	452.52	452.36	451.72	451.26	452.4	452.39	452.49	452.5
1W-5S		452.69	452.28	452.71	452.7	451.88	453.67	452.5	451.29	450.94	453.01	452.7	452.7	452.7
IW-75		444.48	444.25	444.44	444.36	443.68	444.07	444.18	442.76	441.98	444.53	444.89	444.65	445.1
IW-9S		452.44	452.31	452.45	452.43	452.17	452.78	452.48	452.17	452.22	452.66	452.63	452.68	452.6
MW-10		451.1	451.3	451.19	451.19	451.18	451.21	451.42	451.06	450.93	451.1	451.08	451.52	451.7
MW-11		450.4	450.52	450.44	450.5	450.54	450.4	450.58	450.32	450.93	450.31	450.37	450.71	450.9
MW-12		450.88	451.14	451.12	451.11	450.97	450.81	451.07	450.78	450.55	450.76	451.07	451.34	451.5
Z-1		448.57	447.76	448.54	448.42	447.14	449.36	447.98	446.46	445.9	448.96	448.65	448.65	448.8
/W-7D		443.88	443.69	443.89	443.71	442.94	443.09	443.37	442.14	441.49	443.86	444.56	444.15	444.9
					WA	TER LEVEL	ELEVATION	DIFFERENC	E (FT.) RELA	TIVE TO LM	W-12 ²			
WELL		1/17/06	2/28/06	3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/0
IW-1S		6	6.9	6.5	6.37	7.01	5.13	6.87	7.9	7.73	5.63	6.15	6.52	6.54
W-25		-2.25	-0.79	-1.55	-1.68	-0.21	-2.37	-1.18	0.25	-0.08	-2.82	-2.1	-1.3	-1.75
NW-35		NA	-1.39	-1.69	-1.72	-1.35	-2.31	-1.72	-1.48	-1.73	-2.2	-1.72	-1.52	-1.33
MW-45		-1.44	-1.08	-1.21	-1.18	-1.03	-1.71	-1.29	-0.94	-0.71	-1.64	-1.32	-1.15	-1.02
W-5S		-1.81	-1.14	-1.59	-1.59	-0.91	-2.86	-1.43	-0.51	-0.39	-2.25	-1.63	-1.36	-1.23
W-75		6.4	6.89	6.68	6.75	7.29	6.74	6.89	8.02	8.57	6.23	6.18	6.69	6.36
W-9S		-1.56	-1.17	-1.33	-1.32	-1.2	-1.97	-1.41	-1.39	-1.67	-1.9	-1.56	-1.34	-1.16
MW-10	0	-0.22	-0.16	-0.07	-0.08	-0.21	-0.4	-0.35	-0.28	-0.38	-0.34	-0.01	-0.18	-0.27
MW-1		0.48	0.62	0.68	0.61	0.43	0.41	0.49	0.46	0.37	0.45	0.7	0.63	0.54
MW-12		0.40	0.02	0.00	0.01	0.43	0.41	0.43	0.40	0.57	0.43	0.7	0.03	0.54
Z-1		2.31	3.38	2.58	2.69	3.83	1.45	3.09	4.32	4.65	1.8	2.42	2.69	2.65
W-7D		7	7.45	7.23	7.4	8.03	7.72	7.7	8.64	9.06	6.9	6.51	7.19	6.61
													1,100	4
					4/26/06	TER LEVEL 5/24/06	ELEVATION 6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/0
MELL		1/17/06	2/20/00	3/20/nc		0124100		7.22	8.18	8.11	5.97	6.16	6.7	6.81
		1/17/06	2/28/06	3/28/06			5.53		0.10		0.01		0.7	-1.48
/W-1S		6.22	7.06	6.57	6.45	7.22	5.53		0.53	0.3	2 49	2.00	-1 12	
/W-1S //W-2S		6.22 -2.03	7.06 -0.63	6.57 -1.48	6.45 -1.6	7.22 0	-1.97	-0.83	0.53	0.3	-2.48	-2.09	-1.12	
MW-1S MW-2S MW-3S		6.22 -2.03 NA	7.06 -0.63 NA	6.57 -1.48 -1.62	6.45 -1.6 -1.64	7.22 0 -1.14	-1.97 -1.91	-0.83 -1.37	-1.2	-1.35	-1.86	-1.71	-1.34	-1.0
MW-1S MW-2S MW-3S MW-4S		6.22 -2.03 NA -1.22	7.06 -0.63 NA -0.92	6.57 -1.48 -1.62 -1.14	6.45 -1.6 -1.64 -1.1	7.22 0 -1.14 -0.82	-1.97 -1.91 -1.31	-0.83 -1.37 -0.94	-1.2 -0.66	-1.35 -0.33	-1.86 -1.3	-1.71 -1.31	-1.34 -0.97	-1.0 -0.7
MW-1S MW-2S MW-3S MW-4S MW-5S		6.22 -2.03 NA -1.22 -1.59	7.06 -0.63 NA -0.92 -0.98	6.57 -1.48 -1.62 -1.14 -1.52	6.45 -1.6 -1.64 -1.1 -1.51	7.22 0 -1.14 -0.82 -0.7	-1.97 -1.91 -1.31 -2.46	-0.83 -1.37 -0.94 -1.08	-1.2 -0.66 -0.23	-1.35 -0.33 -0.01	-1.86 -1.3 -1.91	-1.71 -1.31 -1.62	-1.34 -0.97 -1.18	-1.0 -0.7 -0.9
MW-1S MW-2S MW-3S MW-4S MW-5S MW-7S		6.22 -2.03 NA -1.22 -1.59 6.62	7.06 -0.63 NA -0.92 -0.98 7.05	6.57 -1.48 -1.62 -1.14 -1.52 6.75	6.45 -1.6 -1.64 -1.1 -1.51 6.83	7.22 0 -1.14 -0.82 -0.7 7.5	-1.97 -1.91 -1.31 -2.46 7.14	-0.83 -1.37 -0.94 -1.08 7.24	-1.2 -0.66 -0.23 8.3	-1.35 -0.33 -0.01 8.95	-1.86 -1.3 -1.91 6.57	-1.71 -1.31 -1.62 6.19	-1.34 -0.97 -1.18 6.87	-1.0 -0.7 -0.9 6.63
AW-15 AW-25 AW-35 AW-45 AW-55 AW-75 AW-95		6.22 -2.03 NA -1.22 -1.59 6.62 -1.34	7.06 -0.63 NA -0.92 -0.98 7.05 -1.01	6.57 -1.48 -1.62 -1.14 -1.52 6.75 -1.26	6.45 -1.6 -1.64 -1.1 -1.51 6.83 -1.24	7.22 0 -1.14 -0.82 -0.7 7.5 -0.99	-1.97 -1.91 -1.31 -2.46 7.14 -1.57	-0.83 -1.37 -0.94 -1.08 7.24 -1.06	-1.2 -0.66 -0.23 8.3 -1.11	-1.35 -0.33 -0.01 8.95 -1.29	-1.86 -1.3 -1.91 6.57 -1.56	-1.71 -1.31 -1.62 6.19 -1.55	-1.34 -0.97 -1.18 6.87 -1.16	-1.0 -0.7 -0.9 6.63 -0.8
WELL MW-1S MW-2S MW-3S MW-4S MW-5S MW-7S MW-9S PZ-1 MW-7D		6.22 -2.03 NA -1.22 -1.59 6.62	7.06 -0.63 NA -0.92 -0.98 7.05	6.57 -1.48 -1.62 -1.14 -1.52 6.75	6.45 -1.6 -1.64 -1.1 -1.51 6.83	7.22 0 -1.14 -0.82 -0.7 7.5	-1.97 -1.91 -1.31 -2.46 7.14	-0.83 -1.37 -0.94 -1.08 7.24	-1.2 -0.66 -0.23 8.3	-1.35 -0.33 -0.01 8.95	-1.86 -1.3 -1.91 6.57	-1.71 -1.31 -1.62 6.19	-1.34 -0.97 -1.18 6.87	-1.44 -1.06 -0.75 -0.96 6.63 -0.85 0

Notes:

¹⁾ A negative number indicates an inward gradient.

²⁾ NA indicates monitoring well was not accessible due to frozen conditions or excessive snow drifts

Table 2 Summary of Monthly Leachate Volume Pumping Data Tannery Road Landfill Rome, New York

Pump Station at Tannery Road Hour Meters

100	1/17/06	2/28/06	3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/07	1/17/2006 - 12/13/2006
Pump #1	53,371	54,246	54,810	55,321	55,604	56,094	56,683	57,321	57,814	58,431	59,050	59,481	60,232	6,861
Pump #2	45,738	46,454	46,904	47,306	47,536	47,937	48,413	48,929	49,292	49,743	50,290	50,653	51,286	5,548

Totalizers in Meter Pit

	1/17/06 2/28/0	6 3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/07	1/17/2006 - 12/13/2006
RW-1	4,539,600 4,539,8	00 4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	4,539,800	200
RW-2	8,873,600 9,139,1	00 9,302,300	9,423,500	9,451,500	9,575,800	9,748,700	9,916,800	10,000,453	10,001,891	10,003,289	10,004,304	10,005,716	1,132,116
RW-3	3,018,300 3,083,1	00 3,127,300	3,175,800	3,208,700	3,213,400	3,213,400	3,261,700	3,312,200	3,366,100	3,418,200	3,452,400	3,492,900	474,600
RW-4	3,893,700 3,893,7	00 3,893,700	3,893,700	3,893,700	3,893,700	3,893,700	3,893,600	3,893,000	3,893,000	3,893,000	3,893,000	3,893,000	-700
Total													

HOUI WIE	ciers													
	1/17/06	2/28/06	3/28/06	4/26/06	5/24/06	6/28/06	7/28/06	8/30/06	9/26/06	10/25/06	11/22/06	12/13/06	1/19/07	1/17/2006 - 12/13/2006
RW-1	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	196,865	0
RW-2	221,754	231,815	238,536	245,480	249,103	257,506	264,699	272,583	279,062	286,052	292,750	297,794	304,174	82,420
RW-3	448,412	458,473	465,193	472,137	478,856	481,976	481,976	487,174	493,657	500,647	507,345	512,389	521,264	72,852
RW-4	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	284,015	0

APPENDIX A ANALYTICAL DATA SUMMARY TABLES

City of Rome Tannery Road Landfill Monitoring Well MW-1S Ground Water Analtyical Data

Date	03/01/99	06/01/99	09/01/99	12/01/99	03/01/00	06/01/00	09/01/00	12/01/00	03/01/01	06/01/01	09/01/01	12/01/01	03/28/02	06/17/02	09/24/02	12/18/02	03/12/03	06/25/03	09/17/03	12/16/2003	03/23/04	06/22/04	09/28/04
Field Parameter																							
Conductivity (µmhos/cm)	31	103	398	90	20	20	21	23	23	24	62	27	75	67	100	58	276	21	180	20	24	35	44
	8.64	5.97	6.37	89 7	39 5.85	39 7.88	31 6.45	5.27	6.18	34 4.95	5.89	37	75	67	190 7.42	38	376	21 4.9	6.24	6.5	5.22	5.11	5.3
pH (s.u.)		13.3					15.3	3.21				6.23	7.7	6.5		5.2	7.5		13.6	6	4.2	11.5	15
Temperature (deg C)	3.2		15.2	5.9	4.2	13		105	3.9	14.7	14.8	6.7	6	12.5 68	13.7	5.3	7.2	13	52	50	113	73	29
Turbidity (NTU)	785	925	560	140	222	161	527	195	316	186	88	90	145	68	126	8	65	556	54	30	113	,	
Part 360 Leachate Indicator Parameters		1					2 222												0.20	-0.02	<0.020	0.059	0.14
Ammonia-Nitrogen (mg/L)	<0.5	<0.5	2	<0.3	<0.3	< 0.030	< 0.030	< 0.030	0.073	< 0.030	0.089	< 0.030	< 0.030	< 0.030	1.1	< 0.030	0.14	< 0.03	0.38	<0.03	<0.030	<4	<4
Biochemical Oxygen Demand (BOD5) (mg/L)	8	<4.0	<2.0	2	<2.0	30	<2.0	<4.0		<4.0	<4.0	<4.0	<4.0	4.6	12	<4.0	8.6	<4	<4.0	<4	<4.0		<0.1
Bromide (mg/L)	<0.2	<2.0	<2.0	<2.0	<2.0	2.5	< 0.010	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.12	< 0.100	< 0.1	<0.1	<0.1	<0.1	<0.10	<0.1	7.9
Chemical Oxygen Demand (mg/L)	52	100	25	14	12	6.7	96	19	36	26	34	14	24	45	66	9.9	<1.0	33	25	35	18	27	
Chloride (mg/L)	<1.0	31	28	3.7	2.3	450	3.3	, 2.5	2.9	2.4	3.8	2.5	2.7	2.7	6.4	2.6	36	3.8	8.2	2.5	3.4	3.3	2.5
Color (Pt-Co)		46					30					50	20					8					180
Nitrate-Nitrogen (mg/L)	< 0.2	< 0.2	<0.2	0.4	0.3	0.18	0.1	< 0.100	0.15	0.15	0.16	< 0.100	0.15	< 0.100	0.13	0.14	< 0.1	0.15	< 0.1	<0.1	0.16	0.17	0.14
Sulfate (mg/L)	5	10	94	9.8	7.7	4.7	9.7	6.9	6.7	6.8	17	6.2	7	6	13	6.2	<1.0	7.9	15	6.9	7.4	8.2	7.1
Total Alkalinity (mg/L)	<10.0	37	84	7.8	9	1.9	15	1.2	1.4	2	12	1.9	<1.0	4	64	4	170	4	37	<1	<1.000	6	8
Total Cyanide (mg/L)		< 0.010					< 0.010					< 0.010	< 0.010					< 0.01					0.01
Total Dissolved Solids (mg/L)	140	140	260	39	30	1,900	26	<4.0	14	56	190	<4.0	170	26	120	. 42	280	30	120	34	32	20	52
Total Hardness (mg/L)	19	120	136	14	23	8	16	7.7	10	8.6	20	9.8	6.6	7.3	60	7.6	210	12	58	<7	7.8	3.7	5.4
Total Kjeldahl Nitrogen (mg/L)	< 0.5	2.4	1.3	< 0.3	0.6	0.3	1.3	0.39	0.62	0.62	0.6	0.23	0.13	0.42	1.7	0.25	<0.1	0.27	0.58	0.34	0.53	0.69	0.28
Total Organic Carbon (mg/L)	14	34	7	7.8	15.3	4.4	29	5.5	16	11	13	11.3	8.3	14	26	10	5.5	5.6	10	14	4.1	8.6	3
Total Phenols (mg/L)	< 0.005	< 0.005	< 0.001	0.004	0.001	<0.002	0.007	0.003	<0.002	< 0.002	< 0.002	<0.002	<0.002	0.012	0.003	<0.002	0.0046	<0.002	< 0.002	0.0034	<0.002	<0.002	<0.002
Part 360 Routine Metals																							
Boron (mg/L)		< 0.100				<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	<0.5		< 0.01
Cadmium (mg/L)	< 0.005	< 0.100	< 0.005	< 0.005	< 0.005	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.01	< 0.01	< 0.01	<0.01	< 0.010	< 0.01	< 0.01
, 0 ,			43.2										~0.010					3.4	18	<1	1.5	1.5	2.2
Calcium (mg/L)	3.26	29.1		4.2	6.7	1.5	3.1 17	1.4	1.9	1.7	5.7	2.2	4.5	1.3	18	1.4	62		8.1	2.7	2.4	2.3	1.1
Iron (mg/L)	16.3	30.5	33.1	3.1	4.3			6.3	8.8	5.6	7.8	3.2	4.5	4.7	50	7.2	2	2.8		<0.01	< 0.010	< 0.01	< 0.01
Lead (mg/L)	0.012	0.029	0.01	< 0.005	< 0.005	<0.010	0.011	<0.010	<0.010	<0.010	<0.010	<1.0	<0.010	<0.010	0.02	<0.010	< 0.01	<0.01	0.012		<1.0	<1	<1
Magnesium (mg/L)	2.7	11.2	6.8	0.94	1.5	<1.0	2	1	1.3	1	1.5	<1.0	<1.0	<1.0	3.9	<1.0	14	<1.0	3.3	<1 0.031	0.049	0.1	0.061
Manganese (mg/L)	0.257	0.759	1.2	0.17	0.12	0.04	0.23	0.075	0.11	0.093	0.19	0.07	0.11	0.069	0.74	0.045	0.23	0.06	0.45		<1.0	<1	<1
Potassium (mg/L) Sodium (mg/L)	1.99	5.39 12.2	2.9 9.9	0.7 1.8	3.3 8.8	<1.0 1.6	1.2 1.2	<1.0 <1.0	1.1	<1.0 <1.0	1.2 7.5	<1.0 1.2	<1.0 2.8	<1.0 <1.0	3.1 4.9	<1.0 <1.0	1.2	<1.0 1.7	2.7 12	<1 <1	1.1	1.2	1.2
Part 360 Additional Baseline Metals																							2.1
Aluminum (mg/L)		32 ·					25					5	8.9					3					2.1
Antimony (mg/L)		< 0.015					0.012					< 0.010	< 0.010					< 0.01					<0.01
Arsenic (mg/L)		0.018					< 0.010					< 0.010	< 0.010					0.013					<0.01
Barium (mg/L)		0.431					< 0.2					< 0.2	< 0.2					<0.2					<0.2
Beryllium (mg/L)		< 0.003					< 0.010					< 0.010	< 0.010					< 0.01					< 0.01
Chromium (mg/L)		0.047					0.01					< 0.010	< 0.010					< 0.01					< 0.01
Chromium, Hexavalent (mg/L)		< 0.010					< 0.010					< 0.010	< 0.010					< 0.01					< 0.01
Cobalt (mg/L)		< 0.020					< 0.010					< 0.010	< 0.010					< 0.01					< 0.01
Copper (mg/L)		0.041					0.022					< 0.010	< 0.010					0.012					< 0.01
		< 0.0002					0.00053					< 0.0002	0.000300					< 0.0002					< 0.000
Mercury (mg/L)							0.012					< 0.010	< 0.010					< 0.01					< 0.01
Mercury (mg/L)												< 0.010	< 0.010					< 0.01					< 0.01
Nickel (mg/L)		0.039																-0.01					
Nickel (mg/L) Selenium (mg/L)		0.039 <0.005					< 0.010											<0.01					< 0.01
Nickel (mg/L) Selenium (mg/L) Silver (mg/L)		0.039 <0.005 <0.010					<0.010 <0.010					< 0.010	< 0.010					<0.01					<0.01
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L)		0.039 <0.005 <0.010 <0.010					<0.010 <0.010 <0.010					<0.010 <0.010	<0.010 <0.010					< 0.01					< 0.01
Nickel (mg/L) Selenium (mg/L) Silver (mg/L)		0.039 <0.005 <0.010					<0.010 <0.010					< 0.010	< 0.010										
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L)		0.039 <0.005 <0.010 <0.010 0.031					<0.010 <0.010 <0.010 0.012					<0.010 <0.010 <0.010	<0.010 <0.010 <0.010					<0.01 <0.01					<0.01
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics		0.039 <0.005 <0.010 <0.010 0.031 0.149					<0.010 <0.010 <0.010 0.012 0.1					<0.010 <0.010 <0.010 0.04	<0.010 <0.010 <0.010 0.033					<0.01 <0.01 0.094					<0.01 <0.01 0.022
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (μg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149					<0.010 <0.010 <0.010 0.012 0.1					<0.010 <0.010 <0.010 0.04	<0.010 <0.010 <0.010 0.033					<0.01 <0.01 0.094					<0.01 <0.01 0.022
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (µg/L) 1,1,1-Trichloroethane (µg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0				<5	<0.01 <0.01 0.094					<0.01 <0.01 0.022 <1 <1
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (μg/L) 1,1,1-Trichloroethane (μg/L) 1,1,2,2-Tetrachloroethane (μg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0 <5.0				<5	<0.01 <0.01 0.094 <5 <5 <5					<0.01 <0.01 0.022 <1 <1 <1
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (µg/L) 1,1,1-Trichloroethane (µg/L) 1,1,2-Tetrachloroethane (µg/L) 1,1,2-Tetrachloroethane (µg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0 <5.0 <5.0				<5 <5	<0.01 <0.01 0.094 <5 <5 <5 <5					<0.01 <0.01 0.022 <1 <1 <1 <1
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (μg/L) 1,1,1-Trichloroethane (μg/L) 1,1,2-Tetrachloroethane (μg/L) 1,1,2-Trichloroethane (μg/L) 1,1,2-Trichloroethane (μg/L) 1,1,1-Dichloroethane (μg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0 <5.0 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0 <5.0 <5.0 <5.0				<5 <5 <5	<0.01 <0.01 0.094					<0.01 <0.01 0.022 <1 <1 <1 <1 <1
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (µg/L) 1,1,1-Trichloroethane (µg/L) 1,1,2-Tetrachloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1-Dichloroethane (µg/L) 1,1-Dichloroethane (µg/L) 1,1-Dichloroethene (µg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0 <5.0 <5.0				<5 <5	<0.01 <0.01 0.094 <5 <5 <5 <5					<0.01 <0.01 0.022 <1 <1 <1 <1 <1 <1
Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Zinc (mg/L) Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (μg/L) 1,1,1-Trichloroethane (μg/L) 1,1,2-Tetrachloroethane (μg/L) 1,1,2-Trichloroethane (μg/L) 1,1,2-Trichloroethane (μg/L) 1,1,1-Dichloroethane (μg/L)		0.039 <0.005 <0.010 <0.010 0.031 0.149 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.012 0.1 <5.0 <5.0 <5.0 <5.0 <5.0					<0.010 <0.010 <0.010 0.04 <5.0 <5.0 <5.0 <5.0 <5.0	<0.010 <0.010 <0.010 0.033 <5.0 <5.0 <5.0 <5.0 <5.0				<5 <5 <5	<0.01 <0.01 0.094					<0.01 <0.01 0.022 <1 <1 <1 <1 <1

City of Rome Tannery Road Landfill Monitoring Well MW-1S Ground Water Analtyical Data

Date	03/01/99	06/01/99	09/01/99	12/01/99	03/01/00	06/01/00	09/01/00	12/01/00	03/01/01	06/01/01	09/01/01	12/01/01	03/28/02	06/17/02	09/24/02	12/18/02	03/12/03	06/25/03	09/17/03	12/16/2003	03/23/04	06/22/04	09/28/04
							••											_					~1
1,2-Dibromoethane (EDB) (µg/L)		<5.0					<5.0					<5.0	<5.0					<5					<1 <1
1,2-Dichlorobenzene (µg/L)		<5.0					<5.0					<5.0	< 5.0					<5 .s					<1 <1
1,2-Dichloroethane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5 <5					<1
1,2-Dichloropropane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<>>					-1
1,3-Dichlorobenzene (µg/L)		<5.0					<5.0 <5.0					<5.0	<5.0										
trans-1,4-Dichloro-2-butene (µg/L)		<10.0					<10.0					<10.0	<10.0					<5					<1
1,4-Dichlorobenzene (µg/L) 2-Butanone (MEK) (µg/L)		<5.0 <10.0					<10.0					<10.0 <10.0	<10.0 <10.0				<10	<10					<10
2-Hexanone (µg/L)		<10.0					<10.0					<10.0	<10.0				<10	<10					<10
4-Methyl 2-pentanone (μg/L)		<10.0					<10.0					<20.0	<20.0				<10	<10					<10
Acetone (µg/L)		<10.0					<20.0					<5.0	<5.0				11	<10					<10
Acrylonitrile (µg/L)		<10.0					<5.0					<5.0	<5.0				11	<20					<5
Benzene (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<l< td=""></l<>
Bromochloromethane (µg/L)		<5.0					<5.0					<5.0	<5.0				\ J	<5					<1
Bromodichloromethane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Bromoform (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Bromomethane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Carbon disulfide (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Carbon tetrachloride (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Chlorobenzene (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Chloroethane (µg/L)		<5.0					<5.0					<5.0	<5.0				< 5	<5					<1
Chloroform (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Chloromethane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					</td
cis-1,2-Dichloroethene (µg/L)		<5.0					<5.0					<5.0	<5.0				-	<5					<1
cis-1,3-Dichloropropene (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Dibromochloromethane (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Dibromomethane (µg/L)		<5.0					<20.0					<20.0	<10.0					<5					<1
Ethyl benzene (µg/L)		<5.0					<10.0					<10.0	<10.0				<5	<5					<1
Iodomethane (µg/L)		<5.0					<5.0					<5.0	<5.0					<10					<10
Methylene Chloride (μg/L)		<5.0					<5.0					<5.0	<5.0				<10	<10					<10
Styrene (µg/L)							<5					<5	<5				<5	<5					<1
Tetrachloroethene (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Toluene (µg/L)		<5.0		-			<5.0					<5.0	<5.0				<5	<5					<1
trans-1,2-Dichloroethene (µg/L)		<5.0					<5.0					<5.0	<5.0					<5					<1
trans-1,3-Dichloropropene (µg/L)		<5.0					<50.0					<50.0	<10.0				<5	<5					<1
trans-1,4-Dichloro-2-butene (µg/L)							<50					<50	<10					<10					<10
Trichloroethene (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
Trichlorofluoromethane (µg/L)		<5.0					<5.0					<5.0	<5.0					<5					</td
Vinyl Acetate (µg/L)		<50.0					<20.0					<20.0	<20.0					<20					<5
Vinyl Chloride (µg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5				/	<1
Xylenes (Total) (μg/L)		<5.0					<5.0					<5.0	<5.0				<5	<5					<1
1,2-Dichloroethene - Total																	<5 .						

Notes

^{1) &}lt; indicates not detected at or above the listed value

²⁾ NS indicates that no standard has been promulgated.

^{3) *} indicates that the sum of these two analytes may not exceed 500 μ g/L.

⁴⁾ GV indicates that the value listed is a guidance value rather than a standard.

⁵⁾ Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.
6) ** Indicates standard applies to the sum of the isomers

City of Rome Tannery Road Landfill Monitoring Well MW-1S Ground Water Analtyical Data

Date	12/16/04	03/22/05	06/28/05	09/27/05	12/06/05	03/28/06	06/28/06	09/26/06	12/13/06	NYSDEC Ground Water Standard
1,2-Dibromoethane (EDB) (µg/L)					<1	<1				5
1,2-Dichlorobenzene (µg/L)					<1	<1				3
1,2-Dichloroethane (µg/L)					<1	<1				0.6
1,2-Dichloropropane (µg/L)					<1	<1				1
1,3-Dichlorobenzene (µg/L)										3
trans-1,4-Dichloro-2-butene (µg/L)					<5					5
1,4-Dichlorobenzene (µg/L)					<1	<1				3
2-Butanone (MEK) (µg/L)					<5	<5				50 (GV)
2-Hexanone (µg/L)					<5	<5				50 (GV)
4-Methyl 2-pentanone (μg/L)					<5	<5				NS
Acetone (µg/L)					<10	<5				50 (GV)
Acrylonitrile (µg/L)					<20	<20				5
Benzene (µg/L)					<1	<1				1
Bromochloromethane (µg/L)					<1	<1				5
Bromodichloromethane (µg/L)					<1	<1				50 (GV)
Bromoform (µg/L)				•	<1	<1				50 (GV)
Bromomethane (µg/L)					<1	<1				5
Carbon disulfide (µg/L)					<1	<1				60 (GV)
Carbon tetrachloride (µg/L)					<1	<1				5
Chlorobenzene (µg/L)					<1	<1				5
Chloroethane (µg/L)					<1	<1				5
Chloroform (µg/L)					<1	<1				7
Chloromethane (µg/L)					<1	<1				5
cis-1,2-Dichloroethene (μg/L)					<1	<1				5
cis-1,3-Dichloropropene (µg/L)					<1	<1				0.4**
Dibromochloromethane (μg/L)					<1	<1				50 (GV)
Dibromomethane (μg/L)					<1	<1				5
Ethyl benzene (µg/L)					<1	</td <td></td> <td></td> <td></td> <td>5</td>				5
Iodomethane (µg/L)					<5	<5				5
Methylene Chloride (μg/L)					<5	<1				5
Styrene (µg/L)					<1	<1				5
Tetrachloroethene (µg/L)					<1	<1				5
Toluene (µg/L)					<1	<1				5
trans-1,2-Dichloroethene (µg/L)					<l< td=""><td><1</td><td></td><td></td><td></td><td>5</td></l<>	<1				5
trans-1,3-Dichloropropene (µg/L)					<l< td=""><td><1</td><td></td><td></td><td></td><td>0.4**</td></l<>	<1				0.4**
trans-1,4-Dichloro-2-butene (µg/L)					<5	<5				5
Trichloroethene (µg/L)					<1	<1				5
Trichlorofluoromethane (µg/L)					<1	<1				5
Vinyl Acetate (µg/L)					<5	<5				NS
Vinyl Chloride (µg/L)					<1	<1				2
Xylenes (Total) (µg/L)					<1	<1				5
1,2-Dichloroethene - Total										5
Notes										

^{1) &}lt; indicates not detected at or above the listed val

²⁾ NS indicates that no standard has been promulga

^{3) *} indicates that the sum of these two analytes ma
4) GV indicates that the value listed is a guidance v
5) Values in bold exceeded the applicable NYSDEC
6) ** Indicates standard applies to the sum of the is

City of Rome Tannery Road Landfill Monitoring Well MW-2D Ground Water Analytical Data

								0	ound which i	inary trous 2 m			
Parameter	3/12/03	6/22/04	9/28/04	12/16/04	3/22/05	6/28/05	9/27/05	12/6/05	3/28/06	6/28/06	9/26/06	12/13/06	NYSDEC Ground Water Standard
Field Parameters													
Conductivity (µmhos/cm)	381	270	253	300	235	288	245	270	240	480	353	203	NS
pH (s.u.)	6.7	6.73	6.98	6.8	7.62	6.96	7.45	6.7	7.3	8	7.8	6.72	6.5 - 8.5
Temperature (deg C)	6.3	12	13.7	8	7.6		11.5	9	9	12	11.2	10.5	NS
Turbidity (NTU)	202	138	125	150	39	100	30	38	48	28	-	6	5
Part 360 Leachate Indicator Parameters													
Ammonia-Nitrogen (mg/L)	11	7.5	2.5	1.6	6.1	4.6	6.5	5.3	4.5	5.4	11	3.3	2
Biochemical Oxygen Demand (BOD5) (mg/L)	<10.0	7.3	7.5	4.7	<4.0	<4.0	4.5	<4	<4	<4.0	5.5	<4	NS
Bromide (mg/L)	< 0.1	<0.1	0.12	<0.1	< 0.1	0.14	0.14	< 0.1	< 0.1	<0.10	<0.1	< 0.1	2
Chemical Oxygen Demand (mg/L)	10	43	32	26	29	27	26	13	68	23	31	26	NS
Chloride (mg/L)	4.4	4.5	3.8	3.3	4	3.3	4.2	3.9	3.7	3.9	5.2	3.1	250
Color (Pt-Co)			650					100	300				15
Nitrate-Nitrogen (mg/L)	0.16	0.15	0.17	1.6	0.15	0.16	0.28	<0.1	< 0.1	<0.10	<0.1	<0.1	10
Sulfate (mg/L)	7 7	38	33	22	30	24	31	32	24	23	37	15	250
Total Alkalinity (mg/L)	100	92	74	66	88	80	80	84	84	120	130	82	NS
Total Cyanide (mg/L)	100	,_	<0.01	00	00	00	•	<0.01	<0.01		150	02	0.2
Total Dissolved Solids (mg/L)	300	140	160	120	160	140	170	210	150	160	150	150	500
Total Hardness (mg/L)	130	100	90	69	89	73	80	93	87	110	110	78	NS
Total Kjeldahl Nitrogen (mg/L)	130	8.4	5	1.9	7.2	4.4	6.5	3.3	3.1	4.9	110	4.9	NS
		9.1	8	7.9	7.2 7.6	2.3	10	3.3 8	7.3	8.1	9.4		
Total Organic Carbon (mg/L)	13		_									7.3	NS
Total Phenols (mg/L)	<0.002	<0.002	<0.002	<0.002	<0.01	0.0032	<0.002	0.0035	0.0023	<0.002	<0.002	<0.05	0.001
Part 360 Routine Metals													
Boron (mg/L)			0.089					<0.5	< 0.5				1
Cadmium (mg/L)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.01	< 0.01	0.005
Calcium (mg/L)	44	34	29	23	30	24	26	32	29	37	38	26	NS
Iron (mg/L)	21	12	11	3.1	13	7.4	8.8	11	9.9	14	10	8.1	0.3*
Lead (mg/L)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.022	0.018	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.025
Magnesium (mg/L)	6.3	4.1	3.9	3	3.6	3.2	3.8	3.3	3.2	4.4	4.4	2.9	35 (GV)
Manganese (mg/L)	1.5	1	1.1	0.97	0.96	0.87	0.93	0.89	0.84	1	<0.01	0.7	0.3*
Potassium (mg/L)	21	13	17	12	12	11	12	11	11	12	15	6.6	NS
Sodium (mg/L)	5.7	2.4	3	2.7	1.4	2.2	2.2	2.6	2.5	3.7	4.5	1.5	20
Part 360 Additional Baseline Metals													
Aluminum (mg/L)			0.37					0.26	0.25				NS
Antimony (mg/L)			< 0.01					< 0.01	< 0.01				0.003
Arsenic (mg/L)			0.011					< 0.01	< 0.01				0.025
Barium (mg/L)			0.23					0.23	0.2				1
Beryllium (mg/L)			< 0.01					10.0>	< 0.01				0.003 (GV)
Chromium (mg/L)			<0.01					< 0.01	< 0.01				0.05
Chromium, Hexavalent (mg/L)			<0.01					< 0.01	< 0.01				0.05
Cobalt (mg/L)			< 0.01					< 0.01	< 0.01				NS
Copper (mg/L)			< 0.01					<0.01	<0.01				0.2
Mercury (mg/L)			< 0.0002					<0.0002	<0.002				0.0007
• • • •			< 0.002					<0.0002	< 0.0002				0.0007
Nickel (mg/L)													
Selenium (mg/L)			< 0.01					<0.01	<0.01				0.01
Silver (mg/L)			< 0.01					< 0.01	<0.01				0.05
Thallium (mg/L)			< 0.01					<0.01	0.013				0.0005 (GV)
Vanadium (mg/L) Zinc (mg/L)			0.012 0.017					<0.01 <0.01	<0.01 0.021				NS 2
Part 360 Volatile Organics													•
1,1,1,2-Tetrachloroethane (µg/L)	<5		<1					<1	<1				5
1,1,1-Trichloroethane (μg/L)	<5		<1					<1	<1				5
1,1,2,2-Tetrachloroethane (µg/L)	<5		<1 <1					<l< td=""><td><1</td><td></td><td></td><td></td><td>5</td></l<>	<1				5
1,1,2-Trichloroethane (µg/L)	<5		<1 <1					<1 <1	<1				ı
1,1,2-1 richloroethane (µg/L) 1,1-Dichloroethane (µg/L)	<5		<1 <1					<1	<1				5
1,1~Dictioroctimic (hg/L)	~3		~1					~1	~1				J

City of Rome Tannery Road Landfill MW-3S Ground Water Analytical Data

Parameter	12/16/03	03/23/04	06/22/04	09/28/04	12/16/04	03/22/05	06/28/05	09/27/05	12/06/05	03/28/06	06/28/06	09/26/06	12/13/06	NYSDE
1,2-Dichloropropane (µg/L)				<1					<1	<1				1
l,3-Dichlorobenzene (μg/L)														3
trans-1,4-Dichloro-2-butene (µg/L)									<5					5
l,4-Dichlorobenzene (µg/L)				<1					<1	<1				3
2-Butanone (MEK) (µg/L)				<10					<5	<5				50 (GV
2-Hexanone (µg/L)				<10					<5	<5				50 (GV)
4-Methyl 2-pentanone (μg/L)				<10					<5	<5				NS
Acetone (µg/L)				<10					<10	<5				50 (GV)
Acrylonitrile (µg/L)				<5					<20	<20				5
Benzene (µg/L)				<1					<1	<1				l
Bromochloromethane (µg/L)				<1					<1	<1				5
Bromodichloromethane (µg/L)				<1					<1	<i< td=""><td></td><td></td><td></td><td>50 (GV)</td></i<>				50 (GV)
Bromoform (µg/L)				<1					<1	<1				50 (GV)
Bromomethane (µg/L)				<l< td=""><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td></td><td></td><td></td><td>5</td></l<>					<1	<1				5
Carbon disulfide (µg/L)				<1					<1	<1				60 (GV)
Carbon tetrachloride (µg/L)				<1		•			<1	<1				5
Chlorobenzene (µg/L)				<1					<1	<1				5
Chloroethane (µg/L)				<1					<1	<1				5
Chloroform (µg/L)				<1					<1	<1				7
Chloromethane (µg/L)				<1					<1	<1				5
cis-1,2-Dichloroethene (µg/L)				<1					<1	<1				5
cis-1,3-Dichloropropene (µg/L)				<1					<1	<1				0.4**
Dibromochloromethane (µg/L)				<1					<1	<1				50 (GV)
Dibromomethane (µg/L)				<1					<1	<1				5
Ethyl benzene (µg/L)				<1					<1	<1				5
Iodomethane (µg/L)				<10					<5	<5				5
Methylene Chloride (µg/L)				<10					<5	<l< td=""><td></td><td></td><td></td><td>5</td></l<>				5
Styrene (µg/L)				<1					<1	<1				5
Tetrachloroethene (µg/L)				<1					<1	<1				5
Toluene (µg/L)				<1					<1	<1				5
trans-1,2-Dichloroethene (µg/L)				. <1					<1	<1				5
trans-1,3-Dichloropropene (µg/L)				<1					<1	<1		-		0.4**
trans-1,4-Dichloro-2-butene (µg/L)				<10					<5	<5				5
Trichloroethene (µg/L)				<1					<1	<1				5
Trichlorofluoromethane (µg/L)				<1					<1	</td <td></td> <td></td> <td></td> <td>5</td>				5
Vinyl Acetate (µg/L)				<5					<5	<5				NS
Vinyl Chloride (µg/L)				<1					<1	<1				2
Xylenes (Total) (μg/L)				<1					<l< td=""><td><i< td=""><td></td><td></td><td></td><td>5</td></i<></td></l<>	<i< td=""><td></td><td></td><td></td><td>5</td></i<>				5
, , , , , , , , , , , , , , , , , , , ,									-					5

City of Rome Tannery Road Landfill MW-4S Ground Water Analytical Data

Parameter	3/1/99 6/1/99 9/1/99	12/1/99 3/1/00 6/1/00 9/1/00	12/1/00 3/1/01	6/1/01 9/1/01 12	/1/01 3/28	/02 6/17/02	9/24/02	12/18/02	3/12/03	6/25/03	9/17/03	12/16/03	3/23/04	6/22/04	9/28/04
1,1-Dichloroethene (µg/L)	<5.0	<5.0			<5.0 <5.	0			<5	<5					<1
1,2,3-Trichloropropane (µg/L)	-5.0	<5.0			<5.0 <5.				٠,5	< 5					<1
1,2-Dibromo-3-chloropropane (µg/L)	<10.0	<5.0			<5.0 <5.					<5					<1
1,2-Dibromoethane (EDB) (µg/L)	<5.0	<5.0			<5.0 <5.					<5					< i
1,2-Dichlorobenzene (µg/L)	<5.0	<5.0			<5.0 <5.					< 5					<1
1,2-Dichloroethane (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
1,2-Dichloropropane (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
1,3-Dichlorobenzene (µg/L)	<5.0	5.0				•				_					
trans-1,4-Dichloro-2-butene (µg/L)	<10.0														
1,4-Dichlorobenzene (µg/L)	<5.0	<5.0			<5.0 <5.	0				<5					<1
2-Butanone (MEK) (μg/L)	<10.0	<10.0			10.0 <10				<10	<10					<10
2-Hexanone (µg/L)	<10.0	<10.0			10.0 <10				<10	<10					<10
4-Methyl 2-pentanone (μg/L)	<10.0	<10.0			10.0 <10				<10	<10					<10
Acetone (µg/L)	<10.0	<10.0			10.0 <10				<10	<10					<10
Acrylonitrile (µg/L)	<100.0	<20.0			20.0 <20					<20					<5
Benzene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Bromochloromethane (µg/L)	<5.0	<5.0			<5.0 <5.				_	<5					<1
Bromodichloromethane (µg/L)	<5.0				<5.0 <5.				<5	<5					<1
Bromoform (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Bromomethane (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Carbon disulfide (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Carbon tetrachloride (µg/L)	<5.0	<5.0		•	<5.0 <5.				<5	<5					<1
Chlorobenzene (µg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
Chloroethane (µg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
Chloroform (µg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
Chloromethane (µg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
cis-1,2-Dichloroethene (μg/L)	<5.0	<5.0		•	<5.0 <5.	0		•		<5					<1
cis-1,3-Dichloropropene (µg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
Dibromochloromethane (μg/L)	<5.0	<5.0		•	<5.0 <5.	0			<5	<5					<1
Dibromomethane (µg/L)	<5.0	<5.0		•	<5.0 <5.					<5					<1
Ethyl benzene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Iodomethane (µg/L)	<5.0	<20.0		<	20.0 <10					<10					<10
Methylene Chloride (μg/L)	<5.0	<10.0		<	10.0 <10				<10	<10					<10
Styrene (μg/L)		<5.0			<5.0 <5.				<5	<5					<1
Tetrachloroethene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Toluene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
trans-1,2-Dichloroethene (µg/L)	<5.0	<5.0			<5.0 <5.					<5					<1
trans-1,3-Dichloropropene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
trans-1,4-Dichloro-2-butene (µg/L)		<50.0			50.0 <10					<10					<10
Trichloroethene (µg/L)	<5.0	<5.0			<5.0 <5.				<5	<5					<1
Trichlorofluoromethane (µg/L)	<5.0	<5.0			<5.0 <5.					<5					<1
Vinyl Acetate (μg/L)	<50.0	<20.0			20.0 <20				_	<20					< 5
Vinyl Chloride (μg/L)	<5.0	<5.0			5.0 <5.				<5	<5				-	<1
Xylenes (Total) (μg/L)	<5.0	<5.0		•	<5.0 <5.	U			<5	<5					<1
1,2-Dichloroethene - Total	Notes								<5						

Votes

- 1) < indicates not detected at or above the listed value
- 2) NS indicates that no standard has been promulgated.
- 3) * indicates that the sum of these two analytes may not exceed 500 µg/L.
- 4) GV indicates that the value listed is a guidance value rather than a standard.
- 5) Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.
- 6) ** Indicates standard applies to the sum of the isomers

City of Rome Tannery Road Landfill MW-5S Ground Water Analytical Data

Parameter	3/23/04	6/22/04	9/28/04	12/16/04	3/22/05	6/28/05	9/27/05	12/6/05	3/28/06	6/28/06	9/26/06	12/13/06	NYSDEC Ground Water Standard
Field Parameter													
Conductivity (µmhos/cm)	306	112	118	276	182	227	178	550	270	420	102	324	NS
pH (s.u.)	6.15	6.1	6.44	6.6	7.18	6.66	6.9	5.9	6.9	7.2	7.19	6.45	6.5 - 8.5
Temperature (deg C)	5,4	11.3	14.1	8	5.7		12.5	9	6	11	12	9.4	NS
Turbidity (NTU)	41	150	108	154	8	149	119	38	50	10	-	28	5
Part 360 Leachate Indicator Parameters													,
Ammonia-Nitrogen (mg/L)	0.83	<0.03	< 0.03	<0.03	0.15	< 0.03	<0.03	0.82	0.93	0.055	< 0.03	0.88	2
Biochemical Oxygen Demand (BOD5) (mg/L)	<4.0	<4	<4	<4	<4.0	<4.0	<4.0	7.6	<4	<4.0	<4	<4	NS
Bromide (mg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	0.24	<0.1	<0.1	<0.1	< 0.10	<0.1	<0.1	2
Chemical Oxygen Demand (mg/L)	25	25	15	14	18	16	15	23	22	8.9	16	23	NS
Chloride (mg/L)	4.2	2.9	2.6	2.5	3	2.6	3.1	3.2	3	2.5	2.9	2.7	250
Color (Pt-Co)			450					130	140				15
Nitrate-Nitrogen (mg/L)	<0.1	0.19	0.2	0.19	0.14	0.13	0.23	<0.1	<0.1	< 0.10	0.13	<0.1	10
Sulfate (mg/L)	21	11	9.6	8.3	7.3	9	7.6	12	14	8.6	8.8	8.1	250
Total Alkalinity (mg/L)	110	48	38	88	140	24	64	230	110	44	52	150	NS
Total Cyanide (mg/L)			<0.01					<0.01	< 0.01				0.2
Total Dissolved Solids (mg/L)	180	80	66	90	170	52	90	290	170	66	120	210	500
Total Hardness (mg/L)	130	54	52	94	130	31	84	230	130	55	49	150	NS
Total Kjeldahl Nitrogen (mg/L)	1.3	0.41	0.2	0.14	0.32	0.66	0.39	1.1	0.8	0.23	0.48	1.1	NS
Total Organic Carbon (mg/L)	8.9	4.5	3.6	5.4	5.6	5.1	5.4	9.7	9.4	4.7	4.3	7.2	NS
Total Phenols (mg/L)	<0.002	<0.002	0.0039	<0.002	<0.01	0.0037	<0.002	0.0035	0.0021	0.0032	<0.002	<0.05	0.001
Part 360 Routine Metals													
Boron (mg/L)	<0.5		0.014					<0.5	<0.5				1
Cadmium (mg/L)	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.010	<0.01	< 0.01	0.005
Calcium (mg/L)	42	17	16	24	40	9.3	24	71	42	16	15	47	NS
Iron (mg/L)	9	6.3	4.7	22	15	7.6	24	19	11	2.6	2.8	12	0.3*
Lead (mg/L)	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.025
Magnesium (mg/L)	5.7	2.8	2.9	4.2	8.1	1.9	5.7	12	6.6	3.7	2.9	9	35 (GV)
Manganese (mg/L)	0.67	0.32	0.34	0.63	1.3	0.063	0.82	1.6	0.52	0.32	< 0.01	0.88	0.3*
Potassium (mg/L)	5.1	2.4	2.4	2.7	3.3	1.5	3.2	5.4	4	1.7	1.8	2.5	NS
Sodium (mg/L)	4.4	<1	<1	1.2	<1.0	<1.0	1.1	2	1.5	<1.0	<1	1.2	20
Part 360 Additional Baseline Metals													
Aluminum (mg/L)			0.44					0.14	0.35				NS
Antimony (mg/L)			< 0.01					<0.01	< 0.01				0.003
Arsenic (mg/L)			0.013					<0.02	<0.01				0.025
Barium (mg/L)			<0.2					0.14	<0.2				1
Beryllium (mg/L)			< 0.01					<0.01	< 0.01				0.003 (GV)
Chromium (mg/L)			< 0.01					<0.01	<0.01				0.05
Chromium, Hexavalent (mg/L)			< 0.01					<0.01	<0.01				0.05
Cobalt (mg/L)			<0.01					< 0.01	<0.01				. NS
Copper (mg/L)			< 0.01					< 0.01	< 0.01				0.2
Mercury (mg/L)			< 0.0002					< 0.0002	< 0.0002				0,0007
Nickel (mg/L)			< 0.01					<0.01	<0.01				0.1
Selenium (mg/L)			< 0.01					<0.01	< 0.01				0.01
Silver (mg/L)			< 0.01					< 0.01	< 0.01				0.05
Thallium (mg/L)			<0.01					<0.01	<0.01				0.0005 (GV)
Vanadium (mg/L)			<0.01					<0.01	<0.01				NS
Zinc (mg/L)			0.01 7					<0.01	0.015				2
Part 360 Volatile Organics													
1,1,2-Tetrachloroethane (µg/L)			<1	•				<1	<1				5
1,1,1-Trichloroethane (µg/L)			<1					<1	<1			•	5
1,1,2,2-Tetrachloroethane (µg/L)			<1					<1	<1				5
1,1,2-Trichloroethane (μg/L)			<1					<1	<1				1
1,1-Dichloroethane (µg/L)			<1					<1	<1				5
1,1-Dichloroethene (µg/L)			<1					<1	<1				5
1,2,3-Trichloropropane (µg/L)			<1					<1	<1				0.04
1,2-Dibromo-3-chloropropane (µg/L)			<1					<1	<1				0.04

City of Rome Tannery Road Landfill MW-5S Ground Water Analytical Data

Parameter	3/23/04	6/22/04	9/28/04	12/16/04	3/22/05	6/28/05	9/27/05	12/6/05	3/28/06	6/28/06	9/26/06	12/13/06	NYSDEC Ground Water
1,2-Dibromoethane (EDB) (µg/L)			<1					<1	<1				Standard 5
1,2-Dioline diame (EDD) (µg/L)			<1					<1	<1				3
1,2-Dichloroethane (µg/L)			<1 <1					<1	<1				0.6
1,2-Dichloropropane (µg/L)			<1					<1	<1				1
1,3-Dichlorobenzene (µg/L)								•	<1				3
trans-1,4-Dichloro-2-butene (µg/L)								<5					5
1,4-Dichlorobenzene (µg/L)			<1					<1					3
2-Butanone (MEK) (µg/L)			<10					<5	<5				50 (GV)
2-Hexanone (µg/L)			<10					<5	<5				50 (GV)
4-Methyl 2-pentanone (µg/L)			<10					<5	<5				NS
Acetone (µg/L)			<10					<10	<5				50 (GV)
Acrylonitrile (µg/L)			<5					<20	<20				5
Benzene (µg/L)			<1					<1	<1				1
Bromochloromethane (µg/L)			<1					<1	<1				5
Bromodichloromethane (µg/L)			<1					<1	<1				50 (GV)
Bromoform (µg/L)			<1					<1	<1				50 (GV)
Bromomethane (µg/L)			<1		•			<1	<1				5
Carbon disulfide (µg/L)			<1					<1	<1				60 (GV)
Carbon tetrachloride (µg/L)			<1					<1	<1				5
Chlorobenzene (µg/L)			<1					<1	<1				5
Chloroethane (µg/L)			<1					<1	<1				5
Chloroform (µg/L)			<1					<1	<1				7
Chloromethane (µg/L)			<1					<1	<1				5
cis-1,2-Dichloroethene (μg/L)			<1					<1	<1				5
cis-1,3-Dichloropropene (µg/L)			<1					<1	<1				0.4**
Dibromochloromethane (µg/L)			<1					<1	<1				50 (GV)
Dibromomethane (µg/L)			<1					<1	<1				5
Ethyl benzene (µg/L)			<1	•				<1	<1				5
Iodomethane (µg/L)			<10					<5	<5				5
Methylene Chloride (μg/L)			<10					<5	<1				5
Styrene (µg/L)			<1					<1	<1				5
Tetrachloroethene (µg/L)			<1					<1	<1				5
Toluene (μg/L)			<1					<1	<1				5
trans-1,2-Dichloroethene (µg/L)			<1					<1	<1				5
trans-1,3-Dichloropropene (µg/L)			<1					<1	<1				0.4**
trans-1,4-Dichloro-2-butene (µg/L)			<10					<5	<5				5
Trichloroethene (μg/L)			<1					<1	<1			•	5
Trichlorofluoromethane (µg/L)			<1					<1	<1				5
Vinyl Acetate (μg/L)			<5					<5	<5				NS
Vinyl Chloride (μg/L)			<1					<1	<1				2
Xylenes (Total) (μg/L)			<1					<1	<1				5
1,2-Dichloroethene - Total													5

Tannery Road Landfill MW-7D Ground Water Analtyical Data

NYSDEC Ground Water Stranfard	NS 6.5-85 NS 8 NS	2	0005 NS NS 0.3* 0.025 33 (CV) 0.3* NS	NS 0.003 0.025 1 1 0.003 (GV) 0.05 0.05 0.05 0.05 0.00 0.01 0.01 0.05 0.00 0.00	28 S S S S S S S S S S S S S S S S S S S
Dec-86	684 10.1 5	2.2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		
Sep-86		22 0.33 110 29 4.4 4.4 4.30 210 210 22 4.30 4.30			
¥		211 8 8 40,10 1110 28 28 40,10 2.8 320 400 190 199 199 199 199 199 199 199 199 1			
Mar-06				26 4001 031 031 031 031 031 031 031 030 031 0001 0001	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Dec-45				·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
84 7 48		113 0.15 83 83 83 15 15 5.9 5.9 5.9 5.9 2.30 1.150 1.150 1.150 1.150 1.150			
ž.	<u>5</u> 2 19	111	© 01 32 26 0.032 14 19 7.4		
Mar-05	25. 5.7 6.7	24 6.2 0.4 109 36 0.16 115 1180 21 380 21 380	0.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00		
Dec 4	1150 25 ° 52	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40.01 21 11 0.0012 9 9 9 14		
*	817 6 12.6 166	25 0.5 0.5 130 27 673 673 20 20 20 20 20 20 20 20 20 20 20 20 20	0.8 4.0 7.0 8.8 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.1 0.01 0.01 0.23 0.23 0.01 0.00 0.046 0.01 0.046 0.01 0.016	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Å a	807 5.7 12.3 150	410 0.68 5.06 5.06 5.00 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	42 42 36 36 36 36 36 36 36 36 36 36 36 36 36		
Mar-04	1,030 6.23 9.5 59	30 <10.0 (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0) (10.0)	0.95 40.01 37 22 22 23 44 44 44 44 44 44 44 44 44 44 44 44 44		
Dec-63	370 6.9	8.4 <10 40.1 76 76 77 8.8 8.8 0.77 28 120 97 97 97 97 97 97 97 97 97 97	60.5 24 24 24 24 24 24 24 24 24 24 26 20 20 20 20 20 20 20 20 20 20 20 20 20		
8ep-03	1,080 6.48 11.7	38 7.1 0.88 120 54 49 340 380 310 25 43	45 45 0018 0018 138 45 045 45		
Jun-03	775 6.43 12.1	46 0.89 130 57 600 40.1 57 410 660 270 270 270	1.1 θ 0.0 4.1 6.00 1.3 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	23 6456 6456 0 61 0 61 0 01 0 01 0 01 0 01 0 01 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 2 2 2 2
Mar-43	1,150 2,2 29	400 6085 6085 120 55 54 60.1 54 390 270 41 42	6.00 4.14 5.00 5.00 7.14 8.14 8.14 8.14 8.14 8.14 8.14 8.14 8		৯৯৯৯৯ ৯৯
Dec-42	1,110 9.5 61	246 2000 0.111 1000 7 7 40.11 8.6 8.6 360 240 240 240 240 36	40.01 63 74 0.014 20 66 40 40		
Sep-02	8 2 11 8 8	22 0.21 150 150 21 47 47 480 480 140 88	40.5 40.01 35 36 4.035 14 0.67		
, e	1,430 625 11.6	4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.83 -0.01 71 -46 -0.01 25 43 43		
Mar-02	1,440 5,56 2	41 <20.0 0.08 130 130 130 130 130 460 460 460 460 460 460 460 46	0.99 0.01 71 46 0.01 24 40 53	0.83 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.01	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Dec-41	1,290 6,31 10.1 53	43 420.0 420.0 9.64 1120 8.84 8.84 8.94 40.1 120 9.00 130 130 130 130 130 130 130 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.2 4.01 6.01 0.43 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Sep-01	1,090 11.2 153	47 0.75 0.75 120 46 46 430 430 430 56 56 56 56 56 60 78 60 78 60 78 60 78 60 78 60 78 60 78 78 78 78 78 78 78 78 78 78 78 78 78	0.83 40.01 64 39 0.014 25 25		
Ja-Ol	1,200 5.56 11.2	46 0.74 120 0.74 40 40 40 40 40 40 40 40 40 40 40 40 40	60.5 60.01 60.01 60.01 75 85 85 85 85 85 85 85 85 85 85 85 85 85		
Mar-61	350 23 88 89	693 140 140 174 180 180 180 180 180 180 180 180 180 180	600 14 600 25 25 28 27 27		
Dec-90	6.46 8 9 9	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Sep-00	1,220 6.41 11.5	41 10 11.1 140 65 65 730 60 141 411 410 460 930 930 930 930 930 930 930 930 930 940 940 940 940 940 940 940 940 940 94	11 60 01 14 14 14 14 14 14 14 14 14 14 14 14 14	6.034 0.011 0.011 0.011 0.011 0.011 0.011	\$\times 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
Ja &	1,710 6.88 13.3	58 44 -0.1 150 133 3.3 9.16 680 680 680 680 680	17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Mar-00	1,320 6.5 8.4 128	33 -2.0 -2.0 -2.0 -2.0 -3.0 -4.9 -4.9 -4.9 -4.9 -4.9 -4.9 -4.9 -4.9	40,005 56.4 33.1 0.006 25.1 88.4 38.4		
Dec-99	1,300 7.92 8.1	36 20 11 20 11 11 11 12 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16			
84-8	1,620 13.2 13.2	47 2.0 2.0 14.0 18.8 88 88 10.0 11.0 12.0 12.0 13.0 13.0 14.5 19.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			
Jes-39	6.53 6.53 6.45	23 40 20 20 20 20 20 20 20 20 20 20 20 20 20	0.7 61.1 39.2 39.2 0.0041 0.24 0.24 40.9	0.419 0.013 0.017 0.217 0.217 0.003 0.003 0.003	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Mar-99	1,330 6.64 8.1 168	44 19 19 19 19 19 19 19 19 19 19 19 19 19	41.1 62.9 41.1 0.0071 33.6 6.837 54.8		
Permeder	Field Denometers Conductivity (umbos/cm) pH (4 u.) Tompenture (deg C) Turbidity (NTJ)	Part 369 Leachate Indicator Parameters Ammonia: Nitrogen (ugl.) Biochamical Orygan Densard (BODS) (ngl.) Bronie (ugl.) Chemical Orygan Densard (ugl.) Chories Orygan Densard (ugl.) Colore (Pt-Co) Notare-Norgan (ugl.) Colore (Pt-Co) Total Albalinsity (ugl.) Total Abalinsity (ugl.) Total Albalinsity (ugl.) Total Hardness (ugl.) Total Hardness (ugl.) Total Granies (ugl.) Total Phenole (ugl.) Total Phenole (ugl.) Total Phenole (ugl.)	Part 360 Routine Metain Bown (mg/l) Codeinium (mg/l) Inon (mg/l) Inon (mg/l) Magnesium (mg/l) Magnesium (mg/l) Potassium (mg/l) Potassium (mg/l) Sodium (mg/l)	Part 369 Additional Baseliae Metabs Atomium (mg/L) Arenic (mg/L) Arenic (mg/L) Barium (mg/L) Barium (mg/L) Chromium. Hexavlent (mg/L) Chromium. Hexavlent (mg/L) Chromium. Hexavlent (mg/L) Chromium. Hexavlent (mg/L) Sarium (mg/L) Zine (mg/L)	Part 360 Volatile Corpusion 1.1.1.2-Terarchiocochame (1961.) 1.1.2-Terarchiocochame (1961.) 1.1.2-Terarchiocochame (1961.) 1.1.2-Terarchiocochame (1961.) 1.1.2-Terarchiocochame (1961.) 1.1.2-Terarchiocochame (1961.) 1.2-Dichocochame (1961.) Bencome (1961.) Bencome (1961.) Bencome (1961.) Bencome (1961.) Carbon icanifice (1961.) Carbon icanif

NYSDEC	Ground Water	Steadard	0.4	\$	\$	\$	SS	7	~	٠
Dec-06										
Sep-06										
) 11 24 11 24										
Mar-06			⊽	0!>	⊽	⊽	۷۱٥	7	83	
Dec-05			⊽	\$	⊽	⊽	۵	₹	116	
8										
Jan 45										
Mar-05										
Dec-04										
Sept			⊽	9	₹	⊽	۵	⊽	7	
4										
Mar-04										
Dec-03										
Sep-03										
Jan 03			\$	o(>	۵	\$	<20	٥	76	
Mar-43			۵		٥			۶	89 I	*
Dec-62										
Sep-02										
Jen 42										
Mar-62			0.5	<10.0	€\$.0	€00	<20.0	€5.0	180	
Dec-41			<5.0	<\$0.0	<5.0	€30	420.0	<5.0	23	
Sep-01										
100										
Mar-61										
Dec-8										

Nextex

) < indicates not detected at or above the listed value

2) NS indicates that no standard has been promulgated

3) violates that the same of these wan shapes may not exceed 500 µg/L.

4) O' indicate that the value listed is a guidance value rather than a standard

5) Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.

6) ** indicates standard applies to the sum of the isomers

2 of 2

Mar-40 Jun-

tume 1,3-Dichlovopropene (ugf.)
Trinchovocheric (ugf.)
Trichlovocheric (ugf.)
Trichlovocheric (ugf.)
Vinyl Acette (ugf.)
Vinyl Acette (ugf.)
Xybrae (loal) (ugf.)
1,2-Dichlovochere - Toal

\$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0

12/16/03

Parameter	3/1/99	6/1/9	9/1/99	12/1/99	3/1/00	6/1/00	9/1/00	12/1/00	3/1/01	6/1/01	9/1/01	12/1/01	3/28/02	6/11/02	9/24/02	12/18/02	3/12/03	6/25/03	9/17/03	71
				.																
Field Parameters Conductivity (µmhos/cm) pH (s.u.) Temperature (deg C) Turbidity (NTU)	485 7.67 5.8 999	398 7.32 14.6 324	369 7.23 12.9 659	411 7.31 7.4 999	413 7.11 6.4 999	414 6.89 9.8 999	411 6.96 11 999	411 7.28 8.2 999	419 7.2 6.1	365 6.94 11.9 704	390 6.65 11.4 241	408 7.39 8.2 466	435 7.15 7.4 460	415 7.39 9.3 501	377 8.9 12.7	410 8 8 506	423 7.3 6.3	385 7.17 11.3 999	392 7.5 12.8 614	
Part 360 Leachate Indicator Parameters Ammonia-Nitrogen (mg/L) Biochemical Oxygen Demand (BOD5) (mg/L) Bromide (mg/L) Chemical Oxygen Demand (mg/L) Chloride (mg/L) Color (Pt-Co) Nitrate-Nitrogen (mg/L) Total Alkalinity (mg/L) Total Alkalinity (mg/L) Total Hardness (mg/L) Total Hardness (mg/L) Total Hispolved Solids (mg/L) Total Hispolved Solids (mg/L) Total Hispolved (mg/L) Total Phenols (mg/L)	 <0.5 <4.0 <0.2 160 8 8 <0.2 5 5 5 5 420 1100 2.8 30 <0.005 	 40.5 5 60.2 120 3 530 60.2 8 9 9 19 19 29 20 29 20 29 20 20	 -0.3 3.9 -2.0 26 4.1 -0.2 12 1400 360 477.2904 0.5 28.6 -0.001 	 <0.3 5 <2.0 76 <2.0 0.5 8 8 260 340 489.5396 <0.0 <0.3 <0.0 <0.	4.7 4.7 4.7 64 64 64 64 64 63 63 60.3 60.3 60.00	0.14 5.6 0.15 74 3.3 3.3 <0.1 8.5 240 390 610 0.97 32	0.3 2.1 <0.1 160 3.3 400 <0.1 2.3 2.70 <0.01 420 1.4 1.4 3.1	0.15 <4.0 <0.1 120 3.3 <4.7 <0.1 4.7 280 700 700 1.7 36	0.28 40.1 96 96 96 96 4.2 4.2 4.2 230 1200 1200 135 4.2 3.4 4.2 3.4 4.2 3.4 4.2 3.4 4.2 3.6 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	0.3 <4.0 0.17 120 3.2 2.9 2.9 2.9 2.9 2.9 2.0 3.0 3.0 1.3 3.0	6.39 4.2 0.12 72 3.6 -0.1 3.1 240 420 -29 -29 -29	0.21 <4.0 4.0 75 75 3.3 6.00 0.17 8.6 2.10 <0.01 430 330 0.7 32	0.17 <4.0 <4.0 <0.1 290 3.2 850 0.16 15 240 <0.01 360 460 0.45 29	0.33 <4.0 <0.1 75 75 3.4 <0.1 8.4 250 340 340 360 1.2 31	0.32 18 <0.1 87 3.3 3.3 0.14 3.2 230 650 1.7 32 0.0035	0.56 4.5 4.5 4.1 6.4 3.2 3.2 40.1 6.2 2.50 7.30 0.52 2.6 <0.002	0.16 <4.0 <0.1 57 3.2 3.2 <0.1 19 240 380 0.74 24	1.8 4.4 <0.1 120 3.2 750 <0.1 15 250 <0.01 360 400 1.5 32	0.93 <4.0 <0.1 67 3.4 3.2 <2.0 340 410 0.57 25	v ·
Part 360 Routine Metals Boron (mg/L) Cadmium (mg/L) Iron (mg/L), Lead (mg/L) Magnesium (mg/L) Manganese (mg/L) Potassium (mg/L) Sodium (mg/L)	0.0088 307 85.3 0.0381 83.9 4.21 12.1	<0.1 0.0053 142 47.8 0.021 43.5 2.13 6.96 39.3	 <0.005 142 28.2 0.011 29.8 1.7 2.3 30 	 <0.005 138 26.8 0.017 35.2 1.9 4.6 41.7 	 <0.005 138 14.3 0.008 29.4 1.6 2.4 46 	 6.5 6.5 6.01 160 37 4.8 4.6 4.6 4.6 	 <0.5 <0.01 190 56 <0.01 58 58 54 64 49 	<0.01 180 56 0.043 60 2.7 7.3 53	 <0.01 300 110 0.042 100 5 14 55 	 <0.5 <0.01 88 88 21 0.012 19 1.1 4.2 48 	<0.5 <0.5 <0.01 120 30 0.012 29 1.5 7.2 33 33	<0.5 <0.5 <0.01 110 24 0.011 28 1.5 4.6 4.5	 <0.5 <0.01 130 29 0.017 34 1.8 4.6 55 	<0.5 <0.01 100 26 0.014 26 1.4 6.6 57	 <0.5 <0.01 170 48 6.034 53 5.3 5.6 6.3 38 	 <0.01 200 52 52 60 60 3 5.4 40 	 <0.01 100 25 <0.01 27 27 4.5 4.5 53 	40.5 40.01 11.0 36 40.01 30 1.6 5.8	<0.5 <0.01 120 29 0.023 27 1.5 1.5 37	• •
Part 360 Additional Baseline Metals Aluminum (mg/L) Ansenic (mg/L) Barium (mg/L) Beryllium (mg/L) Chromium, Hexavalent (mg/L) Choper (mg/L) Copper (mg/L) Mercury (mg/L) Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Vanadium (mg/L) Vanadium (mg/L) Vanadium (mg/L)		23.9 <0.015 <0.015 <0.011 0.201 0.201 <0.003 0.0592 <0.001 <0.0845 <0.0002 0.0726 <0.0002 <0.0726 <0.001 <0.011 <0.011 <0.011 0.047 0.184					 <0.01 0.048 <0.01 0.23 <0.01 <0.01 <0.024 <0.092 <0.092 <0.092 <0.001 <0.01 <0.01 <0.048 					12	12					18 <0.01 0.035 0.2 <0.01 0.033 <0.014 0.085 <0.0002 0.042 <0.01 <0.01 <0.01 0.037 0.13		
Part 360 Volatile Organics 1,1,1,2-Tetrachloroethane (µg/L) 1,1,1-Trichloroethane (µg/L) 1,1,2,2-Tetrachloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1-Dichloroethene (µg/L) 1,1-Dichloroethene (µg/L) 1,2-3-Trichloropropane (µg/L) 1,2,3-Trichloropropane (µg/L)		\$\circ\$ \chi_0 \					\$ \$ \$ \$ \$ \$ \$ \$ \$					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				2222	\$ \$ \$ \$ \$ \$ \$ \$ \$		

City of Rome Tannery Road Landfill MW-9S Ground Water Analytical Data

Parameter	3/1/99	6/1/9	66/1/6	12/1/99	3/1/00	6/1/00 8	9/1/00 12/	12/1/00 3/1/01	10/1/91	9/1/01	12/1/01	3/28/02	6/11/02	9/24/02	12/18/02	3/12/03	6/25/03	9/17/03	12/16/03
1,2-Dibromoethane (EDB) (µg/L)		<5.0					<5.0				<5.0	<5.0					\$		
1,2-Dichlorobenzene (µg/L)		<5.0					<5.0				<5.0	<5.0					\$		
1,2-Dichloroethane (µg/L)		<5.0					<5.0				<5.0	<5.0				۵	\$		
1,2-Dichloropropane (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
1,3-Dichlorobenzene (µg/L)		<5.0																	
1,4-Dichlorobenzene (µg/L)		<5.0					<5.0				<5.0	<5.0					\$		
2-Butanone (MEK) (μg/L)		<10.0				•	<10.0				<10.0	<10.0				<10	<10		
2-Hexanone (µg/L)		<10.0				•	<10.0				<10.0	<10.0				<10	<10		
4-Methyl 2-pentanone (µg/L)		<10.0				v	<10.0				<10.0	<10.0				<10	<10		
Acetone (µg/L)		<10.0				•	<10.0				<10.0	<10.0				<10	<10		
Acrylonitrile (μg/L)		<100.0				•	<20.0				<20.0	<20.0					<20		
Benzene (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Bromochloromethane (μg/L)		<5.0					<5.0				<5.0	<5.0					\$		
Bromodichloromethane (μg/L)		<5.0									<5.0	<5.0				\$	\$		
Bromoform (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Bromomethane (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Carbon disulfide (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Carbon tetrachloride (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Chlorobenzene (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Chloroethane (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Chloroform (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Chloromethane (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
cis-1,2-Dichloroethene (µg/L)		<5.0					<5.0				<5.0	<5.0					۵		
cis-1,3-Dichloropropene (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Dibromochloromethane (μ g/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Dibromomethane (µg/L)		<5.0					<5.0				<5.0	<5.0					\$		
Ethyl benzene (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Iodomethane (μg/L)		<5.0				•	<20.0				<20.0	<10.0					<10		
Methylene Chloride (µg/L)		<5.0				•	<10.0				<10.0	<10.0				<10	<10	•	
Styrene (µg/L)							<5.0				<5.0	<5.0				\$	\$		
Tetrachloroethene (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
Toluene (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
trans-1,2-Dichloroethene (μ g/L)		<5.0					<5.0				<5.0	<5.0					\$		
trans-1,3-Dichloropropene (µg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
trans-1,4-Dichloro-2-butene (µg/L)		<10.0				•	<50.0				<50.0	<10.0					<10		
Trichloroethene (μg/L)		<5.0				·	<5.0				<5.0	<5.0				\$	\$		
Trichlorofluoromethane (µg/L)		<5.0				·	<5.0				<5.0	<5.0					\$		
Vinyl Acetate (μg/L)		<50.0				•	<20.0				<20.0	<20.0					<20		
Vinyl Chloride (µg/L)		<5.0				·	<5.0				<5.0	<5.0				\$	\$		
Xylenes (Total) (μg/L)		<5.0					<5.0				<5.0	<5.0				\$	\$		
1,2-Dichloroethene - Total																\$			

Notes

1) < indicates not detected at or above the listed value

2) NS indicates that no standard has been promulgated.

3) * indicates that the sum of these two analytes may not exceed 500 µg/L.

4) GV indicates that the value listed is a guidance value rather than a standard.

5) Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.

6) ** Indicates standard applies to the sum of the isomers

City of Rome Tannery Road Landfill MW-9S Ground Water Analytical Data

12/13/06 NYSDEC Ground Water Standard	375 NS 7.11 6.5 - 8.5 9.3 NS					95 NS 3 250			3.8 250 230 NS					22 NS C0.05		1000			<0.01 0.025			34 20		NS	0.003	0.025	(A5) £00'0	0.05	0.05	SN	0.2	0.0007	1:0	0.05	0.0005 (GV)	NS	2	\$	S.	٧.	- 1	n v	700	40.0
9/26/06	391 7.83 12.5	•	61.0	8.9	<0.1 2.1	3,6	}	<0.1	2.3	24.7	330	360	<u> </u>	25 <0.002		10.07	011	21	0.021	24	0.026	37																						
90/82/9	350 8.1 14	37	0.24	<4.0	<0.10	3.1	;	<0.10	5.4	257	290	400	0.63	26 <0.002		0100>	120	12	0.014	56	1.4	34																						
3/28/06	390 7.7 7	480	0.18	<u>^</u>	<0.1	3.4	1,500	0.1	7.5	<0.01	300	210	0.38	22 <0.002	,	\$ 60.5 5 60.5	65	13	<0.01	12	0.76	51		6	<0.01	<0.01	<0.2	0.017	<0.01	<0.01	0.033	<0.0002	20.02	<0.01	<0.01	0.017	0.045	⊽	. △	₹	⊽ .	√ √	7 7	_
12/6/05	380 6.7 8	270	0.18	\$	0.1	3.4	800	7.0	3.3	0.0>	340	290	0.59	25 <0.002	,	S 6	68	12	<0.01	91	0.86	3.1 26		5.6	<0.01	0.029	0.11	0.012	<0.01	<0.01	0.02	<0.0002	2000	0:05	<0.01	0.012	0.039	⊽	₹ ₹	∇	₹ '	⊽ ₹	∵ ;	_
9/77/05	404 7.5 12	706	0.26	6.2	<0.1	3 6	; ;	V 0.1	220	077	310	250	0.59	25 <0.002		100/	75	14	0.043	15	0.89	30																						
97879	404	614	0.31	4.6	0.1	65 4.2	!	0.13	3.2	217	310	120	0.89	28 <0.002		100	41	3.2	0.046	5.2	0.35	£ 2																						
3/17/05	308 7.57 6.6	512	0.24	4.3	<0.100	3.1	i	0.15	2.3	077	350	440	96:0	26 <0.010		9100	120	23	<0.010	33	1.6	84																						
12/16/04	410 7.3	290	<0.03	4.8	<0.1	98 -	;	0.15	۳ <u>۳</u>	01	290	011	0.64	28 <0.002		5	38	0.75	<0.01	3.3	0.25	47																						
9/28/04	394 6.95	331	0.48	4.7	<0.1	۶ ۳	00/	<0.1	1.9	217 0.01	370	280	0.78	24 <0.002		0.027	84	6.1	<0.01	16	0.96	33		1.4	<0.01	<0.01	<0.2	10:05 0:01	<0.01	<0.01	<0.01	<0.0002	0.014	10:0>	<0.01	<0.01	0.022	⊽	₹ ▽	⊽	⊽	⊽ ;	√ '	`
6/22/04	365 6.78	666	0.64	12	<0.1	120	Pi	0.16	3.5	240	250	400	- :	30 <0.002		5	120	13	0.017	76	1.4	S. 53																						
3/23/04	413 6.98 5.2	492	0.56	<4.0	<0.1	120	3	<0.1	5.9	077	360	730	= 1	25 <0.002	:	\$.05	10.0>	1.9	0.043	99	ب د	7.8																						
Parameter	Field Parameters Conductivity (µmhos/cm) pH (s.u.) Termerature (deg C)	Turbidity (NTU)	Part 360 Leachate Indicator Parameters Ammonia-Nitrosen (mod.)	Biochemical Oxygen Demand (BOD5) (mg/L)	Bromide (mg/L)	Chemical Oxygen Demand (mg/L)	Color (Pt-Co)	Nitrate-Nitrogen (mg/L)	Sulfate (mg/L)	lotal Alkalinity (mg/L) Total Cvanide (mo/l.)	Total Dissolved Solids (mg/L)	Total Hardness (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Total Organic Carbon (mg/L) Total Phenols (me/L)	Part 360 Routine Metals	Boron (mg/L)	Cadmium (mg/L)	Fron (mg/L)	Lead (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Potassium (mg/L) Sodium (mg/L)	Part 360 Additional Baceline Metals	Aluminum (mg/L)	Antimony (mg/L)	Arsenic (mg/L)	Barium (mg/L)	Chromium (mg/L)	Chromium, Hexavalent (mg/L)	Cobalt (mg/L)	Copper (mg/L)	Mercury (mg/L)	Nickel (mg/L)	Silver (mg/L.)	Thallium (mg/L)	Vanadium (mg/L)	Zinc (mg/L)	Part 360 Volatile Organics 1.1.1.2-Tetrachloroethane (ug/L)	1,1,1,7-1 curation of $1,1,1$ -Trichloroethane ($1,1,1$ -Trichloroetha	1,1,2,2-Tetrachloroethane (µg/L)	1,1,2-Trichloroethane (µg/L)	1,1-Dichloroethane (µg/L)	1,1-Dichloroethene (µg/L)	1.3.3 Trichloromona (mg/l)

City of Rome Tannery Road Landfill MW-9S Ground Water Analytical Data

...

Parameter	3/23/04	6/22/04	9/28/04	12/16/04	3/22/05	6/28/05	50/17/6	17/6/05	3/28/06	9/28/06	9/26/06	12/13/06	Ground Water
								,					Standard
1,2-Dibromoethane (EDB) (µg/L)			⊽ :					⊽ ;	⊽ :				ı, c
1,2-Lychlocobenzene (µg/L)			₹ ₹					7 7	7 7				٠ <i>و</i>
			7 7					7 7	; T				3 -
1.4-Dichloropropane (µg/L)			,					7	7				- (*)
4-Dichlorokenzene (n.g.)			~					7	~				. "
1, The control of the			, ot				,	7 ∜7	7 70				50 (GV)
2-Hexanone (up/l.)			<10					۵.	, Δ				50 (GV)
4-Methyl 2-pentanone (ug/L)			¢10					. \$, Δ				NS
Acetone (µg/L)			×10					<10	\$				50 (GV)
Acrylonitrile (µg/L)			\$					<20	<20				. . .
Benzene (µg/L)			~					⊽	7				-
Bromochloromethane (μg/L)			~					⊽	7				\$
Bromodichloromethane (μg/L)			7					⊽	7				50 (GV)
Вготоботп (µg/L)			⊽					⊽	⊽				50 (GV)
Bromomethane (μg/L)			~					⊽	⊽				\$
Carbon disulfide (µg/L)			⊽					₹	⊽				(AS) 09
Carbon tetrachloride (µg/L)			7					7	⊽				\$
Chlorobenzene (μg/L)			7					7	₹				s
Chloroethane (µg/L)			⊽					⊽	⊽				S
Chloroform (µg/L)			⊽					⊽	₩				7
Chloromethane ($\mu g/L$)			₹					⊽ '	⊽				\$
cis-1,2-Dichloroethene (µg/L)			7					▽ '	⊽ '				\$
cis-1,3-Dichloropropene ($\mu g/L$)			⊽						⊽				0.4**
Dibromochloromethane (μg/L)			▽ '					▽ '	⊽ '				50 (GV)
Dibromomethane (µg/L)			⊽ .					⊽ '	⊽ .				'n
Ethyl benzene (µg/L)			⊽ :					⊽ '	⊽ '				'n
lodomethane (μg/L)			0I>					\$	\$				so '
Methylene Chloride (µg/L)			01>					٠.	⊽ '				so s
Styrene (µg/L)			⊽ 7					⊽ ;	⊽ ₹				v 4
l etrachioroethene (μg/L)			⊽ ₹					₹ 7	⊽ .				n •
Toluene (µg/L)			⊽ ₹					⊽ ₹	⊽ ₹				n 4
rians-1,2-Dictionoemene (µg/L)			7 7					7 3	7 7				
trans-1,3-Dichloropropene (µg/L)			7 5					7 5	7 *				
Tricklonethene (119/1.)			₹ ⊽					· ~	, △				· v
Trichlorofluoromethane (µg/L)			⊽					~	~				\$
Vinyl Acetate (µg/L)			\$					\$	۸.				NS
Vinyl Chloride (µg/L)			⊽					⊽	7				2
Xylenes (Total) (µg/L)			⊽					~	~				•
								•	•				,

1) < indicates not detected at or above the listed value Notes

2) NS indicates that no standard has been promulgated.

3) * indicates that the sum of these two analytes may not exceed 500 µg/L 4) GV indicates that the value listed is a guidance value rather than a stan 5) Values in bold exceeded the applicable NYSDEC ground water standa 6) ** Indicates standard applies to the sum of the isomers

Farameter	3/28/02	6/17/02	9/24/02	12/18/02	3/12/03 6	6/25/03 9	9/17/03 12	12/16/03 3/2	3/23/04 6/	6/22/04 9/2	9/28/04 12/16/04		3/22/05 6/2	6/28/05	/21 50/ <i>TZ</i> /6	12/6/05 3/2	3/28/06 6/28/06	90/92/6 90/	6 12/13/06	NYSDEC Ground Water Standard	•
Field Parameters Conductivity (µmhos/cm) pH (s.u.) Temperature (deg C) Turbidity (NTU)	4,940 6.48 12.8 356	4,970 6.63 15.2 183	5,440 7 17.2 585	3,780 10.4 164	4,050 6.6 7.6 207	4,810 6.5 19.7 383	5,600 4 6.78 15.8 47	4,300 4, 6.4 6 9 1 430]	4,810 5 6.59 6 12.8 189	5,990 3, 6.14 6 16 11	3,480 4,743 6,22 6.5 16.8 10 73 189		5,320 4, 7.03 6 13 246 2	4,787 4,5 6.57 6 1.1 236 1	4,570 3,6 6.99 6 15.5 1	3,600 5,8 6,3 5,8 12 1 68 16	5,800 6,400 7 8 14 18 168 600	2,110 7.17 8 15.1 0	5,160 6.69 13.5 81	NS 6.5 - 8.5 NS 5	
Part 360 Leachate Indicator Parameters Ammonia-Nitrogen (mg/L) Biochemical Oxygen Demand (BOD5) (mg/L) Bromide (mg/L) Chemical Oxygen Demand (mg/L) Chloride (mg/L) Color (Pt-Co) Nitrate-Nitrogen (mg/L) Sulfate (mg/L) Total Alkalinity (mg/L) Total Cyanide (mg/L) Total Lyanide (mg/L) Total Hardness (mg/L) Total Dissolved Solids (mg/L) Total Dissolved Solids (mg/L) Total Displayen (mg/L) Total Displayen (mg/L) Total Part 360 Routine Metals	200 38 2.6 420 440 1,400 <0.1 2.9 1,700 <0.01 1,900 580 290 160	260 24 3 250 250 430 0.16 2.2 1,900 2,100 580 220 150	270 46 3.9 3.200 610 0.17 3.6 2,200 2,500 690 320 230 0.015	200 34 1.9 270 380 380 <0.1 2.2 1,500 480 220 99	280 30 2.1 340 200 200 40.1 1,600 1,600 550 280 120 120	280 20 3.2 490 440 600 6.15 2.5 1,800 750 300 120 120 6.015	270 36 3.8 640 650 0.76 <1 2,000 1 790 330 230 0.013	230 43 2.3 2.70 260 4 0.54 <2.3 1,500 2,430 350 310 110 100 1,100 100,110	380 28 3.7 300 450 <0.11 <0.2,000 2,000 2,000 330 180 180 0.017 0	350 1 350 1 37 32 33 33 32 4.2 2 470 2 600 2 600 2 2,100 1,2 2,100 1,3 380 2 240 1,0 60.021 0	160 260 31 41 2.5 3.3 290 490 280 410 950 0.2 0.2 0.28 2.1 2 1,900 1,900 480 520 260 220 75 160	•	 290 3 4.2 670 4.2 670 4.2 560 4 560 4 4.2 560 4 4 560 6 7 8 9 9<	300 3 31 2.7 440 4 410 4 410 4 2.500 1; 670 2, 670 4 670 4 670 670 600	300 2 36 3 2 430 2 470 3 470 3 60 4 60 4 60 4 60 1,200 1,4 450 6 260 2 120 1,0	230 34 24 3 224 3 24 3 240 24 240 25 340 55 500 115 60.01 60 60.01 60 24 60.01 60 24 60.01 60 24 600 74 600	340 330 39 36 17 <0.10 240 71 570 600 1,500 <0.10 2.5 2.8 2,400 2,700 <0.01 2,600 2,600 740 690 330 390 210 270	0 160 5 36 10 1.6 1 200 0 220 10 <0.1 8 2.2 00 1,400 00 1,200 0 460 0 150 0 150	280 35 5.9 560 590 60.1 61 700 700 800 280 180 180	2 NS NS 250 15 10 250 NS 0.2 800 NS NS NS NS NS NS	
Boron (mg/L) Cadmium (mg/L) Calcium (mg/L) Iron (mg/L) Magnesium (mg/L) Manganese (mg/L) Potassium (mg/L)	2.5 <0.01 120 62 62 0.049 68 1.3 190 430	2.7 <0.01 120 60 60 0.031 67 1.5 200 460	3.7 <0.01 140 70 0.04 83 2.4 340 600	 <0.01 100 48 0.022 53 1.6 180 250 	 <0.01 110 58 0.041 65 1.5 270 	3.4 <0.01 · 150 • 61 (0.01 · 0	4.4 <0.01 150 68 0.014 0 2.7 410 630	1.6 <0.01 <0.01 <0.002 <0.02 0.022 0.022 50 50 50 60 60 60 60	3.8 <0.01 < <0.028 < 96 < 96 < 350 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 <	 <0.01 <0.01 47 47 <0.01 <0.01 <0.01 330 330 2 	1.7 <0.01 110 97 49 35 <0.01 53 67 1.6 0.85 320 330 470		60.01 < 45 45 6.017 < 92 92 1 0 1 0 580 4 6.017 < 6 92 93 94 95 96 97 98 98 98 98 98 98 98 98	 <0.01 <0.01 35 35 <0.01 0.62 320 2410 	 <0.01 <0.01 <0.1 45 3 <0.26 <0.0 <0.4 <0.5 <0.6 <0.6	2.3 3.4 4.1 1.20 0.014 0.014 0.016 0	3.8 <0.01 120 120 130 35 49 0.03 0.03 0.036 110 91 0.55 1.2 280 370 490	110 <0.01 0 100 36 0.021 1 51 1 51 2 0.029 0 160	 <0.01 130 16 <0.01 110 0.26 240 580 	1 0.005 NS 0.3* 0.025 35 (GV) 0.3* NS	
Part 360 Additional Baseline Metals Aluminum (mg/L) Antimony (mg/L) Arsenic (mg/L) Barium (mg/L) Beryllium (mg/L) Chromium, Hexavalent (mg/L) Chopet (mg/L) Copper (mg/L) Nickel (mg/L) Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L) Yanadium (mg/L) Zinc (mg/L)	2.4 <0.01 0.02 <0.2 <0.01 0.031 <0.01 0.062 0.062 0.062 <0.01 <0.01 <0.01 <0.01				V = 1 V = 1	0.9 <0.01 0.038 0.32 <0.01 0.019 <0.019 <0.017 0.013 <0.0013 <0.0049 <0.01 <0.011 <0.012					0.28 0.012 0.022 0.25 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.024 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01				0.96 <0.01 0.03 0.47 <0.01 0.017 0.013 0.012 0.029 <0.010 <0.013 0.013 0.013 0.013 0.029 0.029 0.029 0.029	8	1.4 <0.01 0.75 <0.01 0.02 <0.01 0.02 0.03 0.046 0.013 <0.01 0.025 0.046			NS 0.003 0.025 1 0.003 (GV) 0.05 0.05 NS 0.01 0.01 0.01 0.05 0.007 0.01 0.007 0.007	
Part 360 Volatile Organics 1,1,1,2-Tetrachlorocthane (μg/L) 1,1,1-Trichlorocthane (μg/L) 1,1,2-Trichlorocthane (μg/L) 1,1,2-Trichlorocthane (μg/L) 1,1-Dichlorocthane (μg/L) 1,1-Dichlorocthene (μg/L) 1,1-Dichlorocthene (μg/L)	2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,				2 2 2 2 2 2	22222				V V V V V	\triangledown \triangledown \triangledown \triangledown \triangledown				V V V V V	22222 222222	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

		40,07 <i>/</i> 6 40,777,0	12/10/04 3/22/03	C0.007/0 C1	2011716	50/0/71	20,007/6	00000	DOIST PAT DO NOTICE	Ground Water
	\$	⊽				\$	\$			0.04
	, &	₹ ▽				, Δ	. \$			0.04
	\$	₹				\$	\$			5
	\$	⊽				\$	۵			3
\$	\$	⊽				\$	۵			9.0
\$	⋄	⊽				\$	۵.			- '
	\$ ∶	3.7				\$;	۵ ر			3
01 >	01>	ol>				<20	<\$0			50 (GV)
<10	01>	01>				² 70	<\$0 5			50 (GV)
	<10	01>				<20	<\$0			SNS
28	13	01>				9 9	<\$0 555			50 (GV)
	<20	\$				×100	<200			Λ·
5.7	\$	2				6.2	7.7			- '
	⋄	⊽				۵	\$			S
\$	⋄	⊽				\$	۵.			50 (GV)
\$	⋄	⊽				۵	\$			50 (GV)
\$	\$	⊽				\$	\$			\$
\$	\$	⊽				\$	\$			60 (GV)
\$	⋄	⊽				٧.	۵,			S
\$	\$	4.1				5.3	۵.			S
33	22	22				24	20			so i
\$	\$	⊽				٨	۵.			-
\$	\$	⊽				\$	ک			S ·
	\$	⊽ '				\$	\$.			· ·
\$	\$	⊽				\$	\$ '			0.4**
\$	\$	⊽ '				\$	\$ '			50 (GV)
	\$	▽ .				. Δ	. ⇔			n 4
\$	\$:	⊽ :				≎ 8	?			n 4
	01>	01>				07.7) (n 4
01>	0 >	OI>				07>	? '			n v
۶ ۲	Ç 4	₹ ₹				7 4	7 4			· •
7 4	7 4	7 7				7 4	7 4			
\$	٠ ٠	⊽ -				? 4	Ç 4			n v
,	. ≎	⊽ .				0 4	o 4			
\$	\$	√ '				\$	\$;			0.4
	<10	<10				<20	<\$0			\$
\$	⋄	⊽				\$	۵.			vo i
	\$	⊽				\$	\$			\$
	<20	\$				20	<50			NS
\$	\$	⊽				\$	\$			2
96	28	63				69	70			2
										•

1) < indicates not detected at or above the listed value
 2) NS indicates that no standard has been promulgated.
 3) * indicates that the sum of these two analytes may not exceed 500 μg/L.
 4) GV indicates that the value listed is a guidance value rather than a standard.
 5) Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.
 6) ** Indicates standard applies to the sum of the isomers

		f				.*	City	City of Rome										
							Leachate Analy	ı annery Koad Landfill Leachate Well LMW-12 Analytical Data	- 8									
Parameter	3/1/99	6/1/9	66/1/6	12/1/99	3/1/00	00/1/9	1/00/1/6		3/1/01 64	6/1/01 9/	9/1/01 12.	12/1/01 3/2	3/28/02 6/1	6/17/02 9/	9/24/02 12	12/18/02	3/12/03	6/25/03
Field Parameters																		
Conductivity (µmhos/cm) pH (s.u.)	3,400	3,430	3,850	3,900	4,470 6,64	4,770	4,560	0		3,820 4,	4,100 5,	5,090 4,7	4,750 4,	4,490 5	5,700	4,430	4,820	4,500
Temperature (deg C)	12.2	17.8	15.3	15	10.9		14.8	9.4	11.7						/·! 17	10 3	0.7	18.7
Turbidity (NTU)	228	368	829	059	351	153	268	180			315 1				350	243	111	253
Part 360 Leachate Indicator Parameters																		
Ammonia-Nitrogen (mg/L)	150	120	170	. 160	210	760	250	250	200						220	200	240	280
Biochemical Oxygen Demand (BOD5) (mg/L)	17	% 6	9 ?	91 ;	34	37	30	29							46	37	28	22
Drounde (mg/L) Chemical Oxygen Demand (mg/L)	1.70	370	0.2 <10.0	5.1 270	4. 47 380	4.8	5.4 440	5.7 440	360	3.9	3.9 4				8. 5	8.8	5.2	4.4
Chloride (mg/L)	280	330	320	330	370	200	410	510						340	470	400 460	320 320	370
Color (Pt-Co) Nitrate-Nitrogen (mg/l.)	<0.2	580	600	600	,	0.31	300					750 15	1500					750
Sulfate (mg/L)	180	7.0	7, 11	7.0 ◇ ?	2 (2	1.9	1.5	CI.0	23	0.20	0.16 <				0.2	0.25	0.28	0.19 23
Total Alkalinity (mg/L)	1400	1600	280	1400	066		0081	•			0			1800	_	1700	1.900	1,800
Total Cyanide (mg/L)	9	<0.01	36,	į			<0.01											<0.01
Total Hardness (mg/L)	13 0 0	1400 620	1030 831	1/50 635	1830 596	2100 540	0061 620	2000	1800	71 0071 620	1700 20			1900 1	1900	1800	1,900	2,000 \$90
Total Kjeldahl Nitrogen (mg/L)	091	180	170	160	200	260	280									220	270	330
Total Organic Carbon (mg/L)	68 8	06	270	107	37.3	140	120		130							081	150	100
Lotal Friends (mg/L)	0.03	0.027	0.034	0.033	0.027		<0.002									.017	<0.002	0.014
Part 360 Metals		!																
Boron (mg/L) Cadmium (mg/L)	0.0058	2.7	>0 00	\$00.00	\$000		3.4			2.3 2						•	•	3.2
Calcium (mg/L)	133	120	172	117	110	93	-	10.01	10.01		<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		10.0≥ 110		•	<0.01 120	<0.01 100	1000
Iron (mg/L)	57.2	54.9	58.4	57.1	51.6											54	52	20
Lead (mg/L) Magnesium (mg/L)	0.0096	0.0061	0.022	0.011	0.012 78	<0.01 75	-	9	<0.01	<0.01 <0						0.018	0.015	<0.01
Manganese (mg/L)	0.447	,0.8 0.356	0.73	63.4 0.39	0.39		84 0.36	89 0.37				80 88		98	88	90	82	83
Potassium (mg/L)	167	061	190	091	180	260			190 2	210 20	200 2					210	250	320
Sodium (mg/L)	246	285	310	240	280	350	340									430	340	360
Part 360 Additional Baseline Metals																		
Aluminum (mg/L)		0.854					2.1				1		7					0.74
Antimony (mg/L) Arsenic (me/L)		<0.015				•	0.031				♥ 3	<0.01 <0.01	TO 9					0.01
Barium (mg/L)		0.351				•	0.4				<u> </u>		7 5					0.041
Beryllium (mg/L)		<0.003				v	<0.01				, &	<0.01	01					<0.01
Chromium (mg/L)		<0.005				•	0.019				0.0		01					0.015
Cobalt (mg/L)		<0.02				v	<0.01 0.014				₽ 2	<0.01 <0.0	10 17					<0.01
Copper (mg/L)		<0.01				,	0.014				₹ \		5 6					0.017 <0.01
Mercury (mg/L)		<0.0002				∀ '	<0.0002				0.0	0.0003 0.005	05					<0.0002
Nickel (mg/L) Selenium (mg/L.)		<0.03					0.039				0.0		24					0.036
Silver (mg/L)		<0.01				v	<0.01				₹ 5		10 17					<0.01 <0.01
Thallium (mg/L)		<0.01				V	0:01 ⊄0:01				? ∀		01					0.014
Vanadium (mg/L) Zinc (mg/L)		<0.3					0.02				0.0	0.02 0.012	12					0.023
		8					0.13				0.0		77					0.046
Part 360 Volatile Organics		0.50					9				•							,
1,1,1,1-Trichloroethane $(\mu g/L)$		0.5					<5.0 <5.0				∇ ∇	\$.0 \$.0 \$.0	o, c				2	\$ \$
1,1,2,2-Tetrachloroethane (µg/L)		<5.0				·	<5.0						0				۵, ۵	. &
1,1,2** illealiol velileile (#8 5.)		?					<5.0				♥		0.				\$	\$

3/12/03 **δ δ** 8 8 2 2 δ $\lambda \lambda \lambda$ \$ δ $\Delta = \Delta$ 12/18/02 9/24/02 6/11/02 3/28/02 \$\frac{1}{2}\text{0.0} \\ \frac{1}{2}\text{0.0} \\ \frac{1}{2}\text{0.0 12/1/01 \$2 \cdot \cd 9/1/01 6/1/01 3/1/01 **Analytical Data** 9/1/00 <5.0
<10.0
<10.0
<10.0
15
43
<5.0</pre> \$5.00 6/1/00 3/1/00 12/1/99 9/1/6 -1 <10.0 <10.0 <10.0 <10.0 <100.0 \$5.0 \$5.0 \$5.0 \$5.0 \$0.0 \$0.0 2 <5.0 <5.0 <5.0 <0.5 <0.0 <0.0 <5.0 <5.0 15 6/1/9 5.0 <5.0 <10.0 10 5.0 <5.0 <\$0.0 3/1/99 1,2-Dibromo-3-chloropropane (µg/L) trans-1,4-Dichloro-2-butene (μg/L) trans-1,3-Dichloropropene (μg/L) 1,2-Dibromoethane (EDB) (µg/L) cis-1,3-Dichloropropene (μg/L) trans-1,2-Dichloroethene (μg/L) Trichlorofluoromethane (µg/L) 1,2,3-Trichloropropane (µg/L) Bromodichloromethane (μg/L) Dibromochloromethane (µg/L) cis-1,2-Dichloroethene (μg/L) 1,4-Dichloro-2-butene (µg/L) 1,4-Dichlorobenzene (µg/L) 4-Methyl 2-pentanone (μg/L) Bromochloromethane (μg/L) 1,2-Dichloropropane (μg/L) 1,3-Dichlorobenzene (μg/L) 1,2-Dichlorobenzene (µg/L) Carbon tetrachloride (µg/L) Methylene Chloride (µg/L) 1,2-Dichloroethane (µg/L) 2-Butanone (MEK) (µg/L) 1,1-Dichloroethane (µg/L) 1,1-Dichloroethene (µg/L) Tetrachloroethene (μg/L) Dibromomethane (µg/L) Bromomethane (μg/L) Carbon disulfide (μg/L) Trichloroethene (μg/L) Chloromethane (µg/L) Xylenes (Total) (µg/L) Chlorobenzene (µg/L) Vinyl Chloride (µg/L) Ethyl benzene (µg/L) Vinyl Acetate (μg/L) Chloroethane (µg/L) lodomethane (µg/L) Acrylonitrile (μg/L) 2-Hexanone (µg/L) Bromoform (µg/L) Chloroform (µg/L) Acetone (µg/L) Benzene (μg/L) Toluene (µg/L) Styrene (µg/L) Parameter

 $\land \ \, \stackrel{\wedge}{\circ} \ \, \stackrel{\vee}{\circ} \ \, \stackrel{\vee}{\circ}$

6/25/03

Tannery Road Landfill Leachate Well LMW-12

City of Rome

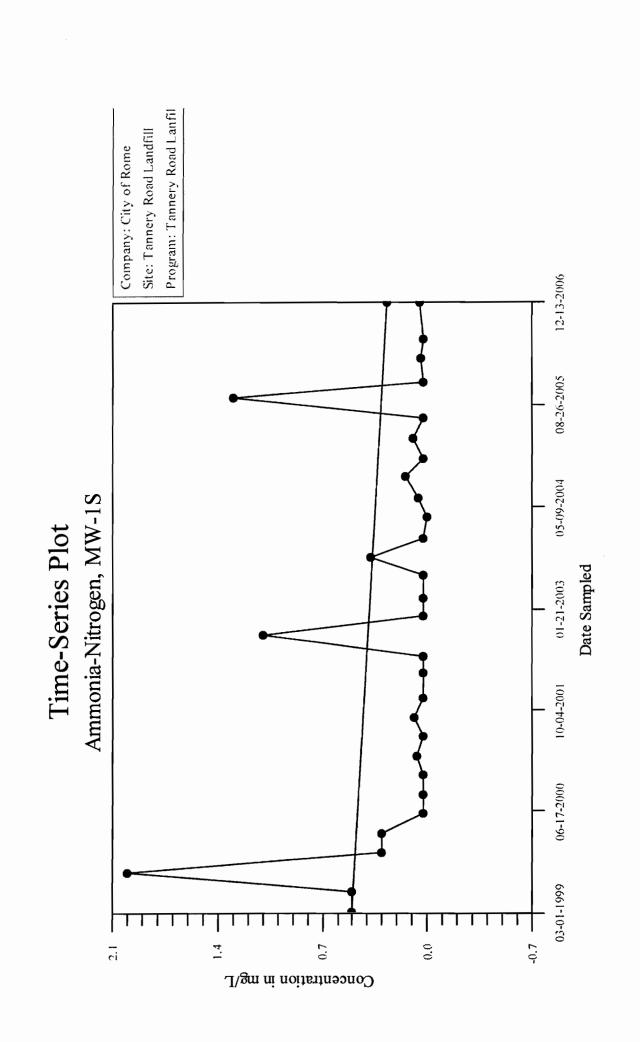
1,2-Dichloroethene - Total

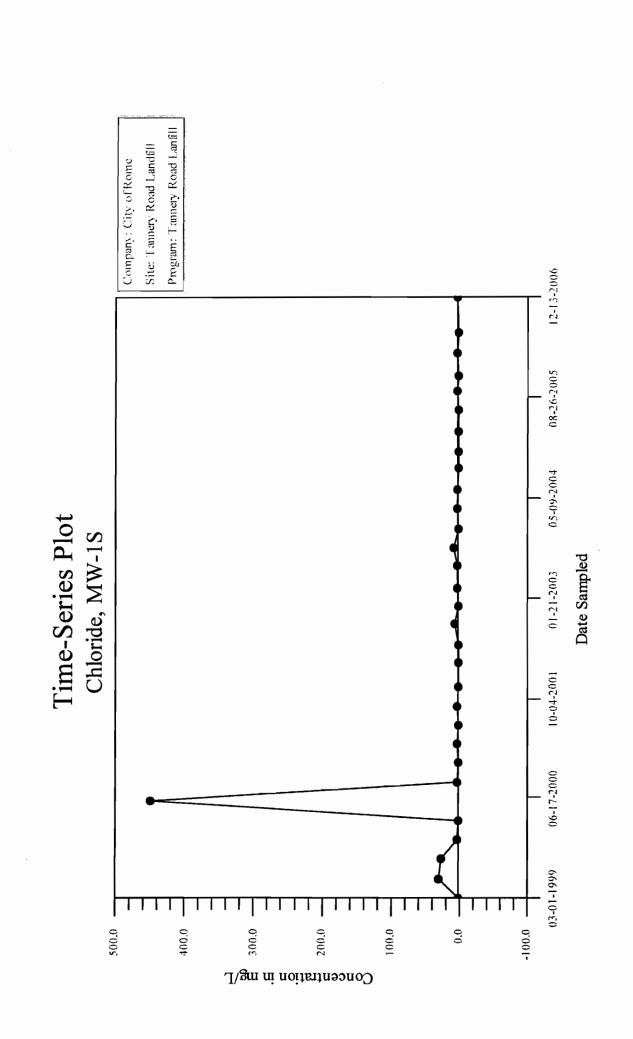
indicates not detected at or above the listed value
 NS indicates that no standard has been promulgated.
 * indicates that the sum of these two analytes may not exceed 500 µg/L.

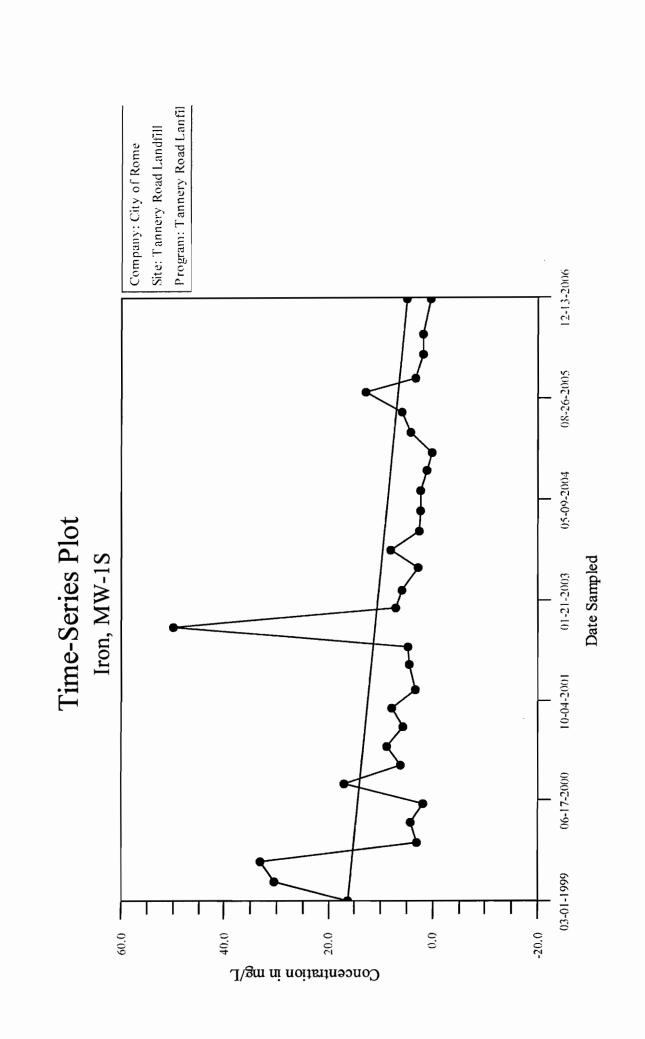
⁴⁾ GV indicates that the value listed is a guidance value rather than a standard. 5) Values in bold exceeded the applicable NYSDEC ground water standard/guidance value.

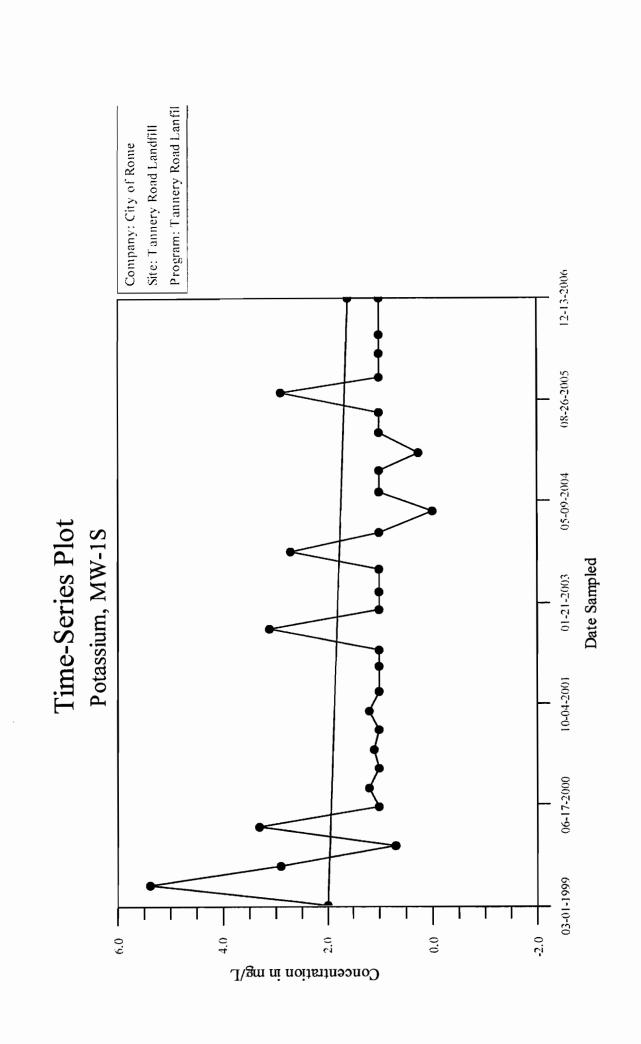
^{6) **} Indicates standard applies to the sum of the isomers

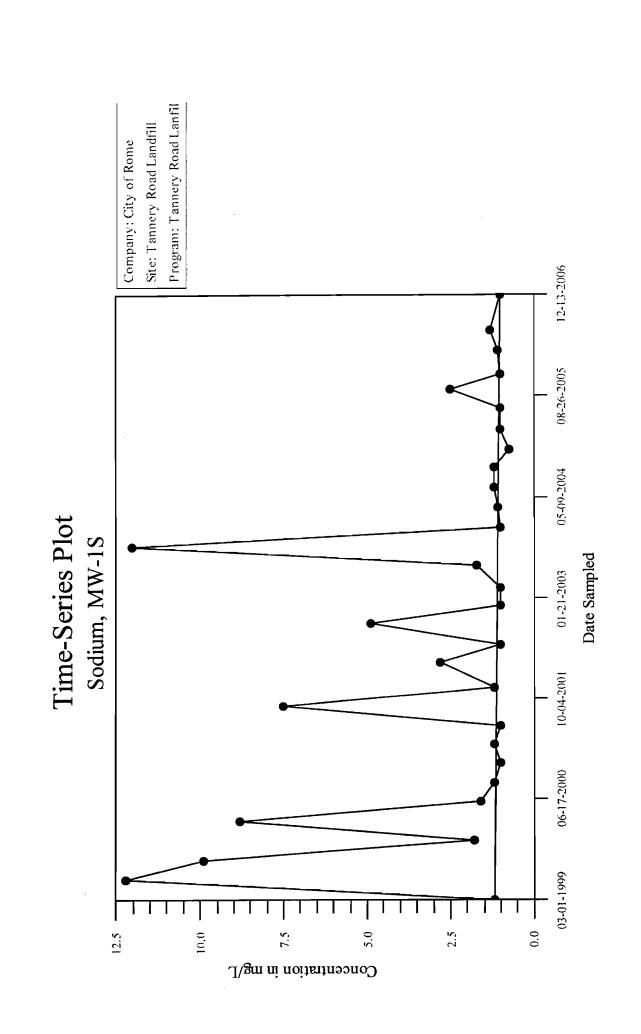
	3/22/05 NYSDEC Ground Water Standard	3,690 NS 6.88 6.5 - 8.5 11.5 NS 41 5	240 2 17 NS 4.4 2 430 NS 350 250 1.5 0.24 10 1.6 250 1,800 NS 0.2 10 0.01 0.013 0.001 	NS 0.003 0.025 1 0.05 0.05 NS 0.00 0.1 0.01 0.01 0.05 0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.06 0.05 0.06 0.07 0.07 0.08 0.09
City of Rome Tannery Road Landfill Leachate Well LMW-12 Analytical Data	12/16/04	4,450 6.7 10 180	290 41 4.8 4.8 480 350 3.67 2.4 1,700 1,600 380 260 150 0.017 <0.01 68 36 <0.23 230 360	
City of Tannery Ro Leachate W Analyti	9/28/04	4,620 6.4 15.5 5	220 35 4.8 4.20 270 1,400 0.2 2.3 1,700 <0.01 1,700 450 230 140 0.019 63 0.28 40 320	0.45 0.014 0.026 0.027 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.024 <0.01 <0.026 0.026 0.026 0.026 0.026 0.026
	6/22/04	4,480 6.68 15.5 15	270 31 5.1 130 500 500 6.24 1,4 1,900 1,700 470 270 130 0.022 44 <0.01 66 0.28 250 320	
	3/23/04	4970 6.57 11.3 83	300 29 5 720 370 0.55 2 1800 460 270 140 0.022 44 0.015 64 0.29 270 330	
	12/16/03	4,600 7.1 10	230 <20 4.8 380 290 290 0.41 2.6 1,700 1,800 540 580 160 0.018 3 <47 0.011 73 0.35 260 300	
	9/17/03	4,550 6.79 15.4 4	270 25 430 350 350 0.19 2.2 1,700 1,800 720 270 150 0.014 4 <0.01 130 67 0.018 98 98 947 280	
	Parameter	Kield Parameters Conductivity (µmhos/cm) pH (s.u.) Temperature (deg C) Turbidity (NTU)	Part 360 Leachate Indicator Parameters Anmonia-Nitrogen (mg/L) Biochemical Oxygen Demand (BOD5) (mg/L) Bromide (mg/L) Chemical Oxygen Demand (mg/L) Chloride (mg/L) Color (Pt-Co) Nitrate-Nitrogen (mg/L) Total Alkalinity (mg/L) Total Cyanide (mg/L) Total Hardness (mg/L) Total Hardness (mg/L) Total Hardness (mg/L) Total Phenols (mg/L) Sodium (mg/L) Lead (mg/L) Manganese (mg/L) Manganese (mg/L) Sodium (mg/L) Sodium (mg/L) Sodium (mg/L)	Aluminum (mg/L) Arsenic (mg/L) Arsenic (mg/L) Barium (mg/L) Chromium (mg/L) Chromium, Hexavalent (mg/L) Cobalt (mg/L) Copper (mg/L) Nickel (mg/L) Selenium (mg/L) Silver (mg/L) Thallium (mg/L) Zinc (mg/L) Li,1,2-Tetrachloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L) 1,1,2-Trichloroethane (µg/L)

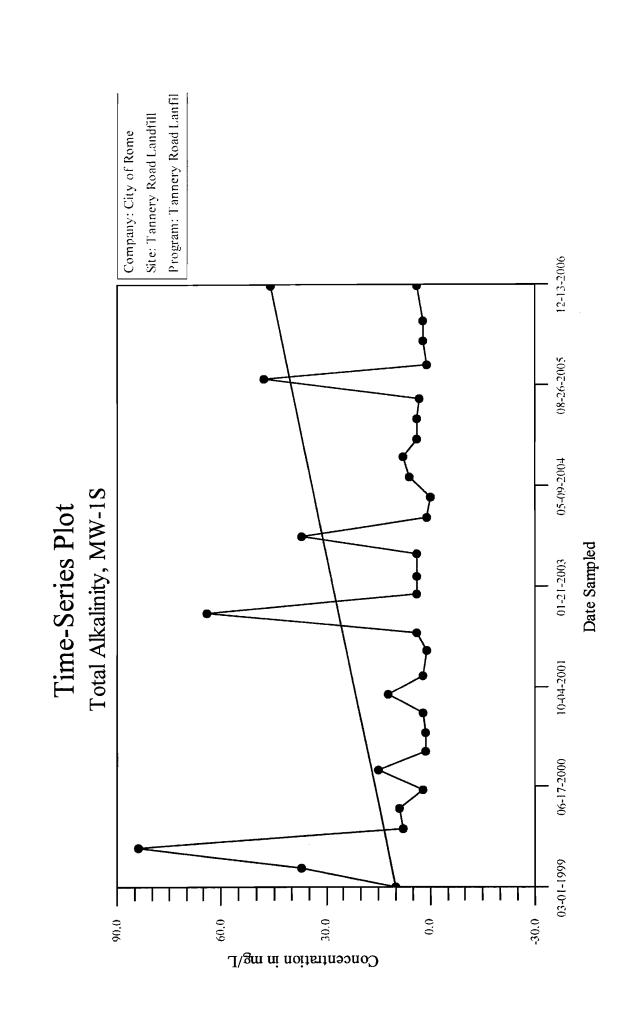

City of Rome Tannery Road Landfill Leachate Well LMW-12 Analytical Data	9/17/03 12/16/03 3/23/04 6/22/04 9/28/04 12/16/04 3/22/05 NYSDEC Ground Water	Stat					₹ .		7 ▽		S .	~ ~		<10									\$										<10				S		S = 01>				7	
	Parameter		1, 1-Dichloroethane (µg/L)	1,1-Dichloroethene (µg/L)	1,2,3-Inchioropropane (µg/L)	1,2-Dibromo-3-chloropropane (µg/L)	1,2-Diotolioculais (EDB) (μ BL)	1,2-Dichloroefizene (µg/L)	1,z-Dictioncentaire (µg/L)	1.3-Dichlorobenzene (ug/L)	1.4-Dichloro-2-butene (µg/L)	1,4-Dichlorobenzene (µg/L)	2-Butanone (MEK) (μg/L)	2-Hexanone (μg/L)	4-Methyl 2-pentanone (μg/L)	Acetone (µg/L)	Acrylonitrile (μg/L)	Benzene (μg/L)	Bromochloromethane (µg/L)	Bromodichloromethane ($\mu g/L$)	Bromoform (µg/L)	Bromometnane (µg/L) Carbon disulfide (u.g.f.)	Carbon tetrachloride (ug/L)	Chlorobenzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (μ g/L)	cis-1,3-Dichloropropene (µg/L)	Dibromochloromethane (µg/L)	Ethyl benzene (µg/L)	Iodomethane (µg/L)	Methylene Chloride (μg/L)	Styrene (µg/L)	Tetrachloroethene (μ g/L)	Toluene (μg/L)	trans-1,2-Dichloroethene (μg/L)	trans-1,3-Dichloropropene (μg/L)	trans-1,4-Dichloro-2-butene (μg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (μg/L)	Vinyl Acetate (μg/L)	Vinyl Chloride (μ g/L)	Xylenes (10tal) (μg/L)

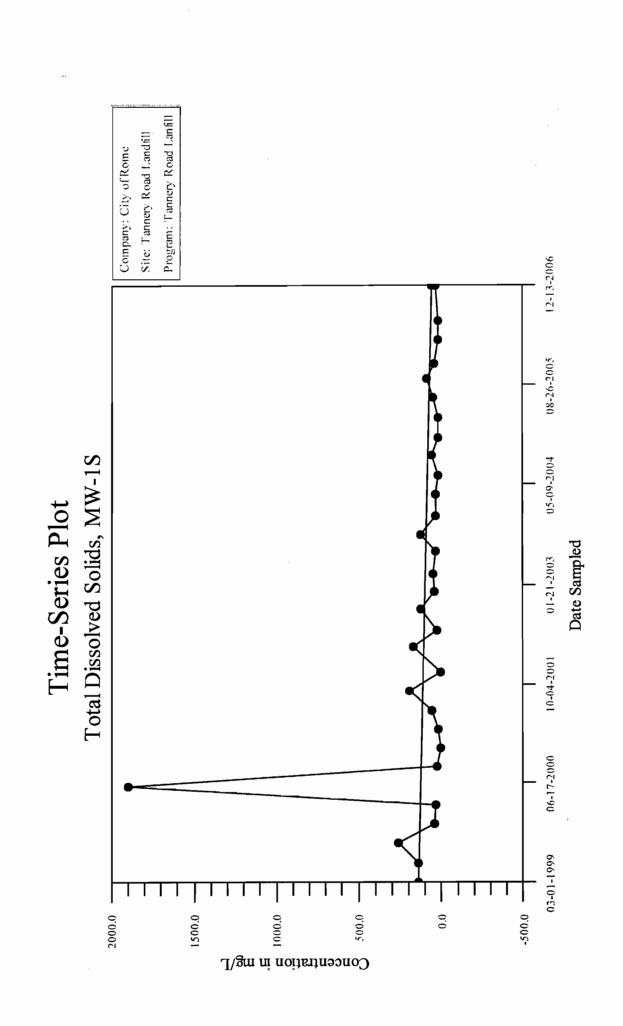

1,2-Dichloroethene - Total

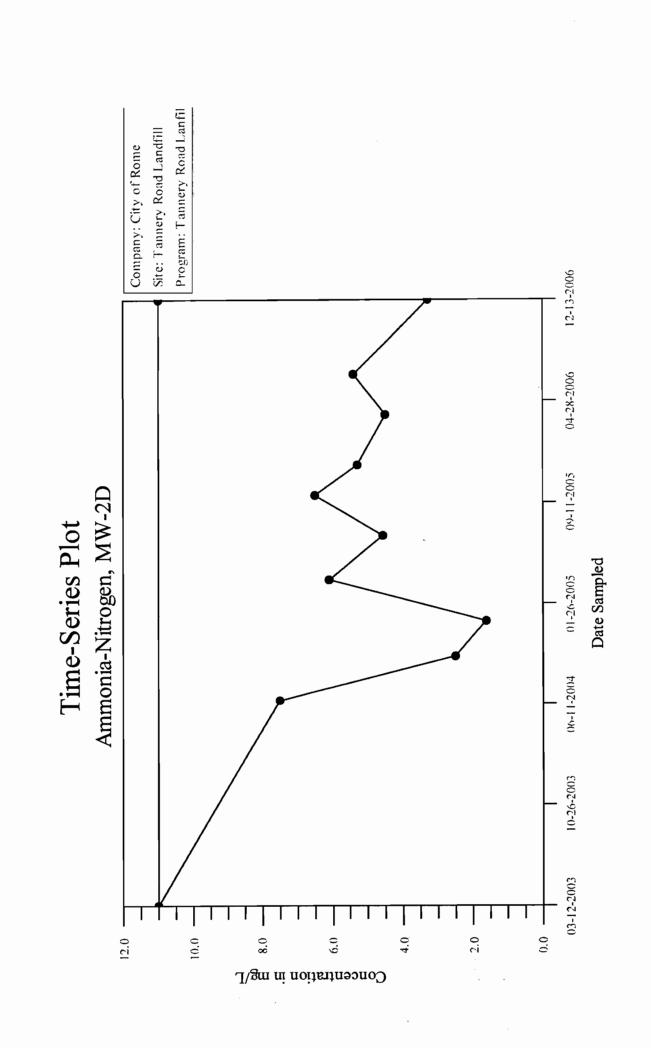

Notes

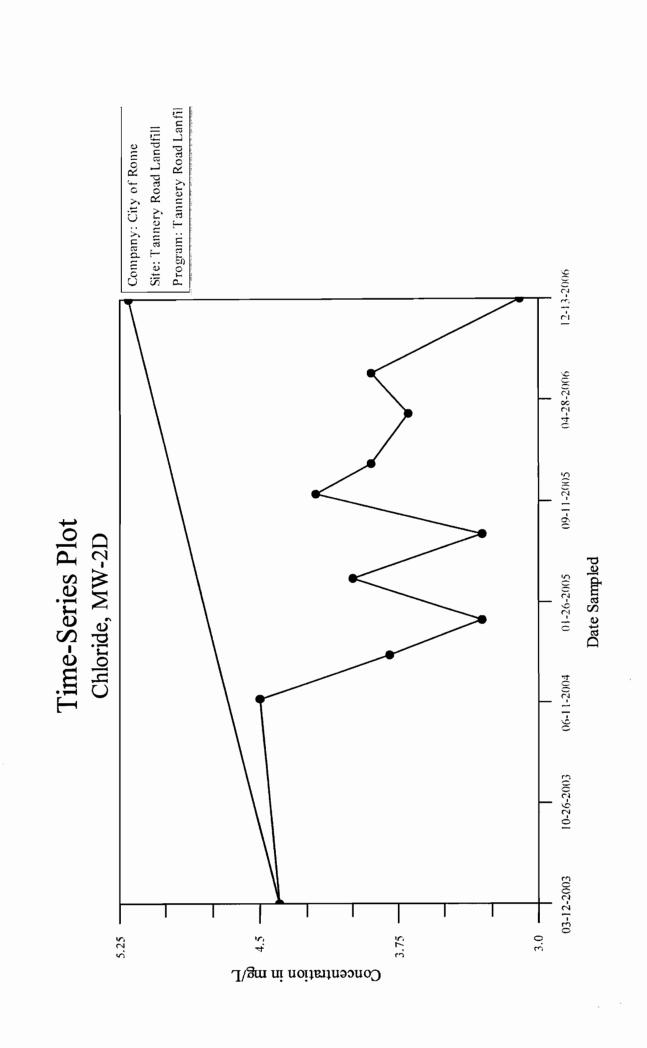

APPENDIX B

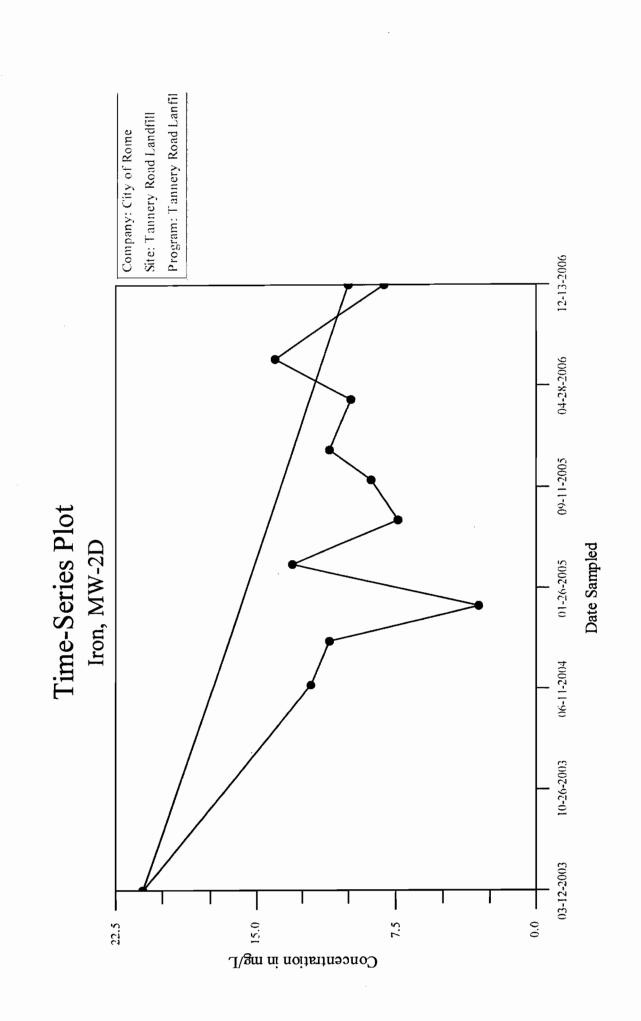

MONITORING WELL AND LEACHATE WELL TIME SERIES CONCENTRATION GRAPHS

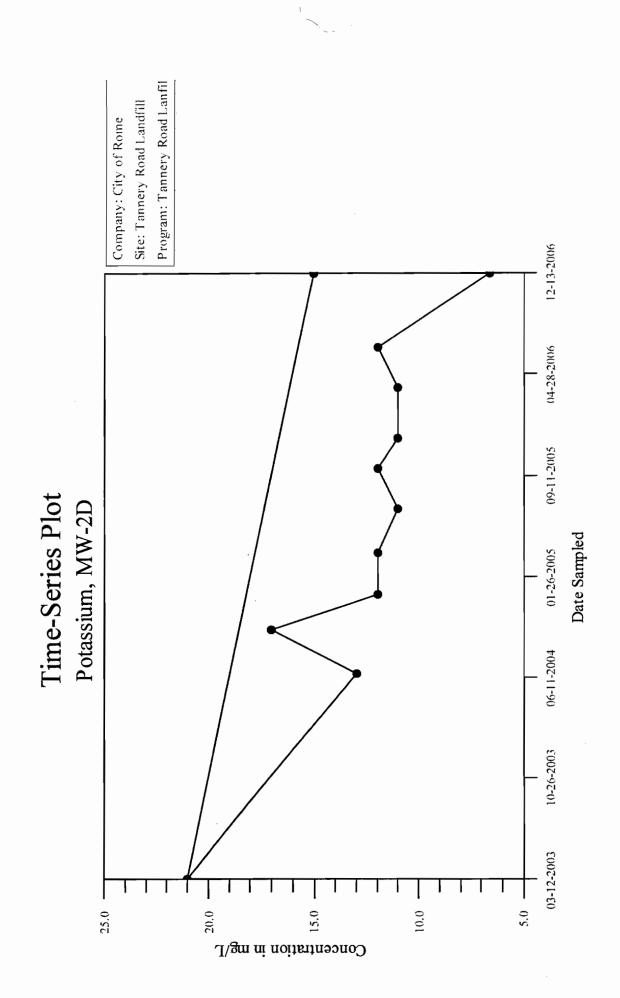


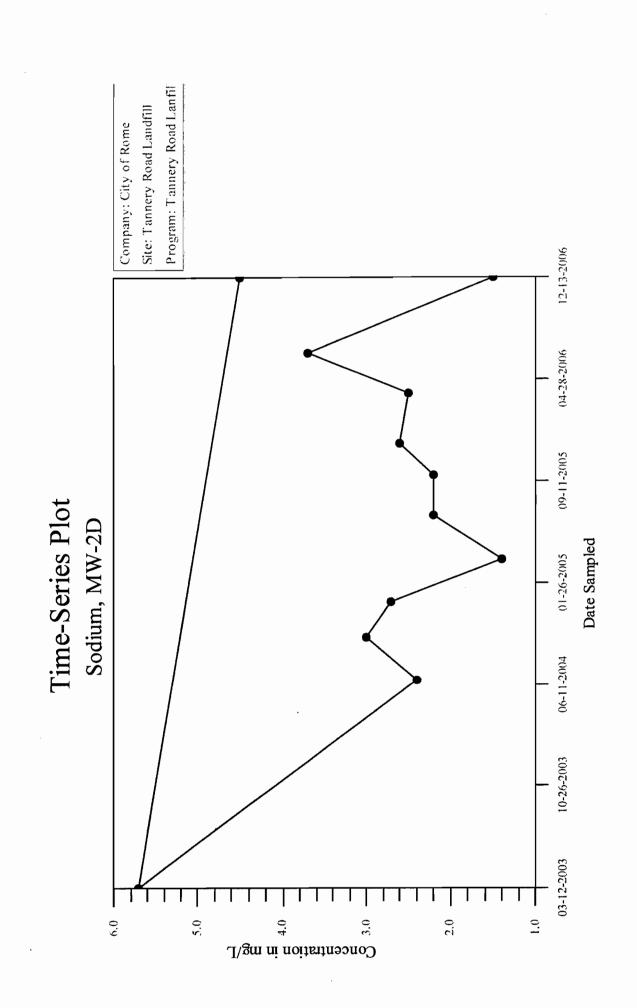


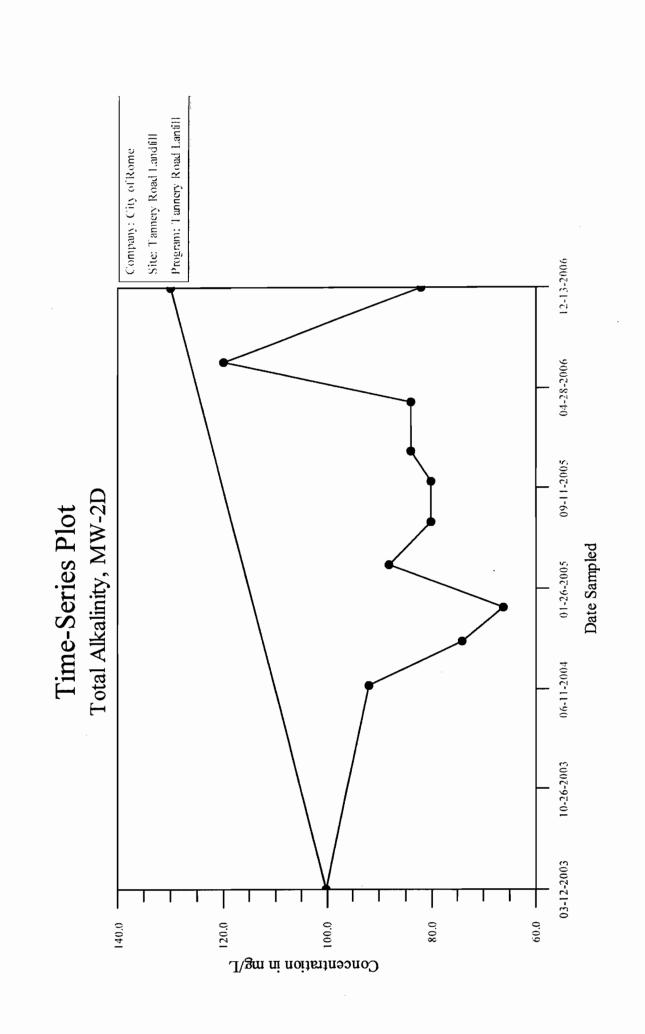


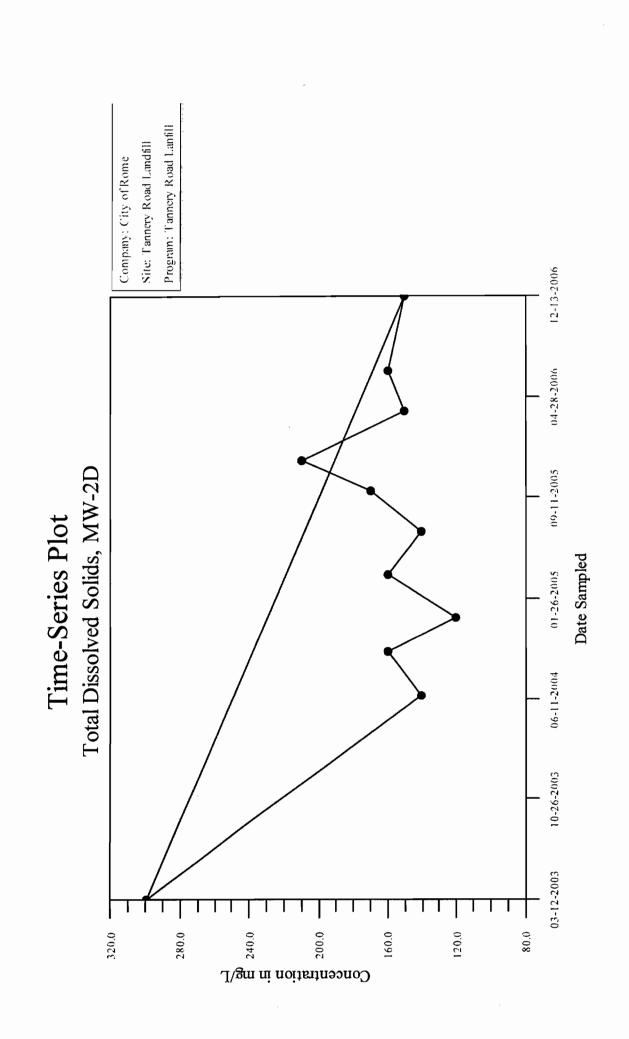


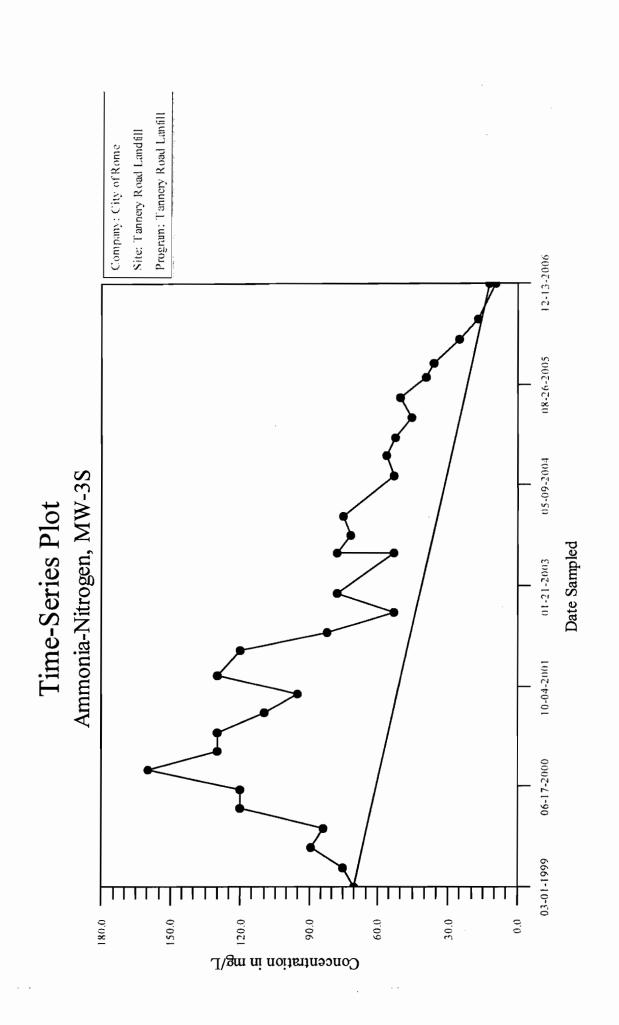


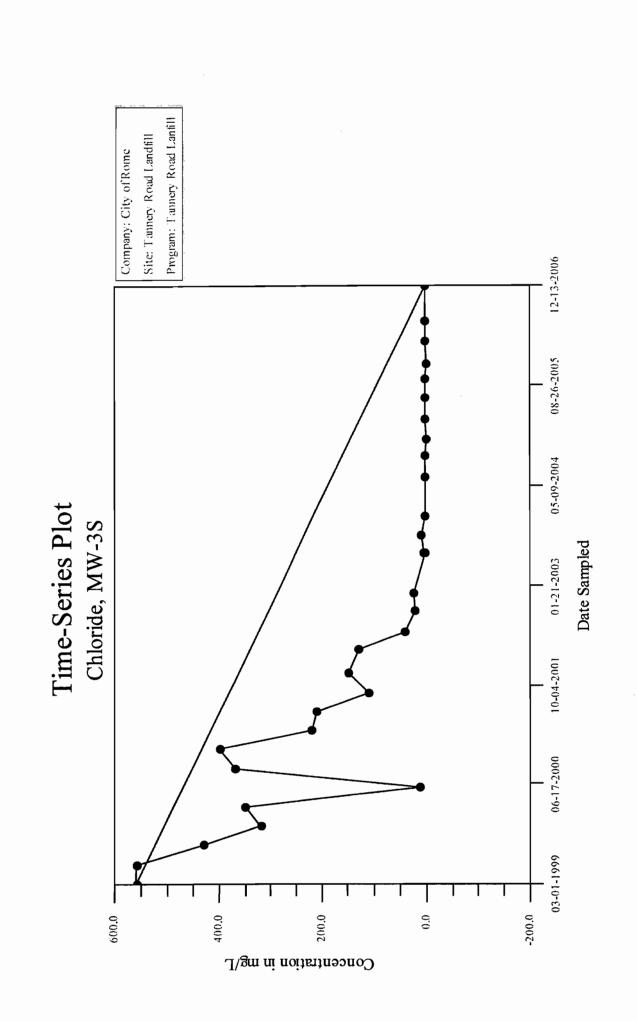


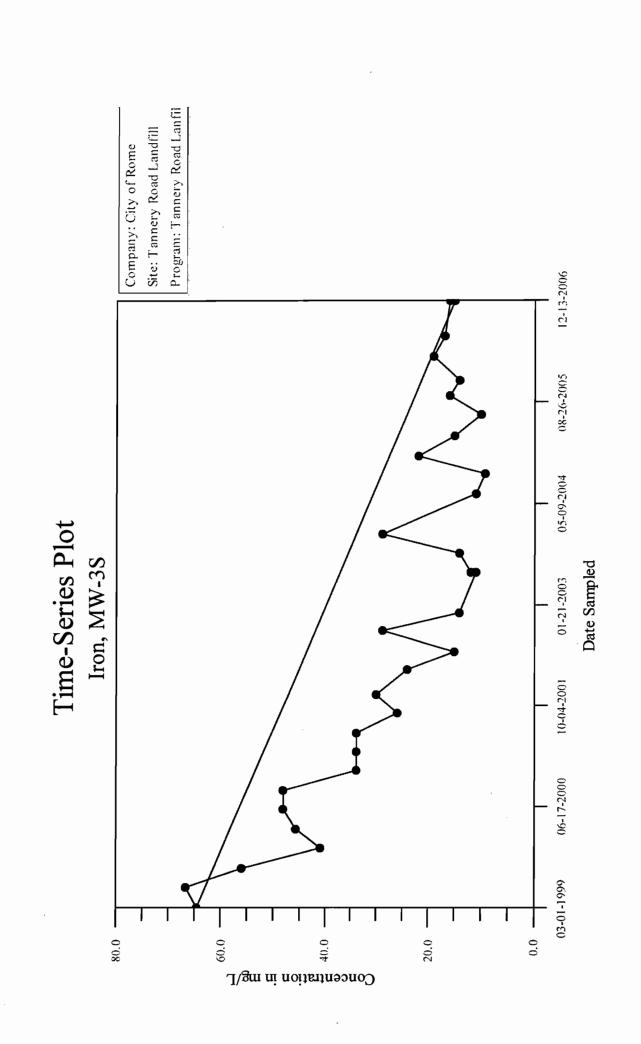


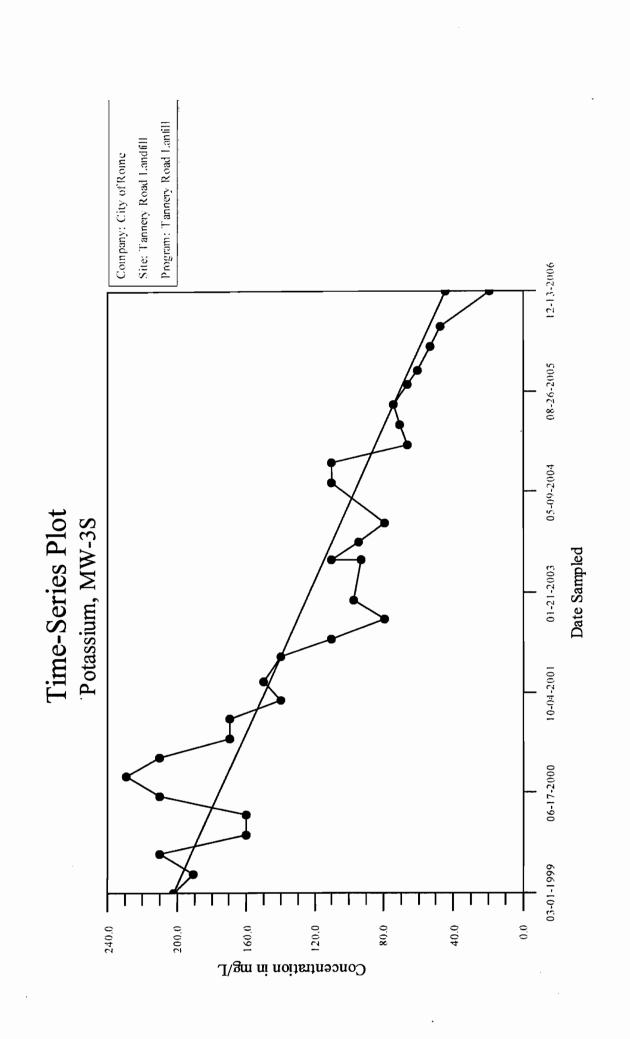


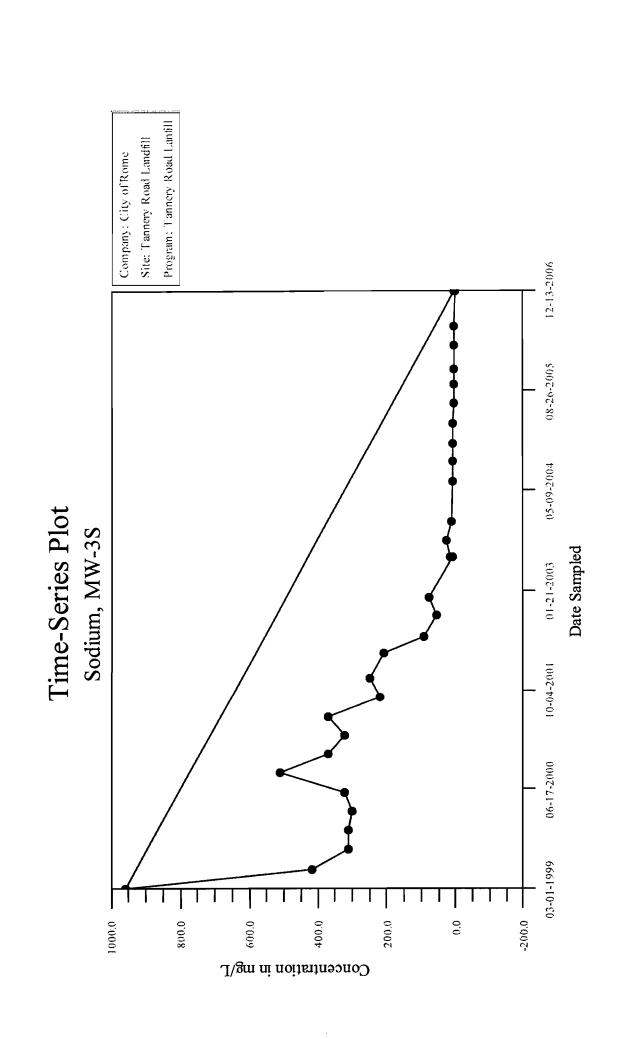


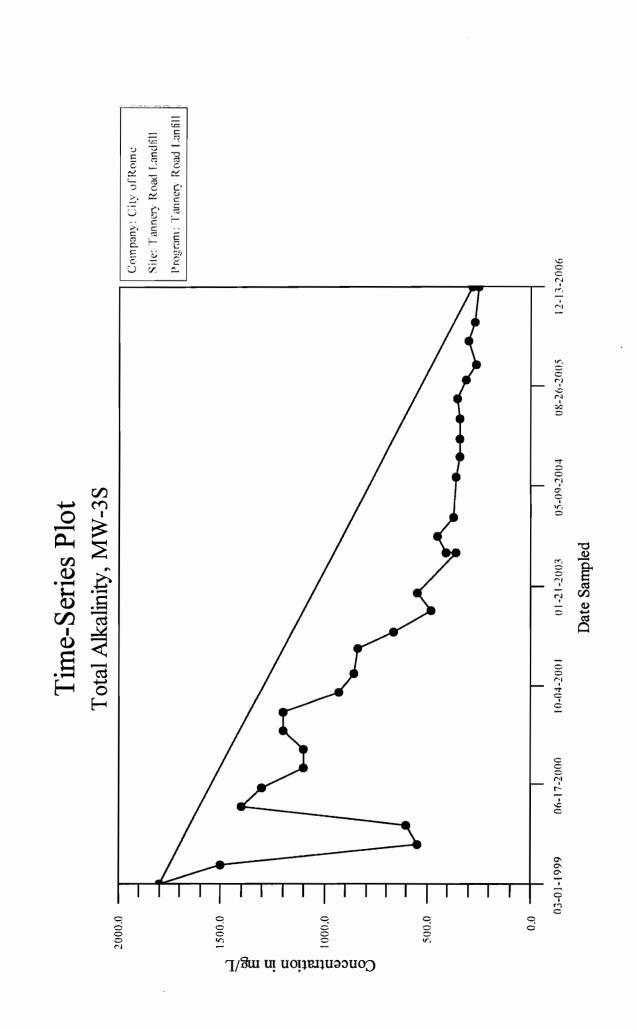




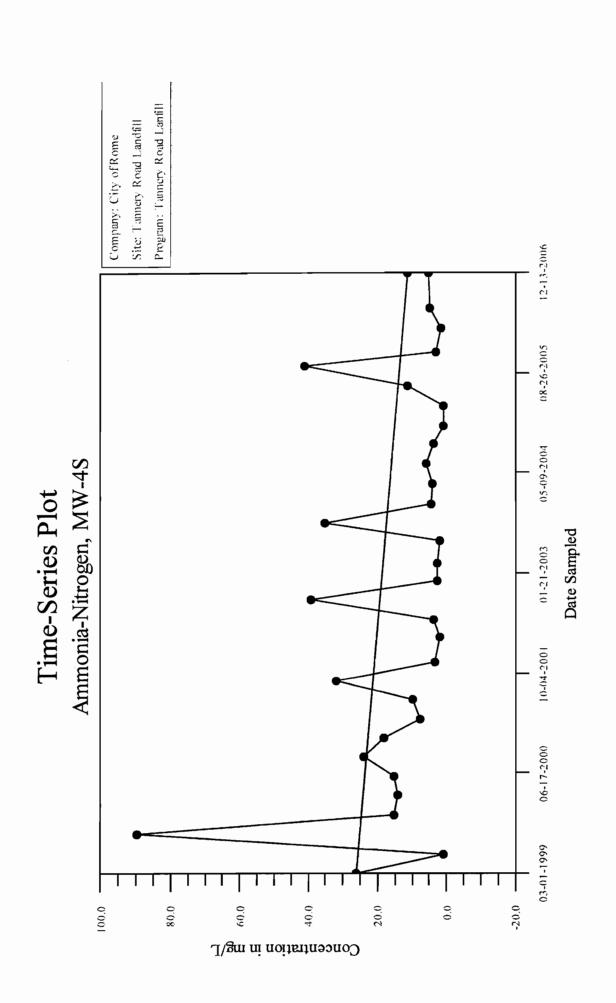


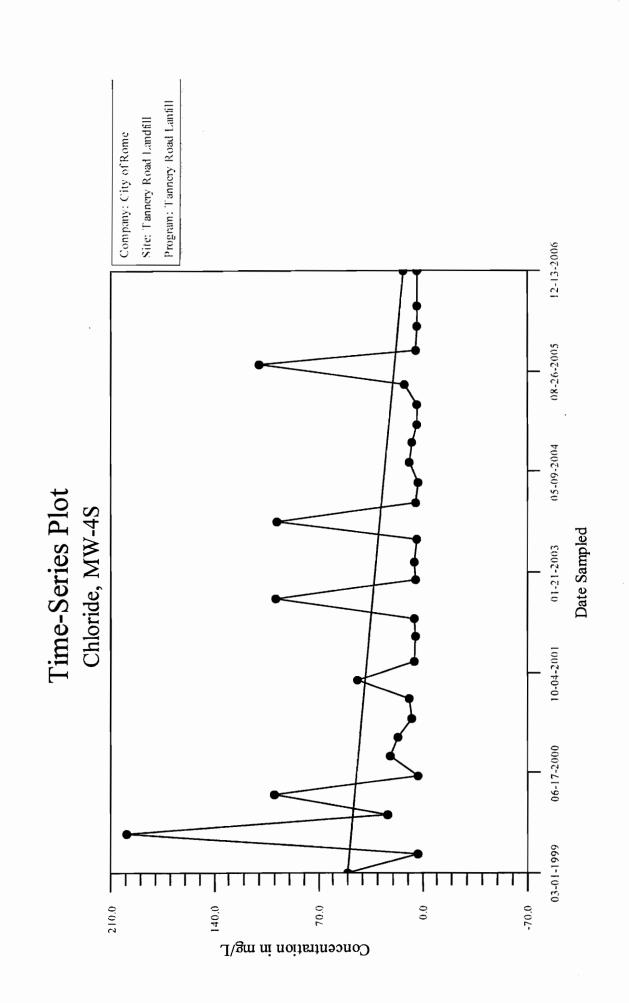


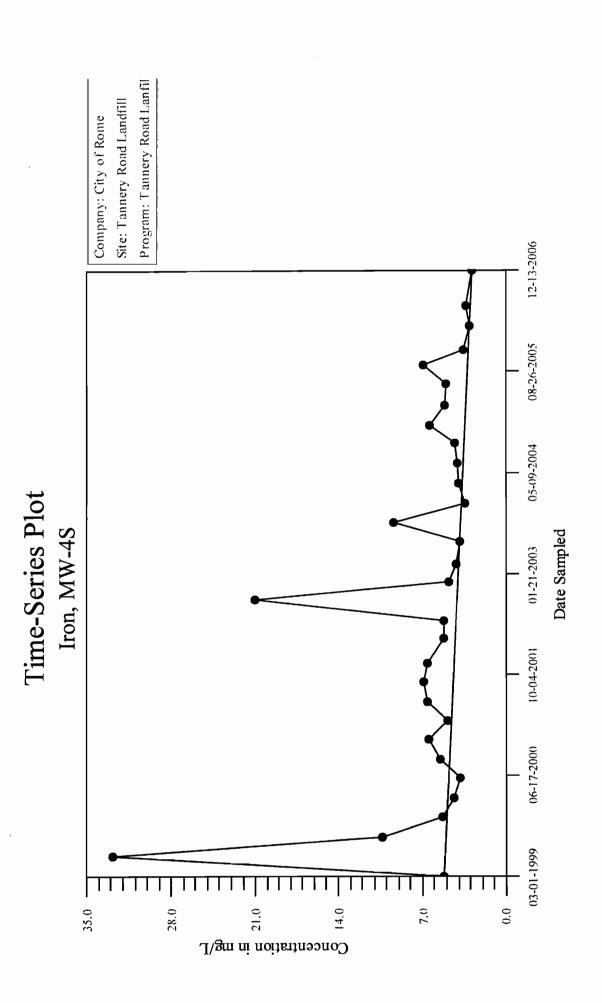


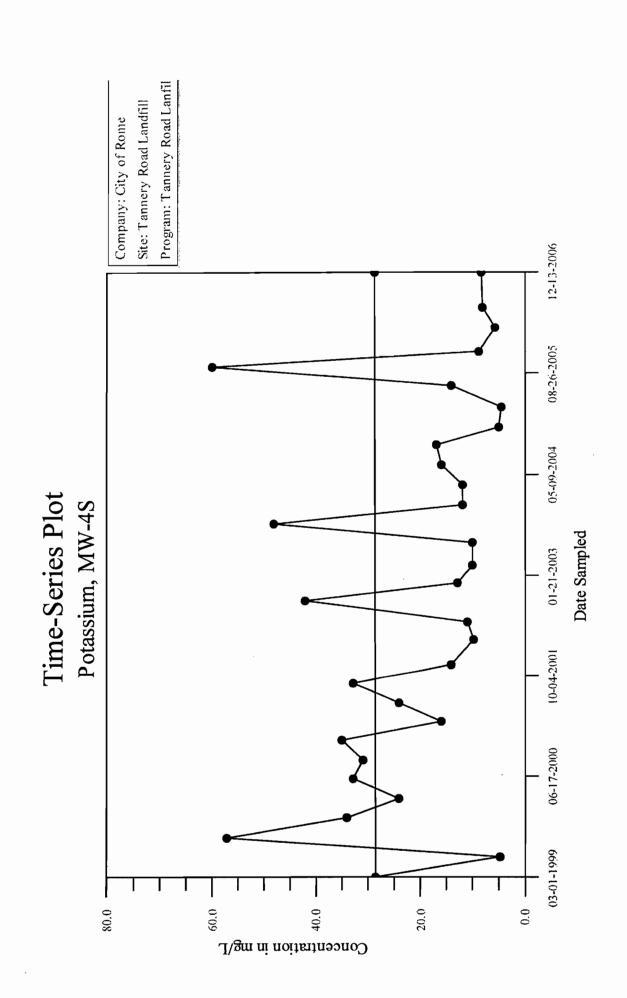


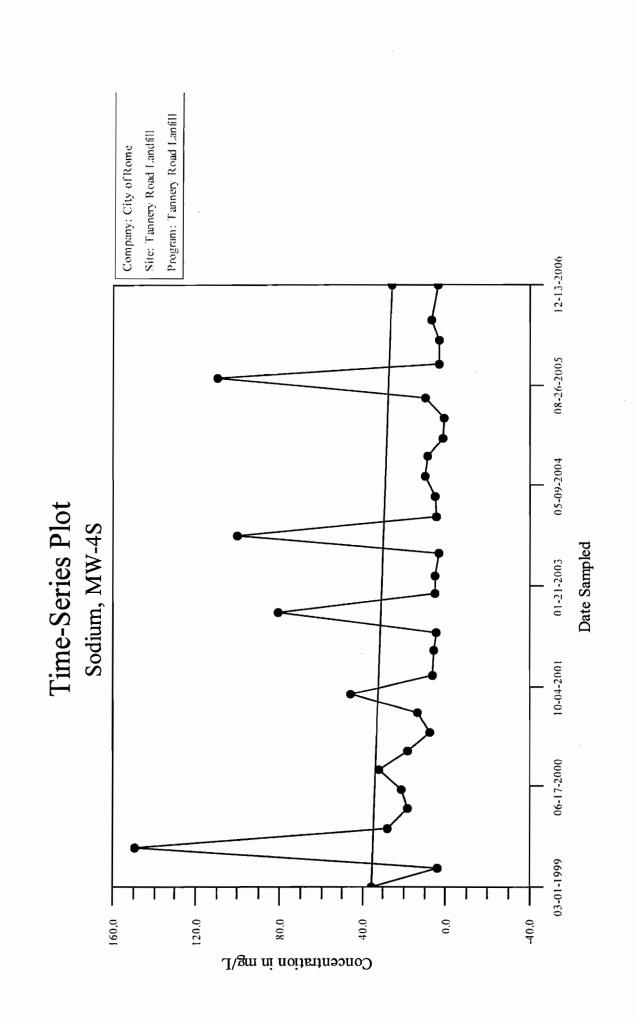


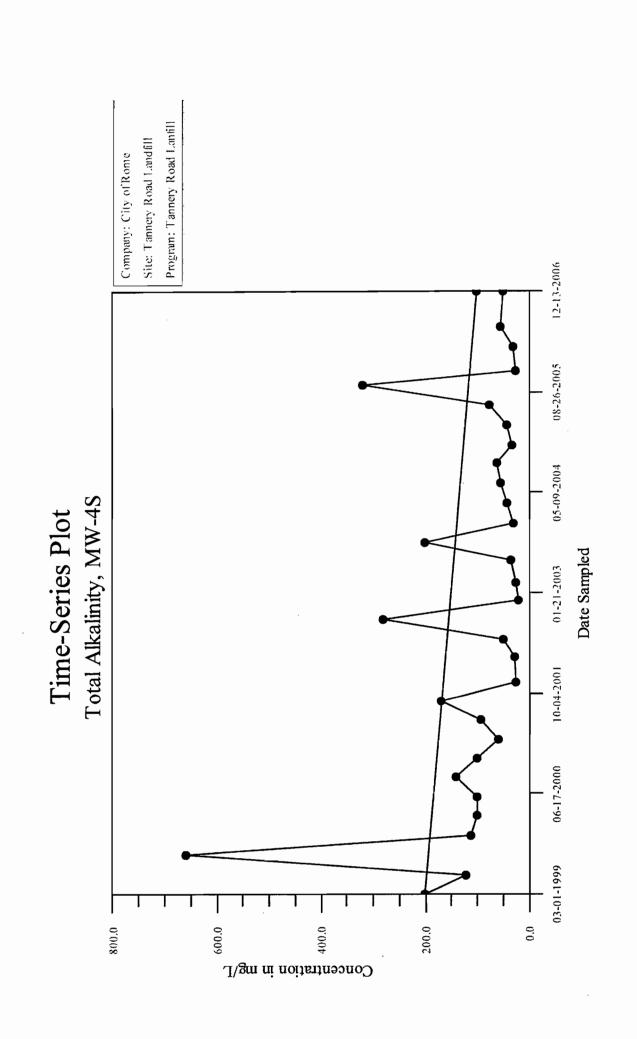


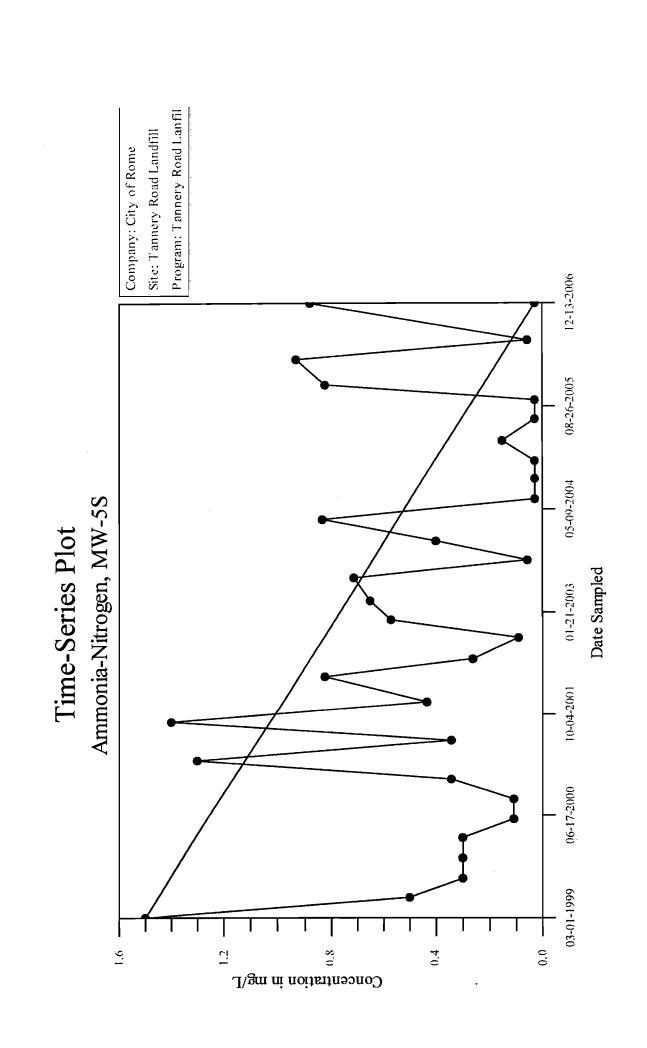


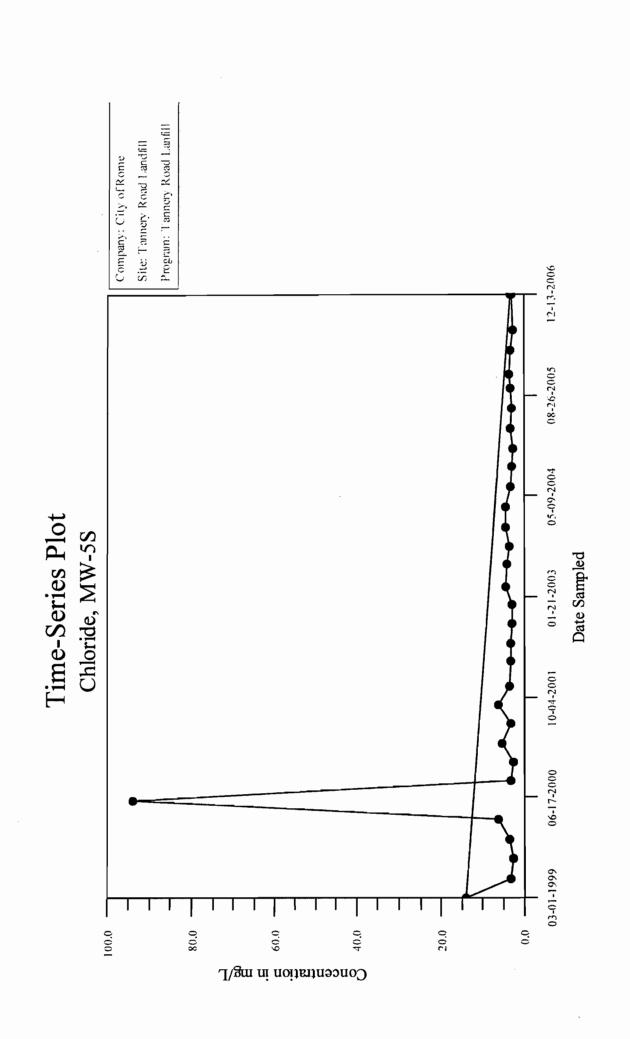


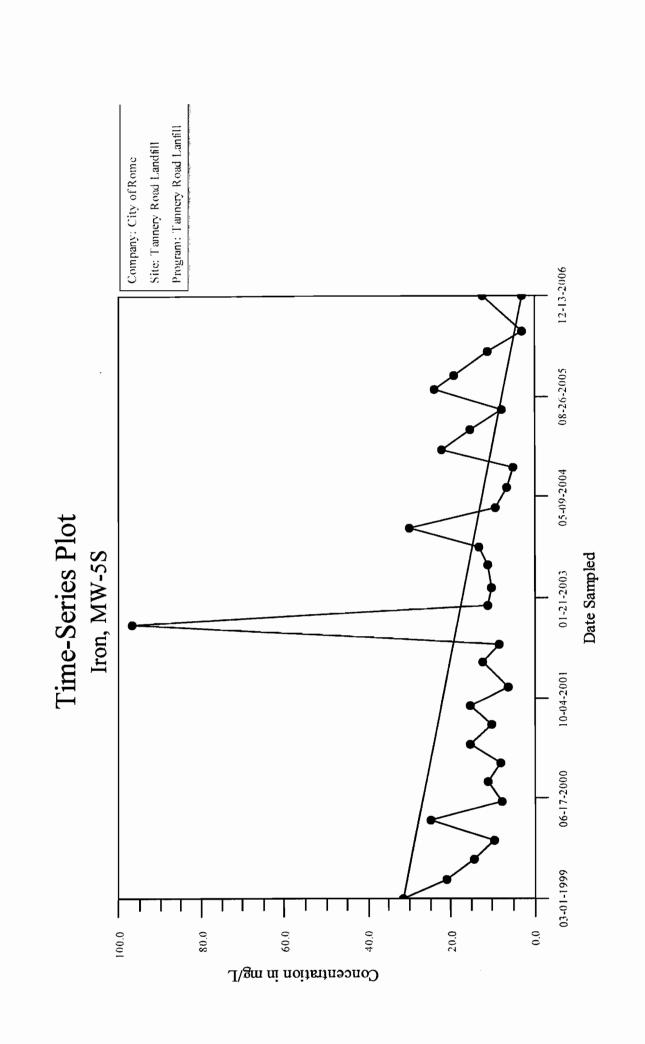


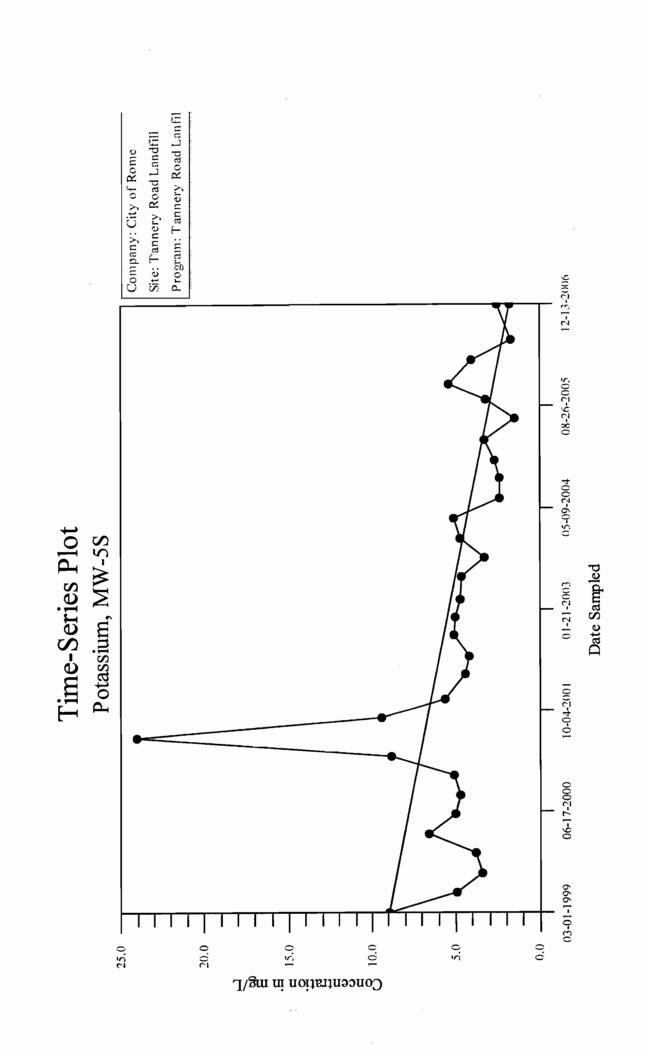


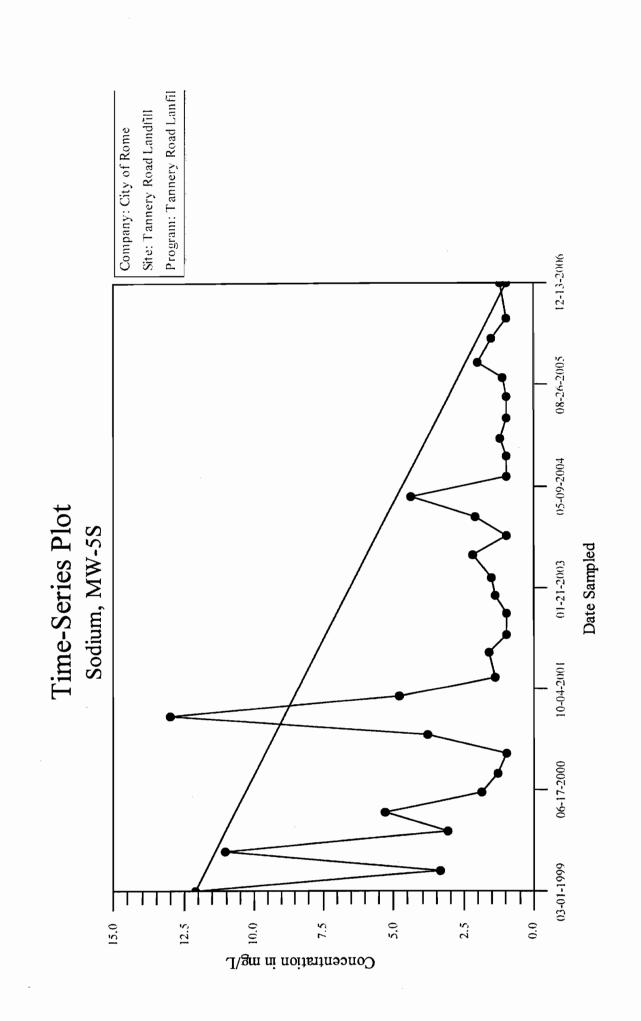


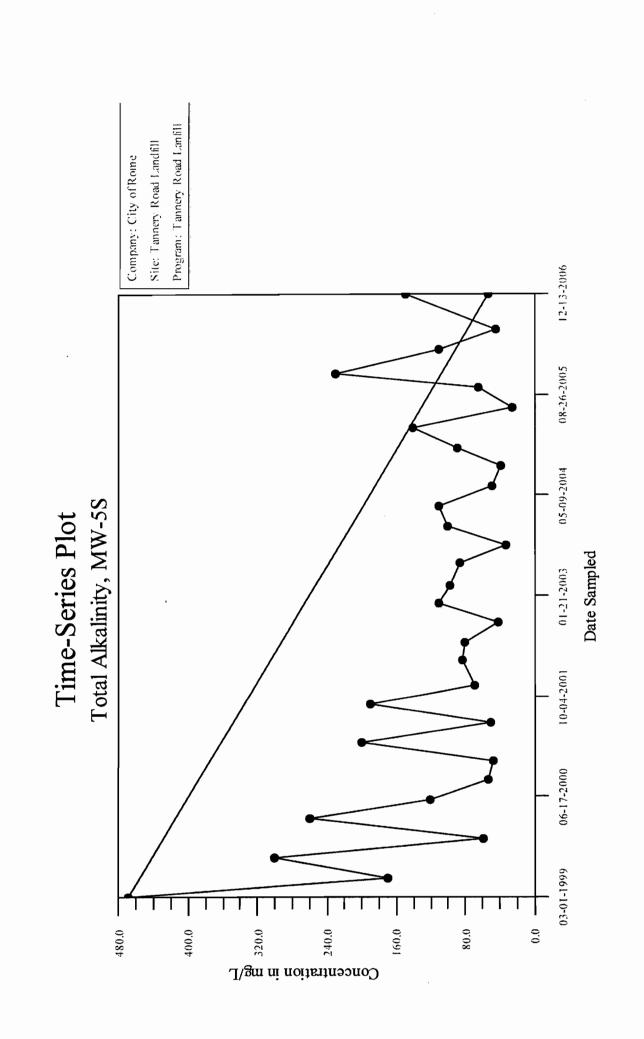


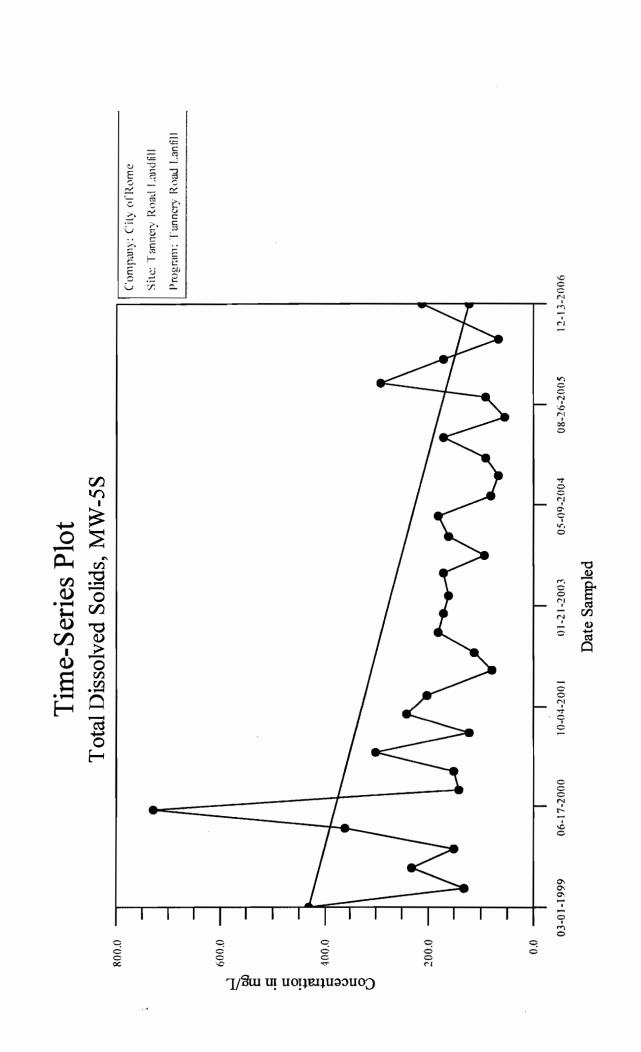


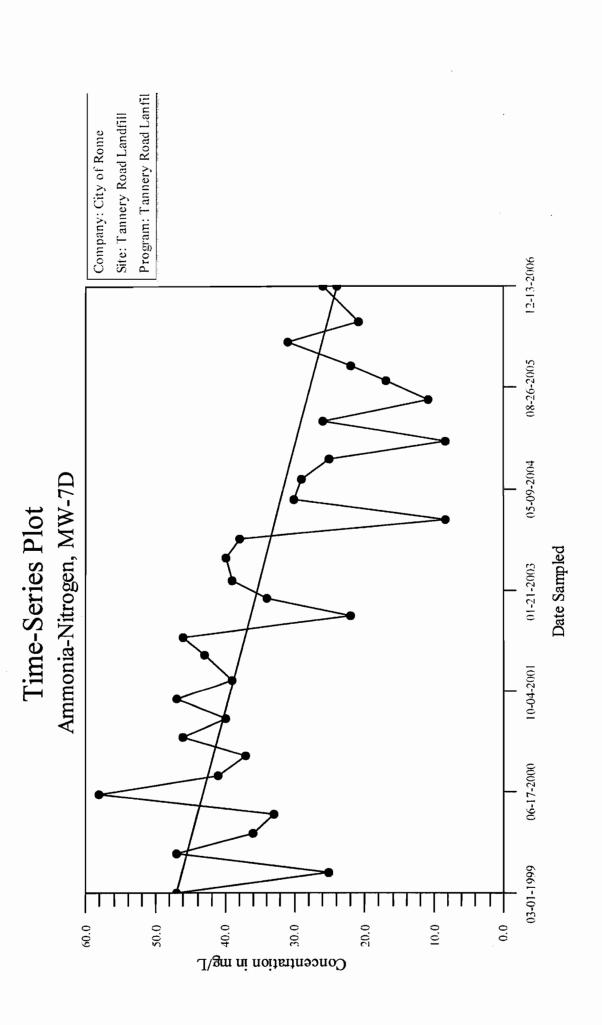


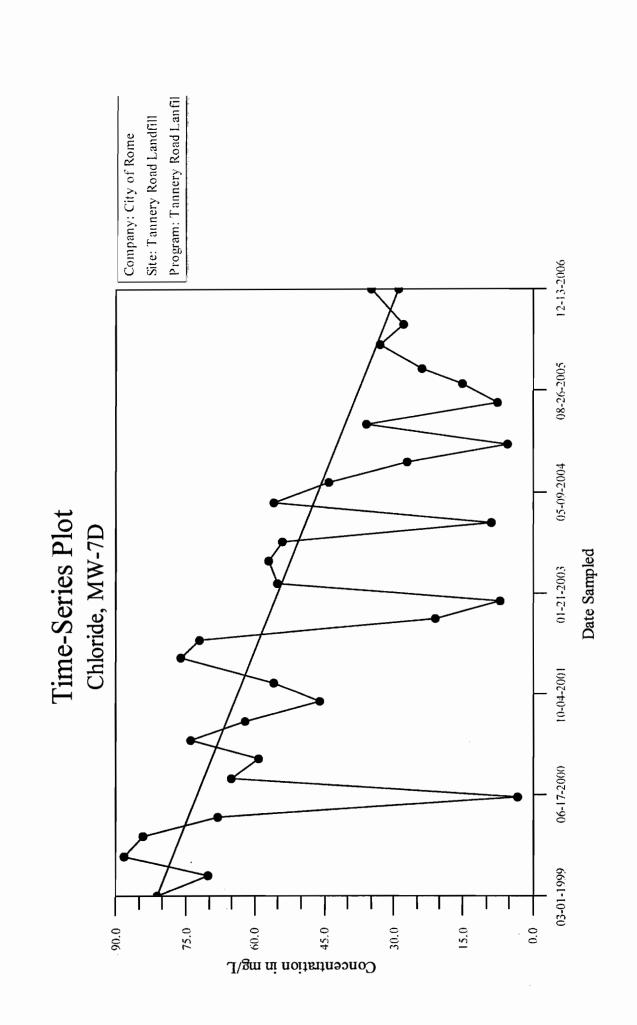


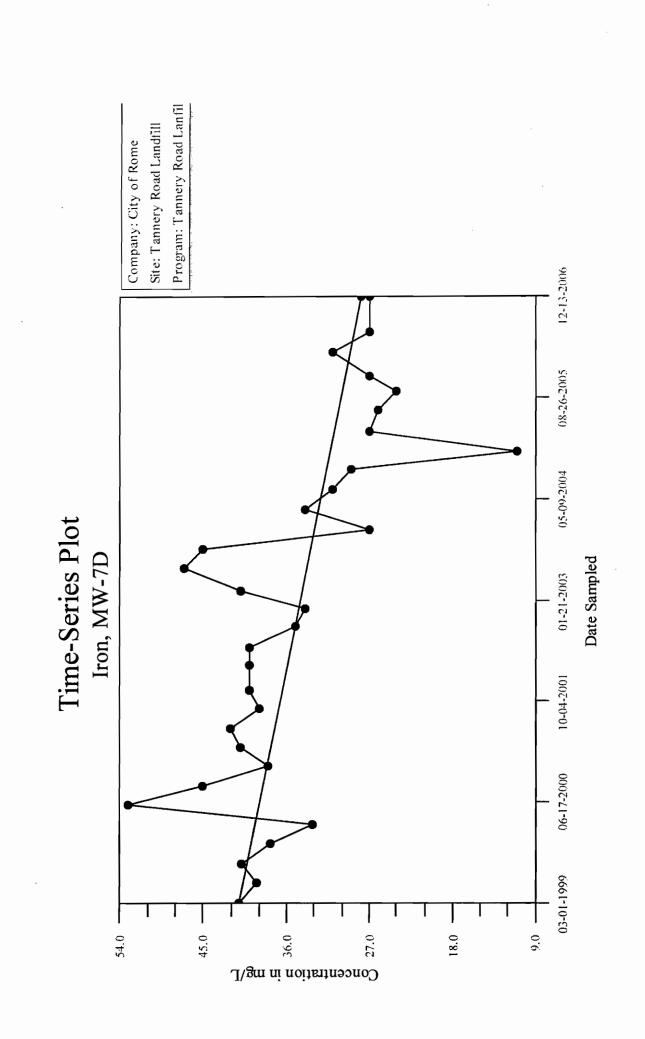


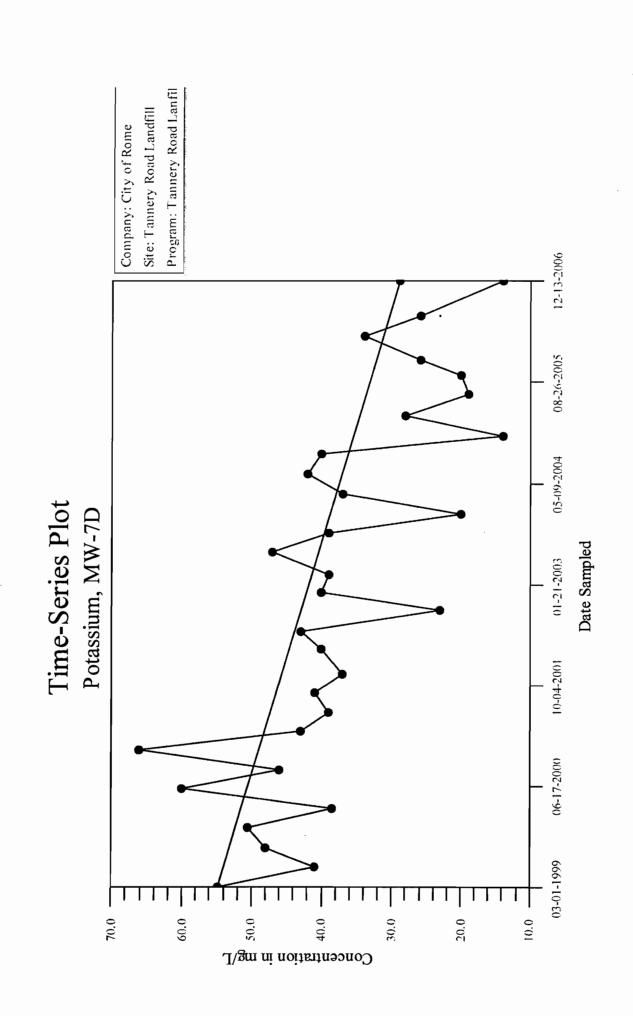


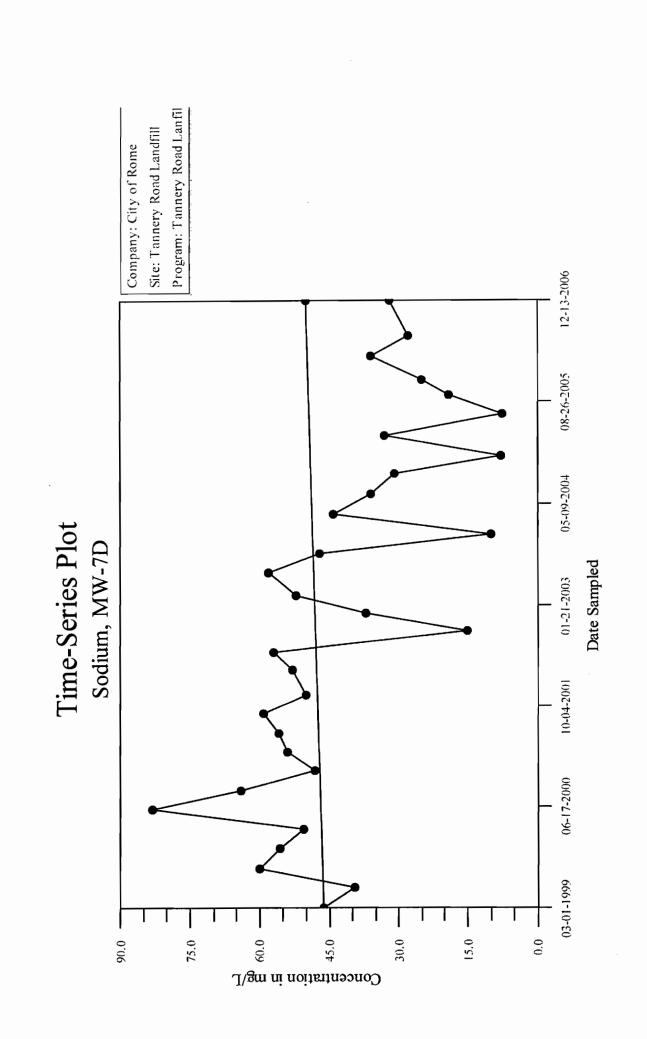


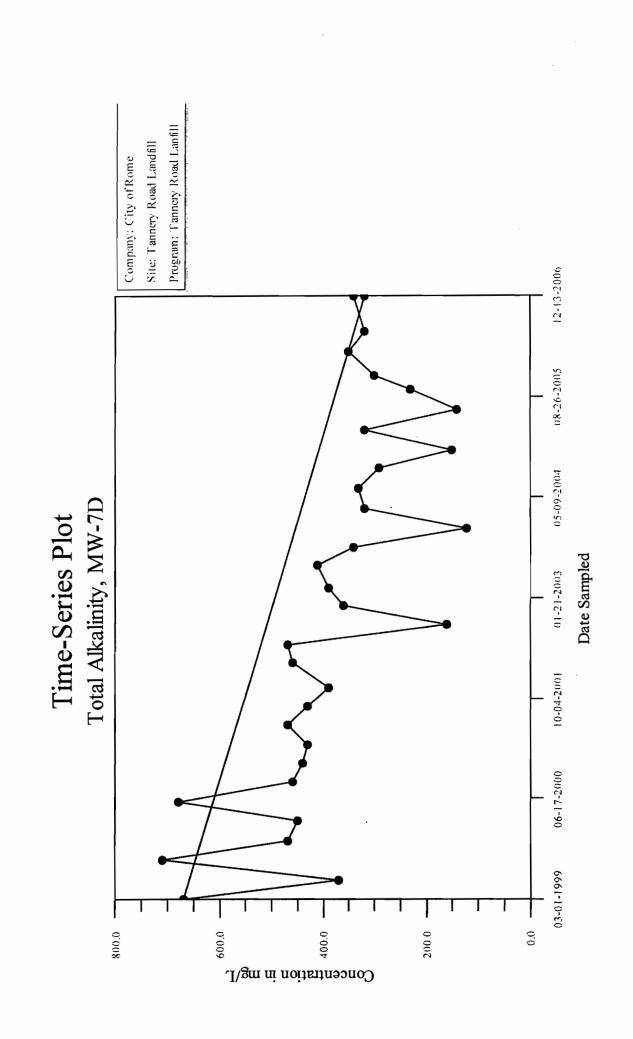


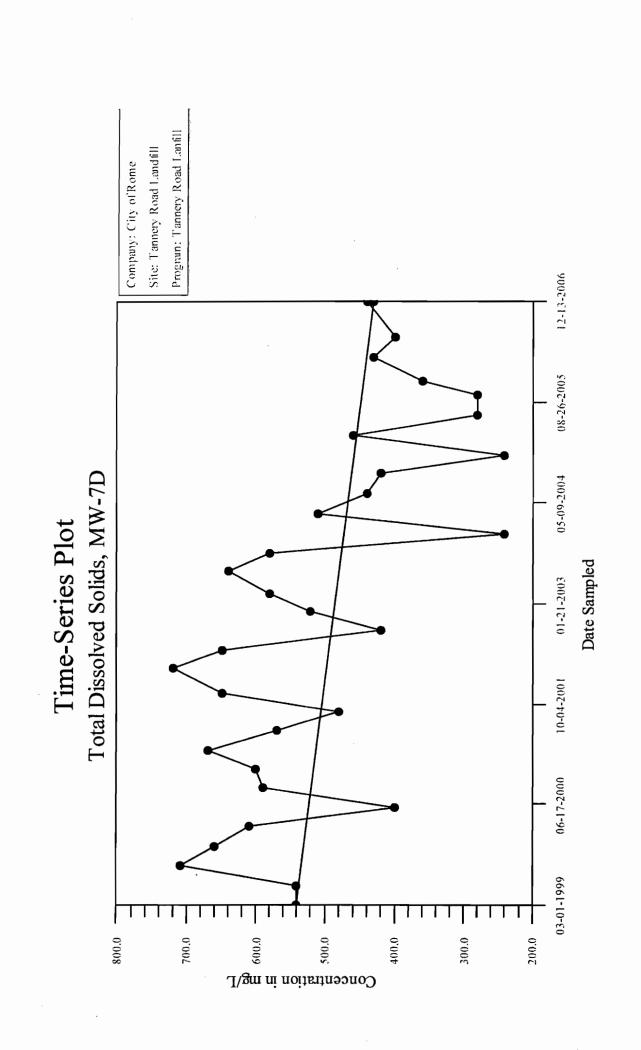


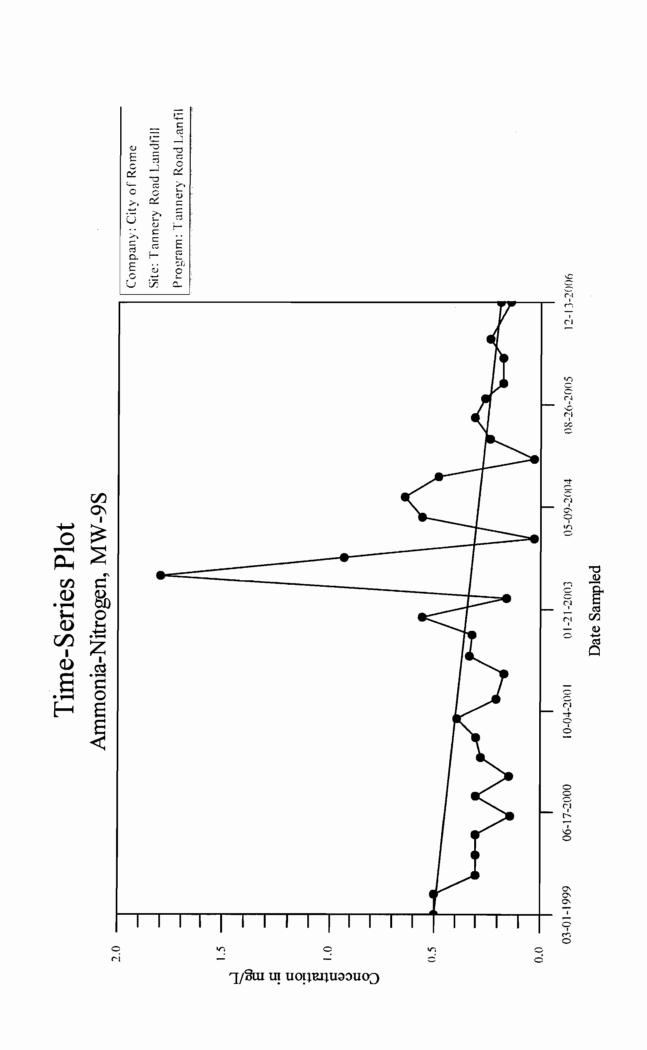


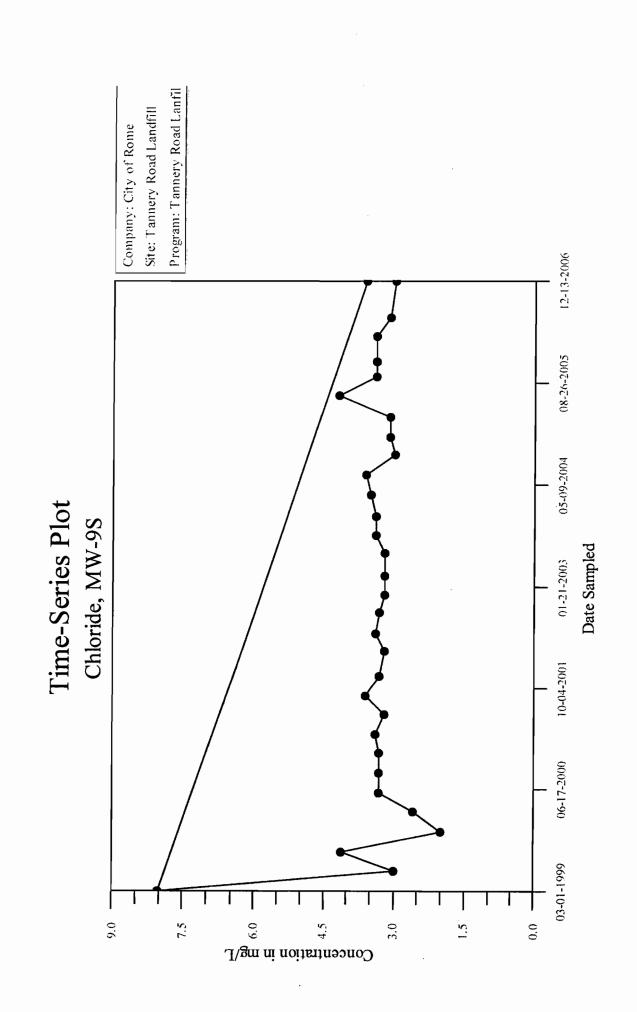


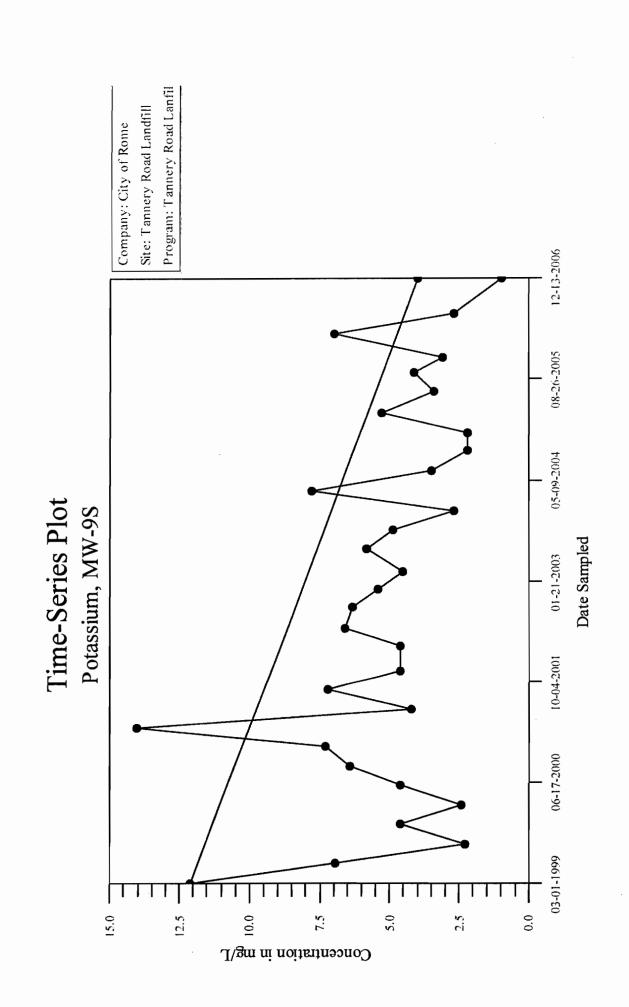


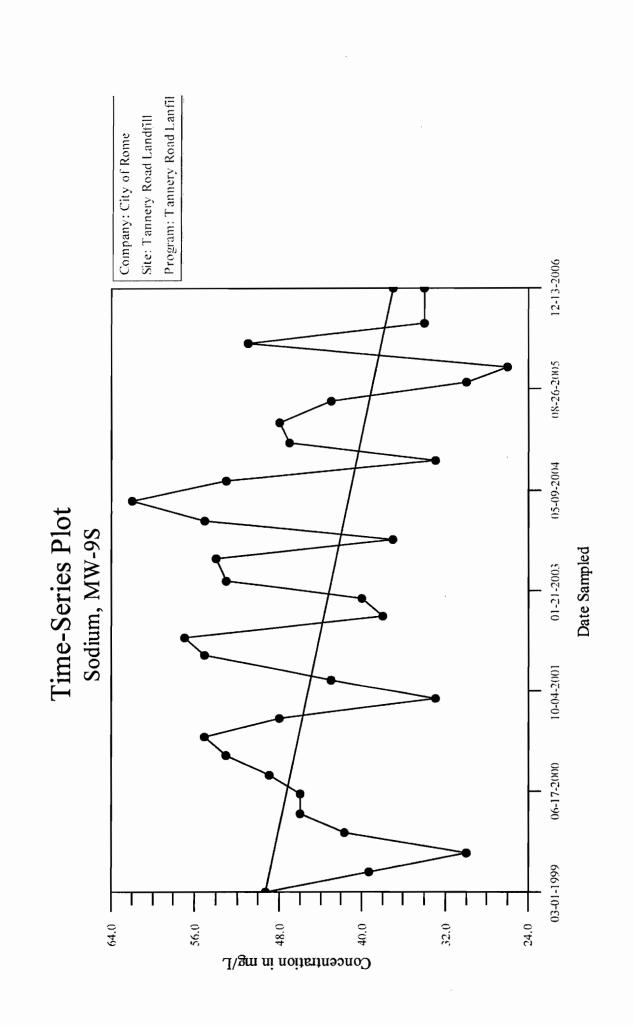


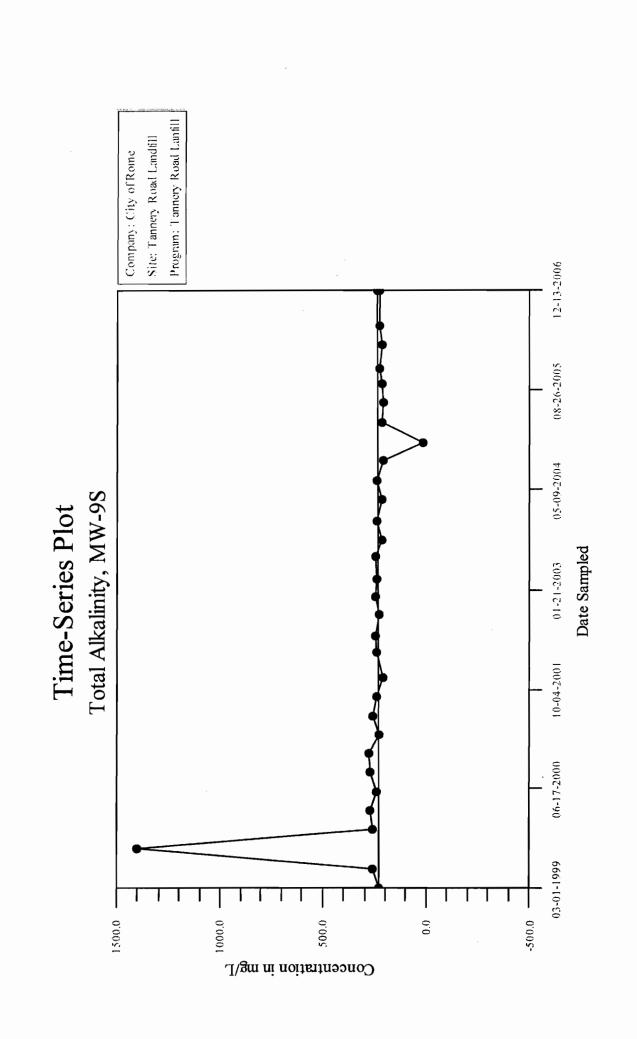


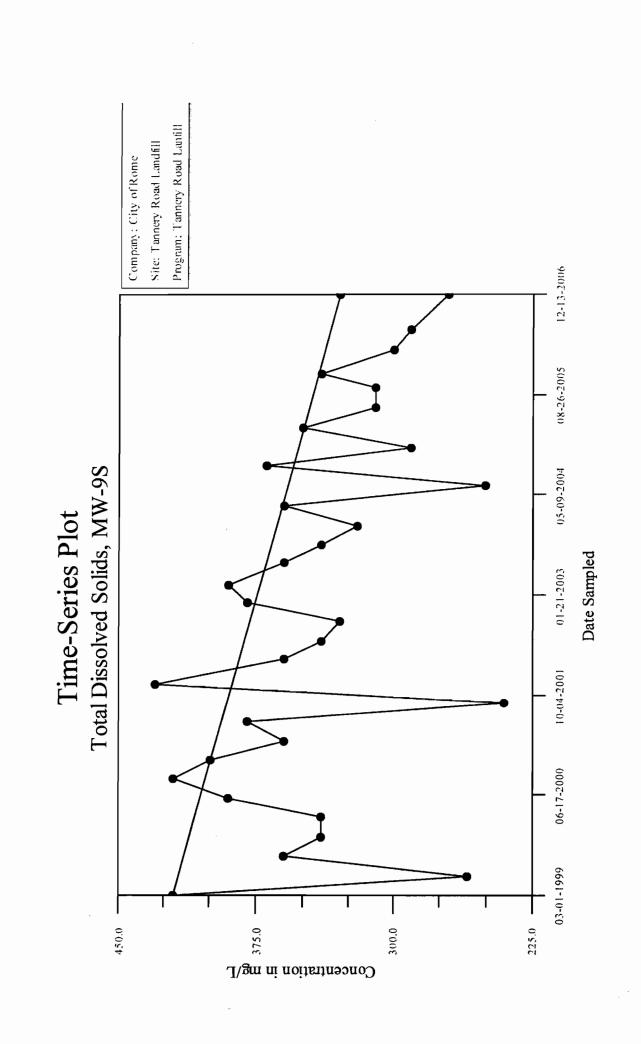


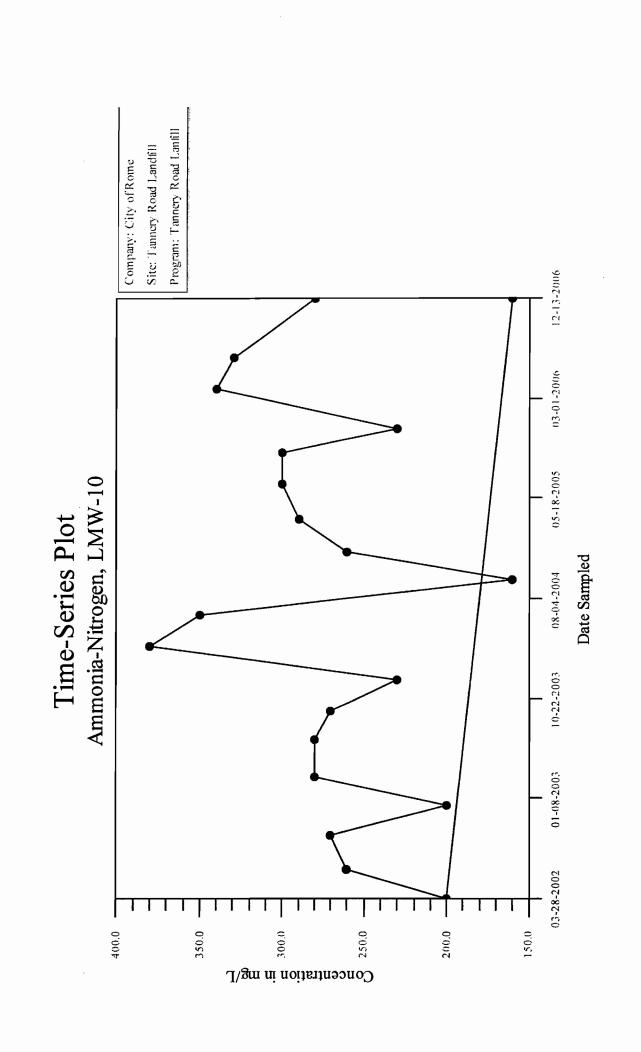


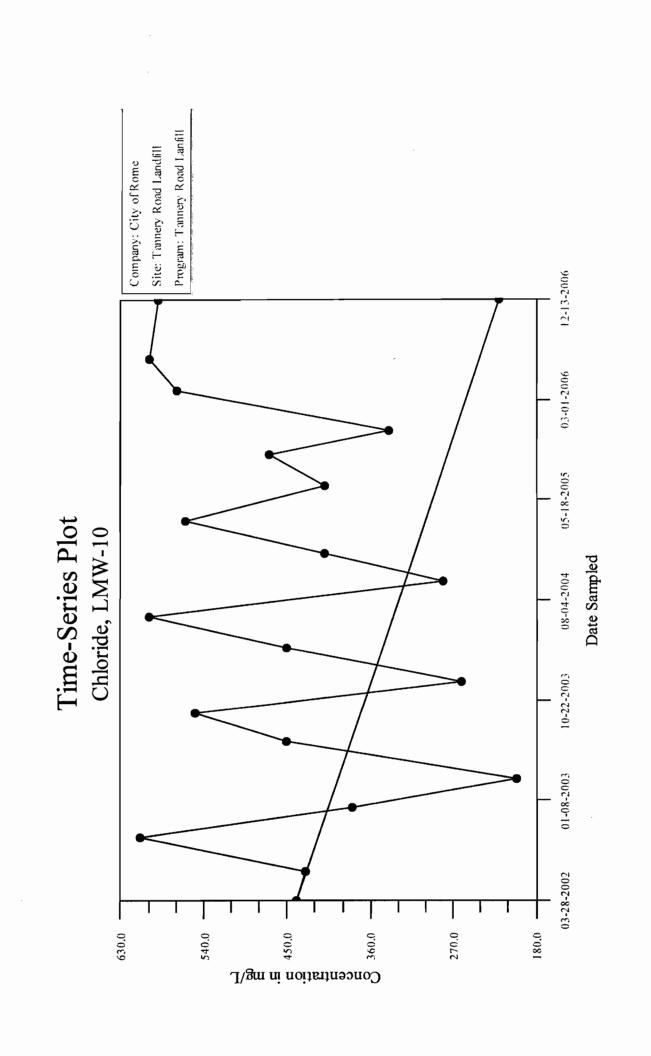


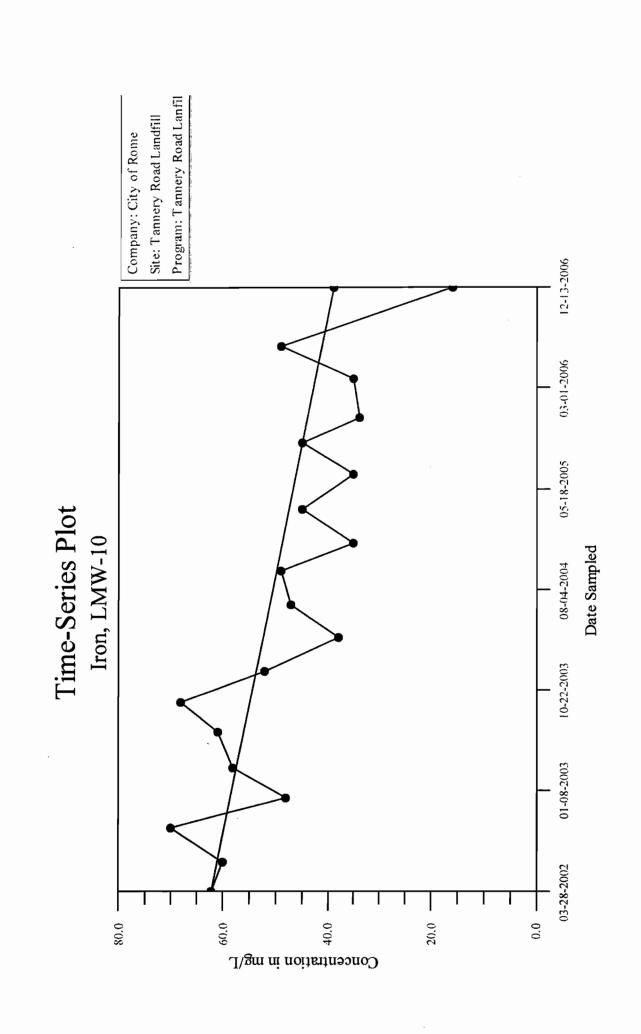


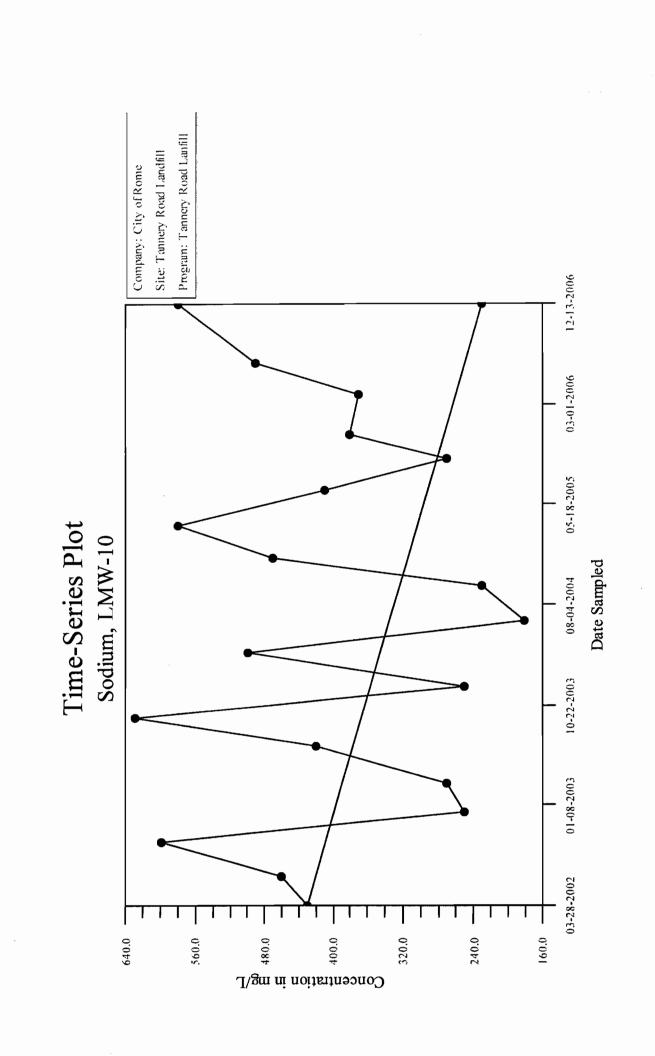


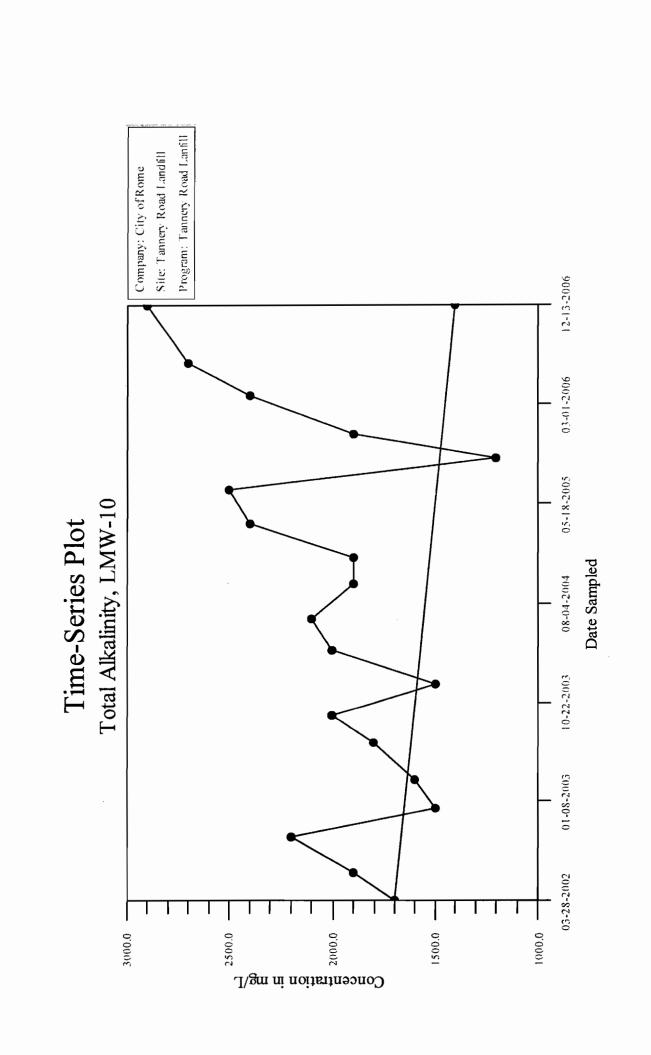


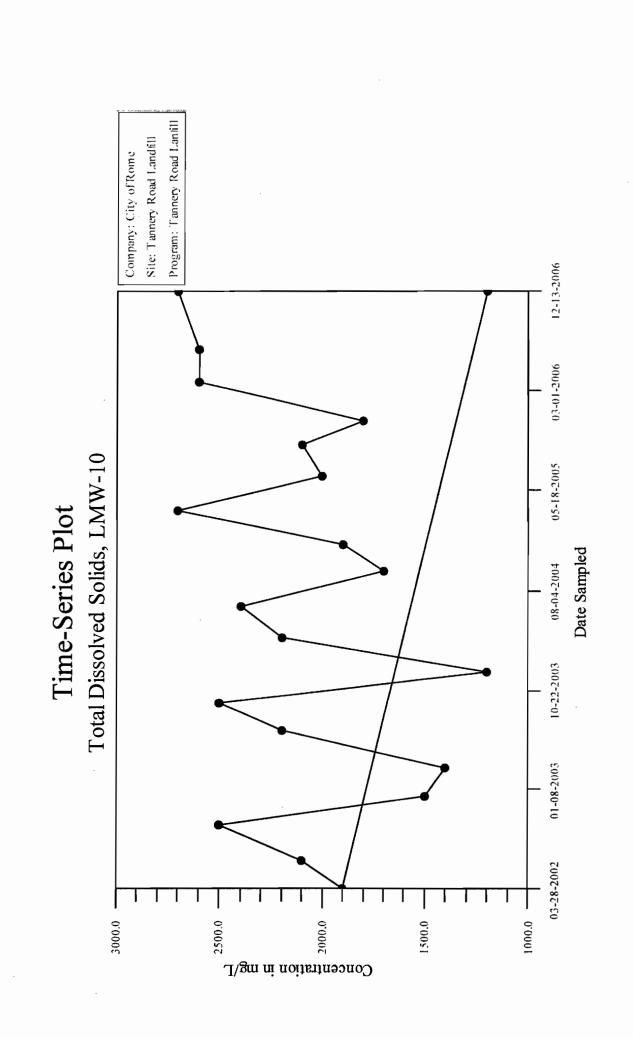


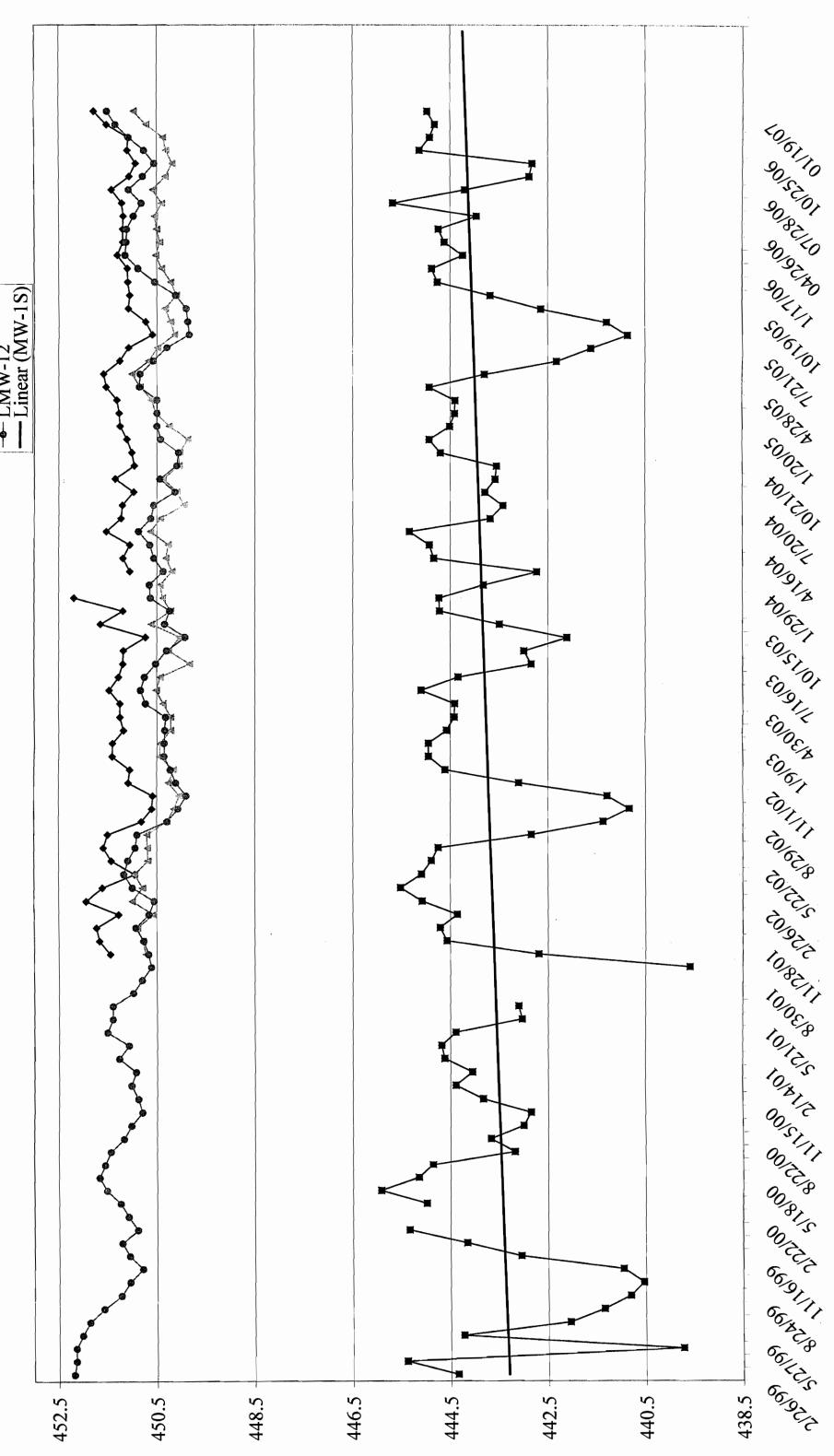






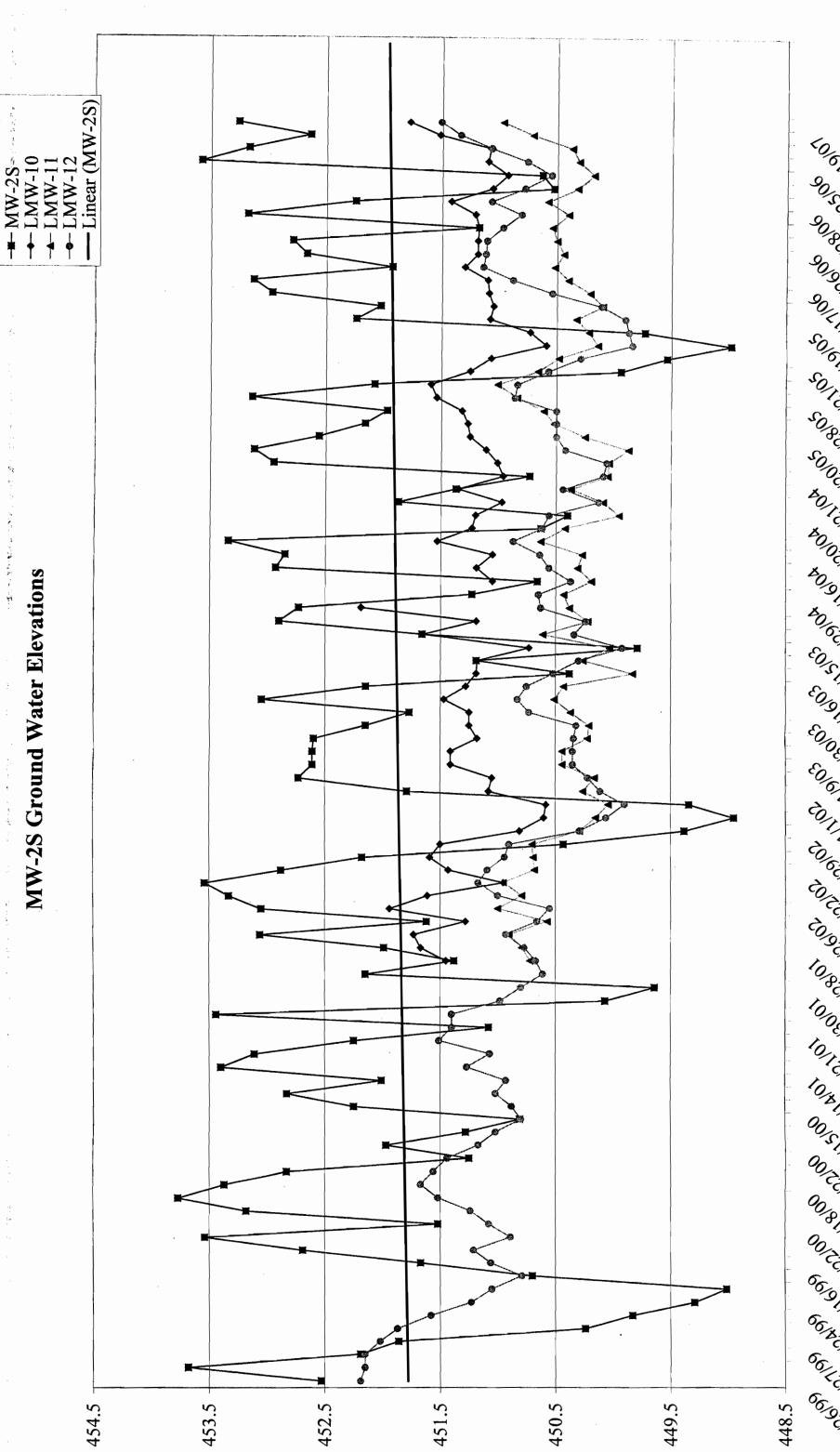




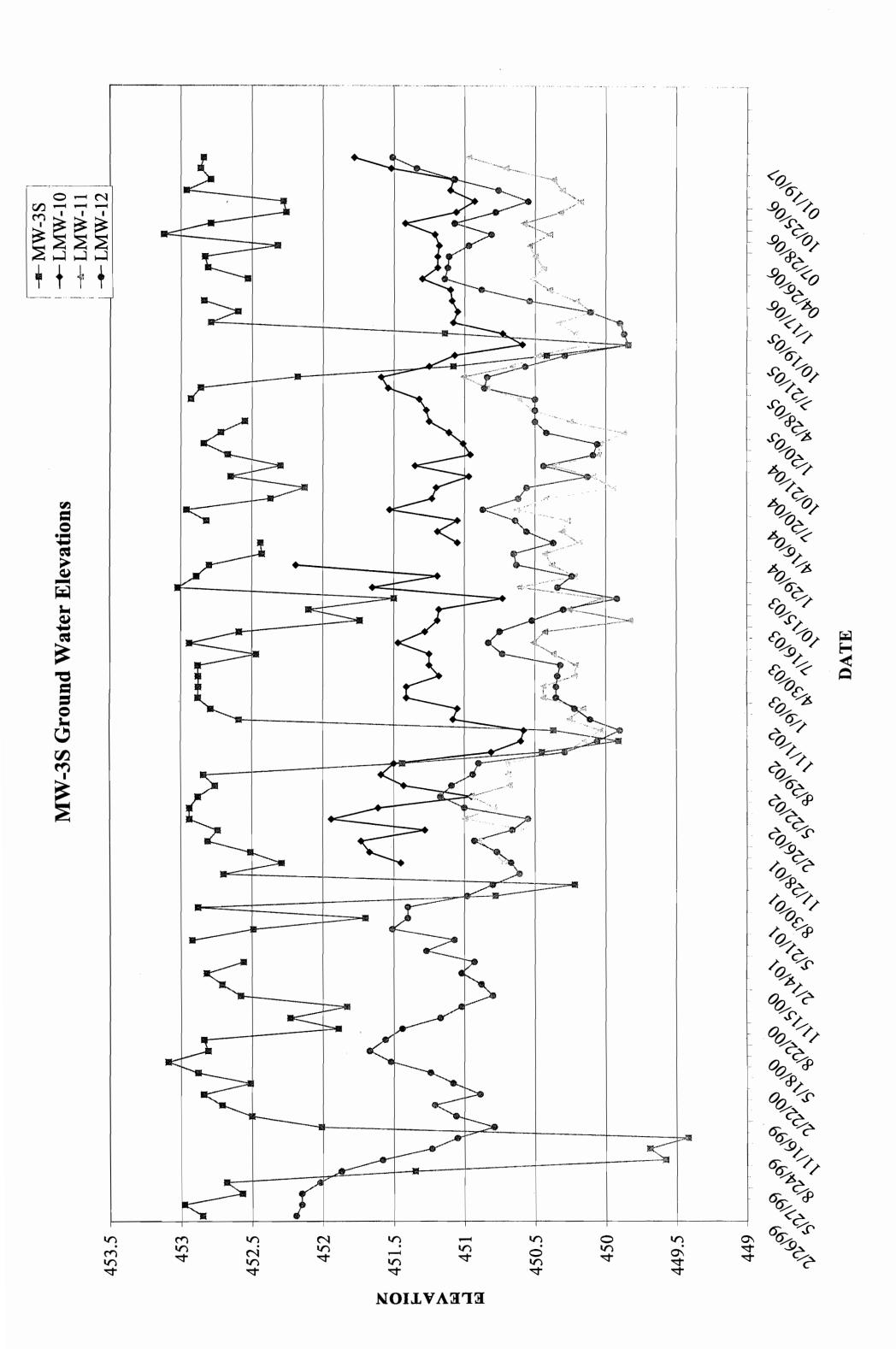


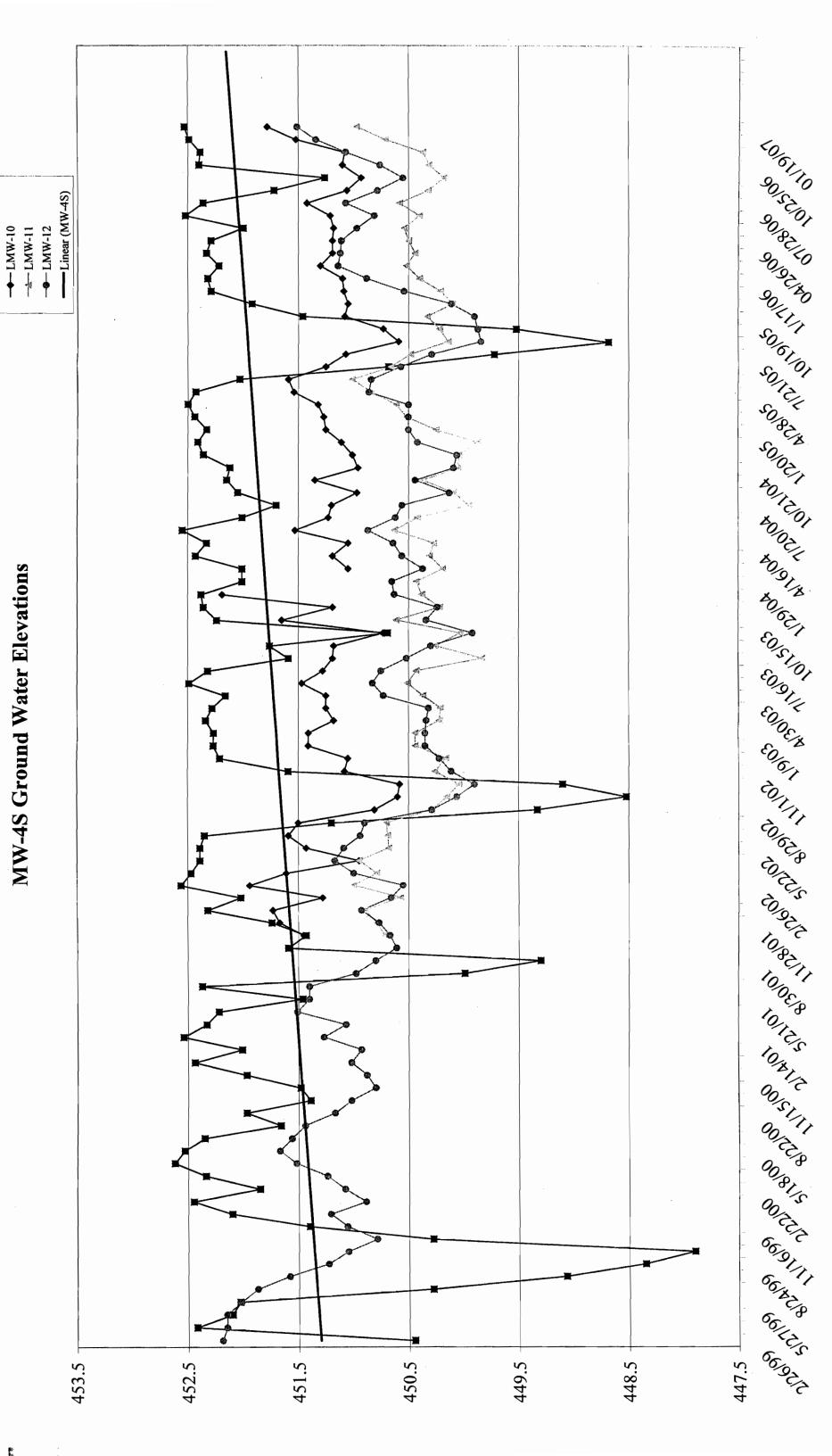
APPENDIX C

MONITORING WELL AND LEACHATE WELL GROUND WATER ELEVATION DATA

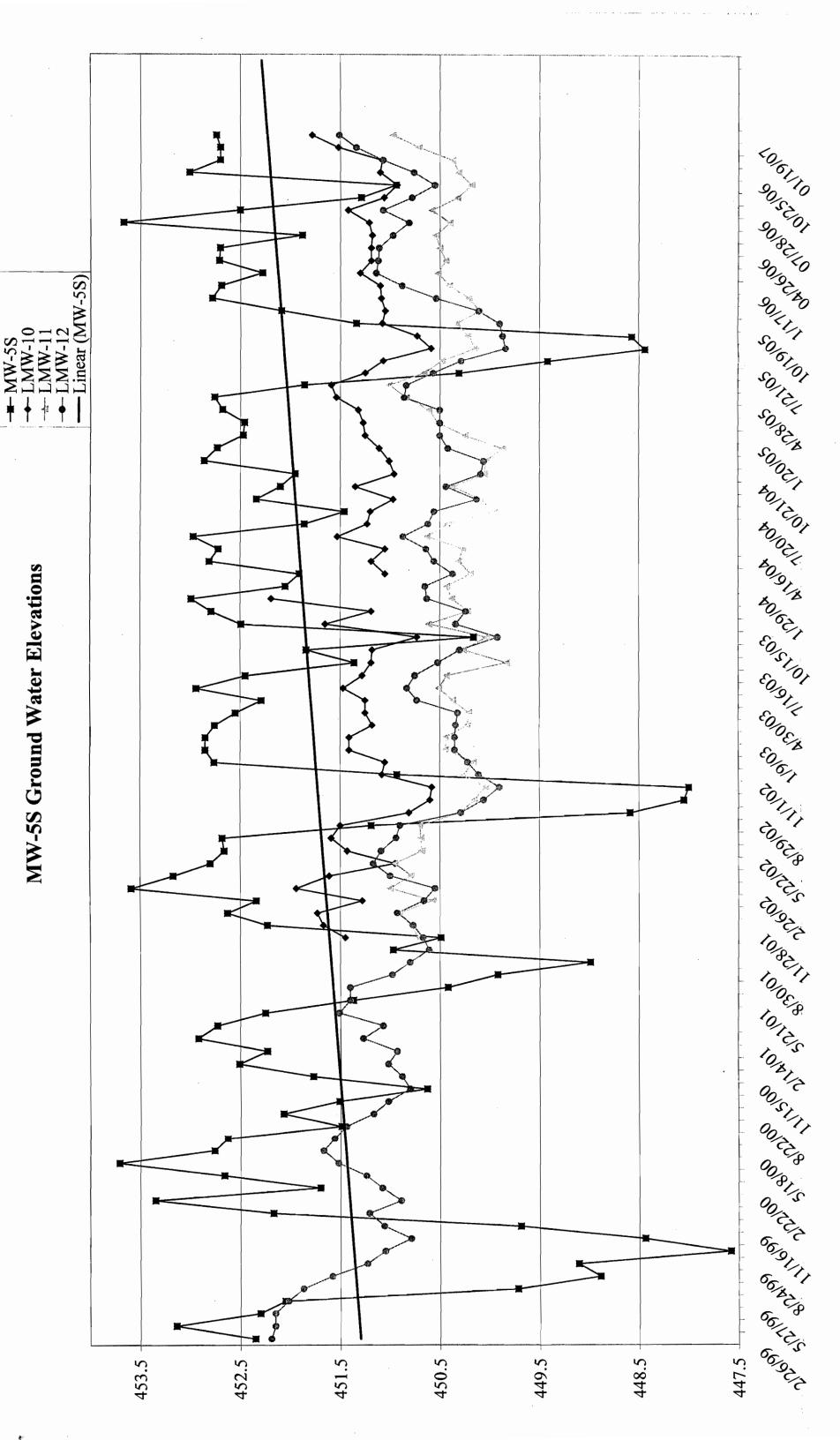


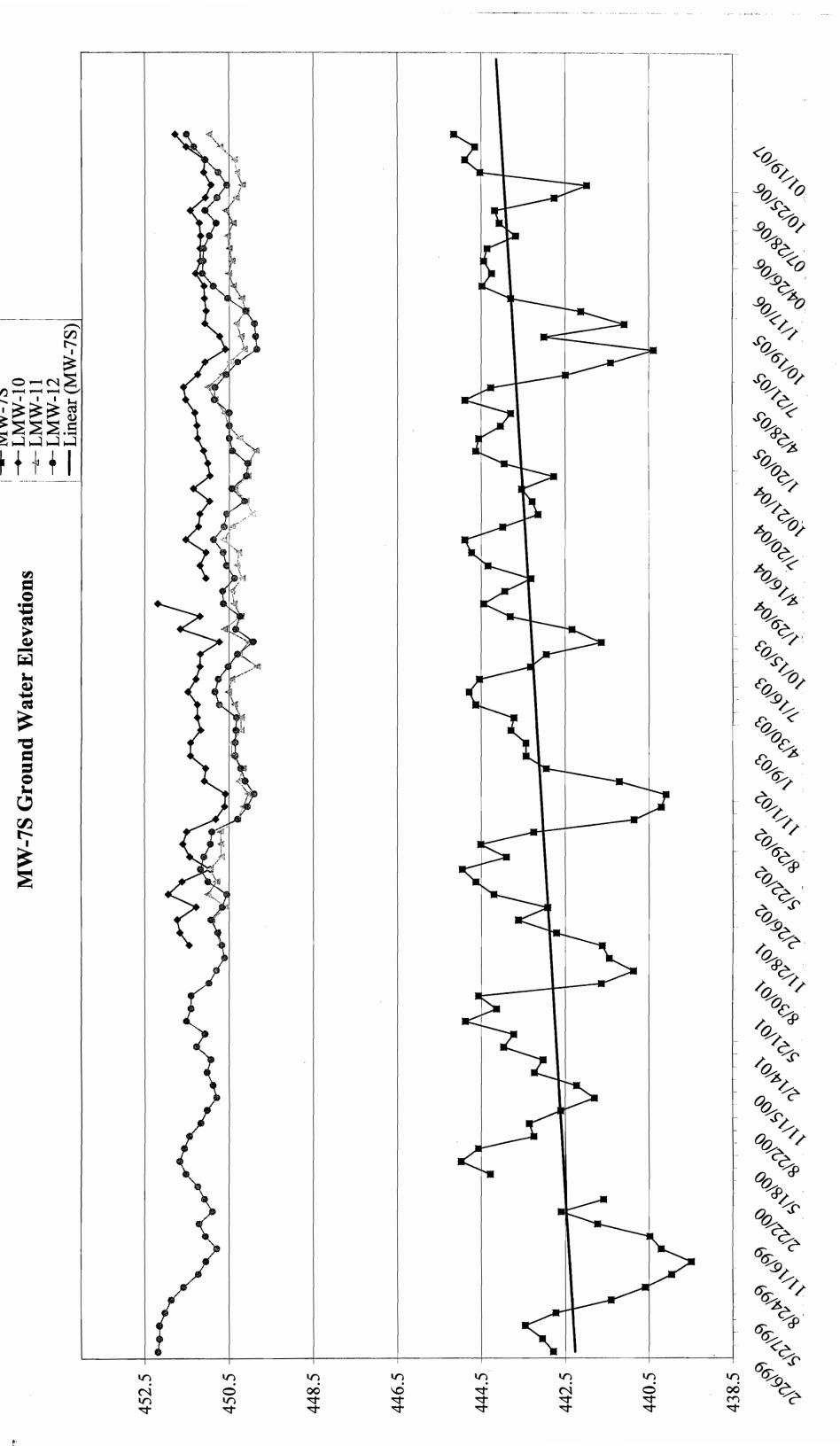
LMW-1

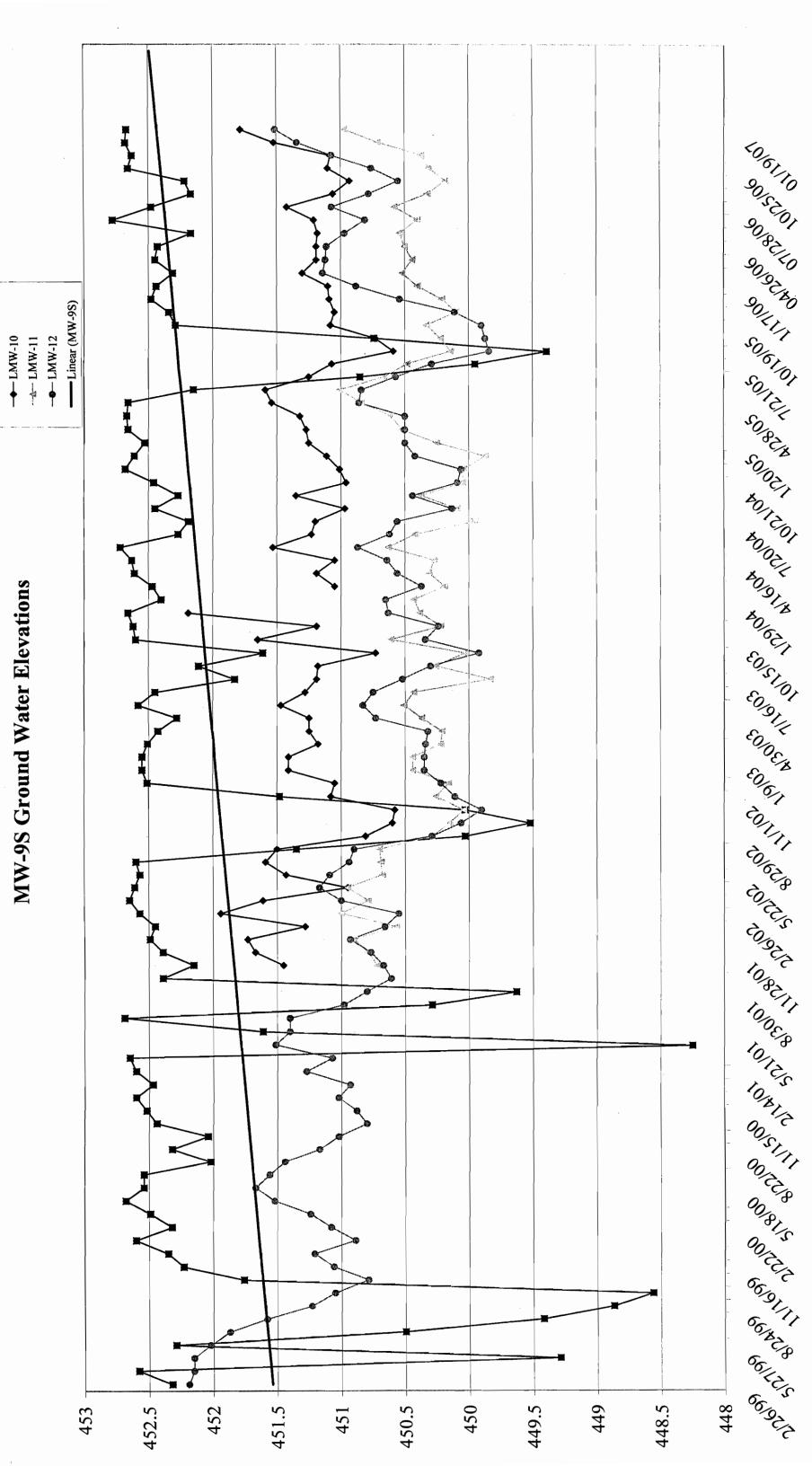

MW-1S Ground Water Elevations


-+ MW-1S

1001,10 EOSTOI 00/01/5




10/61/10 90/52/01 90/32/10 90/90/NO 90/1/1 50/51/01 Sold 20/0/X Solot *0/201 *OOCL *Oota *Oft. EOSTOF 50,972 E0105 X 5001 COLLY 20/02/8 to days 20/02/2 10/82/11 10000 lotes 10/8/2 00/51/17 Option of the second 00/8/5 oolda 66/91/17 CONTROLLS SOL



-=-MW-4S



S6-WM-■-

Leachate Well LMW-10 Water Elevations

Leachate Well LMW-11 Water Elevations

APPENDIX D

MONTHLY INSPECTION FORMS

Date & Time: 2/28/06	Inspector:	Brent	t Zimmer
	Weather:	Sner	1, Very Windy
GENERAL INSPECTION - To Be Comple	eted Monthly		Notes Problems
General Site Condition:		Lane.	THOICE I TODICINS
Gates - condition and locks for inner & outer ga	ates:	OK	Good
Access Road - surface/paving/snow		OK)	Snow covered
Overall appearance (trash/litter)		OR	Good
Pump Station at Tannery Road:	Condition:	OR	Good
Pump #1 Hours: 5424.6	Pump #2 Hours:	46	45.4
Pump Well No's 1, 2, 3 & 4 - Well head condition Meter Pit - open lid, check heater, leaks, etc. Panel note conditions and any alarms: Totallizers (in meter pit) RW-1 45398	None	OK) OR 3 30	None
RW-2 9/39/		4 38	
Hour Meters			
RW-1 /9686.5	RW-	3 45 6	24 7.3
RW-2 23 181.5		4 284	
Landell Course Inconstitut			
Leachate seeps Any new seeps NO	If YES, describe	. 0.0	dr.
Western seep condition:	ii 123, describe	- Uritt	11
North seep condition:		11	11.
Gas vents - general condition		OK)	
- Unusual odors, list vents/describe.	None	<u> </u>	
Flares ignited		ОК	Strong wind none ignited
Perimeter fence		OR	
Erosion/animal burrows NO	If YES, describe:		1 Covered

Page 2 of 2

WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	5.35	444.24	Good
MW - 2S	459.44	7,51	451.93	Good
MW - 3S	456.4	3.87	452.53	Gast
MW - 4S	456.19	3.97	452.22	Good
MW - 5S	457.15	4,87	452,28	Good
MW - 7S	452.25	8.00	444, 25	Good
MW - 9S	456.38	4.07	452.31	Gool
MW - 10	486.3	35,00	451.30	Good
MW - 11	502.4	51.88	450, 62	Good
MW - 12	483.11	31.97	451.14	Cood
PZ - 1	454.37	6,61	447,76	Cood
MW-70 MW-20		8, 10 7, 53		
NOTES:				

Date & Time: 3/08/06 9 AM	Inspector:	Brent Z	immer
	Weather:	Sunny	50°
GENERAL INSPECTION - To Be Compl	eted Monthly		Notes Problems
General Site Condition:			
Gates - condition and locks for inner & outer g	ates:	OK .	
Access Road - surface/paving/snow		OK)	
Overall appearance (trash/litter)		OK .	
Pump Station at Tannery Road:	Condition:	OK	
Pump #1 Hours: 548 10	Pump #2 Hours:	4690	14
Panel/Wells on Landfill			
Manholes along road - general condition, erosi	on, overflows	(OK	
Pump Well No's 1, 2, 3 & 4 - Well head condition		OK -	Serie to a construction
Meter Pit - open lid, check heater, leaks, etc.	or in mognity	OR -	
Panel note conditions and any alarms: OR	None	_	
	14005		
Totallizers (in meter pit)	DW	2.2	72
RW-1 <u>45398</u>		312	
RW-2 <u>93023</u>	_ RVV-4	3893	5 /
Hour Meters			
RW-1 / 96865		4651	
RW-2 <u>238636</u>	_ RW-4	2840	015
Landfill Cover Inspection			
Leachate seeps Any new seeps NO	If YES, describe:	See Be	lau
Western seep condition:	Some Erosian		
North seep condition:	Some Erosian		
Gas vents - general condition		OK) _	
 Unusual odors, list vents/describe. 	None		
Flares ignited		OK O	ne next to Muta Just North
Perimeter fence		OK _	
Frosion/animal burrows NO	If (ES), describe:	Moles	
Perimeter fence	If ES, describe:	OK) Moles	THE TO MUTE JUST
			O Course mains as at a
1) Next to the entrance gate just west -	INCAP TO MAG PENCE I	Jane 1	- FUNDE IN SIGN SOOL
2) Above MW-5 Just North.			-1
3) Just West of the North Scep H	ne land fill settled	18	50×50 sections
4) Just East of the North Scep the	Tack on Bern is	storting to	5 Lashout

Page 2 of 2

WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4.97	444.62	Good
MW - 2S	459.44	6.77	452.67	Good
MW - 3S	456.4	3,59	452.81	Good
MW - 4S	456.19	3.86	452.33	Goed
MW - 5S	457.15	4,44	462.71	Good
MW - 7S	452.25	7.81	444.44	Goeb.
WW - 9S	456.38	3.93	45a.45	God
MW - 10	486.3	35.11	451.19	Good
MW - 11	502.4	51.96	450.44	Geed
MW - 12	483.11	31,99	451.12	Obstruction in the well
PZ - 1	454.37	5,83	448.54	Good
NOTES:				

GENERAL INSPECTION - To Be Compl General Site Condition:	eted Monthly		Notes Problems
		OK	ok
Gates - condition and locks for inner & outer g	ates:	OK	9.6
Access Road - surface/paving/snow		OK	<u>OK</u>
Overall appearance (trash/litter)		OK	<u>OK</u>
Pump Station at Tannery Road:	Condition:	ок	OK
Pump #1 Hours: 5532	Pump #2 Hours:	47	306
Totallizers (in meter pit) RW-1 4539800			75800
RW-2 9423500	RW-4	389	3900
Hour Meters			
RW-1 196865			72137
D. A. Company	RW-3		7713.7-
RW-1 196865			7713.7
RW-1 196865 RW-2245480		20	10
RW-1 196865 RW-2 245480 Landfill Cover Inspection Leachate seeps Any new seeps NO			34015
RW-1 196865 RW-2 245480 Landfill Cover Inspection Leachate seeps Any new seeps NO Western seep condition:	RW-4		34015
RW-1 196865 RW-2 245480 Landfill Cover Inspection Leachate seeps Any new seeps NO Western seep condition: North seep condition: Gas vents - general condition - Unusual odors, list vents/describe.	RW-4		340 [5] 10 _OK
RW-1 196865 RW-2 245480 Landfill Cover Inspection Leachate seeps Any new seeps NO Western seep condition: North seep condition: Gas vents - general condition - Unusual odors, list vents/describe. Flares ignited NO - nene is nited	If YES, describe:	OK OK	340 [5] 10 _OK
RW-1 196865 RW-2 245480 Landfill Cover Inspection Leachate seeps Any new seeps NO Western seep condition: North seep condition: Gas vents - general condition - Unusual odors, list vents/describe.	If YES, describe:	OK OK	10

2 Erosion = 120' west of north downshute. Erosion along slope above diversion bernen

Page 2 of 2

onitoring We	i vvater Lev	ei Data		
WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4.85	444.74	
MW - 2S	459.44	6.65	452.79	
MW - 3S	456.4	3.57	462.83	
MW - 4S	456.19	3.90	452.29	
MW - 5S	457.15	4.45	452.7	
MW - 78	452.25	7.89	444.36	
MW - 9S	456.38	3.95	462. 43	
MW - 10	486.3	35.11	451. 19	
MW - 11	502.4	51.90	450,5	
MW - 12	483.11	320	451,11	
PZ - 1	454.37	5.45	448.42	
NOTES:	9th (271)	3990box 255		
80.8 af	= 443.71			
ID 5.40				
20 6.80 4D 4.60	A CONTRACTOR OF THE SECOND			

Date & Time:	Inspector:	Brent Zimmer		
	Weather:	Sunny	Bruze	
GENERAL INSPECTION - To Be Comp	leted Monthly	_	Notes Problems	
General Site Condition:			A .	
Gates - condition and locks for inner & outer of	gates:		2000	
Access Road - surface/paving/snow		OK G	rocc	
Overall appearance (trash/litter)		OK /	Vonc	
Pump Station at Tannery Road:	Condition:	® _		
Pump #1 Hours: <u>55604</u>	Pump #2 Hours:	475	36	
Panel/Wells on Landfill				
Manholes along road - general condition, eros	ion, overflows	OK _		
Pump Well No's 1, 2, 3 & 4 - Well head conditi		OK _		
Meter Pit - open lid, check heater, leaks, etc.		OR G	lood.	
Panel note conditions and any alarms:	None			
Totallizers (in meter pit)				
RW-1 45398	RW-3	3208	37	
RW-2 94515		3893	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	
Hour Meters				
RW-1 /96865	RW-3	47885	56	
RW-2 249/03		28401		
Landfill Cover Inspection	7			
Leachate seeps Any new seeps (NO)	If YES, describe:	Erosion	of Tack on Bern Still	
Western seep condition:	has not b		THE RESERVE OF THE PERSON OF T	
North seep condition:				
Gas vents - general condition		OK N	inc	
- Unusual odors, list vents/describe.	None			
to the property of the first of		OK 1/6	flores ignited	
Flares ignited				
Flares ignited Perimeter fence		OK		

MW - 1S MW - 2S	449.59	5.63	11112 01	
MW - 2S			443.96	Good
	459.44	8.26	451.18	Good
WW - 3S	456.4	4.08	452.32	Crock.
MW - 4S	456.19	4, 19	452	Good
MW - 5S	457.15	5.27	451.88	Good
W - 7S	452.25	8. 57	443.68	Gard
MW - 9S	456.38	4.21	452.17	God
/W - 10	486.3	35.12	451.18	Geed
MW - 11	502.4	51.86	450,64	God
/W - 12	483.11	32.14	450,97	Danage to the Well seems to be getting
PZ - 1	454.37	7,23	447.14	Good
MU-70 MU-20 IOTES:		8,85 8,14		

Page 1 of 2

	Weather:	Rai	
GENERAL INSPECTION - To Be Comple	eted Monthly		
General Site Condition:	-		Notes Problems
		OK)	
Gates - condition and locks for inner & outer g	ates:		
Access Road - surface/paving/snow		OR OR	
Overall appearance (trash/litter)		OK	
Pump Station at Tannery Road:	Condition:	OK	
Pump #1 Hours: 56094	Pump #2 Hours:	47	937
Panel/Wells on Landfill			
Manholes along road - general condition, erosi	ion, overflows	OK)	
Pump Well No's 1, 2, 3 & 4 - Well head conditi	on/integrity	OR .	
Meter Pit - open lid, check heater, leaks, etc.		OK	DPU on site purpoine metup
Panel note conditions and any alarms:			
Totallizers (in meter pit)			
RW-1 46 398	RW-	3 32	/34
RW-2 95758	RW-	4 38	1937
Hour Meters			
RW-1 196866	RW-	3 48	1976
RW-2 257506	RW-4	28	4615
Landfill Cover Inspection	7		
Leachate seeps Any new seeps NO	∠ If YES, describe	•	
Western seep condition:			me runoffersion, NO and
North seep condition:			no anostest lechate
Gas vents - general condition	Grane 1 12 Cit	OK '	11 Property recorder
- Unusual odors, list vents/describe.	None		
Flares ignited On e isnited	LACELA AM	OK)	only one next to MW-ld
Perimeter fence		OK	
Erosion/animal burrows NO	If YES, describe		
		TAY I	
osian through Diversion berm = 2	70' west of N	orth d	bun shute
			Love diversion berm

4 Erosian chamels southeast end of landfill have stabilized, but remain a potential

concerno

MW-28 459.44 6.26 453.18 Ged MW-38 456.4 3.28 453.12 Ged MW-48 456.19 3.67 452.52 Ged MW-58 457.15 3.48 453.67 Ged MW-78 452.25 8.18 444.67 Ged MW-98 456.38 3.60 452.78 Ged MW-10 486.3 35.09 451.21 Ged MW-11 502.4 52.00 450.4 Ged MW-12 483.11 32.30 450.81 Vell obstrated PZ-1 454.37 5.01 449.36 Geod MW-70	WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW-3S 456.4 3,28 453.12 God MW-4S 456.19 3.67 462.52 God MW-5S 457.15 3.48 453.67 God MW-7S 452.25 8,18 444.07 God MW-9S 456.38 3.60 452.78 God MW-10 486.3 35.09 451,21 God MW-11 502.4 52.00 450.4 God MW-12 483.11 32.30 450.81 Hell obstruted PZ-1 454.37 5.0/ 449.36 God	MW - 1S	449.59	3.9/	445.68	God
MW-4S 456.19 3.67 452.52 God MW-5S 457.15 3.48 453.67 God MW-7S 452.25 8.18 444.07 God MW-9S 456.38 3.60 452.78 God MW-10 486.3 35.09 451,21 God MW-11 502.4 52.00 450.4 God MW-12 483.11 32.30 450.81 Hell obstruted PZ-1 454.37 5.01 449.36 God MW-70 8,70	MW - 2S	459.44	6.26	453.18	God
MW-5S 457.15 3.48 453.67 Good MW-7S 452.25 8.18 444.67 Good MW-9S 456.38 3.60 452.78 Good MW-10 486.3 35.09 451.21 Good MW-11 502.4 52.00 450.4 Good MW-12 483.11 32.30 460.81 Hell obstracted PZ-1 454.37 5.01 449.36 Good MW-70 8.70	MW - 3S	456.4	3,28	453.12	Good
MW-7S 452.25 8.18 444.67 G_{ool} MW-9S 456.38 3.60 452.78 G_{ool} MW-10 486.3 35.09 451.21 G_{ool} MW-11 502.4 52.00 450.4 G_{ool} MW-12 483.11 32.30 450.81 H_{ell} obstruted PZ-1 454.37 6.01 449.36 G_{ool}	MW - 4S	456.19	3.67	452.52	God
MW-9S 456.38 3.60 452.78 Good MW-10 486.3 35.09 451.21 Good MW-11 502.4 52.00 450.4 Good MW-12 483.11 32.30 450.81 Uell obstructed PZ-1 454.37 5.0/ 449.36 Good MW-70 8.70	MW - 5S	457.15	3.48	453.67	Good
MW-10 486.3 35.09 451.21 Good MW-11 502.4 52.00 450.4 Good MW-12 483.11 32.30 450.81 Uell obstructed PZ-1 454.37 5.01 449.36 Good MW-70 8.70	MW - 7S	452.25	8.18	444,67	Good
MW-11 502.4 52.00 450,4 Good MW-12 483.11 32.30 450.81 U.ll obstructed PZ-1 454.37 5.0/ 449.36 Good MW-70 8,70	MW - 9S	456.38	3.60	452.78	Good
MW-12 483.11 32.30 450.81 Ucll obstructed PZ-1 454.37 5.0/ 449.36 Good MW-70 8,70	MW - 10	486.3	35,09	451,21	Good
PZ-1 454.37 5.0/ 449.36 Good MW-70 8,70	MW - 11	502.4	52.00	450,4	Good
MW-70 8,70	MW - 12	483.11	32.30	450,81	Well obstructed
이 집에 가장하다 하다 되는 것이 없는 사람들이 되었다. 그 사람들이 가장하다 하는 것이 없는 것이 없는 것이 없다.	PZ - 1	454.37	5.01	449.36	Good
	MW-70		8,70		
MU - 20 6.20 NOTES:	MU - 20 NOTES:		6,20		

Page 1 of 2

Andfill Cover Inspection RW-1 Hour Meters RW-1 RW-2 Andfill Cover Inspection RW-2 Andfill Cover Inspection RW-4 RW-2 Andfill Cover Inspection RW-4 RW-1 Andfill Cover Inspection RW-1 R	Notes Problems OK OK OK OK OK
Reneral Site Condition: States - condition and locks for inner & outer gates: Cocess Road - surface/paving/snow Everall appearance (trash/litter) Fump Station at Tannery Road: Condition: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Pump #2 Hours: Condition: Pump #2 Hours: Pump #2 Hours: Pump #2 Hours: Condition: Pump #2 Hours: Pump	ок <u>ок</u> ок <u>ок</u>
Reneral Site Condition: States - condition and locks for inner & outer gates: Cocess Road - surface/paving/snow Everall appearance (trash/litter) Fump Station at Tannery Road: Condition: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Condition: Pump #2 Hours: Pump #2 Hours: Condition: Pump #2 Hours: Pump #2 Hours: Pump #2 Hours: Condition: Pump #2 Hours: Pump	ок <u>ок</u> ок <u>ок</u>
Rates - condition and locks for inner & outer gates: CCCESS Road - surface/paving/snow Everall appearance (trash/litter) Fump Station at Tannery Road: Condition: Pump #1 Hours: 56683 Pump #2 Hours: P	OK OK
Access Road - surface/paving/snow overall appearance (trash/litter) Aump Station at Tannery Road: Condition: Pump #2 Hours: Annel/Wells on Landfill Idanholes along road - general condition, erosion, overflows overflows over Pit - open lid, check heater, leaks, etc. Annel note conditions and any alarms: Condition: Pump #2 Hours: Annel/Wells on Landfill Idanholes along road - general condition, erosion, overflows overflows overflows over Pit - open lid, check heater, leaks, etc. Annel note conditions and any alarms: Condition: RW-1 FW-1 FW-1 FW-1 FW-2 FW-4 FW-4 FW-4 FW-4 FW-4 FYES, describe: Annel Pithic.	OK OK
Andfill Cover Inspection RW-1 RW-2 RW-4 Hour Meters RW-1 RW-2 RW-2 RW-4 RW-2 RW-4 RW-2 RW-4 RW-6 RW-1 RW-2 RW-2 RW-1 RW-	
Pump Station at Tannery Road: Tump #1 Hours: \(\subseteq \lambda \lambda \rangle \ra	ok mk
anel/Wells on Landfill lanholes along road - general condition, erosion, overflows ump Well No's 1, 2, 3 & 4 - Well head condition/integrity leter Pit - open lid, check heater, leaks, etc. anel note conditions and any alarms: OK otallizers (in meter pit) RW-1 453900 RW-3 RW-2 9743700 RW-4 Hour Meters RW-1 19685 RW-3 RW-2 264699 RW-4 andfill Cover Inspection eachate seeps Any new seeps NO Western seep condition: North seep condition: North seep condition: North seep condition: Unusual odors, list vents/describe. ares ignited Note isnifed erimeter fence osion/animal burrows NO If YES describe:	
Annel/Wells on Landfill Idenholes along road - general condition, erosion, overflows Imp Well No's 1, 2, 3 & 4 - Well head condition/integrity Ideter Pit - open lid, check heater, leaks, etc. Idenal note conditions and any alarms: OK Identification of the condition of the	ОК
Annel/Wells on Landfill Idenholes along road - general condition, erosion, overflows Imp Well No's 1, 2, 3 & 4 - Well head condition/integrity Ideter Pit - open lid, check heater, leaks, etc. Idenal note conditions and any alarms: OK Identification of the condition of the	4841?
andfill Cover Inspection Peachate seeps Any new seeps Western seep condition: North seep condition: Annel Public as vents - general condition - Unusual odors, list vents/describe. Perimeter fence Osion/animal burrows NO If YES, describe: Sw Cornereum. Annel Public Osion/animal burrows NO If YES, describe:	OK <u>OK</u> NONE J213400 J8937-00 481976
Western seep condition: North seep condition: North seep condition: Unusual odors, list vents/describe. Area ignited North ignited osion/animal burrows NO If YES, describe: Sw. Cornereum. Angel exhibition (Angel exhibition) (Angel exhi	284015
Western seep condition: North seep condition: as vents - general condition - Unusual odors, list vents/describe. ares ignited None isnifed erimeter fence osion/animal burrows NO If YES describe:	
North seep condition: as vents - general condition - Unusual odors, list vents/describe. ares ignited Nore isnited erimeter fence osion/animal burrows NO If XES describe:	
as vents - general condition - Unusual odors, list vents/describe. ares ignited None isnited erimeter fence osion/animal burrows NO If YES describe:	Lite some crosies no mann
- Unusual odors, list vents/describe. ares ignited None isnifed erimeter fence osion/animal burrows NO If VES describe:	to crosion no assurest les
erimeter fence osion/animal burrows NO If VES describe:	
erimeter fence osion/animal burrows NO If YES describe:	
osion/animal burrows NO If ES describe:	OK
, (/	IK.
Consider with June 2006 de	
through diversian berm = 1701 west of north d	servation,
n on slope about dioversion berm = 1201 west	
	launshute
besigning in diversion berm just east of	north downshule

Page 2 of 2

Date & Time: 7/28/06 Inspector: Monitoring Well Water Level Data -Measure Depth to Groundwater Elevation (ft) **Well Condition WELL No** Water (ft) Pt Elev. OK MW - 1S 449.59 MW - 2S 459.44 3.61 MW - 3S 456.4 pk 3.83 MW - 4S 456.19 4.65 MW - 5S 457.15 8.07 MW - 7S 452.25 3.90 MW - 9S 456.38 24.88 MW - 10 486.3 51.82 MW - 11 502.4 22.04 MW - 12 483.11 6,39 PZ - 1 454.37 NOTES: MW-70 8.42 5.94 MW-11 MW-90 4,75 MW 50

Date & Time: 8/30/06	Inspector:	Brent	Zimmer
*	Weather:	Ovo	cast
GENERAL INSPECTION - To Be Comple	eted Monthly		Notes Problems
General Site Condition:		ù	
Gates - condition and locks for inner & outer ga	ites:	(OK)	
Access Road - surface/paving/snow		(DR	
Overall appearance (trash/litter)		888	
Pump Station at Tannery Road:	Condition:	OK)	
Pump #1 Hours: 5732/	Pump #2 Hours:	41	9929
Pump Well No's 1, 2, 3 & 4 - Well head condition Meter Pit - open lid, check heater, leaks, etc. Panel note conditions and any alarms: Totallizers (in meter pit) RW-1 45 398 RW-2 99 168 Hour Meters RW-1 /9686 5	RW-4	4 38	Bing Worked On 2617 936
RW-2 272583	_ RW-	4 28	4015
Landfill Cover Inspection Leachate seeps Any new seeps Western seep condition:			the existing
North seep condition:	Still elosion	100 210	3/60
Gas vents - general condition	DIN EDDIEN	(OR)	
- Unusual odors, list vents/describe.	No	9	20 May 1987 18
Flares ignited	7,10	ОК	None
Perimeter fence		OK	
Erosion/animal burrows NO	If YES, describe		ad Chuck holes, sow at los

8/30/06	Inspector:	Bront tim	mer
Water Leve	el Data		
Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
449.59	6,71	442.88	Good
459.44	8,91	450,53	Good
456.4	4, 14	452,26	Good
456.19	4,47	451,72	Good
457.15	5.86	461.29	Good
452.25	9.49	442.76	Good
456.38	4.21	452.17	Good
486.3	35.24	451.06	Good
502.4	52,08	450.32	Good
483.11	32. 33	450.78	?
454.37	7,91	446,46	Good
7Ñ	9,65 8,65		
1-12 - had to	couble getting 40	iter level meter ho	new up. complet on Santhing
			· ·
	Measure Pt Elev. 449.59 459.44 456.4 456.19 457.15 452.25 456.38 486.3 502.4 483.11 454.37	Water Level Data Measure Pt Elev. Depth to Water (ft) 449.59 4.71 459.44 8.91 456.4 4.14 456.19 4.47 457.15 5.86 452.25 9.49 456.38 4.21 486.3 35.24 502.4 52.08 483.11 32.33 454.37 7,91 9,65 8.65	Water Level Data Measure Pt Elev. Depth to Water (ft) Groundwater Elevation (ft) 449.59 4.71 442.88 459.44 9.91 450.53 456.4 4.14 452.26 456.19 4.47 451.72 457.15 5.86 451.29 452.25 9.49 442.76 456.38 4.21 452.17 486.3 35.24 451.06 502.4 52.08 450.32 483.11 32.33 450.78 454.37 7,91 446.46

Page 1 of 2

Date:	8/30/06		Inspector:	Brent Zimmer	
Weather:	Overcast	Breeze			

ANNUAL GAS VENT INSPECTION (To be completed each Fall)

Gas Vent	H ₂ S	Detectab	le Odors	General Vent Condition
Number	(ppm)	Yes	No	Notes/Comments
1	0		1	Good
2	0		/	Good
3	0		/	Good
4	0		1	Good
5	0		V	Good
6	0		1	Good
7	0		/	Flare Not Lik - LEL 7
8	0		V	Flare Not Lite - LEL4
9	0		1	Good LEL7
10	0		1	Flore Not Like HighLEL
11	0		J	Flore Not Lite LEL 76
12	0		V	Flace Not Like -LEL 84
13	0		1	Flore Not Life Nich LEL
14	0		1	Good LEL 93
15	0		1	Flare LEL 49 Not Lite
16	0		/	Good LEL 20
17	0		/	God
18	0		V	Good scien broke
19	0		1	Good
20	0		V	Good LEL 23 Some broken plastic in Elbou
21	0	- CV = C	1	Goch LEL 10
22	0		V	Good
23	0			Good
24	0		V	Good
25	0		/	Good

F

Page 2 of 2

Date:	8/30/06		Inspector:	Bront Zimmer	
Weather:	Over const	Breeze			

ANNUAL GAS VENT INSPECTION (To be completed each Fall)

Gas Vent	H ₂ S	Detecta	ble Odors	General Vent Condition
Number		Yes	No	Notes/Comments
26	Jr . " A	er gelfit		Does not Exist
27	0		/	Good LEL 19
28	0		X	God High LEL
29	0		X	Good
30	0		X.	Good
31	0		X	Good
32	٥	+		Slight oder LEL 50 Good Condition
33	0		X	Good Hid LEL
34	0		X	Good High LEL
35	0	x		Good Slightodor LEL 80
36	0		X	Good 422
37	0		X	God
38	0	+		High Oder High LEL Good Condition
39	0	+		High Odor Good Condition
40	0	λ		Slight Oder Good Condition LEL 57
41	0.	X		Stight Oder Good Condition High LEL
42	0		X	Good
43	0			Good LEL High
44	0		X	Good LEL 10
45	0	x		Good Slight abox LEL 15
46	0		x	Good LEL 27

GENERAL INSPECTION - To Be Comple	eted Monthly Notes Problems
General Site Condition:	THOUSE TOUSING
Gates - condition and locks for inner & outer g	ates:
Access Road - surface/paving/snow	(D)
Overall appearance (trash/litter)	© R
Pump Station at Tannery Road:	Condition: OK
Pump #1 Hours: 57814	Pump #2 Hours: 49 29 2
Totallizers (in meter pit)	RW-3 33/22
RW-1 453 98 RW-2 453 Hour Meters	RW-4 38930
RW-2 453 Hour Meters RW-1 196865	RW-4 38930 RW-3 493657
RW-2 453 Hour Meters	RW-4 38930
RW-2 <u>453</u> Hour Meters RW-1 <u>19686 5</u>	RW-4 38930 RW-3 493657
RW-2 453 Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection	RW-4 38930 RW-3 493657
RW-2 453 Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection	RW-4 38930 RW-3 493657 RW-4 284016
RW-2 453 Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection Leachate seeps Any new seeps	RW-4 38930 RW-3 493657 RW-4 284016 If YES, describe:
Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection Leachate seeps Any new seeps (NO) Western seep condition: North seep condition: Gas vents - general condition	RW-4 38930 RW-3 493657 RW-4 284016 If YES, describe:
Hour Meters RW-1 /96865 RW-2 279062 Landfill Cover Inspection Leachate seeps Any new seeps Western seep condition: North seep condition: One of the condition of the condi	RW-4 38930 RW-3 493657 RW-4 2840/6 If YES, describe:
Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection Leachate seeps Any new seeps (NO) Western seep condition: North seep condition: One of the seep seep seep seep seep seep seep se	RW-4 38930 RW-3 493657 RW-4 284016 If YES, describe: OK OK OK OK
Hour Meters RW-1 196865 RW-2 279062 Landfill Cover Inspection Leachate seeps Any new seeps (NO) Western seep condition: North seep condition: Gas vents - general condition	RW-4 38930 RW-3 493657 RW-4 2840/6 If YES, describe:

Marked out locations with stakes/Ribbon of Repairs to be done to tack on berm.

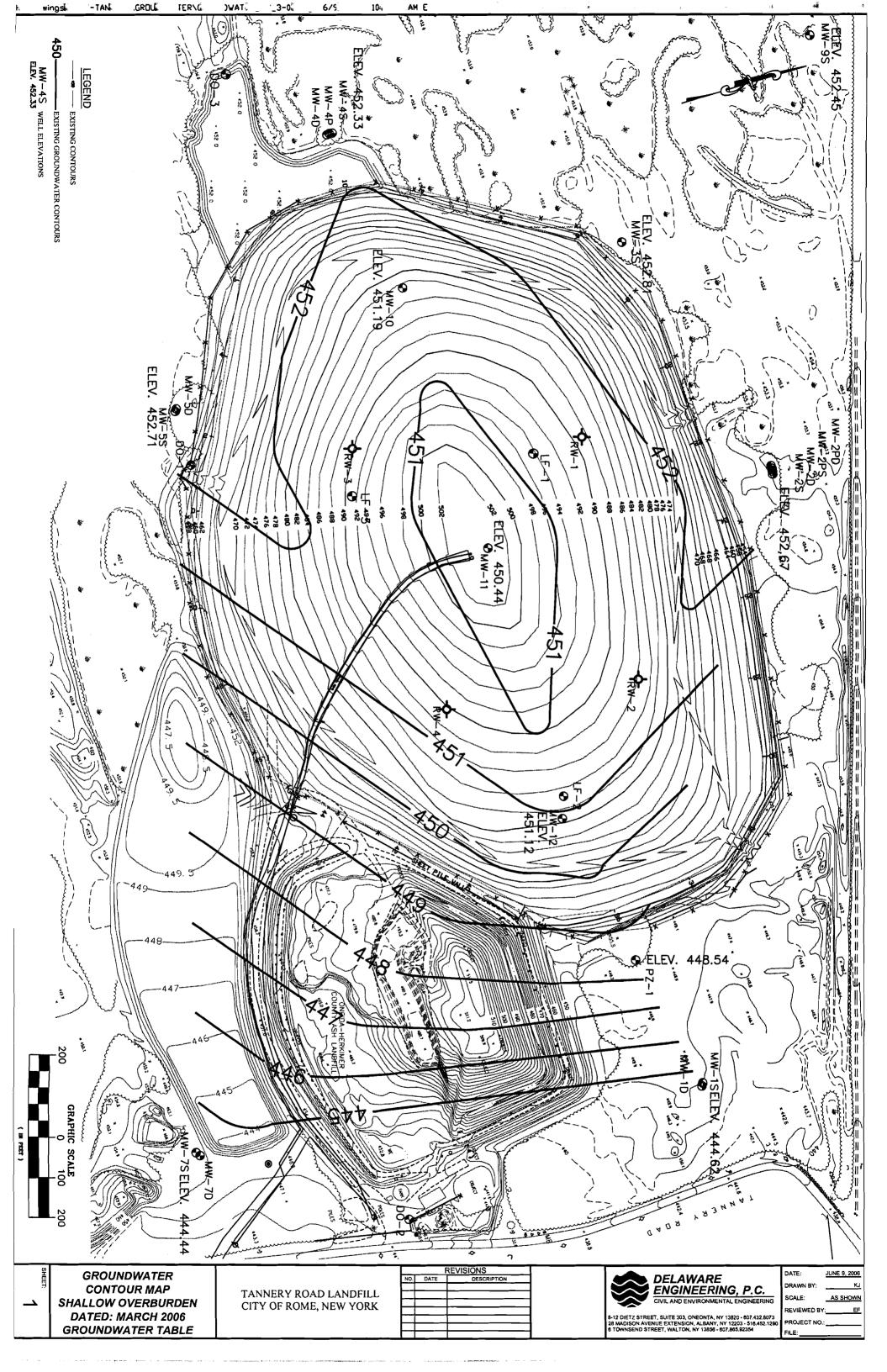
WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	6.77	442.82	Good .
MW - 2S	459.44	8,81	450,63	6.1
MW - 3S	456.4	4,12	452.28	GJ
MW - 4S	456.19	4,93	461,26	God
MW - 5S	457.15	6,21	45094	God
MW - 7S	452.25	10, 27	441.98	C.)
MW - 9S	456.38	4.16	452,22	Gazl
MW - 10	486.3	35,37	450,93	Good
MW - 11	502.4	52.22	450.18	Good
MW - 12	483.11	32.56	450.55	Obstruction
PZ - 1	454.37	8,47	445.90	Good
NOTES:	di water	10 500		

Date & Time: 10/25/06	Inspector:	Brent Zim	mer
	Weather:	Rain 1	rindly.
GENERAL INSPECTION - To Be Compl	leted Monthly		Notes Problems
General Site Condition:		- I	
Gates - condition and locks for inner & outer g	jates:	OK _	
Access Road - surface/paving/snow		Ø® _ Ø® _	
Overall appearance (trash/litter)		OB _	
Pump Station at Tannery Road:	Condition:	OK _	
Pump #1 Hours: <u>58 43 /</u>	Pump #2 Hours:	4974	3
Pump Well No's 1, 2, 3 & 4 - Well head condition Meter Pit - open lid, check heater, leaks, etc. Panel note conditions and any alarms: Totallizers (in meter pit) RW-1 45398 RW-2 /89/ Hour Meters		OK	
RW-1 196865	RW-3	5006	47
RW-2 286052	_ RW-4	28401	5
Landfill Cover Inspection]		
Leachate seeps Any new seeps	If YES, describe:		
Western seep condition:	OL		
North seep condition:	ol		
Gas vents - general condition		OK	
 Unusual odors, list vents/describe. 	Hone		
Flares ignited		and the same of th	one
Perimeter fence		©	
Erosion/animal burrows NO	If YES, describe:	Wood Chue	k holes - no neu

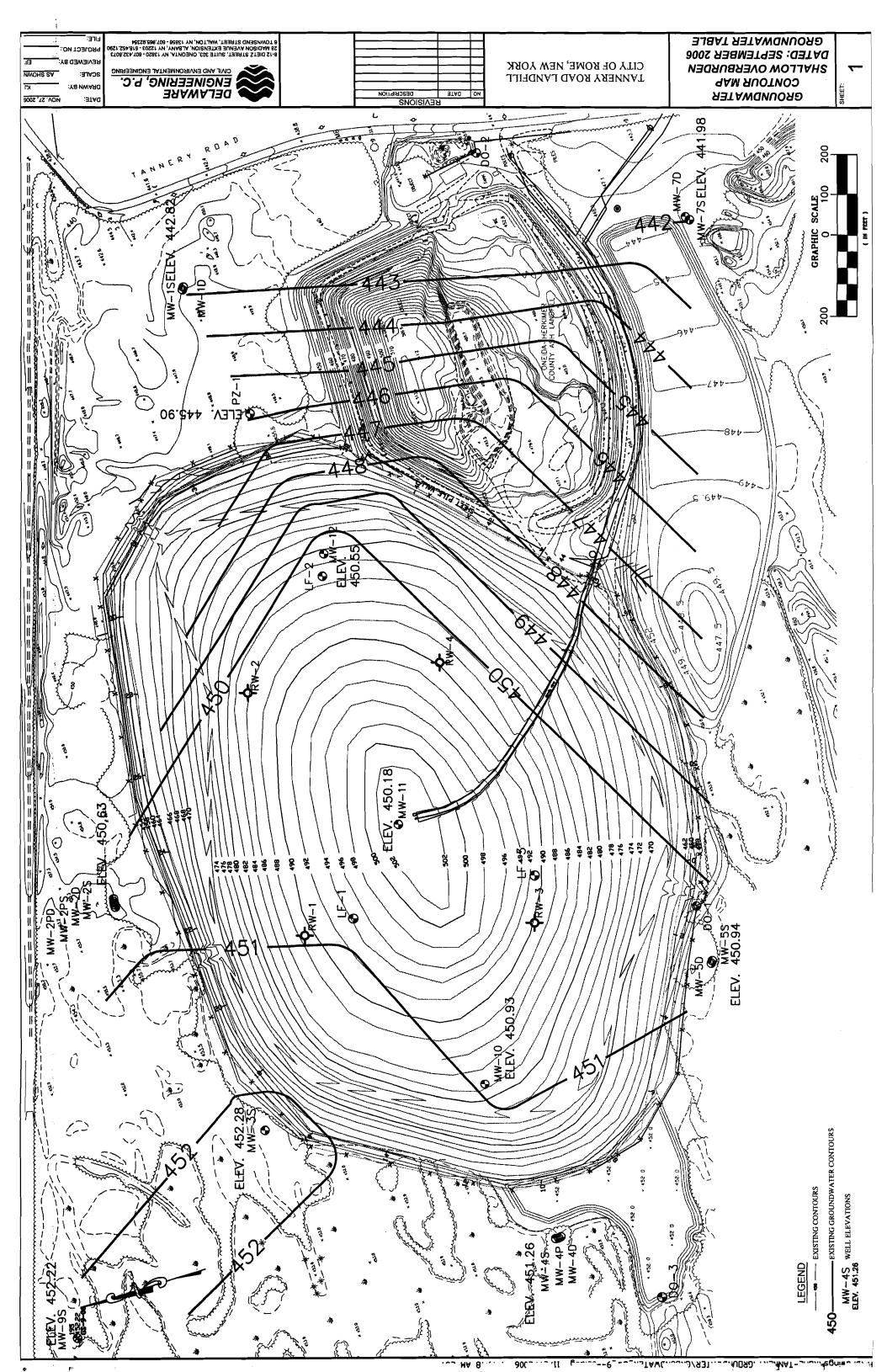
WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4.46	445.13	Good
MW - 2S	459.44	5.86	453,58	Good
MW - 3S	456.4	3.44	452,96	Good
MW - 4S	456.19	3,79	452.40	Good
MW - 5S	457.15	4.14	453,01	Good
MW - 7S	452.25	7.72	444,53	Good
MW - 9S	456.38	3,72	452.66	Good
MW - 10	486.3	35.20	451.10	Good
MW - 11	502.4	52.09	450.31	Good
MW - 12	483.11	32,35	450.76	Hitobstruction - unit pass
PZ - 1	454.37	5.41	448,96	Good
MV- 76 MV-46	0 6.15			

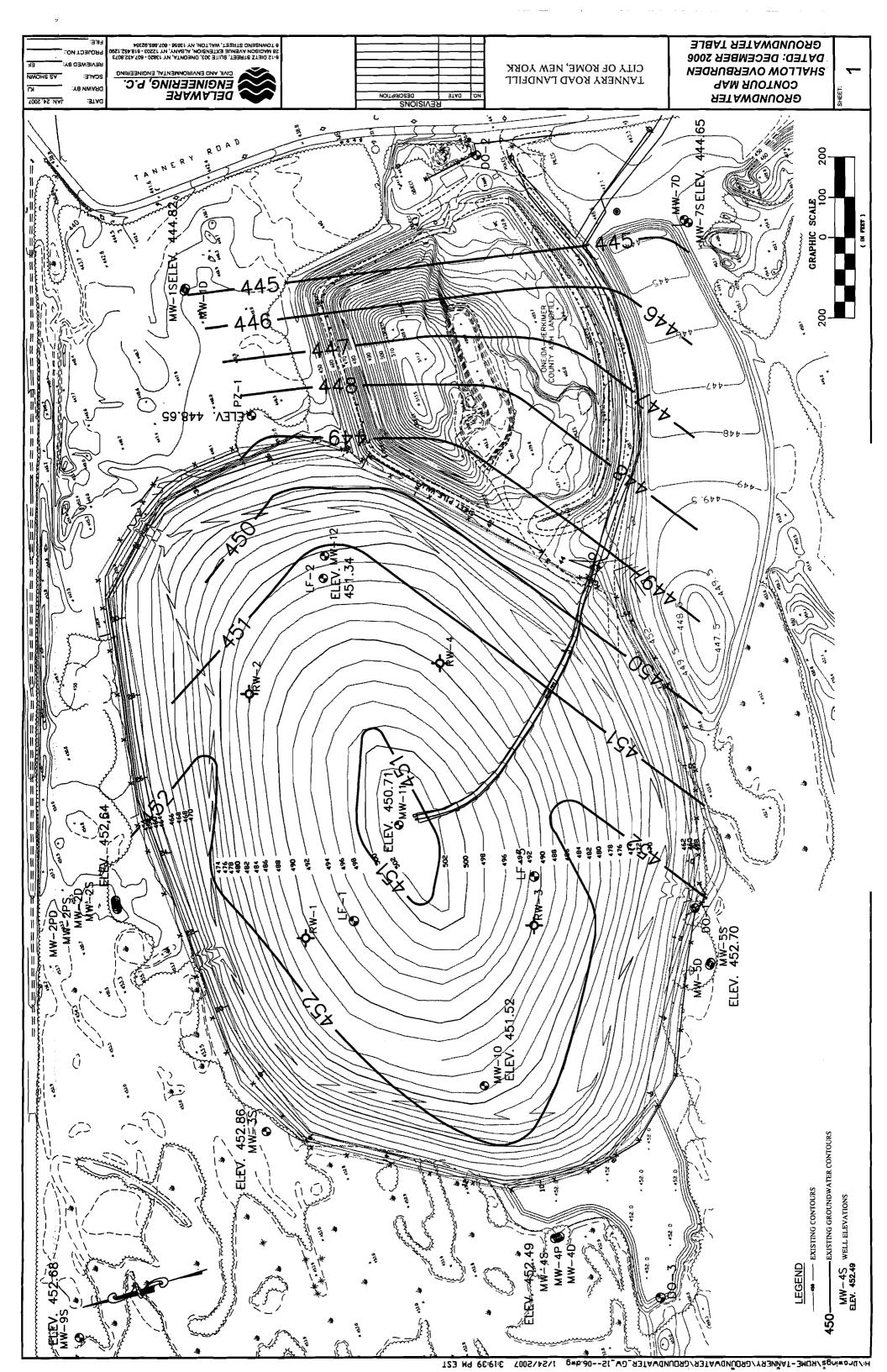
Date & Time: 11/22/06	Inspector:	Brent Zimmer	
	Weather:	Suny	
GENERAL INSPECTION - To Be Comple	eted Monthly	Notes Problems	
General Site Condition:			
Gates - condition and locks for inner & outer ga	ates:	(бк)	
Access Road - surface/paving/snow		OR	
Overall appearance (trash/litter)		OK)	
Pump Station at Tannery Road:	Condition:	(OK)	
Pump #1 Hours: <u>5905</u>	Pump #2 Hours:	5029	
Manholes along road - general condition, erosic Pump Well No's 1, 2, 3 & 4 - Well head condition Meter Pit - open lid, check heater, leaks, etc. Panel note conditions and any alarms: Totallizers (in meter pit)	on/integrity	OK Under Resour	
RW-1 453%8		34182	
RW-2_3289	_ RW-4	38930	
Hour Meters		(a.7a	
RW-1 /96865	RW-3 <u>507345</u> RW-4 <u>284016</u>		
RW-2 <u>494750</u>	_ RW-4	284015	
Landfill Cover Inspection			
Leachate seeps Any new seeps Western seep condition:	If YES, describe:		
North seep condition:	Hos some presion		
Gas vents - general condition	Mrs some prosien	© R	
 Unusual odors, list vents/describe. 	None		
Flares ignited		OK None	
Perimeter fence		<u> (бк)</u>	
Erosion/animal burrows NO	If YES, describe:	No new	

WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4.67	444,92	Good
MW - 2S	459.44	6.27	453.17	MU-20 = 6.51 Good
MW - 3S	456.4	3,61	452,79	Good
MW - 4S	456.19	3,80	452.39	Good
MW - 5S	457.15	4.45	452. 70	Good
MW - 7S	452.25	7.36	444.89	MW-70 = 7.23 Good
MW - 9S	456.38	3.75	452.63	God
MW - 10	486.3	36, 22	451,08	Cool
MW - 11	502.4	52.03	450.37	Good
MW - 12	483.11	32.04	451.07	Good
PZ - 1	454.37	5,72	448.65	Good
NOTES:				


Date & Time:	12/13/06	_ Inspector:	Brent Zimmer	
Monitoring Wei	ll Water Leve	el Data		
WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4,77	444.82	Good
MW - 2S	459.44	6.80	452.64	Good
MW - 3S	456.4	3,54	452.86	Good
MW - 4S	456.19	3.70	452.49	God
MW - 5S	457.15	4.45	452.70	Good
MW - 7S	452.25	7,60	444,65	Glocal .
MW - 9S	456.38	3.70	452.68	Coch
MW - 10	486.3	34.78	451,52	Gaz
MW - 11	502.4	51.69	450,71	Good
MW - 12	483.11	31.77	451. 34	Obstruction
PZ - 1	454.37	5.70	448,65	Good
NOTES:				

Date & Time: 12/13/06	Inspector: Brent Zimmer
The second secon	Weather: Rain
GENERAL INSPECTION - To Be Comple	
General Site Condition:	Notes Problems
Gates - condition and locks for inner & outer ga	gates: ØK
Access Road - surface/paving/snow	gates: OR
Overall appearance (trash/litter)	ÓK)
Pump Station at Tannery Road:	Condition: OK
Pump #1 Hours: 5948 (Pump #2 Hours: _50653
Panel note conditions and any alarms: Totallizers (in meter pit) RW-1 46 398	RW-3 346 24
RW-2 430 4	RW-4 38930
Hour Meters	30/30
RW-1 196865	RW-3 512389
RW-2 297794	RW-4 384016
Landfill Cover Inspection	
Leachate seeps Any new seeps	If YES, describe:
Western seep condition:	Some erosien
North seep condition:	Some Closian
Gas vents - general condition - Unusual odors, list vents/describe.	None
Flares ignited	OK 2 not looited
Perimeter fence	OK
Erosion/animal burrows NO	If (ES, describe: 1/6 Mw
Perimeter fence Erosion/animal burrows NO	


Date & Time: 1/19/07	Inspector:	Brent Zimmer		
	Weather:	Snow	Windy	
GENERAL INSPECTION - To Be Comp	leted Monthly		Notes Problems	
General Site Condition:				
Gates - condition and locks for inner & outer of Access Road - surface/paving/snow Overall appearance (trash/litter)	gates:	~	Vuylittle snow	
Pump Station at Tannery Road:	Condition:	OK		
Pump #1 Hours: 60032	Pump #2 Hours:		286	
Pump Well No's 1, 2, 3 & 4 - Well head condit Meter Pit - open lid, check heater, leaks, etc. Panel note conditions and any alarms: Totallizers (in meter pit)		OR OR	1/4	
RW-1 45398	RW-3	349	149	
RW-2 057/6	RW-4	389	30	
Hour Meters RW-1 /96865	RW-3	50	01264	
RW-2 304/74	RW-4	28	4015	
Landfill Cover Inspection				
Leachate seeps Any new seeps NO	If YES, describe:	ile in	and the second second	
Western seep condition:	OK Coruel with snow			
North seep condition:	OK Covered	UHL SA		
Gas vents - general condition		OK _		
 Unusual odors, list vents/describe. 	None			
Flares ignited		2000	None (very High winds)	
Perimeter fence		OK _		
Erosion/animal burrows NO	If YES, describe:		Covuct in Snov	


Date & Time:	1/19/07	_ Inspector:	Brent Zimme	
Monitoring We	II Water Leve	el Data		
WELL No	Measure Pt Elev.	Depth to Water (ft)	Groundwater Elevation (ft)	Well Condition
MW - 1S	449.59	4.62	444.97	Good
MW - 2S	459.44	6,18	463,26	Geel
MW - 3S	456.4	3.56	452.84	Good
MW - 4S	456.19	3.66	452.53	Goal
MW - 5S	457.15	4,41	462.74	Gead
MW - 7S	452.25	7.10	445.15	MH-70 6.89 God
MW - 9S	456.38	3.71	452.67	Geal
MW - 10	486.3	34,52	451.78	Carl
MW - 11	502.4	51.43	450,97	Good
MW - 12	483.11	31,60	451.51	Good
PZ - 1	454.37	5.51	448.86	Good
• \$6				
NOTES:			(
			\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
. 17423		William March		

FIGURES

