Interim Corrective Measure Barrier Layer Construction Certification Report

Former TRW Aeronautical Systems Facility 211 Seward Avenue Utica, New York

December 2005

Certification Statement

Section	1.	Introduction	1-1
		1.1 General	1-1
		1.2 Report Organization	1-2
		1.3 Background Information	1-2
Section	2.	ICM Barrier Layer Construction Activities Summary	2-1
		2.1 General	2-1
		2.2 Pre-Qualification of Fill Materials	2-1
		2.3 Land Surveying Activities	2-2
		2.4 Monitoring Well Modification	2-3
		2.5 Erosion and Sedimentation Control	2-4
		2.6 Tree/Brush Clearing	2-4
		2.7 Barrier Layer Construction	2-4
		2.8 Air Monitoring	2-5
Section	3.	Chronology of Significant Milestone Dates	3-1
Section	4.	Modifications to Barrier Layer Construction Work Plan	4-1
Section	5.	Summary and Conclusions	5-1

Table s

- 1 Backfill Sample Results
- 2 Updated Monitoring Well Construction Summary

Figures

- 1 Site Location Map
- 2 Site Layout Plan
- 3 Detail and Section

Appendices

- A Relevant Correspondence
- B Weekly Field Reports
- C Photo Log
- D Validated Analytical Data Report
- E Air Monitoring Logs

Certification Statement

I, David R. Gerber, as a licensed Professional Engineer in the State of New York, to the best of my knowledge, certify that the interim corrective measure (ICM) barrier layer construction activities performed at the former TRW Aeronautical Systems facility in Utica, New York to mitigate the potential exposure to constituents of interest in soils at concentrations above New York State Department of Environmental Conservation (NYSDEC) soil guidance values were completed in general accordance with the following:

- the NYSDEC-approved Interim Corrective Measure Barrier Layer Construction Work Plan (BBL, August 2005) (the "ICM Work Plan");
- e-mail correspondence to the NYSDEC dated August 24, 2005 that presents a work plan modification;
- a September 12, 2005 letter responding to NYSDEC comments on the ICM Work Plan;
- discussions between the parties during an October 14, 2005 telephone conference call concerning an
 additional work plan modification, as approved in a letter from the NYSDEC dated October 25, 2005; and
- supplemental correspondence referenced throughout this Certification Report, which is included in Appendix A.

I also certify that, to the best of my knowledge, this ICM Barrier Layer Construction Certification Report accurately summarizes the work activities performed.

David R. Gerber, P.E. Vice President NY P.E. License No. 073001

Blasland, Bouck & Lee, Inc. 6723 Towpath Road, P.O. Box 66 Syracuse, New York 13214-0066

1. Introduction

1.1 General

This Report summarizes interim corrective measure (ICM) Barrier Layer construction activities implemented to mitigate the potential exposure to constituents of interest in soils at concentrations above New York State Department of Environmental Conservation (NYSDEC) soil guidance values at the former TRW Aeronautical Systems facility located at 211 Seward Avenue in Utica, New York (the 'Site'). The ICM Barrier Layer construction activities were conducted between September 2005 and December 2005 by Royal Environmental, Inc. (Royal) of Rochester, New York. Blasland, Bouck & Lee, Inc. (BBL) provided onsite observation of the activities and monitoring for airborne particulate during activities with the potential for dust generation (i.e., fill placement and grading).

The ICM Barrier Layer construction activities were conducted in general conformance with:

- the NYSDEC-approved Interim Corrective Measure Barrier Layer Construction Work Plan (BBL, August 2005) (the "ICM Work Plan");
- e-mail correspondence to the NYSDEC dated August 24, 2005 that presents a work plan modification (described further in Section 4);
- a September 12, 2005 letter responding to NYSDEC comments on the ICM Work Plan;
- discussions between the parties during an October 14, 2005 telephone conference call concerning an additional work plan modification, as approved in a letter from the NYSDEC dated October 25, 2005 (described further in Section 4); and
- supplemental correspondence referenced throughout this Certification Report, which is included in Appendix A.

In general, work activities completed as part of the ICM Barrier Layer construction included:

- modifying two monitoring wells included in the annual groundwater monitoring program that were located within the barrier layer footprints;
- decommissioning remaining wells not included in the annual groundwater monitoring program that were located within the barrier layer footprints;
- placing, grading, and compacting approximately 1,000 tons of run-of-bank gravelto fill depressions and to promote drainage before constructing the barrier layer; and
- constructing a minimum one-foot-thick soil barrier layer by placing, grading, and compacting at least 9inches of run-of-bank gravel and 3-inches of topsoil over five separate areas of the Site (equivalent to 135,000 square feet).

As indicated above, the barrier layer was placed over areas of surface soil exhibiting constituents at concentrations above the soil guidance values presented in the NYSDEC Technical and Administrative Guidance Memorandum titled *Determination of Soil Cleanup Objectives and Cleanup Levels*, HWR-94-4046,

dated January 24, 1994 (hereinafter referred to as "TAGM 4046 soil guidance values"). The lateral extent of the barrier layer was determined based on the results of previous investigation activities conducted at the Site.

The organization of this Report is presented below, followed by a summary of relevant background information.

1.2 Report Organization

This Report is organized into the following sections:

Section	Purpose
Section 1 – Introduction	Provides an overview of the ICM Barrier Layer
	construction activities and site background information.
Section 2 – ICM Barrier Layer	Presents a detailed description of the ICM Barrier Layer
Construction Activities	construction activities.
Summary	
Section 3 – Chronology of Significant	Presents a chronology of significant milestone dates for
Milestone Dates	the ICM Barrier Layer construction activities.
Section 4 – Modifications to the ICM	Summarizes modifications made to the ICM Barrier Layer
Barrier Layer Construction	Construction Work Plan.
Work Plan	
Section 5 – Summary and Conclusions	Provides a brief summary and conclusions based on the
	ICM activities.

1.3 Background Information

This section briefly presents relevant background information used to develop the scope for the ICM Barrier Layer construction activities. Additional relevant background information is more fully set forth in the NYSDEC-approved *Corrective Measures Study Report* (BBL, December 2004) ["CMS Report"].

A number of environmental investigations were conducted at the Site beginning in the 1980s. More recently, comprehensive environmental site investigations have been conducted, including a Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA) and a RCRA Facility Investigation (RFI). Findings of the RFA and the RFI are presented in the *RCRA Facility Assessment* (ERM, March 2001) and the *RCRA Facility Investigation Report* (BBL, April 2004), respectively. In response to the Site environmental investigation findings, two initial ICMs were performed onsite, including a Storm Sewer Removal ICM and a polychlorinated biphenyl (PCB-) Impacted Soil Removal ICM. Details of the Storm Sewer Removal ICM and the PCB-Impacted Soil Removal ICM are presented in the *Interim Corrective Measure Storm Sewer Removal Certification Report* (BBL, November 2004), respectively.

Based on the findings of the RFI and completion of the two ICMs, a Corrective Measures Study (CMS) was completed to evaluate potential final corrective measures for the Site. The CMS Report presented an evaluation of potential final corrective measures, and recommended final corrective measures consisting of a barrier layer, site controls, and monitoring. The CMS Report was approved by the NYSDEC on March 30, 2005. The barrier layer component of the recommended final corrective measures included installing a minimum of 1 foot of clean fill materials as an active exposure prevention method over areas of surface soil exhibiting constituents at concentrations above the TAGM 4046 soil guidance values. In order to continue progress toward site closure

while further investigation is performed regarding offsite matters, the barrier layer was constructed as an ICM (as approved by NYSDEC and summarized in this report).

2.1 General

This section presents a description of the ICM Barrier Layer construction activities implemented at the Site. The activities were performed to mitigate:

- potential future exposure of persons at the Site to soil containing elevated concentrations of constituents of interest; and
- potential migration of wind-blown dust containing elevated concentrations of constituents of interest.

As part of these activities, areas where surface soils (soils within 1-foot of the ground surface) exhibited constituents at concentrations above the TAGM 4046 soil guidance values were covered by a one-foot thick (minimum) soil barrier layer. Accordingly, five areas of the Site were covered by a barrier layer, as shown on Figure 2 and further discussed in Subsection 2.7 below.

The barrier layer mitigates potential exposure to soil at the Site containing constituents of interest at concentrations above TAGM 4046 soil guidance values by physically isolating the impacted soils from direct contact. Similarly, the barrier layer mitigates potential exposure to windblown dust by physically isolating impacted soils and preventing them from being mobilized by the wind.

Activities associated with implementation of the ICM Barrier Layer construction included the following:

Subsection Number	Work Task
2.2	Pre-Qualification of Fill Materials
2.3	Land Surveying Activities
2.4	Monitoring Well Modification
2.5	Erosion and Sedimentation Control
2.6	Tree/Brush Clearing
2.7	Barrier Layer Construction
2.8	Air Monitoring

Weekly field reports summarizing work performed in connection with the ICM Barrier Layer construction activities are presented in Appendix B. Photographs showing work in progress and the final barrier layer are included in Appendix C.

A detailed discussion of each work task associated with the ICM Barrier Layer construction activities is presented below.

2.2 Pre-Qualification of Fill Materials

Prior to starting the onsite ICM barrier layer construction activities, Royal identified Leit z Enterprises (Leitz) of Frankfort, New York as a potential source for the run-of-bank gravel fill material and topsoil needed for the barrier layer construction. BBL subsequently collected four representative samples (via the same methods described below) of the run-of-bank gravel and topsoil from Leitz's facility on September 20, 2005. The samples were submitted to Severn Trent Laboratories, Inc. (STL) of Canton, Ohio for laboratory analysis for

PCBs, pesticides, Target Compound List (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), and Target Analyte List (TAL) inorganic constituents. Based on the detection of selected SVOCs and inorganic constituents in the topsoil samples at concentrations above the TAGM 4046 soil guidance values, Burrow's Trucking and Excavating [Burrow's] of Oriskany, New York was identified as an alternate backfill source. BBL collected representative samples of the run-of-bank gravel and topsoil from Burrow's facility on October 4, 2005, consisting of:

- One topsoil sample (sample TS-2); and
- Two run-of-bank gravel samples (samples RB-3 and RB-4).

Based on the estimated volume of topsoil available at Burrow's pit at the time of sampling (1,200 to 1,400 cubic yards [CY], which is approximately half of the volume called for in the ICM Work Plan), only one sample of topsoil was collected for analysis. The additional topsoil and run-of-bank gravel samples were submitted to STL for laboratory analysis for PCBs, pesticides, TCL VOCs, TCL SVOCs, and TAL inorganic constituents. The samples submitted for VOC analysis were each collected as discrete grab samples. The samples submitted for the remaining analyses were composite samples, each formed from 6 to 8 individual discrete grab samples. Quality assurance/quality control samples (including blind duplicate, matrix spike, and matrix spike duplicate samples) were submitted for laboratory analysis in connection with the pre-qualification fill material sampling.

The laboratory analytical results for the fill material samples obtained from the Burrow's facility were validated by BBL. The validated laboratory analytical results are presented in Table 1. The analytical data validation report is included as Appendix D. Based on the laboratory analytical results, the proposed topsoil and run-of-bank gravel samples did not exhibit PCBs, pesticides, TCL VOCs, or TCL SVOCs at concentrations above the TAGM 4046 soil guidance values. Concentrations of inorganic constituents identified in the samples appeared to be generally consistent with the TAGM 4046 soil guidance values, taking into consideration typical regional background concentrations. However, concentrations of selected inorganic constituents identified in the topsoil sample were above the maximum background values identified in site background samples collected in support of the RFI. After discussion between the parties regarding the analytical results, NYSDEC approved the proposed backfill material via a letter dated October 25, 2005.

Given the uncertainty in the amount of topsoil available at Burrow's facility (and the limited quantity/quality of available topsoil at other nearby sources), Lucas Western proposed to modify the barrier layer composition from equal amounts of run-of-bank gravel and topsoil (6-inches each) to 9 inches of run-of-bank gravel and 3 inches of topsoil to facilitate completion of the ICM. The overall objectives of the barrier layer, as defined in Section 2.1 above, would still be achieved under the proposed modification. A conference call was subsequently held with the NYSDEC on October 14, 2005 to discuss the proposed modification. NYSDEC approval of the proposed modification was provided in their letter dated October 25, 2005.

2.3 Land Surveying Activities

Prior to contractor mobilization, BBL performed land surveying activities to field locate the barrier layer boundaries and install stakes to serve as a reference during construction. The survey field activities were completed on September 6 and 7, 2005. Grade stakes were installed at the corners of each of the five barrier layer areas, and every 100 feet, with a minimum of two stakes in interior portions of each barrier layer area. Each grade stake was marked to identify the appropriate fill thickness, and was used for reference by equipment operators during construction.

2.4 Monitoring Well Modification

In preparation for the barrier layer construction activities, groundwater monitoring wells within the limits of the barrier layer areas that are included in the annual groundwater monitoring program (wells B95-1 and MW03-3, as shown on Figure 2) were modified to accommodate the barrier layer construction and facilitate continued groundwater monitoring. In addition, wells within the limits of the barrier layer areas that are not included in the annual groundwater monitoring program (wells B84-1, B84-2, B84-3, B85-4, B85-5, and B85-6) were decommissioned.

Monitoring wells B95-1 and MW03-3 were modified on September 12, 2005. The well modifications were performed via the following sequential steps:

- The well cover and concrete curb box was removed.
- Approximately 3 feet of 2 inch diameter Schedule 40 PVC riser pipe was connected to the top of the existing riser pipe using a compression coupling.
- Approximately 3.5 to 4.5 feet of 4-inch diameter protective steel casing was installed around the PVC riser pipe and driven approximately 1 to 2 feet into the current ground surface.
- An 18-inch long by 18-inch wide cylindrical concrete form was placed around the base of the 4inch diameter steel casing approximately 6 inches below grade surface and 12 inches above grade, and subsequently was filled with concrete.
- A new locking cover was installed on the top of the steel casing.

Revised well construction information and reference elevations for monitoring wells B95-1 and MW03-3 are presented in Table 2.

Decommissioning of wells B84-1, B84-2, B84-3, B85-4, B85-5, and B85-6 was performed on September 12 and 13, 2005. The decommissioning was performed using a streamlined method approved by the NYSDEC on August 24, 2005 (*see* Section 4 for detailed description and Appendix A for e-mail correspondence detailing the approach). The well decommissioning method minimized the amount of materials generated and was consistent with ASTM Standard D-5299 and the NYSDEC guidance document titled, *Groundwater Monitoring Well Decommissioning Procedures* (NYSDEC, October 1996). The decommissioning work was performed at each of the above-identified wells as follows:

- The protective steel casing and concrete surface pad was removed.
- Grout was added, from the bottom of the borehole upward to within 4 feet of the ground surface, while the PVC well casing was pulled and removed.
- Bentonite pellets were placed in the upper 4 feet of the borehole as the last of the casing was pulled.
- A ferrous metal marker was embedded in the bentonite at each former well location.

The PVC well casing for all of the above-identified wells was pulled and removed successfully without severing the casing. Therefore, no overdrilling was required. The well casing and surface completion materials were decontaminated and taken offsite for recycling of the steel and disposal of the scrap PVC.

2.5 Erosion and Sedimentation Control

Erosion and sedimentation control measures were installed, where necessary, on September 27, 2005 following completion of limited clearing, where needed to install the measures. The measures included silt fencing around the barrier layer construction areas and material staging areas. The erosion and sedimentation control measures were installed and maintained in accordance with the *Stormwater Pollution Prevention Plan* (BBL, August 2005) and the New York Guidelines for Urban Erosion and Sediment Control (Empire State Chapter of the Soil and Water Conservation Society, latest edition). The erosion and sediment control measures were maintained throughout the construction and will be left in place until vegetation is established over the barrier layer areas (Spring 2006).

2.6 Tree/Brush Clearing

After the erosion and sediment control measures were installed, brush and small trees within the limits of the barrier layer areas were mowed/cleared on October 10 and 11, 2005. Brush was mowed via a brush-hog mower. Heavy accumulations of brush were cleared from the proposed barrier layer area and processed through a wood chipper, as appropriate. Trees located within the proposed barrier layer footprint south of the Test Building location (see Figure 2) were cut with chain-saws and felled. Tree clearing began on September 30, 2005 and was completed on November 18, 2005. Contact between the felled trees and impacted soils was minimized by guiding the direction of the fall away from the impacted soils. Felled trees were delimbed and the limbs were processed through a wood chipper, as appropriate based on size. Wood chips resulting from chipping were spread onsite (south of Parking Lot No. 3) outside the limits of the barrier layer. Trees too large to process through the chipper were temporarily staged onsite (outside the barrier layer limits) pending offsite transportation for use of the lumber or disposal.

2.7 Barrier Layer Construction

The barrier layer construction began on October 26, 2005. The barrier layer consisted of a minimum one-foot thick soil cover placed in five separate areas covering a total of approximately 135,000 square feet. The horizontal limits of each barrier layer area are shown on Figure 2. As the initial element of the barrier layer construction, approximately 1,000 tons of run-of-bank gravel was placed in several areas, where appropriate, to fill depressions remaining from previous excavation activities and to promote drainage. The run-of-bank gravel was imported from Burrow's via dump truck and stockpiled adjacent to the depressions and/or previous excavation areas. The run-of-bank gravel stockpiles were graded and compacted with a dozer as the material was delivered. These depressions and previous excavation areas were filled to match the surrounding grade.

Within the horizontal limits of the five barrier layer areas, each barrier layer consisted of a run-of-bank gravel layer at least 9 inches thick and a topsoil cover at least 3 inches thick. Section 4 below describes the NYSDEC-approved modification to the ICM Work Plan changing the run-of-bank layer thickness from 6 to 9 inches and the topsoil layer from 6 to 3 inches. The run-of-bank gravel was a mixture of gravel and sand, free from organic matter. The topsoil was fertile, friable, natural loam surface soil suitable for vegetation.

The fill materials were delivered to the Site following receipt of the acceptable pre-qualification sample results and approval from the NYSDEC. The fill materials were staged either within the limits of the barrier layer areas or on the asphalt pavement adjacent to the proposed barrier layer areas (with appropriate erosion and

sedimentation controls, in accordance with Subsection 2.5), moved to the barrier layer areas as needed, graded using a dozer, and then compacted with the dozer while grading. As detailed in the ICM Work Plan, run-of-bank gravel and topsoil were also placed around the perimeter of the barrier layer areas to provide a gradual transition to the surrounding lines and grades. A typical section of the barrier layer is shown on Figure 3.

The barrier layer construction activities were sequenced to minimize potential tracking of impacted soils. General fill material was placed working from the perimeter of the barrier layer towards the center or from one end to the other, to minimize contact between construction equipment/personnel and impacted soils. Topsoil was placed working from the center out towards the perimeter or again from one end to the other, to minimize disturbance of topsoil following placement.

A section of chain-link fencing that extended in an east-west direction south of the former Test Building (and was located within the barrier layer limits) was removed to facilitate the barrier layer construction. A new section of fence was installed near Gilmore Street and was tied into existing fencing to completely enclose/secure the Site, as needed, during and after the barrier layer construction activities. The location of the new fence is shown on Figure 2. The fence installation work was completed on November 18, 2005.

After the topsoil placement and fence removal/replacement work was completed, the barrier layer areas were seeded with a mixture of grass seed (consisting of perennial and annual ryegrass, timothy, and white clover) and mulched. The seed was mechanically applied uniformly upon the prepared surface. A straw chopper/blower with a 50-foot hose was used to create mulch from straw bales and blow the mulch on each barrier layer area covering the seed. Seeding and mulching were completed on December 1, 2005.

2.8 Air Monitoring

Airborne monitoring for particulate (dust) was conducted in accordance with the NYSDOH's Community Air Monitoring Plan, dated June 2000. Dust monitoring was conducted using a Real-Time Aerosol Monitor (pDR-1000 AN). Air monitoring equipment was calibrated daily, prior to the start of work activities.

The results of airborne particulate monitoring were recorded by the onsite health and safety supervisor at a minimum frequency of once per hour, unless site conditions and work activities did not cause the generation of dust. Dust readings are summarized on the air monitoring logs included in Appendix E. A listing of the dates when air monitoring was performed is also presented in Appendix E.

The ICM Work Plan specified that if particulate monitoring indicated ambient dust levels in the worker breathing zone exceeded the action level of 100 micrograms per cubic meter ($\mu g/m^3$) above background, the level of particulates was to be manually recorded at the downwind perimeter of the work area at 15-minute intervals. As indicated on the air monitoring logs included in Appendix E, the worker breathing zone action level was not exceeded during the ICM Barrier Layer construction activities, and thus, manual 15-minute readings were not conducted.

The ICM Barrier Layer Construction Work Plan also specified that if the level of particulates at the downwind perimeter of the work area was $150 \ \mu g/m^3$ (above site background) or greater, or if visible airborne dust was observed leaving the work area, then work activities were to cease and additional dust control techniques would then be employed to maintain particulate levels below $150 \ \mu g/m^3$ and address visible dust migration. Because visible dust was not observed leaving the work area and the $150 \ \mu g/m^3$ action level was not exceeded (as indicated on the air monitoring logs included in Appendix E) during the ICM Barrier Layer construction activities, there were no dust-related work stoppages.

3. Chronology of Significant Milestone Dates

A chronology of significant milestone dates for the ICM Barrier Layer construction activities is presented in the table below.

Activity	Dates
Barrier Layer Pre-Construction Activities	
 Survey Barrier Layer Boundaries/Install Survey Stakes 	9/6/05 - 9/7/05
 Modify and Decommission Groundwater Monitoring Wells 	9/12/05 - 9/13/05
 Mobilization and Installation of Erosion and Sediment Control Measures 	9/27/05
 Pre-Qualification of Alternate Fill Source 	9/20/05 - 10/20/05
 Tree/Brush Clearing 	9/30/05 - 11/18/05
Barrier Layer Construction Activities	
 Placement/Grading/Compaction of Run-of-Bank Gravel to fill depressions 	10/26/05 - 11/1/05
 Placement of 9-inch Minimum-Thickness Run-of-Bank Gravel Layer 	11/1/05 - 11/18/05
 Placement of 3-inch Minimum-Thickness Topsoil Layer 	11/4/05 - 11/18/05
Chain-Link Fence Installation	11/18/05
Seeding and Mulching	12/1/05

4. Modifications to Barrier Layer Construction Work Plan

Modifications made to the NYSDEC-approved ICM Work Plan are summarized below. The correspondence referenced below is included in Appendix A.

- The method for decommissioning the wells located within the limits of the proposed barrier layer and not included in the annual groundwater monitoring program (wells B84-1, B84-2, B84-3, B85-4, B85-5, and B85-6) was modified to allow a more streamlined, cost-effective implementation. The revised approach, approved by the NYSDEC on August 24, 2005, minimized the amount of waste materials generated and was consistent with ASTM Standard D-5299 and the NYSDEC guidance document titled, Groundwater Monitoring Well Decommissioning Procedures (NYSDEC, October 1996). The revised decommissioning method included removing the protective steel casing and concrete surface pad, knocking out the bottom of the well casing, adding grout from the bottom of the casing up to approximately four feet of the ground surface while the casing was pulled, and placing bentonite pellets in the remaining 4 feet as the last of the casing was pulled. As noted in Subsection 2.4, none of the well casings were severed during removal therefore, no overdrilling was required.
- The barrier layer was constructed using a minimum of 9 inches of run-of-bank gravel and 3 inches of topsoil (instead of 6 inches of run-of-bank gravel and 6 inches of topsoil) due to limited availability of acceptable topsoil material at the proposed fill source (Burrow's) and elsewhere in the area. The NYSDEC approved the modification to the ICM Work Plan on October 14, 2005.

The 12-inch thick barrier layer, consisting of a minimum of 9 inches of gravel and 3 inches of topsoil, was identified as an element of the recommended final corrective measures for the Site and was constructed as an ICM to maintain progress toward site closure. The barrier layer mitigates potential exposures to soil containing constituents of interest at concentrations above the TAGM 4046 soil guidance values by physically isolating impacted soils from direct contact and by preventing the impacted soils from being mobilized by the wind. Once vegetation is established over the barrier layer areas (Spring 2006), the existing erosion and sedimentation control measures will be removed.

Tables

TABLE 1 BACKFILL MATERIAL SAMPLE RESULTS (ppm)

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

	TAGM 4046	Maximum	NY Region			
Sample ID:	Guidance Value	Site Background	Background Values	RB-3	RB-4	TS-3
Date Collected:	(exceedences shaded)	(exceedences in bold)	(exceedences in italics)	10/04/05	10/04/05	10/04/05
PCBs						
Aroclor 1016	NA	NA	NA	<0.038 [<0.036]	<0.036	<0.040
Aroclor 1221	NA	NA	NA	<0.038 [0.022 J]	< 0.036	<0.040
Aroclor 1232	NA	NA	NA	<0.038 [<0.036]	<0.036	<0.040
Aroclor 1242	NA	NA	NA	<0.038 [<0.036]	<0.036	<0.040
Aroclor 1248	NA	NA	NA	<0.038 [0.0096 J]	<0.036	0.050
Aroclor 1254	NA	NA	NA	<0.038 [<0.036]	<0.036	<0.040
Aroclor 1260	NA	NA	NA	<0.038 [<0.036]	<0.036	0.013 J
Total PCBs	1.0	NA	NA	<0.038 [0.032 J]	<0.036	0.063 J
Detected Pesticides						
4,4'-DDD	2.9	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0019 J
4,4'-DDE	2.1	NA	NA	<0.0019 [<0.0019]	<0.0019	0.011
4,4'-DDT	2.1	NA	NA	<0.0019 [<0.0019]	<0.0019	0.006 J
alpha-Chlordane	NA	NA	NA	<0.0019 [<0.0019]	<0.0019	0.016 J
beta-BHC	0.2	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0044 J
Dieldrin	0.044	NA	NA	<0.0019 [<0.0019]	<0.0019	0.027
gamma-Chlordane	0.54	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0055
Detected TCL VOCs			·			
1,2,4-Trichlorobenzene	3.4	NA	NA	<0.0057 [<0.0055]	<0.0055	0.0012 J
1,2-Dichlorobenzene	7.9	NA	NA	<0.0057 [<0.0055]	<0.0055	0.00041 J
Total VOC TICs	NA	NA	NA	ND	ND	ND
Detected TCL SVOCs			•			
Anthracene	50	NA	NA	<0.38 [<0.36]	<0.36	0.021 J
Benzo(a)anthracene	0.224	NA	NA	<0.38 [<0.36]	<0.36	0.075 J
Benzo(a)pyrene	0.061	NA	NA	<0.38 [<0.36]	<0.36	0.061 J
Benzo(b)fluoranthene	1.1	NA	NA	<0.38 [<0.36]	<0.36	0.084 J
Benzo(ghi)perylene	50	NA	NA	<0.38 [<0.36]	<0.36	0.040 J
Benzo(k)fluoranthene	1.1	NA	NA	<0.38 [<0.36]	<0.36	0.027 J
Carbazole	NA	NA	NA	<0.38 [<0.36]	<0.36	0.019 J
Chrysene	0.4	NA	NA	<0.38 [<0.36]	<0.36	0.074 J
Fluoranthene	50	NA	NA	<0.38 [<0.36]	<0.36	0.15 J
Indeno(1,2,3-cd)pyrene	3.2	NA	NA	<0.38 [<0.36]	<0.36	0.035 J
Phenanthrene	50	NA	NA	<0.38 [<0.36]	<0.36	0.11 J
Pyrene	50	NA	NA	<0.38 [<0.36]	<0.36	0.12 J
Total SVOC TICs	NA	NA	NA	0.44 J [<0.36]	0.33 J	0.61 J

TABLE 1 BACKFILL MATERIAL SAMPLE RESULTS (ppm)

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

	TAGM 4046	Maximum	NY Region					
Sample ID:	Guidance Value	Site Background	Background Values	RB-3	RB-4	TS-3		
Date Collected:	(exceedences shaded)	(exceedences in bold)	(exceedences in italics)	10/04/05	10/04/05	10/04/05		
TAL Inorganic Constituents	TAL Inorganic Constituents							
Aluminum	NA	9,360	100,000	3,270 [4,310]	2,900	10,100		
Antimony	NA	6.9	NA	<6.8 J [<6.6 J]	<6.6 J	<7.2 J		
Arsenic	7.5	11.2	12	3.30 [3.40]	2.8	9.8		
Barium	300	83	600	15.3 B [19.4 B]	12.9 B	66.3		
Beryllium	0.16	0.5	1.75	0.16 B [0.2 B]	0.15 B	0.530 B		
Cadmium	1	0.61	1	<0.570 [0.037 B]	<0.55	0.19 B		
Calcium	NA	167,000	35,000	18,700 J [27,200 J]	16,100 J	4,830 J		
Chromium	10	23.8	40	4.0 J [5.4 J]	3.6 J	13.6 J		
Cobalt	30	7.4	60	3.4 BJ [4.1 BJ]	3.0 BJ	10.5 J		
Copper	25	27.9	50	11.8 J [16.9 J]	9.7 J	42.4 J		
Iron	2,000	27,400	550,000	8,370 [10,700]	7,290	25,300		
Lead	NA	26.7	61	2.30 [3.0]	2.0	24.8		
Magnesium	NA	21,100	5,000	4,860 <i>[7,480]</i>	3,430	3,210		
Manganese	NA	1,780	5,000	337 J [391]	276 J	746 J		
Mercury	0.1	0.12	0.2	<0.11 [<0.11]	<0.11	0.087 B		
Nickel	13	15.7	25	6.5 J [8.3 J]	5.9 J	18.5 J		
Potassium	NA	759	43,000	<518 J [<711 J]	<551 J	1,020 J		
Selenium	2	1.2	3.9	<0.57 [<0.55]	<0.550	0.45 B		
Sodium	NA	82.4	50,000	50.1 B [63.9 B]	46.9 B	<601		
Thallium	NA	1.2	NA	<1.1 [0.61 B]	<1.1	0.82 B		
Vanadium	150	17.9	300	5.4 BJ [7.3 J]	5.1 BJ	15.7 J		
Zinc	20	92	50	28.9 J [38.6 J]	19.6 J	58.1 J		
Total Cyanide	NA	0.61	NA	<0.57 [0.54 BJ]	<0.55	<0.6		
Miscellaneous								
Percent Solids (%)	NA	NA	NA	87.9 [91.6]	90.8	83.2		
pH (standard pH Units)	NA	NA	NA	9.0 [8.9]	9.0	7.4		

TABLE 1 BACKFILL MATERIAL SAMPLE RESULTS (ppm)

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Notes:

- 1. Samples collected by Blasland, Bouck & Lee, Inc. (BBL) on October 4, 2005.
- 2. Samples submitted to Severn Trent Laboratories, Inc., of North Canton, Ohio for laboratory analysis of the following constituents:
 - Polychlorinated biphenyls (PCBs) using United States Environmental Protection Agency (USEPA) SW-846 Method 8082;
 - Pesticides using USEPA SW-846 Method 8081;
 - Target Compound List (TCL) volatile organic compounds (VOCs), including tentatively identified compounds (TICs), using USEPA SW-846 Method 8260;
 - TCL Semi-volatile organic compounds (SVOCs), including TICs, using USEPA SW-846 Method 8270; and
 - Target Analyte List (TAL) inorganic constituents using USEPA SW-846 Method 6010 (except for mercury which was analyzed using Method 7471 and cyanide which was analyzed using Method 9012).
- 3. Concentrations reported on a dry weight basis, in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg).
- 4. [] = Result for blind duplicate.
- 5. < = No Aroclors were detected above the reported concentration (for PCBs) or constituent was not detected at a concentration exceeding the reported detection limit (for all other parameters).
- 6. Laboratory data qualifiers indicate the following:
 - J (Organic & Inorganic) = Indicates that the compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - B (Inorganic) = Indicates an estimated value between the instrument detection limit (IDL) and PQL.
- 7. NA = Not applicable.
- 8. ND = Not detected.
- 9. TAGM 4046 guidance values are from the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) titled "Determination of Soil Cleanup Objectives and Cleanup Levels", HWR-94-4046 (TAGM 4046) dated January 24, 1994.
- 10. Maximum site background represents the highest concentration identified at background soil sampling locations BGD-1 through BGD-5 as part of a background soil sampling program completed during January 2002.
- 11. NY Region background values are maximum values from the NYSDEC document titled "Background Concentrations of 20 Elements in Soils with Special Regard for New York State", by E. Carol McGovern, dated 1988.
- 12. With the exception of PCBs and TAL inorganic constituents, only those constituents detected in one or more samples are summarized.
- 13. Analytical results were validated by BBL.

TABLE 2 UPDATED MONITORING WELL CONSTRUCTION SUMMARY

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS SITE 211 SEWARD AVENUE UTICA, NEW YORK

	Installation	Modification	Well	Ground Surface	Reference Point	Depth to Top of	Depth to Bottom	Elevation of Well	Depth to Screen	Elevation of
Location	Date	Date	Туре	Elevation	Elevation (TIC)	Screen	of Screen	Screen Interval	Midpoint	Screen Midpoint
B85-2	07/18/85		Stickup	513.6	515.86	15	25	498.6 - 488.6	20	493.6
B94-6	11/17/94		Flush	512.9	512.54	6	16	506.9 - 496.9	11	501.9
B95-1	03/02/95	09/12/05	Stickup	517.0	519.85	7.6	17.6	509.4 - 499.4	12.6	504.4
B95-2	03/02/95		Flush	515.6	515.26	10	20	505.6 - 495.6	15	500.6
MW03-1	04/24/03		Stickup	523.5	525.66	6	16	517.5 - 507.5	11	512.5
MW03-3	04/24/03	09/12/05	Stickup	517.2	520.07	8.3	18.3	508.9 - 498.9	13.3	503.9
MW03-4	04/25/03		Flush	514.7	514.41	8	18	506.7 - 496.7	13	501.7
MW03-5	04/24/03		Flush	512.6	512.31	12	22	500.6 - 490.6	17	495.6
MW03-6	06/06/03		Stickup	509.3	510.81	8	18	501.3 - 491.3	13	496.3
MW03-7	06/03/03		Stickup	509.7	509.83	8	18	501.7 - 491.7	13	496.7
MW03-8	06/03/03		Stickup	507.1	508.92	8	18	499.1 - 489.1	13	494.1

Notes:

1. All wells constructed of 2-inch diameter polyvinyl chloride (PVC).

2. TIC = Top of Inner Casing.

3. Elevations are in feet referenced to the North American Vertical Datum (NAVD) 1988.

4. Depths are measured in feet referenced from the ground surface.

5. Gray shading designates monitoring wells that were modified as part of the interim corrective measure (ICM) barrier layer construction activities.

Figures

#

NOTES:

- UNLESS OTHERWISE INDICATED, MAPPING IS BASED ON SURVEYS PERFORMED BY BLASLAND, BOUCK & LEE, INC.(BBL), MARCH 19, 2003 TO JUNE 28, 2004.
- PROPERTY LINES, AND ROADWAYS ARE ADAPTED FROM A DRAWING ENTITLED "SITE LAYOUT MAP SHOWING AREAS OF CONCERN", FIGURE 1-1, BY ENVROMMENTAL RESOURCE MANAGEMENT, INC. (ERM), EXTON, PA., AT A SCALE OF 1" = 40", DATED AUGUST 27, 2002.
- 3. BARRIER LAYER THICKNESS IS 12-INCHES MINIMUM. ADDITIONAL FILL MATERIAL WAS PLACED AS APPROPRIATE TO FILL DEPRESSIONS REMAINING FROM PREVIOUS EXCAVATION ACTIVITES AND TO PROMOTE DRAINAGE.
- 5. LOCATION OF NEW FENCE IS APPROXIMATE.
- RUN-OF-BANK GRAVEL AND TOPSOL WERE PLACED AROUND THE PERIMETER OF THE BARRIER LAYER AREAS TO PROVIDE A GRADUAL TRANSITION TO THE SURROUNDING LINES AND GRADES.
- FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK ľ 50' 100' GRAPHIC SCALE

FINAL BARRIER LAYER LIMITS

FIGURE N

Appendices

Appendix A

Relevant Correspondence

SUMMARY OF RELEVANT PROJECT CORRESPONDENCE

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Date	Title of Correspondence
8/16/05	E-Mail Correspondence to NYSDEC: Plan for Pre-ICM Activities
8/18/05	E-Mail Correspondence from NYSDEC: Approval of Monitoring Well Modification & Decommissioning Activities
8/24/05	E-Mail Correspondence to NYSDEC: Revised Plan for Monitoring Well Decommissioning
9/12/05	Letter to NYSDEC: Response to Comments on the ICM Work Plan
9/15/05	E-Mail Correspondence from NYSDEC: Approval of the ICM Work Plan
10/13/05	E-Mail Correspondenc to NYSDEC: Sample Results for Alternative Backfill Source
10/25/05	Letter from NYSDEC: Approval of Modification to ICM Work Plan

8/16/05 E-Mail Correspondence to NYSDEC

Plan for Pre-ICM Activities

JOHN BRUSSEL - ICM Barrier Layer Construction / Conference Call Follow-up - TRW Utica

From:	JOHN BRUSSEL
To:	aabarraz@gw.dec.state.ny.us; larosenm@gw.dec.state.ny.us
Date:	8/16/2005 3:52 PM
Subject:	ICM Barrier Layer Construction / Conference Call Follow-up - TRW Utica
CC:	batsel@dextra-group.com; GERBER, DAVID

Alicia/Larry:

As discussed during a telephone conference call this morning with Alicia Barraza, Kurt Batsel, and myself, the ICM Barrier Layer Construction Work Plan for the former TRW Aeronautical Systems facility is scheduled to be submitted to the NYSDEC by this Friday, 8/19/05. In advance of work plan approval by the NYSDEC, Lucas Western proposes to implement various pre-ICM activities that need to be initiated to support completion of ICM barrier layer construction before the end of this construction season. As confirmed during the call, NYSDEC agrees that the following activities may be conducted prior to NYSDEC approval of the Work Plan:

- 1. Complete surveying activities to field-locate barrier layer area boundaries.
 - Grade stakes will be placed at the corners of each barrier layer area (there are five areas, as shown on Figure 6 of the CMS Report) and approximately every 100 feet, with a minimum of two, in interior portions of each barrier layer area. Each grade stake will be marked to identify the appropriate fill thickness, and will be used for reference by equipment operators during construction.
- 2. Pre-qualify proposed fill materials to be used in the barrier layer construction.
 - Representative samples for each proposed source and type of fill material (i.e., one sample of run-ofbank gravel material and one sample of topsoil) will be submitted for laboratory analysis for PCBs, pesticides, VOCs, SVOCs, and inorganic constituents.
- Complete contractor procurement activities (bidding and award) so that contractor mobilization can begin quickly following work plan approval.

Also, Lucas Western proposes to conduct the following additional activities prior to NYSDEC approval of the Work Plan. It is our understanding that NYSDEC will further evaluate this proposal and provide us with a decision shortly.

- A. Modify two existing groundwater monitoring wells located within the proposed barrier layer areas that are included in the annual groundwater monitoring program (flush-mount wells B95-1 and MW03-3) to accommodate the barrier layer construction and facilitate continued groundwater monitoring.
 - Each well will be modified by: (1) removing the well cover and concrete curb box; (2) connecting
 approximately 3-feet of 2-inch diameter Schedule 40 PVC riser pipe to the top of the existing riser
 pipe using a compression coupling; and (3) installing/driving approximately 3.5 to 4.5 feet of 4-inch
 diameter protective steel casing approximately 1 to 2 feet into the current ground surface, centered
 around the PVC riser pipe. After the barrier layer is constructed, a concrete surface completion will
 be installed that will promote drainage away from the base of the well.
- B. Decommission the six existing groundwater monitoring wells located within the proposed barrier layer areas that are not included in the annual groundwater monitoring program (wells B84-1 through B84-3 and B85-4 through B85-6, which were installed to evaluate conditions in the vicinity of the former cyanide waste pits and are not needed in connection with planned additional soil gas investigation activities). All existing wells outside the proposed barrier layer areas will remain.

 The proposed well decommissioning will be performed in accordance with ASTM Standard D-5299 and the NYSDEC guidance document titled, Groundwater Monitoring Well Decommissioning Procedures (NYSDEC, October 1996). Decommissioning work for each well will entail: (1) removing the protective steel casing and concrete surface pad; (2) pulling the PVC riser pipe and screen from the ground; (3) overdrilling remaining well construction materials (bentonite seal, sand pack, and remaining PVC piping) to a distance approximately 0.5 feet below the former bottom of well; (4) adding cement/bentonite grout into the borehole, from the bottom of the borehole upward to the surrounding grade, while the augers are lifted and removed; and (5) embedding a ferrous metal marker in the ground near each former well location.

If our understanding of the NYSDEC's agreement to the performance of Items 1 through 3 (above) prior to Work Plan approval is incorrect, please notify us immediately. We plan to initiate these activities shortly. Also, we await further communication from NYSDEC for approval to implement the groundwater monitoring well modification/abandonment activities described above. Please do not hesitate to contact Kurt Batsel at (770) 578-9696 or myself if you have any questions or require additional information.

-John

John C. Brussel, P.E. Senior Engineer I Blasland, Bouck & Lee, Inc. 6723 Towpath Road, Box 66 Syracuse, NY 13214-0066

Tel: (315) 446-2570 (ext. 441) Fax: (315) 449-4111 JCB@BBL-inc.com 8/18/05 E-Mail Correspondence from NYSDEC

> Approval of Monitoring Well Modification & Decommissioning Activities

 12.22		22.2	- A	
 9	а.	0	- 1	
 a	G.	-	-	
-	3			

From:	"Larry Rosenmann" <larosenm@gw.dec.state.ny.us></larosenm@gw.dec.state.ny.us>
To:	<jcb@bbl-inc.com></jcb@bbl-inc.com>
Date:	8/18/2005 4:06:33 PM
Subject:	Re: ICM Barrier Layer Construction / Conference Call Follow-up - TRW Utica

John,

I have reviewed the well modification and well abandonment plans. They are fine. In order to better protect the wells, you should put a tall flag on each of the wells remaining in the cap area, and others nearby that could be hit by construction equipment. If you got those felxible bike flags they would be high enough, and you could put a bell on top that will ring as it sways in the wind. :> /

Sorry for the hasty reply, I am trying to get a bunch of stuff done before I leave. I won't be back until Tuesday or later next week.

Larry A. Rosenmann NYSDEC Division of Solid & Hazardous Materials 625 Broadway, Albany, NY 12233-7258 Phone: (518) 402-8594 Fax: (518) 402-9025

"If you can't say anything nice, Say it in Yiddish" Aunt Selma's 27 rules for Jewish living

CC:

"Alicia Barraza" <aabarraz@gw.dec.state.ny.us>

8/24/05 E-Mail Correspondence to NYSDEC

Revised Plan for Monitoring Well Decommissioning

JOHN BRUSSEL - Re: ICM Barrier Layer Construction / Conference Call Follow-up - TRW Utica

From:	JOHN BRUSSEL		
To:	Rosenmann, Larry		
Date:	8/24/2005 11:45 AM		
Subject:	Re: ICM Barrier Layer Construction / Conference Call Follow-up - TRW Litics		
CC:	Barraza, Alicia; batsel@dextra-group.com; GERBER, DAVID		

Larry:

As discussed and agreed during our telephone conversation this morning, the procedure for well decommissioning at the former TRW-Utica facility will be revised to allow a more streamlined, cost-effective implementation. The revised approach minimizes the amount of materials generated, supports future site development, and is consistent with the guidance in the NYSDEC's document titled *Groundwater Monitoring Well Decommissioning Procedures* (NYSDEC, October 1996). Under the revised approach:

- grout will be added, from the bottom of the borehole upward to within 4 feet of the ground surface, while the PVC well casing is pulled and removed; and

- bentonite pellets will be placed in the upper 4 feet of the borehole as the last of the casing is pulled.

Overdrilling will only be performed in the event that the casing or well screen is severed during casing pulling.

If our understanding of the NYSDEC's agreement to the revised procedure presented above is incorrect, please notify me immediately. We anticipate that the well decommissioning activities will be performed either next week or the following week.

Please do not hesitate to contact me if you have any questions or require additional information.

-John

John C. Brussel, P.E. Senior Engineer I Blasland, Bouck & Lee, Inc. 6723 Towpath Road, Box 66 Syracuse, NY 13214-0066

Tel: (315) 446-2570 (ext. 441) Fax: (315) 449-4111 JCB@BBL-inc.com

>>> JOHN BRUSSEL 8/18/2005 4:36 PM >>> Larry:

Thanks for your quick reply. We had planned to put some stakes or posts with flagging attached around the wells to serve as visible reminders to the operators. We hadn't considered the bells... but we probably won't use them. -John

>>> "Larry Rosenmann" <larosenm@gw.dec.state.ny.us> 8/18/2005 4:05 PM >>> John,

I have reviewed the well modification and well abandonment plans. They are fine. In order to better protect the wells, you should put a tall flag on each of the wells remaining in the cap area, and others nearby that could

file://C:\Documents and Settings\JCB\Local Settings\Temp\GW}00001.HTM

be hit by construction equipment. If you got those felxible bike flags they would be high enough, and you could put a bell on top that will ring as it sways in the wind. :> /

Sorry for the hasty reply, I am trying to get a bunch of stuff done before I leave. I won't be back until Tuesday or later next week.

Larry A. Rosenmann NYSDEC Division of Solid & Hazardous Materials 625 Broadway, Albany, NY 12233-7258 Phone: (518) 402-8594 Fax: (518) 402-9025

"If you can't say anything nice, Say it in Yiddish" Aunt Selma's 27 rules for Jewish living

9/12/05 Letter to NYSDEC

Response to Comments on the ICM Work Plan

-			240
23		0	12
r a	ч	С.	

From:	JOHN BRUSSEL
To:	aabarraz@gw.dec.state.ny.us
Date:	9/12/2005 7:10:57 PM
Subject: Utica	Response to NYSDEC Comments on ICM Barrier Layer Construction Work Plan - TRW

Alicia:

On behalf of Lucas Western, please find the attached PDF file containing a response to the NYSDEC's comments on the ICM Barrier Layer Construction Work Plan for the former TRW Aeronautical Systems facility in Utica, NY. A hard-copy of the response will follow via regular mail.

Please do not hesitate to contact Kurt Batsel of the Dextra Group at (770) 578-9696 or myself if you have any questions or require additional information.

-John

John C. Brussel, P.E. Senior Engineer I Blasland, Bouck & Lee, Inc. 6723 Towpath Road, Box 66 Syracuse, NY 13214-0066

Tel: (315) 446-2570 (ext. 441) Fax: (315) 449-4111 JCB@BBL-inc.com

CC:

batsel@dextra-group.com; ENIGK, ANDREW; GERBER, DAVID

Transmitted Via Federal Express

September 12, 2005

Ms. Alicia Barraza New York State Department of Environmental Conservation Division of Solid & Hazardous Materials Bureau of Solid Waste and Corrective Action 625 Broadway Albany, New York 12233-7258

Re: Former TRW Aeronautical Systems Facility 211 Seward Avenue – Utica, New York USEPA ID#: NYD002244911 ICM Barrier Layer Construction Work Plan – Response to NYSDEC Comments

Dear Ms. Barraza:

On behalf of Lucas Western LLC (Lucas Western), please find the attached response to the New York State Department of Environmental Conservation's (NYSDEC's) comments on the *Interim Corrective Measure Barrier Layer Construction Work Plan* prepared by Blasland, Bouck & Lee, Inc. (BBL, August 2005). The NYSDEC's comments were presented in your email correspondence dated September 1, 2005 and responses were discussed during a conference call with the NYSDEC on September 6, 2005. For case of presentation, each NYSDEC comment is provided in Attachment 1, followed by Lucas Western's response.

Please do not hesitate to contact me at (770) 578-9696 or via e-mail at batsel@dextragroup.com if you have any questions or require additional information regarding the attached response or any other aspect of the project.

> Sincerely, The Dextra Group, Inc.

Kurt Batsel, P.E. Principal

Attachment

cc: Gabriel Calvo, Esq., Northrop Grumman Corporation Valerie M. Hanna, Esq., Hanna Law Offices LLC Mr. David R. Gerber, P.E., BBL Environmental Services, Inc. Mr. John C. Brussel, P.E., Blasland, Bouck & Lee, Inc.

The Dextra Group, Inc. 1205 Johnson Perry Road, Suite 136-446 Marietta, GA 30068 Harmaneoutal Barmers Solitions (770) 578-9696 Phone (770) 321-5345 Fax

ATTACHMENT 1 RESPONSE TO NYSDEC COMMENTS ON ICM BARRIER LAYER CONSTRUCTION WORK PLAN

FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

General Comment

Comment 1

How long does TRW/Lucas anticipate that the barrier layer will remain in place? Will it be removed when new buildings/structures are constructed?

Response 1

Lucas Western anticipates that the barrier layer will remain in place as long as the impacted soils it covers remain onsite (assuming there are no changes to the soil guidance values that would result in the layer no longer being needed). Lucas Western has no current plans to construct buildings/structures on the site.

If another party were to redevelop the site in the future, the NYSDEC-approved Corrective Measures Study Report (BBL, December 2004) expressly provides that the barrier layer may be modified in areas where new buildings, structures, or driveways are constructed as part of future Site redevelopment activities. Specifically, future concrete building floor slabs and asphalt/concrete pavement materials could be designed (in consultation with the NYSDEC) to serve as the barrier layer in these areas. Requirements to maintain the barrier layer will be identified in the Site Management Plan to be prepared as an element of the final remedy outlined in the Corrective Measures Study Report.

* * *

Comments on Section 2.3 - Pre-Qualification of Fill Materials

Comment 2

One grab sample of each type and source of material to be used is proposed for analysis of VOCs. One composite sample, formed from four grab samples, is proposed for analysis of SVOCs, inorganics, pesticides and PCBs. For the volume of fill materials (gravel and topsoil) that will be used over an area of 135,000 ft, one grab sample and one composite sample seems insufficient. There should be, at a minimum, at least two grab samples and two composite samples to verify that the materials are clean.

Response 2

Per the NYSDEC's request, a minimum of two composite samples and two grab samples will be collected to characterize the run-of-bank gravel proposed for use in the barrier layer. Similarly, a minimum of two composite samples and two grab samples will be collected to characterize the topsoil proposed for use in the barrier layer. If more than one fill source will be used for topsoil and/or run-of-bank gravel, at least one composite and one grab sample will be collected from each source.

* * *

9/12/2005 P:JLC2005/43450146.doc

Page 1 of 3

Comment 3

Analysis should also confirm that the fill materials are not hazardous. Therefore, the fill materials should be analyzed for pH.

Response 3

The composite fill material samples will also be analyzed for pH.

* *

Comment on Section 2.6 - Erosion and Sedimentation Control

Comment 4

According to the Stormwater Pollution Prevention Plan (SWPPP), silt fencing will be installed south of the former Test Building where tree/shrub clearing will occur. The existing fencing in this area should be moved to the outside of the silt fencing, in order to secure the site during construction activities (see Figure 2 in the SWPPP).

Response 4

Based on barrier layer survey activities completed on September 7, 2005, the majority of the area where tree/shrub clearing will be performed, south of the former Test Building footprint, is already enclosed by continuous chain-link fencing that also extends completely around the parking lot south of the former Test Building. Some new chain-link fencing will be installed, as needed, to secure the Site during construction activities. The approximate locations of the proposed new chain-link fence are shown on the attached, revised version of Figure 2.

+ +

Comment on Section 2.7 - Tree/Brush Clearing

Comment 5

In this area, what will prevent vegetation such as shrubs from pushing through the barrier layer, particularly since the layer will not be compacted. The barrier layer must remain in good condition as long as it is in place.

Response 5

The Contractor selected to perform the barrier layer construction will compact the barrier layer materials by tracking over them using a dozer (one or more Case 850 dozers are proposed). The compacted barrier layer materials will be a minimum of one-foot thick to achieve the objective of mitigating potential exposures. As discussed during the September 6, 2005 conference call, in-place density/permeability performance testing is not needed to achieve the barrier layer objective.

After the barrier layer is installed, it will be maintained in good condition in accordance with the Site Management Plan to be prepared as an element of the final remedy outlined in the *Corrective Measures* Study Report.

•

9/12/2005 P:ULC\2005\43450146.doc

Page 2 of 3

Comments on Section 2.9 - Barrier Layer Construction

Comment 6

Explain the reason for not compacting the topsoil, as this would reduce water infiltration, erosion and cracking. As noted above, the barrier layer must remain in good condition during its entire duration.

Response 6

The topsoil will be compacted as discussed in Response 5.

Comment 7

Long grass seed and flowers should be avoided, as this presents a health hazard to residents with allergies. They will complain about it.

٠

Response 7

The hydroseed to be used on the barrier layer will be a typical lawn-type mixture (consisting of perennial and annual ryegrass, timothy, clover, etc.) that will be free from noxious weeds. The grass height will be maintained in accordance with City of Utica ordinance.

• • •

9/15/05 E-Mail Correspondence from NYSDEC

Approval of the ICM Work Plan

From:	"Alicia Barraza" <aabarraz@gw.dec.state.nv.us></aabarraz@gw.dec.state.nv.us>
To:	<jcb@bbl-inc.com>, <batsel@dextra-group.com></batsel@dextra-group.com></jcb@bbl-inc.com>
Date:	9/15/2005 2:24:29 PM
Subject:	Barrier Layer Work Plan

Kurt & John -

Attached below is the approval letter for the Barrier Layer ICM. The signed version will go out later this week. Let me know if you have any questions.

Alicia

New York State Department of Environmental Conservation Division of Solid & Hazardous Materials Bureau of Hazardous Waste & Radiation Management 625 Broadway, Albany, NY 12233-7258 Phone: (518) 402-8594 • FAX: (518) 402-9024 Website: www.dec.state.ny.us

Denise M. Sheehan Acting Commissioner

September 15, 2005

Mr. Kurt Batsel The Dextra Group, LLC 4665 Lower Roswell Road, #154 Marietta, Georgia 30068

Dear Mr. Batsel:

Re: Former TRW Aeronautical Systems Facility, Utica, NY, USEPA ID No. NYD002244911; ICM Barrier Layer Construction Work Plan, August 2005

The New York State Department of Environmental Conservation (Department) provided comments to Lucas Western (Lucas) for the work plan referenced above. The comments were also discussed with Lucas during a conference call on September 6, 2005. On September 15, 2005, the Department received from Lucas satisfactory responses to the comments. The Department approves the ICM Barrier Layer Construction Work Plan and the responses.

If necessary, please update the proposed project schedule and submit it to the Department. If you have any questions, please contact me at (518) 402-8594.

Sincerely,

Alicia Barraza Environmental Engineer Hazardous Waste Engineering Eastern Section

cc: J. Reidy, EPA Region II Greg Rys, NYSDOH

ecc: D. Evans L. Rosenmann S. Hamilton S. Shoemaker, R6

10/13/05 E-Mail Correspondence to NYSDEC

Sample Results for Alternative Backfill Source

JOHN BRUSSEL - Sample Results for Alternative Backfill Source - ICM Barrier Layer Construction, TRW Utica

From:	JOHN BRUSSEL
To:	aabarraz@gw.dec.state.ny.us
Date:	10/13/2005 2:29 PM
Subject: CC:	Sample Results for Alternative Backfill Source - ICM Barrier Layer Construction, TRW Utica batsel@dextra-group.com; ENIGK, ANDREW

Alicia:

Please find the attached Excel table presenting final laboratory analytical results for samples of run-of-bank gravel (samples RB-3 and RB-4) and topsoil (sample TS-3) recently collected from Burrow's Trucking & Excavating (Burrow's), the proposed source of fill for the ICM barrier layer construction at the TRW Utica site. The laboratory analytical data report is included in the attached PDF file.

Based on the laboratory analytical results, the samples do not exhibit PCBs, pesticides, TCL VOCs, or TCL SVOCs at concentrations above the TAGM 4046 soil guidance values. Concentrations of inorganic constituents identified in the samples appear to be generally consistent with the TAGM 4046 soil guidance values, taking into consideration typical background concentrations. With NYSDEC approval, the run-of-bank gravel and topsoil from Burrow's will be used for the barrier layer construction.

Based on observations of Burrow's topsoil stockpile, it looks like they do not have enough topsoil for the proposed 6-inch thickness across the barrier layer areas. There is an abundant supply of available clean run-of-bank gravel. Kurt Batsel and I will give you a call soon to discuss the analytical results and an approach to address the shortage of available clean topsoil.

-John

John C. Brussel, P.E. Senior Engineer I Blasland, Bouck & Lee, Inc. 6723 Towpath Road, Box 66 Syracuse, NY 13214-0066

Tel: (315) 446-2570 (ext. 441) Fax: (315) 449-4111 JCB@BBL-inc.com

file://C:\Documents and Settings\JCB\Local Settings\Temp\GW}00001.HTM

12/28/2005

Interval and a second and and a second and and a second and a second and and a seco	INTERIM CORRECTIVE FORMER TRW	MEASURE BARRIER LAYE	R CONSTRUCTION	ATTORNE	Y-CLIENT WORK PRODUCT
Sample ID: TAGM 4046 Sample ID: Tage Collected: (exceedences shaded) (exceedence shaded)		AERONAUTICAL SYSTEMS 211 SEWARD AVENUE UTICA, NEW YORK	5 FACILITY		
CBS NA Arcolor 1016 NA Arcolor 1221 NA Arcolor 1222 NA Arcolor 1224 NA Arcolor 1224 NA Arcolor 1224 NA Arcolor 1254 NA Arcolor 1250 0.2 Arcolor 1250 0.2 Arcolor 1254 0.2 Arcolor 100robenzene	Maximum Site Background (exceedences in hold)	NY Region Background Values	RB-3	RB-4	TS-3
Arccior 1016 NA NA Vocior 1221 NA NA Vocior 1222 NA NA Vocior 1224 NA NA Vocior 1248 NA NA Vocior 1248 NA NA Vocior 1254 NA NA Vocior 1250 NA NA Vocior 1260 NA NA Vitation 0.044 NA Alticlorobenzene 0.2 0.2 Scientine 0.2 0.2 Alticlorobenzene 0.2 0.2 Scientification 0.2 0.2 CL VOCs 0.2 0.1	fring in contractory	(company in coordination of	CONTENTION	GU/#0/01	10/04/05
Accion 1221 NA NA Arcolor 1242 NA NA Arcolor 1242 NA NA Arcolor 1248 NA NA Arcolor 1254 NA NA Arcolor 1260 0.044 NA Arcolor 1260 0.044 0.044 Ipha-Chlorobenzene 0.1 0.1 Artolorobenzene 0.2 0.144 Jorichlorobenzene 0.2 0.1 Arcolor 1260 0.044 0.1 Arcolor 12.0 0.02 0.2 Arcolor 12.0 0.2 0.2 Arcolorobenzene	NA	NA	<0.038 [<0.036]	<0.038	-0 040
Aroclor 1232 NA NA NA Aroclor 1248 NA NA NA Aroclor 1250 NA NA NA Aroclor 1260 0.54 NA NA Bildrin 0.54 0.5 S.5 CL VOCS 2.1 0.5	NA	AN	<0.038 [0.022.1]	<0.036	01000
Arcolor 1242 NA NA Arcolor 1248 NA NA Arcolor 1260 NA NA Pesticides 2.1 NA Path DD 2.1 2.1 1.4-DDE 2.1 2.1 1.4-DDE 2.1 2.1 Arabit 0.044 0.044 Ipha-Chlordane 0.044 0.044 Ipha-Chlorobenzene 3.4 0.044 Iphara-Chlorobenzene 3.4 0.01 J-Dichlorobenzene 3.5 0.014 0.02 Arbitylene 0.054 0.054 0.01 Arbitylene 0.054 0.01 0.01 Arbithorobenzene 8.5 0.01 0.01 Arbithorobenzene 0.02 0.01 0.02	NA	NA	<0.038 [<0.036]	<0.036	040.02
Acoclor 1248 NA Acoclor 1254 NA Acoclor 12560 NA Aroclor 1260 NA Aroclor 1260 NA Aroclor 1260 NA Festicides 2.9 4.4-DDT 2.1 4.4-DDT 2.1 4.4-DDT 2.1 4.4-DDT 2.1 10pha-Chlordane 0.2 0.1044 0.24 11 0.044 12 0.1 12 0.044 12 0.044 12 0.044 12 0.044 12 0.044 12 0.044 12 0.044 12 0.044 13<-Dichlorobenzene	NA	NA	<0.038 [<0.036]	<0.036	040
Accelor 1254 NA Accelor 1260 NA Accelor 1260 NA Cotal PCBs 1.0 Pesticides 2.9 7.10D 2.9 7.4-DDF 2.1 1.4-DDT 0.24 1.4-DDT 0.24 1.4-DDCs 0.2 1.2-4-Trichlorobenzene 0.54 2.2-1 0.2 1.2-4-Trichlorobenzene 0.5 3.4 0.54 1.4-Dichlorobenzene 0.5 3.4-1/feblorobenzene 0.5 3.4-1/feblorobenzene 0.5 1.4-Dichlorobenzene 0.5	NA	NA	<0.038 [0.0096 J]	<0.036	0.050
Aroclor 1260 NA Total PCBs 1.0 Total PCBs 1.0 Pesticides 2.9 4.4-DDT 2.1 4.4-DDT 2.1 4.4-DDT 2.1 4.4-DDT 2.1 1.4-DDT 0.04 1.4-DDS 0.2 Dieldrin 0.044 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.5 1.2-Dichlorobenzene 7.9 1.2-Dichlorobenzene 7.9 1.2-Dichlorobenzene 0.5 Acetore 0.5 Acetore 0.5 Acetore 0.5 Acetore 0.5 Acetore 0.5	NA	NA	<0.038 [<0.036]	<0.036	<0.040
Total PCBs 1.0 Pesticides 2.9 4.1-DDE 2.9 4.1-DDE 2.1 4.1-DDE 2.1 1.4-DDT 2.1 1.4-DDT 2.1 1.4-DDT 2.1 1.4-DDT 2.1 1.4-DDT 2.1 1.4-DDT 2.1 1.2-Dichlordane 0.2 2.1-Trichlorobenzene 3.4 2.2-Dichlorobenzene 3.4 3.2-Dichlorobenzene 7.9 2.2-Dichlorobenzene 3.4 2.2-Dichlorobenzene 3.2 2.2-Dichlorobenzene 0.7 2.2-Dichlorobenzene 0.7	NA	NA	<0.038 [<0.036]	<0.036	0.013 1
Pesticides 2.9 14-DDD 2.1 14-DDT 2.1 12-Dichlordane 0.2 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.4 2-Dichlorobenzene 3.5 3-Dichlorobenzene 3.5 3-Dichlorobenzene 3.5 3-Dichlorobenzene 3.5 3-Dichlorobenzene 0.5 3-Dichlorobenzene 0.7 3-Dichlorobenzene 0.7 3-Dichlorobenzene 0.7 4-Dichlorobenzene 0.7	NA	NA	<0.038 [0.0316 J]	<0.036	0.063.J
.4DDD 2.9 1.4DDE 2.1 .4DDT 2.1 2.1 1.4DDT .14DDT 2.1 2.1 2.1 .14DDT 2.1 2.1 2.1 .14DDT 0.2 0.2 0.2 .14DDT 0.04 0.2 0.2 .16drin 0.04 0.04 0.04 .10. 0.044 0.04 0.04 .10. 0.044 0.04 0.04 .11.0 0.044 0.04 0.04 .12.0 0.044 0.04 0.04 .11.0 0.044 0.04 0.04 .11.0 0.054 0.05 0.05 .11.0 0.054 0.05 0.05 .11.0 0.054 0.05 0.05 .11.0 0.051 0.05 0.05 .11.0 0.051 0.05 0.05 .11.0 0.051 0.05 0.05 .11.0 0.051 0.05					
(4:DDE 2.1 2.1 (4:DDT 2.1 2.1 (abra-Chlordane NA 0.2 (abra-BHC 0.2 0.2 Dieldrin 0.044 0.24 pamma-Chlordane 0.044 0.044 Jahra-Chlordane 0.044 0.044 Jahra-Chlordane 0.044 0.044 Jabithorobenzene 0.054 0.054 (2.1 VOCs 0.044 0.054 (2.2 -Dichlorobenzene 0.054 0.054 (2.2 -Dichlorobenzene 0.05 0.02 (2.1 VOCs 0.05 0.02 0.02 (2.1 SVOCs 0.01 0.02 0.02 Activitiene 0.051 0.01 0.01 Activitiene 0.01 0.02 0.02 Activitiene 0.01061 0.1 0.01 Activitiene 0.02 0.02 0.02 Activitiene 0.02 0.02 0.01 Activitiene 0.01 0.02 0.01	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0019.1
14-DDT 2.1 Ipha-Chlordane NA Ipha-Chlordane 0.2 Dieldrin 0.044 Jamma-Chlordane 0.2 Jeidrin 0.044 Jamma-Chlordane 0.044 Jamma-Chlordane 0.044 Jamma-Chlordane 0.044 1,2-Dichlorobenzene 3.4 1,2-Dichlorobenzene 3.4 1,2-Dichlorobenzene 3.4 1,2-Dichlorobenzene 3.4 1,2-Dichlorobenzene 3.4 1,16 1.6 A-Dichlorobenzene 0.2 A-Dichlorobenzene 0.2 A-Dichlorobenzene 0.2 Artichler 0.1 A-Dichlorobenzene 0.2 Anthylene chloride 0.2 Anthylene chloride 0.1 Anthylene chloride 0.1 Anthylene chloride 0.1 Anthylene chloride 0.1 Anthracene 0.2 Anthracene 0.3 Anthylene 0.1 <tr< td=""><td>NA</td><td>NA</td><td><0.0019 [<0.0019]</td><td><0.0019</td><td>0.011</td></tr<>	NA	NA	<0.0019 [<0.0019]	<0.0019	0.011
Ipha-Chlordane NA Dieldrin 0.2 Dieldrin 0.044 pamma-Chlordane 0.044 Jamma-Chlordane 0.044 Jamma-Chlordane 0.044 (2-Dichlorobenzene 3.4 (2-Dichlorobenzene 3.4 (2-Dichlorobenzene 3.4 (2-Dichlorobenzene 3.5 (2-Dichlorobenzene 3.5 (2-Dichlorobenzene 3.5 (2-Dichlorobenzene 3.5 (2-Dichlorobenzene 0.7 <	AN	NA	<0.0019 [<0.0019]	<0.0019	0.0060 PG
leidelin 0.2 0.2 Dieldrin 0.044 0.044 pamma-Chlordane 0.044 0.044 I.2.4-Trichlorobenzene 0.044 0.044 1.2.5-Dichlorobenzene 3.4 7.9 3.4.5 3.4 7.9 3.5-Dichlorobenzene 3.4 7.9 3.4-Dichlorobenzene 3.5 7.9 3.5-Dichlorobenzene 3.5 7.9 3.6-Dichlorobenzene 3.5 7.9 3.7-Dichlorobenzene 0.2 7.9 A-Dichlorobenzene 3.5 7.9 Acethore 0.2 0.1 Acethore 0.2 0.1 Acethore 0.2 0.1 Acethore 0.1 0.1 Acethore 0.1 0.1 Acethore 0.2 0.1 CL SVOCS 0.1 0.1 Clastone 0.2 0.1 Acethore 0.2 0.1 Benzo(3)Butene 0.1 1.1	NA	NA	<0.0019 [<0.0019]	<0.0019	0.016 PG
Dieldrin 0.044 pamma-Chlordane 0.54 CL VOCs 0.54 CL VOCs 3.4 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.4 1.2-Dichlorobenzene 3.4 1.6 7.9 A-Dichlorobenzene 3.5 A-Dichlorobenzene 0.2 Zathon disulfide 0.2 Athylene chloride 0.2 CL SVOCs 0.1 Athylene chloride 0.1 CL SVOCs 0.1 Enzo(d)a)tenthene 0.1 Is(2-Eth	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0044 PG
mma-Chlordane 0.54 CL VOCs 3.4 .2.Dichlorobenzene 3.4 .2.Dichlorobenzene 3.4 .2.Dichlorobenzene 3.4 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 Aubit 8.5 Acetone 0.2 Acetone 0.3 Acetone 0.4 Benzo(k)fluoranthene 0.4 <td>NA</td> <td>NA</td> <td><0.0019 [<0.0019]</td> <td><0.0019</td> <td>0.027</td>	NA	NA	<0.0019 [<0.0019]	<0.0019	0.027
CL VOCs 3.4 .2.4-Trichlorobenzene 3.4 .2.Dichlorobenzene 3.4 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 0.2 .3.Dichlorobenzene 0.2 .4.Dichlorobenzene 0.2 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .2.7 6.1 .1.1 0.1 .1.1 0.051 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 6.0 .1.1 <td< td=""><td>NA</td><td>NA</td><td><0.0019 [<0.0019]</td><td><0.0019</td><td>0.0055</td></td<>	NA	NA	<0.0019 [<0.0019]	<0.0019	0.0055
.2.4-Trichlorobenzene 3.4 .2.Dichlorobenzene 7.9 .3.Dichlorobenzene 7.9 .3.Dichlorobenzene 1.6 .3.Dichlorobenzene 1.6 .3.Dichlorobenzene 1.6 .3.Dichlorobenzene 1.6 .3.Dichlorobenzene 1.6 .3.Dichlorobenzene 0.2 .3.Dichlorobenzene 0.2 .4.Dichlorobenzene 0.2 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.7 0.1 .2.8 0.2 .2.9 0.1 .2.1 0.2 .2.2 0.1 .2.2 0.2 .2.24<					
.2-Dichlorobenzene 7.9 .3-Dichlorobenzene 1.6 .3-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .2-T 8.5 .2-T 8.5 .2-T 0.1 .2-T 0.2 .2-T 0.2 .2-T 0.1 .2-T 0.2 .2-T 0.2 .2-T 0.2	NA	NA	<0.0057 [0.0012 JB]	<0.0055	0.0012.1
.3-Dichlorobenzene 1.6 .4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 .2arbon disulfide 0.2 .2arbon disulfide 0.1 .2arbon disulfide 0.224 .2arbon disultracene 0.061 .2arbon deno(1, 2.3-cd)pyrene 0.4 .1arbon deno(1, 2.3-cd)pyrene 0.4 .1arbon deno(1, 2.3-cd)pyrene 0.4	NA	NA	<0.0057 [0.00036 JB]	<0.0055	0.00041.1
.4-Dichlorobenzene 8.5 .4-Dichlorobenzene 8.5 Zatbon disulfide 0.2 Zatbon disulfide 0.2 Athylene chloride 0.1 Athylene chloride 0.051 Benzo(a)pyrene 0.061 Benzo(b)fluoranthene 1.1 Benzo(k)fluoranthene 1.1 Benzo(k)fluoranthene 0.04 Chrysene 0.4 Divoranthene 0.4 Benzo(1, 2.3-cd)pyrene 50 Athonanthene 0.4	NA	NA	<0.0057 [0.00035 JB]	<0.0055	<0.0060
Acetone 0.2 action disulfide 0.2 action disulfide 0.2 action disulfide 2.7 Activities chloride 0.1 ctL SVOCs 0.1 c	NA	AN	<0.0057 [0.00042 J]	<0.0055	<0.0060
Activitience chloride 0.1 CL SVOCs 50 CL SVOCs 50 uthracene 0.224 enzo(a)anthracene 0.224 enzo(a)pyrene 1.1 enzo(ghi)peryitene 1.1 enzo(k)fluoranthene 1.1 is(2-Ethylhexyl) phthalate 0.4 hysene 0.4 horanthene 50 henanthrene 50	AN	NA	0.0038 JB [<0.022]	<0.022	<0.024
CL SYOCS 50 Intracene 50 Intracene 50 enzo(a)anthracene 50 enzo(a)pyrene 0.051 enzo(b)fluoranthene 1.1 enzo(k)fluoranthene 1.1 enzo(k)fluoranthene 1.1 farzole 0.061 farzole 0.061 farzole 0.4 horanthene 50 is(2-Ethylhexyl) phthalate 0.4 invsene 0.4 inoranthene 3.2 thenanthrene 50	AN NO	NA	<0.000 P 10.00030 JBJ	0.00031 JB	<0.0060
unthracene 50 fenzo(a)anthracene 0.224 fenzo(a)pyrene 0.061 fenzo(a)pyrene 1.1 fenzo(b)fluoranthene 1.1 fenzo(k)fluoranthene 1.1 fenzo(k)fluoranthene 1.1 fenzo(k)fluoranthene 1.1 fenzo(k)fluoranthene 1.1 fenzole 0.04 carbazole 0.4 chrysene 50 deno(1,2.3-cd)pyrene 3.2 thenanthrene 50	1	WNI	0.0090 B [0.0004 B]	0.000 B	0.0059 JB
lenzo(a)anthracene 0.224 0.061 enzo(a)pyrene 0.061 0.061 Senzo(a)lyperylene 1.1 Senzo(a)lyperylene 1.1 Senzo(k)fluoranthene 1.1 Senzo(k)fluoranthene 50 Senzo(k)fluoranthene 50 is(2-Ethylhexyl) phthalate 0.4 Shrysene 0.4 Iuoranthene 50 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.3£	0.024.1
Senzo(a)pyrene 0.061 0.061 Senzo(b)fluoranthene 1.1 Senzo(c)fluoranthene 50 senzo(k)fluoranthene 1.1 Senzole 0.4 Shrysene 0.4 Chrysene 50 thoranthene 3.2 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	0.026.1
senzo(b)fluoranthene 1.1 50 senzo(ghi)perytene 50 50 tenzo(k)fluoranthene 1.1 50 50 is(2-Ethylhexyl) phthalate 50 50 carbazole 0.4 0.4 10 chrysene 50 70 thoranthene 3.2 thoranthrene 50 50 50 50 50 50 50 50 50 50 50 50 50	AN	NA	<0.38 [<0.36]	<0.36	0.061.1
Senzo(ghi)peryitene 50 Eenzo(k)fluoranthene 1.1 is(2-Ethylhexyl) phthalate 50 carbazole NA Chrysene 0.4 iluoranthene 50 rhenanthrene 50 thenanthrene 50	AN I	NA	<0.38 [<0.36]	<0.36	0.084.1
tenzo(k)fluoranthene 1.1 is(2-Ethylhexyl) phthalate 50 arbazole NA Chrysene 0.4 iluoranthene 50 deno(1,2,3-cd)pyrene 3.2 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	0.040.1
is(2-Ethylhexyl) phthalate 50 arbazole NA NA chrysene 0.4 luoranthene 50 deno(1,2,3-cd)pyrene 3.2 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	L 0.027 J
Sarbazole NA Chrysene 0.4 Iuoranthene 50 ndeno(1,2,3-cd)pyrene 3.2 thenanthrene 50	AN	NA	0.031 JB [0.026 JB]	0.027 JB	0.031 JB
Chrysene 0.4 Iluoranthene 50 ndeno(1,2,3-cd)pyrene 3.2 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	0.019.J
luoranthene 50 ndeno(1,2,3-cd)pyrene 3.2 thenanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	0.074 J
ndeno(1,2,3-cd)pyrene 3.2 henanthrene 50	NA	NA	<0.38 [<0.36]	<0.36	0.15.J
nenanthrene 50	AA	AN	<0.38 [<0.36]	<0.36	0.035 J
	NA	NA	<0.38 [<0.36]	<0.36	0.11 J
Yrene 50	NA	AN	<0.38 [<0.36]	<0.36	0.12 J
01al SVUC FICS NA NA	NA	NA	0.44 J [0.062 J]	0.33 J	0.61 J

TABLE 1

Backfill Sample Results_101305.xls

Page 1of 3

12/28/2005

TABLE 1 BACKFILL MATERIAL SAMPLE RESULTS (ppm)

DRAFT PRIVILEGED AND CONFIDENTIAL ATTORNEY-CLIENT WORK PRODUCT

INTERIM CORRECTIVE MEASURE BARRIER LAYER CONSTRUCTION FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Sample ID: Date Collected:	TAGM 4046 Guidance Value (exceedences shaded)	Maximum Site Background (exceedences in bold)	NY Region Background Values (exceedences in italics)	RB-3 10/04/05	RB-4 10/04/05	TS-3 10/04/05
TAL Inorganic Constituents						
Aluminum	NA	9,360	100,000	3.270 [4.310]	2.900	10 100
Arsenic	2.5	11.2	12	3.30 [3.40]	2.80	9.80
Barium	300	83	600	15.3 B [19.4 B]	12.9 B	66.3
Beryllium	0.16	0,5	1.75	0.160 B [0.200 B]	0.150 B	0.530 B
Cadmium	-	0.61	1	<0.570 [0.0370 B]	<0.550	0.190.8
Calcium	NA	167,000	35,000	18,700 J [27,200 J]	16.100 J	4.830.1
Chromium	10	23.8	40	4.00 [5.40]	3.60	13.6 E
Cobalt	30	7.4	60	3.40 B [4.10 B]	3.00 B	10.5 E
Copper	25	27.9	50	11.8 [16.9]	9.70	42.4 F
Iron	2,000	27,400	550,000	8,370 [10,700]	7,290	25.300
Lead	AA	26.7	61	2.30 [3.00]	2.00	24.8
Magnesium	AN	21,100	5,000	4,860 J [7,480 J]	3,430 J	3.210.J
Manganese	NA	1,780	5,000	337 J [391 J]	276.J	746 JE
Mercury	0.1	0.12	0.2	<0.110 [<0.110]	<0.110	0.0870 B
Nickel	13	15.7	25	6.50 [8.30]	5.90	18.5.F
Potassium	NA	759	43,000	518 BJ [711 J]	471 BJ	1.020 JE
Selenium	~	1.2	3.9	<0.570 [<0.550]	<0.550	0.450 B
Sodium	NA	82.4	50,000	50.1 B [63.9 B]	46.9 B	<601
Thallium	NA	1.2	AA A	<1.10 [0.610 B]	<1.10	0.820.B
Total Cyanide	NA	0.61	NA	<0.570 [0.540 B]	<0.550	<0.600
Vanadium	150	17.9	300	5.40 B [7.30]	5.10.8	15.7 E
Zinc	20	92	50	28.9 J [38.6 J]	19.61	58.1.15
Miscellaneous					and all the	
Percent Solids (%)	NA	NA	NA	87.9 [91.6]	80.8	83.0
pH (standard pH Units)	NA	NA	NA	9.0 (8.9)	0.0	7.4

Backfill Sample Results_101305.xls

Page 2of 3

12/28/2005

TABLE 1 BACKFILL MATERIAL SAMPLE RESULTS (ppm)

DRAFT PRIVILEGED AND CONFIDENTIAL ATTORNEY-CLIENT WORK PRODUCT

INTERIM CORRECTIVE MEASURE BARRIER LAYER CONSTRUCTION FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Notes:

- Samples collected by Blasland, Bouck & Lee, Inc. (BBL) on October 4, 2005.
 Samples submitted to Seven Trent Laboratories. Inc. of North Canton. Onio for
- Samples submitted to Sevem Trent Laboratories, Inc., of North Canton, Ohio for laboratory analysis of the following constituents:
 - Polychlorinated biphenyls (PCBs) using United States Environmental Protection Agency (USEPA) SW-846 Method 8082; - Pesticides using USEPA SW-846 Method 8081;
- Target Compound List (TCL) Volatile organic compounds (VOCs), including tentatively identified compounds (TICs), using USEPA SW-846 Method 8260;
 - TCL Semi-volatile organic compounds (SVOCs), including TICs, using USEPA SW-846 Method 8270; and
- Target Analyte List (TAL) inorganic constituents using USEPA SW-846 Method 6010 (except for mercury which was analyzed using Method 7471 and cyanide which was analyzed using Method 9012).
 - Concentrations reported on a dry weight basis, in parts per million (ppm), which is equivalent to milligrams per kilogram (mg/kg) Result for blind duplicate. e 4
 - <= No Aroclors were detected above the reported concentration (for PCBs) or constituent was not detected at a concentration</p> exceeding the reported detection limit (for all other parameters). 10
 - Laboratory data qualifiers indicate the following:
- B (Organic) = Analyte was also detected in the associated method blank.
- J (Organic) = Indicates an estimated value less than the practical quantitation limit (PQL).
- PG (Organic) = The percent difference between the original and confirmation analysis is greater than 40%.
 - B (Inorganic) = Indicates an estimated value between the instrument detection limit (IDL) and PQL.
 - E (Inorganic) = The serial dilution percent difference was outside control limits.
 - J (Inorganic) = Analyte was also detected in the associated method blank.
- 7. NA = Not applicable.
- TAGM 4046 guidance values are from the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) titled "Determination of Soil Cleanup Objectives and Cleanup Levels", HWR-94-4046 (TAGM 4046) dated January 24, 1994. ŵ
 - Maximum site background represents the highest concentration identified at background soil sampling locations BGD-1 through BGD-5 as part of a background soil sampling program completed during January 2002. 6
- NY Region background values are maximum values from the NYSDEC document titled "Background Concentrations of 20 Elements in Solis with Special Regard for New York State", by E. Carol McGovern, dated 1988. 0
 - 11. With the exception of PCBs, only those constituents detected in one or more samples are summarized.
 - 12. Analytical results have not been validated.

10/25/05 Letter from NYSDEC

Approval of Modification to ICM Work Plan

New York State Department of Environmental Conservation

Division of Solid & Hazardous Materials Bureau of Hazardous Waste & Radiation Management 625 Broadway, Albany, NY 12233-7258 Phone: (518) 402-8594 • FAX: (518) 402-9024 Website: www.dec.state.ny.us

October 25, 2005

Mr. Kurt Batsel The Dextra Group, LLC 4665 Lower Roswell Road, #154 Marietta, Georgia 30068

Dear Mr. Batsel:

Re: Former TRW Aeronautical Systems Facility, Utica, NY, USEPA ID No. NYD002244911; ICM Barrier Layer Construction Work Plan, August 2005

On September 16, 2005, the New York State Department of Environmental Conservation (Department) approved the ICM Barrier Layer Construction Work Plan and responses. On October 14, 2005, Lucas Western (Lucas) requested a modification to the ICM work plan, due to a potential shortage of topsoil material. The approved work plan calls for a minimum of six inches of topsoil and a minimum of six inches of gravel material. Lucas requested a change to a minimum of three inches of topsoil and nine inches of gravel material. However, Lucas will make every effort to place the six inches of topsoil, or as much as is available at the time.

The Department approves the modification to the work plan, with the understanding that Lucas must promptly address conditions leading to deterioration of the topsoil layer, such as lack of vegetation, erosion, and cracking. This must also be addressed in the Site Management Plan, to be proposed as a final remedial measure.

In addition, the Department approves the use of topsoil material from Burrow's Trucking & Excavating, based on the analytical results submitted to the Department on October 14, 2005.

If you have any questions, please contact me at (518) 402-8594.

Sincerely,

Alicia Barraza

Alicia Barraza Environmental Engineer Hazardous Waste Engineering Eastern Section

cc: J. Reidy, EPA Region II Greg Rys, NYSDOH

Appendix B

Weekly Field Reports

		Weekly Activity Report
ECT	Lucas Western LLC Former TRW Aeronautical Systems Facility	Week #1: 9/12/05 to 9/16/05 File No.: 2253.37117.010 #5 Date Submitted: 10/4/05
llo	Utica, NY	Date Submitted. 10/4/05
PRO	ICM Barrier Layer Construction	
	Project Oversight	
Contractors on site: Royal Environmental		Observer: Andrew Enigk, BBL
	·····	6,

✤ Activities Completed this Week:

9/12/05, Monday:

- BBL inspected the perimeter lawn and collected trash and debris.
- Completed the trash and debris collection, left the site and returned to meet Parratt-Wolff (PW) at 12:00 noon to modify/decommission designated monitoring wells onsite.
- Modified B95-1 and MW-03-3. Modifications at each well consisted of the following:
 - pulled flush-mount cover and concrete surface pad;
 - o dug soil around PVC well for placement of 18 inch Sonitube (cylindrical concrete form);
 - o installed PVC pipe extension and connected to existing pipe using Fernco coupling;
 - o installed a lockable steel casing around the PVC well extension; and
 - placed Sonitube, extending from 6-inches below to 12-inches above surrounding grade, then hand-filled with concrete.
- Note: MW-03-3 was pulled up approximately 6 inches during removal of the flush-mount cover and concrete. The well was left in the pulled up position to avoid compressing the well screen if it were pushed back to its original position.
- B85-4 was decommissioned per NYSDEC approved procedure in the following basic steps:
 - o pulled steel casing of stick-up;
 - o pulled PVC well up approximately two feet;
 - o punched out bottom of the well;
 - o added grout while removing the PVC well;
 - o added grout to approximately 4 feet below surrounding grade; and
 - topped off grout with bentonite chips.
- PW and BBL left the site at 5:30 p.m.

9/13/05, Tuesday:

- PW completed decommissioning of the remaining wells (B85-5, B85-6, B84-1/B-1, B84-2/B-2, and B84-3/B-3) per the NYSDEC-approved procedure.
- Rebar was placed in the top four feet of bentonite (as a marker for future reference) per the procedure.
- The steel casing of B84-2/B-2 was cut using an acetylene torch because large maple tree roots had enveloped the concrete and steel casing, making direct removal not possible.

***** Activities Planned for Next Week:

- Mobilization by Royal Environmental, Inc. (Royal)

✤ Potential Impacts to Schedule

- On Schedule.

* Resolutions to Potential Impacts to Schedule

- Not Applicable.

		Weekly Activity Report
	Lucas Western LLC	Week #2: 9/19/05 to 9/23/05
Ľ	Former TRW Aeronautical Systems Facility	File No.: 2253.37117.010 #5
SOJEC	Utica, NY	Date Submitted: 10/10/05
ΡI	ICM Barrier Layer Construction	
	Project Oversight	
Coi	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

9/20/05, Tuesday:

- BBL collected backfill samples (run-of-bank gravel and topsoil) from Leitz Enterprises in Frankfort, NY and submitted the samples to STL of North Canton, Ohio for analysis.
- Royal provided an updated project schedule and the following submittals as required by the RFP:
 - Operation Plan
 - Decontamination Plan
 - Health and Safety Plan

9/21/05, Wednesday:

• BBL and Royal attended a pre-construction meeting at the site. Introduced project teams, reviewed Contract requirements, discussed project schedule, and discussed Royal's approach for completing the ICM activities, including additional site clearing activities requested by Lucas Western and fence re-location activities needed based on the survey layout of the barrier layer areas.

9/22/05, Thursday:

• BBL revised the NYSDEC Community Fact Sheet based on NYSDEC comments.

9/23/05, Friday:

- Royal signed the Agreement for Barrier Layer Construction Activities with Lucas Western.
- BBL distributed the *NYSDEC Community Fact Sheet* in accordance with the mailing list previously provided by the NYSDEC.

* Activities Planned for Next Week

- Review and provide comments on Royal's submittals.
- Mobilize equipment and office trailer to the site.

✤ Potential Impacts to Schedule

• On Schedule.

* Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
DJECT	Lucas Western LLC Former TRW Aeronautical Systems Facility Utica, NY	Week #3: 9/26/05 to 9/30/05 File No.: 2253.37117.010 #5 Date Submitted: 10/10/05
PR(ICM Barrier Layer Construction Project Oversight	
Co	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

9/26/05, Monday:

- Dextra and BBL provided comments on Royal's submittals.
- Weather conditions (high winds and excessive precipitation) prohibited work onsite.

9/27/05, Tuesday:

- Acceptable revisions to Royal's submittals were received by Dextra and BBL.
- Royal mobilized an office trailer to the site.
- Two personnel from Royal installed silt fence, while two personnel from Royal and the onsite observer from BBL marked the barrier layer boundaries with tape to make them more visible to equipment operators. Silt fence installation locations are shown on the hand-markup of Figure 1 from the RFP (see attached).

9/28/05, Wednesday:

- Royal provided a lump sum quote for additional site clearing and grading.
- Weather conditions (50-60 mph winds) prohibited work onsite.

9/29/05, Thursday:

- STL provided laboratory analytical results for the run-of-bank gravel and topsoil.
- BBL compared the backfill sample results to NYSDEC TAGM 4046 soil guidance values. Results for topsoil indicate unacceptable chemical characteristics (PAHs, pesticides).

9/30/05, Friday:

- Royal mobilized a bulldozer to the site.
- Royal used chain saws to clear trees on the western side of the designated tree clearing area (refer to the attached hand-markup of Figure 2 from the RFP).
- Trees were cut close to grade, limbs were removed and piled for future chipping, and the logs were piled on the southern parking lot.

* Activities Planned for Next Week

- Sample alternative backfill source.
- Complete tree clearing.
- Manually clear debris and use a brush hog to mow brush/weeds/grass/vegetation onsite.
- Review Royal's revised cost estimate for clearing and grading.

✤ Potential Impacts to Schedule

• Start of actual barrier layer construction (scheduled for 10/4/05) will be delayed by unacceptable topsoil characterization analytical results. Completion date may not be affected.

***** Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
	Lucas Western LLC	Week #4: 10/3/05 to 10/7/05
L	Former TRW Aeronautical Systems Facility	File No.: 2253.37117.010 #5
OJEC	Utica, NY	Date Submitted: 10/10/05
PR	ICM Barrier Layer Construction	
	Project Oversight	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

- BBL collected samples of backfill materials from Burrow's Trucking & Excavating in Oriskany, NY (the alternate source proposed by Royal) on 10/4/05.
- At the request of the Dextra Group, BBLES submitted a scope of work and cost estimate for clearing brush/weeds/grass/vegetation at the site using a brush-hog mower. Approval to proceed was provided on 10/7/05.

Activities Planned for Next Week

- Review analytical results for alternative backfill materials.
- Complete debris removal and brush-hog clearing of brush/weeds/grass/vegetation onsite.
- Complete tree clearing.
- Begin construction of barrier layer, pending acceptable analytical results.

Potential Impacts to Schedule

• Actual start of actual barrier layer construction (originally scheduled for 10/4/05) will take place once acceptable fill material analytical results are received.

***** Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
	Lucas Western LLC	Week #5: 10/10/05 to 10/14/05
T	Former TRW Aeronautical Systems Facility	File No.: 2253.37117.010 #5
OJEC	Utica, NY	Date Submitted: 10/25/05
PR	ICM Barrier Layer Construction	
	Project Oversight	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

- BBLES completed manual collection of debris (reinforcing bars, miscellaneous trash, etc.) encountered within areas proposed to be cleared with a brush-hog.
- BBLES cleared brush/weeds/grass/vegetation at the Site using a brush-hog mower.
- BBLES manually cut large weeds and saplings growing along the perimeter chain-link fence on the north and west sides of the Site.
- STL provided laboratory analytical results for the alternative run-of-bank gravel and topsoil from Burrow's Trucking & Excavating.
- BBL compared the backfill sample results to NYSDEC TAGM 4046 soil guidance values.
- BBL submitted the backfill sample results to the NYSDEC in e-mail correspondence dated October 13, 2005 and participated on a follow-up conference call with the NYSDEC on October 14, 2005.

Activities Planned for Next Week

• Begin construction of barrier layer following NYSDEC approval of the proposed barrier layer materials.

✤ Potential Impacts to Schedule

• Start of barrier layer construction (originally scheduled for 10/4/05) will take place following NYSDEC approval of the proposed barrier layer materials.

✤ Resolutions to Potential Impacts to Schedule

• Not applicable.

		Weekly Activity Report
PROJECT	Lucas Western LLC Former TRW Aeronautical Systems Facility Utica, NY ICM Barrier Layer Construction Project Oversight	Week #6: 10/17/05 to 10/21/05 File No.: 2253.37117.010 #5 Date Submitted: 10/28/05
Contractors on site: Royal Environmental		Observer: Andrew Enigk, BBL

***** Activities Completed this Week:

- No field activities performed this week.
- NYSDEC approval of proposed fill material was provided on 10/20/05.

* Activities Planned for Next Week

• Begin placement of run-of-bank gravel.

✤ Potential Impacts to Schedule

• Start of barrier layer construction (originally scheduled for 10/4/05) has been delayed by the need to identify and pre-qualify fill material from a second source.

* Resolutions to Potential Impacts to Schedule

• Discuss with Royal the need to expedite delivery and placement of barrier layer materials to meet the November 11, 2005 project completion deadline.

		Weekly Activity Report
	Lucas Western LLC	Week #7: 10/24/05 to 10/28/05
T	Former TRW Aeronautical Systems Facility	File No.: 2253.37117.010 #5
OJEC	Utica, NY	Date Submitted: 10/28/05
ΡĘ	ICM Barrier Layer Construction	
	Project Oversight	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

- Royal took delivery of forty 10-wheeled dump truck loads (each hauling approximately 25 tons) of run-of-bank gravel. The gravel was staged adjacent to uneven areas or depressions for future grading before installation of the barrier layer. The stockpiles were placed as follows (see attached map showing stockpile locations):
 - o 14 piles adjacent to the pit east of the Former Test Building;
 - 5 piles south of the Former Test Building;
 - 13 piles west of the Former Test Building;
 - 3 piles on the southwest corner of Parking Lot No. 1;
 - 2 piles southwest of Parking Lot No. 1;
 - 2 piles south of the Former Chemical Storage Building; and
 - o 1 pile south of the Former Main Production Building.
- BBL observed Burrows Trucking and Excavating weighing a load at their facility using an electronic, digital scale for the 5-cubic yard loader bucket. Each load is being electronically-weighed using the loader bucket scale and weight tickets are being provided to BBL.
- The anticipated location of the new chain-link fence at the corner of Gilmore Street and Lyons Place was inspected and measured (approximately 135 linear feet).

* Activities Planned for Next Week

- Review cost estimate from Royal for additional grading of site to promote future brush-hog mowing.
- Grade stockpiled material to fill in uneven areas and depressions before construction of the barrier layer.
- Review cost estimate for installation of new fence at the corner of Gilmore Street and Lyons Place and implement installation.
- Complete tree clearing, grubbing, and chipping.
- Begin construction of barrier layer.

Potential Impacts to Schedule

• Not Applicable

* Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
Т	Lucas Western LLC Former TRW Aeronautical Systems Facility	Week #8: 10/31/05 to 11/05/05 File No.: 2253.37117.010 #5
ROJEC	Utica, NY	Date Submitted: 11/10/05
Ы	ICM Barrier Layer Construction	
	Project Oversight	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

✤ Activities Completed this Week:

- Royal completed preliminary grading activities (using run-of-bank gravel delivered during Week #7) to level uneven areas and fill depressions prior to installation of the one-foot thick barrier layer. BBL observed grading activities.
- BBL assigned numbers to each barrier layer area to simplify identification (see first attached map for barrier layer area numbers).
- Royal cleared trees in southern portion of Area 5 to facilitate construction of the barrier layer.
- Royal completed the placement and grading of 9 inches of run-of-bank gravel in all of Areas 1 and 2 and in part of Areas 3 and 5 (see second attached map for barrier layer construction progress).
- Royal placed and graded 3 inches of topsoil in the eastern portion of Area 5.
- BBL conducted airborne monitoring for particulate (dust) during grading activities, except in wet conditions.
- Barrier layer construction near the corner of Gilmore Street and Lyons Place was deferred until new chain-link fence is installed.
- BBL reviewed Royal's proposal for additional fill placement/site grading to facilitate future brush-hog mowing.

✤ Activities Planned for Next Week

- Install new fence at the corner of Gilmore Street and Lyons Place following proposal submittal and approval.
- Complete tree clearing, grubbing, and chipping.
- Complete barrier layer construction.
- Begin additional fill placement/site grading to promote future brush-hog mowing.

✤ Potential Impacts to Schedule

- Not Applicable
- * Resolutions to Potential Impacts to Schedule
 - Not Applicable.

NUMBERING OF BARRIER LAYER LOCATIONS

1-5

A State

South Harris Baggering

		Weekly Activity Report
PROJECT	Lucas Western LLC	Week #9: 11/07/05 to 11/11/05
	Former TRW Aeronautical Systems Facility	File No.: 2253.37117.010 #5
	Utica, NY	Date Submitted: 11/11/05
	ICM Barrier Layer Construction	
	Project Oversight	
Contractors on site: Royal Environmental		Observer: Andrew Enigk, BBL

***** Activities Completed this Week:

- Royal completed the placement and grading of 9 inches of run-of-bank gravel in all of Areas 3 and 4 (see attached map for barrier layer construction progress). Run-of-bank gravel fill placement is complete, except for near the intersection of Gilmore Street and Lyon Place (where fence removal and replacement is needed).
- Royal completed the placement and grading of 3 inches of topsoil in all of Areas 1, 2, and 5 and in part of Area 3 (refer to the attached map). Topsoil placement is complete, except for in Area 4 and a small portion of Areas 3 and 5.
- BBL conducted airborne monitoring for particulate (dust) during grading activities, except in wet conditions.
- Royal received approval to proceed with the additional fill placement/site grading to promote future brush-hog mowing. Royal agreed to proceed on Monday, 11/14/05.
- Royal mowed the lawn area on the outside of the chain-link fence adjacent to French Road and Seward Avenue.

✤ Activities Planned for Next Week

- Install new fence at the corner of Gilmore Street and Lyons Place following proposal submittal and approval.
- Complete tree clearing, grubbing, and chipping.
- Complete barrier layer construction in vicinity of new fence.
- Complete additional fill placement/site grading to promote future brush-hog mowing.
- Demobilize bull dozer, equipment trailer, and site trailer.

✤ Potential Impacts to Schedule

• Barrier layer construction activities were delayed due to weather conditions on 11/9/05 and 11/10/05.

* Resolutions to Potential Impacts to Schedule

• Work will continue next week, weather permitting.

		Weekly Activity Report
ROJECT	Lucas Western LLC Former TRW Aeronautical Systems Facility Utica, NY	Week #10: 11/14/05 to 11/18/05 File No.: 2253.37117.010 #5 Date Submitted: 12/08/05
PR	ICM Barrier Layer Construction	
	Project Oversight	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

Activities, Remarks

✤ Activities Completed this Week:

- Royal removed the existing chain-link fencing near the intersection of Gilmore Street and Lyon Place and installed new, replacement fencing as shown on Figure 2 of the September 12, 2005 Response to NYSDEC Comments on the ICM Barrier Layer Construction Work Plan.
- Remaining trees in the designated clearing and grubbing area were cut even with grade. Limbs were removed and staged for chipping and logs were separated for future removal from the Site.
- Royal completed construction of the barrier layer, with the exception of seeding and mulching.
- BBL conducted airborne monitoring for particulate (dust) during grading activities, except in wet conditions.
- Royal graded additional run-of-bank gravel (approximately 1,000 tons) to promote future brush-hog mowing outside the barrier layer limits. Topsoil was stockpiled over the newly graded run-of-bank gravel-covered areas for grading on 11/20/05.

✤ Activities Planned for Next Week

- Complete chipping and offsite transportation of cut trees.
- Complete additional topsoil placement/site grading on areas where additional fill was placed to promote future brush-hog mowing.
- Demobilize bulldozer, equipment trailer, and site trailer.

Potential Impacts to Schedule

• Not Applicable.

***** Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
PROJECT	Lucas Western LLC Former TRW Aeronautical Systems Facility Utica, NY ICM Barrier Layer Construction Project Oversight	Week #11: 11/21/05 to 11/25/05 File No.: 2253.37117.010 #5 Date Submitted: 12/08/05
Co	I ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

Activities, Remarks

***** Activities Completed this Week:

- Royal graded additional topsoil (approximately 270 cubic yards) on areas where additional run-of-bank gravel was placed to promote future brush-hog mowing.
- BBL conducted airborne monitoring for particulate (dust) during grading activities, except in wet conditions.
- Royal demobilized the bulldozer.

✤ Activities Planned for Next Week

- Complete chipping and offsite transportation of cut trees.
- Demobilize equipment trailer and site trailer.
- Seed and mulch all areas where fill was placed.

✤ Potential Impacts to Schedule

• Not Applicable.

***** Resolutions to Potential Impacts to Schedule

• Not Applicable.

		Weekly Activity Report
PROJECT	Lucas Western LLC Former TRW Aeronautical Systems Facility Utica, NY ICM Barrier Layer Construction Project Oversight	Week #12: 11/28/05 to 12/02/05 File No.: 2253.37117.010 #5 Date Submitted: 12/08/05
	i roject översignt	
Cor	ntractors on site: Royal Environmental	Observer: Andrew Enigk, BBL

Activities, Remarks

***** Activities Completed this Week:

- Royal completed seeding and mulching of the barrier layer areas (and the other areas where grading/fill placement occurred to promote future brush-hog mowing).
- Royal completed chipping of the small trees and limbs of large trees removed from the barrier layer areas.

***** Activities Planned for Next Week

- Offsite transportation of remaining cut, de-limbed trees.
- Demobilize equipment trailer/site trailer.

✤ Potential Impacts to Schedule

• Not Applicable.

* Resolutions to Potential Impacts to Schedule

• Not Applicable.

Appendix C

Photo Log

Modification and Decommissioning of Monitoring Wells Looking north from Former Test Building location on 9/12/05

Modification and Decommissioning of Monitoring Wells Looking north from Former Test Building location on 9/13/05

Erosion and Sedime ntation Control Measures Looking north from Parking Lot No. 2 on 9/27/05

Erosion and Sedimentation Control Measures Looking east from Former Main Production Building location on 9/27/05

Tree/Brush Clearing Looking northwest from Parking Lot No. 2 on 10/10/05

Tree/Brush Clearing Looking northeast from Parking Lot No. 2 on 10/11/05

Tree/Brush Clearing Looking southeast from Parking Lot No. 2 on 9/30/05

Tree/Brush Clearing Looking east from Parking Lot No. 3 on 11/2/05

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Pre-Qualification of Alternate Fill Source Run-of-bank gravel at Burrow's Trucking and Excavating Pit on 10/4/05

Pre-Qualification of Alternate Fill Source Topsoil at Burrow's Trucking and Excavating Pit on 10/4/05

Placement/Grading/Compaction of Run-of-Bank Gravel to Fill Depressions Looking east from Parking Lot No. 2 on 10/26/05

Placement/Grading/Compaction of Run-of-Bank Gravel to Fill Depressions Looking east from Parking Lot No. 2 on 10/31/05

Placement of 9-Inch Minimum-Thickness Run-of-Bank Gravel Layer Looking north from Parking Lot No. 2 on 11/1/05

Placement of 9-Inch Minimum-Thickness Run-of-Bank Gravel Layer Looking east from Parking Lot No. 2 on 11/2/05

Placement of 9-Inch Minimum-Thickness Run-of-Bank Gravel Layer Looking west from Parking Lot No. 1 on 11/1/05

Placement of 9-Inch Minimum-Thickness Run-of-Bank Gravel Layer Looking east from Parking Lot No. 2 on 11/3/05

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Placement of 3-Inch Minimum-Thickness Topsoil Layer Looking south from between Former Test Building location and Parking Lot No. 1 on 11/705

Placement of 3-Inch Minimum-Thickness Topsoil Layer Looking south from between Former Test Building location and Parking Lot No. 1 on 11/7/05

Chain-Link Fence Installation Looking south from Parking Lot No. 2 on 11/18/05

Chain-Link Fence Installation Looking south from Former Test Building location on 11/21/05

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Barrier Layer Construction Activities Completed Looking northeast from Parking Lot No. 2 on 11/21/05

Barrier Layer Construction Activities Completed Looking east from Parking Lot No. 2 on 11/8/05

Appendix D

Validated Analytical Data Report

DATA REVIEW FOR

TRW UTICA, SEWARD AVENUE

SDG# 5J05155

VOLATILE, SEMIVOLATILE, PCB AND METALS ANALYSES

Analyses performed by:

Severn Trent Laboratories, Inc. North Canton, Ohio

Review performed by:

Blasland, Bouck & Lee, Inc. Syracuse, New York

Summary

The following is an assessment of the data package for sample delivery group (SDG) # 5J05155 for sampling at the TRW Inc, Utica NY site. Included with this assessment are the data review check sheets used in the review of the package and corrected sample results. Analyses were performed on the following samples:

Sample ID	Lab ID	Matrix	Sample	Analysis				
			Date	VOA	SVOC	PCB	MET	MISC ³
TS-3	A5J050155-001	soil	10/04/05	x	x	x	×	x
RB-3	A5J050155-002	soil	10/04/05	x	x	x	x	x
RB-4 ¹	A5J050155-003	soil	10/04/05	x	x	x	x	x
DUP-2 ²	A5J050155-0044	soil	10/04/05	x	x	x	x	x

MS/MSD analyses performed on sample.

2 Field duplicate of sample location RB-3.

3 Miscellaneous parameters include Total Cyanide and pH.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

Introduction

Analyses were performed according to United Stated Environmental Protection Agency (USEPA) SW-846 Method 8260 as referenced in NYSDEC-ASP.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- ND The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- NDJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Assessment

1. Holding Time

The specified holding time for volatile analyses under NYSASP is 10 days from sample receipt. The technical holding time for soils is 14 days from sample collection.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, trip, field, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Field and rinse blanks measure contamination of samples during field operations.

Several compounds were detected in the associated blanks. Sample results which were below the blank action level were qualified as non-detect for carbon disulfide and methylene chloride associated with sample locations RB-4 and DUP-2, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,2,4-trichlorobenzene associated with sample location DUP-2, acetone associated with sample location RB-3 and methylene chloride associated with sample locations RB-3 and TS-3.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) limits for select compounds only and allows two outliers. A technical review of the data applies limits to all compounds with no exceptions.

The %RSD was within the 30% control limit for all initial calibrations.

4.2 Continuing Calibration

The method species percent drift (%D) criteria for select compounds only. A technical review applies limits to all compounds with no exceptions.

The continuing calibration %D was within 25% of the initial calibration for all compounds with the exception of the following. Sample results were qualified as estimated associated with sample locations:

- Dichlorodifluoromethane: RB-4, DUP-2
- Trichlofluoromethane, 4-methyl-2-pentanone: TS-3, RB-3

5. Surrogates / System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every experimental run.

All internal standard responses and retention times were within established limits.

7. Compound Identification

Compounds are identified on the GC/MS by using the analyte's relative retention time and ion spectra.

All identified compounds met the specified criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD data are used to assess the precision and accuracy of the analytical method.

The MS/MSD exhibited acceptable recoveries.

9. Laboratory Control Sample (LCS)

All LCS recoveries were within control limits.

10. Field Duplicates

Results for duplicate samples are summarized as follows:

Sample ID/ Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2	1,4-dichlorobenzene	ND (5.7)	0.42J	AC

ND = Not detected. AC = The field

The field duplicate RPD is acceptable when the RPD between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The field duplicate RPD are acceptable.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method.

Data Validation Checklist

Volatile Organics Data Validation Checklist

	YES	NO	NA
Data Completeness and Deliverables			
Have any missing deliverables been received and added to the data package?	,	x	
Is there a narrative or cover letter present?	x		
Are the sample numbers included in the narrative?	_X		
Are the sample chain-of-custodies present?	X		
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		x	
Holding Times			121
Have any holding times been exceeded?	_	х	
Surrogate Recovery			
Are surrogate recovery forms present?	х		
Are all samples listed on the surrogate recovery form?	х		
Was one or more surrogate recoveries outside control limits for any sample or blank?		x	
If yes, were the samples reanalyzed?	ACC		x
Are there any transcription/calculation errors between the raw data and the summary form?		×	
Matrix Spikes			
Is there a matrix spike recovery form present?	Х		
Were matrix spikes analyzed at the required frequency?	X		
How many spike recoveries were outside of QC limits?			2
_0_out of _20			
How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits?			
_0_out of _10			
Blanks			
Is a method blank summary form present?	X	-	
Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent?	x		
Has a blank been analyzed at least once every twelve hours for each system used?	x		
Do any method/instrument blanks have positive results?	X		
Are there trip/rinse blanks associated with every sample?		x	
Do any trip/rinse blanks have positive results?			x

	YES	NO	NA
Tuning and Mass Calibration			
Are the GC/MS tuning forms present for BFB?	х		
Are the bar graph spectrum and mass/charge listing provided for each BFB?	×		
Has a BFB been analyzed for each twelve hours of analysis per instrument?	x		-
Have the ion abundance criteria been met for each instrument used?	x		1
Target Analytes			
Is an organics analysis data sheet present for each of the following:			
Samples	х		
Matrix spikes	x		
Blanks	x		
Are the reconstructed ion chromatograms present for each of the following:			dia casa in
Samples	х		
Matrix spikes	x		
Blanks	×		
Are the mass spectra of the identified compounds present?	x		
Are all ions present in the standard mass spectrum at a relative intensity of ≥10% also present in the sample spectrum?	×		
Do the samples and standard relative ion intensities agree within 20%?	×		
Tentatively Identified Compounds			
Are all the TIC summary forms present?	x		
Are the mass spectra for the tentatively identified compounds and their associated "best match" present?			
Are any target compounds listed as TICs?		X	
Are all ions present in the reference mass spectrum with a relative intensity ≥10% also present in the sample mass spectrum?	×		
Do the TIC and "best match" spectrum agree within 20%?			×
Quantitation and Detection Limits			
Are there any transcription/calculation errors in the Form 1 results?		х	
Are the reporting limits adjusted to reflect sample dilutions and, for soils, sample moisture?	×		
Standard Data			
Are the quantitation reports and RICs present for the initial and continuing calibration standards?	X		
nitial Calibration	-		
Are initial calibration forms present for each instrument used?	X		
162			

	YES	NO	NA
Are the response factor RSDs within acceptable limits?	X		
Are the average RRFs ≥ minimum requirements?	x		
Are there any transcription/calculation errors in the reported RRFs or RSDs?		x	
Continuing Calibration			
Are continuing calibration forms present for each day and each instrument?	X		
Has a continuing calibration standard been analyzed for each twelve hours of analysis per instrument?	x		
All %D within acceptable limits?		x	
Are all RF ≥ minimum requirements?	x		
Are there any transcription/calculation errors in the reported RF or %D?		×	
Internal Standards	_		
Are the internal standard areas of every sample and blank within the upper and lower control limits?	x		
Are the retention times of the internal standards within 30 seconds of the associated calibration standard?	x		
Field Duplicates			
Were field duplicates submitted with the samples?	_X_		

Volatile Qualifier Summary Holding Time, Surrogates, Internal Standards

Sample ID	Holding		Surrogates*			Inter	ards*	
a the second	Time*	DBF	TOL	BFB	DCE	FBZ	CBZ	DCB
TS-3								
RB-3								
RB-4								
DUP-2								
			110					
					-			
							2	
		-	_					
								1

Surrogates:

DBF Dibromofluoromethane TOL Toluene-d8

BFB Bromofluorobenzene

DCE 1,2-Dichloroethane-d4

Internal Standards:

FBZ Fluorobenzene CBZ Chlorobenzene-d5 DCB 1,4-Dichlorobenzene-d4

Qualifiers: D

1

1

Diluted Recovery high Recovery low Recovery <25%

11

* Unless otherwise specified, all parameters are within acceptable limits.

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

Introduction

Analyses were performed according to USEPA SW-846 Method 8270 as referenced in the NYSDEC-ASP.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- ND The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- NDJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Assessment

1. Holding Time

The specified holding times for semivolatile analysis under NYSASP are 5 days from sample receipt to extraction and 40 days to analysis. The technical holding times for soils are 14 days from sample collection to extraction and 40 days to analysis.

All samples were extracted and analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks (i.e., method, field, and rinse blanks) are prepared to identify any contamination which may have been introduced in to the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure contamination of samples during field operations.

Bis(2-ethylhexyl)phthalate was detected in the method blank. Sample results which were below the blank action level were qualified as non-detect for the listed compound associated with sample locations TS-3, RB-3, RB-4 and DUP-2.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) limits for select compounds only and allows four outliers. A technical review of the data applies limits to all compounds with no exceptions.

The %RSD was above 30% for 2,4-dinitrophenol. Sample results for the listed compound were qualified as estimated based on the deviation.

4.2 Continuing Calibration

The responses for all target compounds in the continuing calibration standards were within 25% difference (%D) of the initial calibration with the exception of hexachlorocyclopentadiene. Sample results for the listed compound were qualified as estimated based on the %D.

5. Surrogates / System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique.

All surrogates exhibited acceptable recoveries.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every experimental run.

All internal standard responses and retention times were within established limits.

7. Compound Identification

Compounds are identified on the GC/MS by using the analyte's relative retention time and ion spectra.

All identified compounds met the specified criteria.

8. MS/MSD

MS/MSD data are used to assess the precision and accuracy of the analytical method.

The MS/MSD exhibited acceptable recoveries.

9. LCS

The LCS exhibited acceptable recoveries.

10. Field Duplicate

Results for duplicate samples are summarized as follows:

Sample ID/ Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2	All compounds	ND	ND	AC

ND = Not detected. AC = The field dupli

The field duplicate RPD is acceptable when the RPD between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The field duplicate RPD are acceptable.

11. System Performance and Overall Assessment

Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method.

Data Validation Checklists

Semivolatile Organics Data Validation Checklist

	YES	NO	NA
Data Completeness and Deliverables			
Have any missing deliverables been received and added to the data package?		x	
Is there a narrative or cover letter present?	×		
Are the sample numbers included in the narrative?	x		
Are the sample chain-of-custodies present?	X		
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		×	
Holding Times			1
Have any holding times been exceeded?		х	
Surrogate Recovery			
Are the surrogate recovery forms present?	х		
Are all samples listed on the surrogate recovery form?	x		1
Were two or more base-neutral or acid surrogate recoveries outside control limits for any sample or blank?		×	
If yes, were the samples reanalyzed?			X
Are there any transcription/calculation errors between the raw data and the summary form?		×	
Matrix Spikes			
Is there a matrix spike recovery form present?	x		
Were matrix spikes analyzed at the required frequency	×		
How many spike recoveries were outside of QC limits?			
_0_out of _11			
How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits?			
out of <u>22</u>			
Blanks			
Is the method blank summary form present?	x		
Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent?	x		
Has a blank been analyzed for each system used?	X		
Do any method blanks have positive results?		X	
Do any field/rinse blanks have positive results?			х
Are field/rinse blanks associated with every sample?		X	

	YES	NO	NA
Tuning and Mass Calibration			
Are the GC/MS tuning forms present for DFTPP?	х		
Are the bar graph spectrum and mass/charge listing provided for each DFTPP?	×		
Has a DFTPP been analyzed for each twelve hours of analysis per instrument?	x		
Have the ion abundance criteria been met for each instrument used?	X		-
Target Analytes			
Is an organics analysis data sheet present for each of the following:			
Samples	x		
Matrix spikes	x		
Blanks	x		
Are the reconstructed ion chromatograms present for each of the following:			1
Samples	x		
Matrix spikes	x		
Blanks	x		
Is the chromatographic performance acceptable?	x		
Are the mass spectra of the identified compounds present?	X		
Are all ions present in the standard mass spectrum at a relative intensity of 10% or greater also present in the sample spectrum?	x		
Do the samples and standard relative ion intensities agree within 20%?	x		
Tentatively Identified Compounds			
Are all the TIC summary forms present?	X		
Are the mass spectra for the tentatively identified compounds and their associated "best match" spectra present?	х		
Are any target compounds listed as TICs?		x	
Are all ions present in the reference mass spectrum with a relative intensity greater than 10% also present in the sample mass spectrum?	x		
Do the TIC and "best match" spectrum agree within 20%?	×		
Quantitation and Detection Limits			
Are there any transcription/calculation errors in the Form 1 results?		x	_
Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture?	x		
Standard Data			
Are the quantitation reports and reconstructed ion chromatograms present			
	YES	NO	NA
---	----------	----	----
for the initial and continuing calibration standards?	_ X		_
Initial Calibration			
Are the initial calibration forms present for each instrument used?	X		
Are the response factor RSDs within acceptable limits?		х	
Are the average RRF ≥ minimum requirements?	X		
Are there any transcription/calculation error in reporting the RRF or RSD?		X	
Continuing Calibration			
Are the continuing calibration forms present for each day and each instrument?	x		
Has a continuing calibration standard been analyzed for each twelve hours of analysis per instrument?	x		
All %D within acceptable limits?		х	
Are all RF ≥ minimum requirements?	x		
Are there any transcription/calculation errors in reporting of RF or %D?		Х	
Internal Standards			
Are internal standard areas of every sample within the upper and lower limits for each continuing calibration?	x		
Are the retention times of the internal standards within 30 seconds of the associated calibration standard?	x		
Field Duplicates			
Were field duplicates submitted with the samples?	<u>X</u>		

Semivolatile Qualifier Summary Holding Time, Surrogates, Internal Standards

Sample ID	Holding			Surro	gates*			Internal Standards*		rds*			
	2 F P	P H L	N B Z	F B P	T B P	T P H	D C B	N P T	A N T	P H N	C R Y	P R Y	
TS-3													
RB-3										-			
RB-4													-
DUP-2													
	- I - I - I - I - I - I - I - I - I - I												
							_						
		_											

Surrogates:

NBZ Nitrobenzene-d5 FBP 2-Fluorobiphenyl TPH Terphenyl-d14 PHL Phenol-d6 2FP 2-Fluorophenol TBP 2,4,6-Tribromophenol Internal Standards:

DCB 1,4-Dichlorobenzene-d4 NPT Naphthalene-d8 ANT Acenaphthene-d10

PHN Phenanthrene-d10

CRY Chrysene-d12 PRY Perylene-d12 Qualifiers:

D

1

Diluted Recovery low

Recovery high

na not applicable

11 Response <25%

* Unless otherwise specified, all parameters are within acceptable limits.

POLYCHLORINATED BIPHENYLS (PCBs) AND PESTICIDES ANALYSES

Introduction

Analyses were performed according to USEPA SW-846 Methods 8082 and 8081 as referenced in NYSDEC-ASP.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- ND The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
- JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
- E The compound was quantitated above the calibration range.
- D Concentration is based on a diluted sample analysis.
- C Identification confirmed by GC/MS.
- NDJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Assessment

1. Holding Time

The specified holding times for PCB and Pesticides analyses under NYSASP are 5 days from sample receipt to extraction and 40 days to analysis. The technical holding times for soils are 14 days from sample collection to extraction and 40 days to analysis.

All samples were extracted and analyzed with the specified holding time.

2. Blank Contamination

Quality assurance blanks (i.e., method, field, or rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure contamination of samples during field operations.

No Aroclors were detected in the associated blanks.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 20% is allowed. The initial calibration was within the specified limit for all Aroclors.

4.2 Continuing Calibration

A maximum %D of 15% is allowed. All continuing calibration standards were within the specified limit with the exception of endrin and methoxychlor. Sample results for the listed compounds were qualified as estimated associated with sample location TS-3.

5. Surrogates / System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique.

All surrogates exhibited acceptable recoveries.

6. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows for both the primary and confirmation columns.

The %D exceeded the 40% control limit for beta-BHC, 4,4'-DDT and alpha chlordane, associated with sample location TS-3. Sample results were qualified as estimated for the listed compounds in the associated sample location.

7. MS/MSD

MS/MSD data are used to assess the precision and accuracy of the analytical method independent of matrix interferences.

The MS/MSD exhibited acceptable recoveries.

8. LCS

All LCS recoveries were within control limits.

9. Field Duplicates

Results for duplicate samples are summarized below:

Sample ID/ Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2 (PCB)	Aroclor 1221	ND (38)	22 J	AC
	Aroclor 1248	ND (38)	9.6 J	AC
RB-3 / DUP-2 (Pesticides)	All Compounds	ND	ND	AC

ND = Not detected.

AC = The field duplicate RPD is acceptable when the RPD between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The field duplicate RPD were acceptable.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method.

Data Validation Checklist

PCB/Pesticide Data Validation Checklist

	YES	NO	NA
Data Completeness and Deliverables			
Have any missing deliverables been received and added to the data package?		x	
Is there a narrative or cover letter present?	x		
Are the sample numbers included in the narrative?	x		
Are the sample chain-of-custodies present?	x		
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		x	
Holding Times			
Have any holding times been exceeded?		х	
Surrogate Recovery			
Are the surrogate recovery forms present?	x		
Are all samples listed on the surrogate recovery form?	x		
Were recoveries of any surrogate outside control limits for any sample or blank?		×	
If yes, were the samples reanalyzed?			X
Are there any transcription/calculation errors between the raw data and the summary form?		×	
Matrix Spikes			-
Is there a matrix spike recovery form present?	х		
Were matrix spikes analyzed at the required frequency?	x		
How many spike recoveries were outside of QC limits?			-
0 out of _16			
How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits?			
0 out of _8			
Blanks			
Is a method blank summary form present?	x	S	
Has a method blank been extracted for each set of samples or for each 20 samples, whichever is more frequent?	x		
Do any method/instrument blanks have positive results?		X	
Are field/rinse blanks associated with every sample?		X	
Do any field/rinse blanks have positive results?			Х

	YES	NO	NA
Calibration and GC Performance			
Are the following calibration chromatograms and data printouts present?			
peak resolution check	x		
performance evaluation mixtures (PEM)	х		
Toxaphene	x		
INDA and INDB	x		
Aroclor 1016/1260	X		
Aroclors 1221, 1232, 1242, 1248, and 1254	X		
Is a calibration summary form present and complete for each analytical sequence?	x		
Are there any transcription/calculation errors between the raw data and the forms?		×	
Are the initial calibration %RSD within acceptable limits for all analytes?	x		
Is the resolution between any two adjacent peaks in the resolution check mixture > 60%?	×		
Is a continuing calibration summary form present for each PEM analyzed?	x		
Has the individual % breakdown exceeded 20% on either column for either 4,4'-DDT or Endrin?		×	
Has the combined breakdown for 4,4'-DDT and Endrin exceeded 30% on any column?			
Are all % difference values for all PEM analytes ≤ 20%?	x		
Are all continuing calibration summary forms present and complete for each INDA and INDB analyzed?	x		
Are %D values for all INDA and INDB compounds ≤ 15%?	x		
Have all samples been injected within a 12 hour period beginning with the injection of a calibration standard?	x		
Is a continuing calibration summary form present and complete for each continuing standard analyzed?	x		
Are there any transcription/calculation errors between the raw data and the form?		x	
Are all continuing calibration standard %D within acceptable limits?		X	
Analytical Sequence			
s an analytical sequence summary form present and complete for each column and each period of analyses?	x		
Was the proper analytical sequence followed?	x		
Cleanup Efficiency Verification		8 9)	
Are percent recoveries of the compounds used to check the efficiency of			

	YES	NO	NA
the cleanup procedure within QC limits?	X		
PCB/Pesticide Identification			
Are RT of sample compounds within the established RT windows?	x		
Were all positively identified compounds confirmed on a second column?	x		
Was GC/MS confirmation provided when required?	x		
Were there any false negatives?		x	
Compound Quantitation and Reported Detection Limits			
Are there any transcription/calculation errors in the Form 1 results?		х	
Are the reporting limits adjusted to reflect sample dilutions and, for soils, sample moisture?	x		
Chromatogram Quality			
Were the baselines stable?	х		
Were any electronegative displacement (negative peaks) or unusual peaks detected?		×	
Field Duplicates			
Were field duplicates submitted with the samples?	_ <u>x</u>		-

PCB/Pesticide Qualifier Summary Holding Time and Surrogates

Sample ID	Holding Time*	Surrogates*	
		тсх	DCB
TS-3			
RB-3			
RB-4			
DUP-2			
a the second second			

Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl

Qualifiers: D Surrogate diluted out I Recovery high I Recovery low na Not applicable

* Unless otherwise noted, all parameters are within specified limits.

METALS ANALYSES

Introduction

Analyses were performed according to USEPA SW-846 6000/7000 methods.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

Concentration (C) qualifiers:

- ND The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
- B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).

Quantitation (Q) qualifiers:

- E The reported value is estimated due to the presence of interference.
- M Duplicate injection precision not met.
- N Spiked sample recovery not within control limits.
- S Reported value was determined by the method of standard additions (MSA).
- W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- Duplicate analysis not within control limits.
- Correlation coefficient for MSA is less than 0.995.

Validation qualifiers:

- J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
- NDJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Assessment

1. Holding Time

The specified holding times for inorganic analyses under NYSASP protocols is as follows. All holding times are measured from validated time of sample receipt (VTSR).

Metals (other than mercury)	180 days
Mercury	26 days
Cyanide	12 days

The technical holding times for inorganic analyses is as follows. All holding times are measured from date of collection.

Metals (other than mercury)	180 days
Mercury	28 days
Cyanide	14 days

All samples were analyzed within specified holding times.

2. Blank Contamination

Quality assurance blanks, i.e., method, field, or rinse blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks (including initial and continuing calibration blanks and preparation blanks) measure laboratory contamination. Field and rinse blanks measure contamination of samples during field operations.

A few analytes were detected in the associated blanks. Sample results which were below the blank action level were qualified as non-detect for potassium associated with sample locations RB-3, RB-4 and DUP-2.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument continuing performance is satisfactory.

3.1 Initial Calibration

The correct number and type of standards were analyzed and all initial calibration verification standard recoveries were within control limits.

3.2 Continuing Calibration

All continuing calibration verification standard recoveries were within control limits.

3.3 CRDL Standard

All CRDL standard recoveries were within control limits.

3.4 ICP Interference Control Sample

All ICS recoveries were acceptable.

4. MS/Laboratory Duplicate

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS

The MS exhibited a recovery less than the control limit for antimony and greater than the control limit for calcium. All sample results for antimony and positive sample results for calcium were qualified as estimated based on the deviations.

4.2 Laboratory Duplicate

The laboratory duplicate exhibited acceptable results.

5. Field Duplicate

Results for duplicate samples are summarized as follows:

Sample ID / Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2	Aluminum	3270	4310	27.4%
	Arsenic	3.3	3.4	3.0%
	Lead	2.3	3.0	26.4%
	Barium	15.3 B	19.4 B	AC
	Beryllium	0.16 B	0.20 B	AC
	Cadmium	ND (0.57)	0.037 B	AC
	Calcium	18700	27200	37.0%
	Chromium	4.0	5.4	29.8%
	Cobalt	3.4 B	4.1 B	AC
	Copper	11.8	16.9	35.5%
	Iron	8370	10700	24.4%
	Magnesium	4860	7480	42.4%

Sample ID / Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2	Manganese	337	391	14.8%
	Nickel	6.5	8.3	24.3%
	Thallium	ND (1.1)	0.61 B	AC
	Sodium	50.1 B	63.9 B	AC
	Vanadium	5.4 B	7.3	AC
	Zinc	28.9	38.6	28.7%

ND = Not detected.

AC = The field duplicate RPD is acceptable when the RPD between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The field duplicate RPD were acceptable.

6. Laboratory Control Sample (LCS)

All LCS recoveries were within control limits.

7. Serial Dilution

The serial dilution exhibited results greater than the control limits for chromium, cobalt, copper, manganese, nickel, potassium, vanadium and zinc. Sample results were qualified as estimated for the listed analytes based on the deviations.

8. Furnace QC

No furnace analyses were performed on the samples in this data set.

9. Method of Standard Additions (MSA)

No samples were analyzed following the method of standard additions.

10. General Comments

The laboratory qualifier "J" has been removed from compounds which had concentrations greater than the blank action level.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist

Inorganic Data Validation Checklist

	YES	NO	NA
Data Completeness and Deliverables			
Is there a narrative or cover letter present?	x		
Are the sample numbers included in the narrative?	x		_
Are the sample chain-of-custodies present?	X		
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		x	
Raw Data			-
Is the digestion log for flame AA/ICP present?	x		
Is the digestion log for furnace AA present?		à 	
Is the distillation log for mercury present?	×		
Are pH values listed?			×
pH for metals analyses <2 (waters)?			×
Percent solids calculation present for soils/sediments?	x		
Are preparation dates present on sample preparation logs/bench sheets?	X		
Are the measurement read out records present for:			
ICP	x		
Flame AA			x
Furnace AA			×
Mercury	×		
Is the data legible?	×		
Is the data properly labeled?	x		
Holding Times			
Were mercury analyses performed within 28 days?	х		
Were other metal analysis performed within 6 months?	x		
Form I (Final Data)			
Are all forms complete?	х		
Are correct units indicated on Form I's?	X		
Are soil sample results for each parameter corrected for percent solids?	x		
Are all "less than IDL" values coded as "U"?		x	
Are the correct concentration qualifiers on Form 1's?	X		
s a physical description of samples given on Form I's?			

Calibration	YES	NO	NA
Is a record of at least 2 point calibration present for ICP analysis?	_X_	and the second second	-
Is a record of 5 point calibration present for Hg analysis?	_X_		-
Is a record of 4 point calibration present for:			
Flame AA?	-		х
Furnace AA?	3		X
Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses?	x		
Is correlation coefficient less than .995 for:			
Mercury Analysis?		х	
Atomic Absorption Analysis?			x
Form II A (Initial and Continuing Calibration Verification)			
Present and complete for all analytes?	x		
Are all calibration standards (initial and continuing) within control limits for:			
Metals (90-110%)?	x		
Hg (80-120%)?	X		
Was continuing calibration performed every 10 samples or every 2 hours?	X		
Form II B (CRDL Standards for AA and ICP)			
Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)?			х
Was a 2xCRDL (or 2xIDL when IDL>CRDL) standard (CRI) analyzed for each ICP run?	×		
Was CRI analyzed after the ICV/ICB and before the final CCV/CCB, and twice every eight hours for each ICP run?	×		
Are CRA and CRI standards within control limits for metals (60-120%)?	x		_
Form III (Initial and Continuing Calibration Blanks)			
Present and complete?	х		
Was an initial calibration blank analyzed?	X		
Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)?	x		
Are all calibration blanks (when IDL <crdl) equal="" less="" or="" than="" the<br="" to="">Contract Required Detection Limits (CRDLs)?</crdl)>		x	
Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)?			x
Form III (Preparation Blank)			

Was one prep. blank analyzed for:

	YES	NO	NA
each batch of digested samples?	х		
each matrix type?	X		-
Is concentration of prep. blank value less than the CRDL (when IDL≤CRDL)?	x		
If no, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank?			
Is concentration of prep. blank value less than two times IDL (when IDL>CRDL)?			×
Is concentration of prep. blank below the negative CRDL?		x	
Form IV (ICP Interference Check Sample)			
Present and complete?	х		
Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)?	x		
Are all ICS results inside the control limits (±20%)?	X	_	-
If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS?		-	
Form V A (Spiked Sample Recovery - Pre-Digestion/Pre-Distillation)			
Present and complete for:			
each batch?	x		
each matrix type?	х		
Was field blank used for spiked sample?		×	-
Are all recoveries for analytes with sample concentrations less than four times the spike concentration within control limits (75-125)?		×	
Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA?			
Aqueous			1
Are any spike recoveries:			
less than 30%?			х
between 30-74%?			x
between 126-150%?			X
greater then 150%?			x
Soil/Sediment			
Are any spike recoveries:			
less than 10%?		X	
between 10-74%?	X		

	YES	NO	NA
between 126-200%?	_X		
greater than 200%?		_X	
Form VI (Lab Duplicates)			
Present and complete for:			
each batch?	х		
each matrix type?	x		
Was field blank used for duplicate analysis?		X	
Are all values within control limits (RPD 20% or difference < ± CRDL)?	X		
If no, are all results outside the control limits flagged with an * on Form I's and VI?			x
Aqueous			
Is any RPD greater than 20% where sample and duplicate are both greater than or equal to 5 times CRDL?			x
Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5 times CRDL?			X
Soil/Sediment			
Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%?		x	
Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL?		×	
Field Duplicates	_		_
Were field duplicates analyzed?	x		
Aqueous			
is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5xCRDL?			x
Is any difference between sample and duplicate greater than CRDL where sample and/or duplicate is less than 5xCRDL?			x
Soil/Sediment			
Is any RPD (where sample and duplicate are both greater than 5 times CRDL) > 100%?		x	
Is any difference between sample and duplicate (where sample and/or duplicate is less than 5x CRDL) >2xCRDL?			
Form VII (Laboratory Control Sample)			
Was one LCS prepared and analyzed for:			
each matrix?	x		
each batch samples digested/distilled?	X		
		All statements and statem	-

	YES	NO	NA
Aqueous LCS			
Is any LCS recovery:			
less than 50%?		_	Х
between 50% and 79%?			Х
between 121% and 150%?			x
greater than 150%?			x
Solid LCS		S	-
Is LCS "Found" value higher than the control limits?		х	
Is LCS "Found" lower than the control limits?		×	_
Form IX (ICP Serial Dilution)		, 1	
Was Serial Dilution analysis performed for:			
each SDG?	x		
each matrix type?	x		
Was field blank(s) used for Serial Dilution Analysis?		x	
Are results outside control limit flagged with an "E" on Form I's and Form IX when initial concentration on Form IX is equal to 50 times IDL or greater.	×		
Are any required % difference values:			-
> 10%?	х		
≥100%?		x	-
Furnace Atomic Absorption (AA) QC Analysis			
Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed by GFAA?			x
Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentrations greater than CRDL?			×
Were dilutions analyzed for samples with analytical spike recovery less than 40%?			x
Is analytical spike recovery outside the control limits (85-115%) for any sample?			
Form VIII (Method of Standard Addition Results)			
Present?			x
If no, is any Form I result coded with "S" or "+"?			x
Was MSA required for any sample but not performed?			
Is the coefficient of correlation for MSA less than 0.995 for any sample?			x
Is the coefficient of correlation for MSA less than 0.990 for any sample?			X

	YES	NO	NA
Was proper quantitation procedure followed?		1.4.6%	X
Dissolved/Total for Inorganic/Total Analytes			
Were any analyses performed for dissolved as well as total analytes on the same sample.		х	
Is the concentration of any dissolved analyte greater than its total concentration by more than 10%? (if >CRDL)			x
Is the concentration of any dissolved analyte greater than its total concentration by more than 50%?			×
Field Blank			
Is the field blank concentration less than CRDL (or 2xIDL when IDL>CRDL) for all analytes?			x
If no, was field blank value already rejected due to other QC criteria?			X
Form X, XI, XII (Verification of Instrumental Parameters)			
Is verification report present for :			
Instrument Detection Limits (quarterly)?	х		
ICP Interelement Correlation Factors (annually)?	x		
ICP Linear Ranges (quarterly)?	x		
Is IDL greater than CRDL for any analyte?		x	
If yes, are the concentrations of the samples analyzed on the instrument whose IDL exceeds CRDL, greater than 5xIDL.			x
Was any sample result higher than the linear range of ICP.		X	
Was any sample result higher than the highest calibration standard for non- ICP parameters?		×	
If yes for any of the above, was the sample diluted to obtain the result on Form I?			×
Percent Solids			1
Are the percent solids in soil/sediment(s):			
< 50%?		х	
< 10%?		х	
			_

SUPPLEMENTAL PARAMETERS

Introduction

Analyses were performed according to the following method:

Total Cyanide	SW846 9012A
pH	SW846 9045C

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines:

- ND The analyte was analyzed for but not detected. The associated value is the analyte reporting limit.
- N Spiked sample recovery not within control limits.
- Duplicate analysis not within control limits.
- J The associated numerical value is an estimated concentration only.
- R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

Data Assessment

1. Holding Time

The holding times are as follows. All holding times are measured from date of receipt.

Cyanide 14 days pH ASAP

All samples were extracted and analyzed within the specified holding times.

2. Blank Contamination

Quality assurance blanks, i.e., method, field, or rinse blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks (including initial and continuing calibration blanks and preparation blanks) measure laboratory contamination. Field and rinse blanks measure contamination of samples during field operations.

All calibration, method and field blanks were found to be acceptable, with no analytes detected above reporting limits.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument continuing performance is satisfactory.

All required initial and continuing calibration verification standard recoveries were within acceptable limits.

4. MS/Laboratory Duplicate

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS

The MS exhibited a recovery greater than the control limit for cyanide. Positive sample results for cyanide were qualified as estimated based on the deviation.

4.2 Laboratory Duplicate

All laboratory duplicate results were within control limits.

5. Field Duplicate

Results for duplicate samples are summarized below:

Sample ID / Duplicate ID	Analyte	Sample Result	Duplicate Result	RPD
RB-3 / DUP-2	Cyanide Total	ND (0.57)	0.54 B	AC
	рН	9.0	8.9	1.1%

ND = Not detected.

AC = The field duplicate RPD is acceptable when the RPD between parent sample and field duplicate sample is less than two times the RL and where the parent sample and/or duplicate concentration is less than five times the RL.

The duplicate results are acceptable.

6. Laboratory Control Sample (LCS)

All LCS recoveries were within control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist

Supplemental Data Validation Checklist

	YES	NO	NA
Data Completeness and Deliverables			
Is there a narrative or cover letter present?	x		
Are the sample numbers included in the narrative?	x		
Are the sample chain-of-custodies present?	x		1000
Do the chain-of-custodies indicate any problems with sample receipt or sample condition?		×	
Raw Data			
Percent solids calculations present for soils/sediments?	x		
Are the preparation dates present on sample preparation logs/bench sheets?			
Are the measurement read out records present?	X	_	
Is the data legible?	X		
Is the data properly labeled?	×		
Holding Times			
Were all analyses performed within the specified holding times?	x		
Sample Data			
Are the units indicated on Form I's?	x		
Are soil sample results corrected for percent solids?	×		
Are all "less than IDL" values coded with "U"	×		
Calibration			
is a record of calibration present for all applicable analyses?	x		
Is the correlation coefficient less than .995?	X		10
Initial and Continuing Calibration Verification	-		
Summary forms present and complete for all analytes?	x		
Are all calibration standards (initial and continuing) within control limits?	x		
nitial and Continuing Calibration Blanks			_
Summary forms present and complete?		x	
Was an initial calibration blank analyzed?	X		-
Was a continuing calibration blank analyzed everyday or after every 10 samples?	x		
Were any target analytes present above the reporting limit in the calibration planks?		x	
f yes, were the concentrations in all associated samples greater than 5			

the second se	YES	NO	NA
times that in the blank?			X
Preparation Blank			
Was a preparation blank analyzed for each batch of samples?	х		
Were any target analytes detected in the preparation blanks?		x	
If so, were the concentration in all associated samples greater than 5 times that in the blank?		_	x
Matrix Spike			-
Is a matrix spike summary form present and complete for each preparation batch and matrix type?	x		
Are all recoveries for analytes within control limits?		x	_
Laboratory Duplicates			
Was a laboratory duplicate analyzed for each preparation batch and matrix type?	x		
Were all values within control limits?	X		-
Field Duplicates			
Were field duplicates analyzed?	х		
Is any RPD greater than 50% where sample and duplicate are both greater than or equal to 5 times CRDL?			
Is any difference between sample and duplicate greater than RL where sample and/or duplicate is less than 5 times RL?		×	
Laboratory Control Sample			
Was one LCS prepared and analyzed for each batch samples prepared and each matrix?	х		
Were all LCS recoveries within control limits?	X		
Dissolved/Total for Inorganic/Total Analytes			
Were any analyses performed for dissolved as well as total analytes on the same sample?		х	
Is the concentration of any dissolved analyte greater than its total concentration by more than 20% (or is the difference greater than RL if one or both concentrations are less than the RL)?			
- Is the concentration of any dissolved analyte greater than its total concentration by more than 100% (or greater than 2x the RL)?			
Field Blank			
Were any analytes detected above the reporting limit in the field blank.		x	
- If yes, were concentrations in all associated samples greater than 5 times the blank?			

Corrected Sample Analysis Data Sheets

Corrected Sample Analysis Data Sheets

5162

Northrop Grumman Corp

Client Sample ID: TS-3

GC/MS Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	A5J050155-001 10/04/05 10:10 10/10/05 5284232	Work Order #: Date Received: Analysis Date:	HL2QP1AC 10/05/05 10/10/05	Matrix SO
Moisture:	1 17	Initial Wgt/Vol: Method	5 g SW846 8260B	Final Wgt/Vol: 5 mL

PARAMETER		REPORTING	3
Acetone	KESULT	LIMIT	UNITS
Benzene	ND	24	uq/kq
Bromodichloromethane	ND	6.0	uq/ka
Bromoform	ND	6.0	ug/kg
Bromomethane	ND	6.0	ug/kg
2-Butanone	ND	12	ug/kg
Carbon disulfide	ND	24	ug/kg
Carbon tetrachloride	ND	6.0	ug/kg
Chlorobenzene	ND	6.0	ug/kg
Chloroethane	ND	6.0	ug/kg
Chloroform	ND	12	ug/kg
Chloromethane	ND	6.0	ug/kg
Cyclohexane	ND	12	ug/kg
Dibromochloromatha	ND	12	ug/kg
1,2-Dibromo-3 abla	ND	6.0	ug/kg
propane	ND	12	ug/kg
1,2-Dibromoethana			-37.43
1.2-Dichlorohonas-	ND	6.0	ug/kg
1.3-Dichlorobenzene	0.41 J	6.0	ug/kg
1.4-Dichlorobenzene	ND	6.0	ug/kg
Dichlorodifi	ND	6.0	ug/kg
1.1-Dichlorosthane	ND	12	ug/kg
1.2-Dichloroshk	ND	6.0	ug/kg
1 1-Dichlement	ND	6.0	ug/kg
circl 2 pickl	ND	6.0	ug/kg
trang 1 2 Dichloroethene	ND	3.0	ug/kg
1 2 Dieta	ND	3.0	ug/kg
1,2-Dichloropropane	ND	6.0	ug/kg
Cis-1,3-Dichloropropene	ND	6.0	ug/kg
Crans-1, 3-Dichloropropene	ND	6.0	ug/kg
Etnyipenzene	ND	6.0	ug/kg
2-Hexanone	ND	24	ug/kg
Isopropylbenzene	ND	6.0	ug/kg
Methyl acetate	ND	10	ug/kg
Methylene chloride	5.9 J.B ND	5.0	ug/xg
Methylcyclohexane	ND	12	ug/kg
4-Methyl-2-pentanone	ND T	24	ug/kg
Methyl tert-butyl ether	ND	24	ug/kg
Styrene	ND	6.0	ug/kg
		V	ug/kg

(Continued on next page)
Client Sample ID: TS-3

GC/MS Volatiles

Lot-Sample #...: A5J050155-001 Work Order #...: HL2QP1AC

Matrix....: SO

PARAMETER	RESULT	REPORTING LIMIT	TINTTO
Tetrachloroethene Toluene 1,2,4-Trichloro- benzene	ND ND ND 1.2 J	6.0 6.0 6.0 6.0	ug/kg ug/kg ug/kg ug/kg
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichloro- 1,2,2-trifluoroethane Vinyl chloride Xylenes (total)	ND ND ND ND ND ND	5.0 6.0 12 6.0 12 6.0	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
SURROGATE	PERCENT	RECOVERY	
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	107 107 106 88	(59 - 138) (61 - 130) (60 - 143) (47 - 158)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

8 Method blank contamination. The associated method blank contains the target analyte at a reportable level.

TS-3

GC/MS Volatiles

Lot-Sample #: A5J050155-001 Work Order #: HL2QPIAC Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER		ESTIMATED	RETENTION	
None	<u>Cas #</u>	RESULT	TIME	UNITS
				uq/ka

Client Sample ID: RB-3

GC/MS Volatiles

Date Sampled: Prep Date: Prep Batch #:	A5J050155-002 10/04/05 09:45 10/10/05 5284232	Work Order #: Date Received: Analysis Date:	HL2Q01AN 10/05/05 10/10/05	Matrix:
Dilution Factor:	1	Initial Wgt/Vol:	5 g	Final Wgt/Vol:
* Moisture:	12	Method	SW846 8260B	

DADAMONDO		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acetone	3-8-J-B-ND	23	ug/kg
Benzene	ND	5.7	ug/kg
Bromodichioromethane	ND	5.7	ug/kg
Bromotorm	ND	5.7	ug/kg
Bromomethane	ND	11	ug/kg
2-Butanone	ND	23	ug/kg
Carbon disulfide	ND	5.7	ua/ka
Carbon tetrachloride	ND	5.7	ug/kg
Chlorobenzene	ND	5.7	ug/kg
Chloroethane	ND	11	ug/kg
Chloroform	ND	5.7	ug/kg
Chloromethane	ND	11	ug/kg
Cyclohexane	ND	11	ug/kg
Dibromochloromethane	ND	5.7	ug/kg
1,2-Dibromo-3-chloro- propane	ND	11	ug/kg
1,2-Dibromoethane	ND		6
1,2-Dichlorobenzene	ND	5.7	ug/kg
1,3-Dichlorobenzene	ND	5.7	ug/kg
1,4-Dichlorobenzene	ND	5.7	ug/kg
Dichlorodifluoromethane	ND	5.7	ug/kg
1.1-Dichloroethane	ND	11	-ug/kg
1.2-Dichloroethane	ND	5.7	ug/kg
1.1-Dichloroethene	ND	5.7	ug/kg
cis-1 2-Dichloropthene	UND ND	5.7	ug/kg
transal 2-Dichlorosthone	ND	2.8	ug/kg
1.2-Dichloropropage	ND	2.8	ug/kg
cis-1 3-Dichloropropane	00	5.7	ug/kg
trans-1 3-Dichloropropene	D	5.7	ug/kg
Ethylbenzene	ND	5.7	ug/kg
2-Hevanone	ND	5.7	ug/kg
Leopropulhongene	ND	23	ug/kg
Methyl acetate	ND	5.7	ug/kg
Methylene obleride	ND	11	ug/kg
Methylevel chovers	9.0 B ND	5.7	ug/kg
A-Merbul 2 pertane	ND	11	ug/kg
Methyl text but 1	ND I	23	ug/kg
Stumper	ND	23	ug/kg
arAtelle	ND	5.7	ug/kg

(Continued on next page)

T S

so

5 mL

Client Sample ID: RB-3

GC/MS Volatiles

Lot-Sample #...: A5J050155-002 Work Order #...: HL2Q01AN

Matrix....: SO

PARAMETER	RESULT	REPORTING	INTER
1,1,2,2-Tetrachloroethane	ND	5.7	ug/kg
Tetrachloroethene	ND	5.7	ug/kg
Toluene	ND	5.7	ug/kg
1,2,4-Trichloro-	ND	5.7	ug/kg
benzene			49/ 49
1,1,1-Trichloroethane	ND	5.7	ua/ka
1,1,2-Trichloroethane	ND	5.7	ug/kg
Trichloroethene	ND	5.7	ug/kg
Trichlorofluoromethane	ND T	11	ug/kg
1,1,2-Trichloro-	ND	5 7	ug/kg
1,2,2-trifluoroethane			497.49
Vinyl chloride	ND	11	nalka
Xylenes (total)	ND	5.7	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	101	(59 - 138)	
1,2-Dichloroethane-d4	102	(61 - 130)	
Toluene-d8	107	(60 - 143)	
4-Bromofluorobenzene	89	(47 - 158)	

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

RB-3

GC/MS Volatiles

Lot-Sample #: A5J050155-002 Work Order #: HL2Q01AN Matrix: SO

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTI	ON
PARAMETER	<u>CAS</u> #	RESULT	TIME	UNITS
None				ug/kg

Client Sample ID: RB-4

GC/MS Volatiles

Doc-Sample #:	A5J050155-003	Work Order #:	HL2O31AN	Matrix . co
Date Sampled:	10/04/05 10:00	Date Received:	10/05/05	
Prep Date:	10/08/05	Analysis Date	10/08/05	
Prep Batch #:	5284206			
Dilution Factor:	1	Initial Wgt/Vol.	5 0	Rinal West (Ma)
<pre>% Moisture:</pre>	9.2	Method	SWRAE ROCOD	rimar wgc/vol: 5 mL

- Andrew Street and Stre		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	22	uq/kq
Benzene	ND	5.5	uq/kq
Bromodichloromethane	ND	5.5	uq/kq
Bromoform	ND	5.5	uq/kq
Bromomethane	ND	11	ug/kg
2-Butanone	ND	22	ug/kg
Carbon disulfide	0.31 J.B. NN	5.5	ug/kg
Carbon tetrachloride	ND	5.5	ug/kg
Chlorobenzene	ND	5.5	ug/kg
Chloroethane	ND	11	ug/kg
Chloroform	ND	5.5	ua/ka
Chloromethane	ND	11	ug/kg
Cyclohexane	ND	11	ug/kg
Dibromochloromethane	ND	5.5	ug/kg
1,2-Dibromo-3-chloro-	ND	11	ug/kg
1 2-Dibromosthane		1000	-
1 2-Dichlorobengene	ND	5.5	ug/kg
1 3-Dichlorobenzene	ND	5.5	ug/kg
1 A-Dichlorohannana	ND	5.5	ug/kg
Dichlorodifluorometkana	ND T	5.5	ug/kg
1 l.Dichlorosthane	C DM	11	ug/kg
1.2 Dichloroethane	ND	5.5	ug/kg
1,2-Dichioroethane	ND	5.5	ug/kg
1,1-Dichioroethene	ND	5.5	ug/kg
Cis-1,2-Dichioroethene	ND	2.8	ug/kg
trans-1,2-Dichioroethene	ND	2.8	ug/kg
1,2-Dichloropropane	ND	5.5	ug/kg
Cis-1,3-Dichloropropene	ND	5.5	ug/kg
trans-1,3-Dichloropropene	ND	5.5	ug/kg
Ethylbenzene	ND	5.5	ug/kg
2-Hexanone	ND	22	ug/kg
Isopropylbenzene	ND	5.5	ug/kg
Methyl acetate	ND	11	ug/kg
Methylene chloride	6.0 BND	5.5	ug/kg
Methylcyclohexane	ND	11	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
Methyl tert-butyl ether	ND	22	ug/kg
Styrene	ND	5.5	ug/kg

Client Sample ID: RB-4

GC/MS Volatiles

Lot-Sample #...: A5J050155-003 Work Order #...: HL2Q31AN Matrix..... S0

PARAMETER	RESULT	REPORTING	INTER
1,1,2,2-Tetrachloroethane	ND	5.5	ug/kg
Tetrachloroethene	ND	5.5	ug/kg
Toluene	ND	5.5	ug/kg
1,2,4-Trichloro- benzene	ND	5.5	ug/kg
1,1,1-Trichloroethane	ND	5.5	110/20
1,1,2-Trichloroethane	ND	5.5	ug/kg
Trichloroethene	ND	5.5	ug/kg
Trichlorofluoromethane	ND	11	ug/kg
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	5,5	ug/kg
Vinyl chloride	ND	11	ug/kg
Xylenes (total)	ND	5.5	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	100	(59 - 138)	
1,2-Dichloroethane-d4	97	(61 - 130)	
Toluene-d8	94	(60 - 143)	
4-Bromofluorobenzene	81	(47 - 158)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

RB-4

GC/MS Volatiles

Lot-Sample #: A5J050155-003 Work Order #: HL2Q31AN Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

53.53.100000		ESTIMATED	RETENTI	ON
PARAMETER	CAS #	RESULT	TIME	UNITS
None				uq/kq

Client Sample ID: DUP-2

GC/MS Volatiles

LOC-Sample #: A5J0501	55-004 Work Order #: HL2RDIAN	Matrix
Date Sampled; 10/04/09	5 Date Received: 10/05/05	Mactic
Prep Date: 10/08/03	5 Analysis Date: 10/08/05	
Prep Batch #: 5284206		
Dilution Factor: 1	Initial Wgt/Vol: 5 g	Final

% Moisture....: 8.4

Method....: SW846 8260B

..... SO

Wgt/Vol..: 5 mL

		REPORTIN	IG:
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	22	ua/ka
Benzene	ND	5.5	ug/kg
Bromodichloromethane	ND	5.5	ug/kg
Bromoform	ND	5.5	ug/kg
Bromomethane	ND	11	ug/kg
2-Butanone	ND	22	ug/kg
Carbon disulfide	0.30 J,B ND	5.5	ug/kg
Carbon tetrachloride	ND	5.5	ug/kg
Chlorobenzene	ND	5.5	ug/kg
Chloroethane	ND	11	ug/kg
Chloroform	ND	5.5	ug/kg
Chloromethane	ND	11	ug/kg
Cyclohexane	ND	11	ug/kg
Dibromochloromethane	ND	5.5	ug/kg
1,2-Dibromo-3-chloro-	ND	11	ug/kg
propane			497.49
1,2-Dibromoethane	ND	5.5	ug/kg
1,2-Dichlorobenzene	0.36 J,B-ND	5.5	ug/kg
1,3-Dichlorobenzene	0.35 J,B ND	5.5	ug/kg
1,4-Dichlorobenzene	0.42 J	5.5	ug/kg
Dichlorodifluoromethane	ND T	11	ug/kg
1,1-Dichloroethane	ND	5.5	ug/kg
1,2-Dichloroethane	ND	5.5	ug/kg
1,1-Dichloroethene	ND	5.5	ug/kg
cis-1,2-Dichloroethene	ND	2.7	ug/kg
trans-1,2-Dichloroethene	ND	2.7	ug/kg
1,2-Dichloropropane	ND	5.5	ug/kg
cis-1,3-Dichloropropene	ND	5.5	ug/kg
trans-1,3-Dichloropropene	. ND	5.5	ug/kg
Ethylbenzene	ND	5.5	ug/kg
2-Hexanone	ND	22	ug/kg
Isopropylbenzene	ND	5.5	ug/kg
Methyl acetate	ND	11	ug/kg
Methylene chloride	6.4 BND	55	ug/kg
Methylcyclohexane	ND	11	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
Methyl tert-butyl ether	ND	22	ug/kg
Styrene	ND	5 5	ug/kg
	-14	4.4	ug/xg

Client Sample ID: DUP-2

GC/MS Volatiles

Lot-Sample #...: A5J050155-004 Work Order #...: HL2RDIAN

Matrix....: SO

PARAMETER	RESULT	REPORTING LIMIT	UNTTO
1,1,2,2-Tetrachloroethane	ND	5.5	ud/ka
Tetrachloroethene	ND	5.5	ug/kg
Toluene	ND	5 5	ug/kg
1,2,4-Trichloro-) <u>1.2 J,B</u>	5.5	ug/kg
1,1,1-Trichloroethane	ND	5.5	ua/ka
1,1,2-Trichloroethane	ND	5.5	ug/kg
Trichloroethene	ND	5.5	ug/kg
Trichlorofluoromethane	ND	11	ug/kg
1,1,2-Trichloro- 1,2,2-trifluoroethane	ND	5.5	ug/kg
Vinyl chloride	ND	11	ua/ka
Xylenes (total)	ND	5.5	ug/kg
SURROGATE	PERCENT	RECOVERY	
Dibromofluoromethane	RECOVERY	LIMITS	
1 2-Dichloroothana di	100	(59 - 138)	
Toluane do	100	(61 - 130)	
1 Dana 1	95	(60 - 143)	
4-Bromofiuorobenzene	83	(47 - 158)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

DUP-2

GC/MS Volatiles

Lot-Sample #: A5J050155-004 Work Order #: HL2RDIAN Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

		ESTIMATED	RETENTI	ON
PARAMETER	CAS #	RESULT	TIME	UNITS
None				ug/kg

Client Sample ID: TS-3

GC/MS Semivolatiles

Lot-Sample #:	A5J050155-001	Work Order #:	HL2QP1AD	Matrix:	SO
Date Sampled:	10/04/05 10:10	Date Received:	10/05/05		
Prep Date:	10/05/05	Analysis Date:	10/06/05		
Prep Batch #:	5278371				
Dilution Factor:	1	Initial Wgt/Vol:	30.19 g	Final Wgt/Vol:	2 mL
<pre>% Moisture:</pre>	17	Method:	SW846 8270C		

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS		
Acenaphthene	ND	400	ug/kg		
Acenaphthylene	ND	400	ug/kg		
Acetophenone	ND	400	ug/kg		
Anthracene	21 J	400	ug/kg		
Atrazine	ND	400	ug/kg		
Benzo(a)anthracene	75 J	400	uq/kq		
Benzo (a) pyrene	61 J	400	ug/kg		
Benzo(b)fluoranthene	84 J	400	ug/kg		
Benzo(ghi)perylene	40 J	400	ug/kg		
Benzo(k)fluoranthene	27 J	400	ug/kg		
Benzaldehyde	ND	400	ug/kg		
1,1'-Biphenyl	ND	400	ug/kg		
bis(2-Chloroethoxy) methane	ND	400	ug/kg		
bis(2-Chloroethyl) - ether	ND	400	ug/kg		
bis(2-Ethylhexyl) phthalate	ND -31 J,B-	400	ug/kg		
4-Bromophenyl phenyl ether	ND	400	ug/kg		
Butyl benzyl phthalate	ND	400	uq/kq		
Caprolactam	ND	400	ug/kg		
Carbazole	19 J	400	ug/kg		
4-Chloroaniline	ND	400	ug/kg		
4-Chloro-3-methylphenol	ND	400	ug/kg		
2-Chloronaphthalene	ND	400	ug/kg		
2-Chlorophenol	ND	400	ug/kg		
4-Chlorophenyl phenyl ether	ND	400	ug/kg		
Chrysene	74 J	400	uq/kq		
Dibenz(a,h)anthracene	ND	400	ug/kg		
Dibenzofuran	ND	400	ug/kg		
3,3'-Dichlorobenzidine	ND	1900	ug/kg		
2,4-Dichlorophenol	ND	400	ug/kg		
Diethyl phthalate	ND	400	ug/kg		
2,4-Dimethylphenol	ND	400	ug/kg		
Dimethyl phthalate	ND	400	ug/kg		
Di-n-butyl phthalate	ND	400	ug/kg		

Client Sample ID: TS-3

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-001 Work Order #...: HL2QPIAD

Matrix....: SO

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
4,6-Dinitro-	ND	1900	ug/kg	
2-methylphenol	1.000			
2,4-Dinitrophenol	ND	1900	ug/kg	
2,4-Dinitrotoluene	ND	400	ug/kg	
2,6-Dinitrotoluene	ND	400	ug/kg	
Di-n-octyl phthalate	ND	400	ug/kg	
Fluoranthene	150 J	400	ug/kg	
Fluorene	ND	400	ug/kg	
Hexachlorobenzene	ND	400	ug/kg	
Hexachlorobutadiene	ND	400	ug/kg	
Hexachlorocyclopenta-	ND J	1900	ug/kg	
Usesshlaresthare	ND	400	wa/ka	
Action (1, 2, 2, ad) purpope	25 T	400	ug/kg	
Indeno(1,2,3-Cd)pyrene	35 0	400	ug/kg	
1 Mothylpaphthalopo	ND	400	ug/kg	
2-Methylabasal	ND	400	ug/kg	
2-Methylphenol	ND	400	ug/kg	
4-Mechylphenol	ND	400	ug/kg	
2 Nitroppiling	ND	1900	ug/kg	
2-Nitroaniline	ND	1900	ug/kg	
A-Nitroaniline	ND	1900	ug/kg	
Nitrohonzono	ND	400	ug/kg	
2-Nitrophenol	ND	400	ug/kg	
4-Nitrophenol	ND	1900	ug/kg	
N-Nitrosodi-n-propul-	ND	400	ug/kg	
amine	ND		-9, -9	
N-Nitrosodiphenylamine	ND	400	ug/kg	
2,2'-oxybis(1-Chloropropane)	ND	400	ug/kg	
Pentachlorophenol	ND	400	ug/kg	
Phenanthrene	110 J	400	ug/kg	
Phenol	ND	400	ug/kg	
Pyrene	120 J	400	ug/kg	
2,4,5-Trichloro- phenol	ND	400	ug/kg	
2,4,6-Trichloro-	ND	400	ug/kg	
phenol				
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	86	(42 - 110	1	
2-Fluorobiphenyl	79	(43 - 110	1	
Terphenyl-d14	69	(37 - 137		
Phenol-d5	76	(25 - 115	1	
2-Fluorophenol	69	(11 - 116	1	
2,4,6-Tribromophenol	78	(35 - 116	1	

Client Sample ID: TS-3

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-001 Work Order #...: HL2QP1AD

Matrix....: SO

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

TS-3

GC/MS Semivolatiles

Lot-Sample #: A5J050155-001 Work Order #: HL2QP1AD Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	ESTIMATEI RESULT	2	RETENTION TIME	UNITS
Unknown Aldol Condensate		8900 JA	M	2.4486	uq/kq
Unknown		72 J	М	8.0716	uq/kq
Unknown Hydrocarbon		37 J	М	8.9764	ug/kg
Unknown		46 J	М	9.2761	ug/kg
Unknown		98 J	М	9.3583	uq/kq
Unknown		100 J	М	9.423	uq/kq
Unknown Hydrocarbon		260 J	М	10.451	ug/kg

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: RB-3

GC/MS Semivolatiles

Lot-Sample #:	A5J050155-002	Work Order #:	HL2001AP	Matrix.	50
Date Sampled:	10/04/05 09:45	Date Received:	10/05/05		~~
Prep Date:	10/05/05	Analysis Date:	10/06/05		
Prep Batch #:	5278371	<u>.</u>			
Dilution Factor:	1	Initial Wgt/Vol:	30.19 a	Final Wot /Vol .	2 mT
<pre>% Moisture:</pre>	12	Method:	SW846 8270C	111111 ngt/ 101	~

		REPORTI	NG
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	380	ug/kg
Acenaphthylene	- ND	380	ug/kg
Acetophenone	ND	380	uq/kq
Anthracene	ND	380	ug/kg
Atrazine	ND	380	ug/kg
Benzo(a)anthracene	ND	380	uq/kq
Benzo (a) pyrene	ND	380	ug/kg
Benzo(b)fluoranthene	ND	380	uq/kq
Benzo(ghi)perylene	ND	380	uq/kq
Benzo(k)fluoranthene	ND	380	uq/kq
Benzaldehyde	ND	380	uq/kq
1,1'-Biphenyl	ND	380	ug/kg
bis(2-Chloroethoxy) methane	ND	380	ug/kg
bis(2-Chloroethyl)- ether	ND	380	ug/kg
bis(2-Ethylhexyl) phthalate	ND 31 J.B	380	ug/kg
4-Bromophenyl phenyl ether	ND	380	ug/kg
Butyl benzyl phthalate	ND	380	ug/kg
Caprolactam	ND	380	ug/kg
Carbazole	ND	380	ug/kg
4-Chloroaniline	ND	380	ug/kg
4-Chloro-3-methylphenol	ND	380	ug/kg
2-Chloronaphthalene	ND	380	ug/kg
2-Chlorophenol	ND	380	ug/kg
4-Chlorophenyl phenyl ether	ND	380	ug/kg
Chrysene	ND	380	ug/kg
Dibenz(a,h)anthracene	ND	380	ug/kg
Dibenzofuran	ND	380	ug/kg
3,3'-Dichlorobenzidine	ND	1800	ug/kg
2,4-Dichlorophenol	ND	380	ug/kg
Diethyl phthalate	ND	380	ug/kg
2,4-Dimethylphenol	ND	380	ug/kg
Dimethyl phthalate	ND	380	ug/kg
Di-n-butyl phthalate	ND	380	ug/kg

Client Sample ID: RB-3

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-002 Work Order #...: HL2Q01AP

Matrix....: SO

		REPORTING	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS			
4,6-Dinitro-	ND	1800	ug/kg			
2-methylphenol						
2,4-Dinitrophenol	ND 5	1800	uq/kq			
2,4-Dinitrotoluene	ND	380	uq/kq			
2,6-Dinitrotoluene	ND	380	ug/kg			
Di-n-octyl phthalate	ND	380	ug/kg			
Fluoranthene	ND	380	ug/kg			
Fluorene	ND	380	ug/kg			
Hexachlorobenzene	ND	380	ug/kg			
Hexachlorobutadiene	ND	380	ug/kg			
Hexachlorocyclopenta- diene	ND J	1800	ug/kg			
Hexachloroethane	ND	390	na/ka			
Indeno(1,2,3-cd)pyrene	ND	380	ug/kg			
Isophorone	ND	380	ug/kg			
2-Methylnaphthalene	ND	200	ug/kg			
2-Methylphenol	ND	300	ug/kg			
4-Methylphenol	ND	300	ug/kg			
Naphthalene	ND	200	ug/kg			
2-Nitroanilina	ND	380	ug/kg			
2-Nitroanilina	ALD TAD	1800	ug/kg			
A-Nitroaniline	ND	1800	ug/kg			
Nitrohanzana	ND	1800	ug/kg			
2-Nitrophonel	ND	380	ug/kg			
A Nitrophenol	ND	380	ug/kg			
A-MICLODHENOL	ND	1800	ug/kg			
amine	ND	380	ug/kg			
N-Nitrosodiphenylamine	ND	380	ug/kg			
2,2'-oxybis(1-Chloropropane)	ND	380	ug/kg			
Pentachlorophenol	ND	380	ug/kg			
Phenanthrene	ND	380	ug/kg			
Phenol	ND	380	ug/kg			
Pyrene	ND	380	uq/kq			
2,4,5-Trichloro- phenol	ND	380	ug/kg			
2,4,6-Trichloro- phenol	ND	380	ug/kg			
	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS				
Nitrobenzene-d5	89	(42 - 110)				
2-Fluorobiphenyl	69	(43 - 110)				
Terphenyl-d14	69	(37 - 137)	-			
Phenol-d5	74	(25 - 115)				

(Continued on next page)

70

71

(11 - 116)

(35 - 116)

2-Fluorophenol

2,4,6-Tribromophenol

Client Sample ID: RB-3

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-002 Work Order #...: HL2Q01AP Matrix..... S0

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

RB-3

GC/MS Semivolatiles

Lot-Sample #: A5J050155-002 Work Order #: HL2Q01AP Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	ESTIMATED RESULT)	RETENTIC TIME	UNITS
Unknown Aldol Condensate		7500 JA	М	2.4486	ug/kg
Unknown		290 J	М	7.4311	ug/kg
Unknown		93 J	Μ	8.0715	ug/kg
Unknown		54 J	Μ	9.276	ug/kg

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: RB-4

GC/MS Semivolatiles

Lot-Sample #:	A5J050155-003	Work Order #:	HL2Q31AP	Matrix SO
Date Sampled:	10/04/05 10:00	Date Received:	10/05/05	
Prep Date:	10/05/05	Analysis Date:	10/06/05	
Prep Batch #:	5278371			
Dilution Factor:	1	Initial Wgt/Vol:	30 g	Final Wgt/Vol: 2 mL

8.	Messi	100.00						-	- 61		10
9	PRO1	.81.	u,	r e	0.00	(4)		-	3	+	4

Method....: SW846 8270C

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Acenaphthene	ND	360	ug/kg	
Acenaphthylene	ND	360	ug/kg	
Acetophenone	ND	360	ug/kg	
Anthracene	ND	360	ug/kg	
Atrazine	ND	360	ug/kg	
Benzo(a)anthracene	ND	360	ug/kg	
Benzo(a)pyrene	ND	360	ug/kg	
Benzo(b)fluoranthene	ND	360	ug/kg	
Benzo(ghi)perylene	ND	360	ug/kg	
Benzo(k)fluoranthene	ND	360	ug/kg	
Benzaldehyde	ND	360	ug/kg	
1,1'-Biphenyl	ND	360	ug/kg	
bis(2-Chloroethoxy) methane	ND	360	ug/kg	
bis(2-Chloroethyl)- ether	ND	360	ug/kg	
bis(2-Ethylhexyl)	ND 27 J.B-	360	ug/kg	
phthalate			-21-2	
4-Bromophenyl phenyl ether	ND	360	ug/kg	
Butyl benzyl phthalate	ND	360	ug/kg	
Caprolactam	ND	360	ug/kg	
Carbazole	ND	- 360	ug/kg	
4-Chloroaniline	ND	360	ug/kg	
4-Chloro-3-methylphenol	ND	360	ug/kg	
2-Chloronaphthalene	ND	360	ug/kg	
2-Chlorophenol	ND	360	ug/kg	
4-Chlorophenyl phenyl	ND	360	ug/kg	
ether				
Chrysene	ND	360	ug/kg	
Dibenz(a,h)anthracene	ND	360	ug/kg	
Dibenzofuran	ND	360	ug/kg	
3,3'-Dichlorobenzidine	ND	1800	uq/kq	
2,4-Dichlorophenol	ND	360	ug/kg	
Diethyl phthalate	ND	360	ug/kg	
2,4-Dimethylphenol	ND	360	ug/kg	
Dimethyl phthalate	ND	360	ug/kg	
Di-n-butyl phthalate	ND	360	ug/kg	

Client Sample ID: RB-4

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-003 Work Order #...: HL2Q31AP Matrix...... S0

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
4,6-Dinitro-	ND	1800	ug/kg
2-methylphenol			
2,4-Dinitrophenol	ND J	1800	ug/kg
2,4-Dinitrotoluene	ND	360	ug/kg
2,6-Dinitrotoluene	ND	360	ug/kg
Di-n-octyl phthalate	ND	360	ug/kg
Fluoranthene	ND	360	ug/kg
Fluorene	ND	360	ug/kg
Hexachlorobenzene	ND	360	ug/kg
Hexachlorobutadiene	ND	360	uq/kq
Hexachlorocyclopenta- diene	ND J	1800	ug/kg
Hexachloroethane	ND	360	uq/kq
Indeno(1,2,3-cd)pyrene	ND	360	ug/kg
Isophorone	ND	360	uq/kq
2-Methylnaphthalene	ND	360	ug/kg
2-Methylphenol	ND	360	ug/kg
4-Methylphenol	ND	360	ug/kg
Naphthalene	ND	360	ug/kg
2-Nitroaniline	ND	1800	ug/kg
3-Nitroaniline	ND	1800	ug/kg
4-Nitroaniline	ND	1800	ua/ka
Nitrobenzene	ND	360	ug/kg
2-Nitrophenol	ND	360	ua/ka
4-Nitrophenol	ND	1800	ug/kg
N-Nitrosodi-n-propyl- amine	ND	360	ug/kg
N-Nitrosodiphenylamine	ND	360	ua/ka
2,2'-oxybis(1-Chloropropane)	ND	360	ug/kg
Pentachlorophenol	ND	360	ug/kg
Phenanthrene	ND	360	ug/kg
Phenol	ND	360	ug/kg
Pyrene	ND	360	ug/kg
2,4,5-Trichloro- phenol	ND	360	ug/kg
2,4,6-Trichloro-	ND	360	ug/kg
phenol			-37.15
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	

RECOVERY	LIMITS
80	(42 - 110)
63	(43 - 110)
85	(37 - 137)
67	(25 - 115)
61	(11 - 116)
70	(35 - 116)
	RECOVERY 80 63 85 67 61 70

Client Sample ID: RB-4

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-003 Work Order #...: HL2Q31AP Matrix...... SO

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

RB-4

GC/MS Semivolatiles

Lot-Sample #: A5J050155-003 Work Order #: HL2Q31AP Matrix: S0

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	RESULT		RETENTION TIME	UNITS
Unknown Aldol Condensate		8400 JA	М	2.4546	ug/kg
Unknown		32 J	м	5.8742	uq/kq
Unknown		39 J	М	8.0717	ug/kg
Unknown Hydrocarbon		29 J	М	8.9765	ug/kg
Unknown		140 J	М	9.2762	ug/kg
Unknown Hydrocarbon		44 J	М	9.6111	ug/kg
Unknown Hydrocarbon		44 J	Μ	9.9989	ug/kg

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: DUP-2

GC/MS Semivolatiles

Date Sample #: ASJ050155-004 Date Sampled: 10/04/05 Prep Date: 10/05/05 Prep Batch #: 5278371	Work Order #: HL2RD1AP Date Received: 10/05/05 Analysis Date: 10/06/05	Matrix	SO
Dilution Factor: 1 % Moisture: 8.4	Initial Wgt/Vol: 30.02 g Method SW846 8270C	Final Wgt/Vol:	2 mL

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Acenaphthene	ND	360	ug/kg
Acenaphthylene	ND	360	ug/kg
Acetophenone	ND	360	ug/kg
Anthracene	ND	360	ua/ka
Atrazine	ND	360	ug/kg
Benzo(a)anthracene	ND	360	uq/ka
Benzo(a)pyrene	ND	360	uq/ka
Benzo(b)fluoranthene	ND	360	uq/kq
Benzo(ghi)perylene	ND	360	ug/kg
Benzo(k)fluoranthene	ND	360	ug/kg
Benzaldehyde	ND	360	ug/kg
1,1'-Biphenyl	ND	360	uq/kq
bis(2-Chloroethoxy) methane	ND	360	ug/kg
bis(2-Chloroethyl) - ether	ND	360	ug/kg
bis(2-Ethylhexyl) phthalate	ND 26-3,8	360	ug/kg
4-Bromophenyl phenyl ether	ND	360	ug/kg
Butyl benzyl phthalate	ND	360	ua/ka
Caprolactam	ND	360	ug/kg
Carbazole	ND	360	ug/kg
4-Chloroaniline	ND	360	ug/kg
4-Chloro-3-methylphenol	ND	360	ug/kg
2-Chloronaphthalene	ND	360	ug/kg
2-Chlorophenol	ND	360	ug/kg
4-Chlorophenyl phenyl	ND	360	ug/kg
ether			~3/ m3
Chrysene	ND	360	na/ka
Dibenz(a,h)anthracene	ND	360	ug/kg
Dibenzofuran	ND	360	ng/kg
3,3'-Dichlorobenzidine	ND	1700	ug/kg
2,4-Dichlorophenol	ND	360	ug/kg
Diethyl phthalate	ND	360	ug/kg
2,4-Dimethylphenol	ND	360	ug/kg
Dimethyl phthalate	ND	360	ug/kg
Di-n-butyl phthalate	ND	360	ug/kg
	197766	1.1.1.1.1	-31.03

Client Sample ID: DUP-2

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-004 Work Order #...: HL2RD1AP

Matrix....: SO

The second se		3	
PARAMETER	RESULT	LIMIT	UNITS
4,6-Dinitro-	ND	1700	uq/kq
2-methylphenol			- 27 2
2,4-Dinitrophenol	ND S	1700	ug/kg
2,4-Dinitrotoluene	ND	360	ug/kg
2,6-Dinitrotoluene	ND	360	ug/kg
Di-n-octyl phthalate	ND	360	ug/kg
Fluoranthene	ND	360	ug/kg
Fluorene	ND	360	ug/kg
Hexachlorobenzene	ND	360	ug/kg
Hexachlorobutadiene	ND	360	ug/kg
Hexachlorocyclopenta-	ND J	1700	ug/kg
Hevachloroethane			
Indeno (3, 2, 2, ad)	ND	360	ug/kg
Indeno (1, 2, 3-cd) pyrene	ND	360	ug/kg
2 Mathialanahatia	ND	360	ug/kg
2-Methylnaphthalene	ND	360	ug/kg
2-Methylphenol	ND	360	ug/kg
4-Methylphenol	ND	360	ug/kg
Naphthalene	. ND	360	ug/kg
2-Nitroaniline	ND	1700	ug/kg
3-Nitroaniline	ND	1700	ug/kg
4-Nitroaniline	ND	1700	uq/kq
Nitrobenzene	ND	360	ua/ka
2-Nitrophenol	ND	360	ug/kg
4-Nitrophenol	ND	1700	ua/ka
N-Nitrosodi-n-propyl- amine	ND	360	ug/kg
N-Nitrosodiphenvlamine	ND	260	12
2,2'-oxybis(1-Chloropropage)	ND	360	ug/kg
Pentachlorophenol	ND	360	ug/kg
Phenanthrene	ND	360	ug/kg
Phenol	ND .	360	ug/kg
Pyrene	ND	360	ug/kg
2 4 5-Trichloro-	ND	360	ug/kg
phenol	ND	360	ug/kg
2 4 6-Trichloro	110	244.5	
phenol	ND	360	ug/kg
pricitor			
SUPPOGATE	PERCENT	RECOVERY	
OURICOALE	RECOVERY	LIMITS	

SURROGATE	RECOVERY	LIMITS
Nitrobenzene-d5	96	(42 - 110)
2-Fluorobiphenyl	76	(43 - 110)
Terphenyl-d14	93	(37 - 137)
Phenol-d5	79	(25 - 115)
2-Fluorophenol	74	(11 - 116)
2,4,6-Tribromophenol	38	(35 - 116)

Client Sample ID: DUP-2

GC/MS Semivolatiles

Lot-Sample #...: A5J050155-004 Work Order #...: HL2RDIAP Matrix...... S0

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

DUP-2

GC/MS Semivolatiles

Lot-Sample #: A5J050155-004 Work Order #: HL2RD1AP

Matrix: SO

MASS SPECTROMETER/DATA SYSTEM (MSDS) TENTATIVELY IDENTIFIED COMPOUNDS

PARAMETER	CAS #	ESTIMATED RESULT	RI TI	ETENTIC IME	N UNITS
Unknown Aldol Condensate		8700 JA	M 2	.4485	ug/kg
Unknown		29 J	M 5	.874	ug/kg
Unknown Hydrocarbon		33 J	M 9	.2759	ug/kg

NOTE(S):

M: Result was measured against nearest internal standard assuming a response factor of 1.

Client Sample ID: TS-3

GC Semivolatiles

Date Sampled: Prep Date	A5J050155-001 10/04/05 10:10 10/05/05	Work Order #: Date Received: Analysis Date	HL2QP1A7 10/05/05	Matrix	so
Prep Batch #:	5278409				
Dilution Factor:	1	Initial Wgt/Vol.	30 13 0	Rinal Wat (Val	
<pre>% Moisture:</pre>	17	Method	SW846 8081A	ernar wgc/vol:	IU mi

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
alpha-BHC	ND	2.0	ug/kg
beta-BHC	4.4 PG	2.0	ug/kg
delta-BHC	ND	2.0	ug/kg
gamma-BHC (Lindane)	ND	2.0	ug/kg
Heptachlor	ND	2.0	ug/kg
Aldrin	ND	2.0	ug/kg
Heptachlor epoxide	ND	2.0	ug/kg
Endosulfan I	ND	2.0	ug/kg
Dieldrin	27	2.0	ug/kg
4,4'-DDE	11	2.0	ug/kg
Endrin	ND	2.0	ug/kg
Endosulfan II	ND	2.0	ug/kg
4,4'-DDD	1.9 J	2.0	ug/kg
Endosulfan sulfate	ND	2.0	ug/kg
4,4'-DDT	6.0 PG-J	2.0	ug/kg
Methoxychlor	ND T	4.0	ug/kg
Endrin ketone	ND	2.0	ug/kg
Endrin aldehyde	ND	2.0	ug/kg
alpha-Chlordane	16 -PG- T	2.0	ug/kg
gamma-Chlordane	5.5	2.0	ug/kg
Toxaphene	ND	81	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	79	(31 - 131)	
Decachlorobiphenyl	59	(18 - 145)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

PG The percent difference between the original and confirmation analyses is greater than 40%.

J Estimated result. Result is less than RL.

Client Sample ID: RB-3

GC Semivolatiles

Lot-Sample #:	A5J050155-002	Work Order #:	HL2001AJ	Matrix , so
Date Sampled:	10/04/05 09:45	Date Received:	10/05/05	
Prep Date:	10/05/05	Analysis Date:	10/09/05	
Prep Batch #:	5278409	 Manufacture - Anna and Anna 		
Dilution Factor:	1	Initial Wqt/Vol:	30.19 a	Final Wat/Vol . 10 ml
<pre>% Moisture;</pre>	12	Method	SW846 8081A	- max (ge) for to in

PARAMETER	RESULT	REPORTING	INITER
alpha-BHC	ND	1 9	UNITS NG/kg
beta-BHC	ND	1 9	ug/kg
delta-BHC	ND	1 9	ug/kg
gamma-BHC (Lindane)	ND	1 9	ug/kg
Heptachlor	ND	1 9	ug/kg
Aldrin	ND	1 9	ug/kg
Heptachlor epoxide	ND	1 9	ug/kg
Endosulfan I	ND	1 9	ug/kg
Dieldrin	ND	1.9	ug/kg
4,4'-DDE	ND	1 9	ug/kg
Endrin	ND	1.9	ug/kg
Endosulfan II	ND	1 9	ug/kg
4,4'-DDD	ND	1.9	ug/kg
Endosulfan sulfate	ND	1.9	ug/kg
4,4'-DDT	ND	1.9	ug/kg
Methoxychlor	ND	1.5	ug/kg
Endrin ketone	ND	1.0	ug/kg
Endrin aldehvde	ND	1.0	ug/kg
alpha-Chlordane	ND	1.9	ug/kg
gamma-Chlordane	ND	1 9	ug/kg
Toxaphene	ND	76	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	75	(31 - 131)	
Decachlorobiphenyl	81	(18 - 145)	

NOTE (S) :

Client Sample ID: RB-4

GC Semivolatiles

Lot-Sample #:	A5J050155-003	Work Order #:	HL2Q31AJ	Matrix: 50
Date Sampled:	10/04/05 10:00	Date Received:	10/05/05	
Prep Date:	10/05/05	Analysis Date:	10/09/05	
Prep Batch #:	5278409			
Dilution Factor:	1	Initial Wgt/Vol:	30.2 a	Final Wot /Vol + 10 m

% Moisture....: 9.2

Method....: SW846 8081A

mL

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
alpha-BHC	ND	1.9	ug/kg
beta-BHC	ND	1.9	uq/kq
delta-BHC	ND	1.9	uq/kq
gamma-BHC (Lindane)	ND	1.9	ug/kg
Heptachlor	ND	1.9	ug/kg
Aldrin	ND	1.9	ug/kg
Heptachlor epoxide	ND	1.9	uq/kq
Endosulfan I	ND	1.9	ug/kg
Dieldrin	ND	1.9	ug/kg
4,4'-DDE	ND	1.9	ug/kg
Endrin	ND	1.9	ug/kg
Endosulfan II	ND	1.9	ug/kg
4,4'-DDD	ND	1.9	ug/kg
Endosulfan sulfate	ND	1.9	ug/kg
4,4'-DDT	ND	1.9	ug/kg
Methoxychlor	ND	3.6	ug/kg
Endrin ketone	ND	1.9	ug/kg
Endrin aldehyde	ND	1.9	uq/kq
alpha-Chlordane	ND	1.9	ug/kg
gamma-Chlordane	ND	1.9	ug/kg
Toxaphene	ND	74	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	87	(31 - 13	1)
Decachlorobiphenyl	82	(18 - 14	5)

NOTE(S):

Client Sample ID: DUP-2

GC Semivolatiles

A5J050155-004	Work Order #:	HL2RD1AJ	Matrix.	50
10/04/05	Date Received:	10/05/05		~~
10/05/05	Analysis Date:	10/09/05		
5278409		CONTRACTOR OF THE		
1	Initial Wgt/Vol:	30.04 a	Final Wat/Vol :	10 ml
8.4	Method:	SW846 8081A		+ v 110
	A5J050155-004 10/04/05 10/05/05 5278409 1 8.4	A5J050155-004 Work Order #: 10/04/05 Date Received: 10/05/05 Analysis Date: 5278409 1 Initial Wgt/Vol: 8.4 Method	A5J050155-004 Work Order #: HL2RD1AJ 10/04/05 Date Received: 10/05/05 10/05/05 Analysis Date: 10/09/05 5278409 1 Initial Wgt/Vol: 30.04 g 8.4 Method: SW846 8081A	ASJ050155-004 Work Order #: HL2RD1AJ Matrix 10/04/05 Date Received: 10/05/05 10/05/05 Analysis Date: 10/09/05 5278409 1 Initial Wgt/Vol: 30.04 g Final Wgt/Vol: 8.4 Method: SW846 8081A

PARAMETER	RESULT	REPORTING LIMIT	UNITS
alpha-BHC	ND	1.9	ug/kg
beta-BHC	ND	1.9	ug/kg
delta-BHC	ND	1.9	ug/kg
gamma-BHC (Lindane)	ND	1.9	ua/ka
Heptachlor	ND	1.9	ug/kg
Aldrin	ND	1.9	ug/kg
Heptachlor epoxide	ND	1.9	ug/kg
Endosulfan I	ND	1.9	ug/kg
Dieldrin	ND	1.9	ug/kg
4,4'-DDE	ND	1.9	ug/kg
Endrin	ND	1.9	ua/ka
Endosulfan II	ND	1.9	ug/kg
4,4'-DDD	ND	1.9	ug/kg
Endosulfan sulfate	ND	1.9	ug/kg
4,4'-DDT	ND	1.9	ug/kg
Methoxychlor	ND	3.6	ug/kg
Endrin ketone	ND	1.9	ug/kg
Endrin aldehyde	ND	1.9	ug/kg
alpha-Chlordane	ND	1.9	ug/kg
gamma-Chlordane	ND	1.9	ug/kg
Toxaphene	ND	73	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	81	(31 - 131)	in-the second
Decachlorobiphenyl	73	(18 - 145)	

NOTE(S):

Client Sample ID: TS-3

GC Semivolatiles

Aroclor 1016		ND		40		ua/lea	
PARAMETER		RESULT		REPORT LIMIT	FING	UNITS	
Dilution Factor: % Moisture:	1 17	Initial Method	Wgt/Vol:	30.13 SW846	g 8082	Final	Wgt/Vol: 10 mL
Date Sample #: Prep Date: Prep Batch #:	A5J050155-001 10/04/05 10:10 10/05/05 5278399	Work Ord Date Rec Analysis	er #: eived: Date:	HL2QP: 10/05, 10/10,	1AA /05 /05	Matri	« so

1000101 1010	ND	40	ua/ka
Aroclor 1221	ND	40	ug/kg
Aroclor 1232	ND	4.0	ug/kg
Aroclor 1242	ND	40	ug/kg
Aroclor 1248	50	40	ug/kg
Aroclor 1254	ND	40	ug/kg
Aroclor 1260	13 J	40	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Tetrachloro-m-xylene	103	(10 - 127)	
Decachlorobiphenyl	81	(40 - 138)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: RB-3

GC Semivolatiles

Date Sampled: Prep Date: Prep Batch #	A5J050155-002 10/04/05 09:45 10/05/05	Work Order #: Date Received: Analysis Date:	HL2Q01AM 10/05/05 10/10/05	Matrix	SO
Dilution Factor: % Moisture:	1 12	Initial Wgt/Vol: Method:	30,19 g SW846 8082	Final Wgt/Vol:	10 mL
			REPORTING		

PARAMETER	RESULT		LIMIT	UNTTO
Aroclor 1016	ND	-	38	ud/ka
Aroclor 1221	ND		38	ug/kg
Aroclor 1232	ND		38	ug/kg
Aroclor 1242	ND		38	ug/kg
Aroclor 1248	ND		3.8	ug/kg
Aroclor 1254	ND		3.8	ug/kg
Aroclor 1260	ND	1	38	ug/kg
SURROGATE	PERCENT RECOVERY		RECOVERY LIMITS	
Tetrachloro-m-xylene	101		(10 - 127)	
Decachlorobiphenyl	67		(40 - 138)	

NOTE(S):

Client Sample ID: RB-4

GC Semivolatiles

DOC-Sample #:	A50050155-003	Work Order #:	HL2O31AM	Matrix . so
Date Sampled:	10/04/05 10:00	Date Received:	10/05/05	
Prep Date:	10/05/05	Analysis Date:	10/10/05	
Prep Batch #:	5278399	COUNTRACTOR CONTRACTOR		
Dilution Factor:	1	Initial Wot/Vol:	30 2 a	Final Wot /Vol . 10 -
<pre>% Moisture:</pre>	9.2	Method	SW846 8082	Final Wgt/vol: 10 mL

PARAMETER	RESULT	REPORTING	UNITS
Aroclor 1016	ND	36	ug/kg
Aroclor 1221	ND	36	ug/kg
Aroclor 1232	ND	36	110/ka
Aroclor 1242	ND	36	ug/kg
Aroclor 1248	ND	36	ug/kg
Aroclor 1254	ND	36	ug/kg
Aroclor 1260	ND	36	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	112	(10 - 127)	
Decachlorobiphenyl	76	(40 - 138)	

NOTE (S) :

Tat Da

Client Sample ID: DUP-2

GC Semivolatiles

Date Sample #: A53050155-004 Date Sampled: 10/04/05 Prep Date: 10/05/05 Prep Batch #: 5278399	Work Order #: HL2RDIAM Date Received: 10/05/05 Analysis Date: 10/11/05	Matrix \$0
Dilution Factor: 1 % Moisture: 8.4	Initial Wgt/Vol: 30.04 g Method SW846 8082	Final Wgt/Vol: 10 mL

PARAMETER	RESULT	REPORTING	INTRO
Aroclor 1016	ND	36	ug/kg
Aroclor 1221	22 J	36	ug/kg
Aroclor 1232	ND	36	ug/kg
Aroclor 1242	ND	36	ug/kg
Aroclor 1248	9.6 J	36	ug/kg
Aroclor 1254	ND	36	ug/kg
Aroclor 1260	ND	36	ug/kg
CURROCITE	PERCENT	RECOVERY	
BORROGALE	RECOVERY	LIMITS	
Decachlorobiphenyl	127	(10 - 127)	
	93	(40 - 138)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: TS-3

TOTAL Metals

Matrix: 50

Lot-Sample #...: A5J050155-001 Date Sampled...: 10/04/05 10:10 Date Received..: 10/05/05 % Moisture....: 17

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 5279034 Aluminum 10100 24.1 mg/kg SW846 6010B 10/06-10/07/05 HL20Plak Dilution Factor: 1 Analyst ID....: 001637 Analysis Time..: 11:33 Instrument ID..: IS Arsenic 9 8 1.2 mq/kq SW846 6010B 10/06-10/07/05 HL20P1AF Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID..: IS Lead 24.8 0.36 mg/kg SW846 6010B 10/06-10/07/05 HL20P1AG Dilution Factor: 1 Analysis Time... 11:33 Analyst ID....: 001637 Instrument ID..: 15 ND Antimony 7.2 mg/kg SW846 6010B 10/06-10/07/05 HL2QP1AL Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID. .: 15 Barium 66.3 24.1 mq/kq SW846 6010B 10/06-10/07/05 HL20P1AM Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID..: IS Selenium 0.45 B 0.60 mg/kg 10/06-10/07/05 HL2QP1AH SW846 6010B Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID..: 15 Beryllium 0.53 B 0.60 mg/kg SW846 6010B 10/06-10/07/05 HL2QPIAN Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID. .: 15 Thallium 0.82 B 1.2 mg/kg SW846 6010B 10/06-10/07/05 HL20P1AJ Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID. .: 15 Cadmium 0.19 B 0.60 mg/kg 10/06-10/07/05 HL2QP1AP SW846 6010B Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID. .: IS Calcium 4830 J J 601 mg/kg SW846 6010B 10/06-10/07/05 HL2OP1AO Dilution Factor: 1 Analysis Time..: 11:33 Analyst ID....: 001637 Instrument ID..: 15
Client Sample ID: TS-3

TOTAL Metals

Lot-Sample #...: A5J050155-001

Matrix....: SO

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK
Chromium	13.6 8	1.2 mg/kg Dilution Factor: 1 Instrument ID: IS	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1AR Analyst ID: 001637
Cobalt	10.5 KJ	6.0 mg/kg Dilution Factor: 1 Instrument ID: 15	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1AT Analyst ID; 001637
Copper	42.4 \$ 5	3.0 mg/kg Dilution Factor: 1 Instrument ID: IS	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QPIAU Analyst ID 001637
Iron	25300	12.0 mg/kg Dilution Factor: 1 Instrument ID: IS	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1AV Analyst ID: 001637
Magnesium	3210 7	601 mg/kg Dilution Factor: 1 Instrument ID: 15	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QPIAW Analyst ID: 001637
Manganese	746 J.E J	<pre>1.8 mg/kg Dilution Factor: 1 Instrument ID: IS</pre>	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QPIAX Analyst ID: 001637
Nickel	18.5 B J	4.8 mg/kg Dilution Factor: 1 Instrument ID: IS	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1A0 Analyst ID; 001637
Potassium	1020 J,E	601 mg/kg Dilution Factor: 1 Instrument ID: 15	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1A1 Analyst ID: 001637
Silver	ND	<pre>1.2 mg/kg Dilution Factor: 1 Instrument ID: I5</pre>	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1A2 Analyst ID: 001637
Sodium	ND	601 mg/kg Dilution Factor: 1 Instrument ID.,: IS	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1A3 Analyst ID: 001637

Client Sample ID: TS-3

TOTAL Metals

Lot-Sample #...: A5J050155-001

Matrix....: SO

PARAMETER	RESULT	REPORTING	UNITS	METHOD	PREPARATION - WORK
Vanadium	15.7 g]	6.0 Dilution Facto Instrument ID.	mg/kg r: 1 .: 15	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HL2QP1A4 Analyst ID: 001637
Zinc	58.1 J,B	J 2.4 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 11:33	10/06-10/07/05 HI.20P1A5 Analyst ID 001637
Mercury	0.087 B	0.12 Dilution Factor Instrument ID.	mg/kg r: 1 .: H1	SW846 7471A Analysis Time: 11:48	10/06/05 HL2QP1AE Analyst ID: 001619

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

E Matrix interference.

Client Sample ID: RB-3

TOTAL Metals

Lot-Sample #...: A5J050155-002 Date Sampled...: 10/04/05 09:45 Date Received..: 10/05/05 % Moisture....: 12

Matrix....: SO

		REPORTI	NG			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Prep Batch #	: 5279034						
Aluminum	3270	22.8	mg/kg	SW846	6010B	10/06-10/07/05	HL2001AW
		Dilution Fa	ctor: 1	Analysis	Time: 11:43	Analyst ID	1 001637
		Instrument	ID: 15				
Arsenic	3.3	1.1	mg/kg	SW846	6010B	10/06-10/07/05	HL2001AR
		Dilution Fa	ctor: 1	Analysis	Time: 11:43	Analyst ID	: 001637
		Instrument	ID: 15				
Lead	2.3	0.34	mg/kq	SW846	6010B	10/06-10/07/05	HL2001 AT
		Dilution Fa	ctor: 1	Analysis	Time: 11:43	Analyst ID	: 001637
		Instrument	ID: 15				
Antimony N	ND T	6.8	mg/kg	SW846	60108	10/05-10/07/05	HT 2001 AV
	2	Dilution Fa	ctor: 1	Analysis	Time: 11:43	Analyst ID.	1 001637
		Instrument ID: IS					
Barium 15.3 B	15.3 B	22.8	mq/kq	SW846	6010B	10/06-10/07/05	WL200130
		Dilution Fa	ctor: 1	Analysis	Time: 11:43	Analyst ID	- 001637
		Instrument	ID: I5	ang daras			
Selenium	ND	0.57	mg/kg	SW846	6010B	10/06-10/07/05	HL2001 MI
		Dilution Fac	ctor: 1	Analysis	Time: 11:43	Analyst ID	: 001637
		Instrument ID: 15					
Beryllium	0.16 B	0.57	mq/kq	SW846	6010B	10/06-10/07/05	WL200131
		Dilution Fac	ctor: 1	Analysis	Time: 11:43	Analyst ID	: 001637
		Instrument :	ID: I5				
Thallium	ND	1.1	mg/kg	SW846	6010B	10/06-10/07/05	HT.2001AV
		Dilution Fac	stor: 1	Analysis	Time: 11:43	Analyst ID	: 001637
		Instrument)	ID: 15	9000 - 18 209 - 20 			
Cadmium	ND	0.57	ma/ka	SW846	60108	10/06-10/07/05	UI 2001 22
		Dilution Fac	tor: 1	Analysis	Time: 11:43	Analyst TD	· 001617
		Instrument 1	ID: IS				
Calcium	18700 J J	569	ma/ka	SW846	6010B	10/05-10/02/05	UT 2001 22
		Dilution Fac	stor: 1	Analysis	Time 11.42	Analyse ID	- 001612
		Instrument 1	ID: 15	1010		unarise m	. 001037

Client Sample ID: RB-3

TOTAL Metals

Lot-Sample #...: A5J050155-002

Matrix....: SO

		REPORTING				PREPARATION-	WODK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Chromium	4.0 3	1.1 Dilution Fa Instrument	mg/kg ctor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01A4 : 001637
Cobalt	3.4 в 🕈	5.7 Dilution Fa Instrument	mg/kg ctor: 1 ID: I5	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01A5 : 001637
Copper	11.8	2.8 Dilution Pa Instrument	mg/kg ctor: 1 ID: I5	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01A6 : 001637
Iron	8370	11.4 Dilution Fa	mg/kg ctor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01A7 : 001637
Magnesium	4860 7	569 Dilution Fac Instrument	mg/kg ctor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID,	HL2Q01A8 : 001637
Manganese	337 \$ 5	1.7 Dilution Fac Instrument	mg/kg stor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01A9 : 001637
Nickel	6.5 J	4.6 Dilution Fac Instrument 1	mg/kg stor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AA : 001637
Potassium	ND 518 B,J-J	569 Dilution Fac Instrument 1	mg/kg stor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AC : 001637
Silver	ND	1.1 Dilution Fac Instrument 1	mg/kg stor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AD : 001637
Sođium	50.1 B	569 Dilution Fac Instrument 1	mg/kg stor: 1 ID: IS	SW846 Analysis	6010B Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AE : 001637

Client Sample ID: RB-3

TOTAL Metals

Lot-Sample #...: A5J050155-002

Matrix....: SO

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION-	WORK
Vanadium	5.4 B J	5.7 Dilution Pacto Instrument ID.	mg/kg z: 1 .: 15	SW846 6010B Analysis Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AF : 001637
Zinc	28.9 3 3	2.3 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 11:43	10/06-10/07/05 Analyst ID	HL2Q01AG : 001637
Mercury	ND	0.11 Dilution Pacto Instrument ID.	mg/kg r: 1 .: H1	SW846 7471A Analysis Time: 11:41	10/06/05 Analyst ID	HL2Q01AQ : 001619

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: RB-4

TOTAL Metals

Matrix....: SO

Lot-Sample #...: A5J050155-003 Date Sampled...: 10/04/05 10:00 Date Received..: 10/05/05 % Moisture....: 9.2

REPORTING PREPARATION-WORK PARAMETER. RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch # ...: 5279034 Aluminum 2900 22.0 mq/kq SW846 6010B 10/06-10/07/05 HL2Q31AW Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15 Arsenic 2.8 1.1 mg/kg SW846 6010B 10/06-10/07/05 HL2Q31AR Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15 Lead 2.0 0.33 mg/kg SW846 6010B 10/06-10/07/05 HL2Q31AT Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID. .: IS Antimony ND 6.6 mq/kg SW846 6010B 10/06-10/07/05 HL2031AX Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15 Barium 12.9 B 22.0 mg/kg SW846 6010B 10/06-10/07/05 HL2Q31A0 Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID. .: IS Selenium ND 0.55 mg/kg SW846 6010B 10/06-10/07/05 HL2O31AU Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....; 001637 Instrument ID..: 15 Beryllium 0.15 B 0.55 mq/kq SW846 6010B 10/06-10/07/05 HL2031A1 Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15 Thallium ND 1.1 mg/kg SW846 6010B 10/06-10/07/05 HL2031AV Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15 Cadmium ND 0.55 10/06-10/07/05 HL2Q31A2 mg/kg SW846 6010B Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID..... 001637 Instrument ID..: 15 16100 J Calcium 551 mg/kg SW846 6010B 10/06-10/07/05 HL2031A3 Dilution Factor: 1 Analysis Time..: 12:01 Analyst ID....: 001637 Instrument ID..: 15

Client Sample ID: RB-4

TOTAL Metals

Lot-Sample #...: A5J050155-003

Matrix..... SO

		REPORTING				PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	ORDER #
Chromium	3.6 7	1.1 Dilution Facto Instrument ID.	mg/kg pr: 1 .: IS	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31A4 : 001637
Cobalt	3.0 в Ţ	5.5 Dilution Facto Instrument ID.	mg/kg or: 1 .: I5	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31A5 : 001637
Copper	9.73	2.8 Dilution Facto Instrument ID.	mg/kg er: 1 .: I5	SW846 Analysis	6010B Time; 12:01	10/06-10/07/05 Analyst ID	HL2Q31A6 : 001637
Iron	7290	11.0 Dilution Facto Instrument ID.	mg/kg r: 1 .: 15	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31A7 : 001637
Magnesium	3430 🖈	551 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 Analysia	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31A8 001637
Manganese	276 7 3	1.7 Dilution Facto Instrument ID.	mg/kg r: 1 .: IS	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HI.2Q31A9 : 001637
Nickel	5.9 J	4.4 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AA : 001637
Potassium ND	471 B,J	551 Dilution Pacto Instrument ID.	mg/kg r: 1 .: I5	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AC 001637
Silver	ND	1.1 Dilution Facto Instrument ID.	mg/kg r: 1 .: 15	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AD 001637
Sodium	46.9 B	551 Dilution Factor Instrument ID.	mg/kg r: 1 .: I5	SW846 Analysis	6010B Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AE 001637

Client Sample ID: RB-4

TOTAL Metals

Lot-Sample #...: A5J050155-003

Matrix....: SO

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION-	WORK
Vanadium	5.1 B J	5.5 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AF : 001637
Zinc	19.6 ¥ J	2.2 Dilution Pacto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 12:01	10/06-10/07/05 Analyst ID	HL2Q31AG : 001637
Mercury	ND	0.11 Dilution Facto Instrument ID.	mg/kg r: 1 .: H1	SW846 7471A Analysis Time: 11:42	10/06/05 Analyst ID	HL2Q31AQ : 001619

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: DUP-2

TOTAL Metals

Lot-Sample #...: A5J050155-004 Date Sampled...: 10/04/05 Date Received..: 10/05/05 % Moisture....: 8.4

Matrix....: SO

- 129-10-127-127-129-129-129-129-1		REPORTI	NG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	: 5279034				
Aluminum	4310	21.8 Dilution Pa Instrument	mg/kg ctor: 1 ID: I5	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1AW Analyst ID: 001637
Arsenic	3.4	1.1 Dilution Fac Instrument	mg/kg ctor: 1 ID: 15	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RDIAR 14 Analyst ID 001637
Lead	3.0	0.33 Dilution Fac Instrument	mg/kg ctor: 1 ID: 15	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RDIAT Analyst ID 001637
Antimony	nd J	6.6 Dilution Fac Instrument)	mg/kg ctor: 1 ID: I5	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1AX 14 Analyst ID: 001637
Barium	19.4 B	21.8 Dilution Fac Instrument 1	mg/kg stor: 1 ID: IS	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1A0 14 Analyst ID: 001637
Selenium	ND	0.55 Dilution Fac Instrument I	mg/kg stor: 1 ID: IS	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RDIAU 14 Analyst ID: 001637
Beryllium	0.20 B	0.55 Dilution Pac Instrument I	mg/kg stor: 1 ID: IS	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1A1 Analyst ID: 001637
Thallium	0.61 B	1.1 Dilution Pac Instrument I	mg/kg ttor: 1 ID: I5	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RDIAV 14 Analyst ID: 001637
Cadmium	0.037 B	0.55 Dilution Fac Instrument I	mg/kg tor: 1 D: IS	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1A2 Analyst ID: 001637
Calcium	27200 \$ J	546 Dilution Fac Instrument I	mg/kg tor: 1 D: 15	SW846 6010B Analysis Time: 12:	10/06-10/07/05 HL2RD1A3 14 Analyst ID: 001637

Client Sample ID: DUP-2

TOTAL Metals

Lot-Sample #...: A5J050155-004

Matrix....: SO

		REPORTING				PREPARATION-	MORK
PARAMETER	RESULT	LIMIT	UNITS	METHO	D	ANALYSIS DATE	OPDED #
Chromium	5.4 7	1.1 Dilution Facto Instrument ID	mg/kg pr: 1 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A4 : 001637
Cobalt	4.1 в Т	5.5 Dilution Facto Instrument ID.	mg/kg Dr: 1 : IS	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A5 : 001637
Copper	16.9	2.7 Dilution Pacto Instrument ID.	mg/kg pr: 1 : 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A6 : 001637
Iron	10700	10.9 Dilution Pacto Instrument ID.	mg/kg pr: 1 .: IS	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A7 : 001637
Magnesium	7480 <i>þ</i>	546 Dilution Facto Instrument ID.	mg/kg or: 1 .: 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A8 001637
Manganese	391 J J	1.6 Dilution Facto Instrument ID.	mg/kg mg/kg .: 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1A9
Nickel	8.3 5	4.4 Dilution Facto Instrument ID.	mg/kg r: 1 .: 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AA 001637
Potassium	211 J. J. J.	546 Dilution Facto Instrument ID.	mg/kg r: 1 .: 15	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AC 001637
Silver	ND	l.l Dilution Facto Instrument ID.	mg/kg r: 1 .: IS	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AD 001637
Sodium	63.9 B	546 Dilution Factor Instrument ID.	mg/kg r: 1 .: I5	SW846 Analysis	6010B Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AE 001637

Client Sample ID: DUP-2

TOTAL Metals

Lot-Sample #...: A5J050155-004

Matrix..... SO

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION -	WORK
Vanadium	7.3 J	5.5 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AF : 001637
Zinc	38.6 × J	2.2 Dilution Facto Instrument ID.	mg/kg r: 1 .: I5	SW846 6010B Analysis Time: 12:14	10/06-10/07/05 Analyst ID	HL2RD1AG 1 001637
Mercury	ND	0.11 Dilution Facto Instrument ID.	mg/kg r: 1 .: H1	SW846 7471A Analysis Time: 11:49	10/06/05 Analyst ID	HL2RD1AQ : CO1619

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

J Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: TS-3

General Chemistry

Lot-Sample #...: A5J050155-001 Work Order #...: HL2QP Matrix.....: S0 Date Sampled...: 10/04/05 10:10 Date Received..: 10/05/05 % Moisture....: 17

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION-	PREP
pH (solid)	7.4 Di	lution Fact	No Units	SW846 9045C	10/05/05	5279098
Cyanide, Total	ND	0.60 lution Fact	mg/kg .or: 1	SW846 9012A	10/10/05	5283334
Percent Solids	83.2 Di	10.0 lution Fact	% .or: 1	MCAWW 160.3 MOD	10/05-10/06/05	5278463

NOTE (S) :

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: RB-3

General Chemistry

Lot-Sample #...: A5J050155-002 Work Order #...: HL2Q0 Matrix..... S0 Date Sampled...: 10/04/05 09:45 Date Received..: 10/05/05

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (solid)	9.0 D	ilution Fac	No Units	SW846 9045C	10/05/05	5279098
Cyanide, Total	ND D	0.57 ilution Fac	mg/kg tor: 1	SW846 9012A	10/10/05	5283334
Percent Solids	87.9 D	10.0 ilution Fac	% LOT: 1	MCAWW 160.3 MOD	10/05-10/06/05	5278463

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: RB-4

General Chemistry

Lot-Sample #...: A5J050155-003 Work Order #...: HL2Q3 Matrix..... S0 Date Sampled...: 10/04/05 10:00 Date Received..: 10/05/05 % Moisture....: 9.2

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (solid)	9.0 D:	ilution Fac	No Units	SW846 9045C	10/05/05	5279098
Cyanide, Total	ND D:	0.55 ilution Fac	mg/kg tor: 1	SW846 9012A	10/10/05	5283334
Percent Solids	90.8 Di	10.0 ilution Fac	tor: 1	MCAWW 160.3 MOD	10/05-10/06/05	5278463

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: DUP-2

General Chemistry

Lot-Sample #:	A5J050155-004	Work Order #: HL2RD	Matrix . so
Date Sampled:	10/04/05	Date Received: 10/05/05	Matila
<pre>% Moisture:</pre>	8.4		

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
pH (solid)	8.9 Di	lution Fac	No Units	SW846 9045C	10/05/05	5279098
Cyanide, Total	0.54 в <u>Т</u> Di	0.55 lution Fac	mg/kg tor: 1	SW846 9012A	10/10/05	5283334
Percent Solids	91.6 Di	10.0 lution Fac	% tor: 1	MCAWW 160.3 MOD	10/05-10/06/05	5278463

NOTE(S):

RL. Reporting Limit

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL.

Laboratory Narrative

CASE NARRATIVE 5J05155

The following report contains the analytical results for four solid samples submitted to STL North Canton by Northrop Grumman Corp. from the Former TRW, Utica, NY Site, project number 37117.010. The samples were received October 05, 2005, according to documented sample acceptance procedures.

This SDG consists of (1) laboratory ID's: A5J050155.

STL utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Kurt Batsel, P.E., IPM, Christopher Angier, John C. Brussel, P.E., and David Gerber on October 12, 2005. A summary of QC data for these analyses is included at the back of the report.

STL North Canton attests to the validity of the laboratory data generated by STL facilities reported herein. All analyses performed by STL facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. STL's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please call the Project Manager, Denise Pohl, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 3.3°C.

GC/MS VOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

GC/MS SEMIVOLATILES

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "B". All target analytes in the Method Blank must be below the reporting limit (RL) or the associated sample(s) must be ND with the exception of common laboratory contaminants.

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

PESTICIDES-8081

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

CASE NARRATIVE (continued)

PESTICIDES-8081 (continued)

The analyses reported herein were performed using an instrument that has two columns(GC) or detectors(HPLC), one of which is used to confirm the results of the other. Peak interferences may result in some cases, which cause a quantitation difference between the two columns/detectors. If the difference between the two results is greater than 40%, the higher of the two results or the primary column/detector is normally reported. The reported results are flagged with "PG".

POLYCHLORINATED BIPHENYLS-8082

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

METALS

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive of mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

Serial dilution of a sample in this lot indicates that physical and chemical interferences were present. Refer to the sample report pages for the affected analytes flagged with "E".

The sample(s) that contained concentrations of target analyte(s) at a reportable level in the associated Method Blank(s) were flagged with "J". Refer to the sample report pages for the affected analyte(s).

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes for RB-4 due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which will be flagged with "NC, MSB".

The matrix spike/matrix spike duplicate(s) for RB-4 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

5

CASE NARRATIVE (continued)

GENERAL CHEMISTRY

The sample(s) that contain results between the MDL and the RL were flagged with "B". There is the possibility of false positive of mis-identification at these quantitation levels. The acceptance criteria for the ICB, CCB, and Method Blank are +/- the standard reporting limit (SRL).

The matrix spike/matrix spike duplicate(s) for RB-4 had RPD's outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary. Sample Compliance Report

SAMPLE COMPLIANCE REPORT

-			r	-	r
Noncompliance		VOC – blank, ccal SVOC – blank, ical, ccal PEST – ccal, %D MET – ms, serial dilution	VOC – blank, ccal SVOC – blank, ical, ccal MET – ms, blank, serial dilution	VOC – blank, ccal SVOC – blank, ical, ccal MET – ms, blank, serial dilution	VOC – blank, ccal SVOC – blank, ical, ccal MET – ms, blank, serial dilution MISC - ms
	MISC	Yes	Yes	Yes	°N N
y1	MET	No	No	No.	No
mplianc	PCB/ Pest	°N N	Yes	Yes	Yes
CO	svoc	oN	°N0	No	Ŷ
	voc	No	No	No	Ŷ
Matrix		Soil	Soil	Soil	Soil
Sample ID		TS-3	RB-3	RB-4	DUP-2
ASP	Protocol	2000	2000	2000	2000
Sampling	Date	10/04/05	10/04/05	10/04/05	10/04/05
Sample	Delivery Group	A5J050155	A5J050155	A5J050155	A5J050155

Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable. The deviation resulted in no qualification of data. 2 -

5162

Appendix E

Air Monitoring Logs

AIR MONITORING SUMMARY

ICM BARRIER LAYER CONSTRUCTION CERTIFICATION REPORT FORMER TRW AERONAUTICAL SYSTEMS FACILITY 211 SEWARD AVENUE UTICA, NEW YORK

Week Beginning	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
10/31/05	V	~	No Soil Handling Activities	~	~	v
11/7/05	V	~	V	No Soil Handling Activities	No Soil Handling Activities	No Soil Handling Activities
11/14/05	~	No Air Monitoring Due to Rain	No Soil Handling Activities	No Soil Handling Activities	No Air Monitoring Due to Snow Cover	No Soil Handling Activities
11/21/05	~	No Soil Handling Activities	No Soil Handling Activities	No Soil Handling Activities	No Soil Handling Activities	No Soil Handling Activities

Notes:

1. Checkmark signifies air monitoring was performed on the indicated day.

2. Sampling locations identified on the attached air monitoring logs and data reports are as follows:

- Location A = Downwind sampling location;

- Location B = Downwind sampling location; and

- Location C = Upwind sampling location.

BLASLAND BOUCK & LEE INC.

Project: FORMER TEW, WTICH, NY		Date: 10/31/05		
Monitoring Instruments: PD	R-1000 AN			
Air Monitor: ALENIEK		Activity: 6PADING OF PW-OF-BANK		
Level of Protection: MoD. L	EVEL D		GRAVEL	
Time		(mg/m ³) Instrument Reading	Comments	
830	A	0.010		
830	В	0.009	· · · · · · · · · · · · · · · · · · ·	
830	С	0.011		
900	A	0.000		
900	B	0.000		
900	C	0.000		
1000	A	0.000		
1000	В	0.000		
1000	C	0.000		
1100	A	0.006		
1100	В	0.000		
1100	C	0.000		
1200	А	0.000		
1200	В	0.006		
1200	С	0.000		
1300	A	0.000		
1300	В	0.000		
1300	C	0.000		
1400	A-a	0,000	MOUED LOCATIONS	
1400	B-2	0.000	TO ADJUST FOR WIN	
1400	C-2	0.000	SHIFT & WORK AREA OHANGE, WORK MOVE	

TOACHEM. ST. BLD& &

NE CORNER OF PARKIN LOT NO. 2. (SEE FIG.)

09/21/05 BBLRedirect.cfm

pDR-1000 S/N: 06083 User ID: Location A Tag Number: 01 Number of logged points: 65 Start time and date: 09:11:29 31-Oct Elapsed time: 05:25:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 1.709 mg/m³ Time at maximum: 12:35:14 Oct 31 Max STEL Concentration: 0.005 mg/m³ Time at max STEL: 09:24:59 Oct 31 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Avg.(mg/m3) Date Time 1 31-Oct 09:16:29 0.006 2 31-Oct 09:21:29 0.005 3 31-Oct 09:26:29 0.008 31-Oct 09:31:29 4 0.004 5 31-Oct 09:36:29 0.001 6 31-Oct 09:41:29 0 7 31-Oct 09:46:29 0.001 8 31-Oct 09:51:29 0 9 31-Oct 09:56:29 0 0.002 10 31-Oct 10:01:29 0 11 31-Oct 10:06:29 12 31-Oct 10:11:29 0 13 31-Oct 10:16:29 0.001 0.001 14 31-Oct 10:21:29 15 31-Oct 10:26:29 0 16 31-Oct 10:31:29 0 17 0 31-Oct 10:36:29 18 31-Oct 10:41:29 0.002 0.002 19 31-Oct 10:46:29 20 31-Oct 10:51:29 0 21 0.001 31-Oct 10:56:29 22 31-Oct 11:01:29 0 0 23 31-Oct 11:06:29 24 31-Oct 11:11:29 0.005 31-Oct 11:16:29 25 0 26 31-Oct 11:21:29 0 27 31-Oct 11:26:29 0 28 0.001 31-Oct 11:31:29 29 31-Oct 11:36:29 0 30 31-Oct 11:41:29 0 31 31-Oct 11:46:29 0 32 31-Oct 11:51:29 0 33 31-Oct 11:56:29 0 34 31-Oct 12:01:29 0.001 35 31-Oct 12:06:29 0 36 0 31-Oct 12:11:29 37 0 31-Oct 12:16:29

31-Oct 12:21:29 0 31-Oct 12:26:29 0 38 39 31-Oct 12:26:29

 39
 31-Oct
 12:26:29
 0

 40
 31-Oct
 12:31:29
 0.003

 41
 31-Oct
 12:36:29
 0.064

 42
 31-Oct
 12:41:29
 0

 43
 31-Oct
 12:46:29
 0.003

 44
 31-Oct
 12:51:29
 0

 45
 31-Oct
 12:56:29
 0

 0 46 31-Oct 13:01:29 0 47 31-Oct 13:06:29 31-Oct 13:11:29 31-Oct 13:16:29 0 48 0 49 50 31-Oct 13:21:29 0 0 31-Oct 13:26:29 51 52 31-Oct 13:31:29 53 31-Oct 13:36:29 0 54 31-Oct 13:41:29 0 31-Oct 13:46:29 31-Oct 13:51:29 0 55 0 56 57 31-Oct 13:56:29 0 0 31-Oct 14:01:29 58 0 59 31-Oct 14:06:29 60 31-Oct 14:11:29 0 61 31-Oct 14:16:29 0 0 62 31-Oct 14:21:29
 63
 31-Oct
 14:26:29
 0

 64
 31-Oct
 14:31:29
 0

 65
 31-Oct
 14:36:29
 0

00053230300006000803}

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 01 Number of logged points: 324 Start time and date: 09:16:21 31-Oct Elapsed time: 05:24:00 Logging period (sec): 60 Calibration Factor (%): 100 Max Display Concentration: 0.085 mg/m³ Time at maximum: 09:26:35 Oct 31 Max STEL Concentration: 0.023 mg/m3 Time at max STEL: 09:31:21 Oct 31 Overall Avg Conc: 0.000 mg/m³ Logged Data: D ... Point

nt		Date	Time	Avg.(mg/m ⁻)
	1	31-Oct	09:17:21	0.021
	2	31-Oct	09:18:21	0.026
	3	31-Oct	09:19:21	0.023
	4	31-Oct	09:20:21	0.024
	5	31-Oct	09:21:21	0.018
	6	31-Oct	09:22:21	0.025
	7	31-Oct	09:23:21	0.021
	8	31-Oct	09:24:21	0.025
	9	31-Oct	09:25:21	0.031
	10	31-Oct	09:26:21	0.029
	11	31-Oct	09:27:21	0.033
	12	31-Oct	09:28:21	0.016
	13	31-Oct	09:29:21	0.02
	14	31-Oct	09:30:21	0.016
	15	31-Oct	09:31:21	0.017
	16	31-Oct	09:32:21	0.01
	17	31-Oct	09:33:21	0.008
	18	31-Oct	09:34:21	0.013
	19	31-Oct	09:35:21	0.007
	20	31-Oct	09:36:21	0.002
	21	31-Oct	09:37:21	0.001
	22	31-Oct	09:38:21	0.005
	23	31-Oct	09:39:21	0.004
	24	31-Oct	09:40:21	0.002
	25	31-Oct	09:41:21	0.003
	26	31-Oct	09:42:21	0.003
	27	31-Oct	09:43:21	0.003
	28	31-Oct	09:44:21	0.004
	29	31-Oct	09:45:21	0.003
	30	31-Oct	09:46:21	0.002
	31	31-Oct	09:47:21	0
	32	31-Oct	09:48:21	0.003
	33	31-Oct	09:49:21	0.002
	34	31-Oct	09:50:21	0.003
	35	31-Oct	09:51:21	0.003
	36	31-Oct	09:52:21	0.001
	37	31-Oct	09:53:21	0.001

38	31-Oct	09:54:21	0.003
30	31-Oct	09:55:21	0.003
40	21 Oct	00.56.21	0.000
40	31-000	09.55.21	0.001
41	31-Oct	09:57:21	0.002
42	31-Oct	09:58:21	0.001
43	31-Oct	09:59:21	0.001
44	31-Oct	10:00:21	0.004
45	31-Oct	10:01:21	0
46	31-Oct	10:02:21	0.002
47	31-Oct	10:03:21	0.001
48	31-Oct	10.04.21	0
49	31-Oct	10:05:21	0.003
50	31. Oct	10:06:21	0.000
50	31-Oct	10:00.21	0
51	31-000	10.07.21	0
52	31-Oct	10:08:21	0
53	31-Oct	10:09:21	0
54	31-Oct	10:10:21	0.005
55	31-Oct	10:11:21	0.006
56	31-Oct	10:12:21	0.003
57	31-Oct	10:13:21	0.002
58	31-Oct	10:14:21	0
59	31-Oct	10:15:21	0
60	31-Oct	10.16.21	0.001
61	31-Oct	10.17.21	0
62	31-Oct	10.18.21	0.005
63	31_Oct	10.10.21	0.000
64	21 Oct	10.19.21	0.001
04	31-000	10.20.21	0.001
65	31-Oct	10:21:21	0
66	31-Oct	10:22:21	0.001
67	31-Oct	10:23:21	0
68	31-Oct	10:24:21	0
69	31-Oct	10:25:21	0.001
70	31-Oct	10:26:21	0
71	31-Oct	10:27:21	0
72	31-Oct	10:28:21	0
73	31-Oct	10:29:21	0
74	31-Oct	10:30:21	0
75	31-Oct	10.31.21	0
76	31-Oct	10.32.21	0
77	31 Oct	10:32:21	0
79	31-00L	10.33.21	0
70	31-00L	10.34.21	0
19	31-Oct	10.35.21	0
80	31-Oct	10:36:21	0
81	31-Oct	10:37:21	0
82	31-Oct	10:38:21	0
83	31-Oct	10:39:21	0
84	31-Oct	10:40:21	0
85	31-Oct	10:41:21	0
86	31-Oct	10:42:21	0
87	31-Oct	10:43:21	0
88	31-Oct	10:44:21	0
89	31-Oct	10:45:21	0
			5

90 91 92 93 94	31-Oct 31-Oct 31-Oct 31-Oct 31-Oct	10:46:21 10:47:21 10:48:21 10:49:21 10:50:21	0 0 0 0
95	31-Oct	10:51:21	0
97	31-Oct	10:53:21	0
98	31-Oct	10:54:21	0
99	31-Oct	10:55:21	0
100	31-Oct	10:56:21	0
101	31-Oct	10:57:21	0
102	31-Oct	10:58:21	0
103	31-Oct	10:59:21	0
104	31-Oct	11:00:21	0
105	31-Oct	11:01:21	0
105	31-Oct	11:02:21	0
107	31-Oct	11.03.21	0
100	31-Oct	11:05:21	0
110	31-Oct	11:06:21	Ő
111	31-Oct	11:07:21	0
112	31-Oct	11:08:21	0
113	31-Oct	11:09:21	0
114	31-Oct	11:10:21	0
115	31-Oct	11:11:21	0
116	31-Oct	11:12:21	0
117	31-Oct	11:13:21	0.003
118	31-Oct	11:14:21	0
119	31-Oct	11:15:21	0
120	31-Oct	11:10:21	0
121	31-Oct	11.17.21	0
122	31-Oct	11.10.21	. 0
124	31-Oct	11:20:21	0
125	31-Oct	11:21:21	Ő
126	31-Oct	11:22:21	0
127	31-Oct	11:23:21	0
128	31-Oct	11:24:21	0.001
129	31-Oct	11:25:21	0
130	31-Oct	11:26:21	0
131	31-Oct	11:27:21	0
132	31-Oct	11:28:21	0.001
133	31-Oct	11:29:21	0.001
134	31-Oct	11:30:21	0
136	31-Oct	11.31.21	0
137	31-Oct	11:33:21	0
138	31-Oct	11:34:21	0
139	31-Oct	11:35:21	0
140	31-Oct	11:36:21	0
141	31-Oct	11:37:21	0

142	31-Oct	11:38:21	0
143	31-Oct	11.39.21	0
144	31-Oct	11:40:21	0
145	31-Oct	11:41:21	0
146	31-Oct	11:42:21	0
147	31-Oct	11:43:21	0
148	31-Oct	11:44:21	0
149	31-Oct	11:45:21	0
150	31-Oct	11:46:21	0
151	31-Oct	11:47:21	0
152	31-Oct	11:48:21	0
153	31-Oct	11:49:21	0
154	31-Oct	11:50:21	0
155	31-Oct	11:51:21	0.001
156	31-Oct	11:52:21	0
157	31-Oct	11:53:21	0
158	31-Oct	11:54:21	0
159	31-Oct	11:55:21	0
160	31-Oct	11:56:21	0
161	31-Oct	11:57:21	0
162	31-Oct	11:58:21	0
163	31-Oct	11:59:21	0
164	31-Oct	12:00:21	0
165	31-Oct	12:01:21	0
166	31-Oct	12:02:21	0
167	31-Oct	12:03:21	0
168	31-Oct	12:04:21	0
169	31-Oct	12:05:21	0
170	31-Oct	12:06:21	0
171	31-Oct	12:07:21	0
172	31-Oct	12:08:21	0
173	31-Oct	12:09:21	0
174	31-Oct	12:10:21	0
175	31-Oct	12:11:21	0
176	31-Oct	12:12:21	0
177	31-Oct	12:13:21	0
178	31-Oct	12:14:21	0
179	31-Oct	12:15:21	0
180	31-Oct	12:16:21	0
181	31-Oct	12:17:21	0.002
182	31-Oct	12:18:21	0
183	31-Oct	12:19:21	0
184	31-Oct	12:20:21	0
185	31-Oct	12:21:21	0
186	31-Oct	12:22:21	0.002
187	31-Oct	12:23:21	0
188	31-Oct	12:24:21	0
189	31-Oct	12:25:21	0
190	31-Oct	12:26:21	0
191	31-Oct	12:27:21	0
192	31-Oct	12:28:21	0
193	31-Oct	12:29:21	0

194	31-Oct	12:30:21	0
195	31-Oct	12:31:21	0
196	31-Oct	12:32:21	0
107	31. Oct	12:32:21	0
100	31-00L	12.33.21	0
100	31-Oct	12.34.21	0
199	31-Oct	12.30.21	0
200	31-Oct	12:36:21	0
201	31-Oct	12:37:21	0
202	31-Oct	12:38:21	0
203	31-Oct	12:39:21	0
204	31-Oct	12:40:21	0
205	31-Oct	12:41:21	0.003
206	31-Oct	12:42:21	0
207	31-Oct	12:43:21	0
208	31-Oct	12:44:21	0
209	31-Oct	12:45:21	0
210	31-Oct	12:46:21	0
211	31-Oct	12:47:21	0
212	31-Oct	12:48:21	0
213	31-Oct	12:49:21	0
214	31-Oct	12:50:21	0
215	31-Oct	12:51:21	0
216	31-Oct	12:52:21	0
217	31-Oct	12:53:21	0
218	31-Oct	12:54:21	0
219	31-Oct	12:55:21	0
220	31-Oct	12:56:21	0
221	31-Oct	12:57:21	0
222	31-Oct	12:58:21	0
223	31-Oct	12:59:21	0
224	31-Oct	13:00:21	0.001
225	31-Oct	13:01:21	0.007
226	31-Oct	13:02:21	0
227	31-Oct	13.03.21	Ő
228	31-Oct	13:04:21	Ő
229	31-Oct	13:05:21	0
230	31-Oct	13:06:21	0
231	31-Oct	13:07:21	0
232	31-Oct	13.08.21	0
233	31-Oct	13.09.21	0
230	31-Oct	13.10.21	0
234	31-Oct	13-11-21	0
235	31-Oct	12-12-21	0
230	31-Oct	13.12.21	0
237	31-Oct	13.13.21	0
230	31-Oct	13:14:21	0
239	31-Oct	13:15:21	0
240	31-000	13:10:21	0.001
241	31-Oct	13:17:21	0
242	31-Oct	13:18:21	0
243	31-Oct	13:19:21	0.001
244	31-Oct	13:20:21	0
245	31-Oct	13:21:21	0

246	31-Oct	13:22:21	0
247	31-Oct	13:23:21	0
248	31-Oct	13:24:21	0
249	31-Oct	13:25:21	0
250	31-Oct	13:26:21	0
251	31-Oct	13:27:21	0
252	31-Oct	13:28:21	0
253	31-Oct	13:29:21	0
254	31-Oct	13:30:21	0
255	31-Oct	13:31:21	0
256	31-Oct	13:32:21	0
257	31-Oct	13:33:21	0
258	31-Oct	13:34:21	0
259	31-Oct	13:35:21	0
260	31-Oct	13:36:21	0
261	31-Oct	13:37:21	0
262	31-Oct	13:38:21	0
263	31-Oct	13:39:21	0
264	31-Oct	13:40:21	0
265	31-Oct	13:41:21	0
266	31-Oct	13:42:21	0.003
267	31-Oct	13:43:21	0
268	31-Oct	13:44:21	0
269	31-Oct	13:45:21	0
270	31-Oct	13:46:21	0
271	31-Oct	13:47:21	0
272	31-Oct	13:48:21	0
273	31-Oct	13:49:21	0
274	31-Oct	13:50:21	0
275	31-Oct	13:51:21	0
276	31-Oct	13:52:21	0
277	31-Oct	13:53:21	0
278	31-Oct	13:54:21	0
279	31-Oct	13:55:21	Ő
280	31-Oct	13:56:21	0
281	31-Oct	13.57.21	0
282	31-Oct	13:58:21	0.001
283	31-Oct	13:59:21	0.002
284	31-Oct	14.00.21	0.002
285	31-Oct	14:01:21	0
286	31-Oct	14.02.21	0
287	31-Oct	14.03.21	0
288	31-Oct	14.04.21	0
289	31-Oct	14:05:21	0
290	31-Oct	14:06:21	0.001
291	31-Oct	14:07:21	0.001
292	31-Oct	14.08.21	0
293	31-Oct	14.09.21	0.003
294	31-Oct	14.10.21	0.000
295	31-Oct	14.11.21	0.002
296	31-Oct	14.12.21	0.002
297	31-Oct	14.13.21	0
201	01 001	14.10.21	0

298	31-Oct	14:14:21	0
299	31-Oct	14:15:21	0
300	31-Oct	14:16:21	0
301	31-Oct	14:17:21	0
302	31-Oct	14:18:21	0
303	31-Oct	14:19:21	0
304	31-Oct	14:20:21	0
305	31-Oct	14:21:21	0
306	31-Oct	14:22:21	0
307	31-Oct	14:23:21	0
308	31-Oct	14:24:21	0
309	31-Oct	14:25:21	0
310	31-Oct	14:26:21	0
311	31-Oct	14:27:21	0
312	31-Oct	14:28:21	0
313	31-Oct	14:29:21	0
314	31-Oct	14:30:21	0
315	31-Oct	14:31:21	0
316	31-Oct	14:32:21	0.001
317	31-Oct	14:33:21	0
318	31-Oct	14:34:21	0
319	31-Oct	14:35:21	0
320	31-Oct	14:36:21	0
321	31-Oct	14:37:21	0
322	31-Oct	14:38:21	0
323	31-Oct	14:39:21	0
324	31-Oct	14:40:21	0.002

00053230300006010301}

pDR-1000 S/N: 06133 User ID: Location C Tag Number: 01 Number of logged points: 324 Start time and date: 09:18:12 31-Oct Elapsed time: 05:24:00 Logging period (sec): 60 Calibration Factor (%): 100 Max Display Concentration: 0.040 mg/m³ Time at maximum: 14:03:57 Oct 31 Max STEL Concentration: 0.006 mg/m³ Time at max STEL: 09:27:12 Oct 31 Overall Avg Conc: 0.000 mg/m³ Logged Data: Data Time $Ava (ma/m^3)$ Point

11		Date	Time	Avg.(mg/m
	1	31-Oct	09:19:12	0.019
	2	31-Oct	09:20:12	0.014
	3	31-Oct	09:21:12	0.009
	4	31-Oct	09:22:12	0.01
	5	31-Oct	09:23:12	0.014
	6	31-Oct	09:24:12	0.012
	7	31-Oct	09:25:12	0.005
	8	31-Oct	09:26:12	0.007
	9	31-Oct	09:27:12	0.007
	10	31-Oct	09:28:12	0.005
	11	31-Oct	09:29:12	0.003
	12	31-Oct	09:30:12	0.001
	13	31-Oct	09:31:12	0.002
	14	31-Oct	09:32:12	0.004
	15	31-Oct	09:33:12	0
	16	31-Oct	09:34:12	0.002
	17	31-Oct	09:35:12	0
	18	31-Oct	09:36:12	0
	19	31-Oct	09:37:12	0.002
	20	31-Oct	09:38:12	0
	21	31-Oct	09:39:12	0
	22	31-Oct	09:40:12	0
	23	31-Oct	09:41:12	0.003
	24	31-Oct	09:42:12	0.001
	25	31-Oct	09:43:12	0.002
	26	31-Oct	09:44:12	0
	27	31-Oct	09:45:12	0
	28	31-Oct	09:46:12	0.001
	29	31-Oct	09:47:12	0
	30	31-Oct	09:48:12	0.001
	31	31-Oct	09:49:12	0.001
	32	31-Oct	09:50:12	0
	33	31-Oct	09:51:12	0
	34	31-Oct	09:52:12	0
	35	31-Oct	09:53:12	0
	36	31-Oct	09:54:12	0
	37	31-Oct	09:55:12	0

38	31-Oct	09:56:12	0
39	31-Oct	09:57:12	0
40	31-Oct	09:58:12	0
41	31-Oct	09:59:12	0
42	31-Oct	10:00:12	0
43	31-Oct	10:01:12	0
44	31-Oct	10:02:12	0
45	31-Oct	10:03:12	0.001
46	31-Oct	10:04:12	0.001
47	31-Oct	10:05:12	0
48	31-Oct	10:06:12	0.001
49	31-Oct	10:07:12	0
50	31-Oct	10:08:12	0
51	31-Oct	10:09:12	0
52	31-Oct	10:10:12	0
53	31-Oct	10:11:12	0
54	31-Oct	10:12:12	0
55	31-Oct	10:13:12	0
56	31-Oct	10:14:12	0
57	31-Oct	10:15:12	0
58	31-Oct	10:16:12	0.003
59	31-Oct	10:17:12	0
60	31-Oct	10:18:12	0
61	31-Oct	10.19.12	0
62	31-Oct	10:20:12	0
63	31-Oct	10:21:12	0
64	31-Oct	10.22.12	0
65	31-Oct	10.23.12	Ő
66	31-Oct	10:24:12	0
67	31-Oct	10:25:12	0
68	31-Oct	10:26:12	0
69	31-Oct	10.27.12	0
70	31-Oct	10.28.12	0.001
71	31-Oct	10.20.12	0.001
72	31-Oct	10:20:12	0
73	31-Oct	10:31:12	0.002
74	31-Oct	10:32:12	0.002
75	31-Oct	10:32:12	0
76	31-Oct	10:34:12	0
77	31-Oct	10:35:12	0.001
78	31-Oct	10:36:12	0.001
79	31-Oct	10:37:12	0
80	31-Oct	10.38.12	0
81	31-Oct	10.30.12	0
82	31-Oct	10.33.12	0.006
83	31-Oct	10.40.12	0.000
84	31-Oct	10:41.12	0
85	31-Oct	10:42.12	0
86	31-Oct	10:43.12	0.001
87	31-Oct	10:44.12	0.001
88	31-001	10:40.12	0
80	31-00L	10.40.12	0
09	51-001	10.47.12	0
90	31-Oct	10:48:12	0
-----	--------	----------	-------
91	31-Oct	10:49:12	0
92	31-Oct	10:50:12	0
93	31-Oct	10:51:12	0
94	31-Oct	10:52:12	0
95	31-Oct	10:53:12	0
96	31-Oct	10:54:12	0
97	31-Oct	10:55:12	0
98	31-Oct	10:56:12	0
99	31-Oct	10:57:12	0.007
100	31-Oct	10:58:12	0
101	31-Oct	10:59:12	0
102	31-Oct	11:00:12	0
103	31-Oct	11:01:12	0
104	31-Oct	11:02:12	0
105	31-Oct	11:03:12	0
106	31-Oct	11:04:12	0.003
107	31-Oct	11:05:12	0.004
108	31-Oct	11:06:12	0
109	31-Oct	11:07:12	0.001
110	31-Oct	11:08:12	0
111	31-Oct	11:09:12	0.001
112	31-Oct	11:10:12	0
113	31-Oct	11:11:12	0
114	31-Oct	11:12:12	0
115	31-Oct	11:13:12	0
116	31-Oct	11:14:12	0
117	31-Oct	11:15:12	0
118	31-Oct	11:16:12	0
119	31-Oct	11:17:12	0
120	31-Oct	11:18:12	0
121	31-Oct	11:19:12	0
122	31-Oct	11:20:12	0
123	31-Oct	11:21:12	0.001
124	31-Oct	11:22:12	0
125	31-Oct	11:23:12	0
126	31-Oct	11:24:12	0
127	31-Oct	11:25:12	0
128	31-Oct	11:26:12	0
129	31-Oct	11:27:12	0
130	31-Oct	11:28:12	0
131	31-Oct	11:29:12	0
132	31-Oct	11:30:12	0
133	31-Oct	11:31:12	0
134	31-Oct	11:32:12	0
135	31-Oct	11:33:12	0
136	31-Oct	11:34:12	0
137	31-Oct	11:35:12	0
138	31-Oct	11:36:12	0
139	31-Oct	11:37:12	0.003
140	31-Oct	11:38:12	0
141	31-Oct	11:39:12	0

-

			2 C
142	31-Oct	11:40:12	0
143	31-Oct	11:41:12	0
144	31-Oct	11.42.12	0
4.45	01-00t	11.42.12	0
145	31-Oct	11:43:12	0
146	31-Oct	11:44:12	0
147	31-Oct	11:45:12	0
148	31-Oct	11.46.12	0
140	21 Oct	11:47:12	0
149	31-000	11.47.12	0
150	31-Oct	11:48:12	0
151	31-Oct	11:49:12	0
152	31-Oct	11:50:12	0
153	31-Oct	11.51.12	0
154	31 Oct	11.52.12	0
104	31-001	11.52.12	0
155	31-Oct	11:53:12	0
156	31-Oct	11:54:12	0
157	31-Oct	11:55:12	0
158	31-Oct	11:56:12	0
150	31-Oct	11.57.12	0
100	31-000	11.07.12	0
160	31-Oct	11:58:12	0
161	31-Oct	11:59:12	0
162	31-Oct	12:00:12	0
163	31-Oct	12:01:12	0
164	31-Oct	12.02.12	0
104	31-Oct	12.02.12	0
100	31-Oct	12.03.12	0
166	31-Oct	12:04:12	0
167	31-Oct	12:05:12	0
168	31-Oct	12:06:12	0
169	31-Oct	12.07.12	0
170	21 Oct	12:00:12	0
170	31-001	12.00.12	0
1/1	31-Oct	12:09:12	0
172	31-Oct	12:10:12	0
173	31-Oct	12:11:12	0
174	31-Oct	12.12.12	0
175	31-Oct	12.13.12	0
170	31-Oct	12.10.12	0
170	31-Oct	12:14:12	0
177	31-Oct	12:15:12	0
178	31-Oct	12:16:12	0
179	31-Oct	12:17:12	0.001
180	31-Oct	12.18.12	0
181	31 Oct	12:10:12	0
101	31-Oct	12.19.12	0
182	31-Oct	12:20:12	0
183	31-Oct	12:21:12	0
184	31-Oct	12:22:12	0
185	31-Oct	12:23:12	0
186	31-Oct	12.24.12	0
107	21.0-1	10.05.40	0
10/	31-Oct	12.25.12	0
188	31-Oct	12:26:12	0
189	31-Oct	12:27:12	0
190	31-Oct	12:28:12	0
191	31-Oct	12.29.12	0
102	21 Oct	12:20.12	0
192	SI-Oct	12.30.12	0
193	31-Oct	12:31:12	0

· • ---

194	31-Oct	12:32:12	0
195	31-Oct	12:33:12	0.001
196	31-Oct	12:34:12	0
197	31-Oct	12:35:12	0
198	31-Oct	12:36:12	0
199	31-Oct	12.37.12	0
200	31-Oct	12:38:12	0
201	31-Oct	12:39:12	0
202	31-Oct	12:40:12	0
203	31-Oct	12:40.12	0
200	31-Oct	12.41.12	0
204	31-Oct	12.42.12	0
200	31 Oct	12.40.12	0
200	31-00L	12.44.12	0
207	31-Oct	12.40.12	0
208	31-Oct	12.40.12	0
209	31-Oct	12:47:12	0
210	31-Oct	12:40:12	0
211	31-Oct	12:49:12	0
212	31-Oct	12:50:12	0
213	31-Oct	12:51:12	0
214	31-Oct	12:52:12	0
215	31-Oct	12:53:12	0
216	31-Oct	12:54:12	0
217	31-Oct	12:55:12	0
218	31-Oct	12:56:12	0
219	31-Oct	12:57:12	0
220	31-Oct	12:58:12	0
221	31-Oct	12:59:12	0
222	31-Oct	13:00:12	0
223	31-Oct	13:01:12	0
224	31-Oct	13:02:12	0
225	31-Oct	13:03:12	0
226	31-Oct	13:04:12	0
227	31-Oct	13:05:12	0
228	31-Oct	13:06:12	0
229	31-Oct	13:07:12	0
230	31-Oct	13:08:12	0
231	31-Oct	13:09:12	0
232	31-Oct	13:10:12	0
233	31-Oct	13:11:12	0
234	31-Oct	13:12:12	0
235	31-Oct	13:13:12	0
236	31-Oct	13:14:12	0
237	31-Oct	13:15:12	0
238	31-Oct	13:16:12	0
239	31-Oct	13:17:12	0
240	31-Oct	13:18:12	0
241	31-Oct	13:19:12	0
242	31-Oct	13:20:12	0
243	31-Oct	13:21:12	0
244	31-Oct	13:22:12	0
245	31-Oct	13:23:12	0

246	31-Oct	13:24:12	0
247	31-Oct	13:25:12	0
248	31-Oct	13:26:12	0
249	31-Oct	13:27:12	0
250	31-Oct	13:28:12	0
251	31-Oct	13:29:12	0
252	31-Oct	13:30:12	0
253	31-Oct	13.31.12	0
254	31-Oct	13.32.12	0
255	31-Oct	13.33.12	0
256	31-Oct	13.34.12	0
257	31-Oct	13:35:12	0
258	31-Oct	13:36:12	0
250	31-Oct	13.37.12	0
209	31-Oct	12.28.12	0
200	31-00L	12.20.12	0
201	21 Oct	12:40:12	0
202	21 Oct	12:41:12	0
203	31-Oct	13.41.12	0
204	31-Oct	13.42.12	0
200	31-Oct	13:43:12	0
200	31-Oct	13:44:12	0
207	31-Oct	13:45:12	0
268	31-Oct	13:46:12	0
269	31-Oct	13:47:12	0
270	31-Oct	13:48:12	0
271	31-Oct	13:49:12	0
272	31-Oct	13:50:12	0
273	31-Oct	13:51:12	0
274	31-Oct	13:52:12	0
275	31-Oct	13:53:12	0
276	31-Oct	13:54:12	0
277	31-Oct	13:55:12	0
278	31-Oct	13:56:12	0
279	31-Oct	13:57:12	0
280	31-Oct	13:58:12	0
281	31-Oct	13:59:12	0
282	31-Oct	14:00:12	0
283	31-Oct	14:01:12	0.007
284	31-Oct	14:02:12	0
285	31-Oct	14:03:12	0
286	31-Oct	14:04:12	0.009
287	31-Oct	14:05:12	0
288	31-Oct	14:06:12	0
289	31-Oct	14:07:12	0
290	31-Oct	14:08:12	0
291	31-Oct	14:09:12	0
292	31-Oct	14:10:12	0
293	31-Oct	14:11:12	0
294	31-Oct	14:12:12	0
295	31-Oct	14:13:12	0
296	31-Oct	14:14:12	0
297	31-Oct	14:15:12	0

298	31-Oct	14:16:12	0)
299	31-Oct	14:17:12	0)
300	31-Oct	14:18:12	C)
301	31-Oct	14:19:12	0)
302	31-Oct	14:20:12	C)
303	31-Oct	14:21:12	C)
304	31-Oct	14:22:12	C)
305	31-Oct	14:23:12	C)
306	31-Oct	14:24:12	C)
307	31-Oct	14:25:12	C)
308	31-Oct	14:26:12	C)
309	31-Oct	14:27:12	C)
310	31-Oct	14:28:12	C)
311	31-Oct	14:29:12	C)
312	31-Oct	14:30:12	C)
313	31-Oct	14:31:12	C)
314	31-Oct	14:32:12	C)
315	31-Oct	14:33:12	C)
316	31-Oct	14:34:12	C)
317	31-Oct	14:35:12	C)
318	31-Oct	14:36:12	C)
319	31-Oct	14:37:12	C)
320	31-Oct	14:38:12	C)
321	31-Oct	14:39:12	C)
322	31-Oct	14:40:12	C)
323	31-Oct	14:41:12	C)
324	31-Oct	14:42:12	C)

BBBL EASLAND BOUCK & LEE INC UND/IT WOLK & VICION/1212

Project: FIRMER TEW, UT	TICA, NY	Date: 11/01/05	
Monitoring Instruments: PDR	-1000 AN		
Air Monitor: A. ENIGK		Activity: GRADING OF	RUN-OF-BANK
Level of Protection: MOD. LE	VFLD		MATERIAL
Time	Location	(M9 /M ³) Instrument Reading	Comments
700	A	6.000	
700	B	0.000	
700	С	6.000	
806	А	0.000	
800	В	0.000	
800	C	0.000	
900	A	0.006	
900	В	. 0.000	
900	C	0.000	
1000	A-2	0.000	SWITCHED LOCATIONS
1000	B-2	0.000	& WORK AREA
1000	6-2	0.000	
1100	A-2	0.000	
1100	B-2	0.000	
1100	6-2	0.000	
1200	A - 2	0.000	
1200	B-2		
1200	C-2		
1300	A - 2		
1300	B-2		
1300	C-2		-
1400 1403 1400 1400	A-2 B-2 C-2 A-2		
BBLRedivect.cfm 1500	13-2		

pDR-1000 S/N: 06083 User ID: Location A Tag Number: 02 Number of logged points: 97 Start time and date: 07:11:25 01-Nov Elapsed time: 08:05:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.104 mg/m³ Time at maximum: 10:36:36 Nov 01 Max STEL Concentration: 0.024 mg/m3 Time at max STEL: 15:17:56 Nov 01 Overall Avg Conc: 0.002 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 1-Nov 07:16:25 0.004 1 2 1-Nov 07:21:25 0.008 3 1-Nov 07:26:25 0.007 4 0.006 1-Nov 07:31:25 5 1-Nov 07:36:25 0.01 6 1-Nov 07:41:25 0.004 7 1-Nov 07:46:25 0.007 8 1-Nov 07:51:25 0.006 9 1-Nov 07:56:25 0.004 10 1-Nov 08:01:25 0.005 0.008 11 1-Nov 08:06:25 12 1-Nov 08:11:25 0.005 0.004 13 1-Nov 08:16:25 14 1-Nov 08:21:25 0.004 15 1-Nov 08:26:25 0.003 1-Nov 08:31:25 0.007 16 17 1-Nov 08:36:25 0.002 18 1-Nov 08:41:25 0.004 19 1-Nov 08:46:25 0.002 20 1-Nov 08:51:25 0.001 21 0.001 1-Nov 08:56:25 22 1-Nov 09:01:25 0.002 23 1-Nov 09:06:25 0.001 24 1-Nov 09:11:25 0.002 25 0.002 1-Nov 09:16:25 26 1-Nov 09:21:25 0.001 27 1-Nov 09:26:25 0 28 1-Nov 09:31:25 0.001 29 1-Nov 09:36:25 0.001 30 1-Nov 09:41:25 0.001 31 1-Nov 09:46:25 0 32 1-Nov 09:51:25 0.001 33 1-Nov 09:56:25 0.001 34 1-Nov 10:01:25 0.001 35 1-Nov 10:06:25 0.002 36 1-Nov 10:11:25 0.001 37 1-Nov 10:16:25 0.002

38	1-Nov	10:21:25	0.005
39	1-Nov	10:26:25	0.004
40	1-Nov	10:31:25	0.006
41	1-Nov	10:36:25	0.015
42	1-Nov	10:41:25	0.01
43	1-Nov	10:46:25	0.001
44	1-Nov	10:51:25	0.001
45	1-Nov	10:56:25	0.004
46	1-Nov	11:01:25	0.012
47	1-Nov	11:06:25	0.014
48	1-Nov	11:11:25	0.015
49	1-Nov	11:16:25	0.006
50	1-Nov	11:21:25	0.004
51	1-Nov	11:26:25	0.003
52	1-Nov	11:31:25	0.003
53	1-Nov	11:36:25	0.005
54	1-Nov	11:41:25	0.004
55	1-Nov	11:46:25	0.007
56	1-Nov	11:51:25	0.003
57	1-Nov	11:56:25	0.002
58	1-Nov	12:01:25	0.002
59	1-Nov	12:06:25	0.004
60	1-Nov	12:11:25	0.002
61	1-Nov	12:16:25	0.003
62	1-Nov	12:21:25	0.002
63	1-Nov	12:26:25	0.001
64	1-Nov	12:31:25	0.002
65	1-Nov	12:36:25	0.002
66	1-Nov	12:41:25	0.001
67	1-Nov	12:46:25	0.001
68	1-Nov	12:51:25	0.001
60	1-Nov	12:56:25	0.003
70	1-Nov	12:00:25	0.002
71	1-Nov	13:06:25	0.002
72	1-Nov	13:11:25	0.000
72	1-Nov	13:16:25	0.002
74	1 Nov	12:21:25	0.001
75	1 Nov	13.21.25	0.002
76	1 Nov	13.20.25	0.001
70	1 Nov	13.31.25	0.004
70	1 Nov	13.30.25	0.002
70	1 Nov	13.41.20	0.003
00	1-NOV	13.40.20	0.005
00	1-INOV	13:01:20	0.001
01	1-NOV	13.30.25	0.002
02	1-NOV	14:01:25	0.002
03	1-NOV	14:00:25	0.004
04	1-INOV	14:11:25	0.002
80	1-NOV	14:16:25	0.002
00	1-NOV	14:21:25	0.002
0/	1-NOV	14:20:25	0.002
88	1-NOV	14:31:25	0.003
89	1-Nov	14:36:25	0.003

. . . .

	90	1-Nov	14:41:25	0.003
	91	1-Nov	14:46:25	0.003
	92	1-Nov	14:51:25	0.004
	93	1-Nov	14:56:25	0.007
	94	1-Nov	15:01:25	0.008
	95	1-Nov	15:06:25	0.009
	96	1-Nov	15:11:25	0.015
	97	1-Nov	15:16:25	0.041
_				

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 02 Number of logged points: 96 Start time and date: 07:17:38 01-Nov Elapsed time: 08:00:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.637 mg/m3 Time at maximum: 12:05:02 Nov 01 Max STEL Concentration: 0.019 mg/m³ Time at max STEL: 12:12:08 Nov 01 Overall Avg Conc: 0.003 mg/m³ Logged Data: Point Avg.(mg/m³) Date Time 1 1-Nov 07:22:38 0.004

2	1-Nov	07:27:38	0.003
3	1-Nov	07:32:38	0.002
4	1-Nov	07:37:38	0.005
5	1-Nov	07:42:38	0
6	1-Nov	07:47:38	0.005
7	1-Nov	07:52:38	0
8	1-Nov	07:57:38	0
9	1-Nov	08:02:38	0.002
10	1-Nov	08:07:38	0.009
11	1-Nov	08:12:38	0.009
12	1-Nov	08:17:38	0.001
13	1-Nov	08:22:38	0.001
14	1-Nov	08:27:38	0.002
15	1-Nov	08:32:38	0
16	1-Nov	08:37:38	0.001
17	1-Nov	08:42:38	0.004
18	1-Nov	08:47:38	0.002
19	1-Nov	08:52:38	0.003
20	1-Nov	08:57:38	0
21	1-Nov	09:02:38	0.001
22	1-Nov	09:07:38	0.002
23	1-Nov	09:12:38	0
24	1-Nov	09:17:38	0.002
25	1-Nov	09:22:38	0.002
26	1-Nov	09:27:38	0.003
27	1-Nov	09:32:38	0.002
28	1-Nov	09:37:38	0.001
29	1-Nov	09:42:38	0.001
30	1-Nov	09:47:38	0.001
31	1-Nov	09:52:38	0
32	1-Nov	09:57:38	0.001
33	1-Nov	10:02:38	0.002
34	1-Nov	10:07:38	0.001
35	1-Nov	10:12:38	0
36	1-Nov	10:17:38	0
37	1-Nov	10:22:38	0.003

38	1-Nov	10:27:38	0.005
39	1-Nov	10:32:38	0.008
40	1-Nov	10:37:38	0.011
41	1-Nov	10:42:38	0.002
42	1-Nov	10:47:38	0.001
43	1-Nov	10:52:38	0.001
44	1-Nov	10:57:38	0.006
45	1-Nov	11:02:38	0.013
46	1-Nov	11:07:38	0.015
47	1-Nov	11:12:38	0.014
48	1-Nov	11:17:38	0.007
49	1-Nov	11:22:38	0.004
50	1-Nov	11:27:38	0.015
51	1-Nov	11:32:38	0.01
52	1-Nov	11:37:38	0.008
53	1-Nov	11:42:38	0.004
54	1-Nov	11:47:38	0.007
55	1-Nov	11:52:38	0.004
56	1-Nov	11:57:38	0.004
57	1-Nov	12:02:38	0.003
58	1-Nov	12:07:38	0.042
59	1-Nov	12:12:38	0.015
60	1-Nov	12:17:38	0.004
61	1-Nov	12:22:38	0.004
62	1-Nov	12.27.38	0.01
63	1-Nov	12:32:38	0.006
64	1-Nov	12:37:38	0.004
65	1-Nov	12:42:38	0.013
66	1-Nov	12:47:38	0.005
67	1-Nov	12:52:38	0.01
68	1-Nov	12:57:38	0.004
69	1-Nov	13:02:38	0.005
70	1-Nov	13.07.38	0.004
71	1-Nov	13.12.38	0.004
72	1-Nov	13.17.38	0.003
73	1-Nov	13.22.38	0.003
74	1-Nov	13.27.38	0.005
75	1-Nov	13:32:38	0.006
76	1-Nov	13:37:38	0.000
77	1-Nov	13:42:38	0.000
78	1-Nov	13:47:38	0.000
79	1-Nov	13.52.38	0.004
80	1-Nov	13:57:38	0.003
81	1-Nov	14.02.38	0.008
82	1-Nov	14.07.38	0.000
83	1-Nov	14.12.38	0.003
84	1-Nov	14.17.20	0.001
85	1-Nov	14.22.30	0.001
86	1-Nov	14.22.30	0.000
87	1-Nov	14.22.20	0.001
88	1-Nov	14:37:30	0.001
80	1-Nov	14.07.00	0.001
00	INOV	14.42.30	0.003

90	1-Nov	14:47:38	0.001
91	1-Nov	14:52:38	0.001
92	1-Nov	14:57:38	0.002
93	1-Nov	15:02:38	0.001
94	1-Nov	15:07:38	0.003
95	1-Nov	15:12:38	0.017
96	1-Nov	15:17:38	0.032
 000000	0000100	0.43	

pDR-1000 S/N: 06133 User ID: Location C Tag Number: 02 Number of logged points: 95 Start time and date: 07:23:00 01-Nov Elapsed time: 07:55:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 1.570 mg/m3 Time at maximum: 10:38:14 Nov 01 Max STEL Concentration: 0.031 mg/m3 Time at max STEL: 15:18:32 Nov 01 Overall Avg Conc: 0.001 mg/m3 Logged Data: Point Date Time Avg.(mg/m3) 1-Nov 07:28:00 1 0 2 1-Nov 07:33:00 0 3 0.001 1-Nov 07:38:00 4 1-Nov 07:43:00 0.001 5 1-Nov 07:48:00 0.002 6 1-Nov 07:53:00 0 7 1-Nov 07:58:00 0.002 8 1-Nov 08:03:00 0 0.001 9 1-Nov 08:08:00 10 1-Nov 08:13:00 0 1-Nov 08:18:00 0 11 1-Nov 08:23:00 0 12 1-Nov 08:28:00 0.002 13 14 1-Nov 08:33:00 0 15 1-Nov 08:38:00 0 16 1-Nov 08:43:00 0.001 1-Nov 08:48:00 17 0 1-Nov 08:53:00 0 18 19 1-Nov 08:58:00 0 20 1-Nov 09:03:00 0.004 21 1-Nov 09:08:00 0 22 1-Nov 09:13:00 0.009 23 1-Nov 09:18:00 0.005 24 1-Nov 09:23:00 0.004 25 1-Nov 09:28:00 0.001 26 1-Nov 09:33:00 0.002 27 1-Nov 09:38:00 0 28 1-Nov 09:43:00 0 29 1-Nov 09:48:00 0.001 30 1-Nov 09:53:00 0.006 31 1-Nov 09:58:00 0 32 1-Nov 10:03:00 0 33 1-Nov 10:08:00 0.002 34 1-Nov 10:13:00 0.001

1-Nov 10:18:00

1-Nov 10:23:00

1-Nov 10:28:00

0.006

0.001

0.003

35

36

37

38	1-Nov	10:33:00	0.008
39	1-Nov	10:38:00	0.011
40	1-Nov	10:43:00	0.064
41	1-Nov	10:48:00	0.001
42	1-Nov	10:53:00	0.009
43	1-Nov	10:58:00	0.019
44	1-Nov	11.03.00	0.014
45	1-Nov	11.08.00	0.033
46	1-Nov	11.13.00	0.01
47	1-Nov	11.18.00	0.004
48	1-Nov	11.23.00	0.001
49	1-Nov	11.28.00	0.001
50	1-Nov	11:33:00	0.007
51	1-Nov	11.38.00	0.005
52	1-Nov	11:43:00	0.006
53	1-Nov	11.48.00	0.000
54	1-Nov	11:53:00	0.002
55	1-Nov	11.58.00	0.005
56	1-Nov	12.03.00	0.000
57	1-Nov	12:08:00	0
58	1-Nov	12:13:00	0.004
50	1-Nov	12.13.00	0.004
60	1-Nov	12:10:00	0.007
61	1 Nov	12.23.00	0.007
60	1 Nov	12.20.00	0.005
62	1-NOV	12.33.00	0.005
03	1-INOV	12.38.00	0.003
04	1-NOV	12.43.00	0.002
00	1-NOV	12:48:00	0.001
00	1-INOV	12:53:00	0.003
67	1-NOV	12:58:00	0
68	1-Nov	13:03:00	0
69	1-Nov	13:08:00	0.001
70	1-Nov	13:13:00	0
/1	1-Nov	13:18:00	0
72	1-Nov	13:23:00	0
73	1-Nov	13:28:00	0.004
74	1-Nov	13:33:00	0
75	1-Nov	13:38:00	0
76	1-Nov	13:43:00	0
77	1-Nov	13:48:00	0
78	1-Nov	13:53:00	0.003
79	1-Nov	13:58:00	0.001
80	1-Nov	14:03:00	0.004
81	1-Nov	14:08:00	0.025
82	1-Nov	14:13:00	0
83	1-Nov	14:18:00	0
84	1-Nov	14:23:00	0
85	1-Nov	14:28:00	0.003
86	1-Nov	14:33:00	0
87	1-Nov	14:38:00	0
88	1-Nov	14:43:00	0.001
89	1-Nov	14:48:00	0

. . . .

	90	1-Nov	14:53:00	0.016
	91	1-Nov	14:58:00	0.009
	92	1-Nov	15:03:00	0.004
	93	1-Nov	15:08:00	0.001
	94	1-Nov	15:13:00	0.046
	95	1-Nov	15:18:00	0.053
1				

Project: FORMER TRW ,	UTICA, NY	Date: 11/03/05 Activity: PLACEMENT OF R.O. B. MATERIAL		
Monitoring Instruments: P	DR - 1000AN			
Air Monitor: AIENIGK				
Level of Protection: MSD .L	EVELD			
Time	(SEE FIG.) Location	(mg / n³) Instrument Reading	Comments	
300	A	0.000		
800	В	0.000		
800	C	0.000		
900	A	0.000		
900	В	0.000		
900	С	0.000	QLOC. A WAS	
1006	A	0.005	FOUND ATTENDED TO MOVE	
1000	В	.0.000	ALARM. ALARM WAS NOT	
1000	С	0.000	BLOWING ONSITE DUST	
1106	A	0.000	12	
1100	B	0.000		
1100	С	0.000		
1200	A	0.055		
1200	В	0.000		
1200	С	0.000		
1306	A		ABNORMACH HIGH	
300	B	0.006	READINGS I 'APPEARS THAT METER IS NOT	
1300	C	0.000	FONCTIONING PROPERTY HIGH BEADINGS CONTID	
1406	A		> EWEN WHEN PLACED NE PD. MHOTHER METERS.	
1400	В	0.006	TWO READING "ON METER WAR	
(400	C	0.000	CLEANED & RECALIBID & REOBLEM PERSISTED.	
1506	A		FROM USE UNTIL IT GAN	
1506	B	0.000	BE CLEANED BETTER &	
1500	C] 0.000	RE ZEROED.	

pDR-1000 S/N: 06083 User ID: Location A Tag Number: 03 Number of logged points: 64 Start time and date: 08:01:25 03-Nov Elapsed time: 05:20:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 400.795 mg/m³ Time at maximum: 13:19:53 Nov 03 Max STEL Concentration: 17.073 mg/m³ Time at max STEL: 12:46:25 Nov 03 Overall Avg Conc: 3.038 mg/m³ Logged Data: Avg.(mg/m³) Point Date Time

	1	3-Nov	08:06:25	0.011
3	2	3-Nov	08:11:25	0.008
3	3	3-Nov	08:16:25	0.018
	4	3-Nov	08:21:25	0.013
	5	3-Nov	08:26:25	0.005
	6	3-Nov	08:31:25	0.004
	7	3-Nov	08:36:25	0.005
	8	3-Nov	08:41:25	0.001
	9	3-Nov	08:46:25	0.003
1	0	3-Nov	08:51:25	0.009
1	1	3-Nov	08:56:25	0.016
1:	2	3-Nov	09:01:25	0.003
1	3	3-Nov	09:06:25	0.002
1	4	3-Nov	09:11:25	0.002
1	5	3-Nov	09:16:25	0.003
1	6	3-Nov	09:21:25	0.01
1	7	3-Nov	09:26:25	0
1	8	3-Nov	09:31:25	0.001
1	9	3-Nov	09:36:25	0.002
2	0	3-Nov	09:41:25	0.008
2	1	3-Nov	09:46:25	0.004
2	2	3-Nov	09:51:25	0.03
2	3	3-Nov	09:56:25	0
2	4	3-Nov	10:01:25	0
2	5	3-Nov	10:06:25	0
2	6	3-Nov	10:11:25	0.04
2	7	3-Nov	10:16:25	0.187
2	8	3-Nov	10:21:25	0.153
2	9	3-Nov	10:26:25	0.006
3	0	3-Nov	10:31:25	0.001
3	1	3-Nov	10:36:25	0.014
3	2	3-Nov	10:41:25	0.298
3	3	3-Nov	10:46:25	0
3	4	3-Nov	10:51:25	0
3	5	3-Nov	10:56:25	0
3	6	3-Nov	11:01:25	0.001
3	7	3-Nov	11:06:25	0.002

38	3-Nov	11:11:25	0.002
39	3-Nov	11:16:25	0
40	3-Nov	11:21:25	0
41	3-Nov	11:26:25	0.002
42	3-Nov	11:31:25	0
43	3-Nov	11:36:25	0
44	3-Nov	11:41:25	1.211
45	3-Nov	11:46:25	23.68
46	3-Nov	11:51:25	10.89
47	3-Nov	11:56:25	3.255
48	3-Nov	12:01:25	19.65
49	3-Nov	12:06:25	24.14
50	3-Nov	12:11:25	0.073
51	3-Nov	12:16:25	2.761
52	3-Nov	12:21:25	0.501
53	3-Nov	12:26:25	0.006
54	3-Nov	12:31:25	0.009
55	3-Nov	12:36:25	26.92
56	3-Nov	12:41:25	14.14
57	3-Nov	12:46:25	10.17
58	3-Nov	12:51:25	1.984
59	3-Nov	12:56:25	3.22
60	3-Nov	13:01:25	6.65
61	3-Nov	13:06:25	2.686
62	3-Nov	13:11:25	0.133
63	3-Nov	13:16:25	6.99
64	3-Nov	13:21:25	27.29

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 03 Number of logged points: 83 Start time and date: 08:01:42 03-Nov Elapsed time: 06:55:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.230 mg/m³ Time at maximum: 13:32:49 Nov 03 Max STEL Concentration: 0.004 mg/m³ Time at max STEL: 08:10:12 Nov 03 Overall Avg Conc: 0.000 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 1 3-Nov 08:06:42 0.011 2 3-Nov 08:11:42 0.002

3	3-Nov	08:16:42	0
4	3-Nov	08:21:42	0.001
5	3-Nov	08:26:42	0
6	3-Nov	08:31:42	0.003
7	3-Nov	08:36:42	0.003
8	3-Nov	08:41:42	0.001
9	3-Nov	08:46:42	0
10	3-Nov	08:51:42	0
11	3-Nov	08:56:42	0.002
12	3-Nov	09:01:42	0.002
13	3-Nov	09:06:42	0
14	3-Nov	09:11:42	0
15	3-Nov	09:16:42	0
16	3-Nov	09:21:42	0
17	3-Nov	09:26:42	0
18	3-Nov	09:31:42	0
19	3-Nov	09:36:42	0
20	3-Nov	09:41:42	0
21	3-Nov	09:46:42	0
22	3-Nov	09:51:42	0.001
23	3-Nov	09:56:42	0
24	3-Nov	10:01:42	0
25	3-Nov	10:06:42	0
26	3-Nov	10:11:42	0.001
27	3-Nov	10:16:42	0
28	3-Nov	10:21:42	0
29	3-Nov	10:26:42	0
30	3-Nov	10:31:42	0
31	3-Nov	10:36:42	0
32	3-Nov	10:41:42	0.001
33	3-Nov	10:46:42	0
34	3-Nov	10:51:42	0.002
35	3-Nov	10:56:42	0
36	3-Nov	11:01:42	0
37	3-Nov	11:06:42	0

38	3-Nov	11:11:42	0.001
39	3-Nov	11:16:42	0
40	3-Nov	11:21:42	0
41	3-Nov	11:26:42	0.004
42	3-Nov	11:31:42	0.002
43	3-Nov	11:36:42	0
44	3-Nov	11:41:42	0
45	3-Nov	11:46:42	0.002
46	3-Nov	11:51:42	0
47	3-Nov	11:56:42	0.002
48	3-Nov	12:01:42	0.001
49	3-Nov	12:06:42	0.004
50	3-Nov	12:11:42	0
51	3-Nov	12:16:42	0
52	3-Nov	12:21:42	0.001
53	3-Nov	12:26:42	0.001
54	3-Nov	12:31:42	0
55	3-Nov	12:36:42	0
56	3-Nov	12:41:42	0.001
57	3-Nov	12:46:42	0
58	3-Nov	12:51:42	0.001
59	3-Nov	12:56:42	0
60	3-Nov	13:01:42	0.004
61	3-Nov	13:06:42	0.008
62	3-Nov	13:11:42	0.005
63	3-Nov	13:16:42	0.001
64	3-Nov	13:21:42	0.011
65	3-Nov	13:26:42	0.006
66	3-Nov	13:31:42	0.001
67	3-Nov	13:36:42	0.011
68	3-Nov	13:41:42	0.001
69	3-Nov	13:46:42	0.002
70	3-Nov	13:51:42	0.003
71	3-Nov	13:56:42	0.003
72	3-Nov	14:01:42	0.001
73	3-Nov	14:06:42	0.006
74	3-Nov	14:11:42	0
75	3-Nov	14:16:42	0.001
76	3-Nov	14:21:42	0
77	3-Nov	14:26:42	0.001
78	3-Nov	14:31:42	0.001
79	3-Nov	14:36:42	0.001
80	3-Nov	14:41:42	0.001
81	3-Nov	14:46:42	0.011
82	3-Nov	14:51:42	0
83	3-Nov	14:56:42	0

- ----

pDR-1000 S/N: 06133 User ID: Location C Tag Number: 03 Number of logged points: 83 Start time and date: 08:02:00 03-Nov Elapsed time: 06:55:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.096 mg/m3 Time at maximum: 14:45:51 Nov 03 Max STEL Concentration: 0.000 mg/m3 Time at max STEL: 08:02:00 Nov 03 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Date Time Avg.(mg/m3) 1 3-Nov 08:07:00 0.003 2 3-Nov 08:12:00 0 3 3-Nov 08:17:00 0 4 3-Nov 08:22:00 0.001 5 3-Nov 08:27:00 0 6 3-Nov 08:32:00 0 7 3-Nov 08:37:00 0.001 8 3-Nov 08:42:00 0 9 3-Nov 08:47:00 0 0.002 10 3-Nov 08:52:00 11 3-Nov 08:57:00 0 3-Nov 09:02:00 0 12 13 3-Nov 09:07:00 0 14 3-Nov 09:12:00 0.001 15 3-Nov 09:17:00 0 3-Nov 09:22:00 16 0 3-Nov 09:27:00 17 0 18 3-Nov 09:32:00 0.006 19 3-Nov 09:37:00 0 20 3-Nov 09:42:00 0.001 21 0 3-Nov 09:47:00 22 3-Nov 09:52:00 0 23 0 3-Nov 09:57:00 24 3-Nov 10:02:00 0 25 3-Nov 10:07:00 0.001 26 3-Nov 10:12:00 0.001 27 3-Nov 10:17:00 0 28 3-Nov 10:22:00 0 29 3-Nov 10:27:00 0 30 3-Nov 10:32:00 0 31 3-Nov 10:37:00 0.001 32 3-Nov 10:42:00 0 33 3-Nov 10:47:00 0 34 3-Nov 10:52:00 0 35 3-Nov 10:57:00 0

3-Nov 11:02:00

3-Nov 11:07:00

0.002

0.001

36

37

38	3-Nov	11:12:00	0		
39	3-Nov	11:17:00	0.002		
40	3-Nov	11:22:00	0		
41	3-Nov	11:27:00	0.002		
42	3-Nov	11:32:00	0		
43	3-Nov	11:37:00	0		
44	3-Nov	11:42:00	0.001		
45	3-Nov	11:47:00	0		
46	3-Nov	11:52:00	0.002		
47	3-Nov	11:57:00	0		
48	3-Nov	12:02:00	0		
49	3-Nov	12:07:00	0		
50	3-Nov	12:12:00	0		
51	3-Nov	12:17:00	0		
52	3-Nov	12:22:00	0		
53	3-Nov	12:27:00	0		
54	3-Nov	12:32:00	0		
55	3-Nov	12:37:00	0.002		
56	3-Nov	12:42:00	0		
57	3-Nov	12:47:00	0		
58	3-Nov	12:52:00	0.001		
59	3-Nov	12:57:00	0		
60	3-Nov	13:02:00	0.001		
61	3-Nov	13:07:00	0.001		
62	3-Nov	13:12:00	0.003		
63	3-Nov	13:17:00	0		
64	3-Nov	13:22:00	0		
65	3-Nov	13:27:00	0.002		
66	3-Nov	13:32:00	0		
67	3-Nov	13:37:00	0		
68	3-Nov	13:42:00	0		
69	3-Nov	13:47:00	0		
70	3-Nov	13:52:00	0		
71	3-Nov	13:57:00	0		
72	3-Nov	14:02:00	0.001		
73	3-Nov	14:07:00	0.001		
74	3-Nov	14:12:00	0		
75	3-Nov	14:17:00	0		
76	3-Nov	14:22:00	0		
77	3-Nov	14:27:00	0		
78	3-Nov	14:32:00	0		
79	3-Nov	14:37:00	0		
80	3-Nov	14:42:00	0		
81	3-Nov	14:47:00	0.005		
82	3-Nov	14:52:00	0		
83	3-Nov	14:57:00	0		
00053230300006010303}					

Project: FORMER TI	EW, UTICA, NY	Date: 11/04/05		
Monitoring Instruments:	PPR-1000AN			
Air Monitor: A.ENIEK		Activity: PLACEMENT / GRADING OF PUN-OF-BANK MATERIAL		
Level of Protection: Mo	D. LEVEL D			
Time	(SEE FIGURE) Location	(mg /m3) Instrument Reading	Comments	
730	XA	0.000	NORKAREA: SOUTHE PARTION OF AREA-5	
730	В	0.000		
830	A	0.000		
830	В	0.000		
930	A	0.000		
930	ß	0.000		
1030	A	0-000	-	
1030	В	0.000		
1030	c -	0.000	CLEANED METER W/	
1130	A	0.000	& RESTARTED . METER SEEMED TO FUNCTION	
1130	В	0.000	PEOPERLY SO IT WAS PLACED IN THE URVINI	
(130)	C	0.000	LOCATION INDICATEDON THE FIG.	
1230	A	0.000		
1230	B	0.000		
1230	С	0.005		
1330	A-2	6.000	WORK AREA CHANGED TO BASTERN PORTION OF	
1330	8-2	0.000	AREA-3.	
(330	C-2	0.001		
1430	4-2	0.000		
1430	B-2	0.000		
1430	C-2	0.004		
1530 1530 1530	A-2 B-2 (-2	0.000 0.010 0.043 -	METER CONTINUES	
BBLRedirect.cfm (630	B-20	0,000	HIGH PERD INFS	

pDR-1000 S/N: 06133 User ID: Location A Tag Number: 04 Number of logged points: 105 Start time and date: 07:31:38 04-Nov Elapsed time: 08:45:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 1.588 mg/m³ Time at maximum: 12:09:03 Nov 04 Max STEL Concentration: 0.019 mg/m3 Time at max STEL: 12:22:39 Nov 04 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Date Avg.(mg/m³) Time 4-Nov 07:36:38 1 0.001 0.002 2 4-Nov 07:41:38 4-Nov 07:46:38 0.003 3 4 4-Nov 07:51:38 0.002 5 4-Nov 07:56:38 0.002 6 4-Nov 08:01:38 0.003 7 4-Nov 08:06:38 0.004 0.001 8 4-Nov 08:11:38 4-Nov 08:16:38 0 9 0 4-Nov 08:21:38 10 4-Nov 08:26:38 0 11 12 4-Nov 08:31:38 0 0 13 4-Nov 08:36:38 0 14 4-Nov 08:41:38 15 4-Nov 08:46:38 0 0 16 4-Nov 08:51:38 17 4-Nov 08:56:38 0.001 18 4-Nov 09:01:38 0 19 4-Nov 09:06:38 0 20 0 4-Nov 09:11:38 21 0 4-Nov 09:16:38 4-Nov 09:21:38 22 0 23 0 4-Nov 09:26:38 24 4-Nov 09:31:38 0 25 4-Nov 09:36:38 0 26 4-Nov 09:41:38 0 27 4-Nov 09:46:38 0 28 0 4-Nov 09:51:38 29 4-Nov 09:56:38 0 30 4-Nov 10:01:38 0 31 0 4-Nov 10:06:38 32 4-Nov 10:11:38 0 33 4-Nov 10:16:38 0 34 0 4-Nov 10:21:38 35 4-Nov 10:26:38 0 36 0 4-Nov 10:31:38 37 4-Nov 10:36:38 0.006

38 39 40 41	4-Nov 4-Nov 4-Nov 4-Nov	10:41:38 10:46:38 10:51:38 10:56:38	0 0 0
42	4-Nov 4-Nov	11:01:38	0
44	4-Nov	11:16:38	0
46	4-Nov	11:21:38	0
47	4-Nov	11:26:38	0
48	4-Nov	11:31:38	0
49	4-Nov	11:36:38	0
50	4-Nov	11:41:38	0.001
51	4-Nov	11:46:38	0
52	4-Nov	11:51:38	0
54	4-Nov	12.01.38	0
55	4-Nov	12:06:38	0
56	4-Nov	12:11:38	0.133
57	4-Nov	12:16:38	0
58	4-Nov	12:21:38	0.002
59	4-Nov	12:26:38	0.005
60	4-Nov	12:31:38	0
61	4-Nov	12:36:38	0
62	4-Nov	12:41:38	0
63	4-Nov	12:46:38	0
64	4-Nov	12:51:38	0.002
66	4-Nov	12:00:38	0.017
67	4-Nov	13.01.30	0.028
68	4-Nov	13:11:38	0.016
69	4-Nov	13:16:38	0.010
70	4-Nov	13:21:38	0
71	4-Nov	13:26:38	0
72	4-Nov	13:31:38	0
73	4-Nov	13:36:38	0
74	4-Nov	13:41:38	0
75	4-Nov	13:46:38	0
76	4-Nov	13:51:38	0.016
78	4-INOV	13:00:38	0
79	4-Nov	14.01.30	0
80	4-Nov	14.11.38	0
81	4-Nov	14:16:38	ő
82	4-Nov	14:21:38	0
83	4-Nov	14:26:38	0
84	4-Nov	14:31:38	0
85	4-Nov	14:36:38	0
86	4-Nov	14:41:38	0
87	4-Nov	14:46:38	0.004
88	4-Nov	14:51:38	0
89	4-Nov	14:56:38	0

90	4-Nov	15:01:38	0
91	4-Nov	15:06:38	0
92	4-Nov	15:11:38	0
93	4-Nov	15:16:38	0.006
94	4-Nov	15:21:38	0.016
95	4-Nov	15:26:38	0.001
96	4-Nov	15:31:38	0.001
97	4-Nov	15:36:38	0
98	4-Nov	15:41:38	0.001
99	4-Nov	15:46:38	0.001
100	4-Nov	15:51:38	0.005
101	4-Nov	15:56:38	0.015
102	4-Nov	16:01:38	0.009
103	4-Nov	16:06:38	0.013
104	4-Nov	16:11:38	0.005
105	4-Nov	16:16:38	0.004

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 04 Number of logged points: 105 Start time and date: 07:32:18 04-Nov Elapsed time: 08:45:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.513 mg/m³ Time at maximum: 15:05:56 Nov 04 Max STEL Concentration: 0.047 mg/m³ Time at max STEL: 15:19:48 Nov 04 Overall Avg Conc: 0.003 mg/m³ Logged Data:

Point		Date	Time	Avg.(mg/m ³)
	1	4-Nov	07:37:18	0.017
	2	4-Nov	07:42:18	0.011
	3	4-Nov	07:47:18	0.009
	4	4-Nov	07:52:18	0.012
	5	4-Nov	07:57:18	0.012
	6	4-Nov	08:02:18	0.009
	7	4-Nov	08:07:18	0.014
	8	4-Nov	08:12:18	0.006
	9	4-Nov	08:17:18	0.003
	10	4-Nov	08:22:18	0.004
	11	4-Nov	08:27:18	0.003
	12	4-Nov	08:32:18	0.013
	13	4-Nov	08:37:18	0.006
	14	4-Nov	08:42:18	0.009
	15	4-Nov	08:47:18	0.005
	16	4-Nov	08:52:18	0.003
	17	4-Nov	08:57:18	0.001
	18	4-Nov	09:02:18	0.001
	19	4-Nov	09:07:18	0.01
	20	4-Nov	09:12:18	0.012
	21	4-Nov	09:17:18	0
	22	4-Nov	09:22:18	0.003
	23	4-Nov	09:27:18	0.003
	24	4-Nov	09:32:18	0.014
	25	4-Nov	09:37:18	0.001
	26	4-Nov	09:42:18	0.001
	27	4-Nov	09:47:18	0
	28	4-Nov	09:52:18	0
	29	4-Nov	09:57:18	0.006
	30	4-Nov	10:02:18	0.036
	31	4-Nov	10:07:18	0.057
	32	4-Nov	10:12:18	0.003
	33	4-Nov	10:17:18	0.002
	34	4-Nov	10:22:18	0.029
	35	4-Nov	10:27:18	0.012
	36	4-Nov	10:32:18	0.001
	37	4-Nov	10:37:18	0.002

38	4-Nov	10:42:18	0
39	4-Nov	10:47:18	0
40	4-Nov	10:52:18	0
41	4-Nov	10:57:18	0
42	4-Nov	11:02:18	0.001
43	4-Nov	11:07:18	0
44	4-Nov	11:12:18	0
45	4-Nov	11:17:18	0.005
46	4-Nov	11:22:18	0
47	4-Nov	11:27:18	0.001
48	4-Nov	11:32:18	0.004
49	4-Nov	11:37:18	0.004
50	4-Nov	11:42:18	0
51	4-Nov	11:47:18	0.001
52	4-Nov	11:52:18	0.002
53	4-Nov	11:57:18	0.006
54	4-Nov	12:02:18	0
55	4-Nov	12:07:18	0.002
56	4-Nov	12:12:18	0.003
57	4-Nov	12:17:18	0.003
58	4-Nov	12:22:18	0.002
59	4-Nov	12:27:18	0.005
60	4-Nov	12:32:18	0.001
61	4-Nov	12:37:18	0.002
62	4-Nov	12:42:18	0.002
63	4-Nov	12:47:18	0.001
64	4-Nov	12:52:18	0
65	4-Nov	12:57:18	0.007
66	4-Nov	13:02:18	0.002
67	4-Nov	13:07:18	0.002
68	4-Nov	13:12:18	0.003
69	4-Nov	13:17:18	0.006
70	4-Nov	13:22:18	0.001
71	4-Nov	13:27:18	0.005
72	4-Nov	13:32:18	0.004
73	4-Nov	13:37:18	0.003
74	4-Nov	13:42:18	0
75	4-Nov	13:47:18	0.001
76	4-Nov	13:52:18	0.002
77	4-Nov	13:57:18	0.002
78	4-Nov	14:02:18	0.002
79	4-Nov	14:07:18	0.006
80	4-Nov	14:12:18	0.011
81	4-Nov	14:17:18	0.002
82	4-Nov	14:22:18	0.001
83	4-Nov	14:27:18	0.015
84	4-Nov	14:32:18	0.01
85	4-Nov	14:37:18	0.009
86	4-Nov	14:42:18	0.003
87	4-Nov	14:47:18	0.002
88	4-Nov	14:52:18	0.016
89	4-Nov	14:57:18	0.007

90	4-Nov	15:02:18	0.03	
91	4-Nov	15:07:18	0.075	
92	4-Nov	15:12:18	0.02	
93	4-Nov	15:17:18	0.023	
94	4-Nov	15:22:18	0.039	
95	4-Nov	15:27:18	0.015	
96	4-Nov	15:32:18	0.015	
97	4-Nov	15:37:18	0.003	
98	4-Nov	15:42:18	0.022	
99	4-Nov	15:47:18	0.011	
100	4-Nov	15:52:18	0.015	
101	4-Nov	15:57:18	0.005	
102	4-Nov	16:02:18	0.005	
103	4-Nov	16:07:18	0.012	
104	4-Nov	16:12:18	0.026	
105	4-Nov	16:17:18	0.019	
00053230300006010301}				

BASIAND BOUCK & LEE INC. ongineers & scientists

Project: FORMER TRW	, UTICA, NY	Date: 11 /05/05	
Monitoring Instruments:	DR-1000 AN		
Air Monitor: ALEWIEK		Activity: PLACEMENT / C	spading of
Level of Protection: MOD.	LEVEL D	TOPSOIL	
Time	(SEE FIGUE BOOP) Location	Instrument Reading	Comments
200	А	0.000	
300	B	ľ	
800	C	49	
900	A	ŧ	
900	B		
900	c		
1060	A		
1000	B		
1000	C	+	1)

pDR-1000 S/N: 06133 User ID: Location A Tag Number: 05 Number of logged points: 21 Start time and date: 08:04:51 05-Nov Elapsed time: 01:45:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.078 mg/m³ Time at maximum: 09:50:59 Nov 05 Max STEL Concentration: 0.000 mg/m3 Time at max STEL: 08:04:51 Nov 05 Overall Avg Conc: 0.000 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 1 5-Nov 08:09:51 0.004 2 0.006 5-Nov 08:14:51 3 5-Nov 08:19:51 0 4 5-Nov 08:24:51 0.001 5 5-Nov 08:29:51 0 6 5-Nov 08:34:51 0 7 5-Nov 08:39:51 0 5-Nov 08:44:51 8 0.001 9 5-Nov 08:49:51 0.001 10 5-Nov 08:54:51 0.005 11 5-Nov 08:59:51 0.002 12 5-Nov 09:04:51 0.001 13 5-Nov 09:09:51 0 5-Nov 09:14:51 0.002 14 15 5-Nov 09:19:51 0.003 16 5-Nov 09:24:51 0.001 17 5-Nov 09:29:51 0.002 18 5-Nov 09:34:51 0.001 19 5-Nov 09:39:51 0.001 5-Nov 09:44:51 20 0

21 5-Nov 09:49:51 0005323030006010303} 0.002

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 05 Number of logged points: 21 Start time and date: 08:05:28 05-Nov Elapsed time: 01:45:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.236 mg/m³ Time at maximum: 08:45:00 Nov 05 Max STEL Concentration: 0.000 mg/m³ Time at max STEL: 08:05:28 Nov 05 Overall Avg Conc: 0.000 mg/m³ Logged Data: Point Date Time Avg.(mg/m³)

Onit		Date	TIME	Avg.(mg/m
	1	5-Nov	08:10:28	0.007
	2	5-Nov	08:15:28	0.002
	3	5-Nov	08:20:28	0.002
	4	5-Nov	08:25:28	0.002
	5	5-Nov	08:30:28	0.008
	6	5-Nov	08:35:28	0
	7	5-Nov	08:40:28	0.001
	8	5-Nov	08:45:28	0.009
	9	5-Nov	08:50:28	0.001
	10	5-Nov	08:55:28	0.008
	11	5-Nov	09:00:28	0.005
	12	5-Nov	09:05:28	0.002
	13	5-Nov	09:10:28	0.001
	14	5-Nov	09:15:28	0.002
	15	5-Nov	09:20:28	0.004
	16	5-Nov	09:25:28	0.004
	17	5-Nov	09:30:28	0.001
	18	5-Nov	09:35:28	0.001
	19	5-Nov	09:40:28	0.002
	20	5-Nov	09:45:28	0.004
	21	5-Nov	09:50:28	0.004

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 04 Number of logged points: 21 Start time and date: 08:02:06 05-Nov Elapsed time: 01:45:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.123 mg/m³ Time at maximum: 09:39:22 Nov 05 Max STEL Concentration: 0.001 mg/m³ Time at max STEL: 08:02:36 Nov 05 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Avg.(mg/m³) Date Time 1 5-Nov 08:07:06 0.004

2	5-Nov	08:12:06	0.002
3	5-Nov	08:17:06	0.001
4	5-Nov	08:22:06	0
5	5-Nov	08:27:06	0.001
6	5-Nov	08:32:06	0
7	5-Nov	08:37:06	0
8	5-Nov	08:42:06	0
9	5-Nov	08:47:06	0.001
10	5-Nov	08:52:06	0.002
11	5-Nov	08:57:06	0.001
12	5-Nov	09:02:06	0
13	5-Nov	09:07:06	0.001
14	5-Nov	09:12:06	0.001
15	5-Nov	09:17:06	0
16	5-Nov	09:22:06	0
17	5-Nov	09:27:06	0
18	5-Nov	09:32:06	0.005
19	5-Nov	09:37:06	0.001
20	5-Nov	09:42:06	0.004
21	5-Nov	09:47:06	0.001

Project: FORMER TR	W, WTICA, NY	Date: 11/07/05		
Monitoring Instruments:	PDR-1000AN	h industri	(10ADID 2E AE	
Air Monitor: A.ENIGE		Activity: BLACEMENT (6840106 OF		
Level of Protection: MO	D. LEVEL D	TOP SOIL		
Time	Location	Instrument Reading	Comments	
860	A	0.000		
800	B	0.000		
800	С	0.238	RECALIBRATED	
700	А	0.000		
900	В	0-00 4		
100	С	0.010		
1800	A	0.000		
1000	В	0.005		
1000	С	0.000		
100	A	0.007		
1100	В	0.000		
1100	С	0.000		
1200	A	0.006		
1200	B	0.021		
(200	T	0.000		
1306	A	0.004		
1300	B	0.010		
1300	с	0.000		
1400	A	0.008		
1406	B	0.000		
1400	C	0000		
500 506 500 600 600 600 600	ABCAB	0.008 0.006 0.000 0.000 0.000		

pDR-1000 S/N: 00000 User ID: Location A Tag Number: 01 Number of logged points: 92 Start time and date: 08:04:00 07-Nov Elapsed time: 07:40:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.213 mg/m³ Time at maximum: 10:47:04 Nov 07 Max STEL Concentration: 0.022 mg/m³ Time at max STEL: 10:50:31 Nov 07 Overall Avg Conc: 0.006 mg/m³ Logged Data: Point Date Time Avg.(mg/i

nt		Date	Time	Avg.(mg/m ³)
	1	7-Nov	08:09:00	0.008
	2	7-Nov	08:14:00	0.008
	3	7-Nov	08:19:00	0.006
	4	7-Nov	08:24:00	0.006
	5	7-Nov	08:29:00	0.006
	6	7-Nov	08:34:00	0.005
	7	7-Nov	08:39:00	0.005
	8	7-Nov	08:44:00	0.006
	9	7-Nov	08:49:00	0.005
	10	7-Nov	08:54:00	0.011
	11	7-Nov	08:59:00	0.005
	12	7-Nov	09:04:00	0.006
	13	7-Nov	09:09:00	0.004
	14	7-Nov	09:14:00	0.004
	15	7-Nov	09:19:00	0.004
	16	7-Nov	09:24:00	0.014
	17	7-Nov	09:29:00	0.009
	18	7-Nov	09:34:00	0.01
	19	7-Nov	09:39:00	0.008
	20	7-Nov	09:44:00	0.008
	21	7-Nov	09:49:00	0.009
	22	7-Nov	09:54:00	0.008
	23	7-Nov	09:59:00	0.011
	24	7-Nov	10:04:00	0.019
	25	7-Nov	10:09:00	0.01
	26	7-Nov	10:14:00	0.008
	27	7-Nov	10:19:00	0.007
	28	7-Nov	10:24:00	0.008
	29	7-Nov	10:29:00	0.007
	30	7-Nov	10:34:00	0.007
	31	7-Nov	10:39:00	0.01
	32	7-Nov	10:44:00	0.021
	33	7-Nov	10:49:00	0.031
	34	7-Nov	10:54:00	0.011
	35	7-Nov	10:59:00	0.007
	36	7-Nov	11:04:00	0.007
	37	7-Nov	11:09:00	0.011

38	7-Nov	11:14:00	0.013
39	7-Nov	11:19:00	0.009
40	7-Nov	11:24:00	0.01
41	7-Nov	11:29:00	0.01
42	7-Nov	11:34:00	0.006
43	7-Nov	11:39:00	0.006
44	7-Nov	11:44:00	0.005
45	7-Nov	11.49.00	0.007
46	7-Nov	11.54.00	0.008
17	7-Nov	11:59:00	0.006
18	7-Nov	12:04:00	0.000
10	7-Nov	12:00:00	0.005
49	7 Nov	12:14:00	0.003
50	7-NOV	12.14.00	0.004
51	7-INOV	12:19:00	0.004
52	7-NOV	12:24:00	0.004
53	/-Nov	12:29:00	0.004
54	7-Nov	12:34:00	0.004
55	7-Nov	12:39:00	0.008
56	7-Nov	12:44:00	0.007
57	7-Nov	12:49:00	0.006
58	7-Nov	12:54:00	0.004
59	7-Nov	12:59:00	0.004
60	7-Nov	13:04:00	0.005
61	7-Nov	13:09:00	0.005
62	7-Nov	13:14:00	0.006
63	7-Nov	13:19:00	0.006
64	7-Nov	13:24:00	0.004
65	7-Nov	13:29:00	0.005
66	7-Nov	13:34:00	0.003
67	7-Nov	13:39:00	0.003
68	7-Nov	13:44:00	0.003
69	7-Nov	13:49:00	0.003
70	7-Nov	13:54:00	0.003
71	7-Nov	13:59:00	0.003
72	7-Nov	14:04:00	0.003
73	7-Nov	14.09.00	0.005
74	7-Nov	14.14.00	0.003
75	7-Nov	14.19.00	0.004
76	7-Nov	14.24.00	0.007
77	7-Nov	14.29.00	0.004
78	7-Nov	14:34:00	0.004
79	7-Nov	14:39:00	0.004
80	7-Nov	14:44:00	0.004
81	7-Nov	14.49.00	0.004
82	7-Nov	14:54:00	0.005
82	7-Nov	14.54.00	0.005
84	7-Nov	15:04:00	0.002
85	7 Nou	15:00:00	0.002
86	7 Nov	15.09.00	0.002
97	7-NOV	15.14.00	0.003
0/	7-INOV	15.19:00	0.002
00	7-NOV	15:24:00	0.003
69	/-NOV	15:29:00	0.002
90	7-Nov	15:34:00	0.004
--------------	---------	----------	-------
91	7-Nov	15:39:00	0.009
92	7-Nov	15:44:00	0.006
000532303000	0000000	00}	

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 01 Number of logged points: 91 Start time and date: 08:09:10 07-Nov Elapsed time: 07:35:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.264 mg/m3 Time at maximum: 15:04:08 Nov 07 Max STEL Concentration: 0.010 mg/m³ Time at max STEL: 11:44:41 Nov 07 Overall Avg Conc: 0.001 mg/m3 Logged Data: Point Avg.(mg/m³) Date Time 7-Nov 08:14:10 0.002 1 2 7-Nov 08:19:10 0.001 3 7-Nov 08:24:10 0.002 4 7-Nov 08:29:10 0 5 7-Nov 08:34:10 0.001 6 7-Nov 08:39:10 0 7 0.001 7-Nov 08:44:10 8 7-Nov 08:49:10 0 9 7-Nov 08:54:10 0 10 0 7-Nov 08:59:10 11 7-Nov 09:04:10 0 12 7-Nov 09:09:10 0 0 13 7-Nov 09:14:10 14 7-Nov 09:19:10 0 15 7-Nov 09:24:10 0 16 0 7-Nov 09:29:10 17 7-Nov 09:34:10 0.001 18 0.001 7-Nov 09:39:10 19 7-Nov 09:44:10 0 20 7-Nov 09:49:10 0.001 21 7-Nov 09:54:10 0.001 22 7-Nov 09:59:10 0.002

7-Nov 10:04:10

7-Nov 10:09:10

7-Nov 10:14:10

7-Nov 10:19:10

7-Nov 10:24:10

7-Nov 10:29:10

7-Nov 10:34:10

7-Nov 10:39:10

7-Nov 10:44:10

7-Nov 10:49:10

7-Nov 10:54:10

7-Nov 10:59:10

7-Nov 11:04:10

7-Nov 11:09:10

7-Nov 11:14:10

0.001

0.001

0.001

0.003

0.001

0.001

0.001

0.001

0.001

0.001

0

0

0

0

0

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38	7-Nov	11:19:10	0.002
39	7-Nov	11:24:10	0.001
40	7-Nov	11.29.10	0.003
40	7 Nov	11:34:10	0.005
41	7-Nov	11.34.10	0.000
42	7-NOV	11.39.10	0.01
43	/-Nov	11:44:10	0.016
44	7-Nov	11:49:10	0.003
45	7-Nov	11:54:10	0
46	7-Nov	11:59:10	0.001
47	7-Nov	12:04:10	0.001
48	7-Nov	12.09.10	0
49	7-Nov	12.14.10	0.001
50	7-Nov	12:10:10	0.001
50	7-1000	12.19.10	0.001
51	7-INOV	12:24:10	0
52	7-Nov	12:29:10	0
53	7-Nov	12:34:10	0.003
54	7-Nov	12:39:10	0.001
55	7-Nov	12:44:10	0.003
56	7-Nov	12:49:10	0.006
57	7-Nov	12:54:10	0.008
58	7-Nov	12:59:10	0.009
59	7-Nov	13:04:10	0.007
60	7 Nov	13.04.10	0.007
00	7-NOV	13.09.10	0.004
61	7-Nov	13:14:10	0.001
62	7-Nov	13:19:10	0.003
63	7-Nov	13:24:10	0.002
64	7-Nov	13:29:10	0.009
65	7-Nov	13:34:10	0.002
66	7-Nov	13:39:10	0.003
67	7-Nov	13.44.10	0 004
68	7-Nov	13:49:10	0.005
60	7 Nov	12:54:10	0.000
09	7-NOV	13.54.10	0.004
70	/-Nov	13:59:10	0.004
/1	/-Nov	14:04:10	0.001
72	7-Nov	14:09:10	0.005
73	7-Nov	14:14:10	0.001
74	7-Nov	14:19:10	0
75	7-Nov	14:24:10	0.002
76	7-Nov	14:29:10	0.001
77	7-Nov	14:34:10	0.001
78	7-Nov	14.39.10	0.001
70	7 Nov	14.33.10	0.001
19	7-INOV	14.44.10	0.003
80	7-NOV	14:49:10	0.004
81	7-Nov	14:54:10	0.006
82	7-Nov	14:59:10	0.002
83	7-Nov	15:04:10	0.013
84	7-Nov	15:09:10	0.001
85	7-Nov	15:14:10	0.001
86	7-Nov	15:19:10	0
87	7-Nov	15.24.10	0
88	7-Nov	15.29.10	0.001
80	7 Nou	15-24-10	0.001
09	1-110V	15.54.10	0.004

	90	7-Nov	15:39:10	0.005
	91	7-Nov	15:44:10	0.005
000532	30300	0060103	01}	

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 01 Number of logged points: 15 Start time and date: 08:03:44 07-Nov Elapsed time: 01:15:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.243 mg/m3 Time at maximum: 08:05:29 Nov 07 Max STEL Concentration: 0.209 mg/m³ Time at max STEL: 08:18:44 Nov 07 Overall Avg Conc: 0.205 mg/m3 Logged Data: Point Time Avg.(mg/m³) Date 7-Nov 08:08:44 0.214 1 7-Nov 08:13:44 0.206 2 3 7-Nov 08:18:44 0.205 4 7-Nov 08:23:44 0.207 7-Nov 08:28:44 5 0.206 6 7-Nov 08:33:44 0.206 7 7-Nov 08:38:44 0.206 8 7-Nov 08:43:44 0.206 9 7-Nov 08:48:44 0.204 7-Nov 08:53:44 0.202 10 11 7-Nov 08:58:44 0.203 7-Nov 09:03:44 0.205 12 13 7-Nov 09:08:44 0.202 7-Nov 09:13:44 0.202 14

7-Nov 09:18:44

15

00053230300006000803}

0.203

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 02 Number of logged points: 76 Start time and date: 09:23:36 07-Nov Elapsed time: 06:20:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.087 mg/m3 Time at maximum: 15:43:09 Nov 07 Max STEL Concentration: 0.006 mg/m3 Time at max STEL: 15:43:37 Nov 07 Overall Avg Conc: 0.000 mg/m3 Logged Data: Avg.(mg/m³) Point Date Time 7-Nov 09:28:36 0.001 1 0 7-Nov 09:33:36 2 0 3 7-Nov 09:38:36 0.001 4 7-Nov 09:43:36 0.002 5 7-Nov 09:48:36 0.001 6 7-Nov 09:53:36 7 7-Nov 09:58:36 0 8 7-Nov 10:03:36 0.001 0.001 9 7-Nov 10:08:36 10 7-Nov 10:13:36 0 7-Nov 10:18:36 0.001 11 0.001 12 7-Nov 10:23:36 7-Nov 10:28:36 0.001 13 7-Nov 10:33:36 0.001 14 0.001 15 7-Nov 10:38:36 7-Nov 10:43:36 0.002 16 17 7-Nov 10:48:36 0.001 18 7-Nov 10:53:36 0.001 7-Nov 10:58:36 0.001 19 7-Nov 11:03:36 0.001 20 0.002 21 7-Nov 11:08:36 22 7-Nov 11:13:36 0.001 23 7-Nov 11:18:36 0.002 24 7-Nov 11:23:36 0 25 7-Nov 11:28:36 0.001 26 7-Nov 11:33:36 0.001 27 7-Nov 11:38:36 0.001 28 7-Nov 11:43:36 0.002

7-Nov 11:48:36

7-Nov 11:53:36

7-Nov 11:58:36

7-Nov 12:03:36

7-Nov 12:08:36

7-Nov 12:13:36

7-Nov 12:18:36

7-Nov 12:23:36

7-Nov 12:28:36

0.001

0.003

0.001

0.002

0.001

0.003

0.001

0.002

0.001

29

30

31

32

33

34

35

36

37

38	7-Nov	12:33:36	0.001
39	7-Nov	12:38:36	0.001
40	7-Nov	12:43:36	0.002
41	7-Nov	12:48:36	0.002
42	7-Nov	12:53:36	0.002
43	7-Nov	12:58:36	0.001
44	7-Nov	13:03:36	0.002
45	7-Nov	13:08:36	0.002
46	7-Nov	13:13:36	0.001
47	7-Nov	13:18:36	0.001
48	7-Nov	13:23:36	0.001
49	7-Nov	13:28:36	0
50	7-Nov	13:33:36	0.001
51	7-Nov	13:38:36	0.002
52	7-Nov	13:43:36	0.001
53	7-Nov	13:48:36	0.001
54	7-Nov	13:53:36	0.002
55	7-Nov	13:58:36	0.001
56	7-Nov	14:03:36	0.002
57	7-Nov	14:08:36	0.002
58	7-Nov	14:13:36	0.001
59	7-Nov	14:18:36	0.001
60	7-Nov	14:23:36	0.002
61	7-Nov	14:28:36	0.001
62	7-Nov	14:33:36	0.001
63	7-Nov	14:38:36	0.001
64	7-Nov	14:43:36	0.002
65	7-Nov	14:48:36	0.001
66	7-Nov	14:53:36	0.001
67	7-Nov	14:58:36	0.002
68	7-Nov	15:03:36	0.004
69	7-Nov	15:08:36	0.001
70	7-Nov	15:13:36	0.005
71	7-Nov	15:18:36	0.003
72	7-Nov	15:23:36	0.001
73	7-Nov	15:28:36	0.001
74	7-Nov	15:33:36	0.004
75	7-Nov	15:38:36	0.009
76	7-Nov	15:43:36	0.009

BBBC BLASLAND, BOUCK & LEE INC. BIG (INCOL) & SC (AND) ST

Project: FORMER TPW	JUTICA , NY	Date: 11/08/05	
Monitoring Instruments: PD	R-1000 AN		
Air Monitor: A. ENIGK		Activity: GRADING OF	TOP SOIL ON
Level of Protection: MOD-L	EVEL D	AREA-5	
Time	(SEE FIELD BOOK) Location	(ms/m ³) Instrument Reading	Comments
700	A	0000	
700	B	0.000	
700	C	0.000	
800	A	0.000	
800	В	0-000	
800	L	0.000	
900	A	0.000	
900	В	0.000	
900	Z	0.000	
1000	A	0.000	
1006	B	0.006	
1000	L	0-000	
1106	А	0.000	
1100	B	0.000	
(160	Z	0.000	
1200	A	0.000	
1200	В	0.000	
1260	C	0.000	
1300	A	0.000	
1306	В	0.000	
1300	C	0.000	
1400 1400 1400 1500 BBLLRedirect.cfm 1500	ABUAR	0.000 0.000 0.000 0.000 0.000	
1500	0	1 19-1900	1

pDR-1000 S/N: 00000 User ID: Location A Tag Number: 02 Number of logged points: 94 Start time and date: 07:21:09 08-Nov Elapsed time: 07:50:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.170 mg/m3 Time at maximum: 07:47:01 Nov 08 Max STEL Concentration: 0.007 mg/m3 Time at max STEL: 08:30:09 Nov 08 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Avg.(mg/m³) Date Time 1 8-Nov 07:26:09 0.003 2 8-Nov 07:31:09 0.003 0.002 3 8-Nov 07:36:09 8-Nov 07:41:09 4 0 5 8-Nov 07:46:09 0 6 8-Nov 07:51:09 0.009 7 8-Nov 07:56:09 0.001 8 8-Nov 08:01:09 0.002 9 8-Nov 08:06:09 0.001 10 8-Nov 08:11:09 0.002 11 8-Nov 08:16:09 0.003 12 8-Nov 08:21:09 0.005 13 8-Nov 08:26:09 0.007 8-Nov 08:31:09 14 0.01 15 8-Nov 08:36:09 0.005 16 8-Nov 08:41:09 0.006 17 8-Nov 08:46:09 0.007 18 8-Nov 08:51:09 0.005 19 8-Nov 08:56:09 0.005 20 8-Nov 09:01:09 0.005 21 8-Nov 09:06:09 0.003 22 8-Nov 09:11:09 0.003 23 8-Nov 09:16:09 0.002 24 8-Nov 09:21:09 0.002 25 8-Nov 09:26:09 0.001 26 8-Nov 09:31:09 0.001 27 8-Nov 09:36:09 0 28 8-Nov 09:41:09 0 29 8-Nov 09:46:09 0.001 30 8-Nov 09:51:09 0 31 8-Nov 09:56:09 0.001 32 8-Nov 10:01:09 0 33 8-Nov 10:06:09 0 34 8-Nov 10:11:09 0 35 8-Nov 10:16:09 0 36 8-Nov 10:21:09 0 37 8-Nov 10:26:09 0

38	8-Nov	10:31:09	0
39	8-Nov	10:36:09	0
40	8-Nov	10:41:09	0
41	8-Nov	10:46:09	0
42	8-Nov	10:51:09	0
43	8-Nov	10:56:09	0
44	8-Nov	11:01:09	0
45	8-Nov	11:06:09	0
46	8-Nov	11:11:09	0
47	8-Nov	11:16:09	0
48	8-Nov	11:21:09	0
49	8-Nov	11:26:09	0
50	8-Nov	11:31:09	0
51	8-Nov	11:36:09	0
52	8-Nov	11:41:09	0
53	8-Nov	11:46:09	0
54	8-Nov	11:51:09	0
55	8-Nov	11:56:09	0
56	8-Nov	12:01:09	0
57	8-Nov	12:06:09	0
58	8-Nov	12:11:09	0
59	8-Nov	12:16:09	0
60	8-Nov	12:21:09	0
61	8-Nov	12:26:09	0
62	8-Nov	12:31:09	0
63	8-Nov	12:36:09	0
64	8-Nov	12:41:09	0
65	8-Nov	12:46:09	0
66	8-Nov	12:51:09	0
67	8-Nov	12:56:09	0
68	8-Nov	13:01:09	0
69	8-Nov	13:06:09	0
70	8-Nov	13:11:09	0
71	8-Nov	13:16:09	0
72	8-Nov	13:21:09	0
73	8-Nov	13:26:09	0
74	8-Nov	13:31:09	0.002
75	8-Nov	13:36:09	0
76	8-Nov	13:41:09	0.005
77	8-Nov	13:46:09	0.002
78	8-Nov	13:51:09	0
79	8-Nov	13:56:09	0.001
80	8-Nov	14:01:09	0
81	8-Nov	14:06:09	Ő
82	8-Nov	14:11:09	0
83	8-Nov	14.16.09	0
84	8-Nov	14:21:09	0
85	8-Nov	14:26:09	0
86	8-Nov	14:31:09	0
87	8-Nov	14:36:09	0
88	8-Nov	14:41:09	0
89	8-Nov	14:46:09	0
	5		0

90	8-Nov	14:51:09	0
91	8-Nov	14:56:09	0
92	8-Nov	15:01:09	0
93	8-Nov	15:06:09	0
94	8-Nov	15:11:09	0
000532303000	0000000	00}	

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 02 Number of logged points: 94 Start time and date: 07:23:41 08-Nov Elapsed time: 07:50:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.072 mg/m³ Time at maximum: 08:24:37 Nov 08 Max STEL Concentration: 0.002 mg/m3 Time at max STEL: 08:33:41 Nov 08 Overall Avg Conc: 0.000 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 8-Nov 07:28:41 1 0.002 2 8-Nov 07:33:41 0 3 8-Nov 07:38:41 0.001 4 0.001 8-Nov 07:43:41 5 8-Nov 07:48:41 0 6 8-Nov 07:53:41 0 8-Nov 07:58:41 7 0 8 8-Nov 08:03:41 0 9 8-Nov 08:08:41 0 10 0 8-Nov 08:13:41 11 8-Nov 08:18:41 0 12 8-Nov 08:23:41 0.002 13 8-Nov 08:28:41 0.006 14 8-Nov 08:33:41 0.002 15 8-Nov 08:38:41 0.001 16 8-Nov 08:43:41 0.003 17 8-Nov 08:48:41 0.001 18 8-Nov 08:53:41 0.001 19 8-Nov 08:58:41 0.001 20 8-Nov 09:03:41 0.003 21 8-Nov 09:08:41 0.001 22 8-Nov 09:13:41 0.002 23 8-Nov 09:18:41 0 24 8-Nov 09:23:41 0 25 8-Nov 09:28:41 0 26 8-Nov 09:33:41 0 27 8-Nov 09:38:41 0.001 28 8-Nov 09:43:41 0.001 29 8-Nov 09:48:41 0 30 8-Nov 09:53:41 0 31 8-Nov 09:58:41 0 32 8-Nov 10:03:41 0 33 8-Nov 10:08:41 0 34 8-Nov 10:13:41 0 35 8-Nov 10:18:41 0 36 8-Nov 10:23:41 0 37 8-Nov 10:28:41 0

38	8-Nov	10:33:41	0
39	8-Nov	10:38:41	0
40	8-Nov	10:43:41	0
41	8-Nov	10:48:41	0
42	8-Nov	10:53:41	0
43	8-Nov	10:58:41	0
44	8-Nov	11:03:41	0
45	8-Nov	11:08:41	0
46	8-Nov	11:13:41	0
47	8-Nov	11:18:41	0
48	8-Nov	11:23:41	0
49	8-Nov	11:28:41	0
50	8-Nov	11:33:41	0
51	8-Nov	11:38:41	0
52	8-Nov	11:43:41	0
53	8-Nov	11:48:41	0
54	8-Nov	11:53:41	0
55	8-Nov	11:58:41	0
56	8-Nov	12:03:41	0
57	8-Nov	12:08:41	0
58	8-Nov	12:13:41	0
59	8-Nov	12:18:41	0
60	8-Nov	12:23:41	0
61	8-Nov	12:28:41	0
62	8-Nov	12:33:41	0
63	8-Nov	12:38:41	0
64	8-Nov	12:43:41	0
65	8-Nov	12.48.41	0
66	8-Nov	12:53:41	0
67	8-Nov	12:58:41	0
68	8-Nov	13:03:41	0
69	8-Nov	13:08:41	0
70	8-Nov	13.13.41	0.001
71	8-Nov	13.18.41	0.001
72	8-Nov	13.23.41	0
73	8-Nov	13.28.41	0
74	8-Nov	13:33:41	0
75	8-Nov	13:38:41	0
76	8-Nov	13:43:41	0
77	8-Nov	13:48:41	0
78	8-Nov	13.53.41	0
79	8-Nov	13.58.41	0
80	8-Nov	14.03.41	0
81	8-Nov	14.08.41	0
82	8-Nov	14.00.41	0
83	8-Nov	14.19.41	0
84	8-Nov	14.10.41	0
85	8 Nov	14.23.41	0
86	8 Nov	14.20.41	0
87	8 Nov	14.33.41	0
80	8 Nov	14.30.41	0
80	8 Nov	14.43.41	0
09	0-110V	14.40.41	0

9	0	8-Nov	14:53:41	0
9	1	8-Nov	14:58:41	0
9	2	8-Nov	15:03:41	0
9	3	8-Nov	15:08:41	0
9	4	8-Nov	15:13:41	0
00053230	030000	601030)1}	

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 03 Number of logged points: 94 Start time and date: 07:19:47 08-Nov Elapsed time: 07:50:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.022 mg/m³ Time at maximum: 12:13:07 Nov 08 Max STEL Concentration: 0.000 mg/m³ Time at max STEL: 07:19:47 Nov 08 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Date Avg.(mg/m3) Time 1 8-Nov 07:24:47 0 2 8-Nov 07:29:47 0 3 8-Nov 07:34:47 0 0 4 8-Nov 07:39:47 5 0 8-Nov 07:44:47 6 8-Nov 07:49:47 0 7 0 8-Nov 07:54:47 8 8-Nov 07:59:47 0 9 8-Nov 08:04:47 0 0 10 8-Nov 08:09:47 11 8-Nov 08:14:47 0 12 8-Nov 08:19:47 0 13 8-Nov 08:24:47 0 14 8-Nov 08:29:47 0 15 8-Nov 08:34:47 0 16 8-Nov 08:39:47 0 17 8-Nov 08:44:47 0 18 8-Nov 08:49:47 0 19 0 8-Nov 08:54:47 20 8-Nov 08:59:47 0 21 8-Nov 09:04:47 0 22 8-Nov 09:09:47 0 23 8-Nov 09:14:47 0 24 8-Nov 09:19:47 0 25 8-Nov 09:24:47 0 26 8-Nov 09:29:47 0 27 8-Nov 09:34:47 0 28 8-Nov 09:39:47 0 29 0 8-Nov 09:44:47 30 8-Nov 09:49:47 0 31 8-Nov 09:54:47 0 32 8-Nov 09:59:47 0 33 8-Nov 10:04:47 0 34 8-Nov 10:09:47 0 35 0 8-Nov 10:14:47 36 8-Nov 10:19:47 0 37 8-Nov 10:24:47 0

38	8-Nov	10.29.47	0
39	8-Nov	10:34:47	0
40	8-Nov	10:39:47	0
41	8-Nov	10:44:47	0
41	8-Nov	10:49:47	0
42	9 Nov	10:45.47	0
43	0-INUV	10.54.47	0
44	8-INOV	10:59:47	0
45	8-NOV	11:04:47	0
46	8-Nov	11:09:47	0
47	8-Nov	11:14:47	0
48	8-Nov	11:19:47	0
49	8-Nov	11:24:47	0
50	8-Nov	11:29:47	0
51	8-Nov	11:34:47	0
52	8-Nov	11:39:47	0
53	8-Nov	11:44:47	0
54	8-Nov	11:49:47	0
55	8-Nov	11:54:47	0
56	8-Nov	11:59:47	0
57	8-Nov	12.04.47	0
58	8-Nov	12:09:47	0
59	8-Nov	12:14:47	0.001
60	8-Nov	12.19.47	0.001
61	9 Nov	12.15.47	0
62	0-INOV	12.24.47	0
62	0-INOV	12:29:47	0
63	8-NOV	12:34:47	0
64	8-Nov	12:39:47	0
65	8-Nov	12:44:47	0
66	8-Nov	12:49:47	0
67	8-Nov	12:54:47	0
68	8-Nov	12:59:47	0
69	8-Nov	13:04:47	0
70	8-Nov	13:09:47	0
71	8-Nov	13:14:47	0
72	8-Nov	13:19:47	0
73	8-Nov	13:24:47	0
74	8-Nov	13:29:47	0
75	8-Nov	13:34:47	0
76	8-Nov	13:39:47	0
77	8-Nov	13:44:47	0
78	8-Nov	13:49:47	0
79	8-Nov	13:54:47	0
80	8-Nov	13:59:47	0
81	8-Nov	14:04:47	0
82	8-Nov	14:00:47	0
83	8 Nov	14.09.47	0
0.0	8 Nov	14.14.47	0
04	O-NOV	14.19:47	0
60	0-NOV	14:24:47	0
00	8-NOV	14:29:47	0
87	8-Nov	14:34:47	0
88	8-Nov	14:39:47	0
89	8-Nov	14:44:47	0

......

90	8-Nov	14:49:47	0
91	8-Nov	14:54:47	0
92	8-Nov	14:59:47	0
93	8-Nov	15:04:47	0
94	8-Nov	15:09:47	0
00053230300	0060008	03}	

Date: 11/09/05

Monitoring Instruments: pDR - 1000 AN

Project: FORMER TEW, UTICA, NY

Air Monitor: A. ENICK

Activity: GRADING OF TOP SOIL

Level of Protection: MOD. LEVEL D

Time	Location	Instrument Reading	Comments
800	A	0.005	
700	B	0.012	
80-0	С	0.000	
900	A	0.004	
900	В	0.017	
900	С	0.000	
1000	A	0.003	
1000	В	,0.010	
1000	С	0.000	
1100	A	0.000	
1106	В	0.000	
400	С	0.000	
1200	A	0.006	
1200	B	0.000	
1200	2	0.000	
			STOPPED AIR MONTROEM
			*

pDR-1000 S/N: 00000 User ID: Location A Tag Number: 03 Number of logged points: 31 Start time and date: 07:40:02 09-Nov Elapsed time: 02:35:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.135 mg/m3 Time at maximum: 07:42:36 Nov 09 Max STEL Concentration: 0.000 mg/m3 Time at max STEL: 07:40:02 Nov 09 Overall Avg Conc: 0.000 mg/m3 Logged Data: Date Point Avg.(mg/m³) Time 1 9-Nov 07:45:02 0.008 2 9-Nov 07:50:02 0 3 9-Nov 07:55:02 0 4 9-Nov 08:00:02 5 9-Nov 08:05:02 0 0 n

5	9-140V	08.05.02	0
6	9-Nov	08:10:02	0
7	9-Nov	08:15:02	0
8	9-Nov	08:20:02	0
9	9-Nov	08:25:02	0
10	9-Nov	08:30:02	0
11	9-Nov	08:35:02	0
12	9-Nov	08:40:02	0
13	9-Nov	08:45:02	0
14	9-Nov	08:50:02	0
15	9-Nov	08:55:02	0
16	9-Nov	09:00:02	0
17	9-Nov	09:05:02	0
18	9-Nov	09:10:02	0
19	9-Nov	09:15:02	0
20	9-Nov	09:20:02	0
21	9-Nov	09:25:02	0
22	9-Nov	09:30:02	0
23	9-Nov	09:35:02	0
24	9-Nov	09:40:02	0
25	9-Nov	09:45:02	0
26	9-Nov	09:50:02	0
27	9-Nov	09:55:02	0
28	9-Nov	10:00:02	0
29	9-Nov	10:05:02	0
30	9-Nov	10:10:02	0
31	9-Nov	10:15:02	0

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 03 Number of logged points: 31 Start time and date: 07:40:46 09-Nov Elapsed time: 02:35:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.208 mg/m3 Time at maximum: 07:49:16 Nov 09 Max STEL Concentration: 0.025 mg/m3 Time at max STEL: 07:55:46 Nov 09 Overall Avg Conc: 0.015 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 9-Nov 07:45:46 1 0.029 2 9-Nov 07:50:46 0.024 3 9-Nov 07:55:46 0.021 4 9-Nov 08:00:46 0.016 5 9-Nov 08:05:46 0.016 9-Nov 08:10:46 6 0.017 7 9-Nov 08:15:46 0.016 8 9-Nov 08:20:46 0.016 0.015 9 9-Nov 08:25:46

10	9-Nov	08:30:46	0.013
11	9-Nov	08:35:46	0.011
12	9-Nov	08:40:46	0.011
13	9-Nov	08:45:46	0.012
14	9-Nov	08:50:46	0.016
15	9-Nov	08:55:46	0.013
16	9-Nov	09:00:46	0.013
17	9-Nov	09:05:46	0.013
18	9-Nov	09:10:46	0.012
19	9-Nov	09:15:46	0.011
20	9-Nov	09:20:46	0.012
21	9-Nov	09:25:46	0.012
22	9-Nov	09:30:46	0.013
23	9-Nov	09:35:46	0.012
24	9-Nov	09:40:46	0.013
25	9-Nov	09:45:46	0.013
26	9-Nov	09:50:46	0.013
27	9-Nov	09:55:46	0.014
28	9-Nov	10:00:46	0.017
29	9-Nov	10:05:46	0.015
30	9-Nov	10:10:46	0.012
31	9-Nov	10:15:46	0.012

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 04 Number of logged points: 31 Start time and date: 07:41:47 09-Nov Elapsed time: 02:35:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.104 mg/m³ Time at maximum: 07:44:43 Nov 09 Max STEL Concentration: 0.012 mg/m³ Time at max STEL: 07:55:47 Nov 09 Overall Avg Conc: 0.003 mg/m3 Logged Data: Point Date Time Avg.(mg/m³)

	1	9-Nov	07:46:47	0.023
8	2	9-Nov	07:51:47	0.007
	3	9-Nov	07:56:47	0.01
	4	9-Nov	08:01:47	0.01
	5	9-Nov	08:06:47	0.004
	6	9-Nov	08:11:47	0.004
	7	9-Nov	08:16:47	0.001
3	8	9-Nov	08:21:47	0.001
3	9	9-Nov	08:26:47	0.004
1	0	9-Nov	08:31:47	0.002
1	1	9-Nov	08:36:47	0.003
1	2	9-Nov	08:41:47	0.006
1	3	9-Nov	08:46:47	0.008
1	4	9-Nov	08:51:47	0.007
1	5	9-Nov	08:56:47	0.01
1	6	9-Nov	09:01:47	0.009
1	7	9-Nov	09:06:47	0.005
1	8	9-Nov	09:11:47	0.007
1	9	9-Nov	09:16:47	0.005
2	0	9-Nov	09:21:47	0.004
2	1	9-Nov	09:26:47	0.01
2	2	9-Nov	09:31:47	0.002
2	3	9-Nov	09:36:47	0.005
2	4	9-Nov	09:41:47	0.004
2	5	9-Nov	09:46:47	0.005
2	6	9-Nov	09:51:47	0.006
2	7	9-Nov	09:56:47	0.004
2	8	9-Nov	10:01:47	0.008
2	9	9-Nov	10:06:47	0.005
3	0	9-Nov	10:11:47	0.005
3	1	9-Nov	10:16:47	0.004

pDR-1000 S/N: 00000 User ID: Location A Tag Number: 01 Number of logged points: 75 Start time and date: 08:33:53 14-Nov Elapsed time: 06:15:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 6.694 mg/m3 Time at maximum: 10:04:02 Nov 14 Max STEL Concentration: 0.194 mg/m³ Time at max STEL: 10:18:52 Nov 14 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Avg.(mg/m³) Date Time 1 14-Nov 08:38:53 0.025

14-Nov	08:43:53	0
14-Nov	08:48:53	0
14-Nov	08:53:53	0.003
14-Nov	08:58:53	0.003
14-Nov	09:03:53	0.035
14-Nov	09:08:53	0.016
14-Nov	09:13:53	0.001
14-Nov	09:18:53	0.004
14-Nov	09:23:53	0
14-Nov	09:28:53	0.001
14-Nov	09:33:53	0
14-Nov	09:38:53	0.01
14-Nov	09:43:53	0.003
14-Nov	09:48:53	0.001
14-Nov	09:53:53	0.001
14-Nov	09:58:53	0.021
14-Nov	10:03:53	0.002
14-Nov	10:08:53	0.471
14-Nov	10:13:53	0.075
14-Nov	10:18:53	0.051
14-Nov	10:23:53	0.007
14-Nov	10:28:53	0.017
14-Nov	10:33:53	0.035
14-Nov	10:38:53	0.088
14-Nov	10:43:53	0.014
14-Nov	10:48:53	0
14-Nov	10:53:53	0
14-Nov	10:58:53	0.002
14-Nov	11:03:53	0
14-Nov	11:08:53	0.001
14-Nov	11:13:53	0.001
14-Nov	11:18:53	0.002
14-Nov	11:23:53	0.004
14-Nov	11:28:53	0
14-Nov	11:33:53	0.001
14-Nov	11:38:53	0
	14-Nov 14-Nov	14-Nov 08:43:53 14-Nov 08:48:53 14-Nov 08:53:53 14-Nov 09:03:53 14-Nov 09:03:53 14-Nov 09:08:53 14-Nov 09:13:53 14-Nov 09:13:53 14-Nov 09:23:53 14-Nov 09:23:53 14-Nov 09:23:53 14-Nov 09:33:53 14-Nov 09:43:53 14-Nov 09:43:53 14-Nov 09:43:53 14-Nov 09:53:53 14-Nov 09:53:53 14-Nov 09:53:53 14-Nov 10:03:53 14-Nov 10:03:53 14-Nov 10:13:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:23:53 14-Nov 10:33:53 14-Nov 10:53:53 14-Nov 10:53:53 14-Nov 10:53:53 14-Nov 11:03:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53 14-Nov 11:23:53

38	14-Nov	11:43:53	0
39	14-Nov	11:48:53	0.003
40	14-Nov	11:53:53	0
41	14-Nov	11:58:53	0
42	14-Nov	12:03:53	0
43	14-Nov	12:08:53	0
44	14-Nov	12:13:53	0.001
45	14-Nov	12:18:53	0
46	14-Nov	12:23:53	0
47	14-Nov	12:28:53	0
48	14-Nov	12:33:53	0
49	14-Nov	12:38:53	0.002
50	14-Nov	12:43:53	0
51	14-Nov	12:48:53	0
52	14-Nov	12:53:53	0
53	14-Nov	12:58:53	0
54	14-Nov	13:03:53	0
55	14-Nov	13:08:53	0
56	14-Nov	13:13:53	0
57	14-Nov	13:18:53	0
58	14-Nov	13:23:53	0
59	14-Nov	13:28:53	0
60	14-Nov	13:33:53	0
61	14-Nov	13:38:53	0.002
62	14-Nov	13:43:53	0.001
63	14-Nov	13:48:53	0
64	14-Nov	13:53:53	0.001
65	14-Nov	13:58:53	0.001
66	14-Nov	14:03:53	0
67	14-Nov	14:08:53	0.027
68	14-Nov	14:13:53	0.002
69	14-Nov	14:18:53	0.002
70	14-Nov	14:23:53	0.001
71	14-Nov	14:28:53	0
72	14-Nov	14:33:53	0.016
73	14-Nov	14:38:53	0.003
74	14-Nov	14:43:53	0.001
75	14-Nov	14:48:53	0.004

pDR-1000 S/N: 06131 User ID: Location B Tag Number: 04 Number of logged points: 38 Start time and date: 08:34:35 14-Nov Elapsed time: 03:10:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 1.009 mg/m³ Time at maximum: 10:04:04 Nov 14 Max STEL Concentration: 0.007 mg/m³ Time at max STEL: 10:12:35 Nov 14 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Avg.(mg/m³) Date Time 14-Nov 08:39:35 0.002 1 2 14-Nov 08:44:35 0 3 0 14-Nov 08:49:35 14-Nov 08:54:35 0 4 5 0.002 14-Nov 08:59:35 6 14-Nov 09:04:35 0 7 14-Nov 09:09:35 0 8 14-Nov 09:14:35 0 9 14-Nov 09:19:35 0.001 10 14-Nov 09:24:35 0 11 14-Nov 09:29:35 0 12 14-Nov 09:34:35 0 13 14-Nov 09:39:35 0 14 14-Nov 09:44:35 0 15 14-Nov 09:49:35 0 16 14-Nov 09:54:35 0 17 14-Nov 09:59:35 0 18 0.05 14-Nov 10:04:35 19 14-Nov 10:09:35 0.033 20 14-Nov 10:14:35 0 21 14-Nov 10:19:35 0 22 14-Nov 10:24:35 0 23 14-Nov 10:29:35 0.005 24 14-Nov 10:34:35 0.001 25 14-Nov 10:39:35 0.002 26 14-Nov 10:44:35 0 27 14-Nov 10:49:35 0.001 28 14-Nov 10:54:35 0 29 14-Nov 10:59:35 0 30 14-Nov 11:04:35 0 31 14-Nov 11:09:35 0 32 14-Nov 11:14:35 0 33 14-Nov 11:19:35 0 34 14-Nov 11:24:35 0 35 14-Nov 11:29:35 0 36 14-Nov 11:34:35 0 37 14-Nov 11:39:35 0

38 14-Nov 11:44:35 0 0005323030006010301}

pDR-10	00 5	S/N: 06131				
User ID: Location B						
Tag Number: 05						
Number	r of I	ogged poin	its: 13			
Start tin	ne a	nd date: 13	3:45:06 14-	Nov		
Elapsed	d tim	e: 01:05:00)			
Logaino	o per	iod (sec): 3	300			
Calibrat	tion	Factor (%)	100			
Max Dis	solay	Concentra	ation: 0.280	ma/m ³		
Time at	ma	ximum 14	29.09 Nov	14		
Max ST	FL	Concentrati	on: 0 000 r	na/m³		
Time at	max	STEL: 13	3:45:06 Nov	/ 14		
Overall	Ava	Conc: 0.00)0 ma/m ³			
Logaed	Dat	a:	io mgim			
Point		Date	Time	Ava (ma/m ³)		
	1	14-Nov	13:50:06	0.003		
	2	14-Nov	13:55:06	0		
	3	14-Nov	14:00:06	0		
	4	14-Nov	14:05:06	0		
	5	14-Nov	14:10:06	0.013		
	6	14-Nov	14:15:06	0.001		
	7	14-Nov	14:20:06	0		
	8	14-Nov	14:25:06	0		
	9	14-Nov	14:30:06	0.012		
	10	14-Nov	14:35:06	0.007		
	11	14-Nov	14:40:06	0.014		
	12	14-Nov	14:45:06	0.001		

13 14-Nov 14:50:06 0.005 0005323030006010301}

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 05 Number of logged points: 75 Start time and date: 08:34:39 14-Nov Elapsed time: 06:15:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 2.169 mg/m³ Time at maximum: 14:08:01 Nov 14 Max STEL Concentration: 0.122 mg/m³ Time at max STEL: 14:19:09 Nov 14 Overall Avg Conc: 0.027 mg/m3 Logged Data: Point Date Time Avg.(mg/m³) 1 14-Nov 08:39:39 0.008 2 14-Nov 08:44:39 0.011 3 14-Nov 08:49:39 0.008 4 14-Nov 08:54:39 0.011 14-Nov 08:59:39 5 0.007 6 14-Nov 09:04:39 0.006 7 14-Nov 09:09:39 0.006 14-Nov 09:14:39 8 0.009 9 14-Nov 09:19:39 0.008 10 14-Nov 09:24:39 0.005 11 14-Nov 09:29:39 0.007 12 14-Nov 09:34:39 0 0 0 7 13 14-Nov 09:39:39 0.007 14 14-Nov 09:44:39 0.011 15 14-Nov 09:49:39 0.006 16 14-Nov 09:54:39 0.014 17 14-Nov 09:59:39 0.01 18 14-Nov 10:04:39 0.011 19 14-Nov 10:09:39 0.006 20 14-Nov 10:14:39 0.007 21 14-Nov 10:19:39 0.009 22 14-Nov 10:24:39 0.015 23 14-Nov 10:29:39 0.011 24 14-Nov 10:34:39 0.02 25 14-Nov 10:39:39 0.016 26 14-Nov 10:44:39 0.013 27 14-Nov 10:49:39 0.016 28 14-Nov 10:54:39 0.024 29 14-Nov 10:59:39 0.02 30 14-Nov 11:04:39 0.013 31 14-Nov 11:09:39 0.012 32 14-Nov 11:14:39 0.012 33 14-Nov 11:19:39 0.007 34 14-Nov 11:24:39 0.012 35 14-Nov 11:29:39 0.014 36 14-Nov 11:34:39 0.057 37 14-Nov 11:39:39 0.021

38	14-Nov	11:44:39	0.02
39	14-Nov	11:49:39	0.027
40	14-Nov	11:54:39	0.015
41	14-Nov	11:59:39	0.014
42	14-Nov	12:04:39	0.013
43	14-Nov	12:09:39	0.024
44	14-Nov	12:14:39	0.092
45	14-Nov	12:19:39	0.069
46	14-Nov	12:24:39	0.021
47	14-Nov	12:29:39	0.016
48	14-Nov	12:34:39	0.019
49	14-Nov	12:39:39	0.058
50	14-Nov	12:44:39	0.026
51	14-Nov	12:49:39	0.014
52	14-Nov	12:54:39	0.093
53	14-Nov	12:59:39	0.153
54	14-Nov	13:04:39	0.066
55	14-Nov	13:09:39	0.022
56	14-Nov	13:14:39	0.034
57	14-Nov	13:19:39	0.066
58	14-Nov	13:24:39	0.017
59	14-Nov	13:29:39	0.011
60	14-Nov	13:34:39	0.117
61	14-Nov	13:39:39	0.113
62	14-Nov	13:44:39	0.029
63	14-Nov	13:49:39	0.036
64	14-Nov	13:54:39	0.015
65	14-Nov	13:59:39	0.032
66	14-Nov	14:04:39	0.024
67	14-Nov	14:09:39	0.252
68	14-Nov	14:14:39	0.056
69	14-Nov	14:19:39	0.058
70	14-Nov	14:24:39	0.055
71	14-Nov	14:29:39	0.069
72	14-Nov	14:34:39	0.029
73	14-Nov	14:39:39	0.029
74	14-Nov	14:44:39	0.02
75	14-Nov	14:49:39	0.025
00053230300	0060008	03}	

. ...

Project: FORMER TEW, UTICA, NY		Date: 11/21/05		
Monitoring Instruments:	DR-1000 AN	1-1-		
Air Monitor: A.ENIGK		Activity: GEADING O	F TOPSOIL	
Level of Protection: MOD.	LEVEL D			
Time	(SEE FLOUPE) Location	(mg (m3) Instrument Reading	Comments	
1000	A	0:000		
1000	В			
1000	C			
1100	A			
1100	B			
1100	С			
1200	A			
1200	ß			
1200	C			
1300	A			
1300	В			
1300	С			
1400	A			
1400	В			
1400	C	+		

۰.

pDR-1000 S/N: 00000 User ID: Location A Tag Number: 02 Number of logged points: 47 Start time and date: 10:12:27 21-Nov Elapsed time: 03:55:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.068 mg/m³ Time at maximum: 10:15:24 Nov 21 Max STEL Concentration: 0.001 mg/m³ Time at max STEL: 10:15:27 Nov 21 Overall Avg Conc: 0.000 mg/m³ Logged Data: Point Date Time Avg.(mg/m³) 21-Nov 10:17:27 0.004 1 2 21-Nov 10:22:27 0 3 21-Nov 10:27:27 0 4 21-Nov 10:32:27 0 5 21-Nov 10:37:27 0 6 21-Nov 10:42:27 0 7 21-Nov 10:47:27 0 8 21-Nov 10:52:27 0 9 21-Nov 10:57:27 0 21-Nov 11:02:27 10 0 11 21-Nov 11:07:27 0.001 12 21-Nov 11:12:27 0 13 21-Nov 11:17:27 0 14 21-Nov 11:22:27 0 15 21-Nov 11:27:27 0 16 21-Nov 11:32:27 0 17 21-Nov 11:37:27 0 18 21-Nov 11:42:27 0 19 21-Nov 11:47:27 0 20 21-Nov 11:52:27 0 21 21-Nov 11:57:27 0 22 21-Nov 12:02:27 0 23 21-Nov 12:07:27 0 24 0 21-Nov 12:12:27 25 21-Nov 12:17:27 0 26 21-Nov 12:22:27 0 27 21-Nov 12:27:27 0 28 21-Nov 12:32:27 0 29 21-Nov 12:37:27 0 30 21-Nov 12:42:27 0 31 21-Nov 12:47:27 0 32 21-Nov 12:52:27 0 33 21-Nov 12:57:27 0 34 21-Nov 13:02:27 0 35 21-Nov 13:07:27 0 36 21-Nov 13:12:27 0 37 21-Nov 13:17:27 0

38	21-Nov	13:22:27	0
39	21-Nov	13:27:27	0
40	21-Nov	13:32:27	0
41	21-Nov	13:37:27	0
42	21-Nov	13:42:27	0
43	21-Nov	13:47:27	0
44	21-Nov	13:52:27	0
45	21-Nov	13:57:27	0
46	21-Nov	14:02:27	0
47	21-Nov	14:07:27	0
000532303000	0000000	00}	

Elapsed lime. 02.55.00						
Logging	perio	d (sec): 3	300			
Calibrati	ion Fa	ctor (%):	100			
Max Dis	Max Display Concentration: 0.033 mg/m ³					
Time at	Time at maximum: 12:09:28 Nov 21					
Max STI	EL Co	ncentrati	on: 0.000	ma/m³		
Time at	max §	STEL: 10):12:47 No	v 21		
Overall	Ava C	onc: 0.00	0 ma/m^3			
Logged	Data:	01101 0100	o mg/m			
Point	D	ate	Time	$\Delta va (ma/m^3)$		
1 Onite	1	21-Nov	10.17.47	0.004		
	2	21-Nov	10.22.47	0.004		
	2	21-Nov	10.22.47	0		
	1	21-NOV	10.27.47	0		
	5	21-NOV	10.32.47	0		
	0	21-NOV	10.37.47	0		
	2	21-INOV	10.42.47	0		
	6	21-INOV	10:47:47	0		
	8	21-Nov	10:52:47	0		
	9	21-Nov	10:57:47	0		
	10	21-Nov	11:02:47	0		
	11	21-Nov	11:07:47	0		
	12	21-Nov	11:12:47	0		
	13	21-Nov	11:17:47	0		
	14	21-Nov	11:22:47	0		
	15	21-Nov	11:27:47	0		
	16	21-Nov	11:32:47	0		
	17	21-Nov	11:37:47	0		
	18	21-Nov	11:42:47	0.004		
	19	21-Nov	11:47:47	0.001		
-	20	21-Nov	11:52:47	0		
-	21	21-Nov	11:57:47	0.001		
4	22	21-Nov	12:02:47	0.002		
4	23	21-Nov	12:07:47	0.001		
-	24	21-Nov	12:12:47	0.004		
4	25	21-Nov	12:17:47	0		
2	26	21-Nov	12:22:47	0		
2	27	21-Nov	12:27:47	0.001		
2	28	21-Nov	12:32:47	0		
2	29	21-Nov	12:37:47	0		
3	30	21-Nov	12:42:47	0		
3	31	21-Nov	12:47:47	0		
3	32	21-Nov	12:52:47	0		
3	33	21-Nov	12:57:47	0		
3	34	21-Nov	13:02:47	0		
3	35	21-Nov	13:07:47	0		
0005000	00000	0004000				

pDR-1000 S/N: 06083 User ID: Location C Tag Number: 06 Number of logged points: 48 Start time and date: 10:12:49 21-Nov Elapsed time: 04:00:00 Logging period (sec): 300 Calibration Factor (%): 100 Max Display Concentration: 0.067 mg/m3 Time at maximum: 12:55:03 Nov 21 Max STEL Concentration: 0.000 mg/m³ Time at max STEL: 10:12:49 Nov 21 Overall Avg Conc: 0.000 mg/m3 Logged Data: Point Date Time Avg.(mg/m³) 21-Nov 10:17:49 1 0.001 2 21-Nov 10:22:49 0.002 3 21-Nov 10:27:49 0.003 4 21-Nov 10:32:49 0.001 5 21-Nov 10:37:49 0.001 6 21-Nov 10:42:49 0.003 7 21-Nov 10:47:49 0.001 8 21-Nov 10:52:49 0.001 9 21-Nov 10:57:49 0.001 10 21-Nov 11:02:49 0.001 11 21-Nov 11:07:49 0.002 12 21-Nov 11:12:49 0.002 13 21-Nov 11:17:49 0.003 14 21-Nov 11:22:49 0.001 15 21-Nov 11:27:49 0.006 16 21-Nov 11:32:49 0.001 17 21-Nov 11:37:49 0.002 18 21-Nov 11:42:49 0.001 19 21-Nov 11:47:49 0.002 20 21-Nov 11:52:49 0.001 21 21-Nov 11:57:49 0.001 22 21-Nov 12:02:49 0.002 23 21-Nov 12:07:49 0.002 24 21-Nov 12:12:49 0.001 25 21-Nov 12:17:49 0 26 21-Nov 12:22:49 0.002 27 21-Nov 12:27:49 0.001 28 21-Nov 12:32:49 0 29 21-Nov 12:37:49 0.001 30 21-Nov 12:42:49 0.001 31 21-Nov 12:47:49 0.002 32 21-Nov 12:52:49 0 33 21-Nov 12:57:49 0.003 34 21-Nov 13:02:49 0 35 21-Nov 13:07:49 0 36 21-Nov 13:12:49 0.003 37 21-Nov 13:17:49 0.001

38	21-Nov	13:22:49	0.002
39	21-Nov	13:27:49	0
40	21-Nov	13:32:49	0.001
41	21-Nov	13:37:49	0
42	21-Nov	13:42:49	0.004
43	21-Nov	13:47:49	0
44	21-Nov	13:52:49	0.002
45	21-Nov	13:57:49	0.001
46	21-Nov	14:02:49	0.003
47	21-Nov	14:07:49	0.001
48	21-Nov	14:12:49	0.002
 00000		0.01	