PERIODIC REVIEW REPORT (2015) PRIMOSHIELD INC. NYSDEC SITE NO. 633027

WORK ASSIGNMENT NO. D007619-18

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3612122251

JANUARY 2016

PERIODIC REVIEW REPORT (2015) PRIMOSHIELD INC. NYSDEC SITE NO. 633027

WORK ASSIGNMENT NO. D007619-18

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3612122251

JANUARY 2016

Submitted by:

Jean Firth Site Manager

Approved by:

ack

Mark Stelmack, P.E. Principal Professional

TABLE OF CONTENTS

LIST (OF FIGUI	RES		ii
LIST (OF TABL	ES		iii
GLOS	SARY OI	F ACRO	ONYMS AND ABBREVIATIONS	iv
EXEC	UTIVE S	UMMA	ARY	ES-1
1.0	SITE H	ISTOR	Υ	1-1
2.0	2.1 2.2 2.3	INSTIT LONG 2.2.1 2.2.2 2.2.3 2.2.4 OPERA	MENT STATUS TUTIONAL CONTROLS/ENGINEERING CONTROLS PLAN TERM MONITORING PLAN Groundwater Elevation Monitoring Monitoring Well Inventory and Repair LTM Sampling and Analysis Performance Monitoring ATION AND MAINTENANCE PLAN TIONAL SITE MANAGEMENT ACTIVITIES	2-2 2-3 2-3 2-3 2-3 2-5 2-5
3.0	CONCL	LUSION	IS AND RECOMMENDATIONS	3-1
4.0	REFER	ENCES	5	4-1
FIGUF	RES			
TABL	ES			
APPEN	NDICES			
	Append	ix A:	May 2015 – Inspection Report	
	Append	ix B:	September 2015 – Inspection Report	
	Append	ix C:	September 2015 – LTM Field Data Records and Category A Data Validation	
	Append	ix D:	Contaminant Trend Plots	

Appendix E: Primoshield Site Visit DER Site Management 9/8/2015

LIST OF FIGURES

Figure

- 1.1 Site Location
- 1.2 Site Features
- 2.1 Exceedances of Class GA Groundwater Standards, September 2015

LIST OF TABLES

Table

- 2.1 Site Management Plan Requirements
- 2.2 Sampling and Analysis Plan
- 2.3 Summary of Monitoring Well Measurements
- 2.4 Summary of Compounds Detected September 2015

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

bgs	below ground surface
EC	engineering controls
GWCS	groundwater treatment collection system
IC	institutional controls
LTM	long term monitoring
MACTEC	MACTEC Engineering and Consulting, P.C.
mg/L	milligram(s) per liter
NYSDEC	New York State Department of Environmental Conservation
POTW	Publicly Owned Treatment Works
PRR	Periodic Review Report
RAO	remedial action objective
RI	remedial investigation
ROD	Record of Decision
Site	Primoshield, Incorporated site
SM	site management
SMP	site management plan
USEPA	United States Environmental Protection Agency
VOC	volatile organic compound

EXECUTIVE SUMMARY

The Primoshield, Incorporated site (Site No. 633027; hereinafter referred to as the Site) is a 2.4 acre former metal electroplating facility located at 1212 St. Vincent Street in Utica, Oneida County, New York. In March 1995 a Record of Decision (ROD) was signed for the Site; the ROD established the following Remedial Action Objectives (RAOs):

- Reduce, control, or eliminate the contamination present within the soils on Site.
- Eliminate the threat to surface waters by eliminating future contaminated surface water run-off from the contaminated soils on Site, and potential future discharge from site sewer lines to the Oneida County Sewer System.
- Eliminate the potential for direct human contact with the contaminated soils onsite.
- Mitigate the impacts of contaminated groundwater to the environment and to nearby residents.
- Prevent to the extent possible migration of contaminants in the soils to groundwater.
- Provide for attainment of standards, criteria, and guidance values for groundwater quality at the limits of the area of concern.
- Remediate the Site and adjoining property to provide for future delisting and unrestricted use.

A Site Management (SM) Plan (SMP) has been created which outlines the controls established to meet the RAOs. Because remaining contaminated groundwater exists beneath the Site, engineering controls (ECs)/institutional controls are required to protect human health and the environment. EC systems at the Site include: the groundwater collection system, site access controls, and groundwater monitoring wells. The SMP includes a soil excavation plan because post remediation sampling was not conducted to document remaining soil conditions; therefore, contaminant concentrations greater than the Soil Cleanup Objectives may be present at the Site. The remedial processes will be considered to be completed when effectiveness monitoring indicates that the remedy has achieved the RAOs identified by the ROD.

This Periodic Review Report summarizes the SM activities completed at the Site during 2015 including long term monitoring, semiannual inspections, and discharge monitoring. Additional activities conducted during the reporting period included: the installation of a groundwater monitoring point to evaluate groundwater quality downgradient of the collection trench. During

Periodic Review Report (2015) - Primoshield Inc. NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C. – 3612122251

the reporting period, SM requirements were met. Contaminants of concern at the Site include volatile organic compounds (VOCs), cadmium, chromium, lead, nickel and cyanide. The groundwater collection system discharge monitoring sample results from May and September 2015 showed detections of VOCs, nickel, and zinc (zinc detected in September only) below the discharge criteria. MACTEC Engineering and Consulting P.C. concludes that the remedy for the Site is appropriate.

1.0 SITE HISTORY

Primoshield, Incorporated (Inc.) (the Site), a former metal electroplating facility, is located at 1212 St. Vincent Street, Utica, New York (Figure 1.1). The 2.4 acre Site is comprised of four parcels located between Conkling Avenue and St. Vincent Street. The City of Utica owns two parcels totaling approximately 0.82 acres which are enclosed by a chain link fence. The fenced portion of the Site is designated as 1223 Conkling Avenue (tax map parcel number 41) and as 1212 St. Vincent Street (tax map parcel number 33), and is located in a mixed commercial/residential area. The St. Agnes R.C. cemetery is located immediately southeast of the Site. The Mohawk River is located down-gradient, approximately one and one half miles to the north of the Site. Figure 1.2 shows the current Site features.

Primoshield, Inc. operated a metal electroplating facility from the early 1970's until August 1985. The property consisted of a factory (production building), a small laboratory, and a small storage trailer, all of which were in an advanced state of disrepair at the time the Site was abandoned in 1985. Additionally, a large number of drums and open vats containing chemicals were left behind. Later in that year there was a fire at the facility. The local citizens communicated their health concerns to the New York State Department of Environmental Conservation (NYSDEC), and samples collected in December 1985 showed a high risk to the public from the Site. Consequently, on March 12, 1986, NYSDEC formally petitioned the United States Environmental Protection Agency (USEPA) to remediate the Site, including but not limited to the cleanup and removal of all the surficial and containerized hazardous wastes as well as the installation of a fence and gate system to secure the Site.

Following the fire in 1985, the facility was abandoned by its owners, and the City of Utica assumed ownership of the Site through tax foreclosure. In December 1989, NYSDEC signed a negotiated Consent Order with the City of Utica in which the city agreed to perform a Remedial Investigation (RI)/Feasibility Study to further investigate and remediate residual hazardous waste contamination remaining at the Site. The RI identified cadmium, chromium, nickel, and cyanide in surficial soils and trichloroethene, 1,1,1-trichloroethane, 1,1-dichloroethane, and chromium in groundwater at the Site. The site was re-assigned by NYSDEC as a State Superfund project in November 1996 because the City of Utica had inadequate funds to complete the remediation.

According to the Record of Decision (ROD) (NYSDEC, 1995), signed on March 30, 1995, the preferred remedy was:

- Excavation and disposal of hazardous and non-hazardous soils
- Building demolition,
- Groundwater collection trench installation
- Operation, maintenance, and monitoring of a groundwater collection system, the purpose of which is to intercept, collect, and discharge contaminated groundwater.

The originally installed groundwater treatment system was designed to intercept and collect the plume of contaminated groundwater and treat the water by carbon filtration, with effluent discharged to the Publicly Owned Treatment Works (POTW). However, because contaminated groundwater concentrations decreased to levels below the discharge criteria, the carbon filters have not been in use since 2001, and the groundwater treatment system continues to be used for groundwater collection to intercept and collect contaminated groundwater. Site Management (SM) is currently underway and consists of:

- Semi-annual site inspections
- Semi-annual POTW discharge monitoring
- Long term monitoring (LTM) consisting of groundwater monitoring every 15 months.

In 2015, two site inspections were performed and LTM sampling was conducted. Also, a groundwater monitoring well (GW-01) was installed down gradient of the collection trench to obtain data for evaluating the effectiveness of the groundwater collection system.

2.0 SITE MANAGMENT STATUS

This Periodic Review Report (PRR) documents SM activities from January 2015 through December 2015 and includes:

- Inspection, Discharge Monitoring, and Maintenance May (MACTEC 2015a)
- Inspection, Discharge Monitoring, and Maintenance September (MACTEC 2015b)
- LTM September

This PRR was completed using site-specific documentation including the Site's ROD (NYSDEC, 1995), the SM Plan (SMP) (MACTEC Engineering and Consulting, P.C. [MACTEC], 2013), periodic site inspection and discharge monitoring reports (MACTEC, 2015a and MACTEC, 2015b). This review was conducted to confirm that controls established according to the SMP are operational and effective, that the SM requirements are being implemented and conducted accordingly, and that the remedy remains protective of the environment and/or public health.

SM requirements, as described in the SMP, are outlined in Table 2.1. These include:

- Semi-annual inspections of institutional/engineering controls (IC/ECs)
- Semi-annual discharge monitoring
- LTM of groundwater from existing monitoring wells, see Figure 1.2

Existing wells are monitored to evaluate contaminant of concern concentrations (i.e., cadmium, chromium, lead, nickel, cyanide and volatile organic compounds [VOCs]) in groundwater compared to the Site cleanup goals (New York State Class GA Standards [6 New York Codes, Rules and Regulations Parts 700-705].

A summary of SM activities completed during the reporting period and an evaluation of the performance, protectiveness, and effectiveness of the remedy is provided below.

2.1 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS PLAN

Because contaminated groundwater exists beneath the ground surface, IC/ECs are required to protect human health and the environment. EC systems at the Site include: the groundwater collection system, site access controls, and groundwater monitoring wells.

Restrictions are imposed pursuant to the SMP and include:

- Allow access to the Site for operation of the groundwater collection system (GWCS)
- Groundwater extraction, for anything other than collection at the GWCS, is prohibited
- Animal production for human consumption is prohibited
- Vegetable gardens are prohibited onsite unless planted in gardens where soil achieves the residential use soil clean-up objectives
- Site use is limited to industrial uses only
- Site owner(s) must follow the requirements of this SMP
- Excavation on the property is prohibited without written permission from the NYSDEC.

Based on the inspections conducted in 2015, there has not been a change in property use and the Site is in compliance with these ICs. Inspections of the ECs and semi-annual discharge monitoring were conducted in May and September. The ECs are in place; EC observations made during 2015 include:

- During the May and September inspections, infringing vegetation was removed from the perimeter fence.
- During the May inspection a hole was noted in the northeast section of the perimeter fence. During the September inspection an additional area of damaged fence was noted along St Vincent Street where construction vehicles had caused considerable damage. The NYSDEC is coordinating repairs with the City of Utica for the section of fence along St. Vincent Street (see Subsection 2.3 below).
- Covers for the five collection trench cleanouts were replaced. However, due to settlement of the concrete the northernmost cleanout cover needs to be replaced with a lower profile cover so that the protective steel cap will seat properly.

Inspection forms, Site photos, field data records, and laboratory results are provided in Appendix A (May 2015) and Appendix B (September 2015).

2.2 LONG TERM MONITORING PLAN

The requirement for the groundwater monitoring program in the SMP includes groundwater elevation monitoring, monitoring well inventory and repair, and groundwater sampling and analysis. Monitoring locations have been sampled since 1999 and are currently scheduled for sampling at 15 month intervals. The Site monitoring locations are shown on Figure 1.2; Table 2.2 summarizes the LTM sampling and analysis plan.

2.2.1 Groundwater Elevation Monitoring

Groundwater elevations were measured in September 2015 and compared to water level measurements from previous years (Table 2.3). Interpreted shallow groundwater flow direction based on the September elevations is to the northeast, and measurements from overburden monitoring wells are approximately 0.7 to 2.4 feet lower than those reported in May 2015, reflecting the unusually dry regional conditions.

2.2.2 Monitoring Well Inventory and Repair

Monitoring well inspections were conducted in September 2015. The monitoring wells were observed to be in good condition (see Appendix B).

2.2.3 LTM Sampling and Analysis

Environmental groundwater samples were collected in September 2015 as part of the LTM program. Shallow groundwater contamination at concentrations exceeding Class GA standards was observed in monitoring wells P-103 and P-107S shown on Figure 2.1. A Category A data validation was conducted for the LTM analytical data and is provided Appendix C; results for contaminants detected in one or more samples is summarized on Table 2.4.

Trend plots (i.e. concentration vs. time plots) were prepared for Site contaminants of concern detected in monitoring wells for the period beginning December 2011 and ending September 2015 (Appendix D). Trend plots were prepared to visually evaluate trends, which are generally

Periodic Review Report (2015) - Primoshield Inc. NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C. – 3612122251

decreasing, in contaminant concentrations following the startup of the groundwater collection system in 2012. Trend plot observations are as follows:

P-103 Organics

- 1,1,1-TCA The reported concentration decreased as noted in the first LTM conducted following groundwater collection system startup, and has remained at relatively consistent concentrations since.
- 1,1-DCA The reported concentration increased after system startup, however, concentrations have remained relatively consistent since.
- 1,2-DCA The reported concentration increased after system startup, however, concentrations have remained relatively consistent since.
- TCE The reported concentration decreased after the system startup, and concentrations have remained relatively consistent since.

P-106S Organics

- 1,1,1-TCA The reported concentration decreased as noted in the first LTM conducted following groundwater collection system startup, then slightly rebounded; concentrations remain relatively consistent.
- TCE The reported concentration increased as noted in the first LTM conducted following groundwater collection system startup; concentrations remain relatively consistent.

P-107S Organics

- 1,1,1-TCA The reported concentration decreased as noted in the first LTM conducted following groundwater collection system startup, and has remained at relatively consistent concentrations since.
- 1,1-DCA The reported concentration decreased after the system startup, and concentrations have remained relatively consistent since.
- TCE The reported concentration decreased after the system startup, and concentrations have remained relatively consistent since.

P-107D Metals

• Nickel- the reported concentration increased as noted in the first LTM conducted following groundwater collection system startup, and has decreased to non-detect in the latest groundwater sampling event.

P-107S Metals

- Nickel- The reported concentration decreased as noted in the first LTM conducted following groundwater collection system startup, and has remained at relatively consistent concentrations since.
- Zinc- the reported concentration has been consistently decreasing since the system startup.

2.2.4 Performance Monitoring

Discharge of effluent from the groundwater collection system is permitted by the Oneida County Department of Water Quality & Water Pollution Control. Groundwater Remediation Discharge Permit No. GW-040 establishes semiannual monitoring requirements and discharge criteria. During the reporting period, effluent samples were collected (in May and September) and analyzed by USEPA Methods: VOCs by 624; copper, nickel and zinc by 200.7, cyanide by 9012B, and pH by SM4500-H+B. Discharge reports were submitted to the Oneida County Sewer District for both sampling events (OCSD, 2015a; OCSC 2015b). The following compounds were detected; as shown, concentrations did not exceed the discharge criteria.

POLLUTANT/PARAMETER	PERMITTED LIMIT	May 2015 Results	September 2015 Results
pH (units)	5.0-12.5	7.21	7.06
Cadmium, mg/L	1	0.005 U	0.005 U
Chromium, mg/L	5	0.010 U	0.010 U
Copper, mg/L	3	0.020 U	0.020 U
Lead, mg/L	5	0.050 U	0.050 U
Nickel, mg/L	2	0.044	0.068
Zinc, mg/L	4	0.020 U	0.021
Cyanide, mg/L	3	0.010 U	0.010 U
Total VOCs, mg/L	2.0*	0.026	0.027

*Total Volatile Organics is the sum of all detectable VOCs substances as determined using the USEPA Method 624.

U= Not Detected; value represents quantization limit.

mg/L = milligrams per liter

2.3 OPERATION AND MAINTENANCE PLAN

According to the SMP, site wide inspections are to be conducted semi-annually. The semi-annual inspections include the inspection and maintenance of the perimeter fence, and inspection and

Periodic Review Report (2015) - Primoshield Inc. NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C. – 3612122251

monitoring of the groundwater collection system. Inspections were conducted in May and September, and LTM was also conducted in September as described above.

The reading from the flow totalizer was 1,865,200 gallons in May and 1,974,500 gallons in September (Appendix A and B).

NYSDEC project manager Will Welling conducted a site visit on September 8. There appeared to be some fence damage to the perimeter fence at the end of St. Vincent (Appendix E). Mr. Welling noted that material was being staged at the end of St. Vincent St. for sewer repairs in the direct area. He discussed the fence damage with Ms. Stephanie Wurz, City of Utica engineer, who was overseeing Marcellus Construction Infrastructure conducting the sewer repairs. He told Ms. Wurz that the fence belongs to the City.

2.4 ADDITIONAL SITE MANAGEMENT ACTIVITIES

On September 8, one direct push boring was installed (GW-01) and completed with a micro-well downgradient from groundwater collection trench #2, between the collection trench and the residence to the north of the Site. The well is located approximately ten feet from the trench and 20 feet from the residence. The objective of the well installation is to collect data for evaluating the effectiveness of the treatment system in treating VOC concentrations in groundwater which may have potential to migrate via soil vapor into the abutting residence. The boring was advanced to 20 feet below ground surface (bgs) and logged utilizing the Unified Soil Classification System. The soil boring log is included in Appendix C.

A micro-well was installed in the boring, constructed with 1 inch ID Schedule 40 polyvinyl chloride and a 10 foot screen from approximately eight to 18 feet bgs; the well construction diagram is included in Appendix D. Water was not observed in the micro-well directly after installation, likely due to the extremely dry regional conditions. The well was checked again the following morning; no water was observed. On September 10, approximately 1.6 feet of water was measured in the well. The well was developed by surging and purging until dry. Three hours after development, a groundwater grab sample of the recharge water was collected and sent to ALS labs of Rochester NY for analysis by USEPA method 8260B.

Periodic Review Report (2015) - Primoshield Inc. NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C. – 3612122251

Results from the GW-01 grab sample show acetone was detected; this result is unlikely site related as acetone is a common laboratory contaminant and not a contaminant of concern for the site. There were no other VOCs detected above reporting limits during this sampling round. Data validation (Category A) for the laboratory analytical data from GW-01 is included in Appendix C.

Water samples from the collection trench cleanouts scheduled for collection to aid in evaluating current VOC levels in the trenches compared to the newly installed micro well were not obtained due to the dry regional conditions (i.e. water was not observed in the cleanouts).

3.0 CONCLUSIONS AND RECOMMENDATIONS

Current SM activities being conducted are in compliance with the requirements of the Site's SMP. Based on a review of the data collected during this reporting period, the remedy continues to be protective of public health and the environment and is in compliance with the remedial action objectives (RAOs) established in the ROD.

The results of sample analyses shows that effluent from the groundwater collection system met the requirements of the Oneida County Department of Water Quality & Pollution Control discharge permit at the time of sample collection. Site inspections conducted in 2015 indicate that the collection system is functioning properly, and that ICs are in place and effective.

The groundwater collection system is currently operating and achieving its objective of intercepting, collecting, and discharging contaminated groundwater.

Based on the findings presented in this PRR, the following recommendations are provided:

ICs/ECs Plan

• Continue to conduct inspections of the facility as required by the SMP to ensure the EC/ICs are in place and are effective.

Monitoring Plan

- Continue to conduct performance monitoring of the groundwater collection system discharge as required by the POTW permit.
- Conduct LTM to evaluate the effectiveness of the groundwater collection system as required by the SMP.
- Discontinue sampling at monitoring wells P-101 S/D and P-108 and consider decommissioning these wells. These are background wells used to evaluate groundwater conditions upgradient of the Site; however, P-105 is also representative of background conditions and is closer to the Site.
- Revise the LTM plan to include new monitoring well GW-01 to aid in evaluating the effectiveness of the groundwater collection system.

January 2016

Site Management Plan:

- The SMP should be updated to reflect new information and changes at the Site since 2013 including:
 - A property boundary survey
 - Installation of monitoring well GW-01
 - Changes to the LTM

ROD Remedial Action Objectives:

Based on a review of available historical documentation, the following RAOs for the Site have been achieved:

- Reduce, control or eliminate the contamination present within the soils on site.
- Eliminate the threat to surface waters by eliminating future contaminated surface water run-off from the contaminated soils on site, and potential future discharge from site sewer lines to the Oneida County Sewer System.
- Prevent, to the extent possible, migration of contaminants in the soils to groundwater.

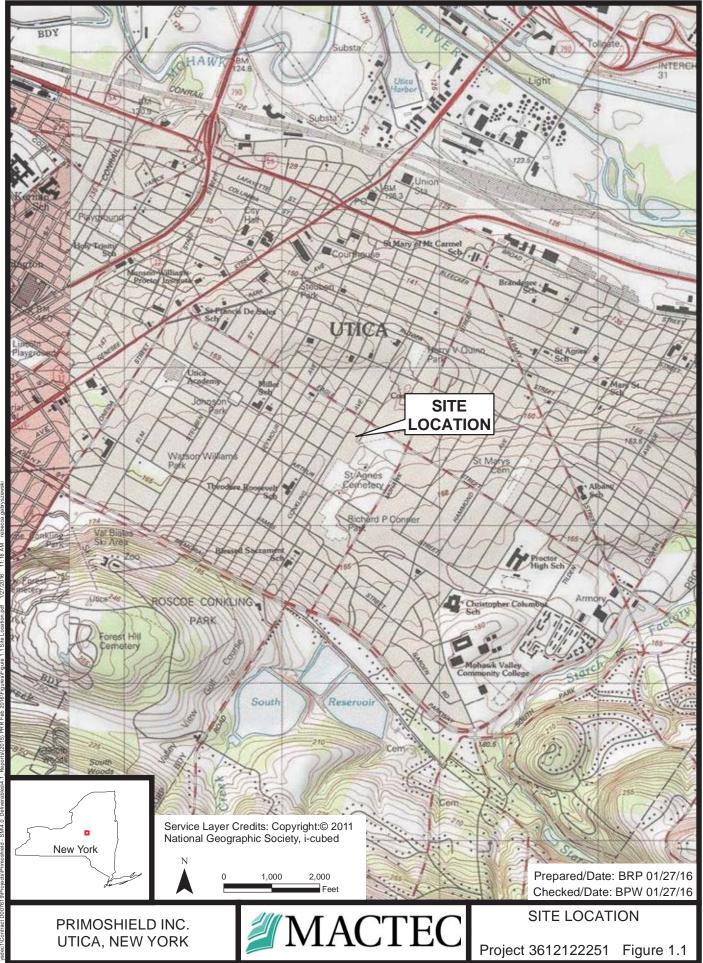
Based on the findings presented herein, adherence to the SMP for the Site is effective in monitoring the status of the following RAOs:

- Eliminate the potential for direct human contact with the contaminated soils onsite.
- Mitigate the impacts of contaminated groundwater to the environment and to nearby residents.

Based on a review of available historical data the following RAOs have not been achieved:

- Provide for attainment of standards, criteria, and guidance values for groundwater quality at the limits of the area of concern (Table 2.4).
- Remediate the Site and adjoining property to provide for future delisting and unrestricted use.

To meet these RAOs, the following is recommended:

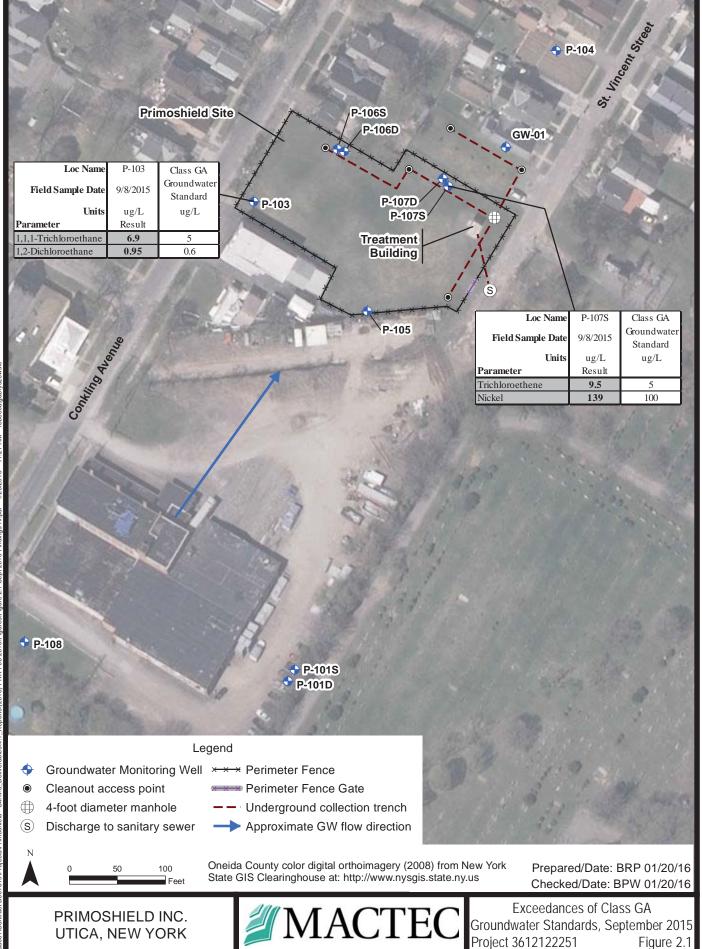

- Collect soil samples onsite to evaluate if the current concentrations of site contaminants of concern meet the Soil Clean-up Objectives for unrestricted use.
- Effectiveness evaluation should continue in 2016. Groundwater samples should be collected from the newly installed monitoring well (GW-01) to evaluate concentrations of VOCs in groundwater relative to nearby receptors and the potential for exposure from groundwater or soil vapor intrusion. If results of this evaluation show groundwater concentrations below the GA standards, consider discontinuing sampling P-104 as part of the LTM.

4.0 **REFERENCES**

- MACTEC Engineering and Consulting, P.C. (MACTEC), 2015a. Site Inspection and Discharge Monitoring Report – May 2015, Primoshield Plating Site, Site Number 633027, City of Utica Oneida County, New York. June 19, 2015.
- MACTEC, 2015b. Site Inspection and Discharge Monitoring Report Sept 2015, Primoshield Plating Site, Site Number 633027, City of Utica Oneida County, New York. –October 19, 2015.
- MACTEC, 2013. Site Management Plan, Primoshield Plating Site, Site Number 633027, City of Utica Oneida County, New York. August, 2013.
- New York State Department of Environmental Conservation (NYSDEC), 1995. Record of Decision, Primoshield Plating Site, Site Number 633027, City of Utica Oneida County, New York. March, 1995.
- NYSDEC, 2015. Primoshield Site Visit, Primoshield Plating Site, Site Number 633027, City of Utica Oneida County, New York. September, 2015.
- Oneida County Sewer District (OCSD), 2015a. Semiannual Discharge Results Report. June 16, 2015.


OCSD, 2015b. Semiannual Discharge Results Report. October 9, 2015.

FIGURES



jects D004

PDF: P:\Projects nield_SitePlan_8.5x11P.mxd Sito moshield, Incorporated\4.0_Deliverables\4.5_Databases\GIS\MapDo 4.0_Deliverables\4.1_Reports\2015) PRR_Feb_2016)Figures\Figure 3 ent: P:/Projects i/Contracts D004434 and D00444/projects/Primos i/Contracts D004434 and D00444/projects/Primos Docur

PDF: P:\Projects 11:27 AM rehect ents\Sept2015_Findings_8.5x11P.mxd Sont moshield, Incorporated\4.0_Deliverables\4.5_Databases\GIS\MapDoc 4.0_Deliverables\4.1_Reports\(2015) PRR Feb 2016\Figures\Figure 2 ent: P:/Projects \Contracts D004434 and D004444\projects\Primos \Contracts D004434 and D004444\projects\Primos TABLES

Table 2.1: Site Management Plan Requirements

(Inspection and Long Term Monitoring)

Component	Action	Required Frequency						
TREATMENT SYSTEM								
Treatment System	Inspection	Semi-annually in spring and summer						
Effluent	Grab sample	Semi-annually in spring and summer						
ENVIRONMENTAL MONITORING								
Groundwater Monitoring Program	m							
10 monitoring locations	Low flow sampling	Every 15 months (December 2016, March 2018)						
Groundwater Monitoring System	Inspection	Every 15 months (December 2016, March 2018)						

Performance Monitoring - Semi-Annual								
	pH (SM 4500-H+) Metals (200.7)*							
Sample Locations	Cyanide (9012B)	VOC (624)						
Effluent	Х	X						
Monito	Monitoring Wells - 15 Month**							
Sample Locations	Metals (6010B)	VOC (8260B)						
P-103	Х	X						
P-104	Х	Х						
P-105	Х	X						
P-106S	Х	Х						
P-106D	Х	X						
P-107S	Х	X						
P-107D	Х	X						
P-108	Х	X						
P-101S	Х	X						
P-101D	Х	Х						

Table 2.2: Sampling and Analysis Plan

Notes:

*- Cadmium, chromium, copper, lead, nickel and zinc.

An 'X' marked in a column indicates the analysis to be performed for that sample location.

VOCs = Volatile Organic Compounds

**-Samples collected in September 2015; next groundwater monitoring event is December 2016.

Table 2.3: Summary of Monitoring Well Measurements

Primoshield Site 1212 St Vincent Street, Utica, NY.

					12/20/2011	12/20/2011	12/11/2012	3/27/2013	6/23/2014	9/8/2015	12/20/2011	12/11/2012	3/27/2013	6/23/2014	9/8/2015
Well ID	Ground Elevation	Estimated Measurement Point Elevation	Stickup on Casing	TOC to TOR	Depth to BOW	Water Level	Water Level	Water Level	Water Level	Water Level	Water Elevation	Water Elevation	Water Elevation	Water Elevation	Water Elevation
	(feet msl)	(feet msl)	(feet)	(feet)	(feet TOR)	(feet TOR)	(feet TOR)	(feet TOR)	(feet TOR)	(feet TOR)	(feet msl)				
P-101-S	525.0	Unknown	NM	NM	18.5	>18.45 (DRY)	>18.45 (DRY)	>18.45 (DRY)	>18.45 (DRY)	17.55	NA	NA	NA	NA	NA
P-101-D	525.0	527.2	2.6	0.39	86.9	28.18	28.48	28.07	28.30	28.67	499.03	498.73	499.14	520.14	498.54
P-103	521.8	524.3	2.8	0.34	18.1	7.04	6.74	6.77	7.07	8.47	517.22	517.52	517.49	518.13	515.79
P-104	516.1	518.0	2.2	0.33	17.4	6.15	4.25	5.22	6.13	7.23	511.82	513.72	512.75	513.40	510.74
P-105	522.7	525.1	2.9	0.48	18.2	4.75	3.85	4.35	4.57	5.3	520.37	521.27	520.77	517.20	519.82
P-106-S	521.1	524.8	4.0	0.27	18.5	7.38	5.81	6.62	7.92	9.98	517.45	519.02	518.21	495.86	514.85
P-106-D	520.8	524.3	3.9	0.39	77.6	28.81	29.11	28.73	28.97	29.16	495.50	495.20	495.58	516.20	495.15
P-107-S	519.4	522.1	2.9	0.21	17.2	6.43	4.89	6.43	8.11	10.17	515.66	517.20	515.66	492.64	511.92
P-107-D	519.3	522.0	3.2	0.50	77.7	29.28	29.57	29.13	29.45	29.56	492.72	492.43	492.87	515.99	492.44
P-108	530.0	532.2	2.5	0.27	18.7	5.91	5.96	5.31	6.01	8.43	526.32	526.27	526.92	532.23	523.80

Notes:

1) Ground Elevation from monitoring well logs included in Monitoring Plan for Primoshield Plating January 2004.

2) Measurement Point Elevation calculated using the ground elevation and field measurements of casing stickup and the distance from the top of riser to the top of casing;

therefore, the water elevations are approximate

3) NM = Not measured

Table 2.4: Summary of Compounds Detected - September 2015

	Sa	ion Name mple Date Sample ID Qc Code	9/10/2015 633027GW01	P-101D 9/9/2015 633027P101D FS	P-103 9/9/2015 633027P103XX FS	P-104 9/8/2015 633027P104 FS	P-104 9/8/2015 633027P104D FD	P-105 9/9/2015 633027P105XX FS	P-106D 9/9/2015 633027P106D FS	P-106S 9/9/2015 633027P106SXX FS	P-107D 9/9/2015 633027P107D FS	P-107S 9/9/2015 633027P107S FS	P-108 9/9/2015 633027P108XX FS
Parameter	GA	Units	Result Qualifier		Result Qualifier	Result Qualifier				- ~			Result Qualifier
Volatile Organic Compound	Volatile Organic Compounds 8260												
1,1,1-Trichloroethane	5	μg/L	1 UJ	1 UJ	6.9 J	1 UJ	1 UJ	1 UJ	1 UJ	1.7 J	1 UJ	1.6 J	1 UJ
1,1-Dichloroethane	5	μg/L	1 UJ	1 UJ	1.8 J	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1.9 J	1 UJ
1,2-Dichloroethane	0.6	μg/L	1 UJ	1 UJ	0.95 J	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Acetone		μg/L	2.6 J	5 UJ	1.7 J	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	3.2 J	5.8 J	1.4 J
Carbon disulfide		μg/L	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	0.37 J	1 UJ	1 UJ	1 UJ	1 UJ
Trichloroethene	5	μg/L	1 UJ	1 UJ	1.6 J	1 UJ	1 UJ	1 UJ	1 UJ	0.92 J	1 UJ	9.5 J	1 UJ
Metals (Total) 6010C	Metals (Total) 6010C												
Lead	25	μg/L		50 U	50 U	50 U	5 J	50 U	50 U	50 U	50 U	6 J	50 U
Nickel	100	μg/L		40 U	40 U	3 J	40 U	3 J	40 U	5 J	40 U	139	40 U
Cadmium	5	µg/L		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.8 J	5 U

Notes:

Only compounds detected shown

GA = NYS Class GA groundwater quality standard Part 703

Shaded = Result exceeds GA standard.

Bold = contaminant detected

J = result estimated

U = not detected

 $\mu g/L = micrograms per liter$

Blank cell represents compound not tested for.

FS- field sample

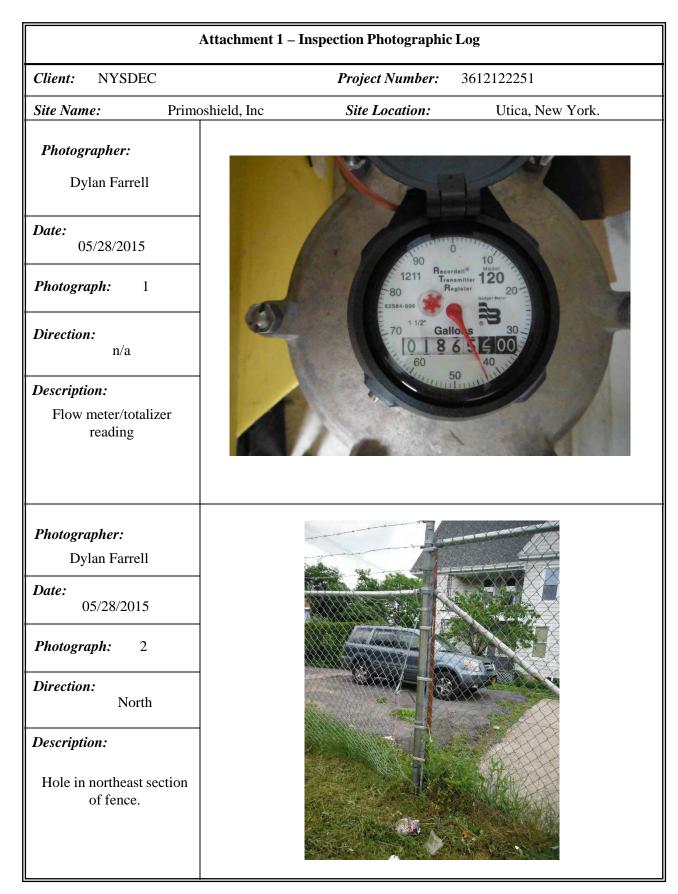
FD- field duplicate

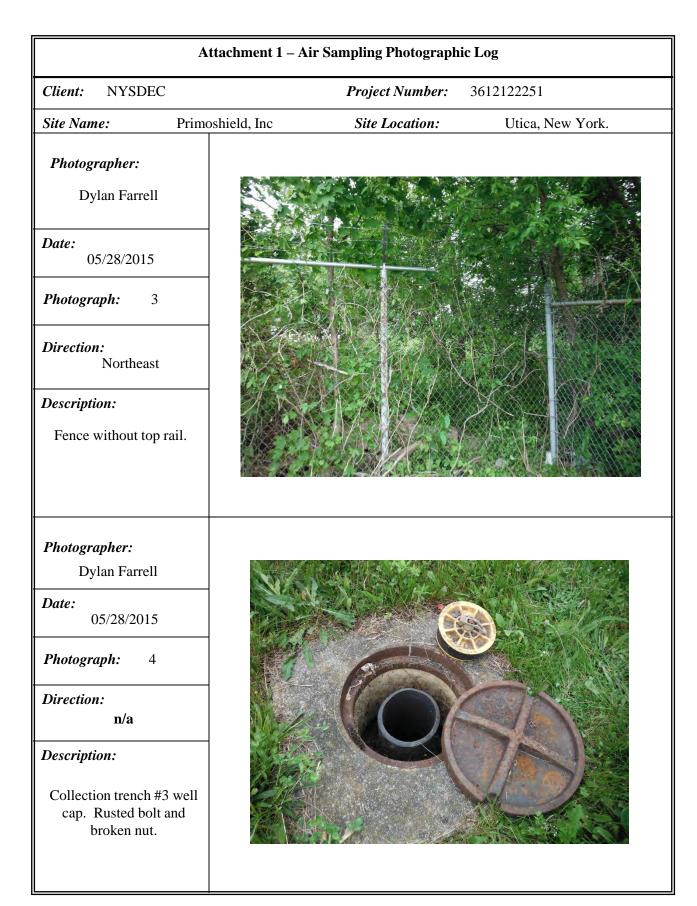
APPENDIX A

MAY 2015 INSPECTION REPORT

Mrv.

Checked by Josh Bowe 6/3/15 @ 12:30 New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems


				<u> </u>				
Site Name: Primoshield Inc.			NYSDEC 633027	Site Number	r:	NYSDEC PM Will Welling		
Site Location: St. Vincent Street, Utica, NY	*****	ninga at 7. Kingi at a' langan kanang	Site Class	sification # (c 2 2a	ircle): 3 4	Primary Site Will Welling		
Site Inspection Date: 5/28/15	P	urpose of Insp	ection: I IVSOE	otus		<u> </u>		
	г	241-4	4	1		Address: 511 Congress	Streeet, Suite 200	
Name of Inspector: Dylan Farrell Phone Number: 20:7 82-2 766-8		Entromenton Tech	MACTEO	C/AMEC		Portland, ME	,	
		ont Systems	1			1		
System Status					General O	bservations:		
System in Operation During Visit?			(No)		- 22	water ob	served	
Manned on a Fulltime basis?			No No	1000				
Maintenance Logs Current? Equipment Calibration Logs Current?			vo Vo	NÀ MÀ			s cleanost	
Pump working?	· · · · · · · · · · · · · · · · · · ·		No		-Not	ed : we v	ued a	
Initial flow rate (gpm):					<u> </u>	plac men	+ 100	
Pressure before basket strainers (P1):	+ · · · · · · · · · · · · · · · · · · ·	basket strainers pe			۰-	T. Mariana (· •••• (*	++ -
Pressure after basket strainers: (P2) Basket Strainer Inspected and cleaned?		basket strainers po basket strainers po			C	t trend	th cleanout"	₩-3
Basket Strainer Inspected and cleaned? Flow rate after cleaning filters (gpm):		basket strainers pe basket strainers pe			av	J Trenc	h clean	#/
Pressuer after cleaning inter sciping Pressuer after cleaning basket strainers: (P1) Totalizer reading (gallons)	N/A	basket strainers po 1865.2	· ·			(Jul)	t cap the clean out " the clean out" the clean out	⁺⁺ 'e
Discharge Monitoring	-Yes		No (THEN			· .	
Does the system require a discharge permit or discharge to a POTW?			No	æ				
Is Permit Performance Monitoring Implemented?	(Yes)		No					
Condition of Operational Controls	Good	JuB ₽	001'	NA				
Condition of Gauges	Good		oor	NA				1
Condition of flow meters	and the second se		00ľ	NA				
Condition of System Alarms			00ľ	NA				
Condition of Pumps			00ľ	NA ·	~~ (F)	low rate		
Condition of Flow Pipes or Hoses			001 Ali	NA	•	, .		
Pipes Labeled with Direction of Flow and Contents	Yes		Vo)	NA	0	pproxime 30 a	Hely	
Condition of Valves			oor	NA		30 0	pm, '	
Condition of Containment Structures (berms etc.)			001 [.]				JA	
Evidence of Leaking	· · ·		Ø	NA				
Condition of Feed/Extraction Pumps Vaulted Area Condition			001 [.]	(NA)				
Lighting in Work Areas Adequate			Vo	NA				
Condition of Collection/Discharge Trenches	Good		00r	NA				
Clean of Debris		oe p	001'	CND				
Evidence of Sedimentation			001 [.]	ND				
Condition of Extraction Wells/Recharge Wells	Good	P	001	NA	1			
List other applicable treatment systems/components and their overall con	ndition:				•			1
Interviews/Additional Contacts								
Name/Title	Phone:	Company	Entity		Contact Ir	formation		1
· · · · · · · · · · · · · · · · · · ·								
		<u></u>		······				1、
Additional Observation Notes: Manho Le Was Opened and p good constituents De Condition		cran blu	wha s	- A- 101-24	h a a d		to 10 (=	UB
Mannole was opened and p		scenory	NOCS	te your	I''U' A	enc 1	pools in	
good constitioned top Condition	•							
J								
								1
								1


New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems

Previously observed: Review and comment as to status (include photo documentation)

1. Is there vegitation infringing on the perimeter fenee? Remove infringing vegitation that ean be removed without the use of power tools.

Mes, Karl ladner on elle upon arrival clearing vegetociton along perimeter fence 2, Inspect the previously documented gap between the fence post and neighboring building (1.5"-3.5") - has it increased? NO, still a gap but around the same time Photograph Log: Photograph 1 See Photo (09) Attachmink Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring Were cheek samples collected during this visit? Yes (No) Sample type collected (circle or write in other) : Groundwater (Effluent) List Parameters/Methods Collected Per Media: VOC. 624 Metals 200,7 14 150,1 CHANICE 9010 Analytical Laboratory/Location: ALS Sample Observations: NA

nt: NYSDEC	Project Number: 361212225	51
Name: Primoshield, Inc	Site Location: Utica	a, New York.
otographer:	10.12	50 Ja 2
		and and a second se
Dylan Farrell		
05/28/2015		
ograph: 5		
ction: West		
ription:		
between the		at -
cent building and Primoshield		
erty.		
ographer:		
Dylan Farrell		all and
· .		
05/28/2015		Maria Carl
tograph: 6		Xa Maria
etion:		
North	All the search and the second	
ription:		
vious repair of generation of the second sec		
<i>-</i> .		CALL AND

ANN AND AND AND AND AND AND AND AND AND	NT SAMPLING REG	ORD		
	eld Inc. 22251.03			
SAMPLER NAME <u> <u> </u> </u>		· .		
CHECKED BY:	DATE: 6	e 12:30		
Monitoring Location Collection System Effluen	<u>.t</u>	CH/NOTES:	· · · · · · ·	
Sample ID $633027 EFFIVent$ Sample Date/Time $0 \le 128/15 - 14:1$				
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER	PRESERVATION METHOD	VOLUME REQUIRED	
× VOCs × Metals* × pH × cyanide	624 200.7 150.1 9010	HAUZ HAUZ NA NOOH		
MACTEC 511 Congress Street, Portland Maine 04101	*- cadmium, chi	romium, copper, lead, nickel	and zinc	

الله مستقل المستقل الله المالة المستقل الم مستقل المستقل ا				an an an an an a	مؤشفيات ماد فسرار	a sur	And a second	and an an interest of the second	1	the second s	
	CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST	CUSTO	DY/LAB	ORAT	ORY /	ANALYSIS	REQUE	ST FORM	N	26293	6
	1565 Jefferson Road, Building 300, Suite 360 • Ro	l, Building 30	0, Suite 360	 Rocheste 	я, NY 146	chester, NY 14623 +1 585 288 5380 +1 585 288 8475 (fax)	5380 +1 58	5 288 8475 (fax	PAGE /	OF	
Project Name Primoshiel L		Project Number 3612/12251-04	۲ 0 י			ANALYSIS		ANALYSIS REQUESTED (Include Method Number and Container Preservative)	mber and Contair	ner Preservative)	
Project Manager Uay Mr COMmally	Report CC	Report CC. 11 19 have	sing have		PRESERVATIVE	VE			(
company/address 1 Aller Fosfer Whatler	Marler	en	3.		SH:						Preservative Key 0. NONE
511 congress st		Pot co12900946	10009416					1 2 0 0 C			2. HNO3 3. H2SO4 NaOH
Portland NE	0		•			07b	Oleg SIL	0/09 STL			5. Zn. Acetate 6. MeOH
Phone # 207 828 3657	Email Nor C	HQL. CUMNICHARIN @ QMAC FW IC	Barrer	3	STON SI	00000000000000000000000000000000000000	101 'S7 809 °	11473			 NaHSO4 Other
Sampler's Signature	Sampler's P	Sampler's Printed Name ON IAN TA well			08580 8560	G & C & C & C & C & C & C & C & C & C &	11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	to			REMARKS/ ALTERNATE DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPLING	ING TIME	MATRIX			<i>i</i>				
635027 ERFIVENT		5/28/15	6		×		×	X			
Trip Blank		5/28/15		:	3 X						
			. : : #								
		·	· .								
				<u>,</u>							
SPECIAL INSTRUCTIONS/COMMENTS						TURNAROUND REQUIREMENTS	QUIREMENTS	REPORT RE	REPORT REQUIREMENTS	INVOIC	INVOICE INFORMATION
-rategoin A seliverable	Verale					RUSH (SURCHARGES APPLY)	GES APPLY)	I. Results Only			
etimore e							3 day	II. Results + QC Summaries (LCS, DUP, MS/MSD as req	II. Results + QC Summaries (LCS, DUP, MS/MSD as required)	00 to 120	Co12900946
MARCH) - Martec Equis Edd to Tigereministen	Equis Fold	4°	of caring	kam Q &	Q amerita			III. Results + Q Summaries	III. Results + QC and Calibration Summaries	BILL TO:	-
· totale · called	A Coler	Čr. Ní	2 2 2			REQUESTED REPORT DATE	DATE	IV. Data Validat	IV. Data Validation Report with Raw Data		
See OAPP	e report le	24 Q150))) ,)	~ + ;)							
STATE WHERE SAMPLES WERE COLLECTED	LECTED	4 						Edata	YesNo		
RELINQUISHED BY	RECEIVED BY	BY	BELIN State	RELINQUISHED BY		RECEIVED	В	RELINQUISHED	JISHED BY	2	RECEIVED BY
Signature Signature S	Signature		Signature		S	Signature		Signature		Signature	
Printed Name / / / 4 Ferrie /	Printed Name		Printed Name		<u>د</u>	Printed Name		Printed Name		Printed Name	
	Firm		Firm		E	Firm		Firm		Fim	
11:20	Date/Time		Date/Time		ă	Date/Time		Date/Time		Date/Time	
Distribution: White - Lab Copy; Yellow - Return to Originator	to Originator									©2	© 2012 by ALS Group

ALS Environmental ALS Group USA, Corp 1565 Jefferson Rd, Building 300, Suite 360 Rochester, NY 14623 T: 585-288-5380 F: 585-288-8475 www.alsglobal.com

Analytical Report for Service Request No: R1504214

June 09, 2015

Ms. Jayme Connolly AMEC Environmental & Infrastructure 511 Congress Street Portland, ME 04112-7050

Laboratory Results for: NYSDEC Primoshield/3612122251-04

Dear Ms. Connolly:

Enclosed are the results of the sample(s) submitted to our laboratory on May 30, 2015. For your reference, these analyses have been assigned our service request number **R1504214**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Janice Jaeger Project Manager

CC: Tige Cunningham

Page 1 of 21

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1504214

> <u>Lab ID</u> R1504214-001 R1504214-002

Client ID 633027 EFFLUENT TRIP BLANK

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by ALS personnel have been in accordance with "ALS Field Procedures and Measurements Manual" or by client specifications.

REPORT OUALIFIERS AND DEFINITIONS

- Analyte was analyzed for but not detected. U The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- I Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).

Analyte was also detected in the associated В method blank at a concentration that may have contributed to the sample result.

- Inorganics- Concentration is estimated due to Е the serial dilution was outside control limits.
- Е Organics- Concentration has exceeded the calibration range for that specific analysis.
- Concentration is a result of a dilution, D typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H > Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- Spike was diluted out. Ħ
- Maine ID #NY0032 New Hampshire ID # Connecticut ID # PH0556 294100 A/B Delaware Accredited Nebraska Accredited DoD ELAP #65817 New Jersey ID # NY004 Pennsylvania ID# 68-786 Florida ID # E87674 New York ID # 10145 Rhode Island ID # 158 Illinois ID #200047 Virginia #460167 North Carolina #676

Rochester Lab ID # for State Certifications¹

' Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/INI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

RIGHT SOLUTIONS | RIGHT PARTNER

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- Organics- Presumptive evidence of a compound Ν (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- Post-Digestion Spike recovery is outside control w limits and the sample absorbance is <50% of the spike absorbance.
- Concentration >40% (25% for CLP) difference Ρ between the two GC columns.
- С Confirmed by GC/MS
- DoD reports: indicates a pesticide/Aroclor is not 0 confirmed (≥100% Difference between two GC columns).
- Х See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- Non-Detect. Analyte was not detected at the ND concentration listed. Same as U qualifier.

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05:3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	· .
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7196A	3060A
7199	3060A
9056A Halogens/Halides	5050
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	·

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

P:\INTRANET\QAQC\Forms Controlled\Prep Methods Inorganic rev 1.doc 1/19/15

LANS FOR LONG AND STOREN AND AN ANTICASING STATISTICS.

Analytical Report

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request: R1504214
Project:	NYSDEC Primoshield/3612122251-04	Date Collected: 5/28/15 1410
Sample Matrix:	Water	Date Received: 5/30/15
Sample Name: Lab Code:	633027 EFFLUENT R1504214-001	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
Cyanide, Total	9012B	0.010 U	mg/L	0.010	1	6/ 2/15	6/3/15 10:39	
DH	SM 4500-H+ B	7.21	pH Units		- 1	NA	6/1/15 14:52	Η
Temperature of pH Analysis	SM 4500-H+ B	19.7	deg C		1	NA	6/1/15 14:52	Н

.

.

Analytical Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) Project: NYSDEC Primoshield/3612122251-04 Sample Matrix: ' Water

Service Request: R1504214 Date Collected: 5/28/15 1410 Date Received: 5/30/15

Sample Name: Lab Code:

Client:

633027 EFFLUENT R1504214-001

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Da Factor Extra	ate acted	Date Analyzed	Note
Cadmium, Total	200.7	5.0 U	μg/L	5.0	1 6/2	2/15 6	/7/15 14:40	
Chromium, Total	200.7	10 U	μg/L	10	1 6/ 2	2/15 6	/7/15 14:40	
Copper, Total	200.7	20 U	μg/L	20	1 6/ 2	2/15 6	/7/15 14:40	
Lead, Total	200.7	50 U	μg/L	50	1 6/ 2	2/15 6	/7/15 14:40	
Nickel, Total	200.7	44	μg/L	40	1 6/ 2	2/15 6	/7/15 14:40	
Zinc, Total	200.7	20 U	μg/L	20	1 6/2	2/15 6	/7/15 14:40	

	Analytical Report	
Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request: R1504214
Project:	NYSDEC Primoshield/3612122251-04	Date Collected: 5/28/15 1410
Sample Matrix:	Water	Date Received: 5/30/15
·		Date Analyzed: 6/2/15 16:48
Sample Name:	633027 EFFLUENT	Units: µg/L
Lab Code:	R1504214-001	Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\060215\M2254.D\

Analysis Lot: 447187 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	8.2	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	_	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.1	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
107-02-8	Acrolein	10 U	10		
107-13-1	Acrylonitrile	10 U	10		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	17	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

\alprews001\starlims\$\L1MSReps\AnalyticalReport.rpt

	Analytical Report		
Client: Project: Sample Matrix:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04 Water	Service Request: Date Collected: Date Received: Date Analyzed:	5/28/15 1410 5/30/15
Sample Name: Lab Code:	633027 EFFLUENT R1504214-001	Units: Basis:	Percent NA
	Volatile Organic Compounds by GC/MS, Unpreserved		
Analytical Method	624	Analysis Lot:	447187

Analytical Method: 624 Data File Name: I:\ACQUDATA\MSVOA6\DATA\060215\M2254.D\

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	101	81-127	6/2/15 16:48	
4-Bromofluorobenzene	97	79-123	6/2/15 16:48	
Toluene-d8	100	83-120	6/2/15 16:48	

	Analytical Report		
Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request:	R1504214
Project:	NYSDEC Primoshield/3612122251-04	Date Collected:	5/28/15 1410
Sample Matrix:	Water	Date Received:	5/30/15
•		Date Analyzed:	6/2/15 16:16
Sample Name:	TRIP BLANK	Units:	μg/L
Lab Code:	R1504214-002	Basis:	NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\060215\M2253.D\

71-55-6 79-34-5 79-00-5 75-34-3 75-35-4	1,1,1-Trichloroethane (TCA) 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane (1,1-DCA) 1,1-Dichloroethene (1,1-DCE)	1.0 U 1.0 U 1.0 U 1.0 U	1.0 1.0 1.0		
79-00-5 75-34-3	1,1,2-Trichloroethane1,1-Dichloroethane (1,1-DCA)	1.0 U			
75-34-3	1,1-Dichloroethane (1,1-DCA)		10		
		10 11	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 0	1.0		
12-22-4		1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
107-02-8	Acrolein	10 U	10		
107-13-1	Acrylonitrile	10 U	10		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		·
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	, (R) PRAVE A	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

	Analytical Report		
Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request:	R1504214
Project:	NYSDEC Primoshield/3612122251-04	Date Collected:	5/28/15 1410
Sample Matrix:	Water	Date Received:	5/30/15
		Date Analyzed:	6/2/15 16:16
Sample Name:	TRIP BLANK	Units:	Percent
Lab Code:	R1504214-002	Basis:	NA
	VIII (1) O is Commented by CC/MS. Uppersonated		
	Volatile Organic Compounds by GC/MS, Unpreserved		

Analytical Method: 624

.

Data File Name: I:\ACQUDATA\MSVOA6\DATA\060215\M2253.D\

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	101	81-127	6/2/15 16:16	
4-Bromofluorobenzene	98	79-123	6/2/15 16:16	
Toluene-d8	100	83-120	6/2/15 16:16	

 Analytical Report

 Client:
 AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)
 Service Request:
 R1504214

 Project:
 NYSDEC Primoshield/3612122251-04
 Date Collected:
 NA

 Sample Matrix:
 Water
 Date Received:
 NA

 Sample Name:
 Method Blank
 Basis:
 NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed Note	
Cyanide, Total	9012B	0.010 U	mg/L	0.010	1 6/ 2/15 6/3/15 10:17	

Analytical Report

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request:	NA
Project:	NYSDEC Primoshield/3612122251-04	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name: Lab Code:	Method Blank R1504214-MB	Basis:	NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Factor Extracted	Date Analyzed No
Cadmium, Total	200.7	5.0 U	μg/L	5.0	1 6/ 2/15	6/7/15 12:07
Chromium, Total	200.7	10 U	μg/L	10	1 6/ 2/15	6/7/15 12:07
Copper, Total	200.7	20 U	μg/L	20	1 6/ 2/15	6/7/15 12:07
Lead, Total	200.7	50 U	μg/L	50	1 6/ 2/15	6/7/15 12:07
Nickel, Total	200.7	40 U	μg/L	40	1 6/ 2/15	6/7/15 12:07
Zinc, Total	200.7	20 U	μg/L	20	1 6/ 2/15	6/7/15 12:07

:

	Analytical Report		
Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request: Date Collected:	
Project: Sample Matrix:	NYSDEC Primoshield/3612122251-04 Water	Date Conected. Date Received:	
F		Date Analyzed:	6/2/15 12:31
Sample Name:	Method Blank	Units:	
Lab Code:	RQ1506006-04	Basis:	NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\060215\M2246.D\

.

79-34-5 1,1,2.2-Trichoroethane 1.0 U 1.0 79-00-5 1,1,2.Trichoroethane 1.0 U 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 75-34-3 1,1-Dichloroethane (1,1-DCE) 1.0 U 1.0 95-30-1 1,2-Dichloroethane (1,1-DCE) 1.0 U 1.0 97-37-5 1,2-Dichloroethane 1.0 U 1.0 97-37-5 1,2-Dichloroethane 1.0 U 1.0 97-38-7 1,2-Dichloroethane 1.0 U 1.0 97-37-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 107-13-8 Accolein 10 U 10 107-13-1 Acrylonitrile 10 U 1.0 17-43-2 Brazene 1.0 U 1.0 17-43-2 Bromoform 1.0 U 1.0 75-2-2 Bromoform 1.0 U 1.0 75-00-3 Chloroethane 1.0 </th <th>CAS No.</th> <th>Analyte Name</th> <th>Result Q</th> <th>MRL</th> <th>Note</th> <th></th>	CAS No.	Analyte Name	Result Q	MRL	Note	
79-00-5 1,1,2-Trichloroethane 1.0 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-12-8 Acrolein 10 U 10 174-32 Benzene 1.0 U 1.0 75-35-4 Bromoform 1.0 U 1.0 75-32-5 Bromoform 1.0 U 1.0 75-35-6 Carbon Tetrachloride 1.0 U 1.0 75-40-7 Chloroethane 1.0 U 1.0 75-35-8 Carbon Tetrachloride 1.0 U 1.0 75-0-3 Chloroethane 1.0 U	71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 1.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 1.0 1.0 95-30-1 1,2-Dichloroethane 1.0 1.0 107-06-2 1,2-Dichloroethane 1.0 1.0 107-06-2 1,2-Dichloroethane 1.0 1.0 107-06-2 1,2-Dichloroethane 1.0 1.0 106-46-7 1,4-Dichlorobenzene 1.0 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 10 107-02-8 Acrolein 10 10 107-13-1 Acrylonitrile 10 U 10 107-13-2 Benzene 1.0 1.0 1.0 174-32-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-5 Chloroethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-5 Chloroethane 1.0 U 1.0 76-63-3 Chloroethane 1.0 U <	79-34-5	1,1,2,2-Tetrachloroethane		1.0		
75-35-4 1,1-Dichloroethene (1,1-DCE) 1.0 1.0 95-50-1 1,2-Dichlorobenzene 1.0 1.0 107-06-2 1,2-Dichloropopane 1.0 1.0 78-87-5 1,2-Dichloropopane 1.0 1.0 78-87-5 1,2-Dichloropopane 1.0 1.0 78-87-5 1,2-Dichloropopane 1.0 1.0 106-46-7 1,4-Dichlorobenzene 1.0 1.0 107-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-13-1 Acrolein 10 U 10 107-13-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 76-63-5 Chlorobenzene 1.0 U 1.0 76-6-3 Chloroform<	79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
95:50-1 1,2-Dichlorobenzene 1.0 1.0 107-06-2 1,2-Dichlorocthane 1.0 1.0 78:87-5 1,2-Dichloropropane 1.0 1.0 78:75 1,2-Dichlorobenzene 1.0 1.0 106-46-7 1,4-Dichlorobenzene 1.0 1.0 107:02-8 Acrolein 10 10 107:02-8 Acrolein 10 10 107:13-1 Acrylonitrile 10 10 107:13-2 Benzene 1.0 1.0 71:43-2 Benzene 1.0 1.0 75:27-4 Bromodichloromethane 1.0 1.0 74:83-9 Bromomethane 1.0 1.0 108:90-7 Chlorobenzene 1.0 1.0 75:50-2 Bromomethane 1.0 1.0 108:90-7 Chlorobenzene 1.0 1.0 74:83-9 Chlorobenzene 1.0 1.0 104:448-1 Dibromochloromethane 1.0 1.0 104:14 Ethylbenzene 1.0 1.0 100-41-4 Ethylbenze	75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 108-90-7 Chloroebnzene 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 74-87-3 Chloroethane 1.0 U	75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U			
78-87-5 1,2-Dichloropropane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 107-13-2 Benzene 1.0 U 10 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodethane 1.0 U 1.0 74-83-9 Bromodethane 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 74-87-3 Chlorobenzene 1.0 U 1.0 75-90-2 Methylene Chloride 1.0 U 1.0 74-87-3 Chlorobenzene 1.0 U 1.0 75-90-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0	95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 $106-46-7$ 1,4-Dichlorobenzene 1.0 U 1.0 $110-75-8$ 2-Chloroethyl Vinyl Ether 10 U 10 $107-13-8$ Acrolein 10 U 10 $107-13-1$ Acrylonitrile 10 U 10 $17-13-2$ Benzene 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-25-2$ Bromomethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $74-87-3$ Chloroform 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $75-09-2$ Methylene Chloride 1.0 U 1.0 $108-88-3$ Toluene 1.0 <td< td=""><td>107-06-2</td><td>1,2-Dichloroethane</td><td>1.0 U</td><td>1.0</td><td></td><td></td></td<>	107-06-2	1,2-Dichloroethane	1.0 U	1.0		
106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylanitrile 10 U 10 107-13-2 Benzene 1.0 U 1.0 171-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 76-92-7 Chlorobenzene 1.0 U 1.0 75-09-3 Chloroethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0	78-87-5	1,2-Dichloropropane	1.0 U	1.0		
110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 74-87-3 Chloronethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 104-1-4 Ethylbenzene 1.0 U 1.0 104-1-4 Ethylbenzene 1.0 U 1.0 107-18-8-3 Toluene 1.0 U 1.0	541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 104-1-4 Ethylbenzene 1.0 U 1.0 107-14 Ethylbenzene 1.0 U 1.0 <	106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·	
107-13-1 Acrylonitrile 10 10 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 107-14 Ethylbenzene 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 <t< td=""><td>110-75-8</td><td></td><td>10 U</td><td>10</td><td></td><td></td></t<>	110-75-8		10 U	10		
71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chloroftane 1.0 U 1.0 74-87-3 Chloroftane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 100-41-4 Ethylonzene 1.0 U 1.0 107-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 <	107-02-8	Acrolein	10 U	10		
71-43-2Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.0104-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0107-18-4Tetrachloroethene (PCE)1.0U1.0108-88-3Toluene1.0U1.075-69-4Trichlorofluoromethane (CFC 11)1.01.010061-01-5cis-1,3-Dichloropropene1.0U1.010961-023-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene1.0U1.0	107-13-1	Acrylonitrile	10 U	10		
75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 102-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 75-69-4 Trichloroethene (TCE) 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0	71-43-2	-	1.0 U	1.0		
74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 75-09-2 Methylen Chloride 1.0 U 1.0 100-1-4 Ethylbenzene 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 <td>75-27-4</td> <td>Bromodichloromethane</td> <td>1.0 U</td> <td>1.0</td> <td></td> <td></td>	75-27-4	Bromodichloromethane	1.0 U	1.0		
74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 75-09-2 Methylen Chloride 1.0 U 1.0 100-1-4 Ethylbenzene 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 <td>75-25-2</td> <td>Bromoform</td> <td>1.0 U</td> <td>1.0</td> <td></td> <td>· · <u></u>· · ·</td>	75-25-2	Bromoform	1.0 U	1.0		· · <u></u> · · ·
56-23-5Carbon Tetrachloride 1.0 1.0 1.0 $108-90-7$ Chlorobenzene 1.0 1.0 1.0 $75-00-3$ Chloroethane 1.0 1.0 1.0 $67-66-3$ Chloroform 1.0 1.0 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $108-88-3$ Toluene 1.0 U 1.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 1.0 1.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 1.0 1.0 $10061-01-5$ cis-1,3-Dichloropropene 1.0 U 1.0 $179601-23-1$ m,p-Xylenes 2.0 U 2.0 $95-47-6$ o-Xylene 1.0 U 1.0 $156-60-5$ trans-1						
75-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.01.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)1.01.075-69-4Trichlorofluoromethane (CFC 11)1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-03-1m,p-Xylenes2.0U95-47-6o-Xylene1.0U156-60-5trans-1,2-Dichloroethene1.0U		Carbon Tetrachloride	1.0 U	1.0		
75-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.01.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)1.01.075-69-4Trichlorofluoromethane (CFC 11)1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-03-1m,p-Xylenes2.0U95-47-6o-Xylene1.0U156-60-5trans-1,2-Dichloroethene1.0U	108-90-7	Chlorobenzene	1.0 U	1.0		
67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0						
124-48-1 Dibromochloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	67-66-3	Chloroform	1.0 U	1.0		
124-48-1 Dibromochloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 1.0 U 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	74-87-3	Chloromethane	1.0 U	1.0	••••••••••••••••••••••••••••••••••••••	
75-09-2 Methylene Chloride 1.0 1.0 100-41-4 Ethylbenzene 1.0 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 1.0 108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 1.0 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 2.0 95-47-6 o-Xylene 1.0 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 1.0		Dibromochloromethane		1.0		
127-18-4 Tetrachloroethene (PCE) 1.0 1.0 108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 1.0 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0		Methylene Chloride	1.0 U	1.0		
127-18-4 Tetrachloroethene (PCE) 1.0 1.0 108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 1.0 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	100-41-4	Ethvibenzene	1.0 U	1.0		
108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 1.0 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0						
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0			1.0 U	1.0		
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	79-01-6	Trichloroethene (TCE)	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·	
75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 2.0 95-47-6 o-Xylene 1.0 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 1.0						
179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0			1.0 U	1.0		
179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	10061-01-5	cis-1.3-Dichloropropene	1.0 U	1.0		· · ·
95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0						
156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0		• •				
			1.0 U	1.0		
	10061-02-6	trans-1,3-Dichloropropene	1.0 U			

	Analytical Report		
Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request:	R1504214
Project:	NYSDEC Primoshield/3612122251-04	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
•		Date Analyzed:	6/2/15 12:31
Sample Name:	Method Blank	Units:	Percent
Lab Code:	RQ1506006-04	Basis:	NA
	Volatile Organic Compounds by GC/MS, Unpreserved		
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA6\DATA\060215\M2246.D\	Analysis Lot: Instrument Name: Dilution Factor:	R-MS-06

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
1,2-Dichloroethane-d4	104	81-127	6/2/15 12:31	
4-Bromofluorobenzene	100	79-123	6/2/15 12:31	
Toluene-d8	102	83-120	6/2/15 12:31	

•

.

QA/QC Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04 : Water

Project: Sample Matrix:

Client:

Lab Control Sample Summary General Chemistry Parameters Service Request: R1504214 Date Analyzed: 6/ 3/15

> Units: mg/L Basis: NA

		Lab Control Sample R1504214-LCS1		
Analyte Name	Method	Spike Result Amount % Rec	% Rec Limits	
Cyanide, Total	9012B	0.0992 0.100 99	85 - 115	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04 htrix: Water Service Request: R1504214 Date Analyzed: 6/3/15

Project: Sample Matrix:

Client:

Lab Control Sample Summary General Chemistry Parameters

Units: mg/L Basis: NA

			Control San 04214-LC	•	
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
Cyanide, Total	9012B	0.424	0.400	106	85 - 115

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04 Service Request: R1504214 Date Analyzed: 6/7/15

Project: Sample Matrix:

Water

.

Client:

Lab Control Sample Summary Inorganic Parameters

Units: µg/L Basis: NA

Lab Control Sample R1504214-LCS										
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits					
Cadmium, Total	200.7	53.4	50.0	107	85 - 115					
Chromium, Total	200.7	207	200	104	85 - 115					
Copper, Total	200.7	256	250	102	85 - 115					
Lead, Total	200.7	519	500	104	85 - 115					
Nickel, Total	200.7	528	500	106	85 - 115					
Zinc, Total	200.7	540	500	108	85 - 115					

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04

Project: Sample Matrix:

Client:

NYSDEC F trix: Water Service Request: R1504214 Date Analyzed: 6/ 2/15

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

Analytical Method: 624

Units: µg/L Basis: NA

Analysis Lot: 447187

		Control Sai			
	I.	Spike		% Rec	
Analyte Name	Result	Amount	% Rec	Limits	
1,1,1-Trichloroethane (TCA)	20.0	20.0	100	52 - 162	
1,1,2,2-Tetrachloroethane	20.2	20.0	101	46 - 157	
1,1,2-Trichloroethane	20.5	20,0	103	52 - 150	
1,1-Dichloroethane (1,1-DCA)	20.0	20.0	100	59 - 155	
1,1-Dichloroethene (1,1-DCE)	21.0	20.0	105	10 - 234	
1,2-Dichlorobenzene	20.3	20.0	102	18 - 190	-
1,2-Dichloroethane	19.3	20.0	96	49 - 155	
2,2-Dichloropropane	20.3	20.0	102	10 - 210	
£1,3-Dichlorobenzene	20.5	20.0	102	59 - 156	
1,4-Dichlorobenzene	20.4	20.0	102	18 - 190	
*2-Chloroethyl Vinyl Ether	20.8	20.0	104	10 - 305	
Acrolein	109	100	109	10 - 186	
Acrylonitrile	123	100	123	84 - 128	
Benzene	20.8	20.0	104	37 - 151	
¹ Bromodichloromethane	21.6	20.0	108	35 - 155	
Bromoform	23.5	20.0	118	45 - 169	
Bromomethane	16.2	20.0	81	10 - 242	
Carbon Tetrachloride	22.2	20.0	111	70 - 140	
Chlorobenzene	20.4	20.0	102	37 - 160	
Chloroethane	20.4	20.0	102	14 - 230	
Chloroform	20.1	20.0	100	51 - 138	
Chloromethane	22.9	20.0	114	10 - 273	
Dibromochloromethane	22.1	20.0	111	53 - 149	
Methylene Chloride	20.8	20.0	104	10 - 221	
Ethylbenzene	20.0	20.0	100	37 - 162	
Tetrachloroethene (PCE)	19.2	20.0	96	64 - 148	
Toluene	20.5	20.0	102	47 - 150	
Trichloroethene (TCE)	20.5	20.0	103	71 - 157	
Trichlorofluoromethane (CFC 11)	19.6	20.0	98	17 - 181	
Vinyl Chloride	23.3	20.0	116	10 - 251	
cis-1,3-Dichloropropene	21.0	20.0	105	10 - 227	
m,p-Xylenes	40.6	40.0	101	76 - 131	
o-Xylene	19.9	20.0	100	78 - 127	

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251-04 Water

Project: Sample Matrix:

Client:

Service Request: R1504214 Date Analyzed: 6/2/15

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

624 **Analytical Method:**

Units: µg/L Basis: NA

Analysis Lot: 447187

		Control Sa Q1506006-(-		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	20.6 24.1	20.0 20.0	103 120	54 - 156 17 - 183	

Results Nagged with an asterisk (*) indicate values outside control criteria.

.

- · · · ·

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

26293

OF _1

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE

Project Name Primoshiel L	Project Nur 36.13	nber 2122251	- o4			ANALYSIS REQUESTED (Include Method Number and Container Preservative)																	
Project Manager Jaynu Connol Company/Address	Report CC	<u>iqe Cuni</u>	ningham		PRE	SERV/	ATIVE	<u> </u>	<u>_</u>						<u> </u>	<u> </u>	<u> </u>		<u> </u>				
Company/Address AMEL Foster U	Maller			<u>.</u>	<u>v</u>		/	//		+	-	//		/ /	/_/	G	/ /	+	/ /	+	7	Preservativ 0. NONE	e Key
511 congress 5+. Pot 0012900946												2007 2007				Ţ						1. HCL 2. HNO3 3. H ₂ SO4 4. NaOH	
Portland MI=	04101				OF CONTAINERS		2	 \$	 &	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5		/N 8 Z #		3/	1 5	7	/ /	/ /	/ /		/	5. Zn. Ace 6. MeOH 7. NaHSO	
207 828 3657	lige	cunninghein	Qamer	rw , Lan	NUMBER				10801	58/ 58/	8/2 2/3			ACC IN	5							8. Other_	
Sempler's Signature	<u> </u>	Printed Narth Lan Famel			Z	/ઙ૾ૺ૾ૣ	\$/&&	<u>}</u> /&_\$	<u>م</u> ال ^ا لى الح	\$ <i>\\$</i> \$			/ C	7	2/	_			/	<u> </u>		REMARKS/ ATE DESCRIF	TION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE	TIME	MATRIX						<u> </u>							<u> </u>						
635027 EAFLUENT		5/28/15	14110		6	X	ļ	ļ			X	-	~	×			ļ						
Trip Blank		5/28/15		-	3	X		<u> </u>	1							<u> </u>							
	·				-																		
· · · · · · · · · · · · · · · · · · ·			'			<u> </u>																	
												•											
· · ·	· · · · · · · · · · · · · · · · · · ·	•			<u> </u>		<u> .</u>	<u> </u>									ļ		 	<u> </u>			
		· · · · · ·					 	ļ				ļ											
· · ·													 	 									
		· · ·		<u> </u>					-]]											
SPECIAL INSTRUCTIONS/COMMENTS		1			1	TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION						אכ											
Metals	rematic				RUSH (SURCHARGES APPLY) , I. Results Only																		
- Category A Juliu								1 dag	۲ <u> </u>	2 day) day	,	_	_	sults + Q DUP, M			orlì.	PO		290	0946	
	- de Cala		5. J			.		4 da;	y(5 day					sults + C					L TO:	-+-		
Mag DD - Mactec E - metals: cadminum	guis rac	to a	re, conne	yram@	QWI CO	ucfle,		UESTE	DREPO	ORT DAT	TE			Summ									
- metals: cadminum	n, Copper,	Cr, Ni	, Zn (2	00.7)	L.						-		-	_ IV. Da	to Valida	ilion Rep	ort with	Raw Da	to		-		
see dapp i [pruse report leac disto] .							ļ												-			<u>.</u>	
STATE WHERE SAMPLES WERE COLLECTED									DECE	IVED 8	v										BEC		
ACLINOUSHED BT ACCEIVED BT ACLINOUSH									RECE	IVED B.	Y		RELINQUISHED BY RECEIVED BY										
Signature Signature Signature							Signat	ture					Sign	Signature P1			15	042	14		5		
Printed Name Dulay Furrull Printed Name							Printec	d Name					Print	Printed Name AMEC				C Envir	onment Imoshie	ai & infr	astructure	•	
Firm AMECFW Firm ALS Firm							Firm																
Date Time 5/24/15 11:50 0	Date/Time5-310-15	09:173	Date/Time				Date/T	lime					Date	Time			<u> </u>						2 0 1 0 1 1 0 0 1

٠

.

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

Cooler Receipt and Preservation Check Form Project/Client Folder Number ALS 4214 Cooler received on 53015 by: Courtex: ALS UP: EDEX VELOCITY CLIENT 1 Were Custody seals on outside of cooler? X.N Sa Perchtorate samples have required headspace? Y N 2 Custody papers properly completed (ink, signed)? N Sa Perchtorate samples have required headspace? Y N 3 Did all bottles arrive in good condition (unbroken)? N Sa Perchtorate samples have required headspace? Y N 4 Circle Weiled Dry Lee Gel packs present? N 7 Soll VOA received as: Bulk Encore 5035set NA 8. Temperature Readings Date: 53015 Time: 010% III III Bill Time: 010% III III Bill Encore Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Encore Soll Soll VOA received as: Bulk Enco										ļ	AMEC Environm	Antal D Lie
Cooler Receipt and Preservation Check Form Folder Number										-		neia
Project/Client Attraction Project/Client Project/Client 1 Were Custody seals on outside of cooler? by: COURTER: ALS UPS FEDETS VELOCITY CLIENT 2 Custody papers properly completed (ink, signed)? N Sa Perchlorate samples have required headspace? Y N 3 Did all bottles arrive in good condition (unbroken)? N Sb Did VOA vials, Alk,or Sulfide have sigt bubbles? Y N 4 Circle Were did the bottles originate? LLS/RCC CLIENT 7 Soil VOA received as: Bulk Encore S035set NA 8. Temperature Readings Date: 53015 Time: 0/10% ID R#3 R#5 From: cemp Bland Sample Cobserved Temp (*C) 4/.1 Correction Factor (*C) 4/.1 N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y	ALS		$\sim C$	oole	r Receipt and	d Pre	serv	vation Ch	eck Fo	orm \		#1000 # #100 #0#1# ((##++
Cooler received on $\frac{530}{15}$ by: $\frac{1}{12}$ COURTER: ALS UPS FEDES VELOCITY CLIENT 1 Were Custody seals on outside of cooler? YN 2 Custody papers properly completed (ink, signed)? YN 3 Did all bottles arrive in good condition (unbroken)? YN 4 Circle Weile Dry Ice Gel packs present? YN 7 Soil VOA received as: Bulk Encore 8. Temperature Readings Date 53015 Time: 0108 IDTRED R#5 From: Temp Blan Sample 0bserved Temp (*C) 4.1 Gorected Temp (*C) 4.1 From: Temp Blan Sample 0bserved Temp (*C) 4.1 Gorected Temp (*C) 4.1 From: Temp Blan Sample 0bserved Temp (*C) 4.1 Gorected Temp (*C) 4.1 From: Temp Blan Sample 0bserved Temp (*C) 4.1 Gorected Temp (*C) 4.1 From: Temp Blan Sample 0bserved Temp (*C) 4.1 If out of Temperature, note packing/ice condition: Ice melted Poorty Packed Same Day Rule & Client Approval to Run Samples: Standing Approval Client aware at drop-off Client notified by: Image: 100000000	Project/Clier	nt_A	ME	$\underline{\mathbb{C}}$		Folder	Nur	nber <u></u>	5- 47	<u>14</u> .		
1 Were Custody seals on outside of cooler? X N 2 Custody papers properly completed (ink, signed)? Y N 3 Did all bottles arrive in good condition (unbroken)? N 4 Circle Werles Dry Lee Gel packs present? N 6 Where did the bottles originate? (LS/RQC) CLEN? 7 Soil VOA received as: Bulk Encore 50355st NA 8. Temperature Readings Date: 53015 Time: 0/108 III IR#5 From: Temp Blant Sample Observed Temp (*C) 4/1	•		15		by:	(cou	RIER: ALS	UPS	FEDEX V	ELOCITY CL	IENT
2 Custody papers properly completed (ink, signed)? N 3 Did all bottles arrive in good condition (unbroken)? N 4 Circle Wet is Dry Ice Gel packs present? N 5 Did VOA vials, Alk,or Sulfide have sig* bubbles? Y N 4 Circle Wet is Dry Ice Gel packs present? N 7 Soil VOA received as: Bulk Encore 5035set NA 8. Temperature Readings Date: 530-15 Time: 0708 ID R#5 From: TempBlan Sample Correction Factor (°C) 4/1 Corrected Temp (°C) 4/1 Corrected Temp (°C) Y N Y			outside	e of co	oler?	ND	5a	Perchlorate	samples	nave required	headspace?	Y N NA
3 Did all bottles arrive in good condition (unbroken)? N 6 Where did the bottles originate? ALSROC CLIENY 4 Circle: Werl 0 Dry Ice Gel packs present? N 7 Soil VOA received as: Bulk Encore 5035set NA 8. Temperature Readings Date: 53015 Time: 0102 III: IR#3 From: TempBlan Sample Observed Temp (°C) 4/1 Correction Factor (°C) 4/1 Corrected Temp (°C) 4/1 Corrected Temp (°C) 4/1 Y N <t< td=""><td>1 1</td><td>-</td><td></td><td></td><td></td><td>N</td><td>5b</td><td>Did VOA vi</td><td>als, Alk,o</td><td>r Sulfide hav</td><td>e sig* bubbles?</td><td>YNA</td></t<>	1 1	-				N	5b	Did VOA vi	als, Alk,o	r Sulfide hav	e sig* bubbles?	YNA
4 Circle: Wet 10 Dry Ice Gel packs present? YN 7 Soil VOA received as: Bulk Encore 5035set NA 8. Temperature Readings Date: 53015 Time: 04108 ID ID IR#3 IR#5 From: Temp Blan Sample Observed Temp (°C) 4. ID		-				N	6					
Observed Temp (°C) 9.1)N	7	}			Encore 503	35set NA
Observed Temp (°C) 9.1 Correction Factor (°C) 40.6 Corrected Temp (°C) 9.1 Within 0-6°C? 9.1 Within 0-6°C? 9.1 Y N Y <td< td=""><td>8. Temperature</td><td>Readings</td><td>Dat</td><td>e:53</td><td>0-15 Time: ()</td><td>9:08</td><td></td><td>IDC IR#3</td><td>$\sum_{IR\#5}$</td><td>Fro</td><td>m: (Temp Blan)</td><td>Sample Bot</td></td<>	8. Temperature	Readings	Dat	e:53	0-15 Time: ()	9:08		IDC IR#3	$\sum_{IR\#5}$	Fro	m: (Temp Blan)	Sample Bot
Correction Factor (°C) 47.66 Corrected Temp (°C) 47.7 Within 0-6°C? 67.7 Within 0-6°C? 7.7 If out of Temperature, note packing/ice condition:	-	-										
Corrected Temp (°C) 4° Y N N		ctor (°C)	06			<u> </u>				<u> </u>	· · · · ·	
If out of Temperature, note packing/ice condition: If out of Temperature, note packing/ice condition:			1.7								í	
& Client Approval to Run Samples: Standing Approval Client aware at drop-off Client notified by: All samples held in storage location: by M2 on 5:30-15 at [O4]1] S035 samples placed in storage location: by M2 on 5:30-15 at [O4]1] PC Secondary Review:			<u>(</u>)	Ň	Y N	Y	N	Y N		Y N	Y N	Y N
&Client Approval to Run Samples: Standing Approval Client aware at drop-off Client notified by: All samples held in storage location: by M2 on 5:30-15 at (Q1)] S035 samples placed in storage location: by M2 on 5:30-15 at (Q1)] PC Secondary Review:	If out of Temperature, note packing/ice condition: Ice melted Poorly Packed Same Day Rule											
All samples herd in storage location: Image rotation: Image rotation: <thimage rot<="" td=""><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>oval</td><td>Client aware</td><td>e at drop-o</td><td>off Client</td><td>notified by:</td><td></td></thimage>		-	-				oval	Client aware	e at drop-o	off Client	notified by:	
Sold samples placed in storing rotation: PC Secondary Review: PC Secondary Review: PC 1. Were all bottle labels complete (<i>i.e.</i> analysis, preservation, etc.)? NO 2. Did all bottle labels and tags agree with custody papers? NO 3. Were correct containers used for the tests indicated? MO 4. Air Samples: Cassettes / Tubes Intact Canisters Pressurized Tedlar® Bags Inflated PH Reagent Yes No Lot Received Exp Sample ID Vol. Lot Added Final Yes=All samples: PH Reagent Yes No Lot Received Exp Sample ID Vol. Lot Added Final Yes=All samples: 212 NaOH We c 140 122 C 4/16 No=Sam No=Sam No=Sam sell Sold 2 U 43 do 5/16 No No=Sam No=Sam S2 H ₃ SO ₄ If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol). If +, contact PM to be tested before analysis – pH tested and PM OK Addual For CN If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol).						by _	MZ	on 4	5-30-1	<u> </u>	79511	
Cooler Breakdown: Date:Goods 35by:Jfs1.Were all bottle labels complete (<i>i.e.</i> analysis, preservation, etc.)?NO2.Did all bottle labels and tags agree with custody papers?NO3.Were correct containers used for the tests indicated?NO4.Air Samples: Cassettes / Tubes IntactCanisters PressurizedTedlar® Bags InflatedPHReagentYesNoLot ReceivedExpSample IDVol.AddedPHBob 2 4 (4 a D 5) 14No=SairS2H2SO4If +, contact PM toNo=SairS4NaHSO4If +, contact PM toIf +, contact PM toAdd Na2S2O3**Not to be tested before analysis – pH tested andNa S22 O3**Not to be tested before analysis – pH tested and	5035 samples	s placed in st	orage l	ocatio	n:	_ by _		on		at		
Cooler Breakdown: Date: 61115 Time: 0 € 33 by: 1651.Were all bottle labels complete (<i>i.e.</i> analysis, preservation, etc.)?NO2.Did all bottle labels and tags agree with custody papers?NO3.Were correct containers used for the tests indicated?NO4.Air Samples: Cassettes / Tubes IntactCanisters PressurizedTedlar® Bags InflatedPHReagentYesNoLot AddedFinal PHPH2.NoLot ReceivedExpSample IDVol.Lot AddedFinal PH2.NOLot ReceivedExpSample IDVol.Lot AddedFinal PH2.NOULot Received2.HNO3UU2.H3SO4UUCollorinePhenol add Na2S2O3 (CN), ascorbic (phenol).If +, contact PM to add Na2S2O3 (CN), ascorbic (phenol).**Not to be tested before analysis – pH tested andM OK Adjust:	PC Second	arv Review:	C	Ún	16/1/15							<u></u>
Image: Note of the second			NT 217 + 105 - 3	1.000	A AND SAME DESCRIPTION	والأفراء مشور الم		- 802 RGL - 97 <u>- 1</u> 944	\$.4., * 5134 >t ;	re zani i a cre	In Such a manufacture of the second	18 IST 18 18 18 18 18 18 18 18 18 18 18 18 18
1.Note that is a provide (no. matrix) is provide and pars?2.Did all bottle labels and tags agree with custody papers?No3.Were correct containers used for the tests indicated?Canisters PressurizedTedlar® Bags Inflated4.Air Samples: Cassettes / Tubes IntactCanisters PressurizedTedlar® Bags InflatedPHReagentYesNoLot ReceivedExpSample IDVol.Lot AddedFinal pHYes=All samples ≥ 12 NaOH $\swarrow \in .140(122 C)$ $4/16$ NoNo=Sam wereNo=Sam wereNo=Sam wereNo=Sam preserveNo=Sam the labNo=Sam were ≤ 2 H2SO4If +, contact PM to add Na2S203 (CN), ascorbic (phenol).If +, contact PM to add Na2S203 (CN), ascorbic (phenol).PH tested andPM OK Adjust:				<u> 6 1 </u>	~ ~ ~							
3. Were correct containers used for the tests indicated? ES NO NO 4. Air Samples: Cassettes / Tubes Intact Canisters Pressurized Tedlar® Bags Inflated M/A Explain any discrepancies: pH Reagent Yes No Lot Received Exp Sample ID Vol. Lot Added pH Yes=All samples: ≥ 12 NaOH $w \in 1401226$ 4166 $added$ $bddddddddddddddddddddddddddddddddddd$								0.)?		2	-	
4.Air Samples: Cassettes / Tubes Intact Explain any discrepancies:Canisters PressurizedTedlar® Bags Inflated M/A PH ReagentYesNoLot ReceivedExpSample IDVol.Lot AddedFinal pHYes=All samples ≥ 12 NaOH $\psi \in 1401226$ 416 $added$ pH Yes=All samplesNo=Sam were ≤ 2 HNO3 \forall 903241430 5164 $added$ $added$ No=Sam were ≤ 2 H2SO4 add add add add add add No=Sam wereResidual (-)For CNIf +, contact PM to add Na2S2O3 (CN), ascorbic (phenol).If +, contact PM to add Na2S2O3 (CN), ascorbic (phenol). add add add PM OK Adjust:Na2S2O3PM OK Adjust:												
Explain any discrepancies:pHReagentYesNoLot ReceivedExpSample IDVol.Lot AddedFinal pHYes=All samples ≥ 12 NaOH \checkmark $\checkmark c : ! \lor o : 1 \le c \in ! \lor i \lor i \lor o : 1 \le c \in ! \lor i \lor o : 1 \le c \in ! \lor o : 1 \to 1 \to ! \lor o : 1 \to ! \lor o : 1 \to 1 \to ! \lor o : 1 \to ! \lor o : 1 \to 1 \to ! \lor o : 1 \to 1 \to ! \lor o : 1 \to ! \to ! \lor o : 1 \to ! \to ! \lor o : 1 \to ! \to$		ir Samples: (assette	s / Tul	es Intact	Car	nister	s Pressurized	1	edlar® Bags	Inflated	<u>(1</u> /A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												- '
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pH	Reagent	Yes	No	Lot Received	Exp	Sa	mple ID		Lot Added		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>10	N-OU					_		Added		рн	- samples OK
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									·			No=Sample
<4			· ·		000201420	15116						
Residual Chlorine (-) For CN Phenol and 522 If +, contact PM to add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol). The lab listed Na ₂ S ₂ O ₃ - - - PM OK Adjust: PM OK										-		preserved at
Chlorine (-) Phenol and 522 add Na ₂ S ₂ O ₃ (CN), ascorbic (phenol). listed Na ₂ S ₂ O ₃ - - PM OK Xajust: ZnAcetate - **Not to be tested before analysis – pH tested and Adjust:				<u> </u>	If + contact PM to							The lab as
(-) and 522 ascorbic (phenol). PM OK Na2S2O3 - - **Not to be tested before analysis – pH tested and ZnAcetate - **Not to be tested before analysis – pH tested and Adjust:												
Na2S2O3 - PM OK ZnAcetate - **Not to be tested before analysis – pH tested and Adjust:						·						
ZnAcetate **Not to be tested before analysis – pH tested and Adjust:	L <u>57</u>		1.	†					L <u> – .</u>	1	<u> </u>	PM OK to
							* *	Not to be test	ed before	analysis – r	H tested and	
HCI ** ** recorded by VOAs on a separate worksheet		HCl	**	**								
			L	<u> </u>	<u>ا</u>					•		

Bottle lot numbers: <u>5-022-001</u> ODR26(430, 032315-2AAD) Other Comments:

C

PC Secondary Review: ____

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r8.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

3/27/15 00021

Ł

D1E

APPENDIX B

SEPTEMBER 2015 INSPECTION REPORT

New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems

chedelly flough 9/29/15 NYSDEC Site Number: NYSDEC PM: Site Name: Primoshield Inc. Will Welling 633027 Primary Site Contact: Site Location: St. Vincent Street, Utica, NY Site Classification # (circle): Will Welling 2 3 2a 4 Site Inspection Date: **Purpose of Inspection:** 9-8-15 Fall Inspecting and GULTH Title: Agency/Company: Address: Name of Inspector: 511 Congress Streeet, Suite 200 Env. Phone Number: MACTEC/AMEC Portland, ME 04101 Tech 518-422-3014 Treatment Systems General Observations; System Status Treatment System System in Operation During Visit? Yes No No Ves in auto on asisal Manned on a Fulltime basis? Maintenance Logs Current? Yes No NA NA Not Running. No Equipment Calibration Logs Current? Yes No **Pump working?** Tested pump in Initial flow rate (gpm): Pressure before basket strainers (P1): N/A basket strainers permently removed Hand, OK (KL.) N/A basket strainers permently removed Pressure after basket strainers: (P2) N/A basket strainers permently removed **Basket Strainer Inspected and cleaned?** N/A basket strainers permently removed Flow rate after cleaning filters (gpm): N/A basket strainers permently removed Pressuer after cleaning basket strainers: (P1) 01974500 Totalizer reading (gallons) Water levels are guite **Discharge Monitoring** Yes ? No Does the system require a discharge permit or discharge to a POTW? Yes No low, No wrotes in Is Permit Performance Monitoring Implemented? (Yes) No **Condition of Operational Controls** Good Poor NA cheanouts of collection Good Poor **Condition of Gauges** NA Good Poor Condition of flow meters NA trember. Good Condition of System Alarms Poor NA Good **Condition of Pumps** Poor NA Waterberl in Manhole Condition of Flow Pipes or Hoses Good Poor NA 15 9.38' to top of mehlin Pipes Labeled with Direction of Flow and Contents No Yes NA Good Poor NA **Condition of Valves** Punpdil not enguge duing Condition of Containment Structures (berms etc.) Good Poor NA Out 3 day visit due to **Evidence of Leaking** Yes No NA **Condition of Feed/Extraction Pumps** Good Poor NA Vaulted Area Condition Good Poor NA Yes Lighting in Work Areas Adequate No NA Condition of Collection/Discharge Trenches Good Poor NA Chement of Trendett & Chemout (Good) Poor NA **Clean of Debris** #5 (northen work) - coursele has selled - netal led to clement us/ **Evidence of Sedimentation** Good Poor NA Condition of Extraction Wells/Recharge Wells Good Poor NA not seat properly. List other applicable treatment systems/components and their overall condition: Rept NA Interviews/Additional Contacts Name/Title Phone: Company/Entity **Contact Information** Additional Observation Notes: On arrival a construction crew was hoading gravel into a dump Truck. The Truck hit the fence and caused damage Replaced and labeled expansion cups on all Collection trench clean ats.

New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems

Previously observed: Review and comment as to status (include photo documentation)

1. Is there vegitation infringing on the perimeter fence? Remove infringing vegitation that can be removed without the use of power tools. Yes there is quite a lot of vegetation intraying on permetto Leuce. Removed muchof it on the sousbern permeter. 2. Inspect the previously documented gap between the fence post and neighboring building (1.5"-3.5") - has it increased? Cap in Leve appears unchanged. Does not appear to be a concern. Photograph Log: Mowmeter Totalizer reading Photograph 1 Photograph 2 Hole in feure - noroberst Photograph 3 Fine charges height NE of MO P-1075 Endofteopil where Photograph 4 Replaced expansion cup Trouch #1 Cleanout #1 Photograph 5 Minor gup in five new adjacent building. Photograph 6 and vegetation grouth Previous repair of fence Photograph 7 amage to feare from duptorch truthie Photograph 8 Close up of damine above Photograph 9 Photo-11: Collection man Vegetrinan Photograph 10 Susheast Photo-12: P-121 Sand P-1010 Performance Monitoring Were check samples collected during this visit? (Yes) No Sample type collected (circle or write in other) : Groundwater Effluent List Parameters/Methods Collected Per Media: Ground water - VUCS (8260), Mearls (6010B) Effluent - vocs (624), Mehls (200,7), pH(150,1), Cyunile (9010) (Cd, (u, Cr, Cb, Ni, 2n) Analytical Laboratory/Location: ALS Environment, 1565 Jefferson Rd, Brilding 300, Suite 360, Rochester, NY 14623 585-288-5380 Observations: Many wells very low reclucy puged dry with while purp then low How sample of veduge the following dry. (P-101D, P-103, P-105, P-105, P-1075, P-108). Sample Observations: AR 9/29/15

	Attachment 1 – l	Inspection Photographic	Log
<i>Client:</i> NYSDEC		Project Number:	3612122251
Site Name: Prim	oshield, Inc	Site Location:	Utica, New York.
<i>Photographer:</i> Karl Ladner		C. C.	
Date: 09/08/2015 Photograph: 1		R	
Direction:	0	40 1211 -63 -84 -87 -87 -87 -87 -87 -87 -87 -87 -87 -87	12 12 12 12 12 12 12 12 12 12
<i>Description:</i> Flow meter/totalizer reading	FROW BOX N	6-	
<i>Photographer:</i> Karl Ladner			
Date: 09/08/2015			
Photograph: 2			
<i>Direction:</i> North			
<i>Description:</i> Hole in northeast section of fence.			

	Attachment 1 – A	ir Sampling Photographi	ic Log
<i>Client:</i> NYSDEC		Project Number:	3612122251
Site Name: Pri	moshield, Inc	Site Location:	Utica, New York.
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015			
Photograph: 3			
<i>Direction:</i> Northeast			
<i>Description:</i> End of top rail where fence height changes.			
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015			
Photograph: 4			
<i>Direction:</i> n/a		S. ame	
<i>Description:</i> Collection trench #1, cleanout #1 replaced expansion cap. (All cleanout caps replaced)			

Attachment 1 – Air Sampling Photographic Log								
<i>Client:</i> NYSDEC		Project Number:	3612122251					
Site Name: Prim	oshield, Inc	Site Location:	Utica, New York.					
<i>Photographer:</i> Jerry Rawcliffe								
Date: 09/10/2015								
Photograph: 5								
<i>Direction:</i> West								
Description:								
Gap between the adjacent building and the Primoshield property.								
<i>Photographer:</i> Jerry Rawcliffe								
Date: 09/10/2015								
Photograph: 6		5 (A.C.)						
<i>Direction:</i> North								
<i>Description:</i> Previous repair of fence.								

А	ttachment 1 – Ai	ir Sampling Photographic	e Log
Client: NYSDEC		Project Number:	3612122251
Site Name: Prime	oshield, Inc	Site Location:	Utica, New York.
<i>Photographer:</i> Karl Ladner			
Date: 09/08/2015	TI	I AL	
Photograph: 7			
<i>Direction:</i> West			
<i>Description:</i> Damage to fence from Dump truck traffic.			
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015			
Photograph: 8			
<i>Direction:</i> North			3 Bibis
<i>Description:</i> Close up of damage above.			

	Attachment 1 – Air	Sampling Photograph	ic Log
<i>Client:</i> NYSDEC		Project Number:	3612122251
Site Name:	Primoshield, Inc	Site Location:	Utica, New York.
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015	A CARLER AND A CARLE		
Photograph: 9			
<i>Direction:</i> Northwest			
<i>Description:</i> Growth on fence.			
Photographer: Jerry Rawcliffe	18.23	2	
Date: 09/10/2015	-		
Photograph: 10			
<i>Direction:</i> Southeast		- A Lar	
<i>Description:</i> Loose barbed wire.			

	Attachment 1 – Air S	ampling Photograph	ic Log
Client: NYSDEC		Project Number:	3612122251
Site Name:	Primoshield, Inc	Site Location:	Utica, New York.
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015			Self- Starter
Photograph: 11			
<i>Direction:</i> NA			
<i>Description:</i> Collection manhole.			
<i>Photographer:</i> Jerry Rawcliffe			
Date: 09/10/2015			
Photograph: 12			
<i>Direction:</i> North			
<i>Description:</i> P-101S (far) and P- 101D (near).			

	EFFLUENT	SAMPLING RECO)RD	
	PROJECT NAME Primoshield PROJECT NUMBER 3612122 SAMPLER NAME Karlback SAMPLER SIGNATURE Jerry Hulff CHECKED BY: M C WM	Inc. 251.03 Joerny R.	awchAlp 29/15 cobs	N Thech 2 N g co the y
Monitoring Location Sample ID Sample Date/Time	Collection System Effluent <u>633027 EFfluent</u> 9/8/15 1610	SKETCH	I/NOTES: CO#3 Treed Treed Treed Supley Supley	12 - Chement #1 w/ 0- Chement #1 co #1
ANALYTICAL PAI	RAMETERS PARAMETER	METHOD NUMBER	PRESERVATION METHOD	
 ✗ ✗ ✓ ✓		624 200.7 150.1 9010	HCI HNO3 ICS NaUH	3×400ml poly 1×500 ml poly 125 ml cup, 1 1×20ml poly
MACTEC 511 Congress Street, J		*- cadmium, chro	mium, copper, lead, nickel	l and zinc

Analytical Report

Client: Project: Sample Matrix: AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251 Water

Service Request: R1507571 Date Collected: 9/ 8/15 1610 Date Received: 9/11/15

Sample Name: Lab Code: 633027EFFLUENT R1507571-003

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Q Units	MRL	Dilutio Factor	n Date Extracted	Date Analyzed	Note
Cyanide, Total	9012B	0.010 U	J mg/L	0.010	1	9/15/15	9/16/15 11:20	
pH	SM 4500-H+ B	7.06	pH Units		• 1	NA	9/11/15 18:05	Н
Temperature of pH Analysis	SM 4500-H+B	24,0	deg C		1	NA	9/11/15 18:05	·H

Printed 9/28/15 13:08

\\alprews001\starlims\$\LIMSReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference;

Analytical Report

Client: Project: Sample Matrix: AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC) NYSDEC Primoshield/3612122251 Water Service Request: R1507571 Date Collected: 9/8/15 1610 Date Received: 9/11/15

Sample Name: Lab Code: 633027EFFLUENT R1507571-003

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
Cadmium, Total	200,7	5.0 U	μg/L	5.0	<u>l</u>	9/21/15	9/22/15 20:06	
Chromium, Total	200.7	10 U	μg/L	10	1	9/21/15	9/22/15 20:06	
Copper, Total	200.7	20 U	μg/L	20	1	9/21/15	9/24/15 11:31	
Lead, Total	200.7	50 U	μg/L	50	1	9/21/15	9/22/15 20:06	
Nickel, Total	200.7	68	μg/L	40	1	9/21/15	9/22/15 20:06	
Zinc, Total	200.7	21	μg/L	20	1	9/21/15	9/22/15 20:06	

Analytical Report

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc. (MACTEC)	Service Request: R1507571
Project:	NYSDEC Primoshield/3612122251	Date Collected: 9/ 8/15 1610
Sample Matrix:	Water	Date Received: 9/11/15
•		Date Analyzed: 9/11/15 23:03
Sample Name:	633027EFFLUENT	Units: µg/L
Lab Code:	R1507571-003	Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\091115\M4394.D\

Analysis Lot: 461767 Instrument Name: R-MS-06 Dilution Factor: 1

71-55-6 1,1,1-Trichloroethane (TCA) 9.5 1.0 79-34-5 1,1,2-Tetrichloroethane 1.0 U 1.0 79-00-5 1,1,2-Trichloroethane 1.0 U 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.2 1.0 75-35-4 1,1-Dichloroethene (1,1-DCB) 1.0 U 1.0 107-06-2 1,2-Dichloroethene (1,1-DCB) 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichloroethenzene 1.0 U 1.0 107-02-8 Acrolein 10 U 10 107-02-8 Acrolein 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 1.0 75-27-4 Bromonethane 1.0 U 1.0 75-25-2 Bromonethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U	CAS No.	Analyte Name	Result Q	MRL	Note	
79-00-5 1,1,2-Trichloroethane 1.0 U 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.2 1.0 95-35-4 1,1-Dichloroethane (1,1-DCE) 1.0 U 1.0 95-50-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichloroethazene 1.0 U 1.0 1107-58 2-Chloroethyl Vinyl Ether 10 U 10 107-024 Acrylonitrile 10 U 10 107-13-1 Acrylonitrile 10 U 10 107-13-2 Benzene 1.0 U 1.0 75-27-3 Bromoferm 1.0 U 1.0 75-35-5 Carbon Terachloride 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 108-90-7 Chloroenthane 1.0 U </td <td>71-55-6</td> <td>1,1,1-Trichloroethane (TCA)</td> <td>9.5</td> <td>1.0</td> <td></td> <td>·</td>	71-55-6	1,1,1-Trichloroethane (TCA)	9.5	1.0		·
75-34-3 1,1-Dichloroethene (1,1-DCA) 1.2 1.0 75-35-4 1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 95-50-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-13-1 Acrolein 10 U 10 107-13-2 Benzene 1.0 U 1.0 11-43-2 Benzene 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 12-448-1 Dibromochloromethane 1.0 U 1.0 12-448-1 Dibromochloromethane 1.0 U	79-34-5	1,1,2,2-Tetrachloroethane	1.0 U			
75-35-4 1,1-Dichloroethene (1,1-DCE) 1.0 U 1.0 95-30-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroppane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 108-90-7 Chloroethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0	79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 107-06-2 1,2-Dichloropropane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 107-02-8 2-Chloroethyl Vinyl Ether 10 U 10 107-13-1 Acrylonitrile 10 U 10 75-23-2 Benzene 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-00-7 Chlorobenzene 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 74-87-3 Chlorobenzene 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U	75-34-3	1,1-Dichloroethane (1,1-DCA)	1.2			•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
78-87-5 1,2-Dichloropropane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 107-02-8 Acrolein 10 U 10 107-13-1 Acrylonitrile 10 U 10 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodrethane 1.0 U 1.0 75-25-2 Bromodrethane 1.0 U 1.0 75-25-2 Bromodrethane 1.0 U 1.0 75-25-2 Carbon Tetrachloride 1.0 U 1.0 76-63 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorobenzene 1.0 U 1.0 74-87-3 Chlorothane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U <td>95-50-1</td> <td>1,2-Dichlorobenzene</td> <td>1.0 U</td> <td>1.0</td> <td></td> <td></td>	95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 $106-46-7$ 1,4-Dichlorobenzene 1.0 U 1.0 $110-75-8$ 2-Chloroethyl Vinyl Ether 10 U 10 $107-02-8$ Acrolein 10 U 10 $107-13-1$ Acrylonitrile 10 U 10 $71-43-2$ Benzene 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-2$ Bromomethane 1.0 U 1.0 $76-62-3$ Carbon Tetrachloride 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $74-87-3$ Chloroethane 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $75-09-2$ Methylene Chloride	107-06-2	1,2-Dichloroethane	1.0 U	1.0		
106-46-7 $1,4-Dichlorobenzene$ 1.0 1.0 $110-75-8$ $2-Chloroethyl Vinyl Ether$ 10 10 $107-02-8$ Acrolein 10 10 $107-13-1$ Acrylonitrile 10 10 $107-13-1$ Benzene 1.0 1.0 $74.87-3$ Bromomethane 1.0 1.0 $108-90-7$ Chloroethane 1.0 1.0 $75-00-3$ Chloroethane 1.0 1.0 $74.87-3$ Chloroethane 1.0 1.0 $74.87-3$ Chloroethene (PCE) 1.0 1.0 $100-41-4$ Ethylbenzene	78-87-5	1,2-Dichloropropane				
110-75-82-Chloroethyl Vinyl Ether10U10107-02-8Acrolein10U10107-13-1Acrylonitrile10U1071-43-2Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetratchloride1.0U1.075-00-3Chlorobenzene1.0U1.075-00-3Chlorothane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.0104-14Ethylbenzene1.0U1.0107-14-4Ethylbenzene1.0U1.0108-88-3Toluene1.0U1.0108-88-3Toluene1.0U1.0108-88-3Toluene1.0U1.0106-10-5cis-1,3-Dichloropropene1.0U1.0106-10-5cis-1,3-Dichloropropene1.0U1.01061-01-5cis-1,3-Dichloropropene1.0U1.01061-01-5cis-1,3-Dichloropropene1.0U1.01061-01-5cis-1,3-Dichloropropene1.0U1.01061-01-5cis-1,3-Dichloropropene<	541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
107-02-8Acrolein10U10107-13-1Acrylonitrile10U1074-32Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-27-4Bromodichloromethane1.0U1.075-27-4Bromoform1.0U1.075-27-4Bromomethane1.0U1.075-27-4Bromomethane1.0U1.074-83-9Bromomethane1.0U1.062-23-5Carbon Tetratchloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-03Chlorobenzene1.0U1.074-87-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.01.0128-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)171.075-01-4Vinyl Chloride1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0	106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
107-13-1Acrylonitrile10U1071-43-2Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.067-63-3Chlorobenzene1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-88-3Toluene1.0U1.079-01-6Trichloroethene (PCE)171.075-01-4Vinyl Chloride1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5 <td>110-75-8</td> <td>2-Chloroethyl Vinyl Ether</td> <td>10 U</td> <td>10</td> <td></td> <td></td>	110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
71-43-2Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroethane1.0U1.074-87-3Chloroethane1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Trichlorofhoromethane (CFC 11)1.0U1.0 </td <td>107-02-8</td> <td>Acrolein</td> <td>10 U</td> <td>10</td> <td></td> <td></td>	107-02-8	Acrolein	10 U	10		
71-43-2Benzene1.0U1.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroform1.0U1.074-87-3Chloroform1.0U1.074-87-3Chloroform1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0107-18-4Tetrachloroethene (PCE)1.0U1.019-88-3Toluene1.0U1.075-01-4Vinyl Chloride1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0175-01-4Vinyl Chloride1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1mp-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene1.0U1.0	107-13-1	Acrylonitrile	10 U	10	·····	
75-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (PCE)1.71.075-69-4Trichlorofluoromethane (CFC 11)1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U156-60-5trans-1,2-Dichloroethene1.0U156-60-5trans-1,2-Dichloroethene1.0U1001.0		•	1.0 U	1.0		
74-83-9Bromomethane1.0 U1.056-23-5Carbon Tetrachloride1.0 U1.0108-90-7Chlorobenzene1.0 U1.075-00-3Chloroethane1.0 U1.067-66-3Chloroform1.0 U1.074-87-3Chloromethane1.0 U1.0124-48-1Dibromochloromethane1.0 U1.0100-41-4Ethylbenzene1.0 U1.0107-18-4Tetrachloroethene (PCE)1.0 U1.0108-88-3Toluene1.0 U1.075-01-4Vinyl Chloride1.0 U1.010061-01-5cis-1,3-Dichloropropene1.0 U1.010061-01-5cis-1,3-Dichloropropene1.0 U1.010661-05trans-1,2-Dichloroethene1.0 U1.0	75-27-4	Bromodichloromethane	1.0 U ·	1.0		
74-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibronochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0100-41-4Ethylbenzene1.0U1.0108-88-3Toluene1.0U1.075-69-4Trichloroethene (PCE)1.01.0108-88-3Toluene1.0U1.075-69-4Trichloroethene (CFC 11)1.01.010061-01-5cis-1,3-Dichloropropene1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene1.0U1.0	75-25-2	Bromoform	1.0 U	1.0		
108-90-7Chlorobenzene 1.0 U 1.0 $75-00-3$ Chloroethane 1.0 U 1.0 $67-66-3$ Chloroform 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $108-88-3$ Toluene 1.0 U 1.0 $79-01-6$ Trichloroethene (TCE) 17 1.0 $75-01-4$ Vinyl Chloride 1.0 U 1.0 $10061-01-5$ cis-1,3-Dichloropropene 1.0 U 1.0 $179601-23-1$ m,p-Xylenes 2.0 U 2.0 $95-47-6$ o-Xylene 1.0 U 1.0 $156-60-5$ trans-1,2-Dichloroethene 1.0		Bromomethane	1.0 U	1.0		
75-00-3Chloroethane1.0U1.0 $67-66-3$ Chloroform1.0U1.0 $74-87-3$ Chloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $75-09-2$ Methylene Chloride1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $100-41-4$ Teichloroethene (PCE)1.71.0 $108-88-3$ Toluene1.0U1.0 $79-01-6$ Trichloroethene (TCE)1.71.0 $75-69-4$ Trichloroefluoromethane (CFC 11)1.0U $75-01-4$ Vinyl Chloride1.0U $10061-01-5$ cis-1,3-Dichloropropene1.0U $10061-01-5$ cis-1,3-Dichloropropene1.0U $10061-02-1$ m,p-Xylenes2.0U2.0 $95-47-6$ o-Xylene1.0U1.0 $156-60-5$ trans-1,2-Dichloroethene1.0U1.0	56-23-5	Carbon Tetrachloride	1.0 U	1.0		
75-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.01.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)171.075-69-4Trichlorofluoromethane (CFC 11)1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-01-5cis-1,3-Dichloropropene1.0U10061-023-1m,p-Xylenes2.0U95-47-6o-Xylene1.0U156-60-5trans-1,2-Dichloroethene1.0U	108-90-7	Chlorobenzene	1.0 U ·	1.0	· · · · ·	
74-87-3Chloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $75-09-2$ Methylene Chloride1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $127-18-4$ Tetrachloroethene (PCE)1.0U1.0 $108-88-3$ Toluene1.0U1.0 $79-01-6$ Trichloroethene (TCE)171.0 $75-69-4$ Trichlorofluoromethane (CFC 11)1.0U $75-01-4$ Vinyl Chloride1.0U $10061-01-5$ cis-1,3-Dichloropropene1.0U $179601-23-1$ m,p-Xylenes2.0U $95-47-6$ o-Xylene1.0U $156-60-5$ trans-1,2-Dichloroethene1.0U		Chloroethane	1.0 U	1.0		
124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.0U1.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)171.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.075-01-4Vinyl Chloride1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene1.0U1.0	67-66-3	Chloroform	1.0 U	1.0		
124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1.0U1.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)171.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.075-01-4Vinyl Chloride1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene1.0U1.0	74-87-3	Chloromethane	1.0 U	1.0		
100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 17 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0		Dibromochloromethane	1.0 U	1.0		
127-18-4 Tetrachloroethene (PCE) 1.0 1.0 108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 17 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 1.0 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 1.0 1.0	75-09-2	Methylene Chloride	1,0 U	1.0		
127-18-4Tetrachloroethene (PCE) 1.0 1.0 1.0 108-88-3Toluene 1.0 1.0 1.0 79-01-6Trichloroethene (TCE) 17 1.0 75-69-4Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4Vinyl Chloride 1.0 1.0 10061-01-5cis-1,3-Dichloropropene 1.0 1.0 179601-23-1m,p-Xylenes 2.0 2.0 95-47-6o-Xylene 1.0 1.0 156-60-5trans-1,2-Dichloroethene 1.0 1.0	100-41-4	Ethylbenzene	1.0 U	1.0		
79-01-6 Trichloroethene (TCE) 17 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 2.0 2.0 95-47-6 o-Xylene 1.0 1.0 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 1.0 1.0	127-18-4		1.0 U	1.0		
79-01-6 Trichloroethene (TCE) 17 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 1.0 75-01-4 Vinyl Chloride 1.0 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	108-88-3	Toluene	1.0 U	1.0		
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	79-01-6	Trichloroethene (TCE)	17	1.0	· · · · · · · · · · · · · · · · · · ·	
75-01-4 Vinyl Chloride 1.0 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0			1.0 U	1.0		
179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0		Vinyl Chloride	1.0 U	1.0		
179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 1.0 U 1.0		,	2.0 U	2.0		
	95-47-6		10 U	1.0		•
	156-60-5	trans-1.2-Dichloroethene	1.0 U	1.0		····

\\alprews001\starlims\$\LIMSReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference: 150000346360 rev 00

	ALS	Group USA, C	orp. dba ALS	Environmental			
		An	alytical Report				
Client: Project: Sample Matrix:	AMEC Foster Wheeler Er NYSDEC Primoshield/36 Water		nfrastructure Ir	c. (MACTEC)		Service Request: Date Collected: Date Received: Date Analyzed:	9/ 8/15 1610 9/11/15
Sample Name: Lab Code:	633027EFFLUENT R1507571-003					Units: Basis:	Percent NA
			,				
Analytical Method:	•	Organic Com	pounds by GC	/MS, Unpreserve	d	Analysis Lot:	461767
Analytical Method: Data File Name:	•			/MS, Unpreserve	d	Analysis Lot: Instrument Name: Dilution Factor:	R-MS-06
	624			/MS, Unpreserve Date Analyzed	ed Q	Instrument Name:	R-MS-06
Data File Name: Surrogate Name	624 I:\ACQUDATA\MSVOA6\	\DATA\091115	\M4394.D\ Control	Date		Instrument Name:	R-MS-06
Data File Name:	624 I:\ACQUDATA\MSVOA6\ 4	\DATA\091115 %Rec	\M4394.D\ Control Limits	Date Analyzed		Instrument Name:	R-MS-06

\lalprews001\starlims\$\LIMSReps\AnalyticalReport.rpt

Form 1A

SuperSet Reference: 15-0000316160 ev 00

APPENDIX C

SEPTEMBER 2015 – LTM FIELD DATA RECORDS AND CATEGORY A DATA VALIDATION

FIELD			WELOW	GROUNDW	ATER SA		3		OB NUMBER 3612122251-04.****
	NYSDEC Primo					·····	027 PI01		
1						1		<u> </u>	DATE 9/8/15 - 9/9/15
SITE ID			Clahe	1235 SAMPLE T	-	= <u> </u>	1220		DATL 1915 11 915
						PROTECTIV			ASING / WELL
	EVEL / PUMP S		🖍 то	REMENT POINT		CASING STI	CKUP	D	IFFER. 0.46 FT
INITIAL DEI TO WA		R67	FT FT		E CASING	(FROM GRO		w	IAM. 2 IN
FINAL DEI	PTH		WELL DEP (TOR)	TH 86.7	FT	PID AMBIENT AI	R	- PPM	IAM. IN
TO WA		All Alexandre	FT SCREE	N	·	PID WELL		w	/ELL INTERGRITY: YES NO N/A
DRAWDO			LENGT		FT	MOUTH			CAP A HIGH HART
VOLU (initial -		ch} or x 0.65 {4-ir		OF DRAWDOWN \		PRESSURE			OCKED 🖌
TOTAL	/OL.			DTAL VOLUME PU	RGED	TO PUMP		PSI C	Collar K Critit
PURC			GAL	utes) x 0.00026 gal/	milliliter)	REFILL SETTING	(44)		ISCHARGE ETTING
	· · · · · · · · · · · · · · · · · · ·			SPECIFIC					
TIME	ATA LATOR DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
9/8/15			(ueg. c)	<u>(110/011)</u>		(119/1=)			
1432	28:67	Purping	with u	hele pro	p				En Minera
1441			A		-				10 gillins
1500		315 gill	ous the	n prop si	hyped	dere to	dyth.		13. Sgaller
1509	81.22		-						
4/4/15	38.15	1115	Set	up to	suple	reclu	ye		
1143	35.93	5mm 180	17.8	1.43 7	8.2	3.2	24	-100	
1150	39.22	140	16.7	1.540	8.0	0.5	22	-144	
1155	39.88	1200	17.6	1.539	8.0	0.5	14.2	-155	
1200	40.64	135	17.6	1.537	\$10	015	5.4	-150	
1210	42.17	135	18:0	1.537	810	0.5	4.4	-162	
1215	42.66	120	15.0	1.534	8.0	0.5	3.4	-160	
							·····		
					and the second				
			·						
,									
		TATION	18	1.534	8.0	0,5	3.4	-160	
	NT DOCUMEN	TATION	TYPE OF TUBI	NG		E OF PUMP I		Ţ	YPE OF BLADDER MATERIAL
				SITY POLYETHYLI	ene 🔀	STAINLESS		in the second	TEFLON OTHER
	D BLADDER		K OTHER		<u>l</u>		mploor /		/
				THOD MBER		ERVATION	VOLUME REQUIREI	SAMPLE COLLECTE	
			826 624	0B	HNC	03 to pH <2 03 to pH <2	3 / x 40ml 2 x 40ml		
TAL	LMETALS		601	0B/7470A/7141A	HNC	03 to pH <2	500 ml pol		iold Filtered
TAL	L METALS (Diss	olved)	601 150	0B/7470A/7141A .1)3 to pH <2 ∃G. C	500 ml poly	y	
	anide		901						
							A		· · ·
NOTES:	Protection	1 custion	clusted a	1. Fle bent	4	LOCATION	SKETCH CAN	nething	× × 1
com	ut coll	wis ou	ulat.	1. Fle bent Uppep 9/2		-ok	C ININ G	x-12	
P.	wed men	r duy i	ith what	upp 9K	115 p.	1015- "	. 4. ININ		
5	upled re	buye 91	a/15	• v	N	\mathbf{k}			\mathbf{k}
	ί Λ	n Al	11	~ 0 .]					7
SIGNATUR	Elou	Ventil	11	$-\mu(\alpha)$	29/10/-	Metho	Gáx		,
<u></u>	17			``\	······································	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-]/``		014710045
Pr	rimesnield GWL	OWFLOW.xlsx/L	r primushiel						8/17/2015

FIELD	DATA REC	ORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING		JO	B NUMBER	3612122251-04.****
11.211	NYSDEC Primo				PLE NUMBER		027P1			
SITE ID		- 103			SITE TYPE				DATE 9	-9-15
	START 103		01200	SAMPLE TI		1140				- CP
	EVEL / PUMP S			REMENT POINT		PROTECTIVE		CAS	SING / WELL	0.32
NITIAL DEF				OF WELL RISER		CASING STIC	KUP JND)	2, 8 FT DIF	FER.	UIDZ FT
TOWAT	rer 9,	17	FT WELL DEPT			PID			ELL	2" IN
FINAL DEF		0.25	(TOR)	H 17.	8 ZFT	AMBIENT AIR		PPM		
TO WAT		1125	SCREEN			PID WELL	-			
DRAWDO VOLUI	ME		GAL LENGTH			MOUTH		C	ASING	
(initial - f	final x 0.16 {2-inc	ch} or x 0.65 {4-in		OF DRAWDOWN V DTAL VOLUME PUF		PRESSURE TO PUMP	-	PSI C	OCKED	<u> </u>
TOTAL V PURG		1 0.95	GAL	,04	-	REFILL	-	Dis	SCHARGE	110
(purge v	olume (milliliters	per minute) x tir	me duration (minu	tes) x 0.00026 gal/n	nilliliter)	SETTING		SE	TTING	NA
URGE DA	TA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX		
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(mS/cm)	(units)	(mg/L)	(ntu)	· (mv)	C	OMMENTS
1100	9.38	125	19.98	0.495	7.25	5.92	4,40	241,6		
HOD	9,50	100	20,53	0,695	7,25	5,84	1,92	234.2	-	
120	9,61	100	20.85	0.696	7.24		1,44	208,3		
1125	9,84	108	20,71	0,700	7,23	5184	0 14	23113		
1130	9.92	100	20.59	0.701	7.23	5.78	0.82	215.6		
1135	10,10	100	20,32	0,706	7,23	5186	1174	218.8		
-					-			/	i - 2	
							/			
				_						
				/			-	2	5 m	
				/			-	Str. AV		
			/							
		/			-					
	/						· · · · · · · · · · · · · · · · · · ·			
	/									
						1				
			20	0.706	7,2	5.9	1.8	220		
	NT DOCUMEN	TATION	TYPE OF TUBIN	IG	TYP	E OF PUMP N	ATERIAL	TY	PE OF BLAD	DER MATERIAL
GE GE	EOPUMP (perista	altic)		SITY POLYETHYLE	NE	STAINLESS	STEEL		EFLON	
	D BLADDER	EDE	A OTHER L	.npo		OTHER			THER	
NALYIIC	AL PARAME I	EKS		THOD		ERVATION	VOLUME	SAMPLE COLLECTED		
Nov X			826	OB	HNC	03 to pH <2	37x 40ml			
	C METALS		624 601	0B/7470A/7141A		03 to pH <2 03 to pH <2	2 x 40ml 500 ml poly	KR	eld Filtered	
TAL	METALS (Disso	olved)		0B/7470A/7141A		3 to pH <2	500 ml poly			
pH Cva	inide		150		4 DE	G.C				
					6					
OTES:	0.0 15	-	and sur	oll dry ~	3.5 mal	LOCATION	SKETCH COV	Jalon An	9	
	d.8-12	pum	pear we	n big m	and the		COV	Willing 100-		-
					-		TAKA	Case	K	-JN
								2-103	A	
			00	11 M. 9/29/1	5			P-1065	A	
NATUR	E R	1 yah	OIC	unlfl 9/29/1				PIGH		
SIGNATUR	=:/\ev	from	VV				4-	1100	K	
Pr	imoshield GW L	OWFLOW.xlsx/l	FPRIMOSHIELI)	1		the second		-t	8/17/2015

FIELD	DATA	A REC	ORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING		JOE	NUMBER	3612122251-04.*	***
ROJECT		EC Primos				PLE NUMBER	10000					
ITE ID		W) P	. (4))			SITE TYPE	WELL			DATE	9-8-15	
CTIVITY	START	14	LÔ EN	0 15 15	SAMPLE TI	ме 🚺	520					
YATER L	EVEL/	ACTION ADDRESS OF TAXABLE PARTY.		K TOP	REMENT POINT P OF WELL RISER P OF PROTECTIVE		PROTECTIVE CASING STIC (FROM GROL	KUP 🖌		SING / WELL FER.	0.33	FT
NITIAL DE TO WA		7.2	.3				PID		WE		2=	IN
FINAL DE TO WA			3,40	(TOR) FT	("F #3	FT	AMBIENT AIR		PPM	LL INTERGI YE	RITY:	N/A
DRAWDO VOLU			<u>4</u>	SCREEN LENGTH			MOUTH				<u>×</u> — —	
			h} or x 0.65 {4-ir	nch}) RATIO (OF DRAWDOWN V		PRESSURE TO PUMP		PSI CC	DCKED DLLAR		
TOTAL \ PUR(purge)	GED	2. milliliters	· · · · · · · · · · · · · · · · · · ·	GAL	, 09 ites) x 0.00026 gal/n	nilliliter)	REFILL SETTING			CHARGE		
URGE D	ATA				SPECIFIC	,			ORP	: - Lainin Mail Tail - Mail Tail - magazar pains (17		
TIME	WAT	TH TO ER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
1420		5tart 85	ed Purg	ing usin 17,34	-,582	r.31	1.80	2.74	259.2	1750		
1430	7.		200 150	17,49	<u>,582</u> .578	7,37	2.40	2.97	243,9	1000		
1440	8.3		150	18.36	1579	7.46	3,22	1.70	237,1			
144	<u>s</u> .	24 30	150	18,24	.582	7.46	3,19	1.16	237.6			
1455		35	160	18.23	583	7.44	2177	1.77	23415			
150	O Sta	40	150	18,25	.587	19.44		1.72	234.4			
1505	9	140	150	19.25	<u>,584</u> ,590	7,43	2,42	1.02	234.1			
515	9	140	150	18.35	.312	7.44	2.37	1.11	234.7	6750		
a,												
					2.5							
]											
					· · · · · · · · · · · · · · · · · · ·							
	1											
				18	0.592	7.4	2.3	61	230			
	NT DO	CUMENT P.	ATION	TYPE OF TUBI	NG	TYP	E OF PUMP M	IATERIAL	TY	PE OF BLAD	DDER MATERIAL	
G G		P (perista	ltic)		SITY POLYETHYLE		STAINLESS	STEEL		EFLON THER		
NALYTIC	CALPA	RAMETI	ERS		ſhod		ERVATION	VOLUME				
)C			<u>NUN</u> 826	<u>MBER</u> 0B		<u>ETHOD</u>)3 to pH <2	<u>REQUIREE</u> 2 x 40ml	COLLECTED			
Γľνο	C			624			03 to pH <2	2 x 40ml		eld-Filtered		
	L META L META	LS LS (Disso	lved)		0B/7470A/7141A 0B/7470A/7141A		03 to pH <2 03 to pH <2	500 ml pol 500 ml pol		Sign Illei Gu		
рН		(,	150		4 DE	EG. C					
	anide			901	0						7N	
[]				A A 4))		er sjonen i ratt i Korya, kenering 3540 milit milit inder i	ا - مسلما میں استان اور میں میں میں میں میں میں میں ہی ہے	*****		<u>}</u>
OTES:			Alsocolle	uted depl	line suyl	(LOCATION	SKETCH	÷	1		14.01
			63	3027P10	ЧЪ		¢	d d	Ķ.	143.52	House	$ \downarrow $
							SIT	5	k	14.		141
						GI.	L	\Box	kii			11 kent
			A +		A	i V	4-0-0-0	***	<u> </u>		11	11-4
IGNATUF	RE:	K W	1 Lond	m	JK? 9/28/	15	4	St Vincent	a Sw			
		<u>v \ *</u>	- d-	an an an Anna a			n nanzan kerimban att. Soʻl, t, ya ALQ tiβ Bris Φάζαγα	muleu	2_20	and a second second of the second second	A 14 P 10 A 1	anna a sua a s
P	rimoshie	ald GW LC)WFLOW.xlsx/	LF PRIMOSHIEL	C						8/17/2015	

IELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER SA				OB NUMBER	3612122251-04.****
ROJECT	NYSDEC Prim	oshield Inc.		FIELD SAM	IPLE NUMBER	R 633	1027 P	10524		
ITE ID	(MW)	P- 105			SITE TYPE	E WELL			DATE	9-9-15
CTIVITY	START 09	00 EN	D 1030	SAMPLE T	IME 1	1010				
VATER L	EVEL / PUMP	SETTINGS	TOI	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING STIC (FROM GROU	VIID D		ASING / WEL DIFFER.	0.46 FT
TO WA	ATER	5.32	FT WELL DEPT	пн 17,	95 _{FT}	PID AMBIENT AIF		JA PPM	VELL DIAM.	2″ 11
TO WA		7.70	FT SCREE LENGT		FT	PID WELL MOUTH	ħ	n PPM	CAP	BRITY: ES NO N/A X
	- final x 0.16 {2-ir	nch} or x 0.65 {4-i		OF DRAWDOWN V DTAL VOLUME PUP		PRESSURE TO PUMP	N	0	CASING LOCKED COLLAR	×
	GED 'T			14 ites) x 0.00026 gal/r	nilliliter)	REFILL SETTING	NT	A 5	DISCHARGE SETTING	NA
URGE D	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
992	4,88	150 pur	ge with 17.50 17.87	L Geor 0,855 0,857	7.28	2.91	16.8	248.3	>	
940	7.22	150	18,23	0,855	7.28	2,72	11.4	244.1	2	
1950	7.70	150	17,52	0,848 0,846 0,846	7.30	2,94	7.17 6.22	213.9		
005		150	17.68	0.842	7,31	2.87	4.54		2	
	15									
	1	1	18	0.842	7.3	2.9	6.6	210		
	ENT DOCUMEN OF PUMP GEOPUMP (peris ED BLADDER			SITY POLYETHYLE		E OF PUMP M STAINLESS OTHER			TYPE OF BLA TEFLON OTHER	DDER MATERIAL
	DC AL METALS AL METALS (Dis:		<u>NU1</u> 826 624 601	0B/7470A/7141A 0B/7470A/7141A .1	M HNC HNC HNC HNC	ERVATION <u>IETHOD</u> 03 to pH <2 03 to pH <2 03 to pH <2 03 to pH <2 03 to pH <2 EG. C	VOLUME REQUIRED X 40ml 2 x 40ml 500 ml pol			-
OTES:	9-8-13	i purger	d well di	ry ~ 7gal		LOCATION	SKECH	3	A K K	->N
IGNATU	RE: 12a	1 Lav	han I	Kaulf 9/2	5/15	K.	41		ha	1

DOUTOT	DATA REC	CORD - LC	OW FLOW	GROUNDW	ATER SA	MPLING			JOB NUMBER	3612122251-04.***
ROJECT	NYSDEC Prime	shield Inc.		FIELD SAM	PLE NUMBER	43:	30278	1049		
ITE ID		-1065			SITE TYPE				DATE	9-9-15
	START 12		D 1255	SAMPLE T	IME	1306				
	EVEL / PUMP S		MEASU	REMENT POINT		PROTECTIVE		7	CASING / WEL	
IITIAL DEF TO WAT	PTH TER	10,06	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROL		FT	DIFFER.	- 4
INAL DEF		2.55	WELL DEP (TOR)	I8,7		PID AMBIENT AIR	د	PPM	DIAM.	
RAWDO VOLU	WN I	40	SCREE LENGTI			PID WELL MOUTH	-	PPM		
(initial - i	final x 0.16 (2-in		nch}) RATIO	OF DRAWDOWN V DTAL VOLUME PUI		PRESSURE TO PUMP	-	PSI	LOCKED COLLAR	¥
TOTAL V PURG (purge v	SED 871.		GAL me duration (minu	,04 ites) x 0.00026 gal/r		REFILL SETTING	-		DISCHARGE SETTING	-
URGE DA				SPECIFIC						
TIME-	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)-	(units)	DISS, O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	-	COMMENTS
220	10:47	200	19.52	0.715	7.16	8.50	2.02	2411	1	
225	10,93	125	30.75	0,713	7.24	2.70	1,55	230,8	2	
230	11,20	125	21.11 20,79	0,712	7.26	3.93	2	227.7		
240	11,70	125	21,49	0,493	1,29	3,82		220,	7	
245	11,92	125	21.34	0.494		3.94	1,2,2	2.20,		
250	12.07	125	20,80	0.488	7.29	3.97	1.55	220,		
hadd	14.00	1 and	wort i		1.01			Sin	-	
							/			
		-				/				
	-			/					-	
			/							
				-					-	
		/		,dt					1	
		/			-				-	
N	/			-	1				-	
			21	0.687	7.3	4.0	1.5	220	111.	
	NT DOCUMEN DF PUMP EOPUMP (perista			SITY POLYETHYLE	And a second sec	E OF PUMP M	the set of the set of the set		TYPE OF BLA TEFLON OTHER	ADDER MATERIAL
K GE	D BLADDER		OTHER L	-DPC	-	OTHER				
GE QE	and the second sec	ERS			PRES		VOLUME	SAMPLE		
GE QE NALYTIC	D BLADDER	ERS	MET	THOD	ME	ERVATION ETHOD		SAMPLE COLLECTE		-
	D BLADDER CAL PARAMET	ERS	MET NUN 826 624	THOD <u>MBER</u> DB	ME HNO HNO	ERVATION ETHOD 3 to pH <2 3 to pH <2	3 x 40ml 2 x 40ml		<u>=D</u>	*
	D BLADDER CAL PARAMET C C METALS		MET <u>NUM</u> 826 624 601	THOD <u>MBER</u> DB 0B/7470A/7141A	<u>Me</u> HNO HNO HNO	ERVATION ETHOD 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2	3 2 x 40ml 2 x 40ml 500 ml poly			-
	D BLADDER CAL PARAMET		MET <u>NUM</u> 826 624 601	THOD <u>MBER</u> DB DB/7470A/7141A DB/7470A/7141A	<u>Me</u> HNO HNO HNO	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2	3 x 40ml 2 x 40ml		<u>=D</u>	-
	D BLADDER CAL PARAMET C C METALS		ME ⁻ <u>NUI</u> 826 624 601 601	THOD <u>MBER</u> DB DB/7470A/7141A DB/7470A/7141A 1	<u>ME</u> HNO HNO HNO HNO	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2	3 2 x 40ml 2 x 40ml 500 ml poly		<u>=D</u>	-
	D BLADDER CAL PARAMET C C . METALS . METALS (Disso		ME NUM 826 624 601 601 150	THOD <u>MBER</u> DB DB/7470A/7141A DB/7470A/7141A 1	<u>ME</u> HNO HNO HNO HNO	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2	3 x 40ml 2 x 40ml 500 ml poly 500 ml poly		ED Field Filtered	-
Carl Carl Carl Carl Carl Carl Carl Carl	D BLADDER CAL PARAMET C C METALS METALS (Disso mide	olved)	ME ⁻ <u>NUM</u> 826 624 601 601 150 901	THOD <u>MBER</u> DB DB/7470A/7141A 0B/7470A/7141A 1 0	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2	3 x 40ml 2 x 40ml 500 ml poly 500 ml poly		ED Field Filtered	-
C GE QE NALYTIC VOC TAL TAL PH Cya	D BLADDER CAL PARAMET C C METALS METALS (Disso mide	olved)	ME ⁻ <u>NUM</u> 826 624 601 601 150 901	THOD <u>MBER</u> DB DB/7470A/7141A DB/7470A/7141A 1	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 G. C	3 x 40ml 2 x 40ml 500 ml poly 500 ml poly		ED Field Filtered	-7N
C GE QE NALYTIC VOC TAL TAL PH Cya	D BLADDER CAL PARAMET C C METALS METALS (Disso mide	olved)	ME ⁻ <u>NUM</u> 826 624 601 601 150 901	THOD <u>MBER</u> DB DB/7470A/7141A 0B/7470A/7141A 1 0	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 G. C	SKETCH	COLLECTI	ED Field Filtered	->N
GE QE NALYTIC VOC TAL TAL PH Cya	D BLADDER CAL PARAMET C C METALS METALS (Disso mide	olved)	ME ⁻ <u>NUM</u> 826 624 601 601 150 901	THOD <u>MBER</u> DB DB/7470A/7141A 0B/7470A/7141A 1 0	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 G. C	SKETCH		ED Field Filtered	->N
C GE QE NALYTIC VOC TAL TAL PH Cya	D BLADDER CAL PARAMET C C METALS METALS (Disso mide	olved)	MET NUN 826 624 6011 6011 150 9011	СПОД <u>ИВЕР</u> DB/7470A/7141A DB/7470A/7141A 1 D	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 G. C	SKETCH	Superior	ED Field Filtered	->N
C GE QE VALYTIC VOC TAL TAL PH Cya	D BLADDER CAL PARAMET C C METALS METALS (Disso mide 2 - 8 - 1.5	olved)	MET NUN 826 624 6011 6011 150 9011	THOD <u>MBER</u> DB DB/7470A/7141A 0B/7470A/7141A 1 0	ME HNO HNO HNO 4 DE	ERVATION <u>ETHOD</u> 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 3 to pH <2 G. C	SKETCH	COLLECTI	ED Field Filtered	->N

								Pa	sel of o	٤
FIELD	DATA REC	CORD - LO	DW FLOW	GROUNDW	ATER S.				JOB NUMBER	3612122251-04.****
PROJECT	NYSDEC Primo			FIELD SAM	1PLE NUMBE	R 633	1927PI	07_D	Γ-	mlal
SITE ID		- 1070	1.000	``	SITE TYP				DATE	4/4/15
	START 3			SAMPLE T	IME	<u>174</u>	×		CASING / WELL	
	EVEL / PUMP S	ETTING5	T TC	IREMENT POINT P OF WELL RISER P OF PROTECTIVE	CACING	PROTECTIVE CASING STIC (FROM GROL	KUP 🥱		DIFFER.	10,4-8 FT
INITIAL DEI TO WA	TER 2.9.	56		, 		PID			WELL	2- 11
FINAL DE		1.07	FT (TOR)	77,	7 _{FT}	AMBIENT AIR	<u> </u>	- PPM	WELL INTERG	
DRAWDC)WN		SCREE		FT	PID WELL MOUTH		PPM.	CAP 4	S NO N/A
VOLU			GAL	OF DRAWDOWN V		PRESSURE	30	3		
TOTAL \	/OI			OTAL VOLUME PUI		TO PUMP	3.0	PSI	COLLAR	
PUR	GED No (2		GAL me duration (min	<u></u> <u>(</u> utes) x 0.00026 gal/r		REFILL SETTING	10	1	DISCHARGE SETTING	6
PURGE D	ATA		1	SPECIFIC					· · · · ·	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		OMMENTS
1357 1411	29,61	Sourt-p	23.9	0.451	10.9	7.8	58	-18		
1415	24.80	105	20.9	0.428	10.8	4.4	29	-28		
1420	29.83	105	19.7 19.4	0.410	10.7	2.8	29 34	-48-		· · · · · · · · · · · · · · · · · · ·
1430	29.85 anshe	AND	19.5	UI385	10.5	1.6	38	-5%		
1452	29.97	115	18,18	0,336	9.9	0.5	88	-94		······
1500	29.92	+15 90 90	18.7	0.331	9.8	0.4	139	-101 -104		· · · · · · · · · · · · · · · · · · ·
1510	29.97	90	- 19.3	0.32-7	917	0.4	190	-108		
1512	29.95	ĩ	19.2	0.326	9.5	0.4	270	-110		
<u>1535</u> 1530	29.98	90	19.3	0.333	9.4	0.3	380 420	-107		
1535	29,99	Į.	19.3	0.452	9.0	0.3	440	-102	•	
<u>1540</u> 1550	29.98	90 90	19.2	0,484	8.9	0.3	340	-90		
1600	30.01	90 90	18.5	0.539	8.7	0.2	300	-84 -82		·····
1610	30.05	90	18.1	0.547	8.7	0.2	210	-83	Panne	to she way
1630	30.04	\$	18.6	0.555	8.8	0.2	170 95	-88	tion full	Laty going to le
1715	30.07	× ×	19.2	01556	8.7	0.2	86	-90	1 0-	
1720 Equipme	30.09 NT DOCUMEN	SS FATION	19.2					<u> </u>		· · · · · · · · · · · · · · · · · · ·
	<u>DF PUMP</u> EOPUMP (perista	altic)	TYPE OF TUB	<u>NG</u> ISITY POLYETHYLE		PE OF PUMP M	STEEL .			DER MATERIAL
	ED BLADDER		OTHER_			OTHER A	p#997.	ŁĒ	OTHER	·
ANALYTIC	CAL PARAMET	ERS		THOD		SERVATION	VOLUME	SAMPLI COLLECT		
X VO			826	MBER SOB	HN	<u>/IETHOD</u> O3 to pH <2 O3 to pH <2	2 x 40ml		-	
	L METALS			I0B/7470A/7141A	HN	O3 to pH <2 O3 to pH <2	500 ml poly		Fild Filtered	
TAL pH	L METALS (Disso	olved)	60 ⁻ 150	10B/7470A/7141A).1		O3 to pH <2 EG. C	500 ml poly			
Cya	anide		90.	10						
				and a state to be a state of the					•	<u> </u>
NOTES:						LOCATION	SACIUT	,		,
						16 7			× pro-	- o-X-
				UBY .	ζ Γ		1 V I		*/)
	٨	\bigcap	n AN	Wingh			n 111-56			
SIGNATUR	E: Jenn	Kul	SP/1	M/.	ľ		01079	· · · · · · · · · · · · · · · · · · ·		,
		ANEL OW VIEW			-// <u>k</u>			an a		8/17/2015

TELD	DATA REC	ORD - LO	WFLOW	GROUNDWA	TER SA	MPLING			JOB NUMBE	R 3612122251-04.****
	NYSDEG Primos			-1	PLE NUMBER		027 PI	1075		2
ITE ID		1078			SITE TYPE	WELL			DATE	9-9-15
	START 91815		1430	SAMPLE TI	ME	1410				
	EVEL / PUMP SE	the second se	MEASUF	REMENT POINT		PROTECTIVE CASING STIC	KUP)		CASING / WE DIFFER.	all 0,23 FT
NITIAL DEF TO WAT	TER 10	80	ET WELL DEPT	OF PROTECTIVE		(FROM GROU PID			WELL DIAM.	2 " IN
FINAL DEF TO WAT	TER 13	48	(TOR)	1 (2) ,		AMBIENT AIR		PPM	WELL INTER	RGRITY: YES NO N/A
DRAWDO VOLU	ME	G	LENGTH	10	FT	MOUTH		PPM	CAP CASING LOCKED	*
(initial -	final x 0.16 {2-inch		тото	OF DRAWDOWN VO	RGED	TO PUMP		PSI	COLLAR	<u>×</u>
DUR	ED 19th	7 = 6.7 G	AL ne duration (minu	107 tes) x 0.00026 gal/n		REFILL SETTING			DISCHARGE	
PURGE DA	ATA	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. 02	TURBIDITY	REDOX	1	
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(mS/cm)	(units)	(mg/L)	(ntu)	(mv)	-	COMMENTS
9-8-1	5 Pure	ge 4 ga	l with	a wha	re pu	mp				
9-9-1	5 .			13 0				nte		
0450		me po	imping	with 6	es Pun U.SO	19,14	225	4.19		
0860	12,50	200	14,79	0,115	4.80	4:25	156	480		
0805	12.65	150	17.08	01725	4.52	4.58	150	tri 2		
0810	12.73	150	17.40	0.730	6.94	10.64	46.3	254	7	
0815		150	17,59	0.742	4.96	6,40	18.7	254.	5	
0820	12,17	125	17,94	0,744	4.88	4.40	19,5	254,	8	
0825	13.40	100	17.96	0.74	4.89	5158	34.1		9	
17925	12/2	100	18,60	0.735	4189	5160	49,4	254.	8	
0840	13.10	100	18:43	01734	491	5.45	4715	254	2 122	
0 900	20-91								- DrL	
0900	13:40	on .								
1251		Bege	m plu	ining to s	etfo	W Rat	2		-	
1355	12,77	200	19:39	1757	7.07	5.14	162.9	-53, 45.6		
1400	13,42	200	20,37	0,771	7.02	5,33	32.2	97,1		
1405	13176	200	20,51	0:106	1105	5122	54.12			
		/	20	0.782	7.0	5.3	32	97		
TYPE	ENT DOCUMEN OF PUMP		TYPE OF TUBI			E OF PUMP N STAINLESS		-	TYPE OF B	LADDER MATERIAL
Q	EOPUMP (perista ED BLADDER			SITY POLYETHYLE		OTHER	SILL		OTHER_	
	CAL PARAMET	ERS		THOD MBER	N	SERVATION	VOLUME REQUIRE	D COLLEC	ED	
K VC			826 624			D3 to pH <2 D3 to pH <2	3 7 x 40ml 2 x 40ml	K		
	DC AL METALS			0B/7470A/7141A	HNG	03 to pH <2	500 ml pol		Field Filter	ed-
T/	AL METALS (Disso	olved)		0B/7470A/7141A		D3 to pH <2 EG. C	500 ml pol	У _	1	
	ł vanide		150		4 DI	20.0			j	
	Vaniuo		625]	
			5. Tel 101	55.55.5		LOCATION	SKETCH			
NOTES:	0840 7	urbidit	J incre	asing and to reek Tighton wit still r ging curc lighted S	eree	N	VV	K ×	XX	X
Los	r flow.	Shut pi	had To	Tighton		T	P-107	10 + + ++	1075	Szr
well	, 0400 /	TTTEMP	Ter Is	st still	20	x 1	à		TPT	to
The	, influe	nt luck	sing werk	the second second		6-	0		IK	ING
floe	00,1359	Resur	red put	gingana			Trestern	1-7		7
SIGNATU	RE: Karl	Lach	n co	Weited S	gmplie		Bulding		T	st
	6		LF PRIMOSHIEL	Hull	19/29	15	T		5	8/17/2015

.

FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING	;		JOB NUMBER 3612122251-04.****
PROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	PLE NUMBER	6330	27 PI06D)	
SITE ID	(MW) F	- 1000			SITE TYPE	WELL			DATE 9/4/15
ACTIVITY	START U	C EN	D 1045	SAMPLE TI	ME	1030	>		
WATER LE	EVEL / PUMP S	SETTINGS				PROTECTIVE	·		CASING/WELL 0.39 FT
INITIAL DEI		î.16	то То	P OF WELL RISER P OF PROTECTIVE		CASING STIC (FROM GROU		7 . FT	
TO WA			FT WELL DEP	TH 77, 7		PID			diam. 2 in
FINAL DEI TO WA		.01	(TOR)			AMBIENT AIF	<	PPM	WELL INTERGRITY:
DRAWDO	WN A	0	SCREE			PID WELL MOUTH		PPM	CAP <u> </u>
VOLU (initial -	IME 0. final x 0.16 {2-inc		GAL nch}) RATIO	OF DRAWDOWN V		PRESSURE	35	-	CASING K
TOTAL V	/OL, 🦻	1		DTAL VOLUME PUF	RGED	TO PUMP	33		COLLAR A
PURC (purge v		per minute) x ti	GAL me duration (minu	utes) x 0.00026 gal/n		REFILL SETTING	15.1		DISCHARGE 4.5
PURGE D	ATA			SPECIFIC		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UR.P	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REBOX (mv)	COMMENTS
0832	28579	Start 150	- puppond 17.6	0,375	10.7	4.2	13,3	152	
0840	30.77	150	16.1	0.366	10.8	1.9	13.4	101	
19946	30.75	100	14.5	0.364	10.9	1.6	12.0	7 <u>4</u> 63	Sin conjunt getting
0855	30.78	95	17.4	0.363	11.0	1.4	11.6	46	hut.
0900	30.79	45	12.7	0.361	11.0	<u>[, 3</u>], [12.5	$\frac{37}{17}$	
0920	30.84	95	17.7	0.348	11.0	1.0	15.2	-17	
0930	30.92	95 85	17.8	0.336	10.9	0.8	17.8	-62	
0950	30.79	80	18.8	0.318	10.5	0.5	17.4	-126	Card all ash a
1000	30,80	85	18.4 18.6	0.321	10.3	0.4	17.3	-139 -145	Controller sticks with pressur on evenuent
1010	30.96 30.98	85 85	18.5	U1333 U1343	10.0	0.4	19.3	-151	- gain -
1015	30.44	85	18:0	0.348	10.0	0.3	17.1	-157	
1025	31.01	85	18:9	0.353	9.9	013	14.8	-161	
		· · · · · ·	-						
						· · · · · · · · · · · · · · · · · · ·			
				-					
			19	0.353	9.9	0.3	14.8	-160	
	NT DOCUMEN	TATION	TYPE OF TUBI					•	TYPE OF BLADDER MATERIAL
GE GE	EOPUMP (perista	altic)	HIGH DEN	SITY POLYETHYLE		STAINLESS	STEEL		TEFLON
	D BLADDER		COTHER L	opc	-	OTHER M	MpH9918	7	OTHER
ANALTIC		EKJ		THOD MBER		ERVATION ETHOD	VOLUME REQUIREI	SAMPLE COLLECT	
			826	OB	HNO	3 to pH <2 3 to pH <2	3 2 x 40ml 2 x 40ml	<u>k</u>	
TAL	_ METALS		601	0B/7470A/7141A	HNO	3 to pH <2	500 ml pol		Eleid Filtered
TAL	L METALS (Disso	olved)	601 150	0B/7470A/7141A .1	HNO 4 DE	3 to pH <2 G. C	500 ml pol	y 📙	
Суа	anide		901	0					
 				· · · · · · · · · · · · · · · · · · ·	T			لـــــا 	
NOTES:	Profection	e cersin	salitt.	lusse - nu 2 OK		LOCATION	SKETCH	- Could	1
com	usete co	llers .	Herunse	2 OK	k 4	ϵ	الــــا	1	Non and
						L	1 .	S A	
	٨	$\land \land \land$	Λ		i		1060 5	(1	
		Z, (M)	']	NEW Ivalin			JUWG		
SIGNATUR	E	rulf	(n	10-00/1			t	H.	
Pr	rimoshield GWL	OWFLOW X		n .		Nº .	Kling A		8/17/2015

				Sec. Com					Page 2 of 2
IELD	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER SA	MPLING			JOB NUMBER 3612122251-04.****
ROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	PLE NUMBER	6330	077P1071)	
TEID		-1070			SITE TYPE				DATE 9/9/15
1990 A. 199	START 1315		D 1800	SAMPLE TI		174			
	EVEL / PUMP S			JREMENT POINT		PROTECTIVE			CASING / WELL
ITIAL DEP		.56	K TO	OP OF WELL RISER		CASING STIC	KUP ?		DIFFER.
INAL DEF			WELL DEP (TOR)	TH 77,7		PID AMBIENT AIR	-	- PPM	DIAM. 22 II
TO WAT	TER 30	.07	FT						WELL INTERGRITY:
RAWDO VOLU	IME /		SCREE LENGT GAL	тн []	FT	PID WELL MOUTH		PPM	CASING K
(initial -	final x 0.16 {2-inc	ch} or x 0.65 {4-i		OF DRAWDOWN V OTAL VOLUME PUP		PRESSURE	30	PSI	COLLAR
TOTAL V		>	GAL	,01		REFILL	11	,]	DISCHARGE
(purge v	volume (milliliters	per minute) x ti	me duration (mir	nutes) x 0.00026 gal/n	nilliliter)	SETTING	14		SETTING
JRGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. 02	TURBIDITY	REDOX	
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(mS/cm)	(units)	(mg/L)	(ntu)	(mv)	COMMENTS
725	30.08	85	18:5	0.560	8:7	0.2	73	-90	
735	30(07		1010	- 555	017		63	- 1	/
738			-				57	/	4
747			-				52	-/	Collecting unchels
NO	-			1			43	/	sunle
		S							orper
		1		1		/			
	-	-				/		-	
	0.0			5	/				
	50000			/					
	-			-/-					
	-								
			/						
	11		/		1				
		/	1					-	
		/			-				
	1	-							
	~		19	0.588	8.7	0,2	43	-90	
	NT DOCUMEN	TATION				13-15-7			And the second second
				ING ISITY POLYETHYLE		OF PUMP M STAINLESS		-	TYPE OF BLADDER MATERIAL TEFLON
	EOPUMP (perista D BLADDER	andC)	OTHER		NE K		9977 PUN	up X	OTHER
	CAL PARAMET	ERS					1.7.7.9.5		1 - 1/5 ·
				ETHOD JMBER		ERVATION	VOLUME	SAMPL	E ED
Z vo			82	60B		3 to pH <2	3 /2 x 40ml	PS	
	C L METALS		62 60	4 10B/7470A/7141A		3 to pH <2 3 to pH <2	2 x 40ml 500 ml poly	NÉ	Field-Eiltered
TAL	L METALS (Disso	olved)	60	10B/7470A/7141A	HNO	3 to pH <2	500 ml poly		
pH Cva	anide		15	0.1	4 DE(G. C		-	1
			.30						j
						To Same	STICE OF		
<u> </u>						LOCATION	SKETCH	hSr	
OTES:									
OTES:									C L
OTES:						0	K K	K.	- Catl
OTES:			nA	6.00		14	10-	~	- Coll
OTES:	٨	0 01	M	BBN		14	ko I	3	- Cotl
	()	0 0	M.	BBN	5 C	14	× 1075	*	- Cotl
DTES:	E Jeny	Reel	N.	Bentali	5	14	0		- Cotl

FIELD	DATA REC	CORD - LO	W FLOW	GROUNDW	ATER SA	MPLING	;		JOB NUMBER 3612122251-04.****
PROJECT					PLE NUMBER	-	3027P	108	x
SITE ID		-108			SITE TYPE	11			DATE 9/9/15
ACTIVITY	START 140	- P	1545	SAMPLE T	IME	1540			
WATER L	EVEL / PUMP S			REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC			CASING / WELL S. 2/4FT
NITIAL DE TO WA	TER 8	,70	FT TO	P OF PROTECTIVE	CASING	(FROM GROU		35 FT	WELL 2 ⁿ IN
FINAL DE TO WA		0157	WELL DEP (TOR)	19-	J FT	AMBIENT AIF	R	T PPM	WELL INTERGRITY:
DRAWDO) (SCREE LENGTI	10		PID WELL MOUTH		PPM	CAP
(initial -	final x 0.16 {2-ind	ch} or x 0.65 (4-in		OF DRAWDOWN V		PRESSURE TO PUMP	-	PSI	LOCKED X
PUR	GED 5td		AL ne duration (minu	, J 4 utes) x 0.00026 gal/r		REFILL	-		DISCHARGE SETTING
PURGE D	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE (mS/cm)	pH	DISS. 02	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
1435 1440	WATER (ft)	RATE (ml/m)	(deg. c)	0 307	Flow	(mg/L)	(nu)	(IIIV)	
1455	Starte		17.08		Tate	0.79	9.83	79.7	
1505	9,63	200	16.21	0.827	7.23	0198	, 7.73	-10.4	PSS 1.13
1515	9,98	150	14.42	0,828	7.24	1,82	7.38	-33.1	
1520	10.27	150	14.41	0,828	7,25	2,72	5.33	-32,8	5
1530	10,35	150	14.59	01818	7.25	2.76	5.10	-32.1	7
				/					
-			/				-		
1	1					-		2.1	
	NT DOCUMEN		17	0.878	7.3	2.7	3,6	-34	
G G	<u>OF PUMP</u> EOPUMP (perista ED BLADDER	altic) [SITY POLYETHYLE		STAINLESS OTHER			TYPE OF BLADDER MATERIAL TEFLON OTHER
ANALYTI	CAL PARAMET			THOD	PRESI	ERVATION	VOLUME	SAMPLE	
K vo			826	<u>MBER</u> 0B	HNO	<u>THOD</u> 3 to pH <2 3 to pH <2	3 2 x 40ml 2 x 40ml		
TA TA	L METALS L METALS (Disso	alved)		0B/7470A/7141A 0B/7470A/7141A	HNO	3 to pH <2 3 to pH <2 3 to pH <2	500 ml poly 500 ml poly		Field Filtered
□рН			150. 901	.1	4 DE		200 mi poly		
	anide								
OTES:	9-8-15	purge	dwell	dry ~ 5. Neavy Rain	gal		SKETCH C	onkling	Ave
1440	stopped	L pump d	ue to 1	reavy Rain	P	10%		1	···· ->1)
			٨	1 ADD abol		3		1 m	etal hogia
SIGNATUF	Rul	4.1.	Herry	half 9/29	13	3mm	* *		
GNATUF	KE: Mul	for	v					_	

Primoshield GW LOWFLOW.xlsx/LF PRIMOSHIELD

WELL/PIEZOMETER CONSTRUCTION DIAGRAM FLUSHMOUNT	LOCATION ID: $GW - OI$
Project Name: Project Location: Project Location: Project Number: Subcontractor: Nothingle Drilling Method: Direct Prosect Pros	
Development Method: <u>Pump dry</u> Development Date: <u>9/10/15</u> Bucking Posts/Ballards: <u>NA-</u> Notes: <u>Microwell installed in new drought conditions</u>	Measuring Point Information Measuring Point (MP) Type: Top Of Riser MP Elevation (ft):
Item Depth BMP (ft) Elevation (ft)	Description
Surface Casing Elevation Ground Surface Elevation Riser Pipe (Top)/	Slope Away Surface Seal Type: Lock Identification Stickup Casing Diameter: 3=
Top of Well Seal 2^{\prime} 1 BGS Top of Sand Pack $\approx 6'B65$	Backfill/Grout Type: Bentonite purder Riser Pipe Type: Sch 40 PV L Riser Pipe ID: 1= Borehole Diameter: 2.25 " Type of Seal: Bentonite purder
Top of Screen @ ☆\$7.8' B65	- Screen Type: <u>Schuopyc</u> Screen ID: <u>1</u> Screen Slot Size: <u>0.01</u> Screen Length: <u>10</u>
Base of Screen $17, 4770R$ 17.87, 865 End Cap $17.5770R$ Drilled Depth 207865	 Filter/Sand Pack Type: <u>HO Filter Scurl</u> Sump: Fallback/Backfill:
Bottom of Exploration <u>20° B65</u> Bedrock Surface <u>NA</u>	NOT TO SCALE
MACTEC 511 Congress Street, Portland Maine 04101 WELL/PIE	FIGURE 4.8 ZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

			-					SOIL BORING L	OG					
111	TA A	Λ	1	חי	רי		1	Project Name: Primoshield		Boring ID	: 6W-01			
	M	H	1	1		El	-	Project Location: Utica, NY		Page No.	1			
511	Congress S	Street,	Portlan	d Mai	ine 04	101			lient: NYS DEC	of	2			
oring Lo	ocation: 3	50'N	ofp	107	5/10	D		to state the second	otal Depth: 20'	Bore Hole ID/OD: 1.5"/2.25 "				
	Hazy,1						-		lethod: Divert Push	Casing Size: 2.2511				
ibcontra	11	Noth						P	rotection Level: D		MacroCore			
riller:	Jeff Sch								ate Completed: 9/8/15	Sampler	1D/OD: 1.5=/2.25			
	/Model: (ndre	66	101	DT			hecked By: BPW 9/29/15					
_	e Elevatio	-	-	-	M	· · ·	_		ime: 9/4/15 1815	-				
	ple Infort	natior	-	-	Mon	itoring	_	15:51 TOR	9/10/15 1115					
Sample Number	Penetration/ Recovery (feet)				NA			Sample Description a	USCS Group Symbol	Remarks				
mc -1	3.3 4.0	1	-	1	1	1	-	0-0.4 Brown topsoin silt with roots, Dry 0.4-0.8 Grevel layer 0.8-4.0 Brown todark and silt with some to medium to course sa becoming Moist near 6	brown fine sand a little gravel and nd. Massive dry	FII FII				
, 	2 0.4	-	-	-	-	1		Appeartohave zonethi gravel layer. Very consisting of dry g	sigh a cobble or little receivering my roch fragmen	5 Fill ?				
- MC	-3 4.0 4.0		1			~		8-10,5 hightowwnishgr sandand silt with some and greel, Dry, massive 10,5-10,7 Gravel layer, 10,7-12' Brown to oliv sand with a litle me a trace of grownl. Very	Dry. boown silty fine how source sandau moist to wet	ne d l smb	4			
2 5 4 5	4.0/4.0	1	1	1	-	-		Gray Brown to divegray sil medium to coorse sand Gradesto light olivego matrix with a little me and gravel (TIL).	ky fine sawd with s awlowawel, very Mois ruy silty fine sawd diwm toc ocuse sawd Noist, massine	ome				
6														
OTES:		-												

18.18		SOIL BORING LOG Project Name:	Province ID:
	CTEC	Primoshield	Boring ID: GW-01
		Project Location: Utica, NY	Page No. 2
511 Congress Street, Portla	the second s	Project No.: 3612122251 Client: NYS DEC	of: 2
oring Location: 50 Nof P		Refusal Depth: NA Total Depth: 20'B65	Bore Hole HD/OD: 2.25"
eather: Harry Nothum	1 80-85°F	Soil Drilled: 20' Method: Direct Push	Casing Size: 1.5"/2.25"
riller: Jeff Schwietzer	e	Protection Level: D Date Started: 9/8/15 Date Completed: 9/8/15	Sampler: Macwolore
ig Type/Model: Geophik	a labolo DT	Logged By: J. Rawchiff Checked By: BPut 9/24/15	Sampler ID/OD: 1.5"/2.25"
eference Elevation:	e o o i o i o i	Water Level: > 17.5'712 Time: 9/4/15 1815	
Sample Information	Monitoring	15.91'TOR 9/10/15 1115	
 Deput (rect bgs) Sample Number Penetration/ Recovery (feet) 	NA	Sample Description and Classification	duon Symbol SOSU SU SU SU SU SU SU SU SU SU SU SU SU S
7 MC-5 7 4.0 8 4.0 4.0		hight divegning to light brownish gray silly fine sand with a little medium to couse sand and gravel. (Tim) Moist, massing, dense.	Soils appear tol Very tight/dense untituely to yailo much worker.
		Bottom of borning=20'BGS Not Installing 1= ID Sch 40 NC microwe soreen= 8-18'BG S sand 20-6'BGS bentomite=6-1'BGS Bentomite=6-1'BGS BOW = 17.50' tor Stichup on casing=0 GW toTOR= (Dry) TOC toTOR=0.41'	letusal.

CATEGORY A REVIEW SEPTEMBER 2015 GROUNDWATER SAMPLING PROGRAM PRIMOSHIELD INCORPORATED SITE UTICA, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in September 2015 at the Primoshield Incorporated Site in Utica, New York, and shipped to ALS Environmental in Rochester, NY, for analysis. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by Method 8260C and EPA 624
- Metals (select list) by Method 6010C and 200.7
- Cyanide by Method 9012B
- pH by Method SM 4500-H+B

Results were reported in sample delivery groups (SDG):

- R1507571
- R1507572

Sample data included in this chemistry review is presented in the following tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

 A Category A deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) and

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Field Duplicate Evaluation
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit

J = concentration is estimated

UJ = target compound was not detected and the reporting limit is considered to be estimated

IN - talget compound was rejected

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review conducted the data meets the data quality objectives; however, the following potential limitations were identified:

- Results for copper and chromium in a subset of samples were qualified nondetect (U) based on blank contamination.
- A field duplicate sample was submitted for all analyses except pH and Cyanide. Good agreement was observed between the sample results indicating good sampling and analytical precision was obtained for this sampling event.
- All samples arrived at the lab outside acceptable temperature (12.9° C and 10.1° C). Based on professional judgement, all sample results for VOC and cyanide are qualified as estimated (J/UJ).
- Sample 633027effluent arrived at the lab outside of holdtime, and then analyzed outside of holdtime, for pH. The results for pH are rejected (R)

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Willie Stone

Date: 10/13/2015

Reviewed by: Julie Ricardi

Juli Maren

Date: 10/14/2015

NYSDEC Primoshield Incorporated NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C.

Project No. 3612122251.04

ATTACHMENT A

P:\Projects\nysdec1\Contract D007619\Projects\Primoshield - SM\3.0_Site_Data\3.4_Test_Results\DUSR\September 2015 GW Primoshield_Cat_A_memo.doc

METALS

NYSDEC CATEGORY A REVIEW RECORDProject: P_1 , moshiel()Method : $600 200-7$ Laboratory and SDG(s): $A_1 \leq 1507571$ Date: $0cl - 13, 2005$ Reviewer: $Will \in Share$
Review Level X CATEGORY A
1. Case Narrative Review and Data Package Completeness Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)
All samples identified on the chain of custody were analyzed for the requested methods and results for all samples were reported by the laboratory. No problems requiring rejection of analytical results were noted in the narrative.
2. Holding time and Sample Collection Were all samples were all prepped and analyzed with the holding time (6 month).
All samples were properly collected and preserved, and all samples were analyzed within the method/project holding times.
3. QC Blanks Are method blanks clean? YES NO (circle one) Chromium 76010 Coppor
Laboratory blank summary forms were reviewed.
4. Matrix Spike Were MS/MSDs submitted/analyzed? YES NO
Were all results were within 75-125% limits? YES NO NA (circle one)
 5. Field Duplicates Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (20%) YES NO NA (circle one) Soil RPD within limit? (35%) YES NO NA (circle one)
A field duplicate was collected at location Good agreement was observed between the sample results indicating good sampling and analytical precision was obtained for this sampling event.
6. Reporting Limits: Were samples analyzed at a dilution? YES(NO)(circle one)
All samples were analyzed without dilutions.
7. Delectronic Data Review and Edits. Does the EDD match the Form I's? YES NO (circle one) No errors were found in the electronic data provided by the laboratory.
 8. I Table Review: Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? YES NO (circle one)

GENERAL CHEMISTRY

NYSDEC PROJECT CATEGORY A REVIEW RECORD Project: <u>frimoshield</u> Method : <u>Cyandle</u> , ft Laboratory and SDG(s): <u>ALL</u> <u>R150751</u> Date: <u>Oct.</u> 13, 2015 Reviewer: <u>Wille</u> Store Review Level X Category A Review
1. Case Narrative Review and Data Package Completeness
Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)
All samples identified on the chain of custody were analyzed for the requested methods and results for all samples were reported by the laboratory. No problems requiring rejection of analytical results were noted in the narrative.
2. Holding time and Sample Collection - list problems requiring rejection of data Cyanto at of Temp, guility. PH anal 27 - tout of Hold
3. Z QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
Laboratory blank summary forms were reviewed.
4. Z Matrix Spike (Lab Limits)
Were MS/MSDs submitted/analyzed? YE NO (circle one)
Were all results were within limits? YES NO NA (circle one)
5. D Field Duplicates (RPD limits for soil=100, water = 50) Were Field Duplicates submitted/analyzed? (PS NO Water = 50) Were RPDs within the limits? (VES NO (NA) (circle one) 10^{-13} .)
A field duplicate was collected at location Good agreement was observed between the sample results indicating good sampling and analytical precision was obtained for this sampling event.
6. Reporting Limits: Were samples analyzed at a dilution? (YES) NO (circle one)
All samples were analyzed without dilutions.
7. Di Electronic Data Review and Edits
Does the EDD match the Form I's? (YES) NO (circle one)
No errors were found in the electronic data provided by the laboratory.
 8. Land Table Review Table 1 (sample Disting), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? (YES NO (circle one)
\\PLD2-FS1\Project\Projects\nysdec1\Contract D007619\Validation\NSYDEC_CATEGORY

A_Review_General Chem_Checklist.doc

VOCs

PROJECT CATEGORY A REVIEW RECORD Project: Primoshi eld
Method : $\underline{SW-846\ 8260B}$ Laboratory and $\underline{SDG}(s)$: ALS $\underline{SDG} \neq \underline{P150757}$
Date: Och- 13, 2015 Reviewer: Willie Store
Review Level X CATEGORY A
1. Case Narrative Review and COC/Data Package Completeness <u>COMMENTS</u> Were problems noted? Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly (YES) NO (circle one)
All samples identified on the chain of custody were analyzed for the requested methods and results for all samples were reported by the laboratory. No problems requiring rejection of analytical results were noted in the narrative.
2. Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
All samples were properly collected and preserved, and all samples were analyzed within the method/project holding times. No, actived @ lab above tomp, but on ice. quality
3. QC Blanks Are method blanks free of contamination? YES NO (circle one)
Are finened blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
Laboratory blank summary forms were reviewed.
4. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)
Were MS/MSDs submitted/analyzed? YES NO
Were all results were within the Region II limits? YES NO NA (circle one)
5. Field Duplicates - Region II Limits (water RPD 50, soil RPD 100)
Were Field Duplicates submitted/analyzed? YES NO
Were all results were within Region II Limits? YES NO NA (circle one)
A field duplicate was collected at location <u>62362791</u> . Good agreement was observed between the sample results indicating good sampling and analytical precision was obtained for this sampling event.
6. Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one)
All samples were analyzed without dilutions.
7. Electronic Data Review and Edits Does the EDD match the Form I's? (YES)NO (circle one)
No errors were found in the electronic data provided by the laboratory.
8. Table Review Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one)

	SDGs R1507571 and R1507572										
				Meth	od Class	VOCs	VOCs	Metals	Metals	Cyanide	Temp/Ph
			/	Analysis	s Method	E624	SW8260C	E200.7	SW6010C	SW9012B	SM 4500-H+B
					Fraction	Т	Т	Т	Т	Т	Т
SDG	Location	Sample ID	Sample Date	Media	Qc Code	Count	Count	Count	Count	Count	Count
R1507571	Effluent	633027EFFLUENT	9/8/2015	NA-L	FS	35		6		1	1
R1507571	P-101D	633027P101D	9/9/2015	GW	FS		35		6		
R1507571	P-103	633027P103XX	9/9/2015	GW	FS		35		6		
R1507571	P-104	633027P104	9/8/2015	GW	FS		35		6		
R1507571	P-104D	633027P104D	9/8/2015	GW	FS		35		6		
R1507571	P-105	633027P105XX	9/9/2015	GW	FS		35		6		
R1507571	P-106D	633027P106D	9/9/2015	GW	FS		35		6		
R1507571	P-106S	633027P106SXX	9/9/2015	GW	FS		35		6		
R1507571	P-107D	633027P107D	9/9/2015	GW	FS		35		6		
R1507571	P-107S	633027P107S	9/9/2015	GW	FS		35		6		
R1507571	P-108	633027P108XX	9/9/2015	GW	FS		35		6		
R1507572	GW-01	633027GW01	9/10/2015	GW	FS		35				
Mataa											

Notes:

GW = Groundwater sample

FS = Field sample

T = Total fraction

NA-L = Liquid

· · · · ·		SDG	R1507571	R1507571	R1507571	R1507571	R1507571	R1507571
		Location	Effluent	P-101D	P-103	P-104	P-104D	P-105
		Sample Date	9/8/2015	9/9/2015	9/9/2015	9/8/2015	9/8/2015	9/9/2015
		Sample ID	633027EFFLUENT	633027P101D	633027P103XX	633027P104	633027P104D	633027P105XX
		Qc Code	FS	FS	FS	FS	FS	FS
Class	Parameter	Units		Result Qualifier				
VOCs	1,1,1-Trichloroethane	ug/l	9.5 J	1 UJ	6.9 J	1 UJ	1 UJ	1 UJ
VOCs	1,1,2,2-Tetrachloroethane	ug/i	1 UJ	1 UJ -	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,1,2-Trichloroethane	ug/l	1 UJ	1 UJ	1 UJ	1- UJ	1 UJ	1 UJ
VOCs	1,1-Dichloroethane	ug/l	1.2 J	1 UJ	1.8 J	1 UJ	1 UJ	1 UJ
VOCs	1,1-Dichloroethene	ug/i	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,2-Dichlorobenzene	ug/i	1 UJ					
VOCs	1,2-Dichloroethane	ug/l	1 UJ	1 UJ 👘	0.95 J	1 UJ	1 UJ	1 UJ
VOCs	1,2-Dichloropropane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 U J
VOCs	1,3-Dichlorobenzene	ug/l	1 UJ					
VOCs	1,4-Dichlorobenzene	ug/l	1 UJ					
VOCs	2-Butanone	ug/l		5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	2-Chloroethyl vinyl ether	ug/l	10 UJ					
VOCs	2-Hexanone	ug/l		5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	4-Methyl-2-pentanone	ug/l		5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	Acetone	ug/l		5 UJ	1.7 J	5 UJ	5 UJ	5 UJ
VOCs	Acrolein	ug/l	10 UJ					
VOCs	Acrylonitrile	ug/l	10 UJ					
VOCs	Benzene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Bromodichloromethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Bromoform	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Bromomethane	ug/l	1 UJ	1 ÚJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Carbon disulfide	ug/l		1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Carbon tetrachloride	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chlorobenzene	ug/l	. 1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloroethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloroform	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloromethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Cis-1,2-Dichloroethene	ug/l		1 UJ	1 UJ	1 UJ	1 UJ	_ 1 UJ
VOCs	Cis-1,3-Dichloropropene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Dibromochloromethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	<u>1</u> UJ	1 UJ
		•		1056				

1 of 6

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

		SDG	R1507571	R1507571	R1507571	R1507571	R1507571	R1507571
		Location	Effluent	P-101D	P-103	P-104	P-104D	P-105
		Sample Date	9/8/2015	9/9/2015	9/9/2015	9/8/2015	9/8/2015	9/9/2015
		Sample ID	633027EFFLUENT	633027P101D	633027P103XX	633027P104	633027P104D	633027P105XX
		Qc Code		FS	FS	FS	FS	FS
Class	Parameter	Units		Result Qualifier				
VOCs	Ethyl benzene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Methylene chloride	ug/l	1 UJ ·	1 UJ	1 UJ	1 UJ	· 1 UJ	1 UJ
VOCs	Styrene	ug/l		1 UJ				
VOÇs	Tetrachloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Toluene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	trans-1,2-Dichloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	trans-1,3-Dichloropropene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Trichloroethene	ug/l	17 J	1 UJ	1.6 J	1 UJ	1 UJ	1 UJ
VOCs	Trichlorofluoromethane	ug/l	1 UJ					
VOCs	Vinyl chloride	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Xylene, o	ug/l	1 U <u>J</u>	1 UJ				
VOCs	Xylenes (m&p)	ug/l	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
Metals	Cadmium	ug/l	5 U	5 U	5 U	5 U	5 U	5 U
Metals	Chromium	ug/l	10 U	10 U	10 U	10 U	10 U	10 U
Metals	Copper	ug/l	20 U 🐋	20 U				
Metals	Lead	ug/l	50 U	50 U	50 U	50 U	5 J	50 U
Metals	Nickel	ug/l	68	40 U	40 U	3 J	40 U	3 J
Metals	Zinc	ug/l	21	20 U				
Cyanide	Cyanide, Total	mg/l	0.01 U					
Temp/Ph	рН	ph units	R					

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

		SDG	R1507571	R1507571	R1507571	R1507571	R1507571
		Location	P-106D	P-106S	P-107D	P-107S	P-108
		Sample Date	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015
		Sample ID	633027P106D	633027P106SXX	633027P107D	633027P107S	633027P108XX
		Qc Code	FS	FS	FS	FS	FS
Class	Parameter	Units		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
VOCs	1,1,1-Trichloroethane	ug/l	1 UJ	1.7 J	1 UJ	1.6 J	1 UJ
VOCs	1,1,2,2-Tetrachloroethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,1,2-Trichloroethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,1-Dichloroethane	ug/l	1 UJ	1 UJ	1 UJ	1.9 J	1 UJ
VOCs	1,1-Dichloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,2-Dichlorobenzene	ug/l					
VOCs	1,2-Dichloroethane	ug/I	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,2-Dichloropropane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	1,3-Dichlorobenzene	ug/l					
VOCs	1,4-Dichlorobenzene	ug/l					
VOCs	2-Butanone	ug/l	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	2-Chloroethyl vinyl ether	ug/l					
VOCs	2-Hexanone	ug/l	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	4-Methyl-2-pentanone	ug/l	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
VOCs	Acetone	ug/l	5 UJ	5 UJ	3.2 J	5.8 J	1.4 J
VOCs	Acrolein	ug/l					
VOCs	Acrylonitrile	ug/l					
VOCs	Benzene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Bromodichloromethane	ug/l	1 UJ .	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Bromoform	ug/i	1 UJ	1 UJ	1 UJ 🛛	1 UJ	1 UJ
VOCs	Bromomethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Carbon disulfide	ug/l	0.37 J	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Carbon tetrachloride	ug/l	1 UJ .	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chlorobenzene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloroethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloroform	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Chloromethane	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Cis-1,2-Dichloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Cis-1,3-Dichloropropene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Dibromochloromethane	ug/i	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ

		SDG	R1507571	R1507571	R1507571	R1507571	R1507571
		Location	P-106D	P-106S	P-107D	P-107S	P-108
		Sample Date	9/9/2015	9/9/2015	9/9/2015	9/9/2015	9/9/2015
		Sample ID	633027P106D	633027P106SXX	633027P107D	633027P107S	633027P108XX
		Qc Code	FS	FS	FS	FS	FS
Class	Parameter	Units		Result Qualifier			Result Qualifier
VOCs	Ethyl benzene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Methylene chloride	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Styrene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Tetrachloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Toluene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	trans-1,2-Dichloroethene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	trans-1,3-Dichloropropene	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Trichloroethene	ug/l	1 UJ	0.92 J	1 UJ	9.5 J	1 UJ
VOCs	Trichlorofluoromethane	ug/l					
VOCs	Vinyl chloride	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Xylene, o	ug/l	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
VOCs	Xylenes (m&p)	ug/l	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
Metals	Cadmium	ug/l	5 U	5 U	5 U	1.8 J	5 U
Metals	Chromium	ug/l	10 U	10 U	10 U	10 U	10 U
Metals	Copper	ug/l	20 U	20 U 👘	20 U	20 U	20 U
Metals	Lead	ug/l	50 U	50 U	50 U	6 J	50 U
Metals	Nickel	ug/l	40 U	5 J	40 U	139	40 U
Metals	Zinc	ug/i	20 U	20 U	20 U	20 U	20 U
Cyanide	Cyanide, Total	mg/l					
Temp/Ph	pH	ph units					

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

		SDG	R1507572
		Location	GW-01
		Sample Date	9/10/2015
		Sample iD	633027GW01
		Qc Code	FS
Class	Parameter	Units	Result Qualifier
VOCs	1,1,1-Trichloroethane	ug/l	1 UJ
VOCs	1,1,2,2-Tetrachloroethane	ug/i	1 UJ
VOCs	1,1,2-Trichloroethane	ug/l	1 UJ
VOCs	1,1-Dichloroethane	ug/l	1 UJ
VOCs	1,1-Dichloroethene	ug/l	1 UJ
VOCs	1,2-Dichloroethane	ug/l	1 UJ
VOCs	1,2-Dichloropropane	ug/l	1 UJ
VOCs	2-Butanone	ug/l	5 UJ
VOCs	2-Hexanone	ug/l	5 UJ
VOCs	4-Methyl-2-pentanone	ug/l	5 UJ
VOCs	Acetone	ug/l	2.6 J
VOCs	Benzene	ug/l	1 UJ
VOCs	Bromodichloromethane	ug/l	1 UJ
VOCs	Bromoform	ug/i	1 UJ
VOCs	Bromomethane	ug/l	1 UJ
VOCs	Carbon disulfide	ug/l	1 UJ
VOCs	Carbon tetrachloride	ug/l	1 UJ
VOCs	Chlorobenzene	ug/l	1 UJ
VOCs	Chloroethane	ug/l	1 UJ
VOCs	Chloroform	ug/l	1 UJ
VOCs	Chloromethane	ug/l	1 UJ
VOCs	Cis-1,2-Dichloroethene	ug/l	1 UJ
VOCs	Cis-1,3-Dichloropropene	ug/l	1 UJ
VOCs	Dibromochloromethane	ug/l	1 UJ
VOCs	Ethyl benzene	ug/l	1 UJ
VOCs	Methylene chloride	ug/i	1 UJ
VOCs	Styrene	ug/l	1 UJ
VOCs	Tetrachloroethene	ug/l	· 1 UJ
VOCs	Toluene	ug/i	1 UJ
VOCs	trans-1,2-Dichloroethene	ug/l	1 UJ

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

P:\Projects\nysdec1\Contract D007619\Projects\Primoshield - SM\3.0_Site_Data\3.4_Test_Results\Validation Files\Primo_R1507571__72_Table_2s.xls

5 of 6

		SDG	R1507572
		Location	GW-01
		Sample Date	9/10/2015
		Sample ID	633027GW01
		Qc Code	FS
Class	Parameter	Units	Result Qualifier
VOCs	trans-1,3-Dichloropropene	ug/l	1 UJ
VOCs	Trichloroethene	ug/l	1 UJ
VOCs	Vinyl chloride	ug/l	1 UJ
VOCs	Xylene, o	ug/l	1 UJ -
VOCs	Xylenes (m&p)	ug/l	2 UJ

Notes:

ug/l = microgram per liter

mg/l = milligram per liter

FS = Field sample

J = Result is estimated

R = Result is rejected

U = Result is not detected at the reporting limit

UJ = Result is not detected and estimated

T = Total fraction

	Analysis	Lab Sample		······································	Lab	Lab	Validated	Validation	Validation	
		ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
	E624	R1507571-003	633027EFFLUENT	1,1,1-Trichloroethane	9.5		9.5	J	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	1,1,2,2-Tetrachloroethane	1	Ŭ	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	1,1,2-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571		R1507571-003	633027EFFLUENT	1,1-Dichloroethane	1.2		1.2	J	SP	ug/l
}	E624		633027EFFLUENT	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571		-	633027EFFLUENT	1,2-Dichlorobenzene	1	U	1	UJ	SP	ug/l
R1507571		R1507571-003	633027EFFLUENT	1,2-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	1,2-Dichloropropane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	1,3-Dichlorobenzene	1	ប	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	1,4-Dichlorobenzene	1	U	1	UJ	SP	ug/I
R1507571		R1507571-003	633027EFFLUENT	2-Chloroethyl vinyl ether	10	U	10	UJ	SP	ug/l
R1507571		R1507571-003	633027EFFLUENT	Acrolein	10	U	10	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Acrylonitrile	10	U	10	UJ	SP	ug/I
R1507571	E624	R1507571-003	633027EFFLUENT	Benzene	1	U	1	UJ	SP	ug/i
R1507571	E624	R1507571-003	633027EFFLUENT	Bromodichloromethane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Bromoform	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Bromomethane	. 1	U	1	ΟJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Carbon tetrachloride	1	U [.]	· 1	UJ	SP	ug/i
R1507571	E624	R1507571-003	633027EFFLUENT	Chlorobenzene	1	U	1	ΠĴ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Chloroethane	1	U	1	UJ	SP	ug/I
R1507571	E624	R1507571-003	633027EFFLUENT	Chloroform	1	U	1	ΟJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Ethyl benzene	1	U ·	1	UJ	SP .	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Methylene chloride	1	U	1	UJ	SP	ug/I
R1507571	E624	R1507571-003	633027EFFLUENT	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Toluene	1	υ	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Trichloroethene	17		17	J	SP	ug/l
R1507571 I	E624	R1507571-003	633027EFFLUENT	Trichlorofluoromethane	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Vinyl chloride	1	U	1	UJ	SP	ug/l
R1507571	E624	R1507571-003	633027EFFLUENT	Xylene, o	1	U	1	UJ	SP	ug/l

1 of 13

P:\Projects\nysdec1\Contract D007619\Projects\Primoshield - SM\3.0_Site_Data\3.4_Test_Results\Validation Files\Primo_R1507571_72_Table_3.xls

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

	Analysis	Lab Sample	· · · · · · · · · · · · · · · · · · ·		Lab	Lab	Validated	Validation	Validation	
SDG	Method		Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	E624	R1507571-003	633027EFFLUENT	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
R1507571	SM 4500-H+B	R1507571-003	633027EFFLUENT	pH	7.06	Н		R	HT-G	ph
R1507571	SW6010C	R1507571-001	633027P104	Chromium	0.6	BJ	10	U	BL1	ug/l
R1507571	SW6010C	R1507571-001	633027P104	Copper	6	BJ	20	U	BL1	ug/i
R1507571	SW6010C	R1507571-002	633027P104D	Chromium	0.9	BJ	10	U	BL1	ug/l
	SW6010C	R1507571-002	633027P104D	Copper	3	BJ	20	U	BL1	ug/l
R1507571	SW6010C	R1507571-004	633027P106D	Chromium	1	BJ	10	U	BL1	ug/i
R1507571	SW6010C	R1507571-004	633027P106D	Copper	3	BJ	20	U	BL1	ug/l
R1507571	SW6010C	R1507571-005	633027P101D	Chromium	Ó.6	BJ	10	U	BL1	ug/l
R1507571	SW6010C	R1507571-005	633027P101D	Copper	5	BJ	20		BL1	ug/l
R1507571	SW6010C	R1507571-006	633027P105XX	Chromium	0.5	BJ	10		BL1	ug/l
R1507571	SW6010C	R1507571-006	633027P105XX	Copper	4	BJ	20		BL1	ug/l
R1507571	SW6010C	R1507571-007	633027P103XX	Chromium	0.5	BJ	10		BL1	ug/l
R1507571	SW6010C	R1507571-009	633027P107S	Chromium	1	BJ	10	U	BL1	ug/l
R1507571	SW6010C	R1507571-011	633027P107D	Chromium		BJ	10	U	BL1	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,1,1-Trichloroethane	1	U		ΠÌ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,1,2,2-Tetrachloroethane	1	U		Πl	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,1,2-Trichloroethane	1	U		ΠĴ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,1-Dichloroethane	1	U		Πl	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,1-Dichloroethene	1	U		Πl	SP	ug/I
R1507571	SW8260C	R1507571-001	633027P104	1,2-Dichloroethane	1	U		UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	1,2-Dichloropropane	1	U		ΠÌ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	2-Butanone	5	U		UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	2-Hexanone	5	U.		UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	4-Methyl-2-pentanone	5	U			SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Acetone	5	U		Πl	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Benzene	1	U		UJ	SP	ug/i
R1507571	SW8260C	R1507571-001	633027P104	Bromodichloromethane	1	U		ΟJ	SP	ug/I
R1507571	SW8260C	R1507571-001	633027P104	Bromoform	1	U		Λî	SP	ug/i
R1507571	SW8260C	R1507571-001	633027P104	Bromomethane	1	U	1		SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Carbon disulfide	1	U			SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Carbon tetrachloride	[*] 1	U			SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Chlorobenzene		U	1		SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Chloroethane	1	U	1	UJ	SP	ug/l
	-			. 2 of 13			·		с	reated by: BJ

Created by: BJS October 13, 2015 Reviewed by: WAS

October 13, 2015

	Analysis	Lab Sample		· · · · · · · · · · · · · · · · · · ·	Lab	Lab	Validated	Validation	Validation	
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-001	633027P104	Chloroform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Cis-1,2-Dichloroethene	· 1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-001	633027P104	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-001	633027P104	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Ethyl benzene	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-001	633027P104	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Toluene	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-001	633027P104	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Trichloroethene	1	U	1	[บ]	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Vinyl chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Xylene, o	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-001	633027P104	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,1,1-Trichloroethane	1	U	1	IJ	SP	ug/l
	SW8260C	R1507571-002	633027P104D	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,1,2-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,1-Dichloroethane	1	U	1	IJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,2-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	1,2-Dichloropropane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	2-Butanone	5	U	5	UJ	SP	ug/l
R1507571		R1507571-002	633027P104D	2-Hexanone	5	U	5	IJ	SP	ug/I
R1507571	SW8260C	R1507571-002	633027P104D	4-Methyl-2-pentanone	5	U	5	lni	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Acetone	5	U	5	IJ	SP	ug/I
R1507571	SW8260C	R1507571-002	633027P104D	Benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Bromodichloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Bromoform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Bromomethane	1	U	1	UJ .	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Carbon disulfide	. 1	U	1	IJJ	SP	ug/l
R1507571		R1507571-002		Carbon tetrachloride	1	U	-1	Λl		ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Chlorobenzene	1	υ	1	UJ		ug/l

3 of 13

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	T
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-002	633027P104D	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Chloroform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-002	633027P104D	Dibromochloromethane	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-002	633027P104D	Ethyl benzene	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-002	633027P104D	Methylene chloride	1	U	1	UJ	SP	ug/i
	SW8260C	R1507571-002		Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Toluene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Trichloroethene	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-002	633027P104D	Vinyl chloride	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-002	633027P104D	Xylene, o	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-002	633027P104D	Xylenes (m&p)	2	U	2	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	1,1,1-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-004	633027P106D	1,1,2-Trichloroethane	1	U	1	UJ	SP	ug/I
R1507571	1	R1507571-004	633027P106D	1,1-Dichloroethane	1	U	1	UJ	SP	ug/I
R1507571		R1507571-004	633027P106D	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	1,2-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	1,2-Dichloropropane	1	U	1	Πl	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	2-Butanone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	2-Hexanone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	4-Methyl-2-pentanone	5	U	5	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Acetone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Benzene	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-004	633027P106D	Bromodichloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Bromoform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Bromomethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Carbon disulfide	0.37	J	0.37	J	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
		•		4 of 13	•	•			c	Created by: BJ

	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-004	633027P106D	Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Chloroform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-004		Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
i	SW8260C	R1507571-004	633027P106D	Dibromochloromethane	1	U	1	UJ	SP	ug/l
1	SW8260C	R1507571-004	633027P106D	Ethyl benzene	1	U	1	ΠŊ	SP	ug/l
1	SW8260C	R1507571-004		Methylene chloride	1	U	1	Πl	SP	ug/l
1	SW8260C	R1507571-004	633027P106D	Styrene	1	U	1	UJ	SP	ug/l
		R1507571-004	633027P106D	Tetrachloroethene	1	U	1	ΟJ	SP	ug/I
6	1	R1507571-004	633027P106D	Toluene	1	U	1	ΟJ	SP	ug/I
R1507571		R1507571-004		trans-1,2-Dichloroethene	1	U	1	Πl	SP	ug/l
	1	R1507571-004	633027P106D	trans-1,3-Dichloropropene	1	U	1	ΩJ	SP	ug/l
R1507571	SW8260C	R1507571-004	633027P106D	Trichloroethene	1	U	1	Πl	SP	ug/I
R1507571	1	R1507571-004	633027P106D	Vinyl chloride	1	U	1	Πl	SP	ug/l
R1507571	1	R1507571-004		Xylene, o	1	U	1	Πl	SP	ug/l
		R1507571-004		Xylenes (m&p)	2	U	2	Πl	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	1,1,1-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-005		1,1,2,2-Tetrachloroethane	1	U	1	ΩJ	SP	ug/l
R1507571		R1507571-005	633027P101D	1,1,2-Trichloroethane	1	Ų	1	Πl	SP	ug/l
	i i i	R1507571-005	633027P101D	1,1-Dichloroethane	1	U	1	Λl	SP	ug/l
	SW8260C	R1507571-005	633027P101D	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	1,2-Dichloroethane	1	U	1	Πl	SP	ug/l
		R1507571-005	633027P101D	1,2-Dichloropropane	1	U	1	ΟJ	SP	ug/l
R1507571		R1507571-005	633027P101D	2-Butanone	5	U	5	Λl	SP	ug/l
R1507571		R1507571-005		2-Hexanone	5	U	5	UJ	SP	ug/l
R1507571		R1507571-005		4-Methyl-2-pentanone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Acetone	5	U	5	UJ	SP	ug/l
		R1507571-005	633027P101D	Benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Bromodichloromethane	1	U	1	UJ	SP	ug/l
		R1507571-005	633027P101D	Bromoform	1	U	1		SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Bromomethane	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-005	633027P101D	Carbon disulfide	1	υ	1	UJ	SP	ug/i
				5 of 13	•			•	c	reated by: BJS

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	1
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-005	633027P101D	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Chlorobenzene	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-005	633027P101D	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Chloroform	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-005	633027P101D	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Cis-1,2-Dichloroethene	1	U	1	ŪJ	SP	ug/l
1	SW8260C	R1507571-005		Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-005		Dibromochloromethane	1	U	1	UJ	SP	ug/l
1	SW8260C	R1507571-005	633027P101D	Ethyl benzene	1	U	1	UJ	SP	ug/l
}	SW8260C	R1507571-005	633027P101D	Methylene chloride	1	U	1	UJ	SP	ug/l
1	SW8260C	R1507571-005		Styrene	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-005	633027P101D	Tetrachloroethene	1	U		UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Toluene	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-005		trans-1,2-Dichloroethene	1	U		UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Trichloroethene	1	Ü	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-005	633027P101D	Vinyl chloride	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-005	633027P101D	Xylene, o	1	U	1	UJ	SP	ug/l
•	SW8260C	R1507571-005	633027P101D	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
(SW8260C	R1507571-006	633027P105XX	1,1,1-Trichloroethane	1	U	1	UJ	SP	ug/l
1	SW8260C	R1507571-006	633027P105XX	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
1	SW8260C	1 1	633027P105XX	1,1,2-Trichloroethane	1	U	1	UJ	SP	ug/l
	SW8260C	• •	633027P105XX	1,1-Dichloroethane	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-006	633027P105XX	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
	SW8260C	! !	633027P105XX	1,2-Dichloroethane	1	U	1	UJ	SP	ug/l
	SW8260C		633027P105XX	1,2-Dichloropropane	. 1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-006	633027P105XX	2-Butanone	5	U	5		SP	ug/l
	SW8260C	R1507571-006	633027P105XX	2-Hexanone	5	U	5		SP	ug/l
R1507571	SW8260C	R1507571-006	633027P105XX	4-Methyl-2-pentanone	5	U	5		SP	ug/l
R1507571	SW8260C	R1507571-006	633027P105XX	Acetone	5	U	5	UJ	SP	ug/l
	SW8260C	R1507571-006	633027P105XX	Benzene	1	U			SP	ug/l
	SW8260C	R1507571-006	633027P105XX	Bromodichloromethane	1	U		UJ	SP	ug/l
R1507571	SW8260C	R1507571-006	633027P105XX	Bromoform	1	U		ł	SP	ug/l
R1507571	SW8260C	R1507571-006	633027P105XX	Bromomethane	1	U .	1	UJ	SP	ug/l
				6 of 13	-	-			с	reated by: BJS

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

R1507671 SW2260C R1507571-006 633027P105XX Carbon tartrachionide 1		Analysis	Lab Sample	· · · ·		Lab	Lab	Validated	Validation	Validation	
R1507571 SW8280C R1507571-006 633027P105XX Carbon tetrachloride 1	SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571 SW8280C R1507571-006 G33027P105XX Chlorobenzene 1 1 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Chlorobenzene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Chlorobenzene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Cis-1,2-Dichlorobetnene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Cis-1,3-Dichlorobetnene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8280C R1507571-006 G33027P105XX Totachoroothene 1 U <td>R1507571</td> <td>SW8260C</td> <td>R1507571-006</td> <td>633027P105XX</td> <td>Carbon disulfide</td> <td>1</td> <td>U</td> <td>1</td> <td>UJ</td> <td>SP</td> <td>ug/l</td>	R1507571	SW8260C	R1507571-006	633027P105XX	Carbon disulfide	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Chloroethane 1 <	1		R1507571-006	633027P105XX	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Chloroform 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Chloromethane 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Cis-1.2-Dichloroptopene 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Cis-1.3-Dichloroptopene 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Styrene 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Totrachoroethene 1 U 1 UJ SP ug/l. R1507571 SW8260C R1507571-006 633027P105XX Totrachoroethene 1 U 1 UJ	R1507571	SW8260C	1		Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Chloromethane 1	R1507571	SW8260C	R1507571-006	633027P105XX	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Cis-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Cis-1,3-Dichloropropene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 <td< td=""><td>1</td><td>1</td><td>R1507571-006</td><td>633027P105XX</td><td>Chloroform</td><td> 1</td><td>U</td><td>1</td><td>UJ</td><td></td><td>ug/l</td></td<>	1	1	R1507571-006	633027P105XX	Chloroform	1	U	1	UJ		ug/l
R1507571 SW8260C R1507571-006 633027P105XX Cis-1,3-Dichloropropene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Dibromochloromethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Styrene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tratrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloropropene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U	\$	SW8260C	R1507571-006	633027P105XX	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Dibromochloromethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Dibromochloromethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Styrene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U <t< td=""><td>R1507571</td><td>SW8260C</td><td>R1507571-006</td><td>633027P105XX</td><td>Cis-1,2-Dichloroethene</td><td>1</td><td>U</td><td>1</td><td>UJ</td><td>SP</td><td></td></t<>	R1507571	SW8260C	R1507571-006	633027P105XX	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX Dibromochloromethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Ethyl benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Styrene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Toluene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ	R1507571	SW8260C	R1507571-006	633027P105XX	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX Methylene chloride 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Styrene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Toluene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C	R1507571	SW8260C	R1507571-006	633027P105XX	Dibromochloromethane	1	U	1	IJ	SP	1 1
R1507571 SW8260C R1507571-006 633027P105XX Methylene chloride 1 1 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-2rtetrachloroethane <t< td=""><td>R1507571</td><td>SW8260C</td><td>R1507571-006</td><td>633027P105XX</td><td>Ethyl benzene</td><td>1</td><td>U</td><td>1</td><td>UJ</td><td>SP</td><td></td></t<>	R1507571	SW8260C	R1507571-006	633027P105XX	Ethyl benzene	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-006 633027P105XX Toluene 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP Ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 G.9 J SP Ug/l R1507571 SW8260C R1	R1507571	SW8260C	R1507571-006	633027P105XX	Methylene chloride	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX Tetrachloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichoroethane 1 U 1	R1507571	SW8260C	R1507571-006	633027P105XX	Styrene	1	U	1	UJ	SP	ug/I
R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroptopene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1 8	R1507571	SW8260C	R1507571-006	633027P105XX	Tetrachloroethene	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX trans-1,2-Dichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloroptopene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2,2-Tertachloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1 U 1	R1507571	SW8260C	R1507571-006	633027P105XX	Toluene	1	U	1	UJ	SP	1 - 1
R1507571 SW8260C R1507571-006 633027P105XX trans-1,3-Dichloropropene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Trichloroethene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Vill chloride 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 0 9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Dichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 0.95 J 0	R1507571	SW8260C	R1507571-006	633027P105XX	trans-1,2-Dichloroethene	1	U	1	UJ	SP	
R1507571 SW8260C R1507571-006 633027P105XX Vinyl chloride 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP </td <td>R1507571</td> <td>SW8260C</td> <td>R1507571-006</td> <td>633027P105XX</td> <td>trans-1,3-Dichloropropene</td> <td>1</td> <td>U</td> <td>1</td> <td>UJ</td> <td>SP</td> <td>1 1</td>	R1507571	SW8260C	R1507571-006	633027P105XX	trans-1,3-Dichloropropene	1	U	1	UJ	SP	1 1
R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylenes (m&p) 2 U 2 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J SP	R1507571	SW8260C	R1507571-006	633027P105XX	Trichloroethene	1	U	1	ÚĴ	SP	ug/l
R1507571 SW8260C R1507571-006 633027P105XX Xylene, o 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-006 633027P105XX Xylenes (m&p) 2 U 2 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 1.9 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 U	R1507571	SW8260C	R1507571-006	633027P105XX	Vinyl chloride	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 1,1,1-Trichloroethane 6.9 6.9 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2,2-Tetrachloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone J U J J	R1507571	SW8260C	R1507571-006	633027P105XX	Xylene, o	. 1	U	1	UJ	SP	1 1
R1507571 SW8260C R1507571-007 633027P103XX 1,1,2,2-Tetrachloroethane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 J SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP	R1507571	SW8260C	R1507571-006	633027P105XX	Xylenes (m&p)	2	U	2	Πl	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 1,1,2,2-Tetrachloroethane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J.8 SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 J.8 J.8 J.8 SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/i R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5	R1507571	SW8260C	R1507571-007	633027P103XX	1,1,1-Trichloroethane	6.9		6.9	J	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 1,1,2-Trichloroethane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.8 1.8 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,1-Dichloroethane 1.9 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ <td< td=""><td>R1507571</td><td>SW8260C</td><td>R1507571-007</td><td>633027P103XX</td><td>1,1,2,2-Tetrachloroethane</td><td>1</td><td>U</td><td>1</td><td>UJ</td><td>SP</td><td>1 1</td></td<>	R1507571	SW8260C	R1507571-007	633027P103XX	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	1 1
R1507571SW8260CR1507571-007633027P103XX1,1-Dichloroethene1U1UJSPug/lR1507571SW8260CR1507571-007633027P103XX1,2-Dichloroethane0.95J0.95JSPug/lR1507571SW8260CR1507571-007633027P103XX1,2-Dichloropropane1U1UJSPug/lR1507571SW8260CR1507571-007633027P103XX1,2-Dichloropropane1U1UJSPug/lR1507571SW8260CR1507571-007633027P103XX2-Butanone5U5UJSPug/lR1507571SW8260CR1507571-007633027P103XX2-Hexanone5U5UJSPug/lR1507571SW8260CR1507571-007633027P103XX4-Methyl-2-pentanone5U5UJSPug/lR1507571SW8260CR1507571-007633027P103XXAcetone1.7J1.7JSPug/lR1507571SW8260CR1507571-007633027P103XXAcetone1.7J1.7JSPug/lR1507571SW8260CR1507571-007633027P103XXBenzene1U1UJSPug/lR1507571SW8260CR1507571-007633027P103XXBenzene1U1UJSPug/lR1507571SW8260CR1507571-007633027P103XXBenzene1U1UJSP	R1507571	SW8260C	R1507571-007	633027P103XX	1,1,2-Trichloroethane	1	U	1	UJ	SP	4 1
R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloroethane 0.95 J 0.95 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 4-Methyl-2-pentanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP<	R1507571	SW8260C	R1507571-007	633027P103XX	1,1-Dichloroethane	1.8		1.8	J.	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 4-Methyl-2-pentanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP u	R1507571	SW8260C	R1507571-007	633027P103XX	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 1,2-Dichloropropane 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 4-Methyl-2-pentanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP u	R1507571	SW8260C	R1507571-007	633027P103XX	1,2-Dichloroethane	0.95	J	0.95	J	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX 2-Butanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 2-Hexanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX 4-Methyl-2-pentanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Bromodichloromethane 1 U 1 UJ SP	R1507571	SW8260C	R1507571-007	633027P103XX	1,2-Dichloropropane	1	υ	1	UJ	SP	
R1507571 SW8260C R1507571-007 633027P103XX 4-Methyl-2-pentanone 5 U 5 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l	R1507571	SW8260C	R1507571-007	633027P103XX	2-Butanone	5	U	5	UJ	SP	ug/l
R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Bromodichloromethane 1 U 1 UJ SP ug/l	R1507571	SW8260C	R1507571-007	633027P103XX	2-Hexanone	5	U	5	UJ	SP	ug/I
R1507571 SW8260C R1507571-007 633027P103XX Acetone 1.7 J 1.7 J SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Bromodichloromethane 1 U 1 UJ SP ug/l	R1507571	SW8260C	R1507571-007	633027P103XX	4-Methyl-2-pentanone	5	U	5	UJ	SP	
R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l R1507571 SW8260C R1507571-007 633027P103XX Benzene 1 U 1 UJ SP ug/l	R1507571	SW8260C	R1507571-007	633027P103XX	Acetone	1.7	J	1.7	J	SP	
R1507571 SW8260C R1507571-007 633027P103XX Bromodichloromethane 1 U 1 UJ SP ug/l	R1507571	SW8260C	R1507571-007	633027P103XX	Benzene	1	U	1	UJ	SP	
	R1507571	SW8260C	R1507571-007	633027P103XX	Bromodichloromethane	1	U	1	UJ	SP	
	R1507571	SW8260C	R1507571-007	633027P103XX	Bromoform	1	υ	1	UJ .	SP	ug/l

7 of 13

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX	Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	Qualifier UJ UJ UJ UJ UJ UJ UJ UJ	Code SP SP SP SP SP SP SP SP SP	Units ug/l ug/l ug/l ug/l ug/l ug/l
8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX	Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1 1 1 1 1		1 1 1 1 1 1	01 01 01 01 01 01 01 01	SP SP SP SP SP SP	ug/l ug/l ug/l ug/l ug/l ug/l
8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX	Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1 1 1 1		1 1 1 1 1	01 01 01 01 01 01 01 01	SP SP SP SP SP	ug/l ug/l ug/l ug/l ug/l
8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX	Chlorobenzene Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1 1 1	U U U U U U	1 1 1	01 01 01 01 01 01	SP SP SP SP	ug/l ug/l ug/l ug/l
8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX	Chloroethane Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1 1	U U U U U	1 1 1	01 01 01 01	SP SP SP	ug/l ug/l ug/l
8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX 8027P103XX	Chloroform Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1	U U U U	1 1 1	UJ UJ UJ	SP SP	ug/l ug/l
027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX	Chloromethane Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1 1	บ บ บ	1 1	N N	SP	ug/l
027P103XX 027P103XX 027P103XX 027P103XX 027P103XX	Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1 1	U U	1 1 1	UJ		
8027P103XX 8027P103XX 8027P103XX 8027P103XX	Cis-1,3-Dichloropropene Dibromochloromethane Ethyl benzene	1 1	U	1	1	SP	
027P103XX 027P103XX 027P103XX	Dibromochloromethane Ethyl benzene	1		1			ug/l
027P103XX 027P103XX	Ethyl benzene		11 1		UJ	SP	ug/l
8027P103XX			0	1	UJ	SP	ug/I
		1	U	1	UJ	SP	ug/l
	Methylene chloride	1	U	1	UJ	SP	ug/l
3027P103XX	Styrene	1			UJ	SP	ug/l
027P103XX	Tetrachloroethene	1	U	-1	UJ		ug/l
027P103XX	Toluene	1	U	1	UJ		ug/l
027P103XX	trans-1,2-Dichloroethene	· 1	U	1	UJ		ug/I
027P103XX	trans-1,3-Dichloropropene	1	υ	1	UJ		ug/l
027P103XX	Trichloroethene	1.6		1.6	J		ug/l
027P103XX	Vinyl chloride	1	υ	. 1	UJ		ug/l
027P103XX	Xylene, o	1	U.	1	IJ		ug/l
027P103XX	Xylenes (m&p)	2	U		UJ		ug/l
027P106SXX	1,1,1-Trichloroethane	1.7		1.7	J	SP	ug/I
027P106SXX	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
027P106SXX	1,1,2-Trichloroethane	1	U	1	UJ		ug/l
027P106SXX	1,1-Dichloroethane			1			ug/l
027P106SXX	1,1-Dichloroethene	1	U	1	ΠĴ		ug/l
027P106SXX	1,2-Dichloroethane	1	U	1	UJ		ug/l
027P106SXX	1,2-Dichloropropane	1	U	1			ug/l
027P106SXX ·	2-Butanone	5	U	3			ug/l
027P106SXX	2-Hexanone	5	1				ug/l
027P106SXX	4-Methyl-2-pentanone	5	υ	5			ug/l
027P106SXX	Acetone	5	U	5	UJ	SP	ug/l
027P106SXX	Benzene	1	U	1			ug/l
027P106SXX	Bromodichloromethane	1		1	111		ug/l
	027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P103XX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX 027P106SXX	D27P103XXTolueneD27P103XXtrans-1,2-DichloroetheneD27P103XXtrans-1,3-DichloropropeneD27P103XXTrichloroetheneD27P103XXVinyl chlorideD27P103XXXylene, oD27P103XXXylenes (m&p)D27P106SXX1,1,1-TrichloroethaneD27P106SXX1,1,2,2-TetrachloroethaneD27P106SXX1,1-DichloroethaneD27P106SXX1,1-DichloroethaneD27P106SXX1,2-DichloroethaneD27P106SXX1,2-DichloroethaneD27P106SXX2-ButanoneD27P106SXX2-HexanoneD27P106SXX2-HexanoneD27P106SXX4-Methyl-2-pentanoneD27P106SXXBenzene	D27P103XXToluene1D27P103XXtrans-1,2-Dichloroethene1D27P103XXtrans-1,3-Dichloropropene1D27P103XXTrichloroethene1.6D27P103XXVinyl chloride1D27P103XXXylene, o1D27P103XXXylenes (m&p)2D27P103XX1,1,1-Trichloroethane1.7D27P106SXX1,1,2,2-Tetrachloroethane1D27P106SXX1,1,2-Trichloroethane1D27P106SXX1,1-Dichloroethane1D27P106SXX1,2-Dichloroethane1D27P106SXX1,2-Dichloroethane1D27P106SXX2-Butanone5D27P106SXX2-Hexanone5D27P106SXX4-Methyl-2-pentanone5D27P106SXX4-Methyl-2-pentanone5D27P106SXX8enzene1	D27P103XXToluene1UD27P103XXtrans-1,2-Dichloroethene1UD27P103XXtrans-1,3-Dichloropropene1UD27P103XXTrichloroethene1.6UD27P103XXVinyl chloride1UD27P103XXVinyl chloride1UD27P103XXXylene, o1UD27P103XXXylenes (m&p)2UD27P106SXX1,1,1-Trichloroethane1.7D27P106SXX1,1,2,2-Tetrachloroethane1UD27P106SXX1,1,2-Trichloroethane1UD27P106SXX1,1-Dichloroethane1UD27P106SXX1,2-Dichloroethane1UD27P106SXX1,2-Dichloroethane1UD27P106SXX2-Butanone5UD27P106SXX2-Hexanone5UD27P106SXX4-Methyl-2-pentanone5UD27P106SXX8enzene5UD27P106SXX8enzene1U	227P103XX Toluene 1 U 1 027P103XX trans-1,2-Dichloroethene 1 U 1 027P103XX trans-1,3-Dichloropropene 1 U 1 027P103XX trans-1,3-Dichloropropene 1 U 1 027P103XX trans-1,3-Dichloropropene 1 U 1 027P103XX Trichloroethene 1.6 1.6 1.6 027P103XX Vinyl chloride 1 U 1 027P103XX Xylene, o 1 U 1 027P106XX 1,1,1-Trichloroethane 1.7 1.7 027P106SXX 1,1,2,2-Tetrachloroethane 1 U 1 027P106SXX 1,1-Dichloroethane 1 U 1 027P106SXX 1,1-Dichloroethane 1 U 1 027P106SXX 1,2-Dichloropropane 1 U 1 027P106SXX 1,2-Dichloropropane 1 U 1 027P106SXX 2-Butanone 5 U 5 027P106SXX 2-Hexanone 5 U	227P103XX Toluene 1 U 1 UJ 227P103XX trans-1,2-Dichloroethene 1 U 1 UJ 227P103XX trans-1,3-Dichloropropene 1 U 1 UJ 227P103XX trans-1,3-Dichloropropene 1.6 J UJ 227P103XX Trichloroethene 1.6 J UJ 227P103XX Vinyl chloride 1 U 1 UJ 227P103XX Vinyl chloride 1 U 1 UJ 227P103XX Xylene, o 1 U 1 UJ 227P103XX Xylenes (m&p) 2 U 2 UJ 227P103XX Xylenes (m&p) 2 U 2 UJ 227P106SXX 1,1,1-Trichloroethane 1.7 1.7 J 227P106SXX 1,1-2-Trichloroethane 1 U 1 UJ 227P106SXX 1,2-Dichloroethane 1 U 1 UJ 227P106SXX 1,2-Dichloropropane 1 U 1 UJ 227P106SXX<	D27P103XX Toluene 1 U 1 UJ SP D27P103XX trans-1,2-Dichloroethene 1 U 1 UJ SP D27P103XX trans-1,3-Dichloropropene 1 U 1 UJ SP D27P103XX trans-1,3-Dichloropropene 1.6 1.6 J SP D27P103XX Trichloroethene 1.6 1.0 1 UJ SP D27P103XX Vinyl chloride 1 U 1 UJ SP D27P103XX Xylene, o 1 U 1 UJ SP D27P103XX Xylenes (m&p) 2 U 2 UJ SP D27P106SXX 1,1,1-Trichloroethane 1.7 1.7 J SP D27P106SXX 1,1,2-Trichloroethane 1 U 1 UJ SP D27P106SXX 1,1-Dichloroethane 1 U 1 UJ SP D27P106SXX 1,2-Dichloroethane 1 U 1 UJ SP D27P106SXX 1,2-Dichloropropane

8 of 13

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	<u> </u>
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-008	633027P106SXX	Bromoform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Bromomethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Carbon disulfide	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Carbon tetrachloride	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-008	633027P106SXX	Chlorobenzene	1	Ú	1	UJ	SP	ug/l
	SW8260C	R1507571-008	633027P106SXX	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C		633027P106SXX	Chloroform	1	U	1	UJ	SP	ug/l
	SW8260C	R1507571-008	633027P106SXX	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/i
1	SW8260C	R1507571-008	633027P106SXX	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-008	633027P106SXX	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Ethyl benzene	_ 1	U	1	UJ	SP	ug/i
R1507571		R1507571-008	633027P106SXX	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	Toluene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-008	633027P106SXX	trans-1,3-Dichloropropene	1	U		UJ	SP	ug/i
R1507571	SW8260C	R1507571-008	633027P106SXX	Trichloroethene	0.92	J	0.92	J	SP	ug/I
1	SW8260C	R1507571-008	633027P106SXX	Vinyl chloride	1	U	1	UJ	SP	ug/I
1	SW8260C	R1507571-008	633027P106SXX	Xylene, o	1	U	. 1	UJ	SP	ug/I
R1507571		1	633027P106SXX	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
R1507571		R1507571-009		1,1,1-Trichloroethane	1.6			J	SP	ug/l
R1507571		R1507571-009		1,1,2,2-Tetrachloroethane	1	U	1	UJ		ug/i
	SW8260C	R1507571-009		1,1,2-Trichloroethane		U		UJ		ug/l
R1507571	SW8260C	R1507571-009	633027P107S	1,1-Dichloroethane	1.9		1.9	J	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	1,1-Dichloroethene	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-009	633027P107S	1,2-Dichloroethane	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-009	633027P107S	1,2-Dichloropropane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	2-Butanone	5	U			SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	2-Hexanone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	4-Methyl-2-pentanone	5	U	5	UJ ·	SP	ug/l
	SW8260C	R1507571-009		Acetone	5.8		1	J		ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Benzene	1	U	1	UJ	SP	ug/l

9 of 13

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

	Analysis	Lab Sample		T	Lab	Lab	Validated	Validation	Validation	
		ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-009	633027P107S	Bromodichloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Bromoform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Bromomethane	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-009	633027P107S	Carbon disulfide	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Chloroethane	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-009	633027P107S	Chloroform	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Cis-1,3-Dichloropropene	1	U ·	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Ethyl benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Toluene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Trichloroethene	9.5		9.5	J	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Vinyl chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Xylene, o	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-009	633027P107S	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,1,1-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,1,2-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,1-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,2-Dichloroethane	1	υ	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	1,2-Dichloropropane	1	U	1	UJ	SP	ug/l
R1507571	1	R1507571-010		2-Butanone	5	U	5	UJ	SP	ug/l
R1507571	. 1	R1507571-010		2-Hexanone	5	U			SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	4-Methyl-2-pentanone	5	U			SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Acetone	1.4	J	1.4			ug/l

Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

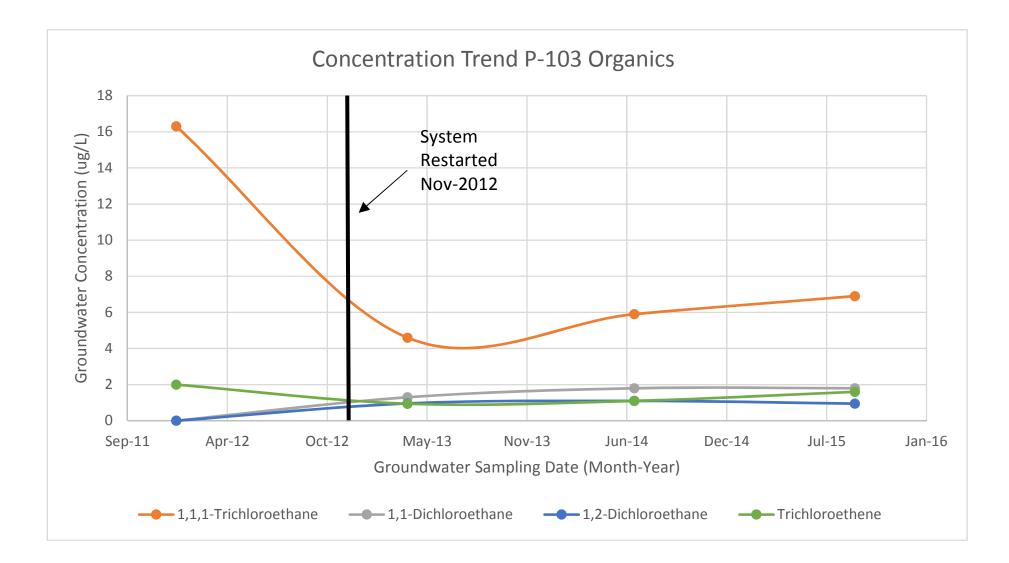
	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-010	633027P108XX	Benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Bromodichloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Bromoform	1	U	1	IJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Bromomethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Carbon disulfide	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Chloroform	1	U	1	IJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Chloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Ethyl benzene	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-010	633027P108XX	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Toluene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	trans-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Trichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Vinyl chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Xylene, o	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-010	633027P108XX	Xylenes (m&p)	2	U	2	UJ	SP	ug/i
R1507571	SW8260C	R1507571-011	633027P107D	1,1,1-Trichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,1,2,2-Tetrachloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,1,2-Trichloroethane	1	U	1	Πl	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,1-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,1-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,2-Dichloroethane	1	U	1	Πl	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	1,2-Dichloropropane	1	U	1	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	2-Butanone	5	U	5	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	2-Hexanone	5		5	ÛΊ	SP	ug/I
R1507571	SW8260C	R1507571-011	633027P107D	4-Methyl-2-pentanone	5	υ	5	Πſ	SP	ug/l
	•			11 of 13		•	·		C	reated by: B.

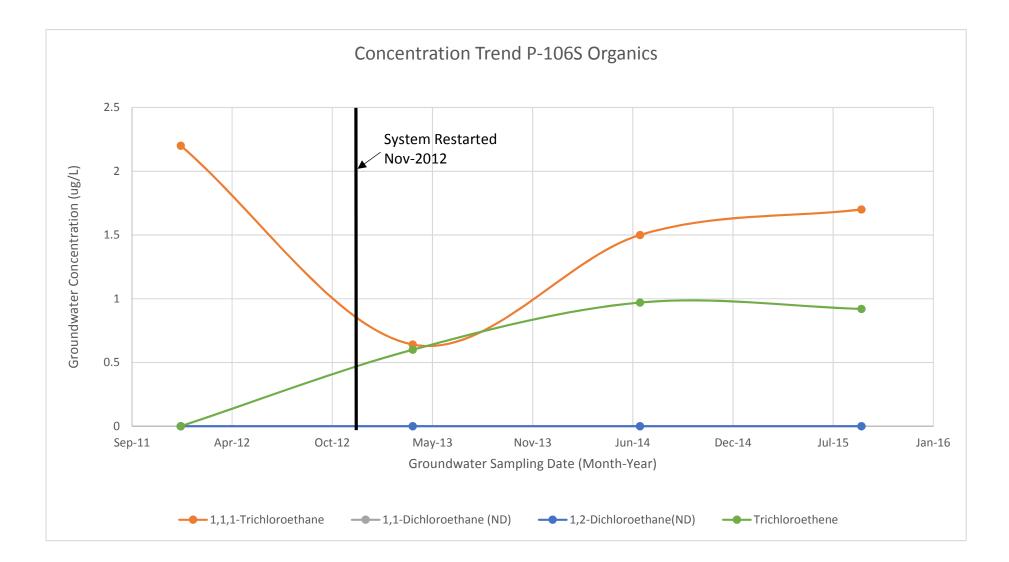
P:\Projects\nysdec1\Contract D007619\Projects\Primoshield - SM\3.0_Site_Data\3.4_Test_Results\Validation Files\Primo_R1507571_72_Table_3.xls

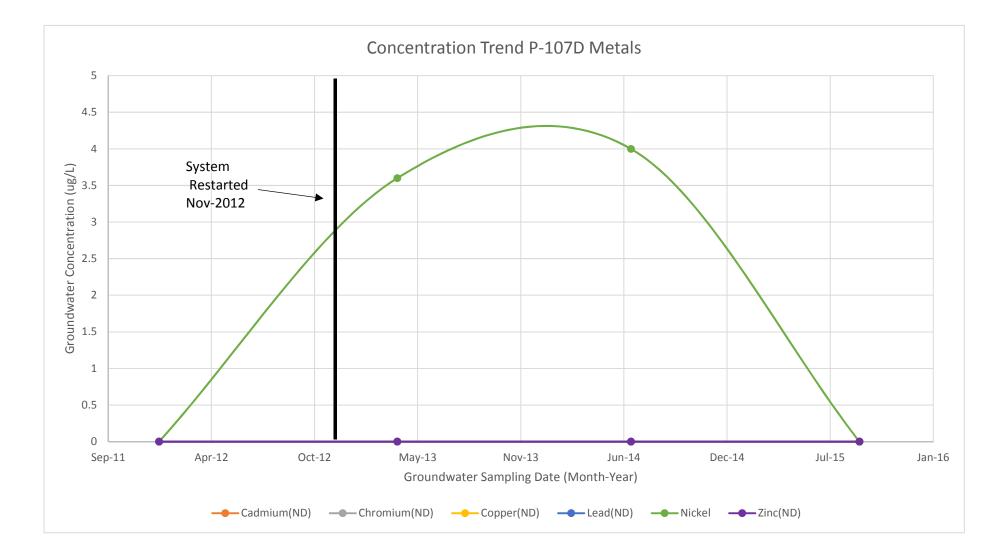
	Analysis	Lab Sample			Lab	Lab	Validated	Validation	Validation	
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507571	SW8260C	R1507571-011	633027P107D	Acetone	3.2	J	3.2	J	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Bromodichloromethane	1	U	1	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Bromoform	1	U	1	UJ	SP	ug/i
R1507571	SW8260C	R1507571-011	633027P107D	Bromomethane	1	U	1	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Carbon disulfide	1	U	1	ΟJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Chloroethane	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Chloroform	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-011	633027P107D	Chloromethane	1	U	1	UJ	SP	ug/I
R1507571	SW8260C	R1507571-011	633027P107D	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Dibromochloromethane	1	U ·	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Ethyl benzene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Styrene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Toluene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	trans-1,2-Dichloroethene	1	U	· 1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Trichloroethene	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Vinyl chloride	1	υ	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Xylene, o	1	U	1	UJ	SP	ug/l
R1507571	SW8260C	R1507571-011	633027P107D	Xylenes (m&p)	2	U	2	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	1,1,1-Trichloroethane	1	U İ	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	1,1,2,2-Tetrachloroethane	1	υ	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	1,1,2-Trichloroethane	1	U	1	Πl	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	1,1-Dichloroethane	1	U	1	UJ	SP	ug/l
R1507572		R1507572-001		1,1-Dichloroethene	1		1	UJ	SP	ug/l
R1507572		R1507572-001		1,2-Dichloroethane		U		UJ	SP	ug/l
R1507572		R1507572-001		1,2-Dichloropropane		U		UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	2-Butanone	5		1	UJ	SP	ug/i
R1507572		R1507572-001		2-Hexanone	5			UJ ·	SP	ug/l
1		. 1		12 of 13	· · ·	1	1			reated by: BJ

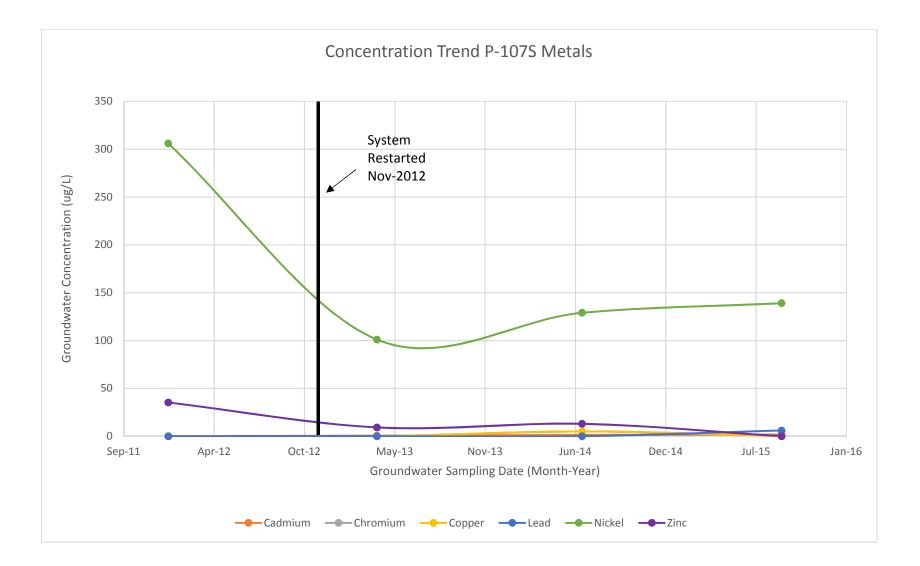
Created by: BJS October 13, 2015 Reviewed by: WAS October 13, 2015

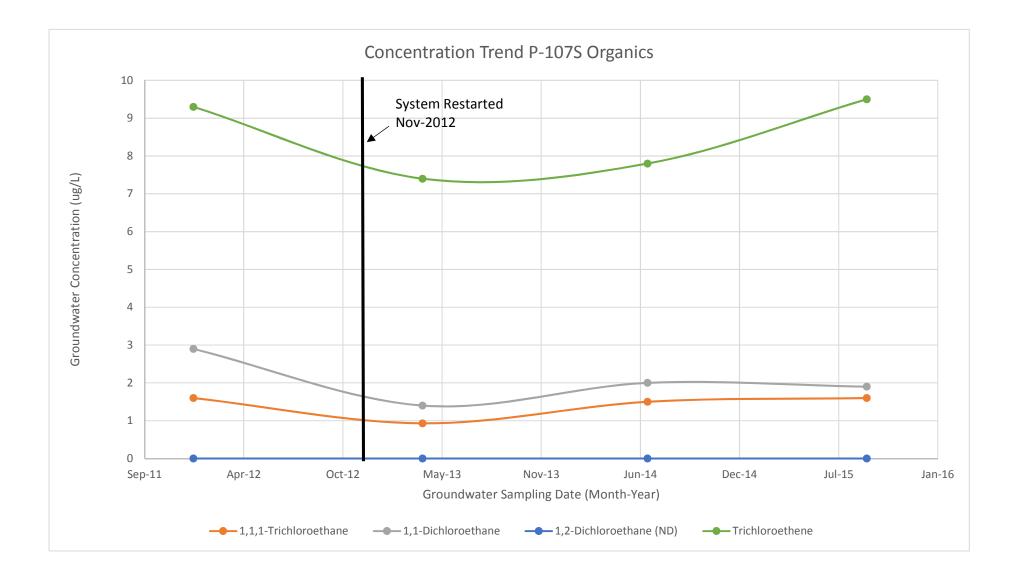
	Analysis	Lab Sample		· · ·	Lab	Lab	Validated	Validation	Validation	
SDG	Method	ld	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
R1507572	SW8260C	R1507572-001	633027GW01	4-Methyl-2-pentanone	5	U	5	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Acetone	2.6	J	2.6	J	SP	ug/I
R1507572	SW8260C	R1507572-001	633027GW01	Benzene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Bromodichloromethane	1	U	1	ΠŊ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Bromoform	1	U	1	ΠĴ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Bromomethane	1	U	1	ΠŊ	SP	ug/i
R1507572	SW8260C	R1507572-001	633027GW01	Carbon disulfide	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Carbon tetrachloride	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Chlorobenzene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Chloroethane	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Chloroform	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Chloromethane	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Cis-1,2-Dichloroethene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Cis-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Dibromochloromethane	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Ethyl benzene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Methylene chloride	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Styrene	1	U	1	Πl	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Tetrachloroethene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Toluene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	trans-1,2-Dichloroethene	1	U ·	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	trans-1,3-Dichloropropene	1	U	1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Trichloroethene	1	U	1	UJ	SP	ug/i
R1507572	SW8260C	R1507572-001	633027GW01	Vinyl chloride	1	U	. 1	UJ	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Xylene, o	1	U	1	UJ .	SP	ug/l
R1507572	SW8260C	R1507572-001	633027GW01	Xylenes (m&p)	2	U	2	UJ	SP	ug/i


HT-G = Holdtime exceeded


BL1 = Method blank qualifier


SP = Sample arrived out of temperature


APPENDIX D


CONCENTRATION TREND PLOTS

APPENDIX E

PRIMOSHIELD SITE VISIT DER SITE MANAGEMENT 9/8/2015

Primoshield Site Visit

DER Site Management, 09-08-2015

Oneida County, Site ID N^o 633027

Photos with Description

I arrived at the site at 1:30 PM. Onsite were Karl Ladner and Jerry Rawcliffe attending to well purging prior to groundwater sampling. Gear was arranged in the treatment plant.

The driller, "Jeff" from Nothnagle, was loading up his trailer after having put in "GW-01."

Jeff was the driller driving the Nothnagle rig two weeks ago from Rochester to South Cairo when the brakes failed! He didn't know about a rescheduling.

Sewer work is going on in the neighborhood. I had to detour around closed streets twice to get to the site. Much material has been staged at the end of St. Vincent Street. Karl pointed out the fence-- it looks like a truck has backed into our fence!



Bent-over fence poles and a separated top pipe.

Views of 15" and 36" pipe staged in the old railroad right-of-way at the end of the street.

Our broken fence lies at the end of the haul road.

At 2:00 PM I left the site. Driving around, I looked for the construction crew. I found them a block away, working at Mortimer Street and Taylor Avenue. As I approached them, I was greeted by Ms. Stephanie Wurz, a city engineer or technician in charge of the work. After introducing myself to her, I told her of the condition of the fence on St. Vincent Street and what I think had occurred. The construction worker standing with her said he could straighten the fence poles. The fence belongs to the city, I said.

